SDS 900 SERIES
REAL-TIME FORTRAN II

SDS 90 10 488 January 1966

SCIENTIFIC DATA SYSTEMS

Price: $1.25

SDS 900 SERIES
REAL-TIME FORTRAN i

SDS 90 10 488 January 1966

SO S

SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, California/UP 1-0960

© 1966, Scientific Data Systems, Inc. Printed in U.S.A,

REVISIONS

This publication, SDS 90 10 48B, dated January 1966, supersedes the SDS 920/930
Real-Time FORTRAN II Technical Manual, SDS 90 10 48A. All revisions and cor-
rections that appeared in an addendum to that manual, dated November 1965, have
been incorporated in this latest edition, and they have been indicated by a vertical
line in the margin of the page.

The inclusion of these changes modifies the manual so that it now applies to both
920/930 FORTRAN II and to 910/925 FORTRAN II; hence the change in the title
of the manual to "SDS 900 Series Real-Time FORTRAN IL. "

SD S

SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION Catalog No.: 920/930 = 2120178
910/925 = 112028

IDENTIFICATION:
AUTHOR:
ACCEPTED:

COMPUTER
CONFIGURATION:

PURPOSE:

PRO GRAMMED
OPERATORS:

SUBROUTINES
REQUIRED:

STORAGE:

TIMING:

SOURCE
LANGUAGE:

LOADING
PROCEDURE:

USE:

SDS 900 Series Real-Time FOKTRAN II
R. Derin/C. Martin, SDS; Beckman Instruments, Inc.

17 September 1965

Any 900 Series Computer with at least 8000 words of memory.

To provide a Real-Time FORTRAN II System for the 900 Series Computers

FORTRAN Run=-Time System

None

See individual program descriptions (i.e., Compiler, Loader, and Run-
Time Monitor)

Not applicable

SYMBOL, META-SYMBOL

See SDS 900046 FORTRAN II Operations Manual

See SDS 900003 FORTRAN II Reference Manual

T
(R 1]

—

CONTENTS

INTRODUCTION

COMPILER

1. FORTRAN Internal Subprograms

2. Miscellaneous FORTRAN Changes and Additions
3. Modifications to the Compiler

4. FORTRAN Language Extensions

5. Computer Operations (Breakpoint Settings)

LOADER

Modifications to the Loader

RUN-TIME MONITOR

1. Memory Layout During Run-Time

2. Use of the Work List

3. Use of the Argument List

4. Programmed Operators (POPs)

5. Interrupt Processing

6. Run-Time Error Conditions

7. Recursive Features of the Real-Time FORTRAN
8. Modifications to Existing Run-Time Monitor Routines
9. List Processing Routines

0. Monitor Support Routines

1. TYPO - Typewriter Output Routine

LIBRARY.

1. Modifications to Existing Library Routines

2. System Routines

3. Interrupt Routines

4. Input/Output Routines

5.

Miscellaneous Routines

LwwNn —

o O

O oo~ O

10

11
12
i3
14
17
19

20

20
20
21
23
32

1. INTRODUCTION

This manual describes the SDS/Beckman Real-Time FORTRAN II System for SDS 920/930 Computers. The "real-time"
capability in the system was implemented by Beckman Instruments, Inc.

The manual has been designed for use by experienced systems programmers, and it contains a detailed description of
the implementation of 920/930 RTF II.

The primary design criteria for 920/930 RTF II was to produce a real-time system with full interrupt and recursive capa-
bilities. To implement this required: 1) modifications and additions to the standard SDS FORTRAN II system at the
compiler, loader, run-time monitor, and library levels; and 2) creation of special purpose programmed operators (POPs).
9207930 RTF Il is a FORTRAN based system operating under the run-time monitor; however, SYMBOL capability has
been provided for, and most of the system routines can be called either by FORTRAN or by SYMBOL code.

2. COMPILER

SECTION 1. FORTRAN INTERRUPT SUBPRO GRAMS

A. FINT (or CONNECT)

Form: CALL subroutine (arg 1, arg 2,..., arg m, FINT(n)) or CONNECT subroutine (arg 1, arg 2,..., arg m),n

This function causes "subroutine" to be called when interrupt n occurs. The arguments arg 1, arg 2,..., arg m are
set up for subroutine at the time of the interrupt. No special coding is required for subroutine, but it must be pre-
pared to accept m arguments.

subroutine = name of any normally coded FORTRAN subroutine
arg i = any integer or floating point constant or variable; should not be an expression
n = integer constant, variable, or expression between 0 and 31 but not greater than the number estab-

lished by ASSIGN.

Examples: CALL SUB1 (FINT (2 * N+ 3))
CALL SUB2 (1.0, X, J, 3, FINT (0))
CONNECT SUB3 (A, B), 2

B. SINT

Form: CALL subroutine (SINT(n))

This function causes "subroutine" to be called when interrupt n occurs. The coding for subroutine should be in
SYMBOL language because all of the interrupt housekeeping must be done in subroutine.

subroutine = name of a SYMBOL coded subroutine
n = integer constant, variable, or expression between 0 and 31 but not greater than the number estab-

lished by ASSIGN.
Example: CALL SUB3 (SINT (N+1))

C. RELEASE

Form: CALL RELEASE (n) v
This subprogram releases any subroutine that is set up to be called by interrupt n.

n = integer constant, variable, or expression between 0 and 31, but not greater than the number estab-

lished by ASSIGN.
Example: CALL RELEASE (14)

2. Compiler

D. ASSIGN

Form: CALL ASSIGN (n)
This subprogram assigns n as the number of systems interrupts that will be recognized.

n = integer constant, variable, or expression between 0 and 32. Until changed, the number of allowable
interrupts is assumed to be 16.

Example: CALL ASSIGN (12)
E. ARM

Form: CALL ARM(n)
This subprogram arms the interrupt specified by n.

n = integer constant, variable, or expression between 0 and 31, but not greater than the number estab-

lished by ASSIGN.
Example: CALL ARM(5)

F. DISARM
Form: CALL DISARM (n)

This subprogram disarms the interrupt specified by n.

n = integer constant, variable, or expression between 0 and 31, but not greater than the number estab-
lished by ASSIGN.

Example: CALL DISARM (14)
G. CONDITION

Form: CALL CONDITION
This subprogram disarms and clears all system interrupts. Input/output interrupts are not disturbed.
Example: CALL CONDITION

H. CONNECT

Form: CONNECT RTN(A, B,C,...),n
This subprogram attaches the subroutine "RTN" to interrupt line n along with arguments A, B, C.

n = integer constant, variable, or expression between 0 and 31, but not greater than the number estab-

lished by ASSIGN.
Example: CONNECT CHECK (L), 10

SECTION 2. MISCELLANEOUS FORTRAN CHANGES AND ADDITIONS

A. PAUSE

Form: PAUSE n

This statement causes the typewriter to type PAUSE n; then the program waits for the operator to switch
Breakpoint 4.

n = unsigned integer or blank.

