
Technical Information

Xerox 900/9300 Meta-Symbol

Technical Manual

900827C July 1971

Xerox Data Systems

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

Xerox 900/9300 Meta-Symbol

Technical Manual

90 08 27C July 1971

Price: $18.50

"1~!(,1" I~!('h, 1'11./,1971, X(!rox Data Systems, Inc

XEROX

Printed in U,S.A.

REVISION

This publication is a revision of the Xerox META-SYMBOL/Technical Manual, Publication

Number 90 08 27B (dated October, 1967). Sections 6 and 7 have been added, as well as

Appendixes Band C. All changes in the text from that of the previous manual are indicated

by a vertical line in the margin of the page.

NOTICE

The specifications of the software system described in this publication are subject to change

without notice. The availability or performance of some features may depend on a specific

configuration of equipment such as additional tape units or larger memory. Customers should

consult their XDS sales representative for details.

II

CONTENTS

Section

INTRODUCTION v

META-SYMBOL ASSEMBLY SYSTEM OVERALL DATA FLOW
(900 Series Only) •.••••••••••••••••••.•••••••••••.•.•. 1-1

META-SYMBOL ASSEMBLY SYSTEM OVERALL DATA FLOW
(9300 Only) •.•••••.••••....•••....••...•..•.....••.• 1-1

2 DETAILED DESCRIPTION OF THE META-SYMBOL ASSEMBLY
SYSTEM (900 Series Only) ••.•••••.•.•••••.•.........•... 2-1

DETAILED DESCRIPTION OF THE META-SYMBOL ASSEMBLY
SYSTEM (9300 On Iy) •....••..•......••.....••...•..•... 2-1

3 INDIVIDUAL DESCRIPTION AND FLOWCHARTS

a. Basic Tape Loader (900 Series Only) •••••••.••...•••••.••• 3-1

MSCONTRL (900 Series Only) •..................•..••. 3-3
MSCONTRL (9300 Only) •••••.•.•.•...•••.•.......••. 3-3

b. ENCODER (900 Series Only) ••••••••••••••••.•.••••••.. 3-39
ENCODER (9300 Only) ••••••••..••.•.••••.••.•.••.... 3-39

S4B ••.••..••••••••••••.•.•.•.•.•..•••••••.•..• 3-94

MO N 1 (900 Series On Iy) ••••.••..••••••.•...•.....••. 3-114

c. PREA (900 Series Only) ••••••••.•.••••••.•.••..•...... 3-117
PREA (9300 Only) •••••••••••.•.•.•...•.•••••.••..•. 3-117

S RN K • • • • • • • • • • • • • • • • • • . • • . • . • • • • • • . • • • • . . . • . . • 3 -155

d. PAS1 (900 Series Only) •••••••••.••••.•.•.••••..••..•• 3-169
PAS 1 (9300 0 n I y) • • • • • • • • • . • . . • • • • • • • • . • • . • • • • . . . • • 3 - 169

Programmed Operators (900 Series Only) •••••.••..••.•..•..• 3-240

e. PAS2 (900 Series Only) •••••.•••.• ' ...•..•........•.••. 3-299
PAS2 (9300 On Iy) ..•••••......•.•.••........•...•.. 3-299

FNSH (900 Series Only) ••••••.••.••...••.••..•....... 3-341
FNSH (9300 Only)••.•••.......•••.•.. 3-341

III

Section

4

5

6

ITEM AND TABLE FORMATS USED IN META-SYMBOL (900 Series Only .. 4-1

ITEM AND TABLE FORMATS USED IN META-SYMBOL (9300 Only) . 4-1

OPERATIONAL INFORMA TION (900 Series Only) 5-1

META-SYMBOL CONCORDANCE OPTION (900 and 9300 Series) .. 6-1

7 ITEM AND TABLE FORMATS USED BY THE CONCORDANCE PROGRAM
(900 and 9300 Series) • . • • • • • . • 7-1

APPENDIX A. LISTING OF SUBROUTINES. . . • . • A-1

APPENDIX B. HOW TO MAKE A 900 META-SYMBOL SYSTEM. . B-1

Figure B-1. META-SYMBOL Overlay Structures• B-16

APPENDIX C. 900 SERIES META-SYMBOL ENCODED FORMAT C-1

iv

INTRODUCTION

The META-SYMBOL Technical Manual will be an aid in maintaining the 900 Series and 9300

programming systems as well as being a reference manual suitable for an operations guide in

using the system. No definition or explanation of the source language is provided; it is assumed

that the reader is familiar with the language as well as the XDS computers and their peripheral

equipment. The language is described in Xerox Data Systems publication XDS 90 05 06B,

SYMBOL and META-SYMBOL Reference Manual

This manual contains four major parts. The first part (Section 1) gives an overall picture of

the assembly system and the monitor META-SYMBOL relationships. The second part (Sections 2

and 3) is a detailed explanation of the assembly system, explaining the various programs

and routines used. The third part (Section 4) describes item and table formats. The combin

ation of parts 2 and 3 is a basic maintenance manual for the assembly system. The fourth part

(Sections 5 and 6) is a self-standing operations reference manual for machine room use. The

Appendixes - whose titles are self-explanatory - give further detai led information.

The 900 Series and 9300 MET A-SYMBOL have some differences. The most significant

difference is caused by the fundamental differences in the monitors META-SYMBOL operates

under. The 900 Series monitor (MONARCH) is not resident, while the 9300 monitor

(MONITOR) is resident. The 900 Series META-SYMBOL does its own I/O which is initial ized

using the UAT (unit assignment table) set up by MONARCH. The 9300 MET A-SYMBOL does

its I/O through MONITOR.

When information is applicable to only the 900 Series or to only the 9300, the fact is noted at

the top of the page.

In the sections that follow, references to lithe system tape" should be construed as references to

lithe system file" when META-SYMBOL is operating within the RAD MONARCH environment.

In the RAD MONARCH system, S is always RAD-resident; however, X 1 and X2 may be

optionally assigned to the RAD.

v

900 Series Only

SECTION 1

META-SYMBOL ASSEMBLY SYSTEM OVERALL DATA FLOW

Figure 1 illustrates the overall data and program flow for the MET A-SYMBOL assembly system.

Each of the program boxes represents a separate core overlay of the system. Each overlay in

turn represents a group of records (one or more label ed segments) on the MONARCH system tope.

The first segment of the assembly system (META) is loaded by MONARCH. All other segments

(except MONARCH) are loaded by an absolute tope load program loaded with the MET A and

left in low memory. MONARCH is reloaded at the end of the assembly process by means of the

MONARCH bootstrap routine, left residing in high memory.

Although the diagram shows a card-oriented system, the META-SYMBOL assembly system has a

complete range of self-initializing I/O capability, dependent on the setting of UAT and MSFNC

by MONARCH, which allows the user to relate I/O functions and devices at assembly time.

The processing of control records within the assembly system is performed by MONARCH. From

the ASSIGN and METASYM control cards MONARCH sets up two communication regions for the

assembler; the first of these is the Unit Assignment Table (UAT) which indicates the unit and

channel assignments for the various I/O devices and options which the assembly system may' use ..

The second communication region is a cell, MSFNC, in which MONARCH indicates the I/O

functions to be performed for a given assembly as determined from the MET AS YM control card.

After setting MSFNC, MONARCH loads the first overlay of the system: META.

The ENCODER portion of META reads and processes the input program which may be symbol ie,

or encoded, or encoded with symbol ic corrections. The ENCODER outputs an intermediate pro

gram tape (X 1) and, if requested, a new encoded fi Ie. I f no addi t ional processi ng is requested,

the ENCODER returns control to MONARCH. If additional processing is required, the

ENCODER calls a basic tape loader routine to load the PREA (preassembler) routine.

When loaded, PREA, has at its disposal in core the dictionary for the encoded program and the

balanced tree search table for searching the dictionary as constructed by the ENCODER. PREA

processes the selected standard system procedures from the system tape, defining only those pro

cedures which are used within the user's program. The preassembler also defines the directives

for the assembler and converts the dictionary from the ENCODER format to the format used by the

900
1- 1

=::::::::1:1". PROGRAM LINKAGE

--....... DATA FLOW

Symbolic '\
Records I

Encoded
Program

900 Series Only

MONARCH
set UAT and
MSFNC

......

Control \
Cards I

FNSH (FINISH)

Output literals, refer
ences and END record
on listing and binary
outputs.

-

MET A (ENCODER) -t=============== .. -
Bi nary ~-____ ..J

1 -Program
Encode program.
Leave dictionary
in core.

t
New ,
Encoded
Program

~ ~

(

PREA (PREASM)

-
Std.

PROCs
(S)

T
Define directives, define
standard Rrocedures, convert
dictionary to assembler for
mat. Directives, PROC def
initions and dictionary left
in core.

SRNK (SHRINK)

- "-----........
.....

7 Encoded)
~ Text

(Xl~J

Assembly
Listing

-I""""'"

PAS2

'00 2nd assembl y pass.
..... -----~~. Generate listing and

binary outputs. Leave
tables and routines in
core. Set QPESW.

..... PAS 1 (ASSEMBLR) ..

Purge unused bytes from ... -=====::::a:II===-____ ... ;.~

Do 1st pass of assembly proc
ess. Recqnstruct symbol ic pro
gram. Leave symbol table in
core. dictionary.

Figure 1-1. MONARCH-MET A-SYMBOL Data Flow

900
1-2

Symbolic ~l
Program

900 Series Only

assembler. (See Section 4, Item Formats.) The preassembleI' then calls the tape loader to load

SRNK (SHRINK).

SHRINK purges the dictionary and byte table constructed by the preassembler to remove unused

bytes. The sole purpose of SHRINK is to minimize the table size and thus maximize available

work i ng storage.

SHRINK calls the tape loader to load PASl (assembler pass 1). The input to the assembler

is the encoded text tape (X 1) generated by the E NCO DER. Duri ng pass 1, the assemb I er defi nes

the labels used within the program and determines program size in order to set the starting location

for literals. If a symbolic regeneration is requested, the symbolic program is output during pass 1

of the assembler. At the conclusion of pass 1, the external symbol (entry points) definitions are

output in type 1 records, and the external programmed operator definitions are output on type 2

records, provided binary output has been requested. If either listing or binary output has been

requested, assembler pass 1 calls the loader to load PAS2 (assembler pass 2). If no additional out

put has been requested control returns to MO NARCH.

PAS2 is the data-generating pass of the assembly system. Using Xl as input, PAS2 generates the

binary output records and assembly listing. If errors are detect,ed, cell QPESW is set for MONARCH

indicating that errors 'have been encountered. This cell is important in "assemble-and-goll oper

ation as a measure of the quality of the binary output. During this second assembly pass, literals

are defined and references to externally defined symbols are flagged and linked. At the con

clusion of the second assembly pass, PAS2 calls the tape loader to load FNSH (FINISH).

FINISH punches and lists the literals, punches and lists the external symbol references, and

punches the transfer or end card for the binary program file. Upon completion, MONARCH is

reloaded by calling the bootstrap routine which has been retained in high memory.

SUMMARY OF MONARCH-META-SYMBOL COMMUNICATIONS

MONARCH processes the ASSIGN control card and passes on to the assembler the unit and

channel assignment information in the UAT.

MONARCH processes the METASYM control card and passes on to the assembler the functions to

be performed in the form of entries in MSFNC.

900
1-3

900 Series Only

MONARCH loads the first overlay of the assembler.

MONARCH determines maximum machine size for the run and locates the bootstrap routine

(QBOOT) and UAT accordingly. The assembler uses the contents of cell 1, which MONARCH

sets to BRU QBOOT, to determine the location of QBOOT and hence the availahle storage.

MONARCH does all tape positioning in the system. The on Iy 'Positioning performed by the assem

bler is on scratch tapes Xl and X2 (in the event it is necessary to copy symbolic corrections) and

on the system tape when specific routines are being loaded. Thus, all inputs and/or outputs may

be stacked.

The assembler sets QPESW, program error switch, for MONARCH as a quality indicator for

lIassemble-and-goll jobs.

The assembler returns control to MONARCH at the conclusion of all runs by branching to the

MONARCH bootstrap routine QBOOT.

Following are the interpretations given the UAT settings by the assembler.

MONARCH Symbol

QSYSI

QMSG

QSYS

QSYMI

QSYST

QBINO

QSYMO

QBINI

QSYSP

QSYSW

QPESW

Assemble Interpretation

Scratch tape for corrections (X2)

Not used

System tape (S)

Symbolic input device (SI)

Intermediate output tape (X 1)

Binary output device (SO)

listing output device (LO)

Encoded input device (EI)

Encoded output device (EO)

Symbolic output device (SO)

Error switch

Following is the format of MSFNC.

lei p I 51

Bits o 1 2 3

I TO I BO I LO I El I EO I SO

5 6 8 9 11 12 14 15 17 18 20 21 23

900
1-4

900 Series Only

The P field indicates by the binary numbers 00, 01, 10, and 11 which of four procedure libraries

are to be used. The other fields indicate the presence or absence of a function by a 1 or 0:

C - compatabil ity mode

51 - symbol ic input

TO - intermediate output

BO - binary output

GENERAL RESTRICTIONS AND LIMITATIONS

lO - I isting output

EI - encoded input

EO - encoded output

SO - symbol ic output

The META-SYMBOL assembly system requires a minimum configuration of at least 8192 words of

core memory and two magnetic tape units or one MAGPAK pair.

If both encoded and symbol ic inputs are present for an assembly and if both these inputs are on

the same peripheral unit, an additional tape unit is needed. One MAGPAK pair of topes meets

this requirement.

The system does not have the capabi I ity to process FORTRAN compatibi I ity directives nor to

process local NAME directives.

900
1-5

SECTION 1

META-SYMBOL ASSEMBLY SYSTEM OVERALL DATA FLOW

Figure 1 illustrates the overall data and program flow for the META-SYMBOL assembly system.

Each of the program boxes, with the exception of MONITOR, represents a separate core overlay.

Each overlay is a labeled absolute binary record on the MONITOR system tape.

MONITOR reads control cards. Assign cards cause MONITOR to set up the I/O linkage. The

META card causes MONITOR to read the first overlay (META) into core and branch to it. The

functions requested on the META card are passed on to META-SYMBOL by a coded word in index

register 2. This word is saved in a cell called OPTION:

Bits

P - selec ts one of four standard procedure sets GO - GO output

E - encoded input = symbolic input BO - binary output

C - com pa ta b iii ty LO - I isting output

SO - symbol ic output EI - encoded input

EO - encoded output SI - symbol ic input

META has two sections: MSCONTRL and ENCODER. MSCONTRL is never overlayed. It con

tains the I/O file control routines and a tapeloading subprogram to read each of the succeeding

overlays into core.

The ENCODER portion of META reads and processes the input program which may be symbolic,

or encoded, or encoded with symbolic corrections. The ENCODER outputs an intermediate pro

gram tape (X 1) and, if requested, a new encoded file. If no additional processing is requested,

the ENCODER returns control to MONITOR. If additional processing is required, the

ENCODER calls a basic tape loader routine to load the PREA (preassembler) routine.

When loaded, PREA, has at its disposal in core the dic tionary for the encoded program and the

balanced tree search table for searching the dictionary as constructed by the ENCODER. PREA

9300
i - i

-======::iI_.~ PROGRAM LINKAGE

----a~ DATA FLOW

Symbolic"
Records I

Encoded
Program

9300 Only

MONITOR

.....

.... ..

Control \
Cards I

FNSH (FINISH)

Output litera I s, refer
encesand END record ~
on I isting and bi nary
outputs.

MET A (ENCODER) :~===========!I
Binary
Program c

Encode program.
Leave dictionary
in core.

New
Encoded
Program

PREA (PREASM)

Std.)
PROCs

(S)

Define directives, define
standard procedures, convert
dictionary to assembler for
mat. Directives, PROC def
initions and dictionary left
in core.

SRNK (SHRI NK)

..... _--_ -
....

7 Encoded)
, Text

(Xl~J

Assembly
Listing

-
PAS2

Do 2nd assemb I y pass.
'--------~~. Generate listing and

binary outputs. Leave
tables and routines in
core. Set QPESW.

.. PAS 1 (ASSEMBLR)

Purge unused bytes from ... -=-=============------.... ~
dictionary.

Do lst pass of assembly proc
ess. Reconstruct symbol ic pro
gram. Leave symbol table in
core.

Fig\.We 1-1. MONITOR-META-SYMBOl Data Flow

9300
1-2

Symbolic \
Program I

9300 Only

processes the selected standard system procedures from the system tape, d~fining only those pro

cedures which are used within the user's program. The preassembler also defines the directives

for the assembler and converts the dictionary from the ENCODER format to the format used by the

assembler. (See Section 4, Item Formats.) The preassembler then calls the tape loader to load

SRNK (SHRINK).

SHRI N K purges the dictionary and byte table constructed by the preassembler to remove unused

bytes. The sole purpose of SHRINK is to minimize the table size and thus maximize available

working storage.

SHRINK calls the tape loader to load PASl (assembler pass 1). The input to the assembler is the

encoded text tape (Xl) generated by the ENCODER. During pass 1, the assembler defines the

labels used within the program and determines program size in order to set the starting location

for literals. If a symbolic regeneration is requested, the symbolic program is output during pass

of the assembler. At the conclusion of pass 1, the external symbol (entry points) definitions are

output in type 1 records, and the external programmed operator definitions are output on type 2

records, provided binary output has been requested. If either I isting or binary output has been

requested, assembler pass 1 calls the loader to load PAS2 (assembler pass 2). If no additional

output has been requested control returns to MON ITOR.

PAS2 is the data-generating pass of the assembly system. Using Xl as input, PAS2 generates the

binary output records and assembly listing. If errors are detected, cell QPESW is set to control

the type of return to MONITOR. This cell is important in "assemble-and-go" operation as a

measure of the qual ity of the binary output. During this second assembly pass, I iterals are de

fined and references to externally defined symbols are flagged and linked. At the conclusion of

the second assembly pass, PAS2 calls the tape loader to load FNSH (FINISH).

FINISH punches and I ists the I iterals, punches and I ists the external symbol references, and

punches the transfer or end card for the binary program file. Upon completion MONITOR is

reloaded by call ing the bootstrap routine which has been retained in high memory.

9300

1-3

900 Series Only

SECTION 2

DETAILED DESCRIPTION OF THE META-SYMBOL ASSEMBLY SYSTEM

PURPOSES OF THE ASSEMBLY SYSTEM

The primary purpose of the assembly system is to provide users of SDS computers a processor capable

of translating symbolic lines of code (written in an advanced assembly language) to machine lan

guage and to provide the user a listing of the machine language generated as well as a loadable

program tape or deck.

Secondary purposes of the assemb Iy system prov ide:

1. The user the capability to obtain a condensed representation of the symbolic source pro

gram (the encoded program).

2. The capabi lities to modify symbolically an encoded program and to recover from the

encoded program the symbo Ii c program it represents.

3. The capability to assemble a program or group of programs and to load and execute the

resulting machine language output in essentially a single operation with a minimum of

human intervention.

4. The user the capabi I ity to assemble programs written in the SYMBOL, SYMBOL 4, or

SYMBOL 8 programming languages.

5. A system capable of running on a wide range of machine configurations. This includes

the ability to allow the user to assign peripheral devices to the various assembly func

tions in a convenient manner at assembly time and with a minimum of restrictions.

6. A processor capable of generating machine code for machines other than that on which

META-SYMBOL is operating.

GENERAL CONSIDERATIONS ABOUT META-SYMBOL

Those routines which process the encoded information on the intermediate output tape Xl and con

vert it to a machine language program are grouped into three separate machine overlays. These

overlays, PAS1 (ASSEMBLR), PAS2, and FNSH (FINISH) ore the assembler, META-SYMBOL.

900

2-1

900 Series Only

META-SYMBOL is a 2-pass assembly system with the separate passes PAS 1 and PAS2.

FINISH is the end logic o~ PAS2 and is maintained as a separate overlay for space economy.

(See Figure 2.)

t

o

200

01340

DTAB

PACKL

BREAKl
cellst

LOWER

LlTAB

or
UPPER

QBOOT

,
J

l

Tape loader and POP transfer points

MSCONTRL

META-SYMBOL routines and programmed operator
routines

-------1 DICTIONARY (variable in length)

Standard procedure sample

User's procedure sample (variable in length)

, literals (variable in length)
- - - - - - - - - - -
t

I
External symbol references (variable in length)

External symbol definitions and other symbols
defined at even procedure levels

t Symbols defined at odd procedure levels including
normal symbols

Standard NAME and directive items (variable in length)

Byte table (variable in length)

QBOOT and UA T

Figure 2-1. META-SYMBOL Core Layout

'Value of BREAK 1 depends on machine size.

900
2-2

se't by
PREA

set by
PAS 1

set by
PAS2

symbols
defined by
PAS 1
or PAS2

set by
PREA

900 Series Only

Many of the functions and routines of PASl and PAS2 are identical; therefore, where a routine

is present in both programs, within this document it is described with PAS 1 and cross-referenced

within the PAS2 descriptions.

META-SYMBOL Symbol Table Processing

META-SYMBOL enters symbol definitions into the symbol table from both ends; the determination

of which end of the table to use is a function of the current procedure level and the presence or

absence of the external symbol flag (5) associated with the symbol.

Each time a procedure reference is encountered, the direction of the symbol table is reversed

(norma II y, symbols are entered from high to low core), and symbols appearing within the proce

dure are thereby defined at the alternate end of the symbol table. When the procedure reference

is completed, the table direction is again reversed. When a leading $ (dollar sign) is found on a

label, a flag is set so that the label wi II be defined at the opposite side of the symbol table.

All symbols defined within a procedure at its normal level are purged when the procedure is com

pleted (this includes the list of parameters for the procedure) by resetting the appropriate pointer

for the next avai lable cell in the symbol table (UPPER or LOWER) and rei inking the pointers in

the byte table for symbols purged. Labels preceded by $ marks are all external (saved) for one

procedure level outside the level at which they were defined.

Input/Output Routines Used

All I/O routines used by META-SYMBOL are initialized as to unit and channel assignments. All

I/O routines used, except the listing routines, are standard routines in MSCONTRL.

Processing of Procedures

Inherent in the concept of procedure processing is the procedure storage table. This table is suf

ficient to allow for six levels of procedures or functions and each level has 278 cells of informa

tion. (See Item Formats, Section 4.)

Normal level for processing code is level 1 [indicated by (PLY == PLVT == PLVl =~ 27
8

)]. For each

current procedure reference level, the level indicators PLY and PLVT are incremented by the

length of the table. The entries within this table reflect information to be retained during the

900
2-3

900 Series Onl y

processing of the procedure or functions. For example, the location of the next character to be

obtained when the procedure is completed, the tentative definition of any label on the procedure

reference I ine, and the val ue of the location counter when the procedure was referenced are a II

retained in this table. When discussing the value of parameters saved in the procedure storage

table, that value associated with the current level is implied unless specified otherwise.

References to procedures are processed almost as separate programs. A double pass is made over

the procedure sample (unless the procedure is defined as a single-pass procedure) during the sec

ond assembly pass so that forward references to local symbols within the procedure may be made.

In general, any line of code permitted outside the procedure is allowed within the procedure.

META-SYMBOL COMPONENT PROGRAMS

The component programs of the META-SYMBOL assembly system are grouped as five segments:

1. Loader and file control routine

2. ENCODER, S4B, MONl

3. PREA (PREASM), SRNK (SHRINK)

4. PAS 1 (ASSEMBLR) (Assembler Pass 1)

5. PAS2 (Assembler Pass 2), FNSH (FINISH)

Each of the segments 2 through 5 are independent entities and may not reference each other; how

ever, all segments may reference the control routine.

Basic Tape Loader

This program loads absolute programs from MONARCH system tape.

MSCONTRL

This program contains the input/output and function control cells initialized by MONlo

MSCONTRL is resident in lower memory during the entire assembly process. MSCONTRL con

tains those I/O routines used by two or more overlays of the assembly system.

ENCODER

This program reads symbolic input, encoded input, or symbolic corrections and encoded input.

It also produces the intermediate output tape to be used as input to the assembler and produces

900
2-4

900 Series Only

new encoded program if requested. It leaves the dictionary and balanced tree search table in

core for the preassembler (PREA).

S4B

This program is called by the ENCODER to translate symbolic input from SYMBOL 40r SYMBOL 8

format to META-SYMBOL format.

MONl

This program is called by the ENCODER to initial ize the I/O control cells for the system. MON 1

also copies corrections to scratch tape X2 when the symbol ic corrections and encoded inputs are

on the same input device.

PREA (PRESM)

The preassembler program defines directives, processes the selected standard procedure file, and

reformats the dictionary in preparation to starting the assembly process. The standard procedures

are located on the system tape between PREA and SRNK.

SRNK (SHRINK)

This program purges the dictionary and byte table left by PREA to remove bytes from the standard

procedure deck which are not referred to in the user's program or by that portion of the standard

procedures needed to process the user's program.

PAS 1 (ASSEMBLR)

This is the first pass of the assembler. PAS 1 reads the intermediate input tape constructed by the

ENCODER. This pass also defines the symbols used within the user's program, determines the

origin of the literals, establ ishes the origin of the I iteral and reference tables, processes user

PROC and FUNC sample definitions, and defines procedure NAMEs and programmed operators.

At the conclusion of PAS 1 the external symbol and programmed operator definitions are output on

the binary output device. If symbol ic output is requested, it is generated by PAS 1 .

900
2-5

900 Series Onl y

POPs

These are the programmed operators for either the 920/930 computers or 910/925 computers de

pending on installation. The POPs are loaded separately with the ENCODER, PREASM, and

ASSEMBlR.

PAS2

This is the second pass of the assembler. PAS2 generates the binary and listing outputs. During

the second pass, symbols are redefined; however, NAME definitions are not redefined. There

fore,no local NAMEs are permitted within nested sample. Literals are generated and references

to externally defined symbols are flagged and linked.

FNSH (FINISH)

This program outputs the literals and external references on the listing and binary outputs. It also

prints the END I ine and outputs the transfer or end record.

FLOWCHART CONVENTIONS

Included in MSCONTRl and ENCODER are I/O device subroutines which are not called by name:

MSCONTRl ENCODER

EFC
EFPT
EOF
PCB
Dru
, '--, I

PPTB
RMTB
RMTBU
WMTB

CRDB
CRDH
HOlP
RDPT
DnTO
I\rlD

For example, the following is a call to a subroutine:

HOlP ~
Read symbolic input
record

Device subroutine in
MSCONTRl specified
by HOlP

Thus, in location HOlP is a pointer specifying which device subroutinp is to bp coiled.

900
2-6

900 Series Only

A transfer to MONITR means a branch to the MONARCH monitor, whieh is described in a sepa-

rate document.

Branch tables are used throughout MET A-S YMBOL:

Branch Table

T1

Directive Number

DIRT (directive
routines)

TYP

Accessed from

ENCODER

PREA

PAS 1 and
PAS2

PAS 1 and
PAS2

SUO
2-7

Subroutines Accessed

AL
BLANK
DOT
EORC
NU
QUOTE
SPEC

F UN (function)
NAM (name)
PRO (procedure)
SEND (end)

AORG
BCD
DED
DO
END
EQU
FORM
FUNC
NAME
ORG
PAGE
POPD
PROC
RES
TEXTR

DA TAT (end cards)
DEF (types 1 and 2)
ENDM (END card with

transfer address)
ENDN (END card without

transfer add ress)
POPRD (POP reference or

DEF)

Page

9300 Only

SECTION 2

DETAILED DESCRIPTION OF THE META-SYMBOL ASSEMBLY SYSTEM

PURPOSES OF THE ASSEMBLY SYSTEM

The primary purpose of the assembly system is to provide users of S OS computers a processor

capable of translating symbol ic I ines of code (written in an advanced assembly language) to

machine language and to provide the user a listing of the machine language generated as well

as a loadable program tape or deck.

Secondary purposes of the assembly system provide:

1. The user the capability to obtain a condensed representation of the symbolic source

program (the encoded program).

2. The capabi I ities to modify symbol ically an encoded program and to recover from the

encoded program the symbolic program it represents.

3. The capabi I ity to assemble a program or group of programs and to load and execute the

resulting machine language output in essentially a single operation with a minimum of

human intervention.

40 The user the capability to assembly programs written in the SYMBOL, SYMBOL 4, or

SYMBOL 8 programming languages.

5. A system capable of running on a wide range of machine configurations. This includes

the ability to allow the user to assign peripheral devices to the various assembly func

tions in a convenient manner at assembly time and with a minimum of restrictions.

6. A processor capable of generating machine code for machines other than that on which

META-SYMBOL is operating.

GENERAL CONSIDERATIONS ABOUT META-SYMBOL

Those routines which process the encoded information on the intermediate output tape X 1 and

convert it to a mach ine language program are grouped into three separate machine overlays. These

overlays, PAS 1 (ASSEMBLR), PAS2, and FNSH (FINISH) are the assembler, META-SYMBOL.

9300
2-1

9300 Only

META-SYMBOL is a 2-pass assembly system with the separate passes PAS l-and PAS2. FINISH is

the end logic of PAS2 and is maintained as a separate overlay for space economy. (See Figure 2.)

low core

DTAB

PACKL

BREAK 1
ce lis t

LOWER

LITAB

or
UPPER

~

MSCONTRL

META-SYMBOL routines and programmed operator
routines

DICTIONARY (variable in length)

l -S~a;da~d ~r:ce~u~e ~a;pl:

~
T
T

1

1

User's procedure sample (variable in length)

Literals (variable in length)

External symbol references (variable in length)

External symbol definitions and other symbols
defined at even procedure levels

Symbols defined at odd procedure levels including
normai symbols

Standard NAME and directive items (variable in length)

Byte table (variable in length)

Figure 2-1. META-SYMBOL Core Layout

tValue of BREAK 1 depends on machine size.

9300
2-2

set by
PREA

set by
PAS 1

set by
PAS2

symbols
defined by
PASl
or PAS2

set by
PREA

9300 Only

Many of the functions and routines of PAS 1 and PAS2 are identical; therefore, where a routine

is present in both programs, within this document it is described with PAS 1 and cross-referenced

within the PAS2 descriptions.

META-SYMBOL Symbol Table Processing

META-SYMBOL enters symbol definitions into the symbol table from both ends; the determination

of which end of the table to use is a function of the current procedure level and the presence or

absence of the external symbol flag ($) associated with the symbol.

Each time a procedure reference is encountered, the direction of the symbol table is reversed

(normally, symbols are entered from high to low core), and symbols appearing within the proce

dure are thereby defined at the alternate end of the symbol table. When the procedure reference

is completed, the table direction is again reversed. When a leading $ (dollar sign) is found on a

label, a flag is set so that the label will be defined at the opposite side of the symbol table.

All symbols defined within a procedure at its normal level are purged when the procedure is com

pleted (this includes the list of parameters for the procedure) by resetting the appropriate pointer

for the next available cell in the symbol table (UPPER or LOWER) and relinking the pointers in

the byte table for symbols purged. Labels preceded by $ marks are all external (saved) for one

procedure level outside the level at which they were defined.

Processing of Procedures

Inherent in the concept of procedure processing is the procedure storage table. Th is table is suf

ficient to allow for six levels of procedures or functions and each level has 278 cells of informa

tion.. (See Item Formats, Section 4.)

