
SOS 900 SERIES
REAL-TIME FORTRAN II

I 50S 90 10 48B January 1966

SOS 900 SERIES
REAL-TIME FORTRAN II

SOS 90 10 488 January 1966

Price: $1.25

SC'lFNTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, California/UP 1-0960
-----~----------. --- -, - ,.,

© 1966. Scientific Data Systems. Inc. Printed in U.S.A.

ii

REVISIONS

This publication, SOS 90 10 48B, dated January 1966, supersedes the SOS 920/930
Real-Time FORTRAN II Technical Manual, SOS 90 10 48A. All revisions and cor
rections that appeared in an addendum to that manual, dated November 1965, have
been incorporated in this latest edition, and they have been indicated by a vertical
line in the margin of the page.

The inclusion of these changes modifies the manual so that it now applies to both
920/930 FORTRAN II and to 910/925 FORTRAN II; hence the change in the title
of the manual to "SOS 900 Series Real-Time FORTRAN II. II

t ;1 • -It; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION Catalog No.: 920/930 = 212017B

910/925 = 112028

IDENTIFICATION: SDS 900 Series Real-Time FOkTRAN II

AUTHOR: R. Derin/C. Martin, SDS; Beckman Instruments, Inc.

ACCEPTED: 17 September 1965

COMPUTER
CONFIGURATION: Any 900 Series Computer with at least 8000 words of memory.

PURPOSE:

PROGRAMMED
OPERATORS:

SUBROUTINES
REQUIRED:

STORAGE:

TIMING:

SOURCE
LANGUAGE:

LOADING
PROCEDURE:

USE:

To provide a Real-Time FORTRAN II System for the 900 Series Computers

FORTRAN Run-Time System

None

See individual program descriptions (i.e., Compi ler, Loader, and Run
Time Monitor)

Not applicable

SYMBOL, META-SYMBOL

See SDS 900046 FORTRAN II Operations Manual

See SDS 900003 FORTRAN II Reference Manual

iii

CONTENTS

1. INTRODUCTION

2. COMPILER

1. FORTRAN Internal Subprograms 1
2. Miscellaneous FORTRAN Changes and Additions 2
3. Modifications to the Compi ler 3
4. FORTRAN Language Extensions 3
5. Computer Operations (Breakpoint Settings) 5

3. LOADER 6

Modifications to the Loade[6

4. RUN-TIME MONITOR 6

1. Memory Layout During Run-Time 6
2. Use of the Work List 8
3. Use of the Argument List 9
4. Programmed Operators (POPs) 10
5. Interrupt Processing 10
6. Run-Time Error Conditions 11
7. Recursive Features of the Rea I-Time FORTRAN 12
8. Modifications to Existing Run-Time Monitor Routines 13
9. List Processing Routines 14

100 Monitor Support Routines 17
11. TYPO - Typewriter Output Routine 19

5. LIBRARY 20

1. Modifications to Existing Library Routines 20
2. System Routines 20
3. Interrupt Routines 21
4. Input/Output Rou ti nes 23
5. Miscellaneous Routines 32

iv

1. INTRODUCTION

This manual describes the SOS/Beckman Real-Time FORTRAN II System for SOS 920/930 Computers. The "real-time"
capability in the system was implemented by Beckman Instruments, Inc.

The manual has been designed for use by experienced systems programmers, and it contains a detai led description of
the implementation of 920/930 RTF II.

The primary design criteria for 920/930 RTF II was to produce a real-time system with full interrupt and recursive capa
bilities. To implement this required: 1) modifications and additions to the standard SOS FORTRAN II system at the
compiler, loader, run-time monitor, and library levels; and 2) creation of special purpose programmed operators (POPs).
9207'930 RTF II is a FORTRAN based system operating under the run-time monitor; however, SYMBOL capability has
been provided for, and most of the system routines can be called either by FORTRAN or by SYMBOL code.

2. COMPILER

SECTION 1. FORTRAN INTERRUPT SUBPROGRAMS

A. FINT (or CONNECT)

Form: CALL subroutine (arg 1, arg 2, ... , arg m, FINT(n)) or CONNECT subroutine (arg 1, arg 2, ... , arg m), n

This function causes "subroutine" to be called when interrupt n occurs. The arguments arg 1, arg 2, ... , arg mare
set up for subroutine at the time of the interrupt. No special coding is required for subroutine, but it must be pre
pared to accept m arguments.

subroutine = name of any normally coded FORTRAN subroutine
arg i = any integer or floating point constant or variable; should not be an expression

n = integer constant, variable, or expression between 0 and 31 but not greater than the number estab
lished by ASSIGN.

Examples: CALL SUB1 (FINT (2 * N+ 3))
CALL SUB2 (1.0, X, J, 3, FINT (0))
CONNECT SUB3 (A, B), 2

B. ~

Form: CALL subroutine (SINT(n))

This function causes "subroutine" to be called when interrupt n occurs. The coding for subroutine should be in
SYMBOL language because all of the interrupt housekeeping must be done in subroutine.

subroutine = name of a SYMBOL coded subroutine
n = integer constant, variable, or expression between 0 and 31 but not greater than the number estab

lished by ASSIGN.

Example: CALL SUB3 (SINT (N + 1))

C. RELEASE

Form: CALL RELEASE (n)

This subprogram releases any subroutine that is set up to be called by interrupt n.

n = integer constant, variable, or expression between 0 and 31, but not greater than the number estab
lished by ASSIGN.

Example: CALL RELEASE (14)

2. Compi ler

D. ASSIGN

Form: CALL ASSIGN (n)

This subprogram assigns n as the number of systems interrupts that wi II be recognized.

n = integer constant, variable, or expression between 0 and 32. Until changed, the number of allowable
interrupts is assumed to be 16.

Example: CALL ASSIGN (12)

E. ARM

Form: CALL ARM (n)

Th i s subprogram arms the interrupt spec i fi ed by n.

n = integer constant, variable, or expression between 0 and 31, but not greater than the number estab
lished by ASSIGN.

Example: CALL ARM (5)

F. DISARM

Form: CALL DISARM (n)

This subprogram disarms the interrupt specified by n.

n = integer constant, variable, or expressioA between 0 and 31, but not greater than the number estab
lished by ASSIGN.

Example: CALL DISARM (14)

G. CONDITION

Form: CALL CONDITION

This subprogram disarms and clears all system interrupts. Input/output interrupts are not disturbed.

Example: CALL CONDITION

H. CONNECT

Form: CONNECT RTN(A, B, C, ...), n

This 'subprogram attaches the subroutine "RTN" to interrupt line n along with arguments A, B, C.

n = integer constant, variable, or expression between 0 and 31, but not greater than the number estab
lished by ASSIGN.

Example: CONNECT CHECK(L), 10

SECTION 2. MISCELLANEOUS FORTRAN CHANGES AND ADDITIONS

A. PAUSE

2

Form: PAUSE n

This statement causes the typewriter to type PAUSE ni then the program waits for the operator to switch
Breakpoint 4.

n = unsigned integer or blank.