B.

C.

2. Compiler

EXIT

Form: CALL EXIT

This subprogram is used to terminate the running of a program. It causes the typewriter to type *EXIT* and the
computer to halt. When the halt is cleared, the monitor is reinitialized for another run.

STOP

Form: STOP

This statement causes the typewriter to type *STOP*. The computer then halts. When the halt is cleared, the
computer is reinitialized for another run.

SECTION 3. MODIFICATIONS TO THE COMPILER

A.

The compiler was modified so that it would generate real-time programs. In addition, some recursive features
have been included:

1. BRS POP

Wherever there is a subprogram link, the compiler now generates a BRS or BRS* instruction instead of the BRM
or BRM* instruction.

2. Internal Functions

Internal functions start immediately with the first word of code instead of beginning with an HLT cell. The
BRR of the internal function is now replaced with a RETURN POP,

3. SUBROUTINE and FUNCTION Subprograms

Instead of an HLT cell, the subprograms now generate a SAVTMP POP as the first instruction. Changes have
been made so that a SUBROUTINE may call itseif and a FUNCTION may use itself. All BRR instructions pre-
viously generated are now replaced with BRU RELTMP instructions.

4. Subprogram Linkage

All of the system subprogram link references have been increased by 32 cells to allow room for interrupt cells.
5. PAUSE

The pause statement now generates code that causes a type out of the PAUSE message and then goes into a
Breakpoint wait.

SECTION 4. FORTRAN LANGUAGE EXTENSIONS

A.

Boolean Statements

1. A Boolean statement is indicated by a B in column 1 of the first line of the statement.
2. There are two types of Boolean statements, the assignment statement and the function definition statement.

3. All operators are considered Boolean operators except for the operators in subscript expressions and function
argument expressions.

4. All variables, constants, and functions must be integer mode except for those in subscript expressions and
function argument expressions.

2. Compiler

B. Boolean Operators

1. The following set of symbols constitutes the Boolean operators:

complement
and
exclusive or
or

+ N0 % !

2. In the absence of clarifying parentheses the - operations are performed first, then the * and / operations are
performed as encountered, and finally the + operations are performed.

3. The - operator is a unary operator that operates only on the term following it. Therefore, it may directly follow
another operator.

C. Boolean Constants

1. All Boolean constants must be in octal integer format.

2. They will be right justified if they are less than eight digits. *

D. Symbolic Code Statements

1. A symbolic code statement is indicated by an S in column 1 of the first line of the statement.
Statement numbers may be used with these statements,

The operation code is the first field encountered in the statement.

The variable field follows the operation code and is separated from it by at least one space.

The tag field follows the variable field and can only be , 2.

o voa e

The comments field is the last field within the statement and must begin with a virgule (/).

E. Symbolic Operation Code

1. The operation code may be indicated by either a three letter mnemonic or by a three digit octal number be-
tween 100 and 177.

2
r4n

All EOM and SKS type instructions must be entered as such and not with their specific mnemonic codes.

3. No pseudo-operations or data defining operations are allowed.

F. Symbolic Variable Field

1. The variable field may contain spaces.
2. The variable field can consist of the following:

a. FORTRAN scalar variables

b. Unsubscripted FORTRAN array variables
FORTRAN array variables with numeric subscripts
FORTRAN dummy variables

e. Local FORTRAN function names

Q o

f. Previously used subprogram naomes
g. Statement number, indicated by a number followed by an S

h. Decimal address, indicated by a decimal number with no preceding zero

2. Compiler

i. Octal address, indicated by an octal number preceded by zero
i. Current address, indicated by a $
k. FORTRAN literal, indicated by an = followed by any legal FORTRAN constant

I. Nothing, in which case the variable is considered to be zero

3. The vdriable field may contain a simple expression of the form V = N, where V is one of the above variables
and N'is a decimal integer.

4. Indirect addressing, is indicated by an asterisk at the beginning of the variable field.

G. Logical Operations

1. The following operations constitute the set of logical operators and have processing precedence, as shown,
from top to bottom:
.NOT. This unary operator produces logical inversion of the term following it.
AND. This binary operator produces "true" if the terms it connects are "true", otherwise "false".
.OR. This binary operator produces "true" if either connected term is "true", otherwise "false".
.EOR. This binary operator produces "true" if the connected terms represent opposed states and "false" if

they represent identical states.

2. Only the sign bit of each 24-bit word will be considered by logical operations. All positive numbers will be
“false" (first bit = zero) while all negative numbers will be "true" (first bit = one). Logical data may be any
type. Data generated by the logical operations will be all zeros in bits other than the sign bit.

3. The following logical constants are acceptable in expressions:

.TRUE.
.FALSE.

Example: A = .TRUE.
4. Mixed expressions are allowed.

SECTION 5. COMPILER OPERATIONS (Breakpoint Settings)

Breakpoint switch settings:
BP1 RESET (UP) Punch object program
SET (DOWN) Suppress punching

BP2 RESET (UP) Type source statements
SET (DOWN) Suppress typing

BP3 RESET (UP) Source from paper tape
SET (DOWN) Source from cards

BP4 RESET (UP) Source listing to printer
SET (DOWN) Source listing to typewriter

3. LOADER

MODIFICATIONS TO THE LOADER

A.

Origin of the Loader

The origin of the loader was moved up so that it could accommodate the new subprogram links. These links are
32 cells higher in core.

EOFIX and LISTFX

The loader now sets up two special cells used by the run-time system. EOFIX is the bottom of erasable store and
the start of the argument list. LISTFX is the top of erasable storage and the start of the work list. These cells are
used by the run-time system to initialize the list markers.

Main Program Load Address

The main program load address is now around cell 3200

8

Input Buffer

The maximum buffer size has been increased to 20010 words.

Program Map

The map has been incorporated with the loader. The map is printed on the console typewriter prior to loading the
Run-Time Monitor, and is selected with Breakpoint 2 set. Optionally, setting Breakpoint 1 and 2 prints the map
on the line printer.

SYMBOL
The loader will now accept SYMBOL coded statements in-line with FORTRAN.

4. RUN-TIME MONITOR

SECTION 1. MEMORY LAYOUT DURING RUN TIME

Core storage is divided into four sections during run time. Starting in lower memory and proceeding to the end of stor-
age, the four sections are organized as follows:

A.