Normal level for processing code is level 1 [indicated by (PLV :::: PLVT :::: PLVl :::: 27
8
)]. For each

current procedure reference leve I, the leve I indicators PLY and PLVT are incremented by the

length of the table. The entries within this table reflect information to be retained during the

processing of the procedure or functions. For example, the location of the next character to be

obtained when the procedure is completed, the tentative definition of any label on the procedure

reference I ine, and the va lue of the location counter when the procedure was referenced are all

retained in this table. When discussing the value of parameters saved in the procedure storage

table, that value associated with the current level is implied unless specified othelwise.

9300
2-3

9300 Only

References to procedures are processed almost as separate programs. A double pass is made over

the procedure sample (unless the procedure is defined as a single-pass procedure) during the

second assembly pass so that forward references to local symbols with in the procedure may be

made. In general, any line of code permitted outside the procedure is allowed within the

procedure.

META-SYMBOL COMPONENT PROGRAMS

The component programs of the META-SYMBOL assembly system are grouped as five segments:

1. Loader and file control routine

2. ENCODER, S4B

3. PREA (PREASM), SRNK (SHRINK)

4. PAS 1 (ASSEMBLR) (Assembler Pass 1)

5. PAS2 (Assembler Pass 2), FNSH (FINISH)

Each of the segments 2 through 5 are independent entities -and may not reference each other;

however, all segments may reference the control routine.

Loader

This program loads absolute programs from MONITOR system tape.

MSCONTRL

MSCONTRL contains the I/O fi Ie control routines and the communication eel Is used by f"NO or

more overlays of the assembly system.

ENCODER

This program reads symbolic input, encoded input, or symbolic corrections and encoded input.

It also produces the intermediate output tape to be used as input to the assembler and produces

new encoded program if requested. It leaves the dictionary and balanced tree search table in

core for the preassembler (PREA).

9300
2-4

9300 Only

S4B

This program is called by the ENCODER to translate symbolic input from SYMBOL 4 or SYMBOL 8

format to META-SYMBOL format.

PREA (PRESM)

The preassembler program defines directives, processes the selected standard procedure file, and

reformats the dictionary in preparation to starting the assembly process. The standard procedures

are located on the system tape between PREA and SRNK.

SRNK (SHRINK)

This program purges the dictionary and byte table left by PREA to remove bytes from the standard

procedure deck which are not referred to in the user's program or by that portion of the standard

procedures needed to process the user's program.

PAS 1 (ASSEMBLR)

This is the first pass of the assembler. PAS 1 reads the intermediate input tape constructed by the

ENCODER. This pass also defines the symbols used within the user's program, determines the

origin of the literals, establishes the origin of the literal and reference tables, processes user

PROC and F UNC sample definitions, and defines procedure NAMEs and programmed operators.

At the conclusion of PAS 1 the external symbol and programmed operator definitions are output on

the binary output device. If symbolic output is requested, it is generated by PAS 1.

PAS2

This is the second pass of the assembler. PAS2 generates the binary and listing outputs. During

the second pass, symbols are redefined; however, NAME definitions are not redefined. There

fore, no local NAMEs are permitted within nested sample. Literals are generated and references

to externally defined symbols are flagged and I inked.

9300
2-5

9300 Only

F NSH (FINISH)

This program outputs the literals and external references on the listing and binary outputs. It

a Iso prints the END line and outputs the transfer or end record.

FLOWCHART CONVENTIONS

Branch tables are used throughout META-SYMBOL:

Branch Table

Tl

Directive Number

DIRT (directive
routines)

TYP

Accessed from

ENCODER

PREA

PAS 1 and
PAS2

PAS 1 and
PAS2

9300
2-6

Subroutines Accessed

AL
BLANK
DOT
EORC
NU
QUOTE
SPEC

F UN (function)
NAM (name)
PRO (procedure)
SEND (end)

AORG
BCD
OED
DO
END
EQU
FORM
FUNC
NAME
ORG
PAGE
POPD
PROC
RES
TEXTR

DATAT (end cards)
DEF (types 1 and 2)
ENDM (END card with transfer

address)
ENDN (END card without

transfer address)
POPRD (POP reference or

DEF)

SECTION 3
INDIVIDUAL DESCRIPTIONS AND FLOWCHARTS

The routines for META-SYMBOL are described inthe following orders:

a. Loader and MSCONTRL
b. ENCODER, S4B, and MONl
c. PREA and SRNK
d. PAS 1
e. PAS2

900 Series Only

* If • -1* I SCIENTIPIC DATA SYSTBMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Basic Tape Loader

PURPOSE: To load absolute sections of the assembly system into core and to transfer

control to them.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

The tape loader reads records from the system tape unti I it finds an identifi

cation record at level 2 (.6. 2 in characters 1 and 2) with the first four

characters of the segment name identical to the contents of the A register at

entry. The fo Ilowi ng records are then loaded unti I a transfer record is

reached, at which point the loader branches to the location indicated as the

starting address. All records loaded are checksummed, and a checksum

error results in a HALT with an address of 4 displayed in C. Stepping causes

the record to be accepted. A tape read error results in a halt with an

address of 1 displayed.

The tape loader is an abso'ute-..routine originated at 3 with a starting location

at 4. The routine occupies low memory up to and including cell 1778 except

that cells 100
8

through 135
8

inclusive are not used and are available for

programmed operator use. The tape read routine used is not self-initializing

and assumes the system tape to be on unit 0 of the W buffer. The tape loader

does not supply its own input buffers. Locations 14278 through 1504
8

are

used as input buffers so programs loading data into this region cannot be

loaded by tape loader.

Program ID to A register
BRU 4

900
3-1

900 Seri es on I y
Disc MONARCH only

SCIENTIFIC DATA SYSTEMS

Page 1 of 2

IDENTIFICATION:

PURPOSE:

ACTION:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

Basic RAD Loader

Provide linkages to the RAD input/output routines for 900 Series RAD

META-SYMBOL.

The basic RAD loader contains the following routines, called

individually

SCTP Scan system fi I e for f). 2 record

RDTP Read system fi I e

RDF Read RAD record

WDF Write RAD record

EFDF Close RAD file

RWTST Rewind RAD file

SETUP Initial ize I/O packet for RAD

SCTP is called by the preassembler when scanning for the f).2
PROC records, and in the loading operation to load the next over-

lay from disc.

RDTP is called by the preassembler to read the encoded PROC
images and by the SCTP routine to obtain the f).2 records.

RDF is a generalized RAD read I inkage routine to read records
from scratch files Xl and X2, and calls SETUP to initialize the
RAD read call ing sequence.

WDF is a generalized linkage to the RAD write routine and is used
to write the Xl, X2 and BO fj les on the RAD. WDF calls SETUP
to initialize the RAD I/O calling sequence.

EFDF is a generalized linking routine to close RAD output files.

RWTST is called from the rewind routine REWW, in MSCONTRL,
to rewind and open a disc file on scratch files Xl and X2 or binary

output fi Ie BO.

SETUP initialized the calling sequence to the RAD I/O routines.

3-2A

Page 2 cr 2

PR(.)GRAMUdNG
TECHNIQUES:

CALLI ~IG
SEQUtNCE~

MEMORY
REQUIREME NTS:

SUBROUTINES
USED:

Catalog No. 042016

The routines in the Basic RAD Loader have absolute origins. The
routine uses space from cell 3 to 1778 inclusive, except for loca
tion~ 100-1268 which are reserved for POPs. The RDTP routine
uses the 4°10 words storti ng at I ocati on 14448 as an input buffer
area.

The general calling sequence for thf~ I/O routines on disc is:

LDX Disc I/O control word

LDA Buffer location

LDB Record length

BRM I/O linkage routine

If the record length is to be taken from the data itself, the B reg
ister should contain a minus 1 on entry to the disc I/O linkage
routine. The rewind routine is entered by placing the relative
UAT location for the file in X2 (e. g., 0 for system file, -2 for
scratch file X2, 2 for scratch file Xl) and executing a BRM REWW.

The loader is entered by placing the alphanumeric values of the
first 4 characters of the segment name in the A register and branch
ing to location 4. For example:

LDA = 'PREA '

BRU 4

RAD File Management Routine

3-2B

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

900 Series Only

See II Programm i ng T echni ques" above.

None

900
3-2

Catalog No. 042016

900 Series Only

t ;/ • _1* I SCIENT. PIC DATA SVSTBMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog :No. 042016

IDENTIFICATION: Resident I/O routines (MSCONTRL)

PURPOSE: To provide I/O control information and standard input/output fi Ie control

and device handling routines for the assembly system.

ACTION:

PROGRAMMING
TECHNIQUES:

MSCONTRL as such is never executed; it is merely a collection of routines

and control information to be used by the assembly system.

MSCONTRL is an absolute program loaded in the first overlay of the system

and retained in low core throughout the assembly run. It is the last pro

gram loaded with the ENCODER and contains the transfer to ENCODER to

start the assembly process. The file handl ing routines contained in

MSCONTRL all assume an input/output control packet which is part of the

input/output buffer. These routines, INPUT, OUTPUT, OPEN, CLOSE,

READ and WRITE, use a packet of the following format:

INPUT/OUTPUT PACKET FORMAT

Word

o

2

3

4

5

Read

location from which to
load next data word

not used (used as
temporary by READ)

last location of buffer

locat ion of input
subroutine

not used

not used (used as
temporary by READ)

900
3-3

Write

location into which to store next data
word

full word checksum for words stored
in buffer

last location of buffer

location of output subrouti ne

location of end-of-fi Ie subroutine

dummy control word (used to initialize
contro I word)

PROGRAMMING
TECHNIQUES:
(cont.)

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

Word

6

7-45

900 Series Only

Read

buffer. First word is
contro I word

remainder of buffer

Catalog No. 042016

Write

buffer. First word is control word

remai nder of buffer

For formats of the I/O control cells, see MO N 1 program description.

The I/O device handling routines in MSCONTRL are all self-initializing as

to unit and channel, and none of them depends on the existence of a buffer

interlace system. When called, the routines depend on the following in

formation in the machine registers:

A register

B register

Index register

address of fi rst word to transm i t

number of words to transm i t

standard I/O contro I word

When entered, the file control routines assume that the index register

contains the location of the I/O packet.

MSCO NTR L as such is never executed.

MSCONTRL has an absolute origin at location 2008 and uses core from that

point to location 1336
8

• Since MSCONTRL has several routines and con

trol words which are addressed by programs not loaded with MSCONTRL and

since cell 1337
8

is the origin of the ENCODER routine, any change in the

size or ordering of MSCONTRL is likely to necessitate the reassembly of

severa I other ma jor sect ions of the system.

Not applicable.

900
3-4

9300 Only

t II I -'* I SCIENTIPIC DATA SVST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 612001

IDENTIFICATION: I/O file routines (MSCONTRL)

PURPOSE: To provide I/O control information and standard input/output fi Ie control

routines for the assembly system. Communication cells used by more than

one overlay are in FILE.

ACTION: MSCONTRL is an absolute program loaded in the first overlay of the system

and retained in low core throughout the assembl y run. The fi Ie handl ing rou

tines contained in MSCONTRL all assume an input/output control packet

which is part of the input/output buffer. These routines, INPUT, OUTPUT,

OPEN, CLOSE, READ and WRITE, use a packet of the following format:

INPUT/OUTPUT PACKET FORMAT

Word Read

o location from which to
load next data word

2

3

4

5

6

not used (used as tem
porary by READ)

last location of buffer

read flag and location
of fi Ie description table

not used

not used (used as tem
porary by READ)

buffer. First word is
control word

7-45 remainder of buffer

9300
3-3

Write

location into which to store next data
word

full word checksum for words stored in
buffer

last location of buffer

not used

write flag and location of file description
table

dummy control word (used to initialize
control word)

buffer. First word is control word

remainder of buffer

Page

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

9300 Only

MSCONTRL as such is never executed.

475
8

cells

Not appl icable.

9300
3-4

Catalog No. 612001

ENTRY POINTS TO LOADER AND MSCONTRL SUBROUTINES

Page Page
Entry Description Flowchart Entry Description Flowchart

ABORT 3-12 3-32 PBC 3-24 3-38
CLOSE 3-8 3-34 PCB 3-37
EFC 3-29 3-38 PCH 3-26 3-38
EFMT 3-21 3-37 PPTB 3-15 3-33
EFPT 3-17 3-33 R 3-1 3-31
GTUNT 3-30 3-38 READ 3-11 3-35
lAW 3-27 3-38 READY 3-36
INEFC 3-28 3-38 REWW 3-13 3-32
INEFPT 3-16 3-33 RMTB 3-22 3-37
INPCB 3-23 3-37 RMTBU 3-18 3-35
INPCH 3-25 3-38 T80T 3-36
INPPT 3-14 3-32 TYPMSG 3-32
INPUT 3-10 3-34 WMTB 3-20 3-36
LOADER 3-1 3-31 WMTBU 3-19 3-35
OPEN 3-6 3-33 WRITE 3-9 3-34
OUTPUT 3-7 3-33

3-5

t 1/ • -It I SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Open a standard I/O file (OPEN)

PURPOSE: To initialize on I/O pocket to output a file.

900 Series: 042("
Catalog No. 9300: 612001

ACTION: OPEN clears word 2 of the pocket (checksum) and sets word 1 of the pocket

to the location of the seventh word (first buffer word) and word 3 to the

location of the 46th word of the pocket (lost word of buffer).

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINE
USED:

OPEN assumes the index register contains the location of the pocket.

OPEN is on absolute routine assembled as port of MSCONTRL.

Pocket location to index register
BRM OPEN

118 cells

None.

3-6

!t ;1 I -* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 6120

IDENTIFICATION: Output words to an output file (OUTPUT)

PURPOSE: To store an f)ut~ut word located in the A register into an output buffer and

to empty the buffer when fi lied.

·ACTION:

PRO GRAMMIN G
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

OUTPUT stores the contents of the A register into the next buffer location

and increments the location. The full word checksum is set in the secopd

word of the packet.; When the buffer becomes full, OUTPUT empties the

buffer by calling WRITE.

The packet location is assumed to be in the index register when OUTPUT is

entered. OUTPUT is an absolute program assembled as part of MSCONTRL.

Word to be output to A register
Location of packet to index, register
BRM OUTPUT

128 cells

WRITE

3-7

t ;1 I -It I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Clos~ on output file (CLOSE)

PURPOSE: To close on output file by emptying the output buffer and writing on

end-of-file mark.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEt-AORY
REQUIREMENTS:

SUBROUTINES
USED:

CLOSE calls WRITE to empty the buffer associated with the pocket at the

location given by the index register. CLOSE then calls the end-of-file

routine at the location indicated in the fifth word of the packet.

CLOSE is a standard I/O fi Ie maintenance routine using the standard packet

format and register assignments. CLOSE is on absolute routine assembled as

port of MSCONTRL.

Location of pocket to index register
BRM CLOSE

6 cells

WRITE
Any of the standard end-of-fi Ie device routines

3-8

I " • -1* , SCIENTIFIC DATA SYST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04

Catalog No. 9300: 61

IDENTIFICATION: Write the contents of a buffer (WRITE)

PUR POSE: To write the contents of a buffer onto an output fi Ie.

ACTION: If the buffer addressed by the index register is empty, WRITE exists; if it is

not, the word count is saved and the control word is formed and stored in

the seventh word of the packet. The location of the seventh packet word

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

is placed in the A register and the word count in the B register; WRITE calls

the I/O routi ne addressed by the fourth word of the packet. 0 PE N is

ca!'led to reini,tialize the packet.

WRITE uses the standard I/O file control routine packet format and register

contents. WRITE is an absolute routine assembled as part of MSCONTRL.

Location of packet to index register
BRM WRITE

378 cells

OPEN
Any of standard output device handl ing routines

3-9

* ;/ I -1*; SCIENTIFIC DATA SYSTEMS

50S PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Obtain the next word from an input file (INPUT)

PURPOSE: To obtain in the A register the next word from a specified input file.

ACTION: If the input buffer is empty, INPUT calls READ to obtain the next record.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREME NTS:

SUBRO UTINES
USED:

An end-of-fi Ie return from READ results in an end-of-fi Ie exit from INPUT.

The next word of input is loaded into the A register, and the buffer location

is incremented.

INPUT is a standard fi Ie maintenance routine and assumes the presence of an

I/O packet addressed by the index register. INPUT is an absolute routine

assembled as part of MSCONTRL.

Location of packet to index register
BRM INPUT
End-of-file return
Norma I return

148 cells

READ

3-10

* ;/ I -1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042~

Catalog No. 9300: 612~

IDENTIFICATION: Read the next record of an input file (READ)

PURPOSE: To obtain the next record from the specified input fi Ie and to verify its cor

rectness by computing the checksum.

ACTION:

PROGRAMMING
TECH NI QUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

READ loads the A register with the location of the seventh word of the spe

cified I/O packet, loads the B register with 40
10

, and calls the I/O device

routine addressed by the fourth word of the packet. If the read results in an

end of fi Ie, READ exits through its end -of-fi Ie return. READ computes the

checksum for the record and verifies the record by comparing the computed

and stated checksums. A checksum discrepancy results in a halt with a NOP 2

displayed in C. Stepping causes the record to be accepted as read.

READ is a standard fi Ie processing routine and assumes a standard packet ad

dressed by the contents of the index regis'ter. READ is an absolute program

assembled as part of MSCONTRL.

Location of I/O packet to index register
BRM READ

47
S

cells

900 Series Only: Any of the standard binary input device handling routines

9300 Only: None

3-11

* 'I • -1* I' SCIENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Write on-line typewriter message and call MONARCH (ABORT)

PURPOSE: To print an assembly system error message and return control to MONARCH.

ACTION: ABORT stores the contents of the A register (error message code) into the

skeletal error message and types the error message. The error control switch

QPESW in the UAT is set, and control goes to QBOOT to reload MONARCH.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

The A register contains the error message code when ABORT is entered.

ABORT is an absolute program assembled as part of MSCONTRL.

Error code to A reg i ster
BRU ABORT

25
8

cells

None. The typewriter routine used to type the error message in this case is

assumed to be part of ABORT.

900
3-12

900 Series Only

* *1 • -1* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Rewind magnetic tapes (REWW)

PURPOSE: To rewind the magnetic tape specified.

ACTION: REWW constructs a rewind instruction by determining the proper unit and

channel designations from the UAT entry and executes that instruction.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY/
REQUIREMENTS:

SUBROUTINES
USED:

The index register at entry to REWW contains the location, relative to

QSYS, of the UAT entry to be used in determining unit and channel

assignments. REWW is an absolute routine assembled as part of MSCONTRL.

UAT relative location to index register
BRM REWW

15
8

cells

None

NOTE: In the RAD MONARCH system, REWW calls RWTST to determine

whether the file is allocated to magnetic tape or to the RAD. When

the file is RAD-allocated, the File Management Routine is called in

order to rewi nd the fi Ie.

900
3-13

900 Series Only

I ;/ I -\1; SCIENTIPIC DATA SYST.MS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize binary paper tape punch routine (INPPT)

PURPOSE: To initialize with respect to unit and channel the binary paper tape punch

routine, PPTB.

ACTION:

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

INPPT obtains the unit and channel assignments by calling GTUNT. It

then sets the I/O instructions in PPTB.

INPPT is an absolute routine assembled as part of MSCONTRL and is an

extension of PPTB.

I/O control word to index register
BRM INPPT

25
8

cells

GTUNT

900
3-14

900 Series Only

* ;/ I -1* I SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Punch paper tape binary (PPTB)

PURPOSE: To punch a record on paper tape in the binary mode.

ACTION: PPTB calls lAW to obtain the buffer address and INPPT to initialize its I/O

instructions with respect to unit and channel. PPTB then outputs the speci

fied number of words from the specified location by executing a MIW loop.

A buffer error results in a halt with a NOP 4 displayed in the C register;

stepping permits the routine to conclude as though no error had occurred.

PROGRAMMING
TECH NIQUES:

-CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

PPTB is a device handling routine designed to work with the standard file

processing routines. PPTB is an absolute routine assembled as part of

MSCONTRL.

Buffer location to A regi ster
Word count to B register
Control word to index register
BRM PPTB

16
8

cells

lAW
INPPT

900
3-15

900 Series Only

I' II • -II I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize the paper tape end-of-file routine (INEFPT)

PURPOSE: To initialize the end-of-file routine for paper tape, EFPT, as to unit and

channel assignments.

ACTION:

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

INEFPT calls GTUNT to obtain the channel and unit assignments which

are used to injtialize the I/O instructions in EFPT.

INEFPT is an absolute routine assembled as part of MSCONTRL and is an

extension to EFPT.

I/O Control word to index register
BRM INEFPT

13
8

cells

GTUNT

900
3-16

900 Series Onl y

t ;1 I -1*; SCIENTIPIC DATA SYST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Feed blank paper tape (EFPT)

PURPOSE: To feed blank paper tape following an output paper tape file.

ACTION: EFPT calls INEFPT to set channel and unit assignments and then spaces

blank tape.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

EFPT is designed to work with the standard file processing routines and is

an absolute routine assembled as part of MSCONTRL.

I/O control word to index register
BRM EFPT

118 cells

INEFPT

900
3-17

900 Series Only

* ;/ I -1* I SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize the magnetic tape read routine (RMTBU)

PURPOSE: To initialize the I/O instructions in RMTB as to mode, unit, and channel.

ACTION: RMTBU initializes the I/O instructions remotely executed by RMTB as to

unit, channel, and mode (decimal or binary). RMTBU calls GTUNT to

obtain the unit and channel designation in the proper format to initialize

the I/O instructions within RMTB.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

RMTBU is a logical extension of the RMTB routine and makes use of the

fact that RMTB is designed to work with the file processing routines and

has the normal contents in the registers when called. RMTBU is an

absolute routine assembled as part of MSCONTRL.

Bits 0 through 9 of I/O control word to bits 14 through 23 of A register
I/O control word to TE~·AP + 3
BRM RMTBU

328 cells

GTUNT

900
3-18

900 Series On I y

, If • -I' I SCIENTIFIC DATA BYSTBMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize magnetic tape write routine (WMTBU)

PURPOSE: To initialize the write end-of-file routine EFMT and the magnetic tape

write routine, WMTB, as to mode, unit, and channel.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

WMTBU initializes the I/O instructions remotely executed by WMTB and

EFMT as to unit, channel, and mode. WMTBU calls GTUNT to obtain the

channel and unit designations in the format to initialize the I/O instruc

tions within WMTB and EFMT.

WMTBU is a logical extension of the routines to write magnetic tape. It

assumes on entry that an I/O control word has been stored in WCNT and

that the high order ten bits of that control word are in the low order ten

bits of the A register. WMTBU is an absolute routine assembled as part

of MSCONTRL.

Control word to WCNT
Bits 0 through 9 of WeNT to bits 14 through 23 of A register
·BRM WMTBU

578 cells

GTUNT

900
3-19

900 Series On I y

I */ • -It I BCI.NTIPIC DATA BVBT.MB

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Write magnetic tape (WMTB)

PURPOSE: To write a record of a given size, from a specified buffer to magnetic tape

on a given channel and unit and in the mode requested; to check for write

errors and if necessary to erase and rewrite the record up to three times.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

WMTB calls lAW to set the buffer address and WMTBU to initialize the I/O

instructions. WMTB tests the tape for ready and, if the tape is at load point,

erases forward the required distance. If the tape is at the end-of-tape mark,

WMTB exits; otherwise, the record is written by executing a WIM loop the

required number of times. An error in writing causes the tape to be erased

backward to remove the record; then WMTB rewrites it. If this fails, the re

cord is erased backward and forward and then rewritten. This procedure is

followed up to three times before WMTB halts. Stepping wi II cause the rou

tine to try once more to write the record.

WMTB is designed to be used with the standard fi Ie processing routines; it is

an absolute program assembled as part of MSCONTRL.

Location of buffer to A register
Number of words to write to B register
I/O co~trol word to index register
BRM WMTB

76
8

cells

lAW
WMTBU

900
3-20

900 Series Only

I ;1 I -1*; SCIENTIFIC DATA SYSTIEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Write end-of-file marks on magnetic tape (EFMT)

PURPOSE: To write a tape end-of-file mark on the specified magnetic tape.

ACTION: EFMTcalls WMTBU to initialize the I/O instructions. Tape ready and

beginni'ngof tape status are checked after which EFMT writes a one

character record of 17 8 to the tape.

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

EFMT is designed to work with the standard file processing routines and is

an absolute routine assembled as part of MSCONTRL.

I/O control word to index register
BRM EFMT

16
8

cells

WMTBU
Those portions of WMTB to check tape ready status and beginning of tape

900
3-21

900 Series Only

I 1/ • -1* I SC.ENTIFIC DATA SVST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Read magnetic tape (RMTB)

PURPOSE: To obtain a record of given maximum size from a specified tape unit in the

indicated mode and place it in the specified buffer.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

RMTB calls lAW to set the buffer address and RMTBU to initial ize the I/O

instructions. RMTB executes a WIM loop unti I an end of record is reached

or until the indicated number of words have been read. If the record is

less than a full word long or if the first word is ~EOF, RMTB takes the

end-of-file exit. A read error causes the routine to backspace and reread

the tape up to ten times. An error sti II detected after ten attempts results

in a halt. Stepping causes the record to be accepted as read.

RMTB is designed to work with the standard file processing routines. RMTB

is an absolute routine assembled as part of MSCONTRL

Buffer location to A register
Word count to B register
Standard control word to index register
BRM RMTB
End-of-file return
Normal return

60
S

cells

lAW
RMTBU

900
3-22

900 Series Only

* II • -1* I SCIENTIPIC DATA SYSTaMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize the punch cards binary mode routine (INPCB)

PURPOSE: To initialize as to unit and channel the I/O instructions in the punch cards

binary mode routine, PCB.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

INPCB calls GTUNT to get the unit and channel assignments which are

used to set the I/O instructions in PCB.

INPCB is a logical extension of the PCB routine and is an absolute routine

assemb I ed as part of MSCO NTR L.

I/O control word to index register
BRM JNPCB

278 cells

GTUNT

900
3-23

900 Series Only

, *1 • -I' I BC •• NTIFIC DATA BVST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Punch cards binary mode (PCB)

PURPOS E: To punch in the binary mode a record of given size from a specified buffer

into a card on the unit and channel indicated.

ACTION:

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

PCB calls lAW to set the buffer address and INPCB to initialize the I/O

instructions. PCB then punches the card received by executing 12
10

times

a WIM loop for the number of words to be punched.

PCB is designed to work with the standard file processing routines and is an

absolute routine assembled as part of MSCONTRL.

Buffer location to A regi ster
Word count to B register
I/O control word to index register
BRM PCB

35
8

cells

lAW
INPCB

900
3-24

900 Series Only

t 1/ • -1* I SCIENTIFIC DATA $VSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATIO N: Initial ize the routine to punch cards in the BCD or Hollerith mode (INPCH)

PURPOSE: To i-nitialize the I/O instructions in PCH as to unit and channel.

ACTION: INPCH calls GTUNT to obtain channel and unit designations which are

used to initialize the I/O instructions in PCH.

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

INPCH is a logical extension of the PCH routine and is an absolute routine

assembled as part of MSCONTRL.

I/O control word to index register
BRM INPCH

228 cells

GTUNT

900
3-25

900 Series Only

* 1/ • -1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Punch cards in BCD or Hollerith mode (PCH)

PURPOSE: To punch in the BCD mode a record of given length from a specified buffer

to cards on the unit and channel indicated.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

PCH calls lAW to set the buffer address and INPCH to initialize its I/O

instructions. It then outputs the record by executing a WIM loop the

required number of times as determined by the word count. This loop is

repeated 12 times.

PCH is designed to work with the standard file processing routines and is

an absolute routine assembled as part of MSCONTRL.

Word count to B register
I/O control word to index register
Buffer location to A register
BRM PCH

218 cells

lAW
INPCH

900
3-26

900 Series Only

, ;1 • -It I SCIENTlfllC DATA SVST.MB

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATIO N: Set I/O buffer address (lAW)

PURPOSE: To set cell ADDR to address the last cell of the I/O buffer with an index of

2 and to complement the word count in the B register.

ACTION:

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
,REQUIREMENTS:

SUBROUTINES
USED:

lAW sets cell ADDR with an index of 2 and an address of the last location

of the I/O buffer. The contents of the B register are complemented.

lAW is an absolute routine assembled as part of MSCONTRL.

Buffer location to A register
Word count to B register
BRM lAW

lOa cells

None

900
3-27

900 Series Only

* *1 • -1* * SCIENTIPIC DATA SYSTaMS

SDS PROCRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize the end-of-file cards routine (INEFC)

PURPa E: To set the unit and channel assignments in the I/O instructions to clear

the card punch.

ACTION:

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

INEFC calls GTUNT to obtain the unit and channel assignments which are

used to initialize the I/O instructions in EFC.

INEFC is a logical extension of the EFC routine and is an absolute routine

assembled as part of MSCONTRL.

I/O control word to index register
BRM INEFC

15
8

cells

GTUNT

900
3-28

900 Series Onl y

* II • -1* , SC.ENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Clear the card punch (EFC)

Catalog No. 042016

PURPOSE: To feed two cards through the designated card punch.

ACTION: EFC calls INEFC to initialize I/O instructions; it then punches two cards.

PROGRAMMING
TECHNIQUES: EFC is designed to work with the standard file processing routines and is an

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

absolute routine assembled as part of MSCONTRL.

I/O control word to index register
BRM EFC

148 cells

INEFC

900
3-29

900 Series Only

I *f • -1* I SCIENTIPIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Extract unit and channel assignments (GTUNT)

PURPOSE: To obtain the unit and channel assignments from a standard I/O control

word for use by the various I/O initialization routines.

ACTION:

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GTUNT extracts the unit channel and mode bits from the I/O control word

in the index register and stores them in CHANL. The channel designation

is right adjusted in the index register.

GTUNT is an absolute routine assembled as part of MSCONTRL.

I/O control word to index register
BRM GTUNT

131"\ cells
o

None

900
3-30

LOADER

Name of section to
load -WI
o -FFF

R -

Re:ld record.
Type -T
Count-CT

~

'\yes FFF < O?
../

no

... nof
This is the record?) \.

yes

-1 - FFF
8RU R-LEXIT

900 Series Only

BASIC TAPE LOADER

f no
Starting loc

End record? of record \. ..J
-LOC yes

ST8 LEXIT - -lOC

Store data into address
given by LOC
Checksum card

Execute
instruction -- yes r

Card Checksum?

900
3-31

at LEXIT I \.

I
I
I
I

l(I
I

I
LEXIT normally is BRU R, but
on end records the data word,
or BRU program, gets loaded
there.

no

HALT
display

4

Record origin - call ing sequenc
File nr. - call ing sequence
Word count - call ing sequence
o - error fl ags

900
3-32A

File number -
call ing sequence

MSCONTRL

ABORT, TYPMSG, REWW AND INPUT ROUTINES

See message no.
Set QPESW

ITOpe only ~ - - -

Using relative UAT location
given by X2 obtain channel
and unit to rewind. Build and
execute rewind instruction.

Build rcwinri rom

.. mand fm tOpt' It'

wind. Execute
lewind.

900
3-32B

Type 5 words
from MSORG

Initial ize all SKS, EOM,
and WIM instructions in the
PPTB routine.

Load reg isters for
disc read linkage

900 Series Only

RAD MONARCH Only

BASIC RAD LOADER

900
3-32

ye\Zo/ Exit
EOF

v

Buffer error?

yes

HALT
display

4

get unit and channel

Initialize the I/O
instructions in the EFPT
routine.

