
Xerox Data Systems

XEROX
Xerox Batch Processing Monitor (BPM) and

Batch Time-Sharing Monitor (BTM)
Sigma 5-8 Computers

System Management

Reference Manual

Xerox Data Systems

l01 South Aviation Boulevard
~I Segundo, California 90245
213679-4511

Xerox Batch Processing Monitor (BPM) and
Batch Time-Sharing Monitor (BTM)

© 1971, Xerox Corporation

Sigma 5-8 Computers

System Management

Reference Manual

FIRST EDITION

90 17 41A

Decembe r 1971

Price; $7.50

XEROX

Printed in U.S.A.

NOTICE

This manual covers the FOl version of BPM/BTM. Much of the information contained in the manual came from the
BPM/BP, RT Reference Manual (90 09 54) and the BTM/TS Reference Manual (90 15 77). Although this information
is presently duplicated, the duplicate information will be deleted from those manuals during the next revision
and reprint.

RELATED PUBLICATIONS

Xerox Sigma 5 Computer/Reference Manual
Xerox Sigma 6 Computer/Reference Manual
Xerox Sigma 7 Computer/Reference Manual
Xerox Sigma 8 Computer/Reference Manual
Xerox Batch Processing Monitor (BPM)/BP, RT Reference Manual
Xerox Batch Processi ng Monitor (BPM) and Batch Time-Shari ng Monitor (BT M)/

OPS Reference Manual
Xerox Batch Time-Sharing Monitor (BTM)/fS Reference Manual
Xerox Batch Time-Sharing Monitor (BTM)/fS User's Guide
Xerox Batch Processing Monitor (BPM)/System Technical Manual
Xerox BTM/BPM/UTS Overlay Loader Technical Manual
Xerox Symbol/LN, OPS Reference Manual
Xerox Meta-Symbol/LN, OPS Reference Manual
Xerox BASIC/LN,OPS Reference Manual
Xerox Extended FORTRAN IV /LN Reference Manual
Xerox Extended FORTRAN IV lOPS Reference Manual
Xerox Extended FORTRAN IV-H/LN Reference Manual
Xerox Extended FORTRAN IV-H/OPS Reference Manual
Xerox FORTRAN Debug Package (FDP)/Reference Manual
Xerox Extended FORTRAN/Library Technical Manual
Xerox Mathemati ca I Routi nes/f ec hn i ca I Manua I
Xerox Functional Mathematical Programming System (FMPS)/Reference Manual
Xerox GAMMA 3 (Matrix Generator and Report Writer for FMPS)/Reference Manual
Xerox CIRC-DC/Reference Manual
Xerox CIRC-AC/Reference Manua I
Xerox CIRC-TR/Reference Manual
Xerox ANS COBOL/LN Reference Manual
Xerox ANS COBOL (BPM)/OPS Reference Manual
Xerox Sort and Merge/Reference Manual
Xerox Manage/Reference Manual
Xerox Data Management System (DMS)/Reference Manua I
Xerox FLAG/Reference Manual
Xerox SL-1/Reference Manual
Xerox 1400 Series Simulator/Reference Manual
Xerox Sigma Glossary of Computer Terminology

Publi cation No.

900959
90 17 13
900950
90 1749
900954

90 11 98
90 15 77
90 16 79
90 15 28
90 18 03
90 1790
900952
90 1546
900956
90 11 43
900966
90 11 44
90 16 77
90 15 24
900906
90 16 09
90 1705
90 1697
90 1698
90 1786
90 15 00
90 15 01
90 11 99
90 16 10
90 1738
90 1654
90 16 76
90 15 02
900957

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - time-sharing, UT - uti I ities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

CONTENTS

PREFACE viii Real-Time Programs 22

GLOSSARY ix
Memory Layout 22

l. INTRODUCTION 3. SUPERVISOR PROCESSOR (SUPER) 24

BPM/BTM Services 1 Introduction 24
Time-Sharing 1 Batch Operation 24
Batch 1 On-Line Operation 24
Real-Time 2 SUPER Functions 24

System Management Facilities 3 USERS 24
KILL 25

2. SYSTEM OVERVIEW 5 STATS 25
DELSTATS 26

Introduction 5 LIST 26
Monitor Services 5 PASSWORD 26
Input/Output Services 7 Errors and Error Messages 26
Foreground Operations 8

On-Line Subsystems 8
Extended FORTRAN IV-H 9 4. USER ACCOUNTING 28

Symbol 9
Delta 10 Introduction 28

Load 10 Accounting Field Formats 28

Run 10 Account Authorization 28

BPM 11 Account Timings 29

FERRET 11 Batch Priority Default Limits 31

Terminal-Oriented Manage 11 Accounting Log File 31

SUPER 11 Supplementary Accounting Routines 33

User- Bu i ItS ubsystems 11 Accounti ng Secondary Storage 33
Accounting Sheet Information 34 Batch Processors 11

Language Processors 11
Service Processors 14 5. BTM PERFORMANCE MONITOR 35
Application Processors 16
Execution Processors 18 Introduc ti on 35
User Processors 18 Data Collection 35

Control Command Interpreter 19 Report Generation 35
BTM Executive 19 Initialization and Termination 35

LOGIN 19 BTM Scheduling 35
Terminal I/O 19 Quanta 35
Scheduler and Swapper 19 User States 36
Executive Services 19 Scheduling Control 37
Performance Monitor 19 Basic Statistics 37
Subsystem Start- Up 19 Using the Report Generator 37

Monitor 19 Base File Creation 37
Basic Control 20 History File Creation 39
Job Scheduler 20 Batch Accounting Log Summary 41
File Management 20 Report Status Since Reset 42
I/O Services 20 Report Using Base File 42
Operator Communication 20 Report History Fi Ie 42
Real-Time Services 20 Batch Processing of History Files 43
Remote Batch Service 20 Definition of Reported Statistics 43
Job Step Control 20 Histograms 49
Batch Debugging 20 Snapshot Summary 51
Execution Loading 21 Snapshot Time Summary 51
Execution Linking 21 Sorted Snapshot Summary 51
Initial Start-Up 21 Sample History Summary 51
System Integri ty 21 System Tuning Procedures 56
Error Detection and Recovery 21 Tuning Implementation 56

Symbionts and Cooperatives 22 BTMPM Installation 57

iii

6. PROCESSOR AND SUBSYSTEM FACILITIES 58 Operating Suggestions 78
Error Processi ng 78

Introduction 58 ANLX-DMP 78
Fixed Monitor Locations 58 CALLSET 78
Data Control Blocks 59 FDKEY 78
File Identification 60 OLINKER 78
CCI Scan 60 CHAINERR 78

Terminal I/O 60 PYR-ERR 78
File Extension 61 CHN-ERR 78
Creating Subsystems 62
Subsystem Coding Requirements 62
Subsystem Loading Requirements 65

10. HARDWARE REQUIREMENTS 81

7. MONITOR DUMP PROCESSOR 66 Introduction 81
BPM Requirements 81

Introduction 66 BTM Requirements 82
Job Setup 66 Remote Batch Hardware Requirements 83

Input Source 66 Core Memory 83
Listing Formats 66 BPM/BTM Monitor Size Estimation 83
Error Message 67 Input/O utput Processors 87
Default Formats 67 Secondary Storage 87

Crash Ana lysis 67 Peripheral Equipment 90
Dump Tapes 68 Terminals 90
MONDUMP Assembly Options 68

Size of MONDUMP 68
Sigma 7 Instructions 68
Assembly Listing Format 68
Patch Area 69

1l. SYSTEM GENERATION OVERVIEW 91

Introduction 91
Purpose of SYSGEN 91

8. BPM ERROR LOGGING (ERRLOG AND
Gathering ROMs (Using PCL) 91

ELlST) ROUTINES 70 Building Dynamic Tables (PASS2) 92
Required Commands 93

Introduction 70 Command Sequence 93
ERRLOG Fi Ie Format 70 Meaning of PASS2 Commands 93
ERRLOG File Control Pointers 70 :CHAN 93
ERRLOG Calling Sequence 71 :DEVICE 93
ERRLOG Input/O utput System Formats 71 :STDLB 93

Start Input/Output Failure 71 :SDEVICE 91
Device Timed Out 71 :MONITOR 93
Unexpected Interrupt 72 :DLlMIT 94
No Interrupt Recognition 72 :ABS 94
Device Error 72 :FRGD 94
Memory Pari ty 73 :INTLB 94
System Start- Up 73 :BTM 94
Watchdog Timer Runout 73 PASS2 Pitfalls 94
File Consistency Check Failure 73 LOCCT Files 94
Symbiont Consistency Check Failure 74

Definition of LOCCT Files 94
Error Log Li ster (E LIS T) 74

Generating LOCCT Fi les 94
BPM Processor for ELIST 74 Loading the Monitor and Processors (PASS3) __ 95
Stand-Alone Routine for ELIST 75

Items to be Loaded 95
Options to be Used 95
Error Procedures 96

Writing PO Tape (DEF) 96
9. FILE ANALYZER 77 Helpful Hints 96

Limited Fi Ie Space 98
Introduction 77 Getting Desired Files 98
FANALYZE Options 77 Deleting Files That Have Been Used 98
Input/Output 77 Special Considerations 98

iv

12. SYSTEM GENERA nON DETAILS 100 System Boot and Initialization 148
JOB Command 148

Parameters Defining Target System 100 Component Sizes in a BTM System 148
SYSGEN Processors 103 Fixed Overhead 148
Command Format 103 Variable Overhead 148
PASS1 Processor 103 Background and On-Line Areas 149

! PASS 1 103 SYSGEN Deck Setup 149
:SELECT 103 Real-Time System Generation 151
: UPDATE 103 :STDLB 151
:LABEL 104 :INTLB 151
PASS1 Messages 104 :DEVICE 151
PASS 1 Examples 104 :MONITOR 151

Creation of ERRMSG File 104 :FRGD 152
PASS2 Processor 104 Remote Batch SYSGEN 152

!PASS2 107
:STDLB 108
:CHAN 108

13. BOOTSTRAP AND PATCHING OPERA nONS 154
: DEVICE 109
:SDEVICE 110

System Tape Format 154
:MONITOR 110

Sequence of Operations 154
:DLIMIT 111

Booting from RAD or Disk Pack 156
:ABS 112

Bootstrap I/O Error Recovery 156
:FRGD 112

Nonstandard Bootstrap Conditions 156
:BTM 113

PASSO Processor 156
:INTLB 114 PASSO Commands 157
PASS2 Control Command Sequence 114

:GENCHN 157
PASS2 Example 114

:GENOP 157
PASS2 Messages 114

:GENDCB 157
LOCCT Processor 120

:GENMD 158
LOCCT Examples 121

:GENDEF 158
LOCCT Messages 121

:GENEXP 159
PASS3 Processor 122

:GENDICT 159
PASS3 Tree Structure Analyzer 124

PASSO Messages 160
PASS3 Examples 124

DEF Processor 128
IDEF 128
:INCLUDE 128 14. VOLUME I NITIALlZA nON 163
:IGNORE 128
:DELETE 128 Introduction 163
: WRITE 128 Flawing 163
END 128 VOLINIT Error Messages 163
DEF Examples 128

Creation and Use of a LOCCT File 130 INDEX 200
Generating Standard Monitors and

Processors 135
PASS 1 Control Commands for Standard

Monitors and Processors 135 APPENDIXES
PASS3 Control Commands for Loading

Standard Monitors and Processors 137 A. SIGMA STANDARD OBJECT LANGUAGE 165
Standard Monitors 138

Monitor Tree Structure Requirements 138 Introduction 165
The Root-Resident Monitor 138 General 165
Horizonta I Tree Instructi ons 146 Source Code Translation 165
Vertical Tree Instructions 146 Object Language Format 166
Number of Overlay Levels 146 Record Control Information 166
Overlay Requirements 146 Load Items 167
User Initialization Routines 146 Declarations 167

BTM System Generation 146 Definitions 169
SYSGEN Operational Information 147 Expression Eva luation 170

PASS1 147 Formation of Internal Symbol Tables 172
PASS2 147 Loading 174

Load and Overlay Cards 148 Miscellaneous Load Items 175
DEF Card 148 Object Module Example 175

v

B. XDS SIGMA STANDARD COMPRESSED 16. Subsystem Statistics Format 48
LANGUAGE 180

17. Snapshot Summary Format 52

C. XDS STANDARD SYMBOLS, CODES AND 18. History Summary Example 52

CORRESPONDENCES 181 19. Chronological Snapshot Summary Example ___ 54

XDS Standard Symbols and Codes 181 20. Sorted Snapshot Summary Examples 55

XDS Standard Character Sets 181 21. Locations Common to All Monitors 58
Control Codes 181
Special Code Properties 181 22. DCB Name Table 63

XDS Standard 8-Bit Computer Codes 23. TCB Format 64
(EBCDIC) 182

XDS Standard 7-Bit Communication Codes 24. Deck Setup to List Dump 69

(A NSCII) 182 25. ELIST Listing 75
XDS Standard Symbol-Code Correspondences _ 183

26. Sigma 5-8 Minimal BPM System 82

D. ANSCII TO EBCDIC CONVERSION 187 27. Typical BTM Hardware Configuration 84

28. Remote Batch Terminal Hardware

E. EBCDIC TO ANSCII CONVERSION 189 Configurations 85

29. Assumptions 87

F. BPM/BTM MONITOR SIZING 191 30. BTM RAD Configuration Example 88

Introduction 191 31. Format of Master System Tape 102

Monitor Core Requirements 191 32. PASS 1 STD Files 105
PASS2 Module Calculations 191
PSA Size Requirements 192 33. PASS 1 Use of SELECT/UPDATE ALL 106

34. LOCCT Record Format 121

G. REAL-TIME RESPONSE TIME 196 35. BPM57M Standard Monitor 139

Introduction 196 36. BPM5SFDBC Standard Monitor 139

37. BTMRT5SDBC Standard Monitor 140

H. LABELED TAPE SENTINELS 197 38. System Tree Structure 140

39. Language Processor Load/Tree Structure 144

40. System Generation Example 145

FIGURES 41. 80K System Generation Example 149

42. Real-Time System Memory Layout 153
I. BPM/BTM Operating System 6

2. Typical Memory Layout 23

3. STAT Printout 26

4. LIS T Pri ntout 27

5. Authorization File Record (:USERLG) 30 TABLES

6. Accounting Log Record Format (:ACCTLG)-__ 32 1. Recommended Starting Points Using 7212 ___ 56

7. User Accounting Summary Messages 34 2. Recommended Starting Points Using 7232 __ 56

8. BTM Time Sharing 36 3. ELIST Considerations 74

9. BT M User States 36 4. ELIST Copy File 75

10. BTMPM Report Generator Flow Chart 38 5. FANALYZE Error Messages 78

11. Batch Accounting Log Summary Example 41 6. Minimum BPM Hardware Configuration 81

12. User Statistics Format 44 7. Recommended BPM Hardware Additions 81

13. Task Statistics Format 44 8. Typical BTM Hardware Configuration 82

14. Quanta Statistics Format 45 9. Basic Monitor Size 85

15. Performance Statistics Format 47 10. Monitor Size Increase Decimal Words 86

vi

11. Typical Performance for Various 26. BT M Subsystems 136
Swapping Devices 88

27. Element Fi les that Must Be Saved 137
12. Typical Contents :SYS Account 89

28. LOCCT Name Codes 138
13. PASS1 Messages 107

29. PASSO Messages 160
14. I/O Device Type Codes 108

30. VOLINIT Error Messages 164-
15. Channel Designation Codes 108

16. Device Designation Codes 108
F-1. Monitor Module Sizes 193

17. :BTM Command Options 113
F-2. I/O Handler Sizes 194

18. PASS2 Messages 115
F-3. Processor Sizes 194

19. LOCCT Messages 122
H-l. General Format of Labeled Tape 197

20. Handlers in BASHANDL File 124
H-2. Label Senti nel 198

21. PASS3 Messages 125
H-3. Identification Sentinel 198

22. Files Automatically INCLUDEd on BPM
H-4. Beginning-of-Fi Ie Sentinel 198

BO Tapes 128 H-5. File Information on Tape 198

23. DEF Messages 129 H-6. End-of-File Sentinel 199

24. Standard Monitors 135 H-7. End-of-Volume Sentinel 199

25. BPM Processors 136 H-S. End-of-Reel Sentinel 199

vii

viii

PREFACE

This manual has been designed for systems personnal at local BPM/BTM installations, including managers, analysts,
and system programmers. Its purpose is to provide such personnel with a convenient reference for utilizing all of the
available tools provided by the system to configure, generate, support, monitor, tune, and perhaps periodically
modify their system to meet changing requirements.

It is assumed that readers are generally familiar with the contents of the BPM/BP, RT Reference Manual (90 0954),
the BTM/TS Reference Manual (90 15 77), and the BPM/BTM OPS Reference Manual (90 11 98). It is further as
sumed that some information given in this manual, particularly hardware requirements for a particular application,
will be supplemented by XDS salesmen, XDS field analysts, and XDS field engineers.

GLOSSARY

accounting log file (:AeCTLG): a non-optional file in the
:SYS account that contains a discrete record for each
job processed during normal operation. Each such
record contai ns information concerni ng the system re
sources used by the associated job (i. e., units of CPU
time, I/O time, pages of output, etc.).

background area: that area of memory that is not dedicated
to resident real-time foreground programs, BTM users,
or the Monitor. Background memory is used for pro
cessing batch jobs.

batch job: a job that is submitted to the batch job stream
through the card reader, through a remote batch ter
minal, or through an on-line terminal (using the BPM
subsystem).

binary input: input from the device to which the BI (binary
input) operational label is assigned.

checkpoi nted job: a real-time process wherei n a partially
processed background job has been saved in secondary
storage along with the content of all registers and other
"environment ll so that the job can be restarted when
the real-time task has released background memory.

confl i cti ng reference: a reference to a symbol i c name that
has more than one defi nition.

control command: any control message other than a key-in.
A control command may be input via any device to
which the system command input function has been
assigned (normally a card reader).

control message: any message received by the Monitor that
is either a control command or a control key-i n.

control programs: those Monitors, I/O handlers, diagnos-
ti cs, and other uti I i ty programs that have been and wi II
be released by XDS. Also included are standard pro
cessors such as all current assemblers and certain com
pilers and their associated libraries. XDS offers this
type of software at no additional charge to the customer
(see program products).

cooperative: a Monitor routi ne that transfers information
between a user's program and secondary storage (also
see "symbiont").

data control block (DeB): a table in the user's program
that contains the information used by the Monitor in
the performance of an I/O operation.

extended accounti ng: supplementary accounting information
supplied by the installation.

external reference: a reference to a declared symbolic
name that is not defined within the object module in
wh ich the reference occurs. An external reference

can be satisfied only if the referenced name is defi ned
by an external load item in another object module.

file extension: a convention that is used when certain sys
tem output DeBs are opened. Use of this convention
causes the file (RAD tape, disk pack, etc.) to whi ch
the DeB is assigned to be positioned to a poi nt just fol
lowing the last record in the file. When additional
output is produced through the DeB, it is added to the
previous contents of the file, thereby extending the
file. This is based on the assumption that the file was
previously opened in the OUT mode during the current
job and no new ASSIG N control commands for the DeB
were encountered.

function parameter table (FPT): a table through which a
user's program communicates with a Monitor function
(such as an I/O function).

global symbol: a symbolic name that is defined in one pro
gram module and referenced in another.

GO file: a temporary RAD or disk pack file that contains
relocatable object modules formed by a processor.
Such modules may be retrieved by use of a LOAD con
trol command in batch mode.

granule: a block of RAD or disk pack sectors large enough
to contain 512 words (a page) of stored information.

job information table (JIT): a table associated with each
active job. The table contains accounting informa
tion, beginning of DeB table, and temporary Monitor
information.

job step: a subunit of job processing such as compilation,
assembly, loadi ng, or execution. Information from
certain commands (JOB, LIMIT, and ASSIG N) and all
temporary files created during a job step are carried
from one job step to the next but the steps are other
wise independent.

key: a data item that uniquely identifies a record.

key-in: information entered by the operator via the opera
tor's console.

library load module: a load module that may be combined
with relocatable object modules, or other library load
modules, to form a new executable load module.

linking loader: a program that is capable of linking and
loading one or more relocatable object modules and/or
load modules to form a nonoverlaid load module.

load map: a listing by a loader showing the location or
value of all global symbols entering into the load.
Also shown are symbols that are not defined or have
multiple defi nitions.

ix

load module (LM): an executable program formed by the
overlay loader, using relocatable object modules
(ROMs) and/or ,load modules as input information.

logical device: a peripheral device that is represented in
a program by an operational label {e. g., BIor PO}
rather than by specific physical device name.

monitor: a program that supervises the processing, loading,
and execution of other programs.

object language: the standard binary language in which
the output of a processor is expressed.

object module: the series of records containing the load
information pertaining to a single program or subpro
gram (i. e., from the begi nni ng to the end). Object
modules serve as input to the loader.

operational label: a symbolic name used to identify a
logical system device.

overlay loader: a processor that loads and links elements of
overlay programs.

overlay program: a segmented program in which the ele
ment (i.e., segment) currently being executed may
overlay the core storage area occupi ed by a previously
executed e I eme nt.

performance monitor: a Monitor module designed as a sys
tem management tool for monitoring time-sharing
activity and for assisting the system manager in re
allocating system resources to improve overall system
efficiency (see "Tuning a BTM System").

physical device: a peripheral device that is referred to by
a name specifyi ng the devi ce type, I/O channe I, and
device number (also see "logical device").

program products: those compilers and application programs
that have been or will be released by XDS. Unlike
control programs, program products are not required by
all Sigma users and are therefore made avai lable by
XDS on an optional basis. Program products will be
provided only to those users who execute a license
Agreement for each applicable Sigma installation (see
control programs).

prompt character: a character that is sent to the terminal
by an on-line subsystem to indicate that the next line
of input may be entered.

reentrant: an attribute of a program that allows the pro
gram to be shared by several users concurrently.

relocatable object module (ROM): a program or subprogram
in XDS Sigma object language generated by a pro
cessor such as Meta-Symbol, Symbol, or FORTRAN
(also see "object module").

x

resident program: a program that has been loaded into a
dedi cated area of core memory.

response time: the time between the completion of terminal
input and the first program activation.

scheduler: A Monitor routine that controls on-line quantum
lengths and the order in which on-line users are
executed.

secondary storage: any rapid-access storage medium other
than core memory (e. g., RAD or disk pack storage).

session time: the time between terminal log-in and log-out.

source language: a language used to prepare a source pro
gram suitable for processing by an assembleror compiler.

standard processors: processors that are included in a BPM/
BTM system at no additional charge to the customer.

subsystem: a load module in the :SYSaccountto whose name
is appended a colon character (:). A subsystem can be
called by a time-sharing user via entry of the first two
characters of the name.

symbiont: a Monitor routi ne that transfers information be
tween secondary storage and a peripheral device in
dependent of and concurrent with job processing.

symbolic input: input from the device to which the SI (sym
boli c input) operational label is assigned.

symbolic name: an identifier that is associated with some
particular source program statement or item so that
symbolic references may be made to it even though its
value may be subject to redefinition.

system generation (SYSGEN): the process of creating an
operating system that is tailored to the specific re
quirements of an installation. The major SYSGEN
steps include: gathering the relevant programs, gen
erating specific Monitor tables, loadi ng Monitor
and system processors, and writing a bootable sys
tem tape.

system library: a group of standard routines in library load
module format, any of which may be incorporated in a
program being formed.

system register: a register used by the Monitor to communi
cate information that may be of use to the user program
(e. g., error codes). System registers SR 1, SR2, SR3,
and SR4 are current general registers 8, 9, 10, and 11,
respectively.

task control block (TCB): a table of program control infor
mation built by the linking or overlay loader. The TCB
is part of the load module and contai ns the user's temp
stack and otherareas for use duri ng program execution.

tuning a system: the modification of an operating system
to adjust system resources to meet changing
requirements.

unsatisfied reference: a symbolic name that has been ref
erenced but not defined.

user log file (:USERLG): an optional file in the :SYS
account that contains information used to validate each
user's authorization to access system facilities. It also

contai ns accumulated statisti cs for each account/name
combination. The file is generated by the SUPER sub
system or processor from information supplied by the
system manager.

user reponse time: the time from the completion of the
input command until the first character of output is
produced, or the next terminal read if nooutputoccurs.
This time includes system response, queue delays due
to other users, and the processi ng time of the users
program or processor.

xi

1. INTRODUCTION

BPM/BTM SERVICES

The Batch Processing Monitor (BPM) is an operating system
that permits batch processing, remote batch processing
and real-time processing. The Batch Time-Sharing (BTM)
extension to the Monitor permits on-line conversational
time-sharing. All processing takes place efficiently and
concurrently on Sigma 5-8 computers. BPM/BTM offers

• Abi lity to handle up to 64 concurrent users.

• A complete recovery system coupled with preservation
of user files to provide fast restart following hardware
ma Ifunction.

• For on-line users: highly effici ent and extensive soft
ware, fast response time.

• For batch users: on-line entry, local entry, and high
speed remote entry.

• For installation managers: reporting facilities, system
control and tuning capabi I ity, extensive error checking,
and recovery features.

• For all users: comprehensive accounting and a complete
set of powerful processors.

TIME-SHARING

BTM allows multiple on-line terminal users to concurrently
create, debug, and execute programs using a variety of
powerful and comprehensive language subsystems and faci 1-
ities. The Executive routine in the Monitor provides a
discrete set of services for the terminal user and provides
the interface between the user and the subsystems. These
subsystems and facilities include

Subsystem Function

EDIT Composition and modification of programs and
other bodies of text.

FORTRAN Compilationof Xerox Extended FORTRAN IV-H
programs.

SYMBOL Assembly of assembly language programs.

BASIC Compilation and execution of programs or di
rect statements written in an extended BASIC
language.

DELTA Debugging of programs at the assembly language
level.

Subsystem Function

LOAD Loading of relocatable object modules (ROMs)
created by on-line or off-line processors such
as Symbol, Meta-Symbol, or FORTRAN.

RUN Execution of previously formed load modules
and simulation of several BPM (batch) services
on-line.

BPM Terminal batch entry.

FERRET Listing of information about entries in the
file management system and limited file
manipulation.

MANAGE Generation of control information for batch
(TOM) Ma nage to process.

Two additional facilities allow the system manager to exer
cise control over the operation of the system. They are

Facility Function

SUPER Control of users entering the system.

BTMPM Monitoring of system performance.

BATCH

Users with batch processing requirements have a number of
choices. They may choose loca I batch entry at the compu
ter site, terminal batch entry through an on-line terminal,
or remote batch entry through the card reader of a remote
batch terminal. In each mode of batch entry, they have
access to the following batch processors:

LANGUAGE PROCESSORS

Software

Extended
FORTRAN IV

Extended
FORTRAN IV-H

FLAG

Meta-Symbol

Symbol

Function

Compilation of Xerox extended
FORTRAN IV programs.

Compilation of Xerox extended
FORTRAN IV-H programs.

Compilation of fast IIload-and-go ll

FORTRAN programs.

Assembly of high-level assembly language
programs.

Assembly of assembly language programs.

Introduction

Software

ANS COBOL

Manage

BASIC

SL-1

Function

Compilation of programs written in
English language form.

File retrieval, updating, and reporting
for batch programs.

Compilation and execution of programs
or direct statements written in extended
BASIC language.

Compilation of programs written in
powerful simulation language.

SERVICE PROCESSORS

Software

FMGE

PCl

ROMTRAN

DEFCOM

EDCON

SYSGEN

SUPER

VOLINIT

FPURGE

MEDDUMP

Function

Creation, entry, copying, listing, de
letion, or punching of files in the user's
account or any account to wh i ch the
M:EI or M:EO DCB is assigned.

Transfer (and conversion) of data be
tween peripheral devices.

Elimination of forward reference items
from relocatable object modules, where
possible, to reduce core storage require
ments for tables when loading object
code.

Provision of a means (primarily for fore
ground users) of accessing core resident
data and routines in one load module by
another load module.

Creation of on-I ine compressed fi les or
decompression of fi les. Operates as a
background processor under BPM or the
BTM RUN subsystem to provide back
ground ut iii ty of functi ons for the text
editor.

Generation of BPM/BTM systems to meet
user requ i rements •

Control of users entering the system.

Initialization of private and public
disk packs.

Control over elimination of unwanted
files.

Device-to-device data transfer to pro
vide backup fi les for system recovery.

2 BPM/BTM Services

Software

MONDUMP

ELIST

ERRWRT

FANALYZE

Function

Listing of crash recovery fi Ie or tape.

Listing of error messages logged by a
Monitor routine, ERRlOG.

Creation of error message fi Ie.

Reliability check of large file manage
ment system.

APPLICA nON PROCESSORS

Software

Sort-Merge

DMS

FMPS

GPDS

CIRC

1400 Simulator

Function

Sorting and/or merging of records in one
or more fi les.

Organization, storage, update, and de
letion of information in a centralized
data base.

Writing and execution of comprehensive
linear and nonlinear programs.

Exerimentation with and evaluation of
system methods, procedures, and designs.

Analysis of electronic circuits.

Simulation of 1400 series computers.

EXECUTION PROCESSORS

Software

LOPE

LOAD

Function

Formation (in one pass) of nonoverlaid
load module and, optionally, execution
of that module.

Formation (in two passes) of relocatable
load module and entry of that load mod
ule in the user's element fi Ie, if a load
module name is specified.

REAL-TIME

BPM provides real-time facilities concurrently with batch
and/or time-sharing processing. Real-time programs may be
core resident or nonresident. Nonresident real-time pro
grams take core memory from other users to obtain needed
memory. System resources such as core memory, secondary
storage space, real-time clocks, I/O devices, register
blocks, and trap locations may be dedicated to real-time
programs.

SYSTEM MANAGEMENT FACILITIES

The manager of each BPM/BTM installation must evaluate
his performance requirements before he can effectively use
the system management facilities. This evaluation must take
place prior to equipment selection since an effective equip
ment selection can be made only with complete knowledge
of the intended use of the total operating system.

The performance requirements that must be defined include
such things as the portions of system resources that must be
devoted to batch, time-sharing, and real-time service and
the type of service desired. In defining the type of service
desired, the batch turnaround time that is acceptable, the
interactive delays that are tolerable, and the real-time re
sponse time must be defined. Information that will affect
system performance includes the number of on-line users to
be a II owed, the maxi mum core memory to be a II owed each
user, the maximum file space to be allowed each on-line
user, and the resources to be dedicated to real-time.

Once an effective selection of equipment has been made
and a BPM/BTMsystem has been installed, the system man
ager may exercise control over the performance of the system
through several faci lities. These facilities include

• System Generation

• Performance Monitoring and Control

• Fi Ie Backup Control

• Log-in Supervisory Control

• Use Accounti ng

• Operations Control

At the time a system is generated, a number of parameters
may be defined to tailor the system to the specific require
ments of the installation. These parameters include

• Core size allocated to on-line users.

• Maximum number of on-line users.

• Size of terminal input/output buffers.

• Maximum file space allowed all users.

• Length of batch and on-line time quanta.

• Cutoff limits for peripheral output by batch users.

• System resources to be used by real-time programs.

After a system has been generated and put into operation,
the system manager may request performance statistics sup
plied by the Performance Monitor. Operator key-ins allow
him to change the on-line or background quanta or number
of on-line users allowed to log in concurrently. Statistics
supplied by the Performance Monitor

• Measure how well the system is performing.

• Warn of immediate problems (e. g., response time is
becoming noticeably slower).

• Measure the importance of various parts of the system
such as the relative use of various processors in terms
of CPU time (this might have implications in deter
mining whether a particular processor is dropped or
whether its use justifies the effort to add new
capabilities).

During operation of the system, the system manager main
tains user fi les through the use of the FPURGE processor.
This processor allows him to save, restore, purge, and list
user files.

Another system managementfacility is the user authorization
feature. This feature gives the system manager the means of
adding or deleting users, and also allows him to specify the
RAD and disk pack space allowed to each account/name
combination, maximum batch priority, whether a user can
run in batch, remote batch, real-time, or on-line, or any
combination of the four.

BPM/BTM has an extensive user accounting system. Statis
tics maintained by account number include

• Number of batch jobs run.

• Number of terminal sessions.

• Accumulated batch job time.

• Accumulated terminal connect time.

• Accumulated CPU time.

• Accumulated overhead time.

• Accumulated I/O time.

• Number of RAD granules used.

• Number of disk pack granules used.

Accounting statistics are listed at the end of every job, and
a subset of the statistics is listed when an on-line user logs
off. Current values of statistics may be listed by an on-line
user through the use of the FERRET subsystem. In addition,
a discrete record is generated at the end of each batch job
and on-line session. This record includes an accounting of
resources used by the job or session.

System Management Faci lities 3

BPM has several operational control features that allow the
system manager to exercise control over operations through
the computer operator. The computer operator may

• Error and abort users.

• Send messages.

• Shut down and start up on-line services.

• Control symbionts.

• Control remote batch.

• Enter and initiate real-time jobs.

4 System Management Faci lities

• Respond to hardware errors.

• Control mounting and dismounting of magnetic tapes
and private disk packs.

These functions are carried out through a console that also
provides a log of overa II system operation.

Thus, within reasonable limits, BPM/BTM may be modified
by system management facilities to meet changing perfor
mance requirements. Beyond these limits, control must be
exercised by direct management authorization and by edu
cation of users.

2. SYSTEM OVERVIEW

INTRODUCTION

The BPM/BTM operating system consists of a Monitor and a
number of associated subsystems and processors (Figure 1).
The Monitor provides overall supervision of program process
ing. The associated subsystems and processors provide specific
functions such as compi lation, execution, and debugging.

The Batch Processing Monitor is a partially resident super
visory program that

• Performs operator-like functions to serially process
production type jobs by priority in a dedicated area
of core (called background core).

• Performs servi ces expli ci tl Y requested by the executi ng
programs that constitute the individual jobs steps within
a job.

• Prevents destruction by background programs of core
dedicated to resident real-time programs (called fore
ground core).

• Yields control (according to priority) to real-time pro
grams when the interrupt system so di ctates, and when
executing, provides unique real-time services in
addition to the servi ces common to the production type
(background) program.

BPM has a fi Ie management capabi Iity that permits programs
to create collections of data and/or programs (called fi les)
which are maintained on secondary storage by the Monitor
after the creating job has terminated. A fi Ie may later be
accessed by any authorized background or foreground pro
gram by specifying to the Monitor the fjle's unique alpha
numeric name (which was assigned to the file by the creating
program).

The Mon itor creates fj I es on secondary storage for its own
convenience as well as in response to user (program) re
quests. Symbiont fi les are collections of a not-yet
executed job's input records, or collections of an already
processed job's output records destined for unit record type
output devices. Input symbiont fi les are produced by a
small interrupt-driven Monitor program (called an input
symbiont) that reads from an input device and writes a
corresponding file while utilizing less than 2% of the total
CPU time. The actual record reading and file writing in
volve I/O transfers that, in Sigma, proceed independently
from and simultaneously with CPU operations. Thus, BPM
may read job input from high speed secondary storage in
stead of from relatively slow speed devices such as card
readers. BPM wi II also direct its output records to symbiont
files instead of directly to the device. Another small
interrupt-driven Monitor program (called an output symbiont)
reads these output symbiont fi les and writes the constituent
output records to the appropriate device. Once again the
advantage to BPM is in the substitution of high speed
secondary storage for slow speed output devices.

BPM also faci litotes the construction of programs that are
to be executed whi Ie only partially resident. Such programs
are called "overlay programs" and at execution time consist
of a "root" and one or more overlays each of which contains
one of a set of mutually exclusive program elements. When
an overlay program is executing, the Monitor automati cally
loads (from secondary storage) segments that are required
but are not presently in the appropriate overlay area. The
advantage to the user in creating overlay programs is the
abi lity to execute in a smaller core area than would be re
quired if the programs were serial. There is of course, a
trade-off, in that overhead is required to load segments that
results in longer execution time. In addition to permitting
overlay of background and foreground programs, the Monitor
is itself overlaid to reduce its size.

Serially processed production type jobs (sometimes called
"batch" jobs) are controlled by BPM via control cards in
terspered throughout the stream of input cards. These con
trol cards, which are uniquely identified to the Monitor,
are commands generated by the submitter of the job to BPM
to perform operator-like functions, such as a command to
load (from secondary storage into background core) and ex
ecute a certain assembler program, or to dump selected
areas of core memory following the execution of a program.
Each job must begin with a control card identifying the job,
which causes the Monitor to log and print an accounting
summary for the last job and reinitialize a Job Information
Table (JIT) in preparation for the new job.

Processors in BPM are programs such as assemblers (e. g.,
Meta-Symbol), compi lers (e. g., FORTRAN), or Loaders
(e. g., LOPE) that are on secondary storage at locations
known to the Monitor. They may be called into background
core and executed by a control card containing the pro
cessor's name (e. g., !COBOL). Additiona I options on these
processor control cards are read by the Monitor and passed
along to the processor when given control.

Subsystems in BTM are processors that may be used on-line.
They are called by the BTM Executive upon receipt of the
subsystem name which was entered through the terminal
keyboard by the on-line user.

MONITOR SERVICES

The single most important function the Monitor performs is
to provide services requested by programs operating under
or in conjunction with the Monitor. I/o is usually the
most requested servi ce, and in BPM, I/O must be performed
by the Monitor for background programs. I/O cannot be
directly performed by background programs because of the
possibility that input may be inadvertantly or maliciously
directed into foreground, time-sharing, or Monitor core

System Overvi ew 5

BTM Executive

LOGIN
Terminal I/O
User Scheduling and Swapping
Executive Services
Performance Monitor
Subsystem Start-up

Monitor

Basic Control
Job Scheduler
Fi Ie Management
I/O Services
Operator Communication
Real-Time Services
Remote Batch Services
Job Step Control
Batch Debugging
Execution Loading
Execution Linking
Initial Start-Up
System Integri ty

Control Command
Interpreter (CCI) ~--

Symbion ts
and

Cooperatives

(Symbiont
systems onlr)

I
I
I
~

I
I
I

t-- -- ----~

On-Line
only

Subsystems

EDIT
FORTRAN IV-H
SYMBOL
BASIC
DELTA
LOADt

RUN
BPM
FERRET
MANAGE (TOM)tt
SUPER

User-built
Subsystems

Language
Processors

FORTRAN IV
FORTRAN IV-H
FLAG
META-SYMBOL
SYMBOL
ANS COBOL
MANAGEtt
BASIC
SL-1tt

Batch
only

Service
Processors

FMGE
PCl
ROMTRAN
DEFCOM
EDCON
SYSGEN
SUPER
VOLINIT
FPURGE
MEDDUMP
MONDUMP
ELIST
ERRWRT
FA NALYZE

tUser and system libraries are available through this loader.
tt Prog ram produc t.

App I ica ti on
Processors

SORT-MERGE
DMStt
FMPStt

GPDStt

CIRCtt
1400 Simulator

Figure 1. BPM/BTM Operating System

6 Introduction

Execution
Processors

lOPE
LOADt

Real-Time
Programs

User
Processors

areas. I/o features of the BPM system wi II be discussed
more thoroughly below. Non-I/O services include

• Debugging assistance (i. e., conditional or uncondi
tional snapshots of the general registers and selected
core locations).

• Resource management (i. e., requesting the Monitor to
provi de current core Ii mi ts, additi ona I memory pages,
memory protection changes for pages, simpl ified trap
and console interrupt control, time of day and elapsed
time information, operator key-ins).

• Linkages to other programs (i. e., a program may call
another program in on top of itself and the called pro
gram may later restore the call ing program).

• Explicit overlay segment control (i.e., the creator of
an overlaid program may elect, at execution time, to
expli citly request the loading of a segment whose pres
ence is anti cipated, rather than wait for the Monitor
to automatically load the segment at the time it is
needed).

Servi ces are requested by programs by the execution of a
CAll instruction. The execution of this instruction causes
a trap which gives control to the Monitor. The Monitor
uses the value of the register field of the CAll instruction
and the parameter I ist pointed to by the instruction's ad
dress field to determine the nature of the request.

INPUT/OUTPUT SERVICES

DEVICE

The parameter list accompanying a read or write request to
the Monitor for unit record type devices (including unlabeled
tape) usually include, in addition to device identification,
a core buffer address in the user's area into or from which
I/O transfers are to occur, a byte count, a flag indicating
whether the Monitor is to immediately return control to the
user or is to wait until the requested I/O transfer is complete,
and error or abnormal return addresses. When an immediate
return is indicated, the Monitor queues (saves in a stack)
the request in the event the requested devi ce is already
busy. The Monitor has the abi lity to queue requests for all
devices and will eventually process queued requests on a
priority with first-in, first-out service given to requests of
the same priority. The Monitor automatically buffers
tra nsfers to unit record output devi ces by i nserti ng a 34-word
core buffer between the user's buffer and the destination
device. When the Monitor receives a write request, it im
mediately transfers the data from the user's buffer to an
avai lable buffer in the Monitor's pool of output buffers.
The actual I/o transfer proceeds from the Monitor buffer,
thereby freeing the user's buffer for immediate a Iteration
or update. Thus, there is no need for a user to specify
IIwait ll on any write request to an output device. Command
or data chaining may not be requested by the user and is not
employed by the Monitor.

FILE

A file consists of a number of records, each of which is
created by a write request. A file may have three distinct
organizations depending upon how the fi Ie creator intends
to later access the individual records within the fi Ie.

If each record is given a unique identifier, called a key,
a record can later be accessed by requesting a read with
the desired record's key specified. A fi Ie with such re
cords has KEYED organization. If the user must access
records in the order in which they appear within the file
(i. e., skip or read two records in order to access the third
record), the fi Ie has CONSECUTIVE organization. If the
user can access a record by giving its relative physical
displacement within the fi Ie (the unit of displacement is
the granule which is equal to 512 words on secondary stor
age), the fi Ie has RAN DOM organization. The user must
declare his intent to create a fi Ie having one of these or
ganization types before requesting his first write. He must
also declare the name by which the file will be known.
The process during which organization and fi Ie name and
several other miscellaneous attributes are presented to the
Monitor is known as OPEN.

The Monitor automatically introduces a 512-word blocking
buffer between the user's buffer and secondary storage for
files of keyed or consecutive organization. Input from or
output to a random fi I e goes through the user's buffer. User
write operations are blocked, i. e., data is transferred from
the user's buffer to the next avai lable area in the blocking
buffer. An actual I/o transfer occurs only when the block
ing buffer is full. Similarly, when reading, an entire 512-
word block is read into a Monitor blocking buffer before
the user-requested record is located and transferred to the
user's buffer.

Blocking and deblocking is automatic and reduces the ratio
between user I/o requests and actual I/O transfers (i. e.,
many user requests result in only one I/O transfer) thus
making more efficient use of secondary storage space. It
also reduces the number of RAD or disk pack accesses,
thereby eliminating I/O overhead. Any write to secondary
storage consumes at least one sector regardless of how small
the byte count might be. Thus, a blocked record consisting
of many small user records saves space by eliminating sectors
that are mostly empty. I/O requests are queued as described
for device I/O.

MA GN ETIC TAPE

There are two permissible types of tape operations under
BPM, unlabeled and labeled. Unlabeled tape refers to
tape operations that are unaltered by the Monitor. This is
considered device I/O. The Monitor introduces no system
information not explicitly written by the user, nor does it
perform blocking/deblocking of the user's records. Labeled
tape (LT) refers to tape operations that are manipulated by
the Monitor in order to provide the user with advantages
not present on unlabeled tape. System (Monitor) informa
tion, called sentinels, are automati cally placed at the be
ginning and end of volumes and at the beginning and end

Introduction 7

of each file by the system. These sentinels are used by the
system to verify that a user-requested volume has been
mounted, used to locate a user-requested file, signify the
physical end of a file, signify the physical end of volume
with the continuation of the present fj Ie to the next sequen
tial vol ume, or signify physical end of reel and end of tape
set. Record blocking and deblocking occurs automatically
just as it does for fi I es. If two or more fif es exist on a LT
volume set, file searching occurs over the entire set when
the user requests that a specific file be opened. Volume
switching is performed automatically, both during fi Ie
searches and during the actual reading or writing of files
split between two or more volumes. Keyed and consecutive
organization is permitted, primari Iy to permit copying sec
ondary storage fi les to LT for back-up purposes without
losing any of the Monitor's control information associated
with keyed and consecutive organization.

DEVICE INDEPENDENCE

Programs are often written with the intention that they be
executable on any system using the same operating system
(e. g., BPM standard software executes on any Si-gma 5-8
configured to run BPM). However, if I/O requests within
such a program were directed to a particular I/O device
(i. e., a physical device address is specified) and this de
vice was not present on all BPM systems or had a different
I/O address on some systems, the programs would be con
strained to execute on only those systems having the ad
dressed devices. To eliminate this constraint, most software
wi" address a symbolic I/O label instead of a physical de
vice address. Special control cards (ASSIGN and STDLB)
which cause symbolic I/O labels to be equated to a physi
cal devi ce address can be placed in front of the control
card that causes the program to be loaded and executed.
By changing control cards at various installations, the same
program without alteration could perform I/O despite the
dissimi larity of I/o configurations.

FOREGROUND OPERATIONS

A foreground program is defined as a program that enables
the system to respond to and process external events in real
time; that is, within periods ranging from milliseconds to
microseconds depending on the nature and urgency of the
event. The foreground program is called into action by an
interrupt triggered either by an externa I event or a clock.
The interrupts have an assi gned order of pri ori ty.

At the time an installation's customized Monitor system is
generated (by SYSGEN), a portion of memory may be re
served for foreground programs. This foreground area differs
from background memory only in memory protection detai Is.
Foreground programs may either be appended to the system
at SYSGEN time and loaded into the foreground area for
execution when the system is booted in, or they may be
created during normal batch operations via foreground op
tions on the ! LOAD and ! RUN control cards. Real-time
programs may be executed in the foreground area or they
may be brought into background for execution. When a
real-time program is loaded in the background for execution,

8 On-Line Subsystems

the background is checkpointed and the memory protection
setting changed, making the background area available to
the foreground program. In addition to check-pointing,
BPM provides other special services for foreground programs
such as the ability to connect to interrupts, take over I/O
devi ces so that they can do their own I/O, etc.

Foreground programs are generally connected to one or more
interrupts in such a way that the occurrence of an interrupt
causes control to be given to the associated foreground pro
gram. In addition, a foreground program may contain a
number of tasks, each individually connected to an inter
rupt. Each interrupt has a unique priority determined by
the hardware. The priority levels and activation sequence
of the interrupts control the order of execution of the fore
ground programs as well as the order of execution of the
tasks within the program.

Foreground programs and tasks may be connected to their
interrupts either directly or centrally. A directly connected
foreground program or task receives control via the execu
tion of an XPSD instruction in the associated interrupt loca
tion. A centrally connected program gets control from the
Monitor after the Monitor gets control from the interrupt
location. However, a centrally connected program oper
ating in the master mode may directly connect a task within
itself by storing an appropriate XPSD instruction into the
appropriate interrupt location.

A more detailed consideration of the BPM and BTM and
other system elements follows.

ON-LINE SUBSYSTEMS

On-line subsystems are called by entry of the first two charac
ters of subsystem name in response to a prompt character (!) that
is sent to the terminal by the BTM Executive. Upon receipt of
the subsystem name (the first two characters), the BTM Execu
tive initiates the loading of the subsystem and turns over con
trol to the subsystem. Each of the on-I i ne subsystems that
operate under the BTM Executive is briefly described below.

EDIT

The Edit subsystem is a line-at-a-time context editor de
signed for on-line creation, modification, and handling of
programs and other bodies of information. All Edit data is
stored on RAD secondary storage in a keyed fi Ie structure of
sequence numbered, variable-length records. This structure
perm its Edit to directly access each I ine or record of data.

Edit functions are controlled through single line commands
supplied by the user. The command language provides for
insertion, deletion, reordering, and replacement of lines
or groups of I ines of text. It also provides for selective
printing, renumbering records, and context editing opera
tions of matching, moving, and substituting line-by-line
within a specified range of text lines. File maintenance
commands are also provided to allow the user to bui Id, copy,
merge, and delete whole fi les. (Reference: BTM/TS
Reference Manual, 90 15 77.)

EXTENDED FORTRAN IV-H

Extended FORTRAN IV-H is a one-pass high-speed compiler
that is compatible with ANS standard FORTRAN and other
H-Ievel FORTRAN IV systems. In addition to the ANS
standard FORTRAN features, Extended FORTRAN IV-H
offers the following:

• ENTRY statement.

• Double complex data.

• FORTRAN II READ, PRINT, and PUNCH statements.

• IMPLICIT statement.

• END and ERROR options on READ statement.

• T (ta b) forma t.

• Name LIST input/output.

• Object program listing.

• In-Line symbolic code.

• Run-time debug trace of variable assignments on
BTM terminal.

• Run-time debug trace of path-of-flow on BTM terminal.

• All the debug facilities of the FORTRAN Debug
Package (FDP).

• Reentrant library.

• Descriptive run-time diagnostics.

• Memory-to-memory data conversion (ENCODE/
DECODE).

• Unrestri cted identifier length.

• Statement numbers as subprogram arguments.

• Adjustable formats.

• Boolean operators.

(Reference: Extended FORTRAN IV-H/LN Reference
Manual, 90 09 66 and Extended FORTRAN IV-H/OPS
Reference Manual, 90 11 44.)

Extended FORTRAN IV-H can call a special debugging
package. The FORTRAN Debug Package (FDP) is made up
of special library routines that are called by Xerox Ex
tended FORTRAN IV-H object programs compi led in the
debug mode. These routines interact with the program to
detect, diagnose, and in many cases, repair program errors.

The debugger can be used in batch and on-line modes. An
extensive set of debugging commands are avai lable in both
cases. In batch operation, the debugging commands are

included in the source input and are used by the debugger
during execution of the program. In on-line operations, the
debugging commands are entered through the terminal key
board when requested by the debugger. Such requests are
made when executi on starts, stops, or restarts. The debugger
normally has control of such stops.

In addition to the debugging commands, the debugger has
a few automati c debuggi ng features. One of these features
is the automatic comparison of standard calling and receiving
sequence arguments for type compatibility. When applicable,
the number of arguments in the standard calling sequence is
checked for equality with the receiving sequence. These
calling and receiving arguments are a Iso tested for protec
tion conflicts. Another automatic feature is the testing of
subprogram dummy storage instructions to determine if they
violate the protection of the calling argument. (Reference:
FORTRAN Debug Package/Reference Manual, 90 16 77.)

SYMBOL

Symbol is a one-pass assembler that reads source language
programs and converts them to object language programs.
It allows forward references, literals, and external defini
tions. Since these items cannot be defined by a single
pass assembler, Symbol produces information that enables
the loader to provide the appropriate linkages at load time.
Error detection is provided and a set of mathematical sub
routines is available to the assembly language user.

In addition, Symbol offers the following features:

• Self-defining constants that facilitate use of hexa
decimal, decimal, octal, floating-point, and fixed
point values.

• The facility for writing large programs in segments or
modules. The assembler wi II provide information
necessary for the loader to complete the linkage be
tween modules when they are loaded into memory at
executi on ti me.

• Values that may be specified in byte, halfword, word,
and doubl eword lengths.

• Instructions that are automatically aligned on word
boundaries.

• The COM directive which allows the user to define
instructions and table areas.

(Reference: Symbol/LN,OPS Reference Manua I, 90 17 90.)

BASIC

BASIC is a compi ler and programming language based on
Dartmouth BASIC. It is, by design, easy to teach, learn,
and use. It allows individuals with little or no programming
experience to create, debug, and execute programs via an
on-line terminal. Such programs are usually small to me
dium size applications of a computational nature.

On- Li ne Subsystems 9

BASIC is designed primarily for on-line program development
and execution, or on-line development and batch execu
tion. In addition, programs may be developed and exe
cuted in batch mode.

BASIC provides two user modes of operation. The editing
mode is used for creating and modifying programs. The
compi lation/execution mode is used for running completed
programs. This arrangement simplifies and speeds up the
program development cycle.

Statements may be entered via a terminal and immediately
executed. The principal benefit of direct execution is
short simple computations. This unique capabi lity allows
an on-line terminal to be used as a "super" desk calculator.

Dur:ing on-line development of programs, programs may be
investigated for loop detection, snapshots of variables may
be obtained, values of variables may be changed, flow of
execution may be rerouted, and so on.

At compi Ie and execute time, the user may specify if an
array dimension check is to be made. In the safe mode,
statements are checked to verify that they do not reference
an array beyond its dimensions. In the fast mode, this time
consuming check is not made. Thus, the safe mode could
be used during checkout, and the fast mode could be used
to speed up execution when the program reaches the pro
duction stage.

BASIC provides an image statement that uses a "picture"
of the desired output format to perform editing. It also has
TAB capabi lity and a precision option to indicate the num
ber of significant digits (6 or 16) to be printed.

An easy-to-use feature is provided to allow the user to read,
write, and compare variable alphanumeric data. This is
particularly important for conversational input processing.

Chaining permits one BASIC program to call upon another
for compilation and execution without user intervention.
Thus, programs that would exceed user core space may be
segmented, and overlay techniques may be employed via
the chaining facility.

In addition to the usual set of allowed matrix manipulators,
Xerox BASIC provides options for input of matrixes via con
sole or file, copying of matrixes, and the solution of simul
taneous equations. Some of the matrix operations apply to
vectors as well as to matrixes. (Reference: BASIC/
Reference Manual, 90 1546.)

DELTA

Delta is designed to aid in the debugging of programs at
the assembly-language or machine-language levels. It
operates on core images and tables of internal and global
symbols used by the programs but does not require that the
tables be at hand. With or without the symbol tables, Delta

10 On-Line Subsystems

recognizes computer instruction mnemonic codes and can
assemble machine-language programs on an instruction-by
instruction basis. The main purpose of Delta, however, is
to faci Ii tate the activities of debugging by

• Examining, inserting, and modifying such program ele
ments as instructions, numeric values, and coded infor
mation (i. e., data in all its representations and formats).

• Controlling execution, including the insertion of
break-points into a program.

• Tracing execution by displaying information at des
ignated points in the program.

• Searching programs and data for specific elements and
subelements.

Although Delta is specifi cally tai lored to machine language
programs, it may be used to debug FORTRAN, COBO L, or
any other program. Delta is designed and interfaced to
BPM/BTM in such a way that it may be called in to aid de
bugging at any time, even after a program has been loaded
and execution has begun. (Reference: BTM/TS Reference
Manual, 90 15 77.)

LOAD

The Load subsystem loads XDS Sigma Standard Object Lan
guage programs consisting of relocatable object modules
(ROMs) from specified element fi les and/or through M:BI.
It may also be used to load libraries from the fi Ie :BLlB
in any specified account and also the :SYS account.

The Load subsystem will load one or more object modules
that have been assembled by BTM Symbol, BTM FORTRAN
IV-H, standard Symbol (background), standard Meta
Symbol (background), Xerox FORTRAN IV (background),
or FORTRAN IV -H (background). It wi II not bui Id overlay
structures and always loads modules as protection type 00
regardless of the type specified. (Reference: BTM/TS
Reference Manual, 90 15 77.)

RUN

The RUN subsystem allows the on-line user to execute pre
viously formed load modules. It simulates several BPM ser
vices that otherwise would not be available to the on-line
user, allowing overlaid modules to be executed. Thus, most
load modules capable of batch execution will also execute
on-line. However, the execution bias must be at least one
page above the lower limit of the user area. If the load
module is relocatable, it wi II be relocated automati cally.

The system load modules that execute under the RUN sub
system are

• EDCON

• LOPE

• FMGE

(Reference: BTM/TS Reference Manual, 90 15 77.)

BPM

The Terminal Batch Entry (BPM) subsystem controls the
insertion of jobs into the batch job queue and is avai lable
only when BTM is operating in a symbiont environment.
Input to the BPM subsystem can be from the terminal or
from an existing disk fi Ie. In either case, the subsystem
wi II allow some editing of the job fi Ie. These editing
functions are intended only to provide recovery from errors
of omission committed whi Ie the user is composing a small
job fi Ie at his terminal. (Reference: BTM/TS Reference
Manual, 90 15 77.)

FERRET

FERRET is a uti lity subsystem that allows the on-line user
to obtain information about entries in the file management
system. It also allows limited fi Ie manipulation.

Specific functions that may be performed by FERRET include

• Listing account contents.

• Testing file accessibility.

• Checking file activity.

• Listing accounting statistics.

• Sending the operator a message.

• Deleting files.

• Copying files.

• Examining fi les.

• Punching files on paper tape.

• Determining total granules used by files residing in
user's account.

• Selectively keeping (or deleting) displayed files.

(Reference: BTM/TS Reference Manual, 90 15 77.)

TERMINAL-ORIENTED MANAGE (PROGRAM PRODUCT)

Terminal-Oriented Manage (TOM) accepts and validates
request input from a terminal. The validated input is then
inserted into the background job stream for process i ng by
batch Manage.

As an adjunct to the usual batch Manage processors, TOM
gives the on-line user a convenient method of accessing

data bases in large business environments. However, it is
directed mainly toward sophisticated Manage users who have
frequent nonroutine need for reports and who want on-line
validation of their retrieval and report specifi cations.
(Reference: Manage/Reference Manual, 90 16 10.)

SUPER

SUPER provides the system manager with the obi lity to
create, update, list, and summarize the: USERLG fi Ie that,
in turn, is used by the system to control and record user
activity. SUPER can be controlled from a terminal, a file,
or a deck of cards.

Specific functions performed by SUPER include

• Validating user's Monitor servi ces.

• Cancel I ing users.

• Summarizing statistics.

• Resetting user statisti cs.

• Listing authorized users.

• Listing passwords for all fi les in a specified account.

(Reference: BTM/TS Reference Manual, 90 15 77.)

USER-BUILT SUBSYSTEMS

BTM users may build their own on-line subsystems to supple
ment or replace the subsystems supplied with BTM. The
rules governing the construction of these subsystems are
defined in Chapter 6.

BATCH PROCESSORS

Processors that operate under BPM/BTM in batch mode (see
Figure 1) are grouped as follows:

• Language Processors

• Servi ce Processors

• Application Processors

• Executi on Processors

• User-Bui It Processors

lANGUAGE PROCESSORS

BPM/BTM has nine language processors that operate in
batch mode. These processors are outlined below.

Batch Processors 11

XEROX EXTENDED FORTRAN IV

The Xerox Extended FORTRAN IV language processor
consists of a comprehensive algebraic programming lan
guage, a compifer, and a large library of subroutines. The
language is a superset of most available FORTRAN lan
guages, containing many extended language features (in
cluding real-time) to facilitate program development and
checkout. The compi ler is designated to produce very
efficient object code, thus reducing execution time and
core requirements, and to generate extensive diagnostics
to reduce debugging time. The library contains over
235 subprograms and is avai lable in a reentrant version.

Xerox Extended FORTRAN IV contains all the necessary
facilities to allow real-time programs to be written, de
bugged, and executed under BPM. These real-time facili
ties incl ude: an additional language statement (CON NECT),
a feature permitting reentrant object programs to be com
piled, a reentrant library, and additional library routines
to control interrupts, clocks, etc.

The principal features of Xerox Extended FORTRAN IV are
as follows:

• Extended language features to reduce programming
effort and increase range of applications.

• Extensive meaningful diagnostics to minimize debugging
time.

• In-line symbolic code to reduce execution time of
critical parts of the program.

• Overlay organization for minimal core memory
utilization.

• Compi ler produced reentrant programs.

Extended FORTRAN IV can call a special debugging program
called the FORTRAN Debug Package (FDP). This is the
same debugging program that is described under Extended
FORTRAN IV-H. (Reference: FORTRAN Debug Package/
Reference Manual, 90 16 77.)

EXTENDED FORTRAN IV-H

A batch version of Extended FORTRAN IV-H is avai lable
to batch users. This version is essentially the same as the
on-line version except that it also has real-time features.
A real-time program compiled by Extended FORTRAN IV-H
may be resident or nonresident, centrally connected to
interrupts, and may checkpoint and use background core
space. (Reference: Extended FORTRAN IV-H/LN Refer
ence Manual, 90 09 66 and Extended FORTRAN IV-H/OPS
Reference Manual, 90 11 44.)

FLAG

FLAG (FORTRAN Load and GO) is an in-core FORTRAN
compi ler that is compatible with the FORTRAN IV-H class

12 Batch Processors

of compi lers. It can be used in preference to the other
FORTRAN compi lers when users are in the debugging phase
of program development. FLAG is a one-pass compiler
and uses the Extended FORTRAN IV library. Included in
the basic external functions are the Boolean functions
lAND (AND), IEOR (exclusive OR), and lOR (OR) which
give the FORTRAN user a bit manipulation capability.

If several FLAG jobs are to be run sequentially, they may
be run in a sub-job mode, thus saving processing time nor
mally needed for the Control Command Interpreter (CCI) to
interpret the associated control cards. In this mode, FLAG
wi II successively compi Ie and execute any number of sep
arate programs, thereby reducing Monitor overhead.

The FLAG debug mode is a user-selected option that gen
erates extra instructions in the compi led program to enable
the user, during program execution, to detect errors in pro
gram logic that might otherwise go undetected or cause
unexplainable program fai lure. (Reference: FLAG/Reference
Manual, 90 16 54.)

META-SYMBOL

Meta-Symbol is a procedure-oriented macro assembler. It
has services that are avai lable only in sophisticated macro
assemblers and a number of special features designed to
permit the user to exercise dynamic control over the para
metric environment of assembly. It provides users with a
highly flexible language with which to make full use of the
avai lable Sigma 5-8 hardware capabi lities. Meta-Symbol
may be used only in batch mode.

One of the many Meta-Symbol features is a highly flexible
list definition and manipulation capabi lity. In Meta-Symbol,
lists and list elements may be conveniently redefined, thus
changing the value of a given element.

Another Meta-Symbol feature is the macro capabi lity. Xerox
uses the term "procedure" to emphasize the highly sophis
ticated and flexible nature of its macro capability. Proce
dures are assembly-time subroutines. Procedure definitions,
references, and recursions may be nested up to 32 levels.

Meta-Symbol has an extensive set of operators to facilitate
the use of logical and arithmetic expressions. These oper
ators faci litate the parametric coding capabi Ii ties avai lable
with Meta-Symbol (parametric programming allows for
dynamic specification of both lIifll and "how" a given state
ment or set of statements is to be assembled).

Meta-Symbol users are provided with an extensive set of
directives. These directives, which are commands intrinsic
to the assembly, fall into three classes:

• Directives that involve manipulation of symbols.

• Directives that allow parametric programming.

• Directives that do not allow parametric programming.

A number of intrinsic functions are also included in
Meta-Symbol. These give the user the abi lity to obtain
information on both the structure and content of a assembly
time construct. For example, the user can acquire infor
mation on the length of a certain list. He can inquire about
a specific symbol and whether it occurs in a procedure ref
erence. (Reference: Meta-Symbol/Reference Manual,
90 09 42 and Symbol/Reference Manual, 90 17 90.)

SYMBOL

The batch version of Symbol is essentially the same as the
on-line version except for I/O conventions. It is a one
pass assembler that reads source language programs and
converts them to object language programs. (Reference:
Symbol/LN,OPS Reference Manual 90 1790.)

ANS COBOL

The Xerox ANS COBOL compi ler offers the user a power
fu I and convenient programming language faci litity for the
implementation of business or commercial applications.
The language specifications fully conform to the proposed
ANSCII standard for the various function processing mod
ules. Only those language elements that cause ambiguities
or are seldom used have been deleted. The compi ler's de
sign takes full advantage of the unique hardware features
of Sigma computers, resulting in rapid compi lation of
source code, rapid execution of the resulting object code,
and the generation of compact programs. The result is a
highly efficient programming system requiring a minimum
amount of storage.

Xerox ANS COBOL contains many faci lities that are either
not found in other systems or, if avai lable, are provided
only at greater cost in terms of equipment required. Some
of the faci Iities that provide more flexibi lity and ease of
use in program development include

• Implementation of table handling mode.

• Sort/merge linkage.

• Sequential access.

• Random access linkage.

• Segmentation.

• Report writer.

• Library uti lization

• Calling sequence for FORTRAN, Meta-Symbol, etc.

• Packed decimal as well as floating-point arithmetic
formats.

• Data name series options for ADD, SUBTRACT,
MULTIPLY, DIVIDE, and COMPUTE verbs.

The system provi des the user wi th a comprehensi ve set of
aids to minimize the time required to print II bug-free II pro
grams in the form of listings. These listings include:

• The source language input to the compi ler with inter
spersed English language diagnostic messages.

• An optional listing of the relocatable binary output,
printed in line number sequence identical to the source
language listing.

• A cross-reference listing, indicating by the line number
where each data name or paragraph name is defined in
the COBOL program and where each reference is
located.

In addition, at run time, the user may use TRACE and
EXHIBIT to follow execution of the procedure division.
The compi ler is designed to take full advantage of high
speed, random access secondary storage (e. g., RAD stor
age). This feature means faster job execution because of
minimized I/O delays, and smaller core memory require
ments because of rapid overlay servi ceo (Reference:
ANS COBOl/Reference Manual, 90 15 00.)

MANAGE (PROGRAM PRODUCT)

Batch Manage is a generalized file management system. It
is designed to allow decision makers to make use of the
computer to generate and update fi I es, retri eve usefu I data,
and generate reports without having a knowledge of pro
gramming.

Manage consists of four subprograms: Dictionary, Fileup,
Retrieve, and Report. The Dictionary subprogram is a data
file and is the central control element in the Manage sys
tem. It consists of definitions and control and formatting
parameters that precisely describe the characteristics of a
data fi Ie. The Fi I eup subprogram in iti a II y creates and then
maintains a data fi Ie. The Retrieve subprogram extracts
data from a data base fil e accordi ng to user-speci fi ed cri
teria. The Report subprogram automatically prepares printed
reports from data extracted by the Manage retrieval program.
(Reference: Manage/Reference Manual, 90 16 10.)

BASIC

Although BASIC is designed primarily for on-line develop
ment and execution of programs, it can be run in batch mode
under BPM. All the BASIC user has to do is write his pro
gram on a coding sheet, have it punched into cards, and
submit the cards along with the necessary BPM control cards
to the batch job stream. (Reference: BASIC/LN,OPS
Reference Manual, 90 15 46.)

SIMULATION LANGUAGE (PROGRAM PRODUCT)

The Simu lation Language (SL-1) is a simplified, problem
oriented digital programming language designed specifi
cally for digital or hybrid simulation. SL-1 is a superset

Batch Processors 13

of CSSL (Continuous SysTem Simulation Language), the
standard language specified by Simulation Councils, Inc.,
for simulation of continuous systems. It exceeds the capa
bi lities of CSS L and other existing simulation languages by
providing hybrid and real-time features, interactive de
bugging features, and a powerful set of conditional trans
lation features.

SL-l is primari Iy useful in solving differential equations,
a fundamental procedure in the simulation of para I lei, con
tinuous systems. To perform this function SL-l includes
six integration methods and the control logic for their use.
In hybrid operations, SL-l automatically synchronizes the
problem solution to real-time and provides for hybrid input
and output.

Because of the versatility of Xerox Sigma computing systems
and the broad applicabi lity of digital and hybrid simulation
techniques, applications for SL-l exist across the real-time
spectrum. The library concept of SL-l allows the user to
expand upon the Xerox suppl ied macro set and faci I itates the
development of macro libraries oriented to any desired ap
plication. (Reference: SL-l/Reference Manual, 90 16 76.)

SERVICE PROCESSORS

Service processors provide a variety of supporting services.
Most of these services are intended for use by application
programmers. Some are provided for use only by the system
manager.

FMGE

The Fi Ie Managment (FMGE) processor allows the batch
user to enter, copy, list, delete, or punch any fi Ie in the
Fi Ie Directory of his account, or to copy, list, or punch
any fi Ie to which the M:EI or M:EO DeB is assigned.
(Reference: BPM/BP, RT Reference Manual, 90 0954.)

PERIPHERAL CONVERSION LANGUAGE

The Peripheral Conversion Language (PCL) is a uti lity pro
cessor designed for operation in a batch environment under
BPM. It provides for information movement among card
and paper tape devices, line printers, magnetic tape de
vices, disk pack, and RAD storage.

PCL is controlled through command card input in the job
stream. The command language provides for single or mul
tiple file transfers with options for selecting, sequencing,
formatting, and converting data records. Additional fi Ie
maintenance and uti lity commands are provided. (Refer
ence: BPM/BP, RT Reference Manual, 90 09 54.)

ROMTRAN

The Relocatable Object Module Translation processor reduces
the amount of core storage required for tables when loading
object code by stripping all possible forward reference items.

14 Batch Processors

from user ROMs. The processor reads successive ROMs
from the BI device or file and translates them until an end
of-file condition is detected. The translation is accom
plished in two passes over each input ROM. The translated
ROM is output to the BO device. (Reference: BPM/BP, RT
Reference Manual, 90 09 54.)

DEFCOM

DEFCOM makes the DEFs and their associated values in one
load module available to another load module. It accom
plishes this by using a load module as input and by produc
ing another load module that contains only the DEFs and
DEF values from the root segment of the input module. The
resultant load module of DEFs can then be combined with
other load modules. (Reference: BPM/BP, RT Reference
Manual, 900954.)

EDCON

E DCO N is designed to operate as a background processor
under BPM or under the BTM RUN subsystem and provides
background utility functions for users of the text editor
(Edit). When EDCON is operating as a background pro
cessor under BPM, it may be used for

• Creating back-up files in EBCDIC or compressed format.

• Creating listings on a line printer or magnetic tape.
(These listings include decimalized sequence numbers.)

• Restoring sequential back-up fi les for the RAD in
keyed short-record format.

• Copying and merging editor-created fi les in the batch
environment.

When EDCON is operating under the BTM RUN subsystem,
it may be used for creating fi les in compressed format or
for decompressing files. (Reference: BPM/BP, RT Refer
ence Manua I, 90 09 54.)

SYSGEN

SYSGEN is the process of creating an optimized and cus
tomized BPM system for a particular installation. The sys
tem thus generated reflects the core size, I/o configuration,
processor configuration, foreground configuratio'1, absence

of optional instruction sets and substitution of instruction
simulators, etc., required by the installation. The
SYSGEN process, which does not necessarily have to be
performed on the target machine, consists of the execution
of several special SYSGEN processors which are run as
batch jobs under BPM. These processors, collect, compi Ie,
load, and write the modules required for a system. The
servi ce processors are as follows:

Processor

PASS1,
PCl

PASS2

lOCCT
and
PASS3

DEF

Function

Selects from various sources the relevant
modules for system generation.

Compi les the required dynamic tables
for the resi dent Mon itor.

Store and execute load card images (by
calling the loader) to produce load
modules (lMs) for the Monitor and its
processors.

Writes a Monitor system tape that may
be booted and used.

Execution of these processors causes the creation of a cus
tomized system tape (called a PO tape). This PO tape,
containing the customized Monitor and selected processors
and library routines is subsequently booted on the target
machine to put BPM lion the air. II The various SYSGEN
processors read specially formatted into cards containing
details of the target configuration. This information is
used by the processors to select and alter fi les of "skeleton"
Monitors and processors which are maintained on special
system tapes (called BI tapes) containing just about every
element that can be included in a BPM operating system.

Bootstrap operations, including patching operations {PAS SO),
are performed after the requi red system has been generated
by the other processors. (Reference: Chapters 10, 11,
and 12.)

SUPER

Batch SUPER is essentially the same as on-line SUPER. It
performs the same functions and accepts the same commands.
The major difference is that batch SUPER is controlled from
card or file input whereas on-line SUPER is controlled from
terminal or file input. (Reference: Chapter 3.)

YOLINIT

The Volume Initialization processor (VOLINIT) initializes
disk packs that are to be used as private volumes or public
devices. Through the use of this processor, the system
manager can

• Specify whether the volume being initialized is public
or private.

