
Xerox Data Systems

XEROX
Xerox Real-Time Batch Monitor (RBM)

Sigma 2/3 Computers

Real-Time and Batch Processing

Reference Manual

Xerox Data Systems

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

Real-Time Batch Monitor (RBM)
Sigma 2/3 Computers

Real-Time and Batch Processing

Reference Manual

90 10 37F

November 1971

Price: $6. 75

With March 1972 updates

XEROX

Printed in U.S.A.

REVISION

This publi cation is a major revision of the Xerox Real-Time Batch Monitor (RBM)/RT, BP Reference Manual for
Sigma 2/3 computers, Publication Number 90 10 37E (dated March 1971). Technical changes made to the text are
for the EOO version of RBM. All technical changes from that of the previous manual are indicated by a vertical
I ine in the margin of the page.

RELATED PUBLICATIONS

Title

Xerox Sigma 2 Computer/Reference Manual

Xerox Sigma 3 Computer/Reference Manual

Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual

Xerox Basic FORTRAN and Basic FORTRAN IV/LN,OPS Reference Manual

Xerox FORTRAN Library/System Technical Manual

Xerox Basi c FORTRAN N lOPS Reference Manual

Xerox Extended Symbol/LN OPS Reference Manual

P~blication No.

900964

90 15 92

90 15 55

900967

90 1036

90 15 25

90 1052

Manual Content Codes: BP - batch processing, ,LN - language, OPS - operations. RBP - remote batch processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

ii

CONTENTS

GLOSSARY viii MESSAGE _ '4
PAUSE ____ 14
PMD ______________________ 14

PURGE 15
REL 15

1. INTRODUCTION REWIND 15
TEMP 16

RBM Characteristi cs 1 UNLOAD 16
Resident Section 1 WEOF 16
Nonresident Section 1 XEQ 16
System Environment 1 XED 16
Foreground (High-Level Priority Response)__ 2 Processor Contro I Commands 1 t
Background (Low-Level, No Priority) 2 Extended Symbol Control Command Format ___ 17
Secondary Storage Management 3 Basic FORTRAN N Contro) Command Format_ 16
Overlay Capabilities 4 RBM/Processor Interface 18
Checkpoint/Restart 4 GO and OV Files 18
Publ i c Library 4
Reentrant Routines 4
Accounting and Elapsed Time 4
System Initial ization and Creation 5

Hardware Requ irements 5 3. OPERATOR COMMUNICATION 20
RBM Subsystems 6

Language Trans I ators 6 System Communication 20
Servi ce Programs 6 I/O Recovery Procedure 20
Miscellaneous 6 Monitor Messages 20

RBM Terms and Processes 7 Operator Contro I 23
Task 7 Solicited Control 23
~ogrom 7 Unsol icited Control 23
Foreground 7 BL oplb = dfn [, pJ 24
Background 7
Job 8

BL oplb = oplb [, pl 24
BR[dtJnn 24

Job Step 8 C: tcb G code] 24
Background Task 8 CC :?il

Monitor Service Routines 8 CP 24
Temporary Stack 8 DB xxxx, yyyy 24
Floating Accumulator 8 DE 24
RBM Control Task 8 DF xxxx, yyyy 25
Nonresident Foreground 8
Compressed RAD Files 8

DM xxx x , yyyy 25
D [TJ mm/dd[/yy [hrmn JJ 25
D [TJ mm,dd[,yy[hr,mnJJ 25
DR [dn t xxxx. yyyy 25
F oplb ,FJ I F fd~n G FJ I F dfn 25
FG [, SJ 25

2. CONTROL COMMANDS 9 FL oplb = dfn [, pJ 25

Job Control Processor (JCP)________ 9
FL oplb = oplb [, pJ 25
FR [dtJ nn 25

Monitor Control Commands _________ 9 H 25
ABS _____________________________ 9 KP 25
ASSIG N ________________ 10

ATTEND 11
M dn[, [vsnJ [, ar 1, ar2"" ,arn]] 25
Q name 26

C: 12
CC 13

R [dnJGar1,ar2, ... ,arn] 26
S 26

DEFINE 13 SY[,S] 26
EOD 13 T hrmm 26
FS KIP, FBAC K, RS KIP, RBAC K 13 T hr, mn 26
HEX 14 UL 26
JOB 14 W 26
JOBC 14 X 26
LIMIT 14 Z 26

iii

4. MONITOR SERVICE ROUTINES 27 Control Panel Task 65
RBM Control Task 65

Branching to Service Routines 27 Schedu ling Resi dent Foreground Tasks 65
Servi ce Routines 27 Loading Foreground Programs 66

M:IOEX 27 Loading Foreground Programs 66
TIO, TDV, HIO 31 Loading Nonresident Foreground Programs __ 68
SIO 31 Foreground Initialization 68
I/O CHECK 31 Task Control Block Functions 69

M:READ 31 Foreground Priority Leve!s and I/O Priority ___ 71
M:WRITE 37 AIO Rece ivers 71
M:CTRL 41 Checkpointing the Background 73
M:DATIME 42
M:TERM 43
M:ABORT 43
M:SAVE 44 7. OVERLAY LOADER 74
M:EXIT 44
M:HEXIN 44 Overlay Cluster Organization ,A

l'-t

M:INHEX 45 Core Layout During Loading 76
M:CKREST 45 Overlay Loader Operational Labels 76
M:LOAD 46 Map 77
M:OPEN 47 Call ing Overlay Loader 79
M:CLOSE 47 Control Command Format 80
M:DKEYS 48 Control Command Repertiore 80
M:WAIT 48 BLOCK 80
M:SEGLD 48 LIB 81
M:DEFINE 49 MS,ML,MP 81
M:ASSIGN 50 TCB 81
M:RES 52 ROOT 82
M:POP 53 LD 82
M:OPFILE 53 LB 83
M:RSVP 53 INCLUDE 83
M:DOW 54 EXCLUDE 83
M:COC 55 MD 83

RES 84
LCOM 84
SEG 84

5. I/O OPERATIONS 59 PUBLIB 84
END 85

Byte-Ori en ted System 59 Loader Error Messages 85
I/O Initiation 59
End Action 59
Logical/Physical Device Equivalence 60
RAD Files 60 8. RAD EDITOR 87

Sequential Fi les 60
Random Fi I es 61 Standard RAD/Disk Pack Area Organization __ 87
Granules 62 Data Files 88

RAD File Management 62 Li brary Files 88
Algorithms for Computing library File Sizes_ 88

RAD Editor Operational Labels 89
Calling RAD Editor 90

6. REAL-TIME PROGRAMMING 63 Control Command Format 90
Control Command Repertoire 90

Foreground Programs 63 ADD 90
Resident Foreground Program 63 DELETE 91
Semi resident Foreground Program 63 FCOPY 92
Nonresident Foreground Programs 63 DPCOPY 92

Monitor Tasks 63 LADD 92
Power On Task 63 LREPLACE 92
Power Off Task 64 LDELETE 92
Machine Fault Task 64 Leapy 92
Protection Violation Task 64 LSQUEEZE 92
Multiply/Divide Exception Tasks 65 MAP 93
Input/Output Task 65 LMAP 93

iv

DUMP __________________________ _
SAVE __________________________ __
RESTORE ______________________ ___
SQUEEZE ______________________ _
BDTRACK ______________________ __
G DTRAC K ______________________ __

INITIALIZE
M ESSAG E ______________________ __
PAUSE ________________________ __
TRUNCATE ____________________ __
END __________________________ __

RAD Ed i tor Messages __________________ __

9. UTILITY

93
93
94
94
94
94
95
95
95
95
96
97

99

Introduction 99
Utility Program Organization 99
Input/Output Error Messages 100
Control Routine Operational Labels 100

Calling Utility 100
Control Command Format 101
Control Function Commands 101

FBACK 101
FSKIP 101
MESSAGE 101
PAUSE 101
PRESTORE 102
REWIND 102
RBACK 102
RSKIP 102
UNLOAD 102
END 102
WEOF 102
ASSIGN 102

Copy Routine 102
Copy Operational Labels 103
Copy Operating Characteristi cs 103
Calling Copy 103
Copy Control Commands 103

OPLBS 103
COpy 104
VERIFY 104

Dump Routine 104
Dump Operational Labels 105
Dump Operating Characteristi cs 105
Calling Dump 105
Dump Control Command 105

Object Module Editor Routine 105
Object Module Editor Operational Labels ___ 105
Object Module Editor Operating

Characteristics 106
Calling Object Module Editor 106
Object Module Editor Control Commands ___ 107

LIST 107
MODIFY 107
INSERT 107
DELETE 107

Record Editor Routine 107
Record Editor Operational Labels 108
Record Editor Operating Characteristics ____ 108
Calling Record Editor 108

Record Editor Control Commands 108
LIST 108
MODIFY 108
DELETE 108
INSERT 109
CHA.NGE 109

Sequence Editor Routine 109
Sequence Editor Operational Labels 109
Sequence Editor Operating Characterisitcs_ 109
Calling Sequence Editor 110
Sequence Edi tor Control Commands 110

IDENT 110
DELETE 110
SUPRESS 111
SEQUENCE 111

Uti I ity Error Messages 111

10. PREPARING THE PROGRAM DECK 117

Extended Symbol Examples 117
Assemble Source Program, Listing Output

and Binary Output 117
Assemble in Batch Mode, Listing Output

and Binary Output with Symbol
Cross-Reference 117

Assemble, Load, and GO From User Defined
OV File, Listing Output 117

Assemble Source Program, Listing Output,
LOAD and GO 118

Basic FORTRAN IV Examples 118
Compile Multiple Programs 118
Compile, Listing Output, LOAD and GO ___ 118
Compi I e and Execute Foreground Program __ 119

Segmented Program Examples 119
Assemble Segmented Background Program,

LOAD and GO 119
Load and Execute Multiple Object Modules_ 120

RAD Editor Examples 120
Build Public Library 120
Load Routines in User Library 121

Utility Example 121
Create a Control Command File 121

11. SYSTEM GENERATION AND SYSTEM LOAD 122

Introduction 122
SYSGEN 122

Initial Core Allocation 122
Minimum Configuration 122
Optional Routines 122
Core Memory Allocation 123
RAD Allocation 123
File Control Table Allocation 127
Operational Label Assignments 127
Input Parameters 127
SYSGEN Output 133

SYSLOAD 133
System Load 133

v

ALL aption 134 E. SIGMA 2/3 RBM OPERATIaNAL LABEL USAGE 163
U PD aption (U pdate) 135

Initial Loading of System Processors 137 F. CHARACTER-aRIENTED caMMU NICATIaNS
Publ i c li brary Creati on or Updati ng 138 (CaC) EQUIPMENT HANDLER 165
Resident Foreground Creation or Updating __ 138
Nonresident Foreground Creation or Description of cac Package 165

Updating 138 M:CaC 165
System Processor and library Creation 139 RCaC 165
SYSLOAD Alarms 139 COC Operation 165
Rebooting the System From RAD 139 Automatic Dialing 166

Restri ctions 166

G. SYSGEN AND ASSEMBLY TIME aPTIaNS 167
12. DEBUG 141

Hexadecimal Corrector Card 167
Introduction 141 Three-Character Processor Search 167

General Description 141
Foreground User1s Debug Capabi! ity 141 H. MEMaRY REQUIREMENTS 168
averl ay User Restri ct ions 141

RBM and Foreground User1s Interface 141 Core Space Requirements for RBM 168
Memory Requirement and Insertion Block Core Space Requirements for the RBM Processors_ 168

Definition 141 RAD Space Requirements 168
Debug Control 141
Debug Commands 142 I. CALCULATING THE RBM SIZE 170

D 142
I 143 J. DEBUG EXPANSIaN aF INSTRUCTIaNS 171
S 143
X 144 K. DEBUG INSERTIaN STRUCTURE 172
R 144
T 144 L. DEBUG SNAPSHaT CALLING SEQUENCE 173
P 145
C 145
K 145
M 145 FIGURES
B 145
E 145 l. aperating System 1
Q 145 2. Job Stack Exampl e 17

Debug Error Messages 146 3. Use of Go. and av Fi les 19
4. RAD Ai location 62

INDEX 174 5. Foreground Priority Levels 67
6. T ask Entrance Format 72
7. General averlay Structure Example 75

APPENDIXES 8. Sample averlay Cluster Configuration 76
9. Long (Load) Map Format 77

A. SIGMA 2/3 STANDARD aBJECT LANGUAGE 147 10. RBM Core Memory Allocation Example 124
1l. Background Core Allocation Example 125

Introduction 147 12. Core Layout After Absol ute Load 126
Description of abject Module:; 147 13. Core Layout SYSGEN and SYSLaAD 126

General Description 147 A-l. Typical abject Module of M Records 147
Binary abject Record Format 147 A-2. Displacement Chain Format 152
Format of Record Header 148
Load Item Format 148
Format of Load Item Control (Header) Word_ 148
Summary of Load Item Formats 148 TABLES

B. SYSTEM ZERO. TABLE AND CaNST ANTS 154 l. RAD/Disk Areas 3
2. Standard Background aperational Labels __ 10

C. RBM SYSTEM ABaRT CaDES 158 3. Standard Devi ce Unit Numbers 12
4. RAD Area Mnemonics 12

Ovsilay· Loader Abort Codes __ 158 5. RBM System Processors 17
Loader I/o. Abort Message 158 6. Monitor Messages 20

7. Transfer Vector for Monitor Services 27
D. CaNTRaL CaMMAND DIAG NaSTICS 162 8. Return Status from M:IaEX 28

vi

9. Return Status from M:READ, M:WRITE, 24. Object Module Editor Error Messages 115
M:CTRL 33 25. Record Editor Error Messages 115

10. I/O Completion Codes 35 26. Sequence Editor Error- Messages 116
1l. Status Returns for M:COCO 56 27. SYSGEN Input Options and Parameters 128
12. Completion Codes 56 28. SYSG E N Error Messages 134
13. Line Status 56 29. Routines and Indents for RBM Part 2 136
14. Line Mode 56 30. SYSLOAD Alarms 139
15. Summary of Editing Operations 57 B-l. Monitor Zero Table 154
16. Summary Device Unit Numbers 60 B-2. Standard Constants 155
17. Task Control Block (TCB) 69 B-3. Mon itor Constants 156
18. Loader Error Messages 85 C-l. RBM Abort Codes 158
19. RAD Editor Error Messages 96 C-2. Overlay Loader Abort Codes 160
20. RAD Editor Warning Messages 98 H-l. Core Requirements for Additional
2l. I/O Error Messages 111 Software 168
22. Control Function Command Error Messages __ 112 H-2. RAD System Area Requirements 168
23. COpy Error Messages 114 I-l. Device Type Table Allocations 170

vii

GLOSSARY

active foreground program: a foreground program is active
if it is resident in memory, connected to interrupts, or
in the process of being entered into the system vi a a
! XEQ control command.

area: a contiguous portion of a random access device that
contains files of some related nature.

background area: that area of core storage allocated to
batch processing. This area may be checkpointed for
use by foreground programs.

background program: any program eXecuted under Monitor
control in the background area when no interrupts are
active. These programs are entered through the batch
processing input stream.

batch processing: a computing technique in which similar
programs are grouped together and processed or exe­
cuted in a single run so as to effect efficient utiliza­
tion of the computer.

channel status table: a table of eight words per SYSGEN­
defined I/O channel that reflects the hardware condi­
tion of each I/O channel.

checkpointed job: a partially processed background job
that has been saved in secondary storage along with
all registers and other lIenvironment ll so that the job
can be restarted at its interrupted point.

clock counter: a memory location that records the progress
of real time or its approximation, by accumulating
counts produced by a (clock) count pulse interrupt.

close: terminating the use of an item (such as a file) and
performing certain clean up operations to provide for
its future reuse or the reuse of its resources.

control command: any control message other than a key-in.
A control command may be input via any device to
which the system command input function has been
assigned (normally a card reader).

control message: any message received by the Monitor that
is either 0 control command or a control key-in.

count zero interrupt: an interrupt level that is triggered
when an associated (clock) count pulse interrupt has
produced a zero result in a clock counter.

critical task: a task whose importance is high enough that
no attempt should be made to run without it in the
event of a serious error.

dedicated memory: core memory locations reserved by the
Monitor for special purposes, such as interrupts and
real-time programs.

viii

device-file number: a logical method of referring both to
a physkal peripheral device and to a collection of in­
formation about the devi ceo The devi ce file number
indicates the order in which devices are initially de­
fined at SYSGEN. For example, the first devi ce de­
fined must always be a keyboard printer (DFN 1).

device name: an identifier used at SYSGEN time for an
actual physical I/O device that is composed of two
elements: a device type whi ch is a two-character code
for a particular class of peripheral devices, and a de­
vice number which is a two-digit hexadecimal repre­
sentuti on of the phys; co! un; t number assoc i cted wi th
a device.

device unit number: an integer value coded into a
FORTRAN IV program to reference peripheral devices.
Standard devi ce un it numbers can be equated to devi ce
file numbers (see above) either at SYSGEN time or
through !ASSIGN commands.

directory: a table of names and addresses of fi les on a ran­
dom access device that enables the system to locate. a
file when given only its name and area.

disabled: the condition of an interrupt level wherein the
level may advance from the armed to the waiting state
when triggered by an interrupt pulse, but the level
cannot cause a program interruption until it is enabled;
it thus remains in the waiting state until it is allowed
to interrupt the program.

disarmed state: the state of an interrupt level that cannot
accept an interrupt input signal.

disk pack: a secondary storage system of removable rotating
memory. For most RBM purposes, disk pack and RAD
are synonymous unless otherwise noted.

enabled: the condition of an interrupt level wherein
the level is not inhibited from advancing from the
waiting state to the active state except for priority
considerations.

end action: that action that takes place at the completion
of an I/O operation. This usually includes the entry
of a special routine that was specified when the re­
quest was made.

end record: the last record to be loaded in an object
module or load module.

error severity level code: a code indicating the severity
of error noted by the processor. This code is con-
tained in the final byte of an object module.

execution location: a value repiacing the origin of a
relocatable program that changes the address at which
program loading is to begin.

external interrupt: one of the class of interrupts that are
associated with special systems equipment. These
interrupts are "external" to the basic computer sys­
tem and are associated with functions that are de­
fined according to the requirements of a particular
installation.

external interrupt inhibit: the bit, in the program status
doubleword, that indicates whether (if 1) or not (if 0)
all external interrupts are inhibited.

external reference: a reference to a declared symbolic
name that is not defined within the module in which
the reference occurs. An externa I reference can be
satisfied only if the referenced name is defined by an
external load item in another module.

file control table: contains information about all device
files in the RBM system and is indexed by device-file
number.

fi I e name: a name for a permanent fi I e that is defi ned
either at SYSGEN or later through the RAD Editor.

flawed track: a disk pack track that contains a flaw mark
in the header as well as the address of an alternate
track.

foreground area: that portion of memory dedicated speci­
fi cially for RBM, service routines, and foreground
programs.

foreground program: a program that executes in the fore­
ground area of core and can utilize all privileged
servi ces.

foreground task: a body of procedural code that is associ­
ated with (connected to) a parti cular interrupt.

GO file: a RAD file of Relocatable Object Modules
(ROMs) formed by a processor. This is a default input
file when no file name is specified.

granule: a record beginning on a physical sector boundary,
used as a unit of allocation for random RAD or disk
pack fi les. A granule is usually synonymous with a
sector on a device, but may be defined (on a file basis)
to be equivalent to a partial sector, one sector, or
several sectors.

idle state: the state of the Monitor when it is first loaded
into core memory or after encountering a ! FIN control
command. The idle state is ended by means of an
S key-in.

inhibited interrupt: a condition of an interrupt that pro­
hibits it from entering the active state.

input/output interrupt: an interrupt triggered by the stan­
dard I/O system of the computer.

installation control command: any control command used
during System Generation to direct the formatting of
a Monitor system.

internal interrupt: one of the calss of interrupts that are
supplied with a standard computer system, or are op­
tional additions associated with dedicated functions
(such as power fail-safe). These interrupts are
"internal" to the basic computer system.

interrupt trigger signal: a signal that is generated, either
internal or external to the CPU, to interrupt the nor­
man sequence of events in the central processor.

I/O block: a contiguous amount of RAD or disk space that
contains records of blocked or compressed fi les. All
I/O blocks are the same size (K:BLOCK) and always
begin on a sector boundary. K:BLOCK also specifies
the size of core blocking buffers.

I/O control table: a table containing the device-specified
input/output control doublewords and other information
necessary for RBM I/O services. There is a one-to-one
correspondence between the I/O control table and fi Ie
control table.

I/O control subtable: same as I/O control table except
that the subtable is RAD specific.

I ibrary input: input from the device to which the LI (I ibrary
input) operational label is assigned.

library load module: a load module that may be combined
(by the Overlay Loader) with relocatable object mod­
ules, or other library load modules, to form a new ex­
ecutable load module.

I ink editing: the process of combining separately compiled
or assembled program modules, relocating them, link­
ing them to defined I ibrary routines, and producing an
absolute executable load module.

loading: the process of reading an executable program (see
link editing above) from secondary memory to absolute
locations in main memory.

load map: a listing of significant information pertaining to
the storage locations used by a program.

load module: an executable program formed by using Re­
locatable Object Modules and/or library object mod­
ules as source information.

logical device: a peripheral device that is represented in
a program by an operational label (e. g., BI or BO)
rather than by a specific physical device name.

logical record: a record that is a fixed measure of contig­
guous data (on a file basis), distinctive as being mean­
ingful to the user. For blocked RAD files, logical
records are contiguous within blocks but need not be
integral to a block.

ix

memory protection: the use of the optional protection fea­
ture that keeps unprotected background memory from
altering protected foreground meaning.

memory write lock: a one-bit write-protect field optionally
provided for each 256-word page of core memory
addresses.

Monitor: a program that supervises the processing, loading,
and execution of other programs.

nonresident foreground program: a foreground program
expl icitly called from secondary memory that resides in
the nonresident foreground area of core memory during
execution. The space thus occupied is considered
Ilactive;; and is protected by the Monitor from inter­
ference by othei acti'v1ities.

object deck: a card deck comprising one or more object
modules and control commands.

object language: the standard binary language in which
the output of a compiler or assembler is expressed.

object module: the series of records containing the load
information pertaining to a single program or sub­
program. Object modules serve as input to the
Overlay Loader.

open: the preparing of an item (such as a fj Ie) for initial
use.

operational label: a symbolic name used to identify a logi­
cal system devi ceo

operational label table: there are two tables: one for fore­
ground and one for background. The tables contain
the two-character operational labels that are used for
reference by the RBM servi ce routines and connect an
operational label to a device file number.

option: an elective operand in a control command or pro­
cedure call.

Overlay Loader: a processor that links and absolutizes
elements of programs.

overlay program: a segmented program in which the seg­
ment currently being executed may overlay the core
storage area occupied by a previously executed
segment.

ov file: a RAD file that contains an executable program
formed by the Overlay Loader if a program file name
was not specified at load time. Used primarily to test
new programs or new versions of programs. This is a
defaultfile when no output file is specified.

physi cal devi ce: a peripheral device that is referred to by
a "name" specifying the device type, I/O channel,
and device number (also see "logical device").

x

postmortem dump: an optional listing of the contents of a
specified area of core memory, usually following the
abortive execution of a background program.

primary reference: an external reference that must be
satisifed by a corresponding external definition (capa­
ble of causing loading from the System Library).

priority level: priority level of a task is dependent on the
position of its associated hardware interrupt in the
priority chain.

RAD/disk areas: the allocation and definition of a RAD
into specific areas during SYSGEN, each of which is
labeled with a two-character mnemonic to expendite
file management.

Rapid Access Data (RAD) storage system: a secondary stor­
age system of rotating memory. For most RBM pur­
poses, RAD and disk pack are synonymous unless other­
wise noted.

real-time processing: data processing designed so that the
results of the operations are made available in time to
influence some process being monitored or controlled
by the computer system.

reentrant: that property of a program or subroutine that
enables it to be interrupted at any point, employed by
another user, and then resumed from the point of in­
terruption. Reentrant programs are often found where
there is a requirement for a common store of public
routines that can be called by any user at any time.
The process is controlled by the Monitor which preserves
the routine1s environment (registers, working storage,
control indicators, etc.) when it is interrupted and
restores that enviornment when the routine is resumed
for its initial user. A reentrant routine never stores
any intermediate values within itself.

Relocatable Object Module: a program or subprogram that
may be relocated and link edited to operate anywhere
in core; that is, does not have absolue addressing.

resident foreground program: a foreground program that is
automatically loaded into a fixed area of foreground
core memory every time the system is booted in.

secondary reference: an external reference that mayor
may not be satisfied by a corresponding external
definition (not capable of causing loading from the
system library).

secondary storage: any rapid access storage medium other
than core memory (e. g., RAD or disk pack).

segment loader: a Monitor routine that loads overlay seg­
ments from RAD storage at execution time.

semi resident foreground program: a foreground program
explicitly called from secondary memory that resides
in the resident portion of core memory during
execution.

service routines: Monitor-supplied services and opera­
tions that can be called by an executing foreground
program, or else by an executing background program
(except for certain privileged function dedicated to
foreground use).

source deck: a card deck comprising a complete program
or subprogram in symbolic EBCDIC format.

source language: a language used to prepare a source
program (and therefrom a source deck) suitable for
processing by an assembler or compi ler.

symbolic input: input from the device to which the SI
(symbolic input) operational label is assigned.

symbol ic name: an identifier that is associated with some
particular source program statement or item so that

symbolic references may be made to it even though
its value may be subject to redefinition.

system library: a group of standard routines in relocatable
object language format, any of which may be included
ina program be i ng created.

Task Control Block (TCB): part of the load module that
contains the area required for context storage. The
TCB is task-associated.

temporary fi les: those files that exist only unti I the current
job step ends. They may, or may not, have existed
prior to the start of the job.

Temp Stack: an area of memory optionally created by
the Overlay Loader for a user program and used by the
Monitor and System Library routines.

unsolicited key-in: information entered by the operator via
a keyboard in response to a Control Panel interrupt.

xi

1. INTRODUCTION

RBM CHARACTERISTICS

The Sigma 2/3 Real-Time Batch Monitor (RBM) is the major
control element in the operating system. It supervises and
servi ces si mu I taneous foreground programs and background
batch programs without interfering with the real-time re­
sponse capabi I ity of the foreground.

RESIDENT SECTION

The resident portion of RBM consists of the following parts:

• Severa I independent tasks that are connected to the
hardware interrupts (e. g., the real-time tasks). The
tasks are not reentrant. They can communi cate wi th
each other and may use some of the Monitor service
routines.

• Several reentrant Monitor service routines that can be
used by any task in the system. These are described
in Chapter 4.

• Standard system constants and tables (see Appendix B).

• Input/output constants and status information.

Contro I Pane I Interrupt

RBM Control Task f-- RBM Overlay
Subtasks

Monitor Service Routines

Resident Foreground

I
I
I
I
I

r--

f-

NONRESIDENT SECTION

The nonresident part of RBM consists of the system initiali­
zation portion that is loaded at the til1le the system is cre­
ated, Monitor service routines, and device-dependent I/O
routines for which a response is not critical. The initiali­
zation portion selects the optional features of RBM and
initializes the input/output constants.

SYSTEM ENVIRONMENT

In addition to the Monitor itself, the hardware-software
environment of the operating system consists of the following
major elements:

• Sigma 2/3 hardware including (a) the required system
RAD, (b) the selected number of hardware interrupts
connected to various foreground tasks in user-determined
priority sequence, (c) dedicated and commonly shared
I/O devices, and (d) optional secondary storage modules.

• Partitioned core memory (see Figure 1) divided into

~

~

r--

t--

o A protected foreground area reserved for (1) resi­
dent real-time foreground programs, (2) a single

Job Control Processor

Background Processor

Nonresident Foreground
L---.-

Resident Nonresident

Figure 1. Operating System

Introduction

•

nonresident foreground program, (3) Monitor tasks
that must respond to high-priority interrupts,
(4) Monitor service routines, and (5) optional
routines (such as a Pub I ic Library) that are used
by both foreground and background programs.

o An unprotected background area used by back­
ground (non-real-time) processors, translators, and
batch users I programs, and occasionally by fore­
ground programs requi ri ng temporary use of addi­
tiona� memory. (In this case the foreground will
checkpoint the background.)

The system RAD,t allocatable into permanent and tem­
porary files. The permanent files contain all of the
background RBM pr~cessors such as Basic FORTRAN IV,
Extended Symbol, RAD Editor, etc., pius RBM itseif.
They may also contain user data and optional resident
and nonresident foreground programs that can be called
into protected memory for processing. Temporary files
are normally used as intermediate scratch areas by
processors or user programs.

• Up to 137 (l07 for Sigma 3) user foreground tasks that
can be connected to interrupts. Examplesofforeground
tasks are process control operations, real-time data ac­
quisition and control, and low-speed telemetry applica­
tions. The RBM Control Task is connected to the lowest
priority hardware interrupt in the system so that no
background processing can delay foreground tasks.

• Overlay Loader for linking and absolutizing segmented
foreground and background programs that e'nables back­
ground processors and user programs to overlay them­
selves in core storage, and thus permitting programs of
virtually unlimited size to be executed.

FOREGROUND (High-Level Priority Response)

Within the framework of the user-determined hardware
interrupt priorities, foreground programs or tasks operate as
independent entities, and the Monitor generally makes no
attempt to interject itself between these tasks and their real­
time functions. The Monitor services the foreground only
on request, such as a call to one of the Monitor service rou­
tines. The principal foreground services of the Monitor are to

• Respond to I/O interrupts.

• Respond to an operator's console request (such as
queuing).

• Supervise RAD file activity.

• Optionally, supply a software version of multiply/
divide functions for configurations without multiply/
divide hardware.

tFor RBM purposes, RAD and disk pack are synonymous
unless specifically stated otherwise.

2 RBM Characteristics

• Load a foreground program into memory from the RA D
on request.

• Provide the foreground with standard constants (see
Appendix B).

• Make available a II mail box II area of 32 cells of mem­
ory for communication between two or more foreground
programs.

The interrupt priority sequence (described in det{lil in the
Xerox Sigma 2 and Sigma 3 Computer Reference Manuals) is
the basis for the priority level of tasks in the RBM system.
That is, the priority level of a task is dependent on the
position of the associated hardware interrupt in the inter­
rupt priority chain. Background jobs in the system all have
the same priority level. A background job is not connected
to any interrupt level in the system, i. e., its priority is be­
low all hardware interrupt levels and is processed serially.

BACKGROUND (Low-Level. No Priority)

The primary function of the Monitor is to supervise and con­
trol all those operations that take place in the unprotected
background area by the following means:

1. Use only available foreground idle time for back­
ground processing.

2. Interpret control functions from control command card
images via the Job Control Processor.

3. Supervise the loading and execution of all back­
ground jobs and activities in unprotected memory.

4. Provide simple background scheduling (first-in,
first-out).

5. Provide I/O services for the background job stack.

6. Inform the operator on the status of peripheral device
operati ons.

7. Test all background operations and processes for fore­
ground protection violations and prevent the background
from altering or delaying foreground response or from
using dedicated I/O devices.

Monitor processors and permanent user processors may be
loaded onto permanent RAD fi les and then executed by
control command. Programs may also be loaded onto tem­
porary RAD fi les for the duration of the present job.

All programs must exist on the RAD in absolute core image
form for execution. Relocatable programs, consisting of
Ci ioot and one or more overley segments linked by ex-
ternal references, must be created by the Overlay Loader
to I ink all modules and create the proper overlay struc­
ture for execution.

It is possible to create programs consisting of a root and one
or more overlay segments through use of the Absolute Loader
if there are no external references (see the lABS command in
Chapter 2 for other restri cti ons).

Two levels of logical (rather than physical) device refer­
encing are provided, enabling system configurations to
change or expand without reprogramming. Further, through
many device-independent features and use of standard media
formats, input and output can be directed to card equipment,
paper tape equipment, or magnetic tape without changes in
the user's program.

For maximum flexibility and control of input/output, the
user can optionally specify his own I/O Control Double­
words and order bytes, perform independent error recovery,
and be informed by RBM when an I/O operation has term­
inated. Alternatively, for greater ease of programming and
device independence, the RBM will create the IOCDs and
order bytes and perform standard error checki ng and recovery.

When multiprogramming with foreground tasks and back­
ground iobs, the foreground has access to all privileged in­
structions in the Sigma 2/3 computers. The background is
checked by both hardware and software to provide complete
protecti on of a foreground program's use of core memory and
peripheral operations.

SECONDARY STORAGE MANAGEMENT

The RBM operating system provides use of the RAD or disk
packs for

• Temporary and permanent fi les.

• User and system fi les.

• Sequential fi les (pseudo tape, where RBM performs all
fi Ie management).

• Random-access fi les (RBM performs I/O transfer and con­
trols file limits, but user controls relative addressing).

RAD/DISK PACK AREAS

The concept of RAD areas is a convention created primarily
to offer a scheme to expedite file management. RAD areas
are allocated during system initial ization (see RAD Alloca­
tion in Chapter 11) and are labeled with two alphanumeric
characters, usually from the folfowing list:

SP BT BP aa

SD CP UP Xn

SL FP UL

where aa is any remaining combination of alphanumeric
characters.

The labels of the list above have the special meaning given
in Table 1.

Mnemonic

UP,FP,BP

aa

Xn

Table 1. RAD/Disk Areas

Meaning

System Processor area. Contains RBM and
user-selected processors from the list given
in Table 5 (the Overlay Loader is a man­
datory processor). This area is searched
whenever either a system processor or user
processor is requested.

System Data area. Contains files neces­
sary for the execution of RBM.

System Library and User Library areas.
These are the only areas from which the
Overlay Loader will load library routines.

User, foreground, background processor
areas. Contains resident foreground pro­
grams, foreground tasks, nonresident pro­
grams, semi -resident programs, and back­
ground programs. Area F P may only con­
tain files of foreground or no-write pro­
tect codes and area BP may only contain
fi I es of ba ckground or no-wri te prote ct
codes. The UP area may have its area'
write protection specified during System
Generation or RAD Editing. These areas
and the SP area are searched when a pro­
cessor is requested. Only UP is searched
for resident foreground programs, when the
system is booted from the RAD.

Background Temp area. Used for alloca­
tion of temporary fi les.

Checkpoint area. Used to store the back­
ground envi ronment when a background
program is checkpointed by a foreground
process.

User data areas whi ch contain any data
the user desires, including program files.

Xn areas are similar to aa areas except
that the user has the option to perform his
own management of the entire area, thus
allowing access to data arranged in non­
standard formats. No disk pack verifi ca­
tion is performed for an M (Mount) key­
in (see "M Key-Ins" in Chapter 3).

tThese areas receive defaultallocationsduring SYSGEN.
Note that the SP and SD areas must be present in the
system

RBM Characteristics 3

PROCESSOR FILES

Processor files are stored either as a single segment or as an
overlay structure. The Overlay Loader stores the files on
the RAD in core image form, ready for loading, and abso­
lutized for the space they wi II occupy at execution. The
processor files are loaded for execution via a processor con­
trol command.

LIBRARY FILES

Library files contain subprograms in a relocatable form.
The fi les have specified entry points and are in the form of
binary card images in Standard Object Language.

There is one library fiie for the system area mnemonic SL,
and one for the user area mnemonic UL. The Overlay
Loader can load selectively from one or both, in either
order of pri ority. AI though records within a su bprogram
are loaded sequentially, access to the individual subpro­
gram is on a random (direct access) basis.

DATA FILES

Permanent data files may contain any kind of data and may
be accessed sequentially or randomly I depending on how
they were created. The user is responsible for reading them
accordingly.

FILE NAME

Only permanent RAD files have a file name. Some names
are entered into the dictionary for the appropriate area at
System Generation; others are entered later by the RAD
Editor. After the name is in the dictionary, an ! ASSIGN
control command or a call to M:ASSIGN can equate either
an operational label or a FORTRAN devi ce un it number to
this file name.

OVERLAY CAPABILITIES

Under RBM, the Overlay Loader can be used to create over­
lay programs for later execution in either the foreground or
background. t The overlay programs can be permanently
entered (as a file) into,either the System or User Processor
areas, or into a temporary overlay fi Ie (OV). Since they
are stored on the RAD in absolute core image format, they
can be qui ckly loaded into memory for execution.

Each segment is created by the Overlay Loader from one or
more object modules (assembly language, FORTRAN, or
library routines). The control commands required to create
the overlay segments are defined in the discussion of the
Overlay Loader. During execution, the Monitor service

t For a complete description of the Overlay Loader, see the
Overlay Loader chapter.

4 RBM Characteristics

routine M:SEGLD is used to control both the loading and
the transfer of control between various segments.

CHECKPOINT IRESTART

The checkpointing feature permits a partially processed
background job to be saved in secondary storage along with
all registers and other environment. The vacated back­
ground space is set to protected status and is then available
to the interrupting foreground task for either instructions or
temporary data storage.

Checkpointing ensures continuity to the partially completed
background job by not repositioning any background periph­
erai devices, permitting all current backgiOuiid I/O activity
to complete, and writ: ng a!! of the background space onto a
prespecified RAD area.

Restart takes place when the previously checkpointed back­
. ground program is reloaded from the RAD and continues

execution as though the interruption never took place.

PUBLIC LIBRARY

All RBM service routines and Sigma 2/3 system library rpu­
tines (FORTRAN and mathematics libraries) are reentrant.
If an RBM system has several real-time foreground tasks that
use a number of the same subroutines, the collectively-used
set of subroutines can be loaded together into what is termed
a Public Library. Thereafter, whenever the Overlay Loader
processes a foreground or background program that references
one of the IIpublic" routines, it sets the appropriate branch
to the Public Library. The Public Library is loaded into core
whenever RBM is rebooted from the RAD.

When one of the Public Library routines needs temporary
scratch space, it requests space (via a cal! to M:RES) from
the temporary stack of the task that is ca II i ng the Pub I i c
Library routine. When the library routine exits, the space
is released via a call to M:POP.

REENTRANT ROUTINES

As used in Sigma 2/3 software, IIreentrant" means that a
subprogram (never a task) may be interrupted during execu­
tion, called again by the interrupting task, and later re­
entered and continued from the location of the former task.
This is a last-in, first-out kind of reentrancy in keeping
with the Sigma 2/3 priority interrupt system.

ACCOUNTING AND ELAPSED TIME

Background job accounting and provisions to limit the exe­
cution time of a background job can be accomplished via
Clock 1. (The use of Clock 1, an interrupt device, is
optional at SYSGEN initiation.) To correctly calculate
the elapsed time for the background, the Monitor M:SAVE
routine records the start time of the first interrupting fore­
ground task and triggers the RBM Control TasK to calculate

the actual foreground run time. By performing this calcu­
lation at the priority level of the RBM Control Task, rapid
response time for the foreground is maintained.

Clock 1 is also used to I imit the execution time of a back­
ground program. The user may I imit this execution time by
using the ! LIMIT control command, and the RBM Control
Task wi II be tri ggered every 16 seconds to provide watchdog
services on the background program.

When a !JOB control command is read, an entry is created
in the accounting fi Ie (RBMAL, SD). The entry includes the
start time, user name, and account number. The start time of
the job is then logged on the LL device as MM/DD/YR HRMN.

At the completion of each activity, the accumulated elapsed
time of background execution wi II be logged on the LL
device as ET=MMM.MM (minutes). At the completion of
the job (i. e., a new! JOB or ! FIN command) the current
date and time and a job recap are logged on the LLdevice as

MM/DD/YR HRMN

FG=MMM.MM,

BK=MMM.MM,

ID=MMM.MM

where

BK represents the total job time. The total time
for a job is defined as the time avai lable to the
background from the time the! JOB control com­
mand is read until the next !JOBor! FIN command
is encountered.

FG represents the amount of time used by inter-
rupting foreground tasks during the job.

ID represents the accumulated idle time incurred
within the job. This could be a result of a Wkey-in,
! PAUSE command, or an attended job being aborted.

The time for a background job is recorded in the accounting
fi Ie entry for that job. The ID LE account is updated to re­
flect total idle time charges. After the! FIN control com­
mand is read, all idle time is charged to the IDLE account.

The following rules govern the operations of the Accounting
Log:

•

•

I •

•

A call to M:SAVE switches from the background to
foreground time accumulation.

A call to M:EXIT switches from foreground accumula­
tion to background accumulation if a background job
is executing.

A W key-in or ! PAUSE command switches from fore­
ground accumulation to idle time accumulation. An
abort from an attended job switches the same way. An
S key-in switches back to foreground accumulation
from the idle accumulation.

A !JOB or ! FIN command writes out total accumulated
times and resets times to zero.

• The ET (elapsed time) is printed on each time CCI is
read into the background and represents the total time
available for background execution.

SYSTEM INITIALIZATION AND CREATION

The RBM system creates itself for a particular installation
through a nonresident SYSGEN routine. The permanently
resident, nonoptional parts of RBM are loaded into low core;
next, the RBM initializer is loaded along with the optional
RBM routines and the standard input/output definitions
and tables.

The user then defines RAD areas, optional reoutines, the
peripheral devices, and operational labels. This is followed
by a defin ition of the exact bounds on the foreground,
Monitor, and background memory areas, and the size of the
RAD areas. The system is then complete in lower memory.

Once the system is completely defined, routines not needed
will be discarded and an absolute rebootable version is
optionally punched on a binary output device (optional) and
a rebootable version is written onto the RAD.

If the system must be restarted later, the rebootable version
is loaded from the RAD. A completely new system initiali­
zation is necessary only if some of these standard definitions
must be changed.

When the system is created, a version number is specified
that will be printed on LL at the beginning of each job for
reference.

Protection switches on the 7202, 7203, 7204, and 7232
equipment may be used to permanently protect certain areas
of the RAD.

HARDWARE REQUIREMENTS

The minimum configuration required and supported by RBM
for either a Sigma 2 or Sigma 3 is the following:

• Sigma 2 or Sigma 3 CPU with either Internal lOP or
External lOP (Sigma 3 only)

• Memory Parity Interrupt

• Memory Protect Feature

• Hardware Interrupt (for RBM Control Task)

• Core Memory Module (8192 words)

• One Memory Increment (8192 words)

• Keyboard/Printer with Paper Tape Reader/Punch

• RAD Controller

• RAD Storage Unit (0.75 M bytes).

Hardware Requirements 5

An alternate minimum configuration (for a Sigma 3 CPU with
external lOP only) is a Disk Pack Controller and Disk Pack
Storage Unit to replace the RAD Controller and RAD storage
Unit. Other minimum requirements remain the same.

In addition to the previous list, any items from the list
below can be added for increased performance and will be
specifically supported by RBM. Other items can be added
to this list but will not receive any special RBM support.

Disk Packs

Memory Modu Ie

Memory Increment

Keyboard/Printer

Paper Tape Recorder/Punch (high-Speed)

Card Readers

Card Punches

RADs

Magnetic Tape, 9-Track

Magnetic Tape, 7-Track

BCD and Binary Packing Options for 7-Track Magnetic
Tape

Line Printers

plotters

Character Oriented Communi cations (COC) devi ceo

RBM SUBSYSTEMS

RBM wi II support the subsystems and processors described
below. All execute in the background area of core memory
and the collective set offers maximized util ization of
Sigma 2/3 computer capabilities.

LANGUAGE TRANSLATORS

EXTENDED SYMBOL

The Extended Symbol programming language {and assembler}
provides upward compatibility with basic Symbol in addi­
tion to extended capabilities that include using the RAD
for overlay to reduce core residence requ irements.

The processor accept~ as input a source program coded in
either Symbol or Extended Symbol, processes it, and out­
puts an object program load module, diagnostic messages,
an optional assembly listing, and an optional cross-refer­
ence listing.

6 RBM Subsystems

BASIC FORTRAN IV

Basi c FORTRAN IV is a one-pass compi ler with capabi 1-
ities extended beyond Basic FORTRAN. It can compile
large source programs by using the RAD for overlay to mini­
mize core residence requirements, and has two floating­
point modes: standard precision and extended precision.

SERVICE PROGRAMS

OVERLAY LOADER

The Overlay Loader forms absol ute bi nary overlay segments
for later execution in either foregiOund or background areas.
If a resident or nonresident program can tolerate a loading
delay of 20 to 100 ms, foreground or background programs
of virtually unlimited size can be constructed with the
Overlay Loader despite limitations in available core storage.

RAD EDITOR

The RAD Editor performs RAD allocation for permanent fi les
and generates and maintains directories for the permanent
RAD areas: System Processor area, System Library area,
System Data area, User Processor area, User Library area,
User Data area, and any aa areas and Xn areas. It allows
dumping of files and mapping of all RAD areas, including
checkpoint and temporary areas.

UTILITY SUBSYSTEM

The RBM Utility subsystem provides a universal media copy
routine, object module editor, dump routine, and record
editing by I ine or sequence number.

CONCORDANCE

The Concordance program provides the user with a listing
of program symbols and all references to these symbols by
source line number. Optional control cards permit inclusion
or exclusion of specified symbols in local, nonlocal, or
operation/directive code sections of the printout. Most of
the options of Concordance are available under Extended
Symbol.

Omission of optional control cards yields a standard Con­
cordance listing containing all program symbols except
standard operation and directive code menmonics.

MISCELLANEOUS

DEBUG

The RBM Debug subsystem provides the user with a debug­
ging tool designed primarily for nonsegmented background
programs but with a limited capabil ity for debugging fore­
ground programs. The Debug functions and commands are
described in Chapter 12.

COC

The character-oriented communications (COC) handler pro­
vides communication between Sigma 2/3 real-time programs
and various terminal devices. The COC consists of a con­
troller and from one to eight attached line interface units.
The Sigma 2/3 RBM can accommodate one COCo See
Chapter 4 and Appendix F for a more complete discussion
of the COC handler.

RBM TERMS AND PROCESSES

The following items are either unique to the RBM system or
have specific meaning within the RBM context. Terms and
processes not defined below are explained in the appropriate
chapter.

TASK

A "task" is an entire set of foreground operations performed
independently of other tasks in the system. It must be con­
nected to one and only one hardware interrupt. A task may
use Monitor service routines but must never branch to another
task. One task may trigger the interrupt level of another
task by means of a Write Direct instruction. The prescribed
entrance and exit procedure for all real-time tasks in the
system is described in Chapter 6.

A task logically consists of three parts {that mayor may not
be contiguous in core storage}:

1. A Task Control Block (TeB) that contains status infor­
mation and the contents of the registers from the inter­
rupted task (see Table 17). The TCB is normally the
first loadable item in the object module.

2. A task body, consisting of a sequence of instructions
executed in response to the task interrupt.

3. A task temporary storage area for use by the Monitor
service routines (and other reentrant library routines)
to provide reentrancy for these routi nes.

Examples of foreground tasks are

• Real-time foreground tasks connected to external
interrupts.

• Monitor I/O interrupt routine.

• Monitor Control Panel interrupt routine.

• Monitor memory parity and protection violation
routines.

• RBM control routine (for loading, abort, etc.).

A background program can also operate as a single task but
without foreground privi leges.

PROGRAM

A II program II is one or more tasks (and optionally, some
command data storage) that are loaded and controlled as a
unit. Four types of programs exist under RBM:

1. Resident foreground programs consisting of one or more
tasks, perhaps some special routines for receiving I/O
interrupt responses (see "End Action"), and any com-
mon storage that may be needed. .

2. Semi resident foreground programs that are expl icitly
called in from secondary memory aryd reside in the
resident portion of core memory during execution.

3. Nonresident foreground programs.

4. Background programs, consisti~g of a single task.

FOREGROUND

II Foreground" refers to real-time or Monitor tasks executed
in protected memory on a real-time basis. Since the num­
ber of foreground tasks is limited only by the number of
internal and external interrupts possible in the system, the
fundamental I imitation is the amount of core space avai lab Ie.
However, the use of overlays and nonresident foreground
programs makes the amount of effective foreground space
virtually unlimited, depending only on the severity level
of required response times.

BACKGROUND

II Background II refers toa non-real-time program executed
in available nonprotected memory. The purpose of back­
ground programming is to achieve higher efficiency in the
system by using up the avai lable CPU time not needed' by
real-time tasks to maintain foreground programs, or to per­
form other data processing functions.

Background operations may be assemblies, compilations,
data processing, or utility operations. The two fundame'ntal
restrictions in using background programming are

1. Sigma 2/3 hardware and the RBM software completely
and absolutely protect resident foreground programs
from a background program in terms of I/O and core
memory usage. Thus, a background program is never
allowed to interfere with real-time foreground tasks:
it must operate in nonprotected memory and use the
Monitor service routines for all I/O or other privileged
operati ons.

2. Since a background program uses only the CPU time
available after the real-time foreground is satisfied, it
may not be guaranteed any CPU time when foreground
is very active. The background is not allowed to

RBM Terms and Processes 7

inhibit interrupts or do anything else that might inter­
fere with real-time foreground responsiveness.

JOB

A II job" is defined as consisting of all background activities
or processes that take place between a ! JOB command and
the next ! JOB command or a ! FIN command (whichever is
encountered first).

JOB STEP

A "job step" is defined as the operations performed in setting
up and processing a single program within a job stack. A
job step is initiated by call ing in a background processor
and ends when the processor exits.

BACKGROUND TASK

A "background task ll is an executable version of a single
background process that shares the same restrictions as
other background jobs relative to foreground priorities
and privileges.

MONITOR SERVICE ROUTINES

RBM service routines can be used by real-time foreground
tasks, a background task, or RBM tasks. All routines are
coded in a reentrant manner, and those that require tempo­
rary storage use the temporary stack space associated with
the task that calls the routine (see Chapter 4).

TEMPORARY STACK

The temporary stack (temp stack) is a block of core storage
associated with a particular task and is used by Monitor ser­
vice routines for temporary storage to achieve reentrancy.
An entry in the TCB for a task points to the temp stack
space. When a task is active and using either Monitor ser­
vice routines or the floating accumulator (defined below),
the beginning of the temp stack space for the active task
must be set into core memory location 6 (after the previous
contents of location 6 are saved). Monitor service routine
M:SAVE will set this pointer.

When Monitor service routines or Public Library routines
need temporary space, they can call M:RES to reserve space,
and M:POP must then be called to release the space when it
is no longer needed. Thus, the total temp stack is a func­
tion of the deepest nesti ng of ca lis to Publ ic Library routi nes
and RBM service routines and of the space required for
these routi nes.

FLOATING ACCUMUL4TOR

This software convention is used extensively by mathematics
library routines and can also be used by any user's program.

a RBM Terms and Processes

The floating-point accumulator is assumed to occupy the
first six locations of the temporary stack space. It is used
like a hardware accumulator, i. e., to build up a cumula­
tive result from single-precision or double-precision real
(floating-point) cal culations.

As a convenience in referencing the floating accumulator,
core locations 1 through 5 are set with pointers to the actual
core locations. This is done when entry is made to the ac­
tive task (by M:SAVE when the routine is used). Therefore,
i ndi rect addressi ng through locations 1 through 5 wi" resu I t
in storing, loading, or modifying the actual floating accu­
mulator. The sixth cell of the floating accumulator is used
by the FORTRAN-formatted I/O routine.

RBM CONTROL TASK

The RBM Control Task encompasses a number of subtasks
that control the reading of control commands, loading back­
ground programs, interpreting unsolicited key-ins, and
aborting or terminating a background job. During system
initialization, the RBMControl Task must be assigned to the
lowest priority hardware interrupt.

The RBM Control Task uses the same entrance and exit pro­
cedure and the same type of TCB as a real-time foreground
task. Since its main function is to control background
activity, it has a lower priority than any real:-time task.
It is necessary that this be a separate task (and not part of
the background priority level) so that effective and respon­
sive control can be made through key-ins. All RBM func­
tions associated with this level operate as subtasks to the
RBM Control Task and are non-reentrant.

NONRE~DENTFOREGROUND

Nonresident foreground programs are real-time programs
not needed in core on a continuous basis. They are created
like resident foreground programs and are then written on
the RAD in the user processor (UP) area. An operator or a
resident real-time program can later call one of these non­
resident programs, and it will be loaded and executed like
a permanently resident real-time foreground program with
all the protection and priority privi lege characteristics of
the foreground.

COMPRESSED RAD FILES

EBCDIC character codes do not use all possible bit combi­
nations of an eight-bit byte, and some combinations (X'FC'
and X'EC') are therefore available for special coding bytes.
Since EBCDIC information often contains a large number
of IIblank ll byte strings, a code and a word count are used
to replace an entire string of blanks. Thus, several aD-byte
source cards (usually about 12) can be compressed and
blocked into a 360-byte RAD sector. The RBM Read and
Wri te routi nes provide the compressi on or decompressi on
feature, end the user program can i60d Oi wiite as though
the fi Ie contained aD-byte card images. Compressed fi les
are always blocked; that is, several records are transferred
with one RAD access.

2. CONTROL COMMANDS

The Monitor is controlled and directed by control commands
that initiate loading and execution of programs and provide
communication between a program and its environment.
The environment includes the Monitor, background proces­
sors, the operator, and peripheral equipment.

Control commands have the general form:

!mnemonic specification

where

is the first character of the record and identifies
the beginning of a control message.

mnemonic is the mnemonic code name of a control
function or the name of a processor. It must
immediately follow the! character without inter­
vening spaces.

specification is a listing of required or optional
specifications. This may include labels and nu­
meric values appropriate to the specific command.
In the specification field, hexadecimal values
must be shown as +Xxxx and EBCDIC values must
begin with a letter; any other values are assumed
to be decimal values. Specification fields are
separated by a comma or an equals sign.

In this manual the options that may be included in the
specification field of a given type of control command are
shown enclosed in brackets although brackets are not used
in actual control command format.

One or more blanks separate the mnemoni c and specifica­
tion fields, but no blanks may be embedded within a field.
A control command is terminated by the first blank after
the specification field. Annotational comments detailing
the specific purpose of a command record may be written
following the specification terminator, but not beyond col­
umn 72. Only columns 1-4 are examined to determine the
control command.

The user may insert comment lines within a job stack at any
point where a Monitor control command would be recog­
nized. A comment line contains an asterisk as the first
character of the line. The comment line is listed on the
LL device.

Communi cation between the operator and the Monitor
is accomplished via control commands, key-ins, and
messages. Control commands are usually input to the
Monitor via punched cards; however, any input device(s}
may be designated for this function (see !ASSIGN com­
mand). Control key-ins are always input through the
keyboard/printer. All control commands and Monitor
messages are listed on the output device designated as

the listing log (normally a line printer) to provide a
hard-copy history of a job.

JOB CONTROL PROCESSOR (JCP)

Monitor control commands are read from the background
operational label CC unless the operator has requested a
keyboard/printer override through an unsolicited KP key-in.
All such commands are read by the Job Control Processor
(JCP), a special processor loaded into the background by the
RBM and reloaded into the background following each
job step within a job. When a control command is en-
countered by the JCP, the order of search is

1. Monitor service commands.

2. System processor names.

3. User processor names.

4. Foreground processor names.

5. Background processor names.

A !JOB command sets all background operational labels to
their standard assignments. All temporary RAD space is set
"unused II and is then avai lable for following job steps.

As the JCP encounters !ASSIGN and !DEFINE commands
between job steps, it makes appropriate entries in the oper­
ational label tables and continues to do so until it encoun­
ters a request for a processor. When the requested processor
is read into the background and attains control, this marks
the beginning of a job step.

At the end of each job step (i. e., when the JCP begins
reading control commands at the completion of the previous
job step), all background operational labels associated
with temporary RAD space are set to an undefined status
and all temporary background space is reset to an lIunused"
status unless a !TEMP S control command is in effect, which
saves temporary files until a !TEMP R, !JOB, or !FIN com­
mand is encountered.

MONITOR CONTROL COMMANDS

ASS The! ABS control command causes the Absol ute
Loader to read absol ute bi nary programs from the AI devi ce
and write core image copies onto the OV fi Ie. The last
(or only) segment to be read must be followed by an ! EOD
command. The binary program(s) following the !ABS com­
mand must contain only those load items that are part of the
Sigma 2/3 Absolute Object Language. The program can be
a background program, a processor for the background, or
a real-time foreground program.

A subsequent !XEQ command causes the RBMsubtask S:LOAD
to load the core image of the root segment (segment number 0)
from OV into core storage. Subsequent segments (1 - n)
are loaded by the root through the use of M:SEGLD.

Control Commands 9

When an !ABS control command is encountered, the
Absolute Loader reads the absolute deck that follows from
the AI device and writes the core image copy onto the file
to which the OY operational label is currently assigned.
If OY has not been assigned, it will be assigned by default
to the RBMOY fi Ie on the RAD. The program can be exe­
cuted from a permanent SP (system processor) or UP (user
processor) file either by inputting a "! name" command
(where "name" is the name of the file on which the program
was wri tten), or an ! X EQ command.

If a multisegment program is loaded, the Absolute Loader
creates an OY:LOAD table at the end of the root. The root
must always be the first load module and each succeeding
load module is assigned a consecutive segment identifica­
tion number, with the first succeeding segment starting
at !! 1!!. In the OV:LOAD table, each segment's loud ad­
dress will be at its origin location and its entry address will
be the transfer address generated by the! END card image.

The form of the !ABS control command is

where

size is an optional parameter for background pro-
grams only. It specifies the temp stack size
required for the background program being
loaded. If size is omitted, a temp stack size
equal to the maximum size needed for all Monitor
service routines (80) will be used. The temp stack
will always be allocated at the start of back­
ground, and it is the user's responsibility to origin
his program above the temp stack. For foreground
programs, the size parameter is ignored and the
temp stack pointers must be assembled as part of
the program (i. e., in the TCB).

oplb1 ,oplb2 . . . are operational labels used by the
program that require blocking buffers (i. e. , those
labels that may be assigned to blocked RAD files).
A maximum of 10 operational labels may be speci­
fied. When the program is loaded from the RAD
for execution, the Monitor will ensure that enough
block buffers are available for these specified
labels assigned to blocked fi les.

Programs loaded under the Absolute Loader are subject to
the following restrictions:

• No external references are permitted.

• The program must be in absolute form.

• Relocatable code may not be imbedded.

ASSIGN The !ASSIGN control command cau~es either a
new or standard operational label to be equated with a
specified (or temporary) file number. Since operational

10 Monitor Control Commands

labels for the background are reset to the standard values
at the beginning of a job by the Job Control Processor, an
operational label assignment is in effect only until the next
! JOB command is encountered or until it is again reassigned.

An operational label is a two-character name that is used
as a label in referring to a device-fi Ie number. The con­
vention of operational labels is used for the processors or
any other program to make them device-independent, and
also to give some mnemonic value to the input/output opera­
tions associated with the processors.

Device file numbers are a logical means of referring both
to a physical peripheral device and to a collection of in­
formation about that device; that is, the current fi Ie of
information. Device fiie numbers are defined sequentiaiiy
(and remained fixed) in the DEVICE FILE INFO paiametei
during SYSGEN (see Table 27).

Standard operational labels can be reassigned to different
device-file numbers during SYSGEN or through !ASSIGN
and! DEFINE control commands. Two tables of operational
labels are maintained by the system; one is used for back­
ground (see Table 2) and the other for foreground. Device
unit numbers (see Table 3) are also stored in the same two
tables in the form of binary integer values.

Table 2. Standard Background Operational Labels

Operational Explanation
Label of Reference I/O Device

AI ABS binary input C R, PT, M T , RD

BI Binary input CR, PT ,MT, RD

60 Binary output CP,PT,MT,RD

CC Control command KP,CR,PT,MT,
input RD

DO Diagnostic output Same as LO

Got Execution input (GO) CR,MT,PT,RD

IDt Debug ident file RD

LI Library input Same as BI

LL Listing log Same as LO

LO Listing output LP, KP,MT,RD

OC Operator's console KP

Oyt

I
Overlay (temporary)

I
RD

++ PI" Processor input RD

PM Punch RBM CP,PT,MT

Table 2. Standard Background Operational
Labels (cont.)

Operational Explanation
Label of Reference I/O Device

SI Symbolic input KP,CR, PT,MT,
RD

S2
t

Sigma 2/3 procedures RD

UI Update input C R, PT, M T , RD

UO Update output

I

PT,MT,RD

Xl ttt Overlay Loader, MT,CR,RD
Extended Symbol

X2ttt Overlay Loader, RD
Extended Symbol

X3
ttt

Extended Symbol RD

X4 Uti I ity (verify) RD,MT,CR, PT

X5
ttt

Ut i I ity (prestore) RD

tThese operational labels, if required by a processor,
are automatically assigned to permanent files in the
system data area by the Job Control Processor.

ttThe PI operational label is assigned to fi ies in the
System Processor and User Processor areas by the Job
Control Processor.

tttThese operational labels are automatically assigned
to background temporary RAD files, with the file defi­
nition appropriate to the background processor being
executed. These definitions are made from a table in
the Job Control Processor that is selected by the first
three characters of the processor name.

The standard foreground operational labels are as
follows:

Operational
Label

BO

AL

Explanation of
Reference

Binary output

Accounting log

I/O Device

CP, PT,MT

RD

An assignment to file zero means that the operational label
is not effective, and all references to this operational label
result in a no-operation unti I it is reassigned. Note: some
background processors (e. g., Utility) do not allow use of
active operational labels assigned to fi Ie zero. See
Appendix E for a complete description of operational label
usage.

!ASSIGN commands can appear anywhere within the con­
trol command stack (except within a job step) and take
effect immediately. That is, -if the CC operational label is
reassigned, the very next control command is read from the
newly assigned device (unless the KP override has been
imposed by an unsolicited key-in). The !ASSIGN com­
mand is used for both foreground or background operational
labels. (The operator must key in FG before assigning a
foreground operational label.)

There are three forms of the !ASSIGN command. Form 1 is

!ASSIGN oplb=file-numberL FJ

where

oplb is either a two-character alphanumeric name
in the foreground or background operational label
table (or is to be placed in the table), or a
FORTRAN device unit number, indicated by the
prefix F: preceding the device unit number (see
Table 3).

file number is the device-file number for a physical
device in the system (created at SYSGEN).

F when present, declares that the assignment is to
be included in the foreground operational label
table. Otherwise, it is assumed to be in the back­
ground operational label table, and the file num­
ber must also be a background file number.

Form 2 of the !ASSIGN command is

!ASSIGN oplb=filename,areaLFJ

where

oplb is an operational label or a device unit num-
ber identified by the F: prefix.

file name is the name of an existing RAD fi Ie. The
RAD file is rewound if it is blocked or compressed.
Only permanent RAD files can have a file name.
Once the file name is entered in the dictionary
by SYSGEN or RAD Editor, an !ASSIGN control
command or call to M:ASSIG N can equate either
an operational label or FORTRAN device unit
number to this fi Ie name.

area mnemonic specifies the area to search for the
file name from the areas listed in Table 4.

F indicates that the assignment is to be included
in the foreground operational label table.

Monitor Control Commands 11

Table 3. Standard Device Unit Numbers

Device Unit
Number Standard Assignment

101 Keyboard/printer input

102 Keyboard/printer output

103 Paper tape reader

104 Paper tape punch

105 Card reader

106 Card punch

108 •• • J. L.ine pnn,er

Table 4. RAD Area Mnemonics

~ode Meaning

SP System Processor area

SD System Data area

SL,UL System and User Libraries

UP,FP,BP User, Foreground and Background
Processor areas (user tasks and pro-
grams and background processors)

BT Background Temp Area

CP Checkpoint area

aa Data area{s)

Xn Simi lor to aa areas but no disk pack
verification performed

Form 3 of the !ASSIGN command is

(!ASSIGN oplb=oplb

where

oplb is as defined above.

F . if present, indicates that both operationai iabeis
are foreground; otherwise, both operational labels
must be background labels.

12 Monitor Control Commands

Examples:

Form 1: ! ASSIGN SI = 3

!ASSIGN F:105 = 3

Form 2: !ASSIGN OV =FILE1, UP

Form 3: !ASSIGN U=BI

ATTEND The !ATTEND control command indicates that
RBM is to go into a wait condition on any abort from the
background, and then read and process the next control com­
mand encountered when background processing continues
after an unsolicited key-in. Its primary purpose is to offer
improved recovery procedures. If an abort occurs without
this control command being specified; JCP will reset the
CC operational label to the standard value, skip all con-
trol commands, binary records, or data unti I it finds a
new! JOB, ! PURGE or ! FIN command, and will not pause
for operator intervention. In this "skip" mode, all EBCDIC
records beginning with! will be listed on the LL device,
with an indication C >' preceding the command) that they
are ignored. This is the normal mode for closed-shop batch
processing, without halts between jobs after aborts.

The form of the command is

(!ATTEND

It exists for one job only, and usually immediately follows
the! JOB command.

c: The !C: control command connects the designated
real-time foreground task to a specified interrupt location,
optionally armed and enabled as specified by the control
code. The task may also be triggered by means of this con­
nect operation if the code is equal to seven, providing that
the task has previously been armed (i. e., with a previous
!C: command, an !XEQ or "!name" command, or by a
Q key-in).

The form of the !C: control command is (c: tcbLoode]

where

tcb is the address of the Task Control Block for
this task. If the value is hexadecimal, it must be
shown as +xxxx. If the Overlay Loader initializes
the TCB by means of the TCB parameters, it does
so compieteiy, using ioad information and vaiues
on the TCB and BLOCK cards. No partial initial i­
zation of a TCB is allowed with the· exception of

the blocking buffer pool. If a user builds his own
TCB, the TCB must begin at the execution location
plus the "temp" value specified on the Overlay
Loader! $ROOT command.

code when present, is the interrupt operation code.
It overrides the initial TCB task code; a code of
7 triggers the task if it is armed.

Note: If "code" is not specified, the code given
in the TCB will be used.

The !C: command does not change the contents of the TCB.

CC The! CC control command returns control to the cur-
rently assigned CC device and nullifies the effect of a
previous KP key-in. The control command is honored
regardless of whether or not the "skip" mode is in effect.
The "skip" mode is cleared following this command. The
form of the command is

f~CC

DEFINE The !DEFINE control command allocates a
portion of the background temporary RAD space for a spe­
cific operational label or device unit number by assigning
the operational labei to an unused device-file number,
which in turn is linked to the specified portion of the RAD.
Since temporary RAD files are not maintained by the Moni­
tor, they have no name and are identifiable only by the
operational label for which each file was created. The
! DEFINE control command must precede the specific pro­
cessor or user program to whi ch it appl ies, since this tem­
porary space is reset at the beginning of each job and at
the subsequent reloading of the JCP (unl ess a ! TEMP S
control command is in effect). That is, the fi les are de­
stroyed and the RAD space and all device-file numbers
linked to it may be used by the next job.

The form of the! DEFINE control command is

!DEFINE OPlb,nree,sre{ll]

where

oplb is an operational label or a FORTRAN device
unit number (with a prefix of F:).

nrec is the number of logical records in the file.

srec is the logical record size, in bytes.

R

P

defines the file as an unblocked random-access file.

defines the file as a blocked random-access file.

u
C

B

defines the file as an unblocked file.

defines the file as a compressed EBCDIC file.

defines the file as a blocked file.

Ifneither R, p, U, norCis specified, the fHe is defined as a
sequential, noncompressed, blocked file. If R is input,srec
is used as the granule size.

EOD Sections may be defined in a user's deck by insert-
ing I EOD con.trol commands at the end of each section.
When an ! EOD command is encountered, the Monitor re­
turns an EOD status (when using the M:READ I/O routine).
This is similar to a tape-mark on magnetic tape. Any num­
ber of ! EOD control commands may be used in a job wher­
ever desired by the user.

The form of the ! EOD control command is

FIN The! FIN control command specifies the end of a
stack of jobs. When the I FIN control command is encoun­
tered, the Monitor writes it on the listing log to inform the
operator that all current jobs have been completed and also
writes! !BEGIN IDLE on the OC device. The Monitor then
enters the idle state.

The form of the! FIN control command is

FSKIP,FBACK,RSKIP,RBACK The file positioning con-
trol commands, ! FSKIP and! FBACK, forward or backspace
the specified device (magnetic tape or sequential RAD file)
immediately past the next file mark, or past the nth file
mark if n files are specified (n = 1 for RAD files). !RSKIP
and IRBACK perform similar functions but act on records
rather than fi I es. ! RBAC K does not appl y to compressed
RAD files.