MSCONTRl
PPTB, INEFPT, EFPT, OPEN AND OUTPUT ROUTINES

no

INEFPT
initial ize I/O

Feed paper through
punch by punching 0
words with leader 4
times.

Disconnect buffer.
Walt till buffer ready.

3-33

no

Location 6th word of
packet - packet loc.

O-packet loc + 1.
Location 45th word of

packet - pocket + 2.

Step packet location. Store
data word in new packet
location. Checksum data
word added.

Buffer full?

yes

WRITE
empty bu ffer

Buffer empty?

no

Count of words - SA VEX
Compl ete Checksum and

store control word in word
7 of pocket.

SAVEX -B reg
loc control word -A reg
loc pocket -SAVEX
loc I/O routine - X2

I/O routine
add relsed by X 2

write record

SAVEX -X2

OPEN
initial ize buffer

MSCONTRL
WRITE, CLOSE, AND INPUT ROUTINES

WRITE
empty buffer

EOF
write end of file

Buffer empty?

no

Step to next data word.
Data word - A reg
Increment INPUT

3-34

Device EOF
routine in
MSCONTRL
specified by
file description
table

EOF

Location 1st data word - A reg.
40 -B reg.
X2 -SAVEX
Location I/o routine - X2

SAVEX -X2
Number data words - 3rd word

of pocket
Checksum record read.

Checksum OK?

yes

Location 1st data word - 1st
word of pocket.

Address of lost data word - 3rd
word of packet.

Increment READ.

MSCONTRL
READ, RMTBU AND WMTBU ROUTINES

EOF

3-35

900 Series Only

Initial ize I/O instructions as to
mode (decimal or binary)

GTUNT
get unit and channel

Initialize I/O instructions in
RM TB routine as to channel and
unit.

Initial ize I/O instruction for
WM TB as to mode.

GTUNT
get unit and channel

Initialize I/o instructions in
WMTB and EFMT as to unit and
channel.

X2-WCNT

lAW
get address

READY
test ready

test beginning

READY
test ready

End of tope

nO

Using MIW loop, write
specified number of words.

Terminate output.

READY
test ready

Error?

900 Series Only

MSCONTRL
'IIMTB, P.EADY AI'~D TSOT ROUTINES

Using MIW loop, erose
reverse the number of
words written.

test ready

900
3-36

Terminate output.
Using MIW loop,
erose forward.

Wri te one chmactel
of 017.

MSCONTRl
I ~M 1 RM IB, INPCB AND PCB ROllTlNI '-,

Usinq WIM,
read 1 WOIJ

yes

900
3-37

no

na

Illi tial ize I/O instructions
in PCB routine as to unit

and channel

Punch specified
numbel of words
into next row.

Terminate wait
for blJffer
ready

ENCODER
S4B

MONl

Initialize I/O
instructions in
PCH routine as to

unit and channel

get unit and
channel

Initialize the I 0
instructions in P8C
as to un it and
channel.

900 Selit'~ Only

MSCONTRL
INPCH, PCH, II\W, PBC, INEFC, HC AND GTUNT ROU1IN~.S

Wait for
punch ready

Punc next row
specified member
of words, then
terminate and wait
for buffer reo

12 rows out?

yes

Unit channel and
mode - low 10
bits of CHANl.
Channel No. - X 2

900
3-38

lost location of buffer indexed
by 2 -ADDR
word count - B reg

PBC
do it again

Wait for punch ready.
Punch word of zeros

and then terminate.

900 Series Only

SCIENTIFIC DATA SYSTEMS

IDENTIFICATION: ENCODER

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

PURPOSE: To encode symbolic programs or to update existing encoded programs.

ACTION: Performs the following functions:

1. Calls MO N 1 to set up the input/output unit and channel assignments

and the input/output function requests in MSCONTRL and, if

necessary, to copy symbol i c corrections to scratch tape X2.

2. Reads a record of symbolic input and checks for correction (+ in column

1). If the card is a correction, or if there is encoded input only as

determined by an end-of-file return from the reader, ENCODER copies

the old encoded dictionary into core and builds the APO table of

di ctionary addresses.

3. ENCODER reads the symbolic input or the encoded text, or both if it be

an update run. When correcting an encoded file, the symbolic in

sertions are inserted into the file by using the same TRANS routine as is

used for runs with only symbolic input. Deleted encoded lines are by

passed by calling the DELETE routine, and encoded lines to be retained

are passed along by calling the SKIP routine. All symbolic lines are

translated to META-SYMBOL language by calling the translation

program S4B.

4. As each line of input is obtai ned, E NCO DER scans the line and co II ects

each string of characters into a dictionary entry. (See Section 4, Item

Formats.) The encoder bui Ids four types l)f entries: blank strings,

special characters, numeric items, and alphanumeric items. If the

string is in the form '1f a byte of encoded record, this construction step

900
3-39

ACTION:
(cont.)

900 Series Only

Catalog No. 042016

is eliminated since the dictionary entry is already available. If this is

an encoded byte, the program tests APO to see if the new byte value has

been determined; if it has not, or if this is a string from a symbolic

record, SRCH is called to find the location of the CPO (balanced tree

insert table) entry for the string and to obtain the byte value. If SRCH

fails to find an equivalent entry in CPO, NSRT is called to enter the

string into the dictionary (BPO) and insert a 3-word entry into CPO for

later reference. (See Section 4, Item Formats.) The sequence number

of a unique string of characters or dictionary entry is the byte value for

the entry.

5. As a value for each byte is obtained, it is output on the intermediate

output tape (Xl). This encoding-updating process continues until an

end of fi lei s detected on the input fi Ie. Note that an END card does

not terminate the encoding process. During the encoding process com

ments are not encoded in the manner indicated. Comments, as deter

mined by the presence of an * in the first character of the record or by

three blank fields (excluding imbedded blank strings in TEXT and BCD

variable fields or in alphanumeric expressions), are output as they

appear in the source language except that they are preceded by a count

byte of six bits indicating the number of comment characters.

6. When an end-of-file condition is detected on the input file, control

goes to the END section of ENCODER. Here a check is made to see if

there was encoded input; if so, the insert table CPO is moved to the

origin of APO and the dictionary is moved to a position immediately

following CPO. The intermediate output tape is rewound, and the

dictionary is output on the encoded output device by selecting the

dictionary entry for each entry in CPO. In this manner dropped bytes

caused by deieting encoded iines are purged. As each dictionary

entry is output, it is moved to high memory to form a dictionary for

900
3-40

900 Series Only

Catalog No. 042016

ACTION: PREASM. When all dictionary entries have been output, the encoded

{cont.} text records are copied from Xl to the output file.

CALLING
SEQUENCE:

PROGRAMMING
CONVENTIONS:

7. When the output fi Ie has been completed, ENCODER checks the I/O

function control cells in MSCONTRL to determine if additional outputs

are required. If encoded output is the only output, control is returned

to MONARCH; otherwise, the PREASM routine is loaded by branching

to the basi c tape loader routi ne.

ENCODER is one of several independently assembled routines loaded as the

first assembler overlay. The last of these routines in order loaded is

MSCONTRL. The transfer address for MSCONTRL is to a cell containing a

branch to the starting location of ENCO DER (TRACOR).

ENCODER is assembled with an origin of 01337, which is just above the

MSCONTRL program. Since ENCODER leaves the dictionary and search

tables in core for PREASM, it is necessary to provide a few control words to

PREASM indicating the location of tables and key words. The following

control cells are left by ENCO DER in the first locations following

MSCONTRL.

1. DTAB. Starting location for PREASM-built dictionary if no POPs are

used. (The programmed operator routines overload this cell to account

for the additional length of the POP code.)

2. APO or CPO. The next available location in the balanced tree search

table for entering items.

3. BPO. The next available cell in the ENCODER-built dictionary.

4. HED. A 3-word control region used in building CPO and BPO. All

chain ends in CPO point to HED.

900
3-41

PROGRAMMING

CONVENTIONS:
(cont.)

MEMORY
REOUIREME NTS:

SUBROUTINES
USED:

900 Series Only

Catalog No. 042016

5. CORG. The location minus 9 of the first word of CPO table.

6. CSEQ. The next sequence number or byte value to be defined.

ENCODER is designed to be maximally independent of machine configura-

tion.

1. Memory size is determined by examining cell 1 of memory in which

MONARCH stores the instruction BRU OBOOT. Hence maximum

memory is always used.

2. MONl sets the delay timing for the paper tape read routines in

ENCODER so that in the event of inputs on paper tape proper reading

will result.

3. All instructions used which are not common to all machines are either

converted to alternate instructions by using procedures (e. g., CLB is

LDB :::: 0) or by generating POP items by use of procedures.

ENCODER has a 2-condition rewind of magnetic tape X2. If corrections

are used and copied to X2, ENCODER rewinds X2 in preparation of taking

outputs on X2. If running with MAGPAK tapes, X2 is rewound.

Variable

PTCH
DEC
DELETE
SKIP
INIT'
TRANS
STORE
CHAR
RCRD
INC

OUTC
SRCH
NSRT
TRAIL
IN
OUT
MVTAB
RESET
TBOUT
INRPT

RPTB
INCRD
CRD
CRDB
CRDH
INRDT
RDPT
EDC
EDS
S4B

MONl
OPENt
REWWt

READt
INPUTt
GTUNTt
WRITEt
IAWt

OUTPUTt

CLOSEt

t These routines are described under MSCONTRL.

900
3-42

9300 Only

SCIENTIPIC DATA SVSTEMS

IDENTIFICATION: ENCODER

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION,

Catalog No. 612001

PURPOSE: To encode symbol ic programs or to update existing encoded programs.

ACTION: Performs the following functions:

1. Copies symbol ic corrections to scratch tape X2, if necessary.

2. Reads a record of symbol ic input and checks for correction (+ in col umn

1). If the card is a correction, or if there is encoded input on I y as de

termined by an end-of-file return from the reader, ENCODER copies the

old encoded dictionary into core and builds the APO table of dictionary

addresses.

3. ENCODER reads the symbolic input or the encoded text, or both if it be

an update run. When correcting an encoded fi Ie, the symbol ic inser

tions are inserted into the fi Ie by using the same TRANS routine as is

used for runs with only symbolic input. Deleted encoded lines are by

passed by calling the DE LETE routine, and encoded I ines to be retained

are passed along by calling the SKIP routine. All symbolic lines are

translated to META-SYMBOL language by calling the translation pro

gram S4B.

4. As each I ine of input is obtained, ENCODER scans the I ine and collects

each string of characters into adictionaryentry. (See Section 4, Item

Formats.) The encoder builds four types of entries: blank strings, spe

cial characters, numeric items, and alphanumeric items. If the string

is in the form of a byte of encoded record, this construction step is elim

inated since the dictionary entry is already available. If this is an en

coded byte, the program tests APO to see if the new byte val ue has been

9300
3-39

ACTION:
(cant.)

9300 Only

Catalog No. 612001

determined; if it has not, or if this is a string from a symbolic record,

SRCH is called to find the location of the CPO (balanced tree insert

table) entry for the string and to obtain the byte value. If SRCH fails

to find an equivalent entry in CPO, NSRT is called to enter the string

intothedictionary (BPO) and insert a 3-word entry into CPO for later

reference. (See Section 4, I tern Formats.) The sequence number of a

unique string of characters or d icti,onary entry is the byte va lue for the

entry.

5. As a value for each byte is obtained, it is output on the intermediate

output tape (X 1). Th is encoding-updating process continues unti I an

end of fi Ie is detected on the input fi Ie. Note that an END card does

not terminate the encoding process. During the encoding process com

ments are not encoded in the manner indicated. Comments, as deter

mined by the presence of an * in the first character of the record or by

three blank fields (excluding imbedded blank strings in TEXT and BCD

variable fields or in alphanumeric expressions), are output as they ap

pear in the source language except that they are preceded by a count

byte of six bits indicating the number of comment characters.

6. vVhen an end-of-file conditions is detected on the input file, control

goes to the END section of ENCODER. Here a check is made to see if

there was encoded input; if so, the insert table CPO is moved to the

origin of APO and the dictionary is moved to a position immediately

following CPO. The intermediate output tape is rewound, and the dic

tionary is output on the encoded output device by selecting the diction

ary entry for each entry in CPO. In this manner dropped bytes caused

by deleting encoded I ines are purged. As each dictionary entry is out

put, it is moved to high memory to form a dictionary for PREASM. When

all dictionary entries have been output, the encoded text records are

copied from X 1 to the output fj Ie.

9300
3-40

ACTION:
(cont.)

CALLING
SEQUENCE:

PROGRAMMING
CONVENTIONS:

9300 Only

Catalog No. 612001

7. When the output file has been completed, ENCODER checks the I/O

function control cells in MSCONTRL to determine if additional outputs

are required. If encoded output is the only output, control is returned

to MONARCH; otherwise, the PREASM routine is loaded by branching

to the basic tape loader routine.

ENCODER is one of several independently assembled routines loaded as the

first assembler overlay. The last of these routines in order loaded is

MSCONTRL. The transfer address for MSCONTRL is to a cell containing a

branch to the starting location of ENCODER (TRACOR).

Since ENCODER leaves the dictionary and search tables in core for PREASM,

it is necessary to provide a few control words to PREASM indicating the lo

cation of tables and key words. The following control cells are left by

ENCODER in the first locations following MSCONTRL.

1. DTAB. Starting location for PREASM-built dictionary.

2. APO or CPO. The next available location in the balanced tree search

table for entering items.

3. BPO. The next available cell in the ENCODER-bui It dictionary.

4. HED. A 3-word control region used in building CPO and BPO. All

chain ends in CPO point to HED.

5. CORG. The location minus 9 of the first word of CPO table.

6. CSEQ. The next sequence number or byte value to be defined.

ENCODER has a 2-condition rewind of magnetic tape X2. If corrections

are used and copied to X2, ENCODER rewinds X2 in preparation of taking

outputs on X2. If running with MAGPAK tapes, X2 is rewound.

9300
3-41

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

9300 Only

Variable

PTCH INC TBOUT
DEC OUTC S4B
DE LETE SRCH OPEN

t

SKIP NSRT READt
INIT TRAIL INPUTt

TRANS IN WRITEt
STORE OUT OUTPUrt

CHAR MVTAB CLOSEt
RCRD RESET

tThese routines are described under MSCONTRL.

9300
3-42

Catalog No. 612001

ENTRY POINTS TO ENCODER SUBROUTINES

Page Page
Entry Description Flowchart Entry Description Flowchart

ALL 3-49 3-81 INAB4 3-75
ALL2 3-49 3-81 INC 3-54 3-83
ALL3 3-49 3-81 INCRD 3-66 3-91
ALL4 3-49 3-81 INIT 3-48 3-78
ALL5 3-49 3-81 INRDT 3-70 3-92
BEGIN 3-75 INRPT 3-6/:- 3-91
BLAN1 3-49 3-79 MVTAB 3-61 3-90
BLANK 3-49 3-79 NS3 3-57 3-86
BLANK 1 3-49 3-79 NS4 3-57 3-86
BLANK2 3-49 3-79 NS4A 3-57 3-87
CHAR 3-52 3-82 NS4B 3-57 3-87
CHAR1 3-52 3-82 NS5 3-57 3-87
CHAR2 3-52 3-82 NS6 3-57 3-87
CHARX 3-52 3-82 NS7 3-57 3-87
CaRR 3-75 NS8 3-57 3-86
CORR1 3-76 NS9 3-57 3-87
CORR4 3-76 NS 10 3-57 3-87
CORR5 3-76 NSRT 3-57 3-86
CORR6 3-76 NU 3-49 3-81
CORR8 3-76 OUT 3-60 3-88
CORR10 3-76 OUTC 3-55 3-83
CaRR 11 3-76 PROG 3-76
CRD 3-67 3-91 PTCH 3-44 3-77
CRDB 3-68 3-92 RCRD 3-53 3-83
CRDH 3-69 3-92 RDPT 3-71 3-92
DEC 3-45 3-77 RESET 3-62 3-90
DELETE 3-46 3-77 RPTB 3-65 3-91
DOT 3-49 3-81 SKIP 3-47 3-78
EDC 3-72 3-93 SR1 3-58 3-84
EDS 3-73 3-93 SRCH 3-56 3-84
END 3-89 STORE 3-51 3-82
END2 3-89 TBOUT 3-63 3-90
EOD 3-49 3-80 TRACOR 3-39 3-74
EaR 3-49 3-80 TRAIL 3-58 3-88
EORC 3-79 TRAN 3-49 3-79
IN 3-59 3-88 TRAN1 3-49 3-79
IN 1B 3-59 3-88 TRANS 3-49 3-79

3-43

* *1 • -1*; SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTI'ON 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Get input character subroutine (PTCH)

PURPOSE: To get next character of encoded input dictionary.

ACTION: Extracts next character from TEMP and stores the remaining characters in

TEMP. If a new word is needed as determ i ned by the character count, B,

PTCH calls INPUT to obtain next word of dictionary. An end-of-file

return from input resu I ts in an abort message of 1031
•

PROGRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

PTCH is a relocatable routine contained in ENCODER.

B register should be set to zero
BRM PTCH on initial call for each dictionary entry

248 cells

INPUT

3-44

, ;/ • -I'; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042C

Catalog No. 9300: 612C

IDENTIFICATION: Compute correction number routine (DEC)

PURPOSE: To compute correction numbers for ENCODER symbolic correction logic.

ACTION:

PROGRAMMING
CO NVENTIO NS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

Computes correction numbers by successive multiplication. Leaves resulting

number in WORD.

First character of correction number is in A register on entry. Obtains

characters by calling CHAR until end of record or non-numeric digit is

obtained. If first character of corrections is +, the plus is ignored. DEC

is a relocatable routine assembled as part of ENCODER.

First character of number to A regi ster
BRM DEC
Result left in WORD

218 cells

CHAR

3-45

__ ~ -I,; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Delete line of encoded input (DELETE)

900 Series: 042016
Catalog No. 9300: 612001

PURPOSE: To delete lines of encoded input when updating encoded files.

ACTION: Gets input characters by calling IN until end of line is reached; then calls

INC until all comments have been passed.

PROGRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

DELETE is a relocatable routine assembled as part of ENCODER.

BRM DELETE

13
8

cells

IN
INC

3-46

* */ I _I' I SCIENTIFIC DATA SVSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Routine to save lines of encoded input (SKIP)

900 Series: 0420
Catalog No. 9300: 61201

PURPOSE: To transcribe bytes of encoded input file by calling IN. Each byte is

translated to the correct output value by either obtaining the value from the

APO table entry fo~ the byte or by using SRCH and NSRT to obtain the

value. Bytes are output by calling OUT. Comments are copied by using

INC and OUTC.

PROGRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SKIP is a relocatable routine assembled as part of ENCODER.

BRM SKIP

45
8

cells

IN
INC
NSRT

OUT
OUTC
SRCH

3-47

, ;1 I -1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Table initialization routine (INIT)

PURPOSE: To initialize cells for ENCODER, SRCH, and NSRT routines.

ACTION: INIT initializes CORG, HED, and CSEQ.

PROGRAMMING
CONVENTIONS: INIT is a relocatable routine assembled as part of ENCODER.

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

BRM INIT

10
8

cells

None

3-48

SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 6120

IDENTIFICATION: Symbolic translation routine (TRANS)

PURPOSE: To convert symbolic lines of code by generating a dictionary entry for each

character string within the line and calling SRCH/NSRT to define the entry.

The resulting byte value is 0 rtput to the intermediate output tape (Xl) by

calling OUT. Comment characters are counted and output as a count

followed by the character string.

ACTION:

PRO GRAMMIN G
CONVENTIONS:

CALLING
SEQUENCE:

TRANS obtains input symbolic characters by calling the CHAR routine.

Character strings are constructed, the initial type being determined by

executing a 64-place transfer table T 1. As each string or dictionary entry

is constructed, it is defined by calling SRCH/NSRT and the resulting byte

value is output on Xl by calling OUT. Blank fields are counted and the

third blank field or end of symbolic record terminates the line. Blank fields

within alphanumeric data strings are not used as terminators. If a comma

appears as the terminal non-blank character of a line, the line is interpreted

as a continuation. Trailing blanks on the current card plus leading blanks

on the following card are treated as a single blank string, and the following

card is taken as part of the current record without an end-of-line mark

between.

TRANS uses transfer table T1 to determine string types by loading the index

with the initial character and branching indirectly to T1 modified by the

inol'x. TRANS is a relocatablc routine assembled as part of ENCODER.

BRM TRANS

3-49

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

303
8

cells

CHAR NSRT
OUT SRCH
OUTC STORE

Catalog N 900 Series: 042016
o. 9300: 612001

3-50

, ;1 I -,,; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: '042C

Catalog No. 9300: 612C

IDENTIFICATION: Subroutine to store characters into dictionary entry (STORE)

PURPOSE: To insert characters into a dictionary entry being constructed.

ACTIO N: STORE positions characters to the next avai lable cell addressed by WORD

and merges the characters into the location specified by WORD by adding

PROGRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

to memory.

Before the initial coli for a dictionary entry, cells SHIFT, WORD, and the

cell addressed by WORD must be initialized. STORE is a relocatable

routine assembled as part of ENCODER.

Character to A register
BRM STORE

20
8

cells

None

3-51

* ;1 • -1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Fetch a symbolic input character (CHAR)

PURPOSE: To get the ~ext character of input from the symbolic input file.

ACTION: CHAR extracts the next input character from P2 into the low order six bits

PROGRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREME NTS:

SUBROUTINES
USED:

of the A register. When the input word P2 is empty, the next word is taken

from the input buffer CARD. When CARD is empty, the next record is ob

tained by calling RCRD. If the end-of-file flag is set, CHAR terminates the

encoding operation by exiting from the TRANS routine. On EOF returns from

RCRD, CHAR sets the end-of-file flag. After reading a record, CHAR

exits with an end-of-record character in the A register.

RCRD and CHAR work together since the number of input characters is set

by RCRD. CHAR is a relocatable routine assembled as part of ENCODER.

BRM CHAR

358 cells

RCRD

3-52

t 1/ • -It" I SCIENTIFIC DATA 8VBT.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Read input symbolic records (RCRD)

PURPOSE: To read' symbolic records.

900 Series: 04201
Catalog No. 9300: 6120C

ACTION: On entry, RCRO saves the character count for the current line (P7) in cell

P8. The next input record is read by calling the proper routine to read

symbol ic input as indicated by HOlP. An end-of-file return from the read

results in an end-of-file exit from RCRD. S4B is called to perform any

language translation needed on the input record. The number of terminal

blank characters in the record is set in P5. The characters remaining in

current word count {P} are cleared, and P1 is set to -19 for indexing the input

buffer by CHAR. The number of characters to the first blank of a terminal

blank string is set in P7.

PROGRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

RCRD uses the input I/O routine established by MONl as determined from

the UAT. RCRD is a relocatable routine assembled as part of ENCODER.

BRM RCRD
end-of-file exit
normal exit

50
8

cells

S4B
I/O routine needed to read symbol ic input

3-53

I " • -1* I SC.ENTIPIC DATA SVSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Get comment characters from encoded input fi Ie (INC)

PURPOSE: Get next comment character from encoded input file.

ACTION: INC sets the input byte size to six bits, calls IN to get the next byte into

the A register, and then resets the byte size to its initial value.

PROGRAMMING
CONVENTIONS: INC is a relocatable routine assembled as part of the ENCODER.

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

BRM INC

128 cells

IN

3-54

* II • -I' I SCIENTIFIC DATA SYST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 6120(

IDENTIFICATIO N: Output comment characters (OUTC)

PURPOSE: To output comment characters to the encoded output file.

ACTION: OUTC sets the output byte size to .. six bits, calls OUT to output the

character in the A register, and then resets the output byte size.

PROGRAMMING
CONVENTIONS: OUTC is a relocatable routine assembled as part of ENCODER.

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBRO UTINES
USED:

BRM OUTC
Output character to A register

lla cells

OUT

3-55

t" *1 • -\t I SCIENTIPIC DATA SYST.MS

50S PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Search balanced tree tabl'e (SRCH)

PURPOSE To search the balanced tree table of bytes, CPO, for a given dictionary

entry.

ACTION:

CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SRCH steps through CPO starting at the loaction given in HED+ 1, looking

for an item identical to the input item. See Section 3, Item Formats for an

illustration of CPO and dictionary entries. When an identical item is found

in CPO, SRCH exits with the sequence number of the dictionary entry in the

A register (byte value). Successful search results in a return to the calling

location pi us 2; an unsuccessful search resul ts ina return to the call i ng

location plus 1. SRCH sets cell U to the last point of imbalance in the path

searched and MO to the last point examined by search. In addition SRCH sets

the direction pointer in each CPO item examined to indicate the path taken

from that po i nt •

SRCH is a relocatable routine assembled as part of ENCODER.

Set HED to location of dictionary item being searched for
BRM SRCH
Item not found exit
Item found exit

6218 cells

None

3-56

t 'I I -1*; SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 6120C

IDENTIFICATION: Insert entries in dictionary, BPO, and search table, CPO (NSRT)

PURPOSE: To define unique dictionary entries representing unique character strings of

input by inserting a dictionary item in BPO and a corresponding balanced

tree search table entry in CPO, and to maintain the balance of CPO.

ACTION:

PROGRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

NSRT enters the dictionary item into BPO and a 3-word item into CPO. The

CPO entry is inserted such that the first word addresses the dictionary entry

in BPO, the second word addresses the item that is just less than the current

entry, and the third word addresses the item just larger than the current

entry. If the addi t ion of the current item resu Its ina tree that is out of

balance, (a tree such that from that point the longest path on one side is

more than one item longer than the longest path on the alternate side),

NSRT rebalances the tree by adjusting the lesser and greater linkages within

the tree from the last point of imbalance. Upon exit the value of the byte

inserted is in the A register.

NSRT is a relocatable routine assembled as part of ENCODER. NSRT

depends upon SRCH having been called to search for the item being inserted

orior to entering NSRT.

BRM NSRT

266
8

cells

TRAil

3-57

* II • -*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Determine path taken by SRCH (TRAIL)

900 Series: 042016
Catalog No. 9300: 612001

PURPOSE: To determine the location of the item following a given CPO item on the

path token by search.

ACTION: TRAIL sets cell LINK with the location of the item following a CPO entry,

indicated by X2 on entry, on the path token by SRCH. Cell LINK+1 is set

with the location of the item following the item given by X2 on the

PROGRAMMING
CONVENTION:

CALLING
SEQUENCE:

REQUIREMENTS:

SUBROUTINES
USED:

a I ternate path.

TRAIL is a relocatable routine assembled as part of ENCODER.

BRM TRAIL
Locat i on of C PO entry to index reg i ster

13
8

cells

None

3-58

I II I -II; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATIO N: Obtain one byte' of encoded input (IN)

900 Series: 04201t
Catalog No. 9300: 612001

PURPOSE: To obtain in the A register the next byte of encoded text input.

ACTION: IN extracts the next INBYTE bits of encoded text from cell INCEll. If

INCEll does not contain at least INBYTE bits, IN calls INPUT to obtain

the next word of encoded text. An end-of-file return from INPUT is

considered a catastrophic error, and results in an abort message '03'. The

remaining bits of text in INCEll are retained in INCEll, and INBIT is set

to reflect the number of data bits remaining in INCEll. If a byte is zero,

it is converted to 2INBYTE and INBYTE is incremented by 1. Upon exit

the byte is in the A register.

PROGRAMMING
CONVENTIONS:

CAllING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

IN is a relocatable program assembled as part of ENCODER.

BRM IN

46
8

cells

INPUT

3-59

* II • -It; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Seri es: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Output one byte of encoded text (OUT) .

PURPOSE: To output a byte of encoded text located in the A register to the inter

mediate output file (Xl).

ACTION:

PROGRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

OUT positions the byte and merges it into the location CELL. If the byte is

larger than BYTE bits, BYTE is incremented. When 24 bits of bytes have

been placed in CELL, OUT calls OUTPUT to write the contents of CELL on

the intermediate output file, Xl. To reflect the number of bits of data

stored in CELL, BIT is reset each time OUT is called.

OUT is a relocatable routine assembled as part of ENCODER.

Byte to A reg i ster
BRM OUT

348 cells

OUTPUT

3-60

* ;/ • -1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 6120

IDENTIFICATION: Move tables BPO and CPO (MVTAB)

PURPOSE: To move the CPO and BPO tables to a lower location in memory so that the

dictionary (BPO) may be reinserted purging bytes lost because of lines being

deleted from encoded input.

ACTION:

PROGRAMMING

MVTAB moves CPO to the starting location of APO and adjusts the CPO

table pointers to reflect the amount of relocation. BPO. is then moved to

the first locations following CPO. The location of CPO is set in COR G,

and the amount of displacement in each table is recorded.

CONVENTIONS: MVTAB is u relocatable routine assembled as part of ENCODER.

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

BRM MVTAB

60
8

cells

NCr!c

3-61

t II • -It' SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Relocate dictionary entries into high core (RESET)

PURPOSE: To store dictionary entries remaining after an update run into the BPO in

high core and to alter the CPO pointers to the dictionary items to reflect

the move.

ACTION:

. PROGRAMMING
CONVENTION:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

RESET stores the next location for BPO into the CPO table entry given by

the index X2. Then RESET moves the dictionary item from the location

indicated by TEMP to the next available location for BPO. The number of

words to m~ve, less 1, is given by COUNT. If the location of the item as

indicated by TEMP is greater than the next available location for BPO,

RESET aborts with an 1021 message.

RESET is a relocatable routine assembled as part of ENCODER.

BRM RESET
Word count -1 to COUNT
Location of dictionary item to TEMP
Location of CPO entry for byte to X2

248 cells

None

3-62

t ;1 • -1* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 6120C

IDENTIFICATION: Output encoded dictionary items to the encoded output file (TSOUT)

PURPOSE: To output the number of dictionary characters given by the A register to the

encoded output fi Ie.

ACTIO N: TSOUT first tests to see if encoded output is requested and exits if it is not.

PRO GRAMMIN G
CO NVENTIO NS:

CALLING
SEQUENC'E:

MEMORY
REQUIREMENTS:

SUSRO UTINES
USED:

If an encoded output file is requested, TSOUT obtains the output characters

from the location addressed by TEMP and packs them into cell DATA unti I

DATA contains four characters as indicated by the count A. At this time

TSOUT calls OUTPUT to write the dictionary word on the encoded output

fi Ie. When the number of characters to output has been depleted, TSOUT

exits.

TSOUT is a relocatable routine assembled as part of ENCODER.

SRM TSOUT
Location of dictionary entry to TEMP
Number of characters to output to A register

OUTPUT

3-63

900 Series Only

* I(• -1*; BCIENTIFIC DATA BYBTaMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize RPTB routine (INRPT)

PURPOSE: To initialize unit and channel assignments in the read paper tape binary

routine, RPTB.

ACTION:

PROGRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

INRPT obtains the unit and channel assignments for the device by calling

GTUNT. The I/O instructions within RPTB are then set using the unit and

channel assignments avai lable.

INRPT works as an integral part of RPTB using the unit and channel assign

ments from UAT as reflected in the I/O control words within MSCONTRL.

INRPT is a relocatable routine assembled as part of ENCODER.

BRM INRPT

NOTE: I/O routines used by the META-SYMBOL assembly system have in

general special requirements on the contents of the A, B, and X registers;

for an explanation of the contents of these registers see MSCONTRL.

