
XEROX

900883A

Xerox FORTRAN IV
9300 Computers

Technical Manual

.Technical nformation

August 1965

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245
?13679-4511

Xerox FORTRAN IV
9300 Compu18rs

Technical Manual

90 08 83A August 1965

Pri ce: $5.75

XEROX

Printed in U.S.A

CONTENTS

STRUCTURE 1
Overall Flow 1
Lists 1

Reassi gn Memory 3
Initialize Lists 5

Pointers 5
The Compi ler Interpreter 6
Programmed Operators by Category 11

Bui Id 11
Control 12
Effective Address 12
Jumps 12
General List Operators 13
List Copying 15
Spec i a I Add ressi ng 16
Code List 16
Load/Store 16
Memory 17
Plex 18
Group 18
Print 19
Input Scan 19
Error Message 20
Search 20
Set 21
Symbol Table 22
Other Tables 23
Work List 23

Compiler Overlay Structure 25

PASS 1 29
Overall Flow 29

MONITOR Interface 30
Compi ler Initialize 31
Label Field Scan 31
Statement Scan 33
Proc ess Lobe I 35
Re I ease Li ne 35
Fi Ie Code 37

Finish Up 37
Final Pass through Symbol Table 37
Fin Pass 1 40

i i

Identifiers --------------------- 40
Permissibi I ity 43
Symbol Table POPs 43

Input Scanning 45
Error Messages 48
Try-Fail 51
Special Lists Set Up in Pass 1 55
In-Line Symbolic Code 63

PASS 1A ___ 65

Allocation and Equivalence 65
Symbol Table Use 66

Usage of Words 5 and 6 67
Usage during Equivalence 67
Output to Pass 2, 3 67

Structure of Equivalence Trees 68
Use of Equivalence Trees 68

PASS 2--69
Overall Flow 69
Internal Representation of Expressions 71

Plex-Bui Iding POPs 74
Traits 75

Arithmetic Expression Generator 77
Logical Expression Generator 81

Simplify Logical Expression 82
Evaluate Logi cal Expression 83

PASS 3--- 89
Subroutine Descriptions 89

Pass 3 89
Get Next Input Word (GNIW) 90
Generate Literal List (GENLIT) 91
Output External Definition Records (ODEFR) 92
Output Data Records (ODAT AR) 93
Output External Reference Records (OREFR) 94
Fi Ie External Reference (FILEXREF) 95
Output End Record (OENDR) 96
Output Storage Map (OUTMAP) i97
Convert Pointer to a Program Address (CPAD) 98
Convert Pointer to a Label (CPLAB) 99
Binary Buffer Initialize (BINBUFIN) 100
File Binary Data Word (F8DATA) 101
Any Data Record Binary Output (ANYBO) 102
Checksum and Output (C KSOUT) 103
Unconditional Binary Output (UNBINOUT) 104

iii

Subroutine Descriptions (cont.)
Check BO Output (CHEC KBO) 105
Check GO Output (CHECKGO) 106
Initialize Line (ILINE) 107
PAGE 108
SPACE 109
Print Line (PUNE) 110
Define Special Conversion Line (DSCLSUB) 111
Restore Normal Output Line (RUNE) 112
Increment Character Position by 1 (ICPl) 113
Decrement Character Position by 1 (DCPl) 114
Inc rease Charac ter Position Subroutine (IC PS UB) 115
Set Character Position Subroutine (SCPSUB) 116
Store Character (STC) 117
Output Alpha Subroutine (OASUB) 118
Output Alpha Minimum Number of Characters (OAMNCSUB) - 119
Output Octal Subroutine (OOSUB) 120
Output Decimal Subroutine (ODSUB) 121
Output Decimal Minimum NumberofCharacters (ODMNCSUB) -122
Output Real Subroutine'(OREALSUB) 123
Output Double Precision Subroutine (ODOUBSUB) 124
Read Debug (READBUG) 125
Read Phase 2 (READ P2) 126
Read Phase 3 (READ P3) 127
FORTRAN Rewind Temporary (FREWIND) 128
FORTRAN Write Temporary Tape (FWRITE) 129
FORTRAN Read Temporary Tape (FREAD) 130
Error Subroutine (ERRORSUB) 131
MONITOR Typeout (MONTYPEO) 132
Type Character (TYPECHAR) 133

Description of Principai Symbois i 34
T2 Fi Ie (Pass 2 Output/Pass 3 Input) 136
SDS Standard Binary Language 141

COMPILER DEBUGGING SYSTEM ------------147

iv

STRUCTURE
OV EHALL FLOW

SDS 9300 FORTRAN IV is a 3-pass compi leri that is, it passes over the source information
(in one form or another) three times.

Pass 1 reads the source program, performs syntax analysis, registers symbols and other con
structs, prints the source listing and all diagnostics, and outputs a parsed form of the source
program to pass 20

Pass 2 generates the ob ject code and ma kes one pass of assembly on it.

Pass 3 ma kes the fi na I pass of assemb Iy, outputs the bi nary ob ject code, and pri nts the ob ject
listing (with source lines intersperced) in a format similar to META-SYMBOL, a symbol table,
and a summary listing.

There is also an allocation phase, called pass lA, that performs all allocation and equivalence
of variables and prints diagnostics for improper equivalences. It is logically considered part
of pass 1, although it is physi ca lIy located in the pass 2 core load. It does not ma ke a pass
through the source program.

This manual contains independent discussions of each of the passes and of the compiler de
bugging system, an elaborate executive routine which may be interfaced with the system
during debugging of the compiler itself. Furthermore, the first section of the manual contains

d .. f f I I • ,. h·'· I' I' a escnptlOn 0 some 0 tne concepts, tecnnlques, ana routines t at are utllizea oy a I

sections of the compi ler.

LISTS

Most of the compiler's processing and information saving is done on lists. Lists are used both
to accumulate data (e.g., the symbol table) and to manipulate it (eog., the work list). In
the latter sense, they are commonly used instead of registers because this facilitates recursive
use of subrouti nes 0

These lists are not threaded listso They are consecutively stored, for easy addressing by rela
tive location within the list. Overflow is handled by dynamically moving the lists when
room is needed.

Associated with each list are four parameters: base, start, ~, and bottom. (There is also
a fifth, called code (see 11 Pointers") and a sixth, called list flags.) These parameters are
illustrated by the diagram on the fo 1I0wing page 0

The parameters for each of the lists are kept in individual cells in memory. Each parameter
is an absolute address telling where that part of the list is.

Base

5'

Start T'

Top •

Bottom

Other files, if any

}
Two-word reserve
marker

Logically empty

Current fi Ie

Lower
Memory

Higher
Memory

The base is the word immediately above the word that is physically first in the list, i.e. the
fi rst wo rd i nth e fi rst fi Ie.

The start is the word immediately above the word that is physically first in the bottom
(current) fi Ie.

The top is the word immediately above the word that is logically first in the bottom file. It
is possible to logically remove entries from a file without altering the physical location of
the start of that fi Ie •

The bottom is the last word on the list.

The II file mark" for these lists is called a reserve markero This is a 2-word entry containing
the start and !£.e {relative to the base} of the previous fi Ie 0 The RSV {Reserve} and RLS
(Release) POPs are the primary ones used in creating multiple files.

Note that, on unreserved lists, the start equals the base. Furthermore, if no information has
been logica Ily removed from the top of the list, the top a Iso equals the base. This is the most
common status for lists in general-:In this case, the bottom is the only one that physically
lies within the lisL

2

The POPs used in manipulating lists are discussed later in this section.

REASSIGN MEMORY

The lists are stored in the erasable area of memory; that is, the storage that is not occupied
by the compiler itself or the operating system. All the lists share this one area of memory;
therefore, the storage for one list is not exhausted until all the storage is exhausted. Before
the arrangement of the lists is discussed, it is necessary to explain a conflict in terminology
related to them. As stored in memory, the bottom of a list is in a higher location than its
top. This facilitates appending a source line to the bottom of the input list by just reading
directly into memory, as well as simplifying some other manipulations. This means that
"moving a list down" (in memory) corresponds to moving it towards its own top. Keep this
anomaly in mind when reading the following ~ectiono

In concept, the lists occupy erasable memory as depicted in the following diagram:

I Output
List _I

Lower
Memory

Input

list _I
..
~---/

Erasable

All other lists I
/---1 1'''-'',1

Upper
Memory

The output list contains the intermediate output between passes. It is an ever growing list
that may eventually push everything else up to the top of memory and use up all avai lable
storage 0 On Iy when this happens, is it dumped onto an intermediate tape. See below for
details on this.

The input list contains the source input as it is read in and is generally only two cards
{40 words} long. It moves up through memory, adding on at the front and taking off at the
back. In doing so, it stays in front of the output list. The input list expands to greater than
40 words only when necessary Ito accommodate continuation cards, and it wi II thus accept any
number of these unti I memory is used up.

All the other lists are initialized near the top of memory and push down. The exact mechanics
of reassigning the various lists are as follows: (In this discussion, "a list" is assumed not to be
the input or output list unless so specified.)

3

1. A list always requires room at its bottom, never at its top. When it needs room, the
space between it and the base of the next list up is used if this is sufficient.

2. If that space is not large enough, the space between the input list and the lowest
list is measured. If this plus the space in step 1 (above) is not sufficient, go to
step 30 Otherwise, a II the Ii sts from the current one, down to and inc luding the
lowest list, are moved down the required amount. These lists are moved as a whole,
maintaining the spaces between them. This space will be closed up only if necessary,
si nce it is desi red to retai n some room for each list to grow.

3. If there was not sufficient space, the input list is moved down to just above the out
put list and step 2 is repeated.

4. If th i s has not obtai ned enough space, the lists are pressed upward: a II the lists
above the current one are packed against the top of memory, removing all spaces in
between, and step 1 is repeated.

5. If step 1 is not successful, all the lists below the current list are packed against the
current I ist (removing spaces) without moving the current list. Now step 2 is repeated.

6. If this procedure is unsuccessful, there is not enough room in memory. At this point,
it is necessary to dump the output list onto a scratch tape. It is written out from its
top to its bottom. Since it is written in constant length records, whatever is left
over at the end that will not fill a complete record is left in memory. From this
point on, the output list is periodically checked (see "File Code" in pass 1 and
II Output Code II in pass 2) and an intermediate output record written whenever the
list is large enough. In other words, the output list is no longer allowed to contin
uously grow as before. Thus, if this step has already been done once, no gain wi II
resu It here.

7. Now the input list is moved down again (as in step 3) and step 2 is repeated. This
must produce enough room or else memory has overflowed, which causes the job to
abort.

8. If the list needing room is the input list, the procedure is basically the same except
that step 5 is meaningless and step 2 just amounts to step 1.

9. If the list needing room is the output list, the procedure is somewhat diffe'rent. Of
course, if there is sufficient room between it and the input list, there is no problem.

10. If there is not enough space, the space between the input list and the list immediately
above it is examined. If this space plus the space in step 9 is not sufficient, go to
step 11. Otherwise, the input list is moved up. If possible, when moving it up,
some room is left for the output list (about 20 words); otherwise, it is moved up the
necessary amount.

11 . If there is not sufficient space, a II the other lists are pressed up, as instep 4, and
step 10 is repeated.

120 If there is still not enough room, the position is the same as at step 6. So the output
list is dumped on tape and step 9 is repeated (i.e., is there enough room between

4

the input and output lists?) 0

13. Finally, if this is not enough, the input list is moved up (as in step 10), and this
must produce the required room or else memory has overflowed.

There are two further facts of interest pertaining to the reassignment of lists. There are two
occasions when list parameters are changed without specifically being requested:

1. When information is taken off the top of an unreserved list, the base and the start
are moved up to coincide with the top, thus freeing the words removed. Note the
fact that this means pointers to this list are no longer valid. That this does not
cause trouble is indicative of how seldom information is taken off the top of lists.

20 When information is taken off the top of a list with a reserve marker, a gap of
logica Ily empty space is produced, that is not avai lab Ie to other lists. If, however,
all the information in the bottom file is removed, the top and bottom will be adjusted
down to coincide with the start, thus freeing that spaceat the opposite end from
method 1 above.

INITIALIZE LISTS

This routine is used at the very beginning of each compilation, i.e 0, at the beginning of
pass 1 0 It sets up the parameters of all the lists so that they are a II empty, the input and
output lists are at the bottom of erasable memory, and all the other lists are at the top of
erasable memory.

It a Iso puts one unusable word on the exit I ist (unusable as an exit) for use in setting answers
at recursive leve I zero.

It initializes the input offset (see II Next Input Character").

If the DEBUG option was specified on the FORTRAN control card, this routine loads the
F4DEBUG routine from the system tape and adjusts list parameters accordingly.

If S option (S in column 1) was not specified on the control card, the initialize routine
adjusts the list parameters so that the lists will destroy the S-in-column-l processing code in
the compi ler •

POINTERS

Pointers tell where things are located on listso They are l-word items as follows:

6 3 15 number of bits

ID Type Address contents

5

The ID field tells what list a thing is on, and in so doing, tells what kind of thing it is. The
type field tells real, integer, etc., whenever this information is relevent. The address field
gives the position in the list, relative to the base 0

There are three kinds of pointers, corresponding to three ranges of values of the ID field:

1. Ordinary list pointers. Here the ID field is simply the list number. The first list
is number 00, the next is 01, etc.

2. Plex pointers. The middle range of values (starting after the highest list number)
points to the plex listo The plex list has a number, but it will not generally appear
in the ID fieldo Instead, it will indicate what kind of plex this is - sum, product,
function, etc. The thing to which it points on the plex list is a variable-sized
group of words, the first of which tells how many words are in the group.

3. Symbol table pointers. Pointers to the symbol table wi II not generally contain the
symbol table's list number, but instead wi II be derived from the third word of the
item, which tells what kind of symbol it is (see II Identifiers") •

There are two ways in which pointers are formed:

1. The BOP (Bottom Pointer) POP builds a pointer to the word which is about to become
the bottom of the list. The upper nine bits of such a pointer are derived from a
table called CODE which contains one word corresponding to each list. One nor
mally executes the BOP just before putting a thing on a list.

2. The SER (search) POP builds a pointer to the thing it found. When the symbol table
is searched, the pointer is derived from the third word of the item found, so that the
pointer indicates what was found as well as where.

THE COMPILER INTERPRETER

The SDS 9300 FORTRAN IV Compiler is written almost entirely in an interpretive language.
The interpretive instructions look very much like ordinary machine instructions; each has an
operation code, an address, and tag and indirect bits. The only difference between the
interpretive instructions and 9300 machine instructions is that bit 1 is interpreted as a seventh
operation code bit instead of selecting index register 2 or 3. This allows more than 64 oper
ation codes as well as the use of index registers 2 and 3 in the interpreter itself.

A few of the instructions are identical to machine instructions and retain the same operation
codes: BRU, SKR, MPO, MPT, EXU, LDB, STB. Most of the other instructions are quite
different. The subroutine jump JRS (Jump Recursively to Subroutine) places the return
address on a push-down list, called the exit list, and jumps to the address specified. To re
turn from a subroutine, one branches to a special location in the interpreter called EXIT,

h· r h· r f h . I·. I .1 W len removes t e Dottom entry rom t e eXit liST ana goes mere.

6

All the testing instructions except SKR return their answers in the answer flag. Two instruc
tions, JAT and JAF (Jump if Answer True, and Jump if Answer False), test this flag. This
way of doing tests makes it unnecessary to test the answer flag immediately after doing the
test. One can do several more instructions before JATing or JAFing to test the previous
answer. This often removes the necessity of having identical code in two branches. The flag
is made more convenient by having a new one for each level of subroutine calling. Every
time a JRS instruction is executed, the old answer is saved (on the exit list) and wi II not
become active again until exit. Thus it becomes impractical to carry any answer into a
subroutine as an argument, but it is quite practical for a subroutine to return an answer as a
result. For example, suppose a subroutine A calls subroutine B just before exiting. It is
unnecessary for A to have

JRS B
BRU EXIT

Instead, it is standard practice for A simply to BRU to B. Even better, subroutine A can
sometimes be placed immediately before B and simply IIfall into" B. This practice saves both
time and space.

POPs are not the only things which can return answers: subroutines which have been called
with JRS maya Iso return them. Instead of branching to EXIT, one goes to EXIT TRUE or
EXIT FALSE.

The exit list is not the only push-down list built into the interpreter; there are about 68
others. The most important of these is the work list; it is the II A register" of the interpreter
in that most of the work is done there. The active end of any list (see Lists) is called the
BaTT OM, and the bottom of the work I ist is where most arithmetic is performed, most tests
are made, etc. The work list is also used to carry arguments into subroutines and often to
return results.

The FET (Fetch) POP picks up the word addressed and appends it to the bottom of the work
list. The bottom element of the work list is called WO, the previous word Wl, etc. Thus,
when FET is executed, the word which was WO becomes W 1, and the word fetched becomes
WO. Corresponding to FET is a STO (Store) POP which stores WO and removes it from the
work list - - thus making W1 into WO. There is also an STK (Store and Keep) POP which
stores WO but does not remove it from the work list, and there is a GET POP wh i ch fetches a
word from memory and replaces WO with it. There is XCH (Exchange) which swaps WO with
something. It frequently addresses something else on the work list, although it is not required
to do so.

It is possible to move things from the work list to other lists and back again. MON (Move
On) takes WO and moves it onto the bottom of some other list. MOF (Move Off) removes
the bottom of some list and appends it to the work list, provided that there is anything on the
other list to get. Thus MOF returns an answer true if it got anything or an answer false if
the list was empty. This feature makes it convenient to control a loop with MOF. If a loop
is supposed to do the same thing with all the items of a list, it is not necessary to know just

7

how many there are. One simply keeps moving off items unti I there are no more left.

It is possible to copy a whole list to another list. It takes two POPs to do this, one to tell
which list to copy from and one to tell which list to copy to. To make a copy of the work
list on the term list, for example, one writes:

ADR TERMLIST
CPY WORKLIST

This operation does not destroy the work list, nor does it destroy the previous contents of the
term list; it appends a copy of the work list, however big it may be, to the bottom of the
term list.

Items may be removed from the top of a list via TOT (Take Off Top). Like MOF, TOT returns
an answer false and does nothing if the list is empty, or appends the word to the bottom of
the work list and returns an answer true if there was anything to take. If a list contains just
one word, TOT and MOF have the same effect.

The JRS (Jump Recursively to Subroutine) POP can be used to write a subroutine which calls
itself. Sometimes it is necessary for a subroutine to have a nice clean list to work with every
time it is called. This can be accomplished with the RSV (Reserve) POP, which causes a
list to become "empty" while still retaining the information it used to have. RLS (Release)
causes the list to revert to the state it was in before the RSV. When a Ii st has been reserved,
it has a top and bottom wh ich are not confused with previous ~s and bottoms; it may be
MONed, MOFed, TOTed, etc., without disturbing the information which was put on before
the RSV.

Reserve and Release may be used not only to make a list available recursively, but also to
defi ne fi les on a list. RSV essentia lIy ma kes a fi Ie mark on the bottom of a I ist and RLS
takes it off. In removing the fi Ie mark, RLS also discards any information which was put
onto the list after the file mark. There are two other POPs which are variations on RLS:
EMP (Empty) discards the information after the latest fi Ie mark but does not remove the fi Ie
mark; UNR (Un-Reserve) removes the last file mark but does not remove the information
which follows it. It pulls the mark out of the middle, thus combining the current file with
the previous fi Ie.

Release is often combined with other operations. There are CAR (Copy And Release--equiva
lent to CPY, RLS) and CAE (Copy And Empty--CPY+EMP). MOR (Move Off and Release)
and TOR (Top Off and Release) are a bit strange: they behave like MOF and TOT if the list
is not empty, but release the list and return an answer false if the list is empty.

SER searches a list. For searching purposes, each list is divided into n-word items, the first
m words of each being the key on which to search. Two parameters given at assembly time
define the item and key sizes for each list. A typical searchable list in the FORTRAN com
piler is the symbol table which has 6-word items of which the first two are the key. Item
size can be whatever is desired; key size, in the existing version, can be 1, 2, 3, or 4 words.

8

When a list is searched, it is compared against a set of words ca lied CE NTRAL. If a I ist has
1-word keys, it is searched against integer central (INTCENT}i if it has 2-word keys, they
are compared against CENTRAL 1 and CENTRAL2i if 3, against CENTRAL 1, CENTRAL2 and
CENTRAL3i and if 4, against CENTRAL 1,2,3,4.

5ER searches a list from top to bottom (i .e., ignoring previous files). If it finds what it is
looking for, it returns an answer true and appends a pointer onto the bottom of the work list,
pointing to the item it found. This pointer indicates on what list and what position on the
list the item is. If 5ER does not find something, it returns an answer false and leaves the
work list alone.

Using the pointer, there are two ways to obtain the information in the item pointed to.
Assuming that the pointer does not have to be saved and that it is in WO, one can use BNG
(Bring). The address of the BNG POP is relative to the pointeri i.e., BNG 0 means bring
the word pointed to, BNG 1 means bring the word following that, etc. In any case, the
word brought replaces the pointer in WO, leaving the size of the work list unchanged.

If the pointer is to be saved, one can use the instruction FET WO before the BN G POP. This
wi II append a new copy of the pointer to the work list, leav i ng the old copy in W 1. Another
way of fetching a word relative to a pointer without destroying the pointer is with POX
(Pointer to Index). POX addresses a pointer and places the address pointed to by the pointer
in index register 1. It will remain here only until the next instruction, where it may be used
to modify the address. Index 1 is not saved by the POPs, so it is not permissible to POX one
place and expect the address to remain in the index register several instructions later. This
restriction is not quite as bad as it sounds since storage for the lists is assigned dynamically,
and a list is apt to move, thus invalidating the address. The fact that a list may move does
not invalidate a pointer, since pointers contain relative addresses, not absolute ones o

One may POX the pointer (which may be in WO) then FET relative to the pointer using an
index 1 tag. If the purpose is not to fetch but to store something near where the pointer
points, STO, 5T K, 5TB, etc., may be used after POX instead of FET.

BNG n

is equivalent to

POX WO
GET n, 1

When someth i ng cannot be expressed convenient ly in interpretive language, one can return
to mach ine language mode via BRL (Branch and Leave Interpretive mode) wh ich branches to
the location specified and is in machine language mode thereafter. BRL can be used both as
a straight branch and as a subroutine call. On arrival at the branch location, index register 3
contains the location of the BRL in the address portion, and 1 in the increment portion. Thus,
when BRL is used to call a subroutine, one exits from the subroutine by writing

BRX INTERP,3

9

thus returning to interpretive mode at the instruction following the BRL. BRL is used for many
II POPs without operands .11 For example, there is a machine language subroutine to negate
WO. It needs no operand address, so it is ca lied with BRL. To enter interpretive mode but
not return to the BRL, one writes

BRM ENTER (Enter Interpretive Mode)

thus entering interpretive mode at the location following the BRM. Here, unlike the BRX
exit, it is unnecessary to have anything special in any of the registers. BRM ENTER is
used infrequently in the compi ler, since BRX INTERP,3 is faster and makes subroutines con
veniently.

A subroutine called with BRL can also return an answer 0 Instead of BRXing to INTERP one
branches (BRU) to POPEXTRU or POPEXFAL. Here, like BRX INTERP, 3 it is a good idea not
to have destroyed index 3.

It has been implicit throughout this discussion that WO, Wl, W2, etc., are special addresses
which may be used to refer to the bottom few items of the work list. These are converted by
META-SYMBOL into special POPs which perform the address calculation. There are also
some specia I addresses PO, Pl, etc., which refer to the bottom few items on the parameter
list (~aram list). PO refers to the bottom parameter, just like WO; POIND (PO Indirect) refers
to the address pointed to by the bottom parameter. To put things onto the param list, one uses
the ADR (Address) POP, wh ich appends 'the effective address of the POP itse If to the bottom
of the param list. To send parameters to a subroutine, one sometimes does a few ADRs before
JRSing. The subroutine then refers to the parameters with POIND, PlIND, etc 0, (or some
times PO, Pl, but these forms are not quite as useful). It is usually the subroutinels responsi
bi lity to get the parameters off the param list. It may do so by SKRing the PARAMBOT the
appropriate number of times, or it may exit through DITCH lEX (Ditch 1 and Exit), DCH2EXTR
{Ditch 2 Exit True),or DCH3EXFA (Ditch 3 Exit False) 0 The word "ditch" implicitly means
get rid of things from the param list, while the word "clear" refers to getting rid of things on
the work lisL There are exits which clear or ditch 1, 2, or 3 before exiting true, exiting
fa ise, or just exiti ng.