The forms of the control command are

{

I FSKIP }
IFBACK .
!RSKIP dev,ce['number]

!RBACK

where

device is the device indicator of the device to be
positioned and is restricted to background devices.
The device indicator is one of the following:

1. A device-file number, shown as a decimal
integer.

Monitor Control Commands 13

2. A FORTRAN devi ce unit number, shown as

F:n

where n is a decimal integer equal to the de­
vice unit number.

3. An operational label, shown as two al pha­
numeric bytes, the first of which isalphabetic.

number is the number of operations to be performed;
if absent, one operation is assumed.

HEX The! HEX control command loads patches at execu-
tion time for either the Monitor itself or any user program.
(See Appendix G for input description.)

The form of the ! HEX control command is

!HEX

JOB The! JOB control command signals the beginning
of a new job. The background operational labels and
FORTRAN device unit numbers are set to their standard
assignments as defined at System Generation. All RAD
temp files are closed.

This command always causes a page to be ejected on the
LL device before the command is listed. The version of
the RBM being utilized will be inserted following the last
field on the! JOB command.

The form of the! JOB control command is (! JOB [name, account]

where

name has a limit of 12 characters.

account has a limit of six characters.

JOBe The! JOBC control command indicates a con-
tinuation of the current job. ! JOBC closes all RAD temp
files and resets all background operational labels to their
standard assignments (with the exception of "CC"). The
! JOBe command doe~ not dear the "attend" flag or the
"skip" mode, nor does it terminate the effect of an FG or
SY key-in. (A useful application of the! JOBC command
is given in the Utility job deck example in Chapter 10.)

14 Monitor Control Commands

The form of the! JOBC control command is

LIMIT The I LIMIT control command is used to set a
maximum on the execution time of a background program.
This command is effective only if the system has real-time
Clock 1 dedicated to the Monitor. If the job exceeds the
time limit, the job is aborted (TL) and is terminated with a
postmortem dump (if that option was specified).

The form of the! LIMIT control command is

(!LIMIT [N]

where N is the maximum allowable execution time in min­
utes (0 < N < 6000).

MESSAGE The !MESSAGE control command is used to
type a message to the operator. It is useful for messages
concerning mounting tapes or setting certain device or
Control Panel conditions. The command is listed on the
OC device. There is no response.

The form of the ! MESSAGE control command is

(!MESSAGE message

where message is any comment to the operator, up to the
f~lI-card image size (totai of 72 coiumns per card).

PAUSE The! PAUSE control command temporarily sus-
pends background operation to allow the operator time to
complete the job setup. Background operations resume when
the operator performs an unsoli cited S key-in. The command
is listed on the OC device.

The form of the! PAUSE control command is

(PAUSE message

where message is a comment to the operator, up to the full­
card image (total of 72 columns per card).

PMD The! PMD (postmortem dump) command causes the
Monitor to dump the registers, pius selected areas of mem­
ory, at the end of a job step. The dumps are a I ways onto
the background DO devi ce in specified format. The! PMD
command is only effective for one job step.

The form of the ! PMD command is

! PMD [U][,ALLLformat]][,fwa,lwa[,format]J ~

L .
. .. [,fwa,lwa[,format]J

where

U indi cates that PMD is to be entered regardless of
the manner of background termination. Otherwise
PMD is entered only if background terminates
abnormally.

ALL indicates that all of background is to be
dumped. If ALL is not specified and no other
limits are specified, only the CPU registers are
dumped.

fwa/lwa specifies the dump starting and ending
locations. These values are hexadecimal if pre­
ceeded with a plus (+) character.

format specifies the dump format as follows:

H Hexadecimal (default, if format
unspecified)

M Mnemonic

Integer

E EBCDIC

When a format of E is specified, each dump line
wi II consist of hexadecimal values followed by
EBCDIC translations, at the end of the line. Four
limit pairs (fwa, Iwa) may be specified. The
CPU registers are always dumped, regardless
of the limits.

An X (abort) key-i n wi II termi nate a II postmortem dumps
if performed while PMD is active.

PURGE The! PURGE control command is used to output
the contents of the accounting file. The output is to back­
ground operational label LO in the following format:

MM/DD/YY HRMN NAME ACCOUNT TIME

(MMMM.MM)

An option is provided to clear the accounting file sub­
sequent to this output. In this manner the user could assign
background operational label LO to a device such as the
card punch or the paper tape punch, and by exercising the
"clear" option, could produce a periodic hard copy of
the accounting fi Ie and clear the accounting fi Ie for
future use. A! PURGE command will always be acknowl­
edged even in the "skip" mode.

The form of the! PURGE control command is

(PURGE [C]

where C is the directive to clear the accounting fi Ie (must
be preceded by an unsolicited SY key-in).

REL Relocatable binary program modules to be loaded
onto the GO fi Ie are preceded by an ! REL control com­
mand. The binary modules that follow must be in Sigma 2/3
Standard Object Language. The modules may constitute
a complete program, a root, or segments of a program.
Checksum and sequence checks will be preformed.

The form of the! REL control command is

The modules are copied onto the file to which GO is cur­
rentlyassigned. If GO has not been assigned, it will be
assigned by default to the RBMGO file on the RAD, which
is rewound before the modules are copied. Several modules
may be copied through the use of one! REL control command
by stacking the modules. The final module must be fol-
lowed by an ! EOD control command that wi II cause the
JCP to write an end-of-file (EOF) onto GO and then
backspace one file. In this manner the GO file is
positioned to accept additional input, but is always
terminated by an EOF. The relocatable binary decks are
loaded from operational label BI.

The .! REL control command is a convenient method of
obtaining additional hard copies of object modules pro­
duced on GO by Extended Symbol or FORTRAN. Byas­
signing BI to GO and then reassigning GO to BO, modules
will be copied from the original GO onto BO up to and
including the EOF. BI should be rewound before each
! REL command.

REWIND The! REWIND control command rewindsa mag-
neti c tape or a sequential RAD fi Ie and has no effect on
other devices. The operation takes place immediately
after the command is interpreted. The command is re­
stricted to background files.

The form of the! REWIND control command is

(!REWIND device

where device is the device indicator (as in ! FSKIP) of the
device to be rewound.

Monitor Control Commands 15

TEMP Normally, the temporary background space on
the RAD is reset at the completion of each step within a
job, so that a separate assembly and compilation can each
have full access to this temporary area for scratch space
as needed. The ITEMP control command is a means of
altering this standard procedure. When used wi'th the
save (S) option, temporary files are not released after any
job step within a job stack until either a ITEMP command
is encountered with a reset (R) option or the next ! JOB,
! JOBC, or ! FIN command is encountered.

The form of the ITEMP control command is

~TEMP m
I
I
where either S or R is required

S means to save RAD temporary fil es between job
steps within a job (e. g., between an assembly
and a concordance).

R means to reset the RAD temp files after each job
step.

UNLOAD The !UNLOAD control command causes a
specified magnetic tape or sequential RAD file to be re­
wound in manual mode. Operator intervention is required
to use the devi ce again. If the device is a sequential RAD
file, the file is rewound to BOT and released by a call to
M:CLOSE. The command is restri cted to background fi les.

The form of the! UNLOAD control command is

~ UN LOAD devi ce

I
where device is the device indicator (as in !FSKIP) of the
file to be rewound off-line.

WEOF The !WEOF command writes the appropriate end-
of-fi Ie mark on the output devi ceo The command is re­
stricted to background files. For magnetic tape, it is
a tape mark; for the card punch or paper tape punch,
it is an ! EOD command; and for sequential RAD fi les,
it is a logi cal fi Ie mark.

The form of the !WEOF control command is

devi ce [, number]

where

device is the device indicator (as in !FSKIP)
of the device that is to have an end-of-file writ­
ten on it.

16 Processor Control Commands

number is the number of end-of-fi les to be written.
If absent, one end -of-fi lei s written.

XEQ The !XEQ control command loads the first program
from whatever file the OV .operational label is currently
assigned to. For foreground programs, the command must
be preceded by an F G key- in.

The form of the ! XEQ command is

XED The! XED control command performs the same
operations as the I XEQ control command except that ! XED
transfers control to RBM Debug through the entry point
D:KEY when the root segment has been loaded. The mes­
sage ! !DKEY-IN will appear on the keyboard/printer and
the user can then input Debug control commands. (See
Chapter 12 for a discussion of RBM Debut.) The !XED
control command causes the background operational label
ID to be default-assigned to the RBMID file on the RAD
if it is not already assigned.

The form of the! XED control command is

PROCESSOR CONTROL COMMANDS

System processors on the System Processor area and any user
background or foreground program residing in the User Proces­
sor, foreground or ba ckground program areas can be ca II ed by a
processor control command. The commands have the format

(' processor parameters

where

processor is the file name of a processor which must
be distinguishable in the first three characters from
system control commands (see Table 5).

parameters are optional parameters interpreted by
each particular processor.

When a processor control command is read and interpreted
by the Job Contro I Processor, the root segment of the speci­
fied subsystem is loaded from the RAD into memory. The
JCP will assign all permanent RAD files used by the speci­
fied processor before the processor is executed unless these
files were previously assigned via !ASSIGN commands. The
JCP will also define all temporary operational iabels used
by the processor (by defining them as background temp
files) unless they are previously defined via! DEFINE com­
mands. JC P then transfers contro I to the processor.

Table 5. RBM System Processors

Namet Description

lFORTRAN

lCONCORDA

lOLOAD

lUTILITY

IXSYMBOL

!RADEDIT

Basic FORTRAN IV Compiler

Concordance Program for
Extended Assembler

Overlay Loader

Utility

Extended Symbol Assembler

RAD Editor

tThe RBM System Processor names are entered into
the System Processor area dictionary with the RAD
Editor !#ADD command. If the file name is less
than eight characters, the name on the processor
control command must exactly match the file name.
If the fi Ie name is eight characters (maximum), the
fi rst ei ght characters of the name on the processor
control command must exactly match the fi Ie name.
Trailing nonblank characters beyond the eighth
character in the processor control command name
are ignored.

Job Step

When a requested processor is read into the background
and attains control, this marks the beinning of job step.
An example of a job stack illustrating its breakdown by job
step is shown in Figure 2.

EXTENDED SYMBOL CONTROL COMMAND FO RMAT

The Job Control Processor reads and interprets the
IXSYMBOL control command and loads the Extended Sym­
bol assembler from the RAD into background memory. The
assembler continues to assemble programs until it encounters
an end-of-file. The Extended Symbol assembler is called
into operation with the command

1 XSYMBOL [option
1
, option

2
, ••• ,option

n
]

where option can be

BA specifies batch assembly mode. XSYMBOL will
ignore single end-of-files and will terminate only
when two consecutive end-of-fi les are encountered.

BO specifies binary output.

Monitor enters
IIIdle" state .