2. Compiler

B. EXIT

Form: CALL EXIT

This subprogram is used to terminate the running of a program. It causes the typewriter to type *EXIT* and the
computer to halt. When the halt is cleared, the monitor is reinitialized for another run.

C. STOP

Form: STOP

This statement causes the typewriter to type *STOP*. The computer then halts. When the halt is cleared, the
computer is reinitialized for another run.

SECTION 3. MODIFICATIONS TO THE COMPILER

A. The compiler was modified so that it would generate real-time programs. In addition, some recursive features
have been included:

1. BRS POP

Wherever there is a subprogram link, the compi ler now generates a BRS or BRS* instruction instead of the BRM
or BRM* instruction.

2. Internal Functions

Internal functions start immediately with the first word of code instead of beginning with an HL T cell. The
BRR of the internal function is now replaced with a RETURN POP.

3. SUBROUTINE and FUNCTION Subprograms

Instead of an HL T cell, the subprograms now generate a SAVTMP POP as the first instruction. Changes have
been made so that a SUBROUTINE may call itself and a FUNCTION may use itself. All BRR instructions pre
viously generated are now replaced with BRU REL TMP instructions.

4. Subprogram Li nkage

All of the system subprogram I ink references have been increased by 32 cells to allow room for interrupt cell s.

5. PAUSE

The pause statement now generates code that causes a type out of the PAUSE message and then goes into a
Breakpoi nt wait.

SECTION 4. FORTRAN LANGUAGE EXTENSIONS

A. Boolean Statements

1. A Boolean statement is indicated by a B in column 1 of the first line of the statement.

2. There are two types of Boolean statements, the assignment statement and the function definition statement.

3. All operators are considered Bool ean operators except for the operators in subscript expressions and function
argument expressions.

4. All variables, constants, and functions must be integer mode except for those in subscript expressions and
function argument expressions.

3

2. Compiler

B. Boolean Operators

1. The following set of symbols constitutes the Boolean operators:

- complement
* and
/ excl usi ve or
+ or

2. In the absence of clarifying parentheses the - operations are performed first, then the * and / operations are
performed as encountered, and finally the + operations are performed.

3. The - operator is a unary operator that operates only on the term following it. Therefore, it may directly follow
another operator.

C. Boolean Constants

1. All Boolean constants must be in octal integer format.

2. They will be right justified if they are less than eight digits.

D. Symbolic Code Statements

1. A symbolic code statement is indicated by an S in column 1 of the first line of the statement.

2. Statement numbers may be used with these statements.

3. The operation code is the first field encountered in the statement.

4. The variable field follows the operation code and is separated from it by at least one space.

5. The tag field follows the variable field and can only be ,2.

6. The comments field is the last field within the statement and must begin with a virgule (/).

E. Symbolic Operation Code

1. The operation code may be indicated by either a three letter mnemonic or by a three digit octal number be
tween 100 and 177.

2. All EOM and SKS type instructions must be entered as such and not with their specific mnemonic codes.

3. No pseudo-operations or data defining operations are allowed.

F. Symbolic Variable Field

1. The variable field may contain spaces.

2. The variable field can consist of the following:

a. FORTRAN scalar variables

b. Unsubscripted FORTRAN array variables

c. FORTRAN array variables wi th numeric subscripts

d. FORTRAN dummy variables

e. local FORTRAN function names

f. Previously used subprogram names

g. Statement number, indicated by a number followed by on S

h. Decimal address, indicated by a decimal number with no preceding zero

4

2. Compiler

i. Octal address, indicated by an octal number preceded by zero

j. Current address, indicated by a $

k. FORTRAN literal, indicated by an = followed by any legal FORTRAN constant

I. Nothing, in which case the variable is considered to be zero

3. The vqriable field may contain a simple expression of the form V ± N, where V is one of the above variables
\

and N' is a decima I integer.

4. Indirect addressing, is indicated by an asterisk at the beginning of the variable field.

G. Logical Operations

1. The following operations constitute the set of logical operators and have processing precedence, as shown,
from top to bottom:

.NOT. This unary operator produces logical inversion of the term following it .

. AN D. This binary operator produces IItrue ll if the terms it connects are II true II , otherwise "false" •

. OR. This binary operator produces "true" if either connected term is "true", otherwise IIfalse" .

. EOR. This binary operator produces "true" if the connected terms represent opposed states and "false" if
they represent identical states.

2. Only the sign bit of each 24-bit word will be considered by logical operations. All positive numbers will be
"false" (first bit = zero) while all negative numbers will be "true" (first bit = one). Logical data may be any
type. Data generated by the logical operations will be all zeros in bits other than the sign bit.

3. The following logical constants are acceptable in expressions:

.TRUE .

. FALSE.

Example: A = .TRUE.

4. Mixed expressions are allowed.

SECTION 5. COMPILER OPERATIONS (Breakpoint Settings)

Breakpoint switch settings:

BP1 RESET (UP)
SET (DOWN)

BP2 RESET (UP)
SET (DOWN)

BP3 RESET (UP)
SET (DOWN)

BP4 RESET (UP)
SET (DOWN)

Punch ob ject prog ram
Suppress punch ing

Type source statements
Suppress typing

Source from paper tape
Source from cards

Source listing to printer
Source listing to typewriter

5

3. LOADER

MODIFICA nONS TO THE LOADER

A. Origin·of the Loader

The origin of the loader was moved up so that it could accommodate the new subprogram I inks. These I inks are
32 cells higher in core.

B. EOFIX and LISTFX

The loader now sets up two special cells used by the run-time system. EOFIX is the bottom of erasable store and
the start of the argument list. LISTFX is the top of erasable storage and the start of the work list. These cells are
used by the run-time system to initialize the list markers.

C. Main Program Load Address

The main program load address is now around cell 32008'

D. Input Buffer

The maximum buffer size has been increased to 20010 words.

E. Program Map

The map has been incorporated with the loader. The map is printed on the console typewriter prior to loading the
Run-Time Monitor, and is selected with Breakpoint 2 set. Optionally, setting Breakpoint 1 and 2 prints the map
on the line printer.

F. SYMBOL

The loader will now accept SYMBOL coded statements in-line with FORTRAN.