SORT (Sort) and FLIP (Flip) are also useful 0 SORT sorts the bottom file of a list, item by item,
using the same keys as in SER (Search) 0 Things are sorted in lexicographic (unsigned) order.
FLIP turns the bottom fi Ie of a list upside down, word by word, so that the top becomes the
bottom and the bottom the top 0

Most of the other POPs are associated with some particular operation (as opposed to general
list manipulating POPs) and are described under the appropriate pass.

10

PROGRAMMED OPERATORS BY CATEGORY

BUILD

BAF Build Absolute instruction and Fi Ie

BAF builds an absolute instruction and puts it on code list. AXB is usually bui It
this way. The absolute address is found in WO and is removed from the work list .

BAM Bui Id by Address Mode

Although this instruction is usually used for code generation, it does not actually
build anything. It takes the mode field (bits 6-8) ofWO, shifts it to the address
fie Id, and adds it to the effective address. It then executes the POP at the
location addressed 0

This instruction usually addresses a 4-word table of instructions which do the
building. BAM does not disturb the work list, but most of the instructions it
addresses remove WO 0

BBA Build BMA, PZE to call a system library routine

The address of the POP tells what routine to call (addresses a 2-word BCD symbol).
WO tells the operand. BBA may bui Id LDX, AXB, or EAX to handle the subscripting
of the operand. It may add tag or indirect bits to the PZE. It discards WOo

BBR Bui Id BRM to system routine

The effective address te lis what system routine (addresses a 2-word BC D name).
BBR bui Ids only a BRM; it does not disturb the work list.

BEX Bui Id EXterna I reference other than BRM or BMA

BEX is used to bui Id unusual references; ike LDA 8DBLO. It addresses a 2-word con
stant which specifies both operation code and address, and it ignores the work list.
BEX appends the two words addressed to the bottom of the code list.

BIC Bui Id Instruction with Constant

BIC registers a constant and builds a reference to it. It is used for bui Iding things
like SKG =0, FLM =-1.0, etc., (addresses a several-word item which tells operation
code and constant) 0 It ignores work list 0

BIF Build Instruction and Fi Ie

This is the basic "workhorse" of the instruction-building POPs. The lower nine bits
of the effective address specify the tag and operation code of the instruction to be
built. The operand is found in WOo If the operand is subscripted, BIF also builds
the necessary LDX, EAX, etc., commands to handle that. It may add tag or indirect
bits to the specified operation code. It maya Iso bui Id addends to expedite constant

11

subscripting. This is the only POP which calls itself.

BIF removes operand from WO.

BSI Build Spec ia I Instruction

Used main Iy for bui Iding COpy instructions, BSI addresses a many-word constant
containing the instruction in binary form and as a BCD string to appear on the object
listing. Ignores the work list.

CONTROL

Nap No OPeration

EXU EXecUte

EXU executes the POP in location Q' 0 That POP may be another EXU, if necessary.

EFFECTIVE ADDRESS

ADR ADdRess to parameter list

The effective address (with 0 operation code) is appended to bottom of param list.

EAT Effective Address to Temp (EATEMP)

The effective address replaces EATEMP
9

_
23

• Zero replaces EATEMP
o

_
a

•

FEX Fai I EXit

Effective address ----.. FAIL EXIT 9-23 0 ~ FAIL EXITo_a·

The FEX te lis where to go when a fai I occurs, provided that the fai I was not under
control of TRY. See Try-Fail in Pass 1.

POX Painter to indeX (to modify next POP)

JUMPS

This POP addresses a pointero The effective address pointed to by the pointer is
placed in index 1 where it can serve to modify only the immediately following POP.

BRL BRanch and Leave interpretive mode

Leave interpretive mode and branch to the location designated by the effective
address.

This instruction is frequently used to call a machine-language subroutine, since the
return address remains in index 3.

12

BRU BRanch Unconditiona I

Branches unconditionally to addressed location.

JAF Jump if Answer False

Jump to location Q' if answer flag is false. The answer flag is recursive and is found
in bit 0 of the bottom word on the exit list ~ = false, 1 = true).

JAT Jump if Answer True

Jump to location a if answer flag is true 0 The answer flag is recursive and is found
in bit 0 of the bottom word on the exit list (0 = false; 1 = true).

JRS Jump Recursively to Subroutine

Append return address to exit I ist and jump to the addressed location.

TRY TRY

This has to do with syntactic analysis which may fail. Basically, it behaves like
JRS, but converts EXIT to EXIT TRUE and FAIL to EXIT FALSE. See Try-Fai I in
Pass 1.

GENERAL LIST OPERATIONS

CNT CouNT

C NT appends to the bottom of the work iist the number of items in the bottom fi Ie
of the list addressed.

Bottom (0') - Top (0') ~Work List

EMP EMPty

EMP empties the bottom file from the addressed list. The reserve marker is not
removed.

ZAP ZAP

ZAP completely empties a list, removing all files (i .e., sets BOTTOM = TOP =
START = BASE).

FLIP FLIP list fi Ie upside down

MCO

FLIP inverts the bottom file of the addressed list. Inversion is done word by word,
regardless of the item size of the list.

Move Central 1 and 2 Onto list

MCO appends to the bottom of the addressed I ist the contents of CE NT RAL 1 and
CENTRAL 2.

13

MOF Move OFf bottom and onto work list

MaN

MaR

MOF moves the contents of one cell from the bottom of the addressed list (0') to the
bottom of the work list. List 0' is reduced by 1 cell, and the work list is expanded
by 1 cell.

In the event the bottom file of list 0' is empty, neither list is changed and the answer
flag is set false.

Move ONto from work list

MaN removes the bottom item from the work list and appends it to the bottom of
the addressed list.

If the work list is empty, this POP does not function correctly and may destroy lists.

Move Off and Release if empty

If the addressed list (0') is not empty, MaR behaves just like MOF and returns an
answer true. If it is empty, it releases the list (removes a reserve marker) and
answers false. In the latter case, the work list is unchanged.

RlS ReleaSe list

Removes the bottom file (including reserve marker) from the addressed list. If there
is no reserve marker to remove (i.e., if START = BASE), it merely empties the list.

RSV ReSerVe list

Appends a reserve marker to the bottom of the addressed list. This creates a new
file on the bottom of the list, and the file is empty (BOTTOM = TOP).

SAL Save A list

SORT

This POP is used to remember the state of a list by saving its start, top, and bottom
(relative to its base) on the save list. See Try-Fai I. --

SORT a list

SORT sequences the bottom fi Ie of the addressed list into increasing order. The
item and key size information come from the code table.

TOR Take Off top and Release if empty

If the bottom file of the addressed list (0') is not empty, TOR removes top word,
appends it to the bottom of the work Ii st, and returns an answer true. If the fi Ie is
empty, TOR leaves the work list alone, removes a reserve marker from list 0' (if one
exists to remove), and returns an answer false.

14

TOT Take Off Top

TOT removes the top item (from bottom fi Ie) of the addressed list (0') and appends it
to bottom of work list. In the event bottom fi Ie of 0' is empty, lists are left unchanged
and the answer flag is set fa I se •

UNR UN-Reserve a list

This POP removes the last file mark from the addressed list, but does not empty the
bottom fi Ie. Thus, it combines the bottom fi Ie with the previous fi Ie.

If there is no file mark (has been no previous RSV), the POP does nothing.

BOP BOttom Pointer

BOP creates a pointer to what would become the bottom of the addressed list if one
more item were to be added to it. The pointer is appended to the bottom of the
work list.

TOP TOp Pointer

TOP is simi lar to BOP, but creates a pointer to the top word in a list. It returns an
answer true if there is anything on the list; otherwise,-it returns an answer false and
does not create the pointer. The pointer is appended to the bottom of the work list.

PNI Process Next I tern

PNI is used in conjunction with TOP 0 It increments the pointer in WO by the entry
size of the list addressed to point to the next entry. If there is another item, it
returns an answer true; otherwise, it returns an answer false.

LIST COPYING

CAE Copy And Empty

CAE copies the bottom file of the addressed list to the list specified by the previous
ADR POP and empties the bottom fi Ie of the addressed list but does not remove the
reserve mark.

CAE 0' is equivalent to CPY 0'

EMP 0'

I It removes the bottom cell from the param list.

CAR Copy And Release

CAR copies the bottom file of the addressed list to the list specified by the previous
ADR POP. Then it empties the addressed I ist and removes a reserve marker (if there
is one). Thus, the list may not be empty when this POP is executed. It also removes
the bottom of param list.

CAR 0' is equivalent to CPY 0'
RLS 0'

15

Cpy Copy

Cpy copies the bottom file of the addressed list to the list specified by the previous
ADR POP. It also removes the bottom cell from the param list.

SPECIAL ADDRESSING

PAD Parameter Address Direct

This is used in connection with special addressing through the param list. Bits 9
through 14 of the effective address specify what number is to be subtracted from
param bottom to determine the new effective address. Bits 15 through 23 (of which
15 and 16 are always 0) specify whi ch POP to execute with the new effective add
ress o This POP is not normally written as PAD, but is generated automatically by
the assemb ler when PO, P 1, etc., are used as operands.

PAl Parameter Address Indirect

PAl is like PAD except that an extra level of indirect addressing is added at the
end. It is generated by the assembler when POIND, PlIND, etc., are used as
operands.

WAD Work list Address Direct

This POP is generated by the assembler when another POP addresses W 1, W2, etc.
(For WO, the assembler makes an indirect reference to WORKBOT.) Bits 9 through
14 of the effective address are subtracted from (WORKBOT) to determine a new
effective address. Bits 15 through 23 (of which 15 and 16 are zero) tell which POP
to execute with the new effective address.

This POP causes the interpreter to call DEBUG twice with the same location in X3 -
once with WAD as the operation code and once with the POP specified in bits 15
through 23"

CODE LIST

FIL FILe (fetch to code list)

FIL appends to the bottom of the code list the word in the addressed location.

FAD Fi Ie ADdress

FAD is like FIL but fi les its own effective address rather than the contents of that
address.

LOAD/STORE

LDB LoaD B

Load B register from the addressed cell. This is useful for SST, SSK, STB, and SME.
Many other POPs destroy B, so it is unwise to try to keep something there for long.

16

LOD LOaD a list (for debugging)

LOD puts a string of words onto the bottom of the addressed list. The string is
addressed by EATEMP (see EAT POP); the first word of the string tells how many words
follow, and it is the following words which are put onto the list.

LX 1 Load indeX 1

(0) --+- X 1

The contents of the addressed location replace the contents of index register 1. The
number loaded may be used to modify only the immediately following POP. After
that, the interpreter has destroyed Xl. Un Ii ke LOX, th i s instruction has fu II address
ing capabi lities, and a tag means modification, not selection.

STB STore B

(B)~O'

The contents of the B register replace the contents of the addressed location.

MEMORY

MEF MEmory False (store zero)

Stores zero in the addressed location.

MET MEmory T rue (store ones)

Stores a II l's in the addressed location.

MPO Memory Plus One

(G) + 1 --+- (G)

The contents of the addressed location are incremented by 1.

MPT Memory Plus Two

(0:') + 2 ---.. (0:')

The contents of the addressed location are incremented by 2.

SKR SKip Reduce

(0) - 1 ----.. (0:')

The contents of the addressed location are reduced by 1. If the resu It is negative,
the next instruction is skipped 0

T MT T est Memory True (set if negative)

Set answer flag true if the contents of the addressed location are negative; otherwise,
set the answer flag false.

17

PLEX

FIC Flesh, Inherit, and Count (bui Id plex)

Bui Ids a plex from the bottom n items on the work list, where n = 1, 2, .•. 6. N is
supplied in the 2-word plex description addressed by FIC. Traits are inherited only
from the first of the n items (the one farthest from the bottom). The n items are
removed from the work list, and a pointer to the plex is appended.

FIP Flesh and Inherit P lex (bui Id plex)

FIP is like FIC except that the traits are inherited from the merge of all the words
in the plex.

PLO P lex Open

PLO is used in connection with CIC and CIF to bui Id a plex of variable size. PLO
addresses a 2-word plex description constant which is placed in PLOWORDS and
PLOWORDS+ 1 •

PUL PULL plex to a list

WO contains a pointer to a plex. PUL removes WO, then copies the items of the
plex to the bottom of the addressed list.

CIC Copy, Inherit, and Count

CIC is used in connection with PLO to build a variable-sized plex. Thebottomfile
of the addressed Ii st (0') is bui It into a plex $ Traits are inherited from a II the words.
The list 0' is left empty, but the fi Ie mark is not removed. Plex pointer is appended
to the bottom of the work list.

CIF Copy and Inherit Fi rst term traits

GROUP

CIF is like CIC except inheritance is done only from the first (topmost) word instead
of a II the words.

COG COpy Group

COG bui Ids a group from the bottom file of the addressed list (0') and appends the
group on the bottom of the group list. A pointer to the group is appended to the
work list. The bottom fi Ie of list 0' is emptied (the reserve marker is not disturbed).

Equiva lent to:

(Groups are much like plexes.)

BOP
CNT
MON
ADR
CAE

18

GROUP LIST

GROUP LIST
GROUP LIST

PUG PUll Group

PRINT

Assuming WO contains a pointer to a group on the group list, PUG wi II copy the
items (not including the count) from the group onto the bottom of the addressed list.
WO is removed 0 No change is made to group list 0

PRC PRint Character

PRC addresses an item in the character translate table of which the left six bits are
the character and prints it (i.e 0, causes it to be set up in a I ine image).

PRQ PRi nt Quote

PRQ addresses a variable-length quote constant and prints it.

INPUT SCAN

CSA Character Scan with Answer

If the II current character" is empty, the next character from the input string is
retrieved. Then "current character" is compared with the character in the addressed
location of the character translation table 0 If they are equal, "current character"
is emptied and the answer flag is set true. If they are unequa I, the answer flag is
set fa Ise.

CSF Character Scan or Fai I

If the "current character" is empty, the next character from the input string is
retrieved. Then" current character" is compared with the character in the address
location of the character translation table. If they are equa I, contro I is returned.
If they are not equal, control goes to Illegal Syntax FaiL

CSK Character Scan and Keep

CSK is like CSA except that it does not "empty" the current character.

SOC Set On Character

If the current character is empty, SOC advances to the next active character and
performs an SKA-type compari son with the word addressed and current character,
thus testing various character flags such as DIGIT FLAG, LETTER FLAG, etc. If
any 1-bits agree, the answer is true; otherwise, it is false. SOC does not advance
beyond the character in either case.

QSA Quote Scan with Answer

QSA is like CSA, except it addresses a variable length quote constant, scans the
,.h", .. ",,.4-o 4- ... 1"" f .. "'....., 4-ho ,." 0 4- ,.h""''''''''''+e'' "' 'J./ rrl rl cL-c ff"'\r "'f"'\rnnl~h::::. t"'I r~~rn~nT
"",IIYIU\.oIlv. ~II II~ IIVIII III"" \wVII'-'11I '-"11\00011'-4'-"1 I VIIYY"-"IIt...AI ""' ""' ,"'" ."" "" ••• t'.,..,.."" -~'''''''''''III,"""III

19

with the quote 0 If agreement is found, the scan pointer is moved beyond the quote
and the answer true is returned; otherwise, the scan is returned to where it was and
the answer false is given.

ERROR MESSAGES

ERC ERror on Current character

ERC appends an error message item to the bottom of the error list 0 The character on
which the error occurred is the current character, i.e 0, the character number comes
from current character count 0

ERL ERror on Last character

ERL is the same as ERC except the character number comes from last active character
count; i oe 0, the "bad" character is the last active character before current charac
ter 0

ERW ERror on Work list

SEARCH

ERW is like ERC except that the character count comes from WO and is removed
from there 0

SER SEaRch a list

SER can do single and double-precision searching on lists with different item sizes.
From the code table it finds out how big the items are (how far from item to item)
and how many words of each item to compare. If doing double-precision searching
(usually for an identifier), it compares CENTRAL 1 and CENTRAL 2 with the first
two words of each item; if doing single-precision searching, it compares CENTRAL 2
with the fi rst word of each item 0

SER searches a list from top to bottom; if the item for which it is searching appears
in more than one place in a list, it will find only the first one.

If it finds the item sought, SER appends a pointer to the item on the bottom of the
work list and gives the answer true 0 If it does not find the item (or if the list is
empty), it makes no pointer and returns the answer false.

SER 1 SEaRch single precision

SER1 is almost the same as SER. SER gets item size and key size from the code table,
which contains information about each list. SER 1 gets key size from the code table
but sets item size to 1. Thus, if addressing a list with 2-word keys, it performs
double-precision comparisons but advances by only 1 between comparisons ~ thus
performing an overlapped search.

20

SER2 SEaRch doubl~ precision

SER2 is like SER 1 except that it sets item size to 2.

SET

SNE Set if list Not Empty

Set answer flag true if bottom fi Ie of addressed list is not empty; otherwise, set
answer flag false. Does not disturb any lists.

SOF Set On Flag

SOF expects a pointer in WO. This pointer may be to a list or may be a plex pointer.
In either case, there is a flag word associated with the pointer. In the case of a
list, the flag word is in a table called list flags and applies to everything on the
list. For a plex pointer, the flag word is part of the plex on the plex list. SOF
fetches the appropriate flag word and performs an SKA-type compari son with the
contents of the addressed location. Answer is true if any 1-bits agree; otherwise, it
is false. SOF does not disturb work list.

SOM Set On Mode equa I ity with WO

SOM compares mode of pointer in WO with mode field in the addressed location.
The answer flag is set true if the comparison is equal; otherwise, it is set false.

The mode field is bits 6 through 8.

SOR Set On Range

This POP is used for checking the size of numbers written in such statements as
SE NSE LI GHT n, WRIT E TAPE n, etc. These statements allow fu II expressions for
n, but in practice are usually written with integer constants.

SOR expects a pointer in WO which has been returned by Expression Scan. If the
pointer is not to the integer constant list, the answer is true. It is assumed that a
non-constant expression will be in range at run-time. If the pointer is to the
integer constant list, the constant pointed to is compared with the contents of the
addressed location (0') and (0' + 1) •

If (0') :5 Constant :5 (0' + 1), the answer is true; otherwise, it is fa Ise. The numbers
are compared as signed integers.

SOT Set On Test (compare WO 10 field)

The 10 field of the pointer in WO (bits 0 through 5) is compared with bits 0 through
5 of the addressed location. This is not an immediate value anymore. The answer
flag is set true if they are equal; otherwise, it is set false.

21

SRC Set on Range of Centra I

SRC sets the answer flag true if (0') ~ (Integer Central) ~ (0' + 1); otherwise, it sets
the answer flag fa Ise .

SYMBOL TABLE

REG REGister

REG is used for setting up various traits of an item in the symbol table. The third
word in a symbol table item contains a 6-bit ID (telling what sort of thing the
identifier is), a 3-bit mode field, and 15 bits of miscellaneous flags. REG can affect
any or a II of these.

REG expects a symbol table pointer in WOo It addresses a 1-word constant which is
essentially merged with the third word or the item pointed to. Bits 6 through 23 are
rea lIy merged; if bits 0 through 5 of the constant are non-zero, they replace bits
o through 5 in the symbol table. Otherwise, bits 0 through 5 are left unchanged.

Afterwards, bits 0 through 8 of the symbol table word replace the corresponding bits
of WOo

REG changes the symbol table. Since the statement may later fail, it may be neces
sary to restore the symbol table. Therefore, REG records the change on the symbol
table change list. An item on that list contains two words: a pointer to the word
changed (not the beginning of the item, but the actua I word) and the old contents
of the word.

SOP Set On Permissibi lity

SOP expects a pointer to the symbol table in WOo It performs an SKA comparison
with the permission word in the symbol table item (fifth word) and (0' + 1). Answer
is true if any l-bits agree.

SOL Set On Label

SOL is like SOP, but expects a pointer to a label (statement number). It performs
an SKA on the label item (first word) and 0'. Answer is true if any l-bits
agree.

SUP Set Up Permissibi lity

SUP expects a pointer to the symbol table in WOo It alters the permissibility word
(fifth word in the item) by ANDing it with (0' + 2) and saves the old permission word
on symbol table change list for possible restoration (see REG).

22

OTHER TABLES

RGI ReGister Integer constant

RGI addresses an integer constant. It searches the integer constant list for the item
addressed 0 If the item is found, RGI appends a pointer to the work list. If the
item is not found, it creates a new item on the integer constant I ist and returns a
po inter to that.

SUL Set Up Label

Like SUP, SUL expects a pointer to a label. Also, it performs a merge rather than
an extract with the label item and (0' + 1). It saves the old label item on symbol
table change list for possible restoration 0 (See REG.)

WORK LIST

ADW ADd to WO

(a) + (WO) ~ WO

The contents of the addressed location are added to the contents of WO, and the
sum is placed in WO. ADW may set overflow trigger, a word which contains 0 if
no overflow, a II 11 s if overflow. Overflow is accumu lative. ADW never turns the
overflow trigger off, but may turn it on. SUW and MPW also use the overflow
trigger.

ETW Extract To WO

(a) AND (WO) ----. (WO)

The contents of the addressed location are ANDed with the contents of WO and the
results are placed in WO.

BNG BriNG relative to pointer in WO

This POP computes the effective address of the pointer in WO, then adds to this
address the effective address of BNG. This address is used to retrieve a word from
memory and store it in WO, thus replacing the pointer there.

EOS E~c lusive Or from WO to Storage

(a) EOR (WO) ----. (a)

The resu Its of an exc lusive OR operation with the contents of the addressed location
and the contents of WO are placed in the addressed location. EOS removes WO.

FET FET ch to work list

FET appends to the bottom of the work list the word in the addressed location.

23

GET replace WO

(0') ---.. WO

MPW

T he contents of the addressed location replace the contents of WO. If the bottom
file of the work list is empty, this POP may destroy a nearby list.

integer MultiPly WO

(WO) * (0') ---+- WO

The product, formed by mu Itiplying the contents of WO by the contents of the
addressed location, replaces the contents of WO. MPW may set the overflow
trigger (see ADW) if overflow occurs in the signed integer sense.

DVW integer DiVide WO

(WO) / (0') ~ WO

The contents of WO are divided by the contents of the addressed location, and the
quotient is placed in WO.

SSK Selective Store and Keep WO

SSK uses the mask in B register to selectively store contents of WO in the addressed
" location (0'). Bit positions in a corresponding to 0 bits in B are not changed.

The work list is unchanged.

SST Se lective STore and di scard WO

SST uses the mask in B register to selectively store contents of WO in the addressed
location (0'). Bit positions in correspondi ng to 0 bits in B are not changed. WO is
discarded.

STK STore WO and Keep

(WO) ---. 0'

T he contents of WO rep lace the contents of the addressed location. The work list is
not changed. If the bottom file of the work list is empty, this POP does not operate
correct Iy •

STO STOre WO and discard

(WO) ---. 0'

The contents of WO replace the contents of the addressed location. WO is then
removed from the work list. If the bottom file of the work list is empty, this POP
does not operate correct Iy .

24

SUW SUbtract from WO

(WO) - (a) --. WO

The contents of the addressed location are subtracted from the contents of WO, and
the difference is placed in WO. SUW may set the overflow trigger (see ADW).

SWA SKA test on WO

Set answer flag true if (WO) .AND. (0') not equal zero; otherwise, set it false.
(0' represents the addressed location.)

SWE Set if we Equal to memory, discard if equal

SWE compares the contents of WO with the contents of the addressed location. If
they are equal, we is removed and the answer flag is set true. Otherwise, the work
list is not disturbed and the answer flag is set false.

SE K Set if Equa I and Keep

SE K is the same as SWE except WO is never removed.

SED Set if Equa I and Discard

SED is the same as SWE but WO is always discarded.

SME Set on Masked Equa I ity

SME is the same as SWE but compares only those bits which are present in the B
register (i.e., like SKM as opposed to SKE).

SW G Set if we G reate r

The answer flag is set true if the contents of we are greater than the contents of the
addressed location; otherwise, the flag is set false. Both are considered signed
integers. SWG does not alter work list.

XCH eXCHange with we
XCH exchanges the contents of the addressed location with the contents of WO. It
may be used to exchange we with Wn; e. g. I XCH Wn. Here the WAD POP calcu
lates the address of Wn, and XCH does the exchanging.