228 cells

GTUNT

900
3-64

900 Series Only

, 1/ • -1* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Read binary paper tape (RPTB)

PURPOSE: To read into the indicated address the number of words specified (or one

record) of encoded input from paper tape.

ACTION:

PROGRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

RPTB uses a WIM loop to read from paper tape the specified number of words,

or to an end of record, in four character-per-word binary format. lAW and

INRPT are called to initialize the buffer address and unit and channel

assi gnments.

RPTB is coded to work with the file maintenance programs in MSCONTRL.

RPTB is a relocatable binary routine assembled as part of ENCODER. A

buffer error results in a HALT displaying 1101• Stepping causes the next

record to be read.

BRM RDPT
Number of words to B register
Location of buffer to A register
Not used
Norma I return

228 cells

INRPT
lAW

900
3-65

900 Series Only

s *1 • -II' * SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize card read routine (INCRD)

PURPOSE: To initialize the card read routine, CRD, as to unit and channel.

ACTION: INCRD initializes the I/O instructions in CRD by setting the correct unit

and channel bits for each I/O instruction.

PROGRAMMING
CONVENTION:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

INCRD is a logical extension of the CRD routine and depends on the GTUNT

routine having been called to obtain the proper unit and channel assign

ments. INCRD is a relocatable routine assembled as part of ENCODER.

BRM INCRD

23
8

cells

None

900
3-66

900 Series Only

t ;/ • -1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Card read routine (CRD)

PURPOSE: To read the specified number of words from the next card in the card reader

specified into the buffer specified and in the mode specified.

ACTION:

PROGRAMMING
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

CRD calls lAW to initialize the buffer address and INCRD to initialize

itself as to unit and channel. CRD then reads the number of words requested

into the buffer requested by executing the EOM following the BRM to CRD

and entering a WIM loop. A buffer error results in a HALT displaying NOPl .

Stepping to the next instruction results in the next card being read.

CRD is coded to work with the binary and Hollerith card read routines

CRDB and CRDH. CRD is a relocatable routine assembled as part of

ENCODER.

Buffer location to ASV
BRM CRD
Word count to IN 1
EOM instruction
End -of -fi Ie exi t
Normal exit

35
8

cells

lAW
INCRD

900
3-67

900 Series Only

* II • -1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Read binary cards (CRDB or CRDN)

PURPOSE: To read cards in the binary mode.

Catalog No. 042016

ACTION: CRDB gets the unit and channel by calling GTUNT. An EOM instruction is

then initialized for CRD. CRD is called to read the card.

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBRO UTIN ES
USED:

CRDB is coded to be used with the file control routines in MSCONTRL.

CRDB is a relocatable routine assembled as part of ENCODER.

Number of words to B register
Location of buffer to A register
BRM CRDB
End -of -fi I e return
Norma I return

148 cells

CRD

900
3-68

900 Series Only

s ;1 • -Is I SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Read Hollerith cards (CRDH)

PUPPOSE: To read cards in the Hollerith mode.

Catalog No. 042016

ACTION: CRDH calls GTUNT to obtain the unit and channel assignments; it then

initializes an EOM instruction for the CRD routine. The CRD routine is

called to read the card. The first word is tested for .6EOF indicating

end of file.

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

CRDH is designed to work with the file control routines in MSCONTRL.

CRDH is a relocatable routine assembled as part of ENCODER.

Word count to B register
Buffer location to A register
BRM CRDH
End -of -fi I e return
Norma I return

20
8

cells

CRD

900
3-69

900 Series Only

, *1 • -,,; SCIENTIFIC DATA SYSTBMB

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize the RDPT routine (INRDT)

PURPOSE: To initialize with respect to unit and channel the I/O instructions used in

the RDPT routine.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
nr_, 'Tn,..~ .tr ... ,,-,-
KC~UIKCN\C I~ I~:

SUBROUTINES
USED:

INRDT calls GTUNT to obtain the unit and channel assignments for the

read. INRDT then sets the I/O instructions in RDPT to reflect these

assi gnments.

INRDT is a logical extension of the RDPT routine and is a relocatable

routine assembled as part of ENCODER.

BRM INRDT

208 cells

GTUNT

900
3-70

900 Series Only

, 1/ • _III SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Read paper tape and typewriter (RDPT)

PURPOSE: To read binary-coded decimal records from paper tape or from the type

writer.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

RDPT calls INRDT to initialize I/O instructions. Characters are then read

into memory, one at a time using a WIM instruction. Tabulation characters

are converted to blank strings, typewriter blanks (012) are converted to

blanks (060), and carriage return characters are interpreted as end-of-record

marks. Up to 80 characters per record are read. ~EOF in the first word of

input is taken as end of file.

RDPT is designed to work with the file control routines in MSCONTRl.

RDPT is a relocatable routine assembled as part of ENCODER.

BRM RDPT
End-of -file return
Norma I return

73
8

cells

EDC
EDS
INRDT

900
3-71

900 Series Only

t ;1 • -1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Store characters into buffer (EDC)

PURPOSE: To store a character into the buffer location specified.

ACTION: EDC subtracts 60
S

from the character furnished in the A register, positions

it to the correct character position as determined by EDC 1, and stores it

into the location addressed by EDWW by adding to memory.

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

EDC assumes the buffer has been cleared to blanks (60
S

) prior to being

called. EDC is a relocatable routine assembled as part of ENCODER.

BRM EDC
Character to A reg i ster

218 cells

None

900
3-72

900 Series Only

* ;1 I -I'; SCIENTIFIC DATA SYSTEMS

50S PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize word and character positions to store characters (EDS)

PURPOSE: To set parameters EDC 1 and EDWW for EDC routine.

ACTION: EDS uses the control word supplied in the A register to set the shift para

meter, EDC 1, and the buffer location, EDWW, for storing characters. The

control word has the following format:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED~

o 89 23

Character is 0 through 3 giving character positions from left to right to

store next character.

Word position is the address in buffer to store next character.

EDS is a relocatable routine assembled as part of ENCODER.

Contro I word to A reg i ster
BRM EDS

6 cells

None

900
3-73

Set' TO pI of core

Initialize tables,
constants, and
switches

no

Read and encode symbolic
source.

Build CpO (Search) Table
and BPO (dictionary).

Put text on scratch (Xl).

Write end of file on scratch
tape (Xl) and rewind.

Using the text ... 5 a basis,
co lIapse di c tionary
removing deleted bytes.

Output dictionary and
text as requested.

ENCODER
OVERAll flOW

MONl
initialize

10

Initialize ENCODER
I/O Tables

REWW
rewind Xl

Set flag

Rea:j and store old
encoded dictionary.

Read symbolic corrections
and merge wi th encoded
input. Build Equivalence
Table (APO), Search Table
(CPO), and dictionary
(BPO).. Write text on
scratch tape (Xl).

load PREASM

3-/4

OPEN
scratch fi Ie (Xl)

- - ~ Begin N-CODER

UQBOOT-4)
-MMAX

Initialize encoded output
file table, PACK EO •

Initial ize encoded input
file table, PACKEI.

Initialize encoded text
I/O file, MTP.

OPEN
encoded text fi I e

REWW
rewind scratch tape

Initialize parameters:
BYTE, BD, BIT, CELL,
APO, BPO, and
FLAG.·

SrI I LAG 1',,~iliVt'

ENCODER
TRACOR, BEGIN, AND CORR

ROUTINES

COUNT .-- O?

no

encode 1 symbol ic record

INIT
initialize SRCH parameters

no

3-75

Decrement character
count in COUNT

Set loc. of dictionary
entry into APO.

no

End of dictionary

Character - COUNT

O-B
BPO- WORD

encoded input
INCEL.
0- INBIT
1- SEQ

ENCODER
PROG ROUTINE

99999- WORD

normal

P5 - P4

CHAR
get character

yes

G"I 1 .. 1 .\aurCII If'I Choract~r

3-76

! ?

SEQ + 1 - SEQ

SKIP
skip line

yes

SEQ> WORD?

DEC
get corr. number

0- A rog

yes

DECT ,?

no

WORD SEQ?
yes

no

08 - A Reg

no

no

normal

e

yes

get character

ENCODER
DELETE, PTCH AND DEC ROUTIN ES

Extract character of
input - A reg

WORD * 10 +
character -
WORD

3-77

yes

no

Byte in APO?
no

yes

ENCODER
SKIP AND INIT ROUTINES

OUT
output byte

INC
get comment

OUT
output byte

byte >511?

no

t+-----------------------------t Insert byte in APO.

OUT
output byte
from APO

CPO - 9 - CORG
L(HED) - HED + 1
l(HED) - HED +- 2
3 - CSEQ

3-78

O-BC
O-BBC
O-AlFl
o -AlF2
o -PDATA
L(DATA) - HED

get character

P8- COUNT
P5- P4
BBC. 1 - BBC

ENCODER
TRANS ROUTINE

no

no

------------------------~----~
COUNT + 1 - COUNT

yes

BLANK?

no

no
End of record?

yes

Character - NEXT

Set DATA to
2 character blank

3-79

TRAr-JS + 1 - TRAt~S

Get character

no
P4 < 01

ENCODER
TRANS ROUTINE (cont.)

yes

1- ALF1

Set up single
character special
character byte
in DATA.

3-80

014-
A reg

Character ·0100 - DATA

no

Set up 2-character
special character
byte in DATA.

ENCODER
TRANS ROUTINE (cont.)

B Peg. - ALFF
L(STORT+ 2)

SH(FT
L(DA T A) - WORD
13-P3

Character" 212_
DATA

CHAR
get character

Character - NEXT
Merge count into

control byte.

for this t'nlry

3-81

this entry

Position character
and add to location
given by WORD.

ENCODER
STORE AND CHAR ROUTINES

Decrement WORD_
yes Clear loc. given
~------t~ by WORD.

'------- Set SHIFT -, l(STORT)

3-P
Pl +l-Pl
N ext data word
-P2

End of File

end of file

P2- 8 Reg
P4-1- P4

3-82

Shift character from
8 Reg_ to A Reg.

8 Reg_ - P2

RCRD + 1 - RCRD.
Number charocters in

record - P5.
o-p
-19- P1
Number trailing
blanks- Pl.

ENCODER
RCRD, [NC AND OUTC ROUTINES

See S48 to determine
contents of EMPTY •

Device subroutine in
MSCONTRl specified
in HOlP.

3-83

[NBYTE - A Reg.
6-[NBYTE
A Reg -CBYTE

C8YTE - [N BYTE
Byte (mod 64)
- ARes.

HED - LOATA
L(HEO) - MO
UHED) - U
L(HED • 1) -A reg

no

no

ENCODER
SRCH ROUTINE

(Ml-CORG)/3
- A reg

SRCH t 1 - SRCH

Find 1------

3-84

L "" lesser link
G = greater link
K = key af item
8 :: balance of item

8 = 0 balanced
8 = 1 heavy greater
8 = 2 heavy lesser

o = direction followed
o = 0 lesser
o > 1 greater

X = curren t item

,-_G_(M_l_> _...--_A_re_g_ 11
1 -O(Ml)

ENCODER
NSRT ROUTINE (DEFINITIONS)

Let (; denote some byte entry 'in the table; then:

L (0') is the pointer from 0' to a lesser item.

G (0') is the pointer from O'to a greater item.

K (0') is the key of 0'.

8 (0') is the balance of a.
8 (a) = 0 denotes balance.
8 (a) = 1 denotes heavy in the greater chain.
8 (a) = 2 denotes heavy in the lesser chain.

D (a) is the direction followed from a in searching for
an item.
D (a) ~ 0 denotes lesser chain taken.
D (a) = 1 denotes greater chain taken.

X denotes current item to insert.

F (a) denotes the item following 0' on the search path
taken.

Q (a) denotes the item following a on the path other
than that taken.

U denotes the last point of imbalance on the last search
path.

MO denotes the lalt p-:>int examined by SRCH.

M (13) and N (13) are defined such that
If G (a) = 13 then M (13) = G (13)

and N (13) = l (13)
If l (a) ~ 13 then M (13) ~ l (13)

and N (13) = G (13)

H denotes location of HED.

P (a) denotes tocation of dictionary entry for byte a.

3-85

Lf)cation of dictionary
entry - P(X}

CPO + 3 > BPO?

no

F(V) - xx

B(y)

ENCODER
NSRT ROUTINE

CPO - G(MO)

H - L (X)
H - G(X)

no

BPO - P(X)
Number of words of

dictionary - NUM

Move dictionary item
into dictionary.

BPO-NUM -+ BPO

01 - A Reg.

F(U) - V

W - L(U)

yes

no

TRAil V -+ X?
mOlk path from V V - WJX

O? F(V} -VWX

3-86

ENCODER
NSRT ROUTINE (cont.)

get path from X

F(X) -XX

o -B(V)
XX-X2

X2 = H?

yes

CPO +3 -CPO
CSEQ -A reg
CSEQ + 1- CSEQ

Q(XX)- QX
XX - F(U)
N(XX) - F(W)
M(XX)- F(V)
w- N(XX)
V-M{XX)
O-B(XX}
O-·B(V)

F(VWX)- X2

F(W)- XX

TRAIL
get path from XX

TRAIL
get path from X2

F(X2)-X2

2-B(Q(XX»

TRA(L
get path from VWX

3-87

no

l(XX) -NX
G(XX)-MX

no

F(F(U» - VWX

D(Q{XX» ,O?

no

1-B(Q(XX»

INBlT > 24?

yes

(NBIT-24 - INBIT

""--------- yes
Byte ~ O?

no

ENCODER
TRAIL, .IN AND OUT ROUTINES

EOF

yes

nonnal

Extract INBYTE bits from
INC ELL starting at
IN'BIT.

t~~BIT + tt-~8YTE ==* 1~~BtT

21NBYTE _ A Reg

as byte
INBYTE + 1-

INBYTE

3-88

yes

BYTE + 1 - BYTE

Position byte to start
in bit position BIT.

Merge into CELL

Full word?

yes

BIT + BYTE
~24 - BIT

3 -SEQ
Initialize t(l output

dictionary .

Copy text from
Xl to output
media.

ENCODER
END ROUTINE

CLOSE
en coded ou tpu t

COUNT - 1 - COUNT

OPEN
encoded output

file

3-89

no

Get dictionary entry
for byte at X2.

No. words - count
No. bytes mod 3

-NEXT
Location dictionary

-TEMP

Location of 1st
byte - X2

yes

TBOUT
finish la~t word

no

Move CPO (search, insert
table) to 1st available cells
after encoder.

Adjust all pointe" to items
within CPO by the amount
of displac.ement.

Reset (ORG.
Move BPO (dictionary) to

1st cells following CPO.
Save new BOP origin in

NBTO.

Encoded output requested?

no

ENCODER
MVTAB, RESET AND TBOUT ROUTINES

Reset CPO Table pointer
to new dictionary
location •

Move dictionary entry
from BPO to high core.

3-90

yes

no

01 -A Reg_

no

End of entry?

yes

Initialize all the EOMs,
SKSs and wtMs in the
RPTB routine

Initialize all EOM, SKS,
and WIM instructions in
the CRD routine for unit
and channel.

900 Series Only

ENCODER
INRPT, RPTB, INCRD AND CRD ROUTINES

no

C?

Using W(M loop, copy
req'Jested number of
words to given location.

initialize unit
and channel

no

yes Copy specified number

Disconnect buffer
RPTB + 1 - RPTB

yes

~-....... of words into location t----.,

yes

900
3-91

given. ---no-

CRD + 1- CRD

Initiol ize 011
EOM, SKS ond
WI M instructions
in RDPT os to

900 Series Only

ENCODER
CRDB, CRDH, INRDi AND RDPT ROUTINES

Read i choracter
into CHP

yes

900
3-92

Disconnect

buff~r

RDPT + 1 :-- RDPT t----t~

no

Set ED'NW to word to
receive next character
and EDCl to character
position .

900 Series Only

ENCODER
EDC AND EDS ROUTlN ES

Store character in A reg
into next position addressed
by EDCl and EDWW.

Full word?
no

yes

lncrement EDC 1

Reset EDCl and ED'NWt-------.t

900
3-93

SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9.300: 612001

IDENTIFICATION: Tran~lation program (S4B)

PURPOSE: To translate symbolic input from SYMBOL 4 or SYMBOL 8 language into

META-SYMBOL language.

ACTION: S4B tests the control cell MSFNC to determine if translation has been

requested. If no trnaslation is requested, S4B exits immediately. The input

record is scanned for items to be translated which includes the following:

1. MACROs written in the SYMBOL 8 format are translated to PROCs and

NAMEs in the META-SYMBOL format; ENDM is translated to END.

2. Fields which have assumed octal values in the input language are

suppl ied leading zero characters in the META-SYMBOL format.

3. Decimal and binary scale factors are converted to META-SYMBOL

format.

4. Indirect flags are moved from the last character of the operation field

to the leading character position of the operand field.

5. Operand fields of VFD directives are translated to META-SYMBOL lists.

6. BCI directives are converted to BCD directives.

7. Leading 0 or H characters on literals are replaced by 0 (zero) and

leading and trailing I respectively.

8. DEC and OCT directives are translated to DATA.

9. Parameter references wi th i n macros are translated to MET A-SY MBO L

format.

3-94

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

Catalo No 900 Series: 04201
g • 9300: 6 1 20(

If an input record results in an expansion necessitating the generation of

two or more output records, the location EMPTY is set to transfer to the

appropriate point in S4B to resume the translation. EMPTY, normally a

NOP instruction, is executed by the RCRD routine of ENCO DER before

reading the next symbolic input record and in this way proper translation

resu Its.

S4B as a translation program is designed to work with ENCODER and may be

thought of as an extension to the symbolic input section of ENCODER. Note

that only symbolic inputs are translated, the assumption being that all

encoded outputs have been translated from the ori gi na I symbo Ii c on the

initial encoding run. S4B is a separately assembled relocatable routine to

be loaded behind ENCODER and the programmed operator routines. The

cell TABLES in ENCODER is set to a value which addresses some location

following S4B. Since this cell represents the starting location in lower

memory for tables constructed by ENCODER, any increase in the size of

S4B may result in the need to reassemble ENCODER. The symbols EMPTY

and S4B are defined as external for reference within ENCODER. The

symbol CARD within S4B addresses the symbolic input buffer within

ENCODER; and, if the location of this buffer (CARD) changes in ENCODER,

it is necessary to reassemble S4B to reflect this shift.

Initial entry to S4B for record
BRM S4B

Subsequent entries to S4B to resume translation of a single symbolic record.

EXU EMPTY

The return in this case is to the location of the EXU plus 4.

3-95

MEMORY
REQUIREMENTS: 12208 cells

SUBROUTINES
USED: TENC

OCTC
NUM
NAME
PARAMS

MOVE
RESET
GET
PUT

3-96

Catalog No. 900 Series: 04!6,_
9300; 614.

ENTRY POINTS TO S4B SUBROUTINES

Page Page
Entry Descri ption Flowchart Entry Description Flowchart

BCI 3-108 OCT8 3-99 3-109

BINS 3-110 ocrc 3-99 3-109

DECS 3-110 PARAMS 3-102 3-112

DECS2 3-110 PUT 3-106 3-113

DED 3-108 RESET 3-104 3-113

ENDM 3-111 S4B 3-94 3-107

GET 3-105 3-113 S4B02 3-94 3-108

LIT 3-94 3-107 S4B03 3-94 3-108

LIT1 3-94 3-107 S4B1 3-94 3-108

MACRO 3-112 S4B2 3-94 3-107

MOVE 3-103 3-113 S4B6 3-94 3-107

NAME 3-101 3-112 TEN 3-98 3-108

NUM 3-100 3-109 TEN3 3-98 3-108

NUM1 3-100 3-109 rENC 3-98 3-108

NUM2 3-100 3-109 VFD 3-111

OCT 3-99 3-109 VFD3 3-111

OCT5 3-99 3-109 VFD4 3-111

OCT6 3-99 3-109

3-97

,. 1/ • -II I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATIO N: Resume translation of DEC directive (TENC)

PURPOSE: To initialize parameters and exit location when resuming the translation of

the operand field of a DEC directive which expands to more than 72

characters.

ACTION:

PROGRAMMI NG
CONVENTIONS:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

TENC sets S4B to the location of the EXU EMPTY instruction plus 4 and then

calls RESET to initialize the card buffer for resuming the translation. TENC

exits to TEN3 to continue the translation process.

TENC is executed only after the DEC translation code is unable to translate

the input image into a 72-character META-SYMBOL equivalent because of

space. It assumes the ENCODER wi II remotely execute the instruction at

EMPTY. TENC is a relocatable routine assembled as part of S4B.

A BRM TENC is stored in EMPTY, and TENC is called when EMPTY is

executed.

6 cells

RESET

3-98

, ;1 I -* I SC.ENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 6120(

IDENTIFICATION: Resume translation of OCT directive (OCTC)

PURPOSE: To reset the S4B exit and the symbolic input buffer to resume the translation

of the OCT directive.

ACTION: aCTC sets S4B to the location of the EXU EMPTY plus 4 and then calls

RESET to initialize the symbolic input buffer to resume translation of the

OCT directive.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

OCTe is called only when during the translation of an OCT directive the

symbolic card buffer filled before the translation could be completed. It

assumes the ENCODER will remotely execute cell EMPTY. OCTC is a

relocatable routine assembled as part of S4B.

A BRM OCTC is stored in EMPTY during the translation of an input OCT

directive. OCTC is called by executing EMPTY remotely.

7 cells

RESET

3-99

,~nlt I SCIENTIPIC DATA SVST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Convert input numeric fields to META-SYMBOL format (NUM)

PURPOSE: To translate input symbolic numeric fields from SYMBOL 4 or SYMBOL 8

format to META-SYMBOL format.

ACTION: NUM obtains characters one at a time by calling GET until a terminator is

obtained. Binary scaling factors are converted from the B notation to */j
decimal seal ing factors are converted from the E notation to *+. Characters

are stored in the input symbolic buffer by calling PUT.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

NUM is a relocatable routine assembled as part of S4B.

BRM NUM

1128 cells

GET
PUT

3-100

t *1 • -It; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 61200

IDENTIFICATION: Define name lines for MACRO directives being translated (NAME)

PURPOSE: To define NAME directives by which procedures being generated from input

MACRO I ines may be called.

ACTION:

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

NAME sets the exit from S4B and calls RESET to initialize the symbolic input

buffer. NAME then sets NAME in the operation field of the buffer and the

label from the MACRO line into the label field in the buffer. Before

exiting S4B, NAME sets EMPTY to contain BRM PARAMS for translating

the parameters to the MACRO sample.

NAME is called only as a result of encountering an input MACRO line.

NAME is a relocatable routine assembled as part of S4B.

BRM NAME is stored in EMPTY
NAME is called when EMPTY is executed.
NAME returns to the EXU EMPTY plus 4.

21acells

RESET

3-101

, *1 ,M -It I SCI.NTIPIC DATA SYST.MS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042010

Catalog No. 9300: 612001

IDENTIFICATION: Define parameters on MACRO lines (PARAMS)

PURPOSE: To translate macro parameters to a format suitable to META-SYMBOL.

ACTION: PARAMS provides for the translation of parametric values by defining each

parameter equal to the corresponding META-SYMBOL subscripted symbol

PROGRAMMING
TECHNIQUES:

rAI I',
~I"\LLJI~\..7

SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

for the parameter. PARAMS sets the S4B exit location and then calls RESET

to initialize the input buffer. The next parameter is then placed in the

label fierd, the operation is set to EQU, and the operand field is set to the

REFLIST (n), where REFLIST is the label given the PROC line generated in

place of the MACRO and n is the current parameter number.

PARAMS is called only after generating a NAME line as part of the trans

lation of a MACRO. PARAMS is a relocatable routine assembled as part of

S4B.

PARAMS is called by an EXU EMPTY after EMPTY has been set with a
BRM PARAMS by the NAME routine. Return is to the EXU EMPTY plus 4.

GET
PUT
RESET

3-102

-_-fj:i -l; SCIENTIPIC DATA SVST.MB

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 61201

IDENTIFICATION: Save symbolic lines of input (MOVE)

PURPOSE: To move symbolic input lines and clear the symbolic input buffer to blanks

in anticipation of having to translate a line and expand its size.

ACTION:

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

MOVE moves the contents of the buffer CARD to the buffer XCRD and stores

blanks in CARD. MOVE then initializes the cells GETD, GETW, and

GETCT for GET and the cells PUTT and PUTW for the PUT routine.

MOVE is a relocatable routine assembled as part of S4B.

BRM MOVE

23
8

cells

None

3-103

, 'I • -It , SCIENTIFIC DATA SYSTEMS

50S PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Initialize symbolic input buffer when continuing translation (RESET)

PURPOSE: To set the last 16 words of the symbolic input buffer to blank and to

initial ize the PUT routine parameters.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
R EQ UIR EME NTS:

SUBROUTINES
USED:

RESET stores blanks in the last 16 words of CARD and also in the label field

of CARD. RESET then initializes the PUT parameter words PUTT and PUTW.

RESET is a relocatable routine assembled as part of S4B.

BRM RESET

25
8

cells

None

3-104

~j:i -Is SCIENTIFIC DATA SYST.MB

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 0·l20 16

Catalog No. 9300: 612001

IDENTIFICATION: Get next character of symbolic source (GET)

PURPOSE: To get the next character of symbolic input into the A register.

ACTION: GET extracts the next input character into the low order bit positions of the
"-,

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

A register and GETC. The pointers to the next character of source are

incremented. If the character is a comma or a blank, GET exits to the

location following the call; otherwise, it exits to the location of the call

plus 2.

GET is a relocatable routine assembled as part of S4B.

BRM GET
end -of -entry return
norma I return

35
8

cells

None

3-105

s *1 I -I' I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Store a character of translated source (PUT)

PURPOSE: To insert a character located in the A register into the next character

position of the symbolic input buffer.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE":

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

PUT positions and stores the input character into the buffer at the location

given by PUTW. The buffer location pointers are incremented for the next

character.

Since PUT subtracts 60
8

from the character and adds the result to memory,

it assumes the buffer has been cleared to blanks before being called. PUT

is a relocatable routine assembled as part of S4B.

Character to A register
BRM PUT

228 cells

None

3-106

yes

BCI for BCI
DED for DED
TEN for DEC
OCT for OCT
S4Bi for EOM, RCH,

SKS or OPD
VFD for VFD
ENDM for ENDM
54B02 for BOOl
54B03 for BORG

no

s·tS
OVERAll r lO\\

3-107

no

yes
Hollerith

~---------t523 - SCALE

-----1 BOOl

Eau - operation
field

Place lead zero
before operand.

Move * i r needed.

S48
OVERALL FLOW (cont.)

TENe AND DtC ROllTlNf,>

--- ---I B()~G

Set count to 56

-------1 ... _D_E_C_

S23 -- SCALE

3-108

Change mnemonic
to BCD

no ~------~------~

yes

Change count to
character count.

S46 - SCALE

MOVE
move card image

Generate 9 character
octal constant with lead
zero and 4 merged into
1st octol digit

S48
aeTe AND NUM ROUTINES

3-109

no

8RM aeTe - EMPlY

PUT
store character

S48
DECS AND BINS ROUTINES

no

-----..... ---, yes
d\QJOcter + ? ~---....

no

Character> 9?

yes

PUT
store character

yes yes

3-110

terminator
-....:.-'"

Character -?

yes

GET
character

tenninator

H flag set?

yes

PUT
store character

S48
VFD AND ENDM ROUTINES

S flag set?

no

yes

Set S flog

PUT
store,

3-111

store character

O?
no

PUT
~tore 0

H flag set?

yes

PUT
store'

no

S48
MACRO, NAME AND PARAMS ROUTINES

Save label modified by adding
1 to last character (M
- N) store REFLIST in
image as PROC label.

Set mnemonic to PROC.
BRM NAME - EMPTY

Reset exit for S48

RESET
new card

GET
character

terminator

NOP - EMPTY

normoi

no

stort new card

Restore label from MACRO
card.

Set mnemonic to NAME.
BRM PARAMS - EMPTY

Dummy parameter - label
field EQU - operation
field

REFlIST (n) - operand
field

3-112

S48
MOVE, RESET, GET AND PUT ROUTINES

Card image
- XCRD-XCRD t 17

Blanks - CARD + 3
-CARD + 20

Initialize parameters for GET.
Initialize parameters for PUT.

Extract character and store
in GETC.

Step character position.

yes

no

Increment EXIT

3-113

Blanks to last 16 wards of
CARD buffer and to label
field.

Initialize parameters for PUT.

Insert character into
CARD buffer.

Step character position.

900 Series Only

~I 'I • -\1; SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Initialize I/O control cells and copy symbolic corrections (MON1)

PURPOSE: To initialize the file maintenance and I/O device handling control words of

MSCONTRL, to copy symbolic corrections to scratch tape X2 if needed, and

to set the delay loop timing for paper tape reading.

ACTION: MONl examines each entry of the unit assignment table (UAT) referenced

by the assembly system and each entry in the MSFNC control word to deter

mine which I/O functions and devices are to be used for the run. If a func

tion is requested, MONl inserts an entry into a control cell of the following

format:

Standard I/O Contro I Word

A c~ntents H c I u I
bl ts \...O;.....L.l-.... 1-3J...4--4---+19--'-1-0---4f----+---+---t-~2~3

where: M is decimaVbinary mode flag

C is channel designation

U is unit number

A is address of routine to perform function

The above control words are found in MSCONTRL from MONBO through

MONLF. In addition, the control flags USI through USO in MSCONTRL

are set by MON 1 in the following format:

Standard I/O Control Flag

c~ntents H c I u I
bits 0 1 13 4 19 1 0 1

where: M is decimal/binary mode flag

C is channel

900
3-114

Code
I 23

ACTION
(cont.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREME NTS:

U is unit

Code is

900 Series Only

o for no operation
1 for cords
2 for paper tape
3 f,?r magnetic tape

Cata log No. 042C

If the contents of the cell is zero, no request has been made for th i s input

or output function.

The Standard I/O control word for a disc file is

o
where

NR

9 10

NR is a fi Ie number

A

23

A is address of I/O linkage routine to perform operation.

If both encoded and symbolic inputs are requested on the same device,

MO Nl copies the symbol ic corrections to scratch tape X2 and changes the

control cells for symbol ic input in MSCONTRL. If corrections are not copied,

MON1 stores a NOP over the rewind call in ENCODER at SETMO. MON1

also sets DELAY for the paper tape read routine depending on the type of

machine as determined by executing a shift instruction.

MON1 is dependent on the ordering of the control cells in MSCONTRL, the

order of the UA T, and the order of parameters in MSF NC. MO N 1 is a re

locatable routine and is the last relocatable routine loaded with ENCODER.

Since MON1 is an initialization routine, ENCODER does not preserve it

and overlays MON1 with tables.

BRM MONl

404
8

ce II s (a II reusabl e after MO N 1 has been executed)

900
3-115

Set DELAY IJsing functions
uiven in MSFNC and Unit
Assignments from UAT.

Set Control words in MSCONTRL
with device codes:
0, not used
1, cards
2, f-aper tal_e
3, mag. tarJe

Using device codes extracted
above and I/O unit Llddress
starting at TSO, set the sub
routine I inkage words in
MSCONTRL.

S'I'lbolic and
encoded ini~ut both

on cords?

no

Store NOP over BRM
REWW in ENCODER
at SETMO

MONI

900
3-116A

\

REWW
rewind

X2

Copy correctiuns from
symbolic source to X2.

Write EOF on X2 and
rewind it.