... ___ JCP is read into
background

!REWIND LO Utility is read
~~~ _____ ~--IL......L...-L...-!:~:~----- into background. 

!JOB 

Figure 2. Job Stack Example 

JCP is read into 
I~--- background. 

Extended Symbol 
1-4------- is read into 

background. 

Proccessor Control Commands 17 



CR specifies cross-reference listing. 

DW specifies display warnings. 

GO specifies output GO file. 

LO specifies list assembly output. 

NP specifies no standard procedure input. 

NS specifies no summaries. 

PP specifies punch standard procedure file. 

SL specifies simple literals. 

Any number of options may be specified and in any order. 
If no options are specified, the following options are 
assumed by default: 

BO,GO, LO 

The presence of any nondefault option requires that any 
desired default options (except SI which is always defaulted) 
must also be present. 

BASIC FORTRAN IV CONTROL COMMAND FORMAT 

The Job Control Processor reads and interprets the! FORTRAN 
control command and loads the Basic FORTRAN N compiler 
from the RAD into background memory. The compiler is 
called into operation with the command 

(FORTRAN [SI,S2'"·· ,Sn] 

where S. can be 
I 

LO specifies an object listing. 

LL specifies an object listing with data chains. 

XP specifies extended precision real data instead 
of standard precision. 

ALL specifies that multiple files are compiled. 
FORTRAN will ignore single end-of-files and 
wi II terminate compi lation only when two con­
secutive end-of-files are read. 

Binary output is normally output on both the BO and GO 
devi ces. To suppress the BO or GO output, the user must 
assign the pertinent operational labels to 0 (see !ASSIGN 
and! DEFINE control commands in this chapter). 

If no specifications are present, binary output on the BO 
and GO devices, a source listing, and standard precision 
mode are assumed by default. 

18 RBM/Processor Interface 

RBM/PROCESSORINTERFACE 
Ground rules common to a" system processors are: 

• AI I processors operate in the background. 

• With the exception of the UTILITY program, processors 
must use standard background operational label table 
assignments for their I/O requests. (See Table 2 for 
the standard background operational labels.) 

• The first character of each I ine of the listed output 
from the processors is always interpreted as a vertical 
format character (carriage control} and is never printed. 
The RBM I/O routines treat the vertical format properly 
for the keyboard/printer, iine printer, and magnetic 
tape. 

• When the RBM transfers control to a background pro­
cessor, the X register contains the address of the con­
trol card image, providing access to any parameters. 

• At the completion of an assembly or compilation, the 
processor writes two end-of-files on the LO device, 
and then backspaces the LO device one file. The 
M:CTRL routine will treat these operations for the 
devices as described in the I/O section. This permits 
file processing of output on magnetic tape, if LO is 
assigned to magnetic tape. The processor writes an 
EOF on BO and GO at completion and then back­
spaces one file (GO and BO are separate options). 

• The processor generally returns control to RBM by 
means of a call to M:TERM. RBM will immediately 
read from CC and if there is another control command 
for the current processor, it wi II reload the processor 
from the RAD. 

• it overiay ioading is required, the processor uses 
M:SEGLD. The overlay operational label for the 
background is PI. 

• If an irrecoverable error occurs, the processor exits 
to RBM with a call to M:ABORT and displays the abort 
code in the X register and the abort location in the 
A register. 

• Since all standard RAD files are defined by the Job 
Control Processor, the processors need not ca II 
M:DEFINE, but must call M:CLOSE to release blocking 
buffers in those cases where several RAD files are used 
but are not al I open at one time. 

• The first ouput line to LO from an assembly or com­
pilation causes a page eject. 

GO AND OV FILES 

Figure 3 shows how the JCP and Extended Symbol or Basi c 
FORTRAN IV use the operational labels GO and OV. The 



Relocatable binary decks . 8 copied directly from BI to : 
GO by JCP with an! REL 

~ 

control command. 

e·----- Assembler or compi ler out-
put to both GO and BO. 

Overlay Loader takes . 

C? 
: input from GO to form '. 

executable ov. 

JCP forms executable pro- Executable program; called 
gram directly from AI to 
OV with an !ABS control 

by ! XEQ command; loaded 

command. by RBM subtask M:LOAD. 

Figure 3. Use of GO and OV Files 

GO and OV files are the files to which these operational 
labels are assigned by the JCP and are standard default 
files when no operational labels are specified. The GO 
fi Ie is a blocked, sequential file that contains relocat­
able binary decks read from the job stack, and binary 
ouput produced as a result of an assembly or compila­
tion. After each module is loaded onto the file, an 
end-of-file mark is written and a backspace file is per-
formed. Thus, at any point within a job stack the 

GO file contains all modules that have been loaded and is 
in position to accept others. 

The Overlay Loader may now use the contents of the GO 
file to create an executable core image program and save 
this program on the random-access OV file. Absolute bin­
ary decks produced by an assembly may also be written (in 
executable core image form) onto the OV file by JCP 
through use of the! ABS command. 

RBM/Processor Interface 19 



3. OPERATOR COMMUNICATION 

SYSTEM COMMUNICATION 

When events take place in the system that require operator 
intervention, or when one job is completed and another job 
begins, RBM informs the operator of these conditions by 
messages on the keyboard/printer. All such messages from 
the Monitor begin with two exclamation marks (! !). 

is defined as a change from manual to automatic, or from 
automati c to manual and back to automatic, depending on 
the initial condition.) When the change of state is sensed, 
the operation is retried. Thus, if the devi ce is EMPTY, it 
need only be placed in the automati c mode. If there is a 
PUNCHES error or a FAULT on the card reader, the reader 
is unloaded, the bad card is corrected and replaced, and 
the reader is returned to the automati c mode. 

Generally, these messages require no operator response on 
the keyboard/printer but may indi cate that some peripheral 
device needs attention. In some cases, the operator must 
interrupt and key in a response after correcting the speci­
fied problem. 

MONITOR MESSAGES 

The messages itemized in Table 6 are output on the OC de­
vi ceo They are primari Iy for background program use but 
can be used by foreground by specifying standard error re­
coveryand "initiate and wait" in the M:REAO, M:WRITE, 
or M:CTRL calling sequence. 1/0 RECOVERY PROCEDURE 

If a message concerns an I/O error condition, the Monitor 
I/O routines that generated the message wi II be waiting to 
sense, a change of state in the devi ceo (A change of state 

Real-time programs with special requirements can inform 
the operator of special conditions and wait for an oper­
ator response. 

Message 

, 'AL 10 ERRORt 

, !BEGIN WAIT 

'!AL OVERFLOW
t 

"BEGIN WAIT 

Table 6. Monitor Messages 

Meaning 

An irrecoverable I/O error has occurred while accessing the ac­
counting file, normally because of a hardware failure or unavaila­
bit ity of operational label AL. The correct assignment of this 
operational label is to RBMAL, SO. An attempt should be made to 
recover the contents of the accounting file as stated above. If 
this recovery fai Is~ the operator may gain control through a KP 
key-in and then as FG key-in to allow foreground modifications; 
the foreground operational label AL may then be reassigned (e. g. , 
'ASSIGN AL = RBMAL, SO, F or ! ASSIGN AL = 0, F). 

Note: Assignment of the foreground operational label AL to zero 
will inhibit the logging of job stack entries into the 
accounting fi Ie. 

The accounting file (RBMAL) cannot accept another entry. The 
accounting file is allocated at SYSGEN and accommodates 
74 entries. (The user may increase or decrease this capacity via 
the RAO Editor.) At this point, normal error recovery will be a 
key-in of KP to gain keyboard/printer control. Next, a key-in 
of SY will permit access to the accounting file. The operator 
should now assign the background operational label LO to a hard­
copy device (e. g., paper tape, card punch). Input of a 'PURGE 
control command specifying the clear option (i. e., 'PURGE C) 
causes the contents of the accounti ng fi I e to be copi ed onto that 

I 
device and clears the accounting file. The job stack causing the 
overflow can now be reentered. 

i 

tThis alarm occurs only if the RBM accounting option has been exercised at SYSGEN. 

20 Operator Commun i cati on 



Message 

! !ATTEND ERROR xx 

! !BEGIN IDLE 

!BEGIN WAIT 

! !BKG CKPT 

! !BK RELEASE,dtnn 

! !BKG RESTART 

! !BKGD xx ABORT, LOC yyyy 

! !CCI 

! !dtnn EMPTY 

! !dtnn ERROR [, TRK xxxx] 

Table 6. Monitor Messages (cont.) 

Meaning 

JCP has read an erroneous control command whi Ie operating in the 
ATTEND mode, in which case RBM goes into a wait state after 
typing this message. After a subsequent S key-in, RBM wi II pro­
cess the next control command. 

JCP has just read a ! FIN card (whi ch completes a job stack) and 
background has gone into an idle state. Processing will resume 
on a new job stack following an unsoli cited S key-in. 

The background has executed a WAIT request. An unsolicited 
S key-in wi II continue background processing. 

Background has been checkpointed as a result of a foreground pro­
gram request. 

The specified device has been released for background use. 

Background has been restarted from its point of interruption. 

The background job has aborted at location yyyy for the reason 
specified by abort code xx. If the Job Control Processor initiated 
the abort, a detai led explanation wi II be written on the back­
ground DO devi ceo 

If the system is operating in the lIattend ll mode (see !ATTEND), 
RBM wiil perform any required postmortem dumps and then go into 
a wait state after an abort. After a subsequent S key-in, RBM 
wi II attempt to process the next control command from the CC 
device. 

If the system is not operating in the lIattend ll mode, RBM will not 
go into the wait state but wi II perform any required postmortem 
dumps and immediately begin reading from the CC device. All 
data cards and control commands will be skipped until a !JOB, 
! PAUSE, or ! FIN card is found. Only a ! JOB card will clear 
the IIskipll mode. All control commands are I isted on the LL de­
vice with an indication (> character) preceding the command to 
show that they are being ignored. 

JCP has begun to read control commands. This message occurs at 
the beginning of a job and between steps within a job (e. g. , when 
an assembly is completed). If CC is assigned to the keyboard/ 
printer (as a standard assignment, or after a KP key-in), the input 
light on the keyboard/printer will indicate that RBM is ready for 
input of a control command. 

The devi ce specified is in the manual mode and may be out of 
paper, cards, or tape. 

There has been a parity or transmission error on the device. If any 
automatic retries were specified, they will have been performed 
before this message is output. A CR device will indicate that an 
error card is in the output stacker. Recovery procedure is described 
above under III/O Recovery Procedure ll . If it is RD, xxxx will be 
the errored track number. 

System Communi cation 21 



I I 
I 
I 

Message 

! !dtnn FAULT 

! !dtnn PU NCHES 

! !dtnn DATA RATE 

! !dtnn UNROCOG 

! !dtnn WRT PROT 

! !END IDLE 

! ! FG REQU EST, dtnn 

! ! FG RESERVE, dtnn 

! !FRGD xx ABORT, LOC yyyy TCB zzzz 

! ! KEY ERROR, comments 

22 System Communication 

Table 6. Monitor Messages (cont.) 

Meaning 

Some condition on device type dt with physical device number nn 
(hexadecimal) has caused this device to become nonoperational. 
The recovery procedure is described above (in the discussion under 
change of state). The operation is automatically retried when the 
device goes into the automatic mode; it is neither necessary nor 
possible for the operator to type in a response. 

An invalid punch combination has been sensed on an EBCDIC 
image. 

I A data rate overrun has occurred If any automatic retries were 
specified, they will be performed after this message is output. 

I 

I 

Device type dt with device number nn (hexadecimal) is not recog­
nized by the I/O routines. If the device is a magnetic tape unit, 
the requested drive may not be dialed in properly or power may be 
off in either the unit or the contoller. 

The RAD or magnetic tape is physically write-protected. If a 
RAD file is logically write-protected, this message will not ap­
pear but appropriate status will be returned. 

RBM has gone out of the idle state and wi II begin readi ng control 
commands from the CC device. Control commands will be ignored 
until a !JOB command is input. 

A request has been made to reserve the specified device. The 
operator should prepare the device and then reserve it through 
use of the FR key-in. 

The specified devi ce has been reserved for foreground use. 

The foreground task with a TCB at location zzzz has aborted at 
location yyyy for the reason specified by abort code xx. The 
corresponding interrupt level will be disabled and if the task 
occupied nonresident foreground, an unload operation will be 
initiated. Background processing will continue. Because this 
message is written at the monitor priority level, only the abort 
message for one foreground task (the lower priority level task) 
will appear if two foreground tasks abort consecutively. 

The Monitor could not process an unsolicited key-in response. 
The message usually indicates a format error on the key-in, 
where comments may be one of the following: 

NO AR 

DEVICE 

The wrong disk pack was mounted for an 
M key-in and the area could not be found. 

The channel for the device specified was II 
not defined at SYSGEN or this device is not 
defined. Applies to M and BT key-ins. 



Message 

1 1 KEY ERRo.R, comments {cont.} 

1 lMESSAGE comments 

1 1 PAUSE comments 

1 lPo.WER o.N 

1 ldtnn No.ISE REC 

1 1 dtnn BAD TAPE 

OPERATOR CONTROL 

Table 6. Monitor Messages (cont. ) 

Meaning 

IN USE 

o.VFLo.W 

DFNjo.P 

10. ERR 

TEMP STACK 

If the key-in was an M (mount), the area 
must be removed. If the key-in was R 
(remove), files must be closed in the area 
(perhaps by an abort or unload). 

The Master Directory table length will not 
allow this key-in to be processed. 

The Device File table or o.perational Label 
table has overflowed. 

The device specified in the IMI key-in 
cannot be correctly ac~essed. 

The Temp Stack has overflowed. 

A lMESSAGE control command has been read. The comments field 
may contain tape mounting or other instructions. RBM continues to 
read from the CC device after the message is typed out. 

A 1 PAUSE control card has been read. The comments field may 
contain tape mounting information or other instructions. A control 
panel interrupt followed by an S key-in will cause RBM to continue 
reading from the job stack. 

The system has experienced a power failure and the power-fail-safe 
option has been implemented. If the computer is a Sigma 2 or is a 
Sigma 3 with no external interrupt and no critical foreground tasks, 
or if the background or RBM Control Task was active, execution will 
continue; otherwise it wi" crash. If the latter case, the operator 
should reboot RBM from the RAD and restart the background. 

A noise record has been detected on magneti c tape and ignored. 
(A noise record is one that contains less than .eight bytes and a~ 
irrecoverable parity error). 

The magnetic tape mounted on device dtnn contains a bad spot that 
cannot be skipped when writing. The operator should mount a new 
tape-and (if possible) rerun the job. 

Operator control of RBM is achieved by one of two meth­
ods: solicited or unsolicited. 

example, 1 lUKEYIN from a Utility program) and should 
always be directed to the operationa I label o.C - o.perator 
Communication. There is no standard fromat for the response 
to a sol i ci ted control. 

SOLICITED CONTROL 

Solicited control will normally be in the form of a specific 
request from a foreground or background program (for 

UNSOLICITED CONTROL 

All forms of unsolicited control are intiated when the 
operator activates the INTERRUPT switch on the Sigma 2/3 

o.perator Control 23 



Processor Control Panel. Unsol icited control may take one 
of two forms: 

1. An unsolicited key-in request. 

2. A forced foreground disarm. 

The active foreground task will be disarmed and a call will 
be made to M:EXIT if all of the following conditions are 
true; otherwise, a key-in response will be requested: 

1. The value in the data switches has changed since the 
last activation of the Control Panel Interrupt (or since 
boot). 

2. The vaiue in the data switches matches the address of 
the dedicated interrupt location of the current task, as 
specified in word 2 of the standard Task Control Block. 
See Table 17. Note that this implies that the active 
task must call M:SAVE. 

Condi tions 1 and 2, when taken together, simply mean 
that the operator must intentionally enter the appro­
priate value in the data switches; an accidental disarm 
cannot normally occur. 

3. The active foreground task (that is, the one to be 
terminated) must have a hardware priority lower than 
the Control Panel Interrupt level. 

If a forced foreground disarm is specified a foreground abort 
message will be written; otherwise the Control Panel Inter­
rupt Task sets a flag in the RBM Control Task status word and 
triggers RBM. The Control Panel Interrupt Task then exits. 

When the RBM Control Task becomes the highest priority 
task in the system (that is, when all real-time foreground 
tasks are nonactive), it issues an output message 

! !KEY-IN 

and requests input (up to 20 characters) from the operator. 
Because of possible delays associated with messages to and 
from the operator, no devices used for time critical opera­
tions should time-share an I/O channel used for-operator 
communications. Each key-in must be terminated with the 
New line e code. The backspace (¢) and delete (EOM) 
codes may be used before the New Line is typed to correct 
a mistyped key-in. The analysis and subsequent action from 
the unsolicited key-in is performed at the RBM Control Task 
priority level. Each key-in mnemonic must be followed by 
a space before its argument list. 

Specific key-in responses under RBM are: 

BL oplb=dfnLp] Permits change of operational label 
assignments during running of background programs. 

where 

oplb is an assigned operational label or FORTRAN 
device unit number. 

24 Operator Control 

dfn is a decimal number specifying a legitimate I 
devi ce file number. ~ 

P is an optional permanent change until system 
reboot. 

BL oplb = oplb[,P] 
oplb = dfn [, pJ. 

Alternate version of BL 

BR[dt]nn Release the specified device for background 
use. The characters representing the device type are 
optional but, if input, will be used to validate the request. 

c: tcbGccde] Connect the specified reel-time fore~ 
ground task to the dedicated interrupt location. 

where 

tcb is the address of the task control block for this 
task. (If the value is hexadecimal, it must be 
shown as +xxxx.) If the Overlay Loader initializes 
the TCB by means of the tcb parameters, it does 
so completely, uSing'load information and values 
on the TCBand BLOCK cards. No partial initiali­
zation of a TCB is allowed with the exception of 
the blocking buffer pool. If a user builds his own 
TCB, the TCB must begin at the execution loca­
tion plus the IItempll value specified on the 
Loader! $ROOT command. 

code if present, overrides the initial code in the 
TCB for the task; a code of 7 would cause the 
level to be triggered. If code is not present, it 
wi II be derived from the task control block. 

CC Remove the keyboard/printer override of the CC 
device. The next control command will be read from the 
background operational label CC. This operator key-in is 
identical to the CC control command. 

CP Clear card punch and simulate an unusual end con-
dition in the punch. The key-in is required if the card punch 
fai Is to recover after a JAM A or JAM B. Operator should 
first manually clear the punch and restore it to READY, then 
interrupt and key in CPo The last (faulty) card will be re­
punched and cards in the normal stacker wi II be in the 
correct sequence. 

DBt XXXX,YYYY Dump locations xxxx to yyyy if re-
quested; otherwise, immediately dump all of background 
memory on background device DO. This key-in can be in­
put at any time for debugging purposes. The dump will be 
in hexadecimal. 

DE Causes Debug (if Debug is part of the system) to 
request the input from the keyboard/printer. 

t SYSGEN options (response to INC MISC query). 



OFt XXXX,YYYY Dump locations xxxx to yyyy if re-
quested; otherwise, dump all of foreground on background 
device DO. The dump will be in hexadecimal. 

OM t XXXX,YYYY Dump locations xxxx to yyyy if re-
quested; otherwise, immediately dump all of RBM on back­
ground device DO. The dump will be in hexadecimal. 

O[T] mm/ddDYY[,hrmn]] Reset the calendar date within 
RBM and continue processing if the Monitor is in an idle 
or wait state. 

OCT] mm,dd[,yy[,hr,mn]] 
D[T]mm/dd /yy[,hrmn] • 

Alternate version of 

ORt [dn] XXXX,YYYY Perform a selective dump of the RAD 
device dn to background device DO, where xxxx and yyyy 
are the fi rst and last sectors of the block of sectors to be 
dumped. If dn is omitted, the RAD containing the SP area 
wi II be dumped. If dn refers to an undefined or non-RAD 
devi ce, an error message wi II be written. If a consecutive 
series of sectors are all zeros, they wi II be skipped unless 
the last sector of this zero series is yyyy, in which case it 
will be dumped. For example, if "DR 100,200" is keyed 
in, and sectors X'lBO' through 'X'215' contain zeros, X'100' 
through X'lCF' and sector X'200' will be dumped. This 
key-in applies only to the 7202, 7203, and 7204 RADs. 

The RAD dump routine performs RAD input with interrupfs 
inhibited, and therefore should not be used when response 
time is critical. 

[
OPlbGF]] 

F fdvnGFJ 
dfn 

where 

Dump the information shown below for 
the specified file. 

oplb is an operational label that specifies the 
Device File Number to dump. F indicates a fore­
ground operational label. 

fdun is a FORTRAN Devi ce Unit Number that spec-
ifies a DFN. F indicates a foreground fdun. 

dfn is the Device Fi Ie Number to dump. 

If no parameter is specified, only the operational label 
tables will be displayed. 

When a Device File Number is specified, the following 
additional information wi II be output on background DO 
device: 

• Contents of the specified Device Channel Status Tables. 

• Contents of the specified Fi Ie Control Tables. 

• Contents of the specified I/O Control Tables. 

t SYSGEN options {response to INC MISC query}. 

Ifthe fi Ie is a RAD fHe l the following additional information 
wi II be output: 

• Contents of the specified I/O Control Sub-table. 

• Contents of the blocking buffer assigned to the speci­
fied file, if one exists. 

FGGS] Must precede any job stack operation affecting 
the foreground or the operation wi II be aborted. This 
key-in is effective unti I the next I FIN or !JOB command 
is encountered. Since the key-in is normally input in 
response to a I PAUSE command, the optional S key-in will 
clear the idle state. 

FL oplb =dfnGp] Permits foreground operational label 
assignment changes during system operation. The changes 
will be reset to SYSGEN values upon system reboot. 

where 

oplb is an assigned operational label or FORTRAN 
device unit number. 

dfn is a decimal number specifying a legal device 
file number. 

P is an optional permanent change unti I system reboot. 

FL oplb = oplb[,P] Alternate version of FL oplb = dfn [,P] 

FR [dt]nn Reserve the specified devi ce for foreground 
use. The characters representi ng the devi ce type are op,:", 
tional but, if input, will be used to validate the request. 
The device type will be required to distinguish PT40 from 
KP40, etc. 

Ht Input hexadecimal corrector cards from background 
device CC. (See Appendix G for the format of the cor­
rector cards.) To patch program segments, DATA switch 0 
must be placed in the "1" state. This causes RBM to type 
! !BEGIN SEG xx, where xx is the segment number (xx 
equals zero for the root), and go into an idle state after 
each segment is loaded. Correctors can then be loaded to 
the segment fo lIowi ng an H key- in. An S key-in wi" cause 
RBM to resume operation. Correctors modifying foreground 
must be preceded by an FG key-in. 

K P Begin reading control commands from the keyboard/ 
printer. The key-in goes into effect after the next IICCI 
message and stays in effect until a CC key-in or ICC control 
command is encountered. 

M dnG[vsn][,arl,ar2, ... ,arn]] Mount areas "ar" on 
devi ce '·dn". The operator must mount the disk pack con­
taining areas "ari" on device "dn" before making this key­
in. Unless the area specified is Xn, the disk pack will be 

tSYSGEN options (response to INC MISC query). 

Operator Control 25 



read to ensure that it contains the specified areas. If no 
areas are specified, then all areas on the disk pack will be 
added to the Master Directory in core, otherwise, only the 
areas specified will be added to the Master Directory. If 
the Master Directory already contains an entry for an area, 
an error message !! KEY ERROR, IN USE will be output. The 
currently mounted area must be removed with an R (remove) 
key-in and the M (mount) key-in reissued. Other error 
messages are listed in Table 6. The optional vsn parameter 
is a three- to eight-character volume serial number. 

Q name Queue specified program for subsequent exe-
cution in nonresident foreground. As soon as this space is 
free, the requested program is loaded. If the queue stack 
is full or if the specified program is not found in the direc­
tory, an error message is output on the assigned foreground 
oplb, DO. 

R [dn]Garl ,ar2"" ,arD] Remove a reas from the Master 
Directory. If no areas "ari" are listed, all areas on the 
device will be removed from the Master Directory. If no 
device name is listed, all of the areas listed will be re­
moved, however, area SP may not be removed. If any files 
are in use within the areas, removal does not occur and a 
!! KEY ERROR, IN USE message is output. An X (abort) 
key-in to abort a background program or an UL (force) key­
in to unload a foreground program may overcome an IN USE 
situation for removal. 

S Continue processing if Monitor is in an idle or wait 
state. If there is a waiting background program, continue 
processing that program. If there is no background program, 
begin reading control cards from the CC device. (Monitor 

26 Operator Control 

can get into the wait state from a W key-in or ! PAUSE com­
mand or into idle from a ! FIN command. ) 

svGS] Permit modification of system files on the RAD 
to take place unti I the next ! JOB or ! FIN command is en­
countered. This key-in is a double check (similar to the 
FG key-in) to prevent accidental destruction of the RAD 
files. Since this key-in is normally input in response to a 
!PAUSE command, the optional S will clear the idle state. 

Thrl1l11 Reset the RBM system time, hour and minutes. 

T hr,mn Alternate version of T hrmn. 

U L Force en un !oed of the program occupy! ng the non-
resident foreground area. Note that operator key-ins can 
interrupt the background program at any time. Operator 
intervention cannot take place while there are active fore­
ground programs, and wi" be delayed until they terminate. 

W Background goes into a wait state. 

X Abort the background job with any dumps requested, 
and output error code OP and a printed message showing 
the location of last background instruction executed. If 
the Postmortem Dump program is already active, it wi" be 
terminated. 

Z Terminate the current background job including the 
Postmortem Dump program without performing postmortem 
dumps (abort code ER is output). 



4. MONITOR SERVICE ROUTINES 

BRANCHING TO SERVICE ROUTINES 

Under RBM, foreground and background programs may make 
calls on the Monitor to perform various services or privi­
leged operations. (See Table 7.) For background requests, 
a branch to protected memory will trigger the protection 
routine which examines the branch for validity. If the 
protection violation is one of a permissible set of IIcon­
trolled ll violations, the branch is permitted; otherwise, the 
background job is aborted with a suitable error message 
giving the location to which the branch was attempted. If 
the branch is valid, the protection routi ne wi II permit the 
branch to the appropriate Monitor service routine. 

All service routines are completely reentrant. Hence, they 
can be used by multiple tasks on a completely independent 
basis. Table 7 shows the routines requiring temporary space 
in the user's temp stack. 

There are two different methods of executing a branch to 
one of these Monitor service routines: the conventional 
method is to declare the service routine name as an ex­
ternal reference and have the Overlay Loader satisfy the 
reference at load time. (In this case, the address lit­
eral will be in the user's program, and will be filled in 
by the Overlay Loader.) The other method is to branch 
indirectly through the address literal in the zero table 
(see Appendix B) using the absolute address given in 
Table 7. This is a useful technique for an absolute fore­
ground program assembly, or for a processor or other pro­
grams that are self-relocating. 

The B register is always saved and restored since it is used 
to point to temporary space. All other registers are volatile. 
The return address (specified by the L, T, or A register) 
must point to the background area if the routine is called 
(branched to) from the background. Otherwise, a protec­
tion violation abort occurs. 

Certain Monitor service routines are nonresident overlay 
routines. The Monitor subroutine Q:ROCcontrols the load­
ing of the RBM overlay area. The following Monitor service 
routines are nonresident overlay routines: 

M:ASSIGN M:DOW 

M:CLOSE M:LOAD 

M:COC M:OPEN 

M:CTRL M:RSVP 

M:DATIME M:WAIT 

M:DEFINE 

Actually, portions of the above routines are resident. The 
resident portion of M:CLOSE, for example, is as follows: 

M:CLOSE RCPYI P,T 

B Q:ROC 

DATA lID NN' 

where 

ID represents the segment identifier of the non-
resident overlay section of M:CLOSE. 

NN is the temp stack requirement. 

Q:ROC will call M:RES to reserve the appropritate amount 
of temp space, will read in the required segment, and will 
transfer control to the overlay routine which runs and re­
turns to Q:ROC. Q:ROC will reload the overlay area if 
appropriatet and wi II then release the temp space and re­
turn to the caller by a call to the Monitor service routine 
M:POP. Particular attention should be given to the maxi­
mum tempora ry sta ck requ i rements of these routi nes. 

SERVICE ROUTINES 

M:IOEX (General I/O Driver) 

M:IOEX provides direct control by background programs, 
the Monitor, or foreground real-time programs over all 
I/O operations on the buffered I/O channels for centraliza­
tion of I/O interrupts. All M:IOEX control functions are 
exempt from channel time I imits. The call ing sequence is 

LDX ADRLST 

RCPYI P,L 

B M:IOEX 

ADRLST is a pointer to the argument list, which is a set 
of two, three, or four consecutive words in the user's 

tIf the overlay area was originally occupied by an active 
Monitor service routine, the routine must be reloaded. If 
the requested routi ne is the one occupyi ng the overlay area, 
no loading will be required. 

Monitor Service -Routines 27 



Table 7. Transfer Vector for Monitor Services 

Address Words of Temp Required 

Dec. Hex. ADRL for Purpose of This Routi ne Min. Max. 

199 C7 M:FSAVE M:SAVE Function if 01 I registers previously Saved 0 0 

200 C8 M:IOEX Device-Dependent I/O Driver 16 16 

201 C9 I M:READ Device-Independent Read Routine 19 I 51 

202 CA M:WRITE Device-Independent Write Routine 19 51 

203 CB M:CTRLt Device-Independent Control Routine 35 49 

I 204 CC i M:DATIMEt Calendar Date and Time of Day 37 37 

I M:TERM Norma i Termination of Background f'\ I 205 I CD v 

I 
0 

I 
206 I CE I M:ABORT Abnormal Termination of Background 0 0 

207 CF M:SAVE Save Registers on Real-Time Interrupt 0 0 

208 DO M:EXIT Restore Registers on Foreground Exit 0 0 

209 Dl M:HEXIN Hexadecimal to Integer Conversion 0 0 

210 D2 M:INHEX Integer to Hexadecimal Conversion ·0 0 

211 D3 M:CKREST Checkpoi nt/Restart Background 0 65 

2T2 D4 M:LOADt Load Nonresident Foreground 32 32 

213 D5 M:OPENt Open Blocking Buffer for RAD File 32 32 

214 D6 M:CLOSE
t 

Close Blocking Buffer for RAD File 33 33 

215 D7 M:DKEYS Read Data Keys 0 0 

216 D8 M:WAITt Execute Wait Loop From Background 34 66 

217 D9 M:SEGLD Load Overlay Segment 29 61 

218 DA M:DEFINEt Define RAD Files in Background Temp Area 32 32 

219 DB M:ASSIGNt Assign Operational Labels 37 51 

220 DC M:POP Release Dynamic Temp Space 0 0 

221 DD M:RES Reserve Dynamic Temp Space 0 0 

222 DE M:OPFILE Convert Operational Label to Device-Fi Ie Number 0 0 

223 DF M:RSVpt Reserve or Release Peripherals 39 71 

224 EO M:DOWt Diagnostic Output Routine 32 64 

225 E1 M:COCt 
Communications Handler 44 44 

tThese routines are nonresident RBM overlays. All nonresident RBM overlays require a minimum of 32 temp cells to load 
the routine. 

Notes: 1. To branch to one of these routines, branch indirectly through the specified address above after RCPYI P,L ---
(except M:RES which is called following an RCPYI P, T). 

2. The minimum temp space required is the number used by the routine itself. The maximum temp space is the 
number required by this routine and those it calls, plus 19 if any of the routines are nonresident RBM over-

I 
lays. For example, M:READ (19) may call Q:ROC to load M:OPEN (13) and Q:ROC will reenter 
M:READ (19) to load the overlay. A total of 51 temp cells will be used. 

I 

3. M:WRITE cal Is M:CLOSE when it receives a IIwrite-end-of-file ll command for RAD files. This requires 
51 temp cel Is. 

28 Service Routines 



Table 7. Transfer Vector for Monitor Services (cont.) 

Notes: 4. 
(cont. ) 

Normally, M:SEG LD requires 29 temp cells. However, 61 are required to output the message !! BEGIN 
SEG xx. This is a,n RBM assembly option (i. e., Debug = yes). 

5. 

6. 

M:CKREST requires 65 temp cells if the checkpoint is performed at the priority level of the calling task 
and the message !! BKG CKPT is to be typed out. This message can be suppressed if bit 8 of R:SYFG is 
set, in which case M:CKREST requires 33 temp cells. 

Use of any device that has a nonresident device dependent I/O edit or error recovery routine associated 
with it requires 51 temp cells byM:READ/M:WRITE. These include KP, PT, LP, B7, CR, andCP. However, 
if one of these devi ces is not ready, 83 temp cells may be required. 

program or in a temporary stack. This argument I ist appears 
as follows: 

word 3 

word 0 

o OP 

o 2 3 12 13 15 

where 

F 

A 

z 

OP 

word 1 

o 

word 2 

o 

= 0 if word 1 is an operational label or device 
unit number. 

= 1 if word 1 is a device file number. 

= 1 if AIO Receiver is specified in word 3 (fore­
ground option only). 

= 0 is no AIO Receiver is specified (three-word 
call, then). 

= 1 if AIO Receiver is acknowledged on zero 
byte count interrupt. 

= 0 if acknowledged on channel end only. 

is the code for the operation to be performed: 

o for SIO 

1 for TIO 

2 for TDV 

3 for HIO 

4 for "check previous data transfer" 

Operational label or file number 

15 

Address of first IOCD (for SIO only) 

15 

Address of AIO Receiver (for SIO only) 

o 15 

Return is to the location in the L register on the call to 
M:IOEX. B register is always saved. 

The Overflow (01) and Carry (CI) Indi cators, the A register, 
E register, and (in some cases) X register are used to return 
status information on the required operation. The complete 
list of status codes is given in Table 8. In this table, DSB 
stands for Device Status Byte, OSB for Operational Status 
Byte, Byte Count Residue is from the even I/O channel 
register at channel end, and Dev. No. stands for the de­
vice number of the current device. 

Note that no I/O error recovery has been attempted. DSBs 
and OSBs are just as received from the I/O system hardware. 

. These status returns are organized so that a quick and simple 
test will show the nature of the return. If the user wishes 
to keep trying to initiate the I/O operation or keep check­
ing for completion, it is possible to loop back to the call 
to M:IOEX. 

The user can use M:IOEX to read/write on the RAD or 
any peripheral device that uses standard Xerox Sigma pe­
ripheral responses. For input/output operations to the 
RAD, the user must first give a seek order and then the 
appropriate data-transfer request. The user must also per­
form his own file management. If multiple tasks use the 
RAD, they must cooperate in some way so that the seek 
address is not modified by some higher-level task before the 
data operation is initiated. Note that a user must always 
issue a "Check" (op code of 4) after each read or write 
request. 

The following rules govern the use of M:IOEX for a RAD: 

1. A device-fi Ie name of the form XXdn must be included 
in the set of SYSGEN input parameters following the 
heading DEVICE FILE INFO, where XX indicates that 
this is a special-purpose device for use with M:IOEX, 
and dn is the hardware device number of the RAD. The 
M:IOEX calling sequence must contain the device-file 
number corresponding to this device-fi Ie name, or must 
contain an operational label that is assigned to the 
device-fi Ie number. 

Service'Routines 29 



Table 8. Return Status from M:IOEX 

E Register A Register X Register 
Operation Major Status 01 CI 

I I 0 1 - 7 8 -15 0-7 8-15 o - 15 

SIO, TIO, Device number 
1 1 0 -- Recognition Code 0 TDV, HIO not recognized 

I I 
Inval id call or oplb 0 0 1 -- 4 or 8 0 

Ali 
oplb equals zero 0 0 0 -- 2 0 

I 
canno e 

0 i 0 
I 

Dev. 1'10. u 

I t 
I Number accepted 

SIO t b Current file TIO 

t 0 0 
Active file 

DSB Dev. No. -1 510 Channe I busy 0 
Number 

Successful Current file SIO 
Dev. No. 0 0 0 0 

Number DSB initi ation 

SIO cannot be 
0' 1 0 

TIO accepted Current fi I e 
Dev. No. --TIO 

Number DSB 
Other 0 0 0 

Dev i ce abnorma I 
0 1 0 

condition 
Current file TDV 

Dev. No. --TDV 
Number DsB 

Dev i ce norma I 
0 0 0 

condition 

Device operating 

I when HIO 0 1 0 
received 

Current file HIO 
Dev. No. --HIO 

Number DSB Device not oper-
ating when HIO 0 0 0 
received 

I/O operation Current file SIO 
Dev. No. --1 0 0 

Number DSB in progress 

I/O check 
I/O completed 

0 1 0 
E unusual end 

AIO Byte Count 
Flag OSB 

DSB 
Dev. No. 

Residue I/O completed 
0 0 0 

(Bit 7) 
normal end 

Legend: 

tUse BXNC to t'est both conditions simu!taneously. 
I DSB = Devi ce Status Byte 

OBS = Operational Status Byte 

30 Servi ce Routi nes 



2. The set of SYSGEN input parameters following the 
heading RAD ALLOCA nON must include provisions 
for reserved tracks that are not to be included in the 
areas allocated for RBM file management. This can be 

. accompl i~hed by 

a. Assigning the system RAD to a device number other 
than XXdn. This method requires two RADs, one 
containing the RBM area assignments, and the 
other available for use with M:IOEX. 

b. Allocating only part of a RAD for RBM area assign­
ments, leaving the remainder available for use 
with M:IOEX. 

c. Allocating part of a RADforM:IOEXuse by speci­
fying that a number of tracks be skipped between 
RBM areas with an allocation parameter of SK = n, 
where n is the number of tracks. 

d. Any meaningful combination of the above. 

M:IOEX FUNCnONS 

TID, TDV, HID In these operations, the request is per-
formed immediately and the devi ce status bytes are returned 
if the device is recognized. The AIO Receiver is ineffec­
tive for these operations. 

SID The SIO operation is initiated if there is device 
recognition and the channel is free (which may not be the 
same as IIdevi ce free II or IIdevi ce contro II er free II for chan­
nels with several devi ces). 

The" SIO is issued even if the device is in the manual mode. 
It is therefore the responsibility of the user1s program to test 
for the manual mode both before and after the SIO request, 
and to inform the operator by a suitable message. 

An HIO can be used to abort an I/O operation. This results 
in setting the channel end device ready for a new activity. 
Since status is returned, an I/O check operation is not 
returned. 

Protection checks are performed only for background I/O 
requests. Background is not permitted an AIO Receiver, 
and a receiver is ignored if requested from the background. 
Background operations specifying data chaining are not 
allocated. This is due to the structure of the 10CDs, I/O 
Data Tables, and the requirements for the absolute protec­
tion of foreground programs (see II End Actionll in Chapter 5). 

If the request for I/O action is for an odd number of bytes, 
the order byte must be properly set in the right half of the 
word, as specified in the Sigma 2 and Sigma 3 Computer 
Reference Manuals. M:IOEX does not move any data or 
order bytes. 

When using foreground data chaining, it is very important 
to set the interrupt flags on all 10CDs except for the one 
pointing to the lIorder li byte, since an unusual end condi­
tion in one of the 10CDs without the interrupt flag being 
set wi" cause the I/O to term i nate without an interrupt, 
and the channel may then IIhang Upll waiting for the in­
terrupt because the RBM tables indicate that the channel 
is still busy. 

The Monitor does not alter the user1s data in any way. If 
an I/O interrupt is received and there is no AIO Receiver 
specified (and the device is still busy), the I/O interrupt 
is ignored and the channel remains active. 

The user1s program must determine whether there was a 
channel end or an unusual end condition. If the return is 
for a busy device or channel, the program can loop on this 
request unti I the operation is successful. 

Since only higher priority tasks can take control from the 
task issuing the request, the routine issuing the request 
gains control of the desired device and/or channel as soon 
as the current operation is complete. The M:IOEX routine 
inhibits interrupts for a period of less than 100 microseconds 
during the loading of the I/O channel registers and the set­
ting of the activity status for the device and channel. Thus 
a higher priority task can always interrupt up to the point 
when the I/O channels are loaded during the initiation of 
an I/O request. 

110 CHECK This operation tests for channel end on the 
previously requested I/O operation by testing certain flags 
within the RBM I/O tables. The flag is set by the I/O 
interrupt task when the devi ce interrupt" occurs. Thus, 
no nos are required to determine when the operation is 
complete. Since the nos do consume some I/O time 
(particularly if executed repeatedly in a test loop), the 
method of checking for I/O compl etion described herein 
is desirable. The Monitor saves the operational status 
byte and the byte count residue from the completion of 
the I/O operation, even though another device may have 
used the channel before the end-action check is made by 
the requesting task. 

The following restrictions are pertinent in using M:IOEX: 

1. RBM will not necessarily recover automatically from 
the results of an HIO for most devices. Operator in­
tervention may be necessary. 

2. Background programs cannot specify data chaining. 

3. Background programs must specify an interrupt. 

M:READ (General Read Routine) 

M:READ provides device-independent input with stan­
dard editing and checking. Standard error detection and 

Servi ce Routi nes 31 



correction is optional on each call. The calling se­
quence is 

LDX ADRLST 

RCPYI P,L 

B M:READ 

ADRLST is a pointer to the argument list, a set of two to 
six words in the user's program or in a temporary stack. 
This argument list appears as: 

word 0 

o ORDER 

o 2 3 4 5 7 8 15 

where 

F 

A 

W 

= 1 if a device-file number is specified. 

= 0 if an operational label or device unit num­
ber is specified. 

= 1 if an AIO Receiver address is specified 
(specificable by foreground only). 

= 0 if no AIO Receiver is specified. 

= 1 if wait for completion is unconditional. 

= 0 if wait is for "initiate and return" only; 
return is immediate if operation cannot be 
started at once. (The minimum-seek algo­
rithm does not apply to RAD "no wait" 
operations. ) 

E == 1 if standard error recovery is to be performed 
at channel end. 

== 0 if no error recovery is to be attempted. 

For magneti c tapes, RAD, or disk pack, five attempts 
for error recovery will be made if E is specified. If 
I/O without a WAIT is specified, error recovery will 
not be performed until A "Check" is issued by the user. 
See RAD and Disk Pack Error Recovery 

R == 1 if a RAD record displacement is specified 
(granule or logical record number, applic­
able only to random files). If the file is not 
random, calling sequence error is returned. 

= 0 if a RAD record displacement is not specified 
and implies sequential access of random files 
or sequential files. 

32 Servi ce Routi nes 

ORDER is one of the following permissible pseudo 

word 

o 

word 2 

o 

input orders: 

Order 

X'OO' 

Operation 

Return information about this device 
and fi Ie. See Return Registers. 

X'02' Read binary. 

X'04' Check previous input for completion 
(after a "no wait" initiation). 

X'06' Read automatic. 

X'OCI 

X'10' 

Read backward (9-track magnet! c 
rape only). 

Return information on FORTRAN 
associated fi les. 

Operational label or file number 

15 

Address of buffer to receive data 

15 

Buffer must be in background if called by a background 
program. Also, buffer must not overlap active temporary 
storage or unavailable memory. 

word 3 

Number of bytes to transmi t 

o 15 

Byte count must be an even number when readi n9 from RAD 
files and cannot exceed 65,536. For all other devices the 
byte count may be either even or odd but cannot exceed 
8192. If the byte count is even, input data stored in the 
user's buffer starts in the left-hand byte; if odd, data starts 
in the right-hand byte. 

word 4 

AIO Receiver or RAD record displacement 

o 15 

If A = 1 (in word 0), this is the address of the closed AlO 
Receiver subroutine called by the I/O interrupt task at 
channel end. If A -= 0, this is the RAD record displacement 
(granule or logical record). 



word 5 

II RAD record displacement (optional) 

o 15 

If an AIO address is specified (A = 1 in word O), word 5 
indicates the displacement from the start of the file (starting 
with a displacement of zero). Transfer starts at the begin­
ning of the indicated file unit. Word 4 is RAD file unit 
displacement if A = O. 

Whi Ie blocked and unblocked random fi les may be accessed 
randomly or sequentially, the usage modes should not be 
freely mixed. Note that if the R bit is not set for random 
files, the file is processed sequentially. 

RETURN REGISTERS 

Return is always to the location specified in the L register. 
The B register is always saved. 

The E, A, and X registers all contain status information on 
the return, as shown in Table 9. I/O completion codes 
are listed in Table 10. Return is always immediate if there 

is a calling sequence error, in which case the E register is 
negative upon return. For the case where a wait is speci­
fied, the I/O is initiated and the M:READ routine loops 
until the operation is complete. When "initiate and no­
wait" is specified, an SIO is issued before the return if the 
device is recognized, is currently free, can accept an SIO, 
and is not in the "manual" mode (unless M = 1 in word O). 
If anyone of these conditions is false,. the M:READ routine 
returns immediately with the appropriate indicators set. If 
the channel or device is busy, the caller can either loop 
back to the call to M:READ or switch to another devi ceo 
The "wait" flag has meaning whether this is an initiate or 
a check order. Error recovery is attempted if specified 
before the final return is made. 

On a check operation, the byte count returned in the X 
register may not be meani ngful if the call ing sequence does 
not specify the same count as the initial read. If the order 
code is X'OO', the following device status information is 
returned: 

Register 

A 

E 

X 

Status Information 

Device name (EBCDIC). 

TDV device status byte (bits 0-7} and physi­
cal devi ce number (bits 8-15). 

Physical standard record size (bytes for non­
RAD files or granule size for RAD files. 

Table 9. Return Status from M:READ, M:WRITE, M:CTRL 

Operation Major Status Action E Reg. A Reg. X Reg. 

All operations Operational labels not Return immediately -1 8 tt 
valid 

Ca" i ng sequence error Return immediately -1 4 tt 

Operational label is set Return immediately 0 2 t 
to zero 

RAD file positioned at Return immediately 0 4 t 
EOT 

Unrecoverable I/O error Return after error recovery -1 1 t 
attempt, if any 

Illegal sequence of RAD Return immediately 0 9 t 
operations 

Blocking buffer not Return immediately 0 10 t 
available 

Initiate I/O Channel and devi ce are Initiate I/O and return. 0 0 o or -1 
and no wait free and in automatic Status in X register only 

t Unspecified 

ttSector size (in bytes) of the device containing the BT area. 

Servi ce Routi nes 33 



Table 9. Return Status from M:READ, M:WRITE, M:CTRL (cont.) 

Operation Major Status Action E Reg. A Reg. X Reg. 

meaningful if A=l in the 
call and the A register is 
zero upon return. X =-1 
if the Ala Receiver will 
not be acknowledged; 
otherwise X = o. 

Channel and/or devi ce Return immediately 0 -1 t 

I 
are busy 

I. .. n ,. I 1 I 1 I .. - -Manual I nTervenTlon IS 

1"''1Ut.v'''-'I \11 "-Ar.uc. ,11_""._ 

I I or no de vi ce recogni zed 

"'0_":".0.,..1 1m"" I 1"Y\1"'\,..f,o 

Completion avai lable Return immediately 0 See Table 10 t 
without I/O being 
initiated 

Check and I/O sti II in progress Return immediately 0 ·-1 t 
no wait 

I/O compl ete Return after end- o or -1 completion Byte 
action, if any code count 

Initiate and Channel and device are Initiate I/O and wait 
wait free and automati c for completion 

Channel or device Wait and keep trying 
are busy 

Device number is not Type out the proper 
recognized or is write message to opeiatoi 
protected and retry 

Device is in manual Type out EMPTY mes-
mode sage to operator and 

retry 

Initiate and I/O sti II in progress Wait, and keep 
wait or check checking 
and wait 

I/O complete Perform any end- o or -1 completion Byte 
action and return code count 

transmitted 

, 

t U nspec ifi ed 
I 

34 Servi ce Routi nes 



Table 10. I/O Completion Codes 

E Reg. A Reg. Meaning 

0 0 Operation successful. 

-1 1 Unrecoverable I/O. 

0 2t Operation not meaningful for 
this device. 

0 3
t 

End-of-fi Ie encountered. 

0 4t End-of-tape encountered. 

0 5 Incorrect record length. 

0 6 No I/O pending for this check 
operation. 

0 l Device is write-protected. 

0 8 Beginning-of-tape encountered. 

0 9 Illegal sequence of RAD 
operations. 

0 10t Blocki ng buffer unavai lable. 

tStatus also meaningful under initiate I/O and no wait. 

If the code is XI 101 
, the following status information is 

returned for random or packed files: 

Register 

A 

E 

x 

Status Information 

Address of the FORTRAN associated vari­
able (PTR). 

File units per FORTRAN logical record. 

File unit in bytes (granule or logical 
record size). 

If a read is attempted to a flawed track in disk pack files, 
the header of the flawed track is read to determine its 

Comment 

X register contains the number of data bytes 
transm i tted. 

If error recovery was specified, the maximum number 
of retries have been unsuccessfully attempted. 

Either an operational label was assigned to file zero 
or I/O operation is not meaningful for the device. 

Significant only for magnetic tape and sequential RAD 
files (except in automatic mode when significant also 
for cards, paper tape, and keyboard/printer). 

Significant only for magnetic tape or sequential and 
random-access RAD fi les. 

For read operations, the requested byte count does not 
equal the device's physical or logical record size. For 
write operations, the requested byte count is greater 
than the device's physical or logical record size. For 
either read or write, the actual byte count transmitted 
is returned in the X register. 

Error in I/O buffering. An initial no-wait I/O request 
either was not issued or was rejected. 

Significant only for writing on magnetic tapes and RAD 
fil'es. 

Significant only for reading backward and for position-
ing magnetic tapes and sequential RAD files via 
M:CTRL. 

Significant only for sequential RAD fi les. 

Significant only for blocked or compressed sequential 
RAD files. 

alternate. The alternate track is then read as if it were I 
the original. 

M:READ FUNCTIONS 

M:READ is designed to read one physi cal record from the 
specified device regardless of device type and whether the 
record is EBCDIC or binary. Therefore, M:READ will set 
up the proper order bytes for the actual device, using the 
"pseudo order byte" given in the call to M:READ only as 
a guide. The user may request fewer bytes than are in the 
record and only this number wi II be returned in his buffer. 
However, if more bytes are requested than are in the 

Servi ce Routj nes 35 



record, only the bytes in the record will be read. In 
any case, the actual number of bytes read will be re­
turned in the X register when the completion code is re­
turned, and if this is not the same as the number of bytes 
requested, an lIincorrect length ll code will be returned. 
While it is not always necessary for the user to check all 
possible return codes, it may be useful to print them out to 
aid in debugging. 

If an attempt to read a record from magnetic tape results in 
the detection of an irrecoverable transmission error and 
incorrect length condition, and if fewer than eight bytes 
were read from tape, it wi" be skipped and the next record 
on tape will be read. 

Usi ng tvA,:READ, a user can read 80 EBCDIC bytes regardless 
of whether they come from cards r paper tape! magnetic 
tape, keyboard/printer, or RAD. M:READ wi" perform 
standard editing from paper tape to give a record a format 
identical to card image output. 

By using a IIread and no wait ll followed later by a "check 
for input complete" the user can effectively overlap input 
and compute. 

The order code X'OO' is used to request information about 
an unknown device, and may be helpfu.1 in determining the 
optimum blocking sizes to use. 

REAL-TIME PRIORITY 

All of the I/O routi nes are reentrant, and any input can be 
interrupted for a higher-priority task up to the llpoint of no 
return ll of setting Monitor status flags and loading channel 
registers. External and internal interrupts are inhibited for 
up to 100 microseconds of CPU time during the actual SIO 
sequence. Keeping a high priority task active and loopi ng 
on an input request to a busy devi ce enabl es the task to 
seize control of the channel or device as soon as the cur­
rent I/O operation completes. 

SPECIAL EDITING FOR' CARD READER 

Read Automatic. Any cards with a Ill" and "2" punch in 
column 1 are automatically read as binary; all other cards 
are read as EBCDIC or BCD. (For nonstandard bi nary cards, 
the user must use IIread binaryll.) It is possible to specify 
that all cards from a certain file are to be read as BCD and 
converted by the M:READ routine to EBCDIC before being 
returned to the user. Since this would apply only to one 
file, it is possible to read some cards in EBCDIC and some 
in BCD from the card reader. (BCD card codes are pro­
duced by an IBM 026 keypunch, and EBCDIC card codes 
are produced by an IBM 029 keypunch.) The EBCDIC 
record size is 80, and the binary record size is 120 bytes. 

36 Service Routines 

An incorrect length status is returned if the requested byte 
count does not exactly match. An lIend-of-fi Ie" status is 
returned when an EBCDIC card that begins with IEOD is 
input into the user's buffer. An "end-of-tape" status is 
never returned. 

Read Binary. An lIincorrect length ll status is returned if 
the requested byte count does not equal the maximum num­
ber of bytes requested in the calling sequence. The num­
ber of bytes requested, up to a maximum of 120, are input 
in the user's buffer. IIEnd-of-file" and "end-of-tape" status 
codes are never returned. 

SPECIAL EDITiNG FOR PAPER TAPE OR KEYBOARD/ 
PRINTER 

Read Automatic. All input from paper tape or keyboard/ 
printer is initiated in a one-byte-at-a-time mode. From 
paper tape, the read order is always "read ignoring leader". 
If the first byte is a code of X'lC', X'3C', X'FF', X'9F', 
X'BF', X'DF', or X'78' (which can only happen with paper 
tape), the M:READ routine switches to a bi nary mode and 
reads up to 119 more bytes (for a total of 120 in the record). 
The code byte witl be the first byte in the user's buffer.' 

Code bytes are all invalid EBCDIC codes in the sense that 
they are not pri ntabl e graphi cs or control codes. Si nce 
they are all supersets of the card reader "1 and 2 punch" 
rule for column one, thesame codes for "read automatic" 
can be used for the card reader as for paper tape and, in 
both cases, the code is part of the user's data buffer. If 
the first byte from the paper tape or keyboard/printer is not 
one of the binary codes M:READ conti nues to read one byte 
at a time until a NEW LINE code is encountered. 

When a NEW LINE code is encountered, input transmission 
is terminated and the line image is filled out with blanks 
to the requested byte count. The NEW LINE code is not 
transmitted to the user's buffer. (if a NEW LINE code is 
the first code in the input line, it is ignored.) 

Thus, all EBCDIC records are of variable length, up to the 
maximum requested or until a NEW LINE is encountered. 
Further, EOM and cent (¢) have special meanings within 
the user's data line. An EOM causes the entire line up to 
the present position (including the EOM byte) to be dis­
carded. A ¢ sign acts like a backspace. For each ¢ sign 
received, this byte and the byte preceding it are thrown 
away. 

When reading binary records in the automatic mode, 120 bytes 
are read regardless of the number of bytes requested. For 
EBCDIC records, the paper tape is read up to and including 
the NEW LINE code. For either EBCDIC or binary records, 
not more than the maximum number of bytes requested is 
transmitted to the user's buffer. The requested byte count 
must be 80 for EBCDiC records and 120 for binary records. 
Any other byte counts result in an lIincorrect length" 
st.atus return. 



An "end-of-fi Ie" status is returned when an EBCDIC record 
that begins with lEaD is input into the user's buffer. 

Read Binary From Paper Tape. The Read Binary order for 
paper tape is "read immediate" by a SYSGEN PA option. 
The physical record size is the number of bytes requested by 
the user's input. The next record starts immediately follow­
ing the last byte of the previous record and the requested 
byte count determines the end-of-record. "Incorrect length" 
and "end-of-fi Ie" status codes are never returned. "End­
of-tape" status is not returned, even when the paper tape 
runs off the reader. 

Read Binary From Keyboard/Printer. A read binary order 
causes the keyboard/printer to read the exact number of 
bytes specified. RBM performs no editing, and no bytes 
(including NEWLINE codes) are considered control bytes. 
"Incorrect length", "end-of-tape" , and "end-of-file" 
status codes are never returned. 

SPECIAL EDITING FOR MAGNETIC TAPE 

Read EBCDIC or binary. Binary and EBCDIC modes are 
identical on 9-track tape, and M:READ supports only the 
BCD and packed-binary modest for 7-track tapes. Only the 
number of bytes requested is transferred to the user's buffer 
regardless of the physical record. "Incorrect length" status 
is returned when there are either too few or too many bytes 
in the input record, and the tape is positioned at the start 
of the next physical record. "Incorrect length ll will not be 
reported for too many bytes in the input record for 7-track, . 
packed binary tapes. 

"End-of-file" status is returned when a file mark is sensed 
on the magnetic tape; "end-of-tape" status, when the phys­
ical end-of-tape mark is sensed and standard error recovery 
is specified. If both are sensed at the same time, the "end­
of-tape" status is returned. 

The Read Backward order produces a buffer with data in an 
inverted condition. If the tape is at the load point when 
the Read Backward order is given, no data is transmitted 
and "BOT" status is returned. Read Backward wi II be 
ignored for devices other than 9-track magnetic tape. 

SPECIAL EDITING FOR SEQUENTIAL RAD FILES 

Read Automatic or Binary. On a RAD, binary and EBCDIC 
modes are identical. When reading from blocked fi les, a 
blocking buffer must be supplied. If the call ing program 
has not specified a blocking buffer, M:READ wi" call 

tThe user should be thoroughly familiary with the BCD and 
packed-binary mode if 7-track magnetic tape is used. See 
the 7-Track Magnetic Tape System Reference Manual, 
Publication 90 09 78). 

M:OPEN to reserve a buffer from the calling task's buffer 
pool. If no buffer is available, M:READ exits with a 
"blocking buffer unavailable" status. 

Compressed records are decompressed by M :READ so that 
only the expanded record, without compression codes, is 
input into the user's buffer. 

A byte count can be requested that is less than, equal to, 
or greater than the fi leis logical record size. The number 
of bytes requested, up to a maximum of the logical record 
size, is always transferred. If the byte count doesnotequal 
the logical record size, "incorrect length" status is returned. 
In any case, the file is positioned to the next logical record, 
regardless of the byte count transferred. For compressed 
fi les, the requested byte count is compared to the byte 
count of the expanded record instead of the logical record 
size. "End-of-file" status is returned when the file is 
positioned at the logical EOF. "End-of-tape" status is 
returned when the fi Ie is positioned at the logical EaT. 
This is true whether or not error recovery is specified. 

A Read Backward order wi" be interpreted as a Read order. 

SPECIAL EDITING "FOR RANDOM-ACCESS RAD FILES 

Read Automatic or Binary. Binary and EBCDIC modes are 
again identical. For unblocked random files, the exact 
number of bytes requested wi" be put into the user l s buffer 
and "incorrect length" status wi" not be returned. One or 
more granules will be read to satisfy the byte count. RAD 
space between granules is lost. Unused parts of granules 
are ignored. 

For blocked random fi les, no more than one record wi" be 
tra nsferred. A greater byte cou nt request resu Its in i ncor­
rect length. The file will always be positioned at the next 
record after a successful transfer. 

If the Read begins or extends beyond the file's ending 
boundary, no data is transmitted and "end-of-tape" status 
is returned. For blocked random files, an end-of-file may 
also occur. This is true whether error recovery is specified 
or not. 

Note: For a" RAD files, no transfer wi" be initiated that 
crosses a track boundary. Instead, it wi II be broken 
into two transfers: one to transfer to the end of the 
track, and a second to compl ete the transfer. There­
fore, in a "no-wait" operation, a check must be 
requested to compl ete the transfer. If an Ala Re­
ceiver is specified, it wi" be entered each time 
channel end occurs, but it also must be specified in 
each Check operation call. 

M:WRITE (General Write Routine) 

M:WRITE provides independent output with standard editing 
and standard error detection and correction. The error 

Service Routines 37 



handling procedure is optional on each call to M:WRITE. 
The calling sequence is 

LDX ADRLST 

RCPYI P,L 

B M:WRITE 

ADRLST isa pointer to the argument list, which is a set 
of two to six words in the useris program or in a temporary 
stack. The argument list consists of six words: 

word 0 

ORDER 

o 2 345 7 8 15 

where 

F = 1 if a device-file number is specified. 

= 0 if an operational label or device unit is 
specified. 

A = 1 if an AIO Receiver address is specified. 

W 

E 

R 

= 0 if no AIO Receiver address is s·pecified. 

Note: only a foreground operation can specify 
this. 

= 1 if wait for completion is unconditional. 

= 0 if wait is only for lIinitiate and return ll
; re­

turn is immediate if the operation cannot be 
started immediately. 

= 1 if standard error recovery is to be performed 
at channel end for this operation. 

= 0 if no error recovery is to be attempted. For 
magnetic tapes, RAD, or disk pack, five 
attempts for error recovery will be made if 
E is specifjed. If I/O without a WAIT is 
specified, error recovery will not be per­
formed until a IICheck li is issued by the user. 

= 1 if a RAD record displacement is specified 
(can only be specified for random-access 
RAD files). 

= 0 if a RAD record displacement is not specified. 

ORDER is one of the following pseudo order bytes: 

Order Operation 

Return information about this device. 

X'01I Write binary. 

38 Service Routines 

word 1 

o 

word 2 

o 

word 3 

o 

Order Operation 

X'03 1 Write file mark or !EOD. 

X'041 

X '05 1 

XIO?I 

X'10' 

Check previous output for comple­
tion (after a IIno wait ll initiation). 

Write EBCDIC. 

Check write (RAD only). 

Return information on FORTRAN 
associated files. 

Operationai iabei or fiie number 

1!J 

Address of buffer containing data 

15 

Number of bytes to transmit 

15 

The byte count must b~ an even number when writi ng on 
RAD files and may not exceed 65,534. It may be either 
even or odd for all other devi ces, but cannot exceed 
8192 bytes. If a n odd byte cou nt is requested, the fi rst 
byte is written from the right half of the word and the left 
half is ignored. If an even byte count is requested, the 
byte is written from the left half of the first word. 

Output to the card punch assumes an even byte count. An 
extra byte at the start of the buffer is sent if the count is 
odd. 

word 4 

AIO Receiver or RAD record displacement 

o 15 

This is the address of the closed AIO Receiver subroutine 
called by the I/O interrupt task at the channel end, if 
A = 1 (word 0). If A = 0, this is the RAD granule displace­
ment (granule or record) 

word 5 

RAD record displacement (optional) 

o 15 



If an AIO address is specified (A = 1 in word 0), word 5 
indicates the displacement from the start of the file (starting 
with a displacement of zero). Transfer starts at the begin­
ning of the indicated file unit. Word 4 is the RAD file unit 
displacement if A = O. 

Packed and unblocked random fi I es may be accessed randomly 
or sequentially. Note that if the R-bit is not set for random 
files, the file is processed sequentially. 

RETURN REGISTERS 

The return is to the location in the L register. The B regis­
ter is a I ways saved. 

The status is returned in the E, A, and X registers. 
Status and method of returni ng status are the same as for 
M:READ. 

If the code is X'lO', the following status information is 
returned for random or packed fi les: 

Register 

A 

E 

X 

Status Information 

Address of the FORTRAN associated vari­
able (PTR). 

File units per FORTRAN logical record. 

File unit in bytes (granule or logical record 
size). 

If a write is attempted to a flawed track in disk pack files, 
the header of the flawed track is read to determine its alter­
nate. The alternate track is then written as if it were the 
original. 

M:WRITE FUNCTIONS 

M:WRITE is designed to write one physical record on the 
device specified, regardless of the device type. Because 
of differences in Write orders for the card punch, it is 
necessary to specify whether the output record is bi nary or 
EBCDIC. (For most other devices, the difference is not 
meani ngful. ) 

Not more than one physical record wi II be written for a 
single Write order. For devices like the card punch, if 
fewer than a standard number of bytes are specified (80 fer 
EBCDIC and 120 for binary), the remainder of the record 
is padded with blanks (EBCDIC) or zeros (binary). Most of 
the general comments whi ch apply to M:READ also apply 
to M:WRITE. 

90 10 37F-1 (3/72) 

Write End-of-File. Order code X'03' produces the fol­
lowing results: 

Device Result 

Line Printer No effect 

Keyboard/Pri nter No effect 

Card Punch ! EOD card 

Paper Tape Punch IEOD NL 

Magnetic Tape EOF tape mark 

RAD Logical file mark 

For devi ces where the Write End-of-Fi I e order has no mean­
i ng, a status of "operation not meani ngful for this devi ce" 
will be returned. If a magnetic tape or sequential RAD 
file is positioned at the end-of-tape, the end-of-file will 
be output. (This is the only writing allowed past the end­
of-tape when error checking is specified.) For RAD files, 
the end-of-file is set to the current record position within 
the file as determined by the last access through M:READ, 
M:WRITE, or M:CTRL. An implicit call to M:CLOSE is 
made and any data written in the blocking buffer will be 
output to the RAD. For a random file, the R-bit may be 
expl i citly used in the write EOF function to specify the 
highest numbered record plus one as the logical file mark. 
This function is useful in subsequent RAD Editor operations. 

Write EBCDIC to Keyboard/Printer. The first byte is as­
sumed to be a carriage control byte and is never printed. 
If the byte is a zero or a one, double spacing is used; other­
wise, single spacing is used. In any case, this first byte 
is not sent to the keyboard/printer. Trailing blanks are 
removed and a NEW LINE code is command chained to the 
last nonblank byte of the user's buffer. If there are more 
than 85 printable characters, those beyond 85 are ignored, 
and a status of "i ncorrect length" is returned. 

Write Binary to Keyboard/Printer. The exact number of 
bytes specified is written. No format byte is assumed, no 
editing is performed, and no I ine format is imposed. It is 
the user's responsibi lity to insert NEW LINE codes if more 
than 85 bytes are output. A maxi mum of 256 bytes may be 
output with one operation. 

Write EBCDIC to Paper Tape. Trailing blanks are removed 
and a NEW LINE code is inserted as the last byte (if not 
already present). The entire record, specified by the byte 
count, is edited and output and an "incorrect length" status 
is never returned. 

Write Binary or EBCDIC to Line Printer. The first byte per 
record is always assumed to be a carriage control (format) 
byte, and is never printed. With any odd byte count (as in 
all of the I/O), the first byte transmitted is from the right 
half of the first word, and the left half of the first word is 
ignored. 

Service Routines 39 



The pri nt routi ne changes the logical format byte (as shown 
below) to the proper physical format code for the pri nter. 
If more than 133 bytes are specified, the remainder beyond 
133 bytes is ignored and an lIincorrect length ll status re­
turned. If fewer than 133 bytes are specified, the right 
(trailing) portion of the printed image will contain blanks. 
However, the user's buffer is not modified. The print rou­
ti ne wi II fi rst data cha i non the order byte a nd format byte 
in the Monitor area and then on the user's print image. 

If it is desired to force si ngle spaci ng, there may be a word 
appended to the beginning of the user buffer with a blank 
in the right half; the byte count is then increased to an odd 
value, and up to 132 bytes from the original buffer will be 
pri nted with the extra IIblank" used as the format byte to 
force single spacing, The format codes (in EBCDIC) are 

Format Byte 

blank 

o 

Effect 

No space before printing, single 
space after printing. 

Page eject before printing, single 
space after pri nti ng. 

Single space before printing, single 
space after printing. 

No space before printing, no space 
after printing. 

Any other format code will be treated like a blank but will 
not be printed. These are standard FORTRAN format char­
acters with the exception of the minus sign (-) which is sub­
stituted for the standard FORTRAN plus sign (+) to allow 
overprinting. The user can use M:IOEX (General I/O 
Driver) to send the standard format code or any other format 
code for XDS printers. 

Write EBCDIC to Card Punch. Regardless of the byte count 
requested, 80 bytes are always output. If fewer than 80 
bytes are requested, the punch image is fi lied out with 
blanks. The image is moved to a Monitor buffer; the user's 
buffer is never modified. If more than 80 bytes are re­
quested, only the first 80 are output and the surplus is ig­
nored. In this case, II incorrect length ll status is returned. 
If the file has been declared BCD at system initialization, 
all EBCDIC output records are converted to BCD before 
being punched. {The operation is performed in the Moni­
tor's buffer.} 

Write Binary to Card Punch. Regardless of the byte count 
requested 120 bytes are always output. If less than 
120 bytes are requested, the punch image is padded with 
trailing zeros. (The image is moved to a Monitor buffer; 
the useris buffer is never modified.) If more than 120 bytes 
are requested, only the first 120 wi II be output and the 
remainder ignored. In this case, an II incorrect length ll 

status is returned. 

40 Servi ce Routi nes 

Write EBCDIC or Binary on Magnetic Tape. Variable­
length records are possible; no check is made of the data 
and no editing is performed. The exact byte count (up to 
the allowable maximum) is always written, however for 
rei iabi I ity reasons, it is recommended that byte counts less 
than twelve or greater than 8190 not be used. For 7-track 
magnetic tape, the data is recorded in either BCD or 
packed-binary format, which may cause an lIincorrect 
length II status if the record is not read with the same byte 
count used to write the record (see the 7-Track Magnetic 
T ape System Reference Manual, Publ ication 90 09 78). No 
lIincorrect length II status is ever returned. 

If the tape is positioned past the end-of-tape marker and 
error checking is specified, the data is not transmitted and 
Hend-of-tape;; status is returned. If error checking is not 
specified, the 'data is tiansmitted and the lIend=of=tape li 

status is not returned. 

If the tape is physically write-protected and an "initiate 
no-wait ll order is requested, the IIwrite-protected" status 
is returned. If an lIinitiate and wait" order is requested, 
the Monitor puts out an alarm and waits for operator action 
(see the pseudo order bytes under the definition for ORDER 
under word 0 of the argument list). 

Write EBCDIC or Binary on Sequential RAD Files. When 
writing on blocked fi les, a blocking buffer must be sup­
plied. If the calling program has not specified a blocking 
buffer, M:WRITE will call M:OPEN to reserve space in the 
task's buffer pool. If no buffer is avai lab Ie, M:WRITE exits 
with a "blocking buffer unavailable" status. 

Records to be written on compressed files are edited with 
compression codes inserted in a Monitor buffer. The data 
in the user's buffer remains unchanged. 

For compressed .files only, the logical record size has no 
meaning and the requested number of bytes is compressed 
and output. For all other files, a byte count less than, 
equal to, or gre~ter than the logical record size can be re­
quested and the requested number of bytes, up to the maxi­
mum of the logical record size, is always output. If the 
byte count is greater than the logical record size, an "in­
correct length" status is returned. In any case, the file is 
positioned to the next logical record regardless of the byte 
count transferred. 

An "end-of-tape ll status is returned when the file is po­
sitioned at the logical EaT (whether error checking is 
specified or not or if the current operation will cross the 
logical EaT). Data cannot be output past a logical EaT. 

If a Write is attempted on a file that is either logically 
write-protected or on a RAD track that is physically write­
protected, a "write-protected" status is returned and no 
data is output. 

Since the RAD has no read-after-write capability as do 
magneti c tapes, a separate Check-Write operation is essen­
tia! to ensure absolute validity of the data outpuL How­
ever, since a separate Check-Write operation requires as 
much time as the original write operation, and the RAD has 
a high degree of reliability, the capability should only be 



used when the data is sensitive or cannot be regenerated. 
Backspacing operations must be performed before the Check­
Write operation, since no repositioning is performed at this 
time. For compressed or blocked files, no Check-Write is 
allowed and a status of "operation not meaningful II will be 
returned. 

Write EBCDIC or Binary on Unblocked Random-Access RAD 
Files. Although a granule size may be specified when a 
random file is defined, the size does not retrict the maxi­
mum number of bytes that may be written. However, each 
Write operation begins at the start of a granule, and 
uncompleted granules are filled out with zeros. The exact 
number of bytes requested is output; never with II incorrect 
length ll status return. If the Write begins or extends beyond 
the file's ending boundary, no data is transmitted and an 
lIend-of-tape li status is returned, whether or not error 
recovery is specified. 

If a Write is attempted on a file that is either logically 
write-protected or on a RAD track that is physically write­
protected, a write-protected status is returned and no data 
is output. 

Write EBCDIC or Binary on Blocked Random-Access RAD 
Files. Any access is restricted to the record size regardless 
of whether the access is random or sequential. Incorrect 
length and end-of-tape may occur. Write protection con­
siderations are the same as for unblocked random fi les. 

Note: For all RAD files, no transfer will be initiated 
that will cross a track boundary. Instead, it will 
be broken into two transfers: one to write to the 
end of the track, and a second to complete the 
transfer. Therefore, in a IIno-wait li operation, a 
check must be requested to complete the transfer. 
If an AIO Receiver is specified, it will be entered 
each time channel end occurs, but it also must be 
specified in each check operation call which may 
be different from the AIO Receiver given in the 
Write call. 

M:CTRL (General Control Routi ne) 

M:CTRL provides devi ce-independent fX>sitioning capabi li­
ties for magnetic tapes (both 7-track and 9-track) and for 
sequential RAD files. All M:CTRL control functions are 
exempt from channel time limits. The calling sequence is 

LDX ADRLST 

RCPYI P,L 

B M:CTRL 

ADRLST is the fX>inter to the argument list, which is a 
set of two consecutive words either in the user's pro­
gram or in a temfX>rary stack. This argument list appears 
as follows. 

word 0 

o 2 3 4 7 8 15 

where 

F = 1 if this is a device-file number. 

word 

o 

W 

= 0 if this is an operational label or device unit 
number. 

= 1 if wait for operation is to be initiated. 

= 0 if no wait for operation is to be initiated 
when device/channel is busy. The W flag 
has a different function for M:CTRL than for 
M:READ/M:WRITE. If the operation is ini­
tiated, control will not be restored to the 
calling task until the operation is complete. 

ORDER is one of the following pseudo order bytes: 

Order Operation 

X'EB' Space Record Backward 

, X'EF' Space Record Forward 

X'FB' Space File Backward 

X'FF' Space Fi I e Forward 

X'2B' Rewi nd Off Li ne 

X'3B' Rewi nd On Li ne 

Operational label or file number 

15 

Return is to the location in the L register. The B register is 
always saved. Status is returned in the E, A, and X regis­
ters, as in M:READ. 

Service Routines 41 



Note: For unblocked random-access RAD fi les, where 
these operations are not meaningful, an "operation 
not mean i ''lgfu I" status will be returned. 

M:CTRL FUNCTIONS 

If the device is a magnetic tape or a sequential RAD file, 
it is positioned as indicated. The record spacing com­
mands are utilized for physical records and are not mean­
ingful for FORTRAN logical records. 

Space Record Bcckv',crd. The Space Record Backvy'crd order 

positions a magnetic tape to the start of the previous phys­
ical record. If the tape is already at load point, the order 
is ignored and a BOT status is returned. If the previous 
record was an end-of-file, EOF status is returned. 

For compressed RAD files, this order is illegal and a 
status of "operation not meaningful for this device" will 
be returned. 

For sequential RAD files, the file is positioned to the start 
of the previous logical record. If the file is positioned at 
the logical BOT, the order is ignored and a BOT status is 
returned. If the file is positioned immediately beyond 
the logical EOF, EOF status is returned and the file is 
repositioned to the point immediately before the logical 
EOF. If the file is blocked and there is output data in 
the blocking buffer, it is written on the RAD before the 
file is repositioned. 

Space Record Forward. The Space Record Forward order 
positions a magnetic tape ot the start of the next physical 
record. If the record skipped was an end-of-file, EOF 
status is returned. 

For compressed RAD files, this order is illegal and a 
status of "operation not meaningful for this device" will be 
returned. 

For sequential RAD files, the file is positioned to the start 
of the next logical record. If the record skipped was the 
logical EOF, an "end-of-file" status is returned. If the 
file is positioned at the logical EOT, the record is not 
skipped and an "end-of-tape" status is returned. 

Space File Backward. The Space File Backward order posi­
tions a magnetic tape to either the start of the previous file 
mark (and EOF status is returned) or load point (if there is 
no file mark). If the tape is already at the load point, the 
order is ignored and BOT status is returned. 

For sequential RAD files, the file is positioned to either 
the start of the logical EOF or to the logical BOT. If the 

42 Servi ce Routi nes 

file is positioned immediately beyond or at the logical 