If the bottom file of the work list is empty, this POP may destroy part of another list.

COMPILER OVERLAY STRUCTURE

The compiler is on the system tape in the form of four records (not including label records) in
the following sequence:

25

F/DB (FORTRAN Debug System)
FORT (FORTRAN Control, PASS1, In-Line Code Processor)
F/P2 (PASS2)
F /P3 (PASS3)

Upon encountering a .6.FORTRAN control card, MONITOR wi II load the FORT record and
transfer control with a BRM to the first cell of FORT. If the debug system is needed, F/DB
wi II be loaded from the system tape. FORT RAN wi II then establ ish the begi nni ng of worki ng
space at one of three possible points:

1 0 if DEBU G option - at DEBU GE ND
2. if in-line code option and no DEBUG - at DEBUGORG
30 if no in-line code or DEBUG option - at SINCOLM1.

Pass 1 wi II then process the source program, and the FORTRAN control wi II load F/P2 and
transfer contro I to pass 2. At the completion of pass 2, pass 3 wi II be loaded. At the
completion of pass 3, control wi II be returned to MONITOR.

26

top

(DEBUGEND)

DEBUGORG

SINCOLM 1

o

Worki ng Space

Compiler
Debugging
System

In-line Code Processor
~----------

PASSl PASS2 PASS3

~--------- I
I

FORTRAN Control
I

I

MONITOR Resident

27

PASS 1
OV EHALL FLOW

MONITOR Interface

Ini tia I ize Lists

Compiler Initialize

Label Fi eld Scan

Statement Scan

Process Label

Release Line

File Code

End ? no

yes

Finish Up

Fin Pass 1

29

MONITOR INTERFACE

The MONITOR interface section receives, in X2, the word indicating which control card
options have been selected on the 6FORTRAN card. It sets up compiler triggers (true or
false) which can be tested during compilation, either in interpretive mode or out.

The options which may be selected are the following:

LS
LO
SO
BO
GO
ASA
X
S

List Source
List Object
Source Out
Binary Out
Go tape Out
ASA allocation mode
Com pi I e X cards
Accept S in column 1 (in-line Symbolic code)

EI
EO
C
DEBUG

Encoded In (ignored but warning message printed)
Encoded Out (ignored but warning message printed)
Compatibi I ity mode (interpreted as ASA compatibi Uty)
Activate compiler debug trapping mode

The following diagram indicates the bit configuration for the above options. (Although
other bits in the word may be set (e. g., bit 4), only those specified are tested by the com
piler.)

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lol-t I lotot 10101 lotot tolotolotot totol 101 I
malala I~ I~ I I~I~ la I~I; lal~ 1~1~1~1~lal~ 1~lat!j II

C J SO LS EO

DEBUG

ASA

o = Option not requested
1 Option requested

Reg i sters upon entry to compi I er:

(X 1) = Control card buffer address
(X2) = Processor options
(X3) = Processor entry point address

30

GOBO LO X EI 5 SJ

SI is set automatically

COMPILER INITIALIZE

Set up element size table according to either SDS or ASA storage mode allocation.

Initialize the following:

Input character count = -1
Last active character count = -1
Input stop count = -1
Not end trigger = TRUE
Main program trigger = TRUE
Subprogram trigger = FALSE
Current character = 0
Save active characters flag = FALSE
Use blanks trigger = FALSE
Number of X cards = 0
Any statements = FALSE
Executable statement trigger = FALSE
Block data trigger = FALSE
After IF trigger = FALSE
Multiple delta trigger = FALSE
Number of statements with errors = 0
Number of statements deleted = 0
Bob count = 0
Private temp counter = 0
Highest error severity (error level) = 0
Name I ist trigger = FALSE
Line count = 1

Initialize the LS print buffer to blanks and set pointers to start putting characters in at the
beginning of it.

Rewind T1 and T2 (intermediate output tapes), set current output tape to Tl, and set the
output to tape trigger to FALSE.

If Sense Switch 4 is set, accept patches through DEBUG if present, otherwise through
MONITOR PATCH routine.

LABEL FIELD SCAN

The primary purpose of label field scan is to analyze columns 1 through 6 of each statement,
and to accumulate the label (if any) in columns 1 through 5. The label is put on the local
label list or the non-local label list, depending on whether there is a dollar sign after it.
The label is also filed on the code list for Pass 2. Unless column 1 contains a special char
acter, column 6 must be a blank or zero to indicate that it is not a continuation card. (Con
tinuation cards are not scanned by label field scan.)

31

The following characters are processed specially when they appear in column 1:

blank - Ordinary label field.

digit - Ordinary label field.

C - Comment card. No further scanning is done; the card is released immediately

*

$

J

(see Release Card) and the next card is examined.

- Comment card. (Same as C)

- Comment card. (Same as C)

- Comment card. (Same as C)

x - X card. If the X option has been specified on the FORTRAN control card, the
X is ignored and the card is processed as if column 1 were a blank. Otherwise,
it is treated the same as C.

D - Double precision (7090 FORTRAN II). An error message is printed, and the D
is ignored.

- Complex (Imaginary). Same as D.

B - Boolean (7090 FORTRAN II). Same as D.

F - F card (7090 FORTRAN II). Uses external scan as if the F had been EXTERNAL
instead. However, column 2 must be blank. This is to avoid statements such
as FUNCTION A, if mispunched in column 1 instead of column 7, being
treated as an EXTERNAL statement. After scann ing the external names, label
field scan returns with exit false to indicate not to scan for a statement.

- Control card or EOF read. Compilation is terminated, and a "Missing END
card" message is printed.

S - Symbolic in-line code. The S option must have been specified. The compiler
first tries OPDSCAN. If not an OPD, then sets S card trigger, scans label
normally, and waits for statement scan to call symbolic code scan.

Label field also initializes the fail procedure for each statement and saves the lists which it
may effect, namely:

Work list
Exi t list
Loco I label list
Non-local label list
Symbol table
Code list

See II Try-Fai I" for further information.

32

STATEMENT SCAN

The purpose of this routine, whose parts encompass most of pass 1, is to scan for one state
ment and generate the proper code and error messages (if any) for it. It is recursively re
entrant since in the middle of it, if it is scanning a logical IF statement, it has to call
itself. If label field scan found an S in column 1, a special routine is called at this point
(described under In-Line Symbol ic Code), and the rest of statement scan is not used. The S
card scanner returns to statement ex it.

Since FORTRAN statements are initially so ambiguous, the routine must be able to scan part
of a statement, setting up I ists and generating code, and then upon deciding that it really
is not this kind of statement at all, restore all the lists, throw out the code, reset the scan,
and start all over again. Thus, this routine saves all the lists which it can affect as well as
certain other parameters, such as the character counts. (See Try-Fail.)

Most of the statements can be separated from one another because they begin with different
spec ia I words. There are two exceptions: the assignment statement and the statement func
tion definition (hereafter called an ASFD), which can begin with any name including those
that identify the other statements. For example, a statement that beg ins

REAL M(J)

may be a REAL statement, or it may be an assignment statement or ASFD if it continues

REAL M(J) = J * SIN(J)

Which of these latter two it is depends on whether REALM has been dimensioned or not.

Thus, there are three basic ambiguities wh ich must be resolved. (In some cases, there are
more; see below.) Since only one of them can succeed, they could be tried in any order.
In practice, they are tried in the following order:

1. Quote statements; i. e., statements that begin with a special quote (anything other
than 2 and 3).

2. Assignment statement.

3. ASFD.

This order is chosen for the following reasons:

1. Assignment statements and ASF Ds do not generally begin with special quotes, and it
can be quickly determined that the initial characters do not match any quote, where
as almost all of the quote statements look like assignment statements initially (towit,
the above example).

2. Assignment statements are much more common than ASFDs.

33

3. There are a small number of actual ambiguities in the language. It is desirable
that these be resolved in the direction of statements with special quotes. (See SDS
FORTRAN IV Reference Manual, 90 08 49, on II Syntax Ambiguities. II)

Statement scan uses a special POP called FEX (Fail Exit) to aid in this multiple statement
trying. FEX simply saves its effective address in a special location that is used, whenever
a statement fails, to determine what kind of statement to try next. Thus the procedure is as
follows:

1. F EX Assignment statement.

2. Exam ine the first character in the statement and branch through a sieve to scan for
the quote statements which begin with that letter. For example, if S is the first
letter, the statements SUBROUTINE, STOP, and SENSE LIGHT are tried in that
order (the order is usually chosen on the basis of likelyhood).

3. Each statement does a QSA (Quote Scan with Answer) for its particular quote, and
if it is not found, goes rig ht 0 n to the next statement.

4. If none of the quotes succeed, the routine proceeds directly to assignment without
failing, since no lists have been affected, and QSA keeps setting back the scan
when it fails.

5. If any quote succeeds, the routine proceeds to analyze that statement, assuming
that it is indeed one. Then, if something goes wrong, control goes to FAIL, which
restores all the I ists and the scan to the way they were at step 1 and proceeds to the
latest F EX, nom el y assignment.

6. Assignment FEXes ASFD and, if it fails, will go there.

7. ASFD FEXes Illegal Statement and goes there if it fails.

8. Naturally, any statement which succeeds does not fail and will therefore return to
statement scan at statement exit whi ch releases all the information that has been
saved (this enabled the routine to keep returning to the state of step 1) and exits to
whatever called it, with the generated code and error messages (if any), piled on
the code and error lists respectively.

A further discussion of this fail procedure is found under Try-Fail.

The above procedure assumes that no two quote statements can begin with the same quote.
There are five exceptions to this rule~

1. ACCEPT - ACCEPT TAPE
2. PUNCH - PUNCH TAPE
3. READ - READ TAPE - READ INPUT TAPE - READ DISC/DRUM
4. REAL - REAL FUNCTION (or any other type)
5. Arithmetic IF - Logical IF - Device IFs (e. g., IF SE NSE SWITC H)

34

These statements interrupt the normal sequence of FEXes. As an example, if the READ quote
is found, and no left parenthesis (which unambiguously indentifies a FORTRAN IV READ, as
opposed to a FORTRAN II READ), the compiler FEXes the FORTRAN II READ (cards) state
ment and scans for TAPE, INPUT TAPE, DISC, and DRUM. There is clearly no ambiguity
between these. If none of these quotes is found, it goes to READ (cards) directly. If one of
them is found, but the statement fails (e.g., READ DISC, List), the scan fails, which, be
cause of the special FEX which was done, gives control to READ (cards) instead of Assign
ment. READ (cards) then FEXes Assignment statement again and proceeds. Thus, READ only
inserts one extra FEX, as do all of the others except IF, which has the only true triple am
biguity. Logical IF is tried before the device IFs not only because it is expected to be more
common, but also because of an ambiguity that exists between it and them (see Syntax Am
biguities, Ope cit.).

The following flow chart illustrates the structure of statement scan. Note that if any state ...
ment succeeds, it does not proceed to the next statement, but directly to statement exit.

PROCESS LABEL

After all the necessary code has been generated for a statement, a check is made to see if
there are any DO or REPEAT loops ending on it. Only if the statement has a label is this
check necessary.

The loops must be closed in the inverse order from that in which they have been opened.
Since the openings have been consecutively filed on the DO list, the bottom entry is closed
first, and then the next and so on. (See DO list.) When, after n DO loops (where n may be
zero) have been closed, the bottom entry on the DO list is not the current label, there can
be no more legal DO terminations. However, the DO list is searched to determine if there
are any illegally nested loops further up the list. If so, an error message is printed for each
(with the delta under the label of the statement), and they are closed despite being improp
erly nested.

If any DO loops are terminated on this statement, and this is a type of statement that does
not permit this (such as GO TO), a warning is printed to the effect that the loop has been
term i nated here anyway.

RELEASE LINE

After each statement has been compl etely processed, the following are done:

1. Print the line and any error messages. If LS is not specified, the statement will be
printed on the LS device only if it has errors or is a SUBROUTINE, FUNCTION, or
END statement. If LO is specified, these printed lines will also be compressed and
passed on for printing during pass 3.

2. Remove the input line (including any continuation cards) from the input list. This
I ine is no longer accessible, and the storage it occupied in the input I ist is now
free (see Reassign Memory).

35

+
Arithmetic
IF

Logical
IF

Device
IFs

+
Type
Function

Type

Statement
Scan

+
All other
quotes

..
~r

Assignment

Statement
Function

Statement
Succeeds?

yes

Statement
Exit

EXIT

no

36

{

TAPE
READ DISC

etc.

READ
(cards)

Illegal
Statement

ACCEPT
TAPE

ACCEPT

PUNCH
TAPE

PUNCH

The test for continuation is done by noting the input character count, then requesting an
active character and observing whether next active characeter has proceeded to the next
card (see Input Scanning).

FILE CODE

After each statement has been processed, the plex list and the code list are put onto the
output list for pass 2. During the processing of each statement, the intermediate output is
built up on the code list rather than the output list so that it can be thrown away if the
statement eventually fails. Furthermore, in some situations, such as I/O DO implied lists,
it is necessary to retroactively insert some code in front of a mass of code that has already
gone out.

At this point, also, a call on Dump Out ML is made. This routine determines whether the
output I ist is being written on T1 (see Reassign Memory) and, if so, dumps the current output
list if it is big enough to fi II the resident buffer.

FINISH UP

Release the OPD list.

If this is the end of a FUNCTION or SUBROUTINE, its name, which has been a scalar during
the program, must be reinstated as a subprogram name with the proper type, if any. (See
KI udge I ist under Spec ia I Lists Set up by Pass 1.)

Check for any DO or REPEAT loops which have not been closed. Close these and print error
messages for each. They are closed in the inverse order that they were opened.

If the last statement was not a transfer of some sort, put out a RETURN or STOP.

Print out any undefined labels.

Fi I e an END statement number on the code I i st.

Make final pass through symbol table.

FINAL PASS THROUGH SYMBOL TABLE

At the end of each program, it is necessary to do some implicit classification of identifiers.
Anything that is not explicitly classified yet is made a scalar if there is any reason to. That
is, a name which has appeared in COMMON, for example, and nowhere else must be made
a scalar in order to occupy the right amount of space in COMMON. However, a name that
has appeared only in a REAL statement does not have to be classified at all since it is never
used. Identifiers in the latter category are not allocated and appear as UNUSED in the sym
bol table printout in pass 3.

37

yes

no

Print blank line

Sort errors by character
position 0 Increment
number of statements
with errors counter

Print blank line

yes

t---'" Print blank line

Print STATEMENT
DELETED and blank
line. Increment
number of statements
deleted.

RELEASE LINE

38

Print line
count.

Print source
card.

Release input
card.

Print 6 1s and
messages for
this card only.

Release input
card.

RELEASE CARD

39

Furthermore, names which do not yet have a type are typed impl ic itly (by the I, J, K, L, M, N
ru Ie) un I ess they are subprogram names. Th is is because SUBROUTI N E names must have no
type. No distinction is actually made between SUBROUTINEs and FUNCTIONs, but any
name which has been used as a function wi II al ready have a type.

Both of the above tests are accomplished by testing the permissibility of subprogram. Any
name that has been defined or referenced as a subprogram or has not been used at all wi II be
permissible to be a subprogram. Such names have neither their class or type classified here.
All other names are arrays, multiple dummies, scalars, or unclassified (e.g. appeared in
COMMON but undetermined whether array or scalar). The latter are classified implicitly
as scalars. Then they are all given implicit type if they have no type already.

Next, if a NAMELIST statement has appeared with no list (indicating everything should be
NAMELISTed), every non-dummy array and scalar is registered on the name list.

Finally, the fifth and sixth words in each symbol table entry are set up for use during alloca
tion. GLOBAL variables have special information in these words. All other symbols have
these words zeroed.

FIN PASS 1

If T1 has been used, due to list overflow, write out on it anything that is left on the output
list and rewind it.

Load pass 2.·

IDENTIFIERS

All identifiers, other than COMMON block names, are registered in the symbol table. (See
COMMON statement for information on block names.) The symbol table is an ordinary,
dynamicaiiy aiiocated iist consisting of 6-word entries. The six words are as follows:

1. First four characters of name (left justified with trailing blanks)

2. Second four characters of name

3. C lass, type, flags

4. Spec ial information

5. Permissibility word (see Permissibility)

6. Special information

40

yes

Zero fifth and
sixth words in
symbol table

no

Register as
scalar

Register on
NAMELIST

Register implicit
type

Set up fi fth and
sixth words in
symbo I tab Ie

FINAL PASS THROUGH SYMBOL TABLE

41

no

The third word is arranged:

6 3

o
CLASS

I
5 6 8 9

The c lass may be:

70 Unclassified
71 Scalar
72 Array
74 Multiple dummy
75 Subprogram

Type is:

o Unknown
1 Integer
2 Real
3 Double precision
4 Complex
5 Logical

15

FLAGS
I I

23

The last fifteen bits are various flags about the symbol, most of which are used only during
code generation in pass 2:

Bit 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

I/O list unsubscripted array - or - Complex mixtu.re
Addressable
A register
Constant
,....... I I • .,

uouole precIsion
Dummy
External
Global
Intrinsic
Multiple dummy
Signed addressable
Subprogram defi n ition
Subscri pted
Not used
Not used

All of the information in this third word is set up at one time or another by the REG (register)
POP (see II Symbol Table POPS").

42

The fourth word is used only by two kinds of identifiers:

1. For arrays it contains a pointer to the array I ist, where the pertinent information
(such as offset, multipliers, etc.) is stored (See Array List).

2. For intrinsic functions it contains a number identifying to pass 2 which intrinsic
function it is. (The intrinsic functions are numbered from 1 up.)

The fifth word is described under "Permissibility. II

The sixth word is used during allocation (see Allocation) and is also used temporarily in pass
1 for intrinsic functions. It contains in bits 6 through 8 the type of the function and in bits
9 through 23 the branch location for processing its arguments.

PERMISSIBILITY

The fifth word of each entry in the symbol table contains the permissibility bits. These are
used to determine the legality of the appearance of a symbol in a given context. For ex
ample, a name clearly cannot appear in a COMMON statement if it is a subprogram name.
It must be either a scalar or an array. Even then, however, it may not be legal; such as if
it has already appeared in COMMON or is a dummy. Often there are many such character
istics that would have to be tested before it can be certain that a usage is permissable. So
instead, each name has a group of bits associated with it, each of which indicates whether
the name may be used in a particular way. The bits are set to all lis when the symbol table
entry is first created, and each succeeding appearance masks off those bits pertaining to us
ages which are no longer permitted. Thus, for example, when a name has been used as a
dummy, the permissibility bit for COMMON is zeroed, as are those for GLOBAL, intrinsic
function, etc.

Contained in the compi ler is a table of traits, such as COMMON, dummy, scalar, etc.
This table consists of 3-word entries:

1. REG word. This word is used for setting up the third word of the symbol table entry.
It may contain class and/or type and/or flag fields.

2. SOP word (Set On Permissibility). This word is almost always a single bit, used
for testing the permissibility of one particular thing.

3. SUP word (Set Up Permissibi I ity). This word is an extract mask used on the fifth
word in the symbol table (permissibility word) to remove the legality of certain
characteristics.

SYMBOL TABLE POPS

REG REGister

This POP modifies the third word of the symbol table entry pointed to in we, using
the word addressed by the POP (i.e., the first word of the 3-word entry.) Basically,

43

this POP merges the trait addressed into the ID class word to give that symbol a
trai t (or combination of trai ts). However, the class field is treated somewhat
specially. If the trait addressed contains any bits in the class field (bits 0 through
5), the entire field is inserted into the class word, rather than merging it in. This
is due to the fact that a symbol with no class contains 70 in its class field, rather
than 00.

SUP Set Up Permissibil ity

SUP does an extract on the permissibility word of the symbol pointed to in WO,
using as an extract mask the third word in the trait group for the trait addressed.
That is, the POP actually addresses the REG word, but adds 2 to the address and
uses the SUP word.

SOP Set On Permissibility

This POP performs an AND between the permissibility word of the symbol pointed
to in WO and the second word in the trait group addressed. Instead of storing this
result back into the symbol table, however, it tests the result. If the result con
tains any lis, it returns with an answer true; otherwise, it returns the answer false.
In other words, the SOP word in the trait group usually contains a single bit; this
POP tests whether that bit is also present in the permissibil ity word of the symbol
in question.

There is one peculiarity with respect to REG and SUP. They are normally used in the course
of analyzi ng a statement, and they cause changes in the symbol table. If that statement
fails, it is desired that all lists are restored to their condition before this statement. This is
done with most lists using SAL (Save A List, see "Try-Fail Procedure") on f-he assumption that
the only change made to I ists is to append additional information on the bottom of them and,
therefore, it is only necessary to remove that new information. Here, however, an estab
lished symbol table entry is being changed, right in the middle of a list. In order to restore
these changes, a record is kept of them on the Sytch list (Symbol Table Change List). When
ever a symbol table entry is changed (i. e., with REG or SUP), two words are placed on the
Sytch list. The first is a pointer to the symbol table word being changed; the second is the
old value of that word. This information is used by the FAIL routine.

There are three additional POPs used to test the characteristics of symbols. They are used
specifically to test the class, type, and flag fields of the class (third) word in the symbol
table entry pointed to in WOo

SOT Set On Test (Really means set on class)

Returns answer true if the symbol pointed to (in WO) has the same class field (in its
class, i. e. third, word) as the word addressed by the POP (i. e., the REG word);
otherwise, the answer false is returned. For example,

SOT SCALAR

to see if a symbol is a scalar.

44

SaM Set On Mode (or Type)

Returns answer true if the symbol's type field is the same as the word addressed.
For exampl e,

SaM LOGICAL.

SOF Set On Flag

Returns answer true if the bits present in the word addressed are also present in the
symbol IS class word, flag field. Whereas SOT and SaM are like SKE, SOF is like
SKA. For example,

SOF DUMMY.

Note that the characteristics which these POPs test are all set up by the REG POP. The
characteristics SOP tests are set up by SUP.

IN PUT SCANNING

The source input string is analyzed using five POPs and several subroutines. Unless otherwise
specified, blanks are not significant and are skipped. The POPs are:

C SA Character Scan with Answer

If the current character is empty, the next character from the input string is ob
tai ned; oth erwise, the PO P uses current character. The routi ne returns the answer true
if that character is the same as the one addressed by the POP or the answer false,
if it is not. If the answer is true, current character is emptied.

CSK Character Scan and Keep

CSK is the same as CSA but does not empty current character in any case. This
allows the character to be scanned again.

CSF Character Scan or Fail

CSF is the same as CSA but if the characters are not equal, instead of returning
answer true, it goes to illegal syntax fail.

SOC Set On Character

SOC is like CSK except it does not look for one particular character, but a class of
them; e. g. digit, letter, IJ KLM or N. All 64 character codes are stored in a table
called the character translate table. The upper six bits of each entry contain the
BC D character code. The other bits are used for flags indicating whether the char
acter is in each of several classes.

45

QSA Quote Scan with Answer

QSA is like CSA, but scans for equality on a variable length string of characters
rather than a single character. It returns the answer true if all of the characters
compare equal; otherwise, it resets the scan to the first character and returns the
answer false. Thus, a QSA which is false has no effect on the scan position. The
quotes against which the input string are compared are packed together, separated
by dollar signs. The QSA POP scans the addressed field to the first dollar sign and
compares all the characters which follow it up to the next dollar sign.

The following routines are used to scan for names and numbers:

Symbol Scan

ID Scan

This routine produces an 8-character, 2-word, BCD symbol and stores it in ID cen
tral (there are several "centra I" locations used for temporary storage). The first
character must be a letter, the rest letters or digits. The scan stops when a charac
ter is found which is neither a letter nor a digit. Characters beyond the eighth are
scanned and ignored. If the symbol is shorter than eight characters, it is left justi
fied with trail ing blanks.

This routine uses symbol scan to scan for a symbol and put it in ID central. Then it
registers the symbol in the symbol table. This means, if the name is already in the
symbol table, it returns a pointer to it (in WO). If the name is not already there,
ID scan puts it there and returns a pointer to it.

Constant Scan

This routine scans for any type of constant (integer, real, double, logical, octal,
Hollerith) other than complex, registers it on the appropriate list (integer constant
list, real-double constant list, Hollerith constant list), and returns a pointer to it.
(See "Expression Scan" for further description.)