Chnnge symbolic inrut
'lssignrnents to mag. tape

PREA
SRNK

SUBROUTINES
USED:

900 Series Only

Routine associated with symbolic input
(CRDHt, RDPTt, and RM TBtt)
WMTBtt REWWtt
EFMTtt

t These routines are described under ENCODER.

ttThese routines are described under MSCONTRL.

900
3-116

Catalog No. 042016

900 Series Only

SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Process standard procedure file (PREA or PREASM)

PURPOSE: To define directives, process standard procedures, and reformat dictionary

entries and to establish the byte table in preparation for assembling programs.

ACTION: PREASM acts as the link between ENCODER and the assembler programs.

ENCODER builds a series of tables during the encoding process in order to

translate the symbolic data into compressed encoded information. These

tables are inadequate for the assembly program for several reasons.

1. The tables are too extravagant of space. ENCODER needs a 3-word

table to find and define unique dictionary entries efficiently; once the

dictionary is defined, however, a 1-word pointer to each entry wi II

suffi ce very we II to interpret the encoded text.

2. The dictionary is in the wrong format. The assembly programs will need

to make relatively few references to the actual dictionary entries for a

byte if they can know the type of information the byte represents.

3. The data is incomplete. ENCODER processes only the user program; In

order to complete the assembly operation the assembly routines must also

have at their disposal definitions of the directives and standard procedures

referenced by the user's program.

PREASM first reads the dictionary from the standard procedures file on the

systems tape and then, using the tables and communication cells left by

ENCODER, defines all unique bytes in much the same manner as does

ENCODER. For each entry in the standard procedure di ctionary PREASM

makes a 1-word entry in an equivalence table, ETAB, which allows the

translation of byte numbers from the standard procedures text to the equivalent

900
3-117

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

900 Series Only

Catalog No. 042016

byte numbers in the userls program. In a similar manner PREASM defines

the directive bytes from dummy dictionary entries assembled as part of

PREASM.

This done, PREASM has no further need for the balanced tree search table

CPO. The next step is to convert the dictionary into two tables, part being

the dictionary characters themselves in packed format and the remainder a

1-word pointer to the character position of the lead dictionary character for

the byte. The pointer word also contains the number of characters in the

di ctionary and the code i ndi cati ng type of entry.

The dictionary characters are stored in ascending order starting at the loca

tion given in DTAB whose address is sufficiently large to allow the largest

segment of the assembly system to be loaded below it. The byte table

(BT AB) is stored in descending locations starting just above QBOOT at the

upper end of memory.

Once the dictionary has been compressed and the byte table has been estab

lished, PREASM defines the directives by entering them in the symbol table

just below BT AB; these are a Iso stored in descendi ng order.

The text of the standard procedures fi I e are now read, and those procedures

to which reference has been made in the useris program are stored in the

sample storage area just above the dictionary. Those NAMEs wh i ch have

been referred to in the user's program are defined by entering NAME items

in the symbol table.

When a II records from the standard procedures fi I e have been processed,

PREASM calls the tape loader routine to load SHRINK.

PREASM is a relocatable program originated at location 13500 • This leaves
u

sufficient room below PREASM for the resident routines and the communi-

cation cells established by ENCODER. PREASM is assembled in two parts

900
3-118

PROGRAMMING
TECH NI QUES:
(cont.)

900 Series Only

Catalog No. 042016

and converted to an absolute program by loading the two segments with POPs

between them and then punchi ng out an absol ute program from the contents

of core.

PREASM determines the location of QBOOT and hence the avai lable table

space by examining cell 1 which contains the instruction BRU QBOOT,

established by MONARCH.

Since the length of ENCODER and S4B combined is larger than PREASM, the

tables generated by ENCODER are sufficiently above the end of PREASM to

allow room for the equivalence table, ETAB, below them. Should the number

of bytes in the standard procedures deck increase sharply or the size of

PREASM relative to ENCODER increase sharply, this may not be the case;

then ET AB wi II have to be moved or the origi n of the ENCODER tabl es increased.

As noted above, there are a few words of communicat;on between ENCODER

and PREASM. These cells are addressed by absolute addresses within PREASM.

PREASM has two communication links with the assembler routines in addition

to the tables noted above. These cells, PACKL and LlTAB, indicate to the

assembler programs the ending locations of the procedure sample and the

symbol or item table, respectively. The words are the first two locations in

PREASM.

Processing of Standard Procedure Sample

The encoding technique used in the META-SYMBOL assembly system allows

for a monotonically increasing byte size. The byte size is incremented

whenever the byte represented by the current size is zero. Because procedure

NAME lines are not normally saved in the procedure sample area and be

cause the number of NAMEs associated with a procedure may be large, it is

possible to have the byte size incremented several times between the end of

the PROC line and the first line following the procedure names. Unless the

byte si ze for the PROC Ii ne is set to refl ect th ish idden increase in byte

size; the processing of lines of code from the procedure somple area will

900
3-119

PROGRAMMING
TECHNIQUES:
(cont.)

900 Series Only

.
Catalog No. 042016

degenerate to nothing. This single underlying phenomenon will be apparent

through the following discourse on sample processing.

NAMEs of procedures are not defined when they appear inside a nested pro

cedure but rather the NAME I ines are moved to the procedure sample and

the NAMEs defined when the outer procedure is referenced.

Each new line of procedure sample is processed starting at the location LINE.

The line is read by calling TEX and then scanning from left to right. The

label is saved at LBL. The operation code is obtained and tested to see if it

is a directive. If the line is not a directive, control goes to LIN3. If it is

a directive, control goes to PRO for a PROC, FUN for a function, NAM for

a NAME, or SEND for an END. All other directives go to LIN3. A direc

tive branch table is used to determine the type of directive. Processing

stops when an end-of-fi Ie is detected.

At LIN3 the line is moved to the sample storage area if the previous line was

moved there. If the I ine is not inside a procedure, or if it is inside a proce

dure but no NAMEs have been defined for the procedure, the line is ignored.

If the I ine is the first I ine following a procedure NAME I ine, and at least

one NAME of the procedure has been referred to by the user's program, the

starting location for the procedure is determined and placed in the NAME

items saved for this PROC. The procedure line is moved to sample storage

followed by the current line, and a flag is set indicating the sample is being

saved.

Processing the PROC and FUNC lines. The detection of PROC or FUNC

lines results in a count being incremented to indicate the level of procedure

nesting. If the PROC or FUNC is not nested, the I ine is moved to a buffer,

PRBYTS, for later insertion into the sample storage area, and a flag is set to

indicate if the sample is procedure or function. If the PROC is nested, con

trol goes to LIN3 to be processed like any other line.

900
3-120

PROGRAMMING
TECHNIQUES:
(cont.)

900 Series Only

Catalog No. 042016

Processing the NAME line. When a NAME is detected, a test is made to

determine if a PROC or FUNC line has been encountered; if one has not,

the line is ignored. If the NAME appears in nested sample, it is treated

like any other line by transferring control to LIN3A. If the NAME appears

in the user's sample, the count of NAMEs saved is incremented and a

NAME item inserted in the symbol table. If it does not appear in the user's

program, the line is ignored. When inserting NAME items into the symbol

table, the NAMEs associated with a procedure are linked so that once the

procedure origin has been established it may readily be inserted in all the

NAME items. The value associated with the NAME is obtained by call ing

VAL.

Processing the END lines. When an END directive is detected, the pro

gram determines whether the END follows a PROC or FUNC. If not, it is

ignored; if it does, the nested procedure count is decremented. If this is

the END of an outer PROC, the sample processing flag is turned off and a

test is made to see if any NAMEs have been defined. If the sample is being

saved, control goes to LIN3A; if not, the line is ignored. If an END is

detected within nested PROC, sample control goes to LIN3 after decrement

i ng the nested procedure count.

The following modifications have been incorporated within the RAD

MONARCH version of META-SYMBOL:

1. The input buffer has been moved to correspond with the locations

used in the Basic RAD Loader routine.

2. Calculation of top of memory and UAT entries is changed slightly

because of the larger resident monitor.

3. The initialization of the RDTP routine is bypassed since the system

is RAD-resident.

900
3-121

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

900 Series Only

Catalog No. 042016

4. The SCTP routine is overlaid with a call to the SCTP routine in the

Basic RAD loader.

5. The RDTP routine is overlaid with a call to the RDTP routine in the

Basic RAD loader.

6. The DONE code to load the next core overlay simply calls the RAD

loader since it searches for the 62 name records anyway, and the

special skipping of encoded procedure decks on the system file is

therefore avoided.

PREASM is called by the tape loader when the latter executes the transfer

address in the last record of the PREASM program fi Ie.

Variable, but at least 8192
10

words of core. PREASM, when it has ex

hausted its working storage area, calls the ABORT routine to write an error

message and return control to the monitor.

TRAI~ GCW GTCHR
SRCH

t
GTB DPDIV

NSRT tt GBW GPDC
ABORT TEX PI(RDPD)
GBCttt INC FETCH
VAL MRKBYT PACK
MVPRC CNVRT RDTP
MOVE

tThese routines are the same as those described under ENCODER except
that they are assembl ed as part of PREASM .

ttThis routine is described under MSCONTRL.

ttt No flow diagram provided.

900
3-122

9300 Only

SC.ENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Page 1 of Catalog No. 612001

IDENTIFICATION: Process standard procedure fi Ie (PREA or PREASM)

PURPOSE: To define directives, process standard procedures, and reformat dictionary

entries and to establish the byte table in preparation for assembl ing programs.

ACTION: PREASM acts as the I ink between ENCODER and the assembler programs.

ENCODER builds a series of tables during the encoding process in order to

translate the symbol ic data into compressed encoded information. These

tables are inadequate for the assembly program for several reasons.

1. The tables are too extravagant of space. ENCODER needs a 3-word

table to find and define unique dictionary entries efficiently; once the

dictionary is defined, however, a 1-word pointer to each entry wi II suf

fice very we" to interpret the encoded text.

·2. The dictionary is in the wrong format. The assembly programs wi II need

to make relatively few references to the actual dictionary entries for a

byte if they can know the type of information the byte represents.

3. The data is incomplete. ENCODER processes only the user program; in

order to complete the assembly operation the assembly routines must also

have at their disposal definitions of the directives and standard proce

dures referenced by the user's program.

PREASM first reads the dictionary from the standard procedures fi Ie on the

systems tape and then, using the tables and communication cells left by

ENCODER, defines all unique bytes in much the same manner as does

ENCODER. For each entry in the standard procedure dictionary, PREASM

makes a 1-word entry in an equivalence table, ETAB, which allows the trans

lation of byte numbers from the standard procedures text to the eqL!ivolent

9300
3-117

Page

ACTION:
(cont.)

PROGRAMMING
TECH NI QUES:

9300 Only

Catalog No. 612001

byte numbers in the user's program. In a similar manner PREASM defines the

directive bytes from dummy dictionary entries assembled as part of PREASM.

This done, PREASM has no further need for the balanced tree search table

CPO. The next step is to convert the dictionary into two tables, part being

the dictionary characters themselves in packed format and the remainder a

l-word pointer to the character position of the lead dictionary character for

the byte. The pointer word also contains the number of characters in the

dictionary and the code indicating type of entry.

The dictionary characters are stored in ascending order starting at the loca

tion given in DTAB whose address is sufficiently large to allow the largest

segment of the assembly system to be loaded below it. The byte table

(BTAB) is stored in descending locations starting at the top of core.

Once the dictionary has been compressed and the byte table has been estab

I ished, PREASM defines the directives by entering them in the symbol table

just below BTAB; these are also stored in descending order.

The text of the standard procedures fi Ie are now read, and those procedures

to which reference has been made in the user's program are stored in the

sample storage area just above the dictionary. Those NAMEs which have

been referred to in the user's progr"Qm are defined by entering NAME items

in the symbol table.

When all records from the standard procedure fi Ie have been processed,

PREASM calls the tape loader routine to load SHRINK.

Since the length of ENCODER and S4B combined is larger than PREASM, the

tables generated by ENCODER are sufficiently above the end of PREASM to

allow room for the equivalence table, ETAB, below them. Should the num

ber of bytes in the standard procedures deck increase sharply or the size of

9300
3-118

Page

PROGRAMMING
TECHNIQUES:
(cont.)

9300 Only

Catalog No. 612001

PREASM relative to ENCODER increase sharply, this may not be the case;

then ETAB will have to be moved or the origin of the ENCODER tables increased.

Asnoted before, there are a few wordsof communication between ENCODER

and PREASM. These cells are addressed by absolute addresses within PREASM.

PREASM has two communication I inks with the assembler routines in addition

to the tables noted above. These cells, PACKL and LITAB, indicate to the

assembler programs the ending locations of the procedure sample and the

symbol or item table, respectively. The words are the first two locations in

PREASM.

Processing of Standard Procedure Sample

The encoding technique used in the META-SYMBOL assembly system allows

for a monotonically increasing byte size. The byte size is incremented

whenever the byte represented by the current size is zero. Because proce

dure NAME lines are not normally saved in the procedure sample area and

because the number of NAMEs assoc iated with a procedure may be large, it

is possible to have the byte size incremented several times between the end

of the PROC line and the first line following the procedure names. Unless

the byte size for the PROC I ine is set to reflect this hidden increase in byte

size, the processing of I ines of code from the procedure sample area wi II

degenerate to nothing. This single underlying phenomenon will be apparent

through the following discourse on sample processing.

NAMEs of procedures are not defined -when they appear inside a nested pro

cedure but rather the NAME I ines are moved to the procedure sample and

the NAMEs defined when the outer procedure is referenced.

Each new line of procedure sample is processed starting at the location LINE.

The line is read by calling TEX and then scanning from left to right. The

label is saved at LBL. The operation code is obtained and tested to see if it

is a directive. If the line is not a directive, control goes to LIN3. If it is

9300
3-119

Page

PROGRAMMING
TECHNIQUES:
(cont.)

9300 Only

Catalog No. 612001

a directive, control goes to PRO for a PROC, FUN for a function, NAM for

a NAME, or SEND for an END. All other directives go to lIN3. A direc

tive branch table is used to determine the type of directive. Processing

stops when an end-of-fi Ie is detec ted.

At lIN3 the line is moved to the sample storage area if the previous line was

moved there. If the I ine is not inside a procedure, or if it is inside a proce

dure but no NAMEs have been defined for the procedure, the I ine is ignored.

If the line is the first line following a procedure NAME line, and at least

one NAME of the procedure has been referred to by the user's program, the

starting location for the procedure is determ ined and placed in the NAME

items saved for this PROC. The procedure I ine is moved to sample storage

followed by the current I ine, and a flag is set indicating the sample is being

saved.

Processing the PROC and FUNC lines. The detection of PROC or FUNC

lines results in a count being incremented to indicate the level of procedure

nesting. If the PROC or FUNC is not nested, the I ine is moved to a buffer,

PRBYTS, for later insertion into the sample storage area, and a flag is set to

indicate if the sample is procedure or function. If the PROC is nested, con

trol goes to LiN3 to be processed I ike any other line.

Processing the NAME I ine. When a NAME is detected, a test is made to

determ ine if a PROC or FUNC I ine has been encountered; if one has not,

the line is ignored. If the NAME appears in nested sample, it is treated

like any other I ine by transferring control to LIN3A. If the NAME appears

in the user's sample, the count of NAMEs saved is incremented and a

NAME item inserted in the symbol table. If it does not appear in the user's

program, the line is ignored. When inserting NAME items into the symbol

table, the NAMEs associated with a procedure are iinked so that once the

procedure origin has been establ ished it may readi Iy be inserted in all the

NAME items. The value assoc iated with the NAME is obtained by call ing VAL.

9300
3-120

PROGRAMMING
TECHNIQUES:
(cont.)

CALLING
SEQUENCE:

9300 Only

Catalog No. 612001

Processing the END lines. When an END directive is detected, the pro

gram determines whether the END follows a PROC or FUNC. If not, it is

ignored; if it does, the nested procedure count is decremented. If this is

the END of an outer PROC, the sample processing flag is turned off and a

test is made to see if any NAMEs have been defined. If the sample is being

saved, control goes to LI N3A; if not, the line is ignored. If an E NO is

detected within nested PROC, sample control goes to LIN3 after decrement

ing the nested procedure count.

The following modifications have been incorporated within the RAD

MONARCH version of META-SYMBOL:

1. The input buffer has been moved to correspond with the locations

used in the Basi c RAD Loader routine.

2. Calculation of top of memory and UAT entries is changed sl ightly

because of the larger resi"dent monitor.

3. The initial ization of the RDTP routine is bypassed since the system is

RAD-resident.

4. The SCTP routine is overlaid with a call to the SCTP routine in the

Basic RAD loader.

5. The RDTP routine is overlaid with a call to the RDTP routine in the

Basic RAD loader.

6. The DONE code to load the next core overlay simply calls the RAD

loader since it searches for the 62 name records anyway, and the

special skipping of encoded procedure decks on the system file is

therefore avoided.

PREASM is called by the tape loader when the latter executes the transfer

address in the last record of the PREASM program file.

9300
3-121

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

9300 Only

Cata log No. 612001

Variable, but at least 8192
10

words of core. PREASM, when it has ex

hausted its working storage area, calls the ABORT routine to write an error

message and return control to the monitor.

TRAIL t
SRCHt
NSRTt
ABORT

tt

GBCttt

VAL
MVPRC
MOVE

GCW
GTB
GBW
TEX
INC
MRKBYT
CNVRT

GTCHR
DPDIV
GPDC
PI(RDPD)
FETCH
PACK
RDTP

tThese routines are the same as those described under ENCODER except that
they are assembled as part of PREASM.

ttThis routine is described under MSCONTRL.

ttt No flow diagram provided.

9300
3-122

ENTRY POINTS TO PREASM SUBROUTINES

Page Page

Entry Description Flowchart Entry Description Flowchart

CHNG1 3-117 3-141 NS4 3-152
CNV1 3-132 3-147 NS4A 3-153
CNV2 3-132 3-147 NS4B 3-153
CNV3 3-132 3-148 NS5 3-153
CNV6Z 3-132 3-148 NS6 3-153
CNVRT 3-132 3-147 NS7 3-153
CNVT 3-132 3-148 NS8 3-152
DONE 3-142 NS9 3-153
DPDIV 3-134 3-149 NS10 3-153
FETCH 3-137 3-150 NSRT 3-152
FUN 3-143 PACK 3-138 3-150
GBW 3-128 3-145 PI 3-136 3-150
GCW 3-126 3-145 PRE1 3-117 3-140
GPDC 3-135 3-150 PRE2 3-117 3-141
GTB 3-127 3-145 PRE5 3-117 3-140
GTCHR 3-133 3-149 PRE6 3-117 3-141
INC 3-130 3-146 PRE8 3-117 3-140
LINl 3-142 PREll 3-117 3-140
LIN2A 3-142 PRE12 3-117 3-142
LIN3 3-142 PREASM 3-117 3-140
LIN3A 3-142 PRO 3-143
LIN5 3-142 RDTP 3-139 3-150
LINE 3-142 RREAD 3-139 3-150
MOl 3-125 3-144 SAMP 3-140
MOVE 3-125 3-144 SEND 3-144
MRKBYT 3-131 3-146 SR1 3-154
MVPRC 3-125 3-144 SRCH 3-154
NA5A 3-143 TEX 3-129 3-146
NAM 3-143 TRAIL 3-154
NS3 3-152 VAL 3-124 3-144

3-122A

* 'I • -)* I SCIENTIPIC DATA SYBT.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Determine blank character string lengths (GBC)

900 Series: 042C
Catalog No. 9300: 612C

PURPOSE: To determine the number of characters in a blank character string.

ACTION: GBC gets the location for the dictionary entry and then calls GTCHR to get

the entry which is the number of blank characters. 'The count is placed in

the A register and in BCNT.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GBC is a relocatable routine assembled as part of PREASM.

BRM GBC
Byte table entry to B register

33
8

cells

GTCHR

3-123

* 1/ • -1* I eC •• NTIPIC DATA eyeT.Me

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Evaluate numeric expressions on NAME lines (VAL)

PURPOSE: To evaluate numeric expressions and construct a numeric item which is used

in setting the value associated with a procedure NAME.

ACTION:

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

If the byte is not numeric, VAL returns via the nonnumeric exit. VAL sets

the character count for the string and the dictionary location for the string.

Next VAL calls CNVRT to convert the string to a binary constant. VAL

then bui Ids a numeric val ue item and places its length in the low order bits

of the A regi ster.

VAL is a relocatable routine assembled as part of PREASM.

Byte table entry to B register
BRM VAL
nonnumeric return
numeri c item ietuin

578 cells

CNVRT

3-124

* II • -I' I SCIENTIFIC DATA SYST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 6120

IDENTIFICATION: Move lines of sample to procedure storage (MVPRC and MOVE)

PURPOSE: To move a line of code which is part of a procedure definition to procedure

sample storage area.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

MVPRC and MOVE are a common routine. Each of them causes a I ine of

code to be moved from a buffer area to the sample storage area. MRKBYT

is called to flag each byte moved so that it will be retained by SHRINK.

As bytes are moved, the bite size is tested; if it increases above the byte

size currently being used, the byte size used to save sample is increased.

At the conclusion of the move SMPBIT is set to indicate the number of bits

in the current sample word that have been used.

MVPRC and MOVE are relocatable routines assembled as part of PREASM.

BRM MVPRC to move PROC lines
BRM MOVE to move all other lines

65
8

cells

MRKBYT

3-125

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Obtain next byte table entry (GCW)

PURPOSE: To get the next byte value and byte table entry corresponding to it.

ACTION: GCW obtains the next byte value from BBUF and uses it to index the byte

table. The byte table entry is loaded into the B register, and the negative

of the byte value is left in the A and index registers.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBRO UTINES
USED:

GCW is a relocatable routine assembled as part of PREASM.

BRM GCW

lOa words

None

3-126

* II • -1* I SCIENTIPIC DATA SYST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 61200

IDENTIFICATION: Get the next byte value from the standard procedures file (GTB)

PURPOSE: To extract into the low order bits of the A register the value of the next

byte of standard procedure text.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GTB extracts from CHAD the next BSIZ bits of standard procedure text. If

fewer than BSIZ bits of data remain in CHAD, GTB calls GBW to obtain the

next word of input. If a zero byte is obtained, GTB takes 2
BSIZ

as the

value of the byte and steps BSIZ and the related mask BMSK. The byte

value obtained is then converted to the equivalent user value by taking the

corresponding entry from ET AB as the byte value. If the ET AB entry is

greater than the mask SVBMS, the size indicator SVBSZ and the mask

SVBMS are increased in size until SVBMS is as large or larger than the byte.

GTB is a relocatable routine assembled as part of PREASM.

BRM GTB

618 cells

GBW

3-127

* II • -1* I SCIENTIPIC DATA SVSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Get the next word of standard procedure text (GBW)

PURPOSE: To place into CHAD the next word of standard procedure test.

ACTION: GBW moves the next word of standard procedure text from the input buffer

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

to CHAD. If the buffer is empty, GBW first calls the input routine PI

(indirectly through RDPD) to read the next record from the standard procedure

fi Ie.

PI is indirectly addressed through cell RDPD. GBW is a relocatable routine

assembled as part of PREASM.

BRM GBW

PI

3-128

* II • -1* I SC •• NTIPIC DATA SVST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 6120C

IDENTIFICATION: Obtain the next line of encoded text (TEX)

PURPOSE: To store the byte values for the next I ine of standard procedure text into

consecutive cells starting at BBUF and to skip the comments on the line.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

TEX calls GTB to obtain the byte values from the input file which are then

stored in BBUF. Bytes are moved until an end-of-line byte is encountered,

at which point TEX calls INC to obtain comment characters until all

comments have been skipped.

TEX is a relocatable routine assembled as part of PREASM.

BRM TEX

23
8

cells

GTB
INC

3-129

* Ij I -1* I SC.ENT.PIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Get comment characters (INC)

900 Series: 042016
Catalog No. 9300: 612001

PURPOSE: To get the next comment character from the standard procedures file.

ACTION: INC sets a flag INCFG to cause GTB to suppress stepping of the byte sizes

and masks. INC then saves the current byte size and mask and sets the byte

size to 6. GTB is called to obtain the next six bits of encoded text, and

the byte size and mask are restored.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

INC is a relocatable routine assembled as part of PREASM.

BRM INC

218 cells

GTB

3-130

t II • -It I SCIENTIPIC DATA SVBT.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 6120

IDENTIFICATION: Flag bytes to be saved (MRKBYT)

PURPOSE: MRKBYT marks bytes appearing in all lines of procedure sample, including

name lines which are saved. The purpose for this flagging is to identify

those bytes and on I y those bytes from the standard procedure fi Ie wh i ch are

needed to process the user's program. SHRINK, when called, will purge all

bytes from the dictionary and byte table which neither appear in the user's

program or are marked as being needed. This marking is necessary since the

appearance of a byte in the dictionary is unique, but the first reference to

the byte may not be the instance that resu I ted in its be i ng needed.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBRO UTINES
USED:

MRKBYT sets bit 2 of the byte table entry for each byte in the buffer

addressed by the contents of the A register.

MRKBYT makes use of the fact that bit 2 of the byte table entry is not used.

MRKBYT is a relocatable routine assembled as part of PREASM.

Buffer location to A register
BRM MRKBYT

148 cells

None

3-131

* II • -l* I SCIENTIFIC DATA SYSTEMS

50S PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Convert numeric strings to binary values (CNVRT)

PURPOSE: To convert numeric items to binary values.

ACTION: CNVRT converts numeric character strings to their binary value by successive

multipl i cations of 8 or 10 (dependi ng on the va I ue of the first character).

GTCHR is used to fetch the characters of the string. Results are left in

PROD, PROD1, and PROD2. If the leading character is a dot, the number

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

is converted to floating point by dividing the integer by the appropriate

powers of 10 and co I cu lati ng the exponent. The DPDIV routi ne is used to

perform the divisions. All floating point fractions so calculated are left ir

normal ized form.

CNVRT is a relocatable routine assembled as part of PREASM.

Number of characters in byte to SIZE
Character position of first character to CHAR
Memory location of di ctionary word to DLOC
BRM CNVRT

1708 cells

GTCHR
DPDIV

3-132

t 1/ • -1* I SC.ENTlflIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042

Catalog No. 9300: 6121

IDENTIFICATION: Extract characters from the packed dictionary (GTCHR)

PURPOSE: To get the next character of a dictionary entry to the A register.

ACTION: GTCHR loads the next character from the dictionary entry into the low order

bits of the A register. The di ctionary location of the next character as

indicated by DLOC and CHAR is established, and SIZE is decremented.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GTCHR is a relocatable routine assembled as part of PREASM.

Character position in word to CHAR
Location of dictionary word to DLOC
Size of byte in characters to SIZE
BRM GTCHR
end of entry
normal exit

228 cells

None

3-133

t allli-ill' SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Perform double-precision divisions (DPDIV)

PURPOSE: To divide the contents of the A and B registers by the contents of the

location addressed by the index register and maintain maximum precision.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

DPDIV divides the contents of the A and B registers by the single precision

divisor addressed by the index register. The remainders are then divided

and that remainder divided. The resulting quotient is normalized.

DPDIV assumes that both the dividend and divisor are normalized and leaves

the results in the same format. DPDIV is a relocatable routine assembled

as part of PREASM.

Double-precision dividend to A and B registers
Location of di vi sor to X regi ster
BRM DPDIV

36
8

cells

None

3-134

I' ;1 I -* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042

Catalog No. 9300: 612

IDENTIFICATION: Get characters from the input standard procedure dictionary (GPDC)

PURPOSE: To fetch the next dictionary character into the A register and PDCHR.

ACTION: GPDC extracts the next dictionary character from the input buffer into the

low order bits of the A register and to PDCHR. If the buffer is empty,

GPDC calls PI to read the next record of input from the standard procedures

fi Ie. If the record read is not of type 1 (dictionary), GPDC returns through

the end-of-dictionary exit.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GPDC is a relocatable routine assembled as part of PREASM.

BRM GPDC
end-of-dictionary return
norma I return

36
8

cells

PI (indirectly addressed through RDPD).

3-135

* II • -1* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Cat.alog No. 9300: 612001

IDENTIFICATION: Obtain the next record from the standard procedures file (PI)

PURPOSE: To cause the next record to be read from the standard procedures deck and

to extract the record type and length.

ACTION:

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

PI calls RDTP to read the next record of standard procedures. PI extracts

the record type and stores it in RT; next it extracts the record length and

stores it minus 2 in PIWC for the GPDC routine.

PI is a relocatable routine addressed through cell RDPD and is assembled as

part of PR EASM.

BRM PI
or

BRM *RDPD

13
8

cells

RDTP

3-136

t II • -1* I SCIENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04~

Catalog No. 9300: 61 ~

IDENTIFICATION: Get a character from the unpacked dictionary in core (FETCH)

PURPOSE: To extract the next character from the unpacked dictionary as constructed

ACTION:

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

by ENCODER.

FETCH gets the next dictionary character as addressed by FCHWD and

FCHSH into the low-order bits of the A and B registers.

FETCH is a relocatable routine assembled as part of PREASM.

BRM FETCH

20
8

cells

None

3-137

* II • -It I SCIBNTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Pack characters into consecutive bytes of core (PACK)

PURPOSE: To merge a character in the low-order bits of the A register into the next

byte position of memory as addressed by PCKSH and PACKL.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

PACK positions the character using the contents of PCKSH and merges the

character into the locations addressed by PACKL. PCKSH and PACKL are

incremented as needed. PCKNT indicates the number of characters stored

in the current location.

PACK is a relocatable routine assembled as part of PREASM.

Character to A register
BRM PACK

248 words

None

3-138

* ;\ • -*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04

Catalog No. 9300: 61

IDE NTIFICA TIO N: Read records from the standard procedure fi I e of the system tape (R DTP)

PURPOSE: To read the next record of standard procedures.

ACTIO N: RDTP uses a WIM loop to read records of up to 40
10

words each from the

systems tape. Records are read in the binary mode. A read error results in

the tape being backspaced and the record reread. Up to ten rereads are

executed before the routine halts. Stepping from the halt causes the

record to be accepted as read.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

RDTP is initialized as to unit and channel assignments by the initialization

code of PREASM. RDTP is a relocatable routine assembled as part of

PREASM.

BRM RDTP

328 cells

None

NOTE: In the RAD MONARCH system this routine is overlaid by a call

upon the system file read routine, RDTP, which is contained

within the Basic RAD Loader.

3-139

Initialize parameters, switches,
'and flogs, Set "top" of
memory, Initialize (/0
routine to read system tope.
Set largest byte user's
program. Set location of
equivalence table.

PREASM
OVERALL FLOW

Read the standard proc text.
Save sample for all procs for
which at least 1 name appears
in user's program. Insert nome
item in Symbol Table for each
nome that appears in user's
program. Sample starts just
following ciictionary in lower
core. Nome items follow
directives in upper core and
are I inked to dictionary and
BT AB in the some way.

get 1st char. of
dictionary

End of dictionary

normal

Read standard oroc dictionary and
insert it into BPO. Build
Equivalence Table (ETAB) giving
translation of standard ~roc bytes
to user bytes,

Define directives by inserting
them into the Symbol Table
immediately below BTAB. Link
directives such that BTAB points
to the directive which points to
the dictionary.