4. RUN-TIME MONITOR

SECTION 1. MEMORY LAYOUT DURING RUN TIME

Core storage is divided into four sections during run time. Starting in lower memory and proceeding to the end of stor
age, the four sections are organized as follows:

A. Run-TimE. Monitor

6

The monitor is composed of constants, flags, subroutine links, and special routines, all used by the operating pro
gram at run time. It is broken down as follows:

1. Temporary storage cell s
2. List marker cells
3. Programmed operator links
4. Library subroutine links
5. Constant pool
6. Format scan temporary storage cells
7. System i nitia I ize routines
8. Programmed operator routines
9. List processing routines

10. T ypewri ter output routi ne

4. Run-Time Monitor

B. Run-Time Program

The run-time program consists only of those routines required to perform functions defined by the user. It is broken
down as follows:

1. FORTRAN compiled main program
2. FORTRAN compiled subroutines, if required
3. FORTRAN compi led functions, if required
4. SYMBOL coded subroutines, if required
5. FORTRAN library routines

C. Erasable Storage

Erasable storage is a block of memory extending from the end of the run-time programs up to the bottom of common
storage. It contains two lists defined as follows:

1. The argument address list, which occupies the bottom of erasable storage and builds loward the top
2. Thework list, which occupies the top of erasable storage and builds toward the bottom

D. Common Storage

Common storage is the block of memory allocated by COMMON statements in the FORTRAN program. It is
located at the very top of memory. If ~here were no COMMON statements, then there will be no common storage
and erasable storage will extend to the top of memory.

17777

o

Common Cells

Work List

."

.on

Argument Address List

FORTRAN Library Routines
SYMBOL Coded Subroutines
FORTRAN Compi led Functions
FORTRAN Compiled Subroutines
FORTRAN Compiled Main Program

Typewriter Output Routine
List Processing Routines
POP Routines
System Initial ize Routines
Format Scan Temporary Storage
Constants
Library Subroutine Links
POP Links
List Marker Cells
Temporary Storage Cells

} Common Storage

Erasable Storage

Run-Time Program

Run-Time Monitor

J
7

4. Run-Time Monitor

SECTION 2. USE OF THE WORK LIST

The work list is the heart of the rea I-time moni tor. It is used to save recursive variables, subrouti ne returns, I/O buf
fers, and items that must be saved during interrupts.

A. Location of the List

The work list is located at the top of erasable storage and bui Ids downward toward the top of the argument list. It
is not allo~ed to extend below the argument list since this would be a memory overflow condition.

B. List Marker Cell

There is a cell in memory that always points to the bottom of the work list, i.e., it contains the address of the last
word of the list. This pointer cell is named LIST.

C. TMP Storage Cells

There is a block of 15 temporary storage cells in the run-time monitor labeled TMP1 through TMP15. Before these
cells may be used for storage, their contents must be saved on the bottom of the work list. After these cells have
been used, they must be restored with their original contents. TMP cells are saved with the ASN n instruction and
restored with the RLS n instruction, where n is the number of cells. The use of TMP cells in conjunction with ASN
and RLS makes possible recursive entry into a subroutine that requires temporary storage.

D. ZIP Storage Cells

There is a block of five temporary storage cells in the run-time monitor labeled ZIP1 through ZIP5. These cells
may be used immediately without first saving them. They may be thought of as an auxi liary set of registers. They
are saved in the list only when an interrupt occurs.

E. FORTRAN Storage Cells

When a FORTRAN 'compi led subroutine is entered recursively, its temporary storage cells and recursive variables
are saved in the work list. They are restored when leaving the subroutine.

F. FORTRAN I/O Buffer Space

All the FORTRAN I/O routines use the work list for buffer space. They add to the list the number of buffer cells
needed. After using the buffer, the list is reduced to its original size.

G. Interrupt Usage of the List

Interrupts set up by the FINT function cause the work list to be used for storing all registers and interrupt-vulnerable
cells.

I. Coding used in Connection with the Work List

1. Code to Save an Item in the List

SKR LIST reduce marker address, no skip
LDA LIST pick up the list marker
SKG EADR1 test to see if it exceeds the I imi t
BRU overflow overflow if it does
LDA item pick up the item
STA* LIST sa v e i tin th eli s t

8

4. Run-Time Monitor

2. Code to Restore an Item from the List

LDA* LIST
STA item
MIN LIST

pick up the item
restore it
increase marker address

3. Programmed Operator to Put an Item in the List

PUT item
or

PUT* item link
or

PUT item, 2

this performs the same operation as in
without changing the A register

4. Programmed Operator to get an Item from the List

GET item
or

GET* item link
or

GET item, 2

this performs the same operation as in 2
without changing the A register

5. Programmed Operator to Assign the First n Cells of TMP Storage from the List

ASN n cells TMP1 through TMPn are copied into the list

6. Programmed Operator to Release the First n Cells of TMP Storage from the List

RLS n cells TMPl through TMPn are restored from the list

7. Programmed Operator to Branch to a Subroutine and Save the Return in the List

BRS subroutine
or

BRS* subroutine link
or

BRS subrouti ne, 2

used in place of a BRM, branches to subroutine
instead of subroutine + 1

8. Code to Return from a Subroutine

BRU RETURN used in place of BRR subrouti ne

SECTION 3. USE OF THE ARGUMENT LIST

A. The argument list provides the link between a subroutine and its caller. It is used by the calling routine to tell
the subroutine where to find its arguments.

1. Location of the List

The list is located in erasable storage. It starts. at the bottom of erasable and builds upward toward the work
list. It is not allowed to extend above the work list, as this would be a memory overflow condition.

2. List Marker Cells

There are three main marker cells associated with the list. The cell that marks the bottom of the list is named
EOADR. The top of the list is marked by a cell named EADR1. The current ceii being processed by the sub
routine is marked by a ceii named EADR2. in addition, there are two cells containing the same marker ad
dress as EOADR. They are EOIND, which contains an indirect bit, and EOTAG, which contains an index bit.

9

4. Run-Time Monitor

3. Placing Arguments in the List

When a calling routine has arguments to transmit a subroutine, it places the address of the arguments in the list.
The first argument's address is in the bottom cell of the list and the last argument's address is in the top cell.
In addition, if the argument is floating point, bit 5 of the corresponding list cell will be on.

4. Obtaining Arguments from the List

Arguments for machine language programs may be obtained by using the EOTAG or EOIND cells. They allow
the subroutine to indirectly address cells in the list and thus obtain arguments. The way that FORTRAN com
pi led subroutines obtain arguments is to use the start dummy (STRTDM), the compi ler-generated dummy setup
procedure, and end dummy (ENDDMY) routines. In addition to obtaining the arguments, these routines also
check the mode and number of arguments. See Chapter 5, Section 2, "System Routines. II

SECTION 4. PROGRAMMED OPERATORS (POPs)

The FORTRAN system incorporates a set of special purpose POPs designed particularly for FORTRAN programs. Some
of these have HELP/SYMBOL functional counterparts; however, the POP entry locations may not coincide since the
two programmed operator sets are not identical. (FORTRAN, for example, does not require a single precision, fixed
point, square root POP.) Thus, the standard SYMBOL assembler should not be used to assemble FORTRAN subroutines
unless they contain no POPs. OPDs should be used to define these POPs.