Integer Scan

This routine scans for an integer and puts it in integer central. It does not register
the integer or return a pointer. Furthermore, unlike constant scan, if the integer
is too big, integer scan flags it and uses the 24 low-order bits left over, rather than
floating it. This routine is used, for example, to get dimensions and statement num
bers.

The following are low-order machine language subroutines which are used by all the above
routines and POPs. These routines handle continuation cards automatically, so that the upper
routines do not have to; they a Iso read more input from the 51 device when needed.

46

Ready Scan Character

This routine returns (in the A register) the current character, unless empty, in which
case it gets the next active character (see below) and returns that; i. e., if the last
character has not been used yet, it is still current.

Next Active Character

The next active character routine usually returns (in A) the next non-blank charac
ter in the input string. Sometimes, as in Hollerith fields, blanks are considered
active. This is indicated by the use blanks trigger. If the next character (as re
turned by next input character) is an end-of-line character, it is returned as active
unless the next card is a continuation, in which case the next active character is
assumed to start in column 7 of that card. The next card is a continuation card if
column 6 contains something other than a zero or blank and columns 1 through 5
contain only blanks or digits. There are two exceptions to this:

1. If just IENDI has been found so far, the end-of-line character is made
active so that no attempt will be made to read the next card. This is re
vealed by the not end trigger.

2. An lSI in column 1 (in-line symbolic code) has the same effect; continu
ation is not permitted. This issignaled by the S card trigger.

Next Input Character

This routine returns the next character in the input list and stores it in current char
acter. If the list has run empty, it reads another card into it. Note that it does so
only when that card is really needed. This fact is what keeps it from reading past
the END card.

When it reaches col umn 73, it does not return that character. Instead it returns an
end-of-line character and jumps the input character count to point to the first char
acterin the next card. It determines this by testing the input character count mod
ulo 80.

There are several counts used in locating input characters:

Input Character Count

This is simply a count of all the characters in the input string. The first column
of the first source card is character zero, the first column of the second card is
character 80, a nd so on. Thus every character in the input string has a unique num
ber. This number is also used to attach deltas to the proper character when printing
error messages. At any moment, the current value of the input character count de
termines which character is being scanned.

47

Inpu t Offset

This count is used in combination with the input character count to determine the
exact position in memory of any character. The input offset is essentially the word
address of input character number zero. If this is added to the input character count
divided by 4, the result is the location of the current character (the remainder of
the division determines the position within the word). Initially, of course, the in
put offset is the address of the first word in the input list. As cards are removed
from the back of the inpu t I ist and it is reassigned downward, the input offset de
creases. It may even become negative. Suppose, for exampl e, that the current
character is the 12000th, and it is presently stored in location 3000. The offset
would then be -1000. The input offset is automatically adjusted by reassign mem
ory whenever the input I ist is moved.

Input Stop Count

This is the character count of the last character in the input list at any given time.
Thus, when the input character count becomes larger than the input stop count, the
desired character is not in the list, and another card must be read.

Last Active Character Count

This is the character count of the most recent active character other than the cur
rent one. It is primarily useful in attaching error messages to a place when the de
sired item cannot be found after it.

Current Character

This usually contains the current character (full word, as taken from the character
translate table). When it is zero, the next character to be processed is really the
one associated with the input character count plus 1.

t'-Jote that the numbers defining the size of an input card (20 words) and the number of useful
columns (72) are assembly parameters and could be changed.

ERROR MESSAGES
Most error messages are produced during the scanning of a statement and are associated with
a particular character in the statement. There are exceptions, such as the "missing END
card" warning, which are discussed later. This discussion does not concern them.

Error messages cannot be printed immediately when the error is detected. For one thing, if
there are multiple errors on a ~tatement, they have to be printed in the right order, which is
not necessarily the order in which they are discovered. But more important, the error message
may not be the least bit pertinent, or even valid. Consider the following example:

EXTERNAL K
3 LOGICAL D03K

DO 3 K = • TRU E.
66 6

48

This last statement will be scanned first as a DO statement since it begins with the "00"
quote (see Statement Scan). As such, errors wi II be found at the three points indicated
above; statement 3 has a Iready appeared, K is not a scalar, and a DO parameter may not be
logical. At this point, however, the statement fails and later turns out to be a legal assign
ment statement.

All error messages are saved on the error I ist at the time they are discovered. Each error
produces a 2-word entry on the error list:

1. Character count of the character under which the delta is to be printed.

2. Location of the appropriate error message.

There are three POPs used in setting up these entries:

ERC ERror on Current character

ERC puts input character count on error I ist, except if the current character is an
END character. In this case, it takes the last active character count, adds 1 and
uses this. This is so that a statement such as,

will produce the error message as shown instead of over at the end of the line.

ERL ERror on Last active character

ERL puts last active character count on the error list. This places the delta under
the last (usually) non-blank character which was scanned before the present one.

ERW ERror on characte r count spec ifi ed in WO

ERW is used to put an error message on a character previously scanned. The input
character count can be saved ina location at any time, and later pic ked up to the
work list, and an error message put under it using this POP. ERW removes the
count from WOo

These POPs all do one further thing of importance. As discussed under Try-Fail, there are
various ways in which a scan (either for a statement or under a TRY) can fail. If something
drastic and unrecoverable happens, control can go directly to FAIL. Often, however, an
error is detected which is fatal, but it is possible to continue the scan in the hopes of de
tecting any further errors which may be present, as in the example above of the three errors
on the DO statem ent. So, th ere are two kinds of errors, fai I errors and warn i ngs. Th e type
of error is not determined by the routine that is doing the scanning, but is inherent in the
error message itself. Each error message is stored with preceding information indicating
whether it is a fail error or not. (With respect to the severity of errors printed on the object
listing, 1 is a minor error, and not a fail error; 2 is a major error, but also not a fail error;
and, 3 is a rna jor error and a fai I error.)

49

When one of the above PO Ps is executed, it saves the information as to whether the error
message it is addressing is a fail error or not. This is saved on the TRY list (See Try-Fail).
Later, at either statement exit or when TRY thinks it has succeeeded, this condition is tested
to determine whether to fail at that time. This is called a delayed fail.

As mentioned, there are error messages wh ich do not pertain to a particular point in a scan
and are put out only when it is certain that they should be. These are printed using the sarre
lower level routine that is used to print the errors accumulated on the error I ist at the end of
a statement (see Release Line), which is called Print Error Message:

Print Error Message

This routine expects the address of the error message in the effective address temp
(EA TEMP, see EAT POP). If the error message is a fail error, this routine prints
ERROR in front of it. Otherwise, it prints WARNING. Also, it updates the
ERRLEVEL counter, wnich indicates the highest error severity, if this error has a
higher severity than any previous error. Note that this is done here, when the er
ror message is actually printed, rather than in the error POPs when it is unsure
whether the error is val ide

50

TRY-FAIL

FAIL is a routine which enables the compiler to discontinue a particular scan and to rescan
a string of source input. When this is done, all lists and counts must be restored to the way
they were, so that it is just as if the first scan had never occurred. The information indica
ting how to do this is saved on two lists, the Save List and the Symbol Table Change List
(Sytch list). The usual theory (to which the Sytch list handles the exceptions) in saving a
list is that it can only be changed by having information added to it. Thus to save it, it is
merely necessary to remember where the start, top, and bottom were. This information is re
corded on the save I ist by the SAL (Save A List) POP:

SAL Save A List

SAL puts onto the save I ist the number of the I ist being saved, preceded by any of
the following which are non-zero:

BO TTOM - TO P (00700000)
TOP - START (07000000)
START - BASE (70000000)

The word containing the list number also contains, in the upper nine bits, the flags
(indicated in parentheses above) to signal which of the three words are present. In
addition, it always contains the POP bit (20000000) to signal that this is a saved
list, not an individual item. For example, the save list entry for a list which has
not been reserved but has had information taken off the top might look like the
following:

00000005
00000002
27700027

(BOTTOM - TO P)
(TOP - START)
(List number 278)

Individual values that are not lists are saved using a 2-word entry on the save list. The first
word is the old value and the second word is its location. Note that bit 1 is not set, indica
ting that this is not a saved list.

This method of saving lists does not work when they are being changed not by having informa
tion added onto the bottom, but by having values changed which are already in the list. The
only lists to which this happens are the symbol table and the label lists. These lists, in addi
tion to being saved in the normal way, are protected by the symbol table change list. This
is a list of 2-word entries, set up any time a word in one of these lists is changed. The first
word is the old value and the second word is a pointer to the location in the list. (This is
discussed in greater detail under Identifiers.)

The FAIL routine, then, performs the following actions:

1. Replaces the symbol table and/or label table entries that have been changed
(by SUP, REG, SUL) to their oriainal states. Empties (but does not release) - I' I

51

the Sytch list, since it will never be necessary to recover this way
again.

2. Restores everythi ng that has been saved on the save list, but does not rei ease
it yet because this information may have to be recovered again (in Statement
Scan, not TRY). Entries on the save list are either single values or lists.

3. When FAIL is finished, it exits to the location specified in FAILEXIT. This
address is always one of the single-value items which is restored. It is set
up ei ther by TRY or Statement Scan. (See below.)

The two ways in which information is saved, for later failing, are in the TRY POP and in
statement scanning. These will be discussed separately.

TRY TRY

TRY gives the abi lity to do a non-fatal JRS. Norma Ily, in scanning a statement,
if a fatal error appears and the scan fails, it is assumed that the input string being
scanned is not the type of statement being scanned for presently, and the next
kind of statement is tried. (This is explained in Statement Scan and below.)
Sometimes, however, ambiguities arise within one particular statement, where it
is necessary to try more than one interpretation at a given point. The TRY POP
gives the compiler the ability to say, "JRS to this routine and if does not fail, re
turn just as with JRS, but with answer true. If, however, this routine fails, do
not proceed to the next kind of statement; instead restore things to the way they
are right now and return here, but with answer false. II Thus if a TRY fails, it is
possibl e to proceed as if the TRY had never been done and scan for some other
construct.

Before going to the routine being tried, TRY calls FEX-TRY Save, which is always
used in preparation for failing.

FEX-TRY Save

This routine does the following:

1. Reserves the save I ist, so that when fail occurs, only the information
from this try wi II be saved and not that which has been previously saved.

2. Saves (on the save list) the work list, the FAILEXIT, input character
count, current character, and last active character count.

3. Puts two zeros on the try list. The fi rst of these is th e delayed fa i I flag
and the second is the automatic succeed flag (see below).

4. Reserves the error list and the Sytch list. If the scan fails, the compiler
must be able to throw out the errors associated with that fail if it is to
try something else. Also, once the Sytch list items are restored, they
are not needed any more and must be disposed of also, but without alter
ation of information which was on the list before this point was reached.

52

Sometimes it may happen that a scan will fail, which would normally cause TRY
to return answer false, but there has been an indication that what is being scanned
really is the construct being tried, though incorrectly formed. For example, one
of the things that is tried is logical expression. If logical expression fai Is, then
arithmetic expression is assumed. Suppose that the following string appears:

SL .OR. $M

where the $ was presumably meant to be an S. This is not a legal logical expres
sion, but it is clearly not an arithmetic expression. The presence of the logical
operator. OR. strongly indicates that the expression was meant to be logica I. In
cases like this, the automatic succeed flag is u~ed. When a logical operator is
discovered, this flag (which is on the TRY list) is set to true. A similar thing
occurs in other TRYs. How this situation is handled when the scan is finished is
discussed below.

As mentioned under Error Messages, it is possible to have a delayed fail. This is
where the scan proceeds successfully, without going to FAIL, but a fail error
(level 3) message has been generated. Thus, when the routine that is being TRYed
returns to the TRY routine, tests for this situation are made. If no delayed fai I
exists, the following is done:

1. Release the save list. Note that FAIL did not do this, because it does
not know whether it may have to recover this information again.

2. Unreserve the Sytch and error lists. This is done because the TRY is now
just like a JRS, and any errors generated or symbol tabl e changes made
are now the' responsibi I ity of the routine above the TRY. TRY has done
its mrk; the situation is now just as if it had been a JRS instead of a
TRY.

3-. Remove the delayed fail and automatic succeed flags from the TRY list.

4. Exi t true.

If, on the other hand, a delayed fail does exist, the automatic succeed flag is
tested. (As mentioned under FEX-TRY Save, the automatic succeed flag and the
delayed fail flag are recursively contained on the try list.)

If the automatic succeed fla~ is not set, control goes to FAIL, which will eventu
ally end at Try-Fai I (below). If, however, the automatic succeed flag is set
(meaning, II Yes, it was one of these despite any fail. II), the procedure is then
the same as if there had been no delayed fail, with one exception. There has
been a delayed fail in this scan and, even though it is desired to accept that this
was indeed th e proper scan (i. e., and not try anyth i ng else), it is necessary to
remember that there was a delayed fai I. So, the delayed fai I flag at the current
level is set. That is, if this TRY is within another TRY and this onegets a delayed

53

fail, but with the automatic succeed flag set, this produces a delayed fail for the
upper level TRY.

If, for any reason, a routine that is being TRYed goes to FAIL (which may resu It
from a delayed fail, as discussed above), control will pass from FAIL to Try-Fail
(as opposed to FEX-Fail). This does the following:

1. Releases the save list and the Sytch list, which FAIL would do except
that it cannot when under FEX control.

2. Removes the two flags from the TRY list.

3. If the automatic succeed flag was not set, it releases the error list (thus
discarding any errors accumulated; they are not needed since some other
scan is going to be tried instead) and goes to Exit False.

4. If, however, the automatic succeed flag is set, the situation is simi lar
to above, where the delayed fail is passed on to the upper level. In this
case it is not a delayed fail but an immediate one, so the analagous thing
is done, i.e. an immediate fail at this level. This routine has been
reached via FAIL and returns immediately to FAIL. Before doing this,
the error list is unreserved, rather than released as in a normal fail. The
idea here is that, when the automatic succeed flag is set, TRY behaves
very much like JRS; the errors it has collected are valid for the upper
level and it is appropriate to fail now at that level since an unrecoverable
error has been reached (otherwise FAIL would not have been called).

As discussed under Statement Scan, when a fail occurs that is not under a TRY, the usual pro
cedure is to reset everything to 'the beginning of the statement and try another kind of state
ment. Whereas the preparation for FAIL is done within the TRY POP itself, for statement
scanning it is done in Statement Scan. Both places use FEX-TRY Save. Using SAL, statement
scan also saves all the I ists which may have information added to them bv any statement (es-
-- I I' ,--

sentially all of them) and reserves the save error list.

When a statement is successfully scanned, control passes to Statement Exit. The first thing
done here is to check the delayed fail flag. If there is a delayed fail, control goes to FAIL
immediately. Otherwise, the following actions are taken:

1. Release the Sytch list. This information does not have to be recovered. It is
correct.

2. Throwaway any errors that have been saved on the save error list. Since this
statement succeeded, its errors (if any) are the valid ones.

3. Release the save list. Note that FAIL may have been repeatedly putting back the
inforlTlation saved here. Finally, now it is no longer needed.

4. Unreserve the error list to combine the present errors with the upper level, if any
(e. g., in logical IF).

54

5. Remove the delayed fail and automatic succeed flags from the Try list. (Remember,
these were put there by FEX-TRY Save.)

6. Exit.

When a statement fails, either directly or because of a delayed fail, control passes from
FAIL to FEX Fail, rather than TRY-Fail. This routine compares the input character count
(indicating how far this statement got) with that of the previous statement which got the
furthest to determine whether to treat this input as this type of statement or the other.

If this one is no greater, the error list is emptied and the delayed fail flag is reset to false.
(It may have caused a fai I on this type of statement, but now that a new kind of statement
is being tryed, it no longer has any meaning.) Then control passes to the location specified
by the last FEX.

If thi s statement did proceed further than any previous one, the same actions are taken. In
addition, however, the new input character count now becomes the old one, and any errors
which may have been saved on the save error list are thown away and replaced with the cur
rent errors (if any) from the error list.

If all the FEXed statements fail to successfully scan a statement, control falls to illegal
statement. Of course, FAIL has once again restored everything to the way it was at ';-he
beginning of the statement, so a new type of statement may be tried, but there are no more.
In thi s case, the same six steps are followed as above under Statement Exi t, except that the
errors preserved are those on the save error list, i.e., those for the statement which got the
furthest. Furthermore, instead of just exiting, a trigger is set which tells release line to
print "Statement Deleted" and go right back to FAIL. This situation requires an upper level
saving, in order for FAIL to function. It is usually set up in label field scan, but in the case
of the statement scanned as part of a logical IF, the upper level will be the logical IF scan
itself.

SPECIAL LISTS SET UP IN PASS 1

SYMTABLE

LOCLBLST

Symbol Table

Entry size: 6 words

Discussed under II Identifiers. II

Local Label List

Entry size: 2 words

First word contains the numeric representation of the label in the low 17 bits.
Upper bits are used for flags similar to those in the third word of the symbol
table:

Bit 0 - Defined
1 - Defined on an executable statement
2 - Defined Multiolv

I I

55

NLCLBLST

ICONSLST

RDCONLST

Bi t 3 - Referenced
4 - Referenced as a FO RMA T

These bits are set up and tested with the SUL and SOL POPs respectively.

The seond word is set up by pass 2 as the relocatable address of the label.

Non-Local Label List

Entry size: 2 words

This I ist is the same as local label I ist but for labels which appeared with a
$ after them.

Integer Constant List

Entry size: 2 words

First word contains the value of the constant. Second word is set up by pass 2
to indicate whether the constant is ever used. For exampl e, the statement,

J = J + 1

registers a 1 on th is I ist, but the statement is actua Ily generated using an
MPO instruction.

Real-Double Constant List

Entry size: 4 words

First three words contain the value of the constant, expressed in double
precision form. All floating-point constants are scanned in double precision,
regardless of whether a D exponent follows them, in case they need to be
double. For example, in the sta~ement,

PRINT 5, 2.3 + DBL

where DBL is a double-precision variable, the constant looks REAL, but the
whole expression is double and must be computed in double precision. There
fore, not only is less code involved not to generate a REAL constant and con
vert it, but, since 2.3 does not come out even in binary, more accuracy is
obtained. Note that, although both real and double-prec ision constants are
stored on the same list, any pointer to such a constant will indicate whether
it looked real or double-precision. Thus, a constant specifically written with
a Dexponent will force the expression into double-precision. Pass 2 eventually
decides which kind of constant to make out of it (if any). Note that, as a
result, both a real and a double-precision constant could be produced from
the same entry in this list.

56

CCONSLST

HCONSLST

BLCOMLST

LBCOMLST

BLNAMLST

The fourth word contains the indicator whether the constant has been used, as
with the integer constant list.

Complex Constant List

Entry size: 5 words

First four words contain the REAL values of the real and imaginary parts.
Fifth word contains the lIused ll indicator.

Hollerith Constant List

Entry size: 2 words

Same as integer constant I ist except that since these are on a separate list,
pass 3 knows they are Hollerith and prints them that way instead of as deci
rna I integers.

Blank Common List

Entry size: 1 word

Each word is a pointer to a variable in the symbol table. The order corre
sponds to the order of blank common; that is, the TOP of the list is the first
word in blank common, and the BOTTOM of the list is the last.

Labeled Common List

Entry size: variable

Each entry consists of the following:

1. An integer 1, indicating start of a new entry.

2. A pointer to the block name {on the block name list, see below}.

3-N. Pointers to the symbol table. These are the variables to be put into
this labeled common block.

Note that one entry does not completely define a block. It may be reopened
later, possibly even in the next entry, as in the statement,

COMMON /B/A/B/Y

Block Name List

Entry size: 3 words

First two words contain the BCD name of the block.
Third word is set up during allocation and equivalence to indicate the size of
the block.

57

EQUIVLST

NAMELST

INTRILST

ALPHALST

Note that block names are the only ones which are not registered in the sym
bol table. Because they are allowed to conflict with most other names, they
are treated independently.

Equivalence List

Entry size: variable

Each entry corresponds to one equivalence set and contains:

1. The number of the line on which the set began, with a sign bit
merged in. This is used to indicate beginning of a new set and
also to print meaningful diagnostics in allocation and equiva
lence when errors are discovered that this equivalence set caused.

2 - N. Symbol table pointers to the variables in the set. Each of these
may be followed by any number of integers indicating the "sub
scripts" which appeared after name in the EQUIVALENCE set.
These are not pointers to the integer constant list (which is un
usual) but just integers. They are not even registered on the
integer constant list.

Name List

Entry size: 1 word

Each entry is the relative position in the symbol table of a variable which is
to be name listed for use by the INPUT statement. Note that they are not
ordinary pointers to the symbol table. They have had their upper nine bits
(class and type). stripped off so that, when registering the names on the list,
the search wi II find the name even if it has subsequently changed c lass or
type.

Intrinsic List

Entry size: 3 words

First two words contain the BCD name of an intrinsic function recognized by
the compiler.
Third word contains the type (integer, real, etc.) of the function and the lo
cation, in pass 1, to which to branch to process this function's arguments
(each intrinsic function must have the right number and type of arguments).
This is an unusual list, in that it is never used, in the ordinary sense. Nothing
is ever put on or taken off it. It is just there in the middle of pass 1 and is
searched every time a new function name appears.

Alphanumeric List

Entry size: 1 word

This list is used to save alphanumeric characters that must be included in the
code. Thus, it is used by the FORMAT and OUTPUT statements, both of

58

IFLIST

DSUBLIST

INDOLIST

which want to save the active characters which they scan and bui Id a
FORMAT out of them. The characters are not packed into this list; they are
stored one per word in the character translate table form. There is a sub
routine called PACKALPH (Pack Alpha list) which takes these characters off
the top of the alpha list and packs them onto the code list preceded by a
word count.

If List

Entry size: 1 word

In order to generate more efficient code on arithmetic and device IFs, it is
necessary to know what th e statement number (if any) of the followi ng state
ment is. Thus, upon encountering the statement directly after each such IF
statement, a pointer to its label is added to the if list. If it has no label, a
zero is put on the list. There will be one entry for each IF statement in the
program, and pass 2 pulls them off and compares them with the transfer labels
on the IF statements as it receives them.

DATA Subscript List

Entry size: 3 words

Used only in the DATA statement, to save the names that occur as subscripts
or DO-control parameters.
First word contains pointer to name in symbol table.
Second word contains character count at which the name first appeared.
Third word is a trigger indicating whether the variable is under control of a
DO.
This a Hows detection of two errors. Each DO-control index can be checked
and each subscript or DO-parameter variable can be checked to assure that
it is under control of a DO.

This list is also used later by Expand Data Pair to contain the DO index, the
increment, and the count, during DO loop expansion.

Inner DO List

Entry size: 1 word

Also used only in DATA statements. Each time a DO-control variable appears,
this list is searched to make sure that the variable is not already controlling
an inner DO. Then a pointer to the name is stored on the list so that outer
DOs can search for it.

There are several other I ists used only in DATA statements, but they are just
ordinary manipulation lists of no particular interest.

59

DOlIST

KlUDGlST

DO List

Entry size: 2 words

Used during the range of a DO or REPEAT loop.

First word contains the label of the statement on which the loop ends.

Second word contains the number of the line on which the DO or REPEAT
statement appeared.

This list is searched after each statement which has a label to determine if
there are any loops ending on it. If so, the appropriate End-of-Do indicators
are sent to pass 2. The I ine count is there in case the termina I sta tement
never appears. The error message at the end states on which line the un
closed loop was opened and on which label it should have been closed.

Kludge List

Entry size: 2 words

First word of each entry contains a pointer to the symbol table location which
was destroyed.

Second word contains the old contents of that location.

During the scanning of the expression which defines a statement function, its
dummies must be treated as scalars even though their names may have already
appeared in the symbol table and are, say, subprograms or array names. Also
the name of a FUNCTION subprogram must be used as a scalar during the
program but restored as a func tion at th e end. The procedure in both of these
cases is to create a new entry in the symbol table, with the same identifier as
the old one, and temporari Iy destroy the old one. This is done by storing all
lIs in the first half of the name in the symbol table. When the function is
finished, the old name is restored. The new name remains also. This list con
ta ins the information necessary to restore the old names.

The following describes the information set up for arrays. There are three lists involved in
expressing all of the pertinent statistics about an array: the symbol table, the array I ist, and
the group list.

The symbol table, of course, contains the name of the array and other information (see Identi
fiers). The fourth word of a symbol table entry for an array contains a pointer to the array
list.