Run-Time Monitor

The monitor is composed of constants, flags, subroutine links, and special routines, all used by the operating pro-
gram at run time. It is broken down as follows:

Temporary storage cells

List marker cells

Programmed operator links

Library subroutine links

Constant pool

Format scan temporary storage cells
System initialize routines
Programmed operator routines

List processing routines

Typewriter output routine

SoENOUALN

—

4, Run-Time Monitor

Run-Time Program

The run-time program consists only of those routines required to perform functions defined by the user, It is broken
down as follows:

FORTRAN compiled main program
FORTRAN compiled subroutines, if required
FORTRAN compiled functions, if required
SYMBOL coded subroutines, if required
FORTRAN library routines

GO b wWN —

Erasable Storage

Erasable storage is a block of memory extending from the end of the run-time programs up to the bottom of common
storage. It contains two lists defined as follows:

1. The argument address list, which occupies the bottom of erasable storage and builds toward the top
2. Thework list, which occupies the top of erasable storage and builds toward the bottom

Common Storage

Common storage is the block of memory allocated by COMMON statements in the FORTRAN program. It is
located at the very top of memory. If there were no COMMON statements, then there will be no common storage
and erasable storage will extend tc the top of memory.

17777 Common Cells 9

F Common Storage

Work List

p Erasable Storage

Argument Address List 4

FORTRAN Library Routines W
SYMBOL Coded Subroutines
FORTRAN Compiled Functions > Run-Time Program
FORTRAN Compiled Subroutines

FORTRAN Compiled Main Program

Typewriter Output Routine 3
List Processing Routines

POP Routines

System Initialize Routines
Format Scan Temporary Storage
Constants

Library Subroutine Links

POP Links

List Marker Cells

Temporary Storage Cells J

y Run-Time Monitor

4. Run-Time Monitor

SECTION 2. USE OF THE WORK LIST

The work list is the heart of the real-time monitor. It is used to save recursive variables, subroutine returns, 1/O buf-
fers, and items that must be saved during interrupts.

A.

Location of the List

The work list is located at the top of erasable storage and builds downward toward the top of the argument list. It
is not allowed to extend below the argument list since this would be a memory overflow condition.

List Marker Cell

There is a cell in memory that always points to the bottom of the work list, i.e., it contains the address of the last
word of the list. This pointer cell is named LIST.

TMP Storage Cells

There is a block of 15 temporary storage cells in the run-time monitor labeled TMP1 through TMP15. Before these
cells may be used for storage, their contents must be saved on the bottom of the work list. After these cells have
been used, they must be restored with their original contents. TMP cells are saved with the ASN n instruction and
restored with the RLS ninstruction, where n is the number of cells. The use of TMP cells in conjunction with ASN
and RLS makes possible recursive entry into a subroutine that requires temporary storage.

ZIP Storage Cells

There is a block of five temporary storage cells in the run-time monitor labeled ZIP1 through ZIP5. These cells
may be used immediately without first saving them. They may be thought of as an auxiliary set of registers. They
are saved in the list only when an interrupt occurs.

FORTRAN Storage Cells

When a FORTRAN ‘compiled subroutine is entered recursively, its temporary storage cells and recursive variables
are saved in the work list. They are restored when leaving the subroutine.

FORTRAN 1/O Buffer Space

All the FORTRAN 1/O routines use the work list for buffer space. They add to the list the number of buffer cells
needed. After using the buffer, the list is reduced to its original size.

Interrupt Usage of the List

Interrupts set up by the FINT function cause the work list to be used for storing all registers and interrupt-vulnerable
cells.

Coding used in Connection with the Work List

1. Code to Save an Item in the List

SKR LIST reduce marker address, no skip
LDA LIST pick up the list marker

SKG EADRI test to see if it exceeds the limit
BRU overflow overflow if it does

LDA item pick up the item

STA* LIST save it in the list

4, Run-Time Mor{itor

Code to Restore an Item from the List

LDA* LIST pick up the item
STA item restore it

MIN LIST increase marker address

Programmed Operator to Put an Item in the List

PUT item
" thi forms th ati inl
PUT* item link is performs the same operation as in
or without changing the A register
PUT item, 2

Programmed Operator to get an Item from the List

GET item
or . . .
GET* item link th.ns performs tbe same opert?hon as in 2
or without changing the A register
GET item, 2

Programmed Operator to Assign the First n Cells of TMP Storage from the List

ASN n cells TMP1 through TMPn are c&pied into the list

Programmed Operator to Release the First n Cells of TMP Storage from the List

RLS n cells TMP1 through TMPn are restored from the list

Programmed Operator to Branch to a Subroutine and Save the Return in the List

BRS subroutine

or
. BR .
BRS* subroutine link t.Jsed in place of a M, branches to subroutine
or instead of subroutine + 1

BRS subreutine, 2

Code to Return from a Subroutine

BRU RETURN used in place of BRR subroutine

SECTION 3. USE OF THE ARGUMENT LIST

A. The argument list provides the link between a subroutine and its caller. It is used by the calling routine to tell
the subroutine where to find its arguments. s

1.

Location of the List

The list is located in erasable storage. It starts at the bottom of erasable and builds upward toward the work
fist. It is not allowed to extend above the work list, as this would be a memory overflow condition.

List Marker Cells

There are three main marker cells associated with the list. The cell that marks the bottom of the list is named
EOADR. The top of the list is marked by a cell naned EADRI. The current cell being processed by the sub-
routine is marked by a cell named EADRZ. In addition, there are two ceils containing the same marker ad-
dress as EOADR. They are EOIND, which contains an indirect bit, and EOTAG, which contains an index bit.

9

4, Run-Time Monitor

3. Placing Arguments in the List

When a calling routine has arguments to transmit a subroutine, it places the address of the argumentsin the list.
The first argument's address is in the bottom cell of the list and the last argument's address is in the top cell.
In addition, if the argument is floating point, bit 5 of the corresponding list cell will be on.

4. Obtaining Arguments from the List

Arguments for machine language programs may be obtained by using the EOTAG or EQOIND cells. They allow
the subroutine to indirectly address cells in the list and thus obtain arguments. The way that FORTRAN com~
piled subroutines obtain arguments is to use the start dummy (STRTDM), the compiler-generated dummy setup
procedure, and end dummy (ENDDMY) routines. In addition to obtaining the arguments, these routines also
check the mode and number of arguments. See Chapter 5, Section 2, "System Routines. "

SECTION 4., PROGRAMMED OPERATORS (POPs)

The FORTRAN system incorporates a set of special purpose POPs designed particularly for FORTRAN programs. Some
of these have HELP/SYMBOL functional counterparts; however, the POP entry locations may not coincide since the
two programmed operator sets are not identical. (FORTRAN, for example, does not require a single precision, fixed
point, square root POP.) Thus, the standard SYMBOL assembler should not be used to assemble FORTRAN subroutines
unless they contain no POPs. OPDs should be used to define these POPs.

Real-Time FORTRAN II contains the run-time POPs listed in the SDS 920/930 FORTRAN II Operations Manual plus the
following additions:

102 SKR - Reduces M by 1, skips if negative 152 SKD - Differences exponents and skips

103 SKE - Skips if A equals M 160 ASN - Assign Temporary Storage. Puts TMP cells
106 FEO - Floating Exclusive OR in work [ist.