Insert directives bytes
into BPO and establish;
sove ,Ioyte numbers with
skel,l!tol di rective,

3-140A

Collapse dictionary and build
Byte Table (BTAB). The
character strings from the
dictionary are pocked starting
at DTAB and ascending. BTAB
starts at high core and
descends, BTAB entries have
mode and size fields from old
dictionary and pointers to 1st
character position for byte in
new dictionary.

* II • -1* I SCIENTIFIC DATA SYSTEMS

Page 1 of 1

IDENTIFICATION:

PURPOSE:

ACTION:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

*

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Find 62 record on system file (SCTP)*

Catalog No. 042016

To scan the procedure on the system fil e for the next 62 record.

SCTP initial izes some parameters to the RDTP routine, then calls
RDTP to fetch the first word of the next record in the system file.
When a 62 record is encountered the routine exits.

BRM SCTP

9 cells

RDTP

In the RAD system this routine is overlaid by a call to the SCTP routine in the Basic RAD
Loader.

3-140

Inltla ize parameten,
switches, flags, etc.
Set 'TOfJ' of memory.
Initial ize I/o
commands for reading
standard procs. Set
ET AB - ESCEL.

PttEASM
OVERALL FLOW (cont.)

Initialize cell:: to get
~'!':::'!~:.:.:J:..z..--r-___ """'~ dummy directive

Initialize cells to store
dictionary entry.

No. characters - PDICC
Character - DATA

enter this byte

no

End of

dictil)nory

Byte no. - ETAB

Table overflow

yes

3-141

dictionary entries

FETCH
get a character

PACK
a character

l-_-... Save byte number

no

with dummy directive
definition

Finished directives

yes

Save location of
dictionary in PACKL
and FCHWD.

Save BTAB location
in BYTE.

Initialize cells for
packing dictionary.

TEMP -BTAB

------~~----~ no
Finished packing

yes

Initialize cells to insert
directive entries into
the Symbol Table.

Set BTAB entry for
directive to point to
di rective defin i tion.
Set directive definition
to point to dictionary
entry. Move definition
to Symbol Table
(L1TAB).

Table overflow?

no

Initialize cells, switches,
flags, and counts for
storing procedure
somple and defining
procedure names.

PREASM

OVERALL FLOW (cont.)

yes

In so"1>le1

yes

Store PROC origin in
all names for this
PROC

3-142

I Load
-- - --~ SH_Rl_N..;.;K.;...,

PREASM

PItO, FUN AND NAM ROUTINES

8

DRTV - PRBYT
C- FNFG

Clear pl'OC origin
0-+ L8L
o .-. NMLNT
Mo~. 10 byt .. of

"roc Itne to
PRBYTS until
known If needed.

I ;-------1
I

mlV - tC!\\'l
1-- INI("

Set so"'ple flog.
Incremlnt Proc

count.

Set linkage to last
nome (PRORG -
LBL t 1) increment
NMCNT append
value to nome and
move nome i tern to
Symbol Tobie
(LITAB).

Set location of name
in PRORG.

Increment nome
item length

3-143

PRCNT = 1?
yes

Set up nome control
word.

Link BTAB entry for

Byte numeric?

yes

Set up numeric
type item in
PIDTA.

length of item
- A reg.

Increment VAl.

e
Set location from

which to get
bytes.

MVP1tC - MOVE

MRK8YT
rna rk by tes to be

saved

PREASM
VAL, SEND, MVPRC AND MOVE ROUTINES

MRK8YT
mark bytes to be

saved

3-144

yes

yes

Reset control
words for
next call.

- {Byte number}
- A reg and X reg.

Byte table entry
- ECWond B reg.

Reset INCFG
increment ex it

Buffer empty
yes

no

Next word of input goes
into CHAD.

Increment exit.

PREASM
GCW, GTB AND GBW ROUTINES

yes

BSIZ bits left in CHAD?

Toke next BSIZ bits as
byte.

Load corresponding
byte from ET AB
{Equivalence Table}
and store in BYT if
next bits are all
zero. Increment
BSIZ and toke
BMSK + 1 as input
bytes.

Byte> SVBMS?

yes

Increase size of
5VBMS 1 bit

3-145

no

yes

no

yes

PREASM
TEX, INC AND MRK8YT ROUTINES

get comment

character

3-146

yes

Set INCFG.
Set BSIZ to
6 bits.

o -PROD
o-PROD 1

B-MULT
B-MAXNO

PROD*MULT
_PROD

O-MULT
lO~MAXN

MAXNO - 1
-MAXNO

Character - DOT

PREASM
CNVltT ROUTINE

yes

PROD 1 * MUlT
_ A and 8 regs.

A + PROD - ~OD.

3-147

normat

Set error flog

A reg + MULT
-PRODl

8 reg + character
-A reg

Set error flog

Nonnalize PRO~
and PRODl

- shift count-X2

PROD O?

no

X2 - MINB
- 23- MINC
SIZFRC- X2

SIZFRC ? O?

yes

y~

no

S(ZFRC - 9 - PWR
0-X2
FI YES + 9 - A reg
0_ B reg
Normcl ize A cnd B regs.
X2-1- MINC
A reg - PWR + I
PROD - A reg
PRODI- B reg
L(PWR + 1) - X reg

get fraction

PREASM
CNVRT ROUTINE (cont.)

Set PRECS:J
flooti.ng point
ty;-e Item

o -A reg
0- B reg

L-------r---__ ~

X2 -NDX
PWR - X2

3-148

__ --INDX + X2 -NDX
-(MINC-MINB +V

+ SIZFRC-2
+ NDX) ** 0777
- PROD 2

DPD(V
complete fraction

NOrm<:llize FIVES, X2
and store in PWR.

- shift count - V
PROD-A reg
PROD1- B reg
L(PWR) - X reg

Shift A and 8 regs right 1;
divide by 0, X2.

A reg - PROD
8 reg -A reg
0-8 reg

Divide A and 8 regs by 0,
X2

A reg *2- PROD 1
8 reg -A reg
0-8 reg

Divide A and 8 regs by 0,
X2.

A reg *4 - PROD2
-1-X2
PROD -A reg
PROD1-B reg

PREASM
DPDIV AND GTCHR ROUTINES

Normal ize A and B regs.
X2 +1-X2'

3-149

yes

A reg -PROD
-X2 -X2
B reg -A reg
Append X2 bi ts from

PROD 2 to A reg.
A reg - PROD1

yes

X2 < O?

no

Buffer empty?

no

Extroct next
character of
dictionary entry
into A reg.

A reg _ PDCHR
Increment exit.

Merge character in
A reg into next
character p05ition
in dictionary.

Step character
p05ition.

Backspace.
Wait until ready

PREASM

RPl r, I'l\t~, C;POC, PI Illld If TCH II'"tilltl'

yes

Initialize
count and
location

no

3-150

Record type - RT
Number words
-2-PIWC

Extract next
character of
dictionary into
A reg.

Step character
p05ition •

PUASM

NSRT ROUTINE (DEFINITIONS)

Let a denote some byte entry in the tabl('. Then:

l «(l) is the pointer from a to a lesser i tf'"m
G(a) is the poi-lter from c> to a greater item
K (a) is the key of a.

B (a) is the balance of a.
B (a) - 0 denotes balance
B (a) ~ 1 denotes heavy in the greater chain
B (a) -~ 2 denotes heavy in the lesser chain

0(0') is the direction followed from a in searching for on item.
D (0')= 0 denotes lesser chain token
0(0') o.~ 1 denotes greater chain token

X denotes current item to insert.

F (a) denotes the item following a on the search path taken.

Q (a) denotes the item following a on the path other than that token.
U denotes the last point of imbalance on the last search path.

MO denotes the last point examined by SRCH.

M (f\) and N (13) are defined such that

If G(a) -~ f3 then M(f1) - G(f1)
and N (f1) L (f1)

If L(o) f1 then M(f\) L (f3)
and N (f1) ~ G(f1)

H denotes location of HED.

P (a) denotes location of dictionary entry for byte a .

3-151

location of dictionary
entry

- P(X)

CPO + 3 " SPO?
no

CPO - GtMO)

H -l(X)
H -G(X)

SPO - P(X)
Number of words of

dictionary - NUM

Move dictionary item
into dictionary.

SPO - NUM - SPO

F(U, -v

PREA5M
NSRT ROUTlN [

F(V) - xx

F(V}- VWX

3-152

V-X2
V -VVYX

Q(W) - F(V)
v -Q(W)

F(W) -xx
F(W) - VVYX

CPO + 3- CPO
CSEQ - A reg
CSEQ + 1 - CSEQ

F(VWYJ

PREASM
NSRT ROUTINE (cont.)

Q(XX) - QX
XX - F(U)
N(XX} - F(W)
M(XX)- F(V)
W- N(XX)
V - M(XX)
0- B(XX)
0- 8(V)

X2

F(W)- xx

TRAIL
get path from XX

TRAIL
~;et path from X2

2 - 8(Q(XX»

TPAll
get path from VWX

3-153

L(XX) -NX
G(XX)- MX

F(F(U» - VWX

D{Q(XX» O?

no

1- 8(Q(XX»

HED -lDATA
l(HED) - MO
l(HED} - U
l(HED + 1) -A reg

K(M() '" K(X)

yes

no

PREASM
SRCH AND TRAIL ROUTINES

(M[-CORG}/3 - A reg
SRCH + 1 - SRCH

-----I r.. _n_o_f_in_d---l

~_f_in_d_ ... ~ -

~

3-154

l '" lesser link
G c: greater link
K ::: key of item
B '" balance of item

B :J 0 balanced
8 ::a 1 heavy greater
B = 2 heavy lesser

D = direction followed
D ": 0 lesser
D = 1 greater

X = clIrrent item

yes

o - D(MO
L(M() _ A reg

no

1-D(MI)
G(M1) - A reg

r ;1 I -1*; SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Purge unused bytes from the dictionary and byte tables (SRNK or SHRINK)

PURPOSE: To make maximum table space available to the assembly routines by removing

those entries in the dictionary and byte table which represent bytes from the

standard procedures fi Ie that are not needed to assembl e a parti cu lar

ACTION:

program.

SHRINK steps through the byte table starting at the first byte following the

user's program and examines each byte to see if it has been flagged to be

saved. Bytes not flagged are skipped. Bytes to be saved are moved up to

follow the previous saved bytes, and the dictionary entry for the byte is

moved down to follow the previously saved dictionary entry. As each byte

is.examined, a translation table is constructed giving the new byte value

for the byte.

The byte table is scanned again in its entirety, and the save flags are re

moved. As each byte is obtained, it is examined to determine if a symbol

table entry exists for the byte. The dictionary pointer in each symbol re

places the byte table pointer to the symbol, and the symbol is set to point to

the byte table entry. When all save flags have been removed and all

symbol table pointers reversed, SHRINK proceeds to the next step.

The symbol table is scanned, and the symbols to be saved are moved up to

follow the byte table. If this is a NAME, the sample pointer must be

revised; and, if it is the first NAME encountered for a procedure, the pro

cedure sample is moved to the cells following the dictionary. As each byte

in the sample is moved, it is translated to the new byte value so that the

byte numbers resulting wi" be a contiguous set. The symbol table pointers

are reset to their normal format.

3-155

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

CALLING

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

Catalu' No. 900 Series: 042016
g 9300: 612001

After the symbol table and sample have been moved, SHRINK sets the

communication cells for the assembler routines and calls the tape loader to

load ASSEMBLER.

The SHRINK routine must proceed to accomplish its function in a rigid

sequence, since there is n6 correspondence between the sequence of bytes

in the byte table and the order of the appearance of the NAME and directive

items in the symbol table. SHRINK assumes that there is at most one symbol

for each byte and that the order of NAMEs is also the order in which sample

is saved. The first assumption could be violated, but should not be on the

standard procedures fi Ie, and the second assumption is always true.

SHRINK is loaded over part of PREASM; however, care must be exercised

in setting the origin for SHRINK since many communication cells and some

PREASM subroutines are used by SHRINK. The external references to

SHRINK are satisfied by loading SHRINK with PREASM and then punching

the absolute program, to be' placed on the system tape, from memory.

SHRINK is an absolute routine separately assembled.

SHRiNK is ioaded and executed by the tape ioader as a separate memory

overlay.

Variable, but at least 8192
10

words

GTB
t

MOVE
t

MVITM
SMPTRN

GTCR
STCR
ITMOV
SAMPLE

t These routines are described under PREASM.

3-156

ENTRY POINTS TO SHRINK SUBROUTINES

Page Page
Entry Description Flowchart Entry Description Flowchart

GTCR 3-160 3-165 SHR10 3-155 3-164

ITMO 3-162 3-166 SHR11 3-155 3-164

ITMOV 3-162 3-166 SHR12 3-155 3-165

MVITM 3-158 3-165 SHRINK 3-155 3-164

SAMPLE 3-163 3-167 SMPTRN 3-159 3-166

SHR3 3-155 3-164 STCL 3-161 3-165

SHR7 3-155 3-164

3-157

! ,(: __ *; SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Serie:>: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Reverse symbol table linkage (MVITM)

PURPOSE: To relink the byte table and symbol table pointers so the byte table points

to the dictionary and the symbol table points to the byte table.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

MVITM takes the dictionary pointer from the symbol table entry addressed

by the A register at entry and places it in the A field of the byte table

entry addressed by FBWRD. The location of the byte table location is then

placed in the A field of the symbol entry.

MVITM is an absolute routine assembl~d as part of SHRINK.

Byte table entry to A register
BRM MVITM

14 cells
ts

None

3-158

I II • -1* I SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Translate and move procedure sample (SMPTRN)

PURPOSE: To translate the bytes of procedure sample to the new byte values and move

the sample to its new origin.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBRO UTINES
USED:

SMPTRN sets the parameters to cause GTB to get bytes starting at the old

procedure sample and the parameters to cause MOVE to store bytes at the

new sample origin. SMPTRN then obtains bytes by calling GTB, translates

them to the new value by taking the TRTB table entry for the byte, and

stores them in BBUF. As each I ine is obtained, SMPTRN checks for PROC,

FUNC, or END directives to determine the amount of sample to move.

MOVE is called to store bytes into sample storage.

SMPTRN is an absolute routine assembled as part of SHRINK.

BRM SMPTRN

106
8

cells

GTB
MOVE

3-159

,. *1 • -I' I SC.ENTIPIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDE NTIFICATIO N: Get di ctionary characters (GTCR)

900 Series: 042016
Catalog No. 9300: 612001

PURPOSE: To get the next dictionary character to the A register and FCHR.

ACTION: GTC takes the next character as indicated by FBDC from the dictionary

word addressed by FDW and stores it in the A register and FCHR. The

character position is incremented.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GTCR is an absolute routine assembled as part of SHRINK.

BRM GTCR

25
8

cells

None

3-160

I ;1 I -II; SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATIO N: Store characters into dictionary (STCR)

PURPOSE: To store characters into their new dictionary locations.

ACTION: STCR positions the character given in the A register to the position indicated

by TBDC and stores it into the dictionary word addressed by TOW. The

PRO GRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

other three characters in TOW are preserved. The character position is

incremented.

STCR is an absolute routine assembled as part of SHRINK.

Character to A register
BRM STCR

30
8

cells

None

3-161

I III -1* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

(:;tf ill og No. 9300: 612001

IDENTIFICATION: Move symbol table entries (lTMOY)

PURPOSE: To move all symbol table entries to their new location and to relink the

byte table and items pointers.

ACTION:

PROGRAMMING
TECHNIQUES:

SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

ITMOV calls SAMPLE to process the NAME item sample linkage and sample

moving. The item is moved from the old location given by FITAB to the

location given by TITAB. The byte table entry for the entry is given an

associate address of the new location, and the symbol table item is given

the associate linkage from the byte table (points to dictionary). The 'from'

and 'to' positions are incremented. If the item is to be deleted, it is not

moved and only the 'from' pointer is incremented. ITMOV continues

processing until all items are moved.

ITMOV is an absolute routine assembled as part of SHRINK.

BRM ITMOV

518 cells

SAMPLE

3-162

* 'I • -II I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: . 612001

IDENTIFICATION: Set NAME item sample pointers (SAMPLE)

PURPOSE: To determine the proper sample pointer word to be associated with a NAME

item and, when needed, to call SMPTRN to move procedure sample.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINGES
USED:

SAMPLE tests the symbol table entry at FITAB to determine if it is a NAME.

If the item is not a NAME item, SAMPLE exits without taking further action.

If it is a name item, SAMPLE tests to see if this is the first occurrence of a

NAME item for this procedure by comparing the sample pointer word for the

name with the entries in a table giving the old and new sample pointer words

from previously processed NAME items. If the NAME is that of a procedure

whi ch has been encountered, SAMPLE takes the new sample pointer word

from the table and inserts it into the NAME item. If this is a first NAME

encountered, SAMPLE determines the current sample position and constructs

a new pointer word which is inserted into the NAME item. Entries are made

in-the PSMPLC table showing the old and new sample positions, and

SMPTRN is called to move the procedure sample.

SAMPLE is a relocatable routine assembled as part of SHRINK.

BRM SAMPLE

70a cells

SMPTRN

3-163

Initio ize addresses,
flags, counts, and
pointen for detecting
bytes not needed by
assembler.

Step BTAB and
dictionary
pointen. Clear
translation Table
(TUB) entry for
byte.

yes

Finished BTAB?

SHRINK
OVERALL FLOW

Put new dictionary
location into BTAB
entry and move to
new location .

Dictionary entry moved?

3-164

Set new character
position into BTAB
entry and move to
new location. Put
new dictionary word
position into Symbol
Table entry.

Step BTAB pointer for
new bytes.

Calculate new byte
value and star. i.,

TITB.
No dictionary

characters
-TEMP

no

SHRINK
OVERAll FLOW (cont.)

MVITM, GTCR AND STCR ROUTINES

Initialize cells to obtain
Translation Table values.

'nitialize cells to move
procedure sample.

Translate bytes for END,
PROC, and FUNC.

Get next BTAB entry and
remove save flog.

BTAB point to dictionary?

yes

Finished flagging symbol?

yes

ITMOV
go move symbols

Set PACKl and LITAB for
the assembl er .

location {address} of dictionary
entry - BTAB.

location of BTAB - SymbOl
Table dictionary pointer field.

Extract next character from
old dictionary location.

Charocter - A reg
Charocter - FCHR

Store character in A reg into
next position of new dictionary '.

3-165

Initialiu cells for
GT8 and MOVE routinf'S.

no

Translate byte to
new number.

Store in 88UF.

Get mnemonic
for this line.

SHRINK
SMPTRN AND ITMOV ROUTINES

lncrflment
proc count

3-166

Initialize cell to
test range.

Rei ink Symbol Table
entry to point to

dictionary and
BTAB entry to point
to symbol.

Move Symbol entry
to new location.

Set to next Symbol
Table entry (old).

PASl
(ASSEMBLR)

no

Does sample pointer
word this entry

match previous entry?

yes

Second word, from
Translation Table
.goes into 2nd word
(5a""le pointer word)
of name item

yes

no

SHRINK
SAMPLE ROUTINE

3-167

Store old sample location
word into next eel I of
sample translation table.

New sample location word
goes to 2nd cell of
sample Translation Table
and to 2nd word of name
entry •

Step translation table
pointer by 2.- Get bite
size, bits used, and word
position for SMPTRN.

900 Series Only

BCIENTIPIC DATA BYBTBMB

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Perform the first assembly pass (PAS 1 or ASSEMBLR)

PURPOSE: To perform the first assembly pass over the user's program contained on the

intermediate output tape X 1. This includes the following functions:

ACTION:

1. To define symbols appearing in the label fields by inserting the appro

priate item type (see Section 4, Item Formats) entry into the symbo I

table.

2. To store the procedure sample contained in the user's program into

memory for later reference.

3. To maintain a count of the space needed by the program so that

location-dependent labels may be defined and the origin of literals

may be determined.

\

4. If called for, to regenerate the symbolic program from the encoded

representat ion.

5. To output the external symbol definitions to the binary output file.

6. To generate both i nterna I and externa I programmed operator defi n i tions

and to defi ne programmed operator references.

7. To output external p~ogrammed operator definitions and programmed

operator references to the binary output fi Ie.

ASSEMB LR rewi nds the input tape, Xl, and then reads and processes the

program contained thereon one line at a time. If symbolic output has been

requested, each line is reconstructed and wri tten on the symbo lie outp\,Jt fi Ie.

Lines are scanned from left to right. When a label is encountered, a ten

tative definition of the label is made equating its value to the current value

900
3-169

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

900 Series Only

Cil.til.lug Nu. 042016

of the locat ion countel. The ope rat ion fi e III is obt ai ned Clnd (1 d eft'llll i Ilut i 011

is made of the line type. Directives are processed by executing a directive

branch table which causes control to go to the proper directive processing

routine. Procedure references are processed at PRL; FORM references, at

FRL. If an operation is undefined, it is processed at POPR as a programmed

operator reference. A non-symbolic operation is treated as an error.

Before each new line is obtained, a test is made to see of a DO directive

has been encountered, but not completed. If there is an active DO direc

tive, control goes to DOAGN to repeat the line or lines already obtained.

Within each of the routines to process the various types of I ines, the operand

field is evaluated by calling SCAN. When the routines have completed

their tasks, control returns to the main control section where any label which

has been encountered, but not defined, is defined by calling NSRT to place

the label definition into the symbol table. The location counter is incre

mented as needed, and control returns to LINE to process the next I ine of

user's program.

When all I ines have been processed, ASSEMB LR outputs the external symbol

definitions, external programmed operator definitions, and programmed op

erator references to the binary output fi ie.

PAS2 is then loaded by calling the tape loader.

ASSEMBLR is segmented into five separately assembled ports plus the pro

grammed operators. An absolute version of ASSEMBLR is made for insertion

on the system tape by loading the separate routines and punching the absolute

program from core. Two cells (PACKL and LITAB), giving the upper and

lower table locations used by PREASM, are located just below the origin of

ASSEMBLR and are referenced by ASSEMBLR as absolute location. Several

of the communication cells between MSCONTRL and ASSEMBLR are also

900
3-170

PROGRAMMING
TECHNIQUES:
(cont.)

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

900 Series Only

Catalog No. 042016

referred to as absolute locations. Changes in any of these communication

locations necessitate the reassembly of ASSEMBLR to reflect the changes.

ASSEMBLR is a relocatable program originated at 01354. The machine

memory size is determined from the contents of cell 1.

ASSEMBLR is loaded and executed by the tape loader.

Variable but at least 8192
10

words

In addition to the routines listed here, the file processing and I/O routines

of MSCONTRL may be used.

TEXT
IPL
MBYT
SKIP
INC
GCW
GTB
GEC
LBTST
PLB
PLTST
EQU
AORG
ORG
RES
FORN
FUNC
PROC
POPD

POPR
DO
DOAGN
DODEC
PRL
FNRL
DFLST
END
FRL
BCD
TEXTR
SAM
NAME
MVPRC
MOVE
SWITCH
GTLBL
SRCH
NSRT

SCRP
EDC
EDS
OUTP
FLUSH
RESET
PAGE
EPRNT
DED
GLOV
M3WAI
FLN
FLM
RELTST
CNVRT
DPDIV
SCAN
GIT
SCANC

PEEK
GNC
GET
GBSL
MIFT
GLOP
POP
EDTST

t
PLiNE
RDPl t

EDlTtt
EDTV
TYPWRT

t

EDTLt
EDEt
HOME

t

FLDCt
PRNTt

t
MFOI

tThese routines may be called by ASSEMBLR, but perform no operation
needed for first pass processing. In the case of EDTST, return is to the
location of its call (BRM EDTST) plus 2.

900
3-171

Page 1 of

IDENTIFICATION:

PURPOSE:

ACTION:

9300 Only

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 612001

Perform the fi rst assembly pass (PAS 1 or ASSEMBLR)

To perform the first assembly pass over the user's program contained on the

intermediate output tape X 1. This includes the following functions:

1. To define symbols appearing in the label fierds by inserting the appro

priate item type (see Sec tion 4, Item Formats) entry into the symbol

table.

2. To store the procedure sample contained in the user's program into

memory for later reference.

3. To maintain a count of the space needed by the program so that

location-dependent labels may be defined and the origin of literals

may be determ ined.

4. If called for, to regenerate the symbolic program from the encoded

representation.

5. To output the external symbol definitions to the binary output file.

6. To generate both internal and external programmed operator definitions

and to define programmed operator references.

7. To output external programmed operator definitions and programmed

operator references to the binary output fi Ie.

ASSEMBLR rewinds the input tape, X 1, and then reads and processes the

program contained thereon one I ine at a time. If symbol ic output has been

requested, each I ine is reconstructed and written on the symbol ic output fi Ie.

Lines are scanned from left to right. When a label is encountered, a ten

tativedefinitionof the label ismadeequating itsvalue to thecurrent value

9300
3-169

Page

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

9300 Only

C~talog No. 612001

of the location counter. The operation field is obtained and a determination

is made of the I ine type. Direc tives are processed by executing a directive

branch table which causes control to go to the proper directive processing

routine. Procedure references are processed at PRL; FORM references, at

FRL. If an operation is undefined, it is processed at POPR.as a programmed

operator reference. A non-symbol ic operation is treated as an error.

Before each new line is obtained, a test is made to see of a DO directive

has been encountered, but not completed. If there is an active DO direc

tive, control goes to DOAGN to repeat the line or lines already obtained.

Within each of the routines to process the various types of I ines, the operand

field is evaluated by call ing SCAN. When the routines have completed

their tasks, control returns to the main control section where any label which

has been encountered, but not defined, is defined by call ing NSRT to place

the label definition into the symbol table. The location counter is incre

mented as needed, and control returns to LINE to process the next I ine of

user's program.

When all lines have been processed, ASSEMBLR outputs the external symbol

definitions, external programmed operator definitions, and programmed op-

erator references to the binary output file.

PAS2 is then loaded by calling the tape loader.

ASSEMBLR is segmented into five separately assembled parts plus the pro

grammed operators. An absolute version of ASSEMBLR is made for insertion

on the system tape by loading the separate routines and punching the absolute

program from core.

9300
3-170

Page

CALLING
SEQUENCE:

MEMORY
REQUIREME NTS:

SUBROUTINES
USED:

9300 Only

Catalog No. 612001

ASSEMBLR is loaded and executed by the tape loader.

Variable but at least 8192
10

words

In addition to the routines I isted here, the fi Ie processing and I/O routines

of MSCONTRL may be used.

TEXT
IPL
MBYT
SKIP
INC
GCW
GTB
GEC
LBTST
PLB
PLTST
EQU
AORG
ORG
RES
FORM
FUNC
PROC
POPD

POPR
DO
DOAGN
DODEC
PRL
FNRL
DFLST
END
FRL
BCD
TEXTR
SAM
NAME
MVPRC
MOVE
SWITCH
GTLBL
SRCH
NSRT

SCRP
EDC
EDS
OUTP
FLUSH
RESET
PAGE
EPRNT
DED
GLOV
M3WAI
FLN
FLM
RELTST
CNVRT
DPDIV
SCAN
GIT
SCANC

PEEK
GNC
GET
GBSL
MIFT
GLOP
POP
EDTST
PLINEt
RDPlt
EDIT\
EDTV
TYPWRT

t

EDTLt
EDEt
HOME

t

FLDCt
PRNTt
MFOlt

t These routines may be called by ASSEMBLR, but perform no operation
needed for first pass processing. In the case of EDTST, return is to the
location of its call (BRM EDTST) plus 2.

9300
3-171

ENTRY POINTS TO ASSEMBLR (PASS 1) SUBROUTINES

Page Page
Entry Description Flowchart Entry Description Flowchart

AORG 3-188 3-151 D02 3-193 3-255
BCD 3-202 3-263 D03 3-193 3-255
CNV1 3-226 3-296 DOA2 3-194 3-256
CNV2 3-226 3-296 OOA3 3-194 3-256
CNV3 3-226 3-297 DOA4 3-194 3-256
CNV6 3-226 3-297 DOA5 3-193 3-255
CNVl 3-226 3-297 DOAGN 3-194 3-256
CNVRT 3-226 3-296 DODEC 3-195 3-257
COAD 3-228 3-284 DOEND 3-193 3-255
COAD2 3-228 3-284 DOERR 3-193 3-255
COAD3 3-228 3-284 DOVFW 3-193 3-255
COAP 3-228 3-285 DPOIV 3-227 3-295
COAS 3-228 3-284 EDC 3-213 3-273
COASl 3-228 3-284 EDE 3-272
COAS3 3-228 3-284 EDIT 3-272
COBS 3-228 3-286 EDS 3-214 3-273
CODS 3-228 3-285 EDTL 3-272
COEQ 3-228 3-282 EDTST 3-267
COGT 3-228 3-282 EDTV 3-272
COIQ 3-228 3-285 END 3-199 3-260
COLD 3-228 3-283 ENDl 3-199 3-261
COLS 3-228 3-283 ENDIA 3-199 3-261
COLS1 3-228 3-283 ENDl B 3-199 3-261
COLS2 3-228 3-283 END1 BA 3-199 3-261
COLS3 3-228 3-283 END2 3-199 3-260
COLS4 3-228 3-283 END3 3-199 3-261
COLS6 3-228 3-283 ENDM 3-274
COLS6A 3-228 3-283 ENDN 3-274
COLSZ 3-228 3-283 ENDP 3-199 3-262
COLT 3-228 3-282 ENDS 3-199 3-260
COLT1 3-228 3-282 EPRNT 3-219 3-276
COLT2 3-228 3-282 EQU 3-187 3-251
COLT3 3-228 3-282 EQUl 3-187 3-251
COXQ 3-228 3-285 EQU3 3-187 3-251
COXQl 3-228 3-285 EQU4 3-187 3-251
DATAT 3-274 EQU6 3-187 3-251
DED 3-220 3-277 EQU7 3-187 3-251
DEF 3-274 FLOC 3-272
DELST 3-198 3-259 FLM 3-224 3-279
DO 3-193 3-255 FLN 3-223 3-279
DOl 3-193 3-255 FLUSH 3-216 3-275
D01ZZ 3-193 3-255 FLUSH1 3-216 3-275

3-172

ENTRY POINTS TO ASSEMBLR (PASS 1) SUBROUTINES (cont.)

Page Page
Entry Description Flowchart Entry Description Flowchart

FNRL 3-196 3-258 GITS2 3-230 3-288
FNRL1 3-196 3-258 GITS3 3-230 3-288
FNRL2 3-196 3-258 GITS4 3-230 3-287
FORM 3-189 3-252 GITS5 3-230 3-288
FRL 3-201 3-263 GITS8 3-230 3-287
FUNC 3-190 3-253 GITS9 3-230 3-288
GBSL 3-237 3-294 GITX 3-230 3-291
GBSL2 3-237 3-294 GLOP 3-239 3-278
GCW 3-181 3-249 GLOV 3-221 3-278
GEC 3-183 3-250 GNC 3-235 3-293
GET 3-236 3-294 GNC3 3-235 3-293
GETl 3-236 3-294 GNCE 3-235 3-293
GET4 3-236 3-294 GNCER 3-235 3-293
GET6 3-236 3-294 GOl 3-198 3-259
GI13 3-230 3-287 GTB 3-182 3-250
GIT 3-230 3-287 GTBl 3-182 3-250
GITl 3-230 3-287 GTLBL 3-208 3-268
GIT2 3-230 3-291 GTRBL 3-287
GIT3 3-230 3-287 HOME 3-272
GIT4 3-230 3-290 INC 3-180 3-249
GIT9 3-230 3-289 IPL 3-177 3-247
GIT11 3-230 3-287 LBERR 3-185 3-245
GIT31 3-230 3-290 LBTST 3-184 3-249
GIT32 3-230 3-290 LINE 3-243
GIT33 3-230 3-289 LINSYM 3-244
GIT34 3-230 3-290 LNl 3-243
GIT35 3-230 3-288 LN1A 3-243
GIT35A 3-230 3-288 LN4 3-243
GIT37 3-230 3-290 LNDPV 3-244
GIT41 3-230 3-290 LNE 3-244
GIT42 3-230 3-290 LNEN 3-243
GIT43 3-230 3-289 LNERR 3-244
GIT44 3-230 3-289 LNFRM 3-244
GIT99 3-230 3-289 LNLOC 3-244
GIT351 3-230 3-289 LNVAL 3-244
GIT352 3-230 3-289 M3WAI 3-222 3-278
GITA 3-230 3-291 MBYT 3-178 3-248
GITA2 3-230 3-291 MFOI 3-277
GITC 3-230 3-291 MIFT 3-238 3-279
GITE 3-230 3-291 MOl 3-206 3-266
GITL 3-230 3-291 M05 3-206 3-266
GITS1 3-230 3-288 M06 3-206 3-266

3-173

ENTRY POINTS TO ASSEMBLR (PASS 1) SUBROUTINES (cont.)