There are three important things that must be known about an array that are not in the symbol
table. These are its offset, size, and subscript multipliers. For arrays with constant dimen
sions, all these values are also constants. Hovvever, en adjustably dimensioned dummy array
may have expressions representing any or all of these quantities. In the discussion below,

60

anything called an expression may actually be something quite simple, such as a constant or
a variable, or it may be more compl icated. A "compl icated expression" is one which is not
directly addressable in INTEGER and must therefore be computed at the beginning of the sub
program and stored in a private temp for use.

ARRAYLST

GROUPLST

Array list

Entry size: 3, 5, or 6 words

These entri es are

1. Offset (in elements) - Pointer to expression

2. Size (in elements) - Pointer to expression

3. Pointer to group list entry containing the multipliers (see below).

4. On dummy arrays only, this is a pointer to a group list entry containing
pointers to the complicated subscript multipliers and the temps into which
they are to be stored (see below).

5. On dummy arrays only, this is a pointer to a group list entry which is a
copy of the pi ex I ist used to represent the expressions.

6. On dummy arrays only, and only if the offset is not an integer constant,
this is a pointer to a private temp into which the offset (in words) is to be
stored.

Group List

Entry size: variable

The group I ist can be thought of as the resident plex list. It is used by many
routines to hold information that must not be sent along to pass 2 after each
statement. One of its primary uses is to contain array information, as indi
cated above under th e ARRA YLS r.
Each "group" on the group list is formed using the COG (Copy Group) POP,
and can be pulled back using the PUG (Pull Group) POP. The first word of
such a group is always the word count of the entire group. There are three
important groups that may appear relevant to arrays:

1. All arrays have a group containing their multipliers. Although, for an
N-dimensional array there are theoretically only N-1 multipliers, N
multipliers actually exist, the extra one being the number of words per
element, which can really be treated as another dimension (since differ
ent type and SDS/ASA storage allocation affect this number). Thus, the
first word in this group is the number of words per element and the next
N-1 are the subscript multipl iers. If these are compl icated, this wi II
contain pointers to the temps into which they will be stored. The actual
expressions representing the multipliers will be found in the next group.

61

2. On dummy arrays, this group contains 2-word entries, one for each com
plicated multiplier. The first word is a pointer to the expression used to
compute the multiplier, and the second word is a pointer to the private
temp into which this multiplier should be stored. These temps are then
pointed to by the group discussed above. If there are no compl icated
multipliers, but the array is nonetheless a dummy array, this group still
exists but is empty.

3. Again on dummy arrays only, this is a group containing a complete copy
of the pi ex list as it stood after computi ng the various parameters of th e
array. All the pointers to expressions mentioned above actually point to
the plex list. However, since these are not sent to pass 2, as such, and
the compiler must be able to get at them whenever necessary (e.g., every
time subscripting on the array is computed), the whole plex list is saved
on the group list.

62

IN-LINE SYMBOLIC CODE

When pass 1 encounters a source line with an S in column 1, the S trigger is tested to see if
the symbolic code processor was requested. If the symbolic code option was not requested,
an illegal syntax message is printed and the statement is deleted.

The symbolic code processor consists of two parts:

1 • OPOSCAN - tests card for OPO pseudo-operation

2. SINCOLM 1 - processes OP code and Operand fields

The OPOSCAN does a II look ahead ll on the card to see if the operation code is an OPO pseudo
operation. If it is, the first nonblank character string in columns 2 through 5 becomes the
mnemonic for the new numeric definition. If the new mnemonic is identical to another
mnemonic which has been entered as an OPO, the later one is discarded. If the new mnemonic
coincides with one of the basic mnemonics, the new definition overrides the old. Any charac

ters (except blank, which is the field separator for an operationcode) are allowed in the label
field for an OPO, and subsequently as legitimate operation code entries. If an OPO (operation
code) is found by OPOSCAN or a nonblank in column 6, OPOSCAN returns the answer true
to pass 1; otherwise, it returns the answer false.

Pass 1 first tries OPOSCAN 0 If the answer true is returned, the statement processing is com
plete and pass 1 does the fina I cleanup after the norma I end of statement is reached. If the
answer false is returned, pass 1 processes the label field and during statement scan branches
to SINCOLM 1, the operation code-operand processor.

SINCOLM 1 looks in columns 7 through 14 for a nonblank character; if none is found, a NOP
is assumed and the processing is assumed completed 0 When a nonblank is found, the QUOTE
is tested to see if it is SHIFT; if so, the Shift Opf'ration Code is entered and processing goes
to the operand field processor after the first blank is found. If the SHIFT quote is not found,
the operation code is built from the next (at most 4) nonblank characters, with trai ling
blanks inserted if fewer than four consecutive nonblank characters are found. The OPOLIST
is searched and then the OPCOOLST. If the mnemonic is found, the operation code is
entered from the list and the operand field processor is entered after the first blank is encoun
tered. (The OPOLIST contains the mnemonics and new operation codes for the OPO's used by
the programmer to this point. The OPCOOLST contains the list of basic mnemonics and
corresponding octal operation codes) 0

The operand field processor allows only specific formats in the address and tag fields. The
tag field is a number from a through 3 only, and a diagnostic is produced if the value is out
side that range.

63

The address field may be one of the following:

1. An octa I or integer constant. A constant is octa I if it begins with a leadi ng zero;
otherwise, it is decimal. Constants exceeding five octal digits are truncated
mod 32,768 and cited as errors.

2. A literal. A literal may be any of the following preceded by an equal sign:

a. Any INTEGER, REAL, or DOUBLE PRECISION FORTRAN constant except an
octal or Hollerith constant.

b. An octal constant, as defined in paragraph 1 above. (Note that an octal
literal has a leading zero but no trailing B.)

c. A character string of not more than four characters enclosed in quotation marks.

3. A relocatable address plus or minus an octal or integer constant. A relocatable
address may be any of the following:

a. $ indicating current location counter.

b. DDDDS indicating local label DDDD.

c. DDDD$ indicating non-local label DDDD$.

d. Any FORTRAN identifier other than those being used to identify an intrinsic
function.

After the operand fie Id has been processed, the operation code, addend, and address fie Id
are passed on to pass 2 after a special identifier on the code list.

Warning messages are printed if a relocatable address is used where it is not normally
accepted.

51 NCOLtv~ 1 returns to pass 1 at SCRDEXIT •

64

PASS lA ._-
ALLOCATION AND: EQUIVALENCE

Between the syntax analysis phase (pass 1) and the code generation phase (pass 2) of the
FORTRAN IV compiler is the allocation and equivalence phase (pass lA).

Pass 1A must make an initializing sweep through the symbol table and pass 1 must make a
finalizing sweep through the symbol table. These are combined into one sweep in pass 1.
The initializing done for pass 1A is identifying global symbols as global and the remaining
symbols as allocatabl e.

After the initalizing is completed, pass 1A processes the blank Common entries, then the
labeled Common entries, identifying each in the symbol table and setting the specified rel
ative location to the Common base.

Once all the direct external allocations have been made, the equivalence list is processed
and all indirect external allocations are made and conflicts in allocation or type are listed.
Also a tree structure is built up for the allocation of equivalenced local variables.

When the equivalence list is completely processed, a final sweep is made through the symbol
table allocating all local variables relative to the base of local storage. If an element of ar.
equivalence tree is encountered, the whole tree is allocated at that time.

Upon completion of this final sweep through the symbol table, the complete variable storage
requ irements for the program are known.

1
2
3
4
5
6

1
2
3

1
2
3

Symbol Table - Pass lA

Standard First Four
Words of Symbol Table

Identifier Word
Relative Location or Size or
Pointer to Equivalence Chain List

Block Name List

Label

Size

Equivalence Chain List - Pass lA

Prior Pointe r
Higher Pointer
Delta from Prior or Size

65

.. ~ ~--

SYMBOL TABLEI USE\ IN PASS lA

During the initialization of the symbol table:

1. For global variables the identifier word is set to the value of GSYMFLAG(3) and
the size (number of words required) is entered in word 6.

2. For all other variables the identifier word and relative location word are set to zero.

During blank Common allocation, the blank Common flag (1) is put into the identifier word
and the relative location of the symbol in blank Common is entered in the relative location
word.

During labeled Common allocation, the pointer to the block name list is put into the identi
fier word and the relative location of the symbol in the labeled Common block is entered in
the relative location word.

During equivalence processing, a tree structure is used to keep track of equivalences among
local variables. If any equivalences link a free element (an element not external or in a
tree) to an external variable, that element is not entered into a tree, but is allocated (in the
relative sense) immediately. (NOTE; allocation due to equivalence to an external is done
only if there is no conflict due to extension and hereafter means that.) If an element of a
tree is in equivalence to an external, (See Structure of Equivalence Trees) the whole tree is
allocated immediately and the tree structure is forgotten (the pointers are dropped) but re
mains on the equivalence chain list.

When an element is in equivalence to a global directly, a pointer to the global is entered as
the identifier and the relative location to the base of the global is entered in the relative
location word.

When an element is in equivalence to a global irdirectly (L e. I in equivalence to a symbol
which is in equivalence to a global), the pointer to the global is entered as the identifier
and the relative location to the base of the global is entered in the relative location word.

An element in equivalence to an element of Common (blank or labeled) is identified as if it
had appeared in the original common list.

In making the final sweep through the symbol table:

1.

2.

3.
A ..,..

5.

The blank Common and global identifiers are modified for pass 3.

All equivalence trees are allocated.

Labeled Common and elements in equivalence to global are unchanged.

All unallocated variables (arrays and scalars) are allocated except for dummies.

External subprograms are flagged in the relative location word with 070000000.

The above are done in order of appearance in the symbol table.

66

USAGE OF WORDS 5 AND 6 IN SYMBOL TABLE

Word 5 is a pointer or an integer.

Word 6 is a pointer or a word of form 9, 15.

Usage Duri ng Equiva lence

Type Word 5 Word 6

G loba I Symbo I 00000003 0, size

Blank Common 00000001 0, re lative location

Labe led Common Pointer to 0, relative location
block name Ii st

Equivalenced to Pointer to 0, relative location
Global symbol table

Equivalenced to 00000002 Pointer to equivalence
another local symbol chain list

Not equiva lenced or 0 0
a I located yet

Output to pass 2, 3

Type Word 5 Word 6

Global Symbol 00000000 3, size

Loca I Sea lar 00000000 5, relative location

Local Array 0 4, relative location

B lank Common 0 1, relative location

Labe I ed Common Pointer to 0, relative location
block name list

Equiva lenced to Pointer to 0, relative location
a Global Symbol symbo I tab Ie

Externa I Subprogram 0 7, 0

Not allocated 0 0

67

STRUCTURE OF EQUIVALENCE TREES

An equiva lence tree is composed of three types of elements:

1. The lowest (first) member

2. The intermediate member

30 The highest (last) member

There is always one type 1 and one type 3 elemenL There can be varying numbers of type 2
elements, depending on the size of a particular tree.

The intermediate member is distinguished by a symbol table pointer {in Prior Pointer} to an
immediately prior {allocation wise} member of the tree and a symbol table pointer {in Higher
Pointer} to an immediately following member of the tree, and a delta (which may be zero,
but never negative) that spec ifies the number of memory locations from the prior member to
this member.

The highest member of the chain is distinguishable from an intermediate member because the
higher pointer is zero.

The lowest member of the chain is distinguishable from any other member due to the fact that
it has no symbol table pointer, but zero, in its prior pointer. Also the total size of the chain
appears in the delta word for this element, since a delta is meaningless.

~SE OF EQUIVALENCE TREES
When a free element is in equivalence to an element of a tree, it is 'fitted ' into the tree.
If the free element belongs higher in the tree, the next higher element of the tree is compared
to see if it goes between the two. If so, it is entered into the tree with a de Ita and poi nters,
and the corresponding pointers and deita are corrected to place this new element in the tree.
Then the size of the tree is increased if necessary 0 If the free element belongs lower in the
tree, the next lower element of the tree is inspected and, if the new element is higher, it is
entered between the two; otherwise, the process is repeated, going down the tree. If the
free element belongs below the lowest, the free element becomes the new lowest, and the
old lowest is modified to reflect the change. In either case, the total size is modified to
reflect any necessary changes to tree si ze.

68

PASS 2
OV ERALL FLOW I

At the highest level, pass 2 is quite simple. It begins by initializing a few things--zeroing
the location counter, temp counters, etc. It generates a BRM 9INITIAL if this is a main
program. Then it generates code for statements, one by one as they come, unti I it encounters
an END statement, at which time it generates array pointer constants, label constants, and
NAME LIST (if necessary), and ca lis pass 3.

Generation of each statement is handled by a subroutine called Next Statement Gen. It
reads one word from the input string by callingNext Input Item. The word it reads is a
simple integer indicating what kind of statement this is, and this integer is used to index a
jumpthroughStatement Gen BRUTableto take it to the appropriate statement routine. Next
input item tries to take off the top of the input list. If it can, it returns the word it got on
the bottom of the work list. If the input list is empty, next input item reads the next record·
from the scratch tape, appends it to the input list and then takes off the top and returns.
Most of the statement generating routines also use next input item to get whatever words are
needed to specify the statement.

The statement generati ng routi nes leave the code they have generated on the code list and
exit through statement exit, thus effectively exiting from next statement gen. The code on
the code list must be assembled and put onto the output list. Assembling the code amounts to
keeping a location counter and recording the location at which each label is defined. Thus
the Assemble Code routine is rather like the first pass of a conventional symbolic assembler.
Definitions of labels are recorded in the local label list, the nonlocal label list, and the
created label list. Definitions of subprogram names and dummies are recorded in the symbol
table. For created labels assemble code also creates a numeric value for the label (to be
used on the object listing--e.g., 23G). Thus, the numbers reflect the order of definition of
the labels, and 23G will never represent a higher location than 24G.

It is also the responsibility of assemble code to keep track of which constants on the various
constant list are actually used. There are a fair number of reasons why a constant may be
registered on one of the constant Ii sts but never be used by the object program, and it is
unnecessary to create I itera Is for the unused ones. So each item on the constant lists has a
special word in which assemble code indicates whether they were used or not. On the real
double constant list, two bits are used--one to indicate if the constant were used as a real
constant, the other to indicate if it were used as a double-precision constant. The literal
table is generated by pass 3 and is built so that constants may overlap. For example, if the
floating-point constant -1 .0 (40000000 00000000) and the integer constants -8388608
(40000000) and 0 (00000000) are needed, all three constants wi II come from the same two
words.

As each word of code from the code list is assembled, it is put onto the output list, from
which it may automatically go to a scratch tape if memory overflows. At the end of each
statement; the output-to-tape trigger is tested to see if memory has already overflowed; and,

69

if it has, the output is written on tape immediately, without waiting for memory to overflow
again. This test is made at the exitifrom assemble code, which is called output code.

The reason generated code is assembled a statement at a time instead of a word at a time is
that many of the statements generate code out of order and re-order it. The most obvious
example of th i sis the DO statement wh i ch generates the top and bottom of the loop at the
same time, then saves the bottom part to be put out later when the DO ends. In ca Iii ng
sequences, the code to calculate argument addresses is generated at the same time as the
PZEs which transmit the addresses, and PZEs are delayed to come out where they belong.
The standard way of delaying code is to reserve the code list before generating the code,
then copy the bottom fi Ie over to the de layed code list. When the de layed code is to be put
out, the bottom file of the delayed code list is copied back to the code list.

Some of the things which pass 1 sends as "statements" are not really statements. For example,
there is the II Load Plex List" statement which means, "here are some things for the plex list
which will be used by the next statement." The next word is a count indicating how many
words are involved, followed by the words themselves. Then there is the "Compressed Source
Line Statement" indicating that the next n words are to be sent to pass 3 for listing as a
source line on the object listing. These lines are not sent unless the LO control card option
has been specified. Corresponding to DO and REPEAT FOR statements, there is the "End of
Loop" statement which means "end the most recently started loop." It simply causes the last
file on the delayed code list to come out. Clearly, End of Loop is not adequate for improp
erly nested loops, so there is an "End of Illegally Nested Loop" statement to indicate which
loop should be ended. This takes a certain amount of manipulating to pull the appropriate
file out of the middle of the delayed code list. Individual items in an input/output list are
sent as if they were complete statements in themselves.

The assignment statement is generated by Assignment Statement Gen. Aside from the word
indicating that this was an assignment statement, there is only one other word which appears
in the input string: a pointer to a Replacement Plex. Like many pointers involved with state
ments, however, the assignment has subscripts involved with it, so it may in fact be a sub
scripted expression plex connecting a script group plex and the replacement plex. Therefore,
the assignment statement does not use next input item to get the next word but uses next
item script gen which gets the next input item and checks to see if it is a subscripted ex
pression plex. If it is, code is generated to evaluate all the subscripts and store their values
in temps, and the pointers to the temps are left on the script list.

Two statements--arithmetic IF and OAT A--receive information other than that in the input
stream. For the arithmetic IF statement there is the IF Iist,J wh ich contains the labe Is of the
statements following arithmetic IFs. These labels enable pass 2 to sense when certain
branches of an IF can" fall into" the next statement. Thus, the arithmetic IF generator is
concerned with four labels--the three written in the statement itself and the one (if any)
attached to the following statement. It tests the four for equality in various combinations to
eliminate redundant testing and branching instructions.

70

For DATA there is the data pair size list, indicating how many words there are in a partic
ular data pair. (A data pair is the combination of a variable list and a constant list; a DATA
statement may contain several data pairs.) The reason for this list is to allow pass 1 to dis
card a data pair retroactively. In general, pass 1 cannot hold all the information generated
for one data pair in core at one time--there may be thousands of words of it. At the same
time pass 1 is deriving these thousands of words, it is checking subscripts and constant types
for errors, and if it finds an error it must discard the whole data pair. Unfortunately, by the
time it has found the error, thousands of words may have gone onto tape. Therefore, it
keeps track of how many words it has been putting out; and, if the data pair errs, pass 1
enters the word count onto the data pair size list, thus telling pass 2 how many words to ig
nore. If the data pair is all right, pass 1 enters zero on the data pair size list, telling pass 2
not to ignore any of this data pair.

The logical IF statement is rather unusual, too, in that it controls another statement or group
of statements. (The group of statements can come when a logical IF controls a compound
statement.) The compiler needs to know if the statement the logical IF controls is a GO TO,
since knowing this fact it can generate better code. So the compiler reads ahead into the
next statement to see what it can be. If the next statement is not a GO TO, code is gener
ated which jumps if the logical expression is .FALSE. - jumps to a created label which will
be defi ned later. Then the compi ler generates code for the statement or statements con
trolled by the logical IF, sensing the end of them by an end-Iogical-IF-statement indicator.
The compi ler cannot simply go to next statement gen to generate the next statement, since
it has already called next input item and read the first word of the next statement. There
fore, it calls statement gen from we, which assumes that the first word has already been
read. After logical IF has caused all the statements controlled by it to be generated, it
defines the label to which the jump was made.

If the statement controlled by the logical IF was a GO TO, code is generated which jumps if
the logical expression is • TRUE. - jumps to the labe I the GO TO was going to.

I NT ERN A L REP RES EN T AT ION 0 F EX PRE S S ION S

Pass 1 translates statements and expressions into a form that is more convenient than source
form for manipulation and code generation. The internal representation of expressions is a
tree-structure form indicating what operands are connected by what operators. The represen
tation is rather like Polish notation, but it is somewhat less order-dependent than Polish.

The basic unit of representation is the plex. A plex is a collection consisting of an operator
and all of its operands. For example, the expression A*B + C/D is represented by the follow
ing tree structure:

A B C D

71

The expression consists of a sum plex whose two operands are a product plex and a quotient
plex. The operands of the product plex are the two sea lars A and B, whi Ie those of the
quotient plex are the scalars C and D.

When expression scan scans the above expression, it leaves a pointer to the sum plex on the
bottom of the work list. The rest of the information about the expression is contained on the
plex list. The pointer on the work list 40200011. This pointer indicates that it points to a
sum plex (40), that it is real (2), and that the plex is in relative location 00011 on the plex
list. The information on the plex list is as follows: --

relative
location

00001
00002
00003
00004
00005
00006
00007
00010
00011
00012
00013
00014

contents

00000004
41200000
71200001
71200007
00000004
42200000
71200015
71200023
00000004
40200000
41200001
42200005

4 words in th i s plex (2 operands)
Product (41), Real (2)
Scalar (71), Real (2), location 1 in SYMTABLE
Scalar (this one is B)
4 words in th is plex (2 operands)
Quotient (42), Real (2)
Scalar (this one is C)
Scalar (this one is D)
4 words in this plex (2 operands)
Sum (40), Real (2)
'Product plex, location 1 in plex list
Quotient plex, location 5 in plex list

Pointer on work list points here.

The expression A + B + C + D is represented as one sum plex containing four operands. The
code generator can use the four operands in any order it chooses. However, if the expression
were written (A + B) + (C + D), it would be represented as one sum plex combining two other

I .,.1. .,. • I I • __ I I •• . _ • ___ I • A -11 r n • II ~ sum plexes. I nls Inrorms rne coae generaror rnal IT may nor comOine ~ wlTn \... or 0 wlTn LJ,

as it wou Id have been able to do without the parentheses; nor may it add A to B, then add
C to the result, then add D to the result; it must combine C and D with each other before it
combines them with anything else. In this way, the integrity of the user's parenthesis group
ings is preserved.

The expression A - B involves two plexes. It is treated as if it were written A + (-B) and
consists of a sum plex combining the scalar A with a minus plex that has a single operand -
the sea lar B.

In summary, there are five kinds of plexes involved in a basic arithmetic expression: the ~
plex and product plex, containing a variable number of operands (bu.t always at least two);
the minus plex involving one operand; and, the quotient plex (/) and expon plex (**) involv
ing two operands.

72

In the previous examples, the only operands have been scalar variables, but there are other
kinds of operands than scalar variables. Constants are represented as pointers to the appro
priate constant list (there are four: integer constant list, Hollerith constant list, real/double
constant list, and complex constant list). Two other operands are array elements and function
calls.

I A function call is represented with a function call plex which contains two operands: a sym
bol table pointer to the function name and a pointer to a subprogram argument (SPRaG ARG)

, group plex. Tbe latter is a variable-sized plex and may contain as few as 0 arguments or as
many as desired. Each argument is an expression pointer of some kind, a subscripted array

. ~ of some kind, an array name pointer (unsubscripted), a statement label pointer, or a sub
I program name poi nter .

There are two kinds of plexes involved in array elements: . the constant subscripted array plex
and the fully subscripted array plex. A constant subscripted array plex is formed whenever
the effective subscript (produced from combining all the subscript expressions) is a constant.
This means that all the subscript expressions must be constant (though for subscripting pur
poses, 3 + 5 - 2 is considered a constant), and the dimensions must be constant; i.e., con
stant subscripts are not enough if the dimensions are adjustable. The constant subscripted
array plex contains two operands: a symbol table pointer to the array name, and a pointer to
the integer constant list.

A fu Ily subscripted array plex contains three operands: a symbol table pointer to the array
name, a pointer to the integer constant list, and a pointer to the non-constant part of the
subscript. The constant is an addend which has been II factored" out of the subscript expres
sion . If the non-constant part of the subscript is non-addressable, the pointer wi II be to the
script list, where the pointer to the actual expression will be. The script list contains all the
non-addressable non-constant parts of all subscripts used in a particular construct, which is
usually a statement, but sometimes is smaller than a statement.

The plexes involved in logical expressions are quite analogous to the others. The .AND.
plex, .OR. plex, and .EOR. plex are variable-~ized like sum and product. The. NOT.
plex is unary like minus, and the .NE., .LE., .GT., .EQ., .GE., and .LT. plexes are
binary. The extended relational plex (for constructs like A .LT. B .LT. C) is variable-sized,
but always contains an odd number of operands. The first, third, fifth, etc. operands are
true operands, whi Ie the second, fourth, etc. are operators. The operators are the addresses
of the plex constants that wou Id have been used if the relationa I were not extended.

There are two plexes involved in the way pass 1 tells pass 2 about subscripts. The script
group plex is used to tie all the subscript expressions on the script list together into a bundle,
and the subscripted expression plex is used to tie the bundle to the expression it goes with.
These plexes are created on Iy if there are some subscri pts. For the most part, there is on Iy
one subscript bundle per statement, but in some statements it is important that the subscripts
be evaluated at the right place. Individual I/O list items have their own subscript bundles
(it is legal to input J, then A(J), such that the subscript for A(J) could not properly be
evaluated at the beginning of the statement). The individual items in a REPEAT FOR list
have their own subscript bundles, as do the assigned labels involved in computed GO TO

73

statements and arithmeti c IF statements.