124 MUL - Multiplies A by M
127 DIV - Divides A by M

161 RLS - Release Temporary Storage. Restores TMP
cells from the work list.

162 BRS - Branch and Save Return. Used to enter a
130 SKB - Skips if M and B do not compare ones recursive subroutine.
133 ADM - Adds A and M 163 RTN - Return. Used to leave arecursive subroutine.
134 FOR - Floating OR 164 SAV - Saves FORTRAN temporary storage on re-

cursive entries to FORTRAN compiled subroutines.

137 FAN - Floating AND
143 XMA - Exchanges memory and A
146 RCH - Register changes

165 PUT - Puts the operand in the work list.
166 GET - Gets the operand from the work list.
Note: Care should be taken in using POPs that access floating point quantities in memory. These POPs double the

index register before accessing the floating point variable since floating point quantities require two words
of storage. The original value of the index register is restored prior to exit.

POP numbers above 166 may be used by the programmer to write his own Run-Time POPs. They must be written in
machine language, and they will be loaded and relocated by the LOADER. This does not apply to cell 177g, which

is the list marker address.

SECTION 5. INTERRUPT PROCESSING

A. Interrupt Cells

There are 18 or 34 interrupt cells used by the system. Each must reference some routine by way of a BRM instruc-
tion. The routines referenced, however, may be changed during the running of the program. The assignment of
the interrupt cells is as follows:

4, Run-Time Monitor

Cell (in octal) Assignment

31 W buffer I1 interrupt

33 W buffer I2 interrupt

200-217 Patchable system interrupts

220-237 Patchable system interrupts (optional with hardware configuration)

Priority of Interrupts

The routines assigned to the lowest numbered interrupt cells have the highest priority. Therefore, if a routine as-
signed to interrupt cell 200 is being executed and an interrupt signal for cell 33 occurs, the 33 interrupt will be
serviced immediately. If, however, a 201 interrupt occurs, it must wait until the 200 interrupt routine is finished
before it can be serviced.

Enabling of Interrupts

In order for any interrupt to be serviced, the enable instruction (EOM 20002) must be executed; otherwise, inter~
rupt signals will be ignored. All interrupts are disabled with EOM 20004,

Assignment of W Buffer Interrupts

Each I/O routine assigns its own ¥ wuffer interrupt routines. When an I/O routine is entered, one of its first tasks
is to place appropriate BRM instructions in cells 31 and 33. Since it is possible that cells 31 and 33 might be
changed by another 1/O routine when an interface interrupt occurs, these cells are saved before and restored after
the interrupt is serviced.

Assignment of Patchable System Interrupts

During the system initialization phase of the run-time monitor, the patchable system interrupt cells (200—231) are
plugged with BRM instructions which reference "do-nothing" routines. All that a do-nothing routine does is clear
its interrupt and return. Then during the running of the program, assignments of subroutines may bemade to these

interrupt cells. These assignments may be made by using either the FINT, CONNECT, or the SINT functions, or
simply by storing a BRM instruction in the interrupt cell.

Releasing Interrupt Assignments

\

The assignment of a subroutine to an interrupt cell may be released in two ways. One way is to assign another
subroutine to the interrupt cell. This automatically releases any prior assignment. The other way is to use the
RELEASE subroutine. This subroutine plugs a reference to a do-nothing routine into the interrupt cell.

SECTION 6. RUN-TIME ERROR CONDITIONS

A.

When an error condition is detected during the running of a program, two things happen. First, the appropriate
error message is output through the typewriter. Second, the program waits for Breakpoint 4 to be changed from its
current setting. If the operator decides the program may continue, he should change the Breakpoint switch; other-
wise, he should terminate program execution.

Error Message Meaning
ERR AGTO Assigned GO TO variable never assigned. Result: Unpredictable.
ERR ARGM An argument of the wrong mode was given to a FORTRAN compiled subprogram.

Result: Unpredictabie.

11

4,

Run-Time Monitor

Error Message

Meaning

ERR ARGN

ERR ARM
ERR ASGN
ERR CGTO

ERR EFIA

ERR EXP

ERR FCHR

ERR ICHR

ERR IFSL
ERR IFSS
ERR INT
ERR INUM
ERR LOG
ERR N**F

ERR OEXP

ERR RELSE
ERR PRTY

ERR SNLT
ERR SNT1

ERR SNT2
ERR SQRT

ERR RLSE
ERR 0**N

The wrong number of arguments was given to a FORTRAN compiled subprogram. Result: If too
many, extra ones are ignored. If too few, whatever arguments remain in the argument list will
be used.

An illegal number of interrupt lines was given to ARM or DISARM. Result: No action is taken.
An illegal number of interrupt lines was given to ASSIGN. Result: No action is taken.

The computed GO TO value is outside the allowable range. Result: Go the the first statement
number in the list.

" AnE, F, I, or A is missing from the FORMAT. Result: Processing proceeds without output of

the variables.

The argument given to EXP was greater than 176. Result: The answer is set to the maximum
floating point value.

An illegal character was found in the FORMAT. Result: The scan for the next specification
begins, i.e., the character is treated as if it were a comma.

There is an illegal input character. Result: The scan begins for the next field, i.e., treats the
character as if it were a comma.

The IF SENSE LIGHT value was not 1-24. Result: The test is assumed off.

The IF SENSE SWITCH value was not 1-4. Result: The test is assumed off.

The argument give to the FINT function was invalid. Result: No interrupt assignment is made.
The characteristic of an input number exceeds = 99. Result: The number is set to zero.

The argument given to ALOG was either negative or zero. Result: The answer is set to zero.

A negative number was raised to a nonintegral floating point power. Result: The absolute
value of the number is used.

An output exponent is greater than 99. Result: The exponent is cleared to zero and the result-
ing number is output.

An illegal interrupt line number was given to RELEASE. Result: No action taken.

An input parity error has occurred. Result: The input record is read again. This means that
card or tape must be repositioned or the typewriter message must be keyed in again.

The SENSE LIGHT value was not 0-24. Result: No action is taken.

The SINT function was used improperly. Result: An attempt is made to make the proper in-
terrupt assignment.

The argument given to the SINT function was invalid. Result: No interrupt assignment is made.

The argument given to SQRT was negative. Result: The square root of the absolute value is
taken. :

The argument given to RELEASE was invalid. Result: No action is taken.

Zero was raised to a nonpositive power. Result: (0**0) will be 1 or 1.0, and (0**negative)
will be the maximum possible integer or floating number.

SECTION 7. RECURSIVE FEATURES OF REAL-TIME FORTRAN

A,

12

A byproduct of Real-Time FORTRAN II is the ability of subprograms to be recursive. This ability is needed for

real-time programming because subroutine "X" could be interrupted by a routine which also calls subroutine X.