EOF, it is repositioned to the point immediately before 
the logical end-of-file, and EOF status is returned. If the 
file is positioned before the logical EOF, it is repositioned 
to the beginning-of-tape and BOT status is returned. If the 
file is already positioned at the logical beginning-of-tape, 
the order is ignored and BOT status is returned. If the file 
is blocked and there is output data in the blocking buffer, 
it is written on the RAD before the file is repositioned. 

Space File Forward. The Space File Forward order positions I 
a magneti c tape to the start of the next fi Ie. A status of 
EOF is returned. 

For sequential RAD files, the file is positioned immediately 
at the logical EOF and "EOF" status is returned. If the 
file is already positioned beyond the logical EOF or no 
logical EOF has been written, the order is ignored and an 
"illegal RAD sequence" status is returned. If the file is 
blocked and data has been written in the blocki ng buffer, 
it will be written out before the file is repositioned. 

Rewind On-Line. The Rewind On-Line order rewinds mag­
netic tape to the load point. If the tape is already at the 
load point, no error status is returned. 

For sequential RAD files, the file is positioned to the logi­
cal BOT. If the file is already at the load point, no error 
status is returned. If the file is blocked and there is output 
data in the blocking buffer, it is written on the RAD before 
the order is executed. 

Rewind Off-Line. For magnetic tape, the tape is rewound 
and unloaded. The Rewind Off-Line operation is useful 
for a "save" tape or for a tape at the end-of-reel when a 
new tape must be mounted. The user must control and check 
this condition. 

For sequential RAD files, the file is closed by a call to 
M:ClOSE. If the fi Ie is blocked and there is output data 
in the blocking buffer, the data is written on the RAD be­
fore the order is executed. In addition, the file directory 
is updated on the RAD to reflect the current position of the 
logical file mark. 

;M:DATIME (Calendar Date and Time of Day) 

M:DATIME provides the calendar date or time of day, or 
both, to either foreground or background programs in 
EBCDIC format. The calling sequence is 

lOX ADRlST 

RCPYI P, l 

B M:DATIME 



ADRLST is the pointer to the argument list, which is a set 
of two consecutive words either in the user's program or in 
a temporary stack. This argument I ist appears as follows: 

word 0 

o 2 3 15 

where 

D 

T 

S 

word 1 

o 

= 1 if return calendar date is specified. 

= 0 if calendar date is not required. 

= 1 if return time of day is specified. 

= 0 if time of day is not required. 

= 1 if date and time are supplied by the user (in 
Address and Address + 1). 

= 0 if current date or time of day, or both, are 
to be used. 

Address 

15 

where Address is the location where the date and time of 
day are stored. 

Return is to the location in the L register. The B register is 
a I ways saved. 

M:DA TIME FUNCTIONS 

If CLOCK 1 is dedicated atSYSGEN, K:CLOCK in the com­
munication region is a pointer to the accounting table that 
contains the date and time. The date and time are set at sys­
tem initialization and can be reset by the operator through un­
solicited key-ins. The date is automatically advanced and 
provisions are included for year changes including leap-year 
adjustment. Thus, under continuous operation, only adjust­
ments to accommodate daylight savings time changes are re­
quired. The date or time of day, or both, are stored in the 
following format in the area of core specified by word 1 of 
the argument list: 

Date: M 

~ 
D 

Y 

b. 

Time: H 

M 

M 

D 

~ 
Y 

b. 

R 

N 

{

2 bl anks are sup­
pi i ed when both 
date and time are 
requested 

Note: Time of day is given in military time (0000-2359). 

If the date and the time are supplied by the user (S = 1), 
the times supplied in Address and Address + 1 will be over­
laid by the calendar date or time, or both. This option is 
used by the Job Control Processor! PURGE command. 

If CLOCK 1 is not a dedi cated at SYSGEN date and/or time 
will be solicited from the operator. 

M:TERM (Normal Exit from Background Programs) 

M:TERM provides an entrance back to the Monitor on a 
normal termination of a background program. The calling 
sequence is 

RCPTI 

B 

P,L 

M:TERM 

M: TERM FUNCTIONS 

If called by a foreground program, control wi II be trans­
ferred to M:EXIT to perform the exit sequence for that task. 
On calls from the background the L register must be set to 
a background address or the background ca II wi II be aborted 
with a protection violation. 

All I/O is allowed to run down. All files utilizing block­
ing buffers wi II have their blocking buffers closed out. If 
an unconditional postmortem dump was specified, it will be 
performed at this time. The Control Command Interpreter 
wi" then be read into the background and wi II read the 
next control command. 

M:ABORT (Abort Routine) 

When a background program fails for any reason, a call to 
M:ABORT provides a method of clearing the background 
program out of core memory and for terminating all active 
I/O for the background program. The calling sequence is 

LDA LOC 

LDX CODE 

RCPYI P,L 

B M:ABORT 

CODE is a word of EBCDIC information and LOC is a word 
of hexadecimal information that is printed on the DO and 
OC devices to show why the job was aborted. 

Return is never to the location in the L register. If the call 
is from a real-time foreground program, the task is disabled 
and M:EXIT is called to perform the exit functions. If the 
call ing task occupies the nonresident foreground area, an 
unload operation will be performed. On calls from the back­
ground, the L register must be set to the background or the 
background call wi" be aborted with a protection violation. 
All I/O in progress is allowed to complete and a postmortem 
dump wi II be performed at this time if previously requested. 

Service Routines 43 



M:SAVE (Interrupt Save Routine) 

M:SAVE routine performs the full context switching when 
a foreground interrupt occurs. It is avai lable only for fore­
ground programs that are connected directly to an interrupt. 
The calling sequence is 

RCPYI P,L 

B M:SAVE 

ADRL TCB 

where TCB is the address of the Task Control Block for the 
task. 

Return is to the value in the L register + 1. The contents of 
all registers except A and L are transferred to the TeB. 

M:SAVE FUNCTIONS 

The contents of A and L must be saved in the proper place 
in the TCB before the task calls M:SAVE. M:SAVE then 
saves the original value of X, T, B, and E in the TCB. The 
inten'upting task has its own floating accumulator set into 
locations 0001-0005 and the previous task's floating ac­
cumulator pointers are saved. The M:SAVE routine stores 
the temporary stack and TCB pointers in locations 0006 and 
0007 for this current task and saves the old values in the 
interrupting task's TCB. 

If the flag in the TCB is set for" no temporary storage" 
M:SAVE saves only the hardware registers and the TCB 
pointers, and not the full context. 

If Clock 1 has been reserved for RBM accounting, M:SAVE 
will record the start time of the first interrupting foreground 
task and will trigger the RBI\A Contiol Tasktocalculatefore= 
ground run time. 

An additional entry point, M:FSAVE, is available for users 
of the Sigma 3 optional instruction, Store Multiple. This 
entry point, with an address literal in celt X'C7', assumes 
that all registers have been saved, but performs the remainder 
of the functions of M:SAVE as listed above. The calling 
sequence is 

RCPYI P/L 

B *X'C7' 

ADRL TCB 

where TCB is the address of the Task Control Block for the 
task. 

M:EXIT {Interrupt Restore Routine} 

M:EXIT restores the contents of all registers prior to exit 
from a foreground task, switches the full context back to 

44 Service Routines 

the previous task, and performs the actual exit sequence. 
The calling sequence is 

RCPYI 

B M:EXIT 

Return is to the interrupted task at the address saved in the 
PSD. All registers are restored to the same value they had 
at the time of the interruption. 

M:EXIT FUNCTIONS 

The operations performed by M:EXIT ere essentially the re­
verse of those in M:SAVE. It is necessary to inhibit inter­
rupts for about 11 mi croseconds for the actual exit sequence, 
but it is not necessary to cal I M:EXIT to perform the exit 
sequence if it can be performed by the user's program. 

The TCB contains a flag to indicate whether any temporary 
storage is used. If the task does not use any Monitor I/O 
routi nes or the floati ng accumulator, no temporary storage 
is needed. In this case, only the hardware registers are 
restored. 

M:HEXIN {Hexadecimal to Integer Conversion} 

The M:HEXIN routine converts a hexadecimal number (rep­
resented in EBCDIC) to a binary integer. The calling 
sequence is 

LDA left 

RCPY A,E 

LOA right 

RCPYI P,L 

B M:HEXIN 

where left and right contain the EBCDIC codes for the 
hexadecimal number (the left and right part of a possible 
four-byte field). 

Return is to the location in the L register. The result is in 
the A register, the X register is changed, and the B register 
is unchanged. 

M:HEXIN FUNCTION 

Blanks and zeros are treated as hexadecimai zeros. No tem­
porary storage is used and no error checking i~ performed. 



M:INHEX (Integer to Hexadecimal Conversion) 

TheM:INHEX routine converts a binary integer to a hexa­
decimal representation in EBCDIC code. The calling se­
quence is 

LDA integer 

RCPYI P,L 

B M:INHEX 

where integer is the va I ue to be converted. 

Return is to the location in the L register. On return, the 
E register contains the leftmost two bytes, and the A regis­
ter contains the rightmost two bytes. The X register is 
changed, but the B register is unchanged. 

M:INHEX FUNCTION 

Four fields of four-bit hexadecimal codes are converted to 
four fields of eight-bit EBCDIC equivalents. No temporary 
storage is used. 

M:CKREST (Chec kpo i nt/Restart Backgrou nd) 

M:CKREST checkpoints the background (i. e., writes it out 
onto a predefined area on the RAD), turns the background 
space over to the foreground program, and then restarts the 
background when requested. The call ing sequence is 

LDX ADRLST 

RCPYI P,L 

B M:CKREST 

ADRLST is a pointer to an argument I ist, as follows: 

word 0 

023 15 

where 

C 

R 

= 1 if request is to IIcheckpointll the background. 

= 0 if request is to IIrestartll the background. 

= 1 if a Checkpoint Complete Receiver is to be 
informed when the checkpoint is complete. 
(Valid only if C = 1 and P = 0.) 

= 0 ·if no Checkpoint complete Receiver is used. 

P 

word 1 

o 

= 1 if checkpoint is to be performed at the level of 
the calling task (meaningful only if C = 1). 

= 0 if checkpoint is to be performed at the level 
of the RBM Control Task (meaningful only 
if C = 1). 

Checkpoint Complete Receiver 

15 

The Checkpoint Complete Receiver should be used like an 
AIO Receiver. That is, after requesting a checkpoint, the 
foreground program should release control by a call to 
M:EXIT and regain control through the specified receiver 
address when the checkpoint operation is completed. Only 
a foreground program can checkpoint the background; a 
background program cannot checkpoint the background area. 

Return is always to the location contained in the L register. 
The B register is always saved. The A register contains the 
status (l if operation is impossible; 0 if successful). 

M:CKREST FUNCTIONS 

Checkpoint. All active I/O for the background is allowed 
to complete but no error recovery is performed for this I/O 
unti I the background is restarted. Peripheral devices dedi­
cated to the background should not be repositioned. 

When all I/O has terminated, the entire background space 
is written out onto a prespecified area of the RAD and the 
background is set II protected II • If the background is truly 
"empty"t when the request is made, the checkpoint is per­
formed immediately, and no RAD is required for the check­
pointing procedure. If a Checkpoint Complete Receiver 
was specified, it will be entered with the L register set 
to the return address and will be run at the RBM Control 
Task level. 

A checkpoint operation will be automatically performed 
whi Ie loading a nonresident foreground program that extends 
into the background. When the active nonresident program 
unloads (see Monitor service routine M: LOAD), the back­
ground will be automatically restarted. When the check­
point operation is completed, the message! ! BKG CKPT is 
output to inform the operator. 

Restart. A restart is always performed at the priority level 
of the RBM Control Task. It is assumed that no peripherals 
have been repositioned. The core allocation table is re­
stored to the previous value before the checkpoint took 
place, and the background is then loaded in from the RAD 
and conti nues as before. 

tThis would occur after a ! FIN command was encountered 
or when the Monitor was in an idle state after an abort of 
an attended job. 

Service Routines 45 



If no background program was in progress when the check­
point was called for, the background is set to an unprotected 
status but no attempt is made to reload a program from the 
RAD when the foreground terminates. 

The message! ! BKG RESTART is output to inform the opera­
tor that the background has been released by the foreground. 
See Chapter 6 for more detai Is. 

M:LOAD (Absolute Core Image Loader) 

M:LOAD initiates the loading of the root segment of a resi­
dent or nonresident foreground program by enteri ng the re­
quested program name into the queue stack. It also initiates 
the loading of the root segment of a resident or nonresident 
foreground program or background processor upon request 
from the Job Control Processor. It releases (unloads) the 
nonresident foreground space for use by the next program 
in the queue. 

The calling sequence is 

LDX ADRLST 

RCPYI P,L 

B M:LOAD 

ADRLST is a pointer to an argument list, as follows: 

word 0 

o 2 

where 

P 

Q 

U 

o 
3 15 

= 1 indicates a request to read from the specified 
device-file number (word 1). The device­
fi Ie number must currently be assigned to a 
RAD file. (This option is restricted for use 
by the Job Control Processor.) 

= 0 indicates a request to read the specified non­
resident foreground program from the user's 
processor RAD area. The program name is 
given in C1-C8. 

= 1 indicates the request is to be queued if it 
cannot be satisfied now. 

= 0 indicates the request is to be ignored if it 
cannot be satisfied now. 

= 1 indicates an unload operation, in which case 
P and Q Ciie not menaingfu!. 

= 0 indicates a load operation. 

46 Service Routines 

word 1 

D F N or C 1 and C2 

o 15 

word n 

C7 C8 

o 7 8 15 

where 

DFN is the device-file number. 

C1-C8 is the program name {must be 8 characters, 
including trailing blanks}. 

Return is always to the location in the L register. The con­
tents of the B register are always saved and the A register 
conta ins status codes, as fo II ows: 

A Register 

o 

Meaning 

Operation is successful. 

Request cannot be honored at this time 
(this could occur if Q = 0 and a non­
resident foreground area was already 
committed; or if Q = 1 and the queue 
stack was full). 

M: LOAD FUNCTION 

After saving the nonresident program name or device-fi Ie 
number request, M: LOAD tri ggers the RBM Control Subtask 
S:lOAD and then exits to the location in the L register. 

The actual loading of the program is accomplished at the pri­
ority level of the RBM Control Task. S:LOAD will ensure 
that sufficient blocking buffers are available for those oper­
ational labels contained in the header record of the proces­
sor. If the request was for a nonresident foreground program 
that extends into area reserved for the background, S:LOAD 
automatically causes the background to be checkpointed. 

It is essential that each nonresident program executed in the 
nonresident foreground area terminate itself by a call to 
M: LOAD to unload, disable itself, and then exit via the 
normal interrupt exit routine (M:EXIT). This wi II release 
the nonresident foreground area for subsequent loads. 

For an unload request, M:LOAD triggers the RBM Control 
Task routine S:LOAD for the next load if any other entry is 
in the queue stack. If no additional requests are present 
and S:LOAD has checkpointed the background, S:LOAD 
triggers RBM Control Task S:REST for a restart. 

Note that ~,,~:LOAD inhibits interrupts for a shert period 
whi Ie manipulati ng the queue stack (less than 100 J.1sec if no 
more than eight entries are waiting in the queue). 



M:OPEN (RAD Fi Ie Open) 

M:OPEN reserves a blocking buffer from a buffer pool or a 
specified location, for a sequential blocked RAD fi Ie to 
which an opeFational label or device unit number had pre­
viously been assigned. 

The calling sequence is 

LDX ADRLST 

RCPYI P,L 

B M:OPEN 

ADRLST is a pointer to the three-word argument I ist shown 
below. 

word 0 

o 

where 

F 

B 

word 1 

2 

o 
15 

= 1 if a device-file number (DFN) is specified 
(internal Monitor calls only). 

= 0 if an operational label or device unit num­
ber is specified. 

= 1 if a blocking buffer location is included in 
this call. 

= 0 if no blocking buffer location is included, in 
which case M:OPEN attempts to find space 
in the task1s buffer pool. 

Operationa I label, device unit number, or DFN 

o 15 

word 2 

Address of blocking buffer (optional) 

o 15 

Return is to the location in the L register. The B register 
is restored. The following status information is contained 
in the A register on return. 

A Register Meaning 

o Operation successful. 

Blocking buffer already defi ned. 

A Register Meaning 

2 

3 

4 

5 

6 

No space available in buffer pool. 

Illegal operational label or operational 
label unassigned. 

Not RAD file, or not a blocked RAD file. 

Blocking buffer outside of background 
for a fi Ie assigned to the background. 

Illegal DFN. 

M:OPEN FUNCTION 

The address of the blocking buffer{either the one specified 
or one located from the task1s buffer pool established by an 
ABS or $BLOCK command) is stored in the File Control 
Table. If no open request has been performed for a sequen­
tial blocked file by the user1s program, M:READ, M:WRITE, 
or M:CTRL will call M:OPEN to allocate a buffer from the 
blocking buffer pool on the first data transfer operation. 

M:CLOSE (RAD File Release) 

M:CLOSE releases a RAD file (including the blocking buf­
fer if any) or releases the blocki ng buffer for a blocked fi Ie, 
but retains the file assignment. In either case, partially 
filled blocking buffers are written onto the RAD. The call­
ing sequence is 

LDX ADRLST 

RCPYI P,L 

B M:CLOSE 

ADRLST is a pointer, to the argument list, as follows: 

word 0 

o 

where 

F 

R 

B 

o 
2 3 15 

= 1 if a device-file number is specified. 

= 0 if an operational label or device unit number 
is specified. 

= 1 if the device-file number is to be released. 

= 0 if the device-file number and operational 
label remain assigned but the blocking buf­
fer is to be released (the file is not to be 
repositioned). 

= 1 is a buffer is specified. 

= 0 if no buffer is specified. 

Service Routines 47 



word 1 Return is to the location in the L register. The contents of 
the B register are always saved. The contents of the data 

Operational label, device unit number, or DFN keys are in the A register on return. 

a 15 

word 2 

Buffer location (optional) 

a 15 

Return is always to the location in the L register. The 
B register is always restored to its former value. The A reg­
ister contains the following completion status. 

A Register Meaning 

o Successful. 

2 

3 

4 

5 

Illegal DFN. 

The operational label is not assigned 
to a RAD file. 

Illegal operational label. 

I/O error writing blocking buffer or 
EOF onto RAD. 

No buffer avai lable to complete the 
close operation. 

M:CLOSE FUNCTIONS 

If the fi Ie is blocked and data has been written on it, the 
contents of the blocking buffer are written onto the RAD. 

If the blocking buffer was allocated from the task's buffer 
pool, the buffer is released. The EOF is written on the RAD. 

If R = 1, F = a, and the operational label has a permanent 
assignment, the label is set to that value. If the label has 
no permanent assignment, the label is deleted from the table 
of operational labels. 

If an EOF has been written on the file it must also be 
written onto the RAD. To accomplish this, M:CLOSE re­
quires a buffer into which the file directory is read. If no 
buffer is specified, M:CLOSE attempts to allocate a buffer 
from the task's buffer pool (or will use the one already 
opened for this file if it is blocked). If no buffer is avail­
able and an EOF is to be written, the file is not closed and 
an error completion code is returned. 

M:DKEYS (Read Data Keys Routine) 

M: DKEYS provides a means for background programs to read 
the data keys on the processor Control Panel. The calling 
sequence is 

RCPYI 

B 

P,L 

M:DKEYS 

48 Service Routines 

M:WAIT (Simulated Wait Instruction) 

M:WAIT provides a means for background programs to exe­
cute a Wait instruction from nonprotected memory. The 
calling sequence is 

RCPYI P,L 

B M:WAIT 

The return is to the location in the L register. The B regis­
ter is aiways saved. The return does not take place until 
the operator performs an unsolicited S key-in. 

The Monitor types out the message 

!! BEGIN WAIT 

and goes into a wait loop. 

Only a background program may use M:WAIT; a call from 
a foreground program results in a no-operation. 

M:SEGLD (Load Overlay Segments) 

M:SEGLD loads and/or executes an overlay segment, for 
either the foreground or background, from a file previously 
prepared and saved on the RAD by the Overlay Loader or 
the Absolute Loader. 

The call ing sequence is 

LDX ADRLST 

RCPYI P,L 

B M:SEGLD 

ADRLST is a pointer to the argument list. 

word a 

a 

where 

W 

a Segment ID 

2 3 7 8 

= 1 if an unconditional wait for completion is 
specified. 

= a if loading is to be initiated only; control 
will be returned to the calling program. 

15 



L 

R 

word 1 

o 

-:::: 1 control is to be transferred to the transfer 
address of the segment just loaded (valid 
only if W = 1). 

-:::: 0 control is to be returned to the calli ng 
program. 

= 1 there is a "loading complete" receiver 
(meaningful only if W -:::: 0). 

= 0 no "loading complete" receiver. 

Operational label 

15 

The operational label is used to control the loading of the 
segment. The file must previously have been defined as a 
RAD fi Ie and set to the proper overlay program on theRAD. 
Background programs should use operational label PI. 

word 2 

ADRL of OV:LOAD 

o 15 

The symbol OV:LOAD must be declared as an external 
reference and is set by the Overlay Loader to the value of 
the Overlay Loader Control Table address in core. 

If the program is assembled in absolute form, the Absolute 
Loader will create the OY:LOAD table at the end of the 
root. Therefore the last item in the root would normally be 
an OY: LOAD EQU $. 

word 3 

Loading Complete Receiver 

o 15 

The Loading Complete Receiver is permissible only for fore­
ground programs and should be used in the same way as an 
AIO Receiver. That is, after loading is initiated the fore­
ground program should release control by a call to M:EXIT 
and regain control through the specified receiver address 
when the overlay operation is completed. 

On all calls specifying an 1\ initiate only", a check operation 
must be performed on the operational label designated to de­
termine the status of the load and to release the associated 
device-file number for subsequent use. 

On entry, return is to the location in the L register if the 
L parameter in word 0 of the calling sequence is "01\; other­
wise, control is returned to the newly loaded segment. The 

90 10 37F-1 (3/72) 

B register is always saved. On the return, the A register 
contains status showing the completion code, as follows: 

A Register 

o 
-1 

2 

Meaning 

Operation complete and successful. 

Irrecoverable I/O error. 

Invalid call. 

M:SEG LD FUNCTIONS 

A core table of 5n + 1 words is maintained at the end of the 
user's root segment that defines the actual RAD·addresses 
for the overlay segments. (OY:LOAD points to this table; 
n is the number of segments in the program.) The segments 
may be loaded in any order because of the random-access 
capability of the RAD. Using the Loading Complete Re­
ceiver and associated procedures can achieve greater effi­
ciency in foreground loading. 

M:DEFINE (RAD Fi Ie Definition) 

M:DEFINE allocates a portion of the background temporary 
fi I e area on the RA D for temporary use by the desi gnated 
operational label or device unit number. This call is 
applicable to foreground operations only if the file is 
previously assigned to a permanent RAD file. The calling 
sequence is 

LDA FAVAA (FORTRAN programs only) 

LDX ADRLST 

RCPYI P,L 

B M:DEFINE 

FAVAA signifies the FORTRAN Associated Yariable 
Absolute Address. It is meaningful only if K = 1. 

ADRLST is a pointer to a four-word argument list. 

word 0 

F WP 0 K G o 
2 345 o 7 8 9 10 

\~------~T~-------JI 

Fi I e Format Byte 

where 

F specifies the fi Ie format as follows: 

000 Blocked 

001 Compressed 

010 Unblocked 

100 Random, blocked 

110 Random, unblocked 

Servi ce Routi nes 

15 

49 



WP = 11 if RBM write protection is specified. 

= 10 if foreground write protection is specified. 

= 01 if background write protection is specified. 

= 00 if write protection is not desired. 

K = 1 if the A register contains the FAVAA. 

= 0 if FAVAA is not specified. 

G = 1 if a granule size for random files is spec-
ified; otherwise, the granule size is deter­
mined by the sector size of the reference 
device (meaningfu! only if F = 110). 

word 1 

Operational label or device unit number 

o 15 

where 

operational labels are EBCDIC 

device unit numbers are binary 

word 2 

Number of logical records in file 

o 15 

word 3 

Logical record size, or granule size if G=l (bytes) 

o 15 

The number of logical records in the fi Ie and the logical 
record size are used to calculate the actual temp space 
required. For compressed EBCDIC files, n card images can 
normally be accommodated by n/3 SO-byte records. Thus, 
12,000 card images would require 4000 SO-byte records 
(about S3 tracks on a 360-byte per sector RAD). For 
blocked, uncompressed files, the total area in sectors equals 
the number of records requested, divided by the number of 
logical records per sector. Thus, 120-byte binary card 
images can be placed three per sector on a 360-byte-per­
sector RAD. A 300-card deck would therefore require 
100 RAD sectors {seven tracks}. If G = 1 and F = 110, the 
fi Ie size is computed using the granule size in word 3. 

If this is a random fi Ie and G = 0, then the logical record 
size is actually the FORTRAN random I/O logical record 
size and the granule size is equal to either the physical 

50 Service Routines 

sector size for temporary files, or to the granule size defined 
at fi Ie ADD time for permanent fi les. 

For unblocked records, the total area in sectors equals the 
number of records requested multiplied by the number of 
sectors required for each record. 

Return is to the location in the L register. The B register is 
restored. The A register contains status information on the 
return, as fol lows: 

A Register 

o 

2 

3 

4 

5 

Meaning 

Operation successful. 

Calling sequence error. Logica! record 
size is not an even number or 0 records 
requested. 

Operational label invalid (foreground) 
or no spare entry in operational label 
table. 

No more device-file numbers for the 
RAD. 

RAD overflow (files too large). 

K = 1 and attempted to define pre­
viously defined file with a different 
FAVAA. 

M:DEFINE FUNCTIONS 

For the specified temporary fi Ie, the appropriate size is 
allocated from the pool of temporary file space if such space 
is available. An unused device-file number is then initial­
ized with the boundary points of this RAD file. All subse­
quent references to this file (until closed by a call to 
M:TERM, M:ABORT, or M:CLOSE) will refer to the allo­
cated area. The file is set to the II rewound ll condition, if 
it is a sequential file. 

If the operational label is already assigned, no error status 
is returned if it is assigned to a background RAD file. If 
K = 1, the address of the FORTRAN Associated Variable 
from the call must be the same as the one for the fi Ie. 

Note: M:DEFINE uses locations 1-3 (of the calling pro­
gram's floating accumulator) for temporary storage. 

M:ASSIGN (Assign RAD Files) 

M:ASSIGN performs equivalence between an operational 
label or FORTRAN device unit number, and 

1. A RAD area. 

2. A file name within a RAD area. 

3. A device-fi Ie number. 

4. Another operational label or device unit number. 

90 10 37F-l (3/72) 



The calling sequence is 

LDX ADRLST 

RCPYI P,L 

B M:ASSIGN 

ADRLST is a pointer to an argument list of two to eight 
words, as follows: 

word 0 

o 

where 

TY 

F 

A 

D 

o D 

2 3 4 12 13 15 

= 00 if the label is to be assigned to another 
label. 

= 01 if the label is to be assigned to a device­
file number. 

= 10 if the label is to be assigned to a RAD 
area. 

= 11 if the label is to be assigned to a fi Ie 
within a RAD area. 

= 0 ifthe label is a background operational label. 

= 1 if the label is a foreground operational label. 

= 1 if the two-letter area mnemonic is contained 
in word 3; otherwise, D will specify the 
area. If A is set, D will be ignored. A must 
always be set for areas other than SP, SD, 
SL, UP, UD, UL, BT, and CPo 

= directory to be used: 

000 Checkpoint area (area only) 

001 System Processor area 

010 System Library area 

011 System Data area 

100 Background Temp area (area only) 

101 User Processor area 

110 User Library area 

111 User Data area (UD only) 

No named files may exist in either the Checkpoint or Back­
ground Temp areas. D is ignored for TY = 00 or 01. 

word 1 

oplb (1) 

o 15 

where oplb (1) is the operational label or device unit to be 
assigned. 

word 2 

opbl (2), DFN, or buffer address 

o 15 

where 

oplb (2) if present, indicates that oplb (l) wi II be 
assigned to the device-file number that oplb (2) is 
currently assigned to. 

DFN if present, is the device-file number that 
oplb (1) will be assigned to. 

buffer address is the first word address of a buffer 
(equal to one blocking buffer in length) that will 
be used by M:ASSIG N as temporary storage for the 
appropriate RAD area dictionary. This is mean­
ingful only for TY = 11. 

word 3 

C1 or A1 C2 or A2 

o 7 8 15 

If A (of first word of argument list) = 1, word 3 contains 
the two-letter area mnemonic, Aland A2i otherwise, 
word 3 contains the first two characters of the file name, 
as continued below: 

word 3 + A 

C1 C2 

o 7 8 15 

word 6 + A 

C7 C8 

o 7 8 15 

C1-C8, if present, is the name of the file to which oplb (1) 
is to be assigned. That is, this fi Ie on the RAD is to be 
linked to an unassigned RAD device-file number to which 
oplb (1) is, in turn, assigned. This is meaningful only for 
TY=ll0 

Service Routines 51 



Return is to the location in the L register. The B register is 
restored. The A register contains status information on the 
return as follows: 

A register 

o 

2 

3 

4 

5 

6 

Meaning 

Successful operation. 

Mixed oplbs or device-file numbers 
(foreground to bakcground or vi ce 
versa). 

Invalid oplb (2) or DFN. 

No spare entries in oplb or DFN tables. 

File name not found in designated 
directory. 

RAD area not aiiocated. 

Illegitimate RAD file format. 

When the A register = 0, the X register will contain the 
standard record size of this devi ceo 

M:ASSIG N FUNCTIONS 

M:ASSIG N may be called to make any of four types of 
assignments, according to the setting of TY, as follows: 

52 

TY = 00 oplb (1) is assigned to the DFN to whi ch 
oplb (2) is currently assigned. Oplb (2) 
must be the same mode (foreground or back­
ground) as oplb (1) (error return A = 1). A 
background program cannot assign fore­
ground oplbs (error return A = 1). 

= 01 oplb (1) is assigned to the specified DFN. 
DFN must be legal, must not be a RAD 
DFN, and may not be foreground if 
oplb (1) is background. 

= 10 oplbl (1) is assigned to a currently unused 
RAD DFN which, in turn, is linked via 
the RBM Master Dictionary to a current 
RAD area. The area may then be used 
exactly like a RAD file with the following 
characteristics: 

Format: 

Logical record size: 

Write protection: 

BOT: 

EOF: 

EOT: 

random 

sector size 
in bytes 

area write­
protect code 

BOT of area 

none 

EOT of area 

= 11 oplb (1) is assigned to a currently unused 
RAD DFN, which in turn is iinked via the 
RAD dictionaries to an individual file 
within an area (e. g. I XSYMBOL). The 
RAD area must currently be accessible (error 

Service Routines 

return A = 5). The buffer address must be 
in the background if the calling program 
is a background program. 

If there are no errors, the assign wi II take place regardless 
of the prior status of oplb (1). For TY -= 10 and 11, RAD 
files are rewound (file pointer is set to BOT). For TY = 00 
and 01, the file position is unchanged. 

M:RES (Temporary Storage Allocation Without Transfer) 

M:RES allocates storage in a temporary stack, saves the 
previous value of B, and sets B to the first word address of 
temporary area being allocated. The calling sequence for 
dynami c allocation of storage is 

RCPYI 

B 

DATA 

DATA 

ADRL 

P,T 

*$ + 3 

n 

o 
M:RES 

where n is the number of cells to be reserved. 

T must point to the background if it is a background 
program. 

A TS abort wi II occur if more temporary storage is requested 
than is available. 

The calling sequence for nondynamic allocation of storage is 

RCPYI P,T 

B *$ + 3 

DATA n 

ADRL TEMP 

ADRL M:RES 

where TEM P is the address of n reserved locations at the end 
of the call ing program. This area must not contain any code 
or I iterals for Publ ic Library routines. 

Upon return, the B register contains the pointer to the new 
temporary storage stack. Locations 0 and 1 relative to the 
base register are used by the storage allocation routines and 
may not be used by other routines. Location 2 relative to 
the base (the return address for M:POP) is set to M:ABORT. 

The calling program can set up its own exit through M:POP 
via the followi ng. 

LDA =RETURN 

"I 1 
L., , I 

The L and X registers are unaffected. 

90 10 37F-l (3/72) 



M:POP (T emporary Storage Re I ease Routi ne) 

A call to M:POP is made to release the current TEMP stor­
age stack (pointed to by the current value in the B register), 
restore the previous value to B, and return to the location 
specified in TEMP + 2. 

If the temporary storage was allocated by M:RES, the call 
must set up a return in TEMP + 2. The calling sequent is 

LDA 

STA 

=RETURN 

2" 1 

RCPYI P, L 

B M:POP 

when RETURN is the location to which return will be made 
after the stack is released. 

L must 01 ways be set, even for foreground tasks. 

Return is to the address specified in location 2, relative to 
the beginning of the stack being released. The location in 
the L register and the return address must be in the back­
ground area if return is to a background program. On re­
turn, B contains its previous value before the RES-POP 
sequence. Assume return is made to location R; L is set to 
the va I ue R + 1. 

M:OPFILE (Convert Operational Label to Device-File 
Number) 

M:OPFILE determines the file to which a foreground or 
background operational label is assigned. The calling 
sequence is 

LDA TYPE 

LDX ADRLST 

RCPYI P,L 

B M:OPFILE 

where 

TYPE is the mode of the operational label; nega-
tive for foreground, positive for background. 

ADRLST is a pointer to the operational label. 

Return is to the location in the L register. The B register 
is saved and restored. The status is contained in the E reg­
i ster as fo IIows: 

E = negative if label is not found 

E = positive if label is found 

If E is positive, the following information is provided. 

Register Contents 

X 

E 

A 

Device-fi Ie number 

10CT entry addresst 

Operational label table entryt 

Note: This routine isusedprimarilybytheRBM and certain 
processors. It wi II seldom be needed by user programs. 

M:RSVP (Reserve or Release Peripherals) 

M:RSVP reserves a peripheral device for foreground use 
only, until the foreground voluntarily releases the device. 

LDX ADRLST 

RCPYI P,L 

B M:RSVP 

ADRLST is the pointer to the argument list, which consists 
of three consecutive words either in the user1s program or 
in a temporary stack. This argument list appears as follows: 

word 0 

Device number 

o 2 3 4 8 15 

where 

F 

U 

= 1 if request is "reserve for foreground II • 

= 0 if request is "release to background". 

= 1 if request is for an unconditional reserve, 
where operator intervention is not required. 

= 0 if request is for a conditional reserve, where 
operator intervention is required. 

R = 1 if a receiver is to be entered when the con-

T 

word 1 

o 

ditional reserve is completed (only meaning­
ful if U = 0). 

= 0 if no such receiver is to be used. 

= 0 if a device type is not specified. 

= 1 if a device type is specified (used to distin­
guish KP40 from PT 40). 

Reserve Complete Receiver (optional) 

15 

tSee the chapter on SYSGEN for a discussion of the I/O 
Control Table and the Operational Label Table. 

Service Routi nes 53 



A Reserve Complete Receiver should be used like an AIO 
Receiver; namely, after the request has been acknowledged, 
the foreground program should release control by a call to 
M:EXIT and should regain control when the reserve has 
been effected through the specified receiver address. This 
receiver is entered at the priority level of the RBM Control 
Task and should return to the location contained in the 
L register. If R = 0, word 1 contai ns the devi ce type (see 
word 2). 

word 2 

Devi ce type (e. g., KP) (optional) 

o 15 

Return is aiways to the iocation contained in the L register. 
The A register contains status as follows: 

A = 0 if the request is acknowledged. If F = 1 
and U = 1 (i. e., unconditional reserve), the de­
vice is reserved for foreground use. If F = 0 (i. e., 
release), the device has been released for back­
ground use. 

A = 1 if the request is acknowledged but operator 
intervention is required. If a Reserve Complete 
Receiver is specified, it is e'ntered when the oper­
ator effects the reserve. This is the normal re­
sponse to a conditional request to reserve a 
peripheral device (F = 1, U = 0). 

A = 2 if the device is not associated with a back-
ground fi Ie. 

A = -1 if the request cannot be honored because a 
prior request to reserve this device has been made, 
if the request is to release an unreserved device, 
or if the reserve peripheral table (RSVTBL) is fui i. 
(See II Limitations" below.) 

M:RSVP FUNCTIONS 

Reserve. If the request is for an unconditional reserve, a 
message is output to inform the operator of the foreground 
reserve action (e. g., !! FG RESERVE, LP02). 

If the request is for a conditional reserve, a message is out­
put to inform the operator of the request (e. g., !! FG 
REQUEST, CR03). The operator should then prepare that 
device for the pending foreground operation, and then re­
serve the device by an unsolicited key-in of FR (foreground 
reserve; for example, FR CR03). This will reserve the de­
vice for foreground use. A message is now output to acknow­
ledge the reserve action (e. g., !! FG RESERVE, CR03). If 
the Reserve Complete Receiver is specified, it wi II be 
entered at this point. 

Release. The peripheral device can be released for back­
ground use by a call to M:RSVP to release the device. 
The peripheral device specified will now be available for 

54 Service Routines 

background use. A message will be output to infrom the 
operator ofthe release action (e. g., ! !BK RELEASE, CR03). 
The peripheral device can also be released by an unsolicited 
key-in of BR (background release). Unsolicited key-ins to 
reserve and release peripheral devices are described in 
Chapter 3. 

Limitations. The reserve peripheral table will accommo­
date five requests at a time, which is feit to be a realistic 
limitation. 

M:DOW (Diagnostic Output Writer) 

Currently, multitask use of the saem file may result in a 
conflict situtation whereby a task is unable to output a 
message because a lower priority task has control of the file. 
M:DOW allows the use of an active file for the purpose of 
outputting alarms. The calling sequence is 

LDX ADRLST 

RCPYI P,L 

B M:DOW 

ADRLST is a pointer to the four-word argument list as 
shown below: 

word 0 

o 1 

w.here 

F 

word 1 

o 

word 2 

a 

word 3 

o 

15 

= 1 if a device file number is specified. 

= 0 if an operational label or device unit number 
is specified. 

Operational label or file number 

15 

Address of buffer containing data 

15 

Number of bytes to transmit 

15 



Return is to the location in the L register. The B reg­
ister is always saved. The status is returned in the E, 
A, and X registers. The method of returni ng and the 
status returned are the same as described under M:READ/ 
M:WRITE. 

M:DOW FUNCTIONS 

If the file to be used is currently active, M:DOW will 
wait until end-action-pending and will then clear the 
active file and the end-action-pending flags. The call 
will be translated to an equivalent call to M:WRITE which 
will be output the alarm. The buffer data are assumed 
to be EBCDIC. 

M:COC (Character-Oriented Communications) 

M:COC performs input, output, and control operations on 
a specific communication line. The calling sequence is 

LDX ADRLST Pointer to the argument list 

RCPYI Set the return address 

B M:COC Branch to the routi ne 

ADRLST is a pointer to the argument list, as follows: 

word 0 I Order 

word 1 E [ Line number [ Prompt character 

word 2 Buffer address 

word 3 I Byte count 

word 4 EOM Receiver 

o 78 11 12 15 

where 

Order (bits 12-15) is as follows: 

Order Operation 

o Check status of line 

Write n bytes, no editing 

2 Read n bytes, no editing 

3 Send break character (long-space) 

4 Check previous read or write 

5 Write message of up to n bytes, edited 

6 Read message of up to n bytes, edited 

Order Operation 

7 Disconnect line (turn off data set) 

8 Connect line 

where n = 0 < n ~ 255. 

E is 1 if an end-of-message (EOM) receiver is 
specified; is 0 if no EOM receiver is specified. 

Prompt character is meaningful on duplex lines for 
orders 6 and 8. For order 6, it is the character 
(EBCDIC) to be output before input is requested. 
This can be used to signal the operator that input 
can now begin. For order 8, it specifies the mode 
in which all communication will be handled on this 
line until it is disconnected, and it has the follow­
ing form: 

Bit Value Meaning 

8 Echo a II input characters. 

0 Do not echo. 

9 Translate all input from 7-bit 
ANSClI to EBCDIC, and all 
output from EBCDIC to ANSClI. 

0 Do not translate any codes. 

10 Check parity on input and create 
parity on output (even parity). 

0 Ignore parity 

11-12 00- Device is Model 33/35 teletype. 

01 Device is Model 37 teletype. 

10 Device is keyboard/display. 

11 Device is foreign device, and no 
editi ng or translation wi II be per-
formed (overrides setti ng of 
bits 9 and 1 0) . 

14-15 Communi cation Mode (for connect 
order) 

00 Full deplex (echoing accepted) 

11 Half duplex (echoing not accepted) 

10 Simplex-receive 

01 Simplex-send. 

EOM Receiver is used like an AIO Receiver. When 
an input or output message is completed, the 

Servi ce Routi nes 55 



appropriate communications task will branch to the 
specified EOM receiver address, at the priority 
level of either the input or output external in­
terrupt, and will show the line number (of the line 
with the completed message) in the X register. 
The user program should save this status, trigger 

applicable only for read (2 and 6), write (1 and 5), 
and send break (3) orders. EOM receivers are 
subj ect to the same restri ctions and precautions as 
are AIO receivers. (See Chapter 5 for a more de­
tai led discussion of AIO receivers. ) 

an appropriate user interrupt level, and return to 
the location in the L register. All operations are 
no-wait operations; that is, the return is immediate 
upon initiating I/O or performing the connect or 
status checks. Thus, the EOM receiver is 

Return is to the location specified in the L register. On 
return, the B register remai ns unchanged; and the E, A, 
and X registers are set as specified in Tables 11, 12, 
13, and 14. 

Table 11. Status Returns for M:COC 

Operation Maior Status 

All operati ons Line no. not valid 

I 
I 

Calling seq. err. i 
. I 

I 
I 

Line has disconnected I 

Invalid line status 

Initiate read Line is busy I 
or write I 

I 

I Successfully initiated I 

Check previous Line is busy 
input or output 

Operation compl ete 

Connect or Successful connection 
disconnect 

Check status Connected line 

Table 12. Completion Codes 

A Register Value Meaning 

0 

1 

2 

E Register Bits 

0-11 

1') 1') 
I.£.-Iv 

14-15 

Successful completion 

Parity error on some byte read 

Break condition exists 

T abl e 13. Li ne Status 

Meaning 

Not used 

Receiver status (0 and C bits) 

Transmitter status (0 and C bits) 

56 Servi ce Routi nes 

Action 

Return 
immediately 

Return 
immediately 

Initiate and 
return 

Return 
immediately 

Return 

Connect and 
return 

Test and 
return 

E A x 

-1 8 Line no. 
i 

! 
-1 4 Line no. 

I 
i 

-1 2 Line no. 

I -1 1 Line no. I 

I 

I 0 -1 Line no. I 
I 
I 0 0 Line no. 

0 -1 Line no. 

0 Completion Byte count 
code 

0 0 Line no. 

Line Line mode Line no. 
status 

Table 14. Line Mode 

A Register Value 

o 

2 

3 

4 

5 

Meaning 

Line is disconnected 

Output mode 

Output prompt character and 
then switch to input 

Input mode 

Inactive mode 

Message compl ete 



The nine possible orders that can appear in the argument 
list, and the operation for each, are described below: 

o Check status of line. This operation allows the 
user to check both the logical condition of the line 
(which must be one of the unique codes in Table 14) 
and the physical condition of the line (which is 
reported just as it is received from the hardware). 
Only the line number is needed in the argument list. 

Write n bytes, no editi ng. If the byte count is 
odd, the first output transmission takes place 
from right of the first word, and the left of the 
first word is ignored. No end-of-message codes 
are added at the end of the message, and no 
trailing blanks or null characters are stripped 
off. Parity generation and translation from EBCDIC 
to ANSCIl are under the control of the specified 
options for this line. 

2 Read n bytes, no editing. A read operation is 
initiated, with no editing for cancel or character­
delete operations, but with a search for any 
ANSClI control character. Input is terminated 
if any control character is found or if the speci­
fied byte count is exhausted. If any input bytes 
were received before this read request was given, 
these bytes are thrown away. The end-of-message 
character always remains in the user's input buf­
fer, translated to EBCDIC, if specified. The 
same comments about parity apply for the write 
operations. 

3 Send break character (long-space). If the line is 
in an inactive mode, the long-space is sent 

immediately. If the line is in a write mode or a 
read mode, the operation is terminated and the 
long-space is then sent. In the argument list, only 
the line number is meaningful. 

4 Check previous read or write. This operation is 
required for all read and write operations, whether 
or not an EOM receiver is specified. The user 
buffer remai ns busy unti I the previous operation is 
checked. The line is then set inactive and be­
comes ready for subsequent use. This is the only 
way to determi ne break conditions. The return 
status is shown in Tables 11 and 12. Only the line 
number is meaningful in the argument list. 

5 Write message of up to n bytes, edited. This op­
erates like the write operation without editing 
except (1) that trailing blanks and trailing null 
characters are removed and (2) that appropriate 
control characters are added as the final charac­
ters of the message. 

6 Read message of up to n bytes, edited. This oper­
ates like the read without editing, except that 
ignore, backspace, and cancel operations are in 
effect for the current line; when any of these 
special characters are encountered, the proper 
effect takes place on the line and the user's buf­
fer is modified accordingly. (Note that the 
backspace is an editing, or destructive, backspace; 
that is, the previous character is deleted from the 
user's buffer.) The prompt character, if nonzero, 
is output prior to the read operation. (See Table 15 
for a summary of editing operations.) 

Table 15. Summary of Editing Operations 

Cod~s Used 
Operation 

33/35 37 Character Display 

User-generated end-of-message CR or LF or BREAK NL or BREAK N L or INTERRUPT 
character on input, edited 

System-generated end-of- LF or CR (opposite of None for NL; None for NL; NL for INTERRUPT 
message character on input user input); NL for BREAK 

CR and LF on BREAK 

Attention code; used to BREAK BREAK INTERRUPT 
terminate input or output 

Ignore this character, except RUBOUT or DEL or DEL or 
after ESC ESC,SPACE ESC,SPACE ESC,SPACE 

System-generated characters CR, LF,RUBOUT NL,RUBOUT NL,5 - NULL 
on output at end-of-message 

Delete previous character ESC,RUBOUT ESC,DELETE ESC/DELETE or EM 
(echo-) (echo\ ) operation 

Delete current line ESC,X ESC,X ESC, X or CR/CAN 

Service Routines 57 



7 Disconnect line. The send and/or receive mod­
ules of the line are turned off and the logical 
status is set to disconnect. 

8 Connect line. The communication mode option 
for the line, simplex or duplex, is matched against 
the physical structure of the line and where the 
appropriate receiver is turned on. Conflicts are 
reg i stered as i nva lid Ii ne status. The log i ca I line 
mode is set to lIinactive ll and the other options are 
initialized. The connected line is assumed to be 
a dedicated line Oi a line that has alieady dialed= 
in. A user program can poll the I ines with a 
IIcheck status ll order to determine when a line has 
been connected. 

58 Service Routines 

M:COC FUNCTION 

Once the RCOC initial ization routi ne has prepared the 
communication equipment, the status of each line is IIdis­
connected ll

• All input and output are rejected until the 
line is connected. If the line is dedicated, only a II con-
nect line" call to M:COC is required. If the line must be 
dialed-in (using M:IOEX), the dial operation must precede 
the IIconnect line ll call to M:COC. The connect sets the 
line status to lIinactive ll (i. e. , available for I/O transfers). 
I/O operations are initialized sequentially, and when com­
pleted, the line status is set to "message complete ll

• At 
this point the line is still busy and can be cleared (i. e. , 
set to "inactive") only by a call to M:COC to check the 
status of the previous operation (order 4). The call IIcheck 
opeiation ll is not iequired aftei a check status, a connect 
or a disconnect operation. A disconnect operation sets the 
line status to IIdisconnected ll

, and the line must be recon­
nected before it can be used again (see Appendix F). 



5. I/O OPERATIONS 

BYTE-ORIENTED SYSTEM 

The Monitor performs all I/O services for the byte­
oriented I/O system. This includes: 

• Logical-to-physical device equivalencing. 

• Initiating I/O requests. 

• Standard error checking and recovery (optional). 

• Software checking of background and Monitor. 

• Software checking of background requests to preserve 
protection of foreground and Monitor. 

• Optionally generating device order bytes for device­
independent operations. 

• Accepting user-generated 10CDs and device order 
bytes to provide complete control for a user's 
program. 

• Using data chaining for foreground programs performing 
scatter-read or gather-write operations. 

• Reading or punching cards in either BCD or 
EBCDIC. 

• Positioning magnetic tapes and sequential RAD files. 

• Editing from paper tape or keyboard/printer. 

• All I/O interrupt handl ing. 

• Managing both temporary and permanent RAD 
files. 

• Limiting channel active time for I/O transfers. 

I/O INITIATION 

Whenever a task needs to initiate an I/O operation, it 
calls on the appropriate Monitor I/O routine (see Chap­
ter 4 for complete calling sequences). These Monitor 
I/O routines are reentrant, so that a higher priority 
task may interrupt and request I/O during the initiation 
of a lower-priority task, in which case the low-priority 
task is suspended and the higher-priority task satisfied 
first. 

A real-time foreground program may acquire control of 
a multidevice controller from background users at the 
completion of any current I/O. This technique is used 
in place of queuing. All Monitor I/O initiation is made 
at the priority of the ca II ing task, with background tasks 
having the lowest priority. 

The channel time limits imposed by the Monitor on standard 
devices are as follows: 

Maximum Allowable Channel 
Device Type Active Time (seconds) 

KP 255 

LP 3 

CR 3 

CP 3 

M9 10 

PT 820 

BR 3 

BP 3 

M7 10 

RD 7202,7204 3 

RD 7242 4 

PL Not imposed 

END ACTION 

The chapter on Operator Communication specifies the pos­
sible error messages. Generally, standard error recovery 
takes place when the I/O is checked for completion rather 
than on the I/O interrupt. This means that error recovery 
for the background wi II be processed at the priority level 
of the background rather than at the I/O interrupt priority 
level. However, there is a provision for the real-time fore­
ground user to specify an end-action routine to be called 
when the Monitor answers the I/o interrupt. This is the 
AIO Receiver address in the I/O call ing sequence, and it 
is to be used only when more sophisticated end-action is 
required or when a foreground task is to be restored to active 
status at channel end. The routine is processed at the priority 
level of the I/o interrupt, so the processing should be of 
very short duration. Reentrancy in this routine is the user's 
responsibi lity. For example, this routine might consist of 
storing the I/O status information and then triggering a 
lower-level external interrupt through a Write Direct, where 
this lower-level task performs the actual processing. The 
end-action routine should then return to the task from which 
it originally came (by RCPY L, P). 

The form of the call to the AIO Receiver is 

LDA 

RCPYI 

B 

AIODSB 

P, L 

AIO Receiver address 

(device status byte 
from AIO in bits 0-7; 
device number in 
bits 8-15) 

I/O Operations 59 



The Ala Receiver routine should return to the location 
contained in the L register on the entry. All registers are 
assumed to be volatile, which means that they need not be 
saved and restored to their former contents. 

The purpose of the Ala Receiver technique is to allow a 
real-time user program to be informed by RBM when chan­
nel end occurs on a particular I/O operation. It is used 
instead of I/o queueing by the l'v\onitor. Typically a fore­
ground program wishing to maximize I/o and computation 
overlap wi" issue an I/O request with the no-wait option 
and with an Ala Receiver address specified. When the 
I/o is successfully initiated, the foreground task exits from 
the active state (by a ca II to M: EXIT) and is restored to 
active status at channel end by a Write Direct to trigger 
the interrupt level from the Ala Receiver. The foreground 
program must then return to the Monitor i/o routine with 
the IIcheck ll option to complete the end action on the 
fi Ie. See Chapter 6 for a more detai led discussion of 
Ala Receivers. 

Note: For transfers invoking blocked fi les where no 
I/O is actually performed, the X register will 
contain. -1 to i"ndicate that the Ala receiver 
wi II not be entered. 

LOGICAL/PHYSICAL DEVICE EQUIVALENCE 

When writing a foreground or background program in 
either Symbol or FORTRAN, the user is not required to 
know the actual physical device number that wi" be 
used in the input/output operation. Two ways are pro­
vided under RBM to help the user select the input/output 
device on a logical rather than physical basis. 

The first method is the direct logical reference. The user 
can specify a device-fi Ie number in his calling parameters 
to the input/output routines, and RBM wi II translate this 
into an actual physical device number. There may be 
several device-fi Ie numbers pointing to the same physical 
device; however, only one device-file number is generally 
needed per device per active task in the system. Each 
device-file number can be used by only one task at a time. 
This is a necessary restriction since the I/o status is saved 
in the device-file number table in the RBMand independent 
operation by several tasks on the same device would cause 
invalid status from the separate tasks using it. 

The second method is device referencing through indirect 
logical reference. This method first assigns a device unit 
number or an operational label to a device-file number, 
which in tum is assigned to a physical device number. The 
equivalence of operational labels or device unit numbers 
and the device-file numbers is set at System Generation 
time for certcin standard devices, as shown in Tab!es 2 
and 16. The standard assignments may be changed later by 
use of !ASSIGN or ! DEFIN E control commands. 

60 logical/Physi.caI Device EquivaJence/RAD Files 

Table 16. Standard Device Unit Numbers 

Device Unit 
Number Standard Assignment 

101 Keyboard/printer input 

102 Keyboard/printer output 

103 Paper tape reader 

104 I Paper tape punch 

105 Card reader 

106 Card punch 

108 Line printer 

Table 2 shows the standard background operational labels. 
. The devices and functions shown indicate how the standard 

processors use these labels. Since each I/o call must specify 
a byte count, a user program can read any number of bytes 
from Sl (if Sl is magnetic tape, for example). The labels 
are merely a name. There is no restriction on the record 
size except as imposed by the peripheral devices. 

RAD FILES 

The two types of RAD fi les avai lable are sequential fi les 
and random fi I es. A sequenti a I fi Ie may be used like a 
single-file magnetic tape, whereas a random fi Ie may be 
used like a truly direct-access device. The capabilities 
and restrictions of each type of file are described below. 

Random and sequential files vary in two primary respects 

1. Sequential files cannot be accessed randomly; the next 
record to be accessed is the one at which the file hap­
pens to be positioned. 

2. Sequential files can only be updated at the end. 

SEGUEN11AL FILES 

1. Sequential RAD files are available to foreground and 
background tasks. 

2. Sequential RAD files are available to routines M:READ, 
M:WRITE, and M:CTRl, but not to M:IOEX. 

3. Sequential RAD files can be blocked (with more than 
one logical record per block) if the logical record size 
is less than or equal to haff the RAD sector size. The 
Monitor I/O routines do the blocking and unblocking. 

4, Sequential R.A.D files can be compressed (with blanks 
removed) if they are EBCDIC data. The Monitor I/O 
routines do the compressing and expanding but do not 



check for binary data. Compressed records are always 
blocked and of variable size; therefore the logical 
record size has no meaning except when allocating 
the file. 

5. Logical records may be less than, equal to, or 
greater than the RAD sector size. Unblocked records 
a I ways start on a sector bou ndary. Therefore, if a 
logical record is less than a RAD sector and is un­
blocked, the remaining bytes of the sector wi" be 
ignored. If a logical record is greater than a sector, 
it wi" occupy an integral number of physical sectors 
and the remaining bytes of the last sector wi" be 
ignored. 

6. BOT (beginning-of-tape) is defined as the logical load­
point and equals the first sector of the file. EOT is de­
fined as the logical end-of-tape and equals the last 
sector +1 of the file. EOF (end-of-file) is defined as 
the logical file mark (which mayor may not exist). 

7. As on magneti c tape, once a logi cal record orfi Ie mark 
is written on a fi Ie, any records orfi lemarks previously 
written beyond that point are unpredictable. 

8. Sequential RAD files (except compressed files) can be 
spaced forward or backward by logi cal records. 

9. Sequential RAD files can be positioned by ! REWIND, 
! FBACK, and! FSKIP commands. 

10. Sequential RAD files can request an AIO Receiver at 
channel end for physi cal I/O transfers. When oper­
ations involve only logical I/O transfers, the AIO 
Receiver wi" be ignored. A flag wi" be set indicating 
whether the AIO Receiver is to be acknowledged or 
not, (see M:READ/M:WRITE status returns). 

11. RAD transfers must consist of an even number of 
bytes. 

12. Operational labels can be equated to permanent files 
on the RAD, or be allocated from available temporary 
RAD space. This can be accomplished either through 
control cards (for standard assignments) or through 
Monitor servi ce calls at execution time for nonstandard 
assignments. 

13. When the operational label is defined or assigned to 
a permanent file, it is automatically positioned at 
the BOT. 

14. As on magnetic tape, the only record that can be 
written at the EOT is the logical file mark. 

RANDOM FILES 

1. Random fi les are avai lable to foreground and back­
ground jobs. 

2. Random files are available to routines M:READ and 
M:WRITE, but not to M:CTRL or M:IOEX. 

3. A" unblocked I/O transfers start on a granule boundary 
within a fi Ie. These granule boundaries are addressed 
as a number that represents the displacement of the 
granule from the start of the file, beginning with zero. 
A granule boundary always begins on a sector boundary 
but need not end on one (see discussion of granules 
below). 

4. A" positioning commands such as !REWIND, !FSKIP, 
etc., are meani ngless. 

5. The transfer of any number of bytes (to a maximum 
of 65,534) may be requested, provided that the byte 
count is an even number and the transfer wi" not ex­
tend past the fi Ie boundary for unblocked fi les. For 
blocked files a single record is processed on each 
call. 

6. Operational labels can be equated to permanent files 
on the RAD or can be allocated from available tem­
porary RAD space. This can be accomplished either 
through control commands (for standard assignments) or 
through Monitor service calls at execution time for 
nonstandard assignments. 

7. When a random file is defined, the user may specify 
a FORTRAN logi cal record size and a poi nter to the 
word where the last referenced FORTRAN logical 
record +1 is stored. This information, although un­
used by the Monitor, is stored in the file and may be 
requested by executi ng program~ or processors (such as 
the FORTRAN compiler), if necessary. 

8. Random files may not be compressed. They may be 
blocked with transfer on a logical record basis. In 
this case, the Monitor performs a" blocking/deblocking 
operations. Any Write operations are really an update 
in place and unmodified portions of a block are pre­
served. A block is not read into core if it is already in 
core from a previous operation. 

9. BOT is defined as the first sector of the file. EOT is 
defined as the last sector +1 of the file. EOF has nO 
meaning in random files except for file saving, truncat­
ing, and mapping purposes. 

10. Requests for a foreground AIO Receiver at channel end 
wi" always be acknowledged. 

11. Random fi les (either blocked or unblocked) may be 
accessed sequentially or randomly. At the end of any 
operation, RBM automatically updates the record dis­
placement pointer to the "next" record. The pointer 
can be "set" by any random operation, and is initially 
set to the beginning of the file. 

As much data as specified by the byte count wi" be 
transferred for the unblocked random files but only one 
record at a time wi" be transferred for blocked random 
files and incorrect length can occur. 

RAD Files 61 



GRANULES 

While a granule is usually synonymous with a sector on a 
device, it may be defined (on a file basis) to be equivalent 
to any of the following: 

• A partial sector. 

• One sector. 

• Several sectors. 

A granule always begi ns on a sector boundary but need 
not end on such a boundary. For example, to make the 
7204 RAD and the 7242 disk pack transfers equivalent, a 
granule can be defined to be 1024 bytes; this 'is then one 
sector on the disk pack and two sectors plus a fraction of 
a sector on the 7204 RAD. 

RAD FILE MANAGEMENT 

RBM permits allocation of the RAD into the subsections 
shown in Figure 4. The exact bounds on these sections are 
computed from the size of required contents or selected by 
the user in accordance wi th the anti ci pated use of the 
system. In either case, the bounds are set duri ng System 
Generation, and cannot be changed except, by a new 
System Generation. RBM maintains directories for as many 
areas as the user specifies up to 15, plus: the System 
library, System Processor area, and System Data area. RBM 
also maintains control of the checkpoint area. The back­
ground temporary space is allocated from control command 
inputs or from calls to M:DEFINE as requested. 

Areas need not be allocated contiguously (RAD tracks may 
be skipped between areas), and can be distributed over 
more than one RAD. One to 16 areas may be allocated on 
each RAD or disk pack. However: each area must exist en­
tirely on a single RAD. If there is more than one RAD on 
the system, one will be designated as the RBM System RAD, 
which will receive any default areas. Any RAD with sec­
tor 0 available wi II receive a bootstrap in that area. 

62 RAD File Management 

RBM Bootstrap Loader 

System Processor area 

System Library area 

System Data area 

RBMGO 
RBMOV 
RBMPMD 
""S' ., ..... K MIU 

RBMAL 
RBMS2 
RBMSYM 

User Processor area . 

User Library area 

User Data area 

Checkpoint area 

Background temporary storage 

aaareas 

Alternate tracks (disk pack only) 

Figure 4. RAD Allocation 



6. REAL-TIME PROGRAMMING 

- FOREGROUND PROGRAMS 

Under the Sigma 2/3 RBM, a foreground program is one that 
operates in protected memory, utilizes foreground opera­
tional labels or device unit numbers, and has access to 
privi leged Sigma 2/3 instructions. It is protected from any 
background interference through an integrated hardware/ 
software protection scheme. A foreground program may be 
classified as either a resident foreground program, a semi­
resident foreground program, or a nonresident foreground 
program, and it it important that this distinction be 
understood. 

RESIDENT FOREGROUND PROGRAM 

Foreground programs are defined as resident through the 
RAD Editor when their fi les are created on the user pro­
cessor area of the RAD. They are loaded into core from 
the RAD whenever the RBM system is booted, and are either 
automatically armed, enabled and (optionally) triggered, 
or they initialize themselves through their own initializa­
tion routines. Once loaded into core for execution, resi­
dent foreground programs remain resident until the RBM 
system is again booted from the RAD. 

SEMIRESIDENT FOREGROUND PROGRAM 

Semiresident foreground programs are norma Ily not in core 
memory. They are not read into core when the RBM system 
is booted but must be called in explicitly when needed. 
Semiresident foreground programs, when loaded, reside in 
the resident foreground area. The user must schedule the 
loading of semiresident foreground programs because the 
Monitor provides no protection against overlay or over­
loading. When loaded, they may be automatically armed, 
eriabled and (optionally) triggered, or they may initialize 
themselves through their own initialization routines. 

NONRESIDENT FOREGROUND PROGRAMS 

Nonresident foreground programs are normally not in core 
memory. They are not read into core when the RBM system 
is booted but must be called in explicitly when needed. 
Nonresident foreground programs, when loaded, reside in 
the nonresident foreground area, and the area is then consid­
ered lIacti ve II and is not avai labl e for subsequent use by other 
programs (i nc I ud ing the Mon itor) unti I the program occupyi ng 
this area releases it by lIunloadingll. This feature is useful 
when a system has several nonresident foreground programs 
that have a resource allocation problem or are connected to 
the same interrupt level. The i\t\onitor will control access 
to the nonresident foreground area, thus providing protec­
tion against multiple loading of these conflicting programs. 

If nonresident programs are to be used, at least six cells 
must be allocated for the nonresident foreground area of 
core. If a lIocated, the nonresident foreground area is 

adjacent to the background. If a nonresident foreground 
program is to be loaded and the length of the longest path 
(including COMMON) exceeds the size of the nonresident 
foreground area, the background is automatically check­
pointed to allow the program to extend to the background. 
The background remains checkpointed unti I the nonresident 
foreground program unloads by a call to M:LOAD. When 
loaded, nonresident foreground programs may be automati­
cally armed, enabled and (optionally) triggered; or they 
may initialize themselves through their own initialization 
routines. 

MONITOR TASKS 

The relative priorities of the separate Monitor tasks are 
given in descending order below: 

Highest Counters (optional) 

Power On Task 

Power Off Task 

Machine Fault (Memory Parity Error) Task 

Protection Violation Task 

Multiply Exception Task (optional) 

Divide Exception Task (optional) 

Input/Output Task 

Control Panel Task 

Counters = a (optional) 

Real-Time Task(s), if any lower than I/o 

RBM Control Task {lowest hardware level) 

Background {lower than all hardware levels) 

Although the tasks are not reentrant, they are serially 
reusable; that is, as soon as a task finishes processing one 
request, it can immediately process another. For example, 
I/O interrupts are processed one at a time, with the highest 
priority device always processed first if several interrupts 
are waiting, but as soon as the processing of one interrupt 
request has been completed, another request for a separate 
device can be processed. . 

POWER ON TASK 

The Power On Task performs the following operations: 

• Waits for acceptable RAD status. 

• Arms and enables all RBM interrupts. 

Real-Time Programming 63 



• 
• 
• 

• 

Sends a !! POWER ON message. 

Restores protection registers to fai lure-time contents. 

Loads and links to the Power-On Receiver if specified 
in mailbox location X'C4'. 

Restores status at Power-Off time and exits if the com­
puter is a Sigma 3 with no external interrupts and there 
are nO critical tasks. 

• Restores context and exits if it is a Sigma 2 or there are 
external interrupts or critical tasks and background 
is active. 

If none of the above conditions are satisfied, the background 
is aborted, the Power-On interrupt is cieared and a crash 
is forced. 

POWER Off TASK 

The Power Off Task performs the following operations: 

• Saves the internal interrupt status. 

• Saves context via a call to M:SAVE. 

• Scans the Channel Status Table and issues an HIO to 
any channel flagged active and saves the device status 
byte and the even and odd channel register contents in 
the Fi Ie Control Table. 

• Interrogates foreground mai Ibox X 'C3' for a power-off 
receiver. If one is specified, a branch is made to it; 
otherwise, the Power Off Task waits for the power-on 
interrupt. 

Since Power-On processing is installation dependent and 
correct recovery cannot always be guaranteed, a user­
developed Power-On Receiver must be used to restart after 
a power failure. The following action may be taken within 
the receiver: 

1. Timeout errors wi II be simulated on all active I/O 
channels at Power-Off time. Code within the receivers 
may restart I/O for these devi ces. 

2. The interrupt status is determined, in general, through 
the TCB chain (each TCB contains the address of the TCB 
of the task it interrupted). Race conditions can exist 
that may cause this chain to inaccurately reflect the 
interrupt status, although the PSD chain is correct. If 
this risk is considered negligible or the effects unharm­
ful, the tasks can be reactivated through the TCB chain 
by the receiver. 

3. The foreground Power-On Receiver may activate one or 
more foreground tasks or take other special action to 

64 Monitor Tasks 

restart the system. This may involve going to some 
recent checkpoint. 

4. The receiver may exit frorr the Power-On routi ne by 
going to M:EXIT. 

MACHINE fAULT TASK 

This task responds to the following Machine Fault conditions, 
in order of priority. 

1. Memory parity Error 

2. External lOP timeout 

3. Incorrect direct I/O 

4. lnternai lOP timeout 

5. Combination of conditions 2 or 3 and 4. 

Of these conditions background can only cause a memory 
parity error. When this occurs, the Machine Fault Interrupt 
(MFI) task triggers RBM and the background task is aborted 
with an error code of PE. For all of the above conditions, 
including parity error when background is not active, an 
appropriate foreground receiver will be tested, as specified 
below. If this receiver pointer iszero, the action specified 
below will be taken. Otherwise, the receiver will be 
I inked to via a RCPYI P, L. If the receiver returns, the MFI 
task will proceed as if a receiver was not specified. The 
receiver may correct the situation and simply call M:EXIT. 

Condition 

2 

3 

4 

Receiver 
Pointer 
Address 

X 'lAD' 

X 'lAB' 

X'lAA' 

X 'lAC' 

Active Task Type 

Critical Non Critical 

Crash, code = PE Abort code = PE 

Crash, code = E7 Crash, code = ET 

Crash, code = MF Abort, code = MF 

Machine Fault Machine Fault 
Message Message 

Abort action consists of disabl ing the associated interrupt 
and exiting the task. If the task occupies the Non Resident 
area, an UNLOAD will be performed. If an IIOP time­
out occurs, RBM wi II be triggered to write the "Machine 
Fault ... " message. The active task will not be terminated 
but, on exit from the MFI task, overflow and carry will be 
set to indicate device not recognized. 

All foreground abort messages and the "Machine Fault ... " 
message will be written at the RBM Control Task level. 
Therefore, if two consecutive foreground tasks abort, only 
the message for the lower priority task will appear. How­
ever, both a foreground abort message and the "Machine 
Fault ••. " message may accumulate. 

PROTECTION VIOLATION TASK 
Any attempt by the background to modify the contents of 
protected memory! or to execute a privileged instruction: 
will cause the Protection Violation Task to abort the back­
ground program, usi ng the same method as the Memory 
Parity Task. 



Unavailable core is set "protected. Write attempts to un­
avai lable core cause protection errors, and read attempts 
from unavai lable core cause parity errors. The abort code 
after a protection error shows the location causing the error 
if the error was an invalid store or a privileged instruction. 
An attempt by the background to branch to protected mem­
ory wi II cause an abort with the address of the location that 
was being branched to. Note that Monitor service routine 
calls actually cause a protection violation from the back­
ground. However, if the branch address and the return to 
the background are valid, the branch is permitted. 

The set multiple precision mode instruction, RD XI 81 1
, does 

not cause a protection vio lation when mu Itiple precision 
hardware is implemented. 

MULTIPLY/DIVIDE EXCEPTION TASKS 

These tasks simulate and subsequently execute a Multiply or 
Divide instruction for Sigma 2/3 computers not equipped 
with Multiply/Divide hardware. They are not reentrant, 
and all lower interrupts are essentially locked out for the 
duration of the simulation (approximately 250 to 300 CPU 
mi croseconds. ) 

INPUT/OUTPUT TASK 

After an input/output interrupt, the Input/Output Task. 
identifies the highest priority device with a pending 
interrupt. It then clears the channel activity status and 
sets the operational status byte count residue in the proper 
device-fi Ie status table, if the device is no longer opera­
ting. (The channel is not cleared for a zero-byte-count 
interrupt.) If a foreground AIO Receiver was specified (for 
a description of an AIO Receiver, see II I/O Operations" in 
Chapter 5), control is transferred to this receiver at the 
I/O priority level. It is expected that the AIO Receiver 
exit properly. 

To minimize interrupt inhibit time, the channel registers 
are loaded and the I/O initiating 510 is issued at the I/O 
interrupt priority level. Consequently, any task with a 
priority level higher than I/O must not use M:READ, 
M:WRITE, or M:IOEX to perform I/O, but may perform 
its own I/O without interrupts. 

When Clock 1 is employed (a SYSGEN option), M:READ/ 
M:WRITE operations are subj ect to a time limit. Clock 1 is 
used to ensure that no channel is active beyond a preset 
limit. If the I imit is exceeded, an HIO is issued to the 
offending device and appropriate end action wi II be taken. 

CONTROL PANEL TASK 

A Control Panel Interrupt causes the Control Panel Task to 
perform one of two functions: (1) to remove the foreground 
task, (2) notify the control task of a pending key-in. 
If the Control Panel data switches are set appropriately, 

a foreground disable and abort may occur (see "Operator 
Control", Chapter 3). Otherwise, the Control Panel Task 
sets the key-in fl ag for the RBM Contro I Task, tri ggers the 
RBM Control Task and exits. The key-in operation itself is 
performed at the level of the RBM Control Task. 

RBM CONTROL TASK 

This task controls unsoli cited key-i ns and background oper­
ations. It is the only .RBM task that actually performs input/ 
output and, therefore, is the only task that requires tempor­
ary stack space for the reentrant RBM input/output routi nes. 

SCHEDULING RESIDENT FOREGROUND TASKS 

When several different programs and tasks are simultanously 
located in core memory, scheduling is required for the 
orderly transfer of control from one task to another. Sched­
uling takes place in accordance with the following rules: 

1. When no background or foreground task is active in 
the system, the Monitor enters the "idle II state unti I 
the operator directs the loading of a set of control 
commands from an input device. 

2. After a background program is loaded, the Monitor 
transfers control to the program by an exit sequence 
from the RBM Control Task. During execution of the 
background program (if the program is waiting for its 
own I/O to complete), there can be nothing else in 
execution in the system. That is, the Monitor makes 
no attempt to multiprogram to absorb idle time. If 
there is an armed and enabled resident foreground task 
in core, the foreground program may receive an inter­
rupt from some externa I source. 

3. After entry, the interrupting task saves the contents of 
any registers it will alter and proceeds to carry out its 
function. The task may use either the M:SAVE service 
routine to perform the saving opertions or it may save 
the contents of the registers itself. 

4. When the real-time task is completed, it may restore 
the context of the interrupted task and exit via the 
standard Sigma 2/3 exit procedure or may have these 
functions performed by the M:EXIT servi ce routi nee 

Warni ng: If the real-time task has changed the state 
of the interrupt levels by armi ng or disarmi ng 
any active interrupt, the system integrity 
will be lost. The enable/disable feature 
shou I d be used to preve nt i nte rru pts u nt i I an 
orderly exit and inactive state is achieved. 

Note that this is a last-in, first-out form of scheduling. 
The interrupting task may itself be interrupted at any time 

Scheduling Resident Foreground Tasks 65 



during execution by a higher priority task, up to the maxi­
mum possible number of tasks in the system. 

Each time, a new task saves the status and register contents 
of the interrupted task. When the new task exits, control 
is returned automatically to the task it interrupted. If there 
is another interrupt waiting between the level of the current 
task (which is just completing) and the interrupted task, the 
originally interrupted task is immediately interrupted again 
and the new (intermediate) task follows the same procedure. 
Thus, it is never necessary for any task to know what task 
precedes or follows it. The task merely preserves and re­
stores the environment according to the established rules. 

The design of the hardware priority system makes it unneces­
sary for the Monitor to be involved in the actual schedul­
ing, and this procedure a!!ov'/s the task and programs to 
independently control the execution priority of certain 
operations within the foreground. For example, a real-time 
foreground task that is activated by an external interrupt 
may perform some processing and then issue a special Write 
Direct to trigger another related task to continue the pro­
cessing at a higher or lower interrupt level. If the Write 
Direct is to a higher level, the interrupt to the higher level 
takes place immediately and the new task is begun. More 
frequently, the Write Direct is to a task at a lower priority 
level, and in this case the current task exits in a normal 
manner and the highest priority "waiting" task wi II become 
active. This task mayor may not be the one that just re­
ceived the Write Direct. Eventually, the task that re­
ceived the Write Direct will be reached, and this task will 
then continue the processing at that level. Thus, real-time 
foreground programs can have an i ntri cate schedul i ng scheme 
with no RBM intervention. 

An example of interrupt-driven scheduling is illustrated in 
Figure 5. 

LOADING FOREGROUND PROGRAMS 

Foreground programs may be loaded into core for execution 
in any of several ways. All programs mustreside onthe RAD 
to be read into core memory for execution. They must be 
written onto the RAD by the Overlay Loader or the Absolute 
Loader. (See the ! ABS control command description in 
Chapter 2 for restrictions regarding the use of the Absolute 
Loader.) In each of the methods described below, only 