• Specify the areas on the device that wi II be uncondi
tiona��y flawed.

• Specify that only certain areas of the device are to be
initialized.

• Specify that surface testing will be inhibited.

• Specify the account number to be inserted in the pri
vate volume's account directory.

FPURGE

The primary purpose of the Fi Ie Purge processor (FPUR GE)
is to control and maintain user's RAD and/or disk pack
fi les. Its most important functi on is to protect the integrity
of user's files by periodically creating back-up files on
tape, in the event that there is an irrecoverable system
(software or hardware) failure. FPURGE performs the fol
lowing functions:

• Saves (copies) all wanted user's files on labeled mag
neti c tape fi les.

• Restores back-up fi les previously saved on tape to
RAD and/or disk pack.

• logs the names of all user fi les by account number(s)
onto the line pri nter.

• Purges (releases) all unwanted user's files from the
RAD{s) and/or disk packs.

(Reference: BPM/BTM/OPS Reference Manual, 901198.)

MEDDUMP

Like FPURGE, MEDDUMP is used primari Iy to provide
back-up fi les for system recovery in the event of a system
fai lure. The specific types of device-to-device data
transfers that may be made by MEDDUMP are

• Copying private or public disk packs to disk packs
(RAD-to-RAD transfers are permitted if the RADs are
the same type).

• Dumping RAD or disk pack data onto disk packs or
magnetic tapes in a manner that allows the device to
be rebooted.

• Restoring data that was previously dumped to magnetic
tape or di sk packs.

(Reference: BPM/BTM/OPS Reference Manual, 901198.)

MONDUMP

MONDUMP lists the contents of a crash recovery file or
tape and is designed to aid the system manager in debugging

Batch Processors 15

system crashes. The system manager can specify both the
regions to be dumped and the format of the listing. (Refer
ence: Chapter 7.)

ELIST

A Monitor routine, ERRlOG, is called by various parts of
the system that detect errors such as I/o errors, memory
parity, etc. It packs error messages into a buffer for these
system errors and writes the buffer to a special file on
secondary storage. ELIST reads information from the packed
buffers and from the file created by ERRlOG and lists the
messages. (Reference: Chapter 8.)

ERRWRT

ERRWRT creates an error message file (ERRMSG). This file
is searched whenever an error requiring a message is de
tected. The message for that error is selected from the fi Ie
and listed. (Reference: Chapter 11.)

FANAlYZE

FANAlYZE verifies or rebuilds the granule pool bit maps,
checks all linkages throughout the account and file d.irec
tories and. master index blocks (all levels), and produces a
log on the M:lO device with information concerning the
fi Ie structures. (Reference: Chapter 9.)

APPLICATION PROCESSORS

Application processors are designed to perform functions
for specific applications. These applications include sort
ing and merging records, managing a data base, program
ming complex mathematical problems, simulating system
methods and designs, analyzing electronic circuits, and
simulating other computer hardware.

SORT/MERGE

The Sort/Merge processor provides the user with a fast,
highly effi cient method of sequencing a nonordered fi Ie.
Sort may be ca lied as a subroutine from within a user's
program or as a batch processing job by control cards. It
is designed to operate efficiently in a minimum hardware
environment. Sorting can take place on from 1 to 16
keys and each individual key field may be sorted in
ascending or decending sequence. The sorting technique
used is that of replacement selection tournament and offers
the user the flexibi lity of changing the blocking and logi
cal record lengths in explicitly structured files to different
values in the output fi Ie.

16 Batch Processors

The principal highlights of Sort are as follows:

• Sorting capabi lity allows either magnetic tapes, RAD,
or both.

• linkages allow execution of user own code.

• Sorting on from 1 to 16 key fields in ascending
or descending sequence is allowed. Keys may be
alphanumeric, binary, packed decimal, or zoned
decimal data.

• Records may be fixed or variable length.

• Fixed length records may be blocked or unblocked.

• RADs may be used as fi Ie input or output devices, or
as intermediate storage devices.

• Sort employs the read backward capabi lity of the tape
device to eliminate rewind time.

• User-specified character collating sequence may be
used.

• Buffered i nput/ output is used.

(Reference: Sort-Merge/Reference Manual, 90 11 99.)

DMS (PROGRAM PRODUCT)

DMS is a generalized data management system that enables
the user to create an integrated data base. It is designed
to be used with COBOL, FORTRAN, and Meta-Symbol
processors. It simplifies programming by performing most
of the I/O logic and data base management for the applica
ti on programmer.

The principal features of DMS are as follows:

• The user can describe data in various data structures.
Using chains, any element can be related to any other
element. The data structures incl ude lists and hier
archies (trees). The two relationships can be combined
to form extensive networks of data.

• Access techniques include random, direct, indirect
(relative to another record).

• Multiple secondary indexes can be defined by the user
to allow records to be retrieved via any combination
of secondary record keys.

• Users may construct any number of logica I fi les or data
bases within a DMS fj Ie.

• Data is described separately from the user program to
faci litate management of the data base.

• Comprehensive security exists at a" levels of a file.

• Journalization provides an audit trail for back-up and
recovery.

• A dynamic space inventory is maintained to facilitate
rapid record storage and to optimize the use of avail
able storage space.

• Detailed data description is provided for inclusion
into the user's application program to reduce pro
grammi ng effort.

• Fi Ie I/O logic is performed for the user program,
including

1. Logical or physical record deletion.

2. Record retrieval on random or search basis.

3. Record insertion or modification.

(Reference: DMS/Reference Manual, 90 1738.)

FUNCTIONAL MATHEMATICAL PROGRAMMING
SYSTEM (PROGRAM PRODUCT)

The Functional Mathematical Programming System (FMPS)
is a comprehensive mathemati cal programming package
applicable to a wide variety of optimization-type prob
lems in such areas as production scheduling, blending,
process optimization, inventory control, and transporta
tion. Four models are avai lable: 5201, 5022, 5023,
and 5024.

Model 5021 - This is the basic FMPS package and operates
in a linear programming mode directed by a FORTRAN
like control language. This control language contains pro
cedures to input, optimize (solve), output, and save the
matrixes representing the constraint and objective equation
that defines the problem.

Model 5022 - This model includes basic FMPS plus an op
tional extension. The extension provides a nonlinear pro
gramming mode plus parametric programming. The nonlinear
(separable programming) mode allows problems containing
nonlinear functions to be solved. Pa-rametric programming
(applicable to the lineary programming mode) allows users
to observe solution variances in response to systematic
changes to the objectives and restraint coeffi cients.

Model 5023 - This model includes basic FMPS plus an op
tional GAMMA 3 Matrix Generator/Report Writer program.
The Matrix generator accepts problem-oriented input state
ments and data and constructs a problem matrix in the form
required by FMPS. The report writer provides the gener
alized capabi lity to prepare management reports of the
solution to an FMPS problem.

Model 5024 - This model includes basic FMPS plus the
extension and GAMMA 3 options.

FMPS is structured around a user-oriented control language
and compiler. This FORTRAN-like language enables com
plete user control over all portions of the optimization pro
cess, including the many input and output options. During
any FMPS operation, control is returned to the user program
for corrective action should any exceptional conditions
arise. The control language also permits a user to adjust
parameters or tolerances, interrogate results, and alter the
sequence of operations during execution. Additional pro
cedures (input, optimization, or output) may be easi Iy
included within this control language framework.

FMPS has multiple input formats that permit a user to easi Iy
incorporate varied fi les and data bases into the model to be
optimized. In addition to the standard input mode, FMPS
will accept input prepared for MPS/360, LP/90/94, 1l08LP,
and CDC CDM4. FMPS will also accept binary input
data produced by FORTRAN unformatted write statements.
This last feature permits FMPS to be easi Iy incl uded in a
larger user-defined optimization package.

The GAMMA 3 Matrix Generator greatly simplifies accu
mulation of all restraint and objective coefficients into a
matrix form acceptable to FMPS. With the matrix generator,
the user supplies technologi cal data and descriptive infor
mation in tabular or I ist form. The list capabi I ity permits
symbolic references that define the natural or logical group
ings of the problem variables.

The GAMMA 3 Report Writer permits a user to describe for
mats and subject matter for desired solution reports. Infor
mation in the reports is obtained from user-supplied cards,
text, and data entered duri ng matri x generati on, and a II
solution values generated by FMPS. Thus, a wide variety
of reports may be produced with a minimum effort. (Refer
ence: Functional Mathematical Programming System/Refer
ence Manual, 90 16 09.)

GPDS (PROGRAM PRODUCT)

The General Purpose Discrete Simulator provides engi neers
and administrators, whose programming experience is min
imal, with a system for experimenting with and evaluating
system methods, processes, and designs. Providing a means
for developing a broad range of simulation models, it allows
organizing, modeling, and analyzing the structure of a
system, observing the flow of traffic, etc. Potential appli
cations include

• Advanced Management Planning.

• Analysis of Inventory or Financial Systems.

• Studies of Message Switching and Communications
Networks.

• Risk and Capitol Investment Studies.

• Evaluation and Data Processing Systems.

• Job Shop and Queuing Studies.

Batch Processors 17

Although GPDS is compatible with other simulator systems,
it has a number of salient features not usually found in
competitive versions. (Reference: GPDS/Reference Man
ual, 90 17 58.)

CIRe (PROGRAM PRODUCT)

CIRC is a set of three computer programs for electronic cir
cuit analysis of Sigma 5-9 computers: (IRC-DC for dc cir
cuit analysis, CIRC-AC for ac circuit analysis, and CIRC-TR
for transient circuit analysis. The programs are designed
for use by a circuit engineer at the installation, and re
quire little or no knowledge of programming for execution.

CIRC can be executed under either BPM or BTM, with three
modes of operation possible: conversational (on-line) mode,
terminal batch entry mode, and batch processing mode. The
system manager wi II determi ne wh i ch of these modes are
avai lable to the engineer, based on type of computer in
stallation and other installation decisions. (A computer
operating under BPM may only use batch mode.)

• The on-line mode offers several advantages since it
provides true conversational interaction between the
user and computer. Following CIRC start-up proce
dures, CIRC requests a control message from the user.
After the control message is input (e. g., iterate a
cycle of calculations with changed parameters) the
computer responds (via CIRC) with detai led request
for application data. These requests are sufficiently
detailed to virtually eliminate misunderstandings by
the engineer. This mode is highly useful in a highly
interactive environment that produces a low volume
of output and requires limited CPU time.

• The terminal batch entry mode allows efficient handling
of high volume output and large CPU time requirements
whi Ie preserving the advantages of the terminal as an
input device. Two files are required: one containing
all CIRC input including a circuit description and con
trol messages, and the other directing the execution
of CIRC. The job is entered from the terminal into the
batch queue and treated like a batch job.

• The batch mode should generally be used for jobs in
volving large volumes of computations and outputs.
It enables the user to concentrate on data preparation
with virtually no involvement in programming consider
ations. The system manager can provide a set of start
up cards that never change, and these wi II constitute
the entire interface between user and executive soft
ware. However, the batch mode offers less flexibi lity
in experimenting with a circuit and slower turnaround
time in obtaining answers.

(Reference: CIRC-AC/Reference Manual and User's Guide,
90 16 98, CIRC-DC/Reference Manual and User's Guide,
90 16 97, and CIRC-TR/Reference Manual and User's
Guide, 90 17 86.)

18 Batch Processors

1400 SERIES SIMULATOR

The 1400 Series Simulator provides an economical and ef
fective solution to the program conversion problem arising
because of a change in hardware. This interpretive pro
gram is designed to execute 1400 series object programs
automatically as if they were run on a 1401, 1460, or 1440.
Thus, an existing level of computing capabi lity can be
maintained whi Ie new processing methods that take advan
tage of the new, more powerful Sigma equipment are de
signed and implemented.

The 1400 Series Simulator simulates object code produced
by SPS, FORTRAN, Autocoder, RPG, and utility routines.
Almost all 1400 operations may be simulated except for
I/O operations in which hardware differences make total
simulation impossible. Full 1400 operator capabi lities are
provided. (Reference: 1400 Series Simulator/Reference
Manual, 90 15 02.

EXECUTION PROCESSORS

There are two execution processors, Lope and Load. Both
processors create load modules which are executable
programs.

LOPE

Lope is the batch version of the load subsystem. It is a
one-pass loader that forms a load module, which is an ex
ecutable program, from relocatable object modules. It is
not an overlay loader. If the need for an overlay loader
exists, load must be used. (Reference: BPM/BP, RT Refer
ence Manual, 90 09 54.)

LOAD

Load is a two-pass overlay loader. The first pass processes

1. All relocatable object modules (ROMs).

2. Protection types and sizes for control and dummy sec
tions of the ROMs.

3. Expressions for definitions and references (primary,
secondary, and forward references).

The second pass forms the actual core image and its reloca
tion dictionary. (Reference: BPM/BP, RT Reference Man
ual, 90 0954.)

USER PROCESSORS

BPM allows users to write special purpose batch processors
to supplement or replace the batch processors supplied with
the system. The rules governing the writing of these pro
cessors are described in Chapter 6.

CONTROL COMMAND INTERPRETER

The Control Comrmnd Interpreter (CCI) is brought into core
whenever a control command is encountered in the back
ground job stream or whenever a background program exits,
aborts, etc. It interprets the command specified by the
user and takes the necessary action. (Reference: BPM/
BP, RT Reference Manual, 90 09 54 for control command
functi ons.)

BTM EXECUTIVE

The BTM Executive is part of the Monitor root in a BPM/
BTM system. It is, in turn, made up of the following:

• LOGIN

• Terminal I/O

• Scheduler and Swapper

• Executi ve Servi ces

• Performance Monitor

• Subsystem Start-up

LOGIN

LOGIN admits on-I ine users to the system and connects the
user's terminal to the Executive. If there is an authoriza
tion fi Ie, LOGIN checks to ensure that the user has on
line pri vi leges.

TERMINAL I/O

The terminal I/o routines perform read-write buffering and
external interrupt handling for I/O directed to user termi
nals. These routines also translate character codes, handle
control characters, simulate tabs, and perform other editing
tasks.

SCHEDULER AND SWAPPER

These routines decide when to swap, select the next user
to be swapped in for execution, and set up the I/O com
mand chains for swap transfers. Special algorithms control
scheduling and the balance of machine use between on-line
and batch.

EXECUTIVE SERVICES

The Executive Servi ce routines provide various services for
on-line terminals. These services include

• File assignments

• Subsystem calls

• Save and restore functions

• Escape and proceed functions

• Log-out functions

• Operator messages

PERFORMANCE MONITOR

The BTM Performance Monitor accumulates criti cal statis
ti cs during system operati on. These stati sti cs measure the
performance of BTM in a given hardware configuration and
provide a profile of the current user environment. The en
vironment in any given facility will be in a fairly contin
uous state of change that reflects variations in the user
load on a moment-by-moment basis.

The various statistical reports are received on-line and are
used by the system parameter to continuously monitor the user
stream. They supply the data necessary to optimize per
formance through system tuning. The system manager tunes
the system by entering parameters through the user of oper
ator key-ins. (Reference: Chapter 5 of this manual and
the BPM/BTM/OPS Reference Manual, 90 11 98.)

SUBSYSTEM START-UP

The Subsystem Start-up routines process subsystem calls,
initiate the loading of the subsystem, and turn over control
to the subsystem.

MONITOR

The Monitor responds to the moment-by-moment require
ments of controlling machine operation, switching between
programs requiring service, and providing services at the
explicit request of the user's program. The Monitor pro
grams that perform these functions are listed below:

• Basic Control

• Job Scheduler

• Fi Ie Management

• I/O Services

• Operator Communication

• Real-Ti me Servi ces

• Remote Batch Servi ce

• Job Step Control

• Batch Debuggi ng

• Execution Loading

Control Command Interpreter/BTM Executive/Monitor 19

• Execution linking

• Initial Start-up

• System Integr i ty

BASIC CONTROL

The basic control system is an I/O interrupt service and
handling routine. It includes trap and interrupt handlers,
routines that place requests for I/O in a queue, and basic
device I/O handling routines.

JOB SCHEDULER

The job scheduler is called into memory to prepare each job
to be run. It performs its functions between jobs and be
tween job steps but is not resident while a processing pro
gram is executing. The job scheduler is initiated by an
operator key-in and directed by programmer-supplied con
trol commands. The control command input stream is under
complete control of the job scheduler; it performs various
functions based on the control commands processed.

There are two versions of the job scheduler. One of these
reads and processes jobs sequentially. The other (for the
symbiont system) can read jobs concurrently from several
input devices, such as card readers, and output on several
output devices, such as printers, card punch, typewriter,
and paper tape. Reading and writing can occur either in
dependently of, or concurrently with, the actual processing
of the jobs.

FILE MANAGEMENT

File management controls the content and access to physical
fi les of information. These routines perform such functions
as indexing, blocking and deblocking, managing of pools
of granules on RADs and disk packs, labeling, label check
ing and positioning of magnetic tape, and controlling ac
cess to and simultaneous use of a hierachy of files.

1/0 SERVICES

I/O services consists of a set of I/O procedures that the
batch user may call to perform a variety of I/O functions.
These functions incl ude

• Opening and closing a file.

• Setting error or abnormal address.

• Checking I/O completion.

• Declaring a temporary I/O file.

• Reading a data record.

• Writing a data record.

• Deleting a data record.

20 Monitor

• Truncating a blocking buffer.

• Manipulating files (e. g., positioning a fi Ie, rewinding
a tape, writing EOF, etc.).

• Specifying device setting (e. g., top of form, number
of printable lines, page count, etc.).

OPERATOR COMMUNICATION

Operator communication routines provide for communication
between the Monitor and the operator. They transmit mes
sages to the operator and process key-ins received from the
operator.

REAL-TIME SERVICES

Real-time services can be instal led permanently as exten
sions of the resident Monitor or they can be dynamically
loaded and initiated. The first method is used when the
real-time service normally remains unchanged and is con
stantlyoperative. The dynamic approach is used when
real-time operations are executed periodically or irregu
larly, as in an experimental laboratory.

REMOTE BATCH SERVICES

The remote batch system is an extension of the BPM sym
biont system. Its purpose is to allow users at remote sites
to use the central site batch faci IHies for the processing of
their jobs. Jobs are entered at the remote site through ter
minals, directed through switched or nonswitched communi
cation lines to the central site, and filed there in the input
symbiont queue for later execution. In reverse manner, out
put is directed to the output symbiont queue, through
switched or nonswitched communication lines, and repro
duced at the remote site on the appropriate output device.
The result at the remote site is virtually the same batch
computer capability available at the central site, except
that it cannot read or produce binary or compressed card
decks.

JOB STEP CONTROL

Job step control routines are entered between major seg
ments of a job. They perform the Monitor functions required
between job steps such as

• Processing error exit and abort CALs.

• Handling initiated by the Monitor.

• Merging DCB assignments for execution.

BATCH DEBUGGING

Batch debugging routines provide batch programs with de
bugging capabi lity through the use of procedure calls. Any

batch program may take a snapshot dump of a specified
segment of memory, either on an unconditional or a con
ditional basis.

EXECUTION LOADING

This routine (LDTRC) loads a specified load module (either
one that had been partially executed and then saved as a
result of the linking operation or else a new one). It then
releases the core area used by the calling module and
transfers control to the starting address of the called module.

EXECUTION LINKING

The Monitor LINK routine causes the calling load module's
core information (i. e., program and data, except common
dynamic data) to be saved on secondary storage. The
ca IIing module's core area is made avai lable to the called
module. The called module is then loaded into core (over
laying the calling program) and control is transferred to it.

INITIAL START-UP

Initialization and start-up routines are stored on tape and
are booted into core storage. After they are in core, they
load the Monitor root into core and turn control over to the
root. The Monitor routines then complete the initialization
of the Monitor and complete the patching of the system and
the initialization of the swapping RAD and hardware.

SYSTEM INTEGRITY

The Monitor has a number of routines that have been in
cluded to guarantee system integrity. The objectives of
these routines are, in order of importance, (1) to provide
the highest possible security for user fi les even in the event
of total system failure, (2) to provide automatic high-speed
recovery in the event of a machine or software failure, and
(3) to record sufficient information to isolate errors and fail
ures caused either by hardware or software.

The major features of the BPM/BTM system integrity routines
are as follows:

• Detection of malfunctions by hardware examination and
software checks wherever the checks have been shown
to enhance hardware error detection. Recovery from
these malfunctions is through retries, operator assis
tance, etc.

• Logging of all malfunctions, including recovered errors
and permanent failures.

• File back-up and recovery facilities to minimize the
probabi lity of losing user fi les and, in case of fj Ie
failure, to facilitate complete recovery of the file
system with a minimum of loss.

• Automatic recovery following a system failure with
reasonable speed consistent with fi Ie security and the
recording of information for later analysis.

• Memory dumps (MONDUMP) provide for analysis of
system crashes.

ERROR DETECTION AND RECOVERY

An effective operating system must be able to detect and,
whenever possible, to correct errors. It must also be cap
able of restarting the system if necessary. BPM uses a com
bination of hardware and software checks to efficiently
meet these goals.

Hardware error protection features include: memory pro
tection against accidental overwriting of Monitor and user
programs, power fai I-safe interrupts that ensure automati c
restart in the event of power failure, memory parity check
ing, I/o read and write verification, and a watchdog timer
to avoid instruction hangups. Detected errors are reported,
logged, and if possible, recovered directly. Catastrophic
failures cause an automatic system recovery if atall possible.

ERROR AND FAILURE LOGGING

Malfunction messages are maintained in a special file by
system integrity routines. Messages are placed in this file
whenever malfunctions are detected by the various parts of
the system. Hardware malfunctions that are recorded in
c! ude such things as tape errors, card reader errors, and
memory parity errors. Software malfunctions that are re
corded include the fai lure of software checks on RAD ad
dresses contained in index blocks and improper linkage of
I inked fi Ie blocks.

ERROR LOG ANALYSIS

The error log analysis program is called into execution by
the system manager on a periodic basis. The function of
the analysis program consists of retrieving and I isting the
contents of the error fi Ie. These summaries may be used by
the Customer Engineer to aid in preventive maintenance of
the system.

AUTOMATIC RECOVERY AFTER SYSTEM FAILURE

The system recovery function is provided to restore BPM/
8TM to operational status very quickly following a system
fa i lure. Recovery consi sts of cI ean i ng up a" open -ended
information (both user and system oriented information) and
restarting the system at its initialization.

Whenever various hardware and software errors are detected,
the recovery routine is automatically entered. Manual
entry is also provided for use when the system cannot auto
matically recover.

Monitor 21

When the recovery routine is entered, no functions of the
normal operating system are assumed to be operating. Some
routines of the normal system are duplicated in the recovery
routine but, for automatic recovery, a small resident recov
ery driver is required intact. This driver brings in the bulk
of the recovery routine, overlaying the pure procedure por
tion of the system. Certain Monitor tables are also required
intact. This is verified where possible. If there is any
doubt as to the veracity of critical tables, the operator is
informed that the recovery attempt has been cancelled and
is asked if he wishes to attempt RECOVERY 2. If so, or if
the operator bootstraps the system from the system devi ce
when the system is not quiescent, RECOVERY 2 is initiated.
For a BPM system, a request for magnetic tape is issued and
core is dumped on tape. For a BTM system, core is dumped
to the swapping device. If neither RECOVERY nor RE
COVERY 2 is successful, the operator is notified to reboot
and restore the system with the most recent back-up vol umes.

The recovery routine then performs the following functions:

• Displays cause of failure.

• Takes a full core dump for later analysis.

• Closes all open files with default options.

• Saves all output partial symbiont fi les and releases
partial input.

• Saves error log.

• Informs users of interruption.

• Saves time, data, error log pointers, accounting in
formation, symbiont file directory, disk granule usage
map, and executive communi cation.

• Restarts system and restores items saved above.

When functions cannot be performed, they are noted on the
operator's console. If the function is considered minor, re
covery continues. If it is connected with fi Ie operations,
the file identification is noted and recovery proceeds.

CRASH ANALYSIS

In the event of a "hot" system restart, one of the functions
of the recovery procedure is to dump the contents of core
memory onto RAD or magnetic tape storage. This informa
tion is available for later analysis by system programmers
and by a specia I program designed to print in labeled form
the contents of the Monitor's control tables.

The crash analysis program is a user program that is called
by the system manager to analyze the last core image fi led
on disk. This program is written in such a way that addi
tional tests may be included as they are found to be useful.
Initially, it provides the following service and tests:

• Prints PSD and register contents at point of error.

• Prints direct cause of error.

• Runs some of the same checKs that are used to test the
dynami c integrity of the system.

• Prints the contents of the critical Monitor tables.

• Pri nts the contents of the current JIT.

• Prints a hexadecimal dump of core memory. Instruction
mnemonics, EBCDIC characters, and global symbols
can optionally be included as part of the dump of the
Monitor root (see Chapter 7).

SYMBIONTS AND COOPERATIVES

A BPM system need not be a symbiont system. However, if
much input and output is to be processed through slow-speed
unit record-type peripherals a symbiont system may be de
sirable. A symbiont system provides buffering of unit record
I/o on secondary storage. Symbiont routines transfer data
from the card reader or paper tape reader to secondary stor
age and from secondary storage to the card punch, line
printer, or paper tape punch. Input cooperatives intercept
card or paper tape read commands in user programs and
transfer data from secondary storage where it was stored by
the symbiont routines. Output cooperative routines inter
cept output directed from a user program to a line printer,
card punch, or paper tape punch and transfers the data to
secondary storage.

A symbiont system must have a set of symbiont and coopera
ti ve routi nes.

REAL-TIME PROGRAMS

BPM and BIM users may run real-time programs concurrently
with batch and time-shared programs. At installation time,
a real-time process is assigned machine facilities on a ded
icated basis. These facilities include secondary storage
and core memory residency, external interrupt lines, and
CAL trap locations. Such allocation remains in force unti I
either the process or the computer operator terminates the
program.

MEMORY LAYOUT

A typical layout of physical memory is shown in Figure 2.
Although this is simi lar to the actual layout, it should not
be assumed to be exact.

BPM/BTM makes full use of Sigma write locks to protect
certain core areas from inadvertent stores. As is indi cated
in Figure 2, the Monitor operates with a key of 00 and can
store anywhere. Batch jobs operate with a key of 01 and
can store only in the batch data area. Resident real-time
programs operate with either a key of 00 or a key of 10 and
can store only in the real-time area. BTM users operate
with a key of 01 and can store into the BTM area.

22 Symbionts and Cooperatives/Real-Time Programs/Memory Layout

BPM/BTM also makes full use of the master/slave modes of
Sigma hardware. The master mode is the basic operating
mode of the computer. When a program is operating in
this mode, all instructions can be executed. The slave
mode is the problem-solving mode of the computer. When
a program is operating in this mode, certain privi leged

oat oot Olt

instructions cannot be executed. These privi leged instruc
tions control the basic operating conditions of a Sigma
computer. Figure 2 shows which parts of the system operate
in the master mode (Monitor and possibly real-time) and
which parts operate in the slave mode (batch, time-sharing,
and possibly real-time).

oot or lOt Olt

Res i den t Mon i tor
Mon i tor Overlay

Batch Jobstt Resident Rea 1-Time
BTM Use/t

Area Programs and Data

Program Data

11 ttt 11 ttt 01 ttt 11 ttt lOttt Olttt
~~ ______________ ~~ ____________ --,/~~ ____ ~~ ____ -J/~ Il~ ______ ~ ______ JI

Ma~ter SI~ve Master ~r Slave Sla"ve

t
Keys (unused key: 11)

ttBatch and BTM locks are set to 01 only when programs are being executed in the partitions. Whichever
partition is not executing has all locks set to 11.

tt\ocks (unused locks: 00)

Figure 2. Typical Memory Layout (not to sca Ie)

Memory Layout 23

3. SUPERVISOR PROCESSOR (SUPER)

INTRODUCTION

SUPER provides the ability to create, update, list, and
summarize the :USERLG file that, in turn, is used by the
system to control and record user activity (see IIAccount
Authorization ll in Chapter 4). The :USERLG file contains
information about each user's authorization for access
ing system facilities and accumulated statistics for each
account. If the :USERLG file has been created, it is lo
cated in the :SYS account and may only be accessed by
:SYS. The file has no password. If the :USERLG file is not
present in the system, any batch job can run and/or any
on-line user can log in.

When a batch !JOB command is encountered or an on-line
user responds to a LOGIN request, the :USERLG fi Ie is
searched for the specified account number and name. If
a batch user is not authorized or the priority specified on
the !JOB command exceeds the maximum authorized for
that user, the user will be aborted. If an on-line user is not
authorized, the user will be asked to log in again. SUPER
is available as either a batch processor or as an on-line sub
system. In batch mode, SUPER can be controlled from card
input or a file; in on-line mode, SUPER can be controlled
from the Teletype®or a file.

BATCH OPERATION

There are two modes of operation when running under batch:
the control mode and function mode. If SUPER is being
run from a file, the M:SI DCB must be assigned to the fi Ie
prior to entering the control mode. SUPER begins execution
in the control mode and requires a control record that de
fines one of six possible function options that the program
can perform. The six options are

Name Function

USERS Authorize users

KILL Cancel user authorization

STATS Output user statistics summary

DELSTATS Delete (reset) user statistics

LIST List authorized users

PASSWORD List passwords of user files

When SUPER has read a control record, it enters the cor
responding function mode and reads specification cards that
define the various services the function is to perform.

To exit from a function back to the control mode, an ! EOD
record from either cards or a fi Ie is required.

®Registered trademark of the Teletype Corporation.

24 Supervisor Processor

To exit from the control mode back to the Monitor{end the
run), a record either with an X in byte 0 and a blank in
byte 1 or with an EOF is required.

ON-LINE OPERATION

The Executive command

! SUPER

will cause SUPER to output

FILE ID:

If SUPER is to be run from a file, the user must then type
in the file ID in the form

fi Ie name [(account [,password])]

If SUPER is to be run from a Teletype, a @) causes SUPER to
type out

ENTER OPTION:

The user then types in either one of the six function options
described below or an X to exit to the Executive. Typing in
one of the options causes SUPER to prompt with a > charac
ter. The user responds by typing in the proper specification
record. To return to the control mode from the function
mode, the user types in either a @or@character.

SUPER FUNCTIONS

USERS This function validates users for Monitor services
specified on a control record. When the USER mode is
entered, the defined users will be validated only for those
services actually specified. The record used to enter the
USER mode has the format.

: U [SERS][,BCH][,BTM]~ FGD] [,RBT]

where

BCH specifies batch jobs are to be validated for
defi ned users.

BTM specifies time-sharing jobs are to be val idated
for defi ned users.

FGD specifies real-time jobs are to be validated
for defi ned users.

RBT specifies remote batch jobs are to be validated
for defi ned users.

Any or all of services may be validated at one time.
Note that the II U' in :U [SERS] is the first character in
the record.

A specification record must follow for each user to be
validated for the services specified by USERS. Each speci
fication record has the format

~account,name [[(extacc)] ,[password], [batch pri] , J
L[RAD granules], [disk granules]]

where

account has a maxi mum of 8 characters.

name has a maximum of 12 characters.

extacc has a maximum of 24 characters (excludi ng
parentheses) •

password has a maximum of 8 characters.

batch pri is the batch priority, 0 through F.

RAD and disk pack granules
of 65,535 characters.

may specify a maximum

The only mandatory fields are "name" and "account". Null
fields (those containing no characters) cause one of two
possible actions:

1. If the record for a given user did not previously exist,
the null fields are set to zeros or blanks.

2. If the record existed previously, the null fields are
left as they were.

In any case, the authorized services are reset to those in
effect for the current run.

The example

.:.. USERS,BCH

~A,B(xxx), PASS,A, 100, 100

>!EOD

.:.. USERS,BTM

~A,B, ,F, ,0

>!EOD

would cause a user to be validated for time-shari ng (only)
as if the following run was made:

.:.. USERS,BTM

~A,B,(xxx),PASS,F, 100,0

>!EOD

To exit from the USER mode, either a zero-length record
(a e character when using SUPER on-I ine) must be read or
an ! EOD must be input.

KILL This function cancels an authorized user from
Monitor services. The format of the KILL record is

.: K [ILL]

::. account ,name

All account,name specifications that follow are deleted
from the: USERLG fi Ie and are thereby deni ed access to
any Monitor services.

To exit the KILL mode, either a zero-length record or an
! EOD must be input.

STATS This function causes all statistics to be summa-
rized. The format of the STATS record is

.:..S [TATS]

::. opt~on

There are three forms of specification records available for
the ST A TS opti on:

account causes statistics for users with the specified
account to be summarized. A sample printout of
a user's statistics resulting from a STAT control
record is shown in Figure 3.

account,name causes only the statistics for in-
dividually named users in the account to be
summarized.

zero-length record or ! EOD €V causes all user sta-
tistics to be summarized. To use this feature, no
other specification record may be previously en
countered since entering the STATS mode .

To exit from the STATS mode, either a zero-length record
(a e character when using SUPER on-line) or an ! EOD must
be input.

Super Functions 25

ACCOUNT TOTAL JOBS JOB TIME TIME BREAKDOWN SEC. STORAGE
NAME SESSIONS CONNECT PROCESSOR USER USED/AUTH

:SYS BCR. 0 .000 CPU
X BTM 1 5 I/O

OVH
F5608301 BCR. 0 .000 CPU
ME BTM 0 a I/O

OVR
F5608302 BCR. 0 .000 CPU
ME BTM 0 0 I/O

OVR
F5608303 BCR. 0 .000 CPU
ME BTM 0 0 I/O

OVH
F5608309 BCR. 0 .000 CPU
STROBL BTM 0 0 I/O

OVR
JOB BCR. 2 1.386 CPU
JOB BTM 0 0 I/O

OVR
ME BCR. 1 .829 CPU
ME BTM 0 0 I/O

OVR

Figure 3.

DELSTATS This function causes user statistics to be
deleted. The format of the DELSTA TS record is

: . ..0 [ELSTATS]

~option

The specification records for this option are identical to
those used for STATS. For each user specified, the statis
tics are set to zero with the exception of the maximum
RAD and/or disk pack space allowed, and the RAD and/or
disk pack space used.

LIST This function causes a list of authorized users to
be output. The format of the LIST record is

.:.. L[IST]Gaccount]

If account is present, all users validated for that account
are listed; if account is not present, all users are listed. A
sample printout is shown in Figure 4.

26 Errors and Error Messages

.013 .000 RAD 2 500

.000 .000 DISK 0 500

.004 .000

.000 .000 RAD 0 100

.000 .000 DISK 0 100

.000 .000

.000 .000 RAD 0 100

.000 .000 DISK 0 100

.000 .000

.000 .000 RAD 0 100

.000 .000 DISK 0 100

.000 .000

.000 .000 RAD 0 100

.000 .000 DISK 0 50

.000 .000

.506 .278 RAD 0 100

.280 .164 DISK 0 100

.157 .001

.569 .000 RAD 0 100

.184 .000 DISK 0 100

.076 .000

STAT Printout

PASSWORD This function causes all passwords to be
output. The format of the PASSWORD record is

.:..P [ASSWORD] [,account]

The password for each file in theaccount is listed in EBCDIC
if the password is printable; otherwise, it is listed in hexa
decimal. If there is no password, the following message is
printed:

****NO NE****

ERRORS AND ERROR MESSAGES

If the user makes an error when in batch mode, SUPER will
print a dollar sign ($) under the field in error and output the
message

SYNTAX ERROR, RECORD IGNORED

If the user makes an error when on-line, SUPER will print
out the format required.

All other messages are self-explanatory.

P B B F R
ACCOUNT NAME RAD DISK R C T G B LAST CHANGE

PASSWORD I H MDT (EXTENDED ACCOUNTING)
:SYS X 500 500 F Y Y Y Y 10/10/10 1:03

FS608301 ME 100 100 F Y Y Y Y 10/10/10 1:03

F5608302 ME 100 100 F Y Y Y Y 10/10/10 1:03

F5608303 ME 100 100 F Y Y Y Y 10/10/10 1:03

F5608309 STROBL 100 50 F N Y N N 10/10/10 1:30
PSSSS

JOB JOB 100 100 F Y Y N N 10/10/10 1:17

ME ME 100 100 F Y Y Y Y 10/10/10 1:03

Figure 4. LIST Printout

Errors and Error Messages 27

4. USER ACCOUNTING

INTRODUCTION

Accounting for all BPM/BTM user activities that are subject
to charges is implemented through Super and the accounting
log (ACCTLG). Accounting data for a given job is con
tained in a control block called a Job Information Table
(JIT for batch, AJIT for on-line, RJIT for real-time) along
with a timer (TIMTEMP) and a number of accumulators that
keep track of user and processor time.

At the end of each batch job and each terminal session an
accounting record is written into a sequential Accounting
Log fi Ie called :ACCTLG. Thus, the discrete record for
the session is contained in the :ACCTLG file. The cumula
tive totals for the account up to the present time are con
tained in the :USERLG file (that was created by Super).

An accounting record is output at the end of a job. This
record gives the total job time for a given job plus a break
down of system services utilized, including secondary stor
age services (except private storage). Only nonzero
accounting items are output on the user's summary.

In addition to the standard BPM/BTM accounting routines
the system supplies entry points to optional, installation
designed routines if the system manager wants further con
trol of accounting facil ities. These optional accounting
routines are implemented through use of the extended ac
counting parameter in the user's specification field. The
installation routines are incorporated in the system by in
cluding them as ROMs during PASSl of SYSGEN, and
modifying the ! LOCCT and !TREE cards (see Chapter 11).

ACCOUNTING FIELD FORMATS

To reduce user confusion, the formats of the BPM !JOB
card and on-line LOGIN have been made as similar as
possible. The format of the ! JOB card is

!JOB account [, name] [(extended accounting)]~

L [priority] [, rbid] [. comments]

and the format for the on-line user is

! LOGIN: account [, name] [{extended accounting)]"]

L[, password] @

where

account is the account or project identifier. The
"account ll field must be at least one alphanumeric
character but not more than eight. Batch jobs
whose lIaccount li field is omitted or exceeds eight
characters wi II be aborted; on-line users will be
asked to log in again.

28 User Accounti ng

name identifies the user. The name field is op-
tional and, if it exists, will be appended to the
lIaccount li field to form the key for the authorized
account search in :USERLG. If the name field is
omitted, the account field only wi II be used for
the key. Although the name field may consist of
any number of characters for batch jobs, on Iy the
fi rst 12 characters wi II be used (on -I i ne users wi II
have to log in again if the length is exceeded).

(extended accounting) is supplementary accounting
information for the installation. The field is
optional unless the installation accounting routines
require it of users. If the extended accounting
field exists, it must be enclosed in parentheses,
but must not include blanks, embedded parentheses,
periods, commas, or semicolons. For batch jobs,
the first 24 characters, exclusive of the enclosing
parentheses, are transferred to the JIT (on-line
users will have to log in again if the field length
exceeds 24 characters).

priority (for batch jobs only) specifies the priority
of the job (O-F16), where F is the highest (i. e.,
most urgent) priority. If no priority is specified,
the default value is 1. A priority of 0 causes a
job to be held in the job queue until the priority
is changed by means of a !PRIORITY key-in. A
priority specifi cation is ignored (for purposes of
scheduling) in a nonsymbiont system. If the prior
ity exceeds the maximum authorized for the user,
the job is aborted.

rbid (required only for remote batch operations)
specifies a single hexadecimal digit identifying
the remote terminal to receive output. To specify
remote batch, priority (or two consecutive commas)
must be specified. If rbid and priority are omitted,
rbid is set equal to 0 (local device) and priority is
assumed to be 1 (lowest).

password (for on-line only) is any password of one
to eight characters. Only one password is legal
for each unique name-account pair. However,
the same password can be associated with several
users and several names may be used with the same
account.

ACCOUNT AUTHORIZATION

A batch user in BPM is subjected to the same account scrut
iny as an on-line user in BTM. Two bits are reserved in
each record of the :USERLG file so that users can be author
ized for batch but not on-line and vice versa, with a third
bit being reserved for foreground authorization.

Accumulated totals for both background and on-line system
use are kept for the user in the authorization file. To keep

symbiont and nonsymbiont systems functionally simi lar, the
validity checking is performed by CCI, not the input
symbiont.

When a job is selected for execution or a user logs in, a
key is first constructed from the account and name fields
from the !JOB card or LOGIN entry. A keyed read of
:USERLG is performed using this key. If the key is invalid
or a matching record does not exist, the job is aborted (if
a batch job) or the user is requested to log in again (if an
on-line user).

The format of the records in the :USERLG file is shown in
Figure 5. The key is 21 bytes in length including the byte
count, and consists of a 1-byte binary 20 and an 8-byte
account number field, followed by a 12-byte name field.
Both account number and name are EBCDIC fields left
justified in their respective fields, and are fi lied with
trailing blanks. The account number must have at least
one character but the name field may be all blanks. Nei
ther name nor account may have embedded blanks or de
limiters. The following five characters are the only
restricted delimiters. , ; (). Both the extended accounting
information and the LOGIN password are left-justified
EBCDIC fields with trailing blanks. All other fields, ex
cept the flags in word 9 are positive binary integers. The
date of the last update by SUPER (word 8) is the binary
number which results from expressing the date as MMDDVY
and converting this six-digit decimal number to binary; for
example, 31st December 1999 would be 123199, which is
1 E13F hexadecimal. All times are given in thousandths of
a minute.

Further authorization checks may be made by installation
routines by comparing the extended accounting field of a
job against the authorization record (see "Supplementary
Accounting Routines" in this chapter).

Accumulated totals for both background and on~line system
use are also kept for the user in the authorization fi Ie. The
totals are updated at the end of each job and terminal ses
sion. There is no way to distinguish how much of the ac
cumulated total was contributed by batch jobs and how
much by terminal sessions except for the total batch time
which is kept separate from total connect time. However,
the system manager may assign two different account num
bers and authorize one for batch only and the other for
on-I ine only to eliminate the problem. All the accumu
lated statistics are positive binary numbers, the times being
in thousandths of a minute. The accumulated statistics may
be reset by the use of the supervisory program SUPER. The
maximum number of RAD and disk pack granules allowed for
each job is obtained by subtracting the number used from the
number allowed in the JIT during job initiation. If this
number is exceeded during processing, the job is aborted.

The :USERLG file is generated by the Supervisory program
(SUPER) rather than during initialization. If the file does
not exist in the system (OPEN abnormal code X'03'), any
user is considered authorized. If the file exists but the
system returns an I/O error or abnormal code other than
X'14', X'42', X'43' or X'55' when attempting to access
the file, then only jobs whose account numbers are :SYS

are allowed to run. This gives installation management the
power to delete or repair the file without allowing general
access to the system.

ACCOUNT TIMINGS

Accounting data pertaining to a job is kept in a control
block called the Job Information Table (JIT). Job timings
are handled in the following manner: a timer (TIMTEMP)
and three accumulators (CEXT, IOTIME and OVHTIME)
are kept in the JIT. TIMTEMP is incremented by one every
thousandth 9f a minute. Each time there is a change of
state the appropriate accumulator is incremented by the
value in TIMTEMP, and TIMTEMP is reset to zero.

The appropriate accumulator is selected as follows: If a
processor or user was in control of the CPU up to the change
of state, the interval is considered execution time and
CEXT is updated. If the Monitor was in control, the inter
val is overhead time and OVHTIME is updated. But if the
Monitor was waiting for completion of an I/O operation
for a user who requested a "wait", it is I/o time and
10TIME is updated. However, the Monitor time spent in
preparing to issue the I/o operation is charged to overhead;
I/O time is only the time spent waiting for completion of
an I/O operation since the start I/O command. If the user
did not specify "wait" either explicitly or implicitly, the
I/O time is overlapped and not charged.

The JIT also contains three accumulators for processor time
(TPEXT, TPOVT and TPIOT), and a matching set for user
time (TUEXT, TUOVT and TUIOT). At the end of a job
step, the appropriate set of these accumulators is incre
mented by the corresponding values in CEXT, OVHTIME
and 10TIME, after it has been determined whether the pro
gram just terminated was a processor or a user program.
Finally, at job end, the processor times are incremented by
the amount of time used by CCI to terminate the job since
the end of the last job step. The fi na I va lues in the pro
cessor and user sets of accumulators are those that appear
in the accounting record for the job.

The JIT fields ACCN (account number), UNAME (user's
name) and EXTACC, are all left-justified, blank-filled
EBCDIC values obtained from the !JOB card, or LOGIN
message.

AUTHFLGS is a set of binary flags to indicate for which
servi ces the user is authori zed.

BEGINDT and BEGINTM are the date and time at the
beginning of the job. The date is the binary number whi ch
results from expressing the date as MMDDVY and converting
this six-digit decimal number to binary; for example, 31st
December 1999 would be 123199 which is lE13F hexa
decimal. The time is a binary number which is generated
by taking the time-of-day presented as HHMM, multiplying
the number of hours by 60, adding the minutes, multiplying
the result by 1000 and converting this number to binary.
Thus, it is the number of thousandths of a minute since the
preceding midnight, expressed to the nearest minute. For
example, 2:45 pm would be presented by the system as 1445,

Accounting Timings 29

30 Accounting Timings

Word 0

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

23

KEY (TEXTC FORMA 1)

o 7 8

Length (20) I

I

I

15 16 23 24

Account Number
(2 words)

Name
(3 words)

31

DATA

{
See

Flags Note

7

Extended accounting information
(6 words)

Password
(2 words)

Date of last update by SUPER for this entry

Maximum
Batch Priority

Number of
Batch Jobs

Accumulated batch job time

Accumulated terminal connect time

Accumulated processor CPU time

Accumulated processor overhead time

Accumulated processor VO time

Accumulated user CPU time

Accumulated user overhead time

Accumulated user VO time

Number of
Terminal Sessions

RAD granules allowed RAD granules used

Disk granules allowed Disk granules used

3 Spare Words

where in Word 9

Flag Bit 0
Flag Bit 1
Flag Bit 2
Flag Bit 3
Flag Bits 4-7

indicates authorization to run batch jobs.
ind-icates authorization to run on-line.
indicates authorization to run foreground programs.
indicates authorization to use remote batch.
are spare.

Figure 5. Authorization File Record (:USERLG)

which is 885000 thousandths of a minute since midnight
and which would appear in the accounting record as D8108
hexadecimal. The reason for expressing the time in thou
sandths of a minute {which are always zero} is for compat
ibi lity with the other accounting timings and so that no
format changes wi II be necessary if time-of-day is ever
modified to include thousandths of a minute.

The JIT field LINEND {line number} is set to X'FF ' for
batch jobs. MAXPRT is the maximum permissible priority,
which is obtained from the: USERLG fi Ie. The remaining
accounting fields in the JIT through word 26 can be deci
phered by using the following glossary:

TMP = Temporary

PRM Permanent

DC RAD

DP Disk Pack

JB Job

MX Maximum

PK Peak

TP = Tape

Access = Vo accesses

MNTS = Mounts

BATCH PRIORITY DEFAULT LIMITS

The priority on the ! JOB control command is used to obtain
the appropriate default limits for each of the job priorities
{O through F} and insert them in the Job Information Table.
A separate set of default limits is provided for each priority
so that a ! LIMIT card is required only for jobs whose limits
differ from the defaults for that porti culary priority. This
is true for both symbiont and nonsymbiont systems.

The separate set of default limits for each of the job prior
ities 0 through F are in the M:DLIMIT module. Limit fields
in the JIT are initialized with defaults from M: DLIMIT ac
cording to the priority of the job; that is, during !JOB card
processing, M:JOBR wi II use the priority on the ! JOB card
to obtain the appropriate job default limits from M:DLIMIT
and insert them in the JIT. The limit fields of the JIT are

FPOOL size and number.

IPOO L si ze and number.

Maximum number of punched cards.

Maximum number of processor pages.

Maximum number of user pages.

Maximum number of diagnostic pages.

Maximum execution time {in minutes}.

Maximum number of scratch tapes.

Maximum temporary direct access granules.

Maximum permanent direct access granules.

The values in the JIT are modified by M: LIMR if a ! LIMIT
command is encountered. The limits specified on the
! LIMIT card overlay those defaults in the JIT. However,
the limits may be only made smaller than the d~faults, not
larger. The limits for PSTORE are also constrained by the
value in the :USERLG file.

In the event that the priority is changed by the operator,
the new priority is used for job scheduling but the old
priority {that on the !JOB command} is used for selecting
default limits.

There are 16 parallel default limit tables, one for each
priority, and the contents of these tables are set during
PASS2 of SYSGEN via the :DLIMIT control command which
defines the specification of different default limits for each
of the priorities.

ACCOUNTING LOG FILE

A discrete accounting record for each batch job and each
on-line terminal session is written into a common Account
ing Log file {:ACCTLG} in the :SYS account. Each record
contains an identifier so that batch records are distinguish
able from on-Ii ne records {byte 0 of word 12 contains the
line number of the BTM user or X'FF' for a batch job}. The
format of the records in :ACCTLG is shown in Figure 6.

The account number {word 0-1}, the name {words 2-4}, the
extended accounting information {words 5-10}, and the
system ID {word 13} are left-jus.tified, blank-fi lied EBCDIC
fields. The run status {word 12} and the job origin {word 13}
are collections of binary flags.

The remaining fields in the record are all binary integers.
Of these, all are positive values with two exceptions. The
line number {word 12} for a batch job will be set to X'FF',
and the number of permanent RAD granules {word 27} and
permanent disk pack granules {word 28} may be a two1s
complement negative binary half-word integer if the job
released more permanent granules than it ob~ined.

The date {word 14} is the binary number that results from
expressing the date as MMDDYV and converting this six
digit decimal number to binary; for example, 31st December
1999 would be 123199, which is 1 E13F hexadecimal.

The start and end time-of-day {words 15 and 16} are binary
numbers generated by taking the time-of-day presented as
HHMM, multiplying the number of hours by 60, adding the
minutes, multiplying the result by 1000 and converting this
number to binary. Thus, it is the number of thousands of a

Batch Priority Default Limits/Accounting Log Fi Ie 31

o

2

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

39

32 Accounti ng Log Fi Ie

7 8 15 16 23 24

Account Number (2 words)

Name (3 words)

Extended Accounting Information (6 words)

status

Job origin (Batch,
RJE, BPM, •••)

System ID in EBCDIC (e. g., FOO)

Date (at job or terminal session start)

Job start or LOGIN time

Job end or lOGOFF time

Number of characters transmitted (zero for batch)

Terminal active time (or accumulated batch quanta)

Job sequence number

Number of cards read Number of cards punched

Number of processor payes Number of user pages

Number of diagnostic pages
Number of
save tapes

Number of tape accesses

Number of RAD accesses

Number of disk accesses

Processor execution time

Processor overhead ti me

Processor I/O time

User execution time

User overhead time

User I/O time

... spare words for expansion

Number of
scratch tapes

Figure 6. Accounting Log Record Format (:ACCT lG)

minute since the preceding midnight, expressed to the
nearest minute; for example, 2:45 p. m. would be presented
by the system as 1445 which.is 885000 thousandths of a
minute since midnight and which would appear in the ac
counting record as D8108 hexadecimal. The reason for
expressing the time in thousandths of a minute (which are
always zero) is for compatibility with the other accounting
timings and so that no format changes wi II be necessary if
time-of-day is ever modified to include thousandths of a
minute.

All lengths of time in the accounting record (words 18, and
30 through 35) are given in thousandths of a minute.

If the :ACCTLG file is deleted during job processing, it has
no effect on the operation of the system. If the :ACCTLG
fi Ie does not exist at end of job or terminal session, a new
fi Ie is created. If it does exist, it is positioned to end
of-fi Ie. In either case, the accounting record is written
and the file is closed.

SUPPLEMENTARY ACCOUNTING ROUTINES

This feature provides the manager of a BPM/BTM installa
tion further control of accounting facilities. The system
manager may modify the extended accounting field which
was transferred from the JIT or any other fields in the
accounting record; he may write his own accounting log
in addition to or instead of :ACCTLG, omit selected rec
ords, or take any other action that suits his purpose. The
supplementary accounting feature consists of an extended
accounting field on the !JOB card, in the JIT, the
:USERLG file, the :ACCTLG file, and an exit to installa
tion routines at job start in M:JOBR and at job end in
M:ENDJOB. For on-line sessions, the same routines are
entered from the BTM Executive during LOGIN and BYE.
The installation-supplied batch accounting routine must be
included when forming CCI during SYSGEN; the on-line
version must be included in the root of the Monitor.

The entry points for batch and on-line have the same name
(M:ACINIT for initialization and M:ACTERM for termina
tion) and mayor may not be the same routines, at the dis
cretion of the installation.

The extended accounting field on the !JOB card or LOGIN
message response is optional unless required by the instal
lation. It is enclosed in parentheses and follows the name
field as if it were a subscript. The extended accounting
field may be any of any length but must not include blanks,
parentheses, periods, commas, or semicolons. The first
24 characters, exclusive of the enclosing parentheses, are
transferred to the JIT. After the authorization checks are
made, an exit is made to the installation job initiation
accounting routine. The exit is made via an SREF (secon
dary reference), so if there is no installation routine, it
becomes a Nap (no-operation).

The installation may supply a batch job and/or on-line
initiation accounfing routine whose name must be
M:ACINIT, and a batch and/or on-line termination routine

whose name must be M:ACTERM. Exits will be made to
these names, which will be assembled as SREFs at the
following places:

1. M:ACINIT Batch job initiation in M:JOBR
(CN704905), and on-line log-in in the BTM EXEC
(CN705415).

2. M:ACTERM Batch termination in M:EN DJOB
(CN704909) and on-line log-off in the BTM EXEC
(CN705415).

In each case, exit to the installation accounting routine is
via BAL on register 15. Register 3 contains the address of
the authorization record for M:ACINIT and the accounting
log record for M:ACTERM, and register 5 contains the ad
dress of the initialized JIT/AJIT. JIT/AJIT can also be
addressed directly via the symbol JIT, or indirectly via
location XI4FI or the symbol CJOB. The JIT is identified
by the fact that bit 0 of word 0 is set to 0; AJIT has bit 0
of word 0 set to 1.

Upon return from the installation initiation routine, the job
wi II be aborted if register 3 has been set to 0; an on-line
user wi" be asked to log in again. This gives the system
manager an opportunity to police the job or modify the JIT,
based on information in the extended accounting field.

At job end, the information in the JIT is transferred to the
:ACCTLG file. The conditions are identical to the job
initiation exit except that register 3 points to the account
ing record (if the installation sets register 3 to 0, writing
of the accounting record in :ACCTLG is suppressed).

If the M:ACTERM routine exists, it wi II receive control
after the record is bui It in core but before the record is
written in the :ACCTLG fi Ie. M:ACINIT can abort a job
and M:ACTERM can suppress writing of the accounting re
cord if necessary.

Caution: All registers except register 3 are expected to
remain intact, Since the installation accounting
routine becomes part of the CCI (for batch) or
the Monitor (for on-line) which operates in the
master mode, a coding error or altered register
contents could result in a system crash.

An installation wishing to supplement the standard BPM/
BTM accounting includes ROMs with the entry names
M:ACINIT and M:ACTERM during PASS1 of SYSGEN, and
modifies the LOCCT and TREE table.

ACCOUNTING SECONDARY STORAGE

Storage I imits are checked separately for permanent and
temporary storage. Private storage does not enter into
limit check or accounting of space used. Accounts are
kept for

1. Accumulated public storage on RAD or disk pack
devices.

Supplementary Accounting Routines/Accounting Secondary Storage 33

2. Number of accesses to RAD, disk pack, and magnetic
tape.

ACCOUNTING SHEET INFORMATION

3. Number of private volumes mounted, magnetic tape
or disk pack.

The items given in Figure 7 below are all the accounting
messages that can appear on the final page of the BPM/
BTM printed output. Printing is suppressed for any item
whose assqciated value is zero; that is, if a user does not
mount any magneti c tapes during his job, the entry n# OF
T APE MOUNTS" wi II not be pri nted, as opposed to a mes
sage u# OF TAPE MOUNT 0".

All nonzero accounting items are printed on the user1s
summary.

TOTAL JOB TIME

PROCESSOR EXECUTIO N TIME
PROCESSOR I/O TIME
PROCESSOR OVERHEAD TIME
USER EXECUTION TIME
USER Vo TIME
USER OVERHEAD TIME

OF CARDS READ

OF CARD PUNCHED

OF PROCESSOR PAGES OUT

OF USER PAGES OUT

OF DIAGNOSTIC PAGES OUT

PERM RAD GRANULES USED
PERM DISC GRANULES USED

TEMP RAD GRANULES USED
TEMP DISC GRANULES USED

OF TAPE ACCESSES
OF RAD ACCESSES
OF DISC ACCESSES

OF TAPE MOUNTS
OF DISC MOUNTS

34 Accounting Sheet Information

Less than or equal to the sum of the next six entries that follow below it; the
possible discrepency being the noncharged short quanta used whi Ie the system
is waiting for a magnetic tape or disk pack to be mounted or the symbiont to
catch up.

All time is expressed as XXX. yyy

where

X = minutes

Y = thousandths of a minute

Includes the !JOB card and all data cards and control cards except the
!FIN card.

Includes 10, !JOB, !BIN, and !EOD cards, but not the blank card inserted by
the symbiont between jobs. If there is no punched output from the job, the !JOB
and ID cards are not punched and the 11# OF CARDS PUNCHED" line is omitted.

Includes all printed output generated by processors such as CCI, PASS1,
FORTRAN, METASYM, etc., plus the two ID pages at the beginning of the
job and the accounting page at the end. Therefore, the entry is never zero.

Includes number of pages of user output. Since the CCI processor and the user
print on the same page, the page containing the !RUN command will not be
counted as a user output page.

Number of pages output through the M:DO DCB to a symbiont file (or to a printer
in a nonsymbiont system), including core dumps, snaps, and debug outputs.
Since the total wi II be included in the user pages count when user and diagnosti c
output goes to the same device, the message will usually not be printed. Addi
tionally, if the output goes to a user file, it will also not be counted even
though it goes through M:DO.

PERM granules used is the net change in the number of permanent granules on the
specified device type that are affected by the job. These values can be
negative.

TEMP granules used is the peak value for the number of temporary granules on
the specified type used during the job.

Includes reads, writes, and file positioning accesses on the specified device
type. Seeks are not counted as they are considered part of a read or write.
A chargable access is actually a request to queue.

Includes all mounts of the specified device type unless the device is premounted
by the operator.

Fi gure 7. User Accounting Summary Messages

5. 8TM PERFORMANCE MONITOR

INTRODUCTION

The BTM Performance Monitor is a system management tool
that accumulates critical statistics during system operation.
These statistics measure the performance of BTM in a given
hardware configuration and provide a profile of the current
user environment. The environment in any given facil ity
will be in a state of fairly continuous change that reflects
variations in the user load on a moment-by-moment basis.

The various statistical reports are received on-line and
enable the system manager to continuously monitor the user
stream. Control over the Report Generator is obtained by
selecting or rejecting option queries output by the Perfor
mance Monitor. These reports, in turn, supply the data
necessary to optimize performance through system tuning.

The Performance Monitor consists of two groups of routines:
the first is resident and performs the data collection, and
the second generates the subsequent reports.

DATA COLLECTION

Data is collected in different tables whenever an activa
tion character is received from a user's console or when a
user quantum is dismissed by the BTM Executive. Clocks 2
and 3 (500 Hz) are used by the Performance Monitor.

REPORT GENERATION

A Meta-Symbol routine copies the tables containing the
collected data into the common storage of a FORTRAN
Report Generator that performs the following functions:

• Reports statistics since the beginning of the accumu
lation of statistics (system reset).

• Reports stati sti cs with reference to a base fil e created
at a time after the accumulation of statistics was
started (after system reset).

• Reports II snapshot II statistics and summary statistics
from a history file.

• Creates a base file as a reference point.

• Creates a series of records in a fi Ie periodically to
create a history fi Ie.

• Summarizes the batch accounting log during history
file creation since base file creation or system reset.

• Lists quantum statistics separately for each of the two
on-I ine quantum levels (ql and q2)'

• Lists snapshot summaries chronologically and then sorts
and relists the summaries by user intensity and users
logged on.

• Provides accounting for short, self-dismissed quanta.

• Provides subsystem listings that include the percentage
of on-line time and the percentage of tasks.

• Identifies by name the subsystems causing maximum
quantum extensions and the number of RAD and disk
pack accesses that caused the extension.

INITIALIZATION AND TERMINATION
The accumulation of statistical history is a discrete func
tion of time and is a proprietary service. Initialization
and termination are controlled by the key-ins

!PMS €V

IPMX@

where

PMS specifies to start accumulating statistics.

PMX specifies to stop accumulating statistics
(default).

8TM SCHEDULING

Interpretation of the BTM statistics requires a basic
understanding of the BTM time-sharing algorithm. BTM
uses a simple procedure that assigns slices of system time,
called quanta, alternately to the batch stream and to
one of the on-line users. This procedure is demonstrated
in Figure 8.

nUANTA

The batch quantum has a preset val ue that is set either at
SYSGEN time or modified at run time via a key-in. The
batch quantum is used by the time-sharing system to swap
the data area of the last on-line user out of core and to
swap the procedure and data area of the next on-I ine user
into core. The swap cycle includes swap out and swap
in, and is overlapped with the execution of the batch
job.

The batch quantum is terminated if the swap cycle is com
pleted, the batch preset qB has been reached, and no file
I/O write action is pending. If an I/O write operation has
begun, the batch quantum is extended until the I/O oper
ation has been completed.

The on-line quantum will be assigned a first-level preset
value, ql, if it is the first quontum of the respective on-
I ine task. The on-I ine quantum is assigned a second-level
preset value, q2, if the respective on-line task has already
received one quantum. An on-line quantum is dismissed

BTM Performance Monitor 35

Batch On-li ne User Batch

Swap .. J

Cycle -I

-..

Batch Quantum

1. Never smaller than swap cycle.

Swap _-'

Cycle""

2. Extended past qB preset for I/O completion.

On-Line Quantum

1. Dismissed early if:

a. Program requested.

b. Task completed.

2. Extended past preset to complete I/O action.

Figure 8. BTM Time Sharing

early if the task is completed or if the task requests dis
missal via CAll, 8 X'20'.

On-line quanta may be extended past the preset value only
if a file I/O action is pending. In this case the on-line
quantum wi II be extended until the I/O operation is
completed. Extensions are likely to occur in on-line tasks
since multiple file accesses are common in the on-line
subsystems.

Input bound
state.

Input queue
(level 1).

Output bound
state.

Output queue
(level 1).

Priority 2

CPU state.

USER STATES

On-line users migrate through identified user states under
the control of the scheduling algorithm. The user state
diagram is shown in Figure 9. There are three queues
shown on the state diagram: the input queue, the output
queue, and the compute queue. The scheduler allows only
one user at a time to receive CPU and I/O time. The on-
I ine quantum begins when a user enters the CPU or fi Ie
I/O states and terminates when the user leaves the CPU
state. The user is then either queued for further service or
placed in the input bound or output bound state.

The user migrates to the input bound state when prompted
by the BTM system. The user state will change from the
input bound state to the input queue when the first activa
tion character is received in the input buffer.t If the user
is in the executive level of execution, each character is
considered an activation character. If the user is at the
subsystem or user level of execution, the activation char
acter is usually a carriage return. A user entering the
input queue has priority for scheduler service over users in
the other two queues. Such a user is granted a quantum q1
when he gains service. -

When a user receiving CPU service fills the output buffer/
the user's quantum is dismissed, the task is terminated, and
the user state becomes output bound. An output bound user
will remain in the output bound state until the character
count indicates less than 10 characters remain in the output
buffer. When this occurs the output bound user enters the
output queue, which receives service of duration q1 when
the input queue is empty.

tThe input buffer size and output buffer size are defined
at SYSGEN time, using the IBUFSIZE and OBUFSIZE
options respectively. The default size for both buffers is
100 characters

Compute bound
queue (level 2).

File I/O
state.

An on-line quantum begins when a user enters the CPU state and terminates when the user leaves the CPU state.

Figure 9. BTM User States

36 8TM Scheduling

When a user receiving CPU service consumes the on-line
quantum without completing the task, the user is considered
compute bound and is entered into the compute bound
queue. The compute bound queue receives service only
when the input queue and the output queue are both empty;
users queued at th is state receive a quantum q2 each time
they are serviced.

SCHEDULING CONTROL

The installation manager may control the operation of the
scheduler by assigning appropriate values to the quantum
presets received by the user queues. The input queue and
the output queue receiveafirst level quantum ql' which is
chosen such that 80 percent to 90 percent of the user tasks
may be completed in one on-line quantum.

The users in the compute bound queue have received one
first level quantum and are schedr led for a second level
quantum q2 only after the input and output queues are

- empty. Since the compute bound user receives secondary
service, it is possible to increase q2 as a device for re
ducing the number of schedul ing cycles required to process
each compute bound task. Increasing q2 for heavi er user
loads has the effect of increasing the percentage of the
system available to the on-line users.

Once BT M schedu ling cons iderati ons are understood, the
primary measures of performance can be addressed.

BASIC STATISTICS

The statistics below are the most important measures of the
performance of the syst-Jm. Others will become more
meaningful and useful with increased knowledge and ex
perience with BTMPM.

Statistic

Time Sample

Users logged

Intensity

Interactive Response

ETMF

Information Given

What interval is included in
report?

How many users on the system?

How heavy is the user load?

How long does it take to receive
and complete one quantum?

How many seconds must a user
wait for one second of system
time?

Statistic

On-Line Time
Percentage

Interactive Tasks
Percentage

Information Given

How much of the system is required
by on-line users?

How many of the tasks are com
pleted with only one quantum of
preferential service?

USING THE REPORT GENERATOR

The flow chart in Figure 10 provides an overall view
of the flow of the Report Generator. Assuming the
load module for the Report Generator is called 'STAT',
the BTMPM may be accessed as follows:

IRUN
LOAD MODULE FID:STAT
;G

The RUN subsystem will then start executing STAT. At the
beginning of execution, some consistency checks are per
formed. Any error detected causes printing of the appro
priate error message and control is returned to the BTM
Executive. The error messages are as follows:

BTMPM TABLES AND/OR LOAD MODULE NONEXISTENT

Either the tables created by SVSGEN (:BTM card) or the
resident portion of STATISTICS package is not present.

DIMENSIONS (COMMONS) .LT. DIMENSIONS (SYSGEN)

BTMPM has some COMMONs dimensioned with the maxi
mum default values for the options on the SVSGEN :BTM
carel. If the maximum limits have been altered, the
dimension of the COMMONs should also be altered in the
nonresident portion of memory.

BTM PERFORMANCE MONITOR IS NOT OPERATIONAL

The Performance Monitor has not been initiated. The
message can also appear any time during execution if the
PMX key-in is issued by the computer operator.

If there are no errors, the following header is printed:

*BTM PERFORMANCE MONITOR***

REPLY WITH Y OR N OR X AND
CARRIAGE RETURN

BASE FILE CREATION

The Report Generator then asks the fi rst question about re
port statistics. A "V" answer directs the execution to the
report writers. A II N II answer causes a branch to the fi Ie

Scheduling Control/Using the Report Generator 37

Enter fi Ie nome.
Enter sample size.
Enter no. of records.

acc't log

Write base file
via F:l

no

no

yes

Enter fi Ie name.
Summary only?
Histograms? (YIN)

Report snapshot
statistics if
required

Report history
fi Ie summary

Report chronologi
ca I and sorted
snapshot summaries

Figure 10. BTMPM Report Generator Flow Chart

38 Usi ng the Report Generator

Report statistics
from bose fi Ie to

creation portion of the program. Example 1, below
assumes an II N II answer first.

The program will then ask if the base file is to be created.
A "V" response to the base fi I e question causes the pro
gram to ask for the name of the fi I e. The first eight char
acters will be used to name the file that contains the
statistical status of BTM at that moment. A message con
firming file creation is typed after the file is created. The
program then resumes questioning from the beginning to
allow a user immediate use of the base file by asking for
a report referencing that file.

If the file already exists with the same name, the option
to write over the old file is given to the operator by the
message

FILE EXISTS. PROCEED?

A "V" answer causes the old file to be written over. If
the answer is "N", the operatorwill receive the file name
query again. See Examples 2 and 3.

HISTORY FILE CREATION

An II N II response to the base fi Ie questi on resu I ts ina hi s
tory fi I e questi on. An II N II response to the history fi I e

Example 1. Base File Creation with "N" Answer

REPORT BTM STATISTICS?

CREATE BASE FILE?

ENTER FILE NAME BELOW.
lFILEBASE @

BASE FILE FILEBASE CREATED AT 09:41 NOV 16,170

Example 2. Create a New Base File {Save Old Base File}

REPORT BTM STATISTICS?
1N9

CREATE BASE FILE ?
1Y(§

ENTER FILE NAME BELOW.
~FILEBASE@
FILE EXISTS. PROCEED?

-~N@)
ENTER FILE NAME BELOW.
~FILEBAS1@

BASE FILE FILEBAS1 CREATED AT 09:43 NOV 16,170

question stops execution. A "V" response causes history
fil e questi ons to be typed as shown in Exampl e 4.

The history file name may be entered by the operator and
may be from 1 to 8 characters in length. If the history
file name is the same as an already existent file name, the
following message will be typed:

FILE EXISTS. PROCEED?

A "V" reply causes the new file to replace the old; an
"N" reply causes the file name query to be repeated. See
Examples 5 and 6. The sample size must be a number
from 01 to 99 to satisfy the FORTRAN format requirement.
The sample size determines how often the history file rec
ords are to be created. In the above example, the number
of records defines an 8-hour record of BTM with 15-minute
snapshots.

The Report Generator creates files periodically until the
specified number of records has been created. The Report
Generator then reads the Batch Accounting Log and prints
a summary of the batch jobs completed during the creation
of the history file. This summary is useful since the batch
activity has a pronounced effect on the on-I ine performance.

Using the Report Generator 39

Example 3. Create a New Base File (Overwrite Old File)

REPORT BTM STATISTICS?
IN@

CREATE BASE FILE ?
lY@)

ENTER FILE NAME BELOW.
IFILEBASE @
FILE EXISTS. PROCEED?

-~Y§
BASE FILE FILEBASE CREATED AT 09:44 NOV 16,'70

Example 4. Create a History File

REPORT BTM STATISTICS?
~N@

CREATE BASE FILE?
~Ne

CREATE HISTORY FILE?
--1Y @)

ENTER FILE NAME BELOW.
lFILEHIST @

ENTER SAMPLE SIZE, 01 TO 99, MINUTES.

115 8
ENTER # OF RECORDS, 01 TO 99.

1338

Example 5. Create a New History File (Save Old File)

REPORT BTM STATISTICS?
~Ne
CREATE BASE FILE ?

1N@
CREATE HISTORY FILE?
~Y@
ENTER FILE NAME BELOW.

lFILEHIST@
FILE EXISTS. PROCEED?

-~N@
ENTER FILE NAME BELOW.

-IFILEHIST @)
ENTER SAMPLE SIZE, 01 TO 99, MINUTES.
~l1e

ENTER # OF RECORDS, 01 TO 99.
~22 8

40 Using the Report Generator

Example 6. Create a New History File
(Overwrite Old File)

REPORT BTM STATISTICS
IN8

CREATE BASE FILE?

CREATE HISTORY FILE?
lY@
ENTER FILE NAME BELOW.
~FILEHIST@)
FILE EXISTS. PROCEED?

-lY@)
ENTER SAMPLE SIZE, 01 TO 99, MINUTES.

l12@)
ENTER # OF RECORD, 01 TO 99.