Page Page
Entry Description Flowchart Entry Description Flowchart

MOVE 3-206 3-266 PRL2A 3-196 3-259
MTASYM 3-242 PRL3 3-196 3-258
MVPRC 3-206 3-266 PRL7 3-196 .3-259
NAM1 3-205 3-265 PRNT 3-272
NAM2 3-205 3-265 PROC 3-190 3-253
NAME 3-205 3-265 RDPI 3-278
NMEND 3-205 3-265 RELTST 3-225 3-295
NMERR 3-205 3-265 RES 3-188 3-252
NOEND 3-244 RESET 3-217 3-275
NS1A 3-210 3-270 RET3A 3-248
NS1B 3-210 3-270 RET4 3-248
NS1C 3-210 3-270 RET5 3-248
NS1D 3-210 3-270 RET10 3-248
NS3 3-210 3-270 REZZ 3-248
NS3A 3-210 3-270 SA2 3-203 3-264
NS9 3-210 3-270 SA3 3-203 3-264
NS99 3-210 3-270 SA4 3-203 3-264
NSRT 3-210 3-270 SAM 3-203 3-264
ORG 3-188 3-251 SC2 3-212 3-271
ORGl 3-188 3-251 SC3 3-212 3-271
OUTP 3-215 3-274 SCAN 3-228 3-280
OUTPl 3-215 3-274 SCANl 3-228 3-280
OUTP2 3-215 3-274 SCAN2 3-228 3-280
PAGE 3-218 3-276 SCAN3 3-228 3-280
PEEK 3-234 3-293 SCAN6 3-228 3-282
PL1 3-185 3-245 SCAN7 3-228 3-280
PLB 3-185 3-245 SCAN9 3-228 3-281
PLB2 3-185 3-245 SCAN21 3-228 3-280
PLB3 3- i85 3-245 SCAN23 3-228 3-280
PLBEX 3-185 3-245 SCAN99 3-228 3-281
PLINE 3-272 SCAN998 3-228 3-281
PLT4 3-186 3-246 SCAN999 3-228 3-281
PLT4A 3-186 3-246 SCANC 3-232 3-292
PL T5 3-186 3-246 SCANC1 3-232 3-292
PLT6 3-186 3-246 SCANC2 3-232 3-292
PLTST 3-186 3-246 SCANC3 3-232 3-292
POP 3-201 3-264 SCANC6 3-232 3-292
POPD 3-191 3-254 SCANC8 3-232 3-292
POPR 3-192 3-254 SCANC9 3-232 3-292
PR7 3-203 3-264 SCANC9E 3-228 3-281
PRL 3-196 3-258 SCANR 3-232 3-292
PRL1 3-196 3-258 SCNC11 3-232 3-292

3-174

ENTRY POINTS TO ASSEMBLR (PASS 1) SUBROUTINES (cont.)

Page Page
Entry Description Flowchart Entry Description Flowchart

SCRP 3-212 3-271 TEXT1 3-176 3-247
SKIP 3-179 3-249 TEXT2 3-202 3-263
SR5 3-209 3-269 TEXT3 3-202 3-263
SR6 3-209 3-269 TEXTR 3-202 3-263
SR7 3-209 3-269 TXT2 3-176 3-247
SR9 3-209 3-269 TXT3 3-176 3-247
SRCH 3-209 3-269 TXT5 3-176 3-247
START 3-169 3-241 TYPWRT 3-272
SWITCH 3-207 3-267 UNDEF 3-244
TEXT 3-176 3-247 WEOFL 3-276

3-175

* *1 • -1* I SCIENTIFIC DATA SYSTBMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Obtain next line of text (TEXT)

PURPOSE: To obtain the next line of input to be processed.

ACTION: TEXT takes the following actions:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

1. If the I ine is to be obtained from the procedure sample area, TEXT

calls SKIP to skip to the end of the current line.

2. If symbol i c output is requested, TEXT reconstructs the I ine and stores

the bytes into BBUF by calling MBYT and writes the line on the

symbo Ii c output fi Ie.

3. If the line is not to be output as symbo Ii c, TEXT obta i ns the bytes by

call ing GTB and stores them in BBUF. SKIP is called to skip over

comments.

TEXT is a relocatable routine assembled as part of ASSEMBLR. The symbol ic

output routi ne is a standard MSCO NTR L I/O routi ne.

BRM TEXT
end-of-fi Ie return
normal return

70
8

cells

IPL
EDS
EDC

SKIP
GTB
MBYT

symbol ic output routine

3-176

t allli-ill a SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 6120{

IDENTIFICATION: Initialize line reconstruction (IPL)

PURPOSE: To initialize parameters for reconstructing line images.

ACTION: IPL sets the maximum character count and the line length and initializes the

buffer locations for fields by calling EDS. The buffer is set to blanks.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

IPL is a relocatable routine assembled as part of ASSEMBLR.

BRM IPL

148 cells

EDS

3~177

SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Serit>s: 042016

Cat a log No. 9300: 6 1 200 I

IDENTIFICATION: Reconstruct symbolic lines (MBYT)

PURPOSE: To reconstruct line images for punching and to enter bytes into byte buffer,

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

BBUF.

MBYT obtai ns bytes by call ing GTB. The byte is stored in BBUF, and the

byte table entry is obtained and placed in ECW. The di ctionary characters

represented by the byte are obtained by call ing GEC and stored into the

image by calling EDC. If the line is continued, the first portion is output

to the symbolic file (listing in PAS2). INC is used to obtain comment

characters.

MBYT is a relocatable routine assembled as part of ASSEMBLR.

BRM MBYT

102
8

cells

GTB
IPL
INC

GEC
EDC
GBSL

3-178

* ;1 • -1*; SCIENTIPIC DATA SYST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Skip to the end of lines (SKIP)

PURPOSE: To skip to the end of the current line.

900 Series: 04201
Catalog No. 9300: 6120(

ACTION: SKIP calls GCW to get consecutive bytes until an end-of-line byte is

obtained. Comments are skipped by call ing INC to get comment

characters.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SKIP is a relocatable routine assembled as part of ASSEMBLR.

BRM SKIP

228 cells

GCW
INC

3-179

t *1 •• It * SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Get comment characters (INC)

PURPOSE: To fetch the next comment character.

ACTION: INC saves the current byte size and mask and then sets the size to six bits.

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

INC calls GTB to fetch the next six bits of input, after which it restores the

byte size and mask. The character is in the A register.

INC is a relocatable routine assembled as part of ASSEMBLR.

BRM INC

228 cells

GTB

3-180

* II • -*; SCIENTIFIC DATA SVaTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Get the next byte table entry (GCW)

PURPOSE: To get the next byte table entry and byte value.

ACTION: GCW gets the next byte from BBUF or by colling GTB if within a procedure.

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

The negative byte value is placed in the A and X registers and in BYT; the

byte table location for the byte is placed in ABYT, and the byte table

entry is placed in the B register and in ECW.

GCW is a relocatable routine assembled as part of ASSEMBLR.

BRM GCW

20
8

cells

GTB

3-181

I 'I • -* I SCIENTIPIC DATA SYST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Get bytes from the input file (GTB)

PURPOSE: To obtain the negative of the next byte of input and place it in BYT and in

the A and index registers.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

1 .. r-l .. "'n"
Mt:MUKY

REQUIREMENTS:

SUBROUTINES
USED:

GTB extracts the next BSIZ bits from CHAD, complements the result, and

stores it in BYT and the index register. If there are fewer than BSIZ bits

remaining in CHAD, INPUT is called to obtain the next encoded text word.

If a byte has zero value, the value is taken to the 2
BSIZ

, and BSIZ and its

related mask are incremented.

GTB is a relocatable routine assembled as part of ASSEMBLR.

BRM GTB

428 cells

INPUT

3-182

* II • -1* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 04201,
Catalog No. 9300: 61200

IDENTIFICATION: Get a dictionary character (GEC)

PURPOSE: To fetch to the A register and NCE the character from a dictionary entry.

ACTIO N: GEC extracts the next character from the location given by ECW and stores

it in the A register and NCE.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBRO UTINES
USED:

GEC assumes that ECW has the format of the byte table entry and that the

right 15
10

bits of ECW point to the dictionary word. GEC modifies ECW

to indicate characters remaining and next character position. GEC is a

relocatable routine assembled as part of ASSEMBLR.

Contro I word to ECW
BRM GEC
end-of -stri ng return
normal return

348 cells

None

3-183

I */ • -I'; BC.ENTIPIC DATA BY~T.MB

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Test for waiting labels (lBTST)

/' 900 Series: 042016
Catalog No. 9300: 612001

PURPOSE: To define waiting labels and reset the label flag.

ACTIO N: If lBl at the current PROC level contains a label, LBTST calls NSRT to

enter it into the symbol table and then resets lBl to zero.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

LBTST is a relocatable routine assembled as part of ASSEMBLR.

BRM LBTST

118 cells

NSRT

3-184

I ;r:w -II; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 6120(

IDENTIFICATION: Process label fields (PlB)

PURPOSE: To scan the label field of a I ine, set a tentative definition of the label if it

is present, and set the cell Wll Vl to indicate the procedure level at which

the label is to be defined.

ACTION:

PROGRAMMING
TECHNIQUES:

CAllING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

Wll Vl calls GCW to obtain the bytes of the label field and the blank

following the label. If the line is a comment, PlB exits with an end-of-line

flag in the A register. WllVl is set to reflect the level at which the label

is to be defined. A tentative definition is made for the label, setting it

equal to the location counter value; this tentative definition in the form of

an address item is placed in lBl through lBL +3. Pl TST is called to test for

an external label string.

PlB is a relocatable routine assembled as part of ASSEMBlR o

BRM PlB
end-of-I ine return
normal return

134
8

cells

GCW
GEC

GBSL
PlTST

3-185

I'I • -It I SCIENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Process external label strings (PlTST)

PURPOSE: To process strings of external label definitions.

ACTION: PL TST determines if the label is external and if it is either the only field on

the line or followed by a second symbol. If it is not, PlTST returns to PLB

without taking action. Otherwise, a flag is set for SRCH to accept any type

of symbol definition, and SRCH is called to test for the presence of the

symbols in the string at the current procedure level. As each symbol def

inition at the current level is found, it is redefined at a lower level by

calling NSRT. Labels not found are ignored.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

PLTST is an open routine assembled as part of ASSEMBLR and used only in

coni unction with PLB.

PLTST is called by PLB and returns either to PLB or to the main line code.

1228 cells

GCW
GBSL
SRCH

NSRT
GEC

3-186

* ;1 • -If; SCIENTIPIC DATA SYST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Process EQU directives (EQU).

PURPOSE: To process the EQU directive

ACTION: The operand field of the line is evaluated by calling SCAN. The value

returned by SCAN is used to construct an item definition in LBL to LBL +3.

If the operation is a reference, LBL is set to zero and return is made to

LINSYM. In constructing the item definition, EQU uses the associate set

for the tentative definition of the symbol by PLB and the type and mode bits

of the operand field. NSRT is called to define the item.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

EQU is an open subroutine assembled as part of ASSEMBLR.

EQU is called by executing the directive branch table and returns to the

main line code.

107
8

cells

SCAN
NSRT

MFOI
RDPI

3-187

t *1 • -* * SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Process AORG, ORG and RES directives (AORG, ORG and RES)

PURPOSE: To process the indicated directive.

ACTION: Each of these routines calls SCAN to evaluate the operand field.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

1. RES stores the resulting value in CCINC.

2. ORG appends the relocation flag and stores the value in CC and LBL+1.

3. AORG removes any relocation flag and stores the value in CC and

LBL + 1.

All of these routines are open routines assembled as part of ASSEMBLR.

Each is called by executing the directive branch table, and each returns to

the main line code at LNLOC.

15
8

cells total

SCAN

3-188

I 1/ • -1* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Seril's: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Process FORM directives (FORM)

PURPOSE: To process the FORM directive.

ACTION: FORM calfs SCAN to evaluate the expressions in the operand field. As each

field is obtained, a bit is set in a double form control word and the word is

cycled left by the value of expression evaluated by SCAN. When all fields

have been evaluated, the form control words are cycled right one bit and

placed in a form definition item in LBL through LBL+2. NSRT is called to

place the item into the symbol table.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

FORM is an open ,routine assembled as part of ASSEMBLR.

FORM is called by executing the directive branch table and returns to the

line code at LINSYM.

55
8

cells

NSRT
SCAN

3-189

* ;1 I -*; SCIENTIFIC DATA SVST.MB

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Se r i e s: 0420 16
Catalog No. 9300: 612001

IDENTIFICATION: Process the PROC and FUNC directives (PROC and FUNC)

PURPOSE: To process the indicated directive.

ACTION: The sample processing flag is set, and the nested sample count is incremented.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

If the I ine appears while already processi ng sample, control goes to S A2 to

process the line like any other sample line. A flag is set to indicate PROC

or FUNC, and a test is made to determine if ASSEMBLR is processing a

PROC or FUNC reference. If a reference is being processed, the line

position at the beginning of the line is set in PRPOS to be used in defining

following NAME lines. If not inside a reference, the bytes of the line are

moved to PRBYTS for later insertion into sample storage (see PREASM for

more information on the concept of processing procedure sample).

PROC and FUNC are open routines assembled as part of ASSEMBLR.

PROC and FUNC are entered by executing the directive transfer table.

Both routines return to the main line code at LINSYM.

53
8

cells total

None

3-190

*-.-'.1 • --il~ SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 04201c
Catalog No. 9300: 612001

IDENTIFICATION: Process POPD directive (POPD)

PURPOSE: To process the POPD directive.

ACTION: The label given on the line is defined as a programmed operator by building

a local or external programmed operator item with the operation value of

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SU BROUTINES
USED:

the current programmed operator count. The POP count is then incremented.

The item built is placed in LBLand LBL-H, and WLLVL is set to define the

item at the lower level.

POPD is an open routine assembled as part of ASSEMBLR.

POPD is called by executing the directive transfer table; control returns to

the main line code at LNLOC.

278 cells

None

3-191

* *1 • -1* I SCI.NTIPIC DATA ayaT.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Process undefined operations (POPR)

PUR POS E : To defi ne a programmed operator reference item.

ACTION: POPR defines the waiting label and then constructs a programmed operator

reference item at LBL and LBL + 1. WLLV L is set to cause the i tern to be

defined at the lower procedure level. NSRT is called to place the POP

reference item into the symbol table, LBL is set to zero, and the programmed

operator count is incremented.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

POPR is an open routine assembled as part of ASSEMBLR.

POPR is called by the line code when an undefined operation is detected

and return is to the line code at LNLOC.

418 cells

NSRT

3-192

s ;1 • -*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 0420
Catalog No. 9300: 6120(

IDENTIFICATION: Process DO directives (DO)

PURPOSE: To process DO directives.

ACTION: DO calls SCAN to evaluate the expressions in the operand field. These

values are placed into a DO table entry. NSRT is called to define the

PROGRAMMING
TECH~'HQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

label on the DO line which is given a value of zero. The location of the

DO label value is placed in the DO table entry as is the current procedure

level. The pointer to the current DO table entry is set. If the DO appears

in a PROC or FUNC reference, the next line is obtained by calling SKIP

and its location is moved to the DO table. If the line is outside any PROC

or FUNC reference, it is obtained by calling TEXT. If a void DO appears

outside a PROC reference, the DO line and the line following it are ignored.

A void DO within a PROC reference results in the number of lines to 'do'

being skipped.

DO is an open routine assembled as part of ASSEMBLR.

DO is called by executing the directive branch table and returns to the main

line code.

1448 cells

SCAN
NSRT
SKIP

TEXT
EPRNT

3-193

, III -It I SCI.NTI .. IC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

I'DENTIFICATION: Repeat lines of code (DOAGN)

PURPOSE: To repeat lines of code in the range of a DO directive.

ACTION: DOAGN decrements the line count for the DO and, if all lines have not

been finished, returns to LN4 in the main line code to continue processing

the line. When all lines have been done, -the DO count is decremented and,

if not finished, the origin of the first line to do is reset, the DO label value

is incremented, and control goes to DOAGN to count the lines. As each

line is done, DODEC is called to decrement the line 'counts on outer active

DOs. When the DO count reaches zero, the lines to skip are skipped and

the DO table pointer is reset to the next lower DO level.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

DOAG N is an open routine assembled as part of ASSEMBLR.

DOAGN is called by the line control code when an active DO is detected

and control returns to the I ine code.

1248 cells

DODEC
TEXT
SWITCH

GCW
SKIP

3-194

* II • -1* I SCIENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Decrement DO line counts (DOOEC).

900 Series: 0420
Catalog No. 9300: 61201

PURPOSE: To decrement the DO line counts of active DOs outside the current DO.

ACTION: DODEC steps through the DO table, decrementing the DO line counts for

active DOs outside the current DO but at the same PROC level.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

DOOEC is a relocatable routine assembled as part of ASSEMBLR.

BRM DODEC

248 cells

None

3-195

* III -It I SCIENTIPIC DATA SYSTEMS

SDS PROGRAM liBRARY
PROGRAM DESCRIPTION 900 Series: 04201 ()

edt a it) g No. 9300: 6 1 200 1

IDENTIFICATION: Process PROC and FUNC reference lines (PRL and FNRL)

PURPOSE: To process the line referencing a PROC or FUNC.

ACTION: The procedure level is first tested to determine if space exists to process the

line; and, if space is not available, the routine is exited. The temporary

procedure level, PLVT, is incremented, a flag is set to indicate whether the

reference was to a PROC or FUNC, WLLVL is set equal to PLVT, and the

symbol table direction is reversed. PLY and the location counter are saved

and the pass is set to first. DFLST is called to define the parameter list

elements. PLY is set to PLVTi BYT, ECW, and TERM are saved. The starting

PROGRAMMING
TECHNIQUES:

location of the sample is obtained from t!-e calling NAME item, and SWITCH

is called to reset the origin of the next byte of input. The old input position

is saved for resuming later. PLB is called to obtain the PROC line label, and

a test is made to see if this is a 1- or 2-pass procedure. If it is a l-pass

procedure, PASS is set equal to PASS at the referencing level. The list

item is constructed using the element linkage established by DFLST! the

I ist identification is obtained from the PROC label by PLB, and the val ue

is associated with the NAME item. NSRT is called to place the list item

into the symbol table. SKIP is called to bypass the remainder of the PROC

line.

The temporary setting of the procedure level PLVT before defining the list

parameters is done so that the parameters wi II be inserted into the correct

table position. Since a FUNC reference is possible before finishing the

definition of the list, the PLY flag must remain unaltered so that characters

3-196

PROGRAMMING
TECHNIQUES:
(cont.)

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

are obtained and labels processed, etc., in the normal mannerj however,

it must be remembered that this additional reference must be completed.

These routines are open routines assembled as part of ASSEMBLR.

PRL is called by the main line code when a procedure reference is encount

ered. FNRL is called by SCANC when a function reference is encountered.

Both return to the main I ine code.

225
8

cells total

DFLST
SWITCH
GBSL
NSRT

PLB
GCW
SKIP

3-197

* III -1* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Define procedure reference parameters (DFLST)

900 Series: 042016
Catalog No. 9300: 612001

PURPOSE: To define the parameters on the PROC or FUNC reference line.

ACTION: DFLST calls SCAN to evaluate the parameters and NSRT to place them in

the symbol table. The parameters are I inked as they are inserted, and the

number of parameter~ and the location of the first parameter are saved to

define the list item. A skeletal list item is placed in ICW and VALUe

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

DF LS T is a relocatable routine assembled as part of ASSEMBLR.

BRM DFLST

428 cells

SCAN
NSRT

3-198

* ;1 • -1*; SCIENTIFIC DATA SYSTIiMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Process END directives (END)

PURPOS E: To process END directives.

900 Series: 0420
Catalog No. 9300: 6120

ACTION: END may process an END directive in any of four ways:

1. The END occurs while processing procedure sample. The procedure

sample count is decremented. If it is zero, the sample processing

flag is reset and control goes to SA2. If the count is not zero, MOVE

is called to save the line and control goes to the line code at lINSYM.

2. The END occurs while processing a procedure reference. The label,

if any, on the line is defined by calling NSRT. SWITCH is called

to reset the origin of the next byte, SCRP is called to purge symbols,

and the parameters which were saved when the PROC was referenced

are restored. The label on the calling line is defined, if still present,

and control is returned to the main line code.

3. The END occurs while processing a FUNC reference. SCAN is called

to evaluate the END line expression. SWITCH is called to restore the

origin for'the next byte, SCRP is called to purge symbols, the parame

ters saved at the time of reference are restored, and control goes to

SCANR in the SCANC routine to continue the expression evaluation.

4. The END is the end of the program. If no further outputs are wanted,

control is returned to the monitor. The END line label is defined by

calling NSRT. The symbolic output file is closed. The binary output

file is opened, and the external symbol and programmed operators

3-199

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

C t 1 N 900 Series: 042016
tl. a og o. 9300: 612001

are output as are the programmed operator reference items. When the

external symbols have been completed, they are flushed from the

output buffer by calling FLUSH. PAS2 is now loaded.

END is an open routine assembled as part of ASSEMBLR.

END is called by executing the directive branch table.

250
8

cells

End-of-file routine for symbol ic output

NSRT FLUSH
OPEN MOVE
GTLBL SWITCH
OUTP SCRP

3-200

,. II •• It; SCIENTIPIC DATA SVSTBMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 6120(

IDENTIFICATION: Process FORM reference lines and programmed operator references (FRL and

POP)

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

To increment the location counter for FORM and POP references.

If the FORM is single-precision, CCINC is set to 1; if it isdouble-precision,

CCINC is set to 2. POP sets CCINC to 1.

These are open routines assembled as part of ASSEMBLR.

These routines are entered from the main line code when a POP or FORM

reference is encountered. Control returns to the I ine code at LNFRM.

228 cells total

f'....e

3-201

* ;\ I -1*; SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Process BCD and TEXT directives (BCD and TEXTR)

PURPOSE: To process BCD or TEXT directive lines.

ACTION: If the first operand field character is a < (less than), a > (greater than)

character is set as the line termi nator and the character count is set to 56
10

•

If it is not, the terminating character is set as 1008 (impossibre), and SCAN

is called to obtain the character count.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENT:

SUBROUTINES
USED:

Characters, obtained by calling GET, are then packed into WORD. When

WORD is filled, EDIT is called to output the data words. Characters are

thus obtained and output until the count reaches zero or the terminating

character is encountered. Blanks (608) are translated to 128 if the entry is

at BCD.

This routine is an open routine assembled as part of ASSEMBLR.

This routine is entered by executing the directive transfer table. Return is

to the main line code.

116
8

cells

PEEK
GCW
SCAN
EDIT

GBSL
GET
LBTST

3-202

* ;/ I -1*; SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 0420 1 ~
Catalog No. 9300: 61200·

IDENTIFICATION: Process lines of sample (SAM).

PURPOSE: To process lines of procedure or function sample.

ACTION: SAM calls PLB to process the label field of the line and GCW to obtain the

operation field. The operation field is tested for a PROC, FUNC, NAME,

or END directive; and, if it is any of these, control goes to the appropriate

routine. All other lines are processed by SAM starting at SA2.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

If this is the first line following the procedure NAME, the location of the

PROC line is determined either by using the parameters set by MOVE and the

current byte size and mask or by using PRPOS if this line appears in a pro

cedure reference. This origin of the PROC line is then set in each of the

NAME items associated with the PROC. If the I ine appears outside any

procedure reference, the PROC line is moved to storage by calling MVPRC

and the current line is moved by calling MOVE. If the line is not the first

line following the NAME lines and is outside any procedure reference,

only the current line is moved. The label on the I ine is ignored.

SAM is an open routine assembled as part of ASSEMBLR.

SAM is called from the main line code when the sample processing flag

is ON. Control returns to the main line code at LINSYM.

151
8

cells

3-203

SUBROUTINES
USED: PlB MVPRC

GCW MOVE
GBSl

C tIN 900 Seri~s: 042016
a a og o. 9300: 612001

3-204

* ;1 • -1* I SCIENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION ~oo St.'rit.'~: ~\t':l' 1-

Catalog No. 9300: 01'::00

IDENTIFICATION: Process NAME directives (NAME)

PURPOSE: To process NAME directives.

ACTION~ If the name does not follow a PROC, FUNC, or other NAME line, it is an

error. If the sample level count is greater than 1, the line is moved to the

procedure storage area. The value associated with the NAME is evaluated

by calling SCAN, and a NAME item is constructed in LBL through LBL+3.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

If the val ue of the operand field is a list, a flag is set in the second word of

the NAME item reflecting this fact. NSRT is called to place the NAME

item reflecting this fact. NSRT is called to place the NAME item in symbol

table. When NAME items are built, they are linked together so that the

setting of the procedure origin can be expedited later.

NAME is an open routine assembled as part of ASSEMBLR.

NAME is entered by executing the directive branch table. Control returns

to the main line code at LINSYM.

131
8

cells

GBSL
SCAN

NSRT
MFOI

3-205

, ;\ I -II I SCIENTIPIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Move lines to sample storage (MVPRC and MOVE)

PURPOSE: To move a line to the user sample storage area.

ACTION: MVPRC is used to move PROC lines to sample storage; MOVE moves all

other lines. Bytes are moved until an end-of-llne mark is encountered. If

the value of a byte{modulo the byte size}is zero, the byte size and related

mask are incremented. If table overflow occurs and no symbols have been

entered in the lower side of the symbol table, LOWER is moved up to make

more space avai lable.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

MVPRC sets the origin at which to obtain bytes and then branches to MOVE

to move the PROC line. The routines are relocatable routines assembled as

part of ASSEMBLR.

BRM
or

BRM MVPRC

1 11 8 c e "S to ta I

None

3-206

.t ;1 • -'* » SCIENTIFIC DATA SVSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Reset line origins (SWITCH)

900 Series: 0420
Catalog No. 9300: 6120~

PURPOSE: To reset the origin to obtain the next byte of input to the location specified.

ACTION: SWITCH packs the current position into the format of a NAME item pointer

word. The contents of the A register I in the same format, are unpacked and

used to set the new parameters. The contents of the B register is placed in

CHAD. On exit the old position in packed format is in the A register and

the old CHAD contents in the B register.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SWITCH is a relocatable routine assembled as part of ASSEMBLR.

Current location to A register
CHAD to B register
BRM SWITCH

418 cells

None

3-207

* 11 • -1* I SC'BNTIPIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Get symbols from the dictionary (GTlBl)

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

To find the dictionary entry, given the location of a symbol table entry,

and to move the dictionary characters to the location given by WORD.

G TlBl determines the dictionary location associated with an item at the

location given by the index at entry. The dictionary characters are then

obtained by call ing GEC and packed into the locations addressed by WORD.

GTLBL assumes that TPFLG has been set to indicate the direction of the

entry and that a dictionary pointer word follows tre symbol table item

specified. GTLBL is a relocatable routine assembled as part of ASSEMBLR.

Direction of symbol table entry to TPF LG
Location of entry to index register
Location for resulting label to WORD
BRM GTLBL

50a cells

GEC

3-208

* 'I •• 1* I SCIENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Search symbol table (SRCH)

PURPOSE: To search for a specified entry in the symbol table.

ACTION: SRCH examines the entries in the symbol table chain for an item of the same

type and at the same level as the current item. If SRFG is positive, the type

fields are not compared. On exit SRLNK points to the item found or the last

item in the chain if the item is not found.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SU BROUTINES
USED:

SRCH assumes that the direction of the table, WLLVL and TBLOC, are all

properly set when SRCH is entered. SRCH is a relocatable routine assembled

as part of ASSEMBLR.

Location of item to search for to index
BRM SRCH
item-not-found return
item-found return

66
8

cells

None

3-209

I III -1* I SCI_NT. PIC DATA SVST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Insert items into the symbol table (NSRT)

PURPOSE: To store items into the symbol table and to connect their linkages if they are

not already in the table.

ACTION: If PLVT does not equal WLLVL, the table direction is reversed. If the item

is not a I ist element, SRCH is called to determine if it is already in the

table; and if it is, a test is made to determine whether the item has the same

value as the current item. If the values are not the same and both items are

not absolute values or mnemonics, the error bit is set in both items and the

item is reinserted. If the items are different but absolute values of the same

length, the new item value replaces the old value. If they differ and are of

different lengths, the new item is inserted as though the old item had not

been found. Special tests are made when inserting mnemonic items for the

presence of a programmed operator reference item. If one is found in the

chain, it is given the subtype of seven so that it will not be output. SRLNK

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

is set to the location of any new item inserted. A pointer to the byte table

entry is inserted following items not at level one of tre symbol table. The

table direction is restored before exit.

NSRT is a relocatable routine assembled as part of ASSEMBLR.

Location of item to insert to index.
BRM NSRT

3-210

. MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

310
8

cells

SRCH

Catalog No. 900 Series: 042016
9300: 612001

3-211

* 'I' -1* I BCI.NTIPIC DATA BVST.MB

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Purge items from the symbol table (SCRP)

PURPOSE: To remove local symbols and lists from the symbol table at the conclusion of

a procedure reference.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SCRP steps through the symbol table entries for tre current procedure level

and reconnects the chain I inkages to bypass ,these symbols. The pointers to

the next available cell in the table are reset to the table origin of this level.

The direction of the table is reversed.

SRCP is a relocatable routine assembled as part of ASSEMBLR.

BRM seRP

102,.. cells
t5

None

3-212

* l[:i -1* I SCIENTIPIC DATA SVST.MS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDE NTIFICA TION: Store characters into buffer (EDC)

PURPOSE: To store a character into the buffer location specified.

ACTION: EDC subtracts 60
S

from the character furnished in the A register, positions it

to the correct character position as determined by EDC1, and stores it into

the location addressed by EDWW by adding to memory.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

EDC assumes the buffer has been cleared to blanks (60
S

) prior to being called.

EDC is a relocatable routine assembled as part of ASSEMBLR.

Character to A register
BRM EDC

21S cells

None

3-213

* II' -1* I SC.BNTIPIC DATA BVBTBMB

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Initialize word and character positions to store characters (EDS)

PURPOSE: To set parameters EDC 1 and EDWW for the EDC routine.