the root is loaded into memory as a result of the action 
take n. Segments must be read in by subseque nt ca II s to 
M:SEGLD. 

The most common method of loading a foreground program is 
through a call to M:LOAD by another foreground program. 
The call takes place at the priority level of the foreground 
program and the request is placed into the queue stack. The 
program is actual ~y loaded by the Monitor subrouti ne 
S:LOAD at the level of the RBM Control Task, and this 
method is the most logical One to be used. It is based upon 
conditions automati cally detected by other foreground pro­
grams and requires no response or assistance from the operator. 

66 Loading Foreground Programs 

Another method of loading a foreground program is through 
an unsol i cited key-i n by the operator. The operator must 
generate a Control Panel Interrupt and, in response to the 
request ! KEYIN, type is "Q name", where "name" must 
be the name of a foreground program residing in the user 
processor area of the RAD. This action results in a call to 
M:LOAD to queue the request. This method could be used 
in response to conditions detected outside the computer sys­
tem (e. g.! a certain time of day). Both the above methods 
apply to semi resident as well as nonresident foreground pro­
grams. For resident foreground programs, they would be 
used only to obtain a fresh copy of a particular program 
without rebooti ng the entire system. 

Loading through use of the queue stack requires use of the 
nonresident foreground area whether or not the request is to 
be loaded into this area. Therefore, whenevera nonresident 
foreground program is loaded, all queue stack loading is 
suspended unti I the program occupyi ng the nonresident fore­
ground area releases the area by unloading. 

Two other methods of loadi ng foreground programs are avai 1-
able. They involve control commands normally used by the 
background, are part of a background job stack, and must 
be preceded by an FG key-in. These commands are 

!XEQ initiates loading from whatever RAD file to 
which background operational label OV is assigned. 
The method presumes that either the appropri­
ate OV oplb assignment has been made, or that 
the program to be loaded is on the RAD file 
RBMOV to which the label OV is assigned by 
default. 

! name causes the foreground program "name" to be 
loaded in the same way a background processor 
is loaded. The foreground program must reside in I 
eitherfheSP, FP, orUParea: they will be searched I. 
in that order. The user is responsible for avoiding 
the dupl i cation of program names. 

The control command methods are closely tied to back­
ground schedules and do not provide adequate response to 
real-time needs. However, they can be used when de­
buggi ng foreground programs. 

LOADING RESIDENT FOREGROUND PROGRAMS 

Loading of real-time programs into their predefined RAD 
files can be accomplished by the Absolute Loader from the 
background job stack, or resident foreground programs can 
be written into their predefined RAD files by the Overlay 
Loader. It is not necessary to create the foreground pro­
grams when the system is created. However, to get the 
foreground program in absolute form will require either the 
use of the Overlay Loader or that the job be assembled in 
absolute as a self-contained package. 



High ________ _ V1::S0 rcvr(2) 

«) 

> 
«) 

--' 

.c 
o 

.;: 
c... 

I/O INTERRUPT 

FGND 1 

FGND 2 

FGND 3 

RBM CONTROL TASK 

BACKGROUND 

Request CHECKPOINT 

.-L 
[Q---~ 

Initiate I/O (Ala rcvr) 

C± ....... ~ 

~-------------[2J 
'BKG RESTARP 

CKPT CKPT rcvr(l) 

--------M---~ I I 
'BKG tKPP 

----~i ~ rj---

BKGNDI----IBGl-- - -- - - - - - - -- - - - -- - --------lBKGND 
____ ~I L-J I~ ____ _ 

• 
I t t t t t t t t t t ! 

TO Tl T2 T3 T4 T5 T6 T7 T8 T9 TlO Tll 

TIME SEQUENCE -------
Note: Times need not be equally spaced. 

Time Point Activity (Meaning) 

TO 

Tl 

T2 

The background is executing. 

An interrupt is received for Foreground Task 2 which becomes active and saves the environment of the 
interrupted background task into its TCB. 

Foreground Task 2 requests an I/O operation, specifies an Ala Receiver, and exits. The background 
resumes processing. 

T2.5 An interrupt is received for Foreground Task 3 which interrupts the BG. 

T3 An interrupt is received for Foreground Task 1 which becomes active and saves the environment of the 
interrupted task (Task 3) into its TCB. 

T4 At channel end, an I/O interrupt is received for the operation initiated by Foreground Task 2; the 
I/O Interrupt Task saves the environment of the interrupted task (Task 1). The Ala Receiver is 
entered at the I/O interrupt level ar.d triggers Task 2, indicated by dotted line at FGND 2 level. 

Figure 5. Foreground Priority Levels 

Loading Foreground Programs 67 



Time Point 

T5 

T6 

T7 

T8 

T9 

TlO 

Tll 

Activity (Meaning) 

The AIO Receiver returns via a RCPY L, P instruction. The I/O Interrupt Task exits, restoring the 
interrupted task's status. Foreground Task 1 resumes operation, requests a checkpoint of the back­
ground, and specifies a Checkpoint Complete Receiver. This action causes the RBM Control Task 
to be triggered, indicated by broken line at RBM Control Task level. 

Foreground Task 1 exits, restoring the interrupted task's status. This was actually Task 3, but Task 2 
is waiting and it immediately becomes active. 

Foreground Task 2 exits, restoring the interrupted task's status. This was Task 3. It becomes active 
and continues from where it was suspended. 

Foreground Task 3 exits: restorina the interruoted taks's status. This was actuallv the backaround 
task. Since the RBM Control Task was trigge~ed at T5, it is the highest waiting interrupt I;vel. The 
RBM Control Task becomes active and stores the interrupted task's status into its TCB. The RBM 
Control Task calls the RBM subtask S:CKPT which writes the background into the RBM Checkpoint 
area on the RAD. S:CKPT then extends memory protection to the background and enters the specified 
Checkpoint Complete Receiver at the RBM Control Task level. In this illustration the Checkpoint 
Complete Receiver triggers Foreground Task 1 with a Write Direct instruction. 

Foreground Task 1 becomes active and saves the environment of the interrupted task in its TCB. The 
background area is now available to Foreground Task 1 for instructions and/or data. When processing 
is complete, Foreground Task 1 requests a restart. 

Foreground Task 1 exits, restoring the interrupted task's status (in the Checkpoint Receiver, which 
returns via a RCPY L, P instruction). The RBM subtask S:CKPT now completes its operation and 
returns to the RBM Control Task which calls in the subtask S:REST to restart the background task. 
S:REST first clears the background area, then reads the checkpointed background task in from the 
RAD. The background is then set "unprotected" whi ch completes the restart operation. 

The RBM Control Task exits, restori ng the status of the interrupted background task whi ch then 
resumes processing. 

Figure 5. Foreground Priority Levels (cont.) 

LOADING NONRESIDENT FOREGROUND PROGRAMS FOREGROUND INITIALIZATION 

Nonresident foreground programs are loaded by the Monitor 
service routine M:LOAD. Once loaded, these programs 
can be connected to an interrupt via an initialization rou­
tine or else can be triggered by a code given in the pro­
gram's TCB. These programs then behave exactly like 
resident foreground programs. If the program just loaded 
resides in the area of core referred to as the nonresident 
foreground area, the nonresident foreground area is tied up 
until the program releases this space. Ordi nari Iy, a pro­
gram releases space by a call to M:LOAD to 'iunload". 
However, a FORTRAN program has no means of performing 
this unload except by calling a special library routine. A 
method is provided to automati cally unload this area when 
M:ABORT or M: TERM is called by the task occupyi ng 

When a foreground program is loaded, it may either be 
initialized by RBM (see Overlay Loader options inChapter 7) 
ormay have its own initialization routine (coded in assembly 
language). If the header of the foreground program contains 
a transfer address (as indicated by the END statement in the 
program source), RBM honors this address as the entry point 
to an initialization routine, and it is not mandatory that 
the program begin with a TCB. This routine may arm and 
enable (or whatever) one or a number of related real-time 
interrupts. It can also set RAD fi les for subsequent use and 
set up initial values in core data tables. The initialization 
routine runs at the priority level of the RBM Control Task 
with the privileges of a foreground program. The initializa­
tion routine should make nO calls on routines requiring tem­
porary storage, since the RBM temp stack is the one in use. 
When foreground initial ization is completed, the routine 
returns to RBM via a register copy of L to P. Foreground 
initialization routines will also be executed any time the 
system is rebooted from the RAD. 

the nonresident foreground area. Therefore, a FORTRAN 
oroaram calls the librarv routine L:OP (aenerated bv the 
~o~piler when the pro~ram calls STOP')~ to terminate and 
unload. If a FORTRAN program ca lis EXIT, the nonresident 
foreground area wi" not be unloaded. 

68 Foreground Initial ization 90 10 37F-1 (3/72) 



TASK CONTROL BLOCK FUNCTIONS 

The Task Control Block (TCB) is a convenient means for 
organizing and storing information necessary to attain pro­
per context switching, define dynamic blocking buffer 
pools, define temporary space necessary for reentrancy, 
and arm and enable the associated task. A foreground 
program may have one or more TCBs within the program 
(one for each task), but it is assumed that the first 
loadable item within a foreground program is a TCB. The 
TCB is used by the Monitor service routines M:SAVE, 
M:EXIT, M:LOAD, and by the Control Command Inter­
preter upon encountering a IC: command. 

The TCB consists of 17 words and can be created at assembly 
time with Extended Symbol, or at load time by the Overlay 
Loader. (A FORTRAN program must have its TCB created 
by the Overlay Loader). The TCB is usually a block of 
code contiguous to the task it describes, with address literals 
pointing to the temporary stack space. A DATA statement 
can set the initial code for the interrupt level state for the 
task interrupt I evel. The comp lete contents of the TCB 
are shown in Table 17. 

Note: The code in TCB+2 is the exact code used in the 
Write Direct that sets the interrupt level. This code 
is described in the Sigma 2 and Sigma 3 Computer 
Reference Manuals under "Interrupt System Control. II 

Bit T in word TCB + 1 indicates whether the task is using 
the Monitor I/O routines and the floating accumulator; if 
bit T is zero, a temporary stack is required and the M:SAVE 
routine will initialize locations 0001 through 0006, after 
savi ng the previous poi nters for the interrupted task. If 
bit T is a 1 (meani ng no floati ng accumulator and no 
temporary space are required), the M:SAVE routi ne wi II 
not set these locations. In a real-time environment it is 
recommended that a user does not set the T bit to 1 (the 
floating accumulator and temporary storage pointers are 
saved). The Monitor service routines M:SAVE and M:EXIT 
do not, themselves, use any temporary storage. 

When the task is programmed in FORTRAN, the task en­
trance and exit, TCB, and task entrance procedure are set 
up by the Overlay Loader. The module load routine 
M:LOAD sets the pointer to the PSD into the dedicated 
interrupt location and arms, enables, and optionally triggers 
the associated interrupt level. 

The background program will have a Task Control Block in 
protected foreground space. 

Caution: Locations 1 through 5 in the zero tabl e are not 
saved and are recreated from location 6. Thus, 
locations 1 through 5 must not be changed by 
a foreground program or they wi II not be the 
same after interrupt has taken place. 

Table 17. Task Control Block (TCB) 

Location Contents Set by 

TCB+ 0 ADRL PSD Assembler/Loader 
0 - 3 4 5 6 7 15 

1 R-bit No. 
T C X Dedicated Interrupt Location Assembler/Loader 

For WD 

2 
0 3 4 5 718 11 112 15 

Assembler/Loader 
0001 0 Code I 0000 I Int. Group No. 

3 ADRL TEMPBASE (temporary stack) (FWA) Assembler/Loader 

4 ADRL TEMPLIM (temporary stack) (lWA+l) Assembler/Loader 

5 Contents of L register from interrupted task Current task (on actual entry) 

6 Contents of T register from interrupted task M:SAVE (or current task) 

7 Contents of X register from interrupted task M:SAVE (or current task) 

8 Contents of B register from interrupted task M:SAVE (or current task) 

9 Contents of E register from interrupted task M:SAVE (or current task) 

10 Contents of A register from interrupted task Current task (on actual entry) 

11 Contents of location 0006 (K:BASE) from interrupted task M:SAVE 

Foreground Initial ization 69 



I 

I 

I 
70 

Table 17. Task Control Block (TCB) (cont.) 

Location Contents I Set by 

12 

13 

I 
14 

15 

Contents of Location 0007 (K :TCB) from interrupted 
task. 

Dynamic base (K :DYN) for temp of current task; 
initially TEMPBASE +6. 

Buffer pool LEA + 1. 

Bits 11-15 contain number of buffers (O:s n :s 16). 
-Bits 0 10 are reserved for Monitor use and should 

be coded as zeros. 

16!"Use" bits for buffers in pool (0 if unused). 

i 

I M:SAVE 

I 
I Assembler/Loader (changed by M:RES and M:POP) 
I 
I 

Assembler/Loader 

Assembl er/Loader 

M:OPEN or M:CLOSE 

PSD + 0 Interrupt task status flags. Interrupt sequence 

where 

1 Interrupted task P register. 

2 First instruction of current task. 

Remainder of program (The PSD must be contiguous 
with the program but need not be contiguous with 
the TCB.) 

Interrupt sequence 

Assemb I er /Loader 

ADRL PSD is the Program Status Doubleword. It is the location shown in the dedicated interrupt location when 
the interrupt takes place. 

R-bit No. for WD is the hexadecimal value (from 0 to F) that indicates the register bit that identifies the 
particular interrupt level within the Interrupt Group (the hardware block of 16 possible interrupts). 

T is the flag that indicates whether the M:SAVE and M:EXIT routines should set location 0001 to 0007; 
o means yes, 1 means no. (T must be 0 if any Monitor service routines are used. ) 

C is the flag that indicates whether the task is critical; 0 means no, 1 means yes. The default value is O. 

X indicates whether or not the task is to be triggered at load time: 1 means yes, 0 means no. A code of 7 
is issued subsequent to issuing the code (normally 2, "Arm and Enable") given in word 2. 

Code is the interrupt system control code that indicates current or desired initial interrupt control status. The 
codes are 1 = disarm, 2 = arm and enable, 3 = arm and disable, 4 = enable, and 5 = disable. 

Buffer pool is an amount of space from one to 16 buffer areas in length, each of which is equal in size to the 
value contained in K:BLOCK. 

"Use II bits are bits, from left to right, beginning with zero, showing which of the maximum number of buffers 
have been allocated by ,VI:OPEN and have not yet been closed by ,V\;CLOSE. 

Task Control Block Functions 90 10 37F-1 (3/72) 



When the Overlay Loader creates the TCB for a foreground 
task, the items shown in Figure 6 are generated adjacent 
to the task. If the transfer address given in the object 
deck is relocatable 0, it is not treated as the entry point 
to an initialization routine, but is used as the entry address 
for that task. The task wi II be armed, enabl ed, and pos­
sibly triggered when loaded for execution depending on the 
contents of words 1 and 2 of the TCB, supplied to the 
Overl ay Loader on the ! $TCB card. 

After a foreground program is loaded into core, certain 
items in the TCB are examined. A fatal load error results 
if the number of specified operational labels requiring 
blocking buffers exceeds the number of available block­
ing buffers (word 15 of TCB). If the number of available 
blocking buffers is sufficient, word 15 of the TCB is adjusted 
to reflect the current blocking buffer requi"rements. 

In the event of a fatal load error in response to a load re­
quest from a background job stack via an !XEQ or !name 
command, the following message is printed on the DO: 

I I .... ____ ! !_B_K_G_D_X_E_A_BO_R_T_L_O_C_A_T_IO_N_F_F_F_F __ ----' 

If the request came from a queue stack load, the followi ng 
message is logged on the DO: 

NO NRES FG ND PGM xxxxxxxx LOAD ERROR 

If a program has an initialization routi ne (that is, an end 
transfer address other than absolute or relocatable 0), that 
routine is responsible for storing word 0 of the TCB (the 
address to receive the interrupted task's PSD) into the 
dedicated interrupt location, as well as arming and enabl­
ing the appropriate interrupt level for each task within 
the program. 

The initialization routine may also be used to assign any 
specific operational labels required by the program (e. g., 
the operational label or device unit number required) to 
read in subsequent segments. 

If the program has no initialization routine, word 0 of the 
first loaded task (actually word 0 of that task's TCB) wi II 
be stored into the dedicated interrupt location for that task 
when the program is loaded. Next, the associated inter­
rupt level is disarmed to remove any waiting interrupts; 
then it is armed, enabled, and possibly triggered, depending 
on the contents of words 1 and 2 of the TC B. 

When a foreground task is activated, control is transferred 
to the address given in the dedicated interrupt location, 
where the interrupted task's PSD is stored, and execution 
resumes at PSD+2 at the level of that foreground program. 
This is a hardware function that preserves the interrupt 
status and execution location of the interrupted task. Next 
the register contents of the interrupted task must be saved. 

Normally, the first instruction in a foreground program will 
store the contents of the accumulator into word 10 and the 
contents of the L register into word 5 of its TCB and then go 

90 10 37F -1 (3/72) 

to the Monitor service routineM:SAVE which will store the 
remaining register's contents into the active task's TCB. 
M:SAVE wi II also store the contents of K: TCB (used exten­
sively by the Monitor to identify the currently active task) 
into word 12 of the TC B, and set K: TC B to poi nt to the 
active task's TCB. If the active task requires temporary 
storage (word 1, T = 0), the contents of K:BASE are stored 
into word 11 of the TCB and K:BASE is set to the first word 
address of the active task's temp stack. The floating ac­
accumulator is then set to point to the first six cells of 
the active task's temporary storage. 

When the currently active task has completed all its opera­
tions, it exits through the Monitor service routine M: EXIT 
which restores the general register's contents and resets 
K:TCB and, if applicable, K:BASE. M:EXIT also performs 
a hardware exit sequence, by which it restores the interrupt 
status and the overflow and carry indicators, and returns 
to the interrupt task. 

FOREGROUND PRIORITY LEVELS AND I/O PRIORITY 

All foreground tasks with a priority level lower than the 
I/O priority level and operated without interrupts inhibited 
may use the Monitor I/O routines without any special re­
strictions. However, foreground tasks that have interrupts 
or have an interrupt level higher than the I/o priority level 
level must not use Monitor I/O. 

The recommended procedure for a task whose interrupt level 
is higher than the I/o priority level is to trigger a task 
whose priority is lower than the I/o priority. This lower 
priority task would then perform the required I/O opera­
tions. Generally, these high-level tasks are for emergency 
situations where no I/O is performed or when the task does 
its own I/O due to special requirements. 

AIO RECEIVERS 

An AIO Receiver is a means whereby a foreground program 
can initiate an I/O operation, release control to lower 
level tasks, and regain control when the I/O operation is 
completed. The AIO Receiver itself is a closed subroutine 
which operates at channel end (or zero byte count, if 
specified) at the priority level of the I/O interrupt. It is 
used in conjunction with an I/O operation specifying 
"initiate only and return II (no wait). Typically, in order 
to maximize compute and I/O overlay, the foreground pro­
gram will issue an I/O request with the "no wait" option 
and specify an AIO Receiver. When the I/O operation is 
successfully initiated, this foreground task exits from the 
active state (by a ca II to M: EXIT) and is restored to the 
active status at channel end by a Write Direct to trigger 
the interrupt level (from its AIO Receiver). The next I/o 
operati on for that device fi Ie-number must be a "check II 
operation to complete the end-action of the file. 

For I/O to RAD fi les, the AIO receiver may be activated 
before the operation is actually complete. This will happen 
whenever a transfer across a track boundary occurs, more 

Foreground Priority Levels and I/O Priority/AIO Receivers 71 



TEMP BASE 
~I 

n-word 

= exloc, specified on 
! $ROOT card. 

n = temp. specified on 

TCB ----lI--Word 0 

2 

3 

4 

5 

12 

13 

14 

15 

Word 16 
End of TeB .. 

Word n 

ENTRY 

72 AIO Receivers 

Reserved Area 

I 

! $ROOT card; first five 
words of temp are float­
ing accumulator; sixth 
word is used by FlO. 

I ADRL Word n I TEMP LIM 
~I ----------------------~11 

LIt t 1ft· .-J } Supplied on ! $TCB card. n errup norma Ion 

TEMPBASE 

TEMPLIM 

K:DYN (Dynamic Temp Pointer) 

Buffer Pool LWA+ 1 

No. Avai lable Buffers 

Use Bits 

- PSD Reserve 

STA TCB+10 

RCPY L,A 

STA TCB+5 

RCPYI P,L 

B M:SAVE 

ADRL TCB 

B * $ + 1 

ADRL ENTRY 

Foreground Task 

Figure 6. Task Entrance Format 

} 

- 1 
J .., 

J 

Temp Stack FWA. 

Temp Stack LWA+ 1. 

Reserve for savi ng con­
text of interrupt task. 

Initially set to 
TEMPBASE + 6. 

Set to Common Base. 

Common Base - Last 
Loaded item/K:SEC. 

Initially set to zero. 

Two-word reserve tho t 
receives the interrupted 
task's FSD • 

Code to save registers, 
TCB pointers, and temp 
pointers. 

Transfer Address 



than X'lFFF' bytes are requested, or a bad track is en­
countered. The calling task (not the Ala receiver) must 
issue a "check" operation to complete the transfer. An Ala 
receiver specifi ed for the" check" operation, wi II be honored. 

Special considerations for use of Ala Receivers are: 

1. The operation requesti ng an Ala Receiver is an 
"initiate and return" operation. If the device or the 
file is busy, the I/O operation is not initiated and a 
busy status is returned. It is the user's responsibility 
to determine the course of action to be taken at this 
point (e. g., loop until ready or ignore the operation). 

2. If the file being used is a blocked file, an actual I/O 
operation may not be required, hence no channel end 
interrupt and no Ala Receiver operation. In this 
instance, the X register will be set to -1 to inform 
the user that the Ala Receiver wi II not be effective. 
A "check" operation is still required on the file be­
fore another I/O operation may be performed. 

3. If a "check, no wait" is performed on a device that is 
busy with some fi Ie other than that specified by the 
check call, the check operation wi II be performed 
with an impl ied wait but only unti I the device is free 
for use by the spec ified fi Ie. For example, a busy 
status returned on a "check, no wait" operation always 
appl ies to the fi Ie specified by the Check ca II and if. 
an Ala Receiver was specified, it will be honored. 

4. If the Ala Receiver merely retriggers the task that 
initiated the operation, a danger exists in that it is 
quite possible for the Ala Receiver to operate before 
the task exits from its "active"state. Thus, the cur­
rently active task is retriggered, which results essen­
tially ina no-operation. One means of avoiding this 
problem would be to have the Ala Receiver set a flag 
to inform the active task that it has run. In this way, 
the active task could inhibit interrupts prior to exiti ng, 
test whether the Ala Receiver has already operated, 
and is so, restore interrupt status and return to the 
start of the task. If examination reveals that the Ala 
Receiver has not run, the task merely exits through 
M:EXIT which will properly restore the interrupt status. 
Another means of ~voiding this difficulty is to have 
the Ala Receiver trigger a task lower in priority than 
the active task. This lower priority task could re­
trigger the task initiating the I/O operation, thereby 
providi ng a positve trigger. 

The form of the call to the Ala Receiver by the I/O Inter­
rupt task is 

LOA 

RCPYI 

B 

AIOOS B (device status byte 
from Ala in bits 0-7, 
device number in 

P, L bits 8-12) 

Ala Receiver Address 

The Ala Receiver routi ne must return to the location 
contained in the l register on entry. All registers are 
assumed to be volatile, which means that they need not 
be saved and restored to their former contents. Because 
the Ala Receiver is processed at the priority level of 
the I/O Interrupt, the processing in this routine should 
be of very short duration so as not to interfere with other 
I/O operations that may be in process. See also "End 
Action" in Chapter 5. . 

CHECKPOINTING THE BACKGROUND 

A foreground prog,ram may require use of the background 
area for either irf~tructions or data. A checkpoint feature 
is included in RBM to allow access to the background area 
by a foreground program by writi ng any active background 
program onto the ~AO and extending memory protection to 
the background area. 

A checkpoint operation is initiated by a call to M:CKREST 
with the appropriate option. M:CKREST will return a status 
specifying whether or not the request was honored. The 
request wi II not be honored if the background has al ready 
been either checkpointed by a foreground request or auto­
matically checkpointed as a result of loading a nonresident 
foreground program extending into the background. It is 
the responsi bi I ity of the user to schedu Ie the use of the 
background space by foreground programs. The actual 
checkpointing is accomplished either at the priority level 
of the RBM Control Task or at the priority of the calling 
task. 

If the checkpoi nt is performed at the priority I evel of the 
calling task, a return from M:CKREST with a status of zero 
(A = 0) indicates thafthe checkpoint has been performed. 
If the checkpoint is to be performed at the level of the RBM 
Control Task, the requesting program must exit its "active" 
state to allow the checkpoint operation to be performed. 
The program requesting the checkpoi nt would generally 
specify a "Checkpoint Complete Receiver". This receiver 
is operated at the priority level of the RBM Control Task 
when the checkpoint is complete. 

The receiver will generally retrigger the requesting pro­
gram to inform it of the completion of the checkpoint. 
Return from the Checkpoint Complete Receiver is to the 
location contained in the L registers on entry. All registers 
are assumed to be volatile, and need not be saved and 
restored to their former contents. 

When the foreground program no longer requires use of the 
background area, it should restart the background task by 
a call to M:C KREST with the "restart" option. 

Checkpointing the Background 73 



7. OVERLAY LOADER 

The Overlay Loader can be used to create overlay programs 
for later execution in either the foreground or background. 
Overlaid programs can be permanently entered (as a file) 
into either the system or user processor areas, or into a 
temporary overlay file. Since they are stored on the RAD 
as an absolute core image, they can be quickly loaded into 
memory for executi on. 

A general overlay structure is illustrated in Figure 7. The 
structure is restricted to a permanently resident root seg­
ment and any number of overlay segments. (For background 
and nonresident foreground programs, the peiiiicment root 
segment is resident only during actual execution.) For fore­
ground programs, the TCB and the initial ization routine 
(if one is present) must be in the root segment, but data 
and instructions can be located in both the root and the 
overlay segments. 

A COMMON data area can also be established for use by 
the root and overlay segments. 

Each segment is created by the Overlay Loader from one or 
more object modules (assembly language, FORTRAN, or 
library routines). The control commands required to create 
the overlay segments are defined in this chapter. During 
execution, the Monitor service routine M:SEGLD is used to 
control both the loading and the transfer of control between 
various segments. 

The overlay segments must be explicitly defined at load 
time and expl icitly called at execution time. There is no 
provision for automatically calling in a new overlay seg­
ment by a subroutine reference. However, the subroutines 
on a particular path may communicate with each other, with 
the restriction that it is the program1s explicit responsi­
bil ity to ensure that any subroutine referenced is cur­
rently in core. 

The Overlay Loader accepts input in Standard Sigma 2/3 
Object Language from predefined, prepositioned files, and 
prepares output in absolute core-image form on the RAD to 
be read by the RBM Loader (M:LOAD) for later execution 
in either foreground or background areas. If a resident or 
nonresident program can tolerate c loading delay of 20 to 
100 ms, foreground or background programs of virtually un­
limited size can be constructed by the use of overlays de­
spite limitations in available core storage. 

In creating core images on the RAD, the Overlay Loader 
performs the following functions according to user options: 

• Satisfies external reference/definition I inkages and 
resolves forward reference and displacement chains. 

• Searches specified libraries for unresolved references 
and loads these selected routines into core memory. 

• Builds the OV:LOAD table for the loading of overlay 
segments. 

74 Overlay Loader 

• Writes the overlay cluster onto the OV file. 

• Allocates COMMON. 

• Allocates temporary storage stacks. 

• Creates a Task Control Block (TCB) and initial ization 
information. 

• Creates the Public Library and associated transfer 
vectors (TVECT). 

• Outputs maps of segment names and addresses, external 
definitions, and information concerning COMMON 
and temporary areas. 

• Allocate, initialize, and satisfy reference linkage for 
Labeled COMMON. 

OVERLAY CLUSTER ORGANIZATION 

The overlay cluster is the collection of absolute overlays 
formed by the Overlay Loader from relocatable binary ob­
ject modules. (Note that the Loader does not accept an 
absolute load origin in any input module.) An overlay 
cluster usually consists of two principal sections: the root 
segment and the overlay segments although it may consist 
of only a root segment. Each segment consists of one or 
more binary modules and associated library routines. Over­
lay segments are numbered in any order by the user, except 
for the root segment, which is always designated as seg­
ment O. Those segments in core memory at anyone time 
form a path. An overlay cluster with several paths is shown 
in Figure 8. Segments are shown as horizontal lines and, 
in this example, are numbered in the order in which they 
are bui It by the Overlay Loader. Note that at a given node, 
each path associated with a branch must be completed before 
a new branch is connected to this node. 

The overlay cluster shown in Figure 8 consists of a root and 
segments 1 through 15. Segments 0, 1, 3, 4, 5, 6 constitute 
a path. On the RAD or disk pack the root is preceded by 
a file header, one RAD granule in length, that contains in­
formation by which the RBM Loader M:LOAD can correctly 
read the root. The root is resident at all times during exe­
cution of the overlay program and contains information 
(OV:LOAD table) for loading of the remaining overlay 
segments. 

When first defined along a path by an object module, 
Labeled COMMON will be allocated preceding that mod­
ule. Should the same Labeled COMMON be subsequently 
defi ned by another module, the area prescribed should be 
no greater than that already allocated, and reference to the 
initial definition will be provided. Allocated space &,.. .. 

Labeled COMMON is cleared to zero entries except where 
data is provided by modules of the same segment (or root). 



Root 
(Segment 
No. 0) 

Root Area 

Low Core 

Overlay Segment n 

Overlay Segment No. 3 

Overlay Segment 
No. 21 

Overlay Segment No. 2 

Overlay Segment 
No. 22 

Overlay Segment No. 1 

Overlay Area 

Figure 7. General Overlay Structure Example 

I· 
I 
I 

Blank 

COMMON 

Data 

Area 

COMMON 
Area 
(Optional) 

High Core 

Overlay Cluster Organization 75 



3 
o 

10 

11 

15 

Figure 8. Sample Overlay Cluster Configuration 

Library modules of the root may not initialize Labeled 
COMMON allocated in the program portion of the root. 
The number of Labeled COMMON blocks associated with 
a mod.ule is limited to 40. 

Communication between segments by external reference/ 
definition linkages is subject to the following restrictions: 

1. No segment in a path may reference a segment in 
another path. 

2. The user must ensure that all communi cati ng segments 
are in core memory during execution. 

3. Because the Overlay Loader will satisfy a linkage only 
within.a path, identical references and defintions 
may be used in different paths that do not contain a 
common segment. However, the user must avoid refer­
ences to the same definition in defferent higher level 
segments. 

4. Library search procedures for a User or System Library 
restrict the use of unique library DEFs and REFs to a 
maximum of 225 along any path of the program. 

5. Forward references in library modules of the root are 
disallowed, and it is suggested as good programming 
practice that User Library programs not make references 
outside the library routine. 

To satisfy any remaini ng unsatisfied primary references, 
the Overlay Loader searches the following libraries in the 
specified sequence: 

1. Publ i c Library 

2. Monitor Service Routines 

3. Basi c or Extended Library 

4. Main Library 

CORE LAYOUT DURING LOADING 

Background memory during the operation of the Overlay 
Loader is divided into four areas: 

1. A fixed area large enough to contain the background 
temp stack, the Overlay Loader root, and the Loader 
overlays. 

2. The segment tabie, fixed at lO(n+l) where n equals 
the number of segments which contains the user's 
OV:LOAD table. 

3. A dynamic area in which the segment is loaded. 

4. A dynamic area containing the symbol tables (alloca­
tion is eight words per symbol). 

If areas 3 and 4 overlap at any point in the load process, 
overflow occurs and loading aborts. 

OVERLAY LOADER OPERA TIONALLABELS 

The Overlay Loader references the operational labels I is.ted 
below. Some assignments are user-defined, while others 
are handled internally by the Job Control Processor or by 
the Overlay Loader itself. All other operational labels 
referred to on ! $LD cards must be assigned and positioned 
by the user prior to the! OLOAD card. 

Label Explanation 

CC Control commands. 

DO 

GO 

LI 

OC 

OV 

Control commands as read from CC, maps, and 
diagnostic messages. The default assignment is 
that given by the Job Control Processor on read­
i ng a !JOB card. 

Sequential-access file that contains object mod­
ules to be processed by the Overlay Loader. 
Object modules are written onto GO by a pre­
ceding processor. The Loader rewinds GO 
initially. GO receives a default assignment by 
the Job Control Processor to the permanent fi Ie 
RBMGO in the System Data area. 

Assigned internally to System or User Library as 
library searches are performed. 

Abort messages and Overlay Loader messages 
that require operator attention. 

Output file for the Overlay Loader containing 
the completed overlay cluster. If the user wishes 
to have the overlay cluster ina permanent fi Ie, 
he must key in SY (for write-protected files) and 
assign OV to that permanent file. By default, 
OV is assigned to the permanent file RBMOV in 
the System Data area. 

76 Core Layout During Loading/Overlay Loader Operational Labels 



Label Explanation Label Explanation 

PI 

Xl 

I X2 

RS 

LS 

lO 

Used for loading the Overlay Loader's own 
overlays. PI is assigned by the Job Control 
Processor. 

Temporary RAD or disk pack scratch file con­
taining the symbol table for each segment. Xl 
is assigned by the Job Control Processor. 

Assigned internally to System and User Library 
as I ibrary searches are performed. 

Assigned internally to read the RBM Symbol 
Table (RBMSYS) from the System Data area. 

Assigned internally to read the Public Library 
Symbol Table (LIBSYM) from the System Data 
area. 

An optional operational label used to write 
the indents of nonlibrary programs for use by 
Debug at execution time. If the user assigns 
lO, the assignment must be for a blocked file 
that has a record length of five words. By 
default, ID is assigned by the Job Control 

lO 
(cont.) 

Processor to RBMID (a one-sector fi Ie) in the 
System Data area. 

MAP 

Three types of maps may be output to the DO device 
following PASS2, according to one of three Map con­
trol commands that may be input: a Short map (! $MS), 
Long map (! $ML), or Program map (! $MP). If no map 
control command is specified, no map will be output. 

Figure 9 shows the format for a Long Map. Note that 
DEFs in the Permanent Symbol Table are mapped after 
the Overlay Task line. The format for a Program map 
would be the same as the Long map except that library 
and Permanent Symbol "::lble symbols are suppressed. The 
lines of the map that are flagged with an asterisk (*) show 
the format and output of a Short map (in an actual Short 
map no asterisk would appear in the listing). A definition 
of each item of the map is included in Figure 9. 

*OVERLAY TASK {~~} ORG = xxxx HLLOC = xxxx CBASE = xxxx CSIZE = xxxx UMEM = xxxx SECT = xxxx 

{
NONE} 
xxxx 

*ROOT ORG = xxxx LWA = xxxx LEN = xxxx TRA SEV xxxx OV:LOAD = xxxx 

B/E/M zzzz 

°kSEGMENT IDENT NODE ORG LWA LEN TRA SEV 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

[f1] DEF etc. 

[f 1 f
2
]REF etc. 

REF 

*SEGMENT 

"'~ERRSEV = xxxx 

*END MAP 

Fi gure 9. Long (Load) Map Format 

Map 77 



where header keywords have the followi ng meani ng: 

Overlay Task Keywords 

ORG 

HLLOC 

CBASE 

CSIZE 

UMEM 

SECT 

Root Keywords 

ORG 

LWA 

LEN 

TRA 

SEV 

OV:LOAD 

General Keywords 

DEF 

REF 

78 Map 

First word address of the Overlay Task area. It is the FWA of the Temp stack. 

Last word address of longest segment. 

Base of COMMON. 

Largest COMMON size encountered. 

The number of locations between the end of the longest path, and either the beginning 
of COMMON or the end of the assigned task area. 

The number of sectors required to store entire overiay ciuster. 

FWA address of the root. In the foreground, this is assumed to be the address 
of the TCB; in the background, it is the FWA of the root. 

Last word address of the root segment. The area from ORG to LWA includes 
the root code and the OV:LOAD table (and in the foreground, the TCB). 

LWA-ORG+1. 

Background - last end transfer encountered on a module used to form the root. If there 
is no transfer address, INONEI is output. 

Foreground - the entry address of an initialization routine that arms and optionally 
triggers interrupts at run time. If the Loader builds the TCB, it is assumed that no 
such initialization exists and TRA=NONE. 

Error severity encountered during loading binary modules. Taken from the END item of 
the binary module. 

Address of the OV:LOAD table. 

Error and identifier flags preceding external definitions and references. Possible flags 
are: 

D 

LC 

U 

U 

P 

S 

Double definition or reference. 

Labeled COMMON 

(DEF) - a definition declared, but given no value. 

{REF} - reference unsatisfied in this path. 

Primary reference. 

Secondary reference. 

An e'xternal definition. 

An external primary or secondary reference. 

EBCDIC DEF/REF name of one to eight characters. 

Figure 9. Long (Load) Map Format (cont.) 



General Keywords (cont.) 

L/I 

S/U/p 

B/E/M 

yyyy 

zzzz 

Segment Keywords 

IDENT 

NODE 

ORG 

LWA 

LEN 

TRA 

SEV 

ERRSEV 

END MAP 

Library or Input REF /DEF. 

System, User, or Public Library. 

Basic, Extended, or Main mode. 

Value of a DEF. 

The number of the segment in which this reference was satisifed. For unsatisfied 
references, zzzz is blank. 

Numerical identifier of this segment as found as the first parameter on the! $SEG card. 

The numerical identifier of the segment to which this one will be attached. If NODE 
is the root, 0 is output. 

Beginning location (execution) of this segment. The point in core at which loading 
begi ns. The fi rst reserves before data ina segment are not output. 

LWA of this segment. Includes areas defined by RES and ORG. 

LWA-ORG+1. 

The last encountered transfer address is placed as an entry point in the OV:LOAD table 
for this segment. 

Same as for ROOT. 

Total error severity for loading process (0 or 1). If any SEV > 0 or there are unsatisfied 
primary references, ERRSEV=l. Only in forming a PUBLIB do double DEFs or unsatisfied 
secondary references cause ERRSEV=l. 

Completion of loading process. 

Figure 9. Long (Load) Map Format (cont.) 

CALLING OVERLAY LOADER F or B specifies ei ther a foreground (F) task or a 

The Overlay Loader is requested via an ! OLOAD com­
mand which causes the root segment of the Loader to 
be read into core memory from the RAD. The form of 
the command is 

background (B) task. The defau I t case is 
background. 

S specifies a step mode of loading to be used for 
paper tape input. 

! OLOAD [segments, {~} ,S, D, X, cmnJ[, R] 

where 

segments denotes the number of segments in the 
overlay cluster. If "segments" is not specified, 
a zero is used, denoting that only a root segment 
is to be loaded. The value of the segments param­
eter may exceed the actual number of segments to 
be loaded. 

90 10 37F-1 (3/72) 

D indicates the indent of each nonlibrary module 
is to be written to operational label ID for use by 
Debug at exec uti on ti me. 

X indi cates that the Loader is to abort the job if 
a severity error greater than zero is encountered 
during loading. The loading procedure is com­
pleted and the map is output. 

cmn for background tasks, cmn denotes an opti onal 
COMMON size; for foreground tasks, cmn denotes 
either a base for COMMON or, in the case of 
zero COMMON, the upper limit of the task 
area. If the address specified by the cmn param­
eter is higher than root FWA. Foreground loads 

Call i ng Overlay Loader 79 



may specify the cmn parameter at a lower address 
than root FWA, in whi ch case the end of memory 
is the program upper limit. A check is made at 
the end of the load to determine whether the 
COMMON allotment overlaps the root. If it 
does, the warning message OLERR CO is printed 
but no error severity level is set. 

R for foreground tasks only, specifying that this 
parameter causes only the root size to be entered 
into a sector header (OV: LOAD table) instead of 
the program's longest path. The root size is not 
reflected in any map. 

This action is intended for the use of a foreground 
program that only occasionally uses a large data 
buffer. A program of this nature can reside in 
foreground vv'ithout checkpointing background 
until such time as it requires background space. 
Caution must be exercised in the use of this pa­
rameter, since the background must be explicitly 
checkpointed and restored, when necessary, by 
the foreground task. 

When the step mode of loading is defined, the operator is 
notified after the loading of each module from paper tape 
by the message 

!! BEGIN WAIT 

Depressing the console interrupt button and keying in an 5 
wi II initiate either the loading of the next module from the 
paper tape unit or the reading of the next control com­
mand. An X response causes the loading process to abort. 

In allocating COMMON for background programs, the 
Overlay Loader compares the cmn parameter with the first 
nonzero COMMON size allocation value encountered in 
loading and employs the larger of these two values. The 
COMMON base is set by subtracting the COMMON size 
from K:UNAVBG. 

For all foreground programs having COMMON, the follow­
ing rules apply: 

1. Default 

a. COMMON upper limit is the upper limit of non­
resi dent foreground (K: BAC KP-l). 

b. COMMON base is K:BACKP-1 minus COMMON 
size. 

2. cmn specified 

a. cmn will be used as COMMON base or FWA of 
COMMON. 

b. COMMON size wi II be added to cmn to determine 
the COMMON upper limit. 

3. Blocking buffers will always be allocated immediately 
preceding COMMON base. 

4. If COMMOt--.! base is greater than program FWA, it 
wi II be used as an upper I imit for program loading. If 
not, K:BACKP-l will be used and the 'R' option may 
not be used. 

80 Control Command Format/Control Command Repertoire 

Reading an !EOD control command causes the Overlay 
Loader to satisfy forward references, output any specified 
map, close files, and return control to RBM via M:TERM. 
The form of the command is 

CONTROL COMMAND FORMAT 

Except for the !OLOAD command, which is read by the Job 
Control Processor, the Overlay Loader control commands 
are read from the CC device under Loader controi. The 
geneiol fOimaf- of contio! commands is 

( $mnemonic parameter 

where 

identifies the record as a control command. 

$ indicates that the control command is unique to 
the Overlay Loader. 

mnemonic is the code name of an Overlay Loader 
control command and begins immediately following 
the ! $ characters. 

parameter is a series of optional or required param-
eters unique to the specific command. The formats 
of parameters are (1) a decimal integer of up to 
five positive numbers but having a value less than 
32,767; (2) a hexadecimal string of the form 
±Xxxx; (3) an EBCDIC string of up to eight char­
acters but not exclusively characters 0 through 9; 
or (4) a string of the form EBCDIC string ± hexa­
dec ima I number. 

From one through eight blanks are permitted between the 
mnemonic and the first parameter. If more than eight blanks 
blanks are detected, the parameter list is considered empty. 

The only allowed del imiter between parameter fields is a 
comma; no embedded blanks are allowed in or between any 
fields. A single blank terminates the parameter string. 
Two successive commas indicate an empty field. Comments 
are allowed on a control card. 

CONTROL COMMAND REPERTOIRE 
BLOCK The! $BLOCK control command will allocate 
blocking buffers from unused memory space as requested 
either by a count or by defining operational labels that may 
require blocking buffers at run time. The list of such labels 
along with limits of available memory will be passed via the 
fi Ie header to M:LOAD, whi ch wi II allocate a blocking 
buffer pool at run time~ The pool wi!! be utilized dynam-
i cally to provide blocking buffers in cases where a call to 
RBM routines M:READ or M:WRITE is not preceded by a call 
to M:OPEN. A call to M:CLOSE may release any such 

90 10 37F-1 (3/72) 



buffers. Thus, if two operational labels were to use a block­
ing buffer area at different times, the first might release the 
area for use by the second. Only one of the two labels 
would be required on the! $BLOCK command. 

M:LOAD checks which of the operational labels are assigned 
to block files atrun time to make the pool allocation. If 
such an allocation overflows the available memory space 
(between the end of the longest path and COMMON), the 
execution aborts. However, the user may define his own 
blocking buffer by specific calls to M:OPEN. Such an area 
should be in a reserved area of his own path. He should not 
use the dynamically allocated pool area, and blocking buf­
fers may not be allocated in temporary stacks. Only one 
! $BLOC K command is allowed in a single job step, except 
when used with multiple ! $TCB commands. The format of 
the! $BLOCK command is 

I {oplb } [ . $BLOCK c 1 ,oplb
2
,· .. ,oplb n] 

where oplb i defines an operational label (which is a two­
letter mnemonic or a FORTRAN device unit number; e.g., 
BI, SI, F:106). The oplbi parameter may not be a device­
fi Ie number or fi Ie name. The oplb must be assigned to a 
block fi Ie. Only 10 operation labels wi" be read; addi­
tional ones wi" be ignored. In lieu of operation labels, 
the user may provide a count(c) of blocking buffers required. 

LIB The! $UB control command specifies a new default 
library loading mode for the entire loading process. If the 
UB command is not present, the Overlay Loader follows 
the default case (Basic System Library). ! $UB cards may 
occur at any point in the control deck and will take effect 
from that point. The format of the command is 

(I$UB library,x[,y] 

where 

library must be oneofthe following EBCDIC codes. 

Code Library 

B Basic 

E Extended 

x,[yJ specify the order of search. The x and y pa-
rameters are either of the following EBCDIC codes. 

Code Library 

S System 

U User 

The order in which they are specified determines the 
order of search. Note that if y is not specified, only 
x wi" be searched. 

MS,ML,MP The Map control commands specify that 
map information is to be output on DO. The three forms 
of map commands are shown below. 

If the! $MS (Short Map) control command is specified, only 
root aoo segment headers will be output. Also output is a 
summary contai ning the origi n of the overlay program, the 
length of the longest path, temp stack size, memory that is 
avai lable for the blocki ng buffer pool, and the COMMON 
base. The format of the command is 

r$MS 
If the! $ML (Long Map) control command is specified, the 
short map plus external references and all external defi ni­
tions and their values including the libraries and permanent 
symbol table are output. Double definitions, and definition 
declarations that were not given a value are flagged D 
and U, respectively. Unsatisfied primary references are 
flagged with UP, unsatisfied secondary references with US. 
The format of the command is 

r$ML 
The output of the ! $MP control command is identical to 
that of ! $ML, except that library definitions and references 
and the permanent symbol table are suppressed. The format 
of the command is 

If relevant, information concerning the Public Library is 
also mapped. 

TCB The! $TCB control command indicates (for a fore-
ground task only) that the Overlay Loader must create a 
TCB and reserve a PSD location, and must generate a call 
to RBM routine M:SAVE. M:FSAVE will be called if the 
set multiple precision mode exists. In addition, information 
to initialize the TCB at run time will be passed in the file 
header. If n6 ! $TCBcommand is present, it is assumed that 
a TCB has been assembled into the root segment. Since the 
background TCB lies in protected memory, it cannot be as­
sembled into the root of the background overlay cluster, but 
the necessary information is passed by the Loader to M:LOAD 
via the file header. Therefore, the TCB option applies to 
foreground tasks only. Multiple! $TCB commands may be 
used internal to the root program. Each !$TCB command 
would connect a separate interrupt function to the root pro­
gram and be followed by ! $LD commands to load associated 
modules. The! $TCB may be followed by a ! $BLOCK com­
mand that would identify independent buffer blocks with its 
function. Individual temp stacks wi II be reserved by other 
than the initial ! $TCB command that must precede the 
! $ROOT command. The format of the command is 

(I$TCB w l ,w2[,temp] 

where 

w1' w2 are the values to be placed in words 1 and 2 
of the created TCB (see "Real-Time Programming, 
Chapter 6). 

Control Command Repertoire 81 



temp defines the size of the temporary stack to be 
reserved for a TCB other than the initial TCB. 

The Overlay Loader will handle specific and default 
cases of program execution and TCB initialization within 
the framework of the followi ng restri ctions: 

• The Overlay Loader defines all background Task Con­
trol Blocks completely, using the value of the temp 
parameter on the! $ROOT card, load information, and 
the! $BLOC K parameters. 

• In foreground tasks, if the user assembles the TCB as 
part of the program, it either must contain all informa­
tion as data or as external references satisfiable at 
load time; or be initialized by the task itself. A trans­
fer address is assumed to be a transfer to an initializa­
tion section that will do any required housekeeping, 
arming, enabling, or triggering the task. If no trans­
fer address exists, M:LOAD will arm and enable and, 
optionally, trigger the task using information in 
words 1 and 2 of the TCB. 

• If the Overlay Loader initial izes the TCB by means of 
the TeB parameters, it does so completely, using load 
information and values on the! $TCB and! $BLOCK 
cards. No partial initialization of a TCB is allowed 
with the exception of the blocking buffer pool. If a 
user builds his own TCB, the TCB must begin at the 
execution location plus the "temp" value specified 
on the ! $ROOT command. 

• For foreground tasks for which the Loader builds a TCB, 
the Loader wi II create the PSD reserve a nd a ca II to 
M:SAVE. The user's root is then entered either at the 
location specified in the transfer address, or at the 
FWA of the root when the transfer address is missing. 
The map will indicate a transfer address of "NONE" 
for the root. 

• Where multiple ! $TCB commands are used within the 
root program, the transfer address for the program is 
established by the modules preceding a second use of the 
! $TCB. FORTRAN generated programs do not provide 
a transfer address. If no transfer address exists, each 
subtask within the root program will be initialized by 
M:LOAD using the information in words 1 and 2 of 
their respective TCB. If a troilsfer address is provided, 
M:LOAD will not initialize any subtask. 

The user exits with either a call to the RBM routine M:EXIT 
or by a standard exit procedure. 

Public Library routines and Monitor service routines called 
by the user program will require temporary storage areas 
that are dynamically allocated at execution time. These 
temporary storage areas must be a IIocated in a fixed storage 

• stack that is reserved by the Loader at load time on the 
basis of the temp parameter on the! $ROOT control com­
mand. In addition, the Loader will insert in the TCB the 
firST and iast word addresses of the area. The temp area 
will be allocated preceding the root segment. It need not 
be a reserve in the module. 

82 Control Command Repertoire 

For more information On initialization and structure of TCBs, 
see Chapter 6. 

ROOT The ! $ROOT command specifies that the modules 
that follow it constitute the root segment of the overlay 
cluster. A! $ROOT command must precede all! $SEG com­
mands, and may be followed by ! $LD, ! $INCLUDE, 
! $EXCLUDE, ! $TCB, ! $LCOM, ! $RES, ! $MD, ! SUB, and 
! $LB commands, which cause the loading of those modules 
that form the root segment. Loadi ng of the root wi II begi n 
at the first cell following the temp stack for the background 
task. An execution bias may be specified. The user must 
ensure that the root segment, exclusive of any library load­
i ng, is less than 32K bytes. The root and its library are 
written as two records. Therefore, the I ibrary portion of 
the rooT may alos be a maximum of 32K-l bytes, which 
gives a maximum root size of approximately 32K words. The 
format of the command is 

! $ROOT [temp,exloc,oplb, nJ 

where 

temp defines the size of the overlay cluster's tem-
porary stack needed for the largest possible nesting 
of Public Library and Monitor service routines. 
The default size is 80 cells. If a TCB has been 
assembled into a foreground program, this value 
should be used for temp. 

exloc specifies the beginning location of the area 
in memory that the overlay cluster will occupy at 
execution time. The default case is K:BACKBG 
for a background task and K: NFFWA for a fore­
ground task. The temp stack will be allocated at 
exloc. 

oplb, n specifies that n modules are to be loaded 
contiguously from the operational label oplb. No 
default is provided. 

Note that if the oplb parameter is absent, ! $LD (Load) or 
! $INCLUDE control commands must follow! $ROOT to 
specify loading. If oplb is present and the n param-
eter is empty, loading proceeds from oplb unti I an ! EOD 
is encountered. 

LD The! $LD control command identifies one or more 
modules to be loaded as part of a segment. Each input file 
must be ordered in the same sequence as the ! $LD cards in 
the control stack accessing that file. The Overlay Loader 
reads only relocatable binary modules from the GO fi Ie and 
other input files specified on !$LD, !$SEG, and !$ROOT 
cards. All files must be pre-positioned (GO is rewound by 
the Loader), and the modules must be in the same position 
on each file as calls on that file. The use of the IDNT on 
the! $LD card ensures the loading of the propei module. 
Note that the file must be positioned to the proper module 
in the fi I e when the Loader reads from that fil e. Si nce 



there are no file-positioning control commands recognized 
by the Overlay Loader, each file must be constructed in 
correct sequential order. The form of the command is 

where 

oplb is the operational label of the medium from 
wh i ch the bi nary modu Ie is to be loaded. The 
default case for an empty field is GO. 

ident is on EBCDIC representation of the 
IDNT of the program to be loaded. It is 

used for checking purposes only. If nm is speci­
fied, it indicates the number of modules to be 
loaded from oplb; no check of any ident is made. 
If this parameter is an ident, one module is 
loaded. If empty, loading proceeds until an EOD 
is encountered. 

tB The! $LB command controls the search of libraries 
(for this segment only) to satisfy external references en­
countered during the loading of modules forming the seg­
ment. If the ! $LB control command is omitted, the 
Overlay Loader will first attempt to satisfy all references 
by definitions in other segments of that path or from the 
root, and then will search the libraries specified by !$UB 
or by the default case. Individual ! $LB cards supersede 
! $UB or default for that segment only. Libraries are 
searched only on occurrence of a ! $SEG or ! EOD control 
command. ! $UB and ! $LB cards only set the mode and 
sequence of search. Only libraries on the RAD or disk pack 
may be loaded selectively using the ! $LB command. To 
input 1I1ibrary ll programs from other media, the user must 
use standard ! $LD commands. The format of the com­
mand is 

($lB library,m~ nJ 

where 

library must be one of the following EBCDIC codes: 

Code Library 

B 

E 

Basic 

Extended 

m ~ n] specify the order of search. The m and n 
parameters are either of the fol lowi ng codes: 

Code Library 

S System 

U User 

If n is not specified, only m will be searched. 
default cases for E, B, m, and n. 

There are no 

INCLUDE The! $INCLUDE control command specifies 
external definitions in those library modules that are to be 
loaded with this segment, even though they are not refer­
enced in the segment. Their definitions will be included 
in the Symbol Table for use by higher-level segments. 
More than one ! SINCLUDE command may be used. Li­
braries are searched according to a preceding! $LB or ! SUB 
card or the initial default case. The format of the com­
mand is 

where defi is an external definition of a library program to 
be included in the segment. 

EXCLUDE The! $EXCLUDE control command inhibits 
library search and linkage for the named definition(s) even 
though an external reference occurs in a module of the seg­
ment. The format of the command is 

(SEXCLUDE def1,def2,··· ,defn 

where defi is the external definition for a library routine 
that is not defined along the current path. If defi is One 
of several defi nitiol1s associated with a specifi c library pro­
gram, then excluding the one def is sufficient to forestall 
loading of its associated library module. 

MD The! $MD (modify) control command is used to 
change core locations at load time before the absol ute 
overlays are written out onto the OV file. ! SMD commands 
must be inserted within a SEG sequence at"'Jd apply only to 
the segment being loaded. A check is made that the 
effective address of the! $MD command lies in the segment 
and that any labels used are defi ned for the path the seg­
ment lies in. The Overlay Loader aborts if the modifica­
tion location lies outside the limits of the segment. In­
serted values are not tested for range. External symbols 
(definitions) used in loc or value must have been previ­
ously defined. The format of the command is 

! $MD loc, value~valuel' value
2
,· .. ,value t"'JJ 

where 

loc specifies the execution location of the first 
modification. 

valuei is the hexadecimal quantity to be inserted 
at loc + i (for example, value is inserted at loc, 
value 1 at loc + 1, etc.). 

Both the loc and the val uei parameters are subject to the 
restrictions set forth in IIControl Command Format". Note 
that it is not possible to modify a I ibrary module by use of 
an ! $MD control command. 

Control Command Repertoire 83 



RES The! $RES control command allows the user to 
reserve an area at the end of the segment (root) program for 
run-time patching. The format of the command is 

! $RES def ,si ze [,def ,size], .•. [ ,def ,size] 

where 

def is the name of the area to be reserved. 

size is a decimal value specifying the number of 
words in the reserve area. 

LCOM The !$LCOM control command allows the user 
to allocate labeled COMMON blocks within a segment 
(root) program. The format of the command is 

1 $LCOM block,size [,block,size] ... ['block,sizeJ 

where 

block is the one-to-eight character EBCDIC name 
of the labeled COMMON block. 

size is a decimal value specifying the words to be 
allocated for the block. 

SEG The! $SEG control command defines the modules 
that wi II form a segment. Numbers used to define a seg­
ment must be unique. Segment identifier numbers need not 
be consecutive. A segment, including its library, is re­
stricted to a maximum of 16, 112 bytes since the segment 
and its library are written as one record on the RAD. 

Each ! $SEG or! $ROOT control command may be followed 
by !$LD, !$MD, !$INCLUDE, !$UB, and !$LB commands 
to load the modules to form that segment. The loading for 
a segment terminates on a new ! $SEG control command. 
The control command stack is terminated by an !EOD. The 
user may defer the loading of a specifi c I ibrary routine 
through the appl ication of the! $EXCLUDE command. The 
Loader wi II attempt to satisfy all references present at a 
level from the libraries specified on ! $LB, ! SUB, and 
! $INCLUDE commandsor from the default library case. A 
given library is searched only once per segment. The format 
of the command is 

( $SEG 5i ,sn ~oplb ,n ] 

where 

si is a" number less than or equal to X'FF' used to 
identify the segment bei ng loaded. It wi II be 
used to call the segment at run time. 

sn is the number of the segment to which this seg-
ment is attached. 

oplb, n specifies that n modules are to be loaded 
contiguously from the operational label oplb. 

84 Control Command Repertoire 

The following rules should be observed in defining segments 
for the overlay cluster: 

1. The longest segment must fit into core with the Loader 
and its tables. If a segment is too long, it may be re­
assembled as two modules and loaded as two segments. 

2. The Loader wi II first attempt to satisfy I ibrary refer­
ences using the Public Library and then will search the 
appropriate iibraries on the RAD or disk pack. Using 
the ! $INCLUDE command, other often-used library 
routines can be loaded with the root where they will 
be accessible to all segments.. However, library rou­
tines loaded in any segment will be accessible only to 
segments in the same path. 

3. Where segment content (not the root) is precede~ by i 
reserve area, such area does not consume space during I 
the loading process. However, if a Labeled COMMON 
block is initially defined by the first module of a seg­
ment, it is considered a data area that will precede all 
reserve areas which will consequently consume space 
duri ng Loader processing. 

At execution time an expl icit call to RBM routi ne M:SEG LD 
with the segment identifier number and the ADRL OV:LOAD 
causes the readi ng of that segment into memory from the 
OV file. Thus, any segment may, by an explicit cail, 
cause any other segment to be loaded for execution. 

PUBLIB The! $PUBUB control command indicates that 
the Overlay Loader is to create a Public Library using mod­
ules that follow and/or modules from selected libraries. 
The Public Library is bi~sed at the location specified in 
K:PLFWA of the RBM. Each symbol is flagged as Extended, 
Basic, or Main according to control information on the 
! $PUBUB card. However, a I ibrary may contai n routi nes 
of more than one mode. Such identical definitions of 
different modes are differentiated in the Symbol Table 
(UBSYM) and are not considered dupli cate. 

When library routines are part of the Public Library, they 
must be reentrant and therefore must use the dynami c tem­
porary stack (specified as the temp field on the ! $ROOT 
command) for their temporary storage space. To conserve 
core space when formi ng the Publ i c Library, the Loader 
will remove any trailing RES from a library routine and will 
also change the appropriate word in the calling sequence 
for M:RES, M:PUSH, or M:PUSHK so that the dynamic 
temporary stack will be used for temporary storage space. 

A severity level of 1 is set if unsatisfied references or 
double definitions are encountered during the loading of a 
Public Library, and the library will not be written onto the 
PUBUB file. When a Public Library is being created, the 
Overlay Loader creates a new Public Library on the RAD 
or disk pack. The Public Library just loaded is written 
onto the PUBUB file in the User Processor area. The total 
length of the Public Library must not exceed 9191 words. 
The Monitor Services Transfer Vector (TVECT) file is read 
ficm System Piocessoi Ciea, and the Pub'i c Library section 
is updated and written onto TVECT. A new Public Library 
Symbol Table is written to LIBSYM file in the" System Data 



area. The new LIBSYM is incompatible with the Public 
Library currently in core. All files are closed and nor­
mal termination through M:TERM takes place. The new 
Public Library is then loaded into core by rebooting the 
RBM. The format of the command is 

! $PUBLIB library-mode[,oplb,n] 

where 

mode must be one of the following EBCDIC codes: 

Code Mode 

B Basic 

E Extended 

M Main 

A new ! $PUBLIB control command must be pro­
vided each time mode is to be changed. 

oplb, n specifies that n modules are to be loaded 
contiguously from the operational label oplb. 

!$LD, !$LB, !$INCLUDE, and !$MD commands are hon­
ored when using! $PUBLIB in the same manner as for the 
! $SEG command. ! $ROOT, ! $TCB, and ! $SEG commands 
may not be used in conjunction with the! $PUBLIB command. 

END The! $END command is treated exactly like an 
! EOD command. It should be used in place of ! EOD when­
ever multistep job stacks are to be prestored on a RAD file. 
The Utility COpy routine will not interpret this com­
mand as end-of-file (EOF). The format of the command is 

LOADER ERROR MESSAGES 

The Overlay Loader program outputs messages on both OC 
. and DO concurrently with the load operation. If OC and 

DO are assigned to the same device, duplication of mes­
sages on DO is suppressed. If an operator response is re­
quired, the message 

! ! BEG IN WAIT 

is written on OC and DO. The operator activates the con­
sole interrupt and keys in either of the following codes. 

Code 

S 

x 

Meaning 

Continue. 

Abort Overaly Loader and return control 
to RBM. 

The format of the error message where an operator response 
is required is 

OLERR xx 

where xx is a two-letter mnemonic that identifies the error. 

The types of Overlay Loader messages are as follows: 

1. Warning messages, after which loading continues. 

2. Response messages, requiri ng an S or X key-in from 
the operator. 

3. Abort messages, upon whi ch the Overlay Loader exits 
via the RBM routine M:ABORT (see Appendix C for 
abort codes, abort messages, and their meanings). 

The Overlay Loader error messages are given in Table 18 
below. 

Table 18. Loader Error Messages 

Message 

LIBSYM UNDEFINEDt 

OLERR BU 

OLERR CC !BEGIN WAIT 

Meaning 

There was no file entry on the system Data area of the RAD or disk pack for 
the UBSYM table. 

Sufficient blocking buffer space unavailable. Severity level is set. 

A control command card has a format or parameter error. 
causes the next control command to be read in from CC. 
corrected command to replace the one in error. tt 

An S response 
This may be a 

tThis message may be written on DO during writing of the Public Library, UBSYM or TVECT table onto the RAD or 
disk pack. If the alarm occurs, the Public Library was not completely written and will have to be reloaded after the 
error is corrected. 

ttThe Loader does not reposition the record for rereading. If paper tape or cards are repositioned, the record is re­
read; if they are not repositioned, the next record is read. If the record is on RAD, disk pack, or magnetic tape, the 
Monitor I/O error recovery procedures positions to the beginning of the next record. However, the WAIT permits the 
taking of dumps, etc., before changing the environment. 

Control Command Repertoire 85 



Message 

OLERR CS ! !BEGIN WAIT 

OLERR CO 

OLERR IB ! !BEGIN WAIT 

OLERR ID ! !BEGIN WAIT 

OLERR IS !! BEGIN WAIT 

OLERR RC 

OLERR SQ ! !BEGIN WAIT 

OLERR TA 

OLERR URt 

TOO MANY DEFSt 

OLERR US 

Table 18. Loader Error Messages (cont. ) 

Meaning 

There was a checksum error on a bi nary record. An S response causes the 
record to be reread. tt 

Foreground COMMON, based below root, overlaps root. Warning only, no 
severity level set. 

Illegal binary format (that is, the first word was not 'FF' or '9F') was de­
tected. An S response causes the record to be reread. tt 

The indent on the binary module just loaded does not compare with the indent 
specified on the! $LD command. On an S response, the Loader accepts the 
binary module as is and continues processing. 

Control commands were improperly sequenced in the control command stack 
An S response causes the next contro i command to be read. However, if the 
sequence error was due to a SEG command, the Loader aborts. tt 

Trailing reserve overlapped COMMON; no error severity level is set. 

There was an incorrect sequence number on a binary reco~d. An S response 
causes the record to be reread. tt 

No transfer address was encountered in the loading of the root program por­
tion. This is only a warni ng message. The Loader sets a default transfer 
address as the first word of the program and generates an error severity level 
of one. 

There were unsatisfied references in the path. This is only a warning message. 

There were more DEFs in the Public Library than were allocated at system 
generation. 

A symbol table entry was not recognized (warning only). 

tThis message may be written on DO during writing of the Public Library, LIBSYM, or TVECT table onto the RAD or 
disk pack. If the alarm occurs, the Public Library was not completely written and will have to be reloaded after the 
error is corrected. 

ttThe Loader does not reposition the record for rereading. If paper tape or cards are repositioned, the record is reread; 
if they are not repositioned, the next record is read. If the record is on RAD, disk pack, or magnetic tape, the Moni­
tor I/O error recovery procedures positions to the beginning of the next record. However, the WAIT permits the taking 
of dumps, etc., before changi ng the environment. 

86 Control Command Repertoire 



8. RAD EDITOR 

The RAD Editor controls RAD and disk pack allocation by 
maintaining file directories for all resident standard areas. 
A resident standard area is one that has its area mnemoni c 
in the RBM Master Directory (either as a permanent area 
defined at SYSGEN or a temporary area defined by the 
Mount key-in) and is not checkpoint (CP), background 
temporary (BT) area, or of any area whose mnemonic begins 
with the character X. (X identifies a nonstandard area.) 
Through its control commands the RAD Editor can 

• Add entries to or delete entries from file directories 

• Copy data from one random file to another 

• Maintain libraries in the system library (SL) and user 
library (UL) areas for use by the Overlay Loader 

• Copy an object module contained in a library 

• Map file and library module allocations 

• Dump contents of areas or random files 

• Save the co nte nts of areas or fi I es ina format restor­
able by the RAD Editor, or save the contents of areas 
in a rebootable format on magnetic tape (which may 
also be restored by the RAD Editor) 

• Clear an area or file 

• Truncate a file or all files within an area 

• Output messages to the operator 

• Initialize file directories for new disk packs 

• Flaw bad disk pack tracks and allocate alternates. 

The RAD Editor generates and maintains directories for the 
following permanent areas: 

• System Processor area (SP) 

• System Library area (SL) 

• System Data area (SD) 

• User Processor area (UP) 

• User Library area (UL) 

I • 
User Data area (UD and aa) 

Size and location of each permanent area are contained 
in the RBM Master Director. The RAD Editor allows map­
ping of all areas, including Checkpoint and Background 
Temp areas, and the dumping of all random-access files. 

STANDARD RAD/DiSK PACK AREA ORGANIZATION 

Every area contains its own file directory. Each file is 
identified by a file directory entry that indicates the name, 
format, and location of the file. The areas and their file 
directories are software write-protected (at SYSGEN) and 
may have any of the following four write-protect codes: 

Code Meani ng 

NO 

BG 

FG 

SY 

only files with a write-protect code of NO 
may be added to the area. 

only fi les with write-protect codes of NO 
or BG may be added to the area. Back­
ground programs may write on any file in 
the area, but foreground programs may only 
write on files with NO write-protect codes. 

only fi les with write-protect codes of NO 
or FG may be added to the area. Fore­
ground programs may write on any file in 
the area, but background programs may only 
write on files with NO write-protect codes. 

fi les with any write-protect codes may be 
added to the area. 

For areas with BG or NO write-protect codes, any RAD 
Editor control command may be used without the need for 
an SY key-in. However, for areas with FG or SY write­
protect codes, the following RAD Edit control commands 
require that an SY key-in be in effect at the time the con­
trol command is executed: 

! #DELETE 

!#TRUNCATE 

! #SQUEEZE 

! #RESTORE 

! #CLEAR 

Space within an area is allocated sequentially; the first file 
in the area begins in the first sector following the first file 
directory. The second file in the area begins in the next 
available sector following the first file. Normally, as each 
fi lei s added to the a rea, the next ava iI ab I e sector is used 
as the start of the new file; however, the control command 
used to allocate space for the file may specify that the file 
begin on the next available track (or cylinder) boundary. 
In this event, any space bypassed will remain unused and 
the RAD Editorwill not attempt tofit a new fileinto the un­
used space. New fi les are always added at the end of the 
currently allocated space within an area. 

RAD Editor 87 



When a directory entry (and, effectively, its corresponding 
file) is deleted, the area formerly occupied by the file is 
left unused. In normal operation, the RAD Editor makes no 
attempt to recover these unused areas. Therefore, the 
addition of a fi Ie may cause overflow of the permanent area 
although ample space may be available. However, RAD 
squeezing can be requested via an Editor! #SQUEEZE com­
mand to overcome this problem. Squeezi ng recovers the 
unused storage within a permanent area by regenerating the 
directory and moving files. 

Before any permanent file can be written (using the Moni­
tor routine M:WRITE), space must be allocated for the 
file. This is accomplished by requesting the RAD Editor 
to add a new entry ot the designated directory. Con­
troi commands aiiow di rectory entries to be added or 
deleted. 

DATA FILES 

Ordinari Iy, data is not written in permanent fi les by the 
RAD Editor. Data files are normally written by user pro­
grams. However, a RAD Editor control command can be 
used to copy data from one random-access file to another. 
Copied files may be temporary or permanent files. 

LIBRARY FILES 

System and User Library files, which are searched by the 
Overlay Loader for external references, are generated and 
maintained by the RAD Editor (the only processor that 
writes in these files). 

A I ibrary area (either the System Library area or the User 
Library area) contains six files: 

1. Module Directory File (directory of library modules). 

2. EBCDIC Fi Ie (I ist of all library defi nitions/references). 

3. Extended DEF /REF Fi Ie (index to extended precision 
definitions/references in EBCDIC file). 

4. Basic DEF/REF File (index to standard precision 
defi nitions/references in EBCDIC fi Ie). 

5. Main DEF/REF File (index to main definitions/ 
references in EBCDIC file). 

6. Module File (I ibrary object modules). 

The extended and basic DEF/REF files (items 3 and 4) are 
optional. 

These fi I es are generated and mai ntai ned from information 
in control commands and object modules placed in the 

88 Standard RAD/Disk Pack Area Organization 

library by the RAD Editor. Special commands are supplied 
to allow the addition and deletion of object modules; these 
control commands will cause the six files in the RAD Li­
brary area to be updated. A control command allows an 
object module contained in a library to be copied onto BO. 

Any random-access or sequential-access file (either tem­
porary or permanent) can be dumped on LO. 

The RAD Editor can save the contents of a permanent area 
and the RBM bootstrap in a self-reloadable form. The 
saved image contains a bootstrap loader, the execution of 
which restores the RBM bootstrap and the permanent area 
on the RAD or disk pack. 

Updating or squeezing of permanent areas and library files 
that contain information for real-time programs must not 
occur while the foreground is using these permanent areas 
or files. The user must ensure that the RAD Editor is not 
modifying a permanent area whi Ie a foreground program is 
using it. 

The names for the library files must be one of the following: 

Code File 

MODIR Module Directory 

EBCDIC EBCDIC 

EDFRF Extended DEF/REF (optional) 

BDFRF Basic DEF/REF (optional) 

MDFRF Main DEF/REF 

MODULE Module 

The DEF/REF file needs to be added only as required. The 
System Library (SL) requires only the MDFRF file. 

ALGORITHMS FOR COMPUTING LIBRARY FILE SIZES 

The following algorithms may be used to determine the 
lengths of the six files in a library area: 

The number of granules in the MODIR file is 

MODIR 
6 (1 + i) 

g 

where 

g 

n 

is the number of modules to be placed in the 
library (including main, extended-precision, and 
single-precision routines). i must be equal-to Oi 

less-than 1023. 

is the granule size in words. 



The number of granules in the EBCDIC file is 

EBCDIC 
4 (1 + d) 

g 

where 

d 

g 

n 

is the number of unique DEFs and REFs in the 
library (including main, extended-precision, and 
single-precision routines). d must be equal-to 
or less-than 8191. 

is the granule size in words. 

The number of granules in the EDFRF fi Ie is 

n 

2 + L(2 + r + d ) 

EDFRF 
1=1 ] ]. 

n g 

where 

n is the number of routi nes in the extended-
precision library. 

r1 is the number of REFs in the extended-precision 
library. 

d..Q is the number of DEFs in the extended-precision 
library . 

g is the granule size in words. 

The number of granules in the BDFRF file is 

n 

BDFRF 

2 + L(2 + rk +dk) 
k=l 

n g 

where 

n is the number of routines in the single-precision 
library • 

is the number of REFs in the kth library routi ne 
in the single-precision library. 

d
k 

is the number of DEFs in the kth library routine 
of the single-precision library. 

g is the granule size in words. 

The number of granules in the MDFRF file is 

n 

2 +L (2 + r. + d.) 

MDRFR 
j=l J J 

where 

n 

r. 
I 

d. 
I 

n g 

is the number of routines in the main library. 

is the number of REFs in the jth library routine 
in the main library. 

is the number of DEFs in the jth library routine 
in the main library. 

g is the granule size in words. 

The number of granules in the MODULE file is 

MODULE 
n 

where 

n is the number of modules in the library (includ-
ing main, extended-precision, and single­
precision routines), and n must be equal-to or 
less-than 1023. 

g is the granule size in words. 

C. 
I 

is 'the number of record images in the ith library 
routine. 

RAD EDITOR OPERATIONAL LABELS 

The RAD Editor uses the temporary background operational 
labels XO through X6. These labels must not be assigned at 
the time the ! RADEDIT control command is executed, nor 
may they be used on ! #DUMP or ! #FCOPY commands. 

The following labels must be assigned before requesting the 
RAD Editor: 

Label Explanation 

BI 

BO 

CC 

Object module input (and Restore) to System 
and User Library. 

Object module output (and Save) from the 
System and User Libraries. 

Control command input. 

RAD Editor Operational Labels 89 



Label Explanation 

DO 

LO 

OC 

Log of control commands error messages, 
and operator key-i ns. 

Maps of directories and dumps of files. 

Messages to the operator and key-ins from 
the operator. 

CALLING RAD EDITOR 

The RAD Editor is requested with a ! RADEDIT control com­
mand. The iRADEDiT controi command is read from CC 
and causes the root segment of the RAD Editor program to 
be loaded into core memory from the RAD. It has the format 

(RADEDIT 
Reading an !EOD from CC causes the RAD Editor program 
to return control to the Monitor. If CC is assigned to 
magnetic tape or a RAD file, an EOF condition encoun­
tered while reading control commands from CC will cause 