7248

NORMAL JOBS
ABN. JOBS

-k TIMINGS

<--- SYSTEM ---->
TOTAL LOCAL REM

EXECUTION 200.0 75.0 25.0
OVERHEAD 150.0 66.6 33.4
I/O 100.0 20.0 80.0

TOTAL

CARDS (READ 1534
(PUNCHED 20

(PROCESSOR 334
PAGES (USER 25

(DIAGNOSTIC 0

TAPES (SCRATCH 10
(SAVED 2

(TAPE 2431
ACCESSES (RAD 2200

(DISC 3334

TEMPORARY GRANULES (DISC 340
(RAD 30

PERMANENT GRANULES (DISC 250
(RAD 30

DISC PACK MOUNTS 6

TOTAL
200

4

BATCH ACCOUNTING LOG SUMMARY

The Batch Accounting Log Summary is printed when the
history file is created. As shown in the format and sample
data in Figure 11, the Batch Accounting Log I ists jobs
according to their origin. The TOTAL indicates the sum of
LOCAL jobs (submitted over the counter) and those of
REMOTE origin. If there were abnormal jobs, their total
is also indicated according to their origin.

Under the TIMINGS AND PERCENTAGES heading, the
information is broken down in three fields: SYSTEM,
LOCAL, and REMOTE. LOCAL and REMOTE correspond to
the job origin of the entries (EXECUTION, OVERHEAD,
and I/O); the TOTALs (expressed in minutes) are the ac- •
cumulated processor and user values (expressed in percent
ages). The information under the SYSTEM field has the
same general format.

The accounting information for peripherals follows the
same logic.

<- JOB ORIGIN ->
LOCAL REMOTE

180 20

75.0 % 25.0 %

& PERCENTAGES *
<---- LOCAL ----> <---- REMOTE ---->
TOTAL PROC USER TOTAL PROC USER

150.0 33.3 66.7 50.0 40.0 60.0
100.0 55.0 45.0 50.0 37.0 63.0
20.0 70.0 30.0 80.0 30.0 70.0

LOCAL REMOTE

60.0 % 40.0 %
60.0 % 40.0 %

60.0 % 40.0 %
60.0 % 40.0 %
60.0 % 40.0 %

60.0 % 40.0 %
60.0 % 40.0 %

60.0 % 40.0 '70

60.0 % 40.0 %
60.0 % 40.0 %

60.0 % 40.0 '70

60.0 % 40.0 %

60.0 % 40.0 %
60.0 % 40.0 %

60.0 % 40.0 %

Figure 11. Batch Accounting Log Summary Example

Usi ng the Report Generator 41

REPORT STATUS SINCE RESET

Assume that a user has either just entered the Report
Generator or has just created a history file or base file.
This user would reply with a "Y" to the first question. A
"Y" response to the second question would allow the user
to get a report that covered the time from reset until the
present time.

Example:

REPORT BTM STATISTICS?
~Y@)

REPORT STATUS SINCE RESET?
-ZY@

ARE HISTOGRAMS DESIRED?
1Y@)

The report covering the period from reset to present would
then follow.

REPORT USING BASE FILE

An "N" response to the second question causes a query to
determine if a base file is to be used.

Example:

REPORT BTM STATISTICS?
zy8
REPORT STATUS SINCE RESET?

INe
USER BASE FILE?

-'LY@Y
ENTER FILE NAME BELOW.

lFILEBASE @)
ARE HISTOGRAMS DESIRED?

lye

The report covering the period from base fi Ie creation to
present would then follow.

If a base file was created and the user answers the base file
question with a "Y", the program wi II ask for the name of
the file and whether histograms are desired in the report.

The base file report has the effect of subtracting all statis
tics accumulated before the base file was created (e. g. ,
this may be used to remove the time elapsing between sys
tem reset and 8:30 in the morning, when few if any users
are on the system).

If a file name entered does not exist, BTMPM will requery
for a new name.

42 Usi ng the Report Generator

Example:

REPORT BTM STATISTICS?
lye

REPORT STATUS SINCE RESET?
IN§

USE BASE FILE
lY@

ENTER FILE NAME BELOW.
-ZXXYYZZ@

ARE HISTOGRAMS DESIRED?
1Y@

-ERROR OCCURRED. FILE MAY NOT EXIST
ENTER FILE NAME BELOW.

?

REPORT HISTORY FILE

If the user had not asked for a base fil e report, the history
report query would follow.

Example:

REPORT BTM STATISTICS?
lY@

REPORT STATUS SINCE RESET
~N@
USE BASE FILE?

USE HISTORY FILE?

ENTER FILE NAME BELOW.
ZFILEHIST@)

SUMMARY ONLY?
lY@)

ARE HISTOGRAMS DESIRED?

The report covering the entire period of history file creation
would then follow.

A "Y" answer to the history file question results in a query
to enable the user to identify the history file to be pro
cessed. The next question allows the user to skip the
snapshot listings and receive a summary only. An "Nil an
swer to the summary only question will cause the snap
shots and the summary to be listed. The histogram question
follows the summary question, allowing the user to eliminate
the time-consuming snapshot histogram printing. The
terminal user might wish the summary only, to reduce the
printing volume.

The snapshot statistics and histograms are more conveniently
obtained by submitting a batch job.

If the file name is erroneous, BTMPM will detect the
error.

Example:

REPORT BTM STATISIICS ?

REPORT STATUS SINCE RESET?

USE BASE FILE

USE HISTORY FILE

ENTER FILE NAME BELOW.
-~XXYYZZ @l

SUMMARY ONLY?
ZY@l

ARE HISTOGRAMS DESIRED?
ZY@l

--ERROR OCCURRED. FILE MAY NOT EXIST
ENTER FILE NAME BELOW.

When the history file summary has been completely printed
the Report Generator will ask for more history files.

Example:

MORE HISTORY FILES

An "N" answer causes the chronological listing of important
data from each snapshot in the history file. This listing

Example 7. History File Processing

!JOB
! RUN (LMN, STAT)
!DATA
YES
NO
NO
YES
SEP04HIS
NO
YES
YES
SEP08HIS
NO
YES
NO
!EOD

(REPORT BTM STATISTICS ?)
(REPORT STATUS SINCE RESET ?)
(USE BASE FILE ?)
(USE HISTORY FILE ?)
(ENTER FILE NAME BELOW?)
(SUMMARY ONLY?)
(ARE HISTOGRAMS DESIRED ?)
(MORE HISTORY FILES ?)
(ENTER FILE NAME BELOW?)
(SUMMARY ONLY ?)
(ARE HISTOGRAMS DESIRED ?)

(MORE HISTORY FILES ?)

wi II be foil owed by a sorted I isti ng that groups snapshots
with similar load characteristics.

A "Y" answer to the MORE HISTORY FILES? question
allows the user to identify another history fil e and cycle
through the SUMMARY ONLY? and ARE HISTOGRAMS
DESIRED? questions. When the requested listings are com
pleted, the Report Generator will ask for more history
files. An "N" answer will terminate the history file report
loop and initiate the chronological snapshot listing and
sorted snapshot Ii sti ng for a II the history fi I es processed.

BATCH PROCESSING OF HISTORY FILES

A batch job can be submitted to obtain complete history
file listings with snapshot statistics. An example of a job
set-up that will process the two history files, SEP04HIS
and SEP08HIS is shown in Example 7.

A user may also ASSIGN F:108 (FILE, BTMLIST), and run
the BTMPM Report Generator from the terminal byantici
pating the questions that will now be written in the file
BTMLIST. When the program is finished, file BTMLIST may
be listed using FMGE in a batch job.

DEFINITION OF REPORTED STATISTICS
The format of the user statistics, task statistics, quanta
statistics, performance statistics, and subsystems statistics
are given in Figures 12 through 16 respectively.

Definition of Reported Statistics 43

TIME SAMPLE =
USERS LOGGED=
INTENSITY

MINUTES

COMPUTE MSEC/USER MIN

where

TIME SAMPLE is the duration of the sample peri od in minutes. If the report is for the status since reset, the
sample time is measured from the time of system reset to the time the report is demanded. If a base file is
used, the sample time is measured from the time of base file creation to the time the report was demanded.
If the report is a snapshot, the sample time is the period between two consecutive snapshot records in the
history fi Ie. If the report is a history file summary, the sample time is the period between the first and
last snapshot records in the history file.

USERS LOGGED is the average number of on-line users. This statistic is tabulated each quantum and
averaged over all quanta to account for users logging on and off during the time sample.

INTENSITY is obtained by multiplying the average interaction rate by the average task time. This

where

statistic measures the amount of computing required per user minute. A "user minute" is defined as a
minute of thinking and typing time. Output printing time and response time is not counted as user time.

NUMBER OF TAS KS
% INPUT TAS KS
% SECONDARY TASKS
AVERAGE TASK LENGTH
RESPONSE TIME
% ON-LINE TIME

INTER
ACTIVE

Figure 12. User Statistics Format

COMPUTE
BOUND

TOTAL

%
%
MSEC
MSEC
%

NUMBER OF TASKS is the total number of input tasks and secondary system tasks completed in the sample.
If a task required only one quantum, the task is considered interactive and is tabulated in the first column.
If more than one quantum was required, the task is considered compute bound and is tabulated in the second
column. The total number of tasks is shown in the third column.

% INPUT TASKS is the percentage of the total number of tasks initiated by an input activation character.
At the executive level, all characters are activation characters (i.e., A and S for the ASSIGN command).
At the subsystem and user level, the activation characters are usually carriage returns. See Appendix C for
a complete definition of activation characters.

% SECONDARY TASKS is the percentage of the total number of tasks generated by the system as a result of
output bound tasks and those wh ich resu I t because a user depresses two consecuti ve escape characters. A
task is dismissed as output bound if a Teletype output buffer is filled (lOa characters). The dismissed task
will be queued for service when less than 10 characters remain to be printed (one second lead time for Tele
types). Two escape characters wi II cause the user to be queued along with other output bound users. If the
resulting secondary task requires more than one quantum, the task is tabulated as a compute bound secondary
task. Usually, an output bound task needs only enough time to fi II the 100 character buffer; th is time typ
ically results in a very short interactive task.

Figure 13. Task Statistics Format

44 Definition of Reported Statistics

AVERAGE TASK LENGTH is the average task time in milliseconds, averaged separately for interactive and
compute bound tasks. The third column is the average task length for all tasks. The task time includes CPU
time and file I/O time. The task must complete within the sample to be included in this statistic.

RESPONS~ TIME is the time measured in milliseconds from the receipt of an activation character to the end
of the last quantum of the task. The end of the last quantum corresponds closely to the insertion of the
Teletype prompt character in the output buffer. Activation characters "typed ahead" are processed along
with the other input characters until the input buffer is empty. The first column contains the interactive
response, which is the time required to receive one quantum of service. Column 2 contains the compute
bound response which varies, depending upon the length of the compute bound tasks that terminate in the
sample. Since compute bound task lengths vary widely, the ratio of response time to task time is more
meaningful. This ratio is computed below and is labeled the execution time multiplication factor, ETMF.

% ON-LINE TIME is the percentage of the sample time used for on-line processing. Interactive percent

where

on-I ine time is 100 times the total interactive task time divided by the sample time. The compute bound
percent on-line time is 100 times (the total on-line time minus the interactive task time) divided by the
sample time. This statistic is accurate at the end of each quantum even though some compute bound tasks
are not completed in the sample time. The total percent used on-line is dependent upon the choice of
the three preset quanta and upon the intensity of the work load.

NUMBER OF QUANTA
MAXIMUM QUANTUM
PRESET QUANTUM
AVERAGE QUANTUM
% EXTENDED QUANTA
% LONG EXT QUANTA
AVERAGE EXTENSION

STANDARD DEVIATION
RAD ACCESSES/EXT QTM=
DISK ACCESSES/EXT QTM=

SUBSYSTEM / MAX EXT =
RAD ACCESSES/MAX EXT=
DISK ACCESSES/MAX EXT=
PERCENT QUEUED USERS =

Figure 13. Task Statistics Format {cont.}

LEVEL 1 LEVEL 2

MSEC
MSEC
MSEC
%
'70
MSEC

NUMBER OF QUANTA is the count of quanta for each level. All interactive tasks contain a single first level
quantum. Compute bound tasks contain a single first level quantum and one or more second level quanta.

MAXIMUM QUANTUM is the longest quantum that occurred for each level since the system was started. This
number increases throughout the day. The size of the maximum quantum is dependent upon the number of RAD
and disk accesses and upon the length of time an operator has the system in an lIidle" condition.

PRESET QUANTUM is the quantum length set at SYSGEN, key-in or system patch. For each of the two
levels, the preset quantum length is the maximum time allowed for a respective user before dismissal. When
a user fails to exhaust his demands, he is unconditionally queued for another quantum. File I/O uncondition
ally extends the quantum past the preset value for as long as needed to complete the operation. The value
of ql' the first level quantum preset, determines the percentage of tasks that will be completed in one quantum.
The value of q2' the second level quantum present determines the ETMF for compute bound tasks.

Figure 14. Quanta Statisti cs Format

Definition of Reported Statistics 45

AVERAGE QUANTUM is computed by accumulating quantum lengths for each level and dividing by the
number of quanta in each level. The average first level quantum includes the first quantum of each compute
bound task and the quanta from all interactive tasks. The average second level quantum includes all quanta
in compute bound tasks with the exception of the first quantum. The self-dismissed second level quanta are
not tabulated in the average second level quantum since they would bias the average.t

% EXTENDED QUANTA is the percent of the quanta for each level extended for file I/O completion or for
the case in which the idle switch is in an IDLE state during an on-line quantum. File I/O extension is an
important factor in BTM performance since extensions incur longer response times for all users queued at the
time of extension.

% LONG EXT QUANTA is the percentage of quanta for each level extended more than one first level preset
quantum. This percentage is included in % EXTENDED QUANTA.

AVERAGE EXTENSION is the total time that quanta were extended past the preset quantum value divided by
the number of extensions. It may be observed that "write-check" will incur longer extensions since two
accesses are required for all fi Ie write operations.

STANDARD DEVIATION is the square root of the expected squared extension minus the average extension
squared. This statistic is a measure of dispersion in the distribution for quantum extensions.

RAD ACCESSES/EXT QTM is the average number of RAD accesses experienced during extended quanta. This
statistic is useful since quantum extensions are primarily due to mutiple access file operations such as the
M:CLOSE.

DISK ACCESSES/EXT QTM is the average number of disk pack accesses experienced during extended quanta.
This statistic is important since disk access times are much greater than the RAD accesses, and have a large
effect on system operation.

SUBSYSTEM/MAX EXT identifies the subsystem that was executing when the maximum quantum extension
occurred. The subsystem is identified for both quantum levels.

RAD ACCESSES/MAX EXT is the number of RAD accesses that occurred during the maximum quantum extension
for a given quantum level.

DISK ACCESSES/MAX EXT is the number of disk pack accesses that occurred during the maximum quantum
extension for a given quantum level.

PERCENT QUEUED USERS is the average percentage of the logged-on users that were queued for a given
quantum level. This statistic is accumulated at the end of each on-line quantum and averaged over the
number of quanta.

t A quantum is considered "self-dismissed" if a CAll, 8 FPT X'40' is executed. Execution of this CAL causes the
current quantum to be terminated. The associated user is then queued for service in the compute bound queue.

Figure 14. Quanta Statistics Format (cont.)

46 Definition of Reported Statistics

where

TASK COMPLETION RATE
INTERACTION RATE
ETMF FOR COMPUTE BND

CORE PAGES PROCEDURE
CORE PAGES DATA
ON-LINE RAD ACCESSES
ON-LINE DISK ACCESSES=

TASKS/LOGGED MINUTE
TASKS/USER MINUTE
USER TIME / COMPUTE TIME

ON-LINE RAD ACCESSES/INPUT REQUEST =
ON-LINE DISK ACCESSES/INPUT REQUEST =

SHORT LEVEL 2 QUANTA =
SHORT HISTORY QUANTA =
AVERAGE BATCH QUANTUM=
ACTIVATION CHARACTERS=

TASK COMPLETION RATE is the total number of tasks in the sample divided by the total log-on time for all
users in the sample. This is a measure of on-I ine task throughput.

INTERACTION RATE is a measure of user activity that does not depend upon the response of the system. This
statistic is obtained by dividing the total number of requests by the average number of users that are not
queued or being serviced times the sample time. In effect, this represents the rate at which a user IIthinks
and types ll

•

ETMF FOR COMPUTE BND The execution time multiplication factor, ETMF, is the average ratio of compute
bound response to compute bound task time. The ETMF is computed only for input tasks that require two or
more quanta. This statistic is one of the most useful measures of system performance. A sharply rising value
of ETMF will indicate the saturation of the system. Interactive response will not reflect the saturation point
because of preferential scheduling.

CORE PAGES PROCEDURE is the average number of pages allocated to type (01) control sections. This
includes all instruction areas that would normally be write protected. The histogram for pages of pure pro
cedure may be included in the report, and is a descriptive measure of core usage. This data day be useful
when considering future systems that uti lize paging. IICORE PAG E S PROCEDURP is an average number
computed over all on-line quanta in the sample. The executive level of execution contains zero pages of
pure procedure.

CORE PAGES DATA is the average number of pages allocated to type (00) storage, common, and dynamic
common. The histogram for pages of data is a more descriptive measure of core usage. These pages are
four data pages of context for each user. The executive level of execution requires exactly four data pages.
This statistic is computed over all quanta in the sample.

ON-LINE RAD ACCESSES is the number of accesses used to support file I/O activity. Several RAD accesses
may be required at high speed for each low-speed disk access since dictionaries and file control are main
tained on the high-speed RAD.

ON-LINE DISK ACCESSES is the number of accesses that were used for on-line file I/O activity. This total
is obtained directly from the BTM executive tables.

ON-LINE RAD ACCESSES/INPUT REQUEST is the average number of accesses per activation character.
This number may include fi Ie I/O data accessing if disk packs are not used.

ON-LINE DISK ACCESSES/INPUT REQUEST is the average number of accesses per activation character.
This is only one of the possible averages that could be computed. Other averages, such as accesses per minute,
can be done by hand. Disk pack accesses can contribute substantially to quantum extensions due to
multiple accesses in lengthy file operations.

Figure 15. Performance Statistics Format

Definition of Reported Statistics 47

SHORT LEVEL 2 QUANTA is a count of all second level quanta that required two milliseconds or less,
and were not the last quantum of a task. The count indicates the number of self-dismissing quanta in
the sample. This count includes the BTMPM history file "sleeping quanta ll as well as IIsleeping quanta ll

from other sources.

SHORT HISTORY QUANTA is a count of quantum dismissals by the history file portion of BTMPM. This
statistic is printed only for history file snapshots and history file summaries. The load placed on the system
by the history file creation is computed by assuming that batch received one full quantum for each sleeping
quantum, thereby reducing the percentage of the system available to on-I ine.

AVERAGE BATCH QUANTUM is computed only for history files by assigning all remaining time in the
sample to batch, and dividing by the total number of on-line quanta. The history file creation pro-
gram is always queued, which means that the number of batch quanta is the same as the number of on-line
quanta.

ACTIVATION CHARACTERS is the count of input activation characters that initiated tasks. Activation

where

characters that are typed ahead do not initiate tasks individually, since the first activation character starts
a task that wi If conti nue until the input buffer is empty.

BASIC
BPM

DELTA
EDIT
FERRET
FORTRAN
LOAD
MANAGE
RUN
SUPER
SYMBOL
EXECUTIVE

ON-LINE
TIME

(%)
37

Figure 15. Performance Statistics Format (cont.)

TASKS
(%)
38

MEAN
TASK

(MSEC)
39

STANDARD
DEVIATION

(MSEC)
40

ON-LINE TIME for each subsystem is obtained by dividing the sum of the quanta used per subsystem by the
total amount of on-line time and converting to percent. The profile of the user environment will be indi
cated by this column of percentages which reflect subsystem utilization.

T ASKS for each subsystem is the number of tasks completed in the subsystem divided by the total number of
on-line tasks.

MEAN TASK is the average task length for each subsystem.

STANDARD DEVIATION is the square root of the expected squared task time minus the average tdsk .
squared. This is a measure of dispersion for the task time distribution for each subsystem.

Figure 16. Subsystem Statistics Format

48 Definition of Reported Statistics

HISTOGRAMS

There are four different types of histograms available to
the BT MPM systems management user, as foil ows:

1. ON-LINE TASK TIME DISTRIBUTION is a histogram
showing the frequency of occurrence for all tasks.
This includes interactive input tasks, compute bound
input tasks and output bound system tasks. An entry
in a given percentage indicates that there were
enough requests to exceed the number on the per
centage scale at the left. For instance, a point
with 0 percent indicates at least one request but less
than 1 percent of all the requests corresponded to a
parti cular val ue on the horizontal axis. The values
shown on the horizontal axis represent the centers of
the discrete windows that were used to accumulate the
data. The mean and variance are computed from the
histogram. Note that the scale is nonlinear. This
histogram is useful when choosing a value of the first
level preset quantum, ql' which will ensure that 80 to
90 percent of all tasks will complete in one quantum.
The format and sample data for this histogram are
shown in Exampl e 8.

Example 8. On-Line Task Time Distribution

ON-LINE TASK TIME DISTRIBUTION

MEAN= 895.3 STANDARD DEVIATION= 9541.9

(%)
15 -'. ·k

10 .,~

8
6 "k *
4 * *
3 ;~ *
2 * *
1 * * *

2. INTERACTIVE RESPONSE TIME DISTRIBUTION is a
histogram showing the frequency of occurrence of re
sponse ti mes for tasks that took I ess than one preset
quantum. In general, all tasks on the CPU task time
distribution that are to the left of one preset quantum
length are tabulated on this response time chart. The
scale for this plot is also nonl inear. The format and
sampledata for this histogram are shown in Example 9.

3. PURE PROCEDURE DISTRIBUTION is a histogram show
ing the frequency of occurrence for memory pages of
pure procedure (i. e. , the amount of pure procedure re
quired in the servicing of on-line requests). This plot
will have a high count at zero pages since the execu
tive level has no pages of pure procedure. Other high
points may vary with subsystems written to use fixed
amounts of pure procedure. The format and sample data
for this histogram are shown in Example 10.

4. DATA DISTRIBUTION is a histogram showing the fre
quency of occurrence for data pages. This includes
common and dynamic common pages. There is a high
point at four pages, since the executive level requires
on Iy the four pages of context area. The format and sam
ple data for th is histogram are shown in Example 11.

0 ***"I~***
MSEC

2

SEC

7 30
15 50

70 125 250 500 900
90 175 350 700

1 3
2

5
4 6

7 9 60
8 15

Histograms 49

Example 9. Interactive Response Time Distribution

INTERACTIVE RESPONSE TIME DISTRIBUTION

MEAN= 876.7 STANDARD DEVIATION= 1441.6

(%)
25 *
20 *
15 ,,(

10 *
8 -k

6 *
4
3 * *
2
1 * *
0 * * * * * * * * *

MSEC 7 30 70 125 250 500 900
2 15 50 90 175 350 700

SEC 1 3 5 7 9 60
2 4 6 8 15

Example 10. Pure Procedure Distribution

PURE PROCEDURE DISTRIBUTION

MEAN = 1.3 STANDARD DEVIATION= 2.9

(%)
80 *
75
70
65
60
55
50
45
40
35
30
25
20
15
10 *
8
6
4
3
2 *
1 * *
0

0 4 8 12 16 20 24 28 32

50 Histograms

Example 11. Data Distribution

DATA DISTRIBUTION

MEAN= 8.3 STANDARD DEVIATION=

(%)
60
55
50
45
40
35
30
25
20
15
10
8
6
4 ~(

3
2

0
4 8 12 16 20 24 28 32 36

SNAPSHOT SUMMARY

The snapshot summary format is given in Figure 17.

SNAPSHOT TIME SUMMARY

The important statistics obtained from each snapshot are
printed in chronological order under the headings given in
Fi gure 17. The time of the end of the snapshot and the
date will appear at the right of each snapshot entry. If
more than one history file was processed, the files will ap
pear in the order in wh i ch they were processed.

SORTED SNAPSHOT SUMMARY

The above chronological I ist of snapshot summaries is sorted
by the number of users and by intensity. The intensity
ranges in intervals of 200 millisecond/user minute from
zero to 3000 millisecond/user minute. The snapshots listed
must have an average batch quantum within 15 percent of
the average for the sample. The snapshots must also have

5.7

a mix of compute bound time to interactive time that
is within 15 percent of the average mix. These restri c
tions allow one to compare snapshots of similar user loads
and ignore snapshots that represent extreme cases, while
allowing the user to see all cases in the time summary.

SAMPLE HISTORY SUMMARY

The history file report given in Figures 18 through 20
is an example of the BTMPM report described in preceding
sections. The history consists of 28 records, 20 minutes
apart, beginning at 08.24 in the morning and ending at
17.24 in the afternoon. The report includes the History
Fi Ie Summary {without Histograms}, the Snapshot Summary,
and the Sorted Snapshot Summary.

The history file example was created by running the history
file creation portion of BTMPM for the entire nine-hour
period. The report was obtained by processing the
history file at a later date. The complete listing for
each snapshot is not included in the example due to the
volume of data.

Snapshot Summary 51

AVERAGE INTENSITY
AVERAGE TASK
AVERAGE BATCH QUANTUM=
ON-LINE TIME MIX
BTM SNAPSHOT SUMMARIES

where

COMPUTE MSEC/USER MINUTE
MSEC
MSEC
COMPUTE BOUND/INTERACTIVE

AVERAGE INTENSITY is the average intensity for all of snapshots in the history files processed. The intensity
is the product of the interaction rate and the average task time in each snapshot.

AVERAGE TASK is the average of the average task time for all the snapshots being processed.

AVERAGE BATCH QUANTUM
being processed.

is the average of the average batch quantum for all the snapshots

ON-LINE TIME MIX is the average ratio of compute bound time to interactive time over all the snapshots in
the sample. This statistic is useful to determine whether or not a given snapshot is heavily compute bound.

Figure 17. Snapshot Summary Format

!RUN
LOAD MODULE FID:STAT
;G
BTM PERFORMANCE MONITOR

REPLY WITH Y OR N OR X AND CARRIAGE RETURN.

REPORT BTM STATISTICS ?
?Y
REPORT STATUS SINCE RESET?

?N
USE BASE FILE ?

?N
USE HISTORY FILE ?

?Y
ENTER FILE NAME BELOW.

?SEP04HIS
SUMMARY ONLY ?

?Y
ARE HISTOGRAMS DESIRED?

?N

BTM HISTORY SUMMARY, FILE = SEP04HIS FROM 08:24 TO 17:24 SEP 04,'70
TIME SAMPLE = 540.0 MINUTES
USERS LOGGED= 18.4
INTENSITY 1435.9 COMPUTE MSEC/USER MIN

INTER- COMPUTE TOTAL
ACTIVE BOUND

NUMBER OF TASKS 29884.0 6909.0 36793.0
% INPUT TASKS 51.6 11.3 62.9 %
% SECONDARY TASKS 29.6 7.5 37.1 %
AVERAGE TASK LENGTH 61.9 1412.1 315.5 MSEC
RESPONSE TIME 528.6 14296.7 MSEC
% ON-LINE TIME 5.7 26.9 32.7 %

Figure 18. History Summary Example

52 Snapshot Summary

LEVELl LEVEL 2
NUMBER OF QUANTA 36773.0 33944.0
MAXIMUM QUANTUM 5826.0 5778.0 MSEC
PRESET QUANTUM 200.0 200.0 MSEC
AVERAGE QUANTUM 106.4 196.5 MSEC
% EXTENDED QUANTA 13.8 47.4 %
% LONG EXT QUANTA 4.5 3.7 %
AVERAGE EX TENS ION 317.9 80.1 MSEC

STANDARD DEVIATION = 537.0 210.7
RAD ACCESSES/EXT QTM= 8.3 2.1
DISK ACCESSES/EXT QTM= 2.4 2.1
RAD ACCESSES/MAX EXT= .0 .0
DISK ACCESSES/MAX EXT= .0 .0
PERCENT QUEUED USERS = 1.5 16.3 %

TASK COMPLETION RATE = 3.8 TASKS/LOGGED MINUTE
INTERACTION RATE 4.6 TASKS/USER MINUTE
ETMF FOR COMPUTE BND = 11.1 USER TIME / COMPUTE TIME
CORE PAGES PROCEDURE 1.5
CORE PAGES DATA 21.6
ON-LINE RAD ACCESSES 82551.0
ON-LINE DISK ACCESSES= 53625.0
ON-LINE RAD ACCESSES/INPUT REQUEST = 3.6
ON-LINE DISK ACCESSES/INPUT REQUEST = 2.3

SHOR T LEVEL 2 QUANTA = 73413 .0
SHORT HISTORY QUANTA = 61357.0
AVERAGE BATCH QUANTUM= 151.4 MSEC
ACTIVATION CHARACTERS= 23157.0

ON-LINE MEAN STANDARD
TIME TASKS TASK DEVIATION

(%) (%) (MSEC) (MSEC)
BASIC .8 6.8 36.3 223.2
BPM .9 3.5 78.1 243.4
DELTA 10.6 9.9 338.0 968.6
EDIT 31.9 30.0 335.2 .0
FERRET 6.2 4.5 434.5 1475.2
FORTRAN 5.2 .7 2386.3 .0
LOAD 16.1 13 .0 391.0 1035.2
MANAGE .2 .8 71.2 234.0
RUN 13 .2 11.0 380.0 .0
SUPER .0 .0 276.0 .0
SYMBOL 3.4 .2 5229.4 .0
EXECUTIVE 11.6 19.7 185.8

1 MORE HISTORY FILES ?
?N

Figure 18. History Summary Example (cont.)

Snapshot Summary 53

AVERAGE INTENSITY 1485.9 COMPUTE MSEC/USER MINUTE
AVERAGE TASK 327.9 MSEC
AVERAGE BATCH QUANTUM= 172.2 MSEC
ON-LINE TIME MIX 4.8 COMPUTE BOUND/INTERACTIVE
BTM SNAPSHOT SUMMARIES

TIME INTER- INTER ON- AVE
USERS MIX ACTION TASK RESPON ETMF LINE BATCH

Ufo) RATE (MSEC) (MSEC) (%) QTM
13. 5.0 6.0 379.9 484.2 5.8 36.0 164.7 08:44 SEP 04,' 70
15. 3.5 5.3 233.6 454.1 6.8 24.3 174.3 09 :04 SEP 04,' 70
16. 4.5 5.2 1060.3 454.7 7.7 23.8 197.6 09:24 SEP 04, '70
18. 3.8 6.8 242.3 572 .0 10.5 34.1 187.5 09:44 SEP 04, '70
18. 5.4 5.3 245.6 476.6 5.8 33.2 180.0 10:04 SEP 04, '70
21. 5.0 4.3 289.5 573.8 7.6 36.7 187.2 10:24 SEP 04, '70
22. 5.6 4.5 301.1 500.3 19.1 41.6 158.8 10:44 SEP 04, '70
21. 8.8 3.2 420.6 442.9 6.5 37.3 160.6 11 :04 SEP 04, '70
20. 4.1 4.0 307.7 550.9 5.7 27.7 292.6 11:24 SEP 04, '70
16. 2.7 3.3 159.6 414.4 4.2 12.1 193.9 11:44 SEP 04, '70
15. 2.2 3.7 146.2 614.5 7.2 12 .5 39.9 12 :04 SEP 04,'70
17. 3.6 4.7 225.6 754.4 8.5 28.5 202.4 12:24 SEP 04, '70
16. 2.8 5.7 198.7 546.1 5.9 24.5 196.5 12:44 SEP 04, '70
17. 3.5 4.5 260.5 529.5 5.2 27.4 187.4 13 :04 SEP 04,' 70
20. 4.8 4.2 294.2 531. 7 7.9 34.1 206.8 13 :24 SEP 04, '70
26. 5.2 4.8 305.2 528.5 23.2 44.4 159.5 13 :44 SEP 04, '70
28. 4.6 5.2 281.1 607.0 24.2 46.0 160.7 14:04 SEP 04, '70
25. 5.4 5.0 359.1 508.9 21.4 42.3 167.9 14:24 SEP 04,'70
23. 5.8 4.7 352.7 533.8 21.0 43.4 168.3 14:44 SEP 04,'70
25. 4.5 4.5 282.4 555.6 11.6 40.0 174.9 15:04 SEP 04, '70
25. 5.5 4.0 325.7 517.6 9.1 41.3 160.3 15:24 SEP 04,'70
22. 5.2 4.4 278.7 51,.2.2 6.8 38.6 175.6 15:44 SEP 04, '70
22. 4.3 4.1 262.~ 480.9 7.1 33.8 171.8 16 :04 SEP 04, '70
21. 3.6 3.9 225.5 483.8 10.8 27.2 183.9 16:24 SEP 04, '70
18. 6.5 3.7 295.2 628.0 6.3 38.2 203.6 16:44 SEP 04, '70
12. 8.2 3.2 863.8 520.5 4.4 33.0 156.8 17:04 SEP 04, '70
10. 5.2 5.0 257.0 405.8 3.5 19.7 136.5 17:24 SEP 04, '70

Figure 19. Chronological Snapshot Summary Example

54 Snapshot Summary

INTENSITY = 400. TO 600. COMPUTE MSEC / USER MINUTE

TIME INTER- INTER ON- AVE
USERS MIX ACTION TASK RESPON ETMF LINE BATCH

Ufo) RATE (MSEC) (MSEC) (%) QTM
16. 2.7 3.3 159.6 414.4 4.2 12.1 193.9 10:24 SEP 04, '70

INTENSITY = 800. TO 1000. COMPUTE MSEC / USER MINUTE

TIME INTER- INTER ON- AVE
USERS MIX ACTION TASK RESPON ETMF LINE BATCH

UF) RATE (MSEC) (MSEC) (%) QTM
21. 3.6 3.9 225.5 483.8 10.8 27.2 183.9 13 :44 SEP 04,'70

INTENSITY = 1000. TO 1200. COMPUTE MSEC / USER MINUTE

TIME INTER- INTER ON- AVE
USERS MIX ACTION TASK RESPON ETMF LINE BATCH

Ufo) RATE (MSEC) (MSEC) (%) QTM
17. 3.5 4.5 260.5 529.5 5.2 27.4 187.4 11 :44 SEP 04,' 70

INTENSITY = 1200. TO 1400. COMPUTE MSEC / USER MINUTE

TIME INTER- INTER ON- AVE
USERS MIX ACTION TASK RESPON ETMF LINE BATCH

UF) RATE (MSEC) (MSEC) (%) QTM
15. 3.5 5.3 233.6 454.1 6.8 24.3 174.3 10:04 SEP 04, '70

18. 5.4 5.3 245.6 476.6 5.8 33.2 180.0 12:24 SEP 04, '70

20. 4.1 4.0 307.7 550.9 5.7 27.7 191.6 13:04 SEP 04, '70

21. 5.0 4.3 289.5 573.8 7.6 36.7 187.2 14:04 SEP 04, '70
21. 8.8 3.2 420.6 442.9 6.5 37.3 160.6 14:24 SEP 04, '70

22. 5.2 4.4 278.7 542.2 6.8 38.6 175.6 15 :04 SEP 04,'70
22. 5.6 4.5 301.1 500.3 19.1 41.6 158.8 15:24 SEP 04, '70

25. 4.5 4.5 282.4 555.6 11.6 40.0 174.9 16 :04 SEP 04, '70
25. 5.5 4.0 325.7 517.6 9.1 41.3 160.3 16 :24 SEP 04, '70

INTENSITY , 1400. TO 1600. COMPUTE MSEC / USER MINUTE

TIME INTER- INTER ON- AVE
USERS MIX ACTION TASK RESPON ETMF LINE BATCH

Ufo) RATE (MSEC) (MSEC) (%) QTM
28. 4.6 5.2 281.1 607.0 24.2 46.0 160.7 17:24 SEP 04, '70

INTENSITY = 1600. TO 1800. COMPUTE MSEC / USER MINUTE

TIME INTER- INTER ON- AVE
USERS MIX ACTION TASK RESPON ETMF LINE BATCH

UF) RATE (MSEC) (MSEC) (%) QTM
18. 3.8 6.8 242.3 571.0 10.5 34.1 187.5 12 :44 SEP 04, '70

23. 5.8 4.7 352.7 533.8 21.0 43.4 168.3 15:44 SEP 04, '70

Figure 20. Sorted Snapshot Summary Exampl es

Snapshot Summary 55

SYSTEM TUNING PROCEDURES

There are three optional tuning parameters that may be
used by the system manager to control system performance.
The function of each parameter and rationale for the re
commended starting points is as follows:

1. qB is the size of the batch quantum. This parameter
may be set at SYSGEN and changed dynamically via
an operator key-in. The installation manager need
only control qB to tune the system. For a primarily
on-line system, the batch quantum should be low
enough to ensure swap I imited operation. For batch
systems, the value of qB may be increased from the
starting point when the number of users drops into the
next lower range as shown in Tables 1 and 2 (see
below). This guarantees the batch job stream larger
throughput with lower user loads.

2. ql is the size of the first level on-line quantum. This
may be set at SYSGEN and be changed dynamically
via an operator key-in. the choice of q 1 = 200 msec
ensures that 80 percent to 85 percent of all on-line
tasks will be completed in one quantum. The choice
of q 1 = 300 msec assures that 85 percent to 90 percent
of the tasks wi" compl ete in one quantum (an increase of
q1 beyond 300 msec is not justified). The value of q1
determines how many tasks may be completed in one
quantum.

3. q2 is the size of the second level on-line quan
tum. This may be set at SYSGEN and be changed
dynamically via an operator key-in. Once q 1 is
chosen, the value of the multiplier must be chosen to
ensure on-line users an adequate percentage of system
time as determined by the formula given above for
minimum batch percentage. The value of q2 has a
small effect on interactive response since only compute
bound tasks receive q2 quanta. The choi ce of a
higher multiplier will result in lower batch throughput.

It is important to recognize that, typically, each on-line
user requires from 1 percent to 3 percent of the system
time. The quanta may be adjusted to one of the following
criteria:

1. Increase on-I i ne servi ce to move the saturati on poi nt
higher.

2. Decrease on-line service to provide a higher batch
throughput.

TUNING IMPLEMENTATION

A procedure to perform system tuning is as follows:

1. Choose a set of starting values for qB' ql' and q2
from Table 1 or 2, depending upon the swapping
device used. Choose the user range that includes
the heaviest anticipated user load.

56 System Tuning Procedures

Table 1. Recommended Starting Points Using 7212t

User Minimum
Range Batch Starting Values

qbatch/q1/q2

0-10 66% 400/200/200

10-20 50% 200/200/200

20-40 21% qB/200/400

40-60 12% qB/200/800

t
Average swap cycle = 110 msec.

qB = 50 msec, swap limited case.

Table 2. Recommended Starting Points Using 7232
t

User Minimum
Range Batch Starting Values

Qbatch/q 1/Q2

0-10 57% 400/300/~00

10-20 47% QB/300/300

20-50 18% QB/300/1200

t
Average swap cycle = 273 msec.

2. Run the system and observe performance. At me
dium user loads, the interactive response should not
change noticeably as more users log on because of
preferential scheduling. The compute bound re
sponse wi! I provide the best measure of response
since system saturation will cause the ETMF to in
crease sharply.

3. For user loads that are lower than the range used
for the starting poi nt, the batch quantum may be

increased. This wi II guarantee a higher batch
throughput, as determined by the formula

minimum % batch = :B where q2 ~ q 1
qB q2

BTMPM INSTALLATION

The resident portion of BTMPM requires a 102-word table
and other tables whose length is determined by the number
of users (NUMUSERS), the number of subsystems (NUMSYSTS),

and the number of pages in the time-sharing memory area
(U SERSIZE) where

NUMUSERS = 3 words per user

NUMSYSTS = 4 words per subsystem

USERSIZE = 2 words per page

Use of Clock 2 (frequency 500 Hz) is required to record the
arrival of tasks and their completion.

The calls to BTMSTAT are coded in the BTM Executive with
secondary references so that the BT M Executive wi II not call
the Performance Monitor unless it was included at SYSGEN
time. The resident portion of BTMPM should be included
in the BTM Monitor segment when SYSGEN is executed.

BTMPM Installation 57

6. PROCESSOR AND SUBSYSTEM FACILITIES

INTRODUCTION

BPfv\/BTM users may write their own processors and subsystems
and use them in addition to or in place of the ones supplied
by XDS. User-built processors and subsystems are like any
other user program with a few minor exceptions. These ex
ceptions are outlined in this chapter.

A processor is a load module that has been placed in the
:SYS account. No restrictions are imposed on the name of
a processor except that it cannot exceed 10 characters.
Any file in the :SYS account can be called as a processor.

A subsystem is a load module in the :SYS account to whose
name is appended a colon character {:}. The colon char
acter must be appended by the user at the time the load
module is created. At initialization time, subsystems are
placed in a reserved area on the swapping device {a user
may not put a subsystem directly into that area}.

If a new subsystem is added to the :SYS account after load
ing the system from the PO tape, the subsystem will only
become avai lable to on-line users after either a recovery
or booting from the system device.

FIXED MONITOR LOCATIONS

For certain purposes, such as the choice of an effective
core allocation technique, it is desirable for processors,
subsystems, and other programs to be able to identify the
Monitor in operation, certain critical locations of the
Monitor, and the location of JIT. This is accomplished
by having locations 2A, 2B, 4E, and 4F common to all
Xerox Monitors. Figure 21 illustrates the contents of these
locations.

Location 2A contains a flag that differentiates between an
initial boot {nonzero} and a recovery boot {zero}.

2A

2B

4F

Location 2B contains three items:

1. Monitor - This field contains the code number of the
Monitor. The codes are as follows:

2.

3.

Code Mon i tor

o None or indeterminate

BCM

2 RBM

3 RBM-2

4 BPM

5 BTM/BPM

6 UTS

7 Reserved for future use

Version - This is the version code of the Monitor and
is coded to correspond to the common designation for
versions. The alphabetic count of the version designa
tion is the high-order part of the code and the version
number is the low-order part. For example, AOO is
coded X'10' and D02 is coded X'42'.

Parameters - The bits in this field are used to indicate
suboptions of the Monitor. They are meaningful only in
relation to a particular Monitor. However, the following
assignments have been made for BPM, BTM, and UTS.

Bit Meaning if Set

31 Symbi ont routi nes i ncl uded.

30 Remote batch routines included.

Figure 21. Locations Common to All Monitors

58 Processor and Subsystem Faci lities

Bit Meaning if Set

29 Real-time routines included.

28 Unused.

27 Reserved for Data Management System.

26 Unused.

25 Machine has byte string hardware (zero if
byte string hardware is not present).

location 4E contains a pointer to a list of Monitor table
addresses.

Byte 0 of location 4F contains the job priority level and
the rightmost 17 bits contains the JIT address of the current
active job partition. Priority is set to X'FF' for batch and
to X'FC' for on-line.

DATA CONTROL BLOCKS

Most processor and subsystem I/o operations are performed
through standard Monitor DCBs. For example, source input
is normally read by

M:READ M:SI [options]

The standard DCBs are

M:BI M:SI M:CO

M:CI M:C M:DO

M:EI M:BO M:EO

M:lO M:AL M:SL

M:SO M:LL M:GO

M:PO M:OC M:CK

M:LI M:EF

The default assignments for batch operations differ from
those of on-line operations. This is done so that a program
that writes through LO and reads through SI will automatic
ally use the line printer and card reader for batch opera-
ti ons and the terminal for on-line operations. The logi cal
functions associated with the operational labels are described
in the BPM/BP, RT Reference Manual, 90 09 54.

Details concerning input buffers, error handling, and so on
are specified as parameters in a read or write call. Param
eters associated with fi les and devices are specified by the
ASSIGN control command.

A processor or subsystem may construct its own DC Bs by
means of the M:DCB procedure. A DCB is limited to 255
words. However, processors, subsystems, or users are not

required to have their own DCBs. DeBs not present wi" be
constructed by the Loader. DCBs constructed by the Over
lay loader occupy 48 words. These include space for a
3-word fi Ie name, a 2-word account number, a 2-word
password, a 3-word INSN, and a 3-word OUTSN. The
Lope Loader merges in the ASSIGN information at load
time. The Overlay Loader does not perform this function.
Assign-merge is performed at execution time by PRGMLDR.

DCBs are also provided in library form and may be expli citly
called during a load. Note that library DCBs are not avai 1-
able to the on-line user, or when the Lope Loader is
invoked.

Processors or subsystems may use nonstandard DCBs, if
necessary. Nonstandard DCBs are constructed by the
Loader if not constructed by the processor. They must be
explicitly connected to a device either by an M:OPEN
call in the processor or by ASSIGN command issued by an
on-line user, since no default assignment via operational
labels is provided.

It is common practi ce for a processor, subsystem, or user
to obtain source input through M:SI, to print a source
listing through M: LO, and to print diagnosti c output
through M:DO. However, I/O operations are complicated
by the fact that an on-line user can connect 51, LO, and
DO either to different devices or to the same device (the
on-line default assignment for SI, LO, and DO is the
terminal). In particular, an on-line user may connect two
or more of these standard operational labels to the same
device. For this reason, processors and subsystems must
take precautions to avoid duplications in printed output.
This means that they must know at all times whether they
were called in batch or in on-line mode, and what specific
device connections have been made for standard DCBs.

Processors and subsystems may examine DCBs directly to
determine when the DCBs are connected to the same devi ceo
Fields within a DCB may be referenced relative to the name
of the DCB. Fields that may be useful to processors and
subsystems are as follows:

Field

FCD

TYPE

DEV

Use

Bit 10 of word 0 of a DCB. This is the file
closed flag. A1 means the associated file
is open; a 0 means the fi Ie is closed.

Bits 18-23 of word 1 ofa DCB. These bits
specify a code for the type of devi ce con
nected to the DCB (printer, Teletype, card
reader, etc.).

Bits 24-31 of word 1 of a DCB. These bits
specify an index to the Monitor device table.

Data Control Blocks 59

FILE IDENTIFICATION

Most processors and subsystems use a common format and
common character set for constructing file identifiers (fid).
The standard format is

name [([account][, passwordl)]

where name, account, and password consist of character
strings with maximum lengths of 31, 8, and 8, respectively.
Any of the following characters may be used:

A-z 0-9 L..J $ * % # @

CCISCAN

On transferring control to a user's program, a processor, or
subsystem, the Monitor communicates the following informa
tion via the general registers:

General
Register Informati on Commun i cated

0 TCB address

Processors and subsystems may fetch the card image of the
command that called them by reading through a DCB con
nected to the C device. Alternatively, they may examine,
in place, the image as read by the Monitor by using regis
ters 2 and 6 as follows:

General
Register Information Communicated

2 Address of the first word location of the
control command and buffer.

6 Byte position (within the control com-
mand buffer) of the first byte following
the name of the processor or subsystem.

Example:

Assume that the control command buffer (address CCBUF)
contains the following data:·

CCBUF ! 'b S Y word 0

M B 0 L word 1

b L 0 , word 2

B 0 'b 'b word 3

iJ iJ 1> iJ word 4

word n

\ In this example, register 2 contains the address of location
CCBUF and register 6 contains the number 8.

60 File Identification/CCI Scan

When running in batch mode, the processor must read the
C device once to clear the control command. This com
mand is transferred to the processor1s buffer to ahow it to
exami ne parameters.

TERMINAL I/O

An on-line user may direct output to his Teletype at any
time during execution of a processor or subsystem. Simi larly,
portions of the input to a processor or subsystem may come
from a Teletype. In general, Teletype I/O is the same as
other I/o in its use of M:READ and M:WRITE operations
and the standard abnormal and error situations. However,
Teletype I/o has some features that are significantly dif
ferent from those for other de vi ces. Some of the differences
require special attention by processors and subsystems, but
the interface is designed in such a way the processors and
subsystems wi II not have to know whether or not I/O opera
tions are via Teletype, providing they observe certain con
ventions. On terminal I/O, like all I/O, the user should
note that byte displacements remain in effect unti I replaced,
once they have been given. The special problems associ
ated with Teletype I/o are outlined in the foltowing
paragraphs.

END CHARACTERS

On input from a Teletype, each record read is terminated
by an end character (CR and LF). The end character, if
any, is inc! uded in the actual record size (ARS) count re
ported in the DCB (bits 0-14 of word 4). Each processor or
subsystem must interpret the different end characters. Pro
cessors and subsystems do not have to know that input is via
Teletype, provided they treat these characters as terminators
and use ARS to determine the actual record received.

Source files for all processors and subsystems, including
those in batch operations, may have been prepared on-line.
Since records prepared on-line are variable length, it may
no longer be assumed that input records are aO-byte card
images.

All characters received from terminals, no matter of what
type, are translated to the standard EBCDIC character set.
The hexadecimal codes for EBCDIC characters are listed in
Appendix C.

WRITE OUTPUT

The length of each output line is specified by the SIZE
parameter in the M:WRITE procedure call. Carriage return
or NEW LI NE characters do not termi nate a message.

CARRIAGE RETURN

A NEW LINE or carriage return sequence, as appropriate
to the type of terminal, is appended to the character string
supplied by each write. Thus, under ordinary circumstances,

carriage return characters wi II be supplied when output
consists of one line per write and the DCB is connected to
a terminal.

ABNORMAL CONDITIONS

If unknown operations are requested of the cac routines'
(e. g., write end-of-fi Ie), they are ignored.

FORMAT CONTROL

It is sometimes necessary to print a line with special spacing
or without a carriage return. Processors and subsystems can
obtain vertical carriage control by means of two parameters
(SPACE and VFC), both of which can be set by the
M:DEVICE CAL. The SPACE and VFC parameters have the
following interpretations for Teletypes:

Parameter

SPACE

VFC

Meaning

If this parameter is set and VFC is not on, the
number of spaces indi cated minus 1 is in
serted before each write. Counts of 0 and 1
result in single spacing.

If this flag is set, the cac routines simulate
the printer1s vertical format control as speci
fied in the first character of the text lines
written. The simulation is limited to one of
the following cases:

Hex. Code Action

C1-CF

F1

60,EO

cac inserts 1-15 spaces
before printing.

cac skips to top-of-page by
skipping four I ines and printing
the heading information fol
lowed by the print line.

cac does not insert CRLF
after the print line (suppress
space).

For BPM (only), information in the page heading may be
specified by the user by means of the HEADER and COUNT
device CALs. Heading information is taken from the DCB
through which the read or write was given. The automatic
page heading occupies one line and contains current time,
date, user name and account number, user identifi cati on
and line number, page number, and possibly an administra
tive message. Headings specified in the DCB of the read
or write are produced after the automatic heading with po
sition, text, and page number as specified in the BPM/
BP, RT Reference Manual, 90 09 54. The page count in
this heading is that carried in the DCB and is reset with
each COUNT device CAL. The page count for the auto
matic heading is carried in JIT and is never reset. The
automatic heading is suppressed if the page length is less
than eleven lines.

The ESC I sequences (TAB) is removed from Teletype input
lines. Blanks are inserted to the next tab location in the
input line. The user must have previously set tab stops
using the Executive TABS command. If no tab stops have
been entered, or the tab stops have been exhausted for the
current input record then a ? is echoed to the user, and
one blank is inserted in the input record.

Tabs must be specified in ascending order beginning with
tab stop position 1. Note that this is different from the
line printer tabbing, where the tabs need not be in as
cending sequence. Tabs can be set at any time for any
DCB. Tabs typed by an on-line user are simulated at the
user1s console according to the tab settings in the user1s
context area.

If the ESC RUB sequence is typed at the terminal, the pre
ceding character is removed from the input buffer unless
the previous character was an activation character. The
user cannot backspace beyond an activation character.

A program can request control when the user presses the
BREAK key by means of the M: INT procedure. Whenever
the user presses the BREA K key, the program envi ronment
at the time of the break is recorded in the user1s pushdown
stack in his TCB. Execution can be returned to the loca
tion following the interrupted instruction by execution of
the M: TRTN procedure. A program can return break con
trol to the BTM Executive by executing the M:INT proce
dure with a break routine address of zero. The break routine
address is checked by the Monitor to guarantee that the
address lies within the memory allocated to the user. Even
if a processor or subsystem has obtained break control, an
on-line user can return execution control to the Executive
by executing an ESC ESC sequence.

As a safety measure to protect the user against faulty pro
gramming in break control routines, the number of times the
BREAK key is pressed by a user without intervening char
acters is recorded. When the count reaches four, control is
sent to the Executive as if ESC ESC had been pressed. Thus,
the user at the terminal will never find himself locked out.
The count of four allows processors (e.g., FDP) to make
special interpretations on two or three breaks in a row.

FILE EXTENSION

BPM allows file extension for background jobs. File exten
sion is a convention by which records are added to an output
fi Ie by successive job steps. Each time the fi Ie is opened,
the fi Ie pointer (tape, disk pack, etc.) is positioned to a
point immediately following the last record in the fi Ie.
Thus, when additional output is produced it is added to the
previous contents of the file, thereby extending it. File
extension simulates output to physi cal devi ces, such as line
printers or typewriters, when output is actually directed to
a file.

Fi Ie extension takes effect at the time BPM/BTM opens sys
tem output DCBs. The output DCBs that are affected by
fi Ie extension are those that are currently assi gned to fi les,

Fi Ie Extensi on 61

although normally assigned to devices. They include:
M: LO, LL, DO, PO, BO, SL, SO, CO, AL, EO, and GO.

File extension is discontinued when a fi Ie is reassigned with
an ASSIGN command or when a fi Ie is opened with an
OPEN procedure call that specifies an explicit file name.
In these cases, a new fi Ie is created. Extension of the GO
file is terminated following the next !JOB control command.

CREATING SUBSYSTEMS

All subsystems and libraries peculiar to BTM are introduced
through use of the BPM fi Ie manage and load functions, and
are independent of the actual SYSGEN process in the sense
that they can be added at any time.

The user must create a :BLIB file under the :BTM account.

The LOAD subsystem uses the :BLIB file in the :BTM account
as the library, although an option exists for specifying
others. Currently, the library file contains only the on
line version of the FORTRAN IV-H run-time, along with
the standard mathematical routines.

The on-line version of the FORTRAN IV-H run-time is ob
tained by replacing the fol lowing routines in the standard
deck set-up (which assemble either for BTM, BCM, RBM,
or BPM) with the BTM versions.

Cat. No.

704216
704293
704294
704295
704305
704306
704307
704308
704309
704310
704334
704387
705293

Module

BF:SV
BF:SC
BF:SW
BF:GCOMS
BF:DIAG
EXIT
BF:SP
BF:SO
BF:MXXX
BF:TSNUM
BF:NLOC
BF:RUNIO
BF:EXIT

A user wishing to create a library that will be used by the
LOAD subsystem can do so by using LOPE to create a : BLIB
fi Ie in his account.

For example:

!JOB ACCT, A, 1
!ASSIGN M:EO, (FILE, NEWLIB)
!FMGE (ENTER)

ROMs

!ASSIGN M:BI, (FILE, NEWLIB)
! LOPE (PERM, LIB)
!FIN

62 Creating Subsystems/Subsystem Coding Requirements

The LOAD subsystem can then be directed to use this library
by including the following library specification in th~ op
tion list.

OPTIONS: U{ACCT)

A subsystem is defined by loading it under the BPM system
account (:SYS) and forming a load module with the name
ending in a colon (:) and a bias equal to the base of the
on-line memory area. For example:

(LMN, SYMBOL:)

The load module must conform to the interface rules laid
down in the next two sections.

When the BTM Monitor is booted from disk, it searches the
system account for all load modules with this naming con
vention and incorporates them as on-line subsystems.

The first two characters of the name become the Executive
command by which the subsystem may be called, and the
remainder of the name (exclusive of the colon) is echoed
by the Executive. For example:

When the system is booted, the subsystem load modules are
copied to a dedicated area of the RAD or disk pack and
referenced from there in absolute format.

The Executive service routines cal led by the ASSIGN,
RESTORE, SAVE, and TABS commands are part of the resi
dent Monitor and therefore do not have corresponding load
modules.

SUBSYSTEM CODING REQUIREMENTS

The first 4016 locations in any subsystem should contain
the following data.

Location Data Descri pti on

0 Contains the word address of the first
word of the subsystem1s TCB (Task
Control Block).

1 =0

8 =0

Location Data Description
and R2 contains the terminal job entry flag (0 indicates that
the console is excluded from the system, and a value of

9

A
16

F
16

10
16

3F
16

Contains the word address of the normal
entry point for the subsystem. The entry
point for a "PROCEED" is assumed to be
this address plus one.

=0

=0

Reserved for use by Mon i tor.

Reserved for use by Mon i tor.

1 - F indicates the maximum priority). R3 will contain the
batch authorization flags from AJIT in byte O. R 13 through
R15 will contain the LOGIN name designation {in EBCDIC,
left-justified, and blank fi lied}.

Incl uded wi th the ROMs that consti tute a subsystem there
must appear a DCB name table (see Figure 22) pointed to by
word 10 of the TCB (see Figure 23), and all the necessary
DCBs assembled with protection type 00.

There are several CALs avai lable (for use by a subsystem
only) to provide service for the subsystems. These CALs
mainly deal with changing the size of swap areas for sub
systems and users, finding out the amount of core currently
being used by subsystem and user, and performing swaps be
tween user and subsystem memory. They are described in
the BTM/TS Reference Manual, 90 15 77. The format for
DCBs is essentially the same as described in the BPM/
BP, RT Reference Manual, 90 09 54. The one difference
is the ability to assign DCBs to a user's console. This is
done by setting the ASN (bits 28-31) in word 0 of a DCB

When a subsystem is entered, R1 contains the COC line
number (in binary), R4 and R5 contain the log-in account
designation (in EBCDIC, left-justified and blank fi lied),

to 5 (ASN is the fi Ie assignment type indi cator - 0 means
null, 1 means FILE, 2 means LABEL, 3 means DEVICE,
5 means user's console).

DCBTAB 0 -----------0

N

B
n-3

B
n-2

DC BLOC 1

DC BLOC
n

B
n-1

Link address

B
n

LINKADDR 0--0

o 23'24

where

LINKADDR is the address of the location provided for storing a return address.

N indicates the number of characters in the DCB name.

B - B indicates the EBCDIC name of the DCB.
1 n

DCBLOC is the address of the first word location of the DCB.

Figure 22. DCB Name Table

31

Subsystem Coding Requirements 63

where

Word 0

2

5

6

7

8

9

10

11

15

TSA

ERT

TSTACK

o

0

1
L

0

0

7

o

7 8 ,

TSS

TSASIZ

ERTSIZ

ERTSIZ-2

I 7 8

14 15 16
I

23 24
I

31

0 TSTACK

TSWC

These words for use by subsystem
7

0 TSA

TSAWC

ERT

TSA + 1

0 DCBTAB

These words for use by Mon i tor I
L

library error temp stack TSASIZ

library error table ERTSIZ

User's temp stack
TSS

" 15 16 I 23 24 31

TSTACK is the address of the current top of the user's temp stack. Initially, TSTACK points to the start of the
stack minus one.

TSS indicates the size, in words, of the user's temp stack.

TSWC is the temp stack word count giving the current number of words in the user's temp stack.

TSA is the address of the temp stack used by the library error package.

TSASIZ indicates the size, in words, of the temp stack used by the library error package.

ERTSIZ indicates the size, in words, of the error table used by the library error package.

ERT is the address of the error table used by the library error package.

DCBTAB is the address of a table of names and addresses of all of the user's DCBs.

Figure 23. TCB Format

64 Subsystem Coding Requirements

SUBSYSTEM LOADING REQUIREMENTS

The ROMs that comprise the subsystem should be loaded
into the system by running the following job under BPM.

!JOB
!LOAD

!FIN

:SYS, user, 1
(ABS), (BIAS, loc), (NOTCB), (PERM), i
(LMN, name:)

subsystem ROMs

where

name is the subsystem name to whi ch console users

loc

wi II refer (followed by the colon character).

is the hexadecimal value of the base of the
on-line memory area:

When the system is booted from the RAD, the load module
will be initialized in absolute swap storage as a subsystem
callable by the first two characters of the name.

Subsystem Loading Requirements 65

7. MONITOR DUMP PROCESSOR

INTRODUCTION

The Monitor Dump processor (MONDUMP) is designed to
aid the system manager in the debugging of BPM/BTM crash
dumps. It performs this function by listing the contents of
a crash recovery file or tape in as meaningful a way as pos
sible. MONDUMP is called in for execution by the con
trol command

(MONDUMP

fol lowed by one to eight control commands that specify
the region(s) to be dumped and the output format of the
listing. If no commands follow the MONDUMP command,
default options (described below) are given.

JOB SETUP

Unless the user wishes to take the default options, MON
DUMP requires two kinds of information in order to exe
cute. It must know what tape or file to list and what the
format of the output should be.

INPUT SOURCE

An ASSIG N card is used to specify the input before the
MONDUMP command is encountered. The assignment is
to the M:BI (not M:EI) DCB. Start addresses of TAPE and
FILE are not included. All input source information is
obtained from the ASSIGN card. If no ASSIGN is given,
the default is the MONDUMP file (:BTM). The ASSIGN
card must include an account number even if the job account
is intended; otherwise, :BTM would be assumed.

The following example lists a crash recovery tape:

!JOB :SYS, LIST-CRASH, F

!ASSIGN M:BI, (DEVICE, 9T), (S N, ANY)

!MONDUMP

LISTING FORMATS

MONDUMP permits the user to specify up to eight regions
to be dumped. Each region must have a format specifica
tion. The cards containing the specification follow the
MONDUMP processor call; no options are honored on the
processor card. If there are no valid control cards follow
ing MONDUMPor an end-of-file is encountered immediately

66 Monitor Dump Processor

(under BTM, a blank card is also an end-of-file), the
default listing options are taken. This default is described
below.

Individual control cards have the format:

where

x, Yare the hexadecimal numbers indicating the
start and end regions. It is the user's responsibil
ity to ensure that these addresses are va lid core
addresses. They wi II automati cally be adjusted to
8-word boundaries. Leading zeros are optional
but leading blanks are not; a blank is treated as
a comma.

Z is one of the numbers 4, 6, 8, or 12. This field
specifies the format in which the region is to be
printed. The numbers indicate how many words
are included on a print line. As fewer words are
included on the print line, more information is
displayed for each location.

The following matrix shows what information is included:

Hex. EBCDIC Opcode DEF Name

4 Yes Yes Yes Yes

6 Yes Yes Yes No
Format

8 Yes Yes No No

12 Yes No No No

The convention fol lowed for the EBCDIC translation is that
characters in the Xerox standard 63-character graphic set
that will not print on the standard line printer (such as !)
are replaced by %. The convention fol lowed for op codes
is that they will be suppressed if the four bytes comprising
the instruction word are all printable or if it is unlikely that
a word is an instruction. Suitable mnemonics are substituted
for op codes whenever possible. The DEF name applies only
to the Monitor root. It is the external name truncated to
eight characters.

There are no restrictions placed on addresses or formats by
the control card processor. Thus, the control commands
could be used to bypass the Monitor (possibly applicable in
a real-time system), to give an all-hex dump of areas
of little concern (e.g., background or the recovery

overlay), or to bypass the dump portion altogether so that
only a summary results.

ERROR MESSAGE

The extension of significant information beyond card col
umn 15 is an error. The following error message will be
listed:

ABOVE CC IN ERR,IGNORED-MDSUPER

Note that all MON DUMP error messages have the name of
the issuing module included (MDSUPER, in this case). The

• above error message can occur for several other reasons,
such.as illegal characters (G-Z), more than eight control
cards, unrecognized format type, etc.

DEFAULT FORMATS

If no valid control cards are found, the default listing for
mats apply; otherwise, no defaults apply. The default
listing format is 4 for the root of the Monitor and 8 for
the rest of core. If MONDUMP is unable to access the
M:MON (:SYS) fi Ie, the default is 8 for all of core (it is
a user responsibility to avoid using the 4 specification in
the latter event).

CRASH ANALYSIS

MONDUMP performs a significant amount of processing on
the dump to display meaningfully what has happened. Note
that none of the features listed below are available unless
MONDUMP is able to access the M:MON file under :SYS.

• The software check number and descri ption are listed.
The contents of the general registers are reconstructed
as completely as possible at the time of the trap or
error, rather than upon entry to recovery. Explanatory
messages with each software check tell which registers
are valid and which are lost.

• The active user is determined. The following item~ are
listed for the active user:

Active User Name Acct. Job ID line No.

BPM Yes Yes Yes N.A.

BTM Yes Yes N.A. Yes

RTIME N.A. N.A. N.A. N.A.

This information about the active user is also listed on the
operator's console.

• The interrupt. and trap locations .are analyzed. For
each trap, the new and old PSD are listed. The
contents of the trapped location is listed. If the trap
ped location is illegal (within registers or above
core), a message is printed. Simi larly, if the trapped
location was overlaid by recovery, the fact is noted.
The names for the PSD and the PSD handler are listed.

• All of the DCBs in the system are analyzed. The name,
assignment type and location of each DCB are printed.
If TYC was normal, the OPEN/CLOSE status of the
DCB is printed; otherwise, a message explaining the
TYC is listed. Several integrity checks are made on
the DCB tables.

• The overlay structure is determined from COVLSEG
and SlTB. For symbiont systems, a message will be
printed if the CPOOL, SPOOL, or MPOOL chains
are zero.

• The DCT and 10Q tables will be dumped. Each entry
will be identified both by DCT/IOQ number and by a
short mnemonic. Thus, the heading for DCT2 would be

2
ADR
XXX
XXX
XXX

Most entries are I isted in hexadecimal, exactly as found
in the tables, with the following exceptions:

DCT4

DCT7

DCT16

IOQ6

IOQ7

The type mnemonic rather than the type
mnemonic index is listed.

Th i sis listed as a word address rather
than a doubleword.

This is translated to EBCDIC following
standard MONDUMP conventions (the
NIL is printed as a II. II and the ex
clamation as 11%11).

The software function code is listed
with IOQ4 and 5. The DCB address is
listed separately.

The EBCDIC translation of the DCT
index is appended (e. g. , 03-. %%CRA03
rather than 03).

• The symbiont tables parallel to SNDDX are listed for
symbiont systems.

• The BTM parallel tables indexed by the user are listed;
the subsystem tables are omitted. The PSD information
is not printed in its entirety. Only PSW1 and the error
code in PSW2 are given.

• A dump of INBUF, OUTBUF, and COCBUF1 in the
BTM COC buffer is given. Both the byte and word ad
dresses are carried. The translation is in 7-bit ANSCII,

Crash Analysis 67

with valid ANSCII characters not printing on the standard
56-character printer set represented by %. No duplicate
line suppression is done.

DUMP TAPES

It may not be known at the time a system recovery is effected
wherether an analysis of the dump should be performed. A
method for saving several binary dump images on a single
tape is given below.

During SYSGEN, the M:MON (:SYS) file should be written
out to a labeled tape as the first file. Having the file on
tape permits dumps on it to be run under different versions
of the Monitor or on a different machine. Further, the
M:MON (:SYS) file need not be made permanent, since its
temporary restoration can always be made part of the job
stack that reads fi I es from the tape.

Whenever a recovery occurs, the labeled dump tape with
M:MON on it is positioned to the end of all fi les using the
FMGE control command as follows:

!FMGE

!ASSIGN M:EI, (LABEL, xxx), (SN, MOND)

The dump is written to the tape after the current end of
all files. Note that "INSN" and "OUTSN" can be re
placed by II SN ".

With such a tape, it is possible to list the dump at any
time, at any installation with the deck setup given in
Figure 24.

At the time of a crash, a quick summary can be obtained
and the dump image can be saved on tape. Later, when it
is determined if anything of interest is in the dump, appro
priate control cards can be made up, thus permitting the
installation to be selective as to what dumps are I isted and
how much time and paper are expended.

MONDUMP ASSEMBLY OPTIONS

Normally the following assembly options should not be
necessary. If the user requires options other than the de
faults provided, these are described below.

SIZE OF MONDUMP

The module MDSYMTAB contains a RES large enough to
accommodate the record MON: :ORG in the file M:MON.

68 Dump Tapes!MONDUMP Assembly Options

If the RES for MDSYMTAB is. too small, the following
control commands could be used in determining how large
this record is:

I FMGE (LIST, BIN)

(ASSIGN M:EI(FILE,M:MON, :SYS)

The byte count of the MON: :ORG record in the result
ing listing is then examined.

DEFRES is large enough to accommodate most large systems.
As a very crude measure, DEFRES should be about 40 per
cent of the size of the Monitor to be listed. By the appro
priate setting of DEFRES and re-assembling MDSYMTAB,
unusual situations may be accommodated.

It should always be possible to run MONDUMP. For in
stance, assume a 32K BTM system with a 12K user size/swap
area (the I imiting, supported configuration). If the remain
ing 20K consisted of a Monitor, then DEFRESZ should be
about 8K. MONDUMP will fit in 12K and reserves more
than enough space for the approximate 8K record.

If an installation is running a restricted, non-supported ver
sion of BPM or cannot make the M:MON file available,
DEFRESZ can be set to 2K. A smaller figure could not be
used since MONDUMP packs the DEFs it reads and reclaims
the space freed by this procedure for other buffers. Setting
DEFRESZ to 0 would cause a misallocation of these other
buffers.

SIGMA 7 INSTRUCTIONS

As distributed, MONDUMP is assembled for Sigma 5. If
MONDUMP is run on a Sigma 7, it may be reassembled
to utilize byte string instructions as follows:

+116, 116 (in MDSYSTEM)

$SIGMA SET 7

+END

This assembly will speed up operation and slightly reduce
the size of the program.

ASSEMBLY LISTING FORMAT

In most cases, the code listed by the PROCs wi" not be
listed. Rather, the current starting address of the $PSECT1
control section is displayed on a single line regardless of

Format Control S=ard (optional)

I Format Control Card (optional)

lFonnat Control Card (optional)

I!MONDUMP

I :(SN, MOND)

I !ASSIGN M:BI,(LABEL,SOFT40:01157/: 1700, xxx};

I !FMGE (ENTER)

I !ASSIGN M:EO, (FILE, M:MON, :SYS)

I !ASSIGN M:EI, (LABEL, M:MON, xxx), (SN, MOND)

IILlMIT xxx

!JOB :SYS, xxx

Fi gure 24. Deck Setup to Li st Dump

-

-

-

-

the amount of code generated by the PROC. A Ii sti ng of
the code could be obtained as follows:

and SIG7FDP. If listings of MONDUMP are desired, it is
strongly recommended that MDSYSTEM also be assembled
as follows:

or

+85,85 (in MDSYSTEM for a" modules of
MONDUMP)

$ LIST L VL Set 50

+END

+(past the MDSYSTEM call in any module only for the
module currently assembling).

$LISTLVL SET 50

+END

PROCs that normally generate only a single word of code
wi" always display the word generated.

The individual modules of MONDUMP must be assembled
with the MDSYSTEM file in the :SYS account. MDSYSTEM
is a Meta-Symbol system file such as MON, BPM, SIGMET,

!ASSIGN M:CI (FILE, MDSYSTEM, :SYS)

!METASYM CI, LO,CN

. END

+END

All of the PROCs used in writing MONDUMP are included
and documented in MDSYSTEM. A complete assembly-load
of MONDUMP takes approximately 30 minutes.

PATCH AREA

Although not strictly an assembly option, 20 unused loca
tions, starting with the DEF .. PATCHES", are provided for
making patches and GENMODS to MONDUMP.

MO NDUMP Assembly Options 69

8. BPM ERROR LOGGING (ERRLOG AND ELIST) ROUTINES

INTRODUCTION

The BPM Error Logging (ERRLOG) Routine packs error
messages into a buffer and writes the buffer to a special
consecutive fi Ie on disk. The ERR LOG Routine is called
from the various parts of the BPM system that detect errors
such as I/o errors, memory parity, etc. When an error is
detected by the BPM system, it constructs a message and
then calls the ERRLOG Routine which packs the message in
a buffer. Messages may be up to ten words in length and
may be in registers or in memory.

The Error Log Lister (ELlST) reads information from the
packed buffers, and from fi les created by ERRLOG, and
reformats the messages into a mean ingful listing. E LIST
runs as a background program using the I/o CALs provided
by the Monitor.