Real-Time FORTRAN II contains the run-time POPs listed in the SDS 920/930 FORTRAN II Operations Manual plus the
following additions:

102 SKR - Reduces M by 1, skips if negative

103 SKE - Skips if A equals M

106 FEO - Floating Exclusive OR

124 MUL - Multiplies A by M

127 DIV - Divides A by M

130 SKB - Skips if M and B do not compare ones

133 ADM - Adds A and M

134 FOR - Floating OR

137 FAN - Floating AND

143 XMA - Exchanges memory and A

146 RCH - Register changes

152 SKD - Differences exponents and skips

160 ASN - Assign Temporary Storage. Puts TMP cells
in work list.

161 RLS - Release Temporary Storage. Restores TMP
cells from the work list.

162 BRS - Branch and Save Return. Used to enter a
recursive subrouti ne.

163 RTN - Return. Used to leave a recursive subroutine.

164 SAY - Saves FORTRAN temporary storage on re
cursive entries to FORTR,A,N compiled subroutines.

165 PUT - Puts the operand in the work list.

166 GET - Gets the operand from the work list.

Note: Care should be taken in using POPs that access floating point quantities in memory. These POPs double the
index register before accessing the floating point variable since floating point quantities require two words
of storage. The original value of the index register is restored prior to exit.

POP numbers above 166 may be used by the programmer to write his own Run-Time POPs. They must be written in
machine language, and they will be loaded and relocated by the LOADER. This does not apply to cell 1778, which
is the list marker address.

SECTION 5. INTERRUPT PROCESSING

A. Interrupt Cells

10

There are 18 or 34 interrupt cells used by the system. Each must reference some routine by way of a BRM instruc
tion. The routines referenced, however, may be changed during the running of the program. The assignment of
the interrupt cells is as follows:

4. Run-Time Monitor

Cell (in octal)

31

33

200-217

220-237

B. Priority of Interrupts

Assignment

W buffer 11 interrupt

W buffer 12 interrupt

Patchable system interrupts

Patchable system interrupts (optional with hardware configuration)

The routines assigned to the lowest numbered interrupt cells have the highest priority. Therefore, if a routine as
signed to interrupt cell 200 is being executed and an interrupt signal for cell 33 occurs, the 33 interrupt will be
serviced immediately. If, however, a 201 interrupt occurs, it must wait until the 200 interrupt routine is finished
before it can be serviced.

C. Enab I ing of Interrupts

In order for any interrupt to be serviced, the enable instruction (EOM 20002) must be executed; otherwise, inter
rupt signals will be ignored. All interrupts are disabled with EOM 20004.

D. Assignment of W Buffer Interrupts

Each I/O routine assigns its OW;) '/y buffer interrupt routines. When an I/O routine is entered, one of its first tasks
is to place appropriate BRM instructions in cells 31 and 33. Since it is possible that cells 31 and 33 might be
changed by another I/O routine when an interface interrupt occurs, these cells are saved before and restored after
the interrupt is serviced.

E. Assignment of Patchable System Interrupts

During the system ini tial ization phase of the run-time monitor, the patchable system interrupt cells (200- 231) are
plugged with BRM instructions which reference IIdo-nothing ll routines. All that a do-nothing routine does is clear
its interrupt and return. Then during the runn ing of the program, assignments of subroutines may be rrode to these
interrupt cells. These assignments may be made by using either the FINT, CONNECT, or the SINT functions, or
simply by storing a BRM instruction in the interrupt cell.

F. Releasing Interrupt Assignments

The assignment of a subroutine to an interrupt cell may be released in two ways. One way is to assign another
subroutine to the interrupt cell. This automatically releases any prior assignment. The other way is to use the
RELEASE subroutine. This subroutine plugs a reference to a do-nothing routine into the interrupt cell.

SECTION 6. RUN-TIME ERROR CONDITIONS

A. When an error condition is detected during the running of a program, two things happen. First, the appropriate
error message is output through the typewriter. Second, the program waits for Breakpoint 4 to be changed from its
current setting. If the operator decides the program may continue, he should change the Breakpoint switch; other
wise, he shou Id terminate program execution.

B. Error Message

ERR AGTO

ERR ARGM

Meaning

Assigned GO TO variable never assigned. Result: Unpredictable.

An argument of the wrong mode was given to a FORTRAN compi led subprogram.
Result: Unpredictabie.

11

4. Run-Time Monitor

Error Message

ERR ARGN

ERR ARM

ERR ASGN

ERR CGTO

ERR EFIA

ERR EXP

ERR FCHR

ERR ICHR

ERR IFSL

ERR IFSS

ERR INT

ERR INUM

ERR LOG

ERR N**F

ERR OEXP

ERR RELSE

ERR PRTY

ERR SNLT

ERR SNTl

ERR SNT2

ERR SQRT

ERR RLSE

ERR O**N

Meaning

The wrong number of arguments was given to a FORTRAN compiled subprogram .. Result: If too
many, extra ones are ignored. If too few, whatever arguments remai n in the argument list wi II
be used.

An illegal number of interrupt lines was given to ARM or DISARM. Result: No action is taken.

An illegal number of interrupt lines was given to ASSIGN. Result: No action is taken.

The computed GO TO va lue is outside the allowable range. Resu It: Go the the first statement
number in the list.

An E, F, I, or A is missing from the FORMAT. Result: Processing proceeds without output of
the variab les.

The argument given to EXP was greater than 176. Result: The answer is set to the maximum
floating point value.

An illegal character was found in the FORMAT. Result: The scan for the next specification
begins, i.e., the character is treated as if it were a comma.

There is an illegal input character. Result: The scan begins for the next field, i.e., treats the
character as if it were a comma.

The IF SENSE LIGHT value was not 1-24. Result: The test is assumed off.

The IF SENSE SWITCH value was not 1-4. Result: The test is assumed off.

The argument give to the FINT function was invalid. Result: No interrupt assignment is made.

The characteristic of an input number exceeds ± 99. Result: The number is set to zero.

The argument given to ALOG was either negative or zero. Result: The answer is set to zero.

A negative number was raised to a nonintegral floating point power. Result: The absolute
value of the number is used.

An output exponent is greater than 99. Result: The exponent is cleared to zero and the result
i ng number is output.

An illegal interrupt line number was given to RELEASE. Result: No action taken.

An input parity error has occurred. Result: The input record is read again. This means that
card or tape must be repositioned or the typewriter message must be keyed in again.

The SENSE LIGHT value was not 0-24. Result: No action is taken.

The SINT function was used improperly. Result: An attempt is made to make the proper in
terrupt assignment.

The argument given to the SINT function was invalid. Result: Nb interrupt assignment is made.

The argument given to SQRT was negative. Result: The square root of the absolute value is
taken.

The argument given to RELEASE was invalid. Result: No action is taken.

Zero was rai sed to a nonpositive power. Resul t: (0**0) wi II be 1 or 1.0, and (O**negative)
wi II be the maximum possible integer or f10ati ng number.

SECTION 7. RECURSIVE FEATURES OF REAL-TIME FORTRAN

A. A byproduct of Real-Time FORTRAN II is the ability of subprograms to be recursive. This ability is needed for
real-time programming because subroutine "X" could be interrupted by a routine which also calls subroutine X.
This impl ies that there must be a way to keep track of the recursive calls so that their respective returns wi II be
made to the proper place. Furthermore, temporary variables used must be saved and restored for each recursive
entry into a subroutine; otherwise, the latest recursive entry into a subroutine would destroy the temporary vari
ables being used by an earlier entry.