the RAD Editor to return control to the Monitor. The form 
of the command is 

CONTROL COMMAND FORMAT 

All RAD Editor control commands are input from CC and 
iisted on DO. If CC and DO are assigned to the same de­
vice, the commands are not listed. The. general format is 

! #menmonic specification 

where 

# 

identifies the record as a control command. 

indicates that the control command is unique to 
the RAD Editor. 

mnemonic is the code name of a RAD Editor com-
mand immediately following the! # characters. 

specification is a series of required or optional 
parameters unique to the specifi c command. The 
conventions used in specifying parameters are 
(1) a string of up to five decimal digits, having 
a value less than 65,535, denotes a decimal in­
teger; (2) a string of the form +xxxx is treated as 
hexadecimal; (3) all other strings are assumed to 
be nonnumeri c. 

One or more blanks must separate the mnemonic and speci­
fication fields, but no blanks may be embeddded within a 
field. An empty parameter in the specification field is 
denoted by a comma. However, commas may be omitted 
for empty trailing parameters. A cOl1trol command is 
terminated by the first blank after the specification field. 
If the specification field is absent and a comment follows 
the mnemonic field, the command is terminated by a period. 

The first two characters of the mnemonic portion of the 
command are sufficient to define the command; the re­
maining characters may be omitted since they are ignored 
if they are present. 

In the descriptions of the following individual commands, 
certain terms are used that have specific meanings for the 
RAD Editor.. The terms are! 

Term 

area 

Meaning 

The two-character alphanumeric 
mnemonic fora resident standard area. 
The area mnemonic must be currently 
present in the RBM Master Di ctionary 
and, gener.ally, may not be BT, Cp, 
or Xn. 

For the commands ! #LADD, 
! #LREPLACE, ! #LDELETE, ! #LCOPY, 
! #LMAP, and! #LSQUEEZE, area must 
be eitherSLorUL. If neither is speci­
fied, SL is assumed by default. 

filename Three to eight alphanumeric characters 
denoti ng a fi Ie contai ned withi n {or 
to.be added to)an area file directory. 

identifi cation The library routi ne l1ame denoted by 
the Extended Symbo! IDNT directive, 
whi ch is located in the start module 
load item of an object module. 

library An object module library {within the 
System or User library} denoted by one 
of the codes 

Code library 

M Main 

E Extended 

B Basic 

For the commands ! #LADD, 
! #LREPLACE, and ! #LDELETE the de­
fault library is M (main). 

CONTROL COMMAND REPERTOIRE 

ADD The ! # ADD command adds a new entry to the 
specified permanent file directory. It defines the name, 

90 Calling RAD Editor/Control Command Format/Control Command Repertoire 



size, record length, format, and write protection for the 
new file. It may also declare that the file will contain 
a resident foreground program, and will be maintained start­
i ng at acyl i nder or track boundary. Space is allocated for 
the new file and the first sector of the file is set to zero 
if it has random format. The form of the command is 

! # ADD area ,fi I ename ,{ ~~;J [{ ~ i ze} }fi lefmtl::J 

L[,wp J n:FJ][ fi:i }] 

where 

ALL indicates the file will be allocated to extend 
to the end of the area. After an EOF has been 
written on the file, it may be truncated to recover 
the unused space. 

fsize is the number of records in the file and may 
not exceed 65,535. 

rsize is the maximum number of bytes per record 
which must be even and may not exceed 65,534. 
The following default values are provided, depend­
i ng on the fi I e format. 

Default Record Size 

• 
• 

120 for file format, Band P 

Sector size, in bytes, of the device contain­
ing the area for file format R or U 

• 80 for file format C. Since compressed files 
may contain records of variable length, this 
value is used for allocation purposes only. 
The S character may be used to force the 
allocation of a specific number of sectors for 
a compressed file. In this case, fsize indicates 
the number of sectors to reserve for the com­
pressed fil e. 

filefmt is the structure of the file, as denoted by 
one of the followi ng codes: 

Code Format 

B 

C 

P 

R 

U 

blocked sequential-access file with a 
fixed record size 

blocked (and compressed) sequential access 
file with a variable record size 

blocked (packed) random access file, 
fixed record size 

unblocked random access fi Ie 

unblocked sequential access file. 

wp 

If the format parameter is omitted, the default for­
mat is determined by the area mnemoni c as follows: 

Default Area Mnemoni c 

R SP,SL,UP,UL,FP,BP 

B any other 

specifies the write-protection level for the file, 
as denoted by one of the following codes: 

NO (or N) 

BG (or B) 

FG (or F) 

SY (or R) 

Write-Protection Level 

No write-protection; background 
or foreground programs may write 
on the fi Ie. 

Write permitted by background 
programs only. 

Write permitted by foreground 
programs on Iy. 

Background programs may write on 
the file if an SY key-in is in effect. 

Write permitted by RBM only. 
Foreground or background programs 
may write on the fi Ie if an SY 
key-in is in effect. 

If the wp parameter is omitted, the default write~ 
protection level is NO. 

RF or F specifies that the file will contain a resi-
dent foreground program, and therefore the area 
mnemonic must be SP, FP, or UP. 

CY L speci fi es that the BOT of the fi lei s to be 
allocated and maintained on acyl inder boundary 
if the area is on a disk pack. 

TRK specifies that the BOT of the fi Ie is to be 
allocated and maintained on a track boundary. 

DELETE The! #DELETE command deletes on entry from 
the specified permanent file directory. The space formerly 
allocated to the file becomes unused. The space is recov­
ered if the file being deleted is the last file in the area. 
The Form of the command is 

If no filename is specified, all files in the area are deleted. 
If the area is SP, SL, or SD a fil-ename must be specified; 
otherwise, the operation is not performed. Instead, the 
following message is output 

NO CHANGE: area I 
If the write-protect code for the area is SY or FG, the SY I 
key-in must be in effect at the time the control command 
is executed. 

Control Command Repertoire 91 



FCOPY The! #FCOPY (File Copy) command copies data 
from one random-access file to another. The file copy pro­
cess terminates when EOF is encountered on an input file or 
when an end-of-tape is encountered on either the input or 
the output fi Ie. The form of the command is 

(HFCOPY 

where 

oplbi is the operational label or FORTRAN device 
. unit number (e.g., F:109) of a temporary or 

random-access file. The Utility COpy Routine 
(see Chapter 9) must be used to copy sequentla!­
access files. 

is the input file. 

is the output file. 

DPCOPY The! #DPCOPY (Disk Pack Copy) control 
command copies data from one disk pack (mode I 7242 or 
7246) to another. The entire contents of cylinders 0 through 
199 are copied and a c~eckwrite is performed on the copied 
data., The form .of the command is 

!#DPCOPY +device
1

,+device
2

. 

where 

device1 is the hexadecimal device number of the 
disk pack 

devi ce2 is the hexadecimal devi ce number of the 
disk pack to copy to, which may not contain any 
currently IImounted ll creas. 

LADD The! #LADD (Library Add) command adds an 
object module to the designated library. The object 
module is read from BI, checked for sequence and checksum 
errors, and stored in the Module File within the library. 
From the data in the object module and on the control com­
mand, the information about the module is extracted and 
placed in the Module Directory File (MODIR), the EBCDIC 
File, and one of the three DEF/REF Files (either MDFRF, 
BDFRF, or EDFRF File) as indicated in the library param­
eter. BI may be assigned to any devi ce; if BI is assigned 
to the RAD, it must be sequential file. The object mod­
ule on BI must be in Standard Sigma 2/3 Object Language. 
Any blank card or binary card on BI that contains only zeros 
is ignored. The form of the command is 

1 #LADD [areaJ[ident]Glibrary] 

where 

identification is the program name located in the 
start module item of the object module on BI. 

92 Control Command Repertoire 

Within a permanent area (SL or UL), each object 
module must have a unique lIidentification ll

• If 
the identification parameter is omitted, a" object 
modules on BI wi" be added to the library up to, 
but not including, the file mark or EOD on B1. 

If identification is present, the start module load 
item of the first program read from BI must be the 
same as shown by the identification parameter. 

LREPLACE The! #LREPLACE (Library Replace) command 
replaces an ob;ect module of the same identifi cation in the 
designated library. The object module is read from BI and 
checked for sequence checksum errors. The object moduie 
on BI must be in Standard Sigma 2/3 Object Language. 
Any blank card or binary card (on BI) that contai ns only 
zeros is ignored. The form of the command is 

I #LREPLACE (area,] ident (,I ibrary] 

where 

identification is the program name located in· the 
start module item of the object module on BI. 
The object module on BI replaces the module in 
the library having the same identification. 

LDELETE The I #LDELETE (Library Delete) command 
deletes an object module from the designated library. The 
form of the command is 

! #LDELETE [area,] ident [,library J 

where 

identification is the program name of the object 
module to be deleted. 

LCOPY The ! #LCOPY (Library Copy) command copies 
an object module from the designated library onto the BO 
device. The form of the command is 

(#lCOPY [area,]idenl 

where 

identification is the program name (located in the 
start module item) of the object module to be 
copied onto the BO device. 

LSQUEEZE The !#LSQUEEZE (Library Squeeze) com-
mand wi" squeeze designated library areas. Unused space 
is recovered by regenerating the directory files and 



squeezing (compacting) the module file. The form of the 
command is 

I (#LSQUEEZE [area] 

MAP The !#MAP command causes the specified direc-
tories to be mapped on LO. For each permanent RAD area, 
the begi nni ng and endi ng RAD addresses for the area are 
mapped. For each file, the contents of the directory entry 
describing the file are printed. This information includes 
name, format, write-protection, foreground task indicator, 
beginning address, EOF address, and EOT address for each 
file. For files on disk packs, the map also includes the 
cylinder/track/sector values for BOT. For files on RADs, 
the map also includes the track/sector values for BOT. The 
form of the command is 

where 

area must be a currently defi ned area. If no area 
parameter is included, all currently defined areas 
are mapped. 

LMAP The! #LMAP command causes the library files of 
the specified areas to be mapped on LO. For each area, 
the begi nni ng and endi ng addresses for the area are mapped, 
followed by a map of the library files in the area. The 
library map includes the following information for each 
routine: 

• Library B (basic), E (extended) or M (main) 

• Identification of routine 

• Length of routine in words 

• Sector wi thin the MODULE fi Ie that contains the routine 

• DEFs in the routine 

• REFs in the routine. 

The form of the command is 

(' # LMAP [area [,areaJ] 

DUMP The ! #DUMP command dumps a random-access 
file on LO. The file is dumped one record at a time. 
The DUMP Utility Routine (see Chapter 9) may also be used 
to dump sequential-access files. DUMP represents each 
word as a four-character hexadecimal number. It dumps 
each record of the file starting at BOT (if starting address 

is not specified) and ending at EOT or after the speci­
fied number of records has been dumped. The form of the 
comrvand is 

I #DUMP {oplb}[,start [,number]] 
area 

where 

oplb is the operational label or FORTRAN devi ce 
unit number (e. g., F: 109) assigned to a random 
access fi I e. 

start is the record number with in the fi Ie assigned 
to oplb at which the dump is to begin. If an area 
is specified, start is the sector number (in the de­
vice containir:; the area) at which the dump is to 
begin. If start is omitted, the BOT of the file (or 
area) is used by default. 

number is the number of records (or sectors if an 
area is specified) to be dumped. If number is 
omitted, the file (or area) is dumped to its 
EOT. 

SAVE The! #sAVE command saves the contents of areas 
of specific files. Each file is written on the BO device, 
along with all pertinent information about the file. The BO 
media may be magnetic tape, paper tape, or cards. If the 
media is magnetic tape and an end-of-reel condition occurs, 
the operator is expected to mount the next reel to be used 
for output. If the media is paper tape and an !ATTEND 
command has been input for the current job, the message 

nnnn FT. OK? 

will be output on the OC device. If there is more than nnnn 
feet of paper tape available, the operator is expected to 
type in Y. This process will continue until all files speci­
fi ed by the ! #sA VE comma nd have been output, or unti I 
the operator determines that the required amount of tape is 
not available. Any input other than Y causes the pro­
gram to output an end-of-reel record followed by blank 
trailer. The program then outputs the message 

! !BEGIN WAIT 

on the OC device. The operator must then mount a new reel 
of tape, interrupt, and key-in s. The program then out-
puts blank leader, a save-continuation record, and proceeds 
as described above. 

Control Command Repertoire 93 



The BO output can be restored via the! #RESTORE command. 
The form of the command is 

'#SAVE [FILE.][areaJ[{;;I:~ame}' oo}- 0 oJ 

where 

FILE indicates that the output format contains all 
necessary information for the restoration of specifi c 
files. The FILE keyword may be omitted only ifthe 
BO operational label is assigned to magnetic tape, 
causing a bootstrap program to be output on BO 
followed by the contents of the specified areas. 
No filenames may be specified in this case,. since 
the allocated portion of an area is saved as 'if it 
were a singie fiie. 

When self-booted from magnetic tape, the boot­
strap program wi II restore the saved areas and then 
initiate an RBM boot process. 

RESTORE The! #RESTORE command restores the contents 
of areas of specific files that have been saved via the 
! #SAVE command. The files are selectively restored from 
the BI device. The form of the command is 

'#RESTORE [area H~;':~ame}' 0 oJ, 00 oJ . 

If the file being restored does not have a corresponding 
entry in the area file directory, a new entry is made and 
the file is copied into its allocated region. If the file being 
restored already has an entry in the area file directory the 
file will be copied into the currently allocated region unless 

• There is a format confl i ct 

• The allocated region is too small 

• The proper level of write authorization is not in effect that 
is, SY key-in not performed and file is write-protected. 

If an end-of-reel condition is encountered whi Ie reading 
from BI the operator will be requested to mount the next reel 
in sequence,' as created by the! #SAVE command. 

If the BI input is a rebootable save tape, no filenames may 
be specified - each area is restored in its entirety. 

,SQ.UEEZE The! #SQUEEZE command compacts the 
designated file areas. Unused space is regained by regen­
erating the directories and moving files. The form of the 
command is 

t#SQUEEZE area [,area] ... [,area] 

The areas BT, CP, and any area beginning with the letter X 
are never squeezed. An expl icit request to squeeze any 

94 Control Command Repertoire 

of these is ignored. If the area being squeezed contains a 
file that is assigned to an operational label and the file is 
moved, the following message will be output using the OC 
and DO operational labels. 

REASSIGN: area, fi lename 

File directory information may be destroyed if an area being 
squeezed contains a fi Ie that is assigned to an operational 
label being used by an active foreground program. 

CLEAR The! #CLEAR command zeros out the specified 
RAD area or fi Ie. The form of the command is 

~# r{area}] I : CLEAR area t filename , ... 

I 
If no filename is specified, all files in the area are cleared, 
including file directories. If the area is SP and no fi lename 
is specified, the operation will not be performed. Instead, 
the following message wi II be output 

~ ___________ N __ O_C_H_A_N_G __ E: __ S_P ____________ I I 
If the write-protect code for the area is SY or FG, the SY 
key-in must be in effect at the time the control command is 
executed. 

BDTRACK The! #BDTRACK command specifies the disk 
pack and the track numbers for which alternates are to be 
provided. The original track will have its headers rewritten 
with a flaw mark and a reference to the alternate track. 
The headers of the al ternate track wi II be rewritten to refer 
to the original track. The form of the command is 

! #SDTRAC K +dn, +numberL +number]' .. [, +number] 

where 

dn is the device number of the disk pack. 

number is the hexadecimal track number on the de-
vice starting with O. 

Example: 

I #BDTRACK +E5, +325, +297 

GDTRACK The! #GDTRACK command specifies the disk 
pack and the track numbers for which alternates are to be 
eliminated. This may be used if it is suspected that a 
designated flawed track is good. For each track specified, 
its headers wi II be rewritten to clear the flaw mark and the 



headers of the assigned alternate track wi II be rewritten to 
free the a I ternate track. The form of the command is 

! #GDTRACK +dn,+numberL+number]' .. ['+numberJ 

where 

dn is the device number of the disk pack. 

number is the hexadecimal track number on the 
device starting with O. 

INITIALIZE The ! #INITIALIZE command provides disk 
pack serialization (including date) and allocation of data 
areas. The form of the command is 

J #INITIALIZE +dn [,serial-number] 

where 

dn is the hardware devi ce number of the RAD or 
disk pack to be initialized. The device number 
must match a RAD or disk pack devi ce number 
input at SYSGEN. 

serial number is any combi nation of eight charac-
ters, which need be present only if the devi ce is 
a disk pack. If present, serial-number is written 
on cyl i nder 202, track 19, sector 0 together with 
the current date. If the RBM system does not i n­
clude job accounting, the operator will be re­
quested to input the current date when it is 
required. 

The! #INITIALIZE command may be followed by a set 
of area definition cards that have the format 

i #area=tracks[,wp] 

where 

area is an area mnemonic from the following 
list: 

SP FP Xn 

SD BP SK (skip tracks) 

SL UP 

BT UL 

CP aa 

tracks aa is the number of tracks to be allocated 
for the area. 

wp is the write-protect code to be used for the area. 
This code is tested whenever any of the following 
operations are performed: 

ADD 

CLEAR 

DELETE 

RESTORE 

SQUEEZE 

TRUNCATE 

See IIStandard RADID isk Pack Area Organization II for write­
protect codes. 

MESSAGE The ! #MESSAGE control command writes 
messages to the operator on the OC and LO devi ces. The 
form of the command is 

(' #MESSAGE message 

where message is any EBCDIC character string up to a full 
card image. 

PAUSE The ! #pAUSE control command causes a message 
to be written on the OC and LO devi ces followed by a wait 
for the operator's response. The form of the command is 

i#PAUSE message 

where message is any EBCDIC character string up to a full 
card image. The format of the output is: 

! #pAUSE message 

!! BEGIN WAIT 

It is necessary for the operator to activate the control panel 
INTERRUPT switch and key-in an 5 to continue. 

TRUNCATE The! #TRU NCATE command el imiates un-
used space from the end of specific fi les by setting the 
EOT pointer equal to the EOF pointer. If an EOF has not 
been written on the file, the file EOT will not be changed. 
All compressed files or files containing programs loaded by 
the Overlay Loader (or with the Monitor !ABS command) 
will have an EOF pointer. The form of the command is 

# [{area }U ! TRUNCATE area, filename~"'. 

If no fi lename is specified all fi les in the area containing 
an EOF are to be truncated to the EOF. If the area is SD 
and no filename is specified, the following message will be 
output on the OC and DO operational labels. 

NO CHANGE: SD 

If the write protect code for the area is SY or FG, the SY 
key-in must be in effect at the time the control command 
is executed. 

Control Command Repertoire 95 . 



END The! #END command is used exactly like the! EOD of critical operations in process. If an operator response 
is required, the message command; that is, it transfers control from the RAD Editor 

to the Monitor. The form of the command is 

!BEGIN WAIT 

is written on OC and DO. The operator activates the con­
sole interrupt and keys in either of the following codes. 

Code Meaning 

This command should be used in place of ! EOD whenever 
multistep job stacks are to be prestored on a file. The 
Utility COpy routine will not interpret this command as 
an EOF. 

S Continue. 

X Abort RAD Editor and return control to RBM. 

To abort, the RAD Editor calls the Background Abort rou­
tine, M:ABORT. If the RAD Editor aborts because of an 
i rrecoverabi e i nput/ output error, the code in the abort 
message is the operation label of the device in error. If 
the abort is due to an X response by the operator or some 
error condition, the code is RE. 

RAD EDITOR MESSAGES 
The RAD Editor program outputs error messages on OC and 
DO. If OC and DO are assigned to the same device, 
duplication of messages on DO is suppressed. The warning 
messages in Table 20 are written on the OC and DO 
devices to provide a record of operations not performed or 

The error messages output by the RAD Editor and their mean­
ings are given in Table 19. The messages in Table 20 are 
written on the keyboard/printer during RAD restoration via 
the bootstrap loader produced by SAVE. Any error output 
causes the computer to go into a wait state after writing the 
appropriate message. 

Table 19. RAD Editor Error Messages 

Message Meaning 

OVERFLOW: area, Allocation of the amount of storage indi cated by the fi Ie parameter on the ! # ADD command 
filename or restoration of a file not currently allocated would cause the permanent area to overflow, 

or a library file has overflowed during execution of a !#ADD command. RAD Editor reads 
the next command from CC. 

ASSIGN ERR: area, The RAD Editor was unable to assign an operational label to a filename because the number 
filename of avai lable RAD or disk pack device-fi Ie numbers is insuffi cient or because the specified 

fil e does not ex ist. RAD Editor aborts. 

CKSM ERR The last record in the object module being read from BI has a checksum error. If the job 
is ATTENDed, operator response is solicited; an operator response of S causes the Editor 
to read the next record from BI. RAD Editor aborts. 

CHCK WRITE ERR A check write error occurred (that is, data recorded on the RAD or disk pack could not 
be verified). 

CORE OVERF lOW The last command cannot be processed for lack of background space. The RAD Editor 
aborts. 

DUP IDENT The last object module read from BI cannot be added to the library with a ! #lADD com-
mand because it is already in the library. RAD Editor aborts. 

I 
DUPLICATE: area, 

I 
An attempt was made to add a fi!e whose name already exists for this area. The RAD Editor 

fiiename reads the next command from CC. 

EDIT ERR Data on the RAD or disk pack has been rendered invalid. RAD Editor aborts. 

96 RAD Editor Error Messages 



Table 19. RAD Editor Error Messages (cont.) 

Message Meaning 

EMPTY oplb The devi ce assi gned to the operationa I label is in manual mode. 

EOF oplb An unexpected end-of-fi Ie was encountered on the devi ce having the opetational label 
oplb. RAD Editor aborts. 

EOF READ FILE An EOF has been encountered on the input file. Copying wi" continue unti I EOT on the 
Read file or EOT on the Write file is encountered. 

EOT oplb An unexpected end-of-tape was encountered on the device having the operational label 
oplb. RAD Editor aborts. 

EOT WRITE FILE An unexpected EOT occurred on the fi Ie currently receiving data. This is a warning to 
the user that the output file is smaller than the input file (as in !#FCOPY) but that the 
data already written is correct. The RAD Editor reads the next command from CC. 

CALL SEQ ERR oplb A call ing sequence error occurred for input/output on the device having the operational 
label oplb. RAD Editor aborts. 

FORMAT CONFICT: The fi lename being restored to the area confl i cts in format or record size with the existing 
area,filename fi lename in the area. 

I 
If it is not possible to add a fi Ie during the execution of the! # ADD command or a fi Ie in OVERFLOW: area, 

I filename i the I ibrary area has overflowed during execution of the ! #LADD command. If operator 
response is S, the next command is read. 

ILLEG BIN An illegal binary record (first byte not X'FF' or X' 9F') has been read with an object 
module on BI. RAD Editor aborts. 

INV CTRL Control command is invalid. It cannot be recogn i zed by RAD Editor or has incorrect 
syntax. If operator response is S, the next command is read. 

INV I/O OP oplb An invalid input/output operation was attempted on the device having the operational label 
oplb. RAD Editor aborts. 

LENGTH ERR oplb A record of incorrect length was read from or written on the device having the operational 
labeloplb. RAD Editor aborts. 

LOAD ERR 

I 
The required RAD Editor overlay cannot be loaded. RAD Editor aborts. 

! 
!#BDTRACK command. NO ALTERNATE An alternate track is not available for execution of the The RAD 

Editor reads the next command from CC. 

NO BLOCK oplb No blocking buffer is avai lable for the fi Ie assigned to the operational label oplb. RAD 
Editor aborts. 

BADIDENT The object module on BI does not have the same "identification" in the start module item. 

RAD Editor Error Messages 97 



Table 19. RAD Editor Error Messages (cont.) 

Message Meaning 

NO IDENT The identification in start module item is blank, or there is no object module on BI. RAD 
Editor aborts. 

C.AN'T FIND area, 

I 
An attempt was made to save, clear, truncate, or delete a file whose name does not exist 

filename in the specified area, or the specified area does not exist. The RAD Editor reads the next 
command from CC. 

PARAM ERR Control command has a parameter error. A parameter has incorrect content, has been 
omitted, or is not consistent with the other parameters. A parameter error also occurs for 

I dupl icate Editor commands; that is, when an already-existing file is created via the! # ADD 
I ,.., I , I , I I commana or wnen a nonexlstmg Tile IS aeletea VIC tne : #DELETE command. If operator 

res ... .,'"SO :,,' tho nevt r""mmnnrl i c: r~arl ",,_1. _ ."" _I 111- II ........ __ I "' ,_._ ._. __ .. 

SEQ ERR The last record in the object module being read from BI has a sequence error. If the job is 
attended, an operator response of S causes the Editor to read the next record from BI. If the 
job is not attended, RAD Editor aborts. 

SZ ERR The object module on BI cannot be placed in the library because it has more than 61 ex-
ternal definitions and references. RAD Editor aborts. 

U NRECOVER I/O oplb An irrecoverable I/O error occurred on the device assigned to the operational labeloplb. 
RAD Editor aborts. 

WRITE PRO oplb The fi I e name assi gned to the operational label oplb is SY or FG write protected and 
an SY keyin is not in effect. 

{~~} PROTECTED: The specified area or filename has an SY or FG write protect code and an SY keyin is not 
area, filename in effect. 

Table 20. RAD Editor Warning Messages 

lA AA IVlessage IVleaning 

CLEARING } 
RESTORING 

These messages are output whenever the indi cated operation is started. 
SQUEEZING 

area 

TRUNCATING 

DONE Message is output when the operation is completed. 

SAVE TAPE NOT The save tape was not at load point when the ! #SAVE command was encountered and ex-
AT LOAD POINT ecution commenced. 

98 RAD Editor Error Messages 



9. UTILITY 

INTRODUCTION 

The Uti I ity program operates in the background under the 
Real-Time Batch Monitor. It contains routines that: 

• Copy variable-length binary or EBCDIC records from 
one medium to another (Copy). 

• Dump records onto an output device in either hexa­
decimal or EBCDIC format (Dump, known as Paper 
Tape Dump in the BCM system). 

• Generate or update fi les that contain Standard Si gma 
Object language modules (Object Module Editor). 

• Generate or update symboli c fi les (paper or magneti c) 
that contain source data (Record Editor, known as 
Paper Tape Editor in the BCM system). 

• Edit card images by sequence number (Sequence Editor). 

Routines in the Utility program are device-independent. 
Utility handles any blocked or unblocked, sequential-access 
RAD file. Use of a sequential-access RAD file is similar to 
that of a magneti c tape, as it has a beginning-of-tape, an 
end-of-file (if one has been written), and an end-of-tape. 
Note, however, that a sequential-access RAD file cannot 
be forward-spaced or backspaced over more than one fi Ie 
mark. A rewound sequential-access RAD file is positioned 
at beginning-of-tape. For both blocked and unblocked 
files, a record skip is a logical record skip. 

UTILITY PROGRAM ORGANIZATION 

The Utility program consists of two major sections: the Util­
ity Program Control routine (always resident when the Utility 
program is operating), and the currently operating Uti lity 
subroutine. The Utility Program Control routine contains 
four interdependent elements: 

1. The Program Executive~ which initializes the program 
(upon entry from RBM), interprets the !UTILITY con­
trol command (explained in "Call ing Uti lity"), exer­
cises control over the flow of control commands, handles 
normal and abort exits to the Monitor, and performs 
a" II 0 checki ng for the Uti I i ty program. 

2. The Source Input Interpreter, which reads and scans 
Uti lity control commands for the Control Function Pro­
cessor and the current Uti lity subroutine. 

3. The Control Function Processor, which executes con­
trol function commands common to all Uti I ity subroutines. 

4. The Operator Communication routine, which outputs 
messages to OC and DO and receives key-in responses. 

UTI UTY EXECUTIVE PROGRAM 

When RBM reads a ! UTI UTY control command control is 
transferred to the Program Executive routine. The !UTI UTY 
control command is then scanned for parameters. If the 
name parameter is omitted (see "Calling Utility" below), 
it is assumed that on I y the Control Functi on Processor wi" 
be used. Uti I ity control commands are read from the source 
input (SI) device. 

If a specific Utility subroutine is requested, the Program 
Executive verifies that the subroutine is in storage; if 
not, an error message is written and an exit to RBM is taken, 
terminating the background operation. If the subroutine is 
present, initial ization of tables and flags occurs. 

The Program Executive then transfers control to the requested 
Utility subroutine. The Utility subroutine uses the Source 
Input Interpreter to read all commands, and uses the Control 
Functi on Processor to execute control functi ons. All other 
control commands are interpreted and executed by the Uti­
lity subroutine itself. 

SOURCE IN PUT INTERPRETER 

The Source Input Interpreter, which is called by the Program 
Executive routine, processes all control commands that are 
read by the Utility program. Utility control commands are 
input from the SI device and listed on the DO device as 
they are interpreted. 

Upon reading a command, the Source Input Interpreter de­
termines whether the command is valid. If the syntax for a 
command is invalid, the following message is written on OC 
and DO: 

INV CTl 
! IUKEYIN 

The operator response, either an S to continue or an X to 
abort, determines whether or not the Utility program 
continues. 

If the response is S, the Source Input Interpreter reads the 
next control command from SI. If the command is valid, it 
may be interpreted and executed either by the Utility sub­
routine or by the Control Function Processor. 

CONTROL FUNCTION PROCESSOR 

The Control Functi on Processor interprets and executes com­
mands that are common to a" Uti I i ty subrouti nes. If any of 

Utility 99 



the control commands interpreted and executed by the 
Control Function Processor contains an invalid operational 
label, the following message is output: 

INV OPLB 
!! UKEYIN 

The operator response, either an S to continue or an X to 
abort, determines whether or not the Uti I ity program 
continues. 

OPERATOR COMMUNICATION ROUTINE 

All messages to the operator are written on the OC device 
by the Operator Communication routine. 

If a response is required from the operator, the Operator 
Communication routine types the following message: 

! UKEYIN 

The operator then keys in either an S to continue, or an X 
to abort. 

If the response is S, a return is made to the call ing routine. 
If the operator keys in an invalid response (not S or X), the 
following message is written on OC and DO. 

KEY ERR 
! lUKEYIN 

The operator then types in the correct response. 

INPUT/OUTPUT ERROR MESSAGES 

The Program Control routine performs all input/output 
checking for the Uti I ity program. Messages regardi ng input/ 
output errors are written on both the OC and DO devices. 

CONTROL ROUTINE OPERATIONAL LABELS 

Four operational labels are reserved for the Program Control 
routine. Their use is restricted to the functions below; they 
may not be used in place of the labels required by the vari­
ous Utility subroutines explained later. 

Label Explanation 

SI 

DO 

Device for RBM control command input, Utility 
program control commands, and various modifica­
tion source inputs. 

Device for listing of control commands (as they 
are interpreted), messages, error conditions, op­
erator responses, etc. DO provides a permanent 
log of th~ contr~1 command "flow. This' is the only 
operational label for the Program Control routine 
that can be assigned to device-file number a 

100 Call ing Utility 

Label 

DO 
(cont. ) 

OC 

X5 

Explanation 

(i. e., suppressed). If OC and DO are assigned 
to the same device, duplication of messages is 
suppressed. 

Device for messages to the operator, or key-in re­
sponses from the operator (always via the keyboard/ 
printer). 

Temporary RAD fi I e used for pres tori ng commands 
read from SI. 

Utility functions are generally executed dynamically; that 
is, control commands are interpreted and executed as they 
are read. However, when several operational labels are 
aSSigned to the same device as 51, it is impractical to exe­
cute dynamically. In this case, commands must be pre­
stored to avoid confusion with data from that device. This 
decision to prestore is made by the Utility program with one 
exception: when the! UTI LIlY command has no name pa­
rameter, the! *PRESTORE control command allows the user 
the option of prestoring SI input until an EOD card image 
is encountered. For RBM Utilities, prestored commands are 
written on a temporary RAD file {using operational label X5} 
and read from the RAD for interpretation and execution. 

CALLING UTILITY 

The Utility program is requested via a !UTILITYcontrol com­
mand, which causes the root segment of the Utility program 
to be loaded into core memory from the RAD. The lUTILITY 
control command has the format 

1 UTILITY [name][, parameter] 

where 

name is the name of a Utility routine or may be 
omitted. It may be any of the following: 

COpy (Copy) 

DUMP (Dump) 

OMEDIT (Object Module Editor) 

RECEDIl (Record Editor) 

SEQEDIT (Sequence Editor) 

parameter represents the series of optional param-
eters that are unique to each Utility routine. Pa­
rameters are fully explained in the description of 
the individual routines. 

When RBM reads a ! UTI LIlY command, it loads the Program 
Control routine {root segment} from the RAD and transfers 
control to the Program Executive which controls the operation 



of the Utility program. The Executive first scans the 
! UTI LITY control command parameters. If the name pa­
rameter is omitted, the Executive assumes that the control 
commands that follow use the Control Function Processor 
only. If a specific Utility routine is referenced with the 
name parameter, the Program Executive checks the name 
for validity. If the name is invalid, the message 

UT NT RES 

(Utility not resident) is written on OC and DO and the 
Utility program aborts. If the name is valid, the overlay 
segment containing the Utility routine is loaded from the 
RAD, flags are initialized, and control is transferred to the 
named routine. 

When the Executive or Program Control routine encounters 
an !EOD card image from SI, it terminates processing. The 
form of the !EOD command is 

Th is causes the Uti I ity program to transfer control back to 
RBM. 

CONTROL COMMAND FORMAT 

All Utility program control commands are input from SI and 
are I isted on the DO device as they are interpreted. The 
general format is 

! *mnemon i c spec i fi cati on 

where 

* 

identifies the record as a control command. 

indicates that the control command is unique to 
the Utility program. 

mnemonic is the code name of a Utility command 
and begins immediately following the 1* characters. 

specification is a series of parameters unique to 
the specific command. The conventions used in 
specifying parameters are (l) a string of up to five 
decimal digits having a value less than 32, 768 
denotes 'a decimal integer and (2) a string con­
taining more than five characters is always assumed 
to be EBCDIC, regardless of content. 

One or more blanks separate the mnemonic and specifica­
tion fields, but no blanks may be embedded within a field. 
A control command is terminated by the first blank after the 
specification field; or, if the specification field is absent 
and a comment follows the mnemonic field, the command is 
terminated by a period. No control command record may 
contain more than 80 characters. The first two characters 

of the mnemon i c portion of the command are suffi ci ent to 
define a control command; the remaining characters may 
be omitted, since they are ignored when present. 

CONTROL FUNCTION COMMANDS 

The Control Function Processor interprets and executes con­
trol commands that are common to all Uti lity subroutines. 
These control function commands are given below. Unless 
otherwise noted, "oplb" is the operational label of the de­
vice, "number" is the number of file marks or records to 
skip (if omitted; the number is assumed to be 1), and "de­
vi ce" is the de vi ce type and physical device number. 

FBACK The! *FBACK command backspaces a magnetic 
tape over a specified number of file marks or a sequential­
access RAD fi Ie to beginning-of-tape (BOT). The form of 
the command is 

( *FBAC K oplb [, number] 

The ! *FBAC K command cannot be used for random fi les. 

FSKIP The ! *FS KIP command spaces a magneti c tape 
forward over a specified number of filemarksorasequential­
access RAD fi Ie over its end-of-fi Ie. The form of the com­
mand is 

(!*FSKIP oplb[, number] 

The ! *FS KIP command cannot be used for random fi les. 

MESSAGE The ! *MESSAGE command writes messages to 
the operator on the OC and the DO devices. The form of 
the command is 

(*MESSAGE messoge 

where message is any EBCDIC character string up to a full 
card image. 

The format of the output is 

! *MESSAGE message 

PAUSE The! *PAUSE command causes a message to be 
written on the OC and DO devi ce foil owed by a wait for 
the operator's response. The form of the command is 

(*PAUSE message 

where message is any EBCDIC character string up to a full 
card image. 

The format of the output is 

! *PAUSE message 
! !UKEYIN 

Control Command Format/Control Function Commands 101 



PRESTORE The I *PRESTORE command causes all control 
commands to be read from the SI device, but not to be in­
terpreted or executed unti I an ! EOD is read. The prestored 
commands are written on a temporary RAD file (using opera­
tional label X5) and are read sequentially from the RAD. 
(The prestore mode is set automatically when a name param­
eter appears on the I UTILITY command and one or more 
operational labels have been assigned to the same device 
or RAD DFN as SI.) The! *PRESTORE control command 
must immediately follow the IUTILITY control command 
and must precede any other control commands for the Uti 1-
ity program. The form of the command is 

(t *PRESTORE 

I 
REWiND The ! *REWIND command causes the specified 
magnetic tape or sequential-access RAD file to be rewound. 
The form of the command is 

(*REWIND oplb 

The! *REWIND command cannot be used for random fi les. 

RBACK The! *RBACK command backspaces a magnetic 
tape or sequential-access RAD file over a specified number 
of records. The form of the command is 

(!*RBACK oplbL number] 

If oplb is assigned to a blocked sequential-access RAD fi Ie, 
the number parameter is the number of logical records to be 
skipped. The i *RBACK command cannot be used for random 
files. 

RSKIP The !*RSKIP command spaces forward the indi-
cated magneti c tape or sequential-access RAD fi Ie over the 
specified number of records. The form of the command is 

l*RSKIP oplb[, number] 

If oplb is assigned to a blocked sequential-access RAD file, 
the number parameter is the number of logical records to 
skip. The! *RSKIP command cannot be used for random 
files. 

UNLOAD The! *UNLOAD command unloads a magnetic 
tape or closes a sequential-access RAD fi Ie. The form of 
the command is 

/'*UNLOAD oplb 

102 COpy Routine 

END The! *END command is treated exactly like an 
! EODj that is, transfers control from Uti lity to the Moni­
tor. This command should be used in place of ! EOD when­
ever multiactivity job stacks are to be prestored on a RAD 
file. This command wi" not be interpreted as an EOF when 
read from UI. The form of the command is 

(I*END 

I 
WEOF The !*WEOF command writes a file mark, EOD, 
or end-of-file pointer if appropriate to the device. The 
form of the command is 

~*WEOF oplb 

I 
ASSIGN The !*ASSIGN command allows a Utility user 
to assign any operational label to a.ny other background 
operational label, devi ce-fi Ie number, or RAD fi Ie. The 
form of the command is 

_jOPlb } 
I *ASSIGN oplb{ ~} ~.fn 

Tllename 

where 

dfn is a device-fi Ie number. 

fj Ie is a RAD fj Ie name. 

area is the RAD area within which the RAD file is 
defined. 

COPY ROUTINE 

COpy provides the abi lity to copy variable-length binary 
or EBCDIC records from cards, paper tape, magnetic tape, 
keyboard/printer, and sequential-access RAD files to cards, 
paper tape, magnetic tape, line printer, keyboard/printer, 
and sequential-access RAD fi les. Using control functions 
of the Control Function Processor, records and files can be 
skipped except for random fj les. Output generated by the 
COpy routine can be verified. If the binary mode is re­
quested for either copying or verifying, fi Ie marks are re­
cognized for paper tape, magnetic tape or, sequential RAD 
file. An !EOD card is recognized as a file mark. The num­
ber of records and fi les read or verified is listed upon com­
pletion of the COpy or VERIFY operation. 

Since COpy uses RBM routines M:READ and M:WRITE for 
all reading and writing, fj les copied with the COpy routine 
will be treated according to the default conventions of the 
FORM, size, and BIN parameters of the ! *COPY command. 
Deviation from inherent conventions is accomplished via 
FORM, size, and BIN parameter options. 



For records being copied to the card punch, records containing 
a first byte of Xl1C, XI3C, XI9P, XIBfI, XIDP, XIFP, 
XIOOI, or X?8 1 are always punched in the binary mode; 
all other records are punched in EBCDIC. For all other 
devi ces, the distinction between binary and EBCDIC modes 
is meaningless because records are copied directly without 
translation. Therefore, attempting to copy binary data to 
an EBCDIC device wi II result in meaningless output. 

For paper tape, if BIN and size are not specified, the 
I ength of each bi nary record (fi rst byte of XI 1 C, XI3C, 
XI9FI, XIBP, XIDfI, XIFfI, XIOOI, or X?8 1

) is always 
120 bytes. When M: READ reads E BCD IC records from paper 
tape, it transmits only the number of bytes specified by the 
calling sequence to memory. Ordinarily, the COpy rou­
tine assumes that paper tape EBCDIC records have a byte 
count of 120. The BIN control card allows the user to 
override the standard count. 

By assigning the X4 oplb to a RAD file or paper tape device 
before the I *OPLBS command is read, records copied from 
UI are adjusted to a 80- or 120-byte length, depending upon 
upon the contents of the first byte. 

When copying or verifying a 9-track magneti c tape to a 
7-track magnetic tape, UI and X4 should be assigned to 
the 9T magneti c tape de vi ceo 

If a record copied to the line printer or keyboard/printer 
contains more than 132 characters, only the first 132 are 
printed. Normally, the first character of the record is 
printed and single spacing is forced. Therefore, even if 
the fi rst character is intended for format control, it wi II be 
printed as the first character of the print line, in the normal 
mode. If the format option is specified, the first character 
is interpreted as a format control character and is not 
printed. 

The BIN option should be used to copy nonstandard binary 
records. Paper tape codes N L, EOM, and I- are not inter­
preted as editing characters. All records are copies on a 
byte-for-byte basis. If paper tape is the input source, 
leading blanks are ignored and trailing blanks are included 
in the byte count. Paper tape I EOD NL is recognized as 
a file mark if it occupies the first five bytes of a record. 

COPY OPERATIONAL LABELS 

The following operational labels are used by the COpy 
routi ne in additi on to the Uti Ii ty subsystem operati ona I 
labels: 

Label Device 

UI Input devi ce 

X4 Verify devi ce 

Other operational labels may be used by COpy (at the op­
tion of the user) to specify the input and output devices for 
verifying and copying, respectively. 

90 10 37F-l(3/72) 

COpy OPERATING CHARACTERISTICS 

The COpy routine checks whether input/output operational 
labels are assigned to the same physical device. If so, all 
control commands are read from the 51 devi ce and stored in 
memory prior to interpretation of the control commands to 
begin copying. When the 51 and any input or output opera­
tional labels are assigned to the same physi cal devi ce, the 
message 

LD INPUT 
IIUKEYIN 

is wri tten on the OC and DO devi ce, and the Operator 
Communication routine waits for an operator response. The 
operator should load the input at this point and key in an 
5 response to initiate the actual copy procedure. 

If the operational labels are not assigned to the same physi­
cal devices, interpretation of control commands takes place 
as they are read from 51, and copying begins immediately 
wi thout any message bei ng output on the OC de vi ce. 

CALLING COpy 

The COpy routine is requested with the control command 

( UTILITY COPY[, CORE] 

where CORE specifies that, for the first! *COPY or 
I *VERIFY command, the records from the input devi ce are 
stored in core in addition to being copied or verified. For 
subsequent I *COPY or ! *VERIFY commands, these records 
in core, rather than those on the input device, are used as 
the input source. Following any! *COPY or ! *VERIFY 
commands, record and fi Ie counts are displayed on the 
DO device. 

After interpretation of the I UTILITY control command, con­
trol is transferred to the COpy routine which interprets the 
control commands listed below. 

COpy CONTROL COMMANDS 

OPLBS The ! *OPLBS command identifies the operational 
labels of output devices to be used in COpy requests and 
input for comparison for VERIFY requests, and must follow 
the I UTILITY command. The input for COpy operations is 
read from UI. For VERIFY operations, X4 is read. UI may 
not be used as a parameter for COpy operati ons; nor are 
UI and X4 allowed as parameters for VERIFY operations 
that change the device type of UI or X4. Operational 

COpy Routine 103 



labels maybe assigned toanydevice except a random-access 
RAD fi Ie. The form of the command is 

(I*OPLBS oplb1,··· ,oplbn 

where oplbi is the optional label for an output device for 
subsequent ! *COPY commands, or an input device for sub­
sequent! *VERIFY control commands. The oplb parameter 
may not be assigned to device-file number 0 (n 58). 

COpy The ! *COPY command causes records from the 
input device (UI) to be copied on the output device (speci­
fied in the J*OPLBS command) until the requested number 
of IEODs or file marks has been read and copied, or until 
the specified number of records has been copied. The form 
of the command is 

! *COPY type [,number] [, FORM] [,size] [,BIN] 

where 

104 

type is R if the number parameter refers to records, 
or F if the number parameter refers to files. 

number has different mean ings, dependi ng upon 
the type parameter that precedes it. If the type 
parameter is R, "number" is the number of records 
to be copied, but refers to logical records for a 
blocked, sequential-access file. If "type" is F, 
"number" is the number of files to be copied! or 
is ALL, indicating that all files should be copied 
until two consecutive EOD images or file marks 
are copied. If "type" is F and any of the input/ 
output devices is a sequential-access RAD file, 
"number" is 1 or it is omitted. If the number pa­
rameter is omitted, one record or file is copied. 

FORM applies only if data is being copied onto 
the I ine printer or keyboard/printer. If the FORM 
parameter is omitted, single spacing of printed 
output is the format. If FORM is used, the first 
character of each record is used for format control 
and is not printed. 

size specifies the maximum number of bytes in each 
record. If data is being copied to or from a 
sequential-access RAD file, "size" is the maximum 
logical record size and must be an even number. 
If "size" is omitted, all records are read and written 
in the standard record size (120 bytes). An IEOD 
card will not be recognized by M:WRITE if an odd 
byte count is spec i fi ed or if a byte count of less 
than four bytes is specified. 

DUMP Routine 

BIN if omitted, mode (BIN or EBCDIC) is determined 
according to byte 1 of the record. If present, all 
copying is done in binary, either with the count 
specified in "size" or the standard record size 
(120 bytes) by defaul t. 

VERIFY The! *VERIFY command requests comparison of 
data on the X4 device with data in core (CORE option) or 
with data from devices specified in the! *OPLBS control 
command. The form of the command is 

! *VERIFY type [,number] [,size] [,BIN] 

The parameters are defined as for the ! *COPY control 
command. 

Note: UI must not be used on an ! *OPLB command with 
VERIFY. 

Before the ! *VERJFY control command is issued, it is assumed 
that all files have been repositioned, if necessary, by use 
of !*REWIND and other file positioning control commands 
(described in "Control Function Commands"). The entire 
verification process is completed when the number of files 
or records for verification has been compared. 

DUMP ROUTINE 

The DUMP routine is used to dump records or files onto an 
output device in either hexadecimal or EBCDIC format. 

DUMP uses M:READ and M:WRITE for all input/output. If 
no mode or the EBCDIC mode is specified for dumping, all 
records are dumped according to the contents of the first byte 
of each record. Any record having a first byte of X' 1 C, 
X'3C, X'9F', X'BF', X'DF', X'FF, XIOOI, or X' 781 is 
assumed to be a binary record containing 120 bytes, and is 
dumped with each data word being represented in EBCDIC 
as a 4-digit hexadecimal number. Any record that does not 
contain one of these characters in its first byte is assumed 
to be in EBCDIC and is dumped as such. 

The user has the option to specify the byte count for paper 
tape record input, since M:READ pads all EBCDIC records 
with trailing blanks so that they appear to be fixed length 
in memory. 

The HEX option for dumping should be used to dump non­
standard binary records. The option causes all records that 
are to be dumped to be read in binary and dumped with each 
data word represented in EBCDIC as a four-character hexa­
decimai number. Since no editing is done when a binary 
read is specified, NL, EOM, and ¢ are not interpreted as 
editing characters. ! EOD is recognized as a fi Ie mark. 

90 10 37F-1 (3/72) 



DUMP OPERATIONAL lABELS 

The DUMP routine uses the following operational labels: 

Label Explanation 

51 Device for input commands. 

La Output device for dumping. 

UI Input device for dumping, unless some other 
input device is specified. 

DUMP OPERATING CHARACTERISTICS 

If both 51 and DUMP inputare assigned to the same device, 
all of the control commands on the 51 device are read and 
stored in memory before interpretation of the commands and 
dumping of the input tape begins. When this occurs, the 
message 

LD IN PUT UI, ddnn 
IIUKEYIN 

is written on the OC and DO device. The operator mounts 
the input tape and keys in an 5 response to continue. 

If 51 and the tape device to be dumped are not assigned to 
the same device, no message is written and control com­
mands are interpreted as they are read. The DUMP control 
commands are then listed on DO and dumping is performed. 

CALLING DUMP 

The DUMP routine is requested with the control command 

(' UTI llTY DUMPL oplb] 

where oplb is the operational label of the input devoce. If 
oplb is omitted, the operational label is assumed to be UI. 

DUM P CONTROL COMMAND 

DUMP The ! *DUMP command causes records to be read 
from UI and written on the La device in the specified mode 
until an !EOD or file mark is read, or the specified number 
of records has been read. The form of the command is 

! *DUMP [number] [, mode] [, size] 

where 

number is a decimal integer. Only the specified 
number of records is dumped. If "number" is 
omitted, the fi Ie is dumped to an EOF or fi Ie mark. 

90 10 37F-l (3/72) 

If "number" is ALL, the dump is performed to 
double fi Ie marks or lEaDs. 

mode indi cates that all records on UI, regardless 
of the content of the first byte of each record, are 
written on the La device in the mode specified. 
"Modell is HEX for hexadecimal and EBCDIC for 
EBCDIC. If om itted, EBCDIC is assumed. 

size specifies the maximum number of bytes to be 
read in each record. If the dump lIinput" is a 
sequentia I-access RAD fi Ie, the size parameter 
must be an even number. For a blocked sequential­
access file, "size ll is the maximum logical record 
size. If it is omitted, the standard record size is 
used. 

OBJECT MODULE EDITOR ROUTINE 

The Object Module Editor is designed to maintain files con­
taining sets of Standard Sigma 2/3 Object Language mod­
ules. It generates_or updates files by inserting and deleting 
object modules according to the program name in the start 
module item for each module. For each output file written, 
a I ist of module names is printed in the order of their 
appearance. 

Object Module Editor is also used to list files containing 
object modules and to verify that the input object records 
contain no checksum or sequence errors. 

A binary object module is defined as a sequence of binary 
records in Sigma 2/3 Standard Binary format, each of which 
begins with a nonblank name item and terminates with a 
record whose first byte is X'9P (END card) indicating that 
the record contains an end item. 

A set consists of one or more object modules and is termi­
nated by a file mark or lEaD. A tape may contain one or 
more sets and is terminated by double file marks or !EODs. 
Only one set of object modules can be contained in a 
sequential-access RAD fj Ie. 

Note that the Object Module Editor routine does not main­
tain the object modules in the System Library and User 
Library areas on the RAD. These permanent areas are main­
tained via the RAD Editor (see Chapter 8). 

OBJECT MODULE EDITOR OPERATIONAL lABELS 

The Object Module Editor uses the following operational 
labels: 

Label Explanation 

BI 

La 

Device from which binary object modules 
are to be inserted. 

Device for I isting either UI or UO object 
module names. 

Object Module Editor Routine 105 



Label Explanation 

UI Input device. 

UO Output device. 

OBJECT MODULE EDITOR OPERATING CHARACTERISTICS 

Object Module Editor operates in two modes: list and 
modify. 

In the list mode, only UI is read. The names of the object 
modules are printed on LO, and the checksum and sequence 
for each record are verified. After interpreting the I *LIST 
control command, the Editor checks if any two of SI, BI, 
and UI are assigned to the same device. If so, the message 

LD LIST 
! !UKEYIN 

is written on OC. The operator responds by preparing UI 
and keying in an S response. Listing of the modules 
proceeds. 

If no two of the labels SI, BI, or UI are assigned to the 
same device, control commands on SI are interpreted as 
they are read and are written on DO. If the UI device is 
assigned to a sequential-access RAD file, the Object Mod­
ule Editor leaves the list mode after readingtheend-of-file. 

In the modify mode, any modules to be inserted are read 
from the BI device and written on UO, as indicated by the 
SI control commands. If there are input files to be updated, 
they are read from UI. The names of a II obj ect modu I es 
written on UO are listed on LO. The object modules on 
BI must be in the same order in which they are to be in­
serted on UO. 

The Object Module Editor operates in the IIprestorell mode 
(reading and storing commands before interpreting) when 
the conditions shown below occur; otherwise, the Editor 
opera tes dynam i ca II y. 

Operational Labels 
Assigned to Same Device 

SI, BI 

SI, Ul 

BI, UI 

SI, Bl, UI 

106 Object Module Editor Routine 

Prestored Data 

SI 

SI 

Bl 

SI, BI 

After entering the modify mode, the Object Module Editor 
operates as follows: 

If any two of the operational labels SI, BI, and Ul are as­
signed to the same device, Object Module Editor follows 
the steps below: 

1. Interpretation of control commands begins. If any 
object modules are to be inserted, and if SI and BI are 
assigned to the same device, the SI device is read 
until an IEOD is encountered and the message 

2. 

LD INSERTS 
! !UKEYIN 

is written on OC and DO. The operator loads the mod­
ules to be inserted on the BI device and keys in an S 
response. If SI and BI are assigned to different devi ces, 
no message is written. The Editor then reads in al I the 
modules on BI until either an !EOD or any other record 
with a first byte different from XI FFI or XI9P is read 
from BI. Blank records are ignored. 

If there are input fi I es to be updated, the message 

LD INPUT 
! !UKEYIN 

is written on OC and DO. The operator must prepare 
UI and key in an S response. 

3. The mode modification control commands are inter­
preted, causing updating or generation to proceed. 
Each control command is listed on DOas it is interpreted. 

If no two of the operational labels SI, BI, and UI are as­
signed to the same device, control commands from SI are 
read and interpreted dynamically. Records are read from 
Bl and UI and written on UO in response to each mode mod­
ification control command. Every control command read 
from SI is listed on DO. 

Object Module Editor uses M:READ and M:WRITE to perform 
all input/output. Each object module is identified by the 
program name stored in the start module item. No modules 
with blank names are even written on the UO tape. 

CALLING OBJECT MODULE EDITOR 

The Object Module Editor is requested with the control 
command 

~UTlLITY OMEDIT 

I 



After interpretation of the !UT! LITY control command, 
control is transferred to the Object Module Editor routine. 
The control command and options available to OMEDIT are 
described below. 

Object Module Editor begins reading control commands 
until an !EOD or an ! *END is read, which terminates 
the SI input. 

OBJECT MODULE EDITOR CONTROL COMMANDS 

LIST The! *LIST command causes the Editor to enter the 
list mode. The names of the object modules on UI are read 
and I isted on LO. Any checksum errors detected cause 
error messages to be written on LO, but listing continues. 
If the record is an IEOD, it is listed. If two consecutive 
!EODs are encountered, the Editor leaves the list mode and 
the next control command is interpreted. The form of the 
command is 

(>UST 

MODIFY The! *MODIFY command indicates that ob-
ject modules are to be output on the UO device and causes 
the Editor to enter the modify mode. The modify mode ter­
minates when an !EOD or ! *UST control command is inter­
preted from SI, or two IEODs from BI or UI. The form of 
the command is 

where 

GEN is an optional parameter indicating that ob-
ject modules are to be selectively input from BI 
and that files are to be generated on UO. UI is 
not read. The control command ! *MODIFY GEN 
may be followed only by ! *INSERT control com­
mands (GEN impl ies ! *INSERT) used to define the 
elements to be selectively copied from BI to UO. 
No ! *DELETE control commands may be used in 
the GEN mode. 

INSERT must be specified if insertions from BI are 
to be read. If BI and UI are assigned to the same 
physical device, the complete BI file (up to an 
!EOD) will be prestored. Modules can be selected 
from BI by names on the ! *INSERT control com­
mands. The inserts must be in proper order. This 
command is used to update (input both ! *1 NSERT 
and! *DELETE commands) UI and to write UO. 

Note: If INSERT and GEN are omitted from the ! *MODIFY 
control command, only! *DELETE control commands 
may be input. 

90 10 37F-1(3/72) 

INSERT The !*INSERT command causes an object module 
to be inserted and is effective only in the modify mode. 
The form of the command is 

where 

name1 is the name (up to eight EBCDIC characters) 
of the object module to be inserted. 

name2 is the name (up to eight EBCDIC characters) 
of the object module on UI that the name 1 object 
module must follow. If name2 is omitted, the 
name1 module is written following the module 
previously written on UO. 

Modules to be inserted from BI must be in the same order as 
in the INSERT control commands. If GEN is specified on 
the MODIFY command, only the name1 parameter in the 
INSERT command is required; if a name2 is specified, it is 

ignored. 

DELETE The DELETE command causes object modules to 
be deleted and is effective only in the modify mode. The 
form of the command is 

where 

name1 is the program name (up to eight EBCDIC 
characters) of the first or only module on UI to be 
deleted. 

name2 is the program name (up to eight EBCDIC 
characters) of the last module on UI to be deleted. 
If absent, only one module is deleted. 

The! *DELETE control command must name modules in the 
same order as their occurrence on UI. 

RECORD EDITOR ROUTINE 

The Record Editor is used for source editing by record num­
ber from any sequential device to any other sequential de­
vice. Record Editor provides the following capabilities: 

1. Generates files containing source data. 

2. Lists files containing source images in addition to 
associated line numbers. 

3. Modifies files containing source images. 

Record Editor Routine 107 



RECORD EDITOR OPERATIONAL LABELS 

The following operational labels must be assigned in addi­
tion to the standard Uti lity program operational labels: 

Label Explanation 

SI 
LO 
UI 
UO 

Input device for control commands. 
Output device for listing source images. 
Input de vi ce. 
Output devi ceo 

RECORD EDITOR OPERATING CHARACTERISTICS 

The Record Edi tor routi ne opeiOtes in two modes: ! i st 
and modify. 

In the I ist mode, the Editor reads source images from UI and 
lists them on the LO device. It associates each image with 
a decimal line number, starting with 1. 

In the modify mode, the Editor either updates or generates 
fi les on the UO device. 

Record Editor uses M:READ and M:WRITE to perform all 
input/output. Therefore, all the paper tape editing and 
keyboard/printer editing that is standard to these routines 
is performed. 

CALLING RECORD EDITOR 

The Record Editor is requested with the following control 
command 

rUTILlTY RECEDIT 

I 
After interpretation of the I UTILITY control command, con­
trol is transferred to Record Editor, which begins reading 
control commands. 

RECORD EDITOR CONTROL COMMANDS 

A command requesting either the list or modify mode must 
immediately follow the IUTILITY command. All other con­
trol commands are interpreted as subcommands under each 
mode. If a binary record is read from UI, the following 
message is written on OC and DO: 

MODE ERR UI, device 
IIUKEYIN 

LIST The I *LIST command (list mode) causes the previous 
mode to terminate. The source fi les are read from UI and 
listed on LO. Each EBCDIC source image is listed along 
with an associated iine number up to and including the first 
I EOD source image or fi Ie mark read. After the required 
number of fi les has been I isted, another control command 
is read from the SI device. Each !*LIST control command 

108 Record Editor Routi ne 

file mark, or IEOD causes the line numbering to restart 
with 1. The form of the command is 

( *LIST [number] 

where number indicates the number of files to list. Listing 
continues unti I two consecutive ! EODs are encountered or 
the specified number of fi les is listed. If "number" is omit­
ted, one file is listed. If UI is assigned to a sequential­
access RAD fj Ie, the number parameter must not be greater 
than 1. 

A I*MODIFY, I*END, or IEOD control command causes 
the list mode to terminate. 

MODIFY The I *MODIFY command informs the Record 
Editor that fi les are to be either generated or updated. It 
terminates the previous mode and initiates the modify mode. 
The form of the command is 

(*MODIFY [lIST][, GEN] 

where 

LIST indicates that a listing of records deleted or 
inserted will be produced on LO. If LIST is the 
only parameter used, the listing wi II contain the 
UI line numbers (the number deleted or the num­
ber preceding the one inserted). If GEN is also 
present, the UO line numbers will be listed. 

GEN indicates that records are to be read from SI 
(there is no input on UI) and written on UO. If 
updating is to be performed (that is, there is input 
to be read from U!), the parameter field is left empty. 

The modify mode is terminated whenever a I *L1ST, 
I *MODIFY, I *END, or I EOD control command is input 
from SI. When the modify mode is terminated and GEN is 
specified, an IEOD or file mark is written on UO. When 
the modify mode is terminated and GEN is not specified, 
the remaining source images of the file on UI {until an EOD 
is encountered} are written on UO, followed by an EOD or 
file mark. 

DELETE The I *DE LETE command causes the indi cated 
record source images to be deleted and is effective only in 
the modify mode. The form of the command is 

I *DELETE number 1 [, number 2J 

where 

numbeq is the line number of the first (or only) 

number2 is the line number of the last source image 
to be deleted. 



INSERT The ! *INSERT command causes record source 
images from SI to be added to UI and written onto UO, and 
is effective only in the modify mode. The form of the com­
mand is (! *INSERT number 

where number is the line number that the insertions are to 
follow. If a line number of 0 (zero) is used, the insertions 
will precede the first line. 

Every source image on SI following the! *INSERT control 
command is inserted unti I a new Record Editor control com­
mand is encountered. 

CHANGE The! *CHANGE command causes the indicated 
source images to be deleted, and the source images fol­
lowing the CHAN GE command to be written on UO. The 
command is effecti ve on I yin the modi fy mode. The form 
of the command is 

! *CHAN GE number 1 [, number 2] 

where 

number1 is the line number of the first source image 
to be deleted. 

number2 is the line number of the last source image 
to be deleted. If omitted, only one source image 
wi II be deleted. 

Following the ! *CHAN GE control command, every source 
image on SI is inserted unti I another Record Editor control 
command is encountered. 

SEQUENCE EDITOR ROUTINE 

The Sequence Editor edits EBCDIC card images by sequence 
number. It is more flexible than the Record Editor in that 
multiple programs or sections of programs may be updated 
and sequenced individually within single or multiple fj les. 
It provides greater protection from updating in an incorrect 
sequence, or from accidentally updating the wrong program. 
Another feature of the Sequence Editor routine is that update 
card images may be inserted without changing the existing 
sequence numbers. Thus, update decks may be cumulative 
and wi II reflect the development of a source program. 

The Sequence Editor is primarily intended for installations 
where EBCDIC source programs are kept on magneti c tape. 
It is somewhat impracti cal for paper-tape-ori ented systems 
or systems without a line printer. 

Editing isaccomplished bydesignating columns 73 through 80 
of a source card image as the "sequence field". This field 
consists of two parts, the ident and the sequence number. 

The optional ident is that portion of the sequence field that 
uniquely identifies a program or program segment. If de­
fined, the ident begins in column 73 of the card image and 
is from one to six alphanumeric characters in length. 

The required sequence number is that portion of the sequence 
field that is sequenced numerically. It consists of from two 
through eight decimal characters and ends in column 80 of 
the card image. The user can specify the value by which 
successive sequence numbers are incremented. In general, 
a large sequence increment wi II allow larger insertions 
without affecting the existing sequence numbers. 

Together, the ident and sequence number must not total 
more than ei ght characters. Any unused columns wi II be 
between the ident and the sequence number and wi" be 
ignored by the Sequence Edi tor. 

SEQUENCE EDITOR OPERATIONAL LABELS 

The following operational labels are used by the Sequence 
Editor routine: 

Label 

SI 

LO 

UI 

UO 

Explanation 

Updatf' data (includes card images and 
control commands). 

Annotated listing of added and deleted 
card images. 

Input devi ceo 

Output device. 

Device, above, refers to any permanent storage device such 
as magneti c tape, paper tape, or RAD (single sequential 
file). Note that LOshouldnot be assigned to the keyboard/ 
printer, because the sequence number portion of the print­
out is truncated on that device. 

SEQUENCE EDITOR OPERATING CHARACTERISTICS 

The Sequence Editor performs two separate and distinct 
functions: generates files on UO from source images input 
on SI, and updates files from UI onto UO, taking updates 
from SI. Only one of these functions can be performed per 
call to the Sequence Editor (SEQEDIT). 

The file generation (GEN) function is used to create the 
permanent files initially. It is recommended that files be 
sequenced as they are generated to avoid an update pass at 
a I ater stage. The user can generate one fi I e (term i nated 
by an ! EOD or an ! *END from S1) wherein a single fi Ie mark 
is written on UO, or multiple files (terminated by two! EODs 
or ! *ENDs from SI) wherein two file marks are written onto 
UO and UO is backspaced one file. 

The update function is used toupdateUlbyreplacing, delet­
ing, or inserting card images from SI and writing the updated 
files onto UO. The files can be resequenced as they are 
written. The user can update one fi Ie (terminated by an EOF 
from UI) wherein an EOF is written onto UO, or all files 
(terminated by logical end-of-tape or two EOFs from UI) 
wherein two file marks are written on UO and UO is back­
spaced one file. With the ALL option, it is not necessary to 
update each file, but all files will be copied onto UO. 

Files can be sequenced as they are generated or updated. 
Sequencing is a separate operation in that the card images 

Sequence Editor Routine 109 



are sequenced as they are written on UO. Thus, it is possible 
to update an existing file by identand sequence number while 
placing a new ident and sequence numberon the update fi Ie. 

CALLING SEQUENCE EDITOR 

The Sequence Editor is requested via the control command 

! UTILITY SEQEDIT, [G EN][,IG NJ CALL] 

where 

GEN indicates that output files are being gener-
ated on the UO device and that there are no input 
files to be updated. 

IGN indicates that 51 sequence errors are to be 
ignored if UO is being generated or that UI se­
quence errors are to be ignored if U lis bei ng 
updated. If IG N is used, no sequence error mes­
sages are pri nted. 

ALL indicates that the GEN function is to continue 
until two ! EOD or ! *END cards are encountered 
from 51, or that the update function is to continue 
until two EOFs are encountered from UI. 

The leading comma must be specified: 

The Program Executive transfers control to the Sequence 
Editor, which interprets and val idates the parameters. If 
illegal parameters are input, the Utility program aborts 
with a code of UT. If this is an update (the GEN option 
was not specified), the following message is output on OC 
and DO: 

LD INPUT Ul,device 
!! UKEYIN 

SEQUENCE EDITOR CONTROL COMMANDS 

IDENT The ! *IDENT command defines the breakdown 
of the sequence field into the ident and the sequence num­
ber. It applies to card images from UI and 51 only. If used, 
it should precede the update cards to which it applies. If 
omitted, the ident field is considered empty and the se­
quence number is eight characters in length. The! *IDENT 
control command is used whenever it is necessary for the 
Sequence Editor to know the size and content of the ident 
field (that is, when UI contains multiprogram fi les or single­
program fi les with nondecimal characters in the sequence 
field). It is not to be used when files are being generated. 
The form of the command is 

! *!DENT Odent][,sequence-numberJ 

where 

ident is an integer nl (0 S nl S 6) that specifies 
the number of characters in the ident subset of the 

110 Sequence Editor Routi ne 

sequence field starting from column 73. If lIident ll 

is omitted, the ident field does not exist. 

sequence number is an integer n2 (2 S n2 S 8) that 
speci fi es the number of chara cters in the sequence 
number subset of the sequence field ending in 
column 80. If omitted, sequence number is set 
equal to the difference (8 - ident). 

The user should note that if a nonzero ident field has been 
specified on an ! *IDENT command, the idents on each card 
image from UI must match exactly or resequencing wi II be 
suspended when the first nonmatching ident is encountered. 
Hence, if UI is known to have nonmatching idents (for ex­
ample, a fi Ie that has never been sequenced or one that has 
been updated and contains some blank sequence fields), c 
separate sequence operation should be performed (without 
a simultaneous update) specifying an empty ident field. 

Replacement. The update card itself, rather than a control 
command, is used to replace a card image from UI. The 
sequence number on the update card must equal the sequence 
number on the UI card image to be replaced. The card im­
age from UI and the message IIDELETED II , followed by the 
card image from 51 and the message II INSERTEDII are output 
on LO. 

Insertion. The update card itself, rather than a control 
command, is used to insert a card image on UO. The se­
quence number on the update card must be between the 
sequence number of the two continuous UI card images 
where the update card is to be inserted. The card image 
from 51 and the message "INSERTED" are output on LO. 
Cards without sequence numbers are inserted immediately 
following the sequenced card preceding them. Thus, a 
large block of card images can be inserted by placing the 
proper sequence number on the first card only. The nonse­
quenced cards wi II be written on the output tape without 
sequence numbers. It is recommended that the tape be re= 
sequenced as it is being updated if unsequenced cards are 
inserted. 

DELETE The! *DELETE command deletes one or more card 
card images from UI. Nonsequenced cards can only be de­
leted by deleting from the last sequenced card preceding 
the nonsequenced card(s) up to and including the next se­
quenced card. Deleted card images are listed on LO. The 
form of the command is 

73 80 

I *DELETE [sequence field
2
J sequence field

1 

where 

sequence field2 indicates that the images are to be 
deleted from the ident and/or sequence number in 
sequence fieldl up to and including the ident and/ 
or sequence number in sequence field2. 

sequence fieldl contains the ident and/or sequence 
number of the first or only card image to be de­
leted from UI. This parameter is required. 



SUPPRESS The! *SUPPRESS command is identical to the 
! * DE LETE control command except that no de I etion card 
images are listed on La. The form of the command is 

73 80 

! *SUPPRESS [sequence field21 sequence field
1 

SEQUENCE The! *SEQUENCE command is used to 
resequence columns 73 through 80 of the card images on 
UO. Only one program can be resequenced with each 
! *SEQUENCE command. Therefore, resequencing is sus­
pended when either a file mark or a card image with a 
sequence number identifying a new program is written on 
the output tape. Resequencing is also suspended when 
another! *SEQUENCE command is executed; therefore, 
parts of a program as well as entire programs can be rese­
quenced. The form of the command is 

73 80 

! *SEQUENCE seq. field
2 

,increment seq.field
1 

where 

sequence field2 contains the ident and/or sequence 
number of the first resequenced card image to be 
written on the output tape and does not neces­
sarily have the same fi~lds as defined in the 
! *IDENT command. (The! *IDENT command de­
fines sequence fields for the input tape and update 
data only.) If omitted, resequencing is suspended. 

increment is the resequencing increment number. 
If omitted, an increment of lOis used. It is the 

responsi bil ity of the user to ensure that the se­
quence number does not get incremented past the 
size of the sequence number field. No warning 
is issued if this overlap occurs. 

sequence fieldl contains the ident and/or sequence 
number from UI at which the ! *SEQUENCE 
command becomes effective. If omitted, the 
! *SEQUENCE command takes effect with the 
next card image to be written on UO. 

UTILITY ERROR MESSAGES 

Unless otherwise noted, the following definitions apply in 
error messages given in Tables 21 through 26: 

Code Explanation 

oplb Operational label of the device. 

device Device type or physical device number. 

The operator response to ! !UKEYlN is 

Code Mean i ng 

S Continue 

x Abort 

When an irrecoverable error occurs, the Utility program 
aborts. For an irrecoverable input/output error on OC or 
DO, the code in the abort message is the operational label 
of the device. For- other operational labels, the irrecover­
able input/output message is written. Abort returns, due 
either to error or X operator responses, cause UT to appear 
in the abort message. 

Table 21. I/O Error Messages 

Message Meaning 

BOT oplb, device !! UKEYlN An attempt has been made to backspace over the magnetic tape load point 
or the beginning-of-tape of a RAD file. 

CAL SEQ ERR The Uti lity Executive has encountered a calling sequence error on a return 
from M:READ/M:WRITE. One reason may be an attempt to copy a record 
with an odd byte count onto the RAD (may occur with BCD 7-track tapes). 
See M:READ status returns in Chapter 4 of this manual. 

EMPTY oplb, device !! UKEYlN Manual intervention is required (the device is in the manual mode or no 
device is recognized). 

EOF oplb, device!! UKEYIN An unexpected tape mark, end-of-file (RAD), or !EOD has been read from 
magnetic tape, cards, paper tape, keyboard/printer, or RAD fi Ie. 

EaT oplb, device!! UKEYIN The end-of-tape mark on a magnetic tape or RAD file has been sensed. 

Utility Error Messages 111 



Table 21. I/O Error Messages (cont.) 

Message Meaning 

IL RAD SEQ oplb, device J JUKEYIN An operational label was assigned to a random-access RAD file, or an 
attempt was made to skip, read, or write more than one RAD file. 

INV I/O OP oplb, device! !UKEYIN An input/output operation is not meaningful for the requested device. 

INV OPLS oplb, device J !UKEYIN The operational label is not valid. The "oplb, device" portion of the 
message may contain invalid data if input/output is attempted for an 
operational label not recognized by the Monitor. 

I/O ERR oplb, device I The input/output calling sequence is in error, incorrect length is 
.f' • . . . , . I I TI specmea, or no mpur/outpur IS penamg for a cneCK operation. I ne 

"' ..... / .-~.- ... __ ,1.., .. II.; I :." p .. "" .. " ..... ah" ... " 

UNRECOV I/O oplb, device! !UKEYIN An irrecoverable input/output error has occurred after the maximum 
number or retries has been unsuccessfully attempted. 

WRITE PRO oplb, device! !UKEYIN An attempt has been made to write on a write-protected magnetic tape 
or RAD file. 

Table 22. Control Function Command Error Messages 

Message Meaning 

FSKIP Command 

DEOF oplb, device! !UKEYIN Two consecuti ve fi I e marks were encountered before the requi red number 
of fi I es had been passed. 

EOT oplb, device! !UKEYIN 

I 
The end-of-tape was encountered before the required number of files has 
been passed. 

I L RAD SEQ oplb, device!! UKEYIN The number parameter is not 1 and "oplb" is assigned to a sequential-
access RAD file, or the oplb parameter is assigned to a random-access 
RAD file. 

INV OPLS ! !UKEYIN The operati ona I label identifies an invalid device. 

PARAM ERR! !UKEYIN The oplb parameter is missing, or the number parameter is nonnumeric or 
greater than 32, 767. 

RS KI P Command 

EOF oplb, device !! UKEYI N An !EOD or file mark was encountered before the required number of 
records was passed. 

EOT oplb, device! !UKEYIN An end-of-tape was encountered before the specified number of records 
was skipped. 

IL RAD SEQ oplb,device I !UKEYIN The oplb parameter is assigned to a random-access RAD file. 

INV OPLS !!UKEYIN The oplb parameter identifies an invalid device. 
I 

PARAM ERR! !UKEYIN The oplb parameter is missing, or the number parameter is nonnumeri c or 
greater than 32, 767. 

112 Util ity Error Messages 