ERRLOG FILE FORMAT

The ERRLOG Fi Ie is a special consecutive file on the disk.
The fi Ie is not accessed by name, but by a special pointer
in memory which contains the disk address of the first rec
ord in the fi Ie. Each record is 256 words long and contains
a backward and forward link. The backward link is the
disk address of the previous record and the forward link is
the disk address of the next record in the file. The back
ward link in the first record of the file is zero. The forward
I ink is never zero since the fi Ie can never be considered as
complete. As long as the system is running, the file is
considered as open and the next record to be written is
being constructed in a core buffer as the errors occur. The
forward link in the last record written contains the disk ad
dress where the next record is to be written.

The record format in the file is:

o Backward Link (BLINK)

Forward Link (FLINK)

2 Number of words of message

3 Message 1
r--------- --------

Message 2
--------------_.-

255 Message 12

Each record may contain several unused words at the end of
the record since messages may vary in size, from one to ten
words each. Therefore, up to nine words may be unused.
The maximum number of useful words in a record is 253.
The format of the backward and forward link disk addresses
is shown below. This format is used for all disk addresses.

70 BPM Error Logging (ERRLOG and ELIST) Routines

Disk granules for writing the fi Ie are obtained by call ing
the Get Background Granule (GBG) routine. This routine
gets one granule at a time. One granule consists of two
consecutive sectors on a disk that has 256-word sectors and
six consecutive sectors on a disk that has 90-word sectors.
Therefore, each granule contains two records of the file.

ERRLOG FILE CONTROL POINTERS

Four pointers in memory provide the necessary control in
formation for constructing and accessing the ERRLOG File.
The following is a list of l-word pointers and their
definitions.

SGRAN

BGRAN

CURGRAN

FGRANl

Contains the disk address of the first
record in the file.

Contains the disk address of the last
record written.

Contains the disk address of the next
record to be written.

Contains the disk address of the record
to be written following the current
record.

One 256-word buffer is used for packing the error messages.
The buffer is used as a push-down stack having 253 words.
The error message is pushed into the stack and if fewer than
10 words are remaining, the buffer is written to secondary
storage. The forward and backward link disk addresses and
the number of useful words are put into the buffer just prior
to writing it to the disk.

If the buffer is in the process of being written to secondary
storage and a message is sent to the ERRLOG routine, the
routine will wait for up to five seconds for the I/o to com
plete, and then exit back to the user thus losing the mes
sage. If the I/o completes during the five seconds, the
message wi II be put into the buffer norma Ily.

Programs that operate outside the Monitor may access the
fi Ie control pointers in the following manner. Location X'4E I

contains a pointer to a vector table containing a pointer
to the file control pointer table, as shown below.

X'4E'

CCHAB + 0

+ 1

+2

+ 15

ERRLGTAB + 0

+ 1 SGRAN

+ 2 BGRAN

+ 3 CURGRAN

+ 4 FGRAN1

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

CCHAB

ERRLGTAB

BUF1

disk adr

disk adr

disk adr

disk adr

In addition, a program operating from the :SYS account
may have access to the ERRLOG File through CAll ,6,
which reads the first buffer full of information from the file
and returns the disk granul e to the Mon itor's availabl e pool
when both buffers from the granule have been read. The
FPT format is

Word 0

If the user's account is not :SYS, no action is taken and
CCl is set to 1.

Normal returns set all conditi on codes to zero. When the
final record has been read from the ERRLOG File (including
any partial records from memory), CC3 is set to 1.

If the ERRLOG Fi I e cannot be read without error, then CC2
is set to 1, and whatever has been read is transferred.

If the error log buffer is empty and no records are on disk,
CC4 is set to 1.

For purposes of reliability through simplicity, the ERRLOG
File does not operate through the standard file mechanism.
Thus, the ordinary protections against simultaneous use are
not available and a single program should be used to access
this file. Also, the ordinary file backup procedure does not
apply, so information must be to an ordinary file for final
recording.

ERRLOG CALLING SEQUENCE

The ERRLOG routine is called with the address of the
message in register 6. The message may be in registers
or in memory. If the message is in registers it may
wrap around, e. g., the message may start in register 12

and end in register 3. The calling sequence is as
follows.

BAL,5 ERRLOG

RETURN

All registers are nonvolatile.

ERRLOG INPUT/OUTPUT SYSTEM FORMATS

Whenever I/O errors or certain unusual conditions occur,
an entry will be made into the ERRLOG file. This entry
will contain any information pertinent to the condition.

Word 0 of each entry will have a code indicating which
error or unusual condition is present along with the number
of words in the entry (including word 0). Time (hhmm)
and Device Name (yyndd) are in EBCDIC.

START INPUT/OUTPUT FAILURE

In this case, CC 1 or CC2, or both, are set when the Start
Input/output, SIO, is issued. The entry has the form shown
below.

Word 0

word 1, time

word 2

word 3

where

S is the SIO status (16 bits).

C is the SIO condition codes.

T is the bits 0-7 of the Test Device, TDV, status.

DEVICE TIMED OUT

In this case, a Halt Input/output, HIO, was issued due to
excessive time before occurrence of I/O interrupt. The
entry has the form shown below.

ERRLOG Input/Output System Formats 71

word 0

word 1, time

word 2

word 3

word 4 - command doubleword

word 5

word 6 - applicable to disc only

where

H is the HIO status (16 bits).

c is the HIO condition codes.

T is the bits 0-7 of TDV status.

UNEXPECTED INTERRUPT

In this case, an Acknowledge Input/Output (AIO) interrupt
has occurred for a device which was not busy. The entry
has the form shown below.

Word 0

Word 1

Word 2

72 ERRLOG Input/Output System Formats

NO INTERRUPT RECOGNITION

In this case, the AIO condition codes indicate no
recognition. The entry has the form shown below.

word 0

word 1, time

DEVICE ERROR

In this case, an error or certain unusual conditions have
been detected when attempting to use the device. The
entry has the form shown below.

word 0

word 1, time

o 1 2 ,7. , . J h I m I m I
9 10 11112 13 14 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31

word 2

word 3

word 4 - command doubl eword

word 5

word 6 - applicable to disk only

where

A

T

is the AIO status (16 bits).

is the TDV status (16 bits).

MEMORY PARITY

When a memory parity interrupt occurs, all of the memory
will read with a Load Word instruction. The first two bad
locations plus a count of the total number of bad locations
will be logged, along with the addresses of any I/O de
vices active at the time of the interrupt (up to a maximum
of six, due to space considerations; empty slots will be
filled with zeros).

After logging the error, the message

! !MEMORY PARITY ERROR

will be typed and the Wait state will be entered with all
interrupts inhibited. The entry has the form shown below.

word 0

word

h .,1, " "~,, " " ,1 " " ,.7 .. " " "I .. " " v7" N ., .J 314

word 2

word 3

word 4

word 5

word 1, time

word 2, date

word 3, date

WATCHDOG TIMER RUNOUT

word 0

word 1, time

word 2

word 3

where

PSWl is the contents of PSW1 at Watchdog Timer
Runout.

INST is the instruction indicated by PSW1.

word 6 FILE CONSISTENCY CHECK FAILURE

word 0

words 7-9

word 1, time

SYSTEM START-UP
word 0 word 2

ERRLOG Input/Output System Formats 73

where Error and Subcode, and Relative Sector Number are
the disc address containing erroneous information.

SYMBIONT CONSISTENCY CHECK FAILURE

word 0

word 1, time

word 2

where DCT Index and Relative Sector Number are the disk
address containing erroneous information.

ERROR LOG USTER (ElIST)

The Error Log Lister (ELlST) can be assembled into one of
two versions.

1. Stand-Alone Routine. This version should be used if
the BPM/BTM system recovery is impossible.

2. BPM Processor. This version should be used if the
BPM/BTM system is operational.

The differences to be considered between the two versions
are shown in Table 3.

BPM PROCESSOR FOR ELiST

The BPM Processor version is preferred for periodic exami
nation of the ERRLOG file. There are no I/O recovery
restrictions in this version because it operates under control
of the Mon i tor.

BPM PROCESSOR CALLING SEQUENCES

The BPM processor is called by a control command of the
form

! ELIST [(FILE,filename)]

where fi lename specifies the name of an optional fi Ie to
which a copy of the system ERRLOG file will be adde.d.

If the FILE parameter is omitted, only a listing is
produced.

74 Error Log Lister (ELIST)

Table 3. ELIST Considerations

Cons i derati on Stand-Alone BPM Processor

Scope of listing Core buffers ELIST copy file,
and ERRLOG ERRLOG file
file and core buffers

Order of listing Most recent Most recent last
first

ERRLOG file copy Not produced Keyed file in
response to fi I e
parameter

Disposition of Kept Destroyed
ERRLOG file

Loading Bootstrap ! ELIST control
" command

Program Bias X'700Q' Background area

Special Privi leges Master Mode Job runs under
:SYS

I/O Recovery Restricted Uses standard
Monitor error
recovery

Output Device LPA02 M:DO for listing,
F: 1 for copy file

A typical job deck for ELIST would be

! JOB :SYS,name, F

!L1MIT options

! ELIST (FILE, filename)

Jobs must run under the :SYS account because the errors
detected by the BPM system are read destructively by
ELIST. ELIST runs as a background processor using the
Monitor's I/O CALs. If the job does not run under
: S YS, a message

NOT RUNNING UNDER :SYS ACCOUNT

is printed and ELIST aborts processing

ELIST COpy FILE

A copy of the errors detected by the BPM system is added
to an optional file because ELIST reads destructively. This
optional file can be legal system file name specified in the
ELIST control command. ELIST uses the F:1 DCB for the
copying function. If the fi Ie already exists, the records
comprising the current error file are added to the ex
isting file.

If the fi Ie does not already exist, the file named by ELlST
will be created as a keyed file with individual record keys
in the format shown in Table 4.

The year, month and day (bytes 0, 1, and 2) are obtained
from the System Startup entry. If th is entry is not the first
in the file, the current data is obtained through the
M: TIME procedure.

Table 4. ELIST Copy File

Byte Keyword Descri pt i on

0 Year Binary representation.

1 Month Binary representation.

2 Day Binary representation.

3 Hour Binary representation.

4 Minute Bi nary representat i on.

5 Error Count Most significant digit.

6 Error Count Least significant digit.

7 ErrClr Type Ident i ca I to byte 1 of
the error message.

The error count is the hexadecimal representation of the
number printed with every message, e. g., ERROR 7.
If the number printed is a range of numbers, because
several messages are identical, the error count is the first
or lowest number of the range.

BPM PROCESSOR LISTING

The BPM Processor uses the M:DO DCB to produce the
listing.

The listing IS In the chronological order of first entries
through to most recent entries. When the listing of

ERROR 1-0002
SYMBIONT FILE INCONSISTENCY
TIME DEVICE SYMB. DEVICE SEEKADRS

l3 :15 LPA02 LPAOF 1117

ERROR 3
FILE INCONSISTENCY ERROR
TIME DEVICE ABN/SUBCODE SEEKADRS

l3:l3 LPAOF OF/1B 3333

ERROR 4
MEMORY PARITY ERROR
TIME FAULT PSD1 PSD2 LOC1 LOC2

the Copy File (optional file), the ERRLOG File, and
core buffers is completed, the error summary is produced.

STAND-ALONE ROUTINE FOR ELIST

The Stand-Alone version has two restricted I/O error
recovery capabilities.

1. Should a card reader fault occur when booting the
Stand-alone deck, the BPM/BTM restart wi II be
activated.

2. An erroneous disk address causes the program to WAIT
at symbolic location WRDSKAD.

STAND-ALONE LOADING

Use the standard bootstrap procedures with the restriction:

Do not clear core when loading ELIST.

The most recent ERRLOG information is retained in core
and cannot be I isted if destroyed.

ELIST will start at location X'7000'.

STAND-ALONE LISTING

Output will occur on device LPA02. If this is to be
modified, symbolic location TYPE will have to be assem
bled to some other value.

The listing will be in reverse chronological order: the most
recent entries will be printed first. For example, the Sym
biont File Inconsistency entry will be listed first instead of
last, as shown in the" ERRLOG I/O System Formats". Fig
ure 25 shows the format of the ELIST listing. (Note that
Figure 25 shows format only; the content of the I ist is
not typical.)

The listing is of the core buffers and the ERRLOG File
foil owed by a summary of the errors.

12:34 0005 FF000011 EE000022 DD000033 CC000044
TOTAL ACTIVE DEVICES

3 0001 0002
FFD4 0000 0005 0006

Figure 25. E LIST Listing

Error Log Lister (ELlST) 75

ERROR 5
WATCHDOG TIMER RUNOUT
TIME

13:00

ERROR 6

INSTRUCTION
0904FFEE

DEVICE ERROR

PSD1
00010697

TIME DEVICE AIOSTAT TDVSTAT CDW1 CDW2 SEEKADRS
12:24 CRA03 1234 0402 01234567 89ABCDEF F0123456

ERROR 7
NO INTERRUPT RECOGNITION
TIME

12:12

ERROR 8
DEVICE TIMED OUT

HIO
TIME DEVICE CC

HIO TDV
STATUS STATUS CDW1 CDW2 SEEKADRS

12:11 LPA02 0000 9779 EF 01234567 F0123456 01234567

ERROR 9
UNEXPECTED INTERRUPT
TIME

12:02
AIO DATA
00000000

ERROR 10
SYSTEM STARTUP 41 0 AT 12 :02

05 06 70

ERROR 11
SIO FAILURE

TIME
12:01

DEVICE
CRA03

SIO
CC

1011

SIO TDV
STATUS STATUS
FEDC 64

-1: ERRORLOG SUM MAR Y * * * * *
SIO DEVICE DEVICE UNEXP

DEVICE ERRORS ERRORS TIMEOUT INT SUBTOTAL

CRA03 1 1 2

LPA02 1 1

A01 1 1

TOTALS 1 1 1 1 4
SYSTEM STARTUPS • • 1
NO INTERRUPT RECOGNITION. • 1
FILE INCONSISTENCIES. 3
WATCHDOG TIMER RUNOUTS.. 1
MEMORY PARITY ERRORS. • • • 1

TOTAL ERRORS 11

Figure 25. ELIST Listing (cont.)

76 Error Log Lister (ELIST)

9. FILE ANALYZER

INTRODUCTION

The Fi Ie Analyzer (FANALYZE) is designed to provide fast
and efficient reliability checks on a large BPM/BTM file
management system. It verifies the granule pool bit maps,
checks all linkages throughout the account and file direc
tories and master index blocks (all levels), and produces a
log on the M: La device with pertinent information con
cerning the fi Ie structures.

FANALYZE is essentially a dual-purpose utility. It allows
a general picture of the file system if that is all that is
desired. Through the use of options, a more detai led ex
amination can be made if errors are found at any level.

To load FANALYZE, the standard file $::SPECIALS should
be selected from the BI tape during SYSGEN PASS 1 and
the LOCCT name FANALYZE should be included during
PASS3 (see Chapters 11 and 12).

FANAL VZE OPTIONS

The Fi Ie Analyze processor is called by specifying the pro
cessor name and, if desired, one or more of the options.

! FANALYZE [option, ... J

where option may be anyone or more of the following:

VERIFY performs a validity check. If VERIFY is
specified without the NOMAP option, a copy of
the existing granule pool map is created in the
background area. Then a II account directories,
fi Ie directories, fi Ie information tables, master
index blocks (level 0 through level N) and file
data granules are allocated space on a master copy
granule map in the background area. The Monitor
map is compared against the master map and the
two maps are snapped for evaluation if an error
is detected (see error definitions). All linkages
are checked and linkage failures are reported
whenever found.

The VERIFY option will only compare against
existing maps. At program completion, it is up
to the user to determine from the snaps taken if
RECOVERY2 should be run.

NOMAP performs all the validity checks except
for the granule pool maps (this is essentially a
verify with the map code disabled).

AN LZ (account, [fi lenameJ) specifies how much
output the analyzer wi II produce. No granule
map work is attempted but the fi Ie information
table (FIT) is listed and all master index entries
are listed. All linkage checks are performed and
disk addresses are verified (both index and data

locations). Omission of filename will cause a
listing for all files in the account.

DATA specifies that all data granules are to be
format-listed on the M:LO device at the comple
tion of an analyze pass on one file. This option
is valid only when used with ANLZ.

N OLIST specifies that no format listing of fi Ie
information is to be done. If errors are encoun
tered, the account number and fi lename are logged
before the snap is taken on the M: La de vi ce.

AD specifies that the account directory sectors are
to be printed as they are encountered. When used
by itself, this option will list all account directory
sectors.

FD specifies that the file directory sectors are to
be printed as they are encountered. When used
by itself, this option will list all file directory
sectors.

Examples:

1. This example wi II verify the existing granule map and
list a II the names found.

! JOB :SYS, USERNAME, F
! FANAL YZE VERIFY
!FIN

2. This example wi II list all master index locations and
index keys for the COBOL file in the :SYS account.

!JOB :SYS, USERNAME, F
!FANALYZE ANLZ(:SYS, COBOL)
!FIN

To list all master index locations and index keys for
all the fi les in the :SYS account, the commands would
be

!JOB :SYS, USERNAME, F
!FANALYZE ANLZ(:SYS)
!FIN

INPUT /OUTPUT

Input and output for FANAL YZE is performed in the fol
lowing way:

1. All disk I/O is performed through the Monitor routine
NEWQ.

2. All line printer output is performed via CAlls through
the M: La DCB.

File Analyzer 77

3. The processor control command is read through the
M:C DCB.

4. All directory searches, master index evaluation, and
granule pool evaluation is based upon FOO and later
releases of BPM/BTM.

OPERATING SUGGESTIONS

Since any time-sharing activity is bound to cause additions
and/or deletions from the granule pool maps, the VERIFY
option wi II create situati ons where no resul ts wi II be valid
unless the NOMAP option is used. If the NOMAP option
is used in this situation, FANAL YZE wi II check other as
pects (except the map) of the fj les found in the system
di rectori es.

Since FANAL YZE must be in the :SYS account to run (due
to the master mode CAL) and does not print its control card,
it is suggested that FANAL YZE be formed as a processor.
Load particulars are as follows:

TSS may be at least 200 (uses BPM stack).

ABS may be set at the user's discretion.

LMN may be any name (it does not check name).

SL is O.

Any other load option is incidental to operation.

ERROR PROCESSING

All snaps (hex dumps, error messages, etc.) produced during
FANALYZE processing are preceded by a one-word title.
These one-word titles are listed below.

ANLX-DMP All snaps with this title are due to granule
map comparisons. The map words that fai led comparisons
are found in R2 and R3. The starting addresses may be
found in R6 and R7. The index value to both maps is lo
cated in R 1.

CALLSET Any snap with this title resulted from an I/O
failure (i. e., a TYC of 8 or 9). The I/O calling sequence
is placed into the registers as they were for the I/o call to
NEWQ. The registers are as follows:

RO End-action address (word address).

Rl End-action information.

R12 In byte format, FC/PRI/NRT/DCTX where FC
is the I/O function code, PRI is the priority for
this request, NRT is the number of recovery
tries, and DCTX is the DCn index.

R13 Address of intended buffer (byte address).

R14 Read/write size (number of bytes).

R15 Disk address (DCTX/sector number).

An additional snap is' taken of the buffer that was due to
receive the data (BUFFER). At this point, the program
error exi ts.

FDKEV A snap with this title is a snap of the current
fi Ie directory key that contained an invalid fj Ie informa
tion table address.

DLiNKER A snap with this title is a snap of the current
index used at a BLINK failure when the ANLZ option is
being used. No repair is made or attempted.

CHAINERR A snap with this title is a snap of the cur-
rent pyramid (upper level index granule) block on a
BLIN K/FLIN K error. No repair is made or attempted.
This error snap is encountered only when the AN LZ option
is running.

PVR-ERR A snap with this title is a snap of the current
upper level index granule on BLINK failures. This will
occur while the ANLZ option is attempting to find the first
block on the highest level and finds a BLINK failure.

CHN-ERR A snap with this title is a snap of the current
index block on a BLINK/FLINK failure if the DATA option
encounters a link failure.

FANALYZE error messages are listed in Table 5.

Table 5. FANAL YZE Error Messages

Messa.ge Description

ABOVE DATA ADDRESS BAD An invalid master index data address location was found during
the AN LZ run.

ACCOUNT DIRECTORY AND FILE The granule pool map showed dual allocation of granules for the
DIRECTORY CONFLICT two directories.

ACCOUNT DIRECTORY BAD, CANNOT A link failure occurred in the account directory.
RECONSTRUCT H GP

78 Operating Suggestions/Error Processing

Table 5. FANALYZE Error Messages (cont.)

Message Descri pti on

ACCOUNT DIRECTORY BAD, HGP VERIFY found a bad ACNCFU address or a nonzero BLIN K in
RECONSTRUCTION HALTED the first AD sector.

ADDRESS xxxx NOT WITHIN PFA AREA An address (xxxx) was found to be outside the PFA area.

BAD FIT ADDRESS The file directory key contained on invalid FIT disk address.
The address is printed to the right of the error message.

BAD FREE SECTOR POOL LIN KAGE The free sector pool had bad linkages.

BLINK ERROR The backward link test failed on a new sector. The I ocati on
and BLIN K are printed beneath the message.

DATA GRANULE ALLOCATION ERROR A data granule location has previously been allocated.

DISC I/O READ FAILURE The TYC returned at end-action indicated a read error.

DUAL ALLOCATION Anyerror other than could be defined occurred (e. g.,
FANALYZE could not accurately determine who owns the
other granule).

DUAL ALLOCATION IN FREE SECTOR The granule allocation indicated the FSP entry conflicted with
POOL other allocation.

FILE CONFLICTS WITH ACCOUNT The granule allocation for this file conflicted with the alloca-
DIRECTORIES ti on for the account di rectory.

FILE CONFLICTS WITH FILE DIRECTORIES The granule allocation for this file conflicted with the alloca-
tion for a file directory.

FILE CONFUCTS WITH PREVIOUS FILES The granule allocation for this file conflicted with the alloca-
tion for other fi les.

FILENAME DOES NOT CORRESPOND The fi Ie directory entry name differed from the FIT name. The
TO FIT FD name is printed to the left of this message and the FIT is

snapped.

FLINK ERROR The forward address was invalid. The location and forward I ink
are printed beneath this message.

INVALID CHARACTER OF OPTION A bad option or comma appeared on a processor control command.

INVALID DATA ADDRESS A key in a level 0 master index contained an invalid disk
address. The address is printed to the ri ght of the message.

INVALID FREE SECTOR POOL ENTRY A bad address was found in the free sector pool. The address is
printed to the right of the message.

I/O CALL FAILURE A bad disk address has been passed to the disk I/O handler.
The job aborts.

LIN K ERROR IN ACCOUNT DIRECTORY A BLINK/FLINK failure occurred in the account directory while
the ANLZ option was running.

LIN K ERROR IN FILE DIRECTORY A BLIN K/FLIN K error occurred in the fi Ie directory whi Ie the
ANLZ option was running.

MASTER INDEX ALLOCATION ERROR A master index granule location has previously been allocated.

Error Processing 79

Table 5. FANALYZE Error Messages (cont.)

Message Description

NAME SEQUENCE ERROR IN FILE The fj Ie directory names did not appear in ascending order. A
DIRECTORY dump is provided of that file directory sector.

NEXT LEVEL ADDRESS INVALID The upper level index structure's next level address pointer was
bad.

PYRAMID BLINK ERROR A backward link (in a fi Ie's upper level index structure) has
fa i I ed to verify.

PYRAMID FLINK ERROR A forward link (in a file's upper level index structure) has
fai led to verify.

PYRAMID LOCA nON ·ERROR The TDA (from the file's FIT) had an invalid address.

RANDOM FILE ADDRESS ERROR The FIT pointed to an invalid data address for a random fi Ie.

STACK SIZE INVALID The load module FANAL YZE was loaded without at least a
TSS of 200.

80 Error Processing

10. HARDWARE REQUIREMENTS

INTRODUCTION

To arrive at a useful machine configuration to provide for
the various types of users of BPM or BTM, the manager of
each installation must evaluate his requirements and the
level of service he desires. A reasonable selection of
hardware can only be made with a good knowledge of its
intended use, including the portions of computing time de
voted to time-sharing, batch, and real-time users. Other
requirements that must be evaluated include the number
and usage profiles of on-line users, the size of programs,
and the I/o characteristics.

It is impractical to list all combinations of equipment that
would support BPM or BTM in some manner. However, a
minimum equipment configuration for BPM and a typical
configuration for BTM can be specified. Since there are
considerable differences in requirements between standard
BPM systems and a BTM system, the systems wi" be dis
cussed independently of one another.

BPM REQUIREMENTS

A minimum hardware configuration for BPM is given in
Table 6. A system with such a configuration might be ded
icated to the use of one processor, say FORTRAN, or might
be one that uses only a few processors and has a few users.
Table 7 lists the recommended additions to the configura
tion. Figure 26 illustrates a minimum BPM system for
Sigma 5-8 computers.

Note that any real-time requirements are preemptive and
installation-dependent. Therefore, no allowance is given
here for these demands on the computer. Users wi th real
time appl ications must add core to support real-time pro
grams and may suffer batch throughput loss due to less CPU
avai lability.

The BPM resident Monitor requires 8K words of core.

Table 6. Minimum BPM Hardware Configuration

Number
of Model
Units Number Descri pti on

Central Processor

1 8201/8202 Sigma 5 Control Processing Unit

Core Memory

1 8261/8262 Memory module (32K)

Memory Protect

1 8214 Memory wri te protecti on feature

Table 6. Minimum BPM Hardware Configuration (cont.)

Number
of Model
Units Number Description

Input/Output Processors

1 8203 Multiplexor lOP (except with
8201 CPU)

Peripheral Equipment ,
1 7201 or RAD controller or Disk Pack

7240 Controller

1 7204 or RAD or Disk Pack Storage Unit
7246 (3 M bytes minimum)

1 7361 Magneti c Tape Con tro" er
(7-track)

1 7362 Magneti c Tape Unit (7-track)

1 7012 Keyboard Printer (may substitute
ASR & paper tape)

1 7122 Card reader (400 CPM)

1 7450 Line Printer (low cost)

Table 7. Recommended BPM Hardware Additions

Number
of Model
Units Number Description

1 8252 Core Memory (8K)

1 8264 Additional Memory Port

1 8270 External Interface (Sigma 5 only)

1 8218 Floating Point (highly
recommended)

1 7165 Card punch (100 CPM)

1 *7320 Magneti c Tape Control I er
(9-track)

1 *7322/7323 Magnetic Tape Unit (9-track)

1 *744X Line Printer

*Recommended substitutes for units in Table 5.

Hardware Requirements 81

I
CPU

Sigma 5 thru 8

~~ory Protect

, I

I Floating-Poin/ I
~------1

Decimal
tt I

Core 16K

Multiplexer
II 0 Processor

Core 16K

I

r----~II I
"---------.1

L ____ J 7450
RAD or
Disk Control

Tape Control

Reader 7122

t High I y recommended.

tt Applicable to Sigma 7 only.

ttt May substitute ASR for KSR and Paper Tape.

1
~ ~
~-~ -
RADordisk

-

~agnetic

Tape

Figure 26. Sigma 5-8 ~inimal BP~ System

BTM REQUIREMENTS

The typical hardware requirements for a BT~ system are
given in Table 8. It is recommended that the 48K core
memory be expanded to 56K if Meta-Symbol is used con
currently with on-line processing.

The amount of RAD storage is dependent upon the number
of concurrent users and exact amount of storage per user.
However, 3~B is required on permanent file RAD and/or
disk pack for BTM, its processors, and libraries. In addi
tion, 25-100K bytes per user is typical for file storage,
assuming 24 users. Approximately 5. 2~B on the swapping
RAD is required for symbionts, on-line processors, and user
swap area, assuming 24 users. For 38-user system, an en
tire 7212 is required for swapping. For a 64 user system,
two 7212 RADs on one 7211 controller(HSRIOP for Sigma 8)
are required. With two 7212 RADs, the on-line partition
size may be enlarged but this will reduce capacity to less
than 64 concurrent users. Swapping with 7242/7246 disk
packs is allowable; response times, however, do not come
near those predicted for various sized RAD systems. One
RAD or disk pack controller is sufficient only for noncon
current operation.

A typical 48K BTM system is shown in Figure 27. (BTM
supports a maximum of 128K words of memory.)

82 BT~ Requirements

Table 8. Typical BT~ Hardware Configuration

Number
of Model
Units Number Description

Central Processor

1 8201 or Central Processing Unit
8202

1 8218 Floating-Point Arithmetic

1 8221 Interrupt Control Chassis

1 8222 Priority Interrupts; 2-levels

1 8270 Externa I Interface Feature
(Sigma 5 only)

Core Memory

2 8261/8262 Memory ~odu Ie (48 K)

1 8414 Memory Write Protection

Table 8. Typical BTM Hardware Configuration (cont.)

Number
of Model
Units Number Description

Input/Output Processors

1 8203 Multiplexor lOP (required on
Sigma 5 8202 CPU)

Peripheral Equipment

1 7231/7241 RAD or Disk Pack Controller
(1 Controller suffi cient for non-
concurrent operation only - see
Figure 27)

1 7232/7242 RAD or Disk Pack Storage Unit
(3 MB required on permanent
RAD/disk pack file for BTM,
processors and libraries)

1 7320 Magnetic Tape Controller
(9-track)

1 7322/7323 Magneti c Tape Unit (9-track)

1 7012 Console Keyboard Printer (KSR)

1 7120 Card Reader (400 CPM)
1 744X Line Printer

Communi cations Equipment

1 7611 Communi cations Controller

1 7612 Format Ti mi ng Groups

nt 7615 Formatted Send Modules
(simplex transmit)

nt 7616 Formatted Receive Modules

nt 7620/7623 Interface Modules

nt Various Remote Terminals

tNumber is equal to number of user terminals (up to 64).

REMOTE BATCH HARDWARE REQUIREMENTS

The hardware requirements for three types of remote batch
configurations are shown in Figure 28. All data sets for
remote batch must be supplied by the user.

Full duplex operation through the switched network is
possible; however, no data set is yet available that will
allow automatic establishment of the full duplex circuit.
A full duplex circuit can be established through manual
dialing and answering by operators at both ends of the

circuit. In this case, XDS hardware requirements are
identi cal to those shown in Figure 28 for full duplex opera
tion over leased lines.

CORE MEMORY

Providing enough core memory is parti cularly crucial in a
BTM time-sharing system. Operating with a memory of in
sufficient capacity for the load that is typical for an instal
lation is especially detrimental to system performance
(loader performance improves when more core is avai lable
than the absolute minimum).

Core space can also affect file applications; that is, if an
average of fi ve fi I es are open concurrent Iy, seven and one
half pages of core should be dedicated to file blocking.
Less memory would result in system degradation.

BPM/BTM MONITOR SIZE ESTIMATION

The simple procedure given below, used in conjunction with
Tables 9 and 10 and Figure 29 will give a general estimation
of Monitor core size requirements, plus additional capabil
ities. More detai led and accurate formulas that are suit
able for facility systems analysts are given in Appendix F.
Note that the figures given in Tables 9 and 10 and Figure 29
represent the FOl version of BPM/BTM only, and are subject
to change in any new versions of the system. The proce
dure is as follows:

1. Use Table 9 to obtain the size of the basic Monitor and
add to it the size of any additional functional capabi 1-
ities required (i. e., symbiont, remote batch, etc.).

2. Using Table 10, add the additional Monitor require
ments for the desired peripheral configuration.

3. Take the sum of steps 1 and 2 and round it up to the
next highest page.

4. The assumptions used to obtain these figures are listed
in Figure 29.

5. The total size obtained from this procedure is that
required for the Monitor itself, and does not
consider

• The size of the user batch partition.

• The size of the on-line, time-sharing partition
and context area.

• The size of any resident or nonresident real-time
requirements.

Remote Batch Hardware Requirements/Core Memory 83

CPU
Sigma 5 thru 8

Core 16K

I

Memory Protec t

Floating-Point

Interrupt Control

Priority Interrupt

Externa I Interface

Core 16K

I

8 7615

7015 - _7_6_2X_---JI-----+-----t---r--ft---76- 1-1----t
7616

7612

7012

KSR 8·· .. ~ __ 762_X ~I -+--I~ -_::-:_: :1--"
7120

Card Reader

Core 16K

I
Multiplexor
II 0 Processor

-

Figure 27. Typical BTM Hardware Configuration

84 Core Memory

RAD or
- Disk

Controller

--

RAD or disk

-

7320

7322/7323

Magnetic Tape

744X

Line Printer

E~~;:'S { :. ____ """"!...1 __ 7_6_04 ___ 1. 1 __
7
_
6
_
7

_
0

Full Duplex Local Operation (Maximum allowable separation of 7670 from 7604 is 100 feet)

One MIOP {
Subchannels
Required

Two MIOP {
Subchannels
Required

7601 201A or 201 B

Half Duplex Operation (Remote)

- 7601
201A or 201 B

7602

Full Duplex Operation (Remote, leased lines)

T r- wo-wlre Ph one

201A or 201 B

F r- our-W Ph ire one

201A or 201B

Figure 28. Remote Batch Terminal Hardware Configurations

Table 9. Basic Monitor Size

Module

BASIC MON nOR

SYMBIONTS:

First Card Reader

Additional Card Reader

First Line Printer (with C12)

Additional Line Printer

First Card Punch (with C12)

Additional Card Punch

REMOTE BATCH:

Each 7601

BTM: (12 subsystems; 16K user size)

Each User

BTM Performance Monitor

C' ·t Ircul

7670

c ircuit

7670

Core Requ ired
(Decimal Words)

8000

1200

600

300

600

300

600

300

1200

300

5000

110

524

Core Memory 85

Table 9. Basic Monitor Size (cont.)

Core Required
Module (Decimal Words)

REAL TIME: 3000

Each External Interrupt (NINT) 12
i-' Each R/T task (NFRGD) 12

Add for each Centrally Connected task (TSTACK) 50

File I/o buffer for FRGD 768

Table 10. Monitor Size Increase Decimal Wordst

Model No. First Each Additiona I

7012 26 21

7020 26 21

7060 176 21

7121 28 23

7122 28 23

7140 28 23

7160 172 89

7165 109 89
7204 77 72

7212 116 111

7232 130 125

7242/6tt 56 51

7242/6ttt {handler included here} 544 413

73229t 31 26

73239t 31 26

7362]t 31 26

7372]t 31 26

7440 lP 26 21

7441 lP 26 21

7450 lP 26 21

t In the basic Monitor size, the following devi ces are already included: TV, CR, CP, lP, 7204, two 9-track
magnetic tape devices. Therefore, these devices should not be counted again when using this table.

ttCylinder Allocated or Private.
ttt Granule Allocated.

86 Core Memory

Basic Monitor:

Symbionts:

TSTACK = 200 words

MPOOL = 4

10Q 10

CFU 11

Buffering is computed for optimum
efficiency

SYMBIONT
2 SPOOL + (1 CPOOL + 1 SPOOL)/ DEVICE TYPE

+ (l CPOOL + 1 SPOOL)/SY~~I~~T

Remote Batch:

One CPOOL and one SPOOL buffer allowed for
each 7601.

BTM:

User buffers 100-character input

100-character output

1 CFU per user

Real Time:

Control task queue = 4

Fi gure 29. Assumpti ons

INPUT jOUTPUT PROCESSORS

The minimum requirement of one multiplexor I/O processor
(MIOP) is reasonable for systems with up to 32 on-line
users. For systems with more I/o devi ces (i. e., with
more than 32 users) an additiona I MIOP may be required.

Bandwidth requirements of the lOPs must, of course, be
met (see band width consumption in Figure 30). Heavy
use of these devi ces may degrade system performance
through CPU use and core buffer space required for I/O
transfers. Generally speaking, additional core memory
wi II improve performance in these large systems.

SECONDARY STORAGE

Requirements for RAD and/or disk pack storage may be di
vided into two categories:

1. Swap storage for on-line users, and for absol ute core
images of the BPM/BTM Monitor and system processors
(FORTRAN, Basic, etc.).

2. File storage for all users of the system including those
processors kept on fi Ie in load module (LM) form (usu
ally SYSGEN processors, FORTRAN, COBOL, etc.)

Depending on user size and number of users, swap storage
will usually require from one million to 12 million bytes on
a 7212 RAD. It is necessary to have space to accommodate
the aggregate size of all current on-line and multiple batch
users. For instance a BTM configuration with a user size of
16K would require six megabytes of swap storage for 38 on
line users.

Fi Ie storage is best estimated by the installation. For each
on-line user, 25,000 to 50,000 words of file storage is
frequently quoted as a typical need. Thus, if 100 users
have access to a 32-line system, from 2.5 million to 5 mil
lion words of file storage would be needed, requiring two
or three additional RADs (or disk packs). Table 11 gives
the number of on-line users and percentage of batch usage
for various BTM RAD and/or disk pack systems. All BTM
configurations assume separate controllers for swapping and
system devi ces.

In Table 11, the number of on-line users accommodated is
based on "typical" conditions of on-line use and provides
an "average" on-Ii ne response time of 2.5 seconds. These
same numbers are usuable for nonconcurrent on-line or
batch systems.

The % Batch Usage fi gures assume that time quanta are
adjusted to provide a swap-limited system with the batch
background consuming only swap time. Although the per
centage of CPU time used for batch operations is indepen
dent of the system RAD, actual batch throughput wi II
depend on the RAD used for system storage.

When used as a swapping fi Ie, the 7232 RAD may be equipped
with a 7231 Controller and 7235 Extended Width Interface
feature or a model 7236 Extended Width Controller. In both
cases, the companion MIOP must be equipped with the
8X 75 Four-Byte Interface feature.

Note: When used for system files or user files, the 7231/
7232 RAD system may not be equipped with a
Model 7235 Extended Interface feature. A 7211/
7212 RAD system requires an 8X 85 SlOP. The 7236
does not have this restri ction.

An example of a BTM RAD configuration is shown in
Figure 30. Note that when configuring any BTM system,
the MIOP bandwidths must be carefully observed.

Table 12 gives a sample of the contents of the file system
:SYS account for a typi cal system. Individual installations
wi" vary from this (considerably in some cases).

To maintain reasonable performance, separate RADs for swap
and fi Ie storage are a minimum requiremenr for a" systems.
The 7212 high-speed RAD is recommended for swap storage
and the 7232 RAD or disk pack is recommended for file
storage.

Input/Output Processors/Secondary Storage 87

Table 11. Typical Performance for Various Swapping Devices

Swapping Devi ce

7242/7246

7204

7232

7212

Core 16K

CPU
Sigma 5 thru 8

Notes:

(1)

8X73 Bandwidth Consum~tion:

1 - 7122 Card Reader
1 - 7440 Line Printer
1 - 7160 Card Punch
1 - 7012 Keyboard/Printer
2 - 7322 80K8 Tapes
- - 7611 COC
Bus-Sharing Effects

tt

(2)
8X77 Bandwidth Consum~tion:

1 - 7231/32 RAD tt
Bus-Sharing Effects

Number On-Line Users % Batch Usage

8-10 80%

16 60%

32 35%

40 20%

Core 16K Core 16K

I I
I

I I

(1) (2) (3)

8X73 MIOP I- - - - - 8X77 BSIOP 8X85 SlOP

1 I I
7611 COC 7231 7211

Standard Peri phera Is

Additional due to
% SlOP in S~temt

1
1

11 2

I I
7232 RAD 7212 RAD

System and User
Fi Ie Storage

Swapping RAD

(3) This example represents a 38-user
% system. A second Model 7212

1
extends this configuration to the

1
64-user capac i ty .

13
Negl. Negl.
16 2 18
2 2
5 5

36 40

Additional due to
% SlOP in Slstemt %

81 12 93
5 5

86 98

tAn HSRIOP is required for Sigma 8.

ttAn MIOP Channel 8 option is required for Sigma 8.

Figure 30. 8TM RAD Configuration Example

88 Secondary Storage

Table 12. Typical Contents :SYS Account

File Name Granules File Name Granules

:ACCTLG t ELIST 8

:BLIB 63 ERRDATA 2

:DIC 11 ERRMSG 3

:LIB 90 ERRWRT 2

:USERLG tt FDP 39

BASIC 18 FERRET: 6
tttt

BASIC 20tttt FILEUP 17

BATCHACC ltt FLAG 63

FMGE 8

BPM 10 FORTCOMP 8

BPM: 4tttt FORTUB 5

BTMPM 44 FORTRAN 77

CCI 34 FORTRAN: 34

COBOL 228 FORTRANH 33

DEF 13 FPURGE 8

DEFCOM 5 IOTABLE 10

DELTA: 7 LOAD: 11 tttt

DICTNARY 12 LOADER 25

DMSDUMP 13 LOCCT 5

DMSINIT 10 LOPE 9

DMSLOAD 17 M:ABS 2

EDCON 8 M:AL ---
EDIT: 10 M:BI ---
M:BO --- METASYM 61

M:BTM 10 MON 4

M:C --- MONDUMP 42

M:CI --- OLAV 24

M:CK --- PASS1 15

M:CO --- PASS2 37

Secondary Storage 89

Table 12. Typical Contents of :SYS Account (cont.)

File Name Granules File Name Granules

M:CPU 20 PCl 13

M:DlIMIT 2 PFIl 9

M:DO --- POST 3

M:EI --- REPORT 10

M:EO --- RETRIEVE 32

M:GO --- REW 9

M:LI --- ROMTRAN 14

M:ll --- ROOT 3

M:MON 174 RUN/
ttt

6

M:OC --- S:OVRlY ---
M:PO --- SIGMET 5

M:SDEV 2 SIGFDP 5

M:SI --- SLl ---
M:Sl --- SORT 18

M:SO --- SSS ---
MAC RSYM 26 SUPER 8

MANAGE 20 SUPER: 8
tttt

MCHKPT 3 SYMBOL 13

MEDDUMP 25 SYMBOL: 1lttt

MERGE 9 VOLINIT 16

PASS3 11 WEOF 9

tNumber of granules vary according to number of jobs run.
H .

Number of granules vary according to number of authorized users.

ttt Accounting conversion from Version F01 back to E01 for Version E01 accounting users.
tttt .

BTM version.

It is recommended that disk packs be included in the con
figuration. This wi II markedly improve the file storage
capacity of the system. The disk pack equipment 7240,
7241, 7244 could be substituted for the 7231/7232 RAD
devices. This also requires substituting the 84754-byte
interface for the 8477 bus-sharing MIOP

PERIPHERAL EQUIPMENT

One on-site console keyboard printer is required for on-line
monitoring and control of BPM/BTM. This is the operator's
console. A card reader, line printer, and magnetic tape
unit are also required minimum equipment. In addition, it
is recommended that a second magnetic tape unit and card

90 Peripheral Equipment

punch be added to the minimum equipment to provide a
reasonable batch configuration.

TERMINALS

A variety of terminals may be used. This includes Xerox
Keyboard/Printers (7015), Teletype Model 33 and Xerox
Model 7670 Remote Batch Terminals. Software flexibility
is present so that other terminals may be added with rela
tively little difficulty. One Model 7630 Communications
Controller can handle up to 64 terminals. Up to 15 Remote
Batch Terminals may be connected at anyone time.

11. SYSTEM GENERATION OVERVIEW

INTRODUCTION

The process of generating an operating system is not simple.
About 400 fi les must be manipulated and 400,000 to 500,000
I/O operations must be performed. Severa I processors are
involved and a simple error occurring during the execution
of anyone of them may invalidate a system generation
(SYSGEN) that took hpurs to perform. To the person who
has never done a SYSGEN, the task seems formidable
indeed. It need not be so. Anyone with the time, patience,
and an understanding of what the SYSGE N process does
should be able to generate his own system.

The purpose of this chapter is to give a general understand
ing of the system generation process by emphasizing the
overall process rather than the detai led control command
syntax and suggested values. A more detailed discussion
is contained in the next chapter.

PURPOSE OF SYSGEN

An operating system is similar to other programs. It is as
sembled with Meta-Symbol and loaded with the loader just
as a user program, say to calculate squares, would be.
If that squares program could do its own I/o (or did not
have any), it could be written on tape and booted into a
machine just as the operating system is.

Everyone who might do a SYSGEN should be familiar with
Meta-Symbol and the loader and be able to prepare the
usual assortment of control cards, so why have this compli
cated procedure (and a new name-SYSGEN) for a common
job? The answer is that this common job would be more
difficult if it were done in the common way.

The loading process for a program (e.g., a program to cal
culate squares) is simple. A source deck is assembled into
a relocatable object module (ROM) which is loaded into a
load module and written on magnetic tape. The program
mer need remember only the names of a few files.

Numerous source decks must be assembled into hundreds of
ROMs during the SYSGE N process for an operating system.
Certain of these, depending on the situation, must be
loaded into the Monitor and processors. All of this must
be put onto a magnetic tape in such a way that it can be
read into the right places at" boot time. The above process
would a lone require more of the programmer than is reason
able to expect. But this is not all that is required. Within
the Monitor there are many tables that depend on the
particular configuration on which the operating system is
to run. In a program to calculate squares, a table might
be changed with an assembly parameter; in the Monitor it
would take hundreds of these to produce the correct tab les.

Since programmers cannot (and certainly should not) be
expected to remember all the necessary information to

create an operating system, XDS provides the SYSGEN
processors. The function of each of these processors is as
follows:

Processor

PASS1, PCL

PASS2

LOCCT
and
PASS3

DEF

Function

Selects from various sources the relevant
modules for system generation.

Compiles the required dynamic tables for
the resident Monitor.

Store and execute load card images (by
calling the loader) to produce load mod
ules (LMs) for the Monitor and its
processors.

Writes a Monitor system tape that may
be booted and used.

It is the purpose of these processors to make the creation
of a specific operating system as simple as possible. The
SYSGEN process can appear complex if the programmer
does not remember what it is that SYSGE N is trying to
help him do, and that is to assemble, load, and write to
tape a common, a Ithough large and complex, mach ine
language program.

The purpose of th is chapter is to he I p the reader under
stand the SYSGEN processors. All of the steps in the
SYSGEN process wi II be covered at a level that should
neither leave the reader without critical detai I nor bog
him down in detail. To the seasoned SYSGEN programmer,
th is chapter may seem over simpl ified. To the programmer
who is undertaking his first SYSGEN, however, this chap
ter should make the SYSGEN process much easier and more
successfu I.

GATHERING ROMs (USING PCL)

It is assumed throughout th is section and the sections that
follow that file space is not a problem. Of course, th is is
not a Iways true. The steps that are necessary when fi Ie
space is a problem are discussed in the last section of the
chapter.

It is generally not necessary to assemble most modules used
to build an operating system. This is done at XDS and the
resulting ROMs are referred to as BI (binary input) or BO
(binary output). However, some elements may have been
updated and may require assembly before SYSGEN is begun.
These should be kept in some account (cards, tape, or an
other account) other than the account in which SYSGEN
is being done. Also, some elements may have been added
by the user. These, too, should be kept in an account other
than the SYSGE N account.

System Generation Overview 91

At this point, the user is ready to build the base for his
SYSGEN. The first step, the assembly, has been com
pleted and the next step is the load. This step consists of
placing the desired element files (ROMs) in the target ac
count. What is desired is a copy of every ROM needed to
load the Monitor and a II processors to be i ncl uded in the
fi na I system.

The ideal target account for this stage of system genera
tion is one that is empty at the beginning of the process.
System generations can be done in any account but much
trouble can be avoided if :SYSGEN is used as the target
account.

Gathering ROMs consists of the following three steps:

1. COPYING ALL OF A PO TAPE INTO THE TARGET
ACCOUNT.

If this is the first system generation, there may be no
PO tape. If not, this step should be skipped. A PO
tape from an old release is better than none at all, but
if this tape is not current it is better to proceed as if
there were none.

This step copies load modules instead of ROMs. The
purpose of the step is to ensure that a copy of all pro
cessors, including those that are not affected by System
Generation, is obtained. Since the last function of a
SYSGEN process is to write a PO tape, this step en
sures that everything necessary is included in the ac
count at the start. The step may result in the gathering
of items that are not wanted but these are overwritten
later in the SYSGEN process.

The easiest way to copy the PO tape into the target
account is to use the PCL COPYALL command. This
command would be written as follows:

IPCL
COPYALL L T#TAPE [.account] TO DC

where TAPE is the INSN of the PO tape, and "account"
is the account (usually :SYSGEN) under which the PO
tape is created.

2. COPYING ALL OF A BI TAPE INTO THE TARGET
ACCOUNT.

This step gathers the standard ROMs supplied by XDS.
Normally, the generation of a system will involve up
dating only a few ROMs. The rest of the required
ROMs will be standard ROMs. The BI tape used in this
step can be the master BI (not PO) tape used to boot the
system, another BI tape, or a separate BI (ROM) tape.
One of these tapes is suppl ied with each release of the
system.

The easiest way to copy the BI tape is to use the
COPYALL command. The format of the command is

COPYALL LT#TAPE [.account] TO DC

where TAPE is the INSN of the BI tape.

92 Building Dynamic Tables (PASS2)

When this step is complete, the user is ready to go to
PASS2, LOCCT, PASS3, and DEFtobuildthefinished
system, providing he does not want to update any of
the ROMs on the BI tape. If he does, he must go to
step 3.

3. COPYING UPDATED ROMS OVER THOSE ON THE
BI TAPE.

If the user has ROMs to update, he should by now
have the assemblies done and have the updated ROMs
in another account or on cards or tape. The next step
in the process is to replace old ROMs.

COpy CR OVER DC/ROM 1
<BINARY DECK FROM UPDATED ROM1>
lEaD
lEaD
COpy CR OVER DC/ROM2
<BINARY DECK FOR UPDATED ROM2>
lEaD
lEaD
COpy LT#UPDT/ROM3 OVER ROM3
COpy LT#UPDT/ROM4 OVER ROM4
COpy ROM5. :UPDATE OVER ROM5
COpy ROM6. :UPDATE OVER ROM6

In this example, the updated copies of ROM 1 and
ROM2 are binary decks, those of ROM3 and ROM4
are on tape #UPDT, and those of ROM5 and ROM6 are
fi les in account :UPDATE. Any of these could be new
ROMs rather than updated ones.

Th is completes the gatheri ng of ROMs for the SYSGE N.
If the latest version of all ROMs is to be saved for a
future SYSGEN, DEF can be used to write a BIlBO
tape with a bootable system and a ROM portion like
the one used instep 2.

IASSIGN M:BO, (DEVICE, 9T), (SN,XB01)
I DEF BPM [, versn#]
:WRITE BO
END

where versn# is a 3-character version number (e. g.
F01) •

BUILDING DYNAMIC TABLES (PASS2)

For a program, such as one to calculate squares, steps 1
through 3 could be replaced with one assembly and building
dynamic tables for the Monitor would not be necessary.
However, for an operating system, these steps are necessary
and the dynamic tables must be built for the Monitor.

Dynamic Monitor tables depend on the physical devices
present on the target machine, the amount of fi Ie space,
the number of BTM users, and a variety of other installation
dependent parameters. Th is data cannot be generated at
XDS since it is different for each user and each use of the
Monitor. It would be too much to ask each user to assemble
his own tables, so the PASS2 processor is provided to build

them. The output of PASS2 is a set of I ibrary load modules,
but these are used, like ROMs, as elements in loading the
Monitor, and thus should be thought of as binary output.

The discussion below is not concerned with command syntax
since that is covered in the next chapter. It is instead a
discussion of what commands to use, the order of those com
mands, the meaning of the commands, and the pitfalls to
avoid.

REQUIRED COMMANDS

The following is a I ist of control commands that should be
used in every BPM or BPM/BTM PASS2 process:

:CHAN
:DEVICE
:MONITOR
:DLIMIT
:ABS

If the system is a symbiont system, the following command
is necessary:

:SDEVICE

If it is a real-time system, PASS2 requires

:FRGD

If it is a BTM system, PASS2 requires

:BTM

If the system does not have a card reader, I ine printer, or
card punch, the following command is required:

:STDLB

COMMAND SEQUENCE

PASS2 allows the commands to be ordered in many ways.
However, the following command sequence will always
work:

:CHAN/:DEVICE
[:sTDLBl
[:SDEVICE]
:MONITOR
:DLIMIT
:ABS

[
:FRGD 1
[:INTLB]J
~BTM]

MEANING OF PASS2 COMMANDS

The discussion below briefly outlines the function of each
of the PASS2 commands.

:CHAN establishes a logical channel for all of the
devices between it and the next :CHAN. It should always
be the first control command in the set of commands for
PASS2. In general, every device except a tape, RAD, or
disk pack should have its own :CHAN. All RADs, disk
packs, and tapes that have the same nd of yy.!!dd (e. g.,
9TA80) should be on the same channel.

:CHAN
:DEVICE TYAOl
:CHAN
:DEVICE LPA02
:DEVICE CRA03
:CHAN
:DEVICE 9T A80
:CHAN
:DEVICE 9T A81
:DEVICE 9TAFl
:DEVICE 9TB82

Right

:CHAN
:DEVICE TYAOl
:CHAN
:DEVICE LPA02
:CHAN
:DEVICE CRA03
:CHAN
:DEVICE 9T A80
:DEVICE 9T A81
:CHAN
:DEVICE 9T AFl
:CHAN
:DEVICE 9TB82

:DEVICE defines a device attached to the mach ine for
which the system is being generated. In general, the only
option necessary is name (e.g., TYA01). If the device is
the COC for BTM, the option HANDLERS must be specified.
For example,

:DEVICE COA 10, (HANDLERS, COC, COC)

RADs and disk packs should have a type (7212,7232, etc.)
specified and one or more of the following: PSA, PER,
ABSF, BCHK, and PFA. Other disk options may apply to
a particular installation. If the device is not standard, all
options should be specified.

:STDLB defines the standard operational labels. If the
computer does not have a card reader, line printer, or card
punch, the labels assigned to these devices should be as
signed to an existing device or to NO, e.g., :STDLB
(EO, NO). Output assigned to NO is discarded. Even if
the computer has the devices listed above, it may be de
sirable to change some of the default op label assignments
with :STDLB.

Two files are written as a result of the :CHAN, :DEVICE,
and :STDLB commands. They are IOTABLE, which contains
tables for the I/o system, and SPEC:HAND, wh ich is a
list of handler names used by PASS3.

:SDEVICE specifies which devices are symbiont and
generates M:SDEV, which contains symbiont tables.

:MONITOR specifies system parameters and generates
M:CPU, which contains buffers and system tables.

Building Dynami c Tables (PASS2) 93

:0 LIMIT respecifies the system's default limits for jobs
to be processed. If the standard default limits are accept
able, this command need not contain any options. :DLlMIT
generates M:DLIMIT, wh ich is loaded into CCI.

:ABS defines the ABS (absolute) area on disk and names
processors to be made ABS processors. Making a processor
absolute shortens the time necessary to load it into core.
The M:ABS module is generated as a resultof this command.
If there are no ABS processors, the command should read

:ABS, 1024

where 1024 is the minimum required to load the Monitor.
In this case, a message, '(,EXPECTED BUT NOT FOUND,
is printed but should be ignored since it is a warning that
the user may have forgotten to inc I ude processor names.

:FRGO specifies the system's real-time parameters and
generates M:FRGD, which contains buffers and tables for
rea I-time operations.

:INTLB allows the user to label interrupt locations.
These definitions are placed in M:FRGD.

:BTM specifies parameters concerning the BTM area of
the system and generates the M:BTM module with BTM
tables and buffers.

PASS2 PITFALLS

If PASS2 is run as described above, no error messages
should be output. A list of control commands not used will
be printed at the endofPASS2. This list should be checked
but need not be a cause of concern. A very lengthy P ASS2
takes less than five minutes, so there is no reason to take
chances with error messages. If any error messages appear,
the appropriate corrections should be made and the entire
PASS2 should be run again. This can be done repeatedly
at th is stage of SYSGE N without disturbing the BO base
that was created and should be done unti I PASS2 is run
without errors.

PASS2 cannot determine whether the parameters that have
been specified are reasonable for the system so long as
they are within legal limits. Therefore, it is important
that the user read the next chapter and make a carefu I
selection of PASS2 values.

PASS2 should never be run unless the exact computer con
figuration is known. It is critical that the devices that are
defined with :CHAN and :DEVICE command exist and are
at the addresses specified. The exact configuration of the
computer can be obtained from the XDS field ana Iyst.

LoceT FILES

At this point, every element file necessary to load the
Monitor and all of the processors should be in the target

94 LOCCT Files

account. The next step is to load the system • To load
the Monitor (M:MON), PASS3 must be used instead of the
loader. For ease and consistency, PASS3 may be used to
load the entire system. PASS3 requires LOCCT files.

DEFINITION OF LOCCr FILES

The loader does not read control cards. ! LOAD (!OVERLAY,
!OLAY) and !TREE commands contained in a job deck are
read by CCI which uses them to construct a control table
for the loader. This table is written to the ABS area on the
RAD and the loader is called by CCI. Upon entry, the
loader reads in the table and uses it to do its loading.

PASS3 also calls the Loader and therefore must be able to
supply a control table. This is done with LOCCT files.
When CCI reads a ! LOCCT command, it processes it as
though it were a ! LOAD writing the same table to the RAD,
but the LOCCT processor is called instead of the loader.
The LOCCT processor reads a command specifying a name
(1 to 10 characters) and opens a fi Ie whose name is the
name on the card with the five letters LOCCT appended to
the left. LOCCT then reads the control table that CCI
bui It from the RAD and writes it to that fi Ie. The fi Ie is
then called a LOCCT file. For example,

! LOCCT (LMN, TEST), (BIAS, 0), (MAP),;
! (SL, F), (PERM), (NOTCB), (NOSYSLIB), ;
! (EF, (A), (B), (C), (D))
!TREE A-(C, D)-B
!DATA
:LOCCT TESTX

This builds the file LOCCTTESTX which contains the control
table for loading TEST from element files A, B, C, and D.

GENERATING LOCCr FILES

When a system with a standard Monitor and standard pro
cessors is being built, the necessary LOCCT files are con
tained on the BI tape and are in the target account at this
point. These fi les are I isted and their contents are de
scribed in the documentation supplied with the system re
lease. If the standard Monitor and processors are adequate,
the LOCCT pass is not necessary and PASS3 can be run.
However, if any of the following is true, LOCCT fi les must
be built:

1. The LOCCT file for something to be loaded is not on
the BI tape.

2. Modules are to be added to or deleted from the Mon
itor (or processor).

3. A load option or the overlay structure of the Monitor
or a processor is to be changed.

4. A nonstandard XDS product istobe loadedwith PASS3.

5. The target account used for SYSGEN is not :SYSGEN.
(LOCCT fi les must be bui It in the account in wh ich the

SYSGEN is done, and the LOCCT files on the XDS
BI tapes are built in the :SYSGEN account. If the
target account is not :SYSGEN, a complete new set
of LOCCT files must be built. The ones supplied by
XDS can be used as models.)

Building LOCCT fries is not a compl icated process. The
procedure to create LOCCT files is as follows:

1. Make out ! LOAD and ! TREE commands as though the
load modu Ie were going to be loaded directly by the
loader.

2. Make a ! DATA card and one that says

! LOCCT name

where IIname II is the name of this LOCCT fi Ie.

3. Punch LOCCT instead of LOAD into the! LOAD card.

4. Arrange the deck in the following order:

!LOCCT
!TREE
!DATA
:LOCCT

If a new BO tape is to be written during the gathering of
ROMs, the new LOCCT fi les should be created just before
writing that tape so that they will be included and be ready
for the next SYSGEN.

LOADING THE MONITOR AND PROCESSORS (PASS3)

The next step is to load the Mon itor and processors. If
PASS3 is used, it must have the LOCCT files described in
the previous section. When PASS3 reads the command
:TESTX, it reads the file LOCCTTESTX and writes the con
trol table it contains to the ABS area on the RAD just as
CCI does when it processes! LOAD commands. It then
calls the loader which reads in the table and uses it to do
the load. The following two command sequences are iden
tical except that A produces the additional file
LOCCTXYZ:

A

! LOCeT (LMN, XYZ), (EF, (A), (B), (C), (D»)
!TREE A-(C, D)-B
!DATA
:LOCeT XYZ
1 PASS3
:XYZ

B

! LOAD (LMN, XYZ), (EF, (A), (B), (e), (D)
!TREE A-(e, D)-B

If PASS3 reads a LOCeT file in which the load module
name (LMN) is M:MON, it takes the following action:

1. It reads in the file SPEC:HAND which was generated
in PASS2 and obtains from it the names of the device
handlers needed in the system. It then reads in the
ROMs (always getting BASHANDLES) fora I! the needed
handlers and combines them into one file named
HANDLERS.

2. It generates the file ROOT which contains information
necessary to manage the overlay structure.

3. It records the Monitor's background lower limit and
uses it as the default bias when loading processors.

The system can now be loaded.

ITEMS TO BE LOADED

If there were no changes to be made to the Monitor either
with code updates or with PASS2 parameter changes there
would be no reason for doing a SYSGE N. Therefore,
M:MON must be loaded. It should be loaded first so that
the rest of the processors will be biased correctly. In gen
eral, eel should also be loaded to use the new limits gen
erated by :DLIMIT in PASS2.

If th is is the first SYSGEN of a new release, all of the pro
cessors should be loaded. An example of this PASS3 load
operation is included with the release documentation.

If this is not the first SYSGEN for a release, copies of the
processor load modules are a Iready in the target account.
These were brought in from the PO tape at the time the
ROMs were gathered. Therefore, only those processors
that have been updated need be loaded. However, if it is
not known wh ich processors have been updated, it is better
to load too many than not enough. If the background lower
limit of the Monitor has changed, all the processors should
be loaded to provide correct biasing.

OPTIONS TO BE USED

On the !PASS3 card, the option MON should be specified.
This will cause PASS3 to abort if the Monitor load is unsuc
cessful. The !PASS3 card for BPM should read

!PASS3 BPM,MON

The rest of the options appear on PASS3 control commands
and should be used as follows:

1. DELETE and SAVE should not be osed since file space
is assumed not to be a problem (until the last section
of this chapter).

2. BIAS = VALUE should be used only if a processor is to
be biased at a specific location other than the back
ground lower limit.

loading the Monitor and Processors (PASS3) 95

3. BIAS = +offset should be used only if a processor
(e.g., a BTM subsystem) is to be biased a certain
amount above the background lower lim it.

The majority of the processors should be biased at the
background lower limit and therefore BIAS should not be
specified for them.

ERROR PROCEDURES

PASS3 runs can produce two different sets of error mes
sages: those that are preceded by asterisks and come from
PASS3, and those that are preceded by a number of the
form 30200XX and come from the loader. Most of the
PASS3 messages are self-explanatory (Chapter 12 describes
how to correct these errors). There are a few PASS3 error
messages that require special action. They are listed below.

1. ***OPEN M:EI ERR/ABN = 0003(LOCCT)

This message appears when the file LOCCT name does
not exist (linamell is the name on a PASS3 control com
mand). The name should be checked to ensure that
the name specified is the name of the LOCCT file
rather than the name of the load module to be bui It.

Right

! LOCCT (LMN, M:MON)
!DATA
:LOCCT TMON
!PASS3
:TMON

Wrong

! LOCCT (LMN,M:MON)
!DATA
:LOCCT TMON
!PASS3
:M:MON

Then M:EI should be checked to ensure that it is as
signed to FILE in the target account. PASS3 reads
the LOCCT files through M:EI. If this DCB was as
signed earlier in the job, PASS3 may be searching in
the wrong place.

If the user has not found the problem at th is point, the
LOCCT file does not exist. It should be built as spec
ified above (see the section titled II LOCCT Files ll).

2. OTHER ERROR MESSAGES REFERRING TO LOCCT,
BIN, CARD OR CHECKSUM

These messages should be treated with caution because
similar messages are printed by the loader. If any of
these are printed by PASS3, the LOCCT file is bad.
It should be rebuilt as described above (see the sec
tion titled IILOCCT Files ll).

3. ***OPEN/READ BASHANDL FILE ERR/ABN = xxxx

or

***OPEN/READ SPEC:HAND FILE ERR/ABN = xxxx

These messages should appear only when M:MON is
being loaded. Although PASS3 wi" continue, the
Monitor will not be properly built. If the first mes
sage appears, BASHANDL should be reassembled and

96 Writi ng PO Tape (DEF)

the ROM should be put into the user's SYSGEN ac
count. If the second message appears, P ASS2 must be
run again.

Loader errors are described in Appendix C of the BPM/
BP, RT Reference Manual, 90 09 54. Refer to that manual
for the cause of the error.

PASS3 must be rerun only on those loads that have errors.
The fact that some modules did not load correctly does not
mean that the others are not correct. Exceptions are

1. If M:MON does not load correctly, the entire PASS3
run shou Id be rerun.

2. If anyth ing must be reassembled (the ROM was bad or
didn't exist), all modules that use this ROM as an
element should be reloaded.

3. If PASS2 is run again, M:MON (and therefore every
thing else) must be reloaded.

WRITING PO TAPE (OEF)

At this stage, a completed system is in the target account.
If the system is a real-time system, it may be necessary to
add some programs to the tape about to be written so they
wi" reside in the :SYS account when the tape is booted.
These programs should be copied to the target account in
load module form at th is point.

The PO tape is written in the following way:

!ASSIGN M:PO, (DEVICE, 9T), (SN [xxxx)]
! DEF BPM [versn#]
:INCLUDE (:BLIB, SIG7FDP, BPM)
:WRITE PO
END

where xxxx is the serial number for the tape and versn#
is a 3-character version number (e.g., FOl). The IN
CLUDE card is not necessary if MET ASYM, LOPE, and the
on-line loader are not in the system.

HELPFUL HINTS

• HAVE ALL ASSEMBLIES DONE BEFORE YOU BEGIN
SYSGEN

This just good organization. There is no reason to
have to worry about compressed and update fi les at
SYSGEN time. The best approach is to do all of the
new assemblies early and to put the updated ROMs on
a tape. The entire BO base can then be obta i ned by
the following:

!PCL
COPYALL LT# PO TO DC
COPYALL LT# BO TO DC
COPYALL LT# UPDT TO DC
END

where L T# PO is a PO tape, L T# BO is a BO tape,
and L T# UPDT is the user's tape of updated and new
ROMs.

• DIVIDE SYSGEN INTO AS MANY SEPARATE JOBS
AS POSSIBLE

Nothing is more frustrating than to submit an entire
SYSGEN as one job and to wait hours to find out that
a minor error was made on one of the first commands.
When the SYSGEN is divided into many jobs, the out
put of each stage can be checked for errors before the
next stage is started. The most efficient job setup is
probably as follows:

!JOB
!PCL
DELETEALL
COpy ALL LT# PO TO DC
!JOB
!PCL
COPYALLLT# BO TO DC
!JOB
!PCL
COPYALL L T# UPDT TO DC
LIST DC

At this point, it is possible to determine whether
everyth ing was copied correctly, whether the ROMs
that were expected are present, and what LOCCT files
are present.

!JOB
!PASS2
:CHAN

END

PASS2 can be checked here to see if it ran correctly.
If not, it should be rerun.

!JOB
!LOCCT
!TREE
!DATA
:LOCCT
!LOCCT
!DATA
:LOCCT

This is required only if LOCCT
files must be built.

The LOCCT files should then be checked to see if they
were built properly.

!JOB
!PASS3 BPM,MON
:<LOCCT NAME FOR M:MON>
:<LOCCT NAME FOR CCI>
END

The Monitor and CCI can now be checked to see wheth
er they were loaded correctly. If not, they should be
loaded again.

!JOB
:PASS3
(Load the rest of the desired items.)
END

After this step, the loaded items should be checked.
If any item did not load, it should be corrected and
reloaded.

!JOB
!ASSIGN M:PO, (DEVICE, 9T), (OUTSN, XPO)
! DEF BPM, FOl
:INCLUDE (:BLIB, BPM, SIG7FDP)
:WRITE PO
END

If the DEF worked, the SYSGE N is complete. If not,
corrections should be m(1de and the DEF run again.

• USE THE FOLLOWING PROCE DURE

The SYSGEN procedure below is written in the form
of a program. It includes all of the steps necessary for
the successful generation of an operating system.

1 • If you have no modu les to update or add, go to
step~

2. Assemble the modules you wish to update or add.

3. Copy the new ROMs to a tape.

4. If this is the first SYSGEN for a release, go to
step 2..:

5. COPYALL a PO tape into :SYSGEN.

6. If step 5 was not successfu I, go to step ~

7. COPYALL a BI tape into :SYSGEN.

8. If step 7 was not successful, go to step 2..:

9. If you do not have an update tape from step 3,
go to step ~

10. COPYALL your update tape into :SYSGEN.

11. If step 10 was not successful, go to step ~.

12. Run PASS2.

13. If step 12 was not successful, go to step ~

14. LIST DC.

15. If you want to change any LOCCT s, go to step .!Z...

16. If LOCCTs for everything you need are in
:SYSGEN, go to step 12..-

17. Build any LOCCTs that are necessary.

18. Go to step ~.

Writi ng PO Tape (DEF) 97

19. If you wish to write a new BO tape, do so.

20. If step 19 was not successfu I, go to step l2..

21. Run PASS3 to load M:MON and CCI.

22. If step 21 was successfu I, go to step 25.

23. If M:MON did not load, go to step 1l.

24. If CCI did not load, reload it.

25. If this is not the first SYSGEN for a release, go
to step 28.

26. Run PASS3 to load every processor.

27. Go to step 12..

28. Run PASS2 to load the processors you have
updated.

29. If any processor load was unsuccessful, repeat it.

30. Write your PO tape.

31. If step 30 was unsuccessful or if you want more
PO tapes, go to step 30.

32. Stop.

LIMITED FILE SPACE

In the previous sections of this chapter, it has been as
sumed that plenty of file space exists for SYSGEN. This
is not always true. This section describes what to do when
there is not plenty of fi Ie space. It assumes a knowledge
of the information contained in the previous sections.

The approach of using two PCL COpy ALL commands to
gather the binary output from lengthy tapes is obviously
not valid here. If all the binary output needed is ob
tained at one time, there may be more files than available
space. Therefore, it is necessary to gather just enough
ROMs to do one load and to delete them before going to
the next load. Atthe end of this process, all of the needed
load modules will be in the target account, and all un
necessary ROMs will have been deleted. This SYSGEN
will have more steps and take longer, but it is basically
just as simple as any other.

GEmNG DESIRED FILES

There are two ways to get certain files from the BO tape.
If desired, these files can be copied one by one using PCL.

!PCL
COpy LT# BO/FILE TO DC/FILE
COpy L T# BO/FILE2 TO DC/FILE2

where FILE and FILE2 are the names of the desired files.

98 limited File Space

The Monitor and some of the processors have a great many
element files, however, and copying them file by file is a
big effort. For this reason, XDS BI/BO tapes have stan
dard files. These files are lists of the ROMs needed to load
a particular Monitor or processor and the necessary LOCCT
file. A standard file and all the files listed in it can be
copied from the tape using PASS1.

!ASSIGN M:BI, (SN, BO), (LABE L, X)
! PASS1
:SELECT (STD, $::BPM)

where $::BPM is the name of the standard file and BO is
the SN of the BI tape. If none of the standard fj les lists
all of the desired files, the following command may be
added to the commands above:

:SE LECT (FILE, A, B, C)

The single files, as well as those in the standard files, will
be copied. Remember that standard files and LOCCTs go
together and that if no standard file is desired, a new
LOCCT will probably have to be built.

DELETING FILES THAT HAVE BEEN USED

The DELETE parameter on PASS3 control commands causes
all the element files used in the load to be deleted. If
this parameter is used and only the desired files are ob
tained from the BI/BO tape, only the desired load module
will remain in the target account after PASS3 (plus what
ever was there before). For example,

!PASS3 BPM,MON
:TEST (DELETE)

However, if PASS3 makes explicit reference to a ROM in
some other account, DELETE will attempt to delete that
ROM from the account under which PASS3 is currently
running.