12

4. Real-Time Monitor

1. Recursive Variables

The Recursive variables are those that are temporary in nature. These would be the variables used for index
ing through arrays and counting through DO loops, those saved as intermediate results, and so on. In this
system recursive variables have arbitrari Iy been chosen as those scalar variables that do not appear in COM
MON or EQUIVALENCE statements. If a dummy variable (an argument used by a subroutine or function) is
to be used recursively, a recursive variable should be set equal to it and used in its place.

2. Examples-of Recursive Programming

Two simple subprograms are shown below to illustrate recursive programming. The first is a subroutine that
calls itself and the second is a function that uses itself.

a. Compute the characteristic of a number

SUBROUTINE COMPUTE (NDUMMY)

COMMON CHAR

NUMBER = N DUMMY

IF (NUMBER - 10) 1, 2, 2

CHAR = 0

RETURN

2 CALL COMPUTE (NUMBER/10)

CHAR = CHAR + 1

RETURN

END

b. Compute the factorial of a number

FUNCTION IFACTORIAL (NDUMMY)

N = DUMMY

IF (N) 1, 1, 2

IFACTORIAL = 1

RETURN

2 IFACTORIAL = N*IFACTORIAL (N-1)

RETURN

END

SECTION 8. MO DIFICA TIONS TO EXISTING RUN-TIME ROUTINES

A. The FORMAT scan routines and the POP routines have been modified to operate in a real-time environment.

1. Subrouti ne Linkages

All subroutines have been modified so that they no longer begin with HLT cells. The BRM instructions have
been changed to BRS POPs and the BRR instructions changed to BRU RETURN instructions.

2. Floating Point POPs

The temporary storage cells used by the floating point POP subroutines are all ZIP storage. This, then, does
not slow down the subroutines as would TMP storage because of the assigning and releasing required.

13

4. Run-Time Monitor

3. FORMAT Scan Routi nes

The temporary storage required by the FORMAT scan routines is much more than the 15 TMP cells can handle.
Therefore, when the FORMAT scan is entered recursively, all of its temporary storage is saved in the work
list.

SECTION 9. LIST PROCESSING ROUTINES

A. PUTPOP (programmed operator routine)

1. Function

The purpose of PUTPOP is to take the POP operand and put it on the bottom of the work list.

2. Input

The POP operand is the only input.

3. Method

The method used is first to reduce the list marker address and test to see if the list exceeds its limit. If it does,
the overflow routine is executed; otherwise, the POP operand is placed on the bottom of the list.

4. Subrouti nes

Name Function

OVFLO prints the overflow message and halts

5. POP Definition

PUT OPD 16500000

6. Timing

25 cycles or .200 ms.

B. GETPOP (programmed operator routine)

14

1. Functi on

The purpose of GETPOP is to get the contents of the cell at the bottom of the work list and store it in the
POP operand cell.

2. Input

The POP operand is the only input.

3. Method

The method used is first to pick up the bottom list cell, store it in the POP operand cell, and then increase
the list marker address.

4. POP Definition

GET OPD 16600000

4. Run-Time Monitor

5. Timing

20 cycles or .160 ms.

C. ASNPOP (programmed operator routine)

1. Function

The purpose of ASNPOP is to take the number of TMP cells indicated by the POP address and put them on the
bottom of the work list.

2. Input

The input is a number in the POP address.

3. Method

Space is created in the work list to accommodate the required number of TMP cells. If the list exceeds its
limit, the overflow routine is exeucted; otherwise, the TMP cells are copied into the space just provided at
the bottom of the list.

4. Subrouti nes

Name Function

OVFLO prints the overflow message and halts.

5. POP Definition

ASN OPD 16000000

6. Timing

35+7n cycles or .280+ .056n ms., where n is the number of TMP cells to be saved.

D. RLSPOP (programmed operator routine)

1. Function

The purpose of RLSPOP is to take the number of cells indi cated by the POP address from the bottom of the
work list and put them in TMP storage.

2. Input

The input is a number in the POP address.

3. Method

The required number of cells are copied from the bottom of the list into TMP storage, and the list marker ad
dress is incremented to reflect this reduction of the list.

4. POP Definition

RLS OPD 16100000

5. Timing

37+7n cycles or .296+ .056 ms., where n is the number of TMP cells to be restored.

15

4. Run-Time Monitor

E. BRSPOP (Programmed operator routine)

1. Function

The purpose of BRSPOP is to branch to the POP operand and save the location of the POP in the work list.

2. Input

The input is the POP operand.

3. Method

A branch instruction is made using the effective address of the POP. The location of the POP is placed on
the bottom of the work list. Then the branch instruction is executed. If the list exceeds its limit, the over
flow routine is executed instead.

4. Subroutines

Name Function

OVFLO prints the overflow message and halts

5. POP Definitioh

BRS OPD 16200000

6. Timing

32 cycles or .256 ms.

F. RETURN (programmed operator routine)

1. Function

The RETURN POP is used in conjunction with the BRS POP. It gets the return address that the BRS put on the
bottom of the list. It then returns to that address and restores the overflow indicator to what it was when the
BRS was executed. Because the address of the RETURN POP is not used, a simple BRU RETURN may be sub
stituted for the POP.

2. Method

The method used is to get the return address from the bottom of the work I ist, reset the overflow indicator,
and then perform a BRR with the return address as the operand.

3. POP Definition

RETURN OPD 16300000
or OPD 00100163

- 4. Timing

18 cycles or .144 ms.

G. SAVTMP (programmed operator routine)

16

1. Function

The purpose of SAVTMP is to save temporary storage and recursive variables when a routi ne is entered recur
sively. It is used exclusively by FORTRAN compi led subroutines.

4. Run-Time Monitor

2. Method

Because the SAVTMP POP is inserted as the first instruction of a FORTRAN compiled subroutine, it serves as
a location marker for finding the temporary storage and recursive variables. In addition, it also serves as an
entry flag for the subroutine. Whenthe subroutine is entered, the POP and its location are saved. If the sign
bit of the POP is negative, meaning that this is a recursive entry, the temporary storage and recursive vari
ables are saved in the list. If the sign bit is positive, meaning that this is not a recursive entry, it is changed
to negative.

3. Subroutines

Name Function

ANSPOP Store TMP ce lis in the work list

4. Timing

See RELTMP (below).

H. RELTMP

1. Function

The RELTMP routine is used in conjunction with SAVTMP POP. Its purpose is to restore the temporary storage
and recursive variables saved by SAVTMP. It is used also to initiate the return from a FORTRAN compiled
subrouti ne.

2. Method

The entry flag of the subroutine is restored and tested to see if this was a recursive entry. If it was not, a
return is made to the calling program; if it was, the temporary storage and recursive variables are restored
before returning to the calling program.