Table 22. Control Function Command Error Messages (cont. ) 

Message Meaning 

FBAC K Command 

BOT oplb, device llUKEYIN The beginning-of-tape was encountered before the required number of 
fi I es had been passed. 

DEOF oplb, device llUKEYIN Two consecuti ve fi I e marks were encountered before the requi red number 
of files was backspaced. 

IL RAD SEQ oplb,device I !UKEYIN The opl b parameter was assi gned to a random-access RAD fi I e. 

INY OPLB oplb, device I !UKEYIN The operati ona I label identifies an invalid device. 

PARAM ERR I I UKEYIN The operational label parameter is missing or contains more than two 
characters, or the number parameter is nonnumeric or greater than 32,767. 

RBAC K Command 

BOT oplb, device llUKEYIN The beginning-of-tape was encountered before the requested number of 
records had been passed. 

EOF oplb, device I !UKEYIN A file mark was encountered before the requested number of records had 
been passed. 

I L RAD SEQ oplb, device I I UKEYIN The oplb parameter was assigned to a random-access RAD file or a 
compressed EBCDIC RAD file. 

INY OPLB oplb, device llUKEYIN The operational label identifies an invalid device. 

PARAM ERR llUKEYIN The operational label parameter is missing or contains more than two 
characters, or the number parameter is nonnumeric or greater than 32,767. 

REWIND Command 

IL RAD SEQ oplb,device llUKEYIN The oplb parameter is assigned to a random-access RAD fi Ie. 

PARAM ERR I !UKEYIN The oplb parameter contains more than two characters. 

UNLOAD Command 

IL RAD SEQ oplb, de,vice llUKEYIN The oplb parameter is assigned to a random-access RAD file. 

INY OPLB oplb, device!! UKEYIN The oplb parameter identifies an invalid device. 

PARAM ERR! lUKEYIN The oplb parameter was missing or contained more than two characters. 

WEOF Command 

EOT oplb, device!! UKEYIN The end-of-tape was encountered. 

IL RAD SEQ oplb, device ! lUKEYIN The oplb parameter was assigned to a random-access RAD file. 

INYOPLB !!UKEYIN The oplb parameter identifies an inval id device. 

PARAM ERR llUKEYIN The oplb parameter is missing. 

Uti I ity Error Messages 113 



Table 22. Control Function Command Error Messages (cont. ) 

Message Meaning 

PRESTORE Command 

CORE OVFLO Available core memory has overflowed. The Util ity program aborts. 

PRE ERR!! UKEYIN The ! *PRESTORE command did not follow immediately after the I ! *UTI LITY command. 

PRE OVFLO The RAD prestore file on X5 has overflowed. The Uti I ity program aborts. 

ASS} GN Command 

ERR FRGD ! !UKEYIN An attempt has been made to assign a background operational label to a 

I foreground operational label, device-file number, or RAD file. 

ERR OPLB 1 !! UKEYIN The operational label to be assigned is invalid. 

ERR OPLB2 !!UKEYIN An attempt has been made to assign one operational label to an invalid 
or undefined operational label or RAD file. 

NO SPARES! !UKEYIN An attempt has been made to define a new background operational label 
but no room is available in the corresponding table". 

ERR AREA! !UKEYIN An inval id RAD area name has been used. 

OPLB TABLE OVFL ! !UKEYIN An attempt has been made to define more than eight LJnique operational 
labels. The assign wiJl be successful, but the operational label will not 
be used as on output device. 

Table 23. COpy Error Messages 

Message Meaning 

CORE OVFLO The memory area used for storing input records (when the CORE option on 
the !UTIUTY COpy command is used) has overflowed. The Utility pro-
gram aborts. 

IL RAD SEQ oplb,device ! IUKEYIN An attempt has been made to copy or verify from or to a random-access 
RAD file. 

OPLB TABLE OVFL ! !UKEYIN An attempt has been made to input more than eight operational labels. 
Only the first eight unique labels on an ! *OPLB card will be entered 
in the operational label table. 

{DEOF oplb, device } An end-of-tape, or two consecutive tape marks or !EODs were detected 
EOT oplb, device ! !UKEYIN on X4 or UI before the number of fi I es requested has been compared. 

EOF oplb, device ! !UKEYIN An !EOD or file mark was detected on X4 or UI before the number of 
records requested had been compared. 

VERIFY ERR oplb, device An error has been found by the verification process. When a verification 
error occurs, the COpy routine terminates execution of the ! *VERIFY 

I 
command for that device, but continues verification on other input 

I 

I 
devices. if an error is detected on every input device, the VERiFY 
function is aborted. 

114 Uti! ity Error Messages 



Table 24. Object Module Editor Error Messages 

Message Meaning 

BLNK NAME oplb,device !! UKEYIN A blank name was input. 

CKSM ERR oplb,device !! UKEYIN A checksum error was detected on a record read from UI or BI. 

EOT oplb,device ! ! UKEYIN An end-of-tape was encountered on BI or UI. 

ILLEG BIN oplb,device !! UKEYIN The fi rst byte of a record read from UI or BI did not contain X'FF' 
or X '9F'. 

NO name oplb,device ! ! UKEYIN Two consecutive! EODs or tape marks on UI, or one! EOD or tape mark 
on BI were encountered during the editing process before the desired 
number of modules had been copied (where "name" is the program name 
not found). 

NO name UI,device !! UKEYIN Two consecutive !EODs or file marks (one end-of-file for a sequential-
access RAD fi Ie) are read from UI before the Object Module Editor has 
inserted, replaced, or deleted all requested modules. 

SEQ ERR oplb,device !! UKEYIN A sequence error was detected ina record read from UI or BI. 

Table 25. Record Editor Error Messages 

Message Meaning 

! ! LD LIST UI,device Both SI and UI are assigned to the same device. The operator responds 
by mounting the tape to be listed and changes the state of the device. 

LD INPUT UI,device ! ! UKEYIN The modify mode was entered and updati ng is to be performed. The 
operator responds by mounti ng the tape to be input and keying-in an 
S response on OC to continue. 

INV CTRL ! ! UKEYIN A ! *MODIFY control command was interpreted from SI when the Record 
Editor was not in the modify mode. 

Uti I ity Error Messages 115 



Table 26. Sequence Editor Error Messages 

Message Meaning 

DELETE ERR!! UKEYIN No UI card images were found in the block to be deleted {for! *DELETE 
and ! *SUPPRESS commands}. 

DEOF UI,device ! ! UKEYIN 
i 

The program to be updated was not encountered on the input tape before 

I the logical end-of-tape. An S response causes the Sequence Editor to I 
return to RBM. All updating done prior to this point has been written, 
along with the logical end-of-tape marker on the output tape. 

PA"RAM ERR!! UKEYIN Case 1. Update data from SI contains an illegal sequence number; that 

I is, a nonnumeric character. An error alarm is also listed on LO. I 
I Case 2. A necessary control command parameter was omitted. I ---

I 
Case 3. The ident parameter {on an !*IDENT card} is greater than 6, the --- sequence number parameter is less than 2, or the sum of the two 

parameters is greater than 8~ 

SEQ ERR oplb,device !! UKEYIN A sequence error was found in either the update data or input tape. In 
this case, the oplb parameter refers to either SI or UI. An error alarm is 
also listed on LO. 

UNRECOV I/O UI,device ! ! UKEYIN An irrecoverable read error has occurred on UI. The partial card image 
input and the message II UI IGNORED RECORD FOLLOWS XXXXXXXXIl 

{when xxxxxxxx is the previous nonblank UI ident and/or sequence 
number} is output on LO. 

UNRECOV I/O UO,device ! ! UKEYIN An irrecoverable write error has occurred on UO. The card i mage to be 
output, and the message II UO RECORD OMITTEDII or II UO FILE MARK 
OMITTEDII, are output on LO. 

116 Util ity Error Messages 



10. PREPARING THE PROGRAM DECK 

The following examples show some of the ways program 
decks may be prepared for RBM operation. Unless stated 
otherwise, standard default cases for device assignments 
are assumed. 

EXTENDED SYMBOL EXAMPLES 

ASSEMBLE SOURCE PROGRAM. LISTING OUTPUT 

AND BINARY OUTPUT 

In this example, the symbolic input is received from the 
SI device (always defaulted), the binary output is received 
on the BO device, and the listed output is received on the 
LO device. Note that although BO and LO are normally 
default cases, they must be specified if output to the GO 
file (also a default) is not desired. 

ASSEMBLE IN BATCH MODE. LISTING OUTPUT AND 

BI NARY 0 UTPUT WITH SYMBOL C ROSS-REFE RENCE 

In this example, the source decks are assembled in batch 
mode (BA). In this mode, successive assemblies may be 
performed with a single IXSYMBOL command until a 
double IEOD command is encountered. The parameters 
defined on the IXSYMBOL command wi II hold true for 
each assembly in the batch. Each assembly will be fol­
lowed by a Symbol cross-reference (CR). 

ASSEMBLE. LOAD. AND GO FROM USER DEFINED 
OV FILE. LISTING OUTPUT 

IASSIGN OV=USEROV,UP 

In this example, the user is defining his own OV file 
through a call to the RAD Editor. After assembly, the OV 
file is assigned to the user defined file. The call to the 
Overlay Loader (IOLOAD) causes it to load the module 
defined on the I$ROOT command to the USEROV file for 
execution. The advantage to assigning the program to a 
user-defined OV file rather than using the RBMOV file is 
that the program can be loaded into core for execution 
repeatedly without reassembly. Conversely, the contents 
of RBMOV cannot be guaranteed to be saved from one job 
to another. 

Prepari ng the Program Deck 117 



!OLOAD 

ASSEMBLE SOURCE PROGRAM. 
LISTING OUTPUT. LOAD AND GO 

In this example, the binary object module is loaded into 
the RBMGO file located in the System Data area. The call 
to the Overlay Loader (!OLOAD) causes it to load the mod­
ule defined on the !$ROOT command to the RBMOV file for 
execution. The double comma on the! $ROOT command 
informs the Loader that the temp, exloc parameter options 

. ,I are defaulted. 

BASIC FORTRAN IV EXAMPLES 

COMPILE MULTIPLE PROGRAMS 

118 Basic FORTRAN IV Examples 

In this example, output to the GO fi Ie is not desired in the 
first job, so the GO oplb must be assigned to 0 (see Appen­
dix E and !ASSIGN command writeup in Chapter 2). An 
object listing is desired (LO) and extended precision real 
data is specified. 

The second job will receive a source listing by default and 
extended precision real data is again specified. Since the 
parameters are different on the two !FORTRAN control 
commands, the jobs cannot be run in batch mode. 

COMPILE. LISTING OUTPUT. LOAD AND GO 

In this example, the !ATTEND command specifies that 
the Monitor is to go into a "wait" state instead of 
aborting the job in case of irrecoverable error (gener­
ally recommended for "load and go" jobs). Binary out­
put will be received on both the BO and GO devices 
by default, and standard precision mode is also assumed 
by default. The binary object module is loaded into 
the RBMGO file located in the System Data area. 

The call to Overlay Loader (!OLOAD) causes it to 
load the module defined on the ! $ROOT command to 
the RBMOV Hie for execution. The doubie comma on 
the ! $ROOT command informs the Loader that the temp, 
exloc parameter options are defaulted. The Loader is 

90 10 37F-1(3/72) 



requested to output a LONG map (! $ML). The !XEQ 
command causes the executable program to process the 
data deck. 

COMPILE AND EXECUTE FOREGROUND PROGRAM 

This example would be used for debugging purposes only. 

In" this example, binary output to the BO device is 
suppressed. The !FORTRAN control command specifies 
that the binary output is to be received on the GO file 
by default and standard precision mode is assumed. The 
! PAUSE command permits the operator to key in FG, S 
to access protected foreground memory. The program is 
defined to the Overlay Loader as a foreground program 
(!OLOAD, F) and the COMMON base is set to the 
FWA of the background. The Loader is to create the 
Task Control Block, the first two words of which are 
defined on the !$TCB command. These two words spe­
cify that the task is to be connected to interrupt loca­
tion 100 (Integral interrupt number 2, priority level 8, 
within group 0). 

The !$ROOT command specifies that the root is to be 
loaded from the GO file, and will start execution at 
location 1800 in foreground memory. The core image 
form of the program is loaded on the OV file (RBMOV). 
The !XEQ command loads the executable program into 
core. When loaded, the task is armed, enabled, and 
then triggered. 

SEGMENTED PROGRAM EXAMPLES 

ASSEMBLE SEGMENTED BACKGROUND PROGRAM. 
LOAD AND GO 

seg 1 

Root (seg 0) seg 2 

seg 3 

!$SEG 1,0,GO, 1 

Given the program tree structure shown above, the sample 
deck setup illustrates a background program with a root and 
three overlay segments. These are assembled and loaded 
into the RBMGO file. The !OLOAD command specifies 
that these three segments are to be loaded, and defines it 

Segmented Foreground Program Examples 119 



as a background program (B). The $SEG commands specify 
that segments 1 through 3 are attached to the root, and the 
modules are to be loaded from the RBMGO file to the 
RBMOV file for subsequent loading into core for execution. 
A load map is output (! $MP). 

LOAD AND EXECUTE MULTIPLE OBJECT MODULES 

seg 4 

seg 1 

seg 5 

I seg 3 

120 RAD Editor Exampl es 

Given the sample program tree structure shown above, the 
illustrated deck would load and execute the segmented 
program. The program is loaded from either the device or 
file assigned to the BI operational label. No load map is 
requested (an !$ML, !$MS, or !$MP command could be 
inserted after the !OLOAD command if a map was desired). 
Although the segments could be loaded in any order, the 
proper ca IIing sequence is the responsibil ity of the user. 

RAD EDITOR EXAMPLES 

BUILD PUBLIC LIBRARY 

The Public Library is core resident. In th is example, the 
user must create two RAD fi I es to set up the Pub lie Library: 
the LIBSYM fi Ie and the PUBLIB fi Ie. The LIBSYM fi Ie 
contains the Symbol Table for the Public Library and is used 
by the Overlay Loader to satisfy references to the Public 
Library. The PUBLiB Hie contains the Pubiic Library and 
is booted in with RBM. (RBM must be rebooted to load the 
updated Public Library.) 



LOAD ROUTINES IN USER LIBRARY 

In this example, the User Library requires the following 
six files to be allocated in the User Library area (UL): 
MODIR, EBCDIC, EDFRF, BDFRF, MDFRF, and MODULE. 
The !#LADD command enters the routines into the defined 
four fi les, depending on the I ibrary code parameter on the 
!#LADD command: Basic (B), Main (M), or Extended (E). 
The same basic method is used to set up the System Library. 

UTILITY EXAMPLE 

CREATE A CONTROL COMMAND FILE 

In this example, the job stream will create the compressed 
file CCFILE in the User Data area. Control commands will 
be read from the SI device into fi Ie CCFILE. The job 
stream on CCFILE may now be executed by assigning 
CC = CCFILE, UD. N"ote that CCFILE must not have a 
!JOB command on its first entry, since this would imme­
diately transfer CC back to the SYSGEN assignment. How­
ever, it is often convenient to end the control command 
fi Ie with a "!JOB command to initiate a return to the 
SYSGEN assignment. 

t A !JOB command must not be the first card in the Control 
Command deck; !JOBC is permissible. 

Utility Examples 121 



11. SYSTEM GENERATION AND SYSTEM LOAD 

INTRODUCTION 
An RBM system designed for the requirements of a specific 
installation is generated in two phases: SYSGEN (System 
Generation) and SYSLOAD (System Load). These two phases 
create the Monitor and its required overlays. The SYSGEN 
phase defines RAD allocation or allows the user to override 
the nominal area allocation. 

SYSGEN loads only the specific installation parameters; 
none of the processors are loaded at this time. Itsonlyout­
put is an optional, rebootob!e version of the Monitor. This 
rebootable Monitor is output on the PM (Punch Monitor) 
assigned device. 

When SYSGEN is completed, core memory is set up for the 
SYS LOAD functi on to load the RBM overlays. System pro­
cessors, user processors, and other user-determined programs 
are loaded onto the RAD by the Overlay Loader or the RBM 
Absolute Loader. 

It is possible to modify the Monitor and/or its associated 
processors individually without going through the entire 
system generation process. Specifically, 

• A new versi on of the RBM can be wri tten wi thout af­
fecting the remainder of the RAD. Therefore, reloading 
the entire RAD wi II not be necessary. 

• Anything on the RAD can be replaced without going 
through a SYSGEN as long as the replacements do not 
exceed their SYSGEN-defined areas. 

• One installation can peifoil1i a SYSGEN for another 
installation and merely forward a copy of the reboot­
able RBM binary deck. However; the recipient 
facility will have to perform the SYSLOAD; that is, it 
wi II have to load the RBM overlays, the system proces­
sors, the user processors, and other installation specific 
programs on the RAD. 

SYSGEN 

INITIAL CORE ALLOCATION 

The RBM system is assembled in two parts. Part 1 is assem­
bled in absolute and contains SYSGEN (and SYSLOAD), 
and Part 2 is a stack of relocatable binary decks that may 
be loaded onto the RAD by SYSLOAD. (A list of these 
modules and their corresponding idents is given in Table 20.) 
Part 1 is loaded by an Absolute Loader (see lABS control 
command in Chapter 2). Nonoptional resident portions of 
RBM are loaded into the low core (OK-4K) locations from 
which they will execute; optional resident routines and the 
system generation routines are loaded into high core 
(4K-12K). RBM overlays are loaded at SYSLOAD time. 
The absolute binary deck that includes all optional routines 
is initially loaded by the Absolute Loader. 

122 System Generation and System load 

After this deck is loaded, the Absolute Loader enters the 
"wait" state. At this point the operator must enter the 
device number of the keyboard/printer into the data 
swi tches. (The devi ce number used is that of the keyboard/ 
printer employed by SYSGEN to communicate with the 
operator.) Then the operator may clear the "wait", and 
SYSGEN will continue. 

MINIMUM CONFIGURATION 

The following minimum configuration is required for the 
RBM system generation: 

1. Keyboard/printer. 

2. Minimum of 16K of core storage. 

3. RAD of at least .75M bytes or disk pack. 

4. Protection and memory parity features. 

5. Hardware interrupts for the RBMControl Task and I/O. 

OPTIONAL ROUTINES 

There are two basic divisions of the optional routines: 
those actually resident at all times and those functioning 
in the overlay region. All of the routines listed in 
Table 29 function in the overlay region and therefore con­
tribute essentially nothing to the resident size of RBM. The 
optional resident routines that contribute to the size of 
RBM are as fo! lows: 

Routine 

Power On/Off 

Accounting (Clock 1) 

Approximate Size 
(decimal) 

293 

216 

High-Speed Line Printer Handler 62 

tv\agnetic Tape Handler 95 

Multiply/Divide Simulation 173 

M:IOEX 198 

The presence of these optional routines is primarily depen­
dent on the installation hardware configuration, which is 
partly determined as the device-file information is input. 
If the indicated hardware is present, SYSGEN moves the 
optional routines to the resident portion of RBM or sets the 
appropriate overlay ident into the overlay table. 



For example, if a Y response is given for the INC. MUL/ 
DIV.SIM. query, SYSGEN moves the multiply/divide 
simulation package that is included in Part 1 to the proper 
location in core. As another example, if CR4/XX,B is 
typed under the heading DEVICE FILE INFO, SYSGEN 
enters the ident of the card reader error recovery routine 
in the OV: LOAD table. SYSLOAD encounters this ident 
while loading Part 2, singles out the corresponding module, 
and saves it as an overlay on the RAD. 

Debug and the Character-Oriented Communications handler 
operate in the foreground; eithera resident foreground region 
or a nonresident foreground area must be allocated if they 
are to be included. . 

A method for determining the size of RBM before a SYSGEN 
is performed is given in Appendix I. 

CORE MEMORY ALLOCATION 

Core memory is allocated in the following manner (see 
Figure 10): 

1. The first 256 words in lower memory (the zero table) 
are reserved for a communication region (see Table-l). 

2. The region from (decimal) 256 to 399 is reserved for 
internal and external interrupt levels; any space not 
required for interrupt levels will be used by the 
Monitor for table space. 

3. The remainder of core will be allocated by SYSGEN 
as follows: 

a. Resident RBM, to be loaded beginning at location 
400 (deCimal) and to include only optional routines 
selected by SYSGEN. 

b. Public Library (if allocated). 

c. Resident Foreground (if allocated). 

d. Nonresident Foreground (if allocated). 

e. Background, at least one page whether or not 
required; minimum amount allocated should be 
length of the Job Control Processor (3500 locations, 
decimal). See Figure 11. 

4. No foreground space need be allocated for a batch­
only system. 

When all user inputs necessary to calculate the exact size 
of the resident RBM are made, the ending address of 
RBM will be output by SYSGEN. The user will then input 
starting addresses for the Public Library, the resident fore­
ground, the nonresident foreground, and the background. 
The user should decide which of these areas are more apt to 

need additional core space and make the core allocation 
accordingly. A given area could then expand in a future 
SYSGEN, but only the programs in that area would have to 
be reloaded and not the entire system. (In Figure 13, for 
example, the resident foreground might expand into the 
unused Pub I ic Library area.) 

Figures 12 and 13 illustrate the core layout both after abso­
lute load and after SYSGEN and SYSLOAD. 

HAD ALLOCA liON 

During SYSGEN, each RAD or disk pack that will be 
mounted during SYSLOAD may be divided into from 1 to 
16 areas. Each area is labeled with an area mnemonic, 
usually from the following list: 

SP 
SD 
SL 
BT 
CP 

FP 
BP 
UP 
UL 
aa 

Xn 

where aa is any remaining combination of alphanumeric 
characters, except Xn. 

Areas are allocated by tracks, so that the actual size of an 
area is dependent on the type of RAD device. The track 
sizes are 

Track Size Models 

2880 words/track 7202, 7203, 7204 

6144 words/track 7232 

3072 words/track 7242, 7246 

If the first area allocated to each RAD is not preceded by an 
SK (skip track) input, the system bootstrap will be written 
in sector 0, and the area will actuarly begin at sector l. 
All other areas, with the possible exception of the BT area, 
will always start on a track boundary. The five areas 
described below may receive default allocations. During 
RAD allocation, the user must specify a system RAD to 
receive the default areas. An SK input as the last input on 
the system RAD will be ignored if default allocations are 
to be made. 

The SP, SD, SL, BT, and CP areas may receive default speci­
fications. During SYSGEN, the user must specify a default 
RAD to receive all of the areas specified by default. Any 
default area except SD or SP may be eliminated by specify­
ing its size as zero. A default area (if explicitly specified) 
may be placed on a RAD other than the default RAD. 

The areas that may be default allocated and their sizes are: 

SP Only large enough to contain RBM and its over­
lays and all standard processors (see Table H-2). 

SYSGEN 123 



(K:PLFVv'A) 

(K:RFFWA) 

(K:NFFWA) 

(K:BACKP) 

(K:BACKBG) 

(K:UNAVBG) 

124 SYSGEN 

0 
w 
I­
U w 
I-o 
0::: 
~ 

I 
o 
W 
I­
U 
w 
I-
o 
0::: 
~ 

Z 
::J 

I 

I 

Low Core 

External/Internal Dedicated Interrupt Locations 
Zero Table: Constants and Poi nters 

Resident RBM 

Selectable, optional RBM Routines 

I/O tables for RBM 

Transfer Vector Table 
_.-... 

Publ i c Library 

Real-time task #1 temp stack 

Task Control Block #1 

Real-time task #1 

Real-time task #2 temp stack 

. Task Control Block #2 

Real-time task #2 

Special end-action I/O routine 

Foreground program #1 COMMON 

· · · 
Real-time task #N temp stack 

Task Control Block #N 

Real-time task #N 

Background TCB 

Background temp stack 

User main program 

User subprograms 

Library subprograms 

Blank COMMON (if any) 

High Core 

Figure 10. RBM Core Memory AI location Example 

I 

R BM 

R esident 
F oreground Program # 1 

A dditional Resident 
oreground F 

N onresident 
oreground Space F 

Ba ckground Program 



Low Core 

High Core 

Background TCB, without PSD 
(In protected memory) 

Floating accumulator (5 locations) 

FORTRAN I/O Format Information 

Allocated temporary space 

Unallocated (as yet) temporary 
space for Public Library and 
Monitor Service Routines use. 

User Program and subprograms 
(Including any library routines 
not in the Public Library) 

Unused core 

RAD I/O Blocking Buffers 
(From 1 to 16 buffers; size of 
buffer determined at SYSGEN) 

Blank COMMON (if any) 

(Unavailable Memory) 

Figure 11. Background Core Allocation Example 

(K:BACKP) 

(K:BACKBG), (K:BASE) 

TEMPBASE+6 

K:DYN 

TEMPLIM 

(K:BACKBUF) 

(K:UNAVBG) 

SYSGEN 125 



RBM Zero Table 

RBM Resident Routines 

RBM Optional Resident Routines 
and Tables 

RBM SYSGEN 

RBM SYSLOAD 

I RBM Optional Nonresident 
Routines 

TVECT Table 

Figure 12. Core Layout After Absolute Load 

-0 

RBM Zero Table 

100 
Interrupt Locations (Unused Interrupt 
Locations Used by RBM Tables) 

190 
RBM Resident Portion 
(Nonoptiona I Routines) 

RBM Overlay Region (512 Words) 

RBM Resident Region (Optional 
Routines) 

RBM Patch Area 

Transfer Vector Table for 
RBM and Publ ic Library 

Public Library 

Unused Public Library Area 

Resident Foreground 

Unused Resi dent Foreground Area 

Nonresident Foreground 

Unused Nonresident Foreground Area 

Background (RBM Overlay Area for 
JCP) 

High Core 

Figure 13. Core Layout After SYSGEN and SYSLOAD 

126 SYSGEN 

SD Only large enough to contain nominally large 
RBMGO and RBMOV files, and other sma II fi les 
(RBMS2, RBMID, etc.). 

SL Only large enough to contain the standard system 
libraries: Standard precision, extended precision 
and common, or main libraries. 

CP Only large enough to contain all of background. 

BT Remaining RAD space. The last track avai lable 
for the default assignment of this area is device 
specific as follows: 

Device 

7202 
7203 
7204, 7232 
7242, 7246 

Last track available + 1 

128 
256 
512 
4000 

Each area will have a protection code assigned to it. This 
protection code is checked by the RAD Editor. The pro­
tection codes are: 

Protection 
Code 

NO 

BG 

FG 

SY 

Meaning 

No restriction 

Background fi les and fi les without write 
protection may be added, deleted, etc., 
with no restriction •. 

Foreground and unprotected files may be 
added if an SY key-in is in effect. 

Any of the files may be added if an 
SY key-in is in effect. 

The following areas have unconditionally specified protec­
tion codes: 

Area Protection Code 

SP, SL, SD SY 

FP, CP FG 

BP, BT BG 

The other areas may have an area protection code assigned 
during SYSGEN. If none is specified, the default is SY. 

RAD allocation is performed by making a device specifica­
tion, and following it by a set of area specifications for that 
device. This procedure is followed for each device and RAD 
allocation is terminated by an END statement. I 

RAD allocation atSYSGENconstructsthe Master Directory, I 
consisting of four words per entry. The only restrictions are 



that each area mnemonic must be a Iphanumeric, the size of 
the Master Directory may not be exceeded and RBM cannot 
cross a cylinder boundary. Any area except SP may be re­
moved from the Master Directory by setting its size to zero. 
Areas SP, SD, SL, BT, and CP, are initially placed in the 
Master Directory in that order, if space is available. Any 
of these areas not desired should be removed at the begin­
ning of RAD allocation to provide room for the areas to be 
allocated. If the area is to be deleted, an area allocation 
does not have to follow a device specification. 

FILE CONTROL TABLE ALLOCATION 

The File Control Table (FCT) is indexed by device-file 
number and contains information about all device-fi les in 
the system. The total size of the File Control Table is 
determined and allocated at SYSGEN time. The, term 
device file number (DFN) is assigned on the basis of the 
order in which devices are defined. For example, since the 
first device defined mustalways be a keyboard printer, DFN 1 
wi II always specify a keyboard printer. Devices other than 
the RAD have permanent device-fi Ie number assignments 
made at SYSGEN time. SYSGEN allows room for up to 
50 permanent device-fi les (not including RAD fi les). 

A separate device-file (i. e., FCT entry) is required for 
each open file on the RAD. Hence, the total number of 
entries necessary in the File Control Table for all RAD files 
is the maximum number of simultaneous open fi les. At 
SYSGEN time, the user must specify this maximum number 
of device-files for his foreground programs. For the back­
ground, nine device-files will be allocated {a sufficient 
number for the system processors), plus the number of RAD 
background DFNs input by the user. 

SYSGEN always allocates three foreground RAD files for 
use by the Monitor in addition to the number of RAD fore­
ground files input by the user. Hence, the total size of the 
File Control Table will be the sum of the number of non­
RAD files assigned, plus the total number of RAD files re­
served for foreground use plus three, plus the number of 
RAD files reserved for background use plus nine. 

The user can make fi Ie dictionary entries on the RAD for 
his foreground programs and then permanently allocate a 
foreground device-file number to that RAD file by assigning 
the RAD fi Ie to a foreground operational label. A device­
fi Ie number reserved for background use is assigned by the 
Monitor service routinesM:DEFINE and M:ASSIGN when­
ever a call is made to either of these routines. For RAD 
device-files, SYSGEN allocates the appropriate space in 
the File Control Table and sets the background/foreground 
indicator, the IIfile for RAD use" indicator, the maximum 
retry counter, and the poi nter to the I/O Control T abl e. 
For non-RAD files r SYSGEN sets in the File Control Table 
the background/foreground indicator, the channel number, 
the device type number, the II fi Ie for non-RAD use" indi­
cator, the device number, the maximum retry counter, and 
the pointer to the I/O Control Table. 

90 10 37F-1 (3/72) 

SYSGEN also allocates space for the I/O Control Table. 
The amount of space required for each type of device is 
contained in the Device Type Table. 

OPERATIONAL LABEL ASSIGNMENTS 

During SYSGEN the user specifies the selected standard 
operational labels and assigns each to a device-fi Ie num­
ber (other than a RAD fi Ie number) or to device-fi Ie zero. 
These assignments wi II be maintained as permanent assign­
ments for the appropriate operational label. 

The operational labels listed below are normally associated 
with RAD fi les. Therefore, permanently assigning these 
labels to non-RAD files at SYSGEN time is not permitted. 

Operational 
Label Use 

RM Used by RBM to load the RBM overlays and 
is reserved exclusively for RBM. 

ML Used by M:LOAD to load nonresident fore­
ground programs. 

PI 

OV 

X1-X5 

S2 

GO 

CK 

Should be used by any background program 
with overlays to load the overlay segments 
from the RAD. For system processors, PI is 
assigned to the processor fi Ie. For back­
ground programs loaded with an XEQ com­
mand, PI is assigned to OV. Foreground 
programs must specifically assign an opera­
tional label to the file from which overlay 
segments are to be read. 

Normally assigned to the RBMOV fi Ie for 
"assemble and go" type operations. 

Processor scratch files. 

XSY MBO L standard procedures. 

Normally assigned to the RBMGO file for 
"assemble and gd' type operations. 

Used to write/read checkpoint area. 

After all inputs are made by the user, SYSGEN allocates 
three additional entries in the Foreground Operation Label 
Table for RAD foreground labels. 

A total of 100 operational labels can be allocated and as­
signed at SYSGEN time, including those automatically 
allocated by SYSGEN. 

INPUT PARAMETERS 

When RBM is loaded and control is transferred to the 
SYSGEN routine, operator intervention is required to input 
the system parameters. The following device types are 

SYSGEN 127 



standard must be referred to by name when inputting the 
devi ce-fi Ie definitions: 

SYSGEN 
Device 
Type Name 

KP 

M9 

PT 

M7 

B7 

xx 

LP2 

LP8 

CR4 

BR4 

Devi ce Characteristi cs 

Keyboard/ pri n ter 

Magneti c tape, 9-track 

Paper tape handler 

Magnetic tape, 7-track, 
packed binary option 

Magneti c tape, 7-track 
BCD option 

RAD or disk pack 

Special-purpose device for 
use with M:IOEX 

line printer, 240 Ipm 

line printer, 800 Ipm 

Card reader, EBCDIC option, 
1400 or 400 cpm 

Card reader, BCD option, 
1400 or 400 cpm 

Run­
Time 
Device 
Name 

KP 

M9 

PT 

M7 

MB 

RD 

LP 

LP 

CR 

CR 

tRD is used only to reserve a specific number of foreground 
or background RAD files, not as a name of the form dtnn. 

Run-
SYSGEN Time 
Device Device 
Type Name Device Characterisitcs Name 

CP3 Card punch, 200 cpm CP 

BP3 Card punch, BCD option, CP 
200 cpm 

CPl Card punch, EBCDIC option, CP 
100 cpm 

BP1 Card punch, 100 cpm CP 

PL Graphic piotter 
tt PL 

The Run-Time names are used by M:READ/M:WRITE for 
operator communication. 

Table 27 defines the system parameters that are input via the 
keyboard/printer, paper tape reader, or card reader during 
SYSGEN. Note that all numeric entries can be input in 
either decimal or hexadecimal with leading zeros ignored; 
all hexadecimal entries must be preceded by a +. Comments 
can be added to any of the inputs shown in Table 27 by 
leaving one space after the required input is made. All in­
puts from the keyboard/printer must terminate with a NEW 
LINE code. Commas are used to separate fields. If an 
input/output device is not in the START state, an appropri­
ate message will be written on the keyboard/printer. 

ttRBM supports the graphic plotter as a device type but will 
not do any special converting or formatting. The user can 
either use the existing library routines to format data for the 
plotter or perform his own formatting. 

Table 27. SYSGEN Input Options and Parameters 

Output Message 

! !RBM SYSGEN 
INPUT DEVICES 

VERSION 

128 SYSGEN 

I 

Input Parameters 

Devi ce Name and Number 
(e.g., CR4/03, LP8/02;KP, 
NO; PT20, KP) 

Two alphanumeric characters 
(e. g., Al or A2 or B1, etc,) 

Descri ption 

Device name and devi ce number of the input and output 
devices to be used during SYSGEN. If the keyboard/ 
printer is to be used exclusively, only KP need be input. 
The only acceptable device names are CR, LP, KP, PT, 
or NO. 

If DATA switch 1 is set at the time the input device 
parameter is input, patch commdnds are read from the 
input devi ce until an ! EOD is encountered. See PA 
option under "SYSLOAD". 

I 
The RBM version will be stored in a zero table 
location. K:VRSION, output by RBM on LL at the 

I start of each job and by postmortem dump whenever 
it runs. 



Output Message 

MEMORY SIZE 

MAX. INT. LOC 

CONTROL TASK INT. LOC. 

INT. CHANNELS 
EXT. CHANNELS 

NO. LINES/PAGE 

NO. DEFS IN PUB. LIB. 

NO. ENTRIES IN 
NONRES. FGD. QUEUE 

NO. DICT ENTRIES 

RAD ALLOCA TIO N 

Table 27. SYSGEN Input Options and Parameters (cont.) 

Input Parameters 

Numeri c si ze 

Address 

Address 

x - y or 0 

Number 

Number 

Number 

Number 

RDxx/dn ,{~ l,S 

For example, 

RD42/E1, S 

Description 

Total core memory size of Sigma 2/3, stored in a zero 
table location, K:UNAVBG. 

Maximum Sigma 2/3 address for rea.l-time external 
interrupts (263 < A < 400). t The space unused by the 
interrupts will be allocated to RBM tables by SYSGEN. 

Address of interrupt us~d by RBM Control Task. Must 
be the interrupt with the lowest priority avai lable. 

Indi cates the numbers of the I/O channels specified to 
this installation. x is the first channel number, and y 
is the last number. If no channel exists for this lOP, 
a 0 is input. Sigma 2, for example, would always have 
an input of 0 for EXT. CHANNELS. The number of 
channels must be greater than four but less than 20 for 
Sigma 2 (less than 28 for Sigma 3). For Sigma 3, 
o through X'B' are the internal channel numbers and 
X'C' through X'lB' are the external channel numbers. 

Number of I ines to be printed on each page during an 
Extended Symbol assembly. SYSGEN will save the 
input value in zero table location K:PAG E, for later 
use by Extended Symbol in printing out a title at the 
top of each page. Input value n must be 0 < n <+ 8000. 

Number (n < + 100) of definitions (DEFs) in the Public 
Library. This input is needed so that the Transfer Vector 
Table can be correctly allocated. If zero is input, 
SYSGEN assumes there is no Public Library. 

Reflects the maximum queue size for nonresident fore­
ground programs. 

Specifies the length of the Master Dictionary. Entries 
are already allocated for SP, SD, SL, CP, and BT. A 
number from 0 to 15 may be input, specifying the addi­
tional Master Directory entries. Each entry requires 
four words. 

xx specifies the device type as follows: 

02 
03 
04 
32 
42 

7202 
7203 
7204 
7232 
7242 

dn is the hardware device number for this RAD, which 
must be driven by a channel defined previously under 
"INT CHANNEL" or "EXT CHANNELS". Each device 
can only be input once, but as many as 12 devices, 
each with area allocations, may be input. lor E spec­
ifies the lOP type; I refers to an Internal lOP, and E to 
an External lOP. E is assumed for a 7242 or 7246 and 

SYSGEN 129 



Output Message 

RAD ALLOCATION (cont.) 

I 

I 

BUFFER SIZE 

INC. POWER ON/OFF 

INC. MUl/ON. SIM. 

INC. M:IOEX 

130 SYSGEN 

Table 27. SYSGEN Input Options and Parameters (cont.) 

Input Parameters 

yy=zz[,wp] 

I For example: 

I 

SP = 30 
SO = 20 
D1 = 100, FG 
02 = 200,SG 

END 

0, 180,or 512 

Yor N 

Yor N 

I YorN 

Descri pti on 

is the default for a 7232. I or E must be input for a 
720x. If this parameter is not used, an intervening 
comma before the next parameter is not necessary. 

S indicates that this device is to receive default allo-
cations. If more than one S parameter is input the last 
is used. If S is not input, the device receiving the 
SP area is used. Either S or the SP area must be input. 

yy is any area mnemonic, 
list: 

~P 

SO 
SL 
BT 
CP 

FP 
SP 
UP 
UL 
aa 

Xn 

usually from the following 

where a is any letter except X and n is a decimal digit. 

zz is the number of tracks to allocate for area yy. If 
zz = 0, area yy wi" be undefined, and an additional 
Master Directory entry will be available. If zz = 
ALL, the area wi II occupy the remainder of the RAD 
and no other inputs may be made for this RAD. If 
yy = SK, zz number of tracks will be skipped before the 
next area is allocated. But to be meaningful, another 
area must be input. If the first input is not SK = zz, 
this RAO wi" receive a system bootstrap in sector 0 and 
the next area wi" actually begin in sector 1. If no 
orders are allocated on RAD dn, however, no bootstrap 
wi" be written. 

I wp is a write protection code from the set NO, SY, 
FG, or BG. This option is not valid for the SP, SD, 
SL, BT, CP, FP, or SP areas. For all other areas, the 
default is SY. 

Terminates the RAD ALLOCATION parameter. 

In the example given, areas SP, SD, D 1 and D2 wi" 
receive the number of tracks specified. SL, CP, and 
BT wi" be default allocated, (as described under RAD 
ALLOCATION) on this same device. 

Specifies the blocking buffer size for all Monitor blocked 
files in this system. If 0 is input, the largest sector 
size of the SYSGEN configuration is used. 

Yes (Y), if Power On/Power Off routine is to be in­
cluded in resident RBM. 

Yes (Y), if multiply/divide software is to be included. 
If multiply/divide hardware exists, No (N) should be 
input. 

I Yes (Y), if optional RBi'Y~ ser~.fice routine ~A:IOEX is to 
be included. 

I 

I I 
J I 



Output Message 

INC. CLOCK ONE 

INC. DEBUG 

INC. MISC. 

INC. C.O.C. 

INC. ERR. LOG 

DEVICE FILE INFO. 
[(INC. DEBUG)] 

90 10 37F-1 (3/72) 

Table 27. SYSGEN Input Options and Parameters (cont.) 

Input Parameters 

Y or N 

RD,x,y 

Description 

Yes (Y), if Clock 1 is to be used by RBM for job 
accounting, for limiting the execution time of back­
ground jobs, for time limits on I/O transfers, and for 
keeping time of day. If NO (N) is input, Clock 1 is 
not available and SYSGEN will not load the job ac­
counting portion of the RBM Control Task. 

Yes (Y), if RBM Debug is to be included. If Debug is 
included, at least 200(16) foreground cells must be 
allocated and Debug I/O device may be input below, 
under DEVICE FILE INFO. If No (N) is input, Debug 
wi II not be loaded and the user can use the 32 zero 
table Debug cells as additional foreground mailboxes. 

Yes (Y), if the non-Debug Core Dump, RAD Dump, 
and Hex Corrector routines are to be included in RBM. 

Yes (Y), if Character-Oriented Communications 
Handler is to be included. If COC is included, at 
least 1000 cells must be allocated for resident 
foreground. 

Yes (Y) "if RBM is to attempt to write a message when a 
system crash is to occur. The resident size wi II increase 
by 25 cells. 

The first parameter, dt, specifies a certain peripheral 
and must be one of the device type names listed pre­
viously under "Input Parameters". The second param­
eter, nn, is the hardware device number of this pe­
ripheral and must indicate a previously defined '­
channel. The third parameter, x, is F if this is a 
foreground device, B if this is a background device, 
DI if this is a Debug input device, or DO if this is a 
Debug output devi ceo (D I and DO wi" not be accepted 
if an N (no) response was given to the INC. DEBUG 
message.) The last parameter, I or E, is required to 
indi cate lOP type for a multiunit devi ce; I indicates 
an internal lOP, and E indicates an external lOP. The 
last parameter is ignored if the device is not a multi­
unit type. 

The first devi ce-fi Ie entry, DFN 1, must be KPnn, F. 
the term IIdevi ce-fi Ie number", abbreviated as DFN, 
indicates the order in which device parameters are in­
put in response to the DEVICE FILE INFO. output 
message. 

This entry indicates to SYSGEN that y RAD File Con­
trol Table entries are to be saved for the mode specified 
by the parameter x where y is F for foreground fi I es or 
B for background fi les. The y parameter may be one or 
two decimal digits. An entry must always be input for 
the foreground, and a default number of 9 is used for 
background files if a user fails to allocate any back­
ground file. (Thus if no input is given, SYSGEN will 
reserve nine background RAD fi Ie entries.) The value 9 
is always added to the background allocation. 

SYSGEN 131 



Output Message 

DEVICE FILE INFO. 
(INC. DEBUG) (cont. ) 

I 

BCKG. OPe LBL. 

FGD. OPe LBL. 

132 SYSGEN 

Table 27. SYSGEN Input Options and Parameters (cont.) 

I 

I 

Input Parameters 

RD, x, y (cont.) 

END 

Operational label = device­
file number, or device unit 
number = devi ce-fi I e number 
(one per I ine, terminated by 
END); 0 = n means reserve n 
locations in Operational 
Label Table for temporary 
assi gnments. (Temporary 
space is needed for execution 
time temporary assignments, 
or for RAD fi les above and 
beyond that number (9) whi ch 
is automati cally allocated by 
SYSGEN. ) 

Examples: 

SI = 3 
102 = 4 
o = 3 {reserves three addi­

tiona I entries in Op­
erational Label Table} 

lEND 
I _ _.. . 
I Same as tor background, 
I except that space for three 

Descri pti on 

Examples: 

Device-File DFN No. 

KP40, F 1 
LP8/02,B 2 
CR4/03, B 3 
CP1/04, B 4 
PT20, B 5 
BR4j03,B 6 
M9DO, B, E 7 
M9Di, Bf E 8 
AA7r:n Il r: 'V" LV, u, "- Q 

B7EO, B, E 10 
RD, S, 20 28-46 
LP2j05,F 11 
CR4j03, F 12 
M9DO, F, E 13 
M9D1, F, E 14 
XXDO, F 15 
LP8j02, DO 16 
CR4/03, Dl 17 
RD, F, 10 18-27 

Note: RAD files are entered last regardless of 
sequence placement and foreground files 
will have the lower DFN assignment. 

Signifies end of device-file information. 

Background operational labels or device-unit number 
and device-fi Ie number equivalents for permanent I/O 
assignments. No operational labels can be assigned to 
RAD files at SYSGEN time. A maximum of 188 back­
ground and foreground operationai iabeis can be input 
by the user. The following operational labels are de­
fined by RBM; thus, they may not be input: 

RM OV 
ML GO 
PI 

I Signifies end of background operational label. 

I 

1_ . _. ... . _ _. . . I 
t-oreground operational labels or device unit number and 
device-file number equivalents for permanent foreground 



Table 27. SYSGEN Input Options and Parameters (cont.) 

Output Message 

FGD. OPe LBL. (cont.) 

RBM LWA = + xxxx 

PUB. LIB. FWAtt 

RES. FGD. FWAtt 

NONRES. FGD. FWA
tt 

BCKG. FWA
tt 

Input Parameters 

operational labels are 
automatically assigned. 

None 

Address 

Address 

Address 

Address 

Description 

I/O assignments. No foreground operational labels 
can be assigned to RAD files at SYSGEN time. 

At this point, SYSGEN wi II have suffi cient information 
to calculate the exact size of RBM. This message is 
output to the operator as an aid in the follow-on inputs. 
If the user has only background, he will have to input 
an address for the start of the background (i. e., at 
least 17 cells greater than the RBM LWA output). This 
value (i. e., + xxxx) can be predetermined by using 
the algorithm giv.;n in Appendix I. Any excess space 
wi II be used as the RBM Patch area. 

If zero has been input for the number of D EFs in the 
Public Library, this typeout wi II not occur. Otherwise, 
the input should reflect the first word address (FWA) of 
the Public Library (which may be equal to RBM LWA). 
An input of zero is illegal. This value is stored in zero 
table location K: PLFWA. 

First word address of the resident foreground area. An 
input of zero indicates no resident foreground. This 
value is stored in zero table K:RFFWA. 

First word address of nonresident foreground area. An 
input of zero indicates no nonresident foreground. This 
value is stored in zero table location K:NFFWA. 

First word address (FWA) of background memory. This 
address must start on a page boundary (some multiple of 
10016). This value is stored in zero table location 
K:BACKBG. 

tAlthough Sigma 3 has provisions for interrupt locations only as high as 368, 400 is considered to be the beginning of 
operating RBM for compatibi lity with Sigma 2. The 32 extra cells are used for input/output tables. 

ttThese four addresses must be in increasing order. That is, the core allocation must be made in the same order as the 
SYSGEN input. If nonresident foreground is used, it must be at least 17 cells plus the sector size of the UP area. This 
area is used as a buffer for the Q key-in. 

SYSGEN OUTPUT 

MESSAGES TO THE OPERATOR 

The error messages in Table 28 can be output by SYSGEN. 
Note that for input errors the corrected input must be made 
from the KP exclusively. 

BINARY OUTPUT 

If a background PM (Punch Monitor) operational label is 
assigned at SYSGEN time, SYSGEN wi II punch a reboot­
able version of the RBM on the PM device after the last 
parameter has been input by the operator. 

SYSLOAD 

SYSTEM LOAD 

After SYSGEN has been completed, or the rebootable RBM 
deck punched by SYSGEN has been input, control is trans­
ferred to the System Load Processor, SYSLOAD. SYSLOAD 
wi II initially output the following message on the OC 
device: 

! !RBM SYSlOAD 
! ! IN PUT OPTION 

SYSLOAD 133 



Table 28. SYSGEN Error Messages 

Message 

!! INVALID PARAMETER 

! ! FORMAT ERR I 
! !C. T. INT. PRIORITY ERR 

!! i/o ERR 

! !ALLOCATION ERR 

TOO MANY AREAS 

!! ILLEGAL OPe LBL. 

Meaning 

Input parameter is out of 
expected range, or maximum 
number of allowed inputs 
have been made. 

Input format not valid. 

Control task interrupt is at 
a higher priority level than 
the I/o interrupt level. 

An i/O error has occurred 
on the ! cst input. 

No RAD was defi ned as the 
system RAD. 

·Not enough entries were 
defined in the Master 
Dictionary. 

RBM resides on a 7242 disk 
and crosses a cylinder 
boundary. 

The user has attempted to 
permanently assign one of 
the reserved op labels (Rtvl, 
ML, PI, OV, GO). 

The option to be input on OC should be one of the following: 

PA specifies that patches are to read from the input 
device, with the format xxxxbbyyyy[1)1)zzzz]' •. 
! EOD where xxxx is the location to be patched, 
and yyyy and zzzz are the values to be inserted 
starting at location xxxx. All entries must be four 
characters long, separated by two blanks. The last 
record must be ! EOD to terminate patching and 
causes the! ! INPUT OPTION message to be out­
put again. The ALL or UPD option can then be 
entered. Comments may be made in two ways on 
SYSLOAD patch cards. If the first column contains 
an asterisk, the entire card· wi II be considered a 
comment card;otherwise comments may be made on 
cards containing patches by preceding the com­
ments with an asterisk. 

ALL which specifies that a complete system load 
is to occur and nothing on the RAD is to be 
saved. 

134 SYSLOAD 

Recovery 

Retype input with correct value. 

Retype input with valid format. 

Requires hardware modification, or reassignment of 
Control Task Interrupt to a lower level. 

Correct the problem with the input device and 
retype last input. 

Since this alarm is output only after the END card 
is input (i. e., after the RAD allocation has been 
completed), the user must reallocate all areas 
assigned to the system RAD. The default allocations 
will be restored for the second iteration. The com­
puter wi II enter a "wait" state so that the error can 
be isolated and corrected unlike other SYSGEN 
errors. The corrected inputs must be made on the 
original input device. 

Fewer entries must be input or more Master Dic­
tionary entries must be made avai lable. In any 
event, RAD allocation must be restored. 

SP must be reallocated during a second RAD 
allocation. 

Retype input with different op label. 

UPD which specifies that an updated version of RBM 
has been made to replace the existing RAD version. 
Portions of the RAD may have to be reloaded, de­
pending on the new core memory allocation. 

ALL OPTION 

An ALL input specifies that a complete system load is to 
occur. A complete load is necessary for the initial genera­
tion or whenever any of the RAD areas has to change size. 

The System Load Processor SYSLOAD first searches the 
Master Directory left by SYSGEN to determine if any RAD 
areas have not been completely defined because of an ALL 
input during SYSGEN. If some areas still need their last 
word addresses defined, SYSLOAD will generate this value 
so that the Master Directory can now be completed. 

At this point a check is made to determine if the 
checkpoint area is large enough to contain the entire 



background. If it is not, the following message wi" be 
output: 

CP AREA TOO SMALL 

The CP area will be undefined. 

This error is only fatal if an attempt is made to checkpoint 
the background. It can be corrected only by a complete 
SYSGEN, using at le~st the default size for the check­
point area. 

After the Master Directory has been completed, SYSLOAD 
wi II write zeros on all defined areas of the RAD. This pro­
cess takes approximately 1 minute for a 256-track RAD. 

UPD OPTION (UPDATE) 

The UPD option on the SYSLOAD command specifies that a 
new version of RBM has been made, but that none of the 
areas on the RAD has changed in size. The option can 
also be used when changes are made in any of the following 
input parameters: 

• Public Library (PL) FWA 

• Resident Foreground FWA 

• Nonresident Foreground FWA 

• Background FWA 

UPD should not be used if any of the RAD areas has changed 
in size or location. In this case, a complete SYSGEN 
and SYSLOAD must be performed. Note that a change in 
the background FWA to increase the total size of background 
might cause a change in size of the Checkpoint area, which 
could necessitate a complete new SYSGEN. - In this case, 
a CP AREA TOO SMALL alarm would be output for the 
user1s information. 

The System Load Processor reads the bootstrap to determine 
where the old version of the RBM is located on the RAD and 
then loads the Monitor Constant Table. The SYSLOAD then 
compares the old load addresses against the new load ad­
dresses to determine which programs on the RAD must be 
reloaded. 

The size of the new Master Directory must be at least as 
large as the old Master Directory. If it is not, an error 
message will be output and SYSLOAD will continue. 

If the new version of RBM exceeds the RAD space allocated 
to the old version, all programs in the System Processor area 
and all programs that make external references to Monitor 
service routines (MSR) must be reloaded. (Reloading the 
System Processor area is necessary because the RBM is the 
first fi Ie in the area.) As the comparison checks are made, 
a subset of the following messages will be typed on OC: 

! !RELOAD 
PUB. LIB. 
RES. FGD. 
NONRES. FGD. 
BCKG. 
SP AREA 
MSR/PL USERS AND PL 
NOTHING 

If any of the following modules are relocated on the RAD, 
the contents of other affected areas must be reloaded: 

Relocated Module 

Publi c Library requires 
reloading because its 
load address has 
changed. 

Resident or nonresi­
dent foreground was 
relocated. 

Background was 
relocated. 

New RBM versi on ex­
ceeds its allocated 
RAD fi Ie space. 

TVECT Table load 
address has changed. tt 

Required Reloading 

All programs that reference the 
Public Library must also be re­
loaded. None of the system pro­
cessors use the Publi c Library, and 
no system processors would have 
to be reloaded. 

The appropriate routines must be 
reloaded in these areas. 

All system processor and back­
ground user programs must be 
reloaded. (See IIInitial Loading 
of System Processors II be I ow. ) 

All programs in the system pro­
cessor area must be reloaded. 
(See IIInitial Loading of System 
Processors ll below. )t 

All programs referencing Monitor 
servi ce routi nes (MSR) or the 
Public Library (PL) through the 
TVECT Table via an external 
reference must be relocated. 

After these checks are made, the SYSLOAD outputs the message 

!! LOAD RBM PART 2 

and proceeds to load the overlays as described earlier in 
the IIALL Optionll. 

After the overlays are loaded, another check is made to see 
if the overlays did not overflow RBM. If the overlays did 
overflow into the next area, the following message is output: 

! !RELOAD 
SP AREA 

After the necessary RELOAD alarms are output for the user1s 
information, the SLP will load the Master Directory from 
the RAD version of RBM and store it into its allocated area 
in the new version of RBM. The new version of RBM wi II 
then be written onto the RBM fi Ie, followed by an updated 
bootstrap in the BOOT fi Ie, the starting sector of the system 
RAD, and the PM device. Finally, the Transfer Vector 
Table and the RBM Symbol Table will be updated and then 
rewri tten on the RAD. 

t 
The only areas of the RAD that would never have to be 

reloaded are the system and user library areas since these 
areas contain library programs in relocatable binary format. 

ttThe TVECT load address wi" change any time the first word 
address of the area adjacent to RBM in core has changed. 

SYSLOAD 135 



LOADING RBM PART 2 

At this point the SYSLOAD outputs the following message. 

!! LOAD RBM PART 2 

If SYSLOAD encounters a track upon which it cannot write, 
an appropriate message wi II be output with that track 
number. 

SYSLOAD wi II write into the first sector of each area: the 
area mnemonic and the bounds of the area. SYSLOAD will 
a I so cI ear the second sector of each area. 

The binary modules making up Part 2 should be input from the 
background AI devi ce (as determined at SYSGEN). 

So that a user does not have to reorganize Part 2 for each 
new SYSGEN, SYSLOAD allows all or Part 2 to be input 
each time, but only loads the routines specified by the 
options selected during SYSGEN. The final module must 
be fo I lowed by an ! E OD. The i den t from the Extended 
Symbol directive, IDNT, is used to identify each module 
loaded, and is placed in the OV: LOAD table and used as 
the overlay identification. 

The routines making up RBM Part 2 and their idents are 
listed in Table 29. 

Table 29. Routines and Idents for RBM Part 2 

Group 

Monitor 
Service 
Routines 

Control Task 
Subtasks 

I 

136 SYSLOAD 

Overlay 

M:ASSIGN 
M:DEFINE 
M:OPEN 
M:CLOSE 
M:LOAD 
M:DOW 
M:WAIT 
M:CTRL 
M:RSVP 
M:DATIME 
M:COC 
RAD Bootstrap 
Q:MESS 

S:CKPT 
S:REST 
S:LOAD 
S:ABORT 
S:TERM 
S:KEY 
S:KEY2 
S:KEY3 
S:KEY4 
S:PMD 
c:.D~ 1 ...... • AD. 
S:CCI 
S:PARPWR 

I 

I 
I 
I 

Ident 
(hexadecimal) 

A1 
A2 
A3 
A4 
A5 
A6 
A7 
AS 
A9 
AA 
AB 
AC 
12 

1 
2 
3 
4 
5 
7 
72 
73 
74 
8 
Ql 

B 
FF 

Table 29. Routines and Idents for RBM Part 2 (cont.) 

Ident 
Group Overlay (hexadecimal) 

Background BACKCCI 10 

Debug All Overlays 20-2F 

Device- All I 30-3F 
Dependent 
Error Recovery 
Routines 

Miscellaneous I Core Dump and I I 
Routines I RAD Dump I 40 I 11 ___ r" ______ -o.l. ___ .11 I nex ,-orre~lur 

File Dump 

SYSLOAD loads the required overlays, absolutizes them for 
their execution location, and writes each overlay on the 
RAD in an ~npacked format. Only one overlay can occupy 
the overlay area in memory at anyone time. SYSLOAD 
stores the RAD address (as a displacement) and the word 
count of each overlay in the RBM OV: LOAD table. The 
OV:LOAD table has the following format: 

OV:LOAD Number of entries 

FWA I Ident 

I Word size } 

First 
entry 

o 4 15 

Consecutive entries 

where FWA is the starting sector number {relative to the be­
ginning of the system processor area} of this overlay. All 
overlays start on a sector boundary. No overlays cross a 
track boundary, 

If an error condition occurs during the loading of the indi­
vidual modules making up RBM Part 2, the following mes­
sage is output: 

XX ERR, ID:YV 
??RETRY? 

where 

XX is one of the following error types: 

XX Error Type 

CS Checksum 

SQ 

TY 

Sequence 

Item type; no externa I references or 
definitions are allowed 

90 10 37F -1 (3/72) 



yy 

xx 

BI 

OG 

Error Type 

Binary deck is incomplete 

Origin error; an attempt has been 
made to re-origin a portion of this 
routine to a region already on the 
RAD 

LG Length; the specified overlay is 
longer than the overlay regions. 

is the ident of the current routine (if the ident 
is unknown, YY = ? ?). 

The response to the RETRY query can be either N {no} or 
Y (yes). If the response is N, the SLP skips to the next 
routine. If Y is input, the current routine is left as is and 
an attempt is made to continue with the next card; for some 
of the above errors, however, continuing in this manner 
may be undesirable. 

After loading all of RBM Part 2, SYSLOAD determines if 
all required routines are present. If some routines are 
missing, the following alarm is typed: 

! !MISSING IOENTS: xx xx xx xx ... 
??RELOAD? 

where xx is the ident (Extended Symbol directive IONT) 
corresponding to the missing routine. 

If Y is input to the reload query, SYSLOAD again reads the 
AI device to load the missing routines. This sequence is 
repeated unti I all required routines are loaded or unti I an 
N is input. 

After RBM Part 2 has been loaded, entries wi II then be 
made in the System Processor Dictionaryfor RBM, the Trans­
fer Vector Table, and the RBM bootstrap. Each of these 
items is assigned in a separate fi Ie in the system processor 
area of the RAD. 

After the nonresi dent porti on of the RBM is on the RAD, the 
resident portion is written. SYSLOAD calculates the IOCDs 
needed to read RBM into core storage and stores the infor­
mation into the last part of the RAD bootstrap. 

After RBM is written on the RAD, the Transfer Vector Table 
will be written onto the TVECT file. The Transfer Vector 
Table contains transfer vectors for Monitor service routines 
and Public Library routines. The amount of RAD space allo­
cated for the TVECT fi Ie depends on the maximum number 
of DEFs in the Public Library, which is a SYSGEN input. 

The final program output to the System Processor area of 
the RAD wi II be a copy of the RBM bootstrap that goes into 
the BOOT file. There is no file header for the bootstrap, 
and the bootstrap is always restricted to one sector. It is 
necessary to define the bootstrap as a file, so that it can 
be accessed for output during a RAD save or dump opera­
tion. After the bootstrap is written onto the BOOT file, it 

is written onto relative sector zero of the system RAD, from 
where' it can be bootstrapped into core. Also, a copy of 
the RAD bootstrap may be output to the foreground BO de­
vice, which enables the user to start RBM on any sector of 
the RAD or to boot from a disk pack. If the user chooses 
to start RBM at any sector other than sector zero, he can 
sti II reboot RBM by loading the RAD bootstrap that was 
punched on the BO device. 

The next output to the RAD will be the RBM Symbol Table 
{a fi Ie in the System Data area} and the System Data Area 
Dictionary. The System Data Area Dictionary has the same 
format as the System Processor Dictionary and contains the 
following files: 

File Name 

RBMGO 

RBMOV 

RBMS2 

RBMSYM 

RBMIO 

RBMAL 

Descri pti on 

Object module storage for "assemble and 
go II operati ons. 

Nonpermanent storage for programs to be 
executed. 

Storage for Extended Symbol standard 
procedures. 

RBM Symbol Table of Monitor service 
routines. 

Holds IDNT origins for Debug. 

Used by the accounting routine. 

If a 32 user accepts the default allocation for the RBMGO, 
RBMOV, RBMAL, RBMIO, RBMS2, and RBMPMD fj les, no 
modifications via the RAD Editor have to be made for these 
files. 

The RBM Symbol Table contains the definitions (DEFs) for 
the Monitor servi ce routi nes. These D EFs are needed by 
the Overlay Loader at load time to satisfy any reference to 
the Monitor service routines. The first word of the table 
contains the number of bytes in the table, followed by seven 
words per entry, in the same format as in the Overlay Loader 
Symbol Table. 

After the System Load Processor completes its writing of the 
system data area, it moves the RAD bootstrap to memory 
locations a through 63 and transfers control to the bootstrap. 
Then the bootstrap goes through its normal loading proce­
dure {described in II InitiaI Loading of System Processors"}. 

INITIAL lOADING OF SYSTEM PROCESSORS 

For a complete system load, the first processor that is loaded 
must be the Overlay Loader. The Overlay Loader is coded 
in a self-relativizing format and is loaded by the RBM Abso­
I ute Loader. An entry in the System Processor Di cti onary 
for the Overlay Loader will be made at SYSLOAD time. 

Initial Loading of System Processors 137 



The object module of the Overlay Loader will be loaded 
from the AI device and written into its assigned file. The 
user must precede the loading of the Overlay Loader with 
an SY key-in and an !ASSIGN OV=OLOAD, SP control 
command. 

After the Overlay Loader has been loaded onto its perman­
ent file, it is available to load a relocatable binary deck 
of the RAD Editor onto the RBMOV file of the RAD. The 
RAD Editor is then executed via an !XEQ command and 
makes an entry for itself in the System Processor area by 
means of an !# ADD control command. It then should be 
copied onto its defined file. At this point, the System 
Processor area of the RAD contains the Overlay Loader 
and the RAD Editor, whi ch are the only processors needed 
to complete the loading of other programs. 

PUBUC liBRARY CREAtiON OR UPDATING 

The Public Library can be created after the Overlay Loader 
and RAD Editor have been loaded and thereafter can be 
completely regenerated any time the user desires. A fi Ie 
with the name PUBLIB will have to be defined via the RAD 
Editor in the User Processor area for the Public Library, and 
a file named LIBSYM must be defined in the System Data 
area of the RAD. The relocatable binary decks of all rou­
tines to be specified as being in the Public Library are 
loaded by the Overlay Loader (via the ! $PUBLIB control 
command) and an absolute core image version is written by 
the Overlay Loader on the RAD file defined as PUBLIB. 
Before executing the Overlay Loader, the operator must key 
in SY so that the Loader can write in a protected RAD file. 

When a Public Library is successfully loaded, additional up­
dating of RAD files will be done by the Overlay Loader. 
The Public Library Transfer Vector Table will be input from 
the RAD and either created (for an initial load) or updated 
for succeeding loads, This process consists of linking each 
Public Library definition (DEF) in the Symbol Table to a 
transfer vector, and linking the transfer vector to the value 
of the DEF. When the I inkage is completed, the Overlay 
Loader writes the new Public Library Symbol Table into a 
previously defined file (called UBSYM) in the system data 
area of RAD. For an initial load, this file will be previ­
ously defined, via the RAD Editor, with the name LIBSYM. 
The new Transfer Vector Table is then written on the RAD (re­
placing the previous one), and the Loader exits toM:TERM. 
(Note that RBM must be rebooted from the RAD in order to 
load the Public Library into core memory.) The Public 
Library should not be loaded into core (by rebooting the 
system from the RAD) until the user has reloaded all fore­
ground and background routines that use the Library. 

RESIDENT FOREGROUND CREATION OR UPDATING 

In an initial load the resident foreground fi les must be de­
fi ned via the RAD Editor. These fi I es must be in the User 
Processor area (UP) of the RAD. Also, the parameter on 
the 1# ADD command specifying that this is a resident fore­
ground fi Ie wi II have to be set. One RAD fi I e can be de­
fined for each foreground program, thus allowing an update 

138 J!litial Loading of System Processors 

to be done on a program basis as opposed to the entire 
resident foreground area. On an initial load the Overlay 
Loader reads in a relocatable binary deck of each fore­
ground program, and creates an absolute core image version 
of the program in its predefi ned RAD fi Ie. Foreground pro­
grams assembled as absolute sections must be loaded with an 
ABS control command. Prior to executing the Overlay 
Loader, the user may key in SY to specify that the protected 
RAD fi les can be written on. 

For an update, only those programs being modified need be 
reloaded. However, if a program exceeds its allocated core 
space, other programs must be reloaded and relocated at a 
new absolute address in a different area of core. 

The Overley Loader (or the Abso! ute Loeder) wi!! store 1 r: 
the first sector of each fi Ie the appropriate header informa­
tion that the RBM bootstrap needs to load and initialize each 
foreground program. The information needed by the boot­
strap consists of the following items: 

1. Load address. 

2. Number of bytes in program. 

3. Entry address of initialization routine (if present). 

If no initialization routine is specified, the RBM bootstrap 
wi" initialize the task's interrupt level from information in 
the TCB. The task may also be triggered at this point if the 
TCB so specifies. 

After the resident foreground is loaded on the RAD, it is 
brought into core by manually rebooting the system from 
the RAD. It can also be brought into memory by inputting 
a !processor or !XEQ command with OV assigned to its 
RAD file. 

When core is reloaded from the RAD, all newly loaded 
Publ ic Library and/or resident foreground programs will be 
loaded and executed, if appropriate (see the description of 
the RAD bootstrap process at the end of this chapter). 

When it is desired to test a new version of a resident 
foreground program in core before it becomes permanent 
on the RAD, it can be loaded and executed from the 
RBMOV fi Ie. After the program has been tested, it can 
be loaded permanently on the RAD using the previously 
described procedure. 

NONRESIDENT FOREGROUND CREATION OR UPDATING 

Nonresident foreground programs can be created or updated 
in their predefined RAD files at any time. The Overlay 
Loader will read in relocatable binary decks of the nonresi­
dent foreground programs, convert the ir addresses to absolute 
form, and write them into their defined files. The nonresi­
dent foreground fiies wiii be iocated in the user processor 
area of the RAD, and the definition of the files will be 
accomplished by the commands to the RAD Editor. 



SYSTEM PROCESSOR AND LIBRARY CREATION 

The system processors (Extended Symbol, RAD Editor, Basic 
FORTRAN IV, Concordance, and Uti lities) can be loaded 
or updated by the Overlay Loader from relocatable binary 
decks. These processors wi /I have their address converted 
to the absolute locations appropriate for the background 
area and will be written onto their predefined files in the 
system processor area. Any processor can then be executed 
by input of the appropriate !xxx command (where xxx is the 
fj Ie name of the processor). 

The System Library wi II be input in relocatable binary form 
by the RAD Editor and written in relocatable binary form 
onto the system library area of the RAD. The construction 
of several dictionaries in the system library is performed by 
the RAD Editor. 

SYSLOAD ALARMS 

In addition to the RELOAD alarms listed previouslyand those 
concerned with loading RBM Part 2, the alarms given in 
Table 30 can be generated and are unique to SYSLOAD. 

REBOOTING THE SYSTEM FROM RAD 

The system can be rebooted -from the RAD by manually 
causing sector zero of the system RAD to be loaded, or by 
reading in the RAD bootstrap previously punched on the 
BO device. The RAD bootstrap will initially move itself 
to high core and then read in RBM from the system pro­
cessor area of the RAD. The information necessary to read 
in RBM is contained in the last cells of the bootstrap and 
is supplied by SYSlOAD when the bootstrap is written on 
the RAD or punched out. After the resident portion of RBM 
is loaded, control is transferred to another bootstrap that 
loads the remainder of the RAD. This bootstrap functions 
in the overlay region of the RBM. 

The second bootstrap initially inputs the Transfer Vector 
Table to complete the loading of the resident portion of 
RBM. Next, an attempt is made to assign an operational 
label to the PUBLIB file in the user processor area. If a 
Public Library is present, the assignment will be made, 
and the bootstrap then inputs the Public Library. If DATA 
switch 4 is set, the Public Library will not be loaded. After 
the Public Library is processed, the Hex Corrector (see 
Appendix G) wi II be activated if DATA switch 1 is set. The 

Table 30. SYSLOAD Alarms 

Message Meaning Recovery 

CP AREA TOO SMALL The si ze of background has changed To perform checkpoi nt, SYSLOAD wi II have 
and/or RAD area allocated for a to be rerun using the ALL option. 

INVALID PARAMETER An invalid input has been made to the Retype either ALL or UPD. 
INPUT OPTION request. 

UN PROTECT RAD One of the write-protect switches has Remove the write protection for the appro-
been set on the RAD for an area that priate area. 
SYSLOAD is attempting to modify. 

EOT ON SP AREA An end-of-tape status has been re- A new SYS GEN wi II have to be run wi th an 
turned whi Ie writing on the SP area. increase in the SP area. 
Not enough room has been allocated 
for the SP area. 

EOT ON SD AREA Same as for SP, except the SD area has Same as for SP. 
overflowed. 

RDdn FAULT A nonexistent address has been given Check RAD allocation parameters in 
for a seek operation. SYSGEN for allocation of more tracks than 

exist on this RAD. Repeat SYS GEN and/or 
SYSLOAD as necessary. 

MASTER DICTIONARY Version of RBM on RAD has a larger Last areas of old dictionary were lost. A-new 
OVFLOW Master Dictionary than new version. SYSGEN may be necessary. 

UPDATE UNSUCCESSFUL The previous Master Directory could The new SP area must be at the same RAD 
not be located. address as the previous SP area, otherwise 

the ALL option must be used. 

Initial Loading of System Processors 139 



bootstrap then searches the User Processor Di ctionary for 
all files flagged as a resident foreground file. All such 
files are input, one file at a time, and an initialization 
routine is executed if one exists. The initialization routine 
can do any required housekeeping (such as repositioning 
all appropriate files), arm and enable the appropriate 
interrupts, and then return control to the bootstrap. The 
initialization routine is I inked by an RCPYI P, L instruc­
tion. It then expects to have control returned to the ad­
dress in the L regi ster. Hence, the bootstrap wil i read in 
the resident foreground programs, one by one, and execute 
any initialization routine. 

A provision is made to reboot the system without loading 
resident foreground. This is accomplished by setting DATA 
switch 3 lust befoie clearing the "'lIcit" state entered by 
the initial RAD bootstrap. 

140 Initial loading of System Processors 

The system is then completely rebooted and the bootstrap 
sets the protection registers, outputs the following messages, 
and enters a "wait" state. 

! !AFTER 'WAIT' SET PROTECT 'ON' 
! ! SET PARITY TO 'INT.' 
!! KEY-IN AN '5' TO BEGIN 

If the computer enters a "wait" state before the above mes­
sages are output, the bootstrap was not successful in loading 
the required data. This would usually be caused either by 
a parity error while reading the RAD or by a faulty fore­
ground program. 

The above messages may be inhibited by setting DATA 
switch 2 prior to execution of the bootstrap. The indicated 
operations must stj II be performed, however. 

The loading of resident foreground can be inhibited by set­
ting DATA switch 3 before executing the initial bootstrap. 



12. DEBUG 

INTRODUCTION 

This chapter describes the use of Debug and its interface 
with RBM. 

GENERAL DESCRIPTION 

The RBM Debug package is a debugging tool primarily de­
signed for nonoverlaid background programs, with limited 
facility for foreground programs. It provides the user with 
the following capabilities: 

1. To transfer control to the control device from a speci­
fied location in the user's program or through the Con­
trol Panel Interrupt. 

2. To dump selected core and registers on the keyboard/ 
printer or the line printer. 

3. To modify memory locations and registers. 

4. To logically insert code at specified memory locations. 

5. To begin or continue execution at a specified memory 
location (i.e., selective execution). 

6. To perform conditional memory dumps (snapshots) of 
registers and selected core locations at a specified 
location and optionally transfer control to the con­
trol device. 

7. To step through a program. 

FOREGROUND USER'S DEBUG CAPABILITY 

Debug can be used to aid the checkout of a foreground pro­
gram operating at priority levels lower than the Control 
Panel Interrupt level. To accomplish this, Debug is moved 
to the Control Panel Interrupt level, where it may be di­
rectlyentered by pressing the Control Panel Interrupt switch. 
The Control Task remains at the lowest interrupt level. 
Key-ins requesting Control Task functions may be made by 
typing NEW LINE (8) in response to the DKEYIN message. 
Snapshots may be placed in all tasks whose interrupt level 
is lower than the Control Panel Task. 

OVERLAY USER RESTRICTIONS 

When a snapshot is inserted in a currently resident seg­
ment using a Debug control command, the snapshot is 
valid only until the segment is overlaid, since Debug 
operates only at execution time on resident programs. 
This problem is reduced by allowing the user to assem­
ble Debug calls into his program. 

90 10 37F- 1 (3/72) 

RBM AND. FOREGROUND USER'S INTERFACE 

Debug is normally a subtask of the RBM Control Task with 
a priority just below the IDLE subtask. Debug is triggered 
by any of the three resident Monitor routines (D:SNAP, 
D:KEY, or D:CARD), by the KEYIN subtask, or by the Job 
Control Processor (JCP). JCP triggers Debug when it re­
ceives an XED command, and the system loader transfers 
control via D:KEY. When a foreground user wishes to use 
Debug, he gives control to Debug by an !XED card or by 
an unsol icited key-in of DE. After Debug has control, the 
foreground user moves Debug to the Control Panel Task level 
with a Define command. After debugging, the foreground 
user issues the Debug command Q which restores Debug to 
its original level. 

MEMORY REQUIREMENT AND INSERTION 
BLOCK DEFINITION 

The executive portion of Debug is a foreground program that 
may be resident or nonresident. If the program is resident, 
it must be so specified when the Debug file is created with 
the RAD Editor. It is read into core when RBM is booted. 
If the program is nonresident, it is loaded like any other 
foreground program (see Chapter 6). Debug has the follow­
ing core memory requirements: 

1. Executive 440 locations 

2. Zero table 35 locations 

3. Overlays RBM overlay space 

4. Insertion block User-defined 

The insertion block is an area of core that stores user­
inserted code, and the zero table cells are used to refer­
ence these insertions (see Appendix B). 

DEBUG CONTROL 

Control can be given to Debug in the following ways: 

1. A direct call to Debug. 

2. The execution of a snapshot. 

3. An unsol icited key-in of DE. 

4. The Debug execution card (!XED). 

5. Control Panel Interrupt (see Foreground Capability, 
above). 

A direct calion Debug is a user-coded request for Debug to 
read a command. The call has the form 

RCPYI 

B 

P,A 

D: KEY or D:CARD 

Debug 141 



When the entry is D:KEY, Debug prints the message 

! !DKEYIN 

A Debug command will then be read from the proper device­
file number assigned at SYSGEN. 

Note that after the initial directcall on Debug a foreground 
task will have to exit in order to move Debug to a higher 
interrupt. 

D:KEY, D:CARD, D:SNAP (snapshot) are small reentrant 
routines that actually trigger Debug. An unsol ici ted key-in 
during Debug will not harm the user's environment. The 
!XED command performs the same function as the !XEQ 
command except that Debug is called via D:KEY before 
executi ng the user's program. 

DEBUG COMMANDS 

After Debug has control, it interprets the following 
commands: 

Code 

D 

s 
X 

R 

T 

P 

C 

K 

M 

B 

E 

Function 

Define 

Logically insert code 

Insert snapshot 

Step (move) snapshot 

Remove snapshot or insertion 

Perform selective dump on keyboard/ 
printer and Debug output device 

Perform selective dump on Debug output 
device 

Set Debug input device to the card reader 

Set Debug input device to the keyboard/ 
printer 

Modify memory 

Branch (i.e., return control to program) 

Exit from interrupt level 

Q Terminate Debug 

Debug uses M:READ and M:WRITE for input/output; and 
hence the keyboard character NEW LINE terminates a line, 
EOM deletes a line, and cent (¢') deletes the previous 
character. Debug interprets the semicolon character (;) 
(if not in the message field of a snapshot) as a continua­
tion character. The semicolon wi!! terminate the line {or 
card and continue the command to the next i ine (or card). 
Blanks are ignored except within the message field of a 
snapshot. 

142 Debug Commands 

Most Debug commands specify registers and memory loca­
tions. Registers are specified as follows: 

RP Program address register 

RL Link address register 

RT Temporary register 

RB Base address register 

RX Index register 

RE Extended accumulator 

RA Accumulator 

RR All of the above 

Locations are specified in one of the foi iowing forms: 

1. One to four hexadecimal digits. 

2. SNAME, where NAME is an IDNT and its value is the 
load origin of such module. The Overlay Loader D 
option must be invoked if the user is to use IDNT names 
with Debug. 

3. Sums or differences of values of either of the above two 
forms. 

Examples: 

A14 
$SQRT 
ABC+$SUB1+1492 
$SUB 1 - $SUB2 

If the $NAME option is invoked, the user must define an in­
sertion block (see the Debug Define command, below), and 
the last K:BLOCK words of the insertion block are used as 
a buffer for the IDNT names. 

o (Define) 

The Define command is used to define an insertion block 
when the Debug commands S or I or the SNAME option is to 
be used. 

The form of the Define command is 

(D [start ,end] [,CP] 

where 

start is the memory location of the first cell of the 
insertion block. 

end is the memory location of the last cell of the 
insertion block. 

CP is an optional request to move Debug to the 
Control Panel Interrupt level. The default level 
is the RBM Controi iasK ievei. An unsoiicited 
key-in of FG must be in effect when the level is 
specified. 

90 10 37F- 1 (3/72) 



(Insert) 

The Insert command designates the insertion of one or more 
instructions logically before (IB), after (IA), or replacing 
(IR) the instruction at the designated location {loc}. 

The form of the Insert command is 

loc,inst l' ... ,inst n 

where 

IB designates Insert Before 

IA designates Insert After 

IR designates Insert Replace 

The instructions may be designated in one of the following 
forms: 

1. op*loc 

where op isa two-digit hexadecimal value representing 
the operation code and address modification. The sec­
ond digit {i. e., address modification} must be one of 
the following: 

o 
2 

4 

designating direct addressing 

designating indexing 

designating indirect addressing 

6 designating indirect addressing and indexing 

This instruction form relieves the user of creating the 
actual address structure for Sigma 2/3. It does not apply 
to the conditional branch instruction (operation code 
6) nor to the register copy instructions (operation 
code 7). Debug will actually expand an instruction 
designated in this form into more than one instruction· 
for example, 82* 1492 will expand into ' 

8E02 LDA *$+2, 1 

4802 

1492 

B 

DATA 

$+2 

X' 1492 1 

See Appendix J for a description of the expansions. 

2. 6x*loc 

where x designates the desired conditional branch· 
for example, 6E* 1492 designates a BAN 1492 and will 
expand into 

6E02 

4803 

4C01 

1492 

BAN 

B 

B 

DATA 

$+2 

$+3 

*$+1 

X' 1492 1 

See Appendix J for a description of the expansions. 

3. hex value 

which is inserted with no expansion. 

4. Any mnemonic copy instruction in the Sigma 2 and 
Sigma 3 Computer Reference Manuals. The comma 
between the register specifications must be omitted. 