SPECIAL CONSIDERATIONS

The procedure described above makes the handl ing of new
and updated ROMs more compl icated. After the ROMs for
the Monitor or a processor have been obtained, only the
relevant update fi les must be copied. This can also be
done with PASS1.

!ASSIGN M:EI (SN, UPDT), (LABE L, X)
!ASSIGN M:BI (SN, BO), (LABEL, X)
! PASS1
:SELECT (STD, $::BPM)
:UPDATE (FILE, A, B, C)

where A, B, and C are updated ROMs to replace those in
$::BPM.

The Monitor should be loaded first, followed by CCI, to
use and delete the modules built by PASS2. After that,
the desired processors should be loaded beginning with the

largest and proceeding in descending size. The reason for
this is that the space available for ROMs decreases as load
modules that have been loaded accumulate.

Since the PO tape was not copied, there are no copies of
processors not updated. These should be copied fi Ie by fi Ie
from a PO tape after all of the PASS3 runs have been com
pleted. If ROMs such as :BLIB, BPM, and SIG7FDP from
the PO tape are desired, they should be copied at this
time. Do not forget to load or copy the system DCBs.

Briefly, here are the steps that you should follow:

1. Get the ROMs necessary to load the Monitor via
PASS1 or PCl (this includes any updated or new ROMs).

2. Run PASS2.

3. Build a lOCCT if necessary.

4. Run PASS3 with DELETE to load the Monitor.

5. Get the ROMs for CCI.

6. Bui Id a lOCCT if necessary.

7. load CCI (with PASS3 and DELETE).

8. Start with the largest processor you want to build.

9. Get the ROMs for th is processor.

10. Bui Id a lOCCT if necessary.

11. load the processor (with PASS3 and DELETE).

12. If you have loaded a II of the updated processors, go
to step ~

13. Choose the next largest of the processors you want to
load.

14. Go to step~

15. Copy the processors you have not loaded (including
system DCBs) from a PO tape.

16. Copy :BLIB, SIG7FDP, and BPM if desired.

17. Write your new PO tape.

18. Stop.

Limited File Space 99

12. SYSTEM GENERATION DETAILS

PARAMETERS DEFINING TARGET SYSTEM
Before attempting to generate a system for a specifi c target
installation, the user must know certain things about that
system. He must know the desired characteristics of the
system so that he can incorporate this data in the appro
priate System Generation control commands.

To define the characteristics of the target system, the user
should determine the answers to the following questions:

1. Is the default set of Monitor operational labels, and
the standard assignments for those labels, adequate
for the target system? If not, what standard labels
and standard assignments are required?

2. What peripheral devices are needed and which of these
should share the same channel controller? Are spe
cial I/o optimization routines to be used in the target
system?

3. What I/o handlers are to be used in the target system?
If special handlers are needed, what are the names of
the primary and secondary entry locations?

4. How many tracks are avai lable on the RAD or disk pack
to be used in the target system? How many sectors are
there on each track, and how many words per sector?
Which tracks, if any, may not be used by the target
system? How many RAD or disk pack tracks are needed
for symbiont queue storage, permanent file storage,
permanent system storage, checkpoint storage, and
absolute foreground programs?

5. Are symbionts to be used in the target system? If so,
what devi ces are to be used for symbiont I/O?

6. How many jobs may be present at anyone time in sym
biont input and output job queues?

7. How many words of core storage are needed for the
Monitor's temporary storage stack?

B. How large is the core memory to be used by the target
system?

9. How many I/o operations may be queued at anyone
time?

10. How many files may be open at anyone time?

11. How many DCBs may be open at anyone time?

12. What is the address of the first unused, even-numbered
interrupt available to the target system for the origin
of the generated Monitor?

13. How many words of core storage should be reserved for
patching the Monitor?

100 System Generation Detai Is

14. Are the standard defaults for LIMIT parameters adequate
for the target system? If not, what default limits
should be established?

15. What processors, if any, are to be entered into the
target system in absolute format? How many words of
RAD or disk pack storage are needed for the storage of
absolute processors?

16. How many foreground programs, if any, are to be in
c I uded in the target system?

17. Which interrupt location is to be used by the Monitor's
control task, and how many CALs may be queued by
the control task at anyone time?

lB. How many pages of core storage are needed for fore
ground common reference (i. e., foreground COMMON
area)?

19. How many pages of core storage are needed for resident
foreground programs?

20. How many buffers should be pooled for foreground fj Ie
indexing, and how many should be pooled for packing
and unpacking foreground data?

21. How many interrupts may be in use at anyone time?

22. Which foreground programs, if any, are to be absolu
tized, how many words of RAD or disk pack storage
should be allocated to provide room for program expan
sion, and how many pages of core storage should be al
located for each when loaded into core for execution?

23. Which interrupt locations, if any, may be referred to
in Monitor CALs by symbolic labels? What labels will
correspond to these locations?

24. What user programs, processors, or other program ele
ments are to be established as standard systems? What
load structures are to be defined for these standard sys
tems, and what names are to be used in referencing
their LOCCT tables?

25. In addition to any standard system fi les, what other
files are to be included in the target system? Are all
such fi les present on the current master system tape, or
must some be obtained from an update tape or deck?

26. What patches, if any, must be made to the Monitor or
to system fi I es after the target system has been booted
from the generated system tape?

SYSGEN PROCESSORS
BPM System Generation is a multi-pass process by which
the user can generate a BPM operating system tai lored to
the requirements ofa specific installation. Starting with
a BPM master system tape, the user can create a bootable
system tape from which the generated BPM operating system
can be loaded into a target machine. The target machine
can be any Si gma system havi ng a hardware confi gurati on
compatible with BPM (see IIHardware Requirements ll

,

Chapter 10). One Sigma Computer (Sigma 5-8) can be
used to generate a BPM for another Sigma computer, or
vice versa, and the target machine may have more or less
core storage than the one used to generate the system tape.

The master system tape contains a bootable Monitor, fi les
of load modules comprising the processors and other routines
to be used during System Generation, and a large number of
element fi les that constitute a data base for the System
Generation process. The user may patch the operating sys
tem as it is loaded into the machine from tape but cannot
alter the object modules at this time, since the object mod
ules are not read from the tape unti I the PASS 1 processor
is called. When the Monitor has been booted and the non
resident routines have been written to the disk, the BPM
system is fully operational.

System Generati on control commands read by the PASS 1
processor a II ow the user to se I ect element fi I es from the
data base of the master system tape, to substitute updated
files for these (if necessary), and to add files to the re
sulting revised data base which is maintained in disk stor
age for use in later phases of the current System Generation.
The DEF processor provides the option of writing a revised
master system tape for use in some future System Genera
tion. The PASS2 processor reads System Generation con
trol commands and generates disk fi les of load modules that
establish operational labels, peripheral characteristics,
real-time interrupts, and other installation-dependent
parameters for generated system tape written during a later
phase of the current System Generation. PASS2 may be
performed either before or after PASS1, since the two are
entirely independent.

The object modules selected during PASS1 must be com
bined in load module form before a generated system tape

. can be written. Also, the tree structures for any overlays
ml,J.st be established. A tree table for each BPM standard
system is present in the master system tape. If the user
references a standard system (e. g., Meta-Symbol) in a
control command during PASS 1, he need not f!lake explicit
reference to the tree table; it wi II be included automati
cally. However, tree tables for nonstandard systems must
be created by the user through appropriate I LOAD and
!TREE control commands.

After the user has created a tree table for an overlay struc
ture, he has the option of calling the LOCCT processor to
generate a permanent LOCCT fi Ie containing the tree in
formation, so that this information need not be created
anew during subsequent System Generations.

If the generated system is to include BPM standard systems
or user-defined programs having associated LOCCT files- of
tree information, the PASS3 processor must be called to. ini
tiate the formation of load modules for such systems or
programs.

The PASS3 processor reads control commands specifying
whi ch LOCCT tables are to be used to define the load struc
ture of BPM standard systems or user-defined programs. The
user has the option of altering the load bias of a defined
load structure and may specify that a given LOCCT table
and associated object modules are to be deleted from disk
storage when the component object modules have been
loaded.

The first command read by PASS3 should specify the Moni
tor's LOCCT table (e. g., LOCCTBPM57M), so that the
Monitor wi II be loaded first. This wi II enable PASS3 to
establish minimum bias values for each subsequent load
structure. If a user-specified load bias val ue is less than
the minimum set by PASS3, it will be used although a warn
i ng message wi II be output on the L L devi ce. If the Mon i
tor is not the first item loaded, any items loaded prior to
the Monitor wi II not be biased automati cally but wi II be
biased according to the value given in the pertinent PASS3
control command or, if no such value was given, according
to the bias contained in the LOCCT table for the item.

Items not specified in PASS3 control commands may be loaded
via I LOAD, I OVERLAY, or IOLAYand !TREE commands
as in ordinary batch processing, except for the Monitor load
module (M:MON). M:MON must be loaded via PASS3.

When all desired object modules have been converted to
load module form, the DEF processor must be called to
write a tape containing the generated system. The! DEF
command may be followed by :INCLUDE, :IGNORE,
:WRITE and/or :DELETE control commands. The :INCLUDE
command specifies the names of any user files (e. g., data,
object modules, procedures, etc.) to be included in the
generated system tape although not in load module format.
The :DELETE command specifies that all object modules in
the current user's account are to be deleted from disk stor
age; otherwise, they wi II be saved for use in future System
Generations. The :IGNORE command specifies the load
modules to be excluded from the system.

The system tope geliel eted by Hie DEF processor has the
same general format as the master tape (Figure 31) used in
booting the BPM system employed in the System Generation
process. The method of loading the generated system into
the target machine is identical to that used in booting from
the master tape.

Detailed procedures for generating standard 0. e., typical)
BPM systems, and detai led descriptions of the various con
trol commands used in System Generation are presented
later in this chapter.

SYSGEN Processors 101

Tape Bootstrap

Boot Subrouti ne

Segment names
and numbers

:lBL

File information for
last LM {null file}

Second
ROM

Fi Ie information
for last file

Last
file

:ACN
File information for

first load module {LM}

File information for first
relocatable object modul

(ROM)

:EOR

Figure 31. Format of Master System Tape

102 SYSGEN Processors

First
LM

First ROM

COMMAND FORMAT

The formats and functions of the control commands used in
the various phases of System Generation are discussed be
low. The control commands used in System Generation are
of two general types: Monitor control commands having an
" !" in column 1 (e. g., commands used to call System Gen
eration processors for execution) and System Generation
control commands having a ":" in column 1 (i.e., com
mands used to communicate optional or required parameters
to System Generation processors).

Since the user has considerable flexibility in setting up and
performing a System Generation, it is not practical to pre
sent exhaustive examples of System Generation deck setups
in this manual. However, by observing the general consid
erations outlined in this chapter, the user should have little
difficulty in setting up his own System Generations.

Many users will find that the "cookbook" job setups given
for generating standard BPM systems are adequate for their
needs, and it is likely that the requirements of most instal
lations can be met by relatively minor alterations of one of
the standard configurations.

PASS1 PROCESSOR

The PASS 1 processor a /I ows the user to se I ect (and/or up
date) and write to disk all nonkeyed element files required
for later phases of System Generation or for the creation of
a new master system tape.

The PASS 1 processor accepts selected fi les from the BI de
vice and updates files from the EI device. The default as
signment for M:BI is to the BI device and for M:EI is to the
card reader. If the user prefers to use other medi a for these
functions, he must assign M:BI and/or M:EI appropriately
before calling PASS 1.

The output tape DCB is opened with a DEVICE assignment
to prevent problems caused by a LABEL assignment.

PASS1 recognizes the following commands.

:SELECT :LABEL

:UPDATE

!PASSI This command causes the Monitor to fetch the
PASS1 processor from the RAD disk pack and to transfer
control to it.

The ! PASS 1 control command has the form

(PASS1option

where option specifies the type of Monitor the user wishes
to generate. BPM, BTM, and UTM are legal types. The
default type is that of the Monitor that is running.

Once PASS 1 assumes control of the system, it continues
unti I a control command beginning with an exclamation
character (except an ! EOD command) is read.

:SELECT This command selects specified fi les and/or
standard system files from the BI device. Selected files are
retained on the RAD or disk pack for use in subsequent passes
of System Generation. More than one :SELECT command
may be used. The :SELECT command has the form

:SELECT (option) [,(option)] ...

where the options are

ALL specifi es that all fi les read from the BI devi ce
are to be selected. If ALL is specified, no other
options are needed.

FILE, file name,... specifies the name of an ele-
ment file that may be used with a processor, li
brary, or Monitor configuration. More than one
such name may be specified in a single FILE option,
but no file name may exceed 15 alphanumeric
characters. Disk fi les of another account can be
selected and updated by assigning the DCB to a
fi Ie name and account.

STD, standard system fi Ie name specifies the name
of a fi Ie that contains, as individual records, the
fi Ie names of the elements comprising a specific
processor, library, or Monitor configuration. Each
record in a standard system fi Ie contains an ele
ment fi Ie name (simi lar to Symbol/Meta-Symbol
TEXTC format) beginning with the first byte of the
record, (e. g., 8PASS 1 ROM). There may be no
more than one standard system fi I e name per S TD
option, but there may be more than one STD op
tion in a :SELECT command.

The PASS1 processor reads (from the BI device) the element
fi Ie names contained in each selected standard system fi Ie
and subsequently selects the corresponding element fi les
(a Iso from the BI device). Since PASS 1 reads the master
tape only once, each selected standard system fi Ie must
precede any of its referenced element fi les. Because fi les
on the master tape are arranged in alphanumeric order,
standard system file names must precede any of their ele
ment file names in the alphanumeric hierarchy (e. g., stan
dard file BETA must not contain the name of element file
ALPHA, because file BETA would not be read from the tape
unti I after element file ALPHA had been passed and ignored).

To select files from a device other than the master tape read
by PASS 1, the user must assign M:BI appropriately.

:UPDATE This command replaces (or inserts) specified
fi les on the RAD or disk pack with element fi les from the
EI device. If update fi les are input from the card reader
(the default assignment for M:EI) each file deck must be
preceded by a : LABEL command (see below) and followed
by an ! EOD command.

Command Format/PASS1 Processor 103

The :UPDATE command has the form

:UPDATE (option)[, (option)]

where the options have the same form as for the :SELECT
command (see above), but update fi les are always read
from the EI device rather than the BI device. Update files
are always obtained after the select fi Ie phase is com
pleted. : UPDATE commands are honored even if there are
no selects.

:LABEL This command specifies the name of the data
deck that follows the : LABE L command. The deck sequence
must be arranged as shown in Figures 32 and 33. Note that
the first use of a : LABEL command must be preceded by a
lEaD card.

The : LABE L command has the form

(: LABEl, nome

where name specifies the name of the element fi Ie or stan
dard system fi Ie contained in the data deck that follows.
The name may not exceed 15 alphanumeric characters in
length.

A : LABEL command must be used for each fi Ie that is to be
selected and/or updated from the card reader.

PASS1 MESSAGES

Table 13 lists the messages that are output during PASS1
processing. All messages are output on the LL device.

PASS1 EXAMPLES

Examples of typical PASS1 deck setups are shown below.

!PASSl

! ASSIGN M:EI,{SN,2),(LABEL,X)

!ASSIGN M:BI,(SN,l),(LABEL,X)

! Previous Monitor CC

104 Creation of ERRMSG File/PASS2 Processor

This deck setup would cause PASS1 to select every file from
the BI device (labeled tape) and then select every update
file from the EI device (labeled tape), replacing or supple
menting the elements originally selected from BI.

CREATION OF ERRMSG FILE

After PASS 1 has been processed, the ERRMSG fi Ie should
be created using the ERROM program. This program runs
as a batch job with data records read via the M:SI DCB.

Data Formats:

First Field

Second Field

Example:

(Cols. 1-6)

(Cols. 7-80)

Hexadecimal Code

Text of Message

020022 NO ROOM TO READ LIBRARY REF/DEF STACK

The last two digits of the 6-digit code are the error
code.

The BI tape contains two files, ERROM and ERRDATA.
ERROM is the ROM of the program and ERRDATA is the
sequential file of data records. After performing a PASS1,
the following jobs should be run:

!JOB :SYS, ME, F
! LOAD (EF, (ERROM, :SYSGEN»
!ASSIGN M:SI, (FILE, ERRDATA, :SYSGEN)
!RUN
!JOB :SYSGEN, ME, F
!ASSIGN M:EI, (FILE, ERRMSG, :SYS)
!ASSIGN M:EO, (FILE, ERRMSG)
!FMGE (ENTER, PERM)

These two jobs ensure that the error message file exists in
the :SYS account for the duration of the SYSGEN and that
it also exists in the :SYSGEN account in order that DEF
wi II write it to the PO tape as a keyed file.

PASS2 PROCESSOR

The PASS2 processor may be used either before or after the
execution of PASS 1 to define the foreground and background
environment of the target system. PASS2 reads control com
mands from the C device and generates files of load modules
on the system RAD -or disk pack.

The following are SYSGEN PASS2 size restrictions when
defining peripheral devices and standard labels:

64 un i que type mnemon i cs

128 STDLB control commands

32 CHAN control commands

96 DEVICE control commands

!Previous Monitor CC

The deck setup would cause PASSl to select files A, S, and C and standard-system files SX and SY from the SI device
(labeled tape). Standard-system files SX and $Y wi II contain the names of other fi les to be selected from SI. Update
file A and standard system file SX will be obtained from the EI device (card reader). Notice that the standard system
file SX precedes the files named in its own records.

Figure 32. PASSl STD Files

PASS2 Processor 105

! Previous Monitor CC

This deck setup would cause PASS1 to select every fi Ie from the BI device (labeled tape) and then to select every update
file from the EI device {card reader} replacing or supplementing the elements originally selected from BI. Notice that the
update file 5T is a standard system file. Its records contain the file names that make up standard file $T. However, in
this case, the update file ST is not looked at as a standard system file, but as just a normal update file. File ST can be
used in future System Generations as a standard system fi Ie.

Figure 33. PASS 1 Use of SELECT/UPDATE ALL

106 PASS2 Processor

Table 13. PASS 1 Messages

Message Descri pti on

n ABNORMAL ON xxxx An I/O abnormal condition has been encountered on the specified de-
vice. The abnormal code is nn; the name of the DCB for the device is
xxxx. If the DCB is M:BI or M:EI, PASS1 continues; otherwise, it aborts.

****BO TAPE CONTENTS**** The names following this message are the names of all fj les output on the
BO tape. PASS 1 continues.

CONTROL COMMAND ERR The PASS 1 command encountered a control command that was not recog-
nized (including a LABEL card before an !EOD), contained a syntax
error, or had no colon in column 1. PASS1 makes an error return to the
Monitor.

DELIM ERR PASS 1 encountered a control command containing an incorrect del imiter.
PASS 1 makes an error return to the Monitor.

FILE NOT ON UPDATE CARD-IGNORED A file name on a LABEL card did not appear as a file name on an
UPDATE card. PASS1 ignores the corresponding file from the M:EI
devi ce and continues.

NAME ERR PASS 1 encountered a control command containing an illegal name (i. e. ,
one having no alphabetic character or one having a nonalphanumeric
character) . PASS 1 makes an error return to the Monitor.

NAME FROM BI/EI STD FILE ERR PASS 1 encountered a fi Ie name in one of the records of a standard fi Ie
that is greater than 15 characters in length. PASS 1 makes an error
return to the Monitor.

NO BO WILL BE GENERATED This message is always output during PASS 1. PASS 1 continues since
this is not an error condition.

****SE LECT FILES NOT FOUND**** The names of fi les specified by SELECT command were not found on the
BI device. (The names follow the message.) PASS1 continues.

****STD FILES NOT FOUND**** The names of fi les specified in STD options were not found on the BI
device. (The names follow the message.) PASS 1 continues.

***UN KNOWN TYPE - xxx USED The Monitor type option was not present or legal. "XXX" is replaced
with the default type (of the Monitor that is running).

****UPDATE FILES NOT FOUND**** The names of fj les specified by an UPDATE command were not found on
the EI devi ceo (The names follow the message.) PASS1 continues.

32 unique handlers (i. e., unique devices with handler
names)

:SDEVICE

:MONITOR

:BTM

:INTLB

32 unique operational labels

32 RADs or disk packs defined by DEVICE control
commands

The following commands are recognized by PASS2, and
continuation cards are allowed.

:STDLB :DLIMIT

:CHAN :ABS

:DEVICE :FRGD

!PASS2 This command causes the Monitor to fetch the
PASS2 processor from the RAD or disk pack and to transfer
control to it.

The PASS2 command has .the form

(PASS2 option

where option specifies the type of Monitor the user wishes
to generate. BPM, BTM, and UTM are legal types. The
default type is that of the Monitor that is running.

PASS2 Processor 107

When PASS2 assumes control, it continues unti I a control
command with an ! in column 1 is encountered.

:STDLB This command defines standard Monitor opera-
tional labels for the target system. If used, it must appear
with the :CHAN/:DEVICE commands. It may appear either
before or after a :CHAN or :DEVICE command and more
than one :STDLB command may be used.

The :STDLB command has the form

:STDLB {label, name)G (•••)]. .•

where

label specifies a Monitor operational label com-
prising 1 or 2 alphanumeric characters, at least
one of which must be alphabetic.

name specifies a physical device name (to which
the label, above, is to be assigned) or an opera
tional label. Devi ce names have the form yyndd
(see Tables 14, 15, and 16).

Table 14. I/o Device Type Codes

Device (yy) Physical Device Name

MT Magnetic tape

7T 7-track magnetic tape

9T 9-track magnetic tape

CP Card punch

CR Card reader

PP Paper tape punch

PR Paper tape reader

TY Typewriter

LP line printer

DC Magneti c di sk

DP Disk Pack

PL Plottert

NO No device

CO COCt

t Handlers must be specified.

108 PASS2 Processor

Table 15. Channel Designation Codes

Specified Correspondi ng
Channel Decimal Digit
Letter(n) of Unit Address

A 0

B 1

C 2

D 3

E 4

F 5

G 6

H 7

Table 16. Device Designation Codes

Hexadecimal
Code (dd) Device Designation

00 Sdd S7F Refers to a devi ce number (00
through 7F)

80$ dd $ FF Refers to a devi ce controller number
(8 through F) followed by a device
number (0 through F).

If no :STDLB commands are used, the following default set
of labels is assumed; if one or more :STDLB commands are
used, then none of these defaults is assumed.

C = LI = SI = BI = CI = EI = device CRA03

OC = device TYA01

LO = LL = DO = SL = device LPA02

PO = BO = SO = CO = AL = EO = device CPA04

:CHAN This command groups peripheral devices (see
:DEVICE below) according to channel controller. All
:DEVICE commands following a given :CHAN command
must be a part of that channel. At least one :CHAN
command must be used, and each :CHAN command must
precede the :DEVICE command (or commands) to which it
applies.

The :CHAN command has the form

(:CHAN

:DEVICE This command specifies the name and
characteristics of a system peripheral device. One
:DEVICE command must be used for each device in the
target system. Any combination of secondary storage
de vi ces (up to 32 devices) can be specified.

The :DEVICE command has the form

:DEVICE name[, (option)] ...

where name specifies the device name (see Table 14, 15,
and 16) and the options are as follows:

{
INPUT I
~UTPUT

specifies whether the device is to be
used for input, output, or both. The
default is 10.

HANDLER, namel, name2 specifies the name of the
I/O handler to be used. Name 1 is the primary
entry (build command list and start device) and
name 2 is the secondary entry (handle interrupt).
Each name must not exceed 7 alphanumeric char
acters. If this option is omitted, the default
handler for the devi ce type is assumed (see table
below). Name 1 must be the r.ame of the object
module for this particular handler unless it is one
of the defaults.

Device Type Namel Name2

TY KBTIO KBTCU
PR PTAP PTAPCU
PP PTAP PTAPCU
CR CRDIN CRDINCU
CP CRDOUT CRDOCU
LP PRTOUT PRTCU
DC DISCIO DISCCU
9T, 7T, MT MTAP MTAPCU
DP DPAK DPAKCU

The above names must be used unless the user has
supplied his own handler as an object module.

PAPER, size, width specifies the (hexadecimal)
number of printable lines per page (size) and the
maximum (hexadecimal) number of characters
per line (width). This option applies to type
writers, Teletypes, and line printers. If this
option is omitted, the values 3810 and 13210
are assumed for size and width, respectively.

The allocation of disk area may be constrained by the
following options. All defaults are 0 unless otherwise
indicated.

type specifies, by device model number, the values
indi cated below for SS, NSPT, and SIZE. The
default type for DC is 7204 and for DP is 7242.

RAD/Disk Pack SIZE
16 NSPT 16 SS16

7204 200 10 5A
7212 40 52 100
7232 200 C 100
7242 FAO 6 100

CYLINDER specifies that a cylinder allocation
table is to be bui It instead of a granule alloca
tion table and is used for disk packs only. A
cylinder allocated devi ce can be either publ ic
or private. For DP allocation, there are 400 al
locatable cylinders (30 512-word granules or 1/2
a physical cylinder).

Cylinder allocation requires that the options
SIZE, PFA, PSA, BCHK, and ABSF for disk de
vices be specified in hexadecimal cylinders, in
stead of hexadecimal tracks. The PER option is
ignored for cylinder allocation. SIZE is auto
matically changed to 400

10
if it was 4000

10
,

If cylinder is not specified, BPM will assume
granule allocation.

PRIVATE specifies that the file will be recognized
as private and CYLINDER allocation is assumed.
The PRIV bit is set in the allocation table, the
PUB bit is reset in the Automatic Volume Recogni
tion (AVR) table, and PFA is set equal to SIZE,
ignoring all other options (PER, PSA, ABSF,
BCHK, and PFA).

PFA, value specifies, in hexadecimal, the number
of tracks (cylinders) to be allocated for permanent
fi Ie storage, including element fi les. The default
for DC devices is 130

16
,

PSA, value specifies, in hexadecimal, the number
of tracks (cylinders) to be allocated for permanent
storage on DC or DP devices. The default on DC
devices is 4016. This read contains the absolute
core image of the Monitor, Monitor overlays, and
absolutized processors (see "ABSP). It also con
tains the absolute secondary storage read/write
area and one sector for each of the 36 standard
DCBs.

BCHK, value specifies, in hexadecimal, the number
of tracks (cylinders) to be allocated for background
checkpoint storage. This area must be large enough
to hold the entire background when a nonresident
foreground program which is biased in the back
ground is to be executed, a resi dent foreground
program is loaded into the background via an
M:ABSLOAD call, or an M:SBACK call is issued
by a real-time program. The default is O.

PASS2 Processor 109

ASSF, value specifies, in hexadecimal, the number
of tracks (cylinders) to be allocated for absolute
foreground programs formed by specifying the ASS
option in the !RUN command or with the INTS
option in the :FRGD command for SYSGEN. This
space must be large enough to hold all of the ab
solute foreground programs. The default is O.

PER, value specifies, in hexadecimal, the number
of tracks to be allocated for peripheral symbiont
queue storage. The default value is 9016 for
DC devices (note that one minute of backup for
an 800 line/minute printer uses 25,00010 words
of disk scratch storage). The PER option is i g
nored for cylinder allocation.

The Device Control Tables (DCT) will be reor
dered according to the device type to eliminate
order requirements for the AVR table, and the
granule pools (H GP) wi II be reordered to ensure
that disk devices with permanent system storage
(PSA) precede others.

The following options further define the files for disk devices:

NSPT, value specifies, in hexadecimal, the number
of disk sectors per track.

SS, value specifies, in hexadecimal, the number of
words per disk sector.

SIZE, value specifies, in hexadecimal, the number
of tracks (cylinders) available to the system on
this device.

SIZE, SS, and NSPT are also specified by a "type" option
and thus have as their defaults those of the default type
(7204 for DC, 7242 for DP).

:SDEVICE This command specifies which peripheral
devices are to be associated with a given symbiont. If used,
this command must appear immediately prior to the
:MONITOR command (see below) and immediately fol
lowing the :STDLB (:CHAN/:DEVICE) commands. Only
one :SDEVICE command may be used.

The : S DEVIC E command has the form

:SDEVICE (LMN, symbiont, name [, •.. J)[, (...)J .•.

where

symbiont specifies the load module name of a sys-
tem symbiont. Either ISSEG (input) or OSSEG
(output) may be specified.

name specifies a peripheral device name of the
form yyndd (see Tables 12, 13, and 14).

All peripheral devices must have been specified in :DEVICE
commands (see above).

110 PASS2 Processor

:MONITOR This command defines various Monitor and
CPU parameters for the target system. It must be used and
must appear immediately following the last command used
to define the peripheral devi ces of the target system (i. e.,
either after the :SDEVICE command, if any, or else after
the last :DEVICE or :STDLB command, whichever appears
later in the deck).

The :MONITOR command has the form

(:MONITOR (option) [, (•.. » ...

where the options are as follows. Note that the default
v'alues given are also the minimum that may be specified
for each parameter.

SFIL, n specifies, in decimal, the number of job
fi les that can be maintained by symbionts. One
such file is needed for each batch job 'in the job
queue and two fi les are needed for each job that
has been executed but whose output has not yet
been listed or punched. The default is 20.

TSTACK,size specifies, in decimal, the number of
words in the Monitor's temp stack. The default is
200 for nonsymbiont systems and 250 for symbiont
systems. The Monitor saves its environment as
well as the TEMP area during interrupt processing.
Thus, the more interrupts there are, the more
TSTACK space is required. It is recommended
that the user specify an additional 50 words for
each external interrupt level and 50 words for
BTM (if applicable).

CORE, size specifies, in decimal units of K (where
k = 1024), the size of core storage in the target
system. The default is 24.

QUEUE,size specifies, in decimal, the maximum
number of I/O operations that may be queued at
anyone time. The default is 4. For a symbiont
system, it is recommended that at least 20 be
specified (to allow concurrent typing and
execution).

MPOOL, size specifies, in decimal, the number of
34-word buffers to be pooled for use by the Mon
itor. The default is 3. For maximum I/O through
put, the number of MPOOL buffers should be equal
to the maximum number of DCBs that may be open
at anyone time. For device I/O, one buffer is
reserved for the OC devi ce.

FQUEUE, value specifies, in decimal, the number
of queue entries reserved for foreground programs.
The value specified must be less than the number
of entries defined for QUEUE (see above). The
default is (;) if omitted (or incorrect).

FMPOOL, value specifies, in decimal, the number
of Monitor buffers reserved for foreground use.

The value specified must be less than the number
specified for MPOOL {see above}. The default
is 0 if omitted {or incorrect}.

SPOOL, size specifies, in decimal, the number of
256-word buffers to be pooled for use by symbionts.
The default is O. SPOOL has no meaning for a
nonsymbi ont system . To obta i n opti mum effi ci ency,
the number of SPOOL buffers must be equal to the
number of CPOOL buffers {see below} plus 2 {one
for the input symbiont and one for the output
symbiont}.

CPOOL, size specifies, in decimal, the number of
40-word buffers to be pooled for symbiont context
block use. The default is O. CPOOL has no
meaning in a nonsymbiont system. To obtain opti
mum efficiency, there must be one context buffer
per symbiont device type plus one per symbiont
device.

There must be one SPOOL and one CPOOL per
symbiont device type.

CFU, value specifies, in d~cimal, the number of
19-word buffers to be pooled for current fi Ie users.
The default is 2. The minimum number of buffers
specified for this pool should be the number of
fi les {DCBs} that may be in use at anyone time.
Six are required if System Generations are to be
performed.

ORG, value specifies, in hexadecimal, the load
origin of the Monitor. This value should be the
address of the first unused, even-numbered inter
rupt, since the Monitor must be biased above the
highest interrupt. If there are no special inter
rupts, the origin should be at location 60

16
which

is the default value.

MPATCH, size specifies, in decimal, the number of
word locations to be reserved for modification of
the Monitor (i. e., a patch area). The default is O.

:DLlMIT This command is used to specify the system
parameters (default limits) that are to be associated with
each job to be processed. All parameters omitted from or
not specified explicitly by either a : LIMIT control command
for a particular job or by a :DLIMIT command are set to
their default limit. :DLIMIT must be used but can be null.
It must follow the :MONITOR command.

Standard SYSGEN Default Limits

Job execution 15 minutes

Job processor Ii sti ng output 100 pages

Object records 500 records

Job diagnostic output 100 pages

Executing programs output 100 pages

Standard SYSGEN Default Limits (cont.)

Temporary di sk storage 256 granules

Permanent disk storage 256 granules

Index buffers Two 256-word buffers

Fi I e buffers Two 512-word buffers

Scratch tapes Two tapes

The M:DLIMIT library load module has been modified to
accommodate individual default limits for different priority
settings (see PRTYoption).

Only one :DLIMIT command is allowed. However, con
tinuation is allowed on following cards when necessary.

The :DLIMIT command has the form

:D LIMIT [(option)] [, (option)] .•.

where the options are

TIME, val ue specifies, in decimal, the default limit
for job execution time. Value is expressed in
minutes. If unspecified, the value 15 is assumed.

LO, value specifies, in decimal, the default limit
for the number of pages to be listed by all proces
sors involved in running a job. If unspecified, the
value 100 is assumed.

PO, value specifies, in decimal, the default limit
for the number of object records produced in run
ning a job. If unspecified, the value 500 is
assumed.

DO, value specifies, in decimal, the default limit
for the number of pages of diagnosti cs produced in
running a job. If unspecified, the value 100 is
assumed.

UO, value specifies, in decimal, the default limit
for the number of pages that may be output by the
executing program{s) in a job. If unspecified, the
value 100 is assumed.

TSTORE, value specifies, in decimal, the default
limit for the number of granules (512 words) of
temporary disk storage that may be used by a job.
If unspecified, the value 256 is assumed.

PSTORE, value specifies, in decimal, the default
limit for the number of granules of permanent disk
storage that may be used by a job. If unspecified,
the value 256 is assumed. The default limit is also
constrained by the value in the user's authoriza
tion file.

PASS2 Processor 111

IPOOl, value specifies the (decimal) default number
of 256-word buffers to be pooled for batch file
indexing. If unspecified, the value 2 is assumed.
Each open fi Ie requires an index buffer. If an in
sufficient number of index buffers exists, they will
be shared (at the price of reduced system perform"
ance). This default can be overridden by use of
a POOL control command at run time (see Chap
ter 2 of the BPM/Reference Manual, 90 09 54).

FPOOl, value specifies the (decimal) default num-
ber of 512-word fi Ie blocking buffers to be allo
cated to batch tasks. If unspecified, the value 2
is assumed. In general, each open file requires a
blocking buffer. If an insufficient number of
blocking buffers exists, they wi I I be shared (at the
price of reduced system performance). This de
fault can be overridden by use of a POOL control
command at run time (see Chapter 2 of the BPM/
Reference Manual 90 09 54).

SCRATCH, value specifies, in decimal, the default
limit for the number of scratch tapes that may be
in use at anyone time. If unspecified, the value
2 is assumed.

PRTY, value specifies the priority (hexadecimal
value) to be used for all following options to the
next PRTYoption or the end-of-record. All op
ti ons preceding the fi rst PRTY opti on wi II specify
the values to be used for all limits not specified
explicitly by priority. For example,

"DLIMIT (lO,30), (PRTY,6), (lO,50),
(PRTY, 7), (PO, 12)

All defau Its except lO and PO are set to their
standard SYSGEN default limits. LO limits will
be set to 30 for all priorities except 6, which wi II
be set to 50. PO limits will be set to their stand
ard SYSGEN default limit (500 records) for all
priorities except 7, which will be set to 12.

:ABS This command must be used to specify which pro
cessors, if any, are to be entered into the system in absolute
format and the size of an absolute fi Ie area for fast access to tem
porary disk storage. Processors entered in this manner wi"
be managed as part of the system, thereby allowing a direct
fetch of the processor. Only one :ABS command may be used.

The :ABS command has the form

:ABS [, size] ~proc1[' S)) L (proc2[, 5))] .. J

where

proci specifies the name of a processor to be as-
signed an absolute disk address.

S specifies that the load module form of the proces-
sor is to be saved rather than deleted from the

112 PASS2 Processor

system. System Generation will always save the
load module form of an overlaid processor that has
been declared in the :ABS control command. The
root of the tree structure is the only portion of the
processor affected by the :ABS control card; there
fore, for an overlaid processor, the load module
must be saved. System disk storage space require
ments are greatly reduced when nonoverlaid pro
cessors are released.

size is the (decimal) number of words desired for
the absolute storage area on disk. The default
is 1024 (this is the minimum required to load the
Monitor).

:FRGD This command defines the foreground charac-
teristics of the target system. Only one :FRGD command
may be used.

The :FRGD command has the format.

:FRGD (option) [, (option)] ..•

where the options are:

NFRGD, value
t

specifies, in decimal, the maximum
number of foreground programs known to the Moni
tor at one time. This includes foreground programs
which are absolute on disk, resident in memory, or
both.

CT, addres/ specifies the absolute hexadecimal in-
terrupt location to which the Monitor1s control task
is to be connected. The control task is a resident
Monitor routine that handles all unsoli cited key
ins, background checkpoint and the processing of
I/O cleanup and other real-time processes.

FCOM, size specifies the number (decimal) of pages
to be reserved for common reference by a II fore
ground tasks. The default size is O.

RESDF, size specifies, in decimal, the number of
pages to be reserved for resident foreground stor
age. The default is O.

FIPOOl, value specifies, in decimal, the number
of 256-word buffers to be pooled for use in fore
ground fi Ie indexing. The default is O.

FFPOOl, value specifies, in decimal, the number
of 512-word buffers ·to be assi gned for use in fi Ie
manogement (to be used by the Monitor in the
packing and unpacking of foreground data). The
default is O.

NINT, value specifies, in decimal, the maximum
number of interrupts that wi /I be used at one time.

tThis parameter must be specified.

This includes the clock and external interrupts,
but does not i ncl ude the externa I interrupt for the
Monitor's control task. The default is O.

CTQ, value specifies, in decimal, the number of
entries in the Monitor's control task queue. These
queue entries are used for queuing up M:ABSLQAD
and M:SBACK CALs. The default is 2.

INTS, (name, size, pages)[, (••.)]. . . specifies the
names of foreground programs that are to be made
absolute and loaded when the Monitor is booted
from a PO or BI tape. These programs are also
loaded when the Monitor is booted from disk. The
"size" specifies the additional number (decimal)
of words to be allocated on disk for expansion if
the program is updated, "pages" specifies the
additional (decimal) number of pages to be allo
cated for the program when it is loaded into mem
ory. The load modules for these programs must
have been formed at SYSGEN time by the relo
cating loader. Also, when they are loaded they
are given control at their end-transfer address so
that they can initialize themselves.

:BTM This command specifies the parameters of the on-

Option

NUMUSERS, n

USERSIZE, n

NUMSYSTS, n

BTMPM

BPMQTM,n

BTMQTM,n

BTMQTM2,n

IBUFSIZE, n

OBUFSIZE, n

lINT, n

OINT, n

line time-sharing portion of the target system. Only one
: BTM command may be used.

The :BTM command has the form

:BTM [(option)] [, (option)]. ..

where the options are shown in Table 17.

Table 17. :BTM Command Options

Meaning

Total number of time-sharing consoles that may be in use at one time.

Size, in words, of the time-sharing memory area. The size must be a
multiple of 512 (one page).

This provides an upper I imit on the number of subsystems that can be in
the system. It is prudent to provide for more than the standard set, so
they can be added after the system is generated. This should also be
taken into account when allocating swap area.

The core allocation for tables used by the system tuning program.

The minimum amount of time BPM runs before time-sharing users are
scheduled.

The maximum amount of time an on-line user may run before BPM
receives another quantum.

The maximum amount of time a compute bound user may run before
BPM receives another quantum.

COC input buffer size. The number of bytes that may be typed ahead
before data is lost. This is also the maximum number of characters
that may be typed before an activation character is typed.

The number of characters which can be held in each user's COC output
buffer without further program intervention.

The location of the COC input interrupt.

The location of the COC output interrupt.

Default

8

16384

12

200

200

800

100

100

60

61

Limits

1-64

12288-
65536

Units

Dec.

Dec.

10-30 Dec.

10-500 ms.

50-500 ms.

50-2000 ms.

80-200 Dec.

80-255 Dec.

60-13F Hex.

61-13F Hex.

PASS2 Processor 113

:INTLB This command provides the capabi lity of
associating a label with an interrupt location. The label
may then be used in the Monitor CAls such as M:ARM.
More than one label and location pair may be specified.

The :INTLB command has the format

:INTLB (label, loc)[' (•••)] •..

where

label specifies a one- or two-character alphanu-
meric label.

loc specifies the absolute hexadecimal interrupt
location to be associated with the label. The
location must be greater than 5F and less than 140.
Labels may also be associated with counters 1, 2,
and 3.

If used, the :INTLB command must immediately follow the
:FRGD command.

PASS2 CONTROL COMMAND SEQUENCE

The PASS2 control command sequence must be ordered ac
cording to the following scheme and must be first:

Case 1 Case 2 Case 3

[STDLB] CHAN CHAN

CHAN [STDLB) DEVICE

DEVICE DEVICE (STDLS]

[SDEVICE) [SDEVICE] [SDEVICE]

MONITOR MONITOR MONITOR

DLIMIT DLIMIT DLIMIT

where STDLB and SDEVICE are optional.

One other PASS2 control sequence which must be adhered
to is:

FRGD

[INTLB]

where INTLB is optional, but if it is needed, it must imme
diately follow the FRGD control command: this combina
tion may appear anywhere following the MONITOR control
command. .

114 PASS2 Messages

When a PASS2 control command parameter has a default,
this implies that when a value is specified, the default
given is the minimum accepted (unless otherwise specified)
as well as being the default.

PASS2 EXAMPLE

I:DLIMIT

I :INTLB (LS,60)

I :(NINT,3),(NFRGD,2),(CT,61)

:FRGD (FIPOOL,2),(FFPOOL,2), i

-
-

I : (CFU,5),(ORG,62)

~:MONITOR (SPOOL,6),(CPOOL,4),;

I:SDEVICE (LMN,ISSEG,CRA03)

I :9TAP,9TAPX)

:DEVICE 9TAOO,(HANDLER,;
~

I--

""'-

I:CHAN

: :CRDIN,CRDINX)

I :DEVICE CRA03,(HANDLER, i

I:CHAN
!PASS2

-
~

~

r-

PASS2 MESSAGES

All PASS2 messages are output on the LL device. When
PASS2 attempts to continue (unless otherwise specified), it
will search for a closing parenthesis ")" and continue pro
cessing from that point on. When an error message implies
an error within a processor, this could also mean that there
is not enough core to generate the current load module (LM).
Table 18 lists PASS2 messages.

Table 18. PASS2 Messages

Message Description

Genera I Messages

***CC IGNORED, PREVIOUS CC OF THIS The current control command type has already been
TYPE ACCEPTED encountered and processed. Only one set of a specific

type of command is allowed in a run of PASS2. PASS2
continues to the next control command.

***CC'S NOT ENCOUNTERED, BUT The PASS2 commands following this message were not
POSSIBLY NEEDED encountered during this PASS2 run.

..... END OF PASS2 The end of PASS2 has been reached. PASS2 exits to the
Monitor .

. PASS2 CCI IN CONTROL. ...• PASS2 has been entered.

***UNKNOWN OR MISPLACED CC The current control command is unknown. PASS2 con-
tinues to next control command.

***UNKNOWN TYPE - xxx USED The Monitor type option was not present or not legal.
"XXX" is replaced with the default type (of the Monitor
that is runni ng).

CHAN/DEVICE/STD LB Messages

$ When $ appears without additional messages, it indi cates
that there is a syntax error. PASS2 tries to continue.

***1 ABSF'/' BCH K' PREVIOUSLY DEFINED A device control command has defined ABSF and/or
BCHK and they have also been defined previously.
PASS2 continues to the next control command.

***CHAN TABLE FULL The CHAN control command has overflowed the allocated
core area. Up to 32 CHAN commands are allowed.
PASS2 tries to continue.

***DCT TABLE FULL The core area all'ocated for the DCT tables (peripheral
device information tables) was not large enough. PASS2
continues to the next control command that is not a
CHAN, DEVICE, or STDLB command.

***DEVICE ENTRY TABLE FULL The DEVICE control commands have overflowed the allo-
ca ted core area. Up to 96 devices may be defined.
PASS2 tries to continue.

***DEVICE TYPE yy ILLEGAL A DEVICE control command yyndd field contained a
"NO" or "MT" as its yy. PASS2 tries to continue.

***DISC ENTRY TABLE FULL The DEVICE control commands defining disk type (i. e. ,
yyndd is of DCndd or D Pndd type) have overflowed the
allocated area. Up to 32 disks may be defined. PASS2
tries to continue.

***HANDLER CLIST FULL The core area allocated was not large enough for the
CLIST (peripheral command list area) tables. Up to 32
handler definitions are allowed. More are allowed if
standard handler names are used. PASS2 continues to the
next control command that is not a CHAN, DEVICE, or
STDLB co~mand.

PASS2 Messages 115

Table 18. PASS2 Messages (cont.)

Message Descri pti on

***HGP CANNOT BE FORMED FOR yyndd A DEVICE yyndd command (where yyndd is for a DC or
DP device) contained a syntax error for which no defaults
can be taken. PASS2 tries to continue.

***HGP TABLE FULL The core area allocated for HGP tables for RAD or disk
pack devices was not large enough. PASS2 continues to
the next control command that is not a CHAN, DEVICE,
or STDLB command.

***INSUFFICIENT PAGES AVAILABLE The avai lable core was not large enough for allocation
required by generation of the load module. PASS2 con-
tinues to the next control command that is not a CHAN,
DEVICE, or STDLB command.

***LOAD MODULE CANNOT BE GENERATED The PASS2 processor for CHAN/DEVICE/STDLB contained
an error. PASS2 continues to the next control command
that is not a CHAN, DEVICE, or STD LB command.

***'NAME' OR SYNTAX INVALID A CHAN control command option field had a syntax error
or invalid name for the optimizer option or the DEVICE
control command contained a syntax error or invalid name
for the handler option. PASS2 tries to continue.

***NO CHAN/DEVICE INFO No CHAN and DEVICE control commands have been en-
countered, although STDLB control commands have been
processed. PASS2 tries to continue to the next command
that is not a CHAN, DEVICE, or STDLB command.

***NO DEVICE FOR CHAN A CHAN control command has been encountered without
any device definitions for the channel. PASS2 tries to
continue.

***NO DEVICE FOR TYPMNE yy (OPLBL=II) A STD LB command or a default has defined an operational
label (II) whose assignment is to type mnemonic yy for
whi ch there is no device definition. PASS2 tries to
continue.

***NO DISC DEFINED No RAD or disk pack was defined by a DEVICE control
command. PASS2 continues to the next control command
that is not a CHAN, DEVICE, or STDLB command.

***NO HANDLER NAME GIVEN The handler option was not present when a device whose
type mnemonic was unknown to PASS2 was defined. PASS2
continues to the next control command.

***ONLY PFA VALID ON PRIVATE DEVICES A nonzero PER, ABSF, PSA, or BCHK option appeared
with PRIVATE and has been ignored.

***OPLB xx EQUIVALENT yy MISSING A STDLB control command specified that an operational
label (xx) standard assignment was to another operational
label (yy) that was not defined (although it may be de-
fined later). PASS2 tries to continue.

***PER MUST BE GRANULE ALLOCATED - The PER option was used with either CYLINDER or
PER IGNORED PRIVATE.

***STDLB ENTRY TABLE FULL The STDLB control command information has overflowed
the allocated core area. Up to 128 standard label

116 PASS2 Messages

Table 18. PASS2 Messages (cont.)

Message Description

***STD LB ENTRY TABLE FULL (cont.) definitions or up to 32 unique operational labels are
allowed. PASS2 fries to continue.

***SUM OF PSA+PFA+PER+BCHK+ABSF>SIZE There was a conflict in the summation of the given list of
variables and the defined RAD or disk pack size. The
message may appear several times for a given disk (i. e.,
if the conflict is determined after the summation of
PSA+PFA, then the message wi" appear for this summation
and once for each of the remaining summations). The
message will not necessarily appear for BCHK or ABSF,
although they may in themselves overflow the disk size.
The processor continues.

***SYNTAX ERROR This message appears in conjunction with the $ message.
PASS2 tries to continue.

***THIS DISC ALREADY DEFIN ED A DEVICE control command defined a disk device (i. e.,
yyndd) that was already defined. PASS2 tries to continue.

***TYPMNE ENTRY TABLE FULL More than 64 type mnemonics have been specified by
DEVICE control commands. These mnemonics are specified
by yyndd specifications, where yy (e. g., TY) is other
tha n the standard set of type mnemon i cs set forth in
Table 14. PASS2 tries to continue.

***UNKNOWN DEVICE yyndd The yyndd field of a DEVICE control command was in-
valid (i.e., bad syntax) or, for the STDLB command, the
yyndd referenced was not defined by a DEVICE control
command. PASS2 tries to continue.

***UNKNOWN DEVICE yyndd FOR" The yyndd field referenced by a STDLB control command
has not been defined by a DEVICE control command. " is the operational label. PASS2 tries to continue.

***VALID 'CHAN' CC MUST PRECEDE A DEVICE control command not preceded by a CHAN
'DEVICE ' CC control command was encountered. PASS2 tri es to

continue.

SDEVICE Messages

INVALID 'yyndd ' The yyndd field was either unknown (i. e., not defined by
a devi ce control command) or the syntax of yyndd was in
error. PASS2 tries to continue.

INVALID KEYWORD The keyword was not LMN. PASS2 tries to continue.

INVALID SYMBIONT NAME The symbiont name was not alphanumeric or was greater
than seven characters long. PASS2 tries to continue.

MODIFY ERROR There was an error in the processor. PASS2 exi ts to the
Monitor.

NO ROOM LEFT FOR :SDEVICE The generated load module was too large for allocated
core area. PASS2 exits to the Monitor.

REMAINDER OF CC IGNORED A syntax error occurred and PASS2 cannot recover by
finding a closing parenthesis "}". PASS2 finishes gen-
erating the load module.

PASS2 Messages 117

Table 18. PASS2 Messages {cont. }

Message Descri pti on

'SDEVICE ABORTED ' This message appears in conjunction with other messages
for conditions that cause an exit to the Monitor.

SYNTAX ERROR The SDEVICE control command contained a syntax error.
PASS2 tries to continue.

MONITOR DLIMIT Messages

***ERROR IN PROCESSOR - JOB ABORTED The processor is in need of repair. PASS2 error exits to
the Mon i tor.

***ILLEGAL TYPE OF SIZE. The value for a PRTY option for DLIMIT was not a positive
hexadecimal value, exceeded the current maximum {F},
or was previously specified. All options between the
offending PRTY option and the next PRTY {or end-of-
record} are processed for syntax errors and are ignored
when the M:DLIMIT library module is generated.

***ILLEGAL TYPE OR SIZE A value was the wrong type {decimal, hexadecimal, or
ndd} or was too large or too small, or a text string con-
tained too many characters. PASS2 ignores the value
and continues with the next character unless the next
character should be a closing parenthesis, in whi ch case
PASS2 searches for the next opening parenthesis.

***INADEQUATE CORE SPACE - SKIP TO The load module cannot be generated in the avai lable
NEXT CC core space.

***INVALID, UNKNOWN, OR DUPLICATE A keyword was invalid, unknown, or duplicate. PASS2
KEYWORD searches for the next opening parenthesis 1('.

***MODIFY ERROR - SKIP TO NEXT CC The load module cannot be generated in the avai lable
core space.

***SYNTAX ERROR - IXI EXPECTED PASS2 expected {x} a closing parenthesis, a comma, or
an opening parenthesis, but did not encounter it. PASS2
searches for the next opening parenthesis.

Monitor Messages

**FMPOOL>=MPOOL, FMPOOL IGNORED The FMPOOL option value is equal to or greater than that
of the MPOOL option. PASS2 ignores the field and
attempts to continue.

**FQUEUE >=QUEUE, FQUEUE IGNORED The FQUEUE option value is equal to or greater than that
of the QUEUE option. PASS2 ignores the field and
attempts to continue.

ABS Messages

I (' EXPECTED BUT NOT FOUND There are no ABS processor definitions. This is not
catastrophi c. PASS2 continues.

I}I EXPECTED BUT NOT FOUND A closing parenthesis was expected but not found. PASS2
tries to continue.

I ABS' ABORTED This message appears with messages that result in an exit
to the Mon i tor.

118 PASS2 Messages

Table 18. PASS2 Messages (cont.)

Message Descri pti on

INVALID PROCESSOR NAME The processor name is not alphanumeric. PASS2 tries to
continue.

INVALID SIZE OR SIZE MISSING, DEFAULT The ABS control command normally defines a size, but
TAKEN the field may be left blank if the default (1024) is desired.

Also, if a size is defined and it is valid, e. g., < 1024,
then the default wi II be taken. PASS2 continues.

I:LI NAME ILLEGAL OR NAME ALREADY A name of a processor cannot be I: LI and may not be
DEFINED defined more than once. PASS2 tries to continue.

LOAD MODULE GEN. UNSUCCESSFUL There was an error in the ABS processor. PASS2 exits to
the Monitor after it displays the abort message.

NO FIELDS ON CC Only the ABS control command with no parameters was
included. This is not catastrophic but is the minimum
required to satisfy the mandatory ABS control command.
PASS2 conti nues.

NO PAGES AVAILABLE Not enough core was avai lable for generation of load
modules. PASS2 exits to the Monitor.

PROCESSOR NAME> II CHARACTERS A processor name was greater than II characters in length.
PASS2 tries to continue.

lSI EXPECTED BUT NOT FOUND ** lSI The optional lSI field contained some character{s) other
ASSUMED than S. PASS2 continues.

SYNTAX ERROR A terminator was encountered but not recognized as a
legitimate terminator for syntax purposes.

FRGD/INTLB Messages

***CT FIELD NOT=>60 OR=13F, PROC. The CT option was invalid or missing. PASS2 exits to the
ABORTED Monitor.

***DELIMITER ERROR An unknown delimiter was encountered in an option field.
PASS2 tries to continue.

***DELIMITER ERROR, PROCESSOR ABORTED An unknown delimiter appeared between option fields.
PASS2 exits to the Monitor.

***GEN. OF LM UNSUCCESSFUL The FRGD/INTLB processor contained an error. PASS2
exits to the Monitor.

***INVALID DECIMAL VALUE An option field did not contain a valid decimal number.
PASS2 tries to continue.

***INVALID HEXADECIMAL VALUE An option field did not contain a valid hexadecimal
number. PASS2 tries to continue.

***NAME INVALID OR > 11 CHAR. OR A name was either nonalphanumeric or was too long.
> 2 CHAR. PASS2 tries to continue.

***NFRGD FIELD MISSING OR INVALID, The NFRGD option was invalid or missing. PASS2 exits
PROC. ABORTED to the Mon i tor.

PASS2 Messages 119

Table 18. PASS2 Messages (cont.)

Message Description

***NOT ENOUGH CORE AVAILABLE TO There was not enough core available to generate the load
GEN LM, PROC. ABORTED module. PASS2 exits to the Monitor.

***SIZE/PAGES VALUE INVALID The va I ue defi ned was in error. PASS2 tries to continue.

***UN KNOWN KEYWORD An option field contained an unknown keyword. PASS2
tries to continue.

***VALUE ERROR, DEFAULT TAKEN An option field violated the default. PASS2 tries to
continue.

BTM Messages

':BTM' ABORTED

EXPECTED ALPHANUMERIC STRIN G NOT
FOUND

EXPECTED DELIMITER NOT FOUND

EXPECTED NUMERIC FIELD NOT FOUND

NO MORE SPACE LEFT FOR ':BTM'

PARAMETER UNKNOWN OR TOO LONG

VALUE OUT OF LEGAL BOUNDS

LOCCT PROCESSOR

The LOCCT processor provides an optional phase of system
generation that generates a file defining the elements and
load structure of a user's processor or Monitor. LOCCT may
be called during system generation to create, in the current
account, a permanent RAD or disk pack fi Ie containing the
LOCCT, ROM, and TREE tables for a given set of LOAD
(!LOCCT) and TREE control commands defining the load
structure of a user's processor or Monitor. It also outputs a
copy of this file to the PO device. The contents of the
LOCCT -generated fi Ie are referred to as "LOCCT tables".
Each record consists of a binary card image having the for
mat shown in Fi gure 34.

The LOCCT processor is entered via the following control
command sequence:

! LOCCT(LMN, ...) ... (EF, (...))t

!TREE •..

tThis control command replaces the !LOAD command for
this type of process and contains the same information the
! LOAD command would normally contain.

120 LOCCT Processor

PASS2 has made an abort exit to the Monitor.

An alphanumeric string is invalid (e. g., nona I phanumeri c).
PASS2 tries to continue.

An improper delimiter was encountered. P ASS2 tri es to
continue.

A numeric field was invalid, e. g., nonnumeri c. PASS2
tries to continue.

A load module cannot be generated in the available core
space. PASS2 makes an abort exit to the Monitor.

A parameter field is unknown or a field is too long.
PASS2 tries to continue.

A value was found that is either too small or too large.
PASS2 tries to continue.

!DATA

:LOCCT name

where name specifies the name desired for use in retrieving
the LOCCT fi Ie from RAD. This name must be no longer
than ten characters.

Continuation cards are not allowed for the: LOCCT com
mand. If comments are desired, they must be preceded by
a period.

The" LOCCT name" command (data card) must immediately
follow the !DATA command so that the Control Command
Interpreter (CCI) wi II know that the LOCCT process is to
be entered.

If the PASS3 processor is to be used to load a standard pro
gram at some later time, the LOCCT processor must be used
once for every un i que set of LOAD (! LOCCT command) and
TREE control commands defining the load structure of a

Row
Card Columns

I 1 2 3 4 5 6 7 8 9 10 72 73 79 80

12 R

11
E
C

0 0

1 R
D

2

3

4
I

5 D
r--

N
0

-
C

H

E

C

B
Y
T
E

C
o
U
N
T

I--

6 S K

7
E

S
Q

8 U

9 M

where

RECORD ID

SEQ NO

CHECKSUM

BYTE COUNT

DATA NOT
USED

Xt3E' binary card code and Xt1Et
bi nary end card code

two-digi t (hex) sequence number

byte checksum of card image

Number of useful bytes in card
image, including control word in
columns 1-3

Figure 34. LOCCT Record Format

processor or Monitor. Itshould be executed in theaccountin
which PASS3 will eventually be executed. Also, all ele
ment fi Ie names in the LOAD (! LOCCT) command should
ori ginate in the account in which PASS3 wi II be executed.
The fi Ie name used to generate the LOCCT fj Ie is deter
mined by appending the "name" from tl:!e cQntrQI commgng
(see above) to the characters" LOCCT" (for the processor
METASYM, the LOCCT file name would be LOCCTMETA
SYM). The name is optional. However, if the name does
not appear, the M:EO DCB must have been previously as
signed to the fi Ie name that PASS3 wi II reference later for
a particular LOCCT. If a name appears, and an ASSIGN
command assigns M:EO to a file name, the name on the
LOCCT control command takes precedence. When the fi Ie
name is determined via an ASSIGN command, the fi Ie name
must include the first five characters (LOCCT) as part of
the fi Ie name.

LOCCT EXAMPLES

Examples for using the LOCCT processor are shown below.

!Next Monitor command

!TREE •.•

lLOCCT(LMN, XX), .•.

lASSIGN M:EO FILE LOCCTXX

!JOB Jl, LOADITEM, 1

This example wi II generate a permanent fi Ie, LOCCTXX,
that wi II contain the LOCCT, ROM, and TREE tables for the
first jobts LOAD (! LOCCT) and TREE commands. The file
wi II be under the account number" JllI. A permanent copy
wi II also be output to the PO device. This examplets fi Ie
name is determined by the IIASSIGN M:EOII control command.

lNext Monitor command

!DATA

lLOCCT (LMN YYYY) •.•
!JOB J3, LOADITEM, 1

This example will generate a permanent file, LOCCTYYYY,
with the information from the LOAD (! LOCCT) command.
The fi Ie wi II be under the account number" J3 11

• A perma
nent copy will also be output to the PO device.

The example belowwill generate a permanent file, LOCCTZ
using the information from the LOAD (! LOCCT command)
and TREE commands. The fi I e wi II be under the account
number" J41t. A permanent copy wi II a Iso be output to the
PO device. Notice that the ASSIGN commandts file name
is ignored and also that the LOCCT file name need not be
the same as the load module name.

LOCCT MESSAGES

Table 19 lists the messages that are output during LOCCT
processing. All messages are output on the LL device.

LOCCT Processor 121

Table 19. LOCCT Messages

Message

***ABS READ ERR/ABN=xxxx

***CAN NOT GENERATE LOCCT WITH ROMS
ON LABELED TAPE

***1/0 ERR/ABN FOR READ C=xxxx

***1/0 ERR/ABN FOR WRITE EO=xxxx

***1/0 ERR/ABN FOR WRITE PO=xxxx

LOCCT PROCESSOR ABORTED

***NAME INVALID

***NAME>10 CHARACTERS

***OPEN EO ERR/ ABN=xxxx

***ROM TABLE END CANNOT BE FOUND

***UNKNOWN CC OR CONTINUATION
ILLEGAL

I! Next Monitor command

I:LOCCTZ

I DATA

I:TREE

II LOCCT(LMN,XYZ)

IIASSIGN M:EO,(FILE,LOCCTXYZ)

!JOB J4,LOADITEM,1

-

The permanent file name may be any name desired, as long
as LOCCT and PASS3 both reference the same name for a
given LOCCT fi Ie.

122 PASS3 Processor

Description

An I/O error or abnormal condition has been encountered
on the ABS read request. The value xxxx is the I/O
error code.

An element fj Ie is on labeled tape.

An I/O error or abnormal condition has been encountered
on the C device. The value xxxx is the I/O error code.

An I/o error or abnormal condition has been encountered
on the EO device. The value xxxx is the I/o error code.

An I/o error or abnormal condition has been encountered
on the PO device. The value xxxx is the I/O error code.

This message is output after other LOCCT messages.
LOCCT then exits to the Monitor.

The name in the LOCCT command was in error.

The name in the LOCCT command was greater than ten
characters in length.

An I/O error or abnormal condition has been encountered
by LOCCT whi Ie trying to open the EO device. The
value xxxx is the I/O error code.

The ROM table is invalid.

The name of the LOCCT command entered was invalid or
the LOCCT command was to be continued. LOCCT dis-
plays the abort message and then exits to the Monitor.

PASS3 PROCESSOR

The purpose of this processor is to cause the loading of
standard Monitors, processors, and libraries automatically
via preestablished LOAD (OVERLAY or OLAV) and TREE
structures. These structures must have been generated pre
viously by the LOCCT processor. PASS3 is entered via the
control command.

(1 PAS 53 [type[, option]]

where

type is the system type being generated (BPM, BTM,
UTM). The default is the system under which
PASS3 is running.

MON causes an abort if M:MON cannot be loaded
successfully or if it has not been loaded when at
tempting to load something else.

ALL causes an abort if anything cannot be loaded
successfully, either because the loader finds
errors or because M:MON does not exist.

If no option is specified, the error conditions wi II be
ignored.

The commands that control PASS3 have the form

:id [(optionL option])]

where

id is the name of a LOCCT information table that
is to be obtained to define the load structure of
a Mon i tor, processor, or library subrouti ne (e. g. ,
X, 9EDIT, FMGE). The id must not be longer than
10 characters.

option is optional information used to modify the
default LOAD (OVERLAY or OLAY) command
structure in the LOCCT table, or may consist of
general information to PASS3 (see the list of pa
rameters below). The option field may be con
tinued on continuation cards if necessary.

A PASS3 control command identifies a standard system
(Monitor), processor, or library subroutine name for which
a LOCCT table is to be obtained. This LOCCT table will
descri be to the loader how the named routi ne is to be loaded.
The LOCCT wi" be assumed to be in the current account
number, unless a previous ASSIGN command assigned the
M:EI DCB to some other account number. PASS3 will ac
cept LOCCT tables from only one account.

The control commands may contain optional parameters.
The possible parameters are as follows:

BIAS = value specifies that the load bias in the LOCCT
table for the routine named "id" is to be changed to
the specified hexadecimal "value". The bias is con
verted to the next higher page boundary, if not already
at a page boundary. The maximum bias value may not
exceed XI 1 FFFF'. If a bias offset is specified (see
"BIAS = + offset" below~, the "offset" wi II be added
to the bias "value".

BIAS = + offset specifies that a hexadecimal "offset" is
to be added to the specified bias "value" (see "BIAS =

value" above). If no BIAS = value has been specified,
the offset will be added to the lower limit of the back
ground area (BKGRDLL) if the M:MON load module is
present in the current account. If M:MON is not pres
ent and no BIAS = value has been specified, the offset
value has no effect and the LOCCT bias is unchanged.
The logical interation of these bias values is i IIus
trated below.

BIAS = value BIAS = + offset M:MON Resulting Bias

unspecified u nspec i fi ed absent LOCCT
unchanged

unspecified u nspec i fi ed present BKGDRLL

unspec i fi ed specified absent LOCCT
unchanged

u nspec i fi ed specified present BKGRDLL
+ offset

specified u nspec i fi ed absent BIAS = value

specified u nspec i fi ed present BIAS = value

specified specified absent BIAS = value
+ offset

specified specified present BIAS = value
+ offset

SAVE (namel' name2, .•. , namen) specifies that the
named element fi les wi II not be deleted. All options
not SAVEd wi II be deleted (see "DELETE", below).

DELETE specifies that when the loader has completed
the loading of the standard system defined by "id", all
element files comprising this module will be deleted
from the RAD or disk pack, except for those specifi
cally SAVEd (see "SAVE" above).

The deleted files must be in the current account, must
not be protected by a password, and must be on disk
rather than labeled tape. Unless SAVEd, the LOCCT
table wi II also be deleted.

When the LOCCT table for a particular id
t

has been ob
tained and modified, PASS3 wi II write it to the ABS scratch
area on disk in the executing Monitor system. This area is
the communication area between PASS3 and the loader.
PASS3 wi" then do a M: LIN K ca II on the Monitor request
ing the loader (LOADER) as its overlay. The loader must
appear as a load module file in the :SYS account. When
the loader completes its function, it will do a M: LDTRC
call on the Monitor requesting a return to the calling pro
gram; namely, PASS3. At this time, the LOCCT table and
all element fi les comprising the load module wi II be de
leted if the DELETE and/or SAVE were encountered in the
control command and if the load was successful. PASS3
wi" then continue to its next control command.

PASS3 will also set up automatic biasing once the load mod
ule M:MON (Monitor) has been loaded under the current
account number. This is accomplished by obtaining the tree
structure for M:MON, and searching for the end of the
longest overlay path. Once this is obtained, it wi /I be

tThe specified id is used to form the file name of a LOCCT
table to be obtained. The id wi II be appended to the char
acters II LOCCr". This implies that for an id of FMGE, the
LOCCT fi Ie name wi II be LOCCTFMGE.

PASS3 Processor 123

used to set the bias in each LOCCT prior to entering the
Loader, unless a BIAS is specified on a PASS3 control com
mand at which time the specified bias is used to modify the
referenced LOCCT only. If a bias is desired whi ch is less
than the bias determined from the M:MON load module
then a warning message wi II be displayed. If neither bias
is found, the LOCCT table wi II retain the bias specified
on the original ! LOAD control command, and this bias
will be displayed. PASS3 will also display the automatic
bias which is determined from the M:MON load module.

All Monitors should be loaded by PASS3 to take advantage
of PASS3 1s ability to form the HANDLERS fj Ie automati
cally. If a Monitor is to be loaded and there is no LOCCT
for it, the LOAD (! LOCCT)/TREE commands must be used
to generate a LOCCT by the LOCCT processor, and then
PASS3 can use the LOCCT tables for the loading of the
Monitor.

PASS3 will obtain the information in SPEC:HAND, the file
that SYSGEN PASS2 generated. The data in this fi Ie wi II
identify which I/O handlers are required for this Monitor
(M:MON load module). If the SPEC:HAND file does not
exist, PASS3 wi II abort the loading of the M:MON load
module only, and will continue to the next LOCCT.

After obtaining the data from the SPEC:HAND file, PASS3
will open BASHANDL (the basic handler's file) as an input
fi Ie and the file HANDLERS as an output fi Ie. The
BASHANDL file will be copied to the new file HANDLERS
and the BASHAND L fi le'wi II be closed and saved. PASS3
will then obtain a handler name from the SPEC: HAND fi Ie,
will open that fi Ie for input, and wi II copy the fi Ie to the
new HANDLERS file. IfahandlernamefromtheSPEC:HAND
file is found to be a part of the basic handlers file
(BASHANDL), it will be ignored (see Table 20). When all
of the handlers required have been merged into the HAND
LERS file, this file will be closed and saved. All files ac
cessed by PASS3 by this technique wi" be saved. PASS3
will then proceed to link to the overlay loader. If any
handler cannot be found, PASS3 will abort the loading of
the M:MON load module only, and will continue to the
next LOCCT.

Table 20. Handlers in BASHANDL File

Name Device

KBTIO TY

CRDIN CR

PRTOUT LP

PRTOUTL LP (low cost)

DISCIO DC

MTAP 9T, MT

7TAP 7T

124 PASS3 Processor

PASS3 TREE STRUCTURE ANALYZER

When PASS3 encounters a LOCCT table for a Monitor, i. e.,
the load module name in the LOCCT is "M:MON", PASS3
will proceed by analyzing the tree structure. A load mod
ule named uROOP wi II be generated and wi II contain the
Monitor's variable overlay structure tables and the defined
segment numbers for each Monitor overlay according to the
given tree (overlay) structure. The load module is gener
ated prior to requesting the loader. The segment number
definitions are generated bytakingeach name in the LOCCT
tables tree structure, appending the characters "SEG" to
this name, and assigning it a number (e. g., for the name
EXIT, the segment name will be EXITSEG). Therefore, a
new overlay segment can be added to the Monitor's tree
structure and will be referenced by its name with the ap
pended characters "SEG" (e. g., the new segment AX is
added to the Monitor tree structure and wi II be referenced
by the segment name AXSEG). The LOCCT tables tree con
tains only one name for each overlay defined on the original
tree control command. This name is the first name only of
a series. That is, if the tree structure is

!TREE A-B-(C, D-E)

the names in the LOCCT tables tree would be

A,C,D

and the segment names would be

ASEG, CSEG, DSEG

Note: All Monitors must be loaded by PASS3. A Monitor
which is loaded by ! LOAD/ !TREE control commands
wi II not contain all of the information for it to exe
cute. If a Monitor is to be loaded and there is no
LOCCT for it, the LOAD/TREE commands must be
used to generate a LOCCT by the LOCCT processor,
and then PASS3 can use the LOCCT tables for the
loading of the Monitor. A Monitor tree structure
may not contain more than five levels, i. e., four
overlay levels plus the root.

PASS3 EXAMPLES

!Previous Monitor CC

This example will obtain the LOCCT table in the file
LOCCTMONT. No bias change is specified and all

element files comprlsmg MONT will be saved. This load
function might represent a minimal Monitor (M:MON). The
LOCCTMONT fj Ie wi II be assumed to be in the account
number under whi ch this job is being run.

:Next CC

!Previous Monitor CC

This example is simi lar to the previous one, the fi Ie name
being LOCCTMONS. This load function might represent a
symbiont Monitor system with load module name M:MON.

Next CC

:LOADER (DELETE)

!PASS3

!ASSIGN M:EI,(FILE,DUMMY,ACCNT)

!JOB JX,LOADAUTO,l

This example wi II obtain the LOCCT tables for LOCCTPROC,
LOCCTCC 1, and L OCCT LOAD ER from the ACCN T account

and not the job's account, JX. The new bias for CCI wi II
become 3200, and all element fi les making up the LOADER
will be deleted.