At the end of each statement, pass 1 outputs the plex list, for pass 2. It does not let the
amount of this information grow over the whole program.

The DATA statement is an exception to most rules, and plexes are no exception. In scanning
the DATA statement, pass 1 may bui Id several plexes, the way it would for most statements.
Then, instead of sending these to pass 2, it unravels the plexes itself. The reason for doing
this is that there are a large number of errors the user can make in writing a DATA statement,
and some of them are very inconvenient to detect while scanning. Problems like constants of
the wrong type or subscripts out of range (especially when the subscripts are under DO control)
cannot be detected without actually "doing" the DATA statement. This is what pass 1 does,
and when it gets done the output it sends pass 2 is quite simple, though possibly quite verbose.
It consists of little substatements of the form: "put this constant into that variable" - one of
these for each replacement implied by the DATA statement.

PLEX-BUILDING POPS

There are four plex-building POPs. Two of them - CIC and CIF - buildvariable-sized plexes,
and the other two - FIP and FIC - bui Id fixed-sized ones. Variable-sized plexes, such as sum
plex, product plex, .AND. plex, are bui It from Ii sts which have typically been reserved,
and the plexes are built from the bottom file of such lists. One writes CIC SUM LIST to
bui Id a sum plex from the bottom fi Ie of the sum list. With variable-si zed plexes it is neces
sary to specify what kind of plex to bui Id as well as where to bui Id it from. To specify the
former, one writes PLO (plex open) as in

PLO SUM PLEX
CIC SUM LIST

Having built the kind of plex they were told to, CIC and CIF append a pointer to it onto the
bottom of the work list. The only difference between CIC and CIF is that CIC inherits
traits from aii the terms in the piex, whereas (if inherits only from the first (top-most) term.
CIC and CIF empty the bottom fi Ie but do not re lease the list.

FIC and FIP build their plexes from the bottom few items on the work list. It is inherent in
each fixed-sized plex how many terms it involves (from minus plex with one all the way up
to DATA DO contro I plex with six), and that many terms are taken from the bottom of the
work list and built into a plex. The pointer to the plex is appended to the bottom of the
work list after the other terms have been removed. It takes only one POP to bui Id a fixed
sized plex, e.g.,

FIP QUOTIENT PLEX

The only difference between FIP and FIC is that FIP inherits traits from all the terms in the
plex, whi Ie FIC inherits only from the first (top-most) term. It can be seen that for building
a l-word plex like minus plex, FIP and FIe will have the same effect.

74

It should be noted that the inheritance of traits is not important in some plexes. Certain
plexes, such as the ones used in the DATA statement, are used only to indicate structure.
Similarly the script group plex, the SPROG ARG group plex, the dummy group plex, the
subscripted expression plex, the repeat triple plex only indicate structure. The main use of
traits is in plexes used in expressions.

TRAITS

Pointers have traits, and the SOF (Set On Flag) POP tests them. SOF finds a pointer in WO
and tells whether or not is has a particu lor trait.

Traits are characteristics which generally overlay several different classes of other character
istics. For example, scalar is not a trait, since only a scalar can be a scalar (testable with
the SOT POP), but dummy is a trait, since there can be dummy scalars, arrays, and sub
programs. Constant is a trait, overlaying integer constant, real constant, Hollerith constant,
etc., and subscripted is a 'trait that is common to fully subscripted array plex and constant
subscripted array plex, which in turn may involve arrays or multiple dummies. Plexes can
have traits, too, and keeping track of traits constitutes most of the work of the plex-bui Iding
POPs.

The SOF POP uses a subroutine called Fetch Flag Word, which is also shared by the plex
building POPs. Fetch flag word may find the traits in any of three places, depending on the
kind of pointer involved. For a symbol table pointer, the traits are found in the third word
(ID word) of the symbol table item pointed to. For a normal list pointer, the traits are found
in a special table called list flags which is indexed by the list number. Most lists do not
have any traits; it is mainly the constant lists which do.

The data subscript list (used in the DATA statement) has addressable and signed addressable
traits. TEMP and PTMP pointers do not actually point to a list, but they look just like list
pointers, and there are entries in the list flags table for them, corresponding to the lists
they would point to if they were list pointers. Then there are plex pointers. For a plex
pointer, the traits are found in the second word of the plex pointed to.

Traits get into plexes in two ways: they are bui It in or they are inherited. For example, a
fully subscripted array plex has the subscripted trait built right in, but can inherit the dummy
trait; i. e., this plex is always subscripted, but is dummy only if the array is dummy.

Some plexes inherit traits from all the constituents of the plex, whi Ie others inherit only from
the first constituent. For example, the dummy trait in the fully subscripted array plex,
mentioned above, is inherited from the array name, not from the subscript. Similarly, the
traits of a replacement plex are inherited from the left-most variable being replaced, where
as the traits in a sum plex are inherited from all the terms of the sum. Where the inherited
traits come from is determined by what POP is used to build the plex. FIC and CIF inherit
from the first term only, while FIP and CIC inherit from all the terms.

75

Plexes are defined with 2-word constants. Such a constant is addressed with a PLO POP if
the plex is being built with CIC or CIF and by a FIC or FIP POP if the plex is being built
with FIC or FIP. The right 15 bits of each word in the plex constant represent the traits.
The first word contains lis for all the traits that are built into the plex, and the second word
contains lis for all the traits which can be inherited.

Bits 6 through 8 in both words are the mode fields of the plex constant. The first word con
tains the mode of the plex (l=integer, 2=real, 3=double, 4=complex, 5=logical) if it has a
built-in mode; the second word contains all OIS or all lis in the mode field, depending on
whether mode is constant or inherited. When mode is inherited from the constituents of a
plex, it is taken as the highest mode found. This establishes the mode hierarchy, such that
when a real element is combined with an integer element the result is real.

Bits 0 through 5 of the first word are the ID field of the plex constant. They go into the plex
itself, as well as into the plex pointer, to tell what kind of plex this is. Bits 0 through 5 of
the second word are unused if the plex is bui It with CIC or CIF, and contain a word count if
the plex is built with FIC or FIP. For a minus plex, the word count is 1, denoting a 1-word
plex; for a quotient plex it is 2; and, for a DATA DO control plex the word count is 6.

When traits are inherited from the constituents of a plex, they are usually ORed together;
e.g., if either operand of a logical .AND. is to be evaluated in the A register (as indicated
by the A REG flag), the result of the whole .AND. will be in the A register. Two traits are
not inherited by ORing: the complex mixture flag and double flag (both concerned with
complex mixture arithmetic).

The complex mixture flag is derived from the mode fields of the constituents of a plex, not
from the traits. It is set if at least one of the constituents is complex and at least one is
non-complex. It has nothing to do with whether any subplexes contain complex mixtures,
but only with whether this very plex is a mixture.

The double flag indicates whether there are any double-precision elements anywhere in the
expression (aside from subscripts and function arguments). It is derived by ORing the double
traits of the constituents and ORing the fact whether any of the constituents specify double in
the mode field. It would seem reasonable that anything which says double in the mode field
would also have the double flag set. In fact, this is true in all cases except one- pointers to
the real/double constant list. The mode field of such pointers indicates whether the constant
is thought to be real or double by the scan. However, there is only one list flags word for
the real/double constant list, and it cannot both have the double trait and not have it; so, it
does not have it. Hence, here is a double pointer without the double flag set.

When a plex-bui Idi ng POP has a plex ready to go onto the plex list, it searches the plex
list to see if there are any other plexes just like this one (all words must agree). If so, it
does not put the new plex onto the plex list but creates a poi nter to the old one instead.
Thi's occasionally saves space on the plex list, but its main purpose is to facilitate checking
for common sub-expressions. It insures that, if two expressions are identical, the pointers to
them wi \I also be identica I.

76

Understand that th is sub-expression regi stration is done on a statement by statement basi s,
not over the whole program. The plex list is emptied and sent to pass 2 at the end of every
statement.

ARITHMETIC EXPRESSION GENERATOR

The two most important traits to pass 2 are the addressable flag and the signed addressable
flag. The addressable flag indicates that a thing is in memory and can be addressed by an
ordinary machine instruction. Thus, scalar variables are addressable, as are constants and
array elements. X + Y is not addressable, si nce it must be computed before it can be used.
The signed addressable flag indicates that something is either addressable or minus something
which is addressable. Thus, A is both addressable and signed addressable, whereas -A is
on Iy signed addressable.

I Pass 2 usually starts a calculation with something which is not addressable. For example,

W + X + y*z

is the sum of three terms of which only Y*Z is not addressable. Therefore, pass 2 would
start the calculation with y*Z, no matter what order the three terms had been written in.
To begin the calculation by adding W to X would require a store into a temp which is not
needed. If there are several non-addressable terms in the sum, they are usua IIy done in
right-to-Ieft order, so that the calculation of

W*X - y*Z

can be done without a negation.

In most cases, pass 2 is more concerned with signed addressability than pure addressability.
It is willing to compute expressions with the wrong sign and fix the signs later. Quite often
the signs wi II not have to be fixed later, since wrong signs can cancel. For example,

(U - V*W) * (X - Y*Z)

comes out

LOP V
FLM W
FLS U
STO lTEMP
LOP Y
FLM Z
FLS X
FLM lTEMP

in which the two factors are both computed with the wrong sign, and the wrong signs cancel.
An expression involving +, -, *, and / can always be evaluated with at most one negation.

The strategy for generating code for division is quite simple: compute the denominator first,
if it needs computing. The operation of computing something if it needs computing and

77

storing it in a temp comes up quite often, so that there are several subroutines to do it in
pass 2. Alt such subroutines have GRNTEE ADDRESSABLE in their names. To guarantee
something addressable means: if it is already addressable, do nothing; otherwise, evaluate it
and store it in a temp. There are many variations on this. The one used for the denominator
is called GRNTEE Signed Addressable by Mode. This means: allow the sign to come out
wrong if necessary, and if the denominator is complicated, evaluate each of the parts of it
in the mode of the outer expression. This means that the modes of the individual elements of
the expression are promoted independently; i .e., the expression

x / (-J-K)

is done as follows:

LDA K
LOB =23
FLA =0.0
STD 1TEMP
LOA J
LOB =23
FLA =0.0
FLA 1TEMP
STD 3TEMP
LOP X
FLO 3TEMP
FLM =-1 .0

Here J and K were independently floated, then added and stored in a temp. The sign of the
temp was a Ilowed to come out wrong, and was fixed at the end of the expression with a
negate.

Other variations on guarantee addressable include evaluation of the expression in its own
mode or some specified mode instead of the mode of the outer expression, and not allowing
the sign of the result to come out wrong. The right-hand operand of the ** operator, for
example, must have the correct sign.

There are about fifty subroutines in pass 2 which are concerned with generating code for
expressions. The fifty can be thought of as a II entrances to the same routine, and are minor
variations on each other.

First of all, there are different entrances for getting the result into a register, memory, or
both. The routines which get the result into memory all have GRNTEE addressable in their
names. If the thing is already in memory (e.g., X), these routines do nothing. Otherwise,
they cause it to be evaluated and stored in a temp. One place where the GRNTEE address
able entrances are used is in generating code to evaluate the denominator for division. They
are also used for subprogram arguments.

In a few cases it is desi rable to get a resu It in memory and the accumu lator. For example, if
a thing is to be squared (appeared on the left of **2), it is needed both places. The sub
routines which do this have GRNTEE ADDRESSABLE AND IN AC or GRNTEE BOTH PLACES
in their names.

78

The routines which get the result in the accumulator (the usual case) have GRNTEE IN AC in
their names.

Throughout expression generation, the compi ler is wi Iling to generate things with the wrong
sign, keeping track of whether the current sign is right or wrong. Each of the above three
categories has an entrance which is willing to get the sign wrong and an entrance which
insists on the right sign. The latter group wi II generate a negate if necessary to correct the
sign. The entrances which allow the wrong sign all have SIGNED or BEST SIGN in their
names. These routines all leave the sign of the result on the sign list - lIs if sign wrong,
o if it is right. Signs get onto the sign list through a subroutine called Is Term Signed Ad
dressable. (Signed Addressable means that a term is addressable except for a possible wrong
sign.) In addition to answering the question, this subroutine appends the sign of the term to
the bottom of the sign list. The sign is derived from how many minus plexes there were at
tached to the term. Is term signed addressable removes the mi nus plexes, if any. Other
parts of the generator update the latest sign - usually by exclusive ORing the bottom two
entri es on the sign list.

In addition to the six entries discussed so far - signed and unsigned multiplied by accumulator,
memory, or both, there is the consideration of mode, which puts in another factor of nine.
The general rule for mixed mode expressions is that all arithmetic is done in the highest mode
of any element in the expression. The usual way of handling this is to set up the highest
mode of the expression on the mode list and see that all of the other elements are converted
to that mode. The mode list is used as a push-down list. The mode of function arguments
is set up independently, so as not to disturb the mode of the expression containing the func
tion call.

The entrances with BY MODE in their names assume that the desired mode has already been
set up on the mode list and thaf all elements of the expression should be converted to that
mode. These entrances are used mainly from within the expression generator. For example,
for the denominator in division, the full name of the entrance used is GRNTEE SIGNED
ADDRESSABLE BY MODE, meaning: get the res: .. dt in memory, allow the wrong sign, and
convert the modes of the elements individually to the mode on the mode list.

The entrances with OWN MODE in their names mean: set up the highest mode of the ex
pression onto the mode list, generate the expression in that mode, and then remove the mode
from the mode list. These entrances are used for subprogram arguments and simi lar items.

The entrances labeled REMEMBER MODE are just like the own mode entrances except that
they do not remove the mode from the mode list at the end. The entrances labeled KNOWN
MODE cause an expression to be evaluated in its own mode, then converted to the mode on
the mode list. This is quite similar to the by mode entrances in that the mode becomes what
ever the mode list indicates. The difference is that in by mode the conversion is performed
individually for each of the elements, whereas in known mode the conversion is performed
only once, at the end. The known mode entrances are quite popular for evaluating argu
ments to intrinsic functions. Entrances marked FORGET MODE are just like known mode
except that they remove the mode from the mode list at the end.

79

There are several entrances which specify a particu lar mode, such as GRNTEE REAL SI GNED
ADDRESSABLE, GRNTEE DOUBLE IN AC, etc. These are used mainly for arguments to
intrinsic functions. They work like known mode in that they evaluate the expression in its
own mode, then convert to the mode spec i fied in the name.

If an expression is not addressable, a II the generati ng subrouti nes wi II eventua Ily work thei r
way down to a routine called Gen by Plex Type. This routine uses the number in the left
most six bits of the plex pointer in WO to index a jump table leading to the appropriate gen
erating routines. There is a sum generating routine, a product generating routine, a quotient
generating routine, a function call generating routine, etc. Each of the specific generating
routines works in the by mode mode - i.e., it causes each element of the expression or sub
expression to be converted to the mode on the mode list. They also work in the signed mode,
meaning that each one assumes that there is a sign on the bottom of the sign list indicating
whether the sign of this particular term is correct. If a generating routine wants'-t"o indicate
that it has generated the wrong sign, it merely changes the sign on the sign list. This means
that if the sign was wrong to begin with, and the routine generated it with the wrong sign,
the sign comes out right.

GrnTee

Short Forms of Names for Entrances to
the Arithmetic Expression Generator

BYM
OWN
KNW

{ACCumUl.otor } {UnSigned} REM
ADdressable FGT
BOth the above Signed INT

REA L DBL
CPX

By Mode
Own Mode
Known Mode
Remembe r Mode
Forget Mode
Integer
Real
Double J Complex

The Bui Id Instruction and File (BIF) POP is one of the few written in interpretive code, and
the only POP which calls itself recursively. BIF receives a pointer in WO that will become
the Iladdress field ll of the generated instruction. The effective address of the POP becomes
the operation code of the generated instruction. Thus,

BIF FLD MOP

causes a FLD instruction to be generated, the address being supplied from WO. The MOP
part of the address means IImachine operation ll and is a carry-over in terminology from the
920 FORTRAN II Compi ler. The symbol FLD MOP has been equated to 066.

Building the instruction is only one of the functions BIF performs. It also takes care of index
ing and indirect addressing, and of loading index registers. If the pointer in WO is to a

80

dummy scalar, the job is quite easy: simply attach an indirect bit. If the pointer in WO is
to a constant subscripted array plex and the array is non-dummy, the value of the constant
simply becomes an addend to apply to the instruction. If the array is dummy, however, the
constant value is put into an AXB instruction (using index 1), and the generated instruction
addresses indirectly through the dummy. The dummy itself contains an index 1 tag bit, so
the constant value in index 1 will be added to the effective address.

The BIF POP maintains a table of what is in the various index registers, and if it finds that
something it needs is already in the appropriate index register, it does not load it.

If WO contains a fully subscripted array plex and the array is non-dummy, the non-constant
part of the subscript is loaded into an index register and the constant part becomes an addend.
In this case, the BIF POP determines whether anyone of the three index registers already
contains the needed value and, if so, uses that register. If not, it picks an index register at
random and generates a LDX instruction. Since index register 1 is the only one that can be
used for dummy arrays, for local arrays the BIF POP uses index 2, then 3, then 1. This way,
it will not destroy something which was needed for a dummy array unless there were at least
three independent non-dummy subscripts.

If WO contains a fully subscripted array plex and the array is dummy, the non-constant part
of the subscript is loaded into index 1 and the non-constant part, if non-zero, is bui It into
an EAX instruction, tagged with index 1. This adds the constant part to the value of the
index regi ster.

If WO contains a pointer to a multiple dummy, the code is almost the same as if it were a
dummy array. The only difference is that the multiple dummy itself has both a tag and an
indirect bit in it. The instruction referencing the multiple dummy has only an indirect bit.

LOGICAL EXPRESSION GENERATOR

Arithmetic expressions are handled with a single recursive pass through the expression, but
logical expressions are done with two passes. The first logical expression pass is called
Simplify Logical Expression. It takes the plex structure of the expression apart and puts it
back together again in a form more convenient for generating code. Then the code is
generated. There are two generating routines for logical expressions. The first - Evaluate
Logical Expression - is used when the logical expression appears in a logical assignment
statement or as a subprogram argument. It generates code designed to produce a logical
value in the sign bit of the A or B register. The other logical expression generator gener
ates code for jumping purposes. It has two entrances: Logical Expression Gen Jump If True
and Logical Expression Gen Jump If False. The jumping generator is used when the logical
expression appears in a logical IF statement or in a REPEAT WHILE statement. The gener
ated code usually does not produce a logical value in a register but branches on the truth or
falsity of the expression.

Since there are two separate generators, the same logical expression can produce quite
different code, depending on the context in which it is used. Consider the expression

81

P .AND. Q; in the context

it comes out

whereas in the context

LOGICAL P, Q, R
R= P .AND. Q

LDA P
ETR Q
STA R

LOGICAL P, Q
REAL X, Y
IF (P .AND. Q) X = Y

it comes out
SKN P
BRU 1G
SKN Q

BRU 1G
LDP Y
STD X

1G

SIMPLIFY LOGICAL EXPRESSION

Simplify Logical Expression is concerned mainly with simplifying relational operations. It
notes that. GT. is the same as • LT. with the operands reversed, that. NOT •. EQ. is the
same as .NE., etc. It transforms non-integer relationals into comparisons with zero, e.g.,

A • GT. B
is transformed into

B-A.LT.O

It does not transform things that are already comparisons with zero. For example, it does not
change

A ""',.. " A • \..:7t. U

into
A-O . GE. 0

Simplify logical expression does not convert integer relationals into comparisons with zero,
since subtraction is an inaccurate way to compute integer relationals. Because of overflow
problems in integer arithmetic, the relation

while
-5000000 • LT. +5000000

-5000000-5000000 . LT. 0

is • TRUE.

is • FALSE.

This is because -5000000 and +5000000 can both be represented as integers, and the negative
one is certainly less; but the difference, -10000000, cannot be represented as an integer, and
calculating it causes overflow and produces a positive result. This problem does not arise in
floating-point calculations, since the overflow trapping routine always returns a result whose
sign is correct. The problem does arise to some degree in very small floating-point numbers
wh i ch are nea rly equa I. Suppose two numbers are near 10-77 and di fferent, but the di ffer-

82

ence is, say, 10-79. This difference is too small to be represented in floating point and is
returned as zero, thus c laimi ng that the two numbers are equa I. The compi ler does nothi ng
to avoid this problem, since for most floating-point purposes the numbers ~ equal.

It is an insignificant loss to be unable to do integer relationals with subtraction, since most
of them can be done more efficiently with SKG, SKL, SKE, and SKU instructions, which is
how they are done.

Simplify logical expression takes cognizance of certain addressable comparisons with zero.
The truth of a logical variable is stored in its sign bit; therefore the truth of

x . LT • 0

is stored in the sign bit of X, even though X is a floating-point variable. Therefore, the
expression

X .LT. 0

is equivalent to X itself, considered as a logical variable. The ability to sense this fact
enables evaluate logical expression to produce

for the statements

LOGICAL P
REAL Xi Y

LDA X
MRG Y
STA P

P = X • LT . 0 .OR. - Y • GT • 0

Simplify logical expression also simplifies extended relationals, transforming

X.LT.Y.LT.C

into the more traditional

X - Y . LT . 0 .AND. Y - C . LT . 0

When simplify logical expression is finished, the A register flag on each of the plexes in the
expression correctly indicates whether that subexpression will be evaluated in the A or B
register, a fact that is of some concern to evaluate logical expression and of little concern
to logical expression gen jump if true/false. This flag indicates where the result will come
out if a logical value is being produced, and has little importance if a jump isbeing produced.

EVALUATE LOGICAL EXPRESSION

Evaluate logical expression produces code which is optimum for single relationals and for
logical variables combined with .AND., .OR., and .EOR .. The code produced when
relationals are combined with .AND., .OR., and .EOR. is sometimes less than optimum, as
is the code when .NOT 0 is applied to things other than relationals. This generating routine

83

is strongly concerned with whether the various subexpressions produce results in the A or B
register.

Most floating-point relationals produce results in the A register. For example,

produces

X .IT. Y

lDP X
FlS Y

giving an answer in the sign bit of the A register. Integer relationals, on the other hand,
generally produce results in the B register since A is occupied making comparisons. Thus

J .IT. K

produces

giving the answer in the sign bit of B.

lDA
COpy

SKG
COpy

K
(- 1, B)
J
(0, B)

When. NOT. is applied to a subexpression evaluated in B, a COpy (IB, A) instruction is
produced, giving an answer in A. Similarly, when. NOT. is applied to a subexpression
evaluated in A, a COpy (lA, B) instruction inverts the result and places it in B. The reason
for this strange convention with. NOT. is that COpy instructions on the 9300 are very fast
and there is no COpy instruction that will place the inverse of A into A or the inverse of B
into B. In order to get the speed of COpy, one has to change regi sters.

To do a comparison of an arithmetic expression v:ith zero, the compi lei generates code to
evaluate the arithmetic expression, allowing the result to come out with the wrong sign.
(For example, X - y*Z is more easily evaluated with the wrong sign than with the right sign.)
If the sign comes out wrong, the compi ler generates di fferent code to compare with zero.
For example, if it were supposed to produce a • IT. 0 comparison and the sign comes out
wrong, it produces a . GT. 0 comparison instead, rather than negate the resu It of the ex
pression. Naturally, for. EQ 0 0 and. NE. 0, it makes no difference whether the sign comes
out ri ght or wrong.

If the sign of the expression comes out right, the following sequences of code are generated
for comparisons with zero:

.GE.O
EOR =-1

. GT. 0
SKA =-1
EOR =-1

84

result in A

result in A

• LE • 0
SKU 0
COpy (-1, A) result in A

. LT • 0
no code result in A

.NE. 0
SKA =-1
COpy (-1, A) result in A

.EQ. 0
SKA =-1
COpy (-1, A)
COpy (lA, B) resu It in B

The idea in evaluating .AND. and .OR. is to combine addressable quantities with ETR and
MRG instructions and complicated quantities with skips and branches. In general, an .AND.
or . OR. operator can have more than two operands, and the operands are divided into three
classes:

1. Complicated operands evaluated in B.
2. Compl i cated operands eva I uated inA.
3. Simple (addressable) operands.

Some, but not all, of the above classes may be empty in any particular case. Assume a long
expression in which there are representatives of all three classes. In that case, the B register
operands are evaluated first. If the operator is .OR., each B register operand other than the
last is followed with

S K P =040000000
BRU label

where the labe lis defi ned after the last B regi stcr operand. If the operator is. AN D., the
code is the same except the SKP is replaced by SKB. The SKP instruction wi II skip if the
B register is • FALSE., while the SKB will skip if the B register is • TRUE.