3. Subroutines

Name Function

RLSPOP releases TMP cells from the work list

4. Timing

63 cycle$ or .504 ms., if it was not a recursive entry; 81+ 17n cycles or.648 +. 136n ms., where n is the
number of cells to be restored, if it was a recursive entry.

SECTION 10. MONITOR SUPPORT ROUTINES

A. SYSINI

1. Function

The purpose of the system initialize routine, SYSINI, is to prepare the monitor for the start of the main pro
gram.

2. Method

The method used is to reset aii the monitor switches, piug aii the interrupt cells with do-nothing routines,
ciear any active interrupts, reset the work list and argument list maikei cells, ieSet the subroutine recursive
entry switches, disable the system interrupts, type the starting message, halt, and branch to the main program.

17

4. Run-Time Monitor

B. ERROR

1. Function

The purpose of ERROR is to indicate an execution error by typing the comment ERR plus a code word. After
typing the error, this routine branches to the Breakpoint Wait routine.

2. Input

The input is a four-character code word located just below the BRS ERROR instruction.

3. Method

The error message is placed at the bottom of the work I ist, so as not to be vu Inerable to recursive entries into
ERROR. After typing out the message and releasing it from the list, the BPWAIT routine is entered.

4. Subrouti nes

Name Function

ASNPOP assigns TMP cells to the work list

RLSPOP releases TMP cells from the work list

PUTPOP puts a cellon the bottom of the list

TYPO outputs a message through the typewri ter

BPWAIT waits for Breakpoint 4 to be switched

C. BPWAIT

18

1. Function

The purpose of the Breakpoint Wait routine, BPWAIT, is to provide a wait in the program that does not halt
the computer.

2. Method

Breakpoint 4 is tested until the operator switches it; then a return is made back to the calling program.

3. Subroutines

Name Function

OVFLO prints the overflow message and halts

ASNPOP assigns TMP cells to the work list

4. POP Definition

SAVTMP OPD 16400000

5. Timing

70 cycles or .560 ms., if it is not a recursive entry; 103+ 17n cycles or .824+ .136n ms., where n is the num
ber of cells to be saved, if it is a recursive entry.

4. Run-Time Monitor

D. OVFLO

1. Function

The purpose of the overflow routine, OVFLO, is to indicate that there is no more space left in erasable stor
age. The message OVERFLOW AT xxxxx is typed, where xxx xx is the point in the program where overflow
occurred.

2. Input

The overflow point is put in location zero.

3. Method

The method used is to disable interrupts and disconnect any I/O. The overflow point is converted to an octal
number and then typed out in the overflow message. After the message is typed, a halt occurs. When the
halt is cleared, the monitor is reinitialized.

E. SAVE

1. Function

The purpose of the SAVE routine is to save all the registers and interrupt-vulnerable cells when an interrupt
occurs. SAVE then executes the interrupt subroutine, after which it restores the registers and vulnerable cells.

2. Input

Because this routine is not entered by a BRS, the return address is found in the index register. The index reg
ister is also used to find the location of the interrupt subroutine.

3. Method

The A, B, and X registers, the five ZIP cells, the floating overflow indicator, the two buffer interrupts cells,
and the marker for the argument list bottom are all saved on the bottom of the work list. The contents of the
argument list are saved by setting the marker for the bottom of the argument list equal to the marker for the
top of the argument list. After the interrupt routine has been executed, the above process is reversed.

4. Timing

92 cyc I es or .736 ms are used to save everyth i ng
89 cycles or .712 ms are used to restore everything

SECTION 11. TYPO-TYPEWRITER OUTPUT ROUTINE

A. Function

The pu !pose of TYPO is to output data to the typewri ter.

B. Input

A register = word count of record
X register = location' of output record

c. Returns

Entry address + 1, only

D. Method

The routine operates under 11 and 12 interrupts, and data is output in 4-character-per-word mode.

E. Timing

66.7 ms per character (15 char/sec)

19

5. LIBRARY

SECTION 1. MODIFICATIONS TO EXISTING LIBRARY ROUTINES

A. System Subprogram Links

In order to accommodate the interrupt cells, the subprogram I inks were moved up 32 cells, and all references to
these subprogram links were moved up accordingly.

B. Subroutine Entries

All subroutine entry points were modified so that they no longer begin with HLT cells; instead, they begin with
the first program instructions.

C. Subroutine Exits

Instead of the BRR instruction, the subroutines now return with a BRU RETURN instruction.

D. Subroutine Calls

When calling another subroutine, the BRS POP is now used instead of the BRM instruction.

E. Temporary Storage

All references to temporary storage have been changed to reference either TMP or ZIP cells. If TMP cells are
used, the appropriate ASN and RLS POPs are used to assign and release them.

SECTION 2. SYSTEM ROUTINES

The system routines listed below cannot be called by name. They are given octal numbers ranging from 241 to 304 and
are used in much the same manner as programmed operators; that is, the linkage to them is stored in locations 241 to 304,
and they are entered by a BRS POP. Only those routines called for impl icitly in the program wi II actually be loaded.

The description of each routine in the following list includes:

1. Octal number
2. Name
3. Operation performed
4. Memory Storage used
5. Other system routines required, if any

241 STRTDM - Start of dummies. Used by FORTRAN
subprograms in obtaining arguments from the calling
program.
Memory: 4 words

242 ENDDMY - End of dummies. Used in conjunction
with above in obtaining arguments.
Memory: 11 words

243 STOP - Stop. Types *STOP* and halts.
Memory: 10 words

244 IFSNSW - If Sense Switch. Performs the IF SENSE
SWITCH test.
Memory: 19 words

245 IFSNLT - If Sense Light. Performs the IF SENSE
LIGHT test.
Memory: 21 words

20

246 COMPGO - Computed Go To. Performs the com
puted GO TO.
Memory: 14 words

247 ACCEPT - Accept. Reads information from the con
sole typewri ter.
Memory: 10 words
Requires: 275 (INITFS)

250 ACCTAP - Accept Tape. Reads from paper tape.
Memory: 10 words
Requi res: 275 (I NITFS)

251 PRINT - Print. Same as TYPE.

253 PNCHTP - Punch Tape. Punches paper tap~.
Memory: 10 words
Requi res: 275 (I NITFS)

254 TYPE - Type. Types on the console typewriter.
Memory: 9 words
Requires: 275 (INITFS)

255 SQRT - Square Root. Takes the square root of an
argument. This system routine may also be called
by name.
Memory: 79 words

256 READ - Read. Reads BCD cards.
Memory: 10 words
Requires: 275 (INITFS)

263 ENDIOL - End input/output list. Used by all input/
output lists.
Memory: 32 words

264 IFOVL - If overflow . Tests status of floating-point
overflow indicator and branches accordingly.
Memory: 6 words

267 SENSLT - Sense light. Sets sense light.
Memory: 19 words

270 POWER - Power. Raises an argument to a floating
point or integer power.
Memory: 100 words
Requires: ELOGF and EXPF

271 FIX - Fix. Converts floating-point number to in
teger.
Memory: 3 words

272 FLOAT - Float. Converts integer to floating-point
number.
Memory: 3 words

SECTION 3. INTERRUPT ROUTINES

A. FINT (or CONNECT) - FORTRAN Interrupt

1. Function

273 IOLUSA - Input/output list subscripted array. Used
during input and output of arrays when listed with
out subscripts (e.g., TYPE 3, A).
Memory: 30 words