The recommended procedure when using PASS3 is to load
the Monitor load module (M:MON) first. This wi II allow
for truly automatic biasing of all future processors.

When PASS3 is being used to delete element files (DELETE
option), certain restri ctions must be adhered to. The Moni
tor (M:MON) and CCI have a common element (namely,
M:JIT) and the Monitor and SYSGEN PASS2 have a com
mon element (namely, MODIFY). The method for deleting
the ROMs may be as follows:

:PASS2 (DELETE)

:CCI (DELETE)

:JOB JZ,SPECIAL-DELETE-ROM,F

This procedure wi II load the Monitor (M:MON) with DELETE
(except for M:JIT, and MODIFY), CCI with DELETE, and
PASS2 with DELETE. There are other combinations simi lar
to this which incorporate other processors.

Table 21 lists the messages that are output during LOCCT
processing. All messages are output on the LL devi ceo

Table 21. PASS3 Messages

Message Descri pti on

**BIAS NOT HEXADECIMAL VALUE OR TOO The bias value was invalid. PASS3 continues to the next
LARGE VALUE control command.

****BIAS USED WILL BExxxxx BKGRDLL is unknown and no bias was specified. The
value xxxxx is the bias obtained from the LOCCT table
and is for information only. PASS3 continues.

**BIN. CARD SEQUENCE ERR, SEQ. #xxxx The LOCCT table contained a sequence number error.
The value xxxx is the card sequence number where the
error occurred. PASS3 continues to the next control
command.

PASS3 Processor 125

Table 21. PASS3 Messages (cont.)

Message Descri pti on

**BIN. CARD INVALID TYPE, SEQ. #xxxx The LOCCT table contained a sequence type error. The
value xxxx is the card sequence number where the error
occurred. PASS3 continues to the next control command.

**CANNOT OPEN/RELEASE A SAVE or DELETE option was requested and a delete
element could not be found. The fi Ie name that could
not be found is output fol lowing this message. The mes-
sage is output n-1 times, where n is the number of times
an element fi Ie appears in a tree structure. Thus, the
message does not indicate an error in many cases since
the load module is bui It correctly and the element fi Ie is
deleted the first time it is encountered. PASS3 continues
to the next delete item.

**CC ERROR, NO ':' IN COLUMN 1 A PASS3 control command did not contain a ':' in
column 1. PASS3 continues to the next control command.

**CC ID INVALID The PASS3 control command's id is invalid. PASS3 con-
tinues to the next control command.

**CHECKSUM ERROR, SEQ. #xxxx The LOCCT table contained a checksum error. The value
xxxx is the card sequence number where the error occurred.
PASS3 'continues to the next control command.

**DELIMITER NOT 0, = OR SYNTAX BAD The syntax of a PASS3 command was either invalid or the
expected delimiter should have been 0, or =. PASS3
continues to the next control command.

**ID SIZE> 10 OR = 0 CHARACTERS The id did not exist or was too large. PASS3 continues
to the next control command.

**1/0 ERR/ABN ON M:C = xxxx An I/O error or abnormal condition was encountered
while performing I/o on the C device. The va I ue xxxx
is the I/O error/abnormal code. PASS3 exits to the
Monitor.

**KEYWORD NOT BIAS/DELETE/SAVE A BIAS, DELETE, or SAVE keyword was expected but not
found. PASS3 continues to the next control command.

**KEYWORD SAVE ALREADY USED A second SAVE option was specified. PASS3 continues
to the next contol command.

****M:MON BKGRDLL is xxxx PASS3 is finished. The BKGRDLL for the Monitor loaded
within this system generation is xxxx.

M:MON NOT SUCCESSFULLY LOADED The MON or ALL option has been specified in a !PASS3
command and M:MON either cannot be loaded or has not
been loaded. P ASS3 aborts.

****M:MON TREE STRUCTURE >5 LEVELS The M:MON tree structure contained more than five
levels, including the root.

MODULE NOT SUCCESSFULLY LOADED The ALL option was specified in a ! PASS3 command and
the loader found errors loading a processor. PASS3 aborts.

**NAME INVALID A name defined by the SAVE option was invalid. The
name must be alphanumeri c. PASS3 continues to the next
name.

126 PASS3 Processor

Table 21. PASS3 Messages (cont.)

Message

**OPEN M:EI ERR/ABN = xxxx (LOCCT)

**OPEN M:MON ERR/ABN = xxxx

****OPEN/READ BASHANDLFILE ERR/ABN = xxxx

****OPEN/READ SPEC:HAND FILE
ERR/ ABN = xxxx

####pASS3--COMPLETED####

####PASS3--IN--CONTROL####

**READ M:EI ERR/ ABN = xxxx (LOCCT)

**READ M:MON ERR/ ABN = xxxx

**SPECIFIED BIAS < BKGRDLL

****UNKNOWN TYPE - xxxx USED

**WRITE ABS ERR/ ABN = xxxx (LOCCT)

Descri pti on

An I/O error or abnormal condition was encountered
during an open operation on the EI device. The value
xxxx is the I/O error or abnormal code. PASS3 then
exits to the Monitor.

An I/O error or abnormal condition was encountered while
PASS3 was trying to open the M:MON load module. The
value xxxx is the I/O error or abnormal code. PASS3
exits to the Monitor.

PASS3 could not obtain a given fi Ie when forming the
HANDLERS file. The value xxxx is the error or abnormal
code. BASHANDL names are replaced by the current fi Ie
name being merged into the HANDLERS file. PASS3 con
tinues to the next command.

PASS3 could not obtain a given fi Ie when forming the
HAt-.lDLERS file. The value xxxx is the error or abnormal
code. SPEC:HAND names are replaced by the current
file name being merged into the HANDLERS file. PASS3
continues to the next command.

PASS3 returned to the Monitor.

PASS3 has been entered.

An I/O error or abnormal condition was encountered during
a read operation on the EI device. The value xxx x is the
I/o error or abnormal code. PASS3 exits to the Monitor.

An I/o error or abnormal condition was encountered
whi Ie PASS3 was trying to read the M:MON load module.
The value xxxx is the I/O error or abnormal code. PASS3
exits to the Monitor.

The specified bias is less than the background lower limit
bias obtained from the M:MON load module. This is only
a warning. PASS3 continues.

The Monitor type option was not present or not legal.
IIXXXXII is replaced with the default type (of the Monitor
that is running).

An I/O error or abnormal condition was encountered while
PASS3 was writing on the ABS scratch area on the RAD or
disk pack. The value xxxx is the I/o error or abnormal
code. PASS3 exits to the Monitor.

PASS3 Processor 127

DEF PROCESSOR

The D EF processor is ca lied upon to generate PO tapes
containing a bootable Monitor system and all keyed fi les
in the current account, and BO tapes containing the cur
rent Monitor system from the :SYS account and all consec
uti ve fi I es in the current account.

!DEF This command causes the Monitor to fetch the
DEF processor from the RAD and to transfer control to it.
The command has the form

!DEF[typeJ[, version#]

where

type is the Monitor type:

BPM specifies that the bootable Monitor por-
tion of the tape wi II be BPM/BTM.

UTS specifies that the bootable Monitor por-
tion of the tape wi" be UTS.

version# specifies a 3-character field defining the
version number of the target system. Only the
first three characters specified are used.

The following commands are DEF control commands.

:INCLUDE This command allows the user to write to
tape files that have a different organization than those
automatically written (CONSEC files to a PO tape, KEYED
files to a BO tape). The command has the form

:INCLUDE (item, item, ...)

where item identifies a fi Ie to be incl uded on the tape.
Table 22 contains a list of files automatically INCLUDEd.

Multiple :INCLUDE commands and continued commands
are allowed.

All INCLUDEd files are put in the :SYS account when the
system is booted.

:IGNORE This command causes DEF to avoid writing
to tape a fi Ie that would otherwise be written because of
its organization. The command has the form

:IGNORE (item, item, •..)

where item is a file to be ignored. (LASTLM and
SPEC:HAND are automatically IGNOREd from PO tapes.)

The :IGNORE command does not override either stated or
automatically INCLUDEd files. Multiple :IGNORE com
mands and continued commands are allowed.

:DELETE This command causes all files of CONSEC
organization for PO tapes or KEYED organization for BO
tapes as well as all IGNOREd files to be deleted from

128 DEF Processor

Table 22. Files Automatically INCLUDEd
on BPM BO Tapest

Name Name

M:MON M:C

CCI M:OC

LOADER M:BI

PASS2 M:CI

PASS1 M:SI

LOCCT M:BI

PASS3 M:LI

DEF M:BO

PCL M:SO

FMGE M:CO

ERRMSG M:PO

:DIC M:GO

:LIB M:LO

M:DO M:EO

M:LL M:CK

M:SL M:AL

tAli files are from the :SYS account.

the current account as the tape is written. The command
has the form

:DELETE

Multiple :DELETE commands are allowed.

The :INCLUDE, :IGNORE, and :DELETE commands apply
unti I the next :WRITE is completed.

:WRITE This command causes DEF to write a tape. The
command has the form

:WRITE [type][, outsn]

where

type specifies a PO or BO tape.

PO specifies that a tape is to be written with
the bootable Monitor portion obtained from
the current account and all KEYED files ob
tained from the current account. PO is the
default.

BO specifies that a tape is to be written with
the bootable Monitor portion obtained from
the :SYS account and all CONSEC fi les ob
tained from the current account.

outsn specifies the serial number of the tape
to be written. If no outsn is specified, the
previous outsn for this DCB (M:PO or M:BO)
is used again.

Multiple :WRITE commands are allowed.

END This command causes DEF to exit.

If an end-of-fi Ie is encountered on input, one of two ac
tions is taken. If the end-of-file follows a WRITE com
mand, DEF exits. Otherwise, DEF writes a PO tape and
then exits.

Before DEF is called to write a tape, M:PO and/or M:BO
should be ASSIGNed to a device and outsn.

DEf EXAMPLES

1. In the case below, DEF writes a normal BPM PO tape.

!ASSIGN M:PO, (DEVICE, 9T), (SN, BPM 1)
!DEF BPM, FOl
! Next Monitor control command

2. In the following case, DEF writes LT#BPMO with BLOP
among the included items and LT#BPPO with KEYED
files K13 and K15 ignored.

!ASSIGN M:PO, (DEVICE,9T), (SN, BPM1)
!ASSIGN M:BO, (DEVICE, MT), (SN, UTBO)
! DEF BPM, FOl
:INCLUDE (BLOP)
:WRITE BO
:IGNORE (K13, K15)
:WRITE PO, BPPO
! Next Monitor control command

Table 23 lists the messages that are output during DEF pro
cessing. All messages are output on the LL device.

Table 23. DEF Messages

Message Description

..... BO TAPE CONTENTS This is a title message for a list of tape contents .

*****CANNOT OBTAIN 'M:MON' FROM The M:MON load module cannot be obtained from the
CURRENT ACCOUNT current account. The processor is aborted.

---------PROCESSOR ABORTED (WRITEMON)

*****CANNOT OBTAIN 'M:MON' FROM The M:MON load module cannot be obtained from the
I:SYSI ACCOUNT :SYS account. The processor is aborted.

---------PROCESSOR ABORTED (WRITEMON)

****CANNOT OPEN OUTPUT DEVICE DEF cannot open the output DCB. It proceeds to the next
control command.

*****CANNoT READ KEYED RECORD 'HEAD' One of these messages appears if a part of the M:MON
FROM IN M:MON load module cannot be obtained. II xxxxxxxxxxxx 1 is

*****CANNOT READ KEYED RECORD 'MON::ORG' the name of a M:MON segment. The processor is aborted.
IN M:MON

*****CANNOT READ KEYED RECORD 'TREE' IN
M:MON

*****CANNOT READ KEYED RECORD
IXXXXXXXXXXXXI IN M:MON

***CANNOT WRITE TAPE DEF cannot write the tape. It releases the tape and goes
to the next control command.

**CC TYPE UNKNOWN An unknown control command was encountered. DEF
****GET NEXT CC continues.

**DELIMITER MUST BE 1,1 OR 1)1 An invalid delimiter was encountered during the processing
of an INCLUDE or IGNORE command. DEF continues to
the next command.

DE F Processor 1 29

Table 23. DEF Messages (cont.)

Message

***ILLEGAL INCLUDE - WILL BE COPIED LATER

******INCLUDE FILE NOT FOUND

INCLUDE ITEMS

**NAME INVALID OR> 15 CHAR. LONG

**NO 1:1 IN COLUMN-1

****NOT ENOUGH CORE AVAILABLE
******SYSGEN DEF ABORTED

OTHER ITEMS

• PO TAPE CONTENTS ...••

xxxxxxxxxxxx=SEG. #nnnn

$$$$SEGMENT #IS FOR PATCHING MONITOR
MON nOR $$$$

**SYNTAX ERROR, NOI ('

....
SYSGEN DEF IN CONTROL::::
DEF COMPLETED: : : :

****WRITING PO BY DEFAULT

CREATION AND USE OF A LOCCT FILE

The following example illustrates how the LOCCT and
PASS3 processors may be used. It also shows how a user
may generate a LOCCT fi I e for a new processor and then

Example 1:

Descri pti on

An item on an INCLUDE command has the wrong
organization for INCLUDE. DEF continues.

An INCLUDE item cannot be obtained. The INCLUDE
item name is displayed. DEF continues.

This is a subtitle message for the list of items included on
the PO or BO tape.

An INCLUDE item name was either too large or not
a I phan umeri c. DEF continues to the next name.

The control command did not contain a 1:1 in column 1.
(Each control command, including a continuation com-
mand, must contain a I: I in column 1.) DEF continues
to the next command.

DEF did not have enough core for its use in processing
the INCLUDE or IGNORE command and for writing a
PO tape. DEF aborts.

This is a subtitle message for the list of load modules on
the Po. tape.

This is a title message for a list of the tape contents •

This message identifies the segment number (nnnn) for
each segment (xxxxxxxxxxxx) as the absolute bootable
Monitor is written for the PO tape.

This is a title message that precedes the I ist of segment
numbers.

An INCLUDE or IGNORE control command did not define
any items. DEF continues to the next command.

These messages are for title information only.

DEF is writing a PO tape because of an EOF or as the
default of a WRITE command.

incorporate it into the system. The example is a fictitious
one, whose purpose is to show how the System Generati on
processes may be used. Parts 1-7 comprise one System Gen
eration and parts 8-12 comprise a second System Generation
making use of the first System Generationls output.

PART 1

!JOB
!LOCCT

!TREE
!DATA

1378, LOCCTGEN, F
(LMN, USER), (MAP), (M 100), (NOSYSLIB),;
(TSS,200), (EF, (AX), (BX), (CX), (DX),;
(EX», (SL, F), (PERM), (BIAS, 3000)
AX-(BX-(CX, DX), EX)

130 Creation and Use of a LOCCr File

Part 1 will result in the LOCCT processor producing a file,
LOCCTUS ER in account 1378, with the LOCCT table in
formation from the LOAD/TREE command structure. A
copy of the fi I e wi II a I so be output to the PO de vi ce,
normally the card punch (this hard copy wi II be used later
in this example in Part 11).

: LOCCT

!JOB
!LOCCT
!DATA
: LOCCT

USER

:SYSGEN, LOCATION, F
(LMN, COMP), (MAP), (BI)

COMPUTE

:SYSGEN, PASS1, F
M:BI, (5N, BI), (LABEL, X)

PART 2

PART 3

!JOB
:ASSIGN
!PASS1
:SELECT
:SELECT

(FILE, Zl, Z2, Z3), (FILE, AX, BX, CX, DX, EX)
(FILE, A, B, C, D, E, F, G, H, I, J, K, L, M, N,;
0, P, Q, R, S, T, U, V, W)

:SELECT
:SELECT
:SELECT
:UPDATE

:UPDATE
:UPDATE

!EOD

: LABEL, $STD1
2Al
2A2
2A3
2A4
2A5
!EOD

(FILE, A 1, A2, A3, A4, A5)
(FI LE, B 1, B2, B3, B4, B5)
(FI LE, C 1, C2, C3, C4, C5)
(FILE, Xl, X2)

(FILE, Y1, Y2)
(FILE, $STD 1), (FILE, $STD2), (FILE, $STD3),;
(FILE, # MONRLTM5YM)

: LABE L, $STD2
2Bl
2B2
2B3
2B4
2B5
tEOD

: LABEL, $STD3
2Cl
2C2
2C3
2C4
2C5
!EOD

: LABEL, # MONRLTMSYM
lA
lB
1C
lE
lF

The next and subsequent SYS GENs wi II not need to have
the LOAD/TREE commands to load this element. All
that would be needed in PAS53 (Part 11) is a :USER
control command.

Part 2 would result in a LOCCT file generation in the
:SYSGEN account with a fi Ie-name of LOCCTCOMPUTE.
This case wi II not work correctly when PASS3 references
this LOCCT (see Part 11). This is due to the load refer
encing the BI device. A LOCCT cannot be generated
when one of the parameters is BI.

Part 3 wi II select from the BI devi ce (labeled tape) fi les
Zl through Z3, AX through EX, A through W, A 1 through
A5, Bl through S5, and Cl through C5. The update
function will select from the EI device (card reader) files
Xl, X2, Yl, Y2, $5TD1, $STD2, $STD3, and
#MONRLTMSYM. As shown, update files $STD1, $STD2,
$STD3, and #MONRLTMSYM are entered to be eventually
used as STD fi les (Standard-System-fi Ie). Each record in
an STD fi Ie contains the fi Ie-name of a fi Ie whi ch is
needed to complete the standard fj Ie. These special
standard fi les wi II be used later in this example (see
Part 9).

Creation and Useofa LOCCTFile 131

1G
1H
11
lJ
1K
1l
1M
1N
10
IP
lQ
1R
lS
1T
1U
IV
lW
!EOD
: LABEL, Xl

<deck for Xl>
!EOD
: LABEL, X2

<deck for X2 >
!EOD
: LABEL, V1

<deck for Vl >
!EOD
: LABEL, V2

<deck for V2 >
!EOD

PART 4

!JOB
!PASS2
:CHAN
:DEVICE
:CHAN
:DEVICE
:CHAN
:DEVICE
:CHAN
:DEVICE

:SVSGEN, PASS2, F Part 4 contains the PASS2 control commands which
describe the target machine. The default set of STDlB
operational labels is assumed.

:CHAN
:DEVICE
:DEVICE
:MONITOR
:ABS,1024
:DLIMIT

!JOB
!lOCCT

TVAOl

CRA03

lPA02

DCAFO, (NSPT, 52), (SS, 100), (PER, 0), (PSA, 5),;
(PFA,5F)

9TA80
9TA81
(CORE, 64), (ORG,60), (QUEUE, 20)

(TIME, 5)

:SVSGEN, lOAD-MONITOR, F

PART 5

(lMN, M:MON), (MAP), (N OTCB), (PERM),;
(EF, (A), (B), (C), (D), (E), (F), (G), (H), (I),;
(J), (K), (L), (M), (N), (0), (P), (Q), (R), (S),;
(T), (U), (V), (W», (BIAS, 0)

!TREE A-B-C-D-(E-F, G, H-(I, K-l, M),;
N-(O-(P, Q), R), S, T-U, V, W)

132 Creation and Use of a lOCCT File

Part 5 is a sample of how the lOCCT tables
lOCCTMONRS, lOCCTZZ, lOCCTAA, lOCCTBB,
lOCCTCC, lOCCTXX, and LOCCTVV may be gen
erated in the :SYSGEN account. Also, a card punch
copy will be generated for each.

!DATA
: LOCCT
!LOCCT

!DATA
: LOCCT
!LOCCT

!
!DATA
: LOCCT
!LOCCT
!
!DATA
: LOCCT
!LOCCT
!
!TREE
!DATA
: LOCCT
!LOCCT
!DATA
:LOCCT
!LOCCT
!DATA
: LOCCT

!JOB
!ASSIGN
!DEF
:WRITE

!JOB
!ASSIGN
!DEF
:INCLUDE

!FIN

MONRS
(LMN, ZZ), (MAP), (Ml00), (SL, F), (TSS, 80),;
(EF, (Zl), (Z2), (Z3», (BIAS, 6000), (PERM)

ZZ
(LMN, AA), (MAP), (M 100), (SL, F), (TSS, 0),;
(EF, (A 1), (A2), (A3), (A4), (A5», (PERM),;
(BIAS, 6200)

AA
(LMN, BB), (MAP), (NOTCB), (PERM),;
(EF, (B1), (B2), (B3), (84), (B5), (BIAS, 4000)

BB
(LMN, CC), (MAP), (NOSYS LIB), (PERM),;
(EF, (C1), (C2), (C3), (C4), (C5», (BIAS, 2600)
Cl-(C2, C3, C4, C5)

CC
(LMN, XX), (PERM), (EF, (Xl), (X2», (BIAS, 3000)

XX
(LMN, YY), (PERM), (EF, (Yl), (Y2», (BIAS, 3000)

YY

:SYSGEN, PASS 1 SYSWRT, F
M:BO, (DEVICE, 9T), (SN, XBO)
, FOO
BO

:SYSGEN, DEF, F
M:PO, (LABEL, X), (SN, XPO)

(Zl, Z2, Z3, LOCCTUSER, LOCCTMONRS,;
$STD1)

PART 6

PART 7

Part 6 wi II generate a new BI tape through M: BO whi ch
wi II contain as ROMs or element files, Zl through Z3,
A through W, Al through A5, Bl through B5, AX through
EX, Cl through C5, Xl, X2, Yl, Y2, $STD1, $STD2,
$STD3, and #MONRLTMSYM. Also, the LOCCT tables
for load module COMP (Part 2), and for M:MON, ZZ,
AA, BB, CC, XX, and YY wi II become part of the new
BI tape.

Part 7 wi II generate a PO tape whi ch contains the load
modules found in :SYSGEN account and also the element
fi les requested in the DEFs INCL list.

The following parts show how the results of the above System Generation could be used.

!JOB
!ASSIGN
!PASSl
:SELcCT

!JOB
!ASSIGN
!PASSl

:SYSGEN, PASS1, F
M:BI, (SN, XBO), (LABEL, X)

(ALL)

:SYSGEN, PASS, F
M:BI, (SN, XBO), (LABEL, X)

PART 8

PART 9

Part 8 wi II select every element fi Ie from the BI tape
(see Part 9 a Iso).

Part 9 will select through FILE/STD every element file
from the BI tape (see Part 8 also).

Creation and Use of a LOCCT File 133

:SELECT
:SELECT
:SELECT

:SELECT

(FILE, ZI, Z2, Z3), (FILE, AX, BX, CX, DX, EX)
(FILE, Xl, X2, YI, Y2)
(STD, $STD 1), (STD, $STD2), (STD, $STD3),;
(STD, II MONRLTMSYM)
(FILE, LOCCTCOMPUTE, LOCCTMONRS,;
LOCCTZZ, LOCCTAA, LOCCTBB, LOCCTCC, ;
LOCCTXX, LOCCTYY)

PART 10

!JOB
!PASS2
:CHAN
:DEVICE
:CHAN
:DEVICE
:CHAN
:DEVICE
:CHAN
:DEVICE

:CHAN
:DEVICE
:DEVICE
:MONITOR
:ABS, 1024
:DLIMIT

:SYSGEN, PASS2, F

TYAOl

CRA03

LPA02

DCAFO, (NSPT, 52)(SS, 100), (PER, 0), {PSA, 5);
(PFA,5F)

9TA80
9TA81
(CORE, 64), (ORG, 60), (QUEUE, 20)

{TIME, 5)

Part 10 is the same as Part 4 above.

PART 11

!JOB :SYSGEN, FMGE, F
!ASSIGN M:EO, (FILE, LOCCTUSER)
! FMGE (ENTER, PERM)

< LOCCT deck from Part 1 >
!JOB :SYSGEN, PASS3, F
!PASS3
:ZZ
:AA
:MONRS
:BB
:CC
:XX
:YV
:USER
:COMPUTE

(BIAS=3F09)
(DELETE, SAVE {A, B, C»
(SAVE{B 1), BIAS=+ 1000)
(BIAS=2000)
(DELETE, BIAS=3100)

(BIAS=+200)

134 Creation and Use of a LOCCT File

Part 11 does essentially the same as Part 5 above, except
the first job will enter into the :SYSGEN account the
LOCCT table from Part 1.

The command :ZZ will result in loading the load module
ZZ, and the bias will remain at 6000 (see original LOAD
command), as the load module M:MON does not exist
yet.

The command ":AA" will result in loading the load mod
ule AA, and the bias will be 4000 (i. e., 3F09 rounded
to the next page address). No M:MON load module
exists yet.

The command "MONRS" will result in loading the load
module M:MON. All element files which are a part of
this module wi II be deleted except for A, B, and C.

The command ":BB" will result in loading the load mod
ule BB. The bias will be the first available page address
whi ch follows the longest path of the M:MON load mod
ule plus 1000. This implies that the bias desired is to
be 8 pages above background lower limit. All element
fi les which are a part of this load module wi II be deleted
except for B 1.

The command ":CC" will result in loading the load
module CC. The bias wi II be 2000, and if the back
ground lower limit bias determined above for the com
mand : BB is greater than 2000, a warning message wi II
be displayed (e. g., Calculated Background Lower Limit
is greater than bias requested).

The command ":XX" will result in loading the load
module XX. The bias will be 3200 (Le., 3100 rounded
up to the next page address) and a warning message may
be displayed as for the :CC command above. All ele
ment files which are a part of this load module will be
deleted.

The command ":YY" will result in loading the load
module YV. The bias wi II be the background lower
limit as determined for the :BB command above.

The command": USER" wi II result in loading the load
module USER (from Part 1). The bias will be the address
determined for the :BB command above plus 200, one
page above background lower limit.

The command" :COMPUTE" wi II cause the Loader to
abort as no element file will be found in the BI file
(see Part 2).

PART 12

:JOB
!ASSIGN
!DEF
:INCLUDE

:DELETE
!FIN

:SYSGEN, DEF, F
M: PO, (DEVICE, 9T), (SN, XPO)

(Zl, Z2, Z3, LOCCTUSER, LOCCTMONRS,;
$STD1)

GENERATING STANDARD MONITORS
AND PROCESSORS

To simplify the System Generation process, several standard
Monitor systems and standard processors have been prede
fined on the BI tape. This enables an installation to name
the parti cular standard Monitor that is to be generated and
automati cally have the appropriate elements selected from
the BI tape during the execution of PASS 1. Also, by ref
erencing the appropriate fi Ie name (i. e., specific LOCCT
tables) for a standard Monitor and for desired processors,
the system wi II be loaded automatically by PASS3. PASS2
control commands have the form previously described (see
"PASS2 Processor").

PASS1 CONTROL COMMANDS FOR STANDARD
MONITORS AND PROCESSORS

To perform the standard system selection function in PASS1,
it is only necessary to name one of the standard Monitors
(see Table 24) and each of the desired processors (see
Tables 25 and 26). An example of PASS1 for a minimum
BPM system with Meta-Symbol, FORTRAN IV-H, and XDS
FORTRAN IV is as follows:

!ASSIGN M:BI, (LABEL, X), (SN, BBF1)
!PASS1
:SELECT (STD, $::BPM57M)
!ASSIGN M:BI, (LABEL, X), (SN, SIF1)

Part 12 wi II generate a PO tape as Part 7 has defined.
All of the element files in the current account will be
deleted.

!PASS1
:SELECT (STD, $::BFTNH), (STD, $::BPMMETA),;

(STD, $::BFTN4)
!EOD

Table 24. Standard Monitors

PASS1 Name LOCCT Name

$::BPM5FDBC LOCCTBPM5FDBC
$::BPM5RFDBC LOCCTBPM5RFDBC
$::BPM5SFDBC LOCCTBPM5SFDBC
$::BPM5SRFDBC LOCCTBPM5SRFDBC
$::BPM57M LOCCTBPM57M
$::BPM57R LOCCTBPM57R
$::BPM57S LOCCTBPM57S
$::BPM57SR LOCCTBPM57SR
$::BPM7D LOCCTBPM7D
$::BPM7SD LOCCTBPM7SD
$::BTM5SDBC LOCCTBTM5SDBC
$::BTM5SFDBC LOCCTBT M5S FD BC
$::BTM57S LOCCTBT M57S
$::BTM7SD LOCCTBTM7SD
$::BTMRT5SSIM LOCCTBTMRT5SSIM
$::BTMRT57S LOCCTBTMRT57S
$::BTMRT5SDBC LOCCTBTMRT5SDBC
$:: BTMRT7SD LOCCTBTMRT7SD

See Table 28 for the meaning of the symbols used in
PASS1 and LOCCT names.

Generating Standard Monitors and Processors 135

Table 25. BPM Processors

Processor

FORTRAN IV

FORTRAN IV-H
FLAG

Meta-Symbol
Symbol
ANS COBOL
Manage

D i cti ona ry Processor
File Processor
Retri eva I Processor
Report Processor

BASIC
SL-1

Basic Processors (CCI, CCIT, ERRWRT, FMGE,
LOADER, LOADERT, o LAY, LOPE)

SYSGEN Processors (PASS1, PASS2, PASS3,
LOCCT, DEF)

Standard Utilities (CHKPT, REW, WEOF,
PFIL, MONDUMP, MEDDUMP,
VOLIN IT, PCL)

Batch Super
Special Processors (ELlST, DRFCOM, ROMTRAN,

EDCON, FPURGE, FANAL YZE)

Sort-Merge

DMS: Dump Processor

FMPS
GPDS
CIRC

File Definition Processor
Initialization Processor
Load Processor
Libraries

1400 Simulator

PASSl Name

Language

$::BFTN4

$::BFTNH
$::FLAGBO (overlay)
$::FLAGBN (nonoverlay)
$::BPMMETA
$::BPMSYMBL
$::BCOBOL

$::BDICT
$::BFILP
$::BRETV
$::BREPT
$:: BPMBASIC

Utility

$::BASEPROC

$::SGENPROC

$::STDUTIL

$::SUPER
$::SPECIALS

Application

$::BSORT
$::BMERGE
$::BDMP
$::BFDP
$::BINT
$::BLOD

$::FMPS

$::BSIML

Table 26. BTM Subsystems

Processor PASSl Name

Edit $::EDIT:

BASIC $::BTMBASIC

FORTRAN IV-H $::FORTRAN:

Symbol $:: BTMSYMBL

136 Generating Standard Monitors and Processors

LOCCT Name

LOCCTBFTN4
LOCCTBFTN4P (patch version)
LOCCTBFTNH
LOCCTFLAGBO
LOCCTFLAGBN
LOCCTBMETA
LOCCTBPMSYMBL
LOCCTBCOBO L

LOCCTBDICT
LOCCTBFILP
LOCCTBRETV
LOCCTBREPT
LOCCTBPMBASIC
(load into any account)

LOCCTBASEPROC

LOCCTS GEN PROC

LOCCTSTDUTIL

LOCCTSUPER
LOCCTSPECIALS

LOCCTBSORT
LOCCTBMERGE
LOCCTBDMP
LOCCTBFDP
LOCCTBINT
LOCCTBLOD
(load into DMS library account)
LOCCTFMPS
(load into :SYS account)
(load into any account)
LOCCTBSIML

LOCCT Name

LOCCTEDIT:

LOCCTBTMBASIC

LOCCTFORTRAN:

LOCCTTSYMBL

Table 26. BTM Subsystems (cont.)

Processor PASS1 Name LOCCT Name

Load $:: LOAD: LOCCTLOAD:

Run $::RUN: LOCCTRUN:

Delta $::DELTA: LOCCTDELT A:

On-line Batch $::BPM: LOCCTBPM:

Terminal-Oriented Manage $::MANAGE: LOCCTMANAGE:

Ferret $::FERRET: LOCCTFERRET:

Super

For the example system, these are the only control cards
necessary for PASS1. Any Monitor or processor in
Tables 24 - 26 may be selected in a like manner for other
desired systems.

$::SUPER:

If it is desired to have a complete listing of program names
and catalog numbers selected, simply list the standard files
from the BI tape using the FMGE processor. If desired, the
BI tape can be booted normally and used to run FMGE to
I ist the components of the standard fi les before generating
a system. This is accomplished as follows:

!ASSIGN M:EI, (LABEL, $::BPM57M), (SN, BI)
!FMGE (LIST, BCD)

PASS3 CONTROL COMMANDS FOR LOADING
STANDARD MONITORS AND PROCESSORS

After running PASS 1 as described above, and PASS2 as de
scribed in a previous section, it is necessary to load the
system DCBs (a deck of ! LOAD cards for this purpose is
furnished with the BI tape). Then, to form the operating
system, PASS3 is run. The only PASS3 control card required
for loading a Monitor or processor is as shown below.

:name [(DELETEL BIAS=[+JnnnnJL SAVE(n1, n2, ...)J8

The processor or Monitor to be loaded is identified by "name".
The options are needed only to specify the special load bias
nnnn (BIAS =nnnn) the load bias offset +nnnn (BIAS = +nnnn),
to delete all element files (DELETE), and to save certain
element fi les named n 1, n2, etc. (SAVE(n 1, n2, ...)). The
SAVE option automatically implies the deleting of all files
that make up "name" except for those specified in the
SAVE option.

If element files are to be deleted, it is necessary to use the
SAVE option for some of the files, since they must be used
more than once. The files that must be saved are shown in
Table 27.

LOCCTSUPER:

Table 27. Element Files that Must Be Saved

Element Fi les Standard Files
that Must Be in Which
Saved They Occur

M:ALDCB REW, PFIL, WEOF
M:BIDCB REW, PFIL, WEOF
M:BODCB REW, PFIL, WEOF
M:CDCB REW, PFIL, WEOF
M:CIDCB REW, PFIL, WEOF
M:CKDCB
M:CODCB REW, PFIL, WEOF
M:DODCB REW, PFIL, WEOF
M:EIDCB PASS3, REW, PFIL, WEOF, FPURGE
M:EODCB LOCCT, REW, PFIL, WEOF, FPURGE
M:GODCB REW, PFIL, WEOF
M:JIT M:MON,CCI
M:LIDCB REW, PFIL, WEOF
M:LLDCB REW, PFIL, WEOF
M:LODCB REW, PFIL, WEOF
M:OCDCB REW, PFIL, WEOF
M:PODCB REW, PFIL, WEOF
M:SIDCB REW, PFIL, WEOF, FPURGE
M:SLDCB REW, PFIL, WEOF
M:SODCB REW, PFIL, WEOF, FPURGE
MODIFY M:MON, PASS3
TAPEFCN REW, PFIL, WEOF
TPECHST FMGE, REW, PFIL, WEOF
BPMBT PASS1, DEF
UTMBPMBT PASS1, DEF
WRITEMON

When all standard files containing a given element have
been loaded, then that element may be deleted. In gen
eral, DCB fi les should always be saved.

The LOAD and TREE cards for standard Monitors and pro
cessors are depicted in Figures 35 through 39.

An example of a complete System Generation for a standard
system is shown in Figure 40.

Generating Standard Monitors and Processors 137

STANDARD MONITORS

All standard Monitors include the handlers for all standard
I/o devices except paper tape and will have CALPROC
resident.

When building a new tree structure, the elements currently
in the root{e.g., COOP, CALPROC, andlORT) plus any
others transferred from the current tree overlays must be
within 16383 words below TOPRT . Likewise, any elements in
the tree overlays must be within 16383 above TOPRT.

Any standard Monitor that includes any instruction simula
tion package will also haveALTCPandMEMALOC resident.

The M:CPU, ENTRY, and M:ABS element files must be in
the first 8K of the Monitor root segment.

MONITOR TREE STRUCTURE REQUIREMENTS

18E ROOT-RESIDENT MONITOR

The following element files must be in the root.
MON::ORG must be first and TOPRT must be last.

MON::ORG [M:SDEV] [CVTSIM]

ROOT [RTROOT] M:JIT

M:CPU [M:FRGD] IOTABLE

M:ABS [DSCIO] HANDLERS

ENTRY [SIMINT] [COOp]

10/IOSYM [DECSIM] CALPROC

[PFSR] [FLTSIM] IORT

FBCD/DFBCD [BYTSIM] TOPRT

When generating the Monitor (M:MON load module), it
must be loaded by the P ASS3/LOCCT process. That is, if
a nonstandard Mon itor is desired, LOAD/TREE control com
mands must be processed by the LOCCT processor prior to
the execution of PASS3.

Standard Monitor LOCCTs are distributed on the BI tape
for user convenience. The LOCCT names for all standard
Monitors are made up of a series of codes that are defined
in Table 28.

Figure 35 illustrates BPM57M which describes the tree
structure for the minimal BPM standard Monitor on the BI
tape. This Monitor has no instruction simulators, no sym
biont routines, and no real-time.

Figure 36 illustrates BPM5SFDCB which describes the tree
structure for a larger BPM standard Monitor. This Monitor
has symbiont routines and all instruction simulators.

The following element files must also be in the root for a
BTM system:

Figure 37 illustrates BTMRT5SDBC which describes the tree
structure for a BTM standard Monitor. This Monitor has
time-sharing, real-time, symbiont routines, and all instruc
tion simulators except floating-point.

M:BTM

[BTMSTAT]
The tree structures for other standard Monitors are described
in the FOl-61 release documentation.

Table 28. LOCCT Name Codes

Overlay
Codes Description Additional Root Elements Root Modifications Modifications

BPM Batch Processing Monitor

BTM Batch Time-Sharing Monitor M:BTM 10D-BTMNRES
replaces 10D.

B Byte string instruction simulation SIMINT ,BYTSIM

C Convert instruction simulation SIMINT ,CVTSIM

D Decimal instruction simulation SIMINT ,DECSIM

F Floating-point instruction simulation SIMINT,FLTSIM

M Minimal Monitor DFBCD replaces
FBCD. PFSR is
not included.

R or RT Real-time M:FRGD,RTROOT

S Symbiont M:SDEV,COOP 10SYM replaces CCLOSE replaces
10 DUMMYCCL

SIM All simulators SIMINT ,BYTSIM,CVTSIM,
DECSIM,FLTSIM

138 Mon i tor Tree Structure Requ i rements

!LOCCT (LMN,M:MON),; *** SIGMA S/7 BPM MINIMAL ***
(BIAS,O),(MAP),(ABS),(SL,F),(PERM),(NOTCB),(NOSYSLIB),(EF,;

(MON: :ORG), (ROOT), (IOTABLE), (M:ABS), (M:CPU), (M:JIT), ;
(IORT), (HANDLERS), (TOPRT),(PRGMLDR),(TYPR),(IOD),(DEBUG), ;
(DUMP),(RDF),(OPNL),(OBSE),(OPN),(CLS),(MODIFY),(EXIT),;

(KEYIN2),;
(RCVR2), ;

(CLSl),(SEGLOAD),(LDPRG),(MEMALOC),(CALPROC),;
(WRTF),(WRTD),(LBLT),(POS),(ALTCP), (M:1S),(M:16),;
(M: 17), (M: 18), (M:19), (M: lA), (M: IE), (PASSOSYS), (MUL), ;
(10), (DUMMYCCL), (DFBCD);

!,(JOBENT),(ENTRY);
!, (RCVR»)
!TREE MON::ORG-ROOT-M:CPU-M:ABS-

ENTRY-;
IO- DFBCD-;
M:JIT-IOTABLE-HANDLERS-CALPROC-IORT-TOPRT-;

(PRGMLDR,TYPR,IOD,DEBUG-DUMP,EXIT ,M:2S,M:16,M:17,;
KEYIN2, ;

M:18 ,M: lA, JOBENT, MEMALOC,RDF-;
(OPNL-OBSE,M:1E-OBSE,OPN-OBSE,CLS-PASSOSYS-MODIFY-CLSl,;

!MUL, ;
SEGLOAD-OBSE,WRTF,WRTD-DUMMYCCL,LBLT,M:19,POS,ALTCP),;

RCVR2, ;
RCVR,LDPRG)

!DATA
:LOCCT BPMS7M

Figure 35. BPM57M Standard Monitor

!LOCCT (LMN,M:MON),; *** SIGMA S BPM SYMBIONT-SIMULATORS ***
(BIAS,O),(MAP),(ABS),(SL,F),(PERM),(NOTCB),(NOSYSLIB),(EF,;

(MON::ORG),(ROOT),(IOTABLE),(M:ABS),(M:CPU),(M:JIT),;
(IORT),(HANDLERS),(TOPRT),(PRGMLDR),(TYPR),(IOD),(DEBUG),;
(DUMP), (RDF), (OPNL),(OBSE),(OPN),(CLS),(MODIFY),(EXIT), ;

(KEYIN2), ;
(RCVR2), ;

(CLS1),(SEGLOAD),(LDPRG),(MEMALOC),(CALPROC),;
(WRTF),(WRTD),(LBLT),(POS),(ALTCP), (M:lS),(M:16),;
(M:17), (M: 18), (M:19), (M: lA), (M: IE), (PASSOSYS), ;
(IOSYM),(PFSR),(FBCD),(M:SDEV),(COOP),(CCLOSE),(MUL),;

(SIMINT),(DECSIM),(FLTSIM),(BYTSIM),(CVTSIM);
!,(JOBENT),(ENTRY);
!, (RCVR»
!TREE MON::ORG-ROOT-M:CPU-M:ABS-;

ENTRY-;
IOSYM-PFSR-FBCD-M:SDEV-SIMINT-DECSIM-FLTSIM-BYTSIM-CVTSIM-;
M:JIT-IOTABLE-HANDLERS- COOP-CALPROC-IORT-TOPRT-;

(PRG~DR~TYPR,IOD,DEBUG-DUMP,EXIT ,M:1S,M:16,M:17, ;
KEYIN2, ;

RCVR2, ;
RCVR,LDPRG)

!DATA

M: 18,M: lA,MEMALOC, JOBENT, RDF-;
(OPNL-OBSE,M:IE-OBSE,OPN-OBSE,CLS-PASSOSYS-MODIFY-CLSl,MUL,;

SEGLOAD.-OBSE, WRTF, WRTD-CCLOSE , LBLT ,M:19, POS ,ALTCP), ;

:LOCCT BPMSSFDBC

Figure 36. BPM5SFDBC Standard Monitor

Monitor Tree Structure Requirements 139

lLOCCT (LMN,M:MON),; *** SIGMA 5 BPM/RT SYMBIONT-DEC/BYT/CVT ***
(BIAS,O),(MAP),(ABS),(SL,F),(PERM),(NOTCB),(NOSYSLIB),(EF,;

(MON::ORG),(ROOT),(IOTABLE),(M:ABS),(M:CPU),(M:JIT),;
(IORT),(HANDLERS),(TOPRT),(PRGMLDR),(TYPR),(IOD),(DEBUG),;
(DUMP),(RDF),(OPNL),(OBSE),(OPN),(CLS),(MODIFY),(EXIT),;
(RTROOT),(M:FRGD),;

(KEYIN1),(KEYIN2),;
(RCVR2), ;

(CLSl),(SEGLOAD),(LDPRG),(MEMALOC),(CALPROC),;
(WRTF),(WRTD),(LBLT),(POS),(ALTCP), (M:15),(M:16),;
(M:17),(M:18),(M:19),(M:IA), (M:IE),(PASSOSYS),;
(IOSYM),(FBCD),(M:SDEV),(COOP),(CCLOSE),(SIMINT),(DECSIM),;

(CVTSIM),(BYTSIM),
1 (MOL), ;

(BTMNRES),(M:BTM),(PFSR);
l,(JOBENT),(ENTRY);

, (RCVR»)
!TREE MON::ORG-ROOT-M:CPU-M:ABS-;

ENTRY-;
SIMINT-DECSIM- BYTSIM-CVTSIM-;

IOSYM-FBCD-M:SDEV-ALTCP- M:BTM- PFSR-;
RTROOT-M:FRGD- ;
M:JIT-IOTABLE-HANDLERS- COOP-CALPROC-IORT-TOPRT-;

(PRGMLDR,TYPR,IOD-BTMNRES,DEBUG-DUMP,EXIT
KEYINI , KEYIN2 , ;

,M:15,M:16,M:17, ;

lMOL, ;

1 RCVR2,;
1 RCVR,LDPRG)
!DATA

M:28,M:IA,MEMALOC,JOBENT, RDF-;
(OPNL-OBSE,M:IE-OBSE,OPN-OBSE,CLS-PASSOSYS-MODIFY-CLSl,;

SEGLOAD-OBSE,WRTF,WRTD-CCLOSE ,LBLT,M:19,POS),;

:LOCCT BTMRT5SDBC

Figure 37. BTMRT5SDBC Standard Monitor

lLOCCT (LMN,CCI),(EF,(CCIROOT),(JOB),(LIMIT),(ASSIGN),(LOAD),(TREE);
, (TELSCPE),(RUN),(CCIDBUG),(READBI),(ENDJOB),(ABORT);
, (M:DLIMIT), (M:JIT»,(BIAS,2000), (NOTCB), (MAP), (PERM), (SL, F);
, (NOSYSLIB)

!DATA
:LOCCT CCI

!LOCCT (LMN,CCI), (EF, (CCIROOT), (JOB),(LIMIT),(ASSIGN), (LOAD), (T REE);
, (TELSCPE), (RUN), (CCIDBUG),(READBI), (ENDJOB),(ABORT),(M:D LIMIT);
,(M:JIT),(BIAS,2000),(NOTCB),(MAP),(PERM),(SL,F),(NOSYSLIB)

!TREE CCIROOT-M:DLIMIT-M:JIT-(JOB,LIMIT,ASSIGN,LOAD,TREE,TELSCPE,RUN;
,CCIDBUG,READBI,ENDJOB,ABORT)

!DATA
:LOCCT CCIT

lLOCCT (LMN,FMGE) (EF, (FlLEMNGE), (TPECHST), (FMGEDCBS)), (BIAS,2000) ;
,(MAP),(SL,F),(NOSYSLIB),(PERM),(TSS,lOO)

!DATA
:LOCCT FMGE

!LOCCT (LMN,LOADER),(EF, (LDR),(INl), (PSl),(IN2),(PS2),(ALL),(EVL) ;
,(WRT»),(BIAS,2000),(NOTCB), (MAP), (PERM),(SL,F), (NOSYSLIB)

!DATA
: LOCCT LOADER

Fi gure 38. System Tree Structure

140 Monitor Tree Structure Requirements

!LOCCT (LMN,LOADER),(EF,(LDR),(IN1),(PS1),(IN2),(PS2),(ALL),(EVL);
,(WRT»), (BIAS,2000), (NOTCB), (MAP), (PERM), (SL,F),(NOSYSLIB)

!TREE LDR-(IN1,PS1,IN2,PS2-(ALL,EVL,WRT»
!DATA
: LOCCT LOADERT

!LOCCT (LMN,OLAY),(EF,(LDR),(IN1),(PS1),(IN2),(PS2),(ALL),(EVL);
, (WRT)"(BIAS,2000), (ABS), (NOTCB),(MAP),PERM),(SL,F);
, (NOSYSLIB)

!TREE LDR-(IN1,PS1,IN2,PS2-(ALL,EVL,WRT»
!DATA
:LOCCT OLAY

!LOCCT (LMN,LOPE),(EF,(LOPEROM»,(BIAS,2000),(MAP),(NOTCB),(PERM)
!DATA
:LOCCT LOPE

!LOCCT (LMN,PASS1),(BIAS,2000),(MAP),(SL,F),(TSS,lOO),(PERM);
,(EF, (PASSIROM), (PIDCBS), (BPMBT),(UTMBPMBT»

!TREE PASSIROM-PIDCBS-(BPMBT,UTMBPMBT)
!DATA
:LOCCT PASSl

!LOCCT (LMN,PASS2),(BIAS,2000),(MAP),(SL,F),(TSS,AOO),(PERM);
, (NOSYSLIB);

,(EF,(P2CCI),(P2DCBS),(MODIFY),(UBCHAN),(SDEVICE);
,(XMONITOR),(XLIMIT),(ABS),(FRGD),(BTM),(P2COC);
, (IMC), (SPROCS)

!TREE P2CCI-P2DCBS-MODIFY-(UBCHAN,SDEVICE,XMONITOR;
,XLIMIT,ABS,FRGD,BTM,P2COC,IMC,SPROCS)

!DATA
:LOCCT PASS2

!LOCCT (LMN,PASS3), (BIAS,2000),(MAP),(SL,F), (TSS,200),(PERM);
,(EF,(PASS3ROM),(M:EIDCB),(MODIFY)

!DATA
:LOCCT PASS3

!LOCCT (LMN,DEF),(BIAS,2000),(MAP),(SL,F),(TSS,lOO),(PERM);
,(EF, (DEFROM), (DFDCBS), (BPMBT),(UTMBPMBT)

!TREE DEFROM-DFDCBS-(BPMBT,UTMBPMBT)
!DATA
:LOCCT DEF

!LOCCT (LMN,LOCCT),(BIAS,2000),(MAP),(SL,F),(TSS,lOO),(PERM);
,(EF,(LOCCTROM),(M:EODCB)

!DATA
: LOCCT LOCCT

!LOCCT (LMN,REW), (EF, (TAPEFCN),(TPECHST), (M:OCDCB),(M:CDCB);
,(M:BIDCB),(M:BODCB),(M:SIDCB),(M:EIDCB),(M:LLDCB),(M:LODCB);
, (M:PODCB), (M:EODCB), (M:CODCB), (M:DODCB), (M:CIDCB),(M: SLDCB);
, (M:ALDCB), (M:SODCB),(M:LIDCB), (M:GODCB),(BIAS,2000);
,(ABS), (MAP), (SL,F), (NOSYSLIB),(PERM),(TSS,lOO)

!DATA
:LOCCT REW

!LOCCT (LMN,WEOF), (EF, (TAPEFCN), (TPECHST),(M:OCDCB),(M:CDCB);
,(M:BIDCB),(M:BODCB), (M:SIDCB),(M:EIDCB), (M:LLDCB),(M: LODCB);
, (M:PODCB), (M:EODCB),(M:CODCB), (M:DODCB), (M:CIDCB),(M: SLDCB);

Fi gure 38. System Tree Structure (cont.)

Monitor Tree Structure Requirements 141

, (M:ALDCB), (M:SODCB), (M:LIDCB),(M:GODCB»,(BIAS,2000);
,(ABS),(MAP),(SL,F),(NOSYSLIB),(PERM),(TSS,lOO)

!DATA
:LOCCT WE OF

!LOCCT (LMN,PFIL), (EF, (TAPEFCN),(TPECHST),(M:OCDCB),(M:CDCB);
,(M:BIDCB),(M:BODCB), (M:SIDCB), (M:EIDGB), (M:LLDCB), (M: LODGB);
,(M:PODCB),(M:EODCB), (M:CODCB), (M:90DCB), (M:CIDCB),(M: SLDCB);
,(M:ALDCB),(M:SODCB),(M:LIDCB),(M:GODCB»,(BIAS,2000);
,(ABS), (MAP),(SL,F),(NOSYSLIB), (PERM), (TSS,lOO)

!DATA
:LOCCT PFIL

!LOCCT (LMN,DEFCOM),(MAP), (SL,F),(EF, (DEFCMROM»
!DATA
:LOCCT DEFCOM

!LOCCT (LMN,SUPER),(EF,(SUPERBO),(M:EIDCB),(M:EODCB»,(SL,F),(MAP),(NOTCB);
,(BIAS,2000),(PERM)

!DATA
: LOCCT SUPER

!LOCCT (LMN,DELTA:),(EF, (BTMDELTA»,(SL,F), (MAP), (NOTCB),(BIAS,C200)
!DATA
:LOCCT DELTA:

!LOCCT (LMN,EDIT:),(EF,(BTMEDIT», (SL,F),(MAP), (NOTCB),(BIAS,C200) ;
, (PERM), (ABS)

!DATA
:LOCCT EDIT:

!LOCCT (LMN,FERRET:), (EF, (BTMFER», (SL,F),(MAP), (NOTCB),(BIAS,C200) ;
, (PERM) , (ABS)

!DATA
: LOCCT FERRET:

!LOCCT (LMN,LOAD:),(EF,(BTMLOAD»,(SL,F),(MAP),(NOTCB),(BIAS,C200);
, (PERM), (ABS)

!DATA
: LOCCT LOAD :

!LOCCT (LMN,BPM:),(EF, (BTMBPM»,(SL,F),(MAP), (NOTCB), (BIAS,C200);
, (PERM) , (ABS)

!DATA
:LOCCT BPM:

!LOCCT (LMN,SUPER:),(EF,SUPERBO»,(SL,F),(MAP),(NOTCB),(BIAS,C200);
, (PERM)

!DATA
:LOCCT SUPER:

!LOCCT (LMN,MONDUMP),(SL,F),(MAP),(PERM),(EF,(MBROOT),(MBSYMTAB),(MBSNAP);
, (MBPSDREG), (MBTRAPS),(MBDCBS), (MBBTMTAB), (MBIOSYM»

!TREE MBROOT-MBSYMTAB-(MBSNAP,MBPSDREG,MBTRAPS,MBDCBS,MBBTMTAB,MBIOSYM)
!DATA
: LOCCT MONDUMP

!LOCCT (LMN,ELIST),(EF,(ELISTROM»,(SL,4),(BIAS,2000),(PERM),(MAP), (ABS)
!DATA
:LOCCT ELIST

Figure 38. System Tree Structure (cont.)

142 Monitor Tree Structure Requirements

!LOCCT (LMN,FPURGE),(EF,(FPROM),(M:SIDCB),(M:SODCB»,(SL,F),(BIAS,2000),(MAP);
, (PERM) , (ABS)

!DATA
:LOCCT FPURGE

!LOCCT (LMN,MEDDUMP), (EF,(MEDDBO»,(MAP), (PERM), (BIAS,2000)
!DATA
:LOCCT MEDDUMP

!LOCCT (LMN,VOLINIT),(EF,(VOLINBO», (SL,F),(MAP), (PERM), (BIAS,20 00)
!DATA
:LOCCT VOLINIT

!LOCCT (LMN,PCL),(MAP),(SL,F),(PERM),(BIAS,2000),(EF,(PCLROM»
!DATA
: LOCCT PCL

!LOCCT (LMN,RUN:),(EF,(BTM:RUN», (SL,F),(MAP), (NOTCB),(BIAS,C200) ,(PERM),(ABS)
!DATA
:LOCCT RUN:

!LOCCT (LMN,FANALYZE), (EF, (FANROM», (PERM), (BIAS,2000),(SL,F),(TSS ,256),(MAP)
!DATA
:LOCCT FANALYZE

!LOCCT (LMN,MCHKPT), (EF, (CHKPTROM», (BIAS,3000), (NOTCB), (MAP), (PERM),(SL,F);
, (NOSYSLIB), (ABS)

!DATA
:LOCCT CHKPT

!LOCCT (LMN,EDCON), (EF,(EDCONROM»,(SL,F),(MAP), (NOTCB),(BIAS,20 OO),(PERM),(ABS)
!DATA
: LOCCT EDCON

!LOCCT (LMN,ERRWRT),(EF,(ERROM»,(SL,F),(MAP),(BIAS,2000),(PERM),(ABS)
!DATA
:LOCCT ERRWRT

!LOCCT (LMN,ROMTRAN),(EF,(ROMTREN», (BIAS,2000), (MAP), (NOTCB),(PERM)
!DATA
:LOCCT ROMTRAN

!LOAD (LMN,M:CK),(EF, (M:CKDCB», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:AL),(EF,(M:ALDCB»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:BI),(EF,(M:BIDCB»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:BO),(EF,(M:BODCB»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:CI),(EF,(M:CIDCB», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:C),(EF,(M:CDCB »,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:CO),(EF,(M:CODCB», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:DO),(EF,(M:DODCB»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:EI),(EF,(M:EIDCB»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:GO), (EF, (M:GODCB», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:EO),(EF,(M:EODCB»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:LI),(EF,(M:LIDCB»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:LL),(EF, (M:LLDCB», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:LO), (EF, (M:LODCB», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:OC), (EF, (M:OCDCB», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:PO), (EF, (M:PODCB», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:SI), (EF, (M:SIDCB»,(MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:SL),(EF,(M:SLDCB», (MAP), (PERM,LIB),(NOSYSLIB)

Figure 38. System Tree Structure (cont.)

Monitor Tree Structure Requirements 143

!LOAD (LMN,M:SO), (EF,(M:SODCB»,(MAP),(PERM,LIB), (NOSYSLIB)
!LOAD (LMN,SSS),(EF,(SSSROM »,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,S:OVERLY), (EF, (S:OVERLYR», (MAP), (PERM,LIB), (NOSYSLIB)

Figure 38. System Tree Structure (cont.)

!LOCCT (LMN,FORTRAN), (NOSYSLIB), (MAP), (ABS), (SL,F),(PERM), (SEQ),(N OTCB);
,(EF,(M:BO, :SYS),(M:C, :SYS),(M:GO, :SYS),(M:LO, :SYS),(M:OC, :SYS);
,(M:SI, :SYS),(M:SO, :SYS),(M:DO, :SYS), (PASSOF), (MERRIMAC), (FORTRAN4);
, (INTERPTR),(LISTDEFS), (FORTTEMP),(XIX2DCBS),(PASSIF),(STASCAN),(EXSCAN);
, (CONSCAN), (PASSIML),(SINCOLMl), (P2P3ROOT), (PASS2F), (ALL OCATE), (PASS3F);
, (GENLIT), (OUTPROG), (OUTBO), (PRINTCON), (SUMMARY»

!TREE PASSOF-MERRIMAC-FORTRAN4-INTERPTR-LISTDEFS-FORTTEMP-XIX2DCBS-;
,M:BO,M:C-M:GO-M:LO-M:OC-M:SI-M:SO-M:DO-;
, (PASSIF-STASCAN-EXSCAN-CONSCAN-PASSIML-SINCOLMl,P2P3ROOT-,(PASS2F-ALLOCATE;
,PASS3F-GENLIT-OUTPROG-OUTBO-PRINTCON-SUMMARY»

!DATA
:LOCCT BFTN4
!LOCCT (LMN,FORTRANH),(EF,(BFTNH),(M:SI, :SYS),(M:LO, :SYS),(M:LO, :SYS),(M:BO, :SYS);

,(M:GO, :SYS), (M:DO, :SYS), (M:LL, :SYS), (M:C, :SYS», (NOSYSLIB), (MAP), (ABS);
,(SL,F),(PERM),(SEG),(BIAS,5000)

!DATA
:LOCCT BFTNH
!LOCCT (LMN,SORT),(MAP),(PERM),(ABS),(SEG),(ERSTACK,O),(ERTABLE,O),(BIAS,5000);

,(EF,(S:SORTD), (S:SORTPO),(S:SORTPl),(S:SORTP2), (S:SOR TP3),(S:DCBl)
!TREE S:DCBl-S:SORTP-(S:SORTPl-S:SORTP2-S:S0RTP3)
!DATA
:LOCCT BSORT
!LOCCT (LMN,MERGE),(EF,(MERGEO»,(PERM),(MAP),(ABS),(BIAS,5000),(TSS,O),(SL,F)
!DATA
:LOCCT BMERGE
!LOCCT (LMN,SIML), (EF,(SIML»,(BIAS,5000),(MAP),(PERM),(SL,F),(ABS),(TSS,100)
!DATA
: LOCCT 1401SIM
!LOCCT (LMN,TCON),(EF,(TAPECON»,(BIAS,5000),(MAP),(PERM),(SL,F), (ABS)
!DATA
: LOCCT 1401TCON
!LOCCT (LMN,BASIC:), (EF, (OBASIC»,(SL,F),(MAP),(NOTCB), (BIAS,C200),(PERM),(ABS)
!DATA
:LOCCT BTMBASIC
!LOCCT (LMN,BASIC),(EF,(BBASIC),(M:CIDCB),(M:DODCB),(M:EIDCB),(M:EODCB),(M:LODCB);

, (M:SIDCB), (M:SODCB»,(SL,F),(MAP),(NOTCB),(BIAS,5000), (PERM), (ABS)
!DATA
:LOCCT BPMBASIC
!LOCCT (LMN,FORTRAN:), (EF, (BTMFINT),(BTMFORT»,(SL,F),(BIAS,C200),(MAP), (NOTCB);

,(PERM), (ABS)
!DATA
:LOCCT FORTRAN:
!LOCCT (LMN,METASYM), (MAP),(PERM),(ABS),(BIAS,5000),(SL,F), (TSS,lA) ,(EF,(BINTRPR);

, (BEML), (BEPL), (BCCl), (BCONC), (BINTTBL),(BAML), (BAPL), (B OPR),(BOBJ);
, (M:C, :SYS), (M:BO, :SYS), (M:GO, :SYS), (M:LO, :SYS), (M:SO, :SYS), (M:CI, :SYS);
, (M:SI, :SYS), (M:CO, :SYS), (M:DO, :SYS»

!TREE BINTRPR-;

!DATA

,M:C-M:BO-M:GO-M:LO-M:CI-M:CO-M:SI-M:SO-M:DO-;
(BEML-BEPL-BCCI-BCONC-BINTTBL,BAML-BAPL-BOPR-BOBJ)

:LOCCT BMETA
!LOCCT (LMN,SYMBOL),(EF,(BI704159»,(BIAS,5000),(PERM),(MAP),(SL,F),(ABS)

Fi gure 39. Language Processor Load/Tree Structure

144 Monitor Tree Structure Requirements

!DATA
: LOCCT BSYMBL
!LOCCT (LMN,SYMBOL:),(EF,(BI705399)),(SL,F),(MAP),(NOTCB),(BLAS,C20O),(PERM),(ABS)
!DATA
:LOCCT TSYMBL

*
:GENDCB
!END
!JOB
!LIMIT
!ASSIGN
!PASSl
: SELECT

!ASSIGN
! PASSl
: SELECT
!PASS2
: CHAN
:DEVICE
: CHAN
:DEVICE
: CHAN
:DEVICE
: CHAN
:DEVICE
: DEVICE
: CHAN
: DEVICE
: MONITOR
:ABS,1024
:DLIMIT
!PASS3
:BP
:CCl
:PASS2
: LOADER
:OLAY
:PASSl
: LOCCT
:PASS3
:DEF

Figure 39. Language Processor Load/Tree Structure (cont.)

(M:BI, :SYSGEN,(INSN,BBF1),9T)

: SYSGEN, DO$SYSGEN,F
(TIME,60)
M:BI,(LABEL,X),(SN,BBF1)

(STD,$::BPM),(STD,$::BASEPROC),(STD$::SGENPROC),(STD,$::STDUTIL);
,(STD,$::SPECIALS)
M:BI,(LABEL,X),(SN,SIF1)

(STD,$::BPMMETA),(STD,$::BPMSYMBL)

TYAOl

CRA03

LPA02

9TA80
9TA81

DCAFO,(7204),(PFA,lDO),(PSA,30),(PER,O)
(CORE,64),(TSTACK,300),(CFU,11),(QUEUE,16),(ORG,60)
(CCI)
(TIME,5),(LO,250),(PO,lOO),(DO,250),(UO,250)

(SAVE(M:JIT,MODIFY),BIAS=O)
(DELETE)
(SAVE(MODIFY))

(DELETE)

(SAVE(M:EIDCB))

:LOPE (DELETE)
:METASYM (SAVE(M:CDCB,M:BODCB,M:GODCB,M:LODCB,M:CIDCB,M:CODCB,M:SIDCB,M:SODCB))
: SYMBOL (SAVE(M:OCDCB,M:DODCB,M:GODCB,M:SIDCB,M:BODCB,M:LODCB,M:CDCB))
:FMGE (SAVE(TPECHST))
:REW (SAVE (TAPEFCN,TPECHST,M:OCDCB,M:CDCB,M:BIDCB,M:BODCB,M :SIDCB,M:EIDCB;

,M:LLDCB,M:LODCB,M:PODCB,M:EODCB,M:CODCB,M:DODCB,M:CIDCB,M:SLDCB;
,M:ALDCB,M:SODCB,M:LIDCB,M:GODCB))

:PFIL (SAVE (TAPEFCN,TPECHST,M:OCDCB,M:CDCB,M:BIDCB,M:BODCB,M :SIDCB,M:EIDCB;
,M:LLDCB,M:LODCB,M:PODCB,M:EODCB,M:CODCB,M:DODCB,M:CIDCB,M:SLDCB;
,M:ALDCB,M:SODCB,M:LIDCB,M:GODCB))

{

PASS3 IS FOLLOWED BY
!LOAD CONTROL COMMANDS FOR
MONITOR DCB'S, SSS, AND
S:OVRLY

Figure 40. System Generation Example

Monitor Tree Structure Requirements 145

!ASSIGN M:PO, (DEVICE,9T), (SN,PO)
lDEF
: INCLUDE (BPM,MON,SIG7FDP,SIGMET)
!FIN

Figure 40. System Generation Example (cont.)

HORIZONTAL TREE INSTRUCTIONS

RDF cannot be in the same overlay area with any of the
following:

CLS OPN

LBLT OPNL

M:19 POS

M:1E SEGLOAD

MUL WRTF

VERTICAL TREE INSTRUCTIONS

Within any overlay area the vertical order of the standard
tree structure must not be changed.

NUMBER OF OVERLAY LEVELS

The standard tree structure has two levels. The maximum
allowed is four levels (unless MAXLEV is changed).

OVERLAY REQUIREMENTS

WRTD and CCLOSE/DUMMYCCL must be in the same seg
ment. CLC, PASSOSYS, MODIFY, and CLSl must be in
same segment with the order unchanged and also must be in
the last level of the tree structure.

DEBUG and DUMP, OPNL and OBSE, M: lE and OBSE,
OPN and OBSE, SEGLOAD and OBSE must be as stated,
unless DUMP and/or OBSE is put into the root of the
Monitor.

BTMNRES must be included in the same segment with laD
in a BTM system.

146 BTM System Generation

USER INITIALIZATION ROUTINES

The following user initializer routines (supplied by the
user) may be incorporated into the Monitor tree structures
as shown below. Alternatively, the routine may be incor
porated in the Monitor root segment.

USRINITl }
USRINIT2

Following TYPR in the TYPR segment
(i.e., TYPR-USRINIT1-USRINIT2)

USNRINIT1} In CLS segment (i .e., CLS-
USNRINIT2 USNRINITl - USNRINIT2 -

PASSOSYS - MODIFY - CLS1)

BTM SYSTEM GENERATION

This discussion is intended to supplement the preceding
SYSGEN discussion for users who have a BTM system.

The BI tape for BTM must have a II the norma I BPM modules
plus the following fi les:

File

COC

BTM:BLlB

BTMFINT

BTMFORT

BTMLOAD

BTMEDIT

BTMSYMB

BTMFER

BTMBPM

Contents (ROMs)

BTM power on/off, initialization,
and Executive routines.

On-line FORTRAN run-time and
math library.

On-line FORTRAN interface program.

On-line FORTRAN compiler
(cat. no. 704176).

LOAD subsystem (cat. no. 705260).

EDIT subsystem.

On-line SYMBOL (cat. no. 704158).

FERRET subsystem.

BPM subsystem.

File Contents (ROMs)

BTMBASIC On-line BASIC.

BTM SYSGEN :BTM card interpreter.

BTMRUN RUN subsystem (cat. no. 705698).

SYSGEN OPERATIONAL INFORMATION

PASS 1

The :SELECT cards should select the additional modules
needed for the parti cular system being generated:

COC is required for any BTM system.

BTM:BLIB is required for FORTRAN.

BTM is required only if a PASS2 processor is to be part
of the object system.

Note: BASIC and FORTRAN require floating-point,
so the appropriate simulator must be included
in the absence of the hardware option.

PASS 2

:STDLB and :DEVICE cards should be set up as in BPM ex
cept as discussed below.

The last n RADs in the H GP chain are used for swapping.
Swapping space is allocated from the last RAD in the H GP
chain first, the next to last RAD next, etc. The last al
located RAD, and only the last one, may have PFA or PER
space allocated on it as well. Note that the last n RADs,
assuming n swappers, must have the same sector size and
the same number of sectors per track. During the PO tape
boot, if there is not sufficient space on available RADs for
all users, the following message wi II be typed on the oper
a tor's con so Ie:

NO ROOM FOR USERS, CAN'T HAVE BTM

BTMwill be disabled but BPMwill still run.

The amount of subsystem swap storage required may be com
puted as the sum of the following items that are used:

Subsystem Storage

FORTRAN 34 granules

LOAD 11 granules

EDIT 10 granules

SYMBOL 14 granules

FERRET 6 granules

Subsystem Storage

BPM 4 granules

BASIC 20 granules

User swap area, in granules, may be computed as

(2*(USERSIZE/512) + 4) * (N UMUSERS)

The total swap area required is the sum of subsystem and
user swap areas.

For example, 680 granules are needed for 10 users with a
16K on-line area. The definition of a granule is the BPM
definition, i. e., that number of sectors needed to make
up one page (512 words). If all of the subsystems listed
above are used, the total swap area required is 779 granules.

If the swap areas are to be allocated on a disk pack, each
user swap area is allocated in whole-cylinder increments;
during the SYSGEN process, adjustment of values for PSA,
PFA, and PER may be required if they reside on the same
device.

The allocation of swap area can be checked after the sys
tem is booted. The system types out

BTM SWAP AREA IS FROM aaaa TO END OF DISC ndd.

An installation desiring to add subsystems subsequent to
SYSGEN should allow ample USERSIZE when generating
the system. If the swapping area is to be shared with sys
tem file storage, system file storage wi II be wiped out if
enough space is not allowed.

A card defining the communications controller address
should be incl uded as follows:

:DEVICE COndd, (HAND, COC, COC)

:SDEVICE, :D LIMIT, and :ABS cards are identi cal to those
used with normal BPM.

:MONITOR card is identical. However, the following
recommendati ons are made:

TSTACK,300 for symbiont system (250 for nonsymbiont).

SPOOL, CPOOL, MPOOL, SFIL, no change.

CORE The correct size must be specified; the sys-
tem cannot be patched to run on a different size
machine.

QUEUE, 20

CFU If none is specified, 10 are supplied. With
BTM, the number should be NUMUSER * 2 + 10.

A :BTM card must be included to generate a BTM system.
It generates tables that are dependent upon user area size,

SYSGEN Operational Information 147

number of users, etc. It may appear anywhere after the
:DEVICE and :SDEVICE cards.

The interpretation of the :BTM card produces a load module
named M:BTM, which contains all of the variable storage
needed by the resident Executive. The resident Executive
(BTMBO) and M:BTM are included in the generation of the
Monitor.

BTM is designed to run under Clock3 (500 Hz). Absol ute
core location X'S4 1 contains the counter 3 count pulsewhen
a user is running.

MTW, -1 TSDTIMER

TSDTIMER is refreshed to the value BTMQTM every time
batch gives up control, where BTMQTM is supplied by
either the KEYIN routine or :BTMCCI. Obviously
BTMQTM must be divided by 2 (by the BTM Executive) in
order to ensure the correct mil/ i second val ue desi red to
satisfy the SOO Hz pulse. This is done. Furthermore, it
is not suggested that a BTM system be run under another
rate Clock3 because of complications in timing resolutions.
A clock setting faster than SOO Hz wi /I occasionally cause
TSDTIMER to go negative. Any setting other than SOO Hz
wi II make timing data incorrect.

LOAD AND OVERLAY CARDS

BPM processor control cards are unchanged.

The module name and element file entries have the fol
lowing values for each of the subsystems:

Subsystem LMN EF(s)

FORTRAN FORTRAN: BTMFINT, BTMFORT

LOAD LOAD: BTMLOAD

EDIT EDIT: BTMEDIT

SYMBOL SYMBOL: BTMSYMB

SUPER SUPER: BTMSUPER

FERRET FERRET: BTMFER

BPM BPM: BTMBPM

BASIC BASIC: BTMBASIC

RUN RUN: BTMRUN

DEF CARD

The format of the DEF card is exactly as in BPM. If on-line
FORTRAN is to be used, BTM:BLIB should be specified in
the (INCL, ..•) list.

148 Component Sizes in a BTM System

SYSTEM BOOT AND INITIALIZATION

System boot and initialization is exactly as in BPM.