The results of an insertion are defined in Appendix N. 

An example of the insert command is as follows: 

s 

IB $SUB+1000, 80*$SUB+25, 75A1, 40*$SQRT+0,; 

RCPYIPL,ROR*LT,REOR XB 

(Insert Snapshot) 

The Insert Snapshot command inserts (in the same manner as 
the instruction Insert Before) a snapshot at the designated 
location so that when control passes through loc, the fol­
lowing transpires prior to executing the instruction that was 
at loc: 

1. The optional conditions are evaluated, and if false, 
the snapshot is bypassed. 

2. If the conditions are true (or if none are specified), the 
following is output: 

SNAP AT loc 

message (if any) 

followed by the designated dumps. 

Such output is always transmitted to the Debug output de­
vice; and if any of the dumps designate the keyboard/ 
printer, then the SNAP and the message line also will be 
transmitted to the keyboard/printer. A user can make a 
maximum of 32 snapshot and instruction insertions. (See Ap­
pendix L for the call ing sequence for a Snapshot commqnd. ) 

The form of the Insert Snapshot com'mand is 

s[~] loc[/condi ti ons/](' message ,] [,dump requests] 

where 

S is a request to snapshot and resume execution. 

SK is a request to snapshot and transfer contr~1 to 
the keyboard/printer for Debug input. 

SS is the same as SK, but may be stepped (see 
Debug command X. ) 

conditions ) 
message 
dump requests 

are as described below. 

Debug Commands 143 



Conditions. The format of the conditions is 

where r. is a relational expression of the form 
I 

loc loc 
< 

constant [*] > constant 

<= 
>= 

register <> register 

where constant is the same form as a loc preceded by a Hi 
for exampie, 

# 1492 or #SSUB+57 

The meaning of the operations in hierarchical order are 
as follows: 

equal 

< less than 

> greater than 

<= less than or equal to 

>= greater than or equal to 

<> not equal 

& logical and 

logical or 

The comparison is arithmetic unless the operator is preceded 
by an asterisk (*), in which case the comparison is logical. 

Message. Message is a string of any EBCDIC characters ex­
cept quote C). 

Dump Requests. The format of the dump requests (if any) is 

[T] { ~::ister }," 

loc ••• loc {

register } 

[T] loc 

loc ••• loe 

where T designates a particular dump to be output on both 
the keyboard/printer and the Debug output device. If T is 
absent, the dump will be output to the Debug output device 
only. Only one dot (. ) is necessary in specifying a block 
of memory locations. Extra dots are ignored. 

An example of the snapshot command is as follows: 

S$SUB+505/RA=# O&1492<1496/,TAB 1 FULL't 
STABL •• $TAB1+256, RR 

X (Step Snapshot) 

If control is at the Debug input device as a result of a 
stepping snapshot (SS), the X command moves the snapshot 

144 Debug Commands 

to memory location n, keeping the same conditions, mes­
sage, and dump requests. Control is then transferred to the 
branch location. 

The form of the Step Snapshot command is 

(x [ n [,branch]] 

where 

n is the memory location. 

branch is the branch location. 

If the snapshot was executed at location ALPHA, the de­
fault cases are branch = ALPHA and n = ALPHA+ 1. 

R (Remove Snapshot or Insertion) 

The Remove command restores the displaced instruction to its 
original memory location. The command releases the zero table 
entry and, if the entry is the latest snap or insertion, re­
leases its space in the insertion block. Note that the space 
in the insertion block is regained only if the Remove com­
mand affected the latest entry in the insertion block. 

The form of the Remove command is 

(R loc 1 t 10c2'"""' locn ] 

where loc is the memory location. 

T (Selective Dump on the Keyboard/Printer and the 
Debug Output Device) 

The T command outputs the contents of the requested loca­
tions and registers in hexadecimal on both the keyboard/ 
printer and the Debug output device. Console interrupt 
will transfer control to the keyboard/printer after the cur­
rent line is output. 

The form of the T command is 

(T dump' 

where dumps (i. e., dump requests) have the following forms 
(there can be several dump requests in any order separated 
by commas): 

loe $SUB+3 

loc loc $SUB ••• 3FFF 

register RA 

all registers RR 



p (Selective Dumps on the Debug Output Device) 

This command is identical to the T command except that the 
dumps go only to the Debug output device. 

The form of the P command is 

dumps 

c (Debug Input Device) 

The C command gives control to the Debug input device. 

The form of the C command is 

K (Keyboard/Pri nter) 

The K command gives control to the keyboard/printer. 

The form of the K command is 

M (Modify Memory) 

The M command modifies memory locations or registers. 

The form of this command may be either of the following: 

(M register,word 

where 

loc is the first memory location to modify. 

word i is the hexadecimal value (or mnemonic reg-
ister operation; see item 4 under the Debug I 
command) to be stored in the designated register 
or at location loc+i. 

P if present, is a request to print the hexadecimal 
value of the effective location, its previous value, 
and its new val ue. 

T if present, is a request to type the hexadecimal 
value of the effective location, its previous value, 
and its new value. 

Examples of the M command are 

1. M$SUB+ 1, 4, 1, $SUB+2, RADDIZE 

where the fol lowing cells are modified if SUB is lo­
cated at 100

16
: 

Loc 

OlDl 

OlD2 

0103 

0104 

Value 

0004 

0001 

0102 

7C68 

2. MRA, $SUB 

This sets the A register to 0100. Note that an MRP 
command will change the program address portion of 
the program status doubleword. 

3. MT 149A, RCPYIPA 

Th is wi II produce the following output if the contents 
of location 149A was FFFF prior to the command 
149A: FFFF -75Fl. 

B (Branch) 

The Branch command allows the user to insert loc into the 
program address portion of the program status doubleword 
and to exit from Debug. If loc is not present, the user just 
exits from Debug. 

The form of the Branch command is 

E (Exit From Interrupt Level) 

The E command allows the user to force an unusual exit from 
the highest active interrupt level below Debug. Debug will 
still have control after this command. 

The form of the E command is 

Q (Quit Debug) 

The Q command causes Debug to reset its internal flags and 
zero table cells, restore RBMls original interrupt level, 
trigger the Job Control Processor, and exit. If the X option 
is present, Debug will also disconnect (i. e., unload) itself 
from the system. 

The form of the Q command is 

Qe~Commands 145 



DEBUG ERROR MESSAGES 

Error messages are shown below: 

Message 

ERROR SYNTAX 

ERROR COMMAND 

ERROR FOREGRND 

146 Debug Error Messages 

Meaning 

Syntax error 

Command error 

Command attempts to affect 
foreground without a hard­
ware interrupt level specified 
fur Debug ~ee Debug D 
command) 

Message 

ERROR OVERFLOW 

ERROR IN/OUT 

Meaning 

Either insertion block or zero 
tab I e overflow 

Input/output error 

When Debug encounters an error, it aborts a background job 
if there is no ! ATTEND card. Otherwise it requests further 
commands from the keyboard/printer. At this time, Debug 
will not have modified the environment, allowing the user 
to attempt recovery. (It is assumed that the user wi II respec­
ify any erroneous commands.) 

A KEYIN error message issued as the result of an unsolicited 
key-in of DE, or an abort code of DE issued as the result of 
a direct calion Debug, impl ies that Debug is not part of the 
system. This can be corrected by queuing in Debug (i. e., 
an unsolicited key-in of Q DEBUG). 



APPENDIX A. SIGMA 2/3 STANDARD OBJECT LANGUAGE 

INTRODUCTION 

The XDS Sigma 2/3 standard object language provides a means 
of expressi ng the output of a processor ina standard format. 
All programs and subprograms in this object format can be 
loaded by the XDS Sigma 2/3 Overlay Loader. The complete 
standard object language contains 13 load item types. 

An object module consists of the ordered set of binary rec­
ords generated by an assembly or compi lation for later load­
ing. The Overlay Loader has the facility to load and 
link several object modules together to form an executa­
ble program. 

The Sigma 2/3 RBM System Absolute Loader can load a single 
module (absolute subset) to form an executable program. 
The following load item types from the standard object lan­
guage comprise the absolute subset: 

1 . Record Header 
2. Record Padding (type 0, subtype 0) 
3. Repeat Load (type 0, subtype 1) 
4. Unrelocated Load (type 1) 
5. Start Module (type 4) 
6. End Module (type 5) 
7. Absolute Load Origin (type 7, subtype 1) 

All load item types are acceptable input to the Overlay 
Loader except Absolute Load Origin (type 7, subtype 1). 

DESCRIPTION OF OBJECT MODULES 

GENERAL DESCRIPTION 

An object module consists of a set of binary object records, 
each containing an integral number of load items after a 
standard three-word record header (see Figure A- 1). Each 
binary record in the module is a 120-byte record. 

FF I n 

Seq. No. 0 

Checksum 

Load Items Fi rst Record 

Nonactive 
Information 

F F I n 

Seq. No. 1 

Checksum 

Load Items Second Record 

Nonactive 
Information 

Figure A-l. Typical Object Module of M Records 

90 10 37F-1 (3/72) 

F F I n 

Seq. No. M-2 

Checksum 

Load Items (M- l)th Record 

Nonactive 
Information 

9F I n 

Seq. No. M-1 

Checksum 

Load Items Mth Record (Last record of modul e) 

Nonactive 
Information 

Figure A-l. Typical Object Module of M Records (cont.) 

Each load item consists of a header word followed by a 
variable number of data words. The first load item in an 
object module is a start-module item and the last item (other 
than record padding) is an end-module item. There are 15 
types of load items, described below. 

BINARY OBJECT RECORD FORMAT 

Each 120-byte binary record in an object module consists of 
these parts: Record Header, Load Items, and Nonactive In­
formation in the following arrangement. The Record Header 
and Load Items are considered the "active" portion of the 
record. 

Record Header 3 words 

Load Item 1 

Load Item 2 

up to 51 words 

~ 

Load Item n 

Nonactive 
Information 

The "active" portion of the record is that information con­
cerning type, sequence number, checksum and binary data 
usually processed by loaders. The "nonactive" portion may 
contain sequence or identification information, or it may be 
empty. It is not processed by the loaders. 

Appendix A 147 



FORMAT OF RECORD HEADER 

The first byte of the record header may be either XI F' or 
X'9

1
• X'F ' denotes that this is a standard record of the ob­

ject module: X '9
1 denotes that this is the last record of the 

object module. 

word 0 

Control word 
For 9 I F lOOn n n n n n 

a 3 4 7 8 9 10 11 12 13 14 15 

word 

Record sequence no. 

o 2 15 

word 2 

Checksum 

o 15 

nnnnnn in the first word is the number of active words in the 
record, excluding the record header. "Active ll denotes data 
to be processed by a loader. There may be some padding 
words or sequence information at the end of the record that 
is not included in the lIactive" count. The maximum value 
of n is 51. Note that although the physical record size is 
fixed at 120 bytes (80 columns of binary data) the number of 
active words may vary from 3 to 54. This effectively stan­
dardizes the reading of binary object records but allows ver­
sati I ity in the generation of active data. The record sequence 
number starts at 0 and takes on consecutive integer values 
for all the records in one file. The S bit is a sequence over­
ride. If this is a 1, the loader ignores sequence checking 
for the record. The checksum is an arithmetic sum, with 
carry, of the n-3 active words after the record header. If 
the C bit is a 1, the checksum is ignored. 

LOAD ITEM FORMAT 

Each load item consists of a one-word header and an op­
tional variable-length body of data. 

Load Item Header } 
Load Item 

Load Item Data 

FORMAT OF LOAD ITEM CONTROL (Header) WORD 

Every header word has the same general format: 

bits 0-3 Type. 

bits 4-7 Subtype or control. 

bits 8- 15 Number of data words in the load item {ex­
cluding item header}. 

This number plus 1 is equal to the size of the 
load item. All words of a load item must be 
contained in the same physical record. 

148 Appendix A 

SUMMARY OF LOAD ITEM FORMATS 

RECORD PADDING (Type 0, Subtype 0) 

word 0 

Control word 
o o 010 0 o 0 10 0 o 0 10 0 0 0 

o 3 4 7 8 11 12 15 

There is no body of data. Padding words are ignored by the 
loader. The object I anguage allows padding as a conve­
nience for processors. 

REPEAT LOAD (Type 0, Subtype 1) 

word 0 

Control word 
o o 0 I 0 0 o 1 10 0 o 0 10 0 0 

o 3 4 7 8 11 12 15 

word 

Repeat count 

o 15 

This item repeats the next load item a specified number of 
times. The load item (type 1, 2, or 3 only) immediately 
following the repeat load is repeated (i. e., loaded) in its 
entirety the number of times indi cated by the data word. 

UNRELOCATED LOAD (Type 1) 

word 0 

Control word 

10 o o 1 I 0 0 o 0 10 0 n n I n n n n 
o 3 4 7 8 11 12 15 

word 

First data word 

o 15 

word n 

Last data word 

o 15 

This item loads n words without relocation. 

RELOCATED LOAD-MODULE BASE (Type 2) 

word 0 

Control word 
o o 100 o 0 10 0 n n Inn n n 

o 3 4 7 8 11 12 15 



word 1 

Fi rst data word 

o 15 

word n 

Last data word 

o 15 

This item loads n words with module relocation. The reloca­
tion bias of the current object module is added to each data 
word in the item. 

RELOCATED LOAD-COMMON BASE (Type 3) 

word 0 

Control word 
o 1 rOO o 0 10 0 n nln n n n 

o 3 4 7 8 11 12 15 

word 

First data word 

o 15 

word n 

Last data word 

o 15 

This item loads n words with a common base relocation. 

START MODULE (Type 4) 

word 0 

Contro I word 
o 0 10 0 o 01 n + 1 

o 3 4 7 8 15 

word 1 

Common size allocation 

o 15 

word 2 

First character Second character 

o 7 8 15 

word n + 1 

(2n-1 )th character Last character (or btank) 

o 7 8 15 

This item identifies the start of the object module. The 
characters in words 2 through n + 1 are the program name 
(identification) for the module. 

END MODULE (Type 5) 

word 0 

I 0 
Control word 

0 1 I 0 0 0 r 10 0 0 010 0 
0 3 4 7 8 11 12 15 

word 

Starting address 

0 15 

word 2 

Severi ty level 

o 15 

word 3 

Relocatable size (or zero) 

o 15 

This item identifies the end of the object module. In the 
control word {word O}, the starting address is defined in 
bit 7 

where 

r = 1 indicates absolute starting address. 
r = 0 indicates relocatable starting address. 

The severity level in word 2 is defined as the highest level 
reached during processing. 

The loader uses the relocatable section size, if present, rather 
than its own location counter to determine the starting loca­
tion for the next relocatable section. 

A starti ng address of absol ute 0 i ndi cates there is no starti ng 
address for this module. 

LOAD ORIGIN (Type 7) 

word 0 

10 
Control word 

1 10 0 0 riO 0 0 0(0 0 0 1 
0 3 4 7 8 11 12 15 

word 1 

Origin address 

o 15 

This item sets the origin within the object module. In the 
control word (word 0), the origin is defined in bit 7 

where 

r = 0 indicates relocatable origin. 
r = I indicates absolute origin •. 

_ Appendix A 149 



RELATNE LOCATION POINTER (Type 8) 

word 0 

Control word 
o o 0 I 0 0 o r 10 0 o 010 001 

o 3 4 78 11 12 15 

word 1 

Chain base address 

o 15 

This item establishes the chain base for later chain resolu­
tion. In the control word (word 0), the chain base address 
is defined in bit 7 

where 

r = 0 indicates a relocatable address. 
r = 1 indicates an absolute address. 

NAME DEFINITION (Type 9) 

word 0 

Control word 
o o 1 10 0 1 0 I n + l' 

3 4 7 8 

word 1 

Fi rst data word 

o 

word 2 

Fiist chOiocter Second character 

o 7 8 

word n + 1 

15 

15 

15 

Last character (or blank) 

word 1 

First data word definition - address 

o 15 

word 2 

First character Second character 

o 7 8 i5 

word n + 1 

(2n-1)th character Last character or blanks 

o 7 8 15 

This item associates a location in the module with a defini­
tion name (characters in words 2 through n + 1) for other 
modules to reference. In the control word (word 0), the 
definition address is defined in bit 7 

where 

r = 0 indicates relocatable definition address. 
r = 1 indicates absolute definition address. 

EXTERNAL REFERENCE (Type A) 

word 0 

Control word 
o o 100 o r I n + 1 

o 3 4 7 8 

word 

Chain address (or zero) 

word 2 

First character Second character 

o 7 8 

15 

15 

15 

15 word n + 1 

This item identifies a name as a definition within the object 
module. 

All. name definitions immediately follow the start-module 
item and must precede all other load items. For each name 
definition, an address definition should appear later in the 
object module. 

ADDRESS DEFINITION (Type 9) 

word 0 

Control word 
o o 1 10 0 o r I n + 1 

o 3 4 7 8 15 

150 Appendix A 

(2n- l)th character Last character (or blank) 

o 7 8 15 

This item states a name (characters in words 2 through n + 1), 
defined in another module, whose definition address must be 
inserted in a chain of locations within the module. In the 
control word (word 0), the chain address is defined in bit 7 

where 

r = 0 indicates a relocatable chain address. 
r = 1 indicates an absolute chain address. 

Note: If there is no chain address, the reference address is 
zero and is used for library searching purposes only. 



SECONDARY REFERENCE (Type B) 

word 0 

o 1 10 n + 1 
3 4 7 8 15 

word 

First data word chain address 

o 15 

word 2 

First character Second character 

o 7 8 15 

word n + 1 

(2n- 1 )th character Last character (or bl ank) 

o 7 8 15 

This item states a name (characters in words 2 through n + 1), 
defined in another modul e, whose address may be inserted 
in a chain of locations within the module. This item is iden­
tical to type A, above, except that it does not force loading 
of the routine from the library. In the control word, the 
chain address is defined in bit 7 

where 

r = 0 indicates a relocatable chain address. 
r = 1 indicates an absolute chain address. 

ADDRESS LITERAL CHAIN RESOLUTION (Type C, sub­
types 0, 1, 2, and 3) 

word 0 

Control word 
o 0 100 q r 10 0 o o 0 o 

o 3 4 7 8 

word 

Resol ution address 

o 

word 2 

Chain address 

o 

o 
15 

15 

15 

This item defines a location within the module (called the 
resolution address) whose address must be inserted in a chain 
of displacement fields within the module. In the control 
word, the chain address is defined in bit 6 

where 

q = 0 indicates a relocatable chain address. 
q = 1 indicates an absolute chain address. 

The resolution address is defined in bit 7 

where 

r = 0 indicates a relocatable resolution address. 
r = 1 indicates an absolute resolution address. 

An address literal chain is a threaded list of forward refer­
ences to a single location in a program. The definition 
value (called the resolution address) can be output as an 
address literal chain resolution (Type C, subtypes 0, 1, 2, 
and 3). The chain address points to the beginning of the 
threaded list which is terminated by an absolute zero value. 
The resolution address and the chain address may be absolute 
or relocatabl e. 

Note: Because the terminator of the chain is zero, no pro­
gram may have an address I iteral chain whose last 
I ink is at absolute zero (i. e., the item would refer­
ence zero and would thus appear to terminate the 
chain). 

Note that external reference (REF) (type A) and secondary 
reference (SREF) (type B) chains are structured in the same 
manner, but resolved by the loader using an external defi­
nition value (type 9). 

DISPLACEMENT CHAIN RESOLUTION (Type C, subtypes 
6, 7, A, and B) 

word 0 

Control word 

o 0 t p p q r 10 0 o 010 o o 
o 3 4 7 8 9 11 12 15 

word 

Resolution address 

o 15 

word 2 

Chai n address 

o 15 

This item defines a location (called the resolution address) 
within the module whose relative displacement must be in­
serted in a chain of displacement fields within the module. 
In the control word, the displacement chain is defined in 
bits 4-5 

where 

pp = 01 indicates that an indirect bit is not set in each 
instruction in the displacement chain. 

pp = 10 indicates that an indirect bit is set in each 
instruction in the displacement chain. 

q = 1 always indicates absolute displacement of the 
last item in the chain (relative to the chain 
base declared in item type 8). 

Appendix A 151 



The resolution address is defined in bit 7 

where 

r = 0 indicates a relocatable resolution address. 
r = 1 indicates an absolute resolution address. 

When forward references occur during one-pass processing, 
and the possibi I ity of resolving the reference by a definition 
or literal may occur within 255 locations, the 8-bit dis­
placement field of the instruction may be used to form a 
displacement chain. The item types 8 (relative location 
pointer - establish chain-base) and C (displacement-chain 
resolution) must be used together to resolve the chain by 
substituting actual displacements determined at load time. 

in the creation of a dispiacement chain}' the pointer in the 
type 8 item defines the relative location in the program to 
be established as the chain base. Each new type 8 item can 
define a new chain base. The values in the displacement 
field of the instructions included in any given displ~cement 
chain refer to the absolute displacement of that instruction 
relative to the currently established chain base; e. g., ifthe 
chain base is established to be X'lOO' and an instruction is 
located at X'125', the displacement of that instruction for 
purposes of the displacement chain is X'125'-X'100' or X'25'. 
This point is emphasized since the loader will use this dis­
placement only to determine the final displacementofthe in­
struction relative to the location of I iteral or target locations. 

When the displacement chain connects instructions that ref­
erence a literal or a specific target location within range of 
the chain base (e. g., LDA=3 LDA=LAB, B XR), no indirect 
bit is set in each instruction (pp = 01 in Header - Type C). 

When the chain connects references to an external symbol 
or forward reference whose value will be given in some lit­
eral within range of the chain base" pp is set to 2 in the 
type C header, to set the indirect bit in each instruc­
tion in the chain (e.g., LDA X, which will be resolved 

as LDA *$+n, where n is the displacement of ADRL X rel­
ative to the instruction). 

The chain base address {in the type 8 item} maybedeclared 
as an absolute or relocatable value. The resolution' address 
(first data-word of a Type C item) is the address of the target 
location or I iteral expressed as a location, and not as a dis­
placement on the chain base. Note that although the reso­
!ution address is defined at this point, the value of the literal 
at that resolution may not be defined until later. In fact, it 
may be an element of an address-I iteral chain (type C) or 
external reference chain (type A). The address-literal or 
external chain resolution is independent of the displ acement 
chain resolution. 

The chain address given in the second data word is the ab­
soiute dispiacement of the iast item in the chain, -rei.ative 
to the chain base declared in type 8(e.g., if the effective 
chain base were X'1000' and the value of the chain address 
were X'20', the last item of the displacement chain would 
be located at X'1020'). 

A separate displacement chain will be created for each 
unique variable in a given displacement region. Thus, many 
displacement chains may be bui It using the same chain base. 
As a matter of fact, the chain base may not be changed unti I 
a displacement chain resolution item has been output for 
each displacement chain. An unresolved displacement chain 
is a serious error condition in the output, and is unaccept­
able for execution. 

The format of the displacement chain is described in the 
example in Figure A-2. 

Example: Let a chain base be declared at 109(R). (Numbers 
given are decimal.) It is assumed that the ADRL for XLB 
will be ultimately loaded at 140{R). Note that the displace­
ment field of each instruction before resolution is a pointer 
to the location of the next item in the threaded I ist relative 
to the chain base. 

Relative Displacement 
D i spl acement Displacement 
Fi eld of Instruc- Field of Instruc-

Location Symbolic From Chain 
tion Before tion After 

Counter Base 
Loading Resolution 

110 LDA XLB 1 00 (end of chain) 30 (140-110) 
125 STA XLB 16 01 15 (140-125) 
134 CP XLB 25 16 06 (140-134) 
136 STA XLB 27 25 04 (140-136) 
140 

I 
Item Type C, Displacement 

I Chain Resolution 

I Resolution Address 140(R) I 
I I 

I I I I I I 
Chain Address 27(A) 

Figure A-2. Displacement Chain Format 

152 Appendi x A 



LABELED COMMON (Type D, Subtypes 0, 1, and 2) 

word 0 

Control word 
o 1 lOOk k I 

o 3 4 7 8 

word 1 

Labeled COMMON index 

o 

word 2 

Labeled COMMON size, zero, or dis 

o 

word 3 

Content (first word) 

o 

word n+1 

Content (last word) 

o 

15 

15 

15 

15 

Subtype 0 -(k=O)- Labeled COMMON Definition. This 
subtype conveys the block size in words and an index 
val ue for the block being defined. The contents of the 
load item designate the al phanumeric name for the La­
beled COMMON block. The index value is relative 
only to the module being loaded and is sequenced from 
the integer one. It is used only to economize on space 
in the reference and data subtypes. . 

This subtype wi" follow the start module and name definition 
items. It must precede the reference and data subtypes for 
Labeled COMMON. 

Subtype 1 -(k=l)- Labeled COMMON References. This 
subtype carries as content a set of words that continue the 
load program and to which a Labeled COMMON base will 
be added. The particular base address to be added is in­
dicated by the index value in the load item. The word 
to which the base is added may contain positive or neg­
ative content. Should the index value be zero on this 
subtype, then the blank COMMON will be the added 
base value. 

The third word (word 2) of this item is non-functional and is 
carried as zero. 

Subtype 2 -(k=2)- Labeled COMMON Data. This subtype 
will load Labeled COMMON with a set of contiguous 
data. Again the COMMON block is identified by an 
index value. The starting displacement from its base is 
identified in the third word (word 2) of the load item. 

Appendix A 153 



APPENDIX B. SYSTEM ZERO TABLE AND CONSTANTS 

Table B-1. Monitor Zero Table 

Address 

Dec. Hex. Name Purpose and Assignment 

0 0 Reserved for Monitor Use. 

1 1 K:AC Pointer to Current Floating Accumulator. 

2 
I 

2 
I 

K:ACl 
I 

Pointer to Current Floating Accumulator (1). 

3 3 K:AC2 Pointer to Current Floating Accumulator (2). 

I 
4 

I 
4 

I 
K:AC3 Pointer to Current Floating Accumulator (3). I 

5 5 K:FFLG Pointer to Current Floating Flags. 

6 6 K:BASE Pointer to Current Task Reentrant Temp Stack. 

7 7 K:TCB Pointer to Current Task TCB. 

8 8 R:IOP Pointer to 8-word lOP Table. 

9 9 Standard Constants for Foreground, Monitor, and Background 
Use (see Table B-2 for complete list). 

63 3F 

64 40 lacs Pointers and Constants. 

99 63 

I 

100 I 64 Reserved for Mon itor Use. 

132 84 

133 85 Debug Transfer Vector D:KEY. 

134 86 Debug Transfer Vector D:CARD. 

135 87 Debug Transfer Vector D:SNAP. 

136 88 Reserved for Debug Use. 

167 A7 

168 
I 

A8 
I 

Real-Time Foreground User Storage (reserved for foreground 

I I 
I 

communication between foreground and background or for 

I 198 C6 
I 

address iiterais or constants). 

154 Appendix B 



Table B-1. Monitor Zero Table (cont.) 

Address 

Dec. Hex. Name Purpose and Assignment 

199 C7 Monitor Service Routines Transfer Vectors (see Table 7 for list). 

225 E1 

226 E2 Monitor Constants (see Table B-3). 

251 FB 

252 FC Counter Interrupt Locations (optional). 

255 FF 

Table B-2. Standard Constants 

Address Value Address Value 

Dec. Hex. Dec. Hex. Dec. Hex. Dec. Hex. 

9 9 32768 8000 20 14 16 10 

10 A 16384 4000 21 15 8 8 

11 B 8192 2000 22 16 4 4 

12 C 4096 1000 23 17 2 2 

13 D 2048 800 24 18 1 1 

14 E 1024 400 25 19 0 0 

15 F 512 200 26 lA -1 FFFF 

16 10 256 100 27 1B -2 FFFE 

17 11 128 80 28 1C 3 3 

18 12 64 40 29 1D -3 FFFD 

19 13 32 20 30 1E -4 FFFC 

Appendix B 155 



Table B-2. Standard Constants (cont.) 

Address Value Address Value 

Dec. Hex. Dec. Hex. Dec. Hex. Dec. Hex. 

31 1F 5 5 48 30 14 E 

32 20 -5 FFFB 49 31 -14 FFF2 

I I I I 
33 21 6 6 50 32 15 I F 

34 22 -6 FFFA 51 33 -15 FFF1 

35 23 I 7 7 I 52 
I 

34 -16 FFFO 

I 
I 

36 I 24 [ -7 FFF9 I 53 I 35 32767 7FFF I 
37 

I 
FFF8 54 36 32512 7FOO I 25 -8 

38 26 9 9 - 55 37 33023 80FF 

39 27 -9 FFF7 56 38 65280 FFOO. 

40 28 10 A 57 39 255 OOFF 

41 29 -10 FFF6 58 3A 61440 FOOO 

42 2A 11 B 59 3B 3840 OFOO 

43 2B -11 FFF5 60 3C 240 OOFO 

44 2C 12 C 61 3D 49152 COOO 

45 2D -12 FFF4 62 3E 31 1F 

46 2E 13 D 63 3F 127 7F 

47 2F -13 FFF3 

Table B-3. Monitor Constants 

Address 

Dec. Hex. Name Purpose 

226 E2 K:IOCS Pointer to IOCS Tables. 

227 E3 Reserved for Monitor use. 

228 E4 K:MASTD Pointer to Master Dictionary. 

229 E5 K:PAGE Number of lines/Printer Page (SYSGEN Parameter). 

230 E6 K:BACBUF Background I/O Buffer Pooi FWA. 

231 E7 K:BACKP Protected Background FWA (Start of TCB). 

232 E8 K:VRSION RBM Version. 

156 Appendix B 



Table B-3. Monitor Constants (cont.) 

Address 

Dec. Hex. Name 
t 

Purpose 

233 E9 K:PLFWA Public Library FWA. 

234 EA K:RFFWA Resident Foreground FWA. 

235 EB K:NFFWA Nonresident Foreground FWA. 

236 EC K:BACKBG Unprotected Background FWA. 

237 ED K:UNAYBG Unavailable Memory FWA. 

238 EE K:BLOCK Size of Blocking Buffer in Words (180 or 512). 

239 EF K:FEF FORTRAN Background Error Severity (1). 

240 FO K:TVECT Pointer to Transfer Vector Table. 

241 F1 K:FWA Legal TVECT Entries to FGD-FWA. 

242 F2 K:LWA Legal TVECT Entries to FBD-LWA+ 1. 

243 F3 F:FWA1 TYECT FWA for T Regi s~er Check. 

244 F4 K:LWA1 TYECT LWA+1 for T Register Check. 

245 F5 K:OLOAD Pointer to RBM OV:LOAD Table. 

246 F6 K:MTMP Size of Nondynamic Storage, in Words (6). 

247 F7 K:CCBUF Address of Control Card Buffer. 

248 F8 K:NRFQ Pointer to Nonresident Foreground Queue Table. 

249 F9 K:NEXT Next Available Sector in BT Area. 

250 FA K:PROTCT Pointer to Protection Register Table. 

251 FB K:PMDTBL Pointer to Postmortem Dump Table. 

tThese names are as defined in the RBM Monitor and are not system definitions. Any references to these locations by 
these names must be defined in the user program (e.g., K:IOCS EQU X'E2'). 

Relationships for Monitor Constants: 

1. (K:PLFWA) = LWA+1 of RBM. 4. (K:BACKP)= LWA+1 of Nonresident Foreground. 

2. (K:RFFWA) = LWA+ 1 of Public Library. 5. (K:BACKBG) = (K:BACKP) + 39. 

3. (K:NFFWA) = LWA+ 1 of Resident Foreground 6. (K:CCBUF) = (K:UNAVBG) - 62. 

Appendix B 157 



APPENDIX C. RBM SYSTEM ABORT CODES 

The abort codes given in Table C-l are the standard abort 
codes output by the Monitor, Basic FORTRAN IV Compiler, 
Extended Symbol assembler, Utility Subsystem, and RAD 
Editor (see also supplementary control command diagnostics 
in Appendix D). 

OVERLAY LOADER ABORT CODES 

The abort codes given in Table C-2 will be output by Over­
lay Loader which will then exit via a call to the RBM 
routine M:ABORT 0 

LOADER 110 ABORT MESSAGE 

The I/O abort message has the following format, followed 
by the message "ABORT 10 location": 

oplb device type and number diagnostic 

where 

oplb is the operational label-of the device or file 
on wh i ch the error occurred. 

devi ce type and number 
label. 

pertain to the operational 

diagnostic is an error diagnostic corresponding to 
an I/O completion code.t 

tSee Table 10, "I/O Completion Codes", in Chapter 4. 

The following diagnostics may be used: 

UNRECOVERABLE I/O ERROR 

CALLING SEQUENCE ERROR 

INVALID OPERATIONAL LABEL 

OL = 0, OR OPERAT MEANINGLESS 

ILLEGAL END OF FILE 

END OF TAPE 

INCORRECT RECORD LENGTH 

ILLEGAL BUFFERING 

WRITE PROTECTED 

BEGINNING OF TAPE 

ILLEGAL RAD SEQUENCE 

BLOCKING BUFFER UNAVAILABLE 

An example of the I/O abort message is given below: 

BI M9DO 

ABORT 10 

where 

END OF TAPE 

3F4C 

BI is the oplb. 

tv~9DO is the device n.c.me and number. 

END OF TAPE is the diagnostic. 

3F4C is the ABORT 10 location. 

Table C-1. RBM Abort Codes 

Code Meaning 

AE Assignment error during loading; improper I/O assignment or invalid format. 

AI Irrecoverable I/O error on device assigned to operational label AI. 

BI Irrecoverable I/O error on BI devi ceo 

BO "Irrecoverable I/O ~rror on BO device. 

CC Error in control cards or in sequence of job stack. 

CK Irrecoverable error while checkpointing. 

CS Checksum error from absolute or relocatable binary input. 

158 Appendix C 



Code 

DE 

ER 

ES 

FC 

FS 

FX 

GO 

HX 

IE 

10 

LO 

NP 

OP 

OV 

PE 

PO 

PU 

-PV 

RE 

RS 

SI 

SQ 

TL 

TS 

TY 

UT 

XE 

XS 

Table C-l. RBM Abort Codes {cont.} 

Meaning 

Debug not resident when requested. 

Operator-recognized error condition. 

FORTRAN libraryabor/. 

Illegal FORTRAN control card. 

FORTRAN abor/. 

A control card was encountered in the FORTRAN source deck. 

Irrecoverable error on output to the GO file when using a !REL command. 

III egal hex parameter. 

Error in input deck. (Usually, a negative ORG item has been input. ) 

Irrecoverable I/O error. 

Irrecoverable I/O error on LO device. 

No patch area has been allocated. 

Operator abort, from unsol icited key-in. 

Problem with device assigned to operational label OV. (Normally, OV is assigned to the RAD. ) 

Parity error in background (perhaps attempting to read from unavailable memory). 

The patch area has overflowed. 

Number of argument greater than temporary storage in M:PUSH
t
. 

Protection violation. 

RAD Editor abor/. 

Irrecoverabl e error during restart. 

Irrecoverable input error in SI device. 

Sequence error in absolute or relocatable binary deck. 

Background program time I imit exceeded. 

Temp stack overflow. 

Inval id load type in ABS deck. 

Utility subsystem abortt. 

Fatal error in loading. 

t 
Extended Symbol abort. 

tAfter the abort code is output, the processor will exit via the RBM routine M:ABORT. 

Notes: 1. 

2. 

The processing of the job stack is discontinued following any abort. If an !ATTE ND control command 
was in effect, the Monitor will enter an "idle" state. This will allow the operator to correct the pro­
blem and restart the job. If not in "attend", the Job Control Processor will read commands until a !JOB 
or ! FIN command is encountered. All control commands encountered prior to the! JOB or ! FIN com­
mand will be logged in with an indication (">" will precede the command) that they have been ignored. 

If integral lOP timeout occurs, RBM checks foreground mailbox X 'C5 1 for a watchdog receiver. If a re­
ceiver is specified, RBM branches to it; otherwise, RBM halts with the address of the interrupt in 
the accumulator. An integral lOP timeout indicates hardware difficulties. 

Appendix C 159 



160 

Table C-2. Overlay Loader Abort Codes 

Code Mean i ng 

A 1 Error in accessing the RBMSYM file. 

A2 Error in accessing the UBSYM file. 

A3 Error in accessing the EBCDIC library file. 

A4 Error in accessing the DEFREF I ibrary file. 
These codes are frequently caused by insufficient 
RAD Device File Numbers at SYSGEN. 

A5 Error in accessing the MODIR library file. 

A6 No blocking buffer is available for the RBMID file. 

A8 Error in accessing the TVECT file. J 

A9 Error in closing the RBMID file. 

BB Cannot use RS' op label because it is already used by Overlay Loader. 

CM
t 

A COMMON displacement or size larger than that stipulated on the !OLOAD command or in a start 
item was detected. (Background abort only. ) 

CRt A non-COMMON item was relocated into COMMON. This condition only occurs when an actual 
data item is to be stored into COMMO N. 

DStt The same identifier was used to name two different segments. 

EFtt An illegal end-of-file was detected. 

IT An illegal item type was detected. 

Ll The library files cannot be loaded because of incorrect construction of the library. 

L2t Labeled COMMON data (subtype 2) is for a block outside the current segment. 

L3
tt 

The number of Labe!ed COMMON indicies a!!ov:ab!e per module has been exceeded (current!y 
I imited to 40). 

L4tt Block size prescribed (subtype 0) is greater than that already allocated. 

L5
tt 

Labeled COMMON symbol is defined as a program symbol within the current path. 

L6
t 

Labeled COMMON data from a Library Module (root) is intended for a block allocated in the program 
section of the root. 

L8
tt 

An external DEF was encountered with the same label as a prior labeled COMMON block. 

LS Library search overflow. The number of unique library definitions and references a long a program path 
exceed 225. 

On An Overlay Loader function that prevents proceeding has occurred. The number of the overlay in which 
the malfunction occurred is indicated by n. 

PL Overlay Loader was unable to write the Public Library, the UBSYM, or the TVECT files onto the RAD. 

RL Root of excessive length. 

RS Overlay Loader unable to correctly read the RBMSYM fi Ie from the SD area. 
H 

SA' Not enough segments were allocated for the task. The segments parameter of the !OLO.~D command 
should be larger. 

Appendix C 90 10 37F-1 (3/72) 



Table C-2. Overlay loader Abort Codes (cont.) 

Code Meaning 

SD Next segment of the Overlay loader cannot be loaded. 

SE Input ROM had an error severity level greater than zero. 

SG tt Format or parameter error was detected on a ! $SEG command. 

Sl The length of a segment was excessive, (see !$ROOT and !$SEG commands for maximum segment 
size). 

TOtt There was a table overflow. Decrease the size of the program or reduce the number of external 
symbols. 

UN
tt 

The number (on the !$SEG card) of the segment to which this one is attached has not been defined. 

tloading will continue until terminated but the load program file will not be generated and exit will be through 
M:ABORT. 

ttloading will be terminated and, if a map has been requested, it will follow to the point of termination, after which 
the exit will be through M:ABORT. 

Appendix C 161 



APPENDIX D. CONTROL COMMAND DIAGNOSTICS 

The following error messages may appear on the background 
DO device as a result of an error condition detected by the 
JCP. These diagnostics supplement the abort or attend error 
codes printed by the JCP. 

Message 
Comments/ 
Associated Commands 

• BK OPLB/DFN TBL FULL ASSIGN, DEFINE, default 
assignments for system 
processors 

• FG OPLB/DFN TBL FULL ASSIGN 

• ILL C:CODE 

• ILL C:TCB 

· ILL RAD SEQUENCE 

• INV COMMAND 

162 Appendix D 

C: (Connect) 

C: (Connect) 

WEOF, REWIND, UNLOAD, 
FBACK, FSKIP, RBACK, RSKIP 

Command not recognized as 
a Monitor service command, 
system processor, or user 
processor. 

Message 

· INV OPLB OR DFN 

· INV OPTION 

· NO 'FG' KEY-IN 

• NO 'SY' KEY-IN 

Comments/ 
Associated Commands 

ASSIGN, DEFINE, WEOF, 
REWIND, UNLOAD, FBACK, 
FSKIP, RBACK, RSKIP 

An invalid option has been 
encountered on a Monitor 
servi ce command 

ASSIGN, XEQ,C: 

WEOF, ABS, REL 

.OP NOT MEANINGFUL WEOR, REWIND, UNLOAD, 
FBAC K, FSKIP, RBAC K, 
RSKIP 

· RAD TEMP OVERFLOW DEFINE, default assignments 
for system processors 



> 
"0 
"0 
(1) 
::l a.. 
x 
m 

The following table should be used to determine the standard assignments for an installation's RBM operational labels and to determine which operational 
labels, if any, should be suppressed by being assigned to file O. The RBM operational labels are defined under the !ASSIGN command in Chapter 2. 

~ RBM Operational Device 
CC SI UI AI BI BO UO LL DO 

and Labels Number I 
Processors 

RBM Read/Write Read Read Read Object Write Control 
unsolicited Control Absolute modules with Command 
key-in Commands Binary· I RE L command Images 

XSYMBOL [Read Control Read Source Write Reloc. Used for CC Write XSYMBOL 
commands] Statements Binary Diagnostics Error Messagestt 

Concordance Read Source Write Concordance 
Statements Error Messagestt 

Basic FORTRAN IV or Read Source Write Reloc. 
ANS FORTRAN IV Statements Binary 

Math li brary 
Write library 
Error Messages 

Overlay Loader Read Write Map, Loader 
Control Error Messages and 
Commands Control Command 

Images tt 

RAD Editor Read Object Module Output Copies of Ob- Write Error Mes-
Control Input to System ject Modules from Sys- sages, Control 
Commands and User tem and User libraries Commands and 

libraries operator key-ins 

Uti I ity Executive Read Read Write Utility Error 
Control Message and Con-
Commands trol Command 

Images tt 

Utility Copl Read Control Read 
Commands Input 

Utility RECEDIT 
Read Control 
Commands and Read Write 

Madific Input Input Output 

Utility OMEDIT Read Control Read Read Binary Write 
Commands Input Modific. Input Output 

Utility DUMP Read Control Read 
Commands Input 

Utility SEQEDIT Read Update Read Write 
Data Input Output 

t May use any op label for output. 

ttSuppressed if assigned to same device as LO. 



» 
"'0 
"'0 

CD 

5.. 
x 
m 

~ RBM perational 
and Labels 
Proce:ssors 

1-----' 

RBM 

f----

XSYMBOL 

1-----

Concordance 

--
Basic FORTRAN IV or 
ANS FORTRAN IV 

r---' 
Math Library 

f---

Overllay Loader 

_. 
RAD IEditor 

--
Utility Executive 

--
Utility Copy 

--
Utility RECEDIT 

1-----

Utility OMEDIT 

--
Utility DUMP 

~-

Utility SEaEDIT _. 

LO 

WRITE Listing 
Output and 
XSYMBOL 
Error Messages 

Write Listing 
Output and 
Concordance 
Error Messages 

Write Listing 
Ou,tput and 
FORTRAN 
Error Messages 

Write Library 
Error Messages 

Write Maps 
and Dumps 
of Files 

Write Utility 
Error Messages, 
Control Com-
mand Images qnd 
other Output 

Write Modi-
fication Lag 

Write Module Log 

Write Dump 

Write Listing 

LI PM OC Xl PI 

Write Abso- Write Proces- Read RBM 
lute Binary sor Clnd Mon- Overloys 
Monitor (SYS- itor Abort 
GEN only) Mes~iages 

Operator Intermediate Read 
Commu- Output XSYMBOL. 
nications Overlays 

.. - 1----------------- ----

Intermediate Read 
Output FORTRAN 

Overlays 

Operator 
Commu-
nications 

Read Reloc. Operator Contains Sym- Read 
Binary Commu- bol Table for OLOAD 
Library File nications each segment Overlays 

Operator Replace Files Read RAD 
Commu- and Maintain Editor 
nications Libraries Overlays 

Operator Read 
Commu- Utility 
nications Overlays 

---1-----------1-----

~ 

OV X2 

Write Pro-
gram Loaded 
by lABS 
Command 

Output 
Encoded 
Text 

--

-_ .. _._--_._-- 1---- -------.. 

--

Write Read 
Core MODIR 
Images File 

Replace 
Files and 
Maintain 
Librari es 
--

--

--

--

X3 

---

OutplA 
ProgrCl m 
Locals 

~----.---
_.- ,. 

----~ . . --

1------ -

--
I.i-Maintai n 

an 
DI 

braries d 
Update -
rectori es 

I----

1------ --

1--------

Prestor e B I 

I----

S2 GO X4 X5 

Write Ob-
ject Mod-
ule with 
IREL 
command 

Output Output 
Standard ExeclJtion 
Proce- Object 
dures LanglJage 

- ...... -.---~-

Output 
ExeclJtion 
Object 
LanglJage 

---.---

Read 
Reloc. 
Binary 

Maintain 
Libraries 

Prestore 
Commands 
From 51 

Input 
for 
Verify 

--



APPENDIX F. CHARACTER-ORIENTED COMMUNICATIONS (COC) EQUIPMENT HANDLER 

This appendix describes the interface of RBM with the Xerox 
character-oriented communications (COC) equipment. t The 
COC equipment provides communi cation between Sigma 2/3 
real-time programs and various terminal devices. The COC 
consists of a controller and from one to eight attached line 
interface units, with each unit containing from one to eight 
send-and-receive modules. The Sigma 2/3 RBM can accom­
modate one COC, which gives the user up to 64 lines each 
with send-and-receive equipment. The terminal devices 
supported (one per line) can be Teletype Models 33, 35, 
or 37. Other terminals can be connected but they must use 
ANSCIl control codes, and all editing must be done by the 
user program. 

The computer requirements for use with the COC equipment 
are as follows: 

1. RBM with at least 16K of core memory. 

2. One buffered input/output channel dedicated to the 
C OC control I er. 

3. Two external interrupts dedicated to the COC 
controller. 

4. External interface feature. 

DESCRIPTION OF CDC PACKAGE 

The COC software package allows messages to be communi­
cated via the character-oriented equipment, and consists 
of two sections - M:COC and RCOC. 

M:COC M:COC is a Monitor service routine that initi-
ates all read, write, and control operati ons. It is part of 
the RBM overlays and requires no modification by the user 
before use. (M:COC is de~cribed in detail in Chapter 4.) 

RCOC RCOC consists of the following tasks and tables 
that make up a resident foreground program: 

1. An initialization routine. 

2. A real-time task connected to the input interrupt of 
the communications controller, which edits and trans­
lates input characters, echoes the characters if re­
quired and forms input messages. 

t 
See Xerox Sigma Character-Oriented Communications 

Equipment Reference Manual, Publication 90 09 81, for a 
description of the equipment involved, the possibl e con­
figurations, and the various uses for the equipment. 

3. A real-time task connected to the output interrupt of 
the communications controller, which transmits out­
put messages and editing characters at end-of-message 
(EOM). 

4. Conversion tables (ANSCll to EBCDIC, and vice 
versa) • 

5. An input buffer (overlays the initialization routine). 

During initialization of RCOC, lines are tested for installed 
send and/or receive modules, and receive modules are given 
a turn-on test. Should a line have neither module instatted 
or has a receive module that will not turn on, the message 

TROUBLE LINE 

will be written. 

RCOC must be assembled separately for each installation 
unless the default cases for the installation specific assem­
bly parameters agree with the parameters desired. The 
assembly parameter.s are as follows: 

1. The device number of the COC (buffered input/output 
(default = 7). 

2. The COC number (direct input/output) (default = 0). 

3. The input interrupt level (even number of the even-odd 
pair (default = 110). The output interrupt level is 
assumed to be the odd number. 

4. Number of lines used (n), where all line numbers 0 to 
n-1 are assumed to be used (default = 1). 

5. An option parameter that may be set to include code 
for processing the display device terminal, 7550/55. 

CDC OPERATION 

RCOC is a resident foreground program and must reside on 
either the SP or UP area of the RAD. It is read into core 
memory and operated whenever RBM is rebooted. The 
RCOC initialization routine turns on all transmitters and 
receivers, arms and enables the input and output interrupts, 
initiates input from the COC controller into a wraparound 
buffer, and exits. At this point, all lines are set to the 
"disconnected" status, ready to be connected and used by 
the real-time programs. 

All line-control and read-or-write operations are initiated 
by calls to M:COC. A request to read merely causes the 
line status to be set to "read", which in turn causes the 
input interrupt routine to accept input from that I ine and 
bui Id the input message in the user's buffer. A request to 
write causes M:COC to turn on the transmitter and transmit 
the first character in the user's buffer. Thereafter, an output 

Appendix F 165 



interrupt is generated once each "output word time" {i.e., 
once each time the transmitter can transmit}. The output 
interrupt routine transmits characters from the user's buffer 
until the entire message is sent and then turns off the 
transm itter. 

As each input or output message is completed, the status of 
the I ine is set to "message complete" and an EOM Receiver 
(if present) is operated at the input or output interrupt level. 
The receiver should trigger the requesting task and return to 
the location contained in the L register. 

AUTOMATIC DIALING 

If the Automatic Dial ing Equipment (ADE) is included, 
real-time tasks can dial a terminal and connect it to a 
predetermined COC iine. The ADE is a muitiunit con­
troller that controls up to 16 dial positions. It requires a 
dedicated buffered lOP channel. 

The dial ing operation can be accomplished via M:IOEX. 
A TDY should first be performed to ensure that the dial posi­
tion is available. Then an SIO can be issued to activate 
the ADE and address the dial position. Any order byte will 
be interpreted as a "write". The memory buffer contains 

166 Appendix F 

the number of the data set being dialed (two bytes per word; 
each digit occupies the rightmost four bits of the byte in 
four-bit BCD). After the dial ing procedure has been com­
pleted, the task should check the status of the COC line 
before attempting to send or write on it. 

RESTRICTIONS 

The priority of the input/output interrupt pair must be 
higher than any program using its services via M:COC 
and should also be higher than other real-time programs 
with long execution times. If a program with a higher 
interrupt priority runs for a long period of time, the in­
put buffer may become fi II ed and data may become lost. 
The output data woul d be del ayed but no data woul d be 
lost. 

All cae lines (i. e., assembl y parameters) are assumed to 
be operational. The RCOC initial ization routine will 
loop, attempting to turn the receiver on for a nonexistent 
COC I ine number. 

If automatic dialing is included, the user must include 
M:IOEX during SYSG EN and must input the dialing posi­
tions as XX type devices. 



APPENDIX G. SYSGEN AND ASSEMBLY TIME OPTIONS 

The optional RBM capabilities below are obtainable as a 
package in response to the SYSGEN query INC. MISC. 
At least 100 (decimal) additional resident core memory 
locations are required. 

HEXADECIMAL CORRECTOR CARDS 

Patches may be loaded at execution time for either the 
Monitor itself or any user program. All corrector cards 
have the form 

aaaa cccc 1 [cccc2 · .. cccc nJ [*commentsJ 

where 

aaaa is the first (or only absolute core memory 
location to be modified. 

cccci are the desired (hexadecimal) contents of 
aaaa and the following n-1 locations. 

Patches may be loaded dynamically to user program or the 
Monitor in either of two ways: 

1. Following a HEX control command. 

2. Following an unconditional H key-in. 

Patches to the Monitor may be loaded at boot time if Data 
switch 1 is set (see Chapter 11). These patches will also 
be written to the RAD, thus ensuring a permanent change 
to all future boots. 

All corrector decks are terminated by an EOD control com­
mand. To patch relocatable programs, a bias card may be 
used. Its form is 

where 

bbbb is the bias and the following correctors are 
loaded relative to that location. 

PA means that the following corrections will 
be loaded relative the RBM Patch Area (see 
Figure 13). 

xx is an RBM overlay ID as described in 
Chapter 11; thus the corrections following 
the bias card are loaded relative to the 
overlay base. 

Note: Patches at boot time will be written 
to the RAD. At other times, 3 cells 
of the RBM Patch Area are needed for 
each patch. The overlay is also ex­
panded to its physical limits. 

Any value on a corrector card preceded by an R; that 
is, Rcccci' will have the bias added to it. Any value 
on a corrector card preceded by a P; that is, Pcccci' 
will have the bias of the RBM Patch Area added to it. 

The programmer must not use the first and last cells of 
the Patch Area, as the first contains the length of the 
Patch Area, and the last contains the number of tem­
porary RBM overlay patches. As mentioned previously, 
three words of the Patch Area are needed for each patch. 
These are taken from the top of the Patch Area down­
ward, thus a user with a large Patch Area need be con­
cerned only with the first word. 

To patch program segments, t Data Switch a must be placed 
in the 11111 state. This causes the RBM to type IIBEGIN 
SEB xx II (where xx is the segment number; XX = a for the 
root) and go into an idle state after each segment is loaded. 
Correctors can then be loaded to the segment following an 
H key-in. An S key-in will cause RBM to resume operation. 
The abil ity to type the message IIBEGIN SEG xx" is deter­
mined when RBM is assembled and is not related to the in­
clusion of the IIMISC. II routines. 

THREE-CHARACTER PROCESSOR SEARCH 

An assembly time option exists for the Job Control Processor 
(which does not increase resident RBM) to identify a pro­
cessor from the first three characters input. 

When the Control Command Interpreter encounters a pro­
cessor request such as !XSYMBOL, a search is first made 
of the system, then the user processor area, to locate the 
fi Ie whose name matches the requested processor exactl y. 
Normally, if this search fails, the Monitor aborts the job. 
However, if this assembler option has been sel ected, the 
request is then truncated to three characters (i. e., lXSY) 
and the search of the system and user processor areas is 
repeated. Thus, if Extended Symbol has been defined on 
the system processor area of RAD as the three-character 
name lXSY, either a request of lXSYMBOL or lXSY will 
locate the system processor. 

t An optional assembly parameter in the RBM subtask 
S:LOAD. This parameter does not increase RBM. 

Appendix G 167 



APPENDIX H. MEMORY REQUIREMENTS 

CORE SPACE REQUIREMENTS FOR RBM 

The minimum RBM system (whi ch would consist of keyboard/ 
printer, paper tape, and RAD I/O routines, and a minimum 
number of RAD device-fi les and operational labels) requires 
about 430010 cells for the Real-Time Batch Monitor and all 
its tables. This minimum core space requirement will in­
crease as handl ers are added for additional peripherals, 
as additional optional software routines are chosen (see 
Table H-1) during SYSGEN, and as additional device­
files, operational labels, or Public Library DEFs are allo­
cated during SYSGEN. The following table indicates the 
approximate core space requirements for the additional rou­
ti~es. Unless othe~wise indicated, these number are only 
approximate and have been rounded to the next higher 
multiple of 25. 

Table H-l. Core Requirements for Additional Software 

Approximate 
Handler or routine size (decimal) 

Multiply/Divide Simulation 173 
Software 

Power Off/On 293 

M:IOEX 198 

Job Accounti ng 216 

Line Printer Handler 62 

Card Reader Handler 2 (exact size) 

BCD Option for Card 2 (exact size) 
Reader 

Magnetic Tape Handler 95 

Card Punch Handler 8 (exact size) 

BCD Option for Card 2 (exact size) 
Punch 

Each additional RAD Device 15 (exact size) 
File 

Each additional Operational 2 (exact size) 
Label 

Each Public Library DEF 2 (exact size) 

Hence, the resident core space requirements for RBM vary 
from 4300 to 6200 cells, depending upon the user's con­
figuration. If background processing is desired, the user 

168 Appendix H 

must allocate at least 3800 cells for background to accom­
modate the RBM Job Control Processor which executes in the 
background space. 

CORE SPACE REQUIREMENTS FOR THE 
RBM PROCESSORS 

The minimum background space necessary to individually 
load with the Overlay Loader program and to execute all 
the RBM Processors is 7K cells (1 K = 102410). The largest 
processor here is Basic FORTRAN IV; which requi res 7K 
cells when it'is loaded by the Overlay Loader. FORTRAN 
programs of reasonable size can be compi led in 7K of back­
ground. Extended Symboi can be ioaded in a minimum of 
6.25K of background, and a program of approximately 1200 
to 1800 instructions could be assembled in this minimum 
space. The other RBM processors can all be loaded and 
executed in less than 6K of background. 

RAD SPACE REQUIREMENTS 

Table H-2 gives the allocations for the system areas of the 
RAD, if a user chooses not to override the defau It case. The 
following discussion assumes a 360-byte-per-sector RAD. 

Table H-2. RAD System Area Requirements 

Area Size Comments 

Checkpoint n sectors n=size of background 
I 

I 
(in sectors). 

System 31 tracks Sufficient to contain all 
Processor RBM processors plus RBM. 

System 9 tracks Sufficient to contain two 
Library versions (extended and 

basi c) of Math/Run-Time 
Library. 

System 15 tracks RBM files. 
Data 

Note that this leaves approximately one spare track in the 
system data area. However, if a Public Library is included, 
the file LIBSYM must be added to the system data area. 
Hence, the system areas and the checkpoint area wi II 
normally consume about 45 tracks of the RAD. (The small­
est Xerox RAD, .75 megabyte, has 128 tracks.) The only 
other area used by the system is the background temp area. 
The processor that normai Iy requires the largest background 
temp area is Extended Symbol. Extended Symbol normally 
requires the background temp area to be spl it into three 

90 10 37F-l (3/72) 



scratch files, called Xl, X2, and X3. t File Xl is a 
compressed file and contains the user's source deck 
(about 12 source cards can be compressed into one RAD 
sector). File X2 contains the user's source deck in an en­
coded form (normally about 36 source cards can be stored 
in one RAD sector on X2). File X3 is only used if the pro­
gram being assembled contains local symbols. Normally, 
the RAD space required for X3 is insignificant compared 
with Xl and X2. Hence, to assemble a 5000-card source 
program, approximately 35 tracks of background temp area 
would be required. Thus, if a user wants to have all the 
system processors and a complete system library stored on 
the RAD, and wants to allocate enough background temp 

area to assemble about a 5000-line source program, approxi­
mately 80 tracks of the RAD would be used. 

tThe Job Control Processor will automatically divide the 
total background temp area into three scratch files upon 
encountering an IXSYMBOL command. The total area is 
divided amoung the Xl, X2, and X3 files according to the 
following ratios: . 

Xl :X2:X3 = 30: 10: 1 

The user can override these default allocations by inputting 
a I DEFINE command prior to the I XSYMBOL command. 

Appendix H 169 



APPENDIX I. CALCULATING THE RBM SIZE 

To calculate the size of RBM (RBM LWA) before a SYSGEN, 
add the base value of F86 or 3980: 

8 x number of I/O channels 

2 x number of definitions in the Publ ic Library 

4 x number of entries in nonresident foreground 
queue 

4 x number of Master Dictionary entries 

10 x number of RAD/disk pack devices 

To this figure add the following: 

125(16) or 293(10) cells if aYresponse to INC. POWER 

ON/OFF 

AD(16) or 173(10) cells if a Y response to INC. MUL! 

DIV SIM. 

C4(16) or 198(10) cells if a Y response to INC. M:IOEX 

D8(16) or 216(10) cells if a Y response to INC. CLOCK I 
ONE 

10(16) or 16(10) cells if a Y response to INC. DEBUG 

56(16) or 85(10) cells if a Y response to INC. MISC. 

2 or 2(10) cells if a Y response to INC. C. O.C. 

Add to this amount the number given below (see Table 1-1) 
if the corresponding device type is inciuded in the SYSGEN 
parameter DEVICE FILE INFO: 

To this sum, add two cells for each background or foreground 
operational label. 

Since SYSGEN attempts to store whatever optional routine 
of tables it can into the unused interrupt locations, the size 
of the unused interrupt region can generally be subtracted 
from this accumulated sum. The size of this area can be 
determined by subtracting the value input for the SYSGEN 
parameter MAX. INT. LOC from 18F(l6) (399(10))' How­
ever, this figure will be less than the true size of RBM since 
not all of these unused interrupt locations can be used 

Table 1-1. Device Type Table Allocations 

Size 

First Input Additional Inputs 

Device I Hex. Dec. Hex. Dec. 

KP 21 33 (required) 10 16 

LP2ttt 25 37 F 15 

LP8 59 89 C 12 

CR4 1E 30 C 12 

CP1 1E 30 10 16 

CP3ttt 9F 159 87 135 

Any magnetic tapet 9E 158 D 13 

PT 27 33 10 16 

PL 1B 27 C 12 

RDtt - - 15 21 

XX 7 7 7 7 

t Add two cells to the first input if magnetic tape is BCD and add 2 cells if 9-track magnetic tape. 

ttThe default case for background is nine RD fi les. Add 10010 cells if any disk pack device is defined. 

tttIf both LP2 and CP3 are used, subtract 6 from total. 

170 Appendix I 



APPENDIX J. DEBUG EXPANSION OF INSTRUCTIONS 

EXPANSION OF INSERTED INSTRUCTIONS 

Class 1 instructions that are inserted via the insert (1) com­
mand are expanded into more than one instruction if desig­
nated in the op*address form. (Note that expansions of 
indirect instructions are not reentrant. ) 

Op is direct (0): op 
B 
DATA 

Op is indexed (2): op 
B 
DATA 

Op is indirect (4): STA 
LDA 
STA 
LDA 
op 
B 
DATA 
DATA 
DATA 

Op is indirect and indexed (6): 

STA 
LDA 
STA 
LDA 
op 
B 
DATA 
DATA 
DATA 

*$ + 2 
$+2 
address 

*$ + 2, 1 
$+2 
address 

$+6 
*$ + 7 
$+5 
$+3 
*$ + 3 
$+4 
0 
0 
address 

$+6 
*$ + 7 
$+5 
$+3 
*$ + 3, 1 
$+4 
o 
o 
address 

Class 2 instructions are expanded as follows: 

op 
B 
B 
DATA 

$+2 
$+3 
*$ + 1 
address 

EXPANSION OF MOVED INSTRUCTIONS 

An instruction that is moved from the point of insertion to 
the insert block will require expansion if its addressing is 
relative or if it is a register copy instruction in which the 
P register is the source. 

The relative instructions are expanded the same as the 
inserted instructions discussed in the first part of this 
appendix. In the case of Insert Before (IB) or snap­
shots, register copy instructions in which P is the source 
and the clear bit is set will be expanded in one of two 
ways: 

1. If the destination is the A register: 

LDA $ + 3 
op A,A 
B $+2 
DATA a+ 1 

2. If the destination is not the A register: 

STA 
LDA 

$+5 
$+5 

op A,R 
LDA $ + 2 
B $+3 
DATA 0 
DATA a + 1 

In the above expansions, a is the location (point) of the 
insertion and op has the appropriate settings for the incre­
mentation and inversion bits. 

Debug has no facility for expanding a copy instruction where 
either (1) the P register is the source, the A register is the 
destination, and the clear bit is reset, or (2) the P register 
is the destination and the clear bit is reset. In this case a 
Debug syntax error is generated. 

Appendix J 171 



APPENDIX K. DEBUG INSERTION STRUCTURE 

An insertion at location awill result in the following: 

a B * /3 

f3 DATA Y 

r 
moved instruction expansion if IA command 

I I inserted i nstructi ons or snaoshot ca II code I I"· . -.. - -- _. - - . I 

Y 
moved instruction expansion if IB or snapshot command 

B *$ + 1 

DATA a+ 1 

where /3 is one of the Debug cells in the zero table and Y is an area in the insertion block. 

172 Appendix K 



APPENDIX L. DEBUG SNAPSHOT CALLING SEQUENCE 

A snapshot inserted at location a will generatethefollowing 
call ing sequence (which is inserted in the insertion block 
similar to a Debug IB command): 

a1 
a2 

entry 

where 

DATA 
DATA 

D:SNAP 
block 

instruction that was at location a 
WD X'FC' (foreground only) 
STA *a2 
RCPYI P, A 
B *a1 
DATA a 
DATA key 
conditions if any 
DATA -1 
message if any 
DATA 
dumps if any 
DATA 

-1 

-1 
expanded instruction from location a 
B *$ + 1 
DATA a+ 1 

block is the address of the first word of the inser-
tion block and is used to save the A register. 

key (bits 0-2) designates type of snapshot: setting 
bit 0 designates stepping snapshot; setting bit 1 
designates line printer snapshot output; and setting 
bit 2 designates keyboard control requested. 

message 
any. 

is the string of EBCDIC characters, if 

condition is a string of relational expressions sep-
arated by logical operators. A relational expres­
sion occupies three words as follows: 

loc, reg, or constant 

Ml1M21 IC I ElL I G 

loc, reg, or constant 

dumps 

where 

M 1 (bits 0-1) designates the type of 
quantity in the first word: 

00 location 

01 register 

10 constant 

M2 (bits 2-3) designates the type of 
quantity in the third word. 

C (bit 12) designates comparison where 
o = arithmetic and 1 = logical. 

E (bit 12) 

L (bit 14) 

G (bit 15) 

designates equal comparison. 

designates less than comparison. 

desi gnates greater than 
. comparison. 

A logical operator occupies one word: 

o !ogical or 

logical and 

are two-word or three-word items: 

I T I register dump 
register number 

or 

loc 1 
memory dump 

o I T I 
loc 2 

where 

T = 1 designates keyboard/printer and 
line printer output. 

T = 0 designates line printer output. 

A zero register number designates _all registers. 

Appendi x L 173 



·INDEX 

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

A 
abort codes, iS8 
ABS control command (Monitor), 9 
accounting and elapsed time, 4 
ADD control command, 90 
AIO Receivers, 71 
allocation 

core memory, 123 
file control table (FCT), 127 
RAD, 123 
SYSGEN initial core, 122 

ASSIGN control command (Monitor), 10 
ASSIGN control command (Utility), 102 
ATTEND control command (Monitor), 12 
automatic dialing, 166 

B 
B (branch) Debug command, 145 
background, 7,2 
background core allocation example, 125 
background task, 8 
Basic FORTRAN IV, 6 
binary ob j ect re cord format, 147 
BLOCK control command, 80 
branching to service routines, 27 

c 
C (debug input device) Debug control, 145 
C: control command {Monitor}, 12 
calculating RBM size, 170 
calling COpy, 103 
calling DUMP, 105 
calling Object Module Editor, 106 
calling Overlay Loader, 79 
calling RAD Editor, 90 
call ing Record Editor, 108 
calling Sequence Editor, 110 
calling Utility, 100 
card punch, write to, 40 
card reader, special editing, 36 
CC control command (Monitor), 13 
CHANGE controt command, 109 
Character-Oriented Communications (COC) equipment 

handler, 165 
Character-Oriented Communications (COC) handler, 7 
checkpoint, 4 . 
checkpointing background, 73 
CLEAR control command, 94 
compressed RAD files, 8 

174 Index 

computing library file sizes, 88 
Concordance, 6 
control command diagnostics, 162 
control command, Basic FORTRAN IV format, 18 
control command, Extended Symbol format, 17 
control commands, Monitor, 9-16 
control commands, Processor, 16-18 
control commands, Utility, 101 
control panel task, 65 
COpy control command, 104 
COpy error messages, 114 
COpy operating characteristics, 103 
COpy operational labels, 103 
COpy routine, 102 
core layout after absolute load, 126 
core layout after SYSGEN and SYSLOAD, 126 
core layout, Overlay Loader, 76 
core memory allocation, 123 
core memory allocation example, 124 
core space requirements, 168 

o 
D (define) Debug command, 142 
data fi les, 4 
data files, RAD, 88 
Debug commands, 142 

B, 145 
C, 145 
D, 142 
E, 145 
I, 143 
K, 145 
M, 145 
P, 145 
Q, 145 
R, 144 
S, 143 
T, 144 
X, 144 

Debug control, 141 
Debug error messages, 146 
Debug expansion of instructions, 171 
Debug insertion structure, 172 
Debug processor, 141-146,6 
Debug snapshot ca II i ng sequen ce, 173 
DEFINE control command (Monitor), 13 
DELETE control command (RAD Editor), 91 
DELETE control command (Utility), 108, 110 
description of object modules, 147 
device type table allocations, 170 
DPCOPY control command, 92 
DUMP control command (RAD Editor), 93 
DUMP control command (Utility), 105 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

DUMP operating characteristics, 105 
DUMP operational labels, 105 
DUMP routine, 104 

E 
E (exit from interrupt level) Debug command, 145 
editing operations, M:COC, 57 
END control command (Overlay Loader), 85 
END control command (RAD Editor), 96 
END control command (Utility), 102 
EOD control command (Monitor), 13 
EXCLUDE control command, 83 
Extended Symbol, 6 

F 
FBACK control command (Monitor), 13 
FBACK control command (Utility), 101 
FCOPY control command, 92 
File Control Table (FCT) allocation, 127 
file name, 4 
files, computing library size, 88 
files, data, RAD, 88 
files, GO and OV, 18 
files, library, RAD, 88 
files, random RAD, 61 
files, sequential RAD, 60 
files, special editing random-access, RAD, 37 
files, special editing sequential, RAD, 37 
files, write on, 40 
files, write on random-access, RAD, 41 
FIN control command (Monitor), 13 
floating accumulator, 8 
foreground, 7, 2 
foreground initialization, 68 
foreground priority levels, 67 
foreground priority levels and I/O priority, 71 
foreground programs, 63 
foreground user's Debug capabi I ity f 141 
FORTRAN control command (Processor), 18 
FSKIP control command (Monitor), 13 
FSKIP control command (Utility), 101 

G 
GDTRACK control command, 94 
GO and OV files, 18 

H 
hardware requirements, 5 
HEX control command (Monitor), 14 
hexadecimal corrector cards, 167 

I (insert) Debug command, 142 
I/O completion codes, 35 
I/O end action, 59 
I/O initiation, 59 
I/O operations, 59-62 
I/O recovery procedure, 20 
IDENT control command, 110 
INCLUDE control command, 83 
initial loading of system processors, 137 
INITIALIZE control command, 95 
input/output task, 65 
INSERT control command 107, 109 

J 
job, 8 
JOB control command (Monitor), 14 
Job Control Processor (JCP), 9 
job step, 8 
JOBC control command (Monitor), 14 

K 
K (keyboard/printer) Debug command, 145 
key-ins, 24 

BL, 24 
BR, 24 
C:, 24 
CC,24 
CP,24 
D, 25 
DB, 24 
DE, 24 
DF, 25 
DM,25 
DR, 25 
F, 25 
FG,25 
FL,25 
FR, 25 
H,25 
KP, 25 
M,25 
Q,26 
R, 26 
Sf 26 

Index 175 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numeri cal sequence. 

SY,26 
T, 26 
UL,26 
W,26 
X, 26 
Z, 26 

keyboard/printer, special editing, 36 
keyboard/printer, write, 39 

L 
LADD controi command, 92 
language translators, 6 
LB control command, 83 
LCOPY control command, 92 
LD control command, 82 
LDELETE control command, 92 
LIB control command, 81 
library fi les, 4 
library files, RAD, 88 
LIMIT control command (Monitor), 14 
line printer, write to, 39 
LIST control command, 107, 108 
LMAP control command, 93 
load item format, 148 
Loader error messages, 85 
Loader I/O abort message, 158 
loading foreground programs, 66 
loading nonresident foreground programs, 68 
loading RBM part-2, 136 
loading resident foreground programs, 66 
logical/physical device equivalence, 60 
Long (load) map format, 77 
LREPLACE control command, 92 
LSQUEEZE control command, 92 

M 
M (modify memory) Debug command, 145 
M:ABORT,43 
M:ASSIGN, 50 
M:CKREST, 45 
M:CLOSE,47 
M:COC,55 
M:COC restrictions, 166 
M:COC service routine, 165 
M:CTRL, 41 
M:DATIME, 42 
M:DEFINE, 49 
M:DKEYS, 48 
M:DOW, 54 
M:EXIT, 44 
~A.uJ:V"'...I AA 
'VI;II .... "'I'Itt, .-.. 

M:INHEX, 45 
M:IOEX, 27 
M:LOAD, 46 

176 Index 

M:OPEN, 47 
M:OPFILE, 53 
M:POP, 53 
M:READ, 31 
M:RES, 52 
M:RSVP, 53 
M:SAVE,44 
M:SEGLD, 48 
M:TERM,43 
M:WAIT,48 
M:WRITE, 37 
machine fault task, 64 
magnetic tape, speciai editing, 37 
map, 77 
MAP control command, 93 
MD control command, 83 
memory requirement and insertion block definition, 141 
memory requirements, 168 
MESSAGE control command {Monitor}, 14 
MESSAGE control command (RAD Editor), 95 
MESSAGE control command (Utility), 101 
messages to the operator, 133 
messages, COpy error, 114 
messages, Debug error, 146 
messages, Loader error, 75 
messages, Monitor, 20 
messages, OMEDIT error, 115 
messages, RAD Editor, 96 
messages, RAD Editor warning, 98 
messages, RECEDIT error, 115 
messages, SEQEDIT error, 116 
messages, Utility control function, 112 
messages, Utility I/O error, 111 
ML control command, 81 
MODIFY control command, 107,108 
Monitor constants, 156 
Monitor control commands, 9 

ABS, 9 
ASSIGN, 10 
ATTEND, 12 
C:, 12 
CC, 13 
DEFINE, 13 
EOD, 13 
FBACK, 13 
FIN, 13 
FSKIP, 13 
HEX, 14 
JOB, 14 
JOBC, 14 
LIMIT, 14 
MESSAGE, 14 
PAUSE, 14 
PMD, 14 
PURGE, 15 
RBACK, 13 
REL! 15 
REWIND, 15 
RSKIP, 13 
TEMP, 16 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

UNLOAD, 16 
WEOF, 16 
XEQ, 16 
XED, 16 

Monitor messages, 20 
Monitor service routines, 27-58,8 
Monitor tasks, 63 
Monitor zero table, 154 
MP control command, 81 
MS control command, 81 
multiply/divide exception tasks, 65 

N 
nonresident foreground, 8 
nonresident foreground creation or updating, 138 
nonresident foreground programs, 63 
nonresident foreground programs, loading, 68 
nonresident section, 1 

o 
Object Module Editor control commands, 107 
Object Module Editor error messages, 115 
Object Module Editor operational labels, 105 
Object Module Editor routine, 105 
Object Module Editor operating characteristics, 106 
OLOAD control command (Overlay), 79 
operational labels, 10 
operational label usage, 163 
operator communication, 20-26 
operator control, 23 
OPLBS control command, 103 
overlay capabilities, 4 
overlay cluster configuration, 76 
overlay cluster organization, 74 
Overlay control commands, 80 

BLOCK, 80 
END, 85 
INCLUDE, 83 
LB, 83 
LCOM, 84 
LD, 82 
LIB, 81 
MD,83 
ML, 81 
MP, 81 
MS, 81 
PUBUB, 84 
RES, 84 
ROOT, 82 
SEG, 84 
TCB, 81 

Overlay Loader, 74-86,6 
Overlay Loader abort codes, 160 

Overlay Loader operational labels, 76 
overlay structure example, 75 

p 
P (selective dumps) Debug commands, 145 
paper tape, special editing, 36 
paper tape, write to, -39 
patches (see PA option), 134 
PAUSE control command (Monitor), 14 
PAUSE control command (RAD Editor), 95 
PAUSE control command (Uti lity), 101 
PMD control command (Monitor), 14 
Power Off Task, 64-
Power On Task, 63 
preparing the program deck, 117-121 
PRESTORE control command, 102 
procedures, I/O recovery, 20 
Processor control commands, 16 
Processor fi les, 4 
Processor, system (and library creation), 139 
Processors, initial loading of system, 137 
program, 7 
Protection Violation Task, 64 
PUBLIB control command, 84 
Public Library, 4 
Public Library creation or updating, 138 
PURGE control command (Monitor), 15 

Q 

Q (quit) Debug command, 145 

R 
R (remove snapshot or insertion) Debug command, 142 
RAD allocation, 123,62 
RAD area mnemonics, 12 
RAD Editor, 87-98,6 
RAD Editor control commands, 90 

ADD, 90 
BDTRACK, 94 
CLEAR, 94 
DELETE, 91 
DUMP, 93 
END, 96 
FCOPY, 92 
GDTRACK, 94 
INITIALIZE, 95 
LADD, 92 
LCOPY, 92 
lDELETE, 92 
LMAP, 93 
LREPLACE, 92 

Index 177 



Note: For each entry in this index, the number of the most significant page is listed first .. Any pages thereafter are listed in 
numerical sequence. 

LSQUEEZE, 92 
MAP, 93 
MESSAGE, 95 
PAUSE, 95 
RESTORE, 94 
SAVE, 93 
SQUEEZE, 94 
TRUNCATE, 95 

RAD Editor messages, 96 
RAD Editor operational labels, 89 
RAD Editor warning messages, 98 
RAD fi I e management, 62 
RAD files, 60 
RAD space requirements, 168 
RAD/disk areas, 3 
RAD/disk pack area organization, 87 
RADEDIT control command, 90 
random access RAD files, write on, 41 
random files, 61 
random-access RAD files, special editing, 37 
RBACK control command (Monitor), 13 
RBACK control command (Utility), 102 
RBM abort codes, 158 
RBM and foreground user's interface, 141 
RBM characteristics, 1 
RBM Control Task, 8,65 
RBM subsystems, 6 
RBM system processors, 17 
RBM/processor interface, 18 
RCOC, 165 
RCOC initialization routine, 58 
read automati c, 36 
read binary, 36 
read binary from keyboard/printer, 37 
read binary from paper tape, 37 
reai-time priority, M:READ, 36 
real-time programming, 63-73 
rebooting the system from RAD, 139 
Record Editor error messages, 115 
Record Editor operating characteristics, 107 
Record Editor operational label, 107 
Record Editor routine, 107 
record header format, 148 
reentrant routines, 4 
REL control command (Monitor), 15 
RES contro I command, 84 
resident foreground creation or updating, 138 
resident foreground programs, 63 
resident foreground programs, loading, 66 
resident foreground, schedu I ing tasks, 65 
resident section, 1 
restart, 4 
RESTORE control command, 94 
return registers, M:READ, 33 
return registers, M:WRITE, 39 
return status from M:IOEX, 30 
retlJrn status from M:READr M:WRITE, M:CTRL, 33 
REWIND control command (Monitor), 15 
REWIND control command (Utility), 102 
ROOT control command, 82 

178 Index 

routines, 27 
Abort, M:ABORT, 43 
Absolute Core Image Loader, M:LOAD, 46 
Allocate Temp Storage Without Transfer, M:RES, 52 
Assign RAD Files, M:ASSIGN, 50 
Character-Oriented Communication, M:COC, 55 
Checkpoint/Restart, M:CKREST, 45 
Close RAD File, M:CLOSE, 47 
Convert OPLB to DFN, M:OPFILE, 53 
COpy, 102 
Date and Time-of-Day, M:DA TIME, 42 
Diagnostic Without Writer, M:DOW, 54 
DUMP, 104 
Genera! Control i M:CTRL: 41 
General I/O Driver, M:IOEX, 27 
General Read, M:READ, 31 
General Write, M:WRITE, 37 
Hex to Integer Conversion, M:HEXIN, 44 
Integer to Hex Conversion, M:INHEX, 45 
Interrupt Restore, M:EXIT, 44 
Interrupt Save, M:SAVE,44 
Load Overlay Segments, M:S.EGLD, 48 
M:COC Service, 165 
Normal Exit from Background, M:TERM, 43 
Object Module Editor, OMEDIT, 105 
Open RAD Fi Ie, M:OPEN, 47 
RAD File Definition, M:DEFINE, 49 
Read Data Keys, M:DKEYS, 48 
Record Editor, RECEDIT, 107 
Reserve or Release Peripherals, M:RSVP, 53 
Sequence Editor, SEQEDIT, 109 
Simulated Wait Instruction, M:WAIT, 48 
Temp Storage Release, M:POP, 53 

routines and idents for RBM part-2, 136 
routines, reentrant, 4 
routines, SYSGEN optional, 122 
RSKIP control command (Monitor), 13 
RSKIP control command (Utility), 102 

s 
S (insert snapshot) Debug command, 142 
SAVE control command, 93 
schedu ling resident foreground tasks I 65 
secondary storage management, 3 
SEG control command, 84 
semi resident foreground program, 63 
SEQUENCE control command, 111 
Sequence Editor control commands, 110 
Sequence Editor error messages, 116 
Sequence Editor operating characteristics, 109 
Sequence Editor operational labels, 109 
Sequence Editor routine, 109 
sequential files, 60 
sequential RAD files, special editing, 37 
sequential RAD files, write on, 40 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

serv ice programs, 6 
service routines, 27 
so I i ci ted contro I, 23 
special editing for card reader, 36 
special editing for magnetic tape, 37 
special editing for paper tape or keyboard/printer, 36 
special editing for random-access RAD files, 37 
special editing for sequential RAD fi les, 37 
SQUEEZE control command, 94 
standard background operational labels, 10 
standard foreground operational lables, 11 
standard constants, 155 
standard devi ce unit numbers, 12,60 
standard object language, 147 
status returns for M:COC, 56 
SU PRESS control command, 111 
SYSGEN and assembly time options, 167 
SYSG E N bi nary output, 133 
SYSGEN error messages, 134 
SYSGEN initial core allocation, 122 
SYSGEN input options and parameters, 128 
SYSGEN input parameters, 127 
SYSGEN operational label assignments, 127 
SYSGEN optional routines, 122 
SYSGEN output, 133 
SYSLOAD alarms, 139 
SYSLOAD UPD option (update), 135 
SYSLOAD, ALL option, 134 
SYSLOAD, RBM part-2, 136 
SYSLOAD, System Load, 133 
system communication, 20 
system environment, 1 
System Generation and System Load, 122-140 
system initialization and creation, 5 
system processor and library creation, 139 

T 
T (selective dump) Debug command, 142 
task, 7 
Task Control Block (TCB) functions, 69 
task entrance format, 72 
TCB control command, 81 
TEMP control command (Monitor), 16 
temporary stack, 8 
three-character processor search, 167 
transfer vector for monitor services, 28 
TRUNCATE control command, 95 

u 
UNLOAD control command (Monitor), 16 
UNLOAD control command (Utility), 102 
unsolicited control, 23 
UTILITY control command, 100 
Utility Control commands, 101 

ASSIGN, 102 
CHANGE, 109 

COpy, 104 
DELETE, 107, 108, 110 
DUMP, 105 
END, 102 
FBACK, 101 
FSKIP, 101 
IDENT, 110 
INSERT, 107, 109 
LIST, 107 
MESSAGE, 101· 
MODIFY, 107, 108 
OPLBS, 103 
PAUSE, 101 
PRESTORE, 102 
RBACK, 102 
REWIND, 102 
RSKIP, 102 
SEQUENCE, 111 
SUPPRESS, 111 
UNLOAD, 102 
UTILITY, 100 
UTILITY COpy, 103 
UTILITY DUMP, 105 
UTILITY OMEDIT, 106 
UTILITY RECEDIT, 108 
UTILITY SEQEDIT, 11 0 
VERIFY, 104 
WEOF, 102 

Utility Control Function command error messages, 112 . 
Uti I ity Control Function processor, 99 
Uti! ity error messages, 111 
Utility executive program, 99 
Utility I/O error messages, 111 
Utility operational labels, 100 
Utility Operator Communication routine, 100 
Utility program organization, 99 
utility programs, 99-116 
Uti I ity source Input interpreter, 99 
Utility subsystem, 6 

v 
VERIFY control command, 104 

w 
WEOF contror command (Mon itor) , 16 
WEOF control command (Utility), 102 

x 
X (step snapshot) Debug command, 142 
XED control command (Monitor), 16 
XEQ control command (Monitor), 16 
XSYMBOl control command (Processor), 17 

Index 179 



Xerox Data Systems 

XEROX Publication Revision Sheet 

MARCH, 1972 

CORRECTIONS TO XEROX REAL-TIME BATCH MONITOR (RBM)/RT, BP REFERENCE MANUAL, 

PUBLICATION NO. 90 10 37F, NOVEMBER 1971 

The attached pages contain changes for the E01 version of the RBM Operating System. Pages in the F edition of 
the manual that are to be replaced are: 39,49,50,52,68,70,71, 79, 80, 103, 104, 105, 107, 118, 127, 131, 136, 141, 
142, 147, 160, and 168. Remove these pages and insert the correspondingly numbered pages from this revision pack­
age. (The revised pages have the unchanged back-up pages printed on the reverse side, so that no material wi II 
be lost when the obsolete pages are discarded.) These changes will be incorporated into the next edition of the 
manual. 

Revision bars in the margins of replacement pages identify the changes. Changed pages are also identified as being 
part of this revision package with the number 90 10 37F-1 (3/72) at the bottom. Pages in this package without the 
identifying number are unchanged back-up pages. 

XEROX® is a trademark of XEROX CORPORATION. 90 10 37F - 1 (3/72) 



Xerox Data Systems 

READER COMMENT FORM 
We would appreciate your comments and suggestions for improving this publication. 

Publication No. IRev. Letter I Title I Current Date 

How did you use this publication? Is the material presented effectively? 

0 Learning 0 Installing 0 Operating 0 Fully covered 0 We II illustrated 

0 Reference 0 Mainta ining 0 Sales 0 Clear 0 Well organized 

What is your overall rating of this publication? What is your occupation? 

0 Very good 0 Fair o Very poor 

0 Good 0 Poor 

Your other comments may be entered here. Please be specific and give page, column, and 
line number references where applicable. To report errors, please use the XDS Software 
Improvement or Difficulty Report (1188) instead of this form. 

/' 

Thank you for your interest. Your name and return address. 

Fold and fasten as shown on back. 
No postage needed if mailed in U.S.A. 

2190(5/71 \ Xerox Data Systems 



STAPLE 

FOLD 

FOLD 

BUSINESS REPLY MAIL 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY 

Xerox Data Systems 

701 South Aviation Boulevard 
EI Segundo, California 90245 

ATTN: PROGRAMMING PUBLICATIONS 

STAPLE 

------l 

FIRST CLASS 
PERMIT NO. 229 

EL SEGUNDO, CALIF. 

I 
------1 

UJ 
z 
:::i 
(!J 
z 
o 
...J 
<l: 
I­
:::l 
U 


	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	_1
	replyA
	replyB