274 PAUSE - Pause. Types PAUSE and an integer.
Memory: 39 words

275 INITFS - Initialize format scan. Used in conjunc
tion with the FORMAT scan routines in the run-time
system.
Memory: 55 words
Requires: 276 (BINBCD)

301 READTP - Read Tape. Read from magnetic tape in
binary mode.
Me:mory: 132 words

302 WRITAP - Write Tape. Write on magnetic tape in
binary mode.
Memory: 115 words

303 ENFILE - Write End of Fi Ie. Write an end-of-fi Ie
mark on magnetic tape.
Memory: 61 words

304 REWIND - Rewind Tape. Rewind magnetic tape to
beginning-of-tape mark.
Memory: 6 words

The purpose of the FORTRAN interrupt routine, FINT, is to assign a FORTRAN compiled subroutine or a
SYMBOL coded subroutine to an interrupt line. (FINT may also be called with a CONNECT statement.)
The linkage is set up so that when an interrupt occurs the arguments at that moment are set up and the sub
routine is entered.

2. Input

The interrupt line number is the first argument of the argument list. The subroutine location is the effective
t::1ddress of the first BRS instruction following the BRS FINT instruction.

3. Method

First, a search is made for the BRS that contains the subroutine location. Next, a linkage is set up so that
when the desired interrupt occurs the BRM in the interrupt cell will branch to a small routine assigned to that
cell. This routine will enter the SAVE subroutine and supply it with the beginning location of the desired
argument setup instructions. After the interrupt subroutine has been executed and the SAVE subroutine has
iestOied eVeiything, a i6tuin is made to the small routine. It in turn clears the interrupt.

21

5. Library

4. Error Messages

Code Meaning

INT The interrupt line number is not valid or was given as a floating -point number

5. Subroutines

Name Function

ERROR Outputs the error message

SAVE Saves the interrupt-vulnerable cells and enters the interrupt subroutine

B. SINT - SYMBOL Interrupt

1. Function

The purpose of the SYMBOL interrupt routine, SINT, is to assign a SYMBOL coded subroutine to an inter
rupt line. This subroutine must do its own interrupt housekeeping and must clear the interrupt when it returns.

2. Input

The interrupt line number is the first argument of the argument list. The subroutine location is the effective
address of the first BRS instruction following the BRS SINT instruction.

3. Method

A search is made for the BRS that contains the subroutine location. Next a linkage is set up so that when an
interrupt occurs on the desired interrupt line there will be a direct BRM to the interrupt routine.

4. Error Messages

Code

SNT1

SNT2

Meaning

SINT was used improperly

The interrupt line was an i nva I id argument

5. Subroutines

Name Function

ERROR Outputs the error message

C. RELEASE - Release Interrupt

1. Function

The purpose of release is to release the subroutine assigned to a particular interrupt line.

2. Input

The interrupt line number is in the first argument of the argument list.

3. Method

The desired interrupt cell is filled with a BRM to its associated do-nothing routine.

22

5. Library

4. Error Messages

Code Meaning

RELSE The interrupt line number argument was invalid

5. Subroutines

Name Function

ERROR Outputs the error message

D. ARM (or DISARM) - Arm or Disarm Systems Interrupts

1. Function

The purpose of these routines is to initiate the ARM interrupt and DISARM interrupt hardware option.

2. Method

The interrupts are armed or disarmed by using an EOM and a POT word that is bui It from the argument. These
routines do not disable the interrupts. Interrupt cell 2178 is always armed but not disarmed. All "hanging"
systems interrupts are cleared.

E. CONDITION - Disarm Systems Interrupts

1. Function

This routine wi II disarm all systems interrupts without argument transfer.

2. Method

The systems interrupts are disarmed by using the DISARM routine with the run-time constant ASIGN to define
the number of interrupts.

F. ASSIGN - Assign Number of Interrupts

1. Function

This routine will change the number of defined systems interrupts by the argument.

2. Method

ASIGN in the run-time monitor is substituted with the valid argument.

SECTION 4. INPUT/OUTPUT ROUTINES

A. TYPI - Typewriter Input

1. Function

The purpose of TYPI is to input data through the typewriter, and to detect buffer errors.

2. Input

A register = location of input buffer area.

23

5. library

3. Output

X register = character count of record.
LOCA nON contains input data.

4. Returns

Entry address + 1, buffer error during input.
Entry address +2, normal.

5. Method

The routine operates under 11 interrupt control, and data enters the computer in the single character mode.
Leading carriage returns (C/R) are ignored, and +H- followed by a C/R voids an entry. Data followed by a
C/R terminates input. Although data enters in single character mode, it is packed four characters per word
in the buffer area.

6. Timing

Type-in speed of user.

B. CARD - Card Input

1. Function

The purpose of CARD is to read up to 80 columns of data from a card, and to detect input errors.

2. Input

A register = location of input buffer area.

3. Output

X register = character count of record (0 if blank card).
LOCA lION contains input data.

4. Returns

Entry add ress + 1, buffer error d uri ng input.
Entry address + 2, norma I.

5. Method

The routine operates under 11 and 12 interrupt control, and data enters the computer in the single character
mode. Card blanks (60) are converted to code (12) blanks during input, and the character count is deter
mined by the column containing the last non-blank character. Data is packed four characters per word in
the buffer area.

6. Timing

2..10 ms per card (250 cards/minute).

C PPTO - Paper Tape Output

1. Function

The purpose of PPTO is to punch data on paper tape, wi th or without leader, in 4-charac ter-per-word mode.

24

2. Input

A register = word count of record.
B register == 0 denotes leader.

10 denotes no leader.
X register = location of output record.

3. Returns

Entry+l, only.

4. Method

5. library

The routine operates under 11 and 12 interrupt control, and outputs data in 4-character-per-word mode, with
or without leader.

5. Timing

16.7 ms per character (60 characters/second).

D. F PTI - Paper Tape Input

1. Function

The purpose of FPTI is to input data from paper tape in the single character mode, and to detect buffer errors.

2. Input

A register = location of input buffer area.

3. Output

X register = character count of record.
LOCATION contains input data.

4. Returns

Entry address + 1, buffer error during input.
Entry address +2, normal.

5. Method

The routine operates under 11 and 12 interrupt control. Data enters the computer in single character mode.
Delete codes (77) are ignored, and input is terminated by a C/R (52), or gap. Data is packed four ch:trac
ters per word in the buffer area.

6. Timing

3.33 ms per character (300 characters/second).

F. READTP - Read Magnetic Tape Binary

1. Function

Reads one logical record from magnetic tape in the binary mode.