JOB COMMAND

After the system has been generated, the first of the fol
lowing two jobs must be run if on-line FORTRAN is to be
used. The second job is optional but is recommended, as
it maximizes avai lable disk space.

!JOB :BTM, ONLINELIB, F } ~reates :BLIB
!ASSIGN M:BI, (FILE, BTM:BLIB, :SYS) file under
! LOPE (PERM, LIB) account :BTM

!JOB :SYS, DE LETE } Deletes
!ASSIGN M:EI, (FILE, BTM:BLIB) BTM:BLIB
:FMGE (DELETE) in :SYS

The: BUB fi Ie in the: BTM account is used as the standard
library fj Ie by the LOAD subsystem.

COMPONENT SIZES IN A BrM SYSTEM

FIXED OVERHEAD

Fixed overhead is as follows:

BPM (FOO) 7K (Nonsymbiont) - 10K (Symbiont)

fiTM Exec. 4.5K

VARIABLE OVERHEAD

Tables are generated at SYSGEN time which vary with the
number of users and subsystems. The formula for the num
ber of words required is:

(NU (IB+OB)+3)/4+(9NS+8)/2+23 (NU+ 1)+(S(SNU+ 12»/
4+(3 (NS+2»/4

where

IB = input buffer size in characters

OB = output buffer size in characters

N U = number of users

NS = number of subsystems

Figures for three typical systems are:

IB = 100, OB = 100, NS = 12

NU=8 NU = 16 NU =24
1 K (73S words) 1. S K (1369 words) 2 K (2003 words)

For safety, the numbers are rounded up to the nearest page,
then combined with the fixed overhead figures. Therefore,
resident requi rements for an 8-user symbiont system are 17K.

2K of context area is allocated from the background area.
Background Monitor blocking buffers, normally 1. 5K - 2K,
are allocated from the background area. On-line blocking
buffers are contained in the context area.

BACKGROUND AND ON-LINE AREAS

These memory areas must be allocated from the remainder. SYSGEN DECK SETUP

on-line USERSIZE

background (core size less the sum of on-line area,
context area, and monitor size).

The listing in Figure 41 shows the System Generation deck
setup for a representative BTM system. This deck generates
a 32-user, 8DK symbiont system.

*
:GENDCB (M:BI, :SYSGEN,(INSN,BBF1),9T)
!END
!JOB :SYSGEN,PASS1,F
!LIMIT (TIME,9999),(LO,9999),(PO,9999),(TSTORE,9999),(PSTORE,9999)
!ASSIGN M:BI,(LABEL,X),(SN,BBF1)
!PASSl BPM
:SELECT (ALL)
!ASSIGN M:EI,(LABEL,X),(SN,SIF1)
:UPDATE (STD,$::BPMMETA),(STD,$::BPMSYMBL)
!EOD
!JOB :SYSGEN,PASS2,F
!LIMIT (TIME,9999),(LO,9999),(PO,9999),(TSTORE,9999),(PSTORE,9999)
!PASS2 BPM
: CHAN
:DEVICE TYAOl
: CHAN
:DEVICE CRA03
: CHAN
: DEVICE LPA02
: CHAN
:DEVICE CPA04
: CHAN
:DEVICE 9TA80
:DEVICE 9TA81
:DEVICE 9TA82
:DEVICE 9TA83
: CHAN
:DEVICE 7TAEC
:DEVICE 7TAEl
: CHAN
:DEVICE DCCFO,(HAND,DISCIO,DISCCU),(SS,lOO),(NSPT,C),(PSA,50),(PFA,lOO),(PER,BO)
:DEVICE DCCF1,(HAND,DISCIO,DISCCU),(SS,lOO),(NSPT,C),(PSA,OO),(PFA,200),(PER,OO)
:DEVICE DCCF2,(HAND,DISCIO,DISCCU),(SS,lOO),(NSPT,C),(PSA,OO),(PFA,200),(PER,OO)
:DEVICE DCCF3,(HAND,DISCIO,DISCCU),(SS,lOO),(NSPT,C),(PSA,OO),(PFA,200),(PER,OO)
: CHAN
:DEVICE DPD80,(HAND,DPAK,DPAKCU),(SS,lOO),(NSPT,6),(PFA,FAO),(PER,O),(PSA,O)
:DEVICE DPD81,(HAND,DPAK,DPAKCU),(SS,lOO),(NSPT,6),(PFA,FAO),(PER,O),(PSA,O)
: CHAN
:DEVICE DCBFO,(HAND,DISCIO,DISCCU),(SS,lOO),(NSPT,52),(PFA,O),(PER,O),(PSA,O)
: CHAN
:DEVICE COA10,(HAND,COC,COC)
:SDEVICE (LMN,ISSEG,CRA03),(LMN,OSSEG,LPA02,CPA04)
:MONITOR (TSTACK,350), (CORE,80),(MPATCH,50), (QUEUE,20), (SPOOL,8),(MPOOL,lO);

,(CPOOL,6), (ORG,62),(SFIL,60), (CFU,75)
:DLIMIT (TIME,99),(LO,9999),(PO,9999),(DO,9999),(UO,9999),(TSTORE,4096);

, (PSTORE,4096), (IPOOL,4),(FPOOL,4)
:ABS,lC24 (CCI), (METASYM), (FMGE),(LOPE)
:BTM (NUMUSERS,32),(USERSIZE,18432)

Figure 41. 8DK System Generation Example

SYSGEN Deck Setup 149

, ! JOB : SYSGEN, LOADDCB, F
!LIMIT (TIME,9999),(LO,9999), (PO,9999), (TSTORE,9999),(PSTORE,999 9)
!LOAD (LMN,M:CK),(EF,(M:CKDCB, :SYSGEN»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:AL),(EF,(M:ALDCB, :SYSGEN»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:BT),(EF,(M:BIDCB, :SYSGEN»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:BO),(EF,(M:BODCB, :SYSGEN»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:CI),(EF,(M:CIDCB, :SYSGEN», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:C),(EF,(M:CDCB , :SYSGEN»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:CO),(EF,(M:CODCB, :SYSGEN», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:DO),(EF,(M:DODCB, :SYSGEN»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:EI),(EF,(M:EIDCB, :SYSGEN», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:GO),(EF,(M:GODCB, :SYSGEN», (MAP), (PERM,LIB), (NOSYSLIB)
!LOAD (LMN,M:EO),(EF,(M:EODCB, :SYSGEN»,(MAP), (PERM,LIB), (NOSYSLIB)
!LOAD (LMN,M:LI),(EF,(M:LIDCB, :SYSGEN»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:LL),(EF,(M:LLDCB, :SYSGEN», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:LO),(EF,(M:LODCB, :SYSGEN»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:OC),(EF,(M:OCDCB, :SYSGEN», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:PO),(EF,(M:PODCB, :SYSGEN»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:SI),(EF,(M:SIDCB, :SYSGEN»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:SL),(EF,(M:SLDCB, :SYSGEN», (MAP), (PERM,LIB),(NOSYSLIB)
!LOAD (LMN,M:SO),(EF,(M:SODCB, :SYSGEN»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,SSS),(EF,(SSSROM, :SYSGEN»,(MAP),(PERM,LIB),(NOSYSLIB)
!LOAD (LMN,BDB),(EF,(BDBROM, :SYSGEN»,(MAP),(PERM,LIB),(NOSYSLIB)
!JOB :SYSGEN,PASS3,F
!LIMIT (TIME,9999),(LO,9999),(PO,9999),(TSTORE,9999),(PSTORE,9999)
!PASS3 BTM
:BTM57S (BIAS=O)
:CCI
:FMGE
:DEF
: LOADERT
: LOCCT
:PASSI
:PASS2T
:PASS3
:PFIL
:REW

:WEOF
:LOPE
: SUPER
: SYMBOL
:BASIC: (BIAS=F800)
:BPM: (BIAS=F800)
:DELTA: (BIAS=F800)
:EDIT: (BIAS=F800)
:FERRET: (BIAS=F800)
:FORTRAN: (BIAS=F800)
:LOAD: (BIAS=F800)
:METASYM
:ELIST
: FPURGE
:SORT
:RUN:
:SUPER:
:SYMBOL:

(BIAS=F8CO)
(BIAS=F800)

(BIAS=F8CO)
!JOB :SYSGEN,DEF,F
!LIMIT (TIME,9999),(LO,9999),(PO,9999),(TSTORE,9999),(PSTORE,9999)
!POOL (FPOOL,5),(IPOOL,5)
!ASSIGN M:PO, (DEVICE,9T), (ODTSN,BTRC)
!DEF BPM
:INCLUDE (SIG7FDP,BPM, :BLIB,BTM:BLIB,MON)
FIN

Figure 41. 80K System Generation Example (cont.)

150 SYSGEN Deck Setup

REAL-TIME SYSTEM GENERATION

Whenever a real-time system is generated, the tree struc
ture of the Monitor LOCCT table should be organized so
that the AL TCP and CALPROC segments are placed in the
root of the Monitor. This is necessary because of the man
ner in whi ch an· exit from a centrally connected foreground
task is performed.

During the processing of the M:EXIT procedure, control is
transferred to routines contained in the ALTCP and CA LPROC
segments. If these segments are not contained either in the
root of the Monitor or resident in core, they must be loaded
from the disk. The time required to access and read the
disk must be added to the maximum response time (approxi
mately 400 microseconds) that must elapse before a cen
trally connected task may be entered again. Depending
on the number of disk transfers involved, this elapsed time

·could easily approach 120 milliseconds.

If a user decides that his foreground programs cannot oper
ate within the time restraints mentioned above (i. e., 400
mi crosecond response time), he wi II have to connect his
foreground tasks directly to an interrupt. Directly con
nected foreground tasks are given control immediately upon
occurrence of an interrupt. Centrally connected tasks first
give control to a Monitor routine that saves the system en
vironment and switches environment to the foreground task.

Allocation of contiguous disk storage may be done at
SYSGEN time or at run-time. Contiguous disk storage can
be addressed by relative sector.

The following commands have options that apply to the gen
eration of real-time systems:

:STDLB

:INTLB

:DEVICE

:MONITOR

:FRGD

These commands are discussed below only to the extent that
they concern real-time users.

:STDLB All standard Monitor operational labels are
defined by means of the :STD LB control command.

The :STDLB command has the form

:STDLB (label, name)[, (...), ... J

where

label specifies a Monitor or foreground operational
label. All operational labels must consist of one
or two alphanumeric characters.

name specifies a physical device name to which
the operational label is to be assigned.

Foreground operational label assignments may be changed
only through the unsolicited key-in !SYST.

:INTLB This control command provides capabi lity of
associating a label with an interrupt location. The label
may then be used in the different interrupt CALs of the
Monitor such as M:ARM. This command has the form

:INTLB (label, loc)[, (•..) ••• J

where

label specifies a label consisting of one or two
a I phanumeri c characters.

loc specifies the absolute hexadecimal interrupt
location to be associated with the label.

This control command must immediately follow the :FRGD
command. The unsolicited key-in !INTLB may be used to
change the assignment of the label from one interrupt loca
ti on to another.

:DEVICE This control command is used to introduce
peripheral units and their handlers into the Monitor system
and to describe the attributes peculiar to the devi ceo The
command has the form

:DEVICE name[, numberJ[, (option)] ...

The following options apply to real-time direct-access disk
storage:

BCHK, value specifies the hexadecimal number of
tracks to be allocated for checkpoint of the back
ground area by a foreground task. The size of
this area must be large enough to hold the entire
background area.

ABSF, value specifies the hexadecimal number of
tracks to be allocated for absolute foreground pro
grams formed by specifying the ABS option in the
!RUN control command or via the INTS option on
the :FRGD command. This space must be large
enough to hold all absolute foreground programs.
Programs can be deleted from the area or packed
by the !ABSF key-in.

:MONITOR When a real-time system that uses external
interrupts is generated, the Monitor must be BIASed above
the hi ghest external interrupt used. This is accomplished
by use of the ORG option on the :MONITOR command.
The form of the command is

:MONITOR[(option)]

where

ORG, value specifies the absolute hexadecimal
BIAS of the Monitor. If this option is omitted
from the :MONITOR command, a default of X'60'
is used.

Real-Time System Generation 151

FQUEUE, value specifies, in decimal, the number
of queue entries reserved for foreground programs.
The value specified must be less than the number
of entries defined for QUEUE (see above). The
default is 0 if omitted (or incorrect).

FMPOOL, value specifies, in decimal, the number
of Monitor buffers reserved for foreground use.
The value specified must be less than the number
specified for MPOOL (see above). The default
is 0 if omitted (or incorrect).

TSTACK, size This option is used to specify the

:FRGD

number of words in Monitor's temp stack. The
default is 200 for nonsymbiont systems and 250 for
symbiont systems. The Monitor saves its environ
ment as well as the TEMP area during interrupt
processing. Thus, the more interrupts there are,
the more TSTACK space is required. It is recom
mended that the user supply an additional 50 words
for each interrupt level.

This command is used to define the structure of
a rea I-ti me system in terms of memory layout, number of
foregrounds in the system, number of interrupts to be used,
Monitor's control task interrupt, etc. This command must
be used in generating a real-time system. The format of
this command is

:FRGD (option)

where

NFRGD, size specifies the maximum number of
foreground programs known to the Mon itor at one
time. This includes foreground programs which
are absolute on the disk, resident in memory,
or both.

CT, address specifies the absolute hexadecimal
interrupt location to which the Monitor's control
task is to be connected.

FCOM, size specifies the (decimal) number of pages
of foreground COMMON. The default size is
zero.

RESDF, size specifies the (decimal) number of pages
to be reserved for foreground programs. This space
is avai lable for all foreground programs, regardless
of how they are loaded, on a first-come, first
serve basis. A program is given the necessary
space when it is loaded for execution and no other
program may use the space unti I the executing
program releases it. The default size is zero.

FIPOOL, value specifies the number of fi Ie index
buffers to be allocated for foreground programs.
The default value is zero.

152 Remote Batch SYSGEN

FFPOOL, value specifies the number of fi Ie blocking
buffers to be allocated for foreground programs.
The default value is zero.

NINT, value specifies the maximum number of inter-
rupts which will be used at one time. This in
cludes the clock and external interrupts but does
not include the external interrupt for the Monitor's
control task.

INTS, (namel, sizel, pagel). . . specifies the names
of foreground programs whi ch are to be made ab
sol ute and loaded as resident foreground programs
when the Monitor is booted from a PO or BI tape.
These programs are also loaded when the Monitor
is booted from disk. The decimal value "size"
specifies the additional number of words to be al
located on disk for expansion if the program is
updated. The decimal value "page" specifies the
additional number of pages to be allocated for the
program when it is loaded into memory. The load
modules for these programs must have been formed
at System Generation time by the reloading loader.
Also, when they are loaded they are given control
at their end-transfer address so that they can ini
tia�ize themselves.

CTQ, value specifies the number of entries in the
control task queue. These entries are for queuing
up M:SBAC K and M:ABSLOAD requests.

All fi Ie index and blocking buffers for foreground reside at
the high end of core or immediately precedes the BTM area
in a BTM system. The two foreground areas FCOM and
RESDF precede these buffers. The background area always
follows the Monitor and the size of the background area is
the amount of space left after all other areas have been
allocated.

A layout of memory in a real-time system is shown in
Figure 42.

REMOTE BATCH SYSGEN

During PASS2 the Data Set Controllers (DSC) for the Re
mote Batch Terminal (RBT) must be specified in the same
way that any other multidevi ce controller is specified.
That is,

• Each RBT included in the system must be defined by a
set of :CHAN, :DEVICE, and :SDEVICE commands.

• There must be no more than one :CHAN command per
controller.

• Immediately following the :CHAN, there must be
three : DEVICE commands whi ch may use any of the
standard options associated with unit record devices.
The three :DEVICE commands must specify a card
reader, a printer, and a card punch as devices.

Background
Foreground Foreground Foreground BTM Area

Program Area COMMON Fil e Buffers (if any)

1
Root of Monitor

1 1 1 1 t I Monitor Overlay
Area

Low End Page Boundaries High End
of Core. of Core

Fi gure 42. Real-Time System Memory Layout

• There may only be one :SDEVICE command and it must
specify that the devi ces are symbiont and must specify
the symbiont to be used in driving the devices. The
:SDEVICE is order dependent; the devi ces must appear
in the following order:

1 . Card reader.

2. Printer.

3. Card punch.

• In the case of the half-duplex DSC (model 7601), the
I/o addresses of the three devi ces wi II be the I/O ad
dress of the DSC. In the case of the full-duplex DSC
(model 7602), the address of the card reader will be
the address of the receiver lOP subchannel (even) and
of the printer and punch wi II be the address of the
transmitter lOP subchannel (odd).

The following example indi cates correct usage of the PASS2
commands:

:CHAN

:DEVICE CRA08 (HAND, DSCIO, DSCCU)

:DEVICE LPA09

:DEVICE CPA09

:CHAN

:DEVICE CRAOA

:DEVICE

:DEVICE

:SDEVICE

LPAOA

CPAOA

(LMN, ISSEG, CRAOA), (LMN, (OSEG,;
LPAOA, CPAOA), (LMN, ISSEG, CRA08), ;
(LMN, OSSEG, LPA09, CPA09)

In this example the devices on A08 and A09 are attached to
a full-duplex DSC while the devices on AOA are attached
to a half-duplex DSC. There is no restriction on the mix
ture offull- and half-duplex devices and all RBTs will use
the same handler routine.

The size (value) for the QUEUE option on the :MONITOR
command should be the normal value for a symbiont system
p I us two queue entri es per RBT.

All RB card readers are automatically defined by BPM as
M:C devices meaning that all input is in the form of BPM
jobs and that any program may access its input data by
reading through the C-device operation label. The :STDLB
commands used during PASS2 of SYSGEN effect the RB
system in the following way:

• Any operational label associated with an output device
of the printer or punch type wi II be associated with the
appropriate RBT so that any program producing remote
output !JOB commands with the rb-id parameter may
use the default operation label assignment.

Remote Batch SYS GEN 153

13. BOOTSTRAP AND PATCHING OPERATIONS

SYSTEM TAPE FORMAT

A master (BI) BPM system tape contains the following
elements.

1 • A bootstrap loader.

2. Subroutines for patch ing and initial izing the absolute
Monitor.

3. A tree table for the absolute Monitor.

4. Root for an absolute Monitor.

5. The Monitor overlay segments.

6. A record identifying the Monitor segment names and
numbers for patching purposes.

7. Tape label information.

8. load modules comprising at least the following labeled
files:

a. M:MON (Monitor, including the PASSO processor).

b. lOCCT (loader overlay control command table
generator) •

c. PASS1 (processor for file selection and/or updating).

d. PASS2 (processor for defining the target machine
and system parameters).

e. PASS3 (processor for loading Monitor, processor,
and I ibrary modules).

f. DEF (processor for defining the Monitor system to
be written to PO).

g. CCI (contro I command interpreter).

h. FMGE (file management processor).

i. lOADER (object module loader).

j. ERRMSG (error message file).

k. PCl (peripheral conversion language).

I. :DIC (dictionary).

m. : LIB (I ibrary).

n. All DCBs.

9. Object modules for a System Generation database.

154 Bootstrap and Patching Operations

The general arrangement of the information on a master sys
tem tape is shown in Figure 31.

SEQUENCE OF OPERATIONS

The Master system tape is loaded into the machine by use of
the standard load procedure described in the Reference Man
ual for the Sigma CPU (see "loading Operation" in Chap
ter 5 of the appropriate manua I). The hardware bootstrap
loads and enters the tape boot at the beginning of the sys
tem tape. This tape boot reads in the boot subroutine at
TOPRT +200 16 • Standard I/o error recovery routines are
in effect. The boot subrout i ne then loads the Mon i tor root
and the Monitor tree table at TOPRT (the upper end of root
of the Monitor) and enters the Monitor root at INITIAL.

The INITIAL routine initia lizes part of the Monitor overlay
tables and maintains a count of the Monitor overlay seg
ments as they are loaded. Before the first segment is loaded,
however, control passes from INITIAL to the boot subroutine
at TOPRT + 200

16
•

The boot subroutine performs a number of functions, as fol
lows. When first entered, the boot subroutine outputs the
following message to the operator.

C/ll/DC ASSIGN OK (YES/NO)

If the operator's response is YES, the subroutine assumes
that the device addresses for the control device, listing log,
and system RAD or disk pack are not to be changed from
those established when the Monitor was defined. If the re
sponse is NO, then the following messages will be output.

CHANGE ASSIGN PERM (YES/NO)

A PO tape (i. e ., a generated system tape) may be booted
as though it were a BI tape (i.e., a master system tape),
and vi ce versa. The response to th i s message determ i nes
whether the assignments suppl ied by the operator are to be
permanent for the system. If the response is YES, the as
signments will be considered permanent; if the response is
NO, they wi II apply only during the bootstrap process.
Note that a Ithough a permanent reassignment of the system
RAD or disk pack is possible (if the response is YES), a tem
porary RAD or disk pack assignment wi" be incompatible
with the system after booting because the Monitor overlays
will not have been loaded to the RAD or disk pack assumed
by the operating system.

C DEV. = CR

In response to this message, the operator must type three
characters. These must be the channel and device designa
tion codes (ndd) defining the address of the C device.

LL DEV. = LP

The operator must make a similar response to define the ad
dress of the LL device. The characters typed must be the
channel and device designation (ndd).

DC DEV. = DC

The characters defining the address of the system RAD or
disk pack must be the channel and device designation (ndd).

DC TYPE =

If a RAD is specified, the operator must enter the RAD type
(7204, 7212, or 7232).

Before completing any of the above responses with a @lor
@ ,the operator may cancel the response by striking the
Skey. Following this, or if a completed response is in
error, the message

??

wi II be output and the key-in request wi" be repeated.

After a" necessary responses have been received, the boot
subroutine reads the first patch card via the C device. If
there are no patch cards, the first card read must contain
an asterisk in column 1.

Cards patching the Monitor root must have the format

(3F' lac, value

where

3F identifies the card as a patch to the root.

loc is the hexadecimal location to be patched.

value is the absolute hexadecimal value to be
inserted.

Root patch cards may be present in the patch deck at any
point prior to the asterisk card, and may be in any se
quence. Cards patching Monitor overlay segments must
have the format

(,e9 ' lac, value

where

seg is the hexadecimal segment number of the seg-
ment to be patched. The first segment to be read
from the system tape is segment 0, the second is
segment 1, and so forth.

lac is the hexadecimal location to be patched.
This location is expressed relative to the first
word of the segment.

value is the absolute hexadecimal value to be
inserted.

Segment patch cards must be sequenced in ascending order
by segment number, since each segment can be patched only
when it is read in from the system tape and held temporarily
in core. No provision is made for patching segments after
they have been written to the RAD or disk pack.

After all patches have been made to a given segment and
it is ready to be written to the RAD or disk pack, the boot
subroutine communicates the size and disk address of that
segment to the resident root of the absolute Monitor. When
all segments have been written to the RAD or disk pack,
the asterisk card is read from the C device. This card has
the following form:

*[, SAVEl [, PSWAP]

where

SAVE specifies that all job files and symbiont files
that were previously in the operating system wi II
be saved. The entire PO (generated system tape)
will be read and all files on the PO tape will re
place any fi les currently existing in the system.
New copies of Monitor segments and ABS pro
cessors will be written. All PASS2 :DEVICE and
:SDEVICE card specifications must be identical
(in order, number, and type) in the existing oper
ating system and the new PO tape. The operating
system must be quiescent.

PSWAP specifies that BTM will use the last public
disk pack in the system as the swapping device.
This option is assumed if there are no RADs in
the system. The swapping devi ce initializer
(BTMNRES) allocates storage so that a user wi"
not span cyl inders and that flawed tracks are
bypassed.

Control then passes to another boot subroutine at TOPRT
+202 16 , This second boot subroutine causes the Monitor
root to be copied to the RAD or disk pack, preceded by a
disk bootstrap. The subroutine wi" now read one more
record from the input tape and wi" list the information on
the LL device. The information contains the segment name
and its corresponding segment number for each segment in
the current Monitor tree structure. The next phase of the
bootstrap wi" set up a" standard Monitor traps, via XPSD
instructions, but no real-time interrupts are connected at
this time.

At this point, the resident Monitor is operational but the
system environment has not yet been establ ished. To allow
the user to define the environment of the operating Monitor,
the PASSO processor (part of Monitor segment CLS) is called
and entered at DUMINIT. (The operation of PASSO is
described be low.)

Sequence of Operati ons 155

When PASSO exits, the message "SIGMA 5/7 BPM" is
output and user initialization routines USNRINIT2 and
USNRINIT1 are executed (if present). Following this,
Monitor routine INITIAL is again entered for the purpose
of setting up the Monitor buffer pool area (in the area no
longer needed for INITIAL). User initialization routines
USRINIT2 and USRINITl are executed (if present) and the
Monitor then enters the wait state.

BOOTING FROM RAD OR DISK PACK

Once the operating system has been bootstrapped from tape,
it may thereafter be copied into core from the RAD or disk
pack by means of the load procedure described in Chapter 5
of the CPU Reference Manual.

The hardware boot routine loads and transfers control to the
disk boot which then loads the Monitor root into core and
enters at INITIALl. The system is initialized and user rou
tines USRINIT2 and USRINIT1 are executed, but PASSO and
user routines USNRINIT2 and USNRINIT1 are not executed
following a disk boot. The Monitor then enters the wait
state and normal operation may be resumed.

Adisk pack (model 7242) can be used. However, to boot the
operating system, the computer operator must depress START
on the device to put it into the Manual mode and then must
depress START again to put it into the Automatic mode.

BOOTSTRAP 1/0 ERROR RECOVERY

Error recovery during bootstrap procedures is provided for
I/o on the card reader, line printer, magnetic tape, disk
pack, and RAD. The tape boot reads in on I y the bootstrap
subroutine and passes control to it. While the initial tape
boot is in control, limited I/o recovery is avai lable and
any error condition detected by TEST I/o (except where
the I/O address is not recognized) causes a backspace and
an attempt to reread the tape. After 10 retries, the initial
tape boot wi II halt. Once control is passed to the boot
strap subroutine, standard bootstrap I/O error recovery pro
cedures are in effect. The following error messages may
appear on the OC devi ce.

xx INOPERATIVE

xx ERROR. TIO value TDV value

xx MANUAL MODE

CHECK-WRITE ERROR

where

xx. is MT, CR, DC, LP, or DP.

value indicates the TIO or TDV results.

156 Bootstrap I/O Error Recovery/PASSO Processor

When either of the first two messages above occur, the wait
state is entered. To continue, put the CPU into IDLE, STEP,
and then RUN. The I/O will then be retried. If the third
message above occurs, I/O will continue when the condi
tion is corrected. When an error occurs for a magnetic tape
or disk operation, the operation is retried 10 times before an
error message is output. If the fourth message above occurs,
the wait state is entered. To continue, put the CPU into
ID LE, STEP, and then RUN. The fourth message wi II appear
if the checkwrite on RAD fails. The checkwrite will be
executed only if hardware sense switch 1 is set.

NONSTANDARD BOOTSTRAP CONDITIONS

When booting a symbiont system into a machine having a
different model RAD than the one for which the system was
intended, the bootstrap routines wi II force the system to be
nonsymbiont. This will happen if the operator response is
"YES" when responding to the message "CHANGE ASSIGN
PERM" (see above).

The message

UNKNOWN SEG. IN TAPE BOOTSTRAP

will be output if something is wrong with this input tape
(not necessari Iy due to a hardware error). This message
should never appear if there are no hardware errors or Sys
tem Generation errors.

PASSO PROCESSOR

The PASSO processor performs various system initialization
functions and constitutes a preliminary part of Syst"''11 Gen
eration, since it defines the environment in which ,ystem
Generation takes place. However, PASSO is ente :d auto
matically whenever a BPM system tape is booted, ~gardless

of whether or not System Generation is to be done.

PASSO reads a user-specified tape (normally the labeled
portion of the tape used to bootstrap the absolute Monitor)
containing nonresident elements of the BPM system (i. e. ,
CCI, processors, I ibrari es, etc.). It a lIows the user to
modify these elements (and certain system parameters) and
writes them to the RAD or disk pack. PASSO then exits to
the Monitor. The Monitor then signals the end of PASSO
by writi ng the message

* * * * * * * * * * * * * * * * * *

* * S I G M A 5/7 BPM * *
* * * * * * * * * * * * * * * * * *
FIRST AVAILABLE DISC ADDRESS = nnnn

(where nnnn indicates the hexadecimal disk address) on the
OC device and enters the wait state.

The following commands may be read by PASSO to define
the system environment for the bootstrapped Monitor. Stan
dard device assignments are in effect during PASSO unless
changed by a : GENOP command (see IIGENOplI below).

:GENCHN :GENDEF

:GENOP :GENEXP

:GENDCB :GENDICT

:GENMD lEND

The only required control cards for PASSOare the: GENDCB
and !END cards. Any or all of the others may be omitted.
The :GENDCB command is needed to specify the account
number, the type of tape device (i. e., 9T or 7T), and the
INSN of the tape to be read by PASSO. The! END command
terminates PASSO. Any continuation cards should begin
with a colon in column 1. Continuation is indicated by
means of an appended semicolon.

The only restriction on the order of PAS SO command is that
the commands in GROUP1 below must precede the com
mands in GROUP2.

: GENCHN GROUP1
:GENDCB}

:GENOP

:GENDICT GROUP2
:GENMD)

:GENDEF
:GENEXP

!END

PASSO COMMANDS

The control commands recognized during PASSO are de
scribed below.

:GENCHN This command defines the physical periph-
eral devices that are to be used by the operating system.

The :GENCHN command has the form

(GENCHN yyndd, ••.

where

yyndd specifies a physical device name (see
Tables 14, 15, and 16).

Example:

:GENCHN CRA12, DCEA9,9TG81,9TAFF

:GENOP This command assigns operational labels to
peripheral devices. More than one such assignment may be
specified in a single :GENOP command.

The :GENOP command has the form

(:GENOP (label, type) , ...

where

label is of the form C, LL, or LO.

type specifiesa physical device type (see Table 14).

Default assignments are those defined when the system tape
was generated.

Example:

:GENOP (C, CRA 10), (La, 9T A80)

:GENDCB This command defines the system DCB asso-
ciated with tape input during PASSO. This command is re
quired each time that a BPM system is booted from tape.
The :GENDCB command has the form

:, (INSN, va lue [, val ue [, .••]]), {;~})

:GENDCB (M:BI, account[, password];

where

M:BI specifies that tape input is to be via the M:BI
DCB. No other DCB is valid for this command.

account specifies an account identifier (up to 8
alphanumeric characters) associated with the la
beled tape to be read during PASSO.

password is the password associated with the labeled
tape to be read during PASSO. The password (if
any) must correspond to that specified when the
tape was created, and may be up to 8 alphanumeric
characters in length.

PASSO Processor 157

INSN, value, ••• specifies the serial number(s) (up

Example:

to four alphanumeric characters in length) of the
tape(s) to be read by PASSO. No more than 3 reels
may be specified. The first reel specified must
contain the first file to be read, and may be dif
ferent from the reel used to boot the Monitor.
7T/9T specifies a 7-track or 9-track is to be read.

:(INSN, 00 1, 002), 9T)

:GENDCB (M:BI, ACCT1, PASS1,;

:GENMD This command inserts program modifications
into a specified segment of any load module input from the
labeled tape read during PASSO. Since the absolute Moni
tor is loaded prior to PASSO, it cannot be modified by this
command. However, the M:MON load module may be
modified by this means.

All such modifications affect any master tapes generated
subsequently by the PASS1 processor (see "PASS1 11 below)
and, with the exception of the Monitor itself, affect the
current operati ng system as we II.

The: GENMD command has the form

:GENMD,segment loc,value ; ~ +res(name)}~
+name

where

segment specifies the name of the segment that is
to be modified.

loc specifies a relative
t

hexadecimal location or a
positive absolute hexadecimal address at which
the modification is to be made. If it is an abso
lute address, it must be preceded by a plus (+).

val ue specifies the word that is to be inserted,
right-justified, at the indi cated location. If more
than one value is given, they will be inserted into
successive locations.

tIf an overlay segment is to be modified, the external defi
nition must not have been referenced in a IIlower ll level of
the overlay tree.

158 PASSO Processor

res specifies the address resolution for the external
definition (see IIname" below). t If this option is
omitted, word resolution is assumed. When the
instruction or data word has been relocated, this
parameter (res) determines what the resolution of
the word is to be.

res Specified Resolution

BA Byte address

HA Ha I fword address

WA Word address

DA Doubleword address

name specifies the name of an externally defined
symbol whose address or value is to be used to re
locate the associated value in the data word.

Examples:

:GENMD, SEGA +FA2, +OFOFOFOF

:GENMD, SEGB LOC1, -3+NAME1

:GENMD, SEGC LOC2+490, FFFFOO+BA(NAME2)

: -1 +DA(NAME4), +FFFFFFFF+WA(NAME5)

:GENMD, SEGD LOC3-4, 10, 13+HA (NAMES),;

The size of a program that may be modified is I imited by
the amount of storage avai lable when the PASSO processor
is in control. In order that a program may be modified,
both the program and its REF/DEF TABLE must fit in storage
between the end of PASSO and the background upper limit.
The PASSO processor extends beyond the background lower
limit by approximately 550 words. In a 32K word system
some of the larger programs may not fit and may not be
modified with :GENMD. Note that !MODIFY may be used
in these cases.

:GENDEF The :GENDEF command may be used to
equate an external reference to a specified value.

The :GENDEF installation control command has the form

fi{+res(name)}] :GENDEF, segment xref, value~ +name

where

segment specifies the name of the segment in
wh i ch the externa I reference occurs.

xref specifies the name of the external reference
that is to be equated to a value.

value specifies the value (relative or absolute
hexadecimal) to which the external reference is
to be equated.

Examples:

:GENDEF, SEGA 1 NAMEA 1,+3

:GENDEF, SEGA2 NAMEA2, -FFA

:GENDEF, SEGA3 NAMEA3,O+NAMEXX

:GENDEF, SEGA4 NAMEA4, -2+WA{NAMEZZ)

:GENEXP The :GE NEXP control command may be used
to modify a specified location by the insertion of a new
value. It is simi lar to the :GENMD in that it modifies a
core location. In such a case, an external reference to
the location just modified may be generated.

The :GENEXP command has the form

[{
+res{name)}] :GENEXP,segment loc, value +name

where

segment specifies the name of the segment that is
to be modified.

loc specifies the relative hexadecimal location or
absolute hexadecimal address at which the modi
fication is to be made.

va I ue spec i fi es the word that is to be inserted at
the indicated location. If the address field of
the inserted word is not currently defined, an
expression is generated that has the indicated lo
cation as its designation (see "res" and "name"
below) •

res specifies the address resolution for the external
definition (see IIname ll below). If this option is
omitted, word resolution is assumed. When the
instruction or data word has been relocated, this
parameter (res) determines what the resolution of
the word is to be.

res Specified Resolution

BA Byte address

HA Ha I fword address

WA Word address

DA Doub I eword address

name specifies the name of an externally defined
symbol whose address or value is to be used to re
locate its associated value in the data word.

Examples:

:GENEXP, SEG1 + 129A, 14
Changes the va I ue in core to 14

:GENEXP, SEG2 LOCA+3,+O+NAMEA
Changes the value in core to 0 with external reference
to NAMEA, with word resolution.

:GENDICT The :GENDICT installation control com-
mand may be used to modify a load module's relocation
dictionary. It may be used in conjunction with :GENMD
and :GENEXP program modifications.

The :GENDICT installation control command has the form

:GENDICT, segment loc, code

where

segment specifies the name of the segment contain-
ing the location referenced (see II10c 11, below).

PASSO Processor 159

10c specifies the relative hexadecimal location or
absolute hexadecimal address for which the dic
tionary entry is to be modified.

code specifies the applicable relocation parameters
(see table below).

Code Relocation Resolution Load Module Bias

0 Address Byte Module

1 Address Halfword Module

2 Address Word Module

3 Address Doubleword Module

8 Left half Doubleword Module

9 Right half Doubleword Module

A Both halves Doubleword Module

E Absolute - -

Examples:

(GENDICT,SEGIA + lOFF,O

(GENDICT,SEG18 LOCIA,E

:GENDICT, SEG 1C LOC1 B + 59F,9

PASSO MESSAGES

The messages in Table 29 may be output by the PASSO pro
gram, on the LL or OC device. PASSO either continues
its normal operation or initiates an abort return to the
Monitor.

Table 29. PASSO Messages

Message Description

***ABS DCB/SCRATCH AREA> PSA AREA DEFINED The area where DCB assignment information was to be
***SYSGEN PASS-O ABORTED** written or the area to be used for absolute scratch fi les

exceeded the space allocated for permanent RAD of
disk pack storage. PASSO makes an abort return to the
Monitor.

----ABS GENERATION COMPLETED PASSO has completed its function. P ASSO makes a
normal exit to the Monitor.

***CANNOT BOOT LMN A load module cannot be read from the bootstrap tape
because core is not large enough. PASSO outputs the
fi Ie name in error and continues to the next file, thus
ignoring the file in error.

***CANNOT OPEN**xxx*FILE The processor xxx cannot be found in the designated ac-
SKIP TO NEXT ABS PROC count. PASSO skips to the next processor (if any) to be

absolutized.

***CANNOT READ KEY**zzz*IN**xxx* The file named xxx was opened but does not contain the
SKIP TO NEXT ABS PROC record identified by key zzz. The key protection type 00

and/or 01 for the designated processor cannot be obtained.
PASSO skips to the next processor (if any) to be
absolutized.

**GENDCB* CC SYNTAX ERROR GENDCB contained a syntax error.

**GENDEF* CC SYNTAX ERROR GENDEF contained a syntax error.

GENDICT CC SYNTAX ERROR GENDICT contained a syntax error.

160 PAS SO Processor

Table 29. PASSO Messages (cont.)

Message Description

GENEXP CC SYNTAX ERROR GE NEXP conta i ned a syntax error.

GENMD CC SYNTAX ERROR GENMD contained a syntax error.

INVALID KEYWORD OR VALUE A keyword or value is unknown. PASSO ignores the key-
word or value and continues.

INVALID YY OR DD FIELD A device address field was in error syntactically. PASSO
ignores the device address held and continues.

INVALID YYN DD A physical device address was not defined. PASSO ig-
nores the device address and continues.

LOC-FIELD SYNTAX ERROR The command had a location fie Id syntax error. PASSO
ignores the field and continues.

ttttttt LOC = nnnnnnnn s IIIII This message indicates which command caused the pre-
ceding MODIFICATION LOC OR VALUE INVALID
message.

ttttttt is the command mnemoni c.

nnnnnnnn is the name associated with the LOC
field (if relocatable).

s is the sign of the LOC field.

11111 is the LOC field value (i. e., the addend
(if relocatable) or value (if absolute).

PSSO continues normal processing.

MODIFICATION LOC OR VALUE INVALID The location and/or value defined in a GENMD,
GENDEF, etc. command had a valid syntax but is not
valid for the segment specified for modification. The
location or value may be out of range, for example, or
a name reference may not be found in the segment spec i-
fied. PASSO ignores the invalid location or value and
continues.

***NO ABS PROCESSORS REQUIRED Th is is not an error message. It simply calls attention to
the fact that no abso I ute processors have been requested
for the system. PASSO continues.

NO PAGE AVAILABLE There was insufficient core space available for use by
PASSO. PASSO aborts and returns to the Monitor.

*IIOPEN/CLOSE II * INFO MISSING An irrecoverable I/o failure has occurred in opening or
closing the BI tape or TM (i.e 0' temporary) disk files.
PASSO makes an abort return to the Monitor.

PASS-O CONTROL, NO':' PASSO encountered a command without a colon in col-
umn 1. PASSO ignores the command and skips to the
next command.

PREVIOUS IIMODS II IGNORED All previously processed GENMD, GENEXP, GENDEF,
and GENDICT commands were abrogated. This appears
when a syntax error of any type is encountered. PASSO
continues processing.

PASSO Processor 161

Table 29. PASSO Messages (cont.)

Message Description

***PROC. **xxx* WILL OVERFLOW PSA AREA The processor named xxx is too large for the area allocated
***REMAINDER OF ABS PROCESSORS IGNORED for permanent RAD or disk pack storage. The designated

processor a nd a II rema in i ng pro cessors are ignored. PASSO
continues.

***PROC**xxx* BIAS BELOW BKGRDLL The processor named xxx is biased below the lower limit
of the background area (BKGRDLL). The offending pro-
cessor is ignored and PASSO continues.

***PROCESSOR ABSOLUTE The processor named xxx is abso I ute. PASSO continues.

PROCESSOR LMN RELEASED This message is output following the message "xxx PRO-
CESSOR ABSOLUTE II to indicate that the load module
form of processor xxx is released. PASSO continues.

PROCESSOR LMN SAYED This message may appear following the message
IIXXX PROCESSOR ABSOLUTEII to indicate that the load
module form of processor xxx was saved (automatic for
overlaid processors). PASSO continues.

*IIREAD II * IIBI/TM II ABNORMAL An irrecoverable I/o fai lure has occurred in reading from
the BI tape or the system TM (i.e., temporary) disk files.
P ASSO makes an abort return to the Mon i tor.

SEGMENT-NAME ERROR PASSO encountered a file or segment name that is in
error. PASSO ignores the command and continues.

SKIP TO NEXT CC This message is output in conjunction with other messages.

SYNTAX ERROR PASSO encountered a command with a syntax error.

SYSGEN ABORTED (PASS-O) PASSO cannot continue its normal processing.

SYSGEN PASS-O COMPLETED PASSO is in the final phase of processing (i. e., the lEND
command has been received).

**SYSGEN PASS-O IN CONTROL ** PASSO has begun processing.

UNKNOWN CONTROL COMMAND PASSO encountered a command that it did not recognize.
PASSO ignores the command and skips to the next command.

VALUE-FIELD SYNTAX ERROR PASSO encountered a field with a syntax error. PASSO
ignores the field and continues.

IIWRITEII IITMII ABNORMAL An irrecoverable I/o fai lure has occurred in writing to
the system TM (i.e., temporary) disk files. PASSO makes
an abort return to the Monitor.

162 P ASSO Processor

14. VOLUME INITIALIZATION

INTRODUCTION

Disk pack devices to be used as private volumes or public
devices are initialized by VOLINIT, a special free
standing processor that must run under the !SYS account.

!VOLINIT The! VOLINIT control command calls the
Volume Initial ization processor, reads its processor com
mands, and performs the functions specified by the options
selected.

The form of the !VOLINIT control command is

(!VOLINIT

Any number of disk pack devices can be initialized under
the VO LINIT control command. The processor control com
mands can be continued using the semicolon (;) character.
The form of the processor command is

yyndd,[(option) ••• (option)]

where yyndd specifies the name of the device containing
the volume to be initialized. If the device is public, the
system must be quiescent. Its condition will be checked
periodically and if there is a change, an error message will
be sent to the operator. If the devi ce is private, it wi II be
marked unavailable until the initialization is complete.

The options are as follows:

{
PUBLIC}
PRIVATE ,sn specifies whether the volume being

initialized is public or private. The serial num
ber, sn, parameter is the 1- to 8-byte EBCDIC
serial number of the volume. If the volume is
private, a Volume Table of Contents (containing
the volume serial number and allocation table) is
written on granule O. Empty file directory and
account directory table formats will be written on
granules 1, 2, and 3 to be used by primary vol
umes only. (Although a serial number of up to 8
characters is written by VOLINIT to provide for
future expansion, at present only the first 4 char
acters of the serial numbers are used by BPM.)

FLAW, adr-adr, . •. specifies areas on the device
that wi II be unconditionally flawed (see II Flaw
ing"). Each address, addr, specifies the address

of the cyl inder/track in the area to be flawed.
For example: track 3, cylinder 4 is written 3/4.
The first and last track in the area is specified as
adr-adr and more than one set of address param
eters can be specified. If a single track is de
sired, the second address parameter can be
omitted.

{
adr-adr} FORMAT, NONE ,... specifies that only the

specified area(s) of the device are to be initial
ized. The parameter NONE specifies that no
tracks are to be formatted. If FORMAT is not
specified, the entire volume will be initialized.

NOTEST specifies that surface testing wi II be
inhibited. Areas specified by FORMAT are auto
matically surface tested unless NOTEST is speci
fied. A surface test consists of writing preselected
patterns on the device.

ACCT, value specifies the account number to be
inserted in the private volumels account directory.
The parameter, value, is a 1- to 8-byte EBCDIC
account number.

If a processor command contains only the device name,
yyndd, and no options are specified, the VOLINIT proces
sor logs the contents of the volume (serial number; date;
public/private indicator; home address, if public; account
number, if private; and the number of avai lable cylinders,
if private) and does not write on the volume.

FLAWING

Cyl inders 200-202 are considered a spare pool. When a
bad surface is found, one track has flaw marks written in
all sector positions and an alternate track address is written
in the headers. The alternate track position of the header
of the alternate contains the track address of the flawed
track. All unused spares contain lis in the alternate trock
position.

VOLINIT ERROR MESSAGES

Table 30 contains a list of VOLINIT error messages.

Volume Initialization 163

Table 30. VOLINIT Error Messages

Message Description

! ! DEVICE yyndd WRITE PROTECTION VIOLATION Initialization was suspended due to a write-protect condi-
tion on the device. (Currently, no device that can be
initialized has write-protect hardware, so this message
should never appear.) The operator should contact the
Customer Engineer.

! ! DEVICE I/o ADDRESS nnn NOT RECOGNIZED A power fa iI ure may have occurred. The operator should
restart the job.

! ! INVALID I/o INTERRUPT, Ala ADDRESS =nnn A hardware failure may have occurred. The operator
should give output to analyst or Customer Engineer.

! ! INVALID KEYIN, PLEASE TRY AGAIN A previous key-in command was in error. The operator
should reissue correct key-in command.

! ! JOB ABORTED AT LOCATION nnnnn A serial hardware or software error has been detected. The
operator should give program output to analyst.

!! PLEASE KEY IN CORRECT DATE The date previously issued was in error. The operator
should reenter date.

! ! SIO TIME-OUT ON DEVICE nnn The specified device cannot be started for input our output.
The cause may be a hardware failure. The operator should
call the Customer Engineer.

164 Volinit Error Messages

APPENDIX A. SIGMA STANDARD OBJECT LANGUAGE

INTRODUCTION
GENERAL

The XDS Sigma standard object language provides a means
of expressing the output of any Sigma processor in standard
format. All programs and subprograms in this object format
can be loaded by the Monitor's relocating loader. t Such a
loader is capable of providing the program linkages needed
to form an executable program in core storage. The object
language is designed to be both computer-independent and
medium-in~ependent; i. e., it is appl icable to any XDS
Sigma computer having a 32-bit word length, and the same
format is used for both cards and paper tape.

SOURCE CODE TRANSLATION

Before a program can he executed by the computer, it must
be translated from symbolic form to binary data words and
mach ine instructions. The primary stages of source program
translation are accompl ished by a processor. However, under
certain circumstances, the processor may not be able to trans
late the entire source program directly into machine language
form.

If a source program contains symbol ic forward references, a
single-pass processor such as theXDS Symbol assembler can not
resolve such references into machine language. This is be
cause the machine language value for the referenced symbol
is not established by a one-pass processor until after the state
ment containing the forward reference has been processed.

A two-pass processor, such as the XDS Meta-Symbol assem
bler, is capable of making "retroactive" changes in the
object program before the object code is output. Therefore,
a two-pass processor does not have to output any special
object codes for forward references. An exampl e of a for
ward reference in a Symbol source program is given below.

y EQU $+3

el,5 z

LI, R Z

Z EQU 2

BG Z

R EQU Z+l

t Although a discussion of the object language is not directly
pertinent to the BPM, it is included in this manual because
it appl ies to all processors operating under BPM.

In this example the operand $ + 3 is not a forward reference
because the assembler can evaluate it when processing the
source statement in which it appears. However, the oper
and Z in the statement

CI,5 Z

is a forward reference because it appears before Z has been
defined. In processing the statement, the assembler outputs
the machine-language code for CI,5, assigns a forward ref
erence number (e. g., 12) to the symbol Z, and outputs that
forward reference number. The forward reference number
and the symbol Z are also retained in the assembler's symbol
table.

When the assembler processes the source statement

LI, R Z

it outputs the machine-language code for LI, assigns a for
ward reference number (e. g., 18) to the symbol R, outputs
that number, and again outputs forward reference number
12 for symbol Z.

On processing the source statement

Z EQU 2

the assembler again outputs symbol ZIS forward reference
number and also outputs the value, which defines symbol Z,
so that the relocating loader will be able to satisfy refer
ences to Z in statements CI,5 Z and LI, R Z. At this time,
symbol Z's forward reference number (i. e., 12) may be
deleted from the assemblerls symbol table and the defined
value of Z equated with the symbol Z (in the symbol table).
Then, subsequent references to Z, as in source statement

BG Z

would not constitute forward references, since the assembler
could resolve them immediately by consulting its symbol
table.

If a program contains symbol ic references to externally
defined symbols in one or more separately processed subpro
grams or library routines, the processor will be unable to
generate the necessary program linkages.

An example of an external reference in a Symbol source pro
gram is shown below.

REF ALPH

LI,3 ALPH

When the assembler processes the source statement

REF ALPH

Appendi x A 165

it outputs the symbol ALPH, in symbolic {EBCDIC} form, in
a declaration specifying that the symbol is an external ref
erence. At this time, the assembler also assigns a declara
tion name number to the symbol ALPH but does not output
the number. The symbol and name number are retained in
the assembler's symbol table.

After a symbol has been declared an external reference, it
may appear any number of times in the symbol ic subprogram
in which it was declared. Thus, the use of the symbol
ALPH in the source statement

LI,3 ALPH

in the above example, is val id even though ALPH is not
defined in the subprogram in which it is referenced.

The relocating loader is able to generate interprogram link
ages for any symbol that is declared an external definition
in the subprogram in which that symbol is defined. Shown
below is an example of an external definition in a Symbol
source program.

DEF ALPH

LI,3 ALPH

ALPH AI,4 X' F2 1

When the assembler processes the source statement

DEF ALPH

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external defi
nition. At this time, the assembler also assigns a declaration
name number to the symbol ALPH but does not output the
number. The symbol and name number are retained in the
assembler's symbol table.

After a symbol has been declared an external definition it
may be used (in the subprogram in which it was declared) in
the same way as any other symbol. Thus, if ALPH is used as
a forward reference, as in the source statement

LI,3 ALPH

above, the assembler assigns a forward reference number to
ALPH, in addition to the declaration name number assigned
previously. {A symbol may be both a forward reference and
an external definition.}

On processing the source statement

ALPH A 1,4 X 'F2 1

the assembler outputs the declaration name number of the
label ALPH {and an expression for its value} and also outputs
the machine-language code for AI,4 and the constant X'F21.

OBJECT LANGUAGE FORMAT

An object language program generated by a processor is out
put as a string of bytes representing "load items". A load
item consists of an item type code followed by the specific
load information pertaining to that item. {The detailed format
of each type of load item is given later in this appendix.}
The individual load items require varying numbers of bytes

166 Appendix A

for their representation, depending on the type and specific
content of each item. A group of 108 bytes, or fewer, com
prises a logical record. A load item may be continued from
one logical record to the next.

The ordered set of logical records that a processor generates
for a program or subprogram is termed an "object module ll

•

The end of an object module is indicated by a module-end
type code followed by the error severity level assigned to
the modu I e by the processor.

RECORD CONTROL INFORMATION

Each record of an object module consists of 4 bytes of con
trol information followed by a maximum of 104 bytes of load
information. That is, each record, with the possible excep
tion of the end record, normally consists of 108 bytes of
information (i. e., 72 card columns).

The 4 bytes of control information for each record have the
form and sequence shown below.

Byte a

Record Type Mode Format
o

a 2 3 4 5 6 7

Byte 1

Sequence Number

a 7

Byte 2

Checksum

a 7

Byte 3

Record Size

a 7
Record Type specifies whether this record is the last

record of the modu Ie:

000 means last
001 means not last

Mode specifies that the loader is to read binary infor-
mation. This code is always 11.

Format specifies object language format. Th is code is
always 100.

Sequence Number is 0 for the first record of the module
and is incremented by 1 for each record thereafter,
until it recycles to 0 after reaching 255.

Checksum is the computed sum of the bytes comprising
the record. Carries out of the most significant bit
position of the sum are ignored.

Record Size is the number of bytes {including the record
control bytes} comprising the logical record (5 ::s record

size :s 108}. The record size will normally be 108 bytes
for all records except the last one, which may be fewer.
Any excess bytes in a physical record are ignored.

LOAD ITEMS

Each load item begins with a control byte that indicates the
item type. In some instances, certain parameters are also
provided in the load item control byte. In the following dis
cussion, load items are categorized according totheirfunction:

1. Declarations identify to the loader the external and
control section labels that are to be defined in the
object module being loaded.

2. Definitions define the value of forward references,
external definitions, the origin of the subprogram being
loaded, and the starting address (e. g., as provided in
a Symbol/Meta-Symbol END directive).

3. Expression evaluation load items within a definition
provide the val ues (such as constants, forward refer
ences, etc.) that are to be combined to form the final
value of the definition.

4. loading items cause specified information to be stored
into core memory.

5. Miscellaneous items comprise padding bytes and the
module-end indicator.

DECLARATIONS

In order for the loader to provide the linkage between subpro
grams, the processor must generate for each external refer
ence ordefinition a load item, referred to as a IIdeclaration ll

,

containing the EBC DIC code representation of the symbol
and the information that the symbol is either an external ref
erence or a definition (thus, the loader will have access to
the actual symbolic name).

Forward references are always internal references within an
object module. (External references are never considered
forward references.) The processor does not generate a dec-
1aration for a forward reference as it does for externals; how
ever, it does assign name numbers to the symbol s referenced.

Declaration name numbers (for control sections and external
labels) and forward reference name numbers apply only within
the object module in which they are assigned. They have no
significance in establ ishing interprogram I inkages, since
external references and definitions are correlated by match
ing symbol ic names. Hence, name numbers used in any
expressions in a given object module always refer to symbols
that have been declared within that module.

The processor must generate a declaration for each symbol
that identifies a program section. AI though the XDS Symbol
assembler used with the Monitor allows only a standard con
trol section (i. e., program section), the standard object
language includes provision for other types of control sec
tions (such as dummy control sections). Each object module
produced by the Symbol processor is considered to consist of
at least one control section. If no section is expl icitly iden
tified in a Symbol source program, the assembler assumes it
to be a standard control section (discussed below). The stan
dard control section is always assigned a declaration name

number of O. All other control sections (i. e., produced by
a processor capable of declaring other control sections) are
assigned declaration name numbers (1, 2, 3, etc.) in the
order of their appearance in the source program.

In the load items discussed below, the access code, pp, des
ignates the memory protection class that is to be associated
with the control section. The meaning of this code is given
below.

pp Memory Protection Featuret

00 Read, write, or access instructions from.

01 Read or access instructions from.

10 Read only.

11 No access.

Control sections are always allocated on a doubleword
boundary. The size specification designates the number of
bytes to be a II oca ted for the secti on.

Declare Standard Control Section

Byte 0

Control byte
o o o 1 o

o 2 3 4 5 6 7

Byte 1

I ~cce~ c;e I
Size {bits 1 through 4)

0 0

0 2 3 4 5 6 7

Byte 2

Size (bits 5 through 12)

o 7

Byte 3

Size (bits 13 through 20)

o 7

This item declares the standard control section for the object
module. There may be no more than one standard control
section in each object module. The origin of the standard
control section is effectively defined when the first reference
to the standard control section occurs, although the declara
tion item might not occur until much later in the object
module.

tlJRead 11 means a program can obtain information from the
protected area; IIwrite ll means a program can store informa
tion into a protected area; and, "access II means the compu
ter can execute instructions stored in the protected area.

Appendix A 167

This capability is required by one-pass processors, since
the size of a section cannot be determined until all of
the load information for that section has been generated by
the processor.

Declare Nonstandard Control Section

Byte 0

Control byte
o o o 1 o

o 2 3 4 5 6 7

Byte 1

I ~ccess c~e I Size (bits 1 through 4)
0 0

0 2 3 4 7

Byte 2

Size (bits 5 through 12)

o 7

Size (bits 13 through 20)

o 7

This item declares a control section other than standard con
trol section (see above). Note that this item is notappl icable
to the XDS Symbol processor used with the Monitor system.
However, the loader is capable of loading object modules
(produced by other processors, such as the Meta-Symbol
and FORTRAN IV processors) that do contain this item.

Declare Dummy Section

Byte 0

0 11
Control byte

o o o 1 o

o 2 3 4 5 6 7

Byte 1

First byte of name number

o 7

Byte 2

Second byte of name numbert

0 7

Byte 3 I pAccess ~ode I Size (bits 1 through 4)
0 0

0 1 2 3 4 7

tIf the module has fewer than 256 previously assigned name
numbers, this byte is absent.

168 Appendi x A

Byte 4

Size (bits 5 through 12)

o 7

Byte 5

Size (bits 13 through 20)

o 7

This item comprises a declaration for a dummy control sec
tion. It results in the allocation of the specified dummy
section, if that section has not been allocated previously
by another object module. The label that is to be associ
ated with the first location of the allocoted section must be
a previously declared external definition name. (Even
though the source program may not be required to explicitly
designate the label as an external definition, the processor
must generate an external definition name declaration for
that label prior to generating this load item.)

Declare External Definition Name

Byte 0

10
Control byte

0 0 0 0 0

0 2 3 4 5 6 7

Byte 1

1

Name length, in bytes (K)

0 7

Byte 2

First byte of name

0 7

Byte K+1

I Last byte of name

0 7

This item declares a label (in EBCDIC code) thot is an exter
nal definition within the current object module. The nome
may not exceed 63 bytes in length.

Declare Primary External Reference Name

Byte 0

10 0

Control byte

o o 0 o
0 2 3 4 5 6 7

Byte 1

1
Name length (K), in bytes

0 7

Byte 2

First byte of name

o 7

Byte K+l

Last byte of name

o 7

This item declares a symbol {in EBCDIC code} that is a pri
mary external reference within the current object module.
The name may not exceed 63 bytes in length.

A primary external reference is capable of causing the loader
to search the system I ibrary for a corresponding external
definition. If a corresponding external definition is not
found in another load module of the program or in the system
library, a load error message is output and the job is errored.

Declare Secondary External Reference Name

Byte 0

10
Control byte

0 0 0 0

0 2 3 4 5 6 7

Byte 1

Name length, in bytes {K}

o 7

Byte 2

First byte of name

o 7

Byte K+l

Last byte of name

o 7

This item declares a symbol {in EBCDIC code} that is a sec
ondary external reference within the current object module.
The name may not exceed 63 bytes in length.

A secondary external reference is not capable of caosing the
loader to search the system library fora corresponding exter
nal definition. If a corresponding external definition is not
found in another load module of the program, the job is not
errored and no error or abnormal message is output.

Secondary external references often appear in I ibrary routines
that contain optional or al ternative subroutines, some of which
may not be required by the user's program. By the use of pri
mary external references in the user's program, the user can
specify that only those subroutines that are actually required by
the current job are to be loaded. Although secondary external
referencesdonotcause loading from the library, theydocause
I inkages to be made between routines that are loaded.

DEFINITIONS
When a source language symbol is to be defined (i. e., equa
ted with a value), the processor provides for such a value by
generating an object language expression to be evaluated by
the loader. Expressions are of variable length, and terminate
with an expression-end control byte (see "Expression Evalua
tion II in this appendix). An expression is evaluated by the ad
dition or subtraction of values specified by the expression.

Since the loader must derive values for the origin and start-
ing address of a program, these also require definition.

Origin

Byte 0

10
Control b~te

0 0 0 0 0

0 2 3 4 5 6

This item sets the loader's load-location counter to the
value designated by the expression immediately following
the origin control byte. This expression must not contain
any elements that cannot be evaluated by the loader {see
"Expression Evaluation" which follows}.

Forward Reference Definition

Byte 0

10
0

Byte 1

o
Byte 2

o

0
Control b~te

0 0 1 0

2 3 4 5

First byte of reference number

Second byte of reference number

0

6

01
7

01
7

7

7

This item defines the value {expression} for a forward refer
ence. The referenced expression is the one immediately
following byte 2 of this load item, and must not contain
any elements that cannot be evaluated by the loader {see
"Expression Evaluation" which follows}.

Forward Reference Definition and Hold

Byte 0

o
Byte 1

o
Byte 2

o

o
Control byte

o 1 0 o
2 3 4 5

Fi rst byte of reference number

Second byte of reference number

o
6 7

7

7

Appendix A 169

This item defines the value (expression) for a forward refer
ence and notifies the loader that this value is to be retained
in the loader's symbol table until the module end is encoun
tered. The referenced expression is the one immediately
following the name number. It may contain values that have
not been defined previously, but all such values must be
available to the loader prior to the module end.

After generating this load item, the processor need not retain
the value for the forward reference, since that responsibility
is then assumed by the loader. However, the processor must
retain the symbol ic name and forward reference number
assigned to the forward reference (until module end).

External Definition

Byte 0

10
Control blte

01 0 0 0 1 0

0 2 3 4 5 6 7

Byte 1

I First byte of name number

0 7

Byte 2

Second byte of name numbert

0 7

This item defines the value (expression) for an external
definition name. The name number refers to a previously
declared definition name. The referenced expression is
the one immediately following the name number.

Define Start

Byte 0

10
Control blte

1 1 0 0 0 1 0

0 2 3 4 5 6 7

This item defines the starting address (expression) to be used
at the completion of loading. The referenced expression is
the one immediately following the control byte.

EXPRESSION EVALUATION

A processor must generate an object language expression
whenever it needs to communicate to the loader one of
the following:

1. A program load origin.

2. A program starting address.

tlf the module has fewer than 256 previously assigned name
numbers, this byte is absent.

170 Appendix A

3. An external definition value.

4. A forward reference value.

5. A field definition value.

Such expressions may include sums and differences of con
stants, addresses, and external or forward reference values
that, when defined, will themselves be constants or addresses.

After initiation of the expression mode, by the use of a con
trol byte designating one of the five items described above,
the value of an expression is expressed as follows:

1.

2.

An address va I ue is represented by an offset from the
control section base plus the value of the control sec
tion base.

The value of a constant is added to the accumulated
sum by generating an Add Constant (see below) control
byte followed by the value, right-justified in four bytes.

The offset from the control section base is given as a
constant representing the number of units of displace
ment from the control section base, at the resol ution
of the address of the item. That is, a word address
would have its constant portion expressed as a count of
the number of words offset from the base, while the
constant portion of a byte address would be expressed
as the number of bytes offset from the base.

The control section base value is accumulated by means
of an Add Value of Declaration (see below) or Subtract
Value of Declaration load item specifying the desired
resol ution and the declaration number of the control
section base. The loader adjusts the base value to the
specified address resolution before adding it to the cur
rent partial sum for the expression.

In the case of an absolute address, an Add Absolute
Section (see below) or Subtract Absolute Section con
trol byte must be included in the expression to identify
the value as an address and to specify its resol ution.

3. An external definition or forward reference value is
included in an expression by means of a load item add
ing or subtracting the appropriate declaration or forward
reference value. If the value is an address, the reso
lution specified in the control byte is used to align the
value before adding it to the current partial sum for the
expression. If the value is a constant, no alignment is
necessary.

Expressions are not evaluated by the loader until all required
values are available. In evaluating an expression, the
loader maintains a count of the number of values added or
subtracted at each of the four possible resolutions. A sepa
rate counter is used for each resolution, and each counter
is incremented or decremented by 1 whenever a value of the
corresponding resol ution is added to or subtracted from the
loader's expression accumulator. The final accumulated sum
is a constant, rather than an address value, if the final count
in all four counters is equal to O. If the final count in one
(and only one) of the four counters is equal to + 1 or -1, the

accumulated sum is a IIsimple address ll having the resolution
of the nonzero counter. If more than one of the four counters
have a nonzero final count, the accumulated sum is termed
a IImi.,ed-resolution expression ll and is treated as a constant
rather than an address.

The resolution of a simple address may be altered by means
of a Change Expression Resolution (see below) control byte.
However, if the current partial sum is either a constant or
a mixed-resolution value when the Change Expression Reso
lution control byte occurs, then the expression resolution
is unaffected.

Note that the expression for a p:ogram load origin or start
ing address must resolve to a simple address, and the single
nonzero resol ution counter must have a final count of + 1
when such expressions are eval uated.

In converting a byte address to a word address, the two least
significant bits of the address are truncated. Thus, if the
resulting word address is later changed back to byte resolu
tion, the referenced byte location will then be the first byte
(byte 0) of the word.

After an expression has been evaluated, its final value is
associated with the appropriate load item.

In the following diagrams of load item formats, RR refers to
the address resolution code. The meaning of this code
is given in the table below.

RR Address Resolution

00 Byte

01 Halfword

10 Word

11 Doubleword

The load items discussed in this appendix, IIExpression
Evaluation ll

, may appear only in expressions.

Add Constant

Byte 0

10
Control byte

0 0 0 0 0 0

0 2 3 4 5 6

Byte 1

Fi rst blte of constant

o

Byte 2

Second byte of constant

o

11
7

7

7

Byte 3

Third byte of constant

o 7

Byte 4

Fourth byte of constant

o 7

This item causes the specified 4-byte constant to be added
to the loader·s expression accumulator. Negative constants
are represented in two·s complement form.

Add Absolute Section

Byte 0

Control byte
o 1 0 R

o 2 3 4 5 6 7

This item identifies the associated value (expression) as a
positive absolute address. The address resolution code, RR,
designates the desired resol ution.

Subtract Absolute Section

Byte 0

Control byte
o 1 1 o R

o 2 3 4 5 6

This item identifies the associated value (expression) as a
negative absolute address. The address resolution code,
RR, designates the desired resolution.

Add Value of Declaration

Byte 0

10 0

0

Byte 1

o

Byte 2

o

Control b~te
0 0 0

2 3 4 5

First byte of name number

f Second byte of name number

R

6

7

RI

7

7

7

tlf the module has fewer than 256 previously assigned name
numbers, th is byte is absent.

Appendix A 171

This item causes the value of the specified declaration to be
added to the loader's expression accumulator. The address
resolution code, RR, designates the desired resolution, and
the name number refers to a previously declared definition
name that is to be associated with the first location of the
allocated section.

One such item must appear in each expression for a reloca
table address occurring within a control section, adding the
value of the specified control section declaration (i. e.,
adding the byte address of the first location of the control
section).

Add Value of Forward Reference

Byte 0

10
Control byte

0 0 0 1 R

0 2 3 4 5 6 7

Byte 1

First byte of forward reference number

o 7

Byte 2

Second byte of forward reference number

o 7
This item causes the value of the specified forward reference
to be added to the loader's expression accumulator. The
address resolution code, RR, designates the desired resolu
tion, and the designated forward reference must not have
been defined previously.

Subtract Value of Declaration

Byte 0

o

Byte 1

o
Byte 2

o
Control byte

o 1 o
2 3 4 5

First byte of name number

Second byte of name numbert

R

6 7

7

This item causes the value of the specified declaration to
be subtracted from the loader's expression accumulator.
The address resolution code, RR, designates the desired
resolution, and the name nu'mber refers to a previously de
clared definition name that is to be associated with the
first location of the allocated section.

tIf the module has fewer than 256 previously assigned name
numbers, this byte is absent.

172 Appendix A

Subtract Value of Forward Reference

Byte 0

10 0
Control byte

o 1 R

0 2 3 4 5 6 7

Byte 1

I
First byte of forward reference number

0 7

Byte 2

Second byte of forward reference number

o 7

This item causes the value of the specified forward reference
to be subtracted from the loader's expression accumulator.
The address resolution code, RR, designates the desired reso
lution, and the designated forward reference must not have
been defined previously.

Change Expression Resolution

Byte 0

Control byte
o 1 0 o R

o 2 3 4 5 6 7

This item causes the address resol ution in the expression to
be changed to that designated by RR.

Expression End

Byte 0

Control byte
o o o 0 o

o 2 3 4 5 6 7

This item identifies the end of an expression (the value of
which is contained in the loader's expression accumulator).

FORMATION OF INTERNAL SYMBOL TABLES
The three object code control bytes described below are re
quired to supply the information necessary in the formation
of Internal Symbol Tables.

In the following diagrams of load item formats, Type refers
to the symbol types supplied by the object language and
maintained in the symbol table. IR refers to the internal
resolution code. Type and resolution are meaningful only
when the value of a symbol is an address. In this case, it
is highly likely that the processor knows the type of value
that is in the associated memory location, and the type field
identifies it. The resolution field indicates the resolution
of the location counter at the time the symbol was defined.
The following tables summarize the combinations of value
and meaning.

Symbol Types

Type Meani n9 of 5-Bi t Code

00000 Instruction
00001 Integer
00010 Short floating point
00011 Long floating point
00110 Hexadecimal {also for packed decimal}
00111 EBCDIC text {also for unpacked decimal}
01001 Integer array
01010 Short floating-point array
OlDll Long floating-complex array
01000 Logical array
10000 Undefined symbol

Internal Resolution

IR Address Resolution

000 Byte
001 Halfword
010 Word
all Doubleword
100 Constant

Type Information for External Symbol

Byte a

10
Control byte

1 I 0 0 1 0 0 0

a 2 3 4 5 6 7

Byte 1

Ttpe field IR field

0 4 5 7

Byte 2

Name number

o 7

Byte 3 {if required}

Name number (continued)

a 7

This item provides type information for external symbols.
The Type and IR fields are defined above. The name
number fi eld consists of one or two bytes (dependi ng on the
current declaration count) which specifies the declaration
number of the external definition.

Type and EBCDIC for Internal Symbol

Control byte

o o o
a 2 3 4 5 6 7

Byte 1

Type field IR field

o 4 5 7

Byte 2

Length of name (EBCDIC characters)

o 7
Byte 3

First btte of name in EBCDIC

o 7
Byte n

Last btte of name in EBCDIC

o 7
Byte n + 1, . ..

Expression defining value of internal s}imbol

o 7

This item suppl ies type and EBCDICJor an internal symbol. The
I oed items for Type and IR are as above. Length of name speci -
fi es the I ength of the E BCD IC name in characters. The name, in
EBCDIC, is specified in the required number of bytes, followed
by the expression defining the internal symbol.

EBCDIC for an Undefined Symbol

Byte 0

10
Control byte

0 0 1 a 0

I

I

a 2 3 4 5 6 7
Byte 1

Length of name {EBCDIC characters}

a 7
Byte 2

First byte of name in EBCDIC

0 7
Byte n

Last byte of name in EBCDIC

0 7

Byte n + 1, n + 2

Two bytes of symbol associated forward reference number

o 7

This item is used to associate a symbol with a forward reference.
The length of name and name in EBCDIC are the same as in the
above item. The last two bytes specify the forward reference
number with which the above symbol is to be associated.

Appendix A 173

LOADING
Load Absolute

Byte 0

/0
Control byte

NI 0 0 N N N

0 2 3 4 5 6 7

Byte 1

I
First byte to be loaded

0 7

Byte NNNN

Lost byte to be loaded

o 7

This item causes the next NNNN bytes to be loaded abso
lutely (NNNN is expressed in natural binary form, except
that 0000 is interpreted as 16 rather than 0). The load loca
tion counter is advanced appropriately.

Load Relocatable (Long Form)

Byte 0

Control byte

RI 0 1 Q C R

o 2 3 4 5 6 7

Byte 1

First byte of name number

o 7

Byte 2

Second byte of name numbert

o 7

This item causes a 4-byte word (immediately following this
load item) to be loaded, and relocates the address field
according to the address resolution code, RR. Control bit
C designates whether relocation is to be relative to a for
ward reference (C = 1) or relative to a declaration (C = 0).
Control bit Q designates whether a l-byte (Q = 1) or a
2-byte (Q = 0) name number follows the control byte of
this load item.