This implies that there must be a way to keep track of the recursive calls so that their respective returns will be
made to the proper place. Furthermore, temporary variables used must be saved and restored for each recursive
entry into a subroutine; otherwise, the latest recursive entry into a subroutine would destroy the temporary vari-
ables being used by an earlier entry.

4, Real-Time Monitor

Recursive Variables

The Recursive variables are those that are temporary in nature. These would be the variables used for index-
ing through arrays and counting through DO loops, those saved as intermediate results, and so on. In this
system recursive variables have arbitrarily been chosen as those scalar variables that do not appear in COM-
MON or EQUIVALENCE statements. If a dummy variable (an argument used by a subroutine or function) is
to be used recursively, a recursive variable should be set equal to it and used in its place.

Examples-of Recursive Programming

Two simple subprograms are shown below to illustrate recursive programming. The first is a subroutine that
calls itself and the second is a function that uses itself.

a. Compute the characteristic of a number
SUBROUTINE COMPUTE (NDUMMY)
COMMON CHAR
NUMBER = NDUMMY
IF (NUMBER - 10) 1, 2, 2

1 CHAR =0
RETURN
2 CALL COMPUTE (NUMBER/10)
CHAR = CHAR + 1
RETURN
END

b. Compute the factorial of a number

FUNCTION IFACTORIAL (NDUMMY)
N = DUMMY
IF(N)1, 1, 2

1 IFACTORIAL =1
RETURN

2 IFACTORIAL = N*IFACTORIAL (N-1)
RETURN
END

SECTION 8. MODIFICATIONS TO EXISTING RUN-TIME ROUTINES

A.

The FORMAT scan routines and the POP routines have been modified to operate in a real-time environment.

1.

Subroutine Linkages

All subroutines have been modified so that they no longer begin with HLT cells. The BRM instructions have
been changed to BRS POPs and the BRR instructions changed to BRU RETURN instructions.

Floating Point POPs

The temporary storage cells used by the floating point POP subroutines are all ZIP storage. This, then, does
not slow down the subroutines as would TMP storage because of the assigning and releasing required.

13

4,

Run-Time Monitor

FORMAT Scan Routines

The temporary storage required by the FORMAT scan routines is much more than the 15 TMP cells can handle.
Therefore, when the FORMAT scan is entered recursively, all of its temporary storage is saved in the work
list.

SECTION 9. LIST PROCESSING ROUTINES

A.

14

PUTPOP (programmed operator routine)

1.

Function

The purpose of PUTPOP is to take the POP operand and put it on the bottom of the work list.

Input

The POP operand is the only input.

Method

The method used is first to reduce the list marker address and test to see if the list exceeds its limit. [f it does,
the overflow routine is executed; otherwise, the POP operand is placed on the bottom of the list.

Subroutines

Name Function

OVFLO prints the overflow message and halts

POP Definition

PUT OPD 16500000

Timing

25 cycles or .200 ms.

GETPOP (programmed operator routine)

1.

Function

The purpose of GETPOP is to get the contents of the cell at the bottom of the work list and store it in the
POP operand cell.

Input

The POP operand is the only input.

Method

The method used is first to pick up the bottom list cell, store it in the POP operand cell, and then increase
the list marker address.

POP Definition

GET OPD 16600000

5.

4, Run-Time Monitor

Timing

20 cycles or .160 ms.

ASNPOP (programmed operator routine)

1.

Function

The purpose of ASNPOP is to take the number of TMP cells indicated by the POP address and put them on the
bottom of the work list.

Input

The input is a number in the POP address.

Method

Space is created in the work list to accommodate the required number of TMP cells. If the list exceeds its
limit, the overflow routine is exeucted; otherwise, the TMP cells are copied into the space just provided at
the bottom of the list.

Subroutines

Name Function

OVFLO prints the overflow message and halts.

POP Definition

ASN OPD 16000000

Timing

35+7n cycles or .280+.056n ms., where n is the number of TMP cells to be saved.

RLSPOP (programmed operator routine)

1.

Function

The purpose of RLSPOP is to take the number of cells indicated by the POP address from the bottom of the
work list and put them in TMP storage.

Input

The input is a number in the POP address.

Method

The required number of cells are copied from the bottom of the list into TMP storage, and the list marker ad-
dress is incremented to reflect this reduction of the list.

POP Definition

RLS OPD 16100000

Timing

37+7n cycles or .296+ .056 ms., where n is the number of TMP cells to be restored.

15

4,

E.

G.

Run-Time Monitor

BRSPOP (Programmed operator routine)

1.

Function
The purpose of BRSPOP is to branch to the POP operand and save the location of the POP in the work list.

Input

The input is the POP operand.

Method

A branch instruction is made using the effective address of the POP. The location of the POP is placed on
the bottom of the work list. Then the branch instruction is executed. If the list exceeds its limit, the over-
flow routine is executed instead.

Subroutines

Name Function

OVFLO prints the overflow message and halts

POP Definition

BRS OPD 16200000
Timing

32 cycles or .256 ms.

RETURN (programmed operator routine)

1.

Function

The RETURN POP is used in conjunction with the BRS POP, It gets the return address that the BRS put on the
bottom of the list. [t then returns to that address and restores the overflow indicator to what it was when the
BRS was executed. Because the address of the RETURN POP is not used, a simple BRU RETURN may be sub-

stituted for the POP.

Method

The method used is to get the return address from the bottom of the work list, reset the overflow indicator,
and then perform a BRR with the return address as the operand.

POP Definition

RETURN OPD 16300000
or OPD 00100163

Timing

18 cycles or .144 ms.

SAVTMP (programmed operator routine)

i

Function

The purpose of SAVTMP is to save temporary storage and recursive variables when a routine is entered recur-
sively. It is used exclusively by FORTRAN compiled subroutines.

4. Run-Time Monitor

2. Method
Because the SAVTMP POP is inserted as the first instruction of a FORTRAN compiled subroutine, it serves as
a location marker for finding the temporary storage and recursive variables. In addition, it also serves as an
entry flag for the subroutine. Whenthe subroutine is entered, the POP and its location are saved. If the sign
bit of the POP is negative, meaning that this is a recursive entry, the temporary storage and recursive vari-
ables are saved in the list. If the sign bit is positive, meaning that this is not a recursive entry, it is changed
to negative.

3. Subroutines
Name Function
ANSPOP Store TMP cells in the work list

4. Timing
See RELTMP (below).

H. RELTMP

1. Function
The RELTMP routine is used in conjunction with SAVTMP POP. lts purpose is to restore the temporary storage
and recursive variables saved by SAVTMP. It is used also to initiate the return from a FORTRAN compiled
subroutine.

2. Method
The entry flag of the subroutine is restored and tested to see if this was a recursive entry. If it was not, a
return is made to the calling program; if it was, the temporary storage and recursive variables are restored
before returning to the calling program.

3. Subroutines
Name Function
RLSPOP releases TMP cells from the work list

4. Timing

63 cycles or .504 ms., if it was not a recursive entry; 81+ 17 n cycles or.648 +.136n ms., where n is the
number of cells to be restored, if it wos a recursive entry.