If there are no A register operands, the result is left in B. Otherwise, a COpy (B, A) in
struction is generated at the place to which all the branches branch. Then come the compli
cated operands evaluated in A. ,All of these except the last are followed by skips and
branches, the branches this time leading to a label at the end of the whole subexpression.
If the operator is .OR., the skip is

S KA =040000000

if the operator is .AND., the skip is

SKL =-1

Finally, the addressable operands are combined with ETR and MRG.

85

The technique of evaluati ng the compl icated operands first does not necessari Iy produce the
fastest ob ject code, but it does produce shorter code than wou Id come from doi ng thi ngs the
other way around. Since complicated subexpressions are combined with skips and jumps,
there are never any stores in temps generated in connection with .AND. and .OR.

The evaluation of .EOR. is different. Unlike .AND. and .OR., it is necessary to evaluate
a II the operands of . EORo ina II cases to compute the resu It. For. EOR. a II the operands
are combined with EOR instructions, and intermediate results are stored in temps - the only
instance in which logical temps are ever needed.

The jumping generators accept a logical expression pointer in WO and a label on the bottom
of the spec label list. They generate code which conditi.onally jumps to the label,depending
on the truth or falsity of the expression. They remove the expression pointer from WO, but
do not remove the labe I pointer.

The code generated for relational operators is quite straightforward except for the double
skip in the following case:

IF (J+K . GE. M) GO TO 23

LDA J
ADD K
SKG M
SKU M
BRU 23S

.OR. gen jump if true simply generates code for the individual operands, having each one
jump if true. Similarly, .AND. gen jump if false generates code that jumps if false for each
operand. Both these routines examine the terms being ANDed or ORed and try to do the easy

: ones first. If a simple logical variable is ANDed with a relational, for example, the logical
variable wi II be tested first, regardless of the order in which they were written .

• OR. gen jump if false and .AND. gen jump if true are more complicated than the above
routines. They involve the creation of a label, and not all the jumps go the same way .
. AND. gen jump if true generates a label following the last instruction generated and
causes the first n-l operands to jump if false to that label. Then it causes the last operand
to jump if true to the label it is supposed to be jumping to. Simi larly, . OR. gen jump if
false generates a label following the last instruction generated and causes the first n-l
operands to jump if true to that lobe I. Then it causes the last operand to jump if fa Ise to the
label it is supposed to be jumping to.

These routines also re-order the operands to do the simple ones first, but they also try to
se lect an appropriate one to put last, taki ng into account that the last operand is generated
to jump the opposite direction from the others. Most tests involve the same amount of code
regardless of whether they are jumping if true or jumping if false. This is because most skip
instructions can be reversed. For SKE there is SKU; for SKG there is SKL; but for SKN
there is nothing. (Similarly, the double skip in the above example cannot be reversed in

86

the same number of instructions.} This non-reversibility of SKN is unfortunate since it is
used to test logica I variab les as we II as a few re lationa Is. It takes an extra BRU to make
SKN jump the other way. Therefore, .AND. gen jump if true and .OR. gen jump if false
try to pick a term to put last that has this characteristic, i.e. of being more convenient to
jump the wrong way. . OR. gen jump if false wi II put a simple logical variable last if it
can find one, and .AND. gen jump if true will put .NOT. a logical variable last if it can
find one.

The. NOT. operator is easily handled by the jumping generators .. NOT. gen jump if true
simply pulls the. NOT. plex (see PUL under II POPs by Category") and goes to logical ex
pression gen jump if false. Similarly, .NOT. gen jump if false pulls the. NOT. plex and
goes to logical expression gen jump if true.

There are no special jumping generators for logical function calls, logical replacements, and
• EaR. . These operations are generated by the appropriate parts of evaluate logical ex
pression, and the result is tested in the A or B register.

87

* ;1 I -It; SCIENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

PASS 3

IDENTIFICATION: Pass 3 (PASS3)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: JRS PASS3

PURPOSE: To perform the high level control of the operations which comprise
pass 3. The following sequence of events takes place in pass 3:

1 • Position system tape for next processor.

2. Copy output list (from pass 2) onto input list (for pass 3). Th i sis
the T2 fi Ie which may have overflowed to the X 1 tape.

3. Generate literals (GENLIT subroutine).

4. Output the definition records (ODEFR subroutine)

5. Output data records (ODAT AR subroutine)

6. Output reference records (OREFR subroutine)

7. Output end record (OENDR subroutine)

8. Output storage map (GUTMAP subroutine)

9. Return to MONITOR

89

, ;1 • -\'; SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Get Next Input Word {GNIW}

Pass 3

BRM GNIW
Result in A register and CINPW

To get next input word from T2 {phase 3 principal input file} and store
it in CINPW {current input word} and the A register.

Registers Xl, X2, X3 are maintained.

90

* .;1 • -1*; SCIENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Generate Literal List (GENLIT)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: JRS GENLIT

PURPOSE: To generate a list of literals (or constants) that are required in the
ob ject program.
Inputs are

CCONSLST
RDCONLST
ICONSLST
HCONSLST

Outputs are

LITERLST
CADRLIST
RADRLIST
DADRLIST
IADRLIST
HADRLIST

Complex Constant List
Rea I/Doub Ie Constant Li st
Integer Constant List
Ho lIerith Constant List

Li tera I Li st
Complex Constant Address List
Rea I Constant Address Li st
Doub Ie Constant Address Li st
Integer Constant Address Li st
Ho lIerith Constant Address List

Each constant on the constant lists is checked to determine if it is used.
If it is not used, a dummy address is added to the appropriate address
list and the constant is ignored; otherwise, the literal list is searched
for a previous occurrence of the constant. If such an occurrence is
found, its program address is added to the appropriate address list. If
one is not found, the constant is added to the literal list, and its pro
gram address is added to the appropriate address list.

The basic program size (BPSIZE) is increased by the size of the literal
list.

91

t II • -II I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Output External Definition Records (ODEFR)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: BRM ODEFR

PURPOSE: To search the symbol table for all symbols that are entry points (external
definitions) or global blocks. These items plus all the items in the block
name list (BLNAMLST) are output in the form of type 1, subtype 0 or 2,
binary records. The size of blank common is also output at this point
un less it is zero.

92

I ;1 I -II » SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Output Data Records (ODAT AR)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: BRM ODATAR

PURPOSE: To process the pass 3 principal input file (T2) and produce the binary
data records if requested and the object listing if requested.

93

I' 'I • -1*; SCIENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Output External Reference Records (OREFR)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: BRM OREFR

PURPOSE: To output the external reference binary records (type 1, subtype 1 or 3)
for the externa I references contai ned in the externa I reference Ii st
(XREFLIST) •

94

* ;1 • -*; SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Fi Ie Externa I Reference (FILEXREF)

Pass 3

(X2) = address of 8-character name
= addend (A)

BRM
(A)

FILEXREF
= chain address or addend

If (XFILXREF) = NOP, then return with addend in A register. Other
wise, search XREFLIST for a previous reference to the symbo I/addend
pair. If a reference is found, update the chain address in the XREFLIST
with (PROCTR), set (CHAINEND) positive, and return with the previous
chai n address as a resu It. If a reference is not found, add the name,
addend, and (PROCTR) to the XREFLIST. Set (CHAINEND) negative
and return with a zero chain address.

95

* *1 I -*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Output End Record (OENDR)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: BRM OENDR

PURPOSE: If no binary out is requested, then return; otherwise, output any
accumu lated fu II or portia I records and output an end record (type 3)
on a separate physica I record.

96

* ;1 • -1*; SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Output Storage Map (OUTMAP)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: BRM OUTMAP

PURPOSE: To output the storage map on the LO devi ceo

97

* *1 • -I' I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Convert Pointer to a Program Address (CPAD)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

(A) =
BRM
(A) =
(B) =

pointer
CPAD
address
relocation code

To compute the program address and the relocation code for the item
referenced by the pointer using the current contents of ADDEND for an
offset. If (XFILXREF) = SKIP and the referenced item is external, then
the reference is chained and the appropriate chain address is used for
the result. (CHAINEND) is set negative if this is the end of chain;
othelWise, it is set positive. If (XFILXREF) = NOP and the referenced
item is external, the address is relative to the symbol.

The relocation codes are

a = Absolute
1 = Program Relative
2 = Blank Common
3 = Labeled Common Reference
4 = Global Reference
5 = Externa I Subroutine Reference
6 = Undefined

Registers Xl, X2, X3 are maintained.

98

t ;1 • -It; SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Convert Pointer to a Label (CPLAB)

Pass 3

(A) = pointer
BRM CPLAB
(A) = number of characters in CLABEL

To generate in CLABEL through CLABEL+9 a label for the symbolic
object listing corresponding to the item referenced by the pointer as
fo Ilows:

Item

current location
constant
local label
non-local label
generated label
temporary
private temporary
other

Label Form

$
= constant
label S
label $
label G
number TEMP
number PTMP
8-character name

Registers Xl, X2, X3 are maintained.

99

* II • -It I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Binary Buffer (BINBUF) Initialize (BINBUFIN)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: BRM BINBUFIN

PURPOSE: To initialize BINBUF to zero.

REGISTERS: Registers X2, X3 are maintained.

100

* *1 • -*; SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

File Binary Data Word (FBDAT A)

Pass 3

(A) = data word
(B) = relocation code
BRM FBDATA

If no binary output is required, return; otherwise, add data word to data
record (type 0) in BINBUF, if there is room, and set the appropriate re
location bits according to the relocation code from the B register. In
the event there is no room in BINBUF, call ANYBO to prepare and
output the data record.

Relocation codes are

o = Absolute
1 = Program Relative
2 =. Blank Common
3 = Labeled Common Reference
4 = Global Reference
5 = External Subroutine Reference
6 = Undefi ned

Relocation codes 3, 4, 5 and 6 may be program relative or absolute
depending upon whether or not the address is the end of an external
reference chain. (CHAINEND) if negative indicates absolute, other
wise relocatable.

101

t 'I • -1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Any Data Record Binary Output (ANYBO)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: BRM ANYBO

PURPOSE: To test for the accumulation of a full or partial binary data record
(type 0). If there is none, return; otherwise, construct the data record
according to the SDS standard binary format, call C KSOUT for the
checksumming, and output the record.

102

I ;1 I -II; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Checksum and Output (C KSOUT)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: BRM CKSOUT

PURPOSE: Return if no binary out is required; otherwise, compute the checksum
for the logical record (SDS standard binary language) which is in buffer
BINBUF. If there is room in buffer ALBINBUF for the logical record
from BINBUF, it is transferred to ALBINBUF (buffer for 1 or more logical
records in packed form). If ALBINBUF does not have room for the
BINBUF logical record, the packed records in ALBINBUF are output and
then the BINBUF logical record is transferred to ALBINBUF.

103

, II • -I" I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Unconditional Binary Output (UNBINOUT)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: BRM UNBINOUT

PURPOSE: To output the contents of the buffer ALBINBUF unless it is empty or no
binary output is required ((XBINOUT) == NOP).

104

* *1 • -1* * SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Check BO Output (CHECKBO)

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

Pass 3

BRM CHECKBO

To check for any BO output in process; if output is in process, wait for
completion and then return.

Registers X2, X3 are maintained.

105

* II • -1* » SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Check GO Output (CHECKGO)

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

Pass 3

BRM CHECKGO

To check for any GO output in process; if such output is in process,
wait for completion and then return.

Registers X2, X3 are maintained.

106

I ;1 • -II; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Initialize Line (ILINE)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: BRM IUNE

PURPOSE: To initialize the output line used by the output formatting routines to
blanks and to set the character position poi nter to character position 1
of the line.

REGISTERS: Registers Xl, X2, X3 are maintained.

107

* II • -1* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: PAGE

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

Pass 3

BRM PAGE

Toe ject to top of page on:

1. LO device using MONITOR I/O if (XMONITOR)~SKIP.

2. LP1A device ~sing own I/O code if (XMONITOR)= NOP.

Registers Xl, X2, X3 are maintained.

108

t ;1 I -*; SCIENTIFIC DATA SYSTEMS

IDENTIFICATION: SPACE

OVERLAY
SECTION: Pass 3

CALLING

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

SEQUENCE: BRM SPACE

PURPOSE: To upspace one line on either the printer or typewriter as follows:

(XMONITOR) = SKIP (XMONITOR) = NOP

(PRTY) = SKIP TY device using MONITOR TY1A using own I/O code

(PRTY)=NOP LO device using MONITOR CR1A using own I/O code

REGISTERS: Registers Xl, X2, X3 are maintained.

109

* 1\ • -1* I SCIENTIPIC DATA BVBTBMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Print Line (PLINE)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: BRM PLINE

PURPOSE: To transmit the output line to the device specified in the following
tabl e:

(XMONITOR)= SKIP (XMONITOR)= NOP

(PRTY) =SKIP TY device using MONITOR TY1A using own I/O code

(PRTY) = NOP LO device using MONITOR CR1A using own I/O code

REGISTERS: Registers Xl, X2, X3 are maintained.

110

* II • -*; SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Define Special Conversion Line (DSCLSUB)

Pass 3

BMA DSCLSUB
PZE a

To save the current character position pointer, to define a special out
put line beginning at a and to set the character position pointer to zero.

Registers Xl, X2, X3 are maintained.

111

I II • -1* I SC.ENTIPIC DATA SYSTEM.

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICA TION: Restore Normal Output Line (RLINE)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: BRM RLINE

PURPOSE: To restore the output line and character position pointer to what it was
prior to the last calion DSCLSUB.

REGISTERS: Registers Xl, X2, X3 are maintained.

112

* 'I • -1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Increment Character Position by 1 (IC Pl)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENC E: BRM IC Pl

PURPOSE: To increment the output line character position pointer by 1.

REGISTERS: Registers Xl, X2, X3 are maintained.

113

* II • -1* I SCIENTIFIC DATA SYST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICA TION: Decrement Character Position by 1 (DC Pl)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE: BRM DCPl

PURPOSE: To decrement the output line character position by 1.

REGISTERS: Registers Xl, X2, X3 are maintained.

114

* ;1 I -\t; SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Increase Character Position Subroutine (IC PSUB)

Pass 3

(A) = N
BRM ICPSUB

To increase character position pointer by N.

Registers Xl, X2, X3 are maintained.

115

* II • -* I SCIENTIFIC DATA SVST.MS

IDENTIFICA TION:

OVERLAY
SECTION:

CALLING
SEQU ENCE:

PURPOSE:

REGISTERS:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Set Character Position Subroutine (SCPSUB)

Pass 3

(A) = N
BRM SCPSUB

To set the character position pointer to the Nth character position of
the output line.

Registers Xl, X2, X3 are maintained.

116

* *1 I -1* * SCIENTIFIC DATA SYST.MS

IDENTIFICATION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTER{s):

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Store Character (STC)

Pass 3

(A 18- 23)=C

BRM STC

To store the character C in the output line at the position designated by
the character position pointer.

Registers Xl, X2, X3 are maintained.

117

* 1\ • -It I SCIENTIPIC DATA SYSTEMS

IDENTIFICA TION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Output Alpha Subroutine (OASUB)

Pass 3

(A) = N
BRM OASUB
PZE Q

To transfer the character string beginning at Q (and N characters long)
to the next N character positions of the output I ine. Increase the char
acter position pointer by N.

Regi sters Xl, X2, X3 are mainta ined.

118

t II • -1* I SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Output Alpha Minimum Number of Characters (OAMNCSUB)

OVERLAY
SECTION: Pass 3

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

(A) = N
BRM OAMNCSUB
PZE 0'

To transfer the character string beginning at 0' to the next M character
positions of the output line. Increase the character position pointer by
_M. M is the lesser of two items:

1. N

2. the number of characters in the character string prior to the first
blank (060)

Registers ~ 1, X2, X3 are mai ntai ned.

119

* II • -1* I SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Output Octal Subroutine (OOSUB)

Pass 3

(A) = N
(B) = V
BRM OOSUB

To convert V to an N-character octal character string with preceding
zeros and to store it in the next N character positions of the output
I ine. Increase the character position pointer by N.

Registers Xl, X2, X3 are maintained.

120

..., * II • -It I SCIENTIFIC DATA SVSTaMS

IDENTIFICATION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Output Decimal Subroutine (0 DSUB)

Pass 3

(A) = N
(B) = V
BRM ODSUB

To convert V to signed (if negative, otherwise unsigned) decimal char
acter string with preceding blanks and to store it in the next N charac
ter positions of the output line. Increase the character position pointer
by N.

Registers Xl, X2, X3 are maintained.

121

* II • -1* I SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Output Decimal Minimum Number of Characters (ODMNCSUB)

Pass 3

(A) = V
BRM ODMNCSUB

To convert the value V to a signed (if negative, otherwise unsigned)
character string and to store it in the next N character positions of the
output I ine. Increase the character position pointer by N. N is the
number of character positions required to contain the number and its
sign if present.

Registers Xl, X2, X3 are maintained.

122

* II • -It I SCIENTIFIC DATA SYSTEMS

IDENTIFICA TION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Output Real Subroutine (OREALSUB)

Pass 3

(A, B) =
BRM

argument
OREALSUB

(A) = number of charac ters output (N)

To convert the 2-word real argument to its BC D representation and to
store it in the next N character positions of the output line. Increase
the character position pointer by N. N is the fewest number of char
acters required to represent the number properly.

Registers Xl, X2, X3 are maintained.

123

* II • -* I SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Output Double Precision Subroutine (ODOUBSUB)

Pass 3

BMA ODOUBSUB
PZE argument
(A) = number of characters output (N)

To convert the 3-word argument (double-precision value) to its BCD
representation and store it in the next N character positions of the
output line. Increase the character position pointer by N. N is the
fewest number of characters required to represent the number properly.

Registers Xl, X2, X3 are maintained.

124

* ;1 I -1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Read Debug (READBUG)

OVERLAY
SECTION: FORTRAN Control

CALLING
SEQUENCE: BRM READBUG

PURPOSE: To load the compi ler debug system into memory from the system tape.

125

* II • -Ii I SC.ENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Read Phase 2 (READP2)

OVERLAY
SECTION: FORTRAN Control

CALLING
SEQUENCE: BRM READP2

PURPOSE: To load phase 2 of the compiler into memory from the system tape.

126

..., * ;1 • -1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Read Phase 3 (READP3)

OVERLAY
SECTION: FORTRAN Control

CALLING
SEQUENCE: BRM READP3

PURPOSE: To load phase 3 of the compiler into memory from the system tape.

127

I *1 •• 1* I SC.ENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: FORTRAN Rewind Temporary (FREWIND)

OVERLAY
SECTION: FORTRAN Control

CALLING
SEQUENCE: (X 1) = symbolic tape name

BRM FREWIND

PURPOSE: To rewind the symbolic tape designated by the name in XL

128

t *1 I -It I SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

FORTRAN Write Temporary Tape (FWRITE)

FORTRAN Control

(X 1) = symbolic tape name
(A) = address of block to write
(B)
BRM =

= number of words in block
FWRITE

To write on the designated symbolic tape data block specified, preceded
by two control words as follows:

Word 1
Word 2
Word 3

Word N + 2

number of data words (N)
checksum

data words

The checksum is the sum of aata words.

129

* 'I • -1* , SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: FORTRAN Read Temporary Tape (FREAD)

OVERLAY
SECTION: FORTRAN Control

CALLING
SEQUENCE:

PURPOSE:

(X 1) = symbol ic tape name
(A) = address of block
BRM FREAD

To read from the designated symbol ic tape the data block into the
memory block area specified.

130

-

* ;1 • -1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Error Subroutine (ERRORSUB)

OVERLAY
SECTION: FORTRAN Control

CALLING
SEQUENCE:

PURPOSE:

REGISTERS:

BRM ERRORSUB
TEXT 4, mmmm

To type the following on the TY device:

where IIIII is the octal location of the calion ERRORSUB.

Registers Xl, X2, X3 are maintained.

131

* ;1 • -1* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: MONITOR Typeout (MONTYPEO)

OVERLAY
SECTION:

CALLING
SEQUENCE:

PURPOSE:

FORTRAN Control

(AD-a) = 0777

(A
9

-
23

) = address of first word

(B) = number of words

BRM MO NTYPEO

To type on the TY device the words specified.

132

I 'I • -II , SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICA TION: Type Character (TYPECHAR)

OVERLAY
SECTION: FORTRAN Control

CALLING
SEQUENCE: (AO-5) = character

BRM TYPECHAR

PURPOSE: To type the character designated on the TY device.

133

DESCR I PT 10 N 0 F \ PRI Nel PA'~: SY M SOLS IN PASS 3'

ADDEND

BINBUF

BOTRIG

BPSIZEML

Contains the current addend that is to modify a symbolic address; e.g., if an
object instruction references A + 5, the reference would be indicated by a
pointer to A in the symbol table and an addend of 5.

Binary buffer inwhich a logical binary record is developed.

Negative if BO output required.

Contains the basic program size up to but not including the literals (constants).

CHAINEND Negative if the address of the instruction being processed (of the object pro
gram) is an external reference and absolute 0 designating end of the chain as
opposed to being positive indicating relocatable (possibly 0).

CINPW

CLABEL

Current input word contains a copy of the last word input from the T2 fi Ie
(pass 2 output; pass 3 input).

A buffer that contains the label generated by the Convert Pointer to a Label
(CPLAB) subroutine.

DEBUGEND Contains the address of the location immediately following the FORTRAN com
piler's debug routines. When in the debug mode, this location is the first cell
of working space.

DEBUGORG This location is the first cell of the FORTRAN compiler's debug system. When
not in the debug mode and in the in-line code mode, this location is the first
cell of working space.

FILESIZE Contains a count of the number of records in the input fi Ie (T 1 or T2).

GOTRIG Negative if GO output required.

LDLAB Load,label contains the a-character name corresponding to the global or
labeled common block in which initial values are being loaded because of a
data statement.

LINE Output line buffer.

OPTAB Table of operation mnemonics.

POSIFBOX Positive if any BO output has been transmitted whose status must be checked.

POSIF GOX Positive if any GO output has been transmitted whose status must be checked.

PROCTR Assembly program counter.

RECSIZE Contains a number that designates the number of data words per record in the
Tl and T2 files. The actual record size will be two words greater to facilitate
the two control words.

134

SHOESIZE Its value represents the maximum size logical record that may be accommodated
in the physica I binary record under construction.

S PCTR Spec ia I program counter used in processi ng data statements on Iy.

TRAADR Transfer address contains the object program transfer address if the program unit
being compi led is a main program.

WRITECNT Contains a count of the number of records written since the last rewind on the

files Tl and T2.

XBINOUT EXU XBINOUT will result in a skip if any form of binary output (BO or GO) is
required; otherwise, it will result in a NOP.

XFILXREF EXU XFILXREF is set to skip if external references are to be added to the
XREFLIST in the CPAD subroutine or set to a NOP if external references are
not to be filed in the CPAD subroutine.

XLIST EXU XLIST will result in a skip if an object listing is required; otherwise, it
will result in a NOP.

XMAINP EXU XMAINP will result in a skip if the program unit being compiled is a
main program; otherwise, it will result in a NOP.

XMONITOR EXU XMONITOR will result in a skip if the compiler is in a MONITOR inter
faced formi otherwise, it wi II resu It in a NOP. The only use of NOP is for a
free standing version for debugging purposes.