If relocation is to be relative to a forward reference, the
forward reference must not have been defined previously.
When this load item is encountered by the loader, the load
location counter can be al igned with a word boundary by
loading the appropriate number of bytes containing all zeros
{e.g., by means of a load absolute item}.

tlf the module has fewer than 256 previously assigned name
numbers, this byte is absent.

174 Appendix A

Load Relocatable {Short Form}

Byte 0

II Control b}'.te

DI C D D D D D

0 2 3 4 5 6 7

This item causes a 4-byte word (immediately following this
load item) to be loaded, and relocates the address field
(word resol ution). Control bit C designates whether reloca
tion is to be relative to a forward reference (C = 1) or rela
tive to a declaration (C = 0). The binary number DDDDDD
is the forward reference number or declaration number by
which relocation is to be accomplished.

If relocation is to be relative to a forward reference, the
forward reference must not have been defined previously.
When this load item is encountered by the loader, the load
location counter must be on a word boundary (see "Load
Relocatable {Long Form}", above}.
Repeat Load

Byte 0

o
Byte 1

0
Byte 2

o

o
Control b}'.te

o o 1

2 3 4 5 6 7

First byte of repeat count

7

Second byte of repeat count

7
This item causes the loader to repeat (i. e., perform) the
subsequent load item a specified number of times. The
repeat count must be greater than 0, and the load item to
be repeated must follow the repeat load item immediately.

Define Field

Byte 0

10
Control b}'.te

0 0 0 0

0 2 3 4 5 6 7
Byte 1

Field location constant, in bits (K)

o 7
Byte 2

Field length, in bits (L)

o 7

This item defines a value (expression) to be added to a field
in previously loaded information. The field is of length L
(1 :5 L :5 255) and terminates in bit position T, where:

T = current load bit position -256 +K.

The field location constant, K, may have any val ue from
1 to 255. The expression to be added to the specified field
is the one immediately following byte 2 of this load item.

Padding

Byte 0

o
o

MISCELLANEOUS LOAD ITEMS

Control byte
o o 0 o o
2 3 4 5 6 7

Padding bytes are ignored by the loader. The object lan
guage allows padding as a convenience for processors.

Module End

Byte 0

o
o

Example

o
2

Control byte
o 1

3 4 5 6 7

Byte 1

Severity level
o o o E E E

o 2 3 4 5 6

This item identifies the end of the object module. The
val ue EEEE is the error severity level assigned to the
module by the processor.

OBJECT MODULE EXAMPLE

The following example shows the correspondence between
the statements of a Symbol source program and the string
of object bytes output for that program by the assembler.
The program, listed below, has no significance other than
illustrating typical object code sequences.

DEF AA,BB,CC CC IS UNDEFINED BUT CAUSES NO
ERROR

2

3 00000

4 00OC8

5 00OC8 22000000 N

6 00OC9 32000000 N

7

8

9 OOOCA 50000000 N

10

11 OOOCB 69200000 F

12

13 OOOCC 20000001 N

14 OOOCD 680000CA

15 OOOCE 68000000 X

16 OOOCF 0001 A

17 00000003

18 00000004

19 OOODO 224FFFFF A

20

21

22 00OC8

REF

ALPHA CSECT

AA

*

*

RPT

*

*

KON

R

CNT

BB

*

*

ORG

LI, CNT

LW, R

AH, R

BCS,2

AI, CNT

B

B

DATA, 2

EQU

EQU

LI, CNT

END

RZ, RTN

200

o

RZ

KON

BB

RPT

RTN

3

4

-1

AA

EXTERNAL REFERENCES DECLARED

DEFINE CONTROL SECTION ALPHA

DEFINE ORGIN

DEFINES EXTERNAL AA; CNT IS A
FWD REF

{

R IS A FORWARD REFERENCE;

RZ IS AN EXTERNAL REFERENCE, AS

DECLARED IN LINE 2

{
DEFINES RPT; RAND KON ARE

FORWARD REFERENCES

{
BB IS AN EXTERNAL DEFINITION

USED AS A FORWARD REFERENCE

CNT IS A FORWARD REFERENCE

RPT IS A BACKWARD REFERENCE

RTN IS AN EXTERNAL REFERENCE

DEFINES KON

DEFINES R

DEFINES CNT

{

DEFINES EXTERNAL BB THAT HAS

ALSO BEEN USED AS A FORWARD

REFERENCE

END OF PROGRAM

7

Appendix A 175

CONTROL BYTES (In Binary)

Begin Record Record number: 0

00111100 }
00000000
01100011
01101100

00000011

00000011

00000011

00000101

00000101

00001010

00000001
00100000

00000010

00000100 }
00000001
00100000

00000010

01000100

00000111

00100110

00000010

Record type: not last, Mode binary, Format: object language.
Sequence number 0
Checksum: 99
Record size: 108

03020101 (hexadeci ma I code compr i sing the load item)
Declare external definition name (2 bytes) Name: AA

03020202
Declare external definition name (2 bytes) Name: BB

03020303
Declare external definition name (2 bytes) Name: CC

0502D9E9
Declare primary reference name (2 bytes) Name RZ

0503D9E3D5
Declare primary reference name (3 butes) Name: RTN

OAO 10 100000320200002
Define external definition
Number 1
Add constant: 800 X'320'
Add value of declaration (byte resolution)
Number 0
Expression end

040100000320200002
Origin
Add constant: 800 X'320'
Add value of declaration (byte resolution)
Number 0
Express i on end

4422000000
Load absolute the following 4 bytes: X'22000000'

07EB0426000002
Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
Add value of forward reference (word resolution)
Number 0
Express i on end

Declaration number: 1

Declaration number: 2

Declaration number: 3

Declaration number: 4

Declaration number: 5

}

}

}

Record control
information not
part of load item

Source Li ne 1

Source Li ne 2

Source Li ne st

Source Li ne 4

Source Line 5

t No object code is generated for source lines 3 {define control section} or 4 (define origin) at the time they are encountered.
The control section is declared at the end of the program after Symbol has determined the number of bytes the program requires.
The origin definition is generated prior to the first instruction.

176 Appendix A

10000100

00000111

00100110

00000010

11001100

00000111

00100110

00000010

11010010

01000100

00000111

00100110

00000010

10000000

10000101

00001000

8432000000
Load relocatable {short form}. Relocate address field {word resolution}
Relative to declaration number 4
The following 4 bytes: XI 32000000 1

07EB0426000602
Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
Add value of forward reference {word resolution}
Number 6
Expression end

CC50000000
Load relocatable {short form}. Relocate address field {word resolution}
Relative to forward reference number 12
The following 4 bytes: XI 50000000 1

07EB0426000602
Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
Add value of forward reference {word resolution}
Number 6
Express i on end

D269200000
Load relocatable {short form}. Relocate address field {word resolution}
Relative to forward reference number 18
The following 4 bytes: X'69200000 '

4420000001
Load absolute the following 4 bytes: XI 2000000 1 I

07EB0426000002
Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
Add value of forward reference {word resolution}
Number 0
Expression end

80680000CA
Load relocatable {short form}. Relocate address field {word resolution}
Relative to declaration number 0
The following 4 bytes: X'680000CA'

8568000000
Load relocatable {short form}. Relocate address field {word resolution}
Relative to declaration number 5
The following 4 bytes: XI 68000000 I

08
Define forward reference {continued in record 1}

}

}
}

Source Li ne 6

Source Line 9

Source Line 11

Source Line 13

Source Line 14

Source Line 15

Source Line 16

Appendix A 177

Begin Record Record number 1

00011100
00000001
11101100
01010001

00000001
00100000

00000010

01000010

00001000

00000001
00000010

00001000

00000001
00000010

00001111

01000001

00001000

00000001

00000010

00001010

00000001
00100000

00000010

01000100

00001101
00000001
00100000

00000010

Record type: last, Mode: binary, Format: object language.
Sequence number 1
Checksum: 236
Record size: 81

000C010000033C200002 {continued from record O}
Number 12
Add constant: 828 XI 33C I
Add value of declaration {byte resolution}
Number 0
Express i on end

42001
Load absolute the following 2 bytes: XIOOO 11

080006010000000302
Defi ne forward reference
Number 6
Add constant: 3 X'3

1

Express i on end

080000010000000402
Defi ne forward reference
Number 0
Add constant: 4 X'41

Expression end

OF00024100
Repeat load
Repeat count: 2
Load absolute the following 1 bytes: X'OOI

0800120100000340200002
Defi ne forward reference
Number 18
Add constant: 832 X'340 '
Add value of declaration (byte resolution)
Number 0
Express i on end

OA020100000340200002
Define external definition
Number 2
Add constant: 832 X'340'
Add value of declaration {byte resolution}
Number 0
Expression end

44224FFFFF
Load absolute the following 4 bytes: X'224FFFFF '

OD01oo00032020oo02
Define start
Add constant: 800 X'320'
Add value of declaration {byte resolution}
Number 0
Express i on end

178 Appendix A

}

}

}
}

Record Control
Information

Source li ne 16

Source line 17

Source line 18

Advance to Word
Boundary

Source Line 19

Source Li ne 22

00001011

00001110

o B000344
Declare standard control section declaration number: 0
Access code: Full access. Size 836 X'344'

OEOO
Module end

Severity level: X'O'

A table summarizing control byte codes for object language load items is given below.

Object Code Control Byte Type of Load Item

0 0 0 0 0 0 0 0 Padding

0 0 0 0 0 0 0 1 Add consta nt

0 0 0 0 0 0 1 0 Expression end

0 0 0 0 0 0 1 1 Declare external definition name

0 0 0 0 0 1 0 0 Origin

0 0 0 0 0 1 0 1 Declare primary reference name

0 0 0 0 0 1 1 0 Declare secondary reference name

0 0 0 0 0 1 1 1 Defi ne field

0 0 0 0 1 0 0 0 Defi ne forward reference

0 0 0 0 1 0 0 1 Declare dummy section

0 0 0 0 1 0 1 0 Define external definition

0 0 0 0 1 0 1 1 Declare standard control section

0 0 0 0 1 1 0 0 Dec lore nonstandard control section

0 0 0 0 1 1 0 1 Define start

0 0 0 0 1 1 1 0 Iv\odule end

0 0 0 0 1 1 1 1 Repeat load

0 0 0 1 0 0 0 0 Define forward reference and hold

0 0 0 1 0 0 0 1 Provide type information for external symbol

0 0 0 1 0 0 1 0 Provide type and EBCDIC for internal symbol

0 0 0 1 0 0 1 1 EBCDIC and forward reference number for undefined symbol

0 0 1 0 0 0 R R Add value of declaration

0 0 1 0 0 1 R R Add value of forward reference

0 0 1 0 1 0 R R Subtract value of declaration

0 0 1 0 1 1 R R Subtract value of forward reference

0 0 1 1 0 0 R R Change expression resolution

0 0 1 1 0 1 R R Add absolute section

0 0 1 1 1 0 R R Subtract absolute section

0 1 0 0 N N N N Load absolute

0 1 0 1 Q C R R load relocatable {long form}

1 C D D D D D D Load relocatable {short form}

Appendix A 179

APPENDIX B. XDS SIGMA STANDARD COMPRESSED LANGUAGE

The XDS Sigma Standard Compressed Language is used to rep
resent source EBCDIC information ina highly compressed form.

Meta-Symbol (along with several of the utility programs)
accepts this form as input or output, wi II accept updates to
the compressed input and wi II regenerate source when re
quested. No information is destroyed in the compression or
decompression.

Records may not exceed 108 bytes in length. Compressed
records are punched in the binary mode when represented
on card media. Therefore, on cards, columns 73 through
80 are not used and are available for comment or identifi
cation information.

The firstfourbytes of each record are for checking purposes.
They are as follows:

Byte 1 Identification (00Ll1000) L = 1 for each record
except the last record, in which case L =0.

Item Function

.0 Ignore
1 Not currently assigned
2 End of line
3 End of file
4 Use 8-bit character that follows
5 Use n + 1 blanks {next 6-bit item is n}
6 Use n+ 65 blanks (next 6-bit item is n)
7 Blank
8 0
9 1

1.0 2
11 3
12 4
13 5
14 6
15 7
16 8
17 9
18 A
19 B
2.0 C
21 D
22 E
23 F
24 G
25 H
26 I
27 J
28 K
29 L
3.0 M
31 N

180 Appendi x B

Byte 2 Sequence number (0 to 255 and recycles).

Byte 3 Checksum which is the least significant 8 bits
of the sum of all bytes in the record except
the checksum byte itself. Carries out of the
most significant bit are ignored. If the
checksum byte is all l's, do not checksum
the record.

Byte 4 Number of bytes comprising record including
the checking bytes (s 108)

The rest of the record consists of a string of 6-bit and 8-bit
items. Any partial item at the end of a record is ignored.

The following 6-bit items (decimal number assigned) com
prise the string control:

Item Function

32 0
33 P
34 Q

35 R
36 S
37 T
38 U
39 V
40 W
41 X
42 y
43 Z
44
45 <
46 (
47 +
48 I
49 &
50 $
51 *
52)
53 ;
54 -,
55 -
56 /
57 ,
58 %
59 ~

60 >
61 :

62
,

63 =

APPENDIX C. REFERENCE TABLES

This appendix contains the following reference material:

Title

XDS Standard Symbols and Codes

XDS Standard 8-Bit Computer Codes (EBCDIC)

XDS Standard 7-Bit Communication Codes (ANSCII)

XDS Standard Symbol-Code Correspondences

Hexadecimal Arithmetic

Addition Table
Multiplication Table
Tab I e of Powers of Si xteen 10
Table of Powers of Ten16

Hexadecimal-Decimal Integer Conversion Table

Hexadecimal-Decimal Fraction Conversion Table

Table of Powers of Two

Mathematical Constants

XDS STANDARD SYMBOLS AND CODES

The symbol and code standards described in this publ ication
are applicable to all XDS products, both hardware and soft
ware. They may be expanded or altered from time to time
to meet changing requirements.

The symbols listed here include two types: graphic symbols
and control characters. Graphic symbols are displayable
and printable; control characters are not. Hybrids are SP,
the symbol for a blank space; and DEL, the delete code,
which is not considered a control command.

Three types of code are shown: (1) the 8-bit XDS Standard
Computer Code, i.e., the XDS Extended Binary-Coded
Decimal Interchange Code (EBCDIC); (2) the 7-bit American
National Standard Code for Information Interchange (ANSCII);
and (3) the XDS standard card code.

XDS STANDARD CHARACTER SETS

1. EBCDIC

57-character set: uppercase letters, numerals, space,
and & / < > () + I $ *

% # @

63-character set: same as above plus I
-,

89-character set: same as 63-character set plus
lowercase letters

2. ANSCII

?

64-character set: uppercase letters, numerals, space,
and ! $ % & I () * + ,

/ \ < >? @ [J
/\. #

95-character set: same as above plus lowercase letters
and { }

CONTROL CODES

In addition to the standard character sets listed above, the
XDS symbol repertoire includes 37 control codes and the
hybrid code DEL (hybrid code SP is considered part of all
character sets). These are listed in the table titled XDS
Standard Symbol-Code Correspondences.

SPECIAL CODE PROPERTIES
The following two properties of all XDS standard codes will
be retained for future standard code extensions:

1. All control codes, and only the control codes, have
their two high-order bits equal to "00". DEL is not
considered a control code.

2. No two graphic EBCDIC codes have their seven low
order bits equal.

Appendix C 181

Hexadecimal 0 1

Binary 0000 0001

0 0000 NUL OLE

1 0001 SOH DCl

2 0010 STX DC2

3 0011 ETX DC3

4 0100 EOT DC4

:~
5 0101 HT NL

6 0110 ACK SYN Ei·

~ 7 0111 BEL ETB
I ~u
~ 8 1000

EOM~
BS \...

1<'>

I] 9 1001 ENQ EM

A 1010 NAK SUB

B 1011 VT ESC

C 1100 FF FS

0 1101 CR GS

E 1110 SO RS

F 1111 51 US
, ,

Decimal
rows) (col's.)- 0 1

l Binary
1

xOOO xOOl

0 0000 NUL OLE

1 0001 SOH DCl

2 0010 STX DC2

3 0011 ETX DC3

4 0100 EOT DC4

5 0101 ENQ NAK

m
0 6 0110 ACK SYN

C
0 7 0111 BEL ETB
~
'c

8 1000 BS CAN 01
Vi

13 9 1001 HT EM
CI>

....J
LF

10 1010 SUB
NL

11 1011 VT ESC

12 1100 FF FS

13 1101 CR GS

14 1110 SO RS

15 1111 SI US
, . "

182 Appendix C

2

0010

ds

55

fs

si

XoS STANDARD 8-BIT COMPUTER CODES (EBCDIC)

Most <'
.,.

Digits

3 4 5 6 7 8 9 A B C 0 E F

0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

SP & - ~ 0

~ ~ / ~ j \1 A J 1

~ ~ ~ ~ b k s t 1 B K 5 2

~ ~ ~ ~? ~;I, c I t J 1 C l T 3

~ ~ ~ ~~ d m u [1 0 M U 4

~'" "" c"~!;~;d e n v] 1 E N V 5

~ ~ ~ ~ f 0 w F 0 W 6

~ ~ ~ ~ g p x G P X 7

~ ~ ~ ~ h q y H Q Y 8

~ ~ ~ ~ i r z I R Z 9

2 ~1 ~ ~ ~ ~ ! : ~
$, , ~ ~ ~ ~

< * % @ ~'"'' ,"/", '///'~'.:e~"
~, , ""ossi! ,;.I'~

()
, ~ ~ ~ ~ -

+ ; > = ~ ~ ~ ~
I 2 --. 2

? ~ ~ ~ DEL

NOTES:

The characters - \ t J [] are ANSCII
characters that do not appear in any of the
XDS EBCDIC-based character sets, though
they are shown in the EBCDIC table.

The characters i I --. appear in the XDS
63- and 89-character EBCDIC sets but not
in either of the XDS ANSCII-based sets.
However, XDS software translates the char
acters i I --. into ANSCII characters
as follows:

EBCDIC

i
I

ANSCII

\ (6-0)

: (7-12)

- (7-14)

The EBCDIC control codes in columns 0
and 1 and their binary representation are
exactly the same as those in the ANSCII
table, except for two interchanges: LF/NL
with NAK, and HT with ENQ.

4 Characters enclosed in heavy lines are
included only in the XDS standard 63-
and 89-character EBCDIC sets.

These characters are included only in the
XDS standard 89-character EBCDIC set.

XDS STANDARD 7-BIT COMMUNICATION CODES (ANSCII) 1

Most Significant Digits

2 3 4 5

xOl0 xOll xl00 xl0l

SP 0 @ P

! 5 1 A Q

" 2 B R

, 3 C 5

$ 4 0 T

% 5 E U

& 6 F V

I 7 G W

(8 H X

) 9 I Y

* : J Z

+ ; K [5

, < l \

- = M] 5

> N
4 5

/ ? 0
4

-
'"

6 7

xll0 xl11

\ P

a q

b r

c s

d t

e u

f v

g w

h X

i Y

j z

k t
I I

I

m J
4

n -
0 DEL

I

1 Most significant bit, added for 8-bit formet, is either 0 or even parity.

Columns 0-1 are control codes.

3 Columns 2-5 correspond to the XDS 64-character ANSCII set.
Columns 2-7 correspond to the XDS 95-character ANSCII set.

4 On many current teletypes, the symbol

is (5-14)

is (5-15)

is ESC or ALTMODE control (7-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the three
symbol differences noted above, therefore, such teletypes provide all the characters in
the XDS 64-character ANSCII set. (The XDS 7015 Remote Keyboard Printer provides the
64-character ANSCII set also, but prints as".)

5 On the XDS 7670 Remote Batch Terminal, the symbol

is

is

is

is

(2-1)

(5-11)

(5-13)

(5-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol
differences noted above, therefore, this terminal provides all the characters in the XDS 64-
character ANSCII set.

XDS STANDARD SYMBOL-CODE CORRESPONDENCES

EBCDICt
ANScntt

Hex. Dec. Symbol Card Code Meaning Remarks

00 0 NUL 12-0-9-8-1 0-0 null 00 through 23 and 2F are control codes.
01 1 SOH 12-9-1 0-1 start of header
02 2 STX 12-9-2 0-2 start of text
03 3 ETX 12-9-3 0-3 end of text
04 4 EOT 12-9-4 0-4 end of transmission
05 5 HT 12-9-5 0-9 horizontal tab
06 6 ACK 12-9-6 0-6 acknowledge (positive)
07 7 BEL 12-9-7 0-7 bell
08 8 BSorEOM 12-9-8 0-8 backspace or end of message EOM is used only onXDS Keyboard/
09 9 ENQ 1.t:-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091,
OA 10 NAK 12-9-8-2 1-5 negative acknowledge and 8092.
OB 11 VT 12-9-8-3 0-11 vertical tab
OC 12 FF 12-9-8-4 0-12 form feed
00 13 CR 12-9-8-5 0-13 carriage return
OE 14 SO 12-9-8-6 0-14 shift out
OF 15 SI 12-9-8-7 0-15 shift in

10 16 OLE 12-11-9-8-1 1-0 data link escape
11 17 DCl 11-9-1 1-1 device control 1
12 18 DC2 11-9-2 1-2 device control 2
13 19 DC3 11-9-3 1-3 device control 3
14 20 DC4 11-9-4 1-4 device control 4
15 21 LF or NL 11-9-5 0-10 line feed or new line
16 22 SYN 11-9-6 1-6 sync
17 23 ETB 11-9-7 1-7 end of transmission block
18 24 CAN 11-9-8 1-8 cancel
19 25 EM 11-9-8-1 1-9 end of medium
lA 26 SUB 11-9-8-2 1-10 substitute Replaces characters with parity error.
lB 27 ESC 11-9-8-3 1-11 escape
lC 28 FS 11-9-8-4 1-12 fj Ie separator
10 29 GS 11-9-8-5 1-13 group separator
IE 30 RS 11-9-8-6 1-14 record separator
IF 31 US 11-9-8-7 1-15 unit separator

20 32 ds 11-0-9-8-1 digit selector 20 through 23 are used with
21 33 ss 0-9-1 significance start Sigma EDIT BYTE STRING {EBS}
22 34 fs 0-9-2 field separation instruction - not input/output con-
23 35 si 0-9-3 immediate significance start trol codes.
24 36 0-9-4 24 through 2E are unassigned.
25 37 0-9-5
26 38 0-9-6
27 39 0-9-7
28 40 0-9-8
29 41 0-9-8-1
2A 42 0-9-8-2
2B 43 0-9-8-3
2C 44 0-9-8-4
20 45 0-9-8-5
2E 46 0-9-8-6
2F 47 0-9-8-7

30 48 12-11-0-9-8-1 30 through 3F are unassigned.
31 49 9-1
32 50 9-2
33 51 9-3
34 52 9-4
35 53 9-5
36 54 9-6
37 55 9-7
38 56 9-8
39 57 9-8-1
3A 58 9-8-2
3B 59 9-8-3
3C 60 9-8-4
3D 61 9-8-5
3E 62 9-8-6
3F 63 9-8-7

tHexadecimal and decimal notation.

ttDecimal notation {column-row}.

Appendix C 183

XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDlCt Symbol Card Code ANSClltt Meaning Remarks
Hex. Dec.

40 64 SP blank 2-0 blank
41 65 12-0-9-1 41 through 49 will not be assigned.
42 66 12-0-9-2
43 67 12-0-9-3
44 68 12-0-9-4
45 69 12-0-9-5
46 70 12-0-9-6
47 71 12-0-9-7
48 72 12-0-9-8
49 73 12-8-1
4A 74 i or ' 12-8-2 6-0 cent or accent grave Accent grave used for left single
4B 75 12-8-3 2-14 period quote. On model 7670, ' not
4C 76 < 12-8-4 3-12 less than available, andi=ANSCII 5-11.
40 77 (12-8-5 2-8 left parenthesis
4E 78 + 12-8-6 2-11 plus
4F 79 I or

I 12-8-7 7-12 vertical bar or broken bor On Model 7670,: not available, I

and I = ANSCII 2-1.

50 80 8. 12 2-6 ampersand
51 81 12-11-9-1 51 through 59 will not be assigned.
52 82 12-11-9-2
53 83 12-11-9-3
54 84 12-11-9-4
55 85 12-11-9-5
56 86 12-11-9-6
57 87 12-11-9-7
58 88 12-11-9-8
59 89 11-8-1
5A 90 ! 11-8-2 2-1 exclamation point On Model 7670, ! is I.
5B 91 $ 11-8-3 2-4 dollars
5C 92 * 11-8-4 2-10 asterisk
50 93) 11-8-5 2-9 right parenthesis
5E 94 ; 11-8-6 3-11 semicolon
5F 95 - or ..., 11-8-7 7-14 tilde or logical not On Model 7670, - is not available,

and""" = ANSCII 5-14.

60 96 - 11 2-13 minus, dash, hyphen
61 97 / 0-1 2-15 slash
62 98 11-0-9-2 62 through 69 will not be assigned.
63 99 11-0-9-3
64 100 11-0-9-4
65 101 11-0-9-5
66 102 11-0-9-6
67 103 11-0-9-7
68 104 11-0-9-8
69 105 0-8-1
6A 106 12-11 5-14 circumflex On Model 7670 is,. On Model
6B 107 , 0-8-3 2-12 comma 7015 -. is " (caret).
6C 108 % 0-8-4 2-5 percent
60 109 - 0-8-5 5-15 underline Underline is sometimes called "break
6E 110 > 0-8-6 3-14 greater than character"; may be printed along
6F 111 ? 0-8-7 3-15 question mark bottom of charocter line.

70 112 12-11-0 70 through 79 will not be assigned.
71 113 12-11-0-9-1
72 114 12-11-0-9-2
73 115 12-11-0-9-3
74 116 12-11-0-9-4
75 117 12-11-0-9-5
76 118 12-11-0-9-6
77 119 12-11-0-9-7
78 120 12-11-0-9-8
79 121 8-1
7A 122 8-2 3-10 colon
7B 123 II 8-3 2-3 number
7C 124 @ 8-4 4-0 at
70 125 I 8-5 2-7 apostrophe (right single quote)
7E 126 = 8-6 3-13 equals
7F 127 " 8-7 2-2 quotation mark

t Hexadecimal and decimal notation.

ttOecimal notation (column-row).

184 Appendix C

XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDICt
ANSClltt Hex. Dec. Symbol Card Code Meaning Remarks

80 128 12-0-8-1 80 is unassigned.
81 129 a 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the
82 130 b 12-0-2 6-2 lowercase alphabet. Available
83 131 c 12-0-3 6-3 only in XDS standard 89- and 95-
84 132 d 12-0-4 6-4 character sets.
85 133 e 12-0-5 6-5
86 134 f 12-0-6 6-6
87 135 g 12-0-7 6-7
88 136 h 12-0-8 6-8
89 137 i 12-0-9 6-9
8A 13ft 12-0-8-2 8A through 90 are unassigned.
8B 139 12-0-8-3
8C 140 12-0-8-4
80 141 12-0-8-5
8E 142 12-0-8-6
8F 143 12-0-8-7

90 144 12-11-8-1
91 145 j 12-11-1 6-10
92 146 k 12-11-2 6-11
93 147 I 12-11-3 6-12
94 148 m 12-11-4 6-13
95 149 n 12-11-5 6-14
96 150 0 12-11-6 6-15
97 151 p 12-11-7 7-0
98 152 q 12-11-8 7-1
99 153 r 12-11-9 7-2
9A 154 12-11-8-2 9A through Al are unassigned.
9B 155 12-11-8-3
9C 156 12-11-8-4
90 157 12-11-8-5
9E 158 12-11-8-6
9F 159 12-11-8-7

AO 160 11-0-8-1
Al 161 11-0-1
A2 162 s 11-0-2 7-3
A3 163 t 11-0-3 7-4
A4 164 u 11-0-4 7-5
A5 165 v 11-0-5 7-6
A6 166 w 11-0-6 7-7
A7 167 x 11-0-7 7-8
A8 168 Y 11-0-8 7-9
A9 169 z 11-0-9 7-10
AA 170 11-0-8-2 AA through eo are unassigned.
AB 171 11-0-8-3
AC 172 11-0-8-4
AD 173 11-0-8-5
AE 174 11-0-8-6
AF 175 11-0-8-7

BO 176 12-11-0-8-1
Bl 177 \ 12-11-0-1 5-12 backslash
B2 178 t 12-11-0-2 7-11 left brace
B3 179 f 12-11-0-3 7-13 right brace
B4 180 [12-11-0-4 5-11 left bracket On Model 7670, ~ is i.
B5 181] 12-11-0-5 5-13 right bracket On Model 7670, is!.
B6 182 12-11-0-6 B6 through BF are unassigned.
B7 183 12-11-0-7
B8 184 12-11-0-8
B9 185 12-11-0-9
BA 186 12-11-0-8-2
BB 187 12-11-0-8-3
BC 188 12-11-0-8-4
BO 189 12-11-0-8-5
BE 190 12-11-0-8-6
BF 191 12-11-0-8-7

tHexadecimal and decimal notation.

ttOecimal notation (column-row).

Appendix C 185

XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDICt SY!!'bol Card Code ANScntt Meaning Remarks
Hex. Dec.

CO 192 12-0 CO is unassigned.
Cl 193 A 12-1 4-1 Cl-C9, 01-09, E2-E9 comprise the
C2 194 B 12-2 4-2 uppercase alphabet.
C3 195 C 12-3 4-3
C4 196 0 12-4 4-4
C5 197 E 12-5 4-5
C6 198 F 12-6 4-6
C7 199 G 12-7 4-7
C8 200 H 12-8 4-8
C9 201 I 12-9 4-9
CA 202 12-0-9-8-2 CA through CF will not be assigned.
CB 203 12-0-9-8-3
CC 204 12-0-9-8-4
CO 205 12-0-9-8-5
CE 206 12-0-9-8-6
CF 207 12-0-9-8-7

DO 208 11-0 DO is unassigned.
01 209 J 11-1 4-10
02 210 K 11-2 4-11
03 211 L 11-3 4-12
04 212 M 11-4 4-13
05 213 N 11-5 4-14
06 214 0 11-6 4-15
07 215 P 11-7 5-0
08 216 Q 11-8 5-1
09 217 R 11-9 5-2
OA 218 12-11-9-8-2 OA through OF wi II not be assigned.
DB 219 12-11-9-8-3
DC 220 12-11-9-8-4
DD 221 12-11-9-8-5
DE 222 12-11-9-8-6
DF 223 12-11-9-8-7

EO 224 0-8-2 EO, E 1 are unassigned.
El " 225 11-0-9-1
E2 226 S 0-2 5-3
E3 227 T 0-3 5-4
E4 228 U 0-4 5-5
E5 229 V 0-5 5-6
E6 230 W 0-6 5-7
E7 231 X 0-7 5-8
E8 232 Y 0-8 5-9
E9 233 Z 0-9 5-10
EA 234 11-0-9-8-2 EA through EF will not be assigned.
EB 235 11-0-9-8-3
EC 236 11-0-9-8-4
ED 237 11-0-9-8-5
EE 238 11-0-9-8-6
EF 239 11-0-9-8-7

FO 240 0 0 3-0
Fl 241 1 1 3-1
F2 242 2 2 3-2
F3 243 3 3 3-3
F4 244 4 4 3-4
F5 245 5 5 3-5
F6 246 6 6 3-6
F7 247 7 7 3-7
F8 248 8 8 3-8
F9 249 9 9 3-9
FA 250 12-11-0-9-8-2 FA through FE will not be assigned.
FB 251 12-11-0-9-8-3
FC 252 12-11-0-9-8-4
FD 253 12-11-0-9-8-5
FE 254 12-11-0-9-8-6
FF 255 DEL 12-11-0-9-8-7 delete Special - neither graphic nor con-

trol symbol.

tHexadecimal and decimal notation.

tt Decimal notation (col umn-row).

186 Appendi X C

APPENDIX D. ANSCII TO EBCDIC CONVERSION

ANSCII Teletype EBCDIC ANSCII Teletype EBCDIC
Code Character Character

Echo
4 Code Character Character

Echo
4

1 2
Prints and Prints and

Hex. Octal Char Key Hex. as3 Type Hex. Octal Char 1 Key2 Hex. as3 Type

00 00 (NUL) pCs 00 0 1E 36 (RS) N CS 1E 1

01 01 (SOH) AC 01 1 1F 37 (U5) OC5 1F 1

02 02 (5TX) BC 02 1 20 40 blank
5PACE

40 blank #+ 1

(ETX) cC BAR
03 03 03 1

DC 21 41 ! l s 5A (I) #+ 2
04 04 EOT 04 1

22 42 II 2s 7F (") #+ 2

05 05
WRU

EC 09 1
(ENQ) 23 43 # 3s 7B # #+ 1

RU
FC 24 44 $ 4s 5B $ #+ 1

06 06 06 1
(ACK) 25 45 % 5s 6C % #+ 2

07 07
BELL

G
C

07 bell # + 1 26 46 & 65 50 & #+ 2
(BEL)

#+ 2 27 47 I /-' 7D I

08 10 (B5) HC 08 1
28 50 (8s 4D (#+ 2

09 11
TAB

I
C

05 3
(HT) 29 51) 9s 5D) #+ 2

LINE line 2A 52 * .S 5C * #+ 2
OA 12 LF

FEED
25

feed
@+7

2B 53 +
S 4E + #+ 2 ;

OB 13 VT KC OB 1 2C 54 6B #+ 2 , , ,

OC 14
FORM

L
C

OC @+1 2D 55 - - 60 - #+ 2
(FF)

#+ 2 2E 56 4B
OD 15 CR RETURN 15

carriage @+7 / / / #+ 3 return 2F 57 61

OE 16 (50) N C OE 1 30 60 0 0 FO 0 #+ 1

OF 17 (51) oC OF 1 31 61 1 1 F1 1 #+ 1

10 20 (DLE) pc 10 1 32 62 2 2 F2 2 #+ 1

11 21 (DC1) QC 11 1 33 63 3 3 F3 3 #+ 1

22
TAPE

RC 34 64 4 4 F4 4 #+ 1
12

(DC2)
12 1

35 65 5 5 F5 5 #+ 1

13 23
X-OFF SC 13 1 36 66 6 6 F6 6 #+ 1
(DC3)

#+ 1
14 24 (DC4) TC 14

37 67 7 7 F7 7
1

25 (NAK) UC OA
38 70 8 8 F8 8 #+ 1

15 1

(5YN) VC 39 71 9 9 F9 9 #+ 1
16 26 16 1

(ETB) W
C 3A 72 : : 7A : #+ 1

17 27 17 1

(CAN) XC 3B 73 ; ; 5E ; #+ 2
18 30 18 1

yC 3C 74 < S 4C < #+ 2
19 31 (EM) 19 1

,

1A 32 (55) ZC 1A 1 3D 75 = S - 7E = #+ 2

1B 33 (ESC) KCS lB 1 3E 76 > S 6E > #+ 2

lC 34 (F5) L cs lC 1 3F 77 ? /s 6F (?) #+ 2

1D 35 (G5) M CS lD 1 40 100 @ ps 7C @ #+ 1

Appendix D 187

ANSCII Teletype EBCDIC ANSCII Teletype EBCDIC

Code Character Character 4 Code Character Character 4 Echo Echo
Prints and Prints and

Hex. Octal Char1 Key2 Hex. as3 Type Hex. Octal ",Char 1 Key2 Hex. as3 Type

41 101 A A C1 A #+ 1 55 125 U U E4 U #+ 1

42 102 B B C2 B #+ 1 56 126 V V E5 V #+ 1

43 103 C C C3 C #+ 1 57 127 W W E6 W #+ 1

44 104 D D C4 D #+ 1 58 130 X X E7 X #+ 1

45 105 E E C5 E #+ 1 59 131 Y Y E8 Y #+ 1

46 106 F F C6 F #+ 1 5A 132 Z Z E9 Z #+ 1

47 107 G G C7 G #+ 1
5B 133

{[}
K

S
4F I #+ 2

48 110 H H C8 H #+ 1
(I)

{\}
49 111 I I C9 I #+ 1 5C 134 L

S
4A (t) #+ 2 (\)

4A 112 J J D1 J #+ 1 {]}
4B 113 K K D2 K #+ 1 5D 135 (-,) MS 5F (......) #+ 2

4C 114 L L D3 L #+ 1 t
N

S
5E 136 (A) 6A #+ 3

4D 115 M M D4 M #+ 1 -
4E 116 N N D5 N #+ 1 5F 137 (-) as 6D (-) #+ 2

4F 117 a a D6 0 #+ 1

50 120 P P D7 P #+ 1
0

51 121 Q Q D8 Q #+ 1 .
52 122 R R D9 R #+ 1

53 123 S S E2 S #+ 1 7E 176 ESC ESCAPE 1B 0

54 124 T T E3 T #+ 1 7F 177 DEL RUBOUT FF 0

Notes: ---
l. The forms in parentheses appear only on XDS Teletype 3. The forms in parentheses are contained in the XDS 63-

#7015, whereas the unparenthesized forms appear on and 89-graphic character sets but not in the standard
the specified keys of all standard model Teletypes. 57-graphic character set. On printers equipped with
(Some models lack the ESCAPE key). The forms in only the standard character set, these forms will print
braces print when the specified key is depressed, but as blanks.
they do not appear on the keys.

2. Superscript c indicates use of the CTRL key; super- 4. The echo and type specifies the echoability and acti-
script s indicates use of the SHIFT key. vation type of a character.

The Teletype character mnemonics have the following meanings:

ACK Acknowledge ENQ Enquire NAK Negative acknowledge
BEL Bell EM End of medium NUL Null
BS Backspace EaT End of transmission RS Record separator
CAN Cancel ESC Escape SI Shift in
CR Carriage return ETB End of transmission block SO Shift out
DC1 Device control 1 ETX End of text SOH Start of header
DC2 Dev i ce contro I 2 FF Form feed SS Start of special sequence
DC3 Device control 3 FS F i I e separator STX Start of text
OC4 Dev i ce control 4 GS Group separator SYN Synchronize
DEL Delete HT Hor; zonta I tob US Unit separator
DLE Data link escape LF Line feed VT Vertical tab

188 Appendix 0

APPENDIX E. EBCDIC TO ANSCII CONVERSION

EBCDIC Teletype ANSCII EBCDIC Teletype ANSCII
Code Character Code Code Character Code

Prints Prints
Hex. as3 Char1 Key2 Hex. Octal Hex. as 3 Char1 Key2 Hex. Octal

00 (NUL) pcs 00 00 1D (GS) MCS 1D 35

01 (SOH) AC 01 01 1E (RS) NCS 1 E 36

02 (STX) BC 02 02 1F (US) OCS 1F 37

03 (ETX) CC 03 03

04 EaT DC 04 04
line JC or

05 TAB IC 09 11
25 feed LF LINE OA 12

(HT) FEED

06 RU FC 06 06 (ACK)

BELL 40 blank blank SPACE 20 40 07 bell (BEL) GC 07 07 BAR

08 (BS) HC 08 10

WRU 09 (ENQ) EC 05 05 4A (i) {\} LS 5C 134
(\)

OA (NAK) UC 15 25 4B 2E 56
OB VT KC OB 13 4C < < S 3C 74 ,
OC FORM LC OC 14 4D ((8s 28 50 (FF)

4E + + .S 2B 53 carriage I

OD CR RETURN OD 15 return 4F I {[} KS 5B 133
OE (SO) NC OE 16 (I)

OF (51) OC OF 17 50 & & 6s 26 46

10 (DL~) pC 10 20

11 (DCl) QC 11 21 5A (!) ! 15 21 41

12 TAPE RC 12 22 5B $ $ 45 24 44 (DC2)
5C * * .5 2A 52 X-OFF SC 13 (DC3) 13 23 5D)) 95 29 51

14 (DC4) TC 14 24 5E ; ; ; 3B 73

15 carriage CR
MC or

OD 15 5F (...,) {]} M5 50 135 return RETURN (-,)

16 (SYN) vC 16 26 60 - - - 20 55

17 (ETB) wC 17 27 61 / / / 2F 57

18 (CAN) XC 18 30

19 (EM) yC 19 31 t
1A (55) ZC 1A 32 6A e') N5 5E 136

1B (ESC) KC5 1B 33 6B , , , 2C 54

1C (FS) L C5 1C 34 6C % % 5s 25 45

Appendix E 189

EBCDIC Teletype ANSell
Code Character Code

Prints
1 Hex. as3 Char Key2 Hex. Octal

6D (-) - OS 5F 137
(-)

6E > > s 3E 76

6F (?) ? /s 3F 77

.
7A : : : 3A 72

7B # # 3s 23 43

7C @ @ ps 40 100

7D I t T 27 47

7E
s

30 75 = = -
7F (") u 2

s
22 42

Cl A A A 41 101

C2 B B B 42 102

C3 C C C 43 103

C4 D D D 44 104

C5 E E E 45 105

C6 F F F 46 106

C7 G G G 47 107

C8 H H H 48 110

C9 I I I 49 111

. .
01 J J J 4A 112

02 K K K 4B 113

03 L L L 4C 114

04 M M M 40 115

05 N N N 4E 116

Codes XI8l 1 through XIA9 t
, which represent the lower case

letters, are exactly congruent to X IC 11 through X lE9 1 and
may be used interchangeably. All will print as capital let
ters on standard Teletypes.

Notes:

1. The forms in parentheses appear only on XDS Teletype
#7015, whereas the unparenthesized forms appear on
the specified keys of all standard model Teletypes.
(Some models lack the ESCAPE key.) The forms shown

190 Appendix E

EBCDIC Teletype ANSCII
Code Character Code

Pr1nts
Hex. as Char1 Key2 Hex. Octal

06 0 0 0 4F 117

07 P P P 50 120

D8 Q Q Q 51 121

D9 R R R 52 122

E2 5 5 5 53 123

E3 T T T 54 124

E4 U U U 55 125

E5 V V V 56 126

E6 W W W 57 127

E7 X X X 58 130

E8 Y Y Y 59 131

E9 Z Z Z 5A 132

Fa 0 a a 30 60

F1 1 1 1 31 61

F2 2 2 2 32 62

F3 3 3 3 33 63

F4 4 4 4 34 64

F5 5 5 5 35 65

F6 6 6 6 36 66

F7 7 7 7 37 67

F8 8 8 8 38 70

F9 9 9 9 39 71

. .
FF CD RUBOUT 7F 177

in braces print when the specified key is depressed, but
they do not appear on the keys.

2. Superscript c indicates use of the CTRL key; superscript
s indicates use of the SHIFT key.

3. The forms in parentheses are contained in the XOS 63-
and 89-graphic-character sets but not in the standard
57-graphic-character set. On printers equipped with
only the standard character set, these forms wi II print
as blanks.

APPENDIX F. BPM/BTM MONITOR SIZING

INTRODUCTION

The information and formulas in this appendix may be used
by the systems analyst to determine the core requirements
and system RAD and/or disk pack PSA requirements for any
BPM/BTM Monitor(F01 version only}. The information re
quired to determine BLL and PSA size consists of all PASS2
information and the Monitor tree structure.

PSA size is dependent upon the Monitor root size, which
in turn, is dependent on HGP size. HGP size wi II vary
according to PFA/PER storage. PFA/PER storage avai lable
on the systems device is dependent upon the amount of
PSA area required. Therefore, one must approximate the
PSA size and then proceed with the Monitor root size cal
culations. The actual PSA size may then be calculated.
Changing the approximated PSA size to the actual size re
quired will vary the Monitor root size by only a few words
at most and should not affect the actual PSA size just cal
culated (brief check will confirm this). A figure of X'18'
as an approximate PSA size is quite reasonable for a real
time BTM system on a 7232.

MONITOR CORE REQUIREMENTS

The amount of core required by different Monitors and
different configurations wi II vary only in the root segment
of the Monitor. Provided two overlays are used, the Mon
itor overlay area will usually require A5C words. The size
of the root of the Monitor must be calculated by summing
the lengths of the programmed modules placed in the root
of the system and then adding the length of each PASS2-
generated table. The programmed modules and their
lengths are I isted in Table F-1 •

Notice that HANDLERS is included. The size given is the
size of BASHANDL, the basic I/o handlers that must be
present. Any additional handlers required must also be
added in. BASHANDL contains handlers for the CR, TY,
LP, RAD, 9T, 7T and Plotter devices. Table F-2 lists the
size of the remaining available handlers.

The size of the PASS2-generated modules listed below must
be calculated according to PASS2 parameters if they are
present in the system. The ones denoted as BPM are neces
sary. The remaining modules are for BTM, R/T, or sym
biont systems only.

PASS2 Modules

MON: : ORG
ROOT
M: CPU

System

BPM
BPM
BPM

PASS2 Modules System

BPM
Symbiont only
BTM

M: ABS
M : SDEV
M: BTM
M: JIT
M: FRGD
IOTABLE

BPM (but zero length)
R/T only
BPM

PASS2 MODULE CALCULATIONS

The formulas that follow describe how to calculate the
length of each of the PASS2-generated modules listed pre
viously. All values given are in decimal and all calcula
tions are intended to be performed in decimal. Brackets
indicate that the integer portion of the results of the en
closed terms is to be used.

MON : : ORG is the value specified by the ORG parameter
on the :MONITOR card.

ROOT is nearly always a constant 84 words. It wi II be two
words less for each segment removed from the Monitor tree
structure. Thus, for example, if ALTCP were moved to the
root then ROOT would be 82 words long.

M : CPU is calculated as follows:

T ST AC K +34(MP 00 L - 2}+256(SPOO L}+ 19(CFU+ 2}+ 2(SFIL}

+40(CPOOl)+MPATCH+[core siz: in K+7J

+9[0;3] + [0;1] +5Q+172

where Q = QUEUE size.

M : ABS is ca Iculated by using the formula below to deter
mine the core requirements for each ABS'd processor. Five
words must be added to the sum of the calculated lengths.

([
name length+4] \ . 4 +4) for each processor

M : SDEV is calculated as follows:

where n is the'number of symbiont devices. Each RBT
should be counted as three symbiont devices.

Appendix F 191

lOT ABLE is calculated as follows:

[n+4] [n+2] [c+3]
9L- 4- J +4 [-2-] +8(n+ 1)+4r-4""] +c

where

+3(#tapes+#DPs)+n+ 12(#DPs)+8(#tapes)

+2(#CRs)+74(#CPs)+6(n-#DPs-#tapes-#CRs

#CPs)+53

n is the number of devices (i. e., number of
:DEVICE cards, including the COC device and
counting an RBT as three devi ces).

c is the number of logical channels, i. e., number
of :CHAN cards.

The formula for IOTABLE size excludes HGPs. HGP sizes
may be calculated as shown below. Use the appropriate
formula for each RAD and/or disk pack, sum the results,
and add it to the results of the above formula for IOTABLE.
In each of the formulas below, an extra word is included,
since all HGPs start on a doubleword boundary.

SWAPPER 8 words

Any RAD or disk pack used as a swapper only (no
PFA/PER) will require eight words for an HGP.

7204

or 51 words if a II tra cks are P FA/PE R •

7232

[(#PFA/PE:
2

trkS)6+31 }s

7212

7242

or 104 words if all tracks are PFA/PER.

or 90 words if all tracks are PFA/PER.

or 383 words if all tracks are PFA/PER, or 21
words if Cyl inder Allocation is used (note that
PRIVATE invokes Cylinder Allocation).

192 Appendix F

M : BTM is calculated as follows:

[NU*~&t3] + [NU7&t3]+14[N~+3 ~+37 [N~+l]

+7Nv+[2Nt5]+ [Nf3]+S [N~l]

+2NS+SWPLIST+28

where

NU is the number of users.

NS is the number of subsystems.

OB is the output buffer size in bytes.

IB is the input buffer size in bytes.

SWPLIST eiuals 30 for 7232;7212/7242 swapper; or
equals 6 *(pages user area) for 7204 swapper.

Note that SWPLIST is constant regardless of the number of
swapping RADs and/or disk packs used.

If the BTM Performance Monitor is included into the system,
the resu Its of the following formula must be added to the
results of the formula above for M : BTM (this is for tables
only). The Performance Monitor is itself added into
HANDLERS in addition to the amount below (see Table F-2):

3NU+4NS+2NUP+ 178

where

NU, NS are the same as above.

NUP is the number of user pages.

Note that the number of user pages in this formula and the
one above it must include the 4 pages of context area, i. e.,
USERSIZE in pages +4.

M : FRGD is calculated as follows:

12(NFRG D)+ 12(NINT)+4(CTQ)+4(#INTS)

+2 LINT ~8E lSI-2] +[C ORE SI~E IN K+7] +200

PSA SIZE REQUIREMENTS

The PSA sizing chart shown here is presented in the steps
that the Monitor uses in allocating the PSA during PASSO.
For each step a sector boundary is required. Therefore, the
number of sectors required may be calculated by dividing
the number of words by 256 for a 7252, 7212, 7242 device,
or by 90 for a 7204, and then adding one if the remainder
is nonzero. If a DP is used as the system device, anyone

step may not cross a cylinder boundary. A cylinder con
tains 120 decimal sectors. Thus, as many as 119 sectors
could be left unused between two steps. Also, when a DP
is used, each a I location step must use contiguous non
flawed sectors. The steps are as follows:

2

3

4

5

PSA Allocation

One sector for BOOTSTRAP

All HGPs + 3 words

2(SFIL+l)+2

19(CFU+2)+ 1

Monitor overlay segment 0

6 Monitor overlay segment 1

N Last Monitor overlay segment

Step PSA Allocation

N+ 1 Mon i tor root

N+2 36 sectors for DCBs

N+3

N+4

N+5

N+6

N+M

ABSGO SZ or 512 words, wh i chever is greater.

ABSGOSZ is specified on the :ABS card.

ABS processor #1 00 section

ABS processor #1 01 section

ABS processor #2 00 section

Last ABS processor 01 section

The list of sizes in Table F-3 may be used for determining
the amount of PSA area required for ABSed processors.

Table F-l. Monitor Module Sizes

2662 Words (A5C Hex.)

ROOT Seg. Hex. Dec. Overlay 1 Hex. Dec. Overlay 2 Hex. Dec.

ENTRY 3FA 1018 PRGMLDR 76A 1898 OPNL-OBSE 416 1046

SIMINT 60 96 TYPR 322 802 M:1E-OBSE 14E 334

DECSIM 208 520 10D 104 260 OPN-OBSE 402 1026

FLTSIM E6 230 BTMNRES 410 1040 CLS----

BYTSIM 62 98 DEBUG-DUMP 2BA 698 MUL 2CE 718

CVTSIM 34 52 EXIT 49E 1182 SEGLOAD-OBSE 364 868

IOSYM 402 1026 M:15 1 F6 502 WRTF 436 1078

10 3CC 972 M:16 F6 246 WRTD-CCLOSE 284 692

PFSR 96 150 M:17 FA 250 LBLT 22C 556

FBCD 2C 44 KEYIN1 34E 846 M:19 2C8 712

RTROOT 9EO 2528 KEYIN2 5BC 1468 ALTCptt l1A 282

HANDLERSt 440 1088 M:18 lE8 488 POS 2C4 708

COOP lFC 508 M:1A 4DC 1244

CALPROC 9A 154 JOBENT 29C 668

10RT 386 902 MEMALOC tt lCE 462

TOPRT 0 0 RDF 626 1574

RCVR 84E 2126

RCVR2 6D6 1750

LDPRG 3D8 984

t
See T abl e F-2.

tt
Should be in the ROOT in a R/T system if possible.

Appendix F 193

Table F-2. I/o Handler Sizes

Handlers Hex. Dec.

BASHANDl 440 1088

CRDOUT 4E 78

DPAK 7E 126

COC 1300 4864

RBT 4BO 1200

BTMPM E6 230

PTAP 96 150

Table F-3. Processor Sizes

00 Size 01 Size

Processor Hex. Dec. Hex. Dec.

BPM BASIC lCFA 7418 118 280

BPM COBOlt 56C 1388 5D6 1494

BPM SYMBOL lEO 480 ECA 3786

cel 2570 9584 480 1168

DEFt 5EO 1504 258 600

DEFCOM 4D6 1238 B2 178

DMS

DMSDUMP 10BA 4282 176 374

DMSINIT C2A 3114 12E 302

DMSlOAD 1878 6264 lCO 448

FDPt EF4 3828 lOD6 4310

EDCON 30E 782 810 2064

ELIST C56 3158 M 170

ERRWRT 9E 158 E6 230

FMGE 766 1894 36E 878

FORTRAN IY-H 1FBC 8124 2F8 760

FORTRAN Iyt 652 1618 F02 3842

FPURGE 906 2310 2AA 682

lOADER lE6 486 1CEC 7404

lOCCT 444 1092 14C 332

lOPE 278 632 9F4 2548

MANAGE

DICTNARyt 26A 618 210 528

FILE upt 24C 588 448 1096

tDenotes an overlaid processor. Note that only the size of the root is given for overlaid processors since
only the root portion is ABSed.

194 Appendix F

Table F-3. Processor Sizes (cont.)

00 Size 01 Size

Processor Hex. Dec. Hex. Dec.

RE·PORT 318 792 DC2 3522

RETRIEVE t 6C8 1736 3AE 942

MEDDUMP 2880 10416 E4 228

MERGE 41C 1052 8DO 2256

META-SYMBO It 28E 654 B4A 2890

MONDUMpt 2B7E 11134 1 FO 496

. OlAyt
1E6 486 286 694

PASS1
t

89E 2206 2A2 674

PASS2
t

13AE 5038 196 406

PASS3 E26 3622 17E 382

PCl 264 612 FB2 4018

PFIl 324 804 756 1878

REW 324 804 756 1878

ROMTRAN 1DC 476 9FO 2544

SORT
t

B18 2840 3EO 992

SUPER BOC 2828 E6 230

VOLINIT 1660 5728 98 152

WEOF 324 804 756 1878

t Denotes an overl aid processor. Note that only the size of the root is given for overlaid processors since
only the root portion is ABSed.

Appendix F 195

APPENDIX G. REAL-TIME RESPONSE TIME

Response time for real-time tasks is the time elapsed before
entry to the task once the task's level is the highest priority
level in the "wait" state provided no levels of higher prior
ity advance to "active" during this period and provided no
other external level has either inhibited the external inter
rupts or disarmed or disabled the task's level. These two
provisions are controllable by the user only and are his re
sponsibility. Thus, response time is a function of Monitor
overhead only.

Total response time consists of two parts:

1. The time required for the level to advance from "wait"
to "active" state.

2. The time elapsed after advancing to "active II state
until entry to the task.

Once the external level is in "wait" state, it may be pre
vented from advancing to "active" state only by either a
higher level in "wait" or "active II , or by the external inter
rupts being inhibited. Thus, this time is either the amount
of time that the Monitor has a clock or I/o level active or
the amount of time that the Monitor inhibits external inter
rupts. Once the level is "active", the remaining response
time is due to Monitor execution and I/o necessary to con
trol the machine environment. Not all tasks are affected
by each of these two types of response time.

There are basically three types of real-time tasks:

1. Directly connected.
2. Centrally connected resident.
3. Centrally connected nonresident.

Directly connected tasks are subject to the first type of
response time only. A" centrally connected tasks are sub
ject to both types of response time. So, for total response
time, one should first measure type 1, then add the type 2
time for centrally connected tasks.

The amount of time that clocks and/or the I/O level is ac
tive and the time that the external interrupts are inhibited,
will vary considerably between system configurations and
the load on the system at the time of the measurement. Ex
ternal interrupts are inhibited each time the Monitor enters
code that is not reentrant. The frequency of this is depen
dent on the amount of Monitor services being performed,
which is determined by the load on the system (as is I/o
interrupt servicing). Servicing I/o interrupts requires a
table look-up to find the interrupting device, and the I/O
level is not cleared until the device is identified. So this
time is dependent on the number of devices on the system.

Once the level advances to the "active" state, the directly
connected task is entered immediately via the XPSD wh ich
is executed when the level advances to "active" state.
Centrally connected tasks, however, are entered only after
the Monitor switches the machine environment. For core
resident tasks, this takes approximately 170 microseconds.
Thus, the response time would be the time required from
"wait" to "active'l state (type 1) plus 170 microseconds.

196 Appendix G

Centrally connected tasks that are RAD and/or disk pack
resident require the above time plus the time to read them
from the RAD or disk pack. Reading tasks from the RAD
and/or disk pack is not performed by the fj Ie I/o routines
but it is done by code designed just for reading real-time
tasks and checkpointing the background. Thus, it is much
faster than file I/O. However, the time required is subject
to the lOP and RAD and/or disk pack type, and, of course,
current I/o load on that RAD or disk pack. The read is
done via QUEUE and at the priority of the nonresident task.
This results, though, in a greater length of time before con
trol is given to the task during which another clock, I/O,
and/or external interrupt may be serviced. Also, any
higher priority I/O or I/o clean-up to the RAD or disk
pack that had been deferred wi II be forced to completion
before the task is read in.

A minimum of one read for each control section is required
to bring the task into core. The total number of reads re
quired depends on the task size and the type of device. For
each read the record size is the control section size or a
maximum record size for the particular device, whichever
is smaller. Note that each control section is queued sep
arately. The maximum record sizes are, in hexadecimal
words, as follows:

7204 FFFO
7212 10000
7232 10000
7242 1800

If the nonresident task is biased in the background then all
nonsymbiont background I/o is first run to completion.
(This includes all nonsymbiont I/o that is queued.) Then
the background area of core is written to the RAD and/or
disk pack as described above for nonresident tasks. It is
written as if it were one control section. So, for nonresident
background biased tasks, this time for saving the background
must be added to "wa it II , to "active" state time, the machine
environment switching time, and the task read time. If,
however, at the time the level goes to "active" state the
background is a Iready saved, this function is not performed
and the response time is the same as for nonresident cen
trally connected tasks biased in the foreground.

The function of saving the background is done by the con
trol task at the control task IS level. A request for a back
ground save is queued for the control task, the control task
level is triggered, and the nonresident task IS level is cleared.
When the control task has completed the background save,
it will trigger the task's level again. This time the back
ground is already saved and task is read just as a centrally
connected, nonresident, foreground biased task. But once
the control task triggers the task's level, all of the response
timings are again applicable. Also, since the control task
does the background save, the nonresident task may have
to wait for all other tasks (including lower priority tasks)
to clear their level before it gains control.

APPENDIX H. LABELED TAPE SENTINELS

The formats of sentinels for labeled tapes a.-e described
below. All sentinels begin on a word boundary (see
Figure H-l).

:LBL

This record identifies the reel number of the tape. Reel
numbers are four alphanumeric characters in length. Sen
tinel length: 12 bytes (see Figure H-2).

:ACN

This sentinel identifies the owner of the tape, the expira
tion date, and the creation date, in that order.

The account number is 8 alphanumeric characters in length,
left-justified and in EBCDIC code (see Figure H-3).

The dates are of the form mlm2dld2bbY1Y2, where mlm2
is the numeri cal representati on of the month, d 1 d2 the
day, 1.)1.) are blanks, and Y1 Y2 are the last two digits of the
year. The digits are in EBCDIC and the blanks must appear.

Sentinel length: 28 bytes followed by a physical end-of
file (tape mark record).

:BOF

The beginning-of-file sentinel consists of the the file infor
mation record, the user's label (if the user has specified
one) and a physical end-of-file. The file information con
sists of control words and the information itself (see Fig
ures H-4 and H-5). A control word has the following form:

1. Code identifies the type of information following the
control word.

The codes are:

01 - fi Ie name. The fi Ie name may be a'maximum of
31 characters. An additional byte is used to
state the length of the file name.

03 - password (2 words, left-justified).

05 - READ account numbers.

06 - WRITE account numbers. Each account number
is left-justified, blank-filled, and two words
long. The total number of READ and WRITE ac
counts must not exceed 16. READ accounts
identify those who may have only read access
to the fi Ie. WRITE accounts identify those who
may read and write the file. NONE or ALL are
also allowed.

Tape 1

Label sentinel (:LBL)

Identification sentinel (:ACN)

Tape mark

Beginning of file A (:BOF)

User's label

Tape mark

Record 1 of file A

Record 2 of file A

Record 3 of file A

Tape mark

End of volume (:EOV)

Tape mark

End of reel (:EOR)

Tape mark

Tape mark

Tape 2

Label sentinel (:LBL)

Identification sentinel (:ACN)

Tape Mark

Beginning of fi Ie A (:BOF)

User's label

Tape mark

Record 4 of file A

Tape mark

End of file A (:EOF)

Tape mark

Beginning of file B (:BOF)

Tape mark

Record 1 of file B

Tape mark

End of file B (:EOF)

Tape mark

End of reel (:EOR)

Tape mark

Tape mark

Figure H-l. General Format of Labeled Tape

Appendi x H 197

: L B L

x x x x

x x x x

Figure H-2. Label Sentinel

: A C N

°1 °2 °3 °4

05 °6 a7 08

m1 m2 d 1 d2

f> -IS Y1 Y2

m1 m2 d 1 d2

1> 1) Y1 Y2

Inter-record gap

Tape mark record

Figure H-3. Identification Sentinel

File
information

(see Figure D-7)

Inter-record gap

User's
label

Inter-record gap

Tape mark record

Figure H-4. Beginning-of-File Sentinel

198 Appendix H

0

B 0 F

Code Lost entr Length

No. char. in!
file nome I

File nome

03 00 Length

Password

05 00 Length

READ Account numbers

06 00 Length

WRITE Account numbers

09

ORG

HDL

78 15 16 2324 31

Figure H-5. File Information on Tape

09 - Miscellaneous information, such as:

ORG - gives the file organization, which may
be keyed or consecutive.

KEYM - specifies the maximum length of the keys.
Keys may not be greater than 31 bytes. An addi
tiona� byte is used to specify the length of the
key. On consecutive files, the length of the
dummy key is assumed to be three, therefore,
KEYM is ignored. On keyed files, if KEYM = 0,
the maximum length is assumed to be 11.

VOL - On multi-reel files, this entry specifies the
position of this tape in the file. For example,
VOL = 2 impl ies this is the second tape of the
multi-reel file. Every file begins with VOL = 1
{including single-reel files}.

HDL - This specifies the length of the user's label.
If HDL = 0, then no user's label exists and the fol
lowing record must be a physical end-of-file.

2. LEI is the last-entry indicator; this entry in the con

trol word indicates the end of the file information. The
control words, along with the informati on they define,
do not have to be in a parti cular order I but LEI must
equal 0 if the file information entry is not the last one I

and must equal 1 if the entry is the last one.

3. Length specifies the length, in words, of the informa
tion associated with a particular entry (i. e. , following
the code word).

:EOF, :EOV, and :EOR

These sentinels are described in Figures H-6, H-7, and H-S.
The notation "PBS" represents the value of the previous block
size, in bytes.

Tape mark record

Inter-record gap

Tape mark record

Figure H-6. End-of-File Sentine I

Inter-record gap

Tape mark record

Figure H-7. End-of-Volume Sentinel

Inter-record gap

Tape mark record

Figure H-S. End-of-Reel Sentinel

Appendix H 199

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numeri ca I sequence.

1400 series simulator, 18

A
abnormal conditions, 61
account authorization, 28
account timings, 29
accounting, 28

field formats, 28
log fi Ie, 31
log record format, 32
log summary, 41
secondary storage, 33
summary, 34

ACCTLG, 32
ANS COBOL, 13
ANSCII, 182
ANSCII to EBCDIC conversion, 187
a pp Ii ca t ion processors, 16
authorization fi Ie record, 30
automatic recovery, 21

B
BASIC, 13
basic control, 20
batch accounting log summary, 41
batch debugging, 20
batch processors, 11
batch quantum, 56
batch services, 1
bootstrap operations, 154
BPM processors, 136
BPM subsystem, 11
BTM

c

command options, 113
executive, 19
performance monitor, 35
subsystems, 136

carriage return, 60
CCBUF, 60
CCI, 19
channel designation codes, 108
CIRC, 18
COBOL, 13
compressed language, 180
Control Command Interpreter, 19
cooperatives, 22
core memory requirements, 83
crash analysis, 67,22

200 Index

o
data control blocks

nonstandard, 59
standard, 59

Data Management System, 16
DCB, 59
DCB name table, 63
DC BT AB, 63,64
DEF commands

:DEF, 128
:DELETE, 128
:IGNORE, 128
:INCLUDE, 128
:WRITE, 128
END, 129

DEF examples, 129
DEF messages, 129
DE F processor, 128
DEFCOM, 14
Delta, 10
device designation codes, 108
DMS, 16
dump tapes, 68

E

EBCDIC, 182
EBCDIC to ANSCII conversion, 189
EDCON, 14
Edit, 8
element fi les, 137
ELIST, 16,70
END characters, 60
ERRLOG, 16,70

calling sequence, 71
fi Ie control pointers, 70
fi Ie format, 70
input/output system formats, 71

ERRMSG file, 104
error and failure logging, 21
error detection and recovery, 21
error log analysis, 21
error log lister, 70,74
error logging, 70
ERRWRT, 16
execution linking, 21
execution loading, 21
execution processors, 18
executive services, 19
extended accounting, 33
extended FORTRAN IV, 12
extended FORTRAN IV-H, 9

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

F
Fanalyze, 77, 16

error messages, 78
error processing, 78
input/output, 77
operating suggestions, 78
options, 77

FDP, 9
Ferret, 11
File Analyzer, 77
fi Ie extension, 61
file identification, 60
file management, 20
FLAG, 12
FMGE, 14
FMPS, 17
foreground operations, 8
format contro I, 6 I
Fortran Debug Package, 9
FORTRAN IV, 12
FORTRAN IV-H, 9, 12
FPURGE, 15
Functional Mathematical Programming

System, 17

G
GAMMA, 3, 17
General Purpose Discrete Simulator, 17
GPDS, 17

H
hardware requirements

BTM, 82
BPM, 81
remote batch, 83

histograms, 49

I/O device type codes, 108
I/O handler sizes, 194
I/O servi ces, 20
i nput/ output processors, 87
input/output services, 7

device, 7
device independence, 8
file, 7
magnetic tape, 7

J
job scheduler, 20
job step control, 20

L
labeled tape sentinels, 198
language processor load/tree structure, 144
language processors, 11
linking, 21
load, 10, 18
loading, 21
LOCCT examples, 121
LOCCT file creation, 130
LOCCT files, 94

defining, 94
generating, 94

LOCCT messages, 121
LOCCT name codes, 138
LOCCT processor, 120
LOGIN, 19
LOPE, 18

M

Manage, 13
master sytem tape, 102
MEDDUMP, 15
memory layout, 22
Meta-Symbol, 12
MONDUMP, 15

assembly listing format, 68
assemb Iy options, 68
defau I t formats, 67
error message, 67
input source, 66
job setup, 66
I isting formats, 66
patch area, 69
size, 68

monitor, 19
monitor core requirements, 191
mon i tor dump processor, 66
monitor locations, 58
monitor module sizes, 193
monitor root resident, 138
moni tor services, 5
monitor size, 85,86
monitor size estimation, 83
monitor sizing, 191
monitor tree structure requirements, 138
monitors, standard, 135

Index 201

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

o
object language, 165
on-I ine quantum, 56
on-line subsystems, 8
operator communication, 20
overview, BPM/BTM, 5

p

PASS3 tree structure analyzer, 124
PASSO commands

:GENDICT, 159
:GENCHN, 157
:GENDCB, 157
:GENDEF, 158
:GENEXP, 159
:GENMD, 158
:GENOP, 157

PASSO messages, 160
PASSO processor, 156
PASS1 commands

:PASS1, 103
:lABEl, 104
:SElECT, 103
:UPDATE, 103

PASS1 examples, 104
P ASS1 messages, 104, 107
PASSl processor, 103
P ASS2 commands

:PASS2, 107
:ABS, 112
:BTM, 113
:CHAN, 108
:DEVICE, 109
:DLlMIT, 111
:FRGD, 112
:INTlB, 114
:MONITOR, 110
:SDEVICE, 110
:STDlB, 108

PASS2 control command sequence, 114
PASS2 example, 114
PASS2 messages, 114
PASS2 module calculations, 191
P A 552 processor, 104
PASS3 examples, 124
P ASS3 messages, 125
PAS 53 processor, 122
patching operations, 154
PCl, 14
PCl, SYSGEN, 91
performance monitor, 35, 19

initialization and termination, 35
installation, 57
report generation, 35
report generator, 37
snapshot summary, 51
statistics, 43

202 Index

performance statistics, 47
peripheral conversion language, 14
peripheral equipment, 90
processor facilities, 58
processor sizes, 194
processors, 136
PSA size requirements, 192

Q
QB,56
quanta, 35
quanta statistics, 45
quantum, 56
Q1, 56
Q2,56

R
real-time programs, 22
real-time response time, 196
real-time services, 2,20
recovery, 21
reference tables, 181
remote batch services, 20
ROMTRAN, 14
root-resident monitor, 138
RUN, 10

s
scheduler, 19
scheduling

basic statistics, Jl
BTM, 35
user states, 36

schedul ing control, 37
secondary storage, 87
service processors, 14
Sigma standard compressed language, 180
Sigma standard object language, 165
Simulation language, 13
Sl-l, 13
Sort/Merge, 16
standard monitors, 135
standard monitors and processors, 135
standard symbols and codes, 181
start-up, 21
subsystems, 62, 136

coding requirements, 62
facilities, 58
loading requirements, 65
start-up, 19
statistics, 48

Super, 11, 15,24

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

Super batch priority default limits, 31
Super errors and error messages, 26
Super, batch operation, 24
Super, on-line operations, 24
supervisor processor, 24
supplementary accounting routines, 33
swapper, 19
symbionts, 22
Symbol, 9, 13
SYS account contents, 89
SYSGEN, 14

BTM, 146
command format, 103
DEF overview, 96
helpful hints, 96
limited file space, 98
parameters, 100
PASS2 commands, overview, 93
PASS2 pitfalls, 94
PASS3 overview, 95
processors, 10 1
real-time, 151
remote batch, 152

system generation details, 100
system generation example, 145
system generation overview, 91
system integrity, 21
system management facilities, 3
system tape format, 154
system tree structure, 140
system tun i ng procedu res, 56

T
tape sentinels, 198
task statistics, 44

TeB address, 60
TeB format, 64
term i na I batch entry, 11
terminal I/o, 60, 19
terminal-oriented manage, 11
terminals, 90
time-sharing services, 1
tuning implementation, 56
tuning procedures, 56

u
user processors, 18
user statistics, 44
user-built subsystems, 11
USERLG, 30

v
VOLINIT, 163, 15
VOLINIT error messages, 163
volume initialization, 163

W
write, 60

Index 203

Xerox Data Systems

READER COMMENT FORM
We would appreciate your comments and suggestions for improving this publication.

Publication No. IRev. Letter I Title Icurrent Date

How did you use this publication? I s the material presented effectively?

0 Learn ing 0 Insta II ing 0 Operating 0 Fully covered 0 WeIJ iIJustrated

0 Reference 0 Maintaining 0 Sales 0 Clear 0 We! I organized

What is your overall rating of this publication? What is your occupation?

0 Very good 0 Fair o Very poor

0 Good 0 Poor

Your other comments may be entered here. Please be specific and give page, column, and
line number references where applicable. To report errors, please use the XDS Software
Improvement or Difficulty Report (1188) instead of this form.

Thank you for your interest. Your name and return address.

Fold and fasten as shown on back.
No postage needed if mailed in U.S.A.

2190(5/71) Xerox Data Systems

STAPLE

FOLD

FOLD

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

Xerox Data Systems

701 South Aviation Boulevard
EI Segundo, California 90245

ATTN: PROGRAMMING PUBLICATIONS

STAPLE

FIRST CLASS
PERMIT NO. 229

EL SEGUNDO. CALIF.

I
l
I

I

I

I
--------------1

w
Z
...J

t?
Z
o
...J
«
I
::>
u

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	replyA
	replyB