SECTION 10. MONITOR SUPPORT ROUTINES

A. SYSINI

2.

Function

The purpose of the system initialize routine, SYSINI, is to prepare the monitor for the start of the main pro-
gram.

Method
The method used is to reset ail the monitor switches, piug aii the interrupt celis with do-nothing routines,

' o . 2ot 1 H | T Y rk e cacatd th b tine recursiy
clear any active interrupts, reset the work list and argument list marker cells, reset the subroutine recursive
entry switches, disable the system interrupts, type the starting message, halt, and branch to the main program.

17

4.

B.

18

Run-Time Monitor

ERROR

1.

Function

The purpose of ERROR is to indicate an execution error by typing the comment ERR plus a code word. After
typing the error, this routine branches to the Breakpoint Wait routine.

2. Input
The input is a four-character code word located just below the BRS ERROR instruction.
3. Method
The error message is placed at the bottom of the work list, so as not to be vulnerable to recursive entries into
ERROR. After typing out the message and releasing it from the list, the BPWAIT routine is entered.
4. Subroutines
Name Function
ASNPOP assigns TMP cells to the work list
RLSPOP releases TMP cells from the work list
PUTPOP puts a cell on the bottom of the list
TYPO outputs a message through the typewriter
BPWAIT waits for Breakpoint 4 to be switched
BPWAIT
1. Function
The purpose of the Breakpoint Wait routine, BPWAIT, is to provide a wait in the program that does not halt
the computer.
2. Method
Breakpoint 4 is tested until the operator switches it; then a return is made back to the calling program.
3. Subroutines
Name Function
OVFLO prints the overflow message and halts
ASNPOP assigns TMP cells to the work list
4. POP Definition
SAVTMP OPD 16400000
5. Timing

70 cycles or .560 ms., if it is not a recursive entry; 103+ 17 n cycles or .824+ .136 n ms., where n is the num-
ber of cells to be saved, if it is a recursive entry.

4, Run-Time Monitor

D. OVFLO

E.

1.

Function

The purpose of the overflow routine, OVFLO, is to indicate that there is no more space left in erasable stor-
age. The message OVERFLOW AT xxxxx is typed, where xxxxx is the point in the program where overflow
occurred,

2. Input
The overflow point is put in location zero.

3. Method
The method used is to disable interrupts and disconnect any 1/O. The overflow point is converted to an octal
number and then typed out in the overflow message. After the message is typed, a halt occurs. When the
halt is cleared, the monitor is reinitialized.

SAVE

1. Function
The purpose of the SAVE routine is to save all the registers and interrupt-vulnerable cells when an interrupt
occurs. SAVE then executes the interrupt subroutine, after which it restores the registers and vulnerable cells.

2. Input
Because this routine is not entered by a BRS, the return address is found in the index fegister. The index reg-
ister is also used to find the location of the interrupt subroutine.

3. Method
The A, B, and X registers, the five ZIP cells, the floating overflow indicator, the two buffer interrupts cells,
and the marker for the argument list bottom are all soved on the bottom of the work list. The contents of the
argument list are saved by setting the marker for the bottom of the argument list equal to the marker for the
top of the argument list. After the interrupt routine has been executed, the above process is reversed.

4. Timing

92 cycles or .736 ms are used to save everything
89 cycles or .712 ms are used to restore everything

SECTION 11. TYPO-TYPEWRITER OUTPUT ROUTINE

A,

D.

Function

The purpose of TYPO is to output data to the typewriter.

Input

A register = word count of record

X register = location of output record

Returns

Entry address + 1, only

Method

The routine operates under 11 and 12 interrupts, and data is output in 4~character-per-word mode.

Timing

66.7 ms per character (15 char/sec)

19

5. LIBRARY

SECTION 1. MODIFICATIONS TO EXISTING LIBRARY ROUTINES

A.

System Subprogram Links

In order to accommodate the interrupt cells, the subprogram links were moved up 32 cells, and all references to
these subprogram links were moved up accordingly.

Subroutine Entries

All subroutine entry points were modified so that they no longer begin with HLT cells; instead, they begin with
the first program instructions.

Subroutine Exits

Instead of the BRR instruction, the subroutines now return with a BRU RETURN instruction.

Subroutine Calls

When calling another subroutine, the BRS POP is now used instead of the BRM instruction.

Temporary Storage

All references to temporary storage have been changed to reference either TMP or ZIP cells. If TMP cells are
used, the appropriate ASN and RLS POPs are used to assign and release them.

SECTION 2. SYSTEM ROUTINES

The system routines listed below cannot be called by name. They are given octal numbers ranging from 241 to 304 and
are used in much the same manner as programmed operators; that is, the linkage to them is storedin locations 241 to 304,
and they are entered by a BRS POP. Only those routines called for implicitly in the program will actually be loaded.

The description of each routine in the following list includes:

241

242

243

244

245

20

1. Octal number

2. Name

3. Operaiion performed

4. Memory Storage used

5. Other system routines required, if any

STRTDM - Start of dummies. Used by FORTRAN 246 COMPGO - Computed Go To. Performs the com-
subprograms in obtaining arguments from the calling puted GO TO.

program. Memory: 14 words

Memory: 4 words

ENDDMY - End of dummies. Used in conjunction sole typewriter.
with above in obtaining arguments. Memory: 10 words
Memory: 11 words Requires: 275 (INITFS)
STOP - Stop. Types *STOP* and halts. 250 ACCTAP - Accept Tape. Reads from paper tape.
Memory: 10 words Memory: 10 words
IFSNSW - If Sense Switch. Performs the IF SENSE Requires: 275 (INITFS)
SWITCH test. 251 PRINT = Print. Same as TYPE.
M : 1
emory: 19 words 253 PNCHTP - Punch Tape. Punches paper tape.
IFSNLT - If Sense Light. Performs the IF SENSE Memory: 10 words ‘
LIGHT test. Requires: 275 (INITFS)

Memory: 21 words

247 ACCEPT - Accept. Reads information from the con-

254 TYPE - Type. Types on the console typewriter.
Memory: 9 words
Requires: 275 (INITFS)

255 SQRT - Square Root. Takes the square root of an
argument. This system routine may also be called
by name.

Memory: 79 words

256 READ - Read. Reads BCD cards.
Memory: 10 words
Requires: 275 (INITFS)

263 ENDIOL - End input/output list. Used by all input/
output lists.
Memory: 32 words

264 IFOVL - If overflow. Tests status of floating=-point
overflow indicator and branches accordingly.
Memory: 6 words

267 SENSLT - Sense Light. Sets sense light.

Memory: 19 words

270 POWER - Power. Raises an argument to a floating-
point or integer power.
Memory: 100 words
Requires: ELOGF and EXPF

271 FIX - Fix. Converts floating=point number to in~
teger.

Memory: 3 words

272 FLOAT - Float. Converts integer to floating-point
number.

Memory: 3 words
SECTION 3. INTERRUPT ROUTINES
A. FINT (or CONNECT) — FORTRAN Interrupt

1. Function

273

274

275

301

302

303

304

IOLUSA - Input/output list subscripted array. Used
during input and output of arrays when listed with-
out subscripts (e.g., TYPE 3, A).