135

T2 FILE (File Pass 2 Output / Pass 3 Input)

T2 is the fj Ie generated by pass 2 and input to pass 3. T2 fi Ie may overflow to the X 1 tape.
In pass 3 the GNIW subroutine is used to get the next word from the T2 file. The following
are the item forms:

Constant

3 6 15

n

o 2 3 8 9

The next n words are absolute and of the following format:

Q' Format

0 octal
1 BCD
3-7 not defined

Instruction

9 3 1 1 1 1 2 6

0 I I I I I 2J 8 9 11 1213 14 15 1617 18

002

I I I I I

I
I

operation

tag

indirect bit

set if alternate opera-'
tion table

set if in-I ine code

set if standard call ing
sequence

must be zero

pointer

o 23

136

Definition

9

003

8 9

Use Program Counter

9

004

J9 0

Use Special Location Counter

9

005

a l 9 0

o

Inc rement Location Counter

9

pointer

pointer
I

15

must be zero

15

must be zero

15
addend

I I

15

23

I
23

23

.1~o~~~0_0_6~----al~9----~--~--n--~--~--_2~3
Inc rease current location counter by n

137

(wi II not be present if
no I isti ng)

(use program counter
and restore to last)

(use spec ia I location

counter)

(points to symbol table)

Special Instructions

9 15

007

o 8 9

Q' is address of a variable length item of the following form:

a. 24-bit absolute instruction

b. 4-character operation mnemonic

23

c. packed character string terminated by a $ to be U5ed in the symbolic address field

Rea 1-Time PZE (indi rect if protected)

9 6 1 2 6

010 ~1 rJ 00 I 00

0 8 9 1415161718 23

I operation

tag

i nd i rec t bi t

optable

Addend

9 15

011 addend

0 8 9 23

Addend applies to subsequent instruction.

Line

9 15

012 n

o 8 9 23

n words follow in compressed format.

138

Each line consists of a set of control words followed by a character string. The following
desc ri bes the compressed format:

1 or more
contro I words

o or more
words of
character string

End T2

Special BRM

7 7 7

I I I
16 17 23

Bit 0 = 1 last control word

Bit 1 = 0 n 1 blanks; n
2

characters; n3 blanks

= 1 n 1 characters; n
2

blanks; n3 characters

{
11....--0 ~L--+--: +--+--: --+-1 ---+,6-----J

5" 6 Ie 1 12 I} 18 23

Note: Two or fewer contiguous blanks are normally best
left in the character string from an efficiency
standpoi nt.

9 15

013

o

end of T2

9 15

014

o

Q' is add ress of a 3-word item of format

23

23

I
} 8-character name

~~~~~~~~~~~~~~~~~~~~~~~~~} zero initially; used 
'------__________ ~ ________ ..... by pass 3 for chains 

139 



Special SMA 

9 15 

015 I 0' 

0 8 9 23 

0' is same as above 

Shift Instruction 

9 15 

016 

J9 
n 

0 23 

The next n words are shift instructions 

Step 

9 15 

017 

8 19 
Step Size 
I I 

0 23 

Repeated Load 

9 15 

020 J9 Repeat Count 

0 
I I 

23 

pointer to a constant 

0 I I 
23 

140 



SDS STANDARD BINARY LANGUAGE I 

The following description specifies the subset of the standard binary language for the SDS 9300 
Computers that may be generated by the compi ler. 

In the following description of the language, a fi Ie is the total binary output from the com
pilation of one program or subprogram. A file is both a physical and a logical entity since it 
can be subdivided physically into unit records and logically into information blocks. While 
a unit record (in the case of cards) may contain more than one record, a logical record may 
not overflow from one unit record to another. 

1. CONTROL WORD - first word in each type of record 

Type (T) ~ Word Count (C) 
Mode 

Folded Checksum (FC) 
~ (Binary) 

field 

0 101 contents 

o 2 3 4 8 9 11 12 23 b it number 

T Record Type 

Data record (text) 000 
001 
010 
011 

External references and definitions, block and program lengths 
Not used 

1 00, 1 1 0, 1 1 1 
101 

End record (program or subroutine end) 
Not used 
Data Statement record 

C = total number of words in record, including Control Word 

Note that the first word contains sufficient information for handl ing these records by rou
tines other than the loader (that is, tape or card duplicate routines). The format is also 
medium-independent, but preserves the mode indicator positions desirable for off-line 
card-handl ing. 

An exclusive OR checksum is used. If the symbol -- is used to denote exclusive OR, 
and W. denotes the i -th word in the record (1 :s i :s C), then 

I 

FC = (W 1 )0-11 -- (C)0-11 -- (C) 12-23 -- 07777 

where 

141 



2. DATA RECORD FORMAT (T = O) 

Control 
Word 

Load 
Address 
Word 

Data 
Word 

Load 
Relocation 

Common 
Relocation 

Word 1 

Record ~ 3 ~C ~30 
Mode 

Folded Checksum 
Type (T) ~ (Binary) 

000 0 101 

o 2 3 4 8 9 11 12 23 

Word 2 

~ Data Word Load Address 
Load Address {Relative or Absolute ~ Modifiers (M) Modifiers (A) 

0 

o 1 4 5 8 9 23 

The presence of bits in field M indicates the presence of words n +3, n +4, 
n+5, and n+6 (shown below): 

If bit 4 is a 1, word n +3 (load relocation) is present. 
If bit 3 is a 1, word n +4 (c ommon re location) is present. 

Word 3 

Instruction or Constant 

Words 3 through n + 2 contain instructions or constants (where 1 n 24) 

Word n +3 

l 
Load address relocation word (present iff (M) n 1=1) 

Word n +4 

Blank common relocation word (present iff (M) n 2=2) 

b 23 

Words n +3 through n +6 are modifier words. Each bit in each of these words corresponds 
to a data word (bits 0 through 23 correspond to word 3 through n + 2, respective Iy). A bit 
set to 1 indicates that the specified data word required modification by the loader. There 
are two types of modification {and hence two possible modifier words that are indicated 
in data records. Presence of a modifier word is indicated by the M (data word modifier) 
field in the load address word. 

142 



The load address is subject to modification as indicated by the A field of the load address 
word as follows ((A) = 0 means absol ute): 

(A) n 1 = 1, current load relocation bias is added to load address 

3. EXTERNAL REFERENCES AND DEFINITIONS, BLOCK AND PROGRAM LENGTHS 
(T = 1) (Includes labeled COMMON, blank COMMON and program lengths) 

Control 
Word 

Common 
Length 
or Program 
Length 
Item 

External 
Reference 
Item 

Word 1 

Record ~ 4 ~ C ~ 31 * Mode 
Folded Checksum 

Type (T) ~ (Binary) 

001 0 101 

o 2 3 4 8 9 11 12 

*From 1 to 10 items per record. 

1- to 8-Character Label 

C1 

I 
C2 

J12 

C3 J 18 

C4 

C5 C6 C7 C8 

0 5 6 

Length Word 

Item 
Type 

C Length of Program or Common Block (L) 

000000 

1 2 7 8 9 

C = 1 if (L) is length of a labeled common block. 

Label 

t 
C1 

C5 

Chain Word 

o 

Item 
Type 

01 000 

2 

J6 
C2 

C6 

Address Mod
ifi ers (A) * * 

4 5 8 9 

17 1 18 J 12 

C3 

C7 

Address of Last Reference 

**See data record, load address word, for interpretation. 

143 

C4 

C8 

23 

J 

J 

23 



External 
Definition 
Item 

External 
Reference 
with 
Addend 
Word * 

label 

t C1 

J6 
C2 

11112 

C3 

J18 

C4 J C5 C6 C7 C8 

Value Word 

Item ddress Mod- Absolute or Relocatable Value 
Type ifiers (A)** 

10 000 

0 2 4 5 8 9 23 

**See data record, load address word, for interpretation. 

External symbolic definitions include subroutine "identification" as a sub
set and require no special treatment of subroutines with multiple names. 

1- to 8-Character Label 

C1 

C5 

Chain Word 

Item 
Type 

11 

o 
000 

2 

Addend Word 

4 5 

Address 
Modifiers 

C2 

C6 

8 9 

089 

C3 C4 

J 18 11112 
C8 C7 

Address of Last Reference -

23 

Value of Addend 

*One of these items for each unique reference; e.g., each of the follow
ing references is represented by a separate item: 

A+5, B+5, B+6, C+2, C+5 

144 



4. END RECORD (T=3) 

Control 
Word 

Length of 
Program 

Name List 
Location 
Word* 

Transfer 
Word * 

Word 1 

Record ~ Type (T) ~ 
011 0 

o 234 

Word 2 

(5) Transfer Word 
Modifiers 

* (M)** 

2!:C!:5 

0000 

o 

Word 3 

4 5 

000000000 

o 

Word 4 

BRU 

000001 

023 

Mode 
Folded Checksum 

Binary 

101 

8 9 11 12 

1 + Maximum Value Of Location Counter 

8 9 

8 9 

8 9 

Name List Address 
(Relative) 

Transfer Address -

*If S = 1, word 3 is the Name List Location Word and word 4 is the 
Transfer Word. 

23 

23 

23 

23 

If S = 0, word 3 is the Transfer Address Word; the Name List Location 
Word is omitted. 

**See data record description for interpretation. 

5. DATA STATEMENT RECORD FORMAT (T=5) 

Control 
Word 

Word 1 

Record 
Type (T) 

101 

o 2 3 

Word Count (C) 
6 ~ C ~ 36 

Mode 
Folded Checksum 

(Binary) 

101 

8 9 11 12 23 

145 



Load 
Address 
Word 

Repeat 
(aunt 
Word 

(ammon 
Block 
Label 

Data 
Word 

Word 2 

Increment (I) * (Least Load Address (Relative) 
Significant 9 Bits) 

0 8 9 23 

Word 3 

(S) Increment (Most 
** Significant 6 Bits) 

Repeat Count (R)** 

0 3 8 9 23 

Word 3+5 

l C1 )6 C2 llL C3 )18 C4 
23 1 

Word 3+25 

l C5 )6 C6 
11112 

C7 )18 C8 

23 1 

Word 4+25 

10 
Data J 

Words 4 + 25 through ( conta i n constants. 

*The increment (I) is added to the relative load address to obtain the 
next relative load address for a repeat load. 

* *If 5 = 1, words 6 through ( (6 :s ( :s 36) are loaded relative to the 
labeled common block origin. 

If 5 = 0, words 4 through ( (4 :s ( :s 36) are loaded relative to the sub
program origin. 

***Data words 4+25 through ( are repeatedly loaded (R) times in incre
ments of (I). 

146 



* ;1 I -\t; SCIENTIFIC DATA SYSTEMS 

SOS PROGRAM LIBRARY 
PROGRAM DESCRIPTION 

IDENTIFICATION: 9300 FORTRAN IV Compiler Debugging System 

PURPOSE: To aid in debugging of the 9300 FORTRAN IV compiler. 

STORAGE: Approximately 06100 relocatable locations including: 

USE: 

IOASTE 

FREE 

HISL 

200-word Instruction or Address Search Table 
(1 word per entry) 

400-word insertion block used to store all snapshots 
and insertions. Each insertion requires 2 + n words 
from the insertion block, where n is the number of 
words logically inserted. Each snapshot requires 
3 +2n words from the insertion block where n is the 
number of memory blocks to dump. 

596-word block used to record the recent history of 
the compi ler control. 

Switch Settings: 

Switch 

2 

3 

5 

6 

History 

Interpretati on 

Set - Instruction/address search for trap 
Reset - Bypass i nstruc tion/address search for trap 

Set - Automatic history print on table cycle 
Reset - No automatic history print on table cycle 

Set - Term inate current request 
Reset -

Set - Build history 
Reset - Bypass bui Iding of history 

Set - Retrieve control immediately 
Reset -

Optionally, a history of the program flow is maintained. There is room 
in memory to maintain a history equivalent to one printed page. An H 
request will print the current history. The option also exists for auto
matically printing the history every time the history table cycles, thus, 

147 



USE: (cont) producing a complete history. Table 1 contains a sample history 
pri nt. 

History will not be maintained at levels below the level specified in 
THRLEV (threshold level) which may be altered while debugging. 

Trapping 

When in the trapping mode, the debugging system will type the 
following control I ine and transfer control to the typewriter: 

Tnnn 11111 mmmm 

where: 

T indicates Trap, 

nnn is the level number in decimal, 

11111 is the location in octal, 

mmmm is the mnemonic code for the instruction to be executed. 

At this point the user may type in any of the valid requests. 

The trapping mode may be entered in any of the following ways: 

1. Setting Sense Switch 6. 

2. Executing a Trap Enter Instruction. 

3. Returning to a higher level at which trapping had not been 
terminated. 

4. Exhausting a trap skip count. 

5. Executing an instruction which is in the Instruction/Address 
Table in the proper form. 

6. Executing a typewri ter snapshot. 

Once in the trapping mode, the following means of exiting are 
provided: 

1. Executing a Trap Exit Instruction. 

2. Typing a t~ap skip count. 

3. Typing a level trap exit. 

148 



USE: (cont) Input Request Rules 

All requests except the continue request begin with a 1 to 4-character 
reque st name. 

The complete request is read before any part of it is performed. 

Elements of an input list are separated by commas (, ) . 

Blanks, carriage returns, and tabs are ignored. 

All requests are terminated with a period (.). 

The delete character deletes the request. 

The following syntactic elements form parts of the requests: 

number 

operators 

expression 

block 

memory block 

if preceded by the digit 0, then octal; 
else dec i rna I 

+ add 
- subtract 
* indirect addressing of value so far; 

e.g., 010+8* +3 

where 

020 contains 040000107 
0107 contains 00000225 

denotes 0230. 

fV' flags addressed. 

# poi nter 

consists of a string of numbers, symbols, and 
operators 

memory block or list name or $ list name 
($ denotes dump list only to first reserve.) 

expression/expression or expression 

The memory block is defined as expression 
through (expression 1 + (expression 2 - 1)). 

Any of the functional descriptions used in the request descriptions 
which designate a location, number, or word may be an expression. 

149 



USE: (cont) Request Descriptions 

X number. 

X. 

G location. 

A location, word list. 

CRD. 

TYP. 

R location list. 

H. 

P. 

IB location, word list. 
IA location, word list. 

DT block ti st. 
DP block I i st. 

TN location list. 
TX location list. 

Continue; i. e., execute the instruction and 
trap next instruction. 

Skip the trapping of the next n instructions to 
be executed at th is level, then resume trap
ping. 

Discontine trapping at this level. 

Go to location specified (interpretively). 

Alter the contents of memory beginning at 
the location specified. 

Causes the card reader to be the input device. 

Causes the typewriter to be the input device. 

Remove the snapshot, trap enter or trap exi t 
instruction from th e locations specified 

Pri nt history page. 

Eject page on printer. 

Insert logically before/after the location 
specified the instructions in the word list. 

Dump on typewriter (DT) or on the printer 
(DP) the b locks specified. A block may be 
either a memory block or a compiler list. 

Insert logically before the iocations specified 
trap enter (TN) or trap exit (TX) instructions. 

SST location, life, block list. 
SSP location, life, block list. 

150 

Insert logically before the location specified 
a typewriter (SST) or a printer (SSP) snapshot. 
When the snapshot is executed, the blocks 
spec ified wi II be dumped on the typewriter/ 
printer. The snapshot wi II automatically be 
removed after being executed the number of 
times designated by life. 
Typewriter snapshots also enter the trapping 
mode whereas printer snapshots do not. An 
S wi II be typed on a typewriter snapshot 
control line instead of the T for trap control 
lines. 



USE: (cont) SEP memory block, value 1, value 2, mask. 
SUP memory block, value 1, value 2, mask. 
SET memory block, value 1, value 2, mask. 
SUT memory block, value 1, value 2, mask. 

ITA word list. 
ITO word list. 

151 

Search(S) the memory block specified for all 
words that are equa I (E) or unequa I (U) to 
value 1 through value 2 using the mask speci
fied. All successful searches are either 
pri nted (P) or typed (T). 

Instruction table add (ITA) or delete (ITO) 
the words specified. 

When the routine is not in the trapping mode 
and prior to the execution of each instruction, 
a search is made of the instruction table to 
determine whether the current instruction 
should cause the trapping mode to be entered. 
Each word in the instruction table contains 
three parts: 

type - bits 0, 

operation code - bits 2 - 8 

effective address - bits 9 - 23 

The trapping mode will be entered if the cur
rent instruction is in the instruction table in 
the proper form, i. e. , 

type = ° not val id 
1 effective address match 
2 operation code match 
3 effective address and operation 

code match 



USE: (cont) Symbol Table (Entry Format - 4 words per entry) 

.Symbol 

Memory 
Block 

List 

Symbois 

R 
THRLEV 
ALL 
EA 
NOCP 
NOCT 
INSTR . 

LOC 

SYMTC 

Word 1 

o 
Word 2 

0 

Word 3 

I 1° 1 0 3 

Word 4 

o 
Word 3 . 

o 

Dummy can be used as relocation register. 
History threshold level. 
Designates all lists to be dumped in a dump request. 
Effective Address register. 
Number of dump columns to print. 
Number of ~ump col umns to type. 
Instruction Register. 
Location Register 

contains the negative of the number of symbol table 
entri es minus 1. 

152 



USE: (cont) Error Messages 

Error messages are typed on the typewriter in the following form: 

*ERROR* 11111 eeee 

where: 

11111 is the octal location of the error call. 
eeee is an error type mnemonic. 

The following errors may occur: 

Mnemonic 

MACH 

Z CT 

IREQ 

R TL 

N DP 

ITOV 

NO I 

STX 1} 
STX 2 

NSYM 

F OV 

NOA 

Meaning and Action 

Either machine error or a list entry is in location 0; 
terminate dumping of current list. 

Zero count in a memory block dump request; terminate 
requ est. 

Illegal request name; request terminated. 

Request too long (exceeds 80 characters); request 
terminated. 

Attempt to remove a debugging POP which does not 
exist; continue same request. 

Instruction/Address Table overflow; continue same 
request. 

Attempt to delete from the Instruction/Address Table 
an entry which does not exist; continue same request. 

Syntax error; request terminated. 

Symbol not found in symbol table; request terminated. 

Free block overflow (insertion block); request 
term i nated. 

No address found in symbol table corresponding to 
assembled snapshot request; this part of request ignored. 

153 



Table 1 
Sample Three Columns of a 6-Column History Print 

Execution is columnwise. 

repeat count 

level number 

I 
location group 

1 29 00300 1 29 00400 1 29 00600-00603 
2 29 00400-00401 1 29 00500-00501 1 29 00600 
1 29 00400 1 29 00600-00603 1 29 00700-00702 
1 29 00500-00501 1 29 00600 2 29 00702 
1 29 00600-00603 1 29 00700-00702 1 29 00704' 
1 29 00600 2 29 00702 2 29 00100-00102 
1 29 00700-00702 1 29 00704 1 29 00100-00104 
2 29 00702 2 29 00100-00102 1 29 00200 
1 29 00704 1 29 00100-00104 1 29 00300 
2 29 00100-00102 1 29 00200 2 29 00400-00401 
1 29 00100-00104 1 29 00300 1 29 00400 
1 29 00200 2 29 00400-00401 1 29 00500-00501 
1 29 00300 1 29 00400 1 29 00600-00603 
2 29 00400-00401 1 29 00500-00501 1 29 00600 
1 29 00400 1 29 00600-00603 1 29 00700-00702 
1 29 00500-00501 1 29 00600 2 29 00702 
1 29 00600-00603 1 29 00700-00702 1 29 00704 
1 29 00600 2 29 00702 2 29 00100-00102 
1 29 00700-00702 1 29 00704 1 29 00100-00104 
2 29 00702 2 29 00100-00102 1 29 00200 
1 29 00704 1 29 00100-00104 1 29 00300 
2 29 00100-00102 1 29 00200 1'\ 1'\1"\ ""A"" ""A'" L L'1 UU4UU-UU4UI 

1 29 00100-00104 1 29 00300 1 29 00400 
1 29 00200 2 29 00400-00401 1 29 00500-00501 
1 29 00300 1 29 00400 1 29 00600-00603 
2 29 00400-00401 1 29 00500-00501 1 29 00600 
1 29 00400 1 29 00600-00603 1 29 00700-00702 
1 29 00500-00501 1 29 00600 2 29 00702 
1 29 00600-00603 1 29 00700-00702 1 29 00704 
1 29 00600 2 29 00702 2 29 00100-00102 
1 29 00700-00702 1 29 00704 1 29 00100-00104 
2 29 00702 2 29 00100-00102 1 29 00200 
1 29 00704 1 29 00100-00104 1 29 00300 
2 29 00100-00102 1 29 00200 2 29 00400-00401 
1 29 00100-00104 . 1 29 00300 1 29 00400 
1 29 00200 2 29 00400-00401 1 29 00500-00501 
1 29 00300 1 29 00400 1 29 00600-00603 
2 29 00400-00401 1 29 00500-00501 1 29 00600 

154 



Table 1 
Sample Three Columns of a 6-Column History Print (cont. ) 

1 29 00400 1 29 00600-00603 1 29 00700-00702 
1 29 00500-00501 1 29 00600 2 29 00702 
1 29 00600-00603 1 29 00700-00702 1 29 00704 
1 29 00600 2 29 00702 2 29 00100-00102 
1 29 00700-00702 1 29 00704 1 29 00100-00104 
2 29 00702 2 29 00100-00102 1 29 00200 
1 29 00704 1 29 00100-00104 1 29 00300 
2 29 00100-00102 1 29 00200 2 29 00400-00401 
1 29 00100-00104 1 29 00300 1 29 00400 
1 29 00200 2 29 00400-00401 1 29 00500-00501 
1 29 00300 1 29 00400 1 29 00600-00603 
2 29 00400-00401 1 29 00500-00501 1 29 00600 

155 



Table 2 
Compi ler Interfaces and Intra Global Symbols 

Interfgces 

Compiler interpreter calls the debugging system as follows: 

BRM F4DEB 

return 

Initialization of the Debugging System (namely erasing history, setting input device to 
typewri ter) may be accompl ished as follows: 

BRM INIDEBUG 

return 

Regi sters B, Xl, X2, and X3 are saved upon entry and restored prior to return. 

A G (Go to) request wi II change the contents of X3 (location counter) and return via: 

BRU INTERP 

instead of performing the normal return. In this case registers B, Xl, and X2 are not 
restored. 

X3 bits 0-8 

bits 9-23 location counter 

X2 bits 9-23 operation code (0-0177) 

Xl bits 9-23 effective address 

The debug operations are 

0174 TN (Trap Enter) 

0175 TX (Trap Exit) 

0176 SSP (Snap Shot Print) 

0177 SST (Snap Shot Type) 

The following global locations must be defined in the compiler: 

2LEVEL 

BASE 

TOP 

. Level number 

Table of I ist bases 

Table of I ist tops 

156 



Table 2 
Compiler Interfaces and Intra Global Symbols (cont) 

BOTTOM 

START 

INTERP 

Intra Globa I Symbols 

SPACE 
PAGE 
PLINE 
ICPI 
DCPI 
STC 
ICPSUB 
SCPSUB 
OOSUB 
OASUB 
ODSUB 
ILINE 
LINE 
PRTY 
SYMTAB 
SYMTB 
SYMTC 
ERRORSUB 
BL 
NL 
NDCT 
NDCP 
DUMPM 
DUMSTE 
HISTOR 
THRLEV 
HP 
2LOC 
RELREG 
REGX1 
REGX2 
REGX3 
NEXTRQ 
XAHP 
XNTERM 

Table of list bottoms 

Tab I e of I ist starts 

Entranc e to i nterprete r 

157 



READER COMMENT FORM XEROX 
We would appreciate your comments and suggestions for improving this publication. 

Publ ication No. rev. Letter I Tit Ie Icurrent [Jate 

How did you use this publication? Is the material presented effectively? 

0 Learning 0 Installing 0 Operating 0 Fully covered 0 Well illustrated 

0 Reference 0 Maintaining 0 Sales 0 Clear 0 Well organized 

What is your overall rating of this publication? What is your occupation? 

0 Very good 0 Fair o Very poor 

0 Good 0 Poor 

Your other comments may be entered here. Please be specific and give page, column, and 
line number references where applicable. To report errors, please use the XDS Software 
Improvement or Difficulty Report (1188) instead of this form. 

Thank you for your interest. Your name and return address. 

Fold and fasten as shown on back. 
No postage needed if rna iled in U .S.ft. .. 

2190(5.171) XerOl( 



STAPLE 

FOLD 

FOLD 

BUSINESS REPLY MAIL 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY 

XEROX 
701 South Aviation Boulevard 
EI Segundo, California 90245 

ATTN: PROGRAMMING PUBLICATIONS 

STAPLE 

FIRST CLASS 
PERMIT NO. 229 

El SEGUNDO. CALIF. 

I 
l 
I 

I 

I 
-----.----1 

LU 
Z 
.....J 

t:) 
Z 
o 
.....J 
<{ 

~ 
~ 
u 


	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	replyA
	replyB