25

5. Library

2. Input

Tape unit in the A register.

3. Subroutines

SETUP
RTAPE
CALCKS

temporary storage setup.
read magnetic tape.
calculate checksum.

4. Error Messages

LRR (unit) short logical record; record truncated.
CKS (unit) checksum error; record processed.

5. Memory Allocation

94 cells.

G. WRIT AP - Write Magnetic Tape Binary

1. Function

Writes one logical record on magnetic tape in the binary mode.

2. Input

Tape unit in the A register.

3. Subroutines

SETUP
CALCKS
WTAPE

temporary storage setup.
calculates checksum.
wri te magneti c tape.

4. Memory Allocation

81 cells.

H. SETUP - Initialize Temporary Storage

1. Function

Initializes temporary storage for binary input/output.

2. Memory Allocation

26 cells.

I. CALCKS - Calculate Checksum

1. Function

Calculates checksum for physical binary record.

2. Result

Folded checksum is in the A register.

26

3. Memory Allocation

20 cells.

J. READIT - Read Magnetic Tape BCD

1. Function

Reads magnetic tape in the BCD (even parity) mode.

2. Input

Tape unit in the A register.

3. Subroutines

INITFS
RTAPE

initializes FORTRAN format scan.
reads magnetic tape.

4. Memory Allocation

14 cells

K. WRITOT - Write Magnetic Tape BCD

1. Function

Writes magnetic tape in the BCD (even parity) mode.

2. Input

Tape unit in the A register.

3. Subroutines

INITFS
WTAPE

initializes FORTRAN format scan.
writes magnetic tape.

4. Memory Allocation

11 cells.

L. RTAPE - Read Magnetic Tape Binary or BCD

1. Function

Reads magnetic tape in either binary or BCD mode. (Odd or even parity, respectively.)

2. Input

Tape uni tin A register.
Word count in X register.
Location in B register SIGN bit on - binary.

SIGN bit off - BCD.

5. library

27

5. Library

3. Error Messages

EOF (unit) end of file detected, another record read.
ETR (unit) end of tape detected; continues.
RDT (unit) read error uncleared after 10 tries; bad record processed.

4. Subroutines

SEnOT
ERRMSG
RESET

sets up I/O list, etc.
controls tape positioning following error conditions; outputs error messages.
resets temporary storage.

5. Memory Allocation

67 cells.

M. WTAPE - Write Magnetic Tape Binary or BCD

1. Function

Writes a record on magnetic tape in either binary or BCD mode. (Odd or even parity, respectively.)

2. Input

Tape unit in the A register.
Word count in the X register.
Location in the B register: SIGN bit on - binary.

SIGN bit off - BCD.

3. Error Messages

FPT (unit)
ETW (unit)
WRT (unit)

4. Subroutines

SEnOT
RESET
ERRMSG
ERASE

fi Ie protected; hangs unti I cleared.
end of tape detected; continues.
write error; tape erased after five tri es and record is rewritten.

sets up I/O list, etc.
resets temporary storage.
controls tape positioning following error conditions; outputs error messages.
erases tape.

5. Memory Allocation

80 cells.

N. SCAN - Move Magnetic Tape

1. Function

Moves magnetic tape one physical record in either direction.

2. Input

Tape unit in the A register.
Direction in the B register: negative, forward; positive, backward.

28

3. Subroutines

SEnOT
RESET

sets up I/O list.
resets temporary storage.

4. Memory Allocation

37 cells.

O. BKSPAC - Backspace Magnetic Tape

1. Function

Backspaces magnetic tape one logical record.

2. Input

Tape unit in the A register.

3. Subroutines

SEnOT
ERRMSG
RESET
SCAN

sets up I/O list.
controls tape errors; outputs error messages.
resets temporary storage.
moves magnetic tape one record.

4. Memory Allocation

93 cells.

P. ERASE - Erase Magnetic Tape

1. Function

Erases magnetic tape 4.5 inches.

2. Input

Tape unit in the A register.

3. Subroutines

SEnOT
RESET

sets up I/O list.
resets temporary storage.

4. Memory Allocation

38 cells.

Q. ENFILE - Write End of Fi Ie on Magnetic Tape

1. Function

Writes an end of file mark on magnetic tape.

2. Input

Tape unit in the A register.

5. Library

29

5. Library

3. Error Messages

FPT (unit) file protected; computer hangs up until cleared.
WEF (unit) backspaces and rewrites EOF unti I error is cleared.

4. Subroutines

SElIOT
RESET
ERRMSG

sets up I/O list, etc.
resets temporary storage.
controls error conditions; outputs error messages.

5. Memory Allocation

53 cells.

R. REWIND - Rewind Magnetic Tape

1. Function

Rewinds magnetic tape.

2. Input

Tape unit in the A register.

3. Subroutines

SElIOT
RESET

sets up I/O list, etc.
resets temporary storage.

4. Memory Allocation

9 cells.

S. SElIOT - Set Up I/O Instructions

1. Function

Sets up I/O instructions for all magnetic tape operations in temporary storage. Checks validity of the tape
unit number and the density of the magnetic tape unit.

2. Error Messages

TPNO (tape unit in A)
BPI (tape unit)

3. Memory Allocation

63 cells.

unacceptable tape number; uses 3 low-order bits as tape number.
tape density error; awaits change of density.

T. RESET - Reset I/O Instructions

1. Function

Resets temporary storage saved by SElIOT.

30

2. Memory Allocation

10 cells.

u. ERRMSG - Magnetic Tape Error Message

1. Function

Controls error conditions found in magnetic tape routines; outputs error messages.

2. Input

Error code in the index register.

3. Subroutines

SCAN moves tape one record.

4. Memory Allocation

47 cells.

v. PRINT - Print on Line Printer

1. Function

Prints a line on the high speed printer.

2. Subroutines

INITFS
PRTR

initializes FORTRAN format scan.
outputs information to the printer.

3. Memory Allocation

9 cells.

W. PRTR - Output to Line Printer

1. Function

Outputs information to the high speed printer.

2. Method

Limits output to 33 words. Changes trailing carriage return to a blank.

3. Memory Allocation

87 cells.

5. Library

31

5. Library

SECTION 5. MISCELLANEOUS ROUTINE

32

PAUSE - Pause in Execution

1. Function

The purpose of PAUSE is to cause the message PAUSE x to be typed out and to wait for Breakpoint 4 to be
switched before continuing. This routine is called by the PAUSE x statement in FORTRAN wh ere x is some
integer or a blank.

2. Input

The input is a positive integer in binary form located in the word following the BRS PAUSE instruction.

3. Output

The message PAUSE x is output where x is some integer or is blank.

4. Method

The integer is converted for output with leading zeros eliminated. The entire pause message is then placed
on the bottom of the work list and is output through the typewriter. Finally the message is released from the
list and the Breakpoint Wait routine is entered ..

5. Subroutines

Name

TYPO
BPWAIT

Function

outputs a message through the typewriter.
waits for Breakpoint 4 to be switched.

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32