Memory: 30 words

PAUSE - Pause. Types PAUSE and an integer.
Memory: 39 words

INITFS - Initialize format scan. Used in conjunc-
tion with the FORMAT scan routines in the run-time
system,

Memory: 55 words

Requires: 276 (BINBCD)

READTP - Read Tape.
binary mode.
Memory: 132 words

Read from magnetfic tape in

WRITAP - Write Tape. Write on magnetic tape in
binary mode. v
Memory: 115 words

ENFILE - Write End of File.
mark on magnetic tape.
Memory: 61 words

REWIND - Rewind Tape.
beginning-of-tape mark.
Memory: 6 words

Write an end-of-file

Rewind magnetic tape to

The purpose of the FORTRAN interrupt routine, FINT, is to assign a FORTRAN compiled subroutine or a

SYMBOL coded subroutine to an interrupt line.

(FINT may also be called with a CONNECT statement.)

The linkage is set up so that when an interrupt occurs the arguments at that moment are set up and the sub-

routine is entered.

2. Input

The interrupt line number is the first argument of the argument list. The subroutine location is the effective
address of the first BRS instruction following the BRS FINT instruction.

3. Method

First, a search is made for the BRS that contains the subroutine iocation.

Next, a linkage is set up so that

when the desired interrupt occurs the BRM in the interrupt cell will branch to a small routine assigned to that

cell.

This routine will enter the SAVE subroutine and supply it with the beginning location of the desired

ANIT

argument sefup instructions. Affer the inferrupt subroutine has been executed and the SAVE subroutine has

restored everything, a return is made to the small routine.

It in turn clears the interrupt.

21

5.

22

Library

Error Messages

Code Meaning

INT The interrupt line number is not valid or was given as a floating -point number
Subroutines

Name Function

ERROR Outputs the error message

SAVE Saves the interrupt-vulnerable cells and enters the interrupt subroutine

SINT - SYMBOL Interrﬁpt

1.

Function

The purpose of the SYMBOL interrupt routine, SINT, is to assign a SYMBOL coded subroutine to an inter-
rupt line. This subroutine must do its own interrupt housekeeping and must clear the interrupt when it returns.

Input

The interrupt line number is the first argument of the argument list. The subroutine location is the effective
address of the first BRS insiruction following the BRS SINT instruction.

Method

A search is made for the BRS that contains the subroutine focation. Next a linkage is set up so that when an
interrupt occurs on the desired interrupt line there will be a direct BRM to the interrupt routine.

Error Messages

Code Meaning

SNTI1 SINT was used improperly

SNT2 The interrupt line was an invalid argument

Subroutines

Name Function

ERROR Outputs the error message

RELEASE - Release Interrupt

1.

Function

The purpose of release is to release the subroutine assigned to a particular interrupt line.

Input

The interrupt line number is in the first argument of the argument list.

Method

The desired interrupt cell is filled with a BRM to its associated do-nothing routine.

5. Library

Error Messages

Code Meaning

RELSE The interrupt line number argument was invalid
Subroutines

Name Function

ERROR Outputs the error message

D. ARM (or DISARM) - Arm or Disarm Systems Interrupts

1.

2.

Function

The purpose of these routines is to initiate the ARM interrupt and DISARM interrupt hardware option.

Method

The interrupts are armed or disarmed by using an EOM and a POT word that is built from the argument. These

routines do not disable the interrupts. Interrupt cell 217g is always armed but not disarmed. All "hanging"
systems interrupts are cleared.

E. CONDITION - Disarm Systems Interrupts

1.

2.

Function

This routine will disarm all systems interrupts without argument transfer.

~ Method

The systems interrupts are disarmed by using the DISARM routine with the run-time constant ASIGN to define
the number of interrupts.

F. ASSIGN - Assign Number of Interrupts

1.

2.

Function

This routine will change the number of defined systems interrupts by the argument.
Method

ASIGN in the run-time monitor is substituted with the valid argument.

SECTION 4. INPUT/OUTPUT ROUTINES

A. TYPI - Typewriter Input

1.

Function

The purpose of TYPI is to input data through the typewriter, and to detect buffer errors.

Input

A register = location of input buffer area.

23

5. Library

3. Output

X register = character count of record.

LOCATION contains input data,
4. Returns

Entry address +1, buffer error during input.
Entry address +2, normal.

5. Method

The routine operates under 11 interrupt control, and data enters the computer in the single character mode.
Leading carriage returns (C/R) are ignored, and ++ followed by a C/R voids an entry. Data followed by a
C/R terminates input. Although data enters in single character mode, it is packed four characters per word
in the buffer area.

6. Timing
Type-in speed of user,

B. CARD - Card Input

1. Function

The purpose of CARD is to read up to 80 columns of data from a card, and to detect input errors.

2. Input

A register = location of input buffer area.

3. Output

X register = character count of record (0 if blank card).

LOCATION contains input data.
4. Returns

Entry address +1, buffer error during input.
Entry address +2, normal.

5. Method

The routine operates under 11 and 12 interrupt control, and data enters the computer in the single character
mode. Card blanks (60) are converted to code (12) blanks during input, and the character count is deter-
mined by the column containing the last non-blank character. Data is packed four characters per word in
the buffer area.

6. Timing
240 ms per card (250 cards/minute).

C PPTO - Paper Tape Output

1. Function

The purpose of PPTO is to punch data on paper tape, with or without leader, in 4-character-per-word mode.

24

5. Library

2. Input

A register = word count of record.
B register = 0 denotes leader.
0 denotes no leader.
X register = location of output record.
3. Returns
Entry +1, only.
4. Method

The routine operates under I1 and [2 interrupt control, and outputs data in 4-character-per-word mode, with
or without leader.

5. Timing
16.7 ms per character (60 characters/second).

FPTI - Paper Tape Input

1. Function
The purpose of FPTI is to input data from paper tape in the single character mode, and to detect buffer errors.

2. Input

A register = location of input buffer area.
3. Output

X register = character count of record.

LOCATION contains input data.
4. Returns

Entry address +1, buffer error during input.
Entry address +2, normal,

5. Method
The routine operates under 11 and 12 interrupt control. Data enters the computer in single character mode.
Delete codes (77) are ignored, and input is terminated by a C/R (52), or gap. Data is packed four charac-

ters per word in the buffer area.

6. Timing

3.33 ms per character (300 characters/second).

READTP -~ Read Magnetic Tape Binary

1. Function

Reads one logical record from magnetic tape in the binary mode.

25

5. Library

2. Input

Tape unit in the A register.

3. Subroutines
SETUP temporary storage setup.
RTAPE read magnetic fape.
CALCKS calculate checksum.

4. Error Messages

LRR (unit) short logical record; record ftruncated.
CKS (unit) checksum error; record processed.

5. Memory Allocation

94 cells.

G. WRITAP - Write Magnetic Tape Binary

1. Function
Writes one logical record on magnetic tape in the binary mode.

2. Input

Tape unit in the A register,

3. Subroutines

SETUP temporary storage setup.
CALCKS calculates checksum.
WTAPE write magnetic tape.

4. Memory Allocation

81 cells.

H. SETUP - Initialize Temporary Storage

1. Function
Initializes temporary storage for binary input/output.

2. Memory Allocation

26 cells.

I. CALCKS - Calculate Checksum

1. Function
Calculates checksum for physical binary record.

2. Result

Folded checksum is in the A register.

26

5. Library

3. Memory Allocation

20 cells.

READIT - Read Magnetic Tape BCD

1. Function

Reads magnetic tape in the BCD (even parity) mode.
2. Input

Tape unit in the A register.
3. Subroutines

INITFS initializes FORTRAN format scan.
RTAPE reads magnetic tape.

4. Memory Allocation

14 cells

WRITOT - Write Magnetic Tape BCD

1. Function
Writes magnetic tape in the BCD (even parity) mode.

2. Input

Tape unit in the A register.
3. Subroutines

INITFS initializes FORTRAN format scan.
WTAPE writes magnetic tape.

4. Memory Allocation

11 cells.

RTAPE - Read Magnetic Tape Binary or BCD

1. Function
Reads magnetic tape in either binary or BCD mode. (Odd or even parity, respectively.)

2. Input

Tape unit in A register.

Word count in X register,

Location in B register SIGN bit on - binary.
SIGN bit off - BCD.

27

5. Library

3. Error Messages

EOF (unit) end of file detected, another record read.
ETR (unit) end of tape detected; continues.
RDT (unit) read error uncleared after 10 tries; bad record processed.

4. Subroutines

SETIOT sets up 1/O list, etc.
ERRMSG controls tape positioning following error conditions; outputs error messages.
RESET resets temporary storage.

5. Memory Allocation

67 cells.

M. WTAPE - Write Magnetic Tape Binary or BCD

1. Function
Writes a record on magnetic tape in either binary or BCD mode. (Odd or even parity, respectively.)

2. Input

Tape unit in the A register.

Word count in the X register.

Location in the B register: SIGN bit on - binary.
SIGN bit off - BCD.

3. Error Messages
FPT (unit) file protected; hangs until cleared,
ETW (unit) end of tape detected; continues.
WRT (unit) write error; tape erased after five tries and record is rewritten.

4, Subroutines

SETIOT sets up 1/0 list, etc.

RESET resets temporary storage.
ERRMSG controls tape positioning following error conditions; outputs error messages.
ERASE erases tape.

5. Memory Allocation

80 cells.

N. SCAN - Move Magnetic Tape

1. Function
Moves magnetic tape one physical record in either direction.

2. Input

Tape unit in the A register.
Direction in the B register: negative, forward; positive, backward.

28

3. Subroutines

SETIOT sets up 1/O list,
RESET resets temporary storage.

4. Memory Allocation

37 cells.

BKSPAC - Backspace Magnetic Tape

1. Function

Backspaces magnetic tape one logical record.
2. Input

Tape unit in the A register.
3. Subroutines

SETIOT sets up 1/O list,

ERRMSG controls tape errors; outputs error messages.

RESET resets temporary storage.
SCAN moves magnetic tape one record.

4. Memory Allocation

93 cells.

ERASE - Erase Magnetic Tape

1. Function

Erases magnetic tape 4.5 inches.
2. Input

Tape unit in the A register.
3. Subroutines

SETIOT sets up 1/O list.
RESET resets temporary storage.

4, Memory Allocation

38 cells.

ENFILE - Write End of File on Magnetic Tape

1. Function
Writes an end of file mark on magnetic tape.

2. Input

Tope unit in the A register.

5. Library

29

5. Library

3. Error Messages

FPT (unit) file protected; computer hangs up until cleared.
WEF (unit) backspaces and rewrites EOF until error is cleared.

4. Subroutines
SETIOT sets up 1/O list, etc.
RESET resets temporary storage.

ERRMSG controls error conditions; outputs error messages.

5. Memory Allocation

53 cells.

R. REWIND - Rewind Magnetic Tape

1. Function

Rewinds magnetic tape.
2. Input

Tape unit in the A register,
3. Subroutines

SETIOT sets up 1/O list, etc.
RESET resets temporary storage.

4. Memory Allocation

9 cells.

S. SETIOT - Set Up I1/O Instructions

1. Function

Sets up 1/O instructions for all magnetic tape operations in temporary storage. Checks validity of the tape
unit number and the density of the magnetic tape unit.

2. Error Messages

TPNO (tape unit in A) unacceptable tape number; uses 3 low-order bits as tape number.
BPI (tape unit) tape density error; awaits change of density.

3. Memory Allocation

63 cells.

T. RESET - Reset 1/O Instructions

1. Function

Resets temporary storage saved by SETIOT.

30

5. Library

2. Memory Allocation

10 cells,

ERRMSG - Magnetic Tape Error Message

1. Function
Controls error conditions found in magnetic tape routines; outputs error messages.

2. Input

Error code in the index register.
3. Subroutines
SCAN moves tape one record.

4. Memory Allocation

47 cells.

PRINT - Print on Line Printer

1. Function
Prints a line on the high speed printer.
2. Subroutines

INITFS initializes FORTRAN format scon.
PRTR outputs information to the printer.

3. Memory Allocation

9 cells.

PRTR - Output to Line Printer

1. Function
Outputs information to the high speed printer.
2. Method
Limits output to 33 words. Changes trailing carriage return to a blank.

3. Memory Allocation

87 cells.

31

5. Library

SECTION 5. MISCELLANEOUS ROUTINE

32

PAUSE - Pause in Execution

1.

Function

The purpose of PAUSE is to cause the message PAUSE x to be typed out and to wait for Breakpoint 4 to be
switched before continuing. This routine is called by the PAUSE x statement in FORTRAN where x is some
integer or a blank.

Input

The input is a positive integer in binary form located in the word following the BRS PAUSE instruction.
Ovutput

The message PAUSE x is output where x is some integer or is blank.

Method

The integer is converted for output with leading zeros eliminated. The entire pause message is then placed

on the bottom of the work list and is output through the typewriter. Finally the message is released from the
list and the Breakpoint Wait routine is entered. .

Subroutines

Name Function

TYPO outputs a message through the typewriter.
BPWAIT waits for Breakpoint 4 to be switched.

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32