ACTION: EDS uses the control word supplied in the A register to set the shift parame

ter, EDC 1, and the buffer location, EDWW, for storing characters. The

control word has the following format:

PROGRAMMING
TECH NI QUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

character (9 bits)
• I

1 word P?sition (.15 bits). I
o I • I • • •

89 23

Character is 0 through 3, giving character positions from left to right to store

next character.

Word position is the address in buffer to store next character.

EDS is a relocatable routine assembled as part of ASSEMBLR.

Control word to A register
BRM EDS

6 cells

None

3-214

* IfJI »1*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201(

Catalog No. 9300: 61200

IDENTIFICATION: Output a universal binary output item (OUTP)

PURPOSE: To store an output item into the output buffer and call the I/O routines to

write the record.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

If no binary output has been requested, OUTP exits without taking any

action. If the output buffer is full or if the output item is of a different

type than the previous item, OUTP calls F LUSH to empty the buffer. The

item is stored into the output buffer and the relocation flags and checksum

are accumulated for it. OUTP uses a branch table to transfer to the correct

segment of code to process the various item types.

OUTP is a relocatable routine assembled as part of ASSEMBLR.

I tem type to C TYP t
Output data to WORD
BRM OUTP

141acells

FLUSH
RESET

tFor item types one and two, WORD addresses the location of the datum. The
relocation flags WMODR, WMODC, and WMODP indicate whether the datum

,has the particular relocation qual ity.

3-215

t .1' -\1 I SC.aNTIPIC DATA SVSTaMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Empty to binary output buffer (FLUSH)

PURPOSE: To empty the binary output buffer.

900 Series: 042016
Catalog No. 9300: 612001

ACTION: FLUSH sets the accumulated relocation words into the buffer, sets the output

card type into the control word, and calls OUTPUT with each word in the

buffer to write the data on the binary output file. When all words are out,

FLUS H calls WRITE to write the record.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

FLUSH is a relocatable routine assembled as part of ASSEMBLR.

BRM FLUSH

628 cells

OUTPUT
WRITE

3-216

* II • -* I BC •• NTIPIC DATA BVBT.MB

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Initialize control cells for OUTP (RESET)

PURPOSE: To initialize the OUTP control cells for a new record.

ACTION: RESET initializes the output control cells for a new record.

PROGRAMMING
TECHNIQUES: RESET is a relocatable routine assembled as part of ASSEMBLR.

CALLING
SEQUENCE:

MEtv,ORY
REQUIREME NTS:

SU BROUTI NES
USED:

BRM RESET

13
8

cells

None

3-217

* II. -1* I BC •• NTIPIC DATA BVBT.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Process the PAGE directive (PAGE)

PURPOSE: To process the PAGE directive.

ACTION: PAGE calls EDTST to determine whether listing is being done. If so, the

HOME routine is called.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

PAGE is an open routine assembled as part of ASSEMBLR.

PAG E is called by executing the directive branch table. PAGE returns to

the line code ot LINSYM.

4 cells

EDTST
HOME

3-218

t II • -1* I SCIENT'P'C DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Print errors and symbotics (EPRNT)

900 Series: 042016
Catalog No. 9300: 612001

PURPOSE: To cause rne error flags and symbolics to be written on the listing.

ACTION: If listing is to be performed on the line, EPRNT calls EDE to edit error flags

and PRNT to print the line.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
R E QUIREME NTS:

SUBROUTINES
USED:

EPRNT is a relocatable routine assembled as part of ASSEMBLR.

BRM EPRNT

lOa cells

EDTST
EDE
PRNT

3-219

* II' -* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Process OED directives (OED)

PURPOSE: To process OED directive lines.

ACTION: OED calls SCAN to evaluate the expressions in the operand field. The values

are then placed into WORD and WORD+ 1, a double-precision FORM control

word is moved to WRD2 andWRD2+ 1, and the data are output by calling

EDIT. Before editing the data, LBTS T is called to define any waiting label.

When all expressions have been eval uated, control goes to LNFRM. The

location counter is incremented by 2 for each expression output.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SU BROUTINES
USED:

OED is an open routine assembled as part of ASSEMBLR.

OED is called by executing the directive branch table. Control is returned

to the main line code at LNFRM.

46
8

cells

SCAN
MFOI
RDPI

LBTST
EDIT
GLOV

3-220

I II • -I' I BCI&NTIFIC DATA BYSTaMB

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 61200

IDENTIFICATION: Obtain the low order value word set by SCAN (GLOV)

PURPOSE: To get the low order value word from VALU or VALU+ 1.

ACTION: If the value is a 3-word address item as indicated by ICW, the value is taken

from VALU+ 1; if not, the value is taken from VALUe The resulting value is

in the A register, and the contents of ICW is in the B register ot exit.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

G LOV is a relocatable routine assembled as part of ASSEMBLR.

BRM GLOV

13
8

cells

None

3-221

I 'I' .1
'

I SCI.NTIPIC DATA SVBT.MS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Make 3-word address items (M3WAI)

PURPOSE: To expand an address item into three words if necessary.

ACTION: M3WAI removes bits 9 through 23 of the VALU and stores it in VALU+ 1.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

Bits 9 through 23 of V ALU are set to zero. The item length is set to three

words.

M3WAI is a relocatable routine assembled as part of ASSEMBLR.

BRM M3WAI

13
8

words

None

3-222

* @j:i-il#; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201 c

Catalog No. 9300: 61200'

IDENTIFICATION: Negate floating point numbers (F LN)

PURPOSE: To negate a floating point number and to normalize the result.

ACTION: FLN takes the negative of the floating point number at the location given by

the index register I by complementing the fraction and adding 1. The result

ing number is then normalized as needed to correct for overflow or underflow.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

FLN is a relocatable routine assembled as part of ASSEMBLR

Location of floating po}ntnumber to the index register.

BRM FLN

35
8

cells

None

3-223

* II' -Ii I SC.aNTIPIC DATA SVSTaMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECH NI QUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

Multiply floating point numbers (FLM)

To obta in the product of two floating point numbers.

• n m n+m
F LM obtains the product of a2 *b2 as ab2 where the product ab is

taken as (h + i)* (i + k) 2!! hi + ij + hk.

If the result is over- or under-normalized, the resulting exponent is corrected.

FLM is a relocatable routine assembled as part of ASSEMBLR.

Location of multiplicand to A register
Location of multipl i er to B register
BRM FLM
The product replaces the multipl icand.

106,.. cells
~

None

3-224

I II • -1* I BCI.NTIPIC DATA BYST.MB

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Test item relocations (RELTST)

PURPOSE: To determine the relocation status of a pair of items.

ACTION: If the item addressed by MODA is relocatable, RElTST sets bit 22 of the A

register; if the item at ICW is relocatable, REl TST sets bit 23 of the A

register. A is stored in RElFG.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

RElTST is designed to be used by SCAN and is a relocatable routine assem

bled as part of ASS EMBLR.

BRM RELTST

26
8

cells

None

3-225

* 'I • -It I SCIENTIPIC DATA SVST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Convert numeric strings to binary values (CNVRT)

PURPOSE: To convert numeric items to binary values.

ACTION: CNVRT converts numeric character strings to their binary value by successive

multiplications of 8 or 10 (depending on the value of the first character).

GEC is used to fetch the characters of the string. Results are left in VALU,

VALU1, and VALU2. If the leading character is a dot, the number is con

verted to floating point by dividing the integer by the appropriate powers of

10 and calculating the exponent. The DPDIV routine is used to perform the

divisions. All floating point fractions so calculated are left in normalized

form.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME I~ TS:

SUBROUTINES
USED:

CNVRT is a relocatable routine assembled as part of ASSEMBLR.

Byte table entry for numeric byte to ECW
BRM CNVRT

1708 cells

GEC
DPDIV

3-226

* II I -1* I SCIENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 04201 (
Catalog No. 9300: 61200

IDENTIFICATION: Perform double-precision divisions (DPDIV)

PURPOSE: To divide the contents of the A and B registers by the contents of the loca

tion addressed by the index register and maintain maximum precision.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

DPDIV divides the contents of the A and B registers by the single-precision

divisor addressed by the index register. The remainders are then divided and

that remainder divided. The resulting quotient is normalized.

DPDIV assumes that both the dividend and divisor are normalized and leaves

the results in the same format. DPDIV is a relocatable routine assembled as

part of the ASSEMBLR.

Double-precision dividend to A and B registers
Location of divisor to X register
BRM DPDIV

36
8

cells

None

3-227

SC.ENTIPIC DATA SVSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Evaluate expressions (SCAN)

PURPOSE: To evaluate an expression and leave the control word of the results in the

B register and ICW and the value in VAlU through VAlU+2 with the low

order portion of the value in the A register.

ACTION: SCAN obtains the items in the expression by calling GIT and the connectors

by calling GNC. The items and connectors are obtained in pairs. If the

connector obtained is of higher priority than the previous connector, the

item value and the connector are saved in the SCAN operations table and

the table pointers are incremented. If the connector is of ~ower priority,

the previous operation is performed. The type of operation to be performed,

is determined by executing an operations branch table which carries control

to the various operation routines.

The operation routines perform the indicated operation between a pair of

operands, one of which is located in the SCAN operations table and the

other of which is located in iCW and V ALU to V ALU+2. The fiist item is

always the one in the SCAN operations table.

The result of the operation is placed in the cells lCW and VALU to VALU+2,

and the pointers to the operations branch table are decremented to point

to the previous item.

When a leading = (equals) mark is encountered, SCAN sets a flag indicating

that the expression is to be interpreted as a literal. A leading * (asterisk)

mark causes a flag to be set which will result in the value of the expression

being interpreted as an address quantity. This * flag will also be output

3-228

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

C tIN 900 Series: 04201(';
a a og o. 9300: 612001

with the resulting value so that ('xprt'ssions of thl' format P (.... i) may bf>

properly interpreted.

When the last operation to be performed is a termi nator, SCAN tests for the

literal flag being set; and if it is, SCAN takes zero as the value of the

expression. If the * flag is ON, the value is converted to a 3-word address

value and the sign bit of VALU is set.

Upon exit the contents of TERM are

o if blank terminated
1 if comma terminated
2 if right parenthesis terminated

The cell STAR contains 1 if the expression had a leading * and 0 otherwise.

The SCAN operations table is really a series of short tables each of which

is indirectly addressed. The table positions are incremented or decremented

by incrementing or decrementing the indirect pointer words. SCAN is a

relocatable routine assembled as part of ASSEMBLR.

Byte table entry for the first byte of the expression to ECW
BRM SCAN

1266
8

cells

GCW
GIT
GNC

MIFT RELTST
GLOV FLM
GLOP FLN

3-229

, '/ • _1* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Get next item of an expression (GIT)

PURPOSE: To obtain the value of an item and store it in VALU through VALU+2 with

its control word in ICW.

ACTION: GIT evaluates the following types of items:

alphanumeric constants

location counter reference

function references

subscripted symbols (parameter)

symbolic items

numeric items

lists

list count

parenthetical expression

1. Alphanumeric constants are evaluated by obtaining the characters from

the dictionary which comprise the constant and packing them together

into VALU and VALU+ 1.

2. The value of location counter references is the current value of CC.

3. Function references are evaluated by calling SCANC (which in turn

calls FNRL).

4. Subscripted symbols are evaluated by calling SCANC to obtain the

subscripts and by stepping through the I ist to extract the proper element.

5. Symbolic items are obtained by picking the item out of the symbol table.

If a symbolic item is undefined, the resulting value is taken as zero.

3-230

ACTION:
(cont .)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

C t 1 N 900 Series: 042016
a a og o. 9300: 612001 .

6. Numeric items are evaluated by call ing CNVRT. If a numeric item is

a mixed floating point number, the integer and fractional parts are

obtained by separate calls on CNVRT and the parts are then combined

by GIT.

7. lists are obtained by inserting the elements of the I ist into the symbol

table by calling SCANC and by generating a list item giving the loca

tion of the first element and the number of elements.

8. list counts are evaluated by finding the appropriate list item and ex

tracting the element count from it.

9. Parenthetical expressions are obtained by calling SCANC. GIT does

not differentiate between I ists and parentheti~al expressions; the dis

tinction is made by SCANC.

GIT works with the SCAN and SCANC routines and is really a maior section

of the overall expression evaluation processing. GIT is a relocatable routine

assembled as part of ASSEMBLR.

Byte table entry for first byte to ECW
BRM GIT

4728 words

GCW
GLOV
CNVRT
PEEK

SCANC
MIFT
GBSL
GET

3-231

t 'I • -It I SCIENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICA nON: Process lists and parenthetical expressions (SCANC)

PURPOSE: To evaluate parenthetical expressions, define elements of lists, evaluate

function references, and obtain volues of subscripts.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

SCANC increments all the SCAN toble level pointers in anticipation of

calling the SCAN routine. If the mode field of the contents of the B regis

ter is non-zero, SCANC calls FNRL to evaluate a function reference. If i.t

is zero, SCAN is called to evaluate the expression. If there is an operator

at the SCAN level at which SCANC was called, the resulting value is not

taken as an element and SCANC decrements the SCAN operation table

pointers and exits. (GIT takes advantage of this test when calling SCANC

to obtain subscripts by setting an artificial value in the SCAN operations

table.) Similarly, if the literal flag is set, the value is not a list element.

The element of a list is inserted into the symbol table by calling NSRT. The

next element is obtained by calling SCAN. When all elements have been

inserted and linked; SCANC constructs a list i tern in IC\A/ and V ALU, decre-

ments the SCAN operation table pointers, and exits.

SCANC is designed to be recursive with the SCAN routine. Since it auto

matically steps the SCAN operations table pointers I SCANC serves as the

device for forcing parenthetical expressions to be completed before other

operations. SCANC is a relocatable routine assembled as part of ASSEMBLR.

Control word to B register
BRM SCANC

3-232

CALLING
SEQUENCE:
(cont.)

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

F NRL returns control to SCANC at SCANR.

157
8

cells

SCAN
FNRL
PEEK
GEC

NSRT
GLOV
GCW

3-233

Catalog No 900 Series: 04201(
• 9300: 61200

* II • -* I SCIENTIPIC DATA BY.TaMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Peek at next dictionary character (PEEK)

PURPOSE: To peek at the next character in the dictionary entry without obtaining the

character. PEEK is normally used when a conditional test is needed but the

contents of ECW are not to be destroyed.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
~ f: (.)1 If ~f:~Af: "IT<:.
I'~""''-''&I''''Y'''''' • ...,.

SU BROUTINES
USED:

PEEK locates the dictionary entry for the byte addressed by ECW then extracts

the character addressed from the dictionary. The result is left in the A

register.

PEEK is a relocatable routine assembled as part of ASSEMBLR.

Byte table entry to ECW
BRM PEEK

248 cells

None

3-234

I II • -1* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201c

Catalog No. 9300: 61200

IDENTIFICATION: Get next connector (GNC)

PURPOSE: To get the operator table entry for the next connector into TERM and"the A

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

register.

GNC obtains the next connector characters by calling GEC. The characters

are left-adjusted in the A register and compared to bits 0 through 11 of the

operator table OTBl. When a match is found, bits 12-23 of the OTBl entry

are placed in TERM. GCW is called to get the first byte of the following

item. TERM is loaded into the A register before exit.

G NC is designed to work with SCAN and is a relocatable routine assembled

as part of ASS EMBlR.

Byte table entry for connector to ECW
BRM GNC

448 cells

GEC
GCW

3-235

I II' -* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICA nON: Get next character of a I ine (GET)

PURPOS E: To get the next dictionary character for a I ine of input.

ACTION: If the end of line has been reached, GET exits with a blank. GET gets the

next character for a byte by either using blank and reducing BCNT if the

string is blank or by calling GEC for nonblank strings. When the end of a

byte is reached, GET gets the next byte by calling GCW. If it is blank,

GBSL is also called. The character is in the A register at exit.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GET is a relocatable routine assembled as part of ASSEMBLR.

Byte table entry to ECW
BRM GET

448 cells

GCW
GBSL
GEC

3-236

* 'r:M -1* , SCI.NTIPIC DATA SVST.MS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: Count blank string lengths (GBSL)

PURPOSE: To determine the size of blank strings.

900 Series: 0420'
Catalog No. 9300: 6120(

ACTION: GBSL calls GEC to obtain the characters in the dictionary entry representing

the blank count. The count is placed in BC NT.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GBSL is a relocatable routine assembled as part of ASSEMBLR.

Byte table entry for blank byte to ECW
BRM GBSL

15
8

cells

GEC

3-237

t II' -It I SC.ENTIPIC DATA SYSTBMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Se r i e s : 0420 16

Catalog No. 9300': 612001

IDENTIFICATION: Fetch symbol table entries (MIFT)

PURPOSE: To move the item addressed by the contents of the index register to lew
through ICW+3.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

MIFT moves four words starting at the location specified in the index register

to ICW to ICW+3. If the address specified is greater than LOWER, the items

are taken in descending order from the starting point. If the item moved is a

2-word address item, M3WAI is called to expand it to three words.

MIFT is a relocatable routine assembled as part of ASSEMBLR.

Location of item to index register
BRM MIFT

278 cells

M3WAI

3-238

* If lIi-il*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 6120(
•

IDENTIFICATION: Get low order parameter values (GLOP)

PURPOSE: To get the low order parameter word into the A register.

ACTION: If the item addressed by MODA is a 3-word address item, the value is loaded

from the cell addressed by HOAj otherwise, the value is taken from the cell

addressed by LOA.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

G LOP is designed to be used by the SCAN routine and is a relocatable

routine assembled as part of ASSEMBLR.

BRM GLOP

l1acells

None

3-239

yOJ Series Only

~l-il-i1~ SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Programmed Operators (POPs)

PURPOSE: To define those instructior"s not common to all machines in the 900 series,

but which are used in the assembly system.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

The POPs are executed individually as referred to by the system.

There are two sets of programmed operators used, one set for the 910/925

and one for the 920/930. Both are coded in the intersection of the instruct

ion sets so no nesting results. The transfer words in cells 100 to 117 have

absolute origins; the routines to simulate the machine instructions are reloca

table. In addition to the programmed operators, cell 1337 (DTAB) is set

by POPs to reflect the increase in space for code needed when POP.s are

used. In this way better memory utilization results than if DT AB were fixed

sufficient for the largest set.

Not appl icable

920 cells
910 cells

l~~B through 126
8

plus 648 cells
1 W8 through 1178 plus 2578 cells

Not o?pl icable

900
3-240

Initialize tahles,
constants and
buffel'1

process line

FRL
increment CC

PRL
process PROC

POP
increment CC

POPtt
define POP

ASSEM8LR
OVERALL FLOW

Flag
error

no

PLB
process label

EOR
EOF

normal

Get operation

PROC reference?

no

3-241

Punch externals
and PODs

DOAGN

LOAD PASS2

yes

no

DIRT
branch tabl e

ASSEMBLR

START AND MTASYM ROUTINES

Rewind input tape (Xl).
l(Q800T) -MONITR and TOP.
Core size - AQPESW
TOP - 2 -TEMP
o - HIGH 3 CELLS of working

storage.
24 - BUSO (bits used)
2 - BSIZ (byte size)
3 - BMSK (byte mask)
PACKl + 8REAK 1 - BREAK,

LOWER, and T8LOC (location
of top of Symbol Table and bottom
of references) •

SET MTP + 3 with loc of input
routine.

Initialize proc levels.
Initialize DO table origin.
Initial ize word size.

EOF

Initialize location counter.
Clear L8L, PRCNT, and SMPBIT.
Set sample flag off.
Set direction to negative.
Set PASS to 1 •
Set SRFG so SRCH finds only type

requested.
Set sample storage origin.
Set upper Symbol Table location

(UPPER and NEXT)
Initial ize 1st word of sample storage

to zero.
Set POP counter (POPNR) to zero.
Clear literal and operation flags for

SCAN.
Set bits remaining to 24.
Clear error flags.

3-242

lINI

CIt"'1 It'Ill,",",i,,,, tl<1"~.
Rf"~f"' SCAN !t'\ ,.1.
ReSt'1 11'1"l1lil'" ill, 11"<11(''''.

Sllve ;l.h.'\ltilHl ~h.l""Hn('lr .. s

(CHAD, BSIl, BMS", MTP,
BUS D) for hc·.i,l"iIH 01 lilt'.

Is there On

ASS[MALR
L1NI R("lITINI

0- DPPf
l) -lnlRf
mOl((ee, MCC)
-MCC

>----.8

Save EON for
operand in DRCTV

ABYT - POPBYT

Blank strin~?

yes

GBSl
count blank string

get lst byte of
variable field

3-243

DIRECTIVE

POP reference?

f.:\ no

~ yft,-__ p_ro_c __ re~f~er_e_n_ce_? __ ~

no

Set E
error flag
l-CCfNC

ASSEMBLR
LINE ROUTINE (cont.)

No print

LBTST
insert label

O-Breg

print location

Set I
error flag
l-CCINC

LBTST
insert label

No print ,... ___ .1.... __ _

t+------<

1~ • .------~~~ __ p_r._I~_?_:v_al_u_e __ J:>

3-244

2 -B reg

EDIT
print lines

yes

yes

ASSEMBLR
PLB ROUTINE

yes

e
A reg -WLLUL

Current Byte Table
location of label
- BYTLOC

ECW - Are
location counter.

yes e
'-____ ~-----'~----------------------~. UNDEF

Set L error flag.
Clear current label.

PLV-CPINC - TEMP
l81-CPINC - l8l
0- l8l-CPINC

3-245

yes

no More than
15 blanks?

no

lower proc level.
Set BYLOC from

lower level.
Set value CC

waiting label?

Set WllVl to
current level.

Set SKFG to accept
any item type.

count blanks

End of line?

no

ASSEM8LR
Pl TST ROUTtN£

yes

no

yes

get next byte

3-246

no find

1st pass?

yes

PlV-CP1NC
- WllVl

Move Symbol Table
en try at SRLN K ta
LBl.

L(LBL)- X2

no

L(byte) - BYTlOC
PLY - 'Nl.LVL

.... --.... Set L8L to add rea
item with CC value.

CC - SRFG

In PROC?

no

79"-" CCNT
L(BBUF) ..-.. BYTE

Line number to
CBUF - land
CBUF - 2

ASSEMBLR
IPL AND TEXT ROUTINES

SKIP
to end of

current line

Byte _ L(BYTE)
BYTE + 1 _ BYTE

BYTE < 3?

no

CCNT - 1 - CCNT

L(BBUF)
BYTE

TEST + 1-
TEXT

3-247

yes

TEXT + 1
- TEXT

SKIP
skip comments

no

byte> 21

GBSL
count blanks

no

WRITE
punch card

ASSEMBLR
MBYT ROUTINE

Get dictionary
address of byte
into ECW

3-248

get comment

initialize line

Inside PROC 1

no

CCNT< 01

get character

ASSEMBLR
L8TST, SKIP, INC, AND GCW ROUTINES

GCW
get next byte

3-249

Inside PROC?

no

Load A reg from
L(8YTE) .

BMSK - BMSK6
On-BMSK
BSIZ - BSIZ6
6 -BSIZ

BMSK6-BMSK
Byte-8MSK6
8SIZ6-8SIZ
BMSK6- A reg

8YTE + 1 - 8YTE

Byte- BYT
Location of Byte

Table entry
-ABYT

Byte Table entry
- B reg and ECW

All characters of
byte obtained?

no

EON- Brag
lood A indirectly

from EON.
Extract character

from dictionory
entry given ot
EON.

Character - NCE
Step EON to point

ot next entry
character

NCE -A reg
GEC +1 -GEC

ASSEMBLR
GEC AND GTB ROUTINES

end of file

left adjust input
word in B reg.

BUSD + BSIZ
-BUSD

BSIZ -X reg

Merge byte from
N BYTE and new
input word.

Increment BSIZ by 1
and size of BMSK
by 1.

BMSK + 1 -A reg.

-A -A reg.
A reg-NBYTE
A reg -BYT
A reg -X reg

3-250

no

yes

no

Contents of lBl at
current proc lev~
- ELBC

value - LBL + 1
and WORD. Bits 0-8
of ICW-bits
0-8 of LBL

value _ LBl + 2
VAlU- lBl+ 1

ASSEMBlR
EQU, O'G, AND AORG ROUTINES

reverse words

3-251

(3

VAlU 2-
LBL + 3
VALU -WORD

Move 2nd word
of value to LBL + 2
and to WORD + 1

SCAN
get increment

Value - CCINC

ASSEMBLR
RES AND FORM ROUTIN ES

O-LBC + 1
O-LBC + 2
0- BTCNT

get field size

LBL I 1 and LBL + 2
+ + 1 rolated left VALUE
bits

Tenninatar "", ?

no

Rotate LBL + 1 and LBL +2
right 1 bit position

BreNT> 241

yes

Set mode in LBL to 3 word,
type 2, mode 0 item

3-252

yes

no LBL f. 2 - LBL + 1
Set mode bits to 2 word,

type 2, mode 0 item.

Clear label (LBC)

1 -8 reg

ASSEMBlR
FUNC AND PROC ROUTINrS

In sample process routine
(SAM)

Save sompl e storage
position of PROC item

yes

0-8 reg

Tum SMPFG to on
PRCNT + 1 - PRCNT

PRCNT > I?

no

8 reg -FNFG
O-PRORG
O-lBl

Inside procedure? SV8SD* 219+ SV8SZ* 215 +
WRDPOS -PRPOS yes'-________ ~----------,

3-253

no

Move 10 bytes of proc
line to PRBYTS

Save WLLVI. at WlLVI. + PINC.
WlLVI. - PlNC -WlLVI.
Set made bits of label to

2 word, type 2, made 3.
POPNR* 216 + CC
-lBl + 1 (label value).

External definition

yes

Set external flag In LBl -+ 1

ASSEMBlR
POPD AND POPR ROUTINES

8

3-254

CCINC + 1 -CCINC

Define item in LBL as 2 word,
type 2, mode 3 item.

Save WLL Vl and BYTLOC of
current levels.

Set BYTLOC with Byte Table
location of POP.

Set WLL VI. to next lower
level.

POPNR + 222 -lBl + 1.

NSRT
define item to

assembler

Clear LBL.
POPNR + 1 - POPNR.
Reset WLl Vl and BYTLOC.

Set up label as
'1 word, type 1,
'TIodel value item
with unit value

Clear label
LOC of DO label
value - DOTAB

Incre'Tlent DO label
valuf!

CHAD - DOTA8H
Position of ht

lint' - nOTA8+2
(8USD, 8517, I MTP

ASSEMBLR
DO ROUTINE

Store I ines to
do in bits
0-5 of DOTAB t 3

Set E error flog

3-255

Step DO
label value

Set E yes
error flog

DOTB-5

- DOTB

Set lines to
do in DOTAB + 1
and DOTAB + 3 =1

TEXT
get next' ine

no

EPRNT
edit line

DO count - 1 - DO
count at DOT AB + 3.

Original lines to DO and
lines to skip from DOTAB
+3 - DOTAB + 1

Increment DO label value

SWITCH
reset to 1st line

of DO

EOR flag- BYT

ASSEMBLR
DO ROUTINE (CONT)

Une count - 1

·no

Location of
BBUF- BYTE

no

skip outer lines

3-256

00T8 - 5 -TEMP + 1

TEMP + 1 > L (DOT A8)

yes

Level this do =
Current proc level

no

(TEMP + 1) - 5 -TEMP + 1

no

yes

ASSEMBLR
OOOEC ROUTINE

3-257

OOTB -X

Lines to do - 1-
lines to do (for
DO at TEMP + 1)

Set l f10g

PASS -PI NC - PASS no
CCINC - CCVAl ""--'''----t

O-CCINC FUNC

ASSEMBlR
FNRl AND PRl ROUTINES

no

PlVT + CPINC-
Pl VT and WlL Vl

B reg -PRFG
Reverse NEXT.
NEXT -TBLOC
-ORCTN - ORCTN
PLV-LPLV

h this 0 PROC?

yes

CC-CCVAL
-1- PASS

End of line?

no

yes
more thon 7 blonks?

no

2 word mode 3
item-ICW

o -Value-

0-8 reg

3-258

Old I ine position _

REFPOS
Old CHAD - CHOWRO
MTP1-SVMTP
MTP +02000-

MTP +2

PLVT-PlV
BYT-PRBYT
ECW-PRECW
TERM-PTERM
PROC ORIGIN
-PROR

ELEMENT ZERO WORD
-LBt + PlNC

DFlSi
evaluate list

Mode of ICW
-Mode of LBL

VALU -LBL + 1

get 1st element

Set element fla~
in ICW.

o -to lew
associate

define element

nO

yes

ASSEMBLR
FNRL AND PRL ROUTINES {cant.}

DFLST ROUTINE

021000000
-LBC +2

zero element
value - LBL + 3

item length + 2
- item length
field of LBL

yes

FST = 0 ?

3-259

yes

Location of
element -
LNK

Location of
element -
*LNK

define proc
list item

Set ICW to
2 words,
type 3,
item.

FST -VAtU

Binary or listing wonted?

End of
symbolic
regeneration
run

OPEN
open output

file

yes

yes

no

no

ASSEMBlR
EN:> ROUTINE

LBL ~ O?

yes

Set binary output linkage
O-DWC

040000000 - TPFLG
040000000 -ITYPC
1- CTVPC
1- DTYPC

FLUSH
empty buffer

no

no

PAS2 - A reg

3-260

MOVE
save end

line

CIYPC -CTVP
L(LBL) - WORD
Blanks - LBL and

LBL + 1
length of item at DATA
-VALU

yes

Type ,> 17

yes

Subtype :=; I TYPC

yes

Item value + + ITYPC
- LBL +2

ASSEMBLR
END ROUTINE {cont.}

DATA + VALU
- DATA

DATA'" LOWER

3-261

BREAK-DATA

220 + ITYPC - ITYPC

no

ITYPC < 07

2 -CTYPC
2 -DTYPC
O-ITYPC
BREAK - DATA

yes

CTYPC ., I?

yes

NSRT
define label

no

ASSEMBlR
END ROUTINE (COllI.)

PlV - CPINC

eval uote end

PRBYT - BYT
lPlV - PLY
PRECW-ECW
PTERM -TERM
PLVT - CPINe - PLVT

3-262

CCiNC + 1 - CCINC
O-FRLCNT
0- EXPCT

no

CCINC + 1 - CCINC

GBSL
count blanks

GET
next character

next byte blanks?

no

Position and store
character into
WORD

ASSEMBLR
FRL, TEXTR, AND BCD ROUTINES

0100-TEXTC

GCW

')6 -A reg

A reg-l-CNTT

EDIT
print word

SPC -A reg

060 -A reg

3-263

012-SPC

-Areg

PlB
get label

nonna

GCW
get directive

Mnemonic directive?

yes

no

no

ASSEMBLR
SAM AND POP ROUTINES

1st non-NAME IIne1)--~-~ -<

yes

yes
In PROC reference 1

MOVE
save line

o -LBL

no MVPRC
move PROC line

Store location of next
sample position in all
NAME items for this
PROC
- -FNFG

no Store sample storage
position of PROC in
all NAME items for
this proc

Any NAMES given?

GCW
get Blanks Blank string?

yes

End of line?

no

GCW
get variable

8~-""·"'1 CCINC + 1 - CCINC

3-264

yes

In sample?

yes

FNFG <- O?

no

Control word to
2 word, type 2,
mode 1

yet

no

MOVE

ASSEMBLR
NAMf ROUTlNF

Move name
line

Set control
word to 2 word,
type 3, mode 1 Location of

name item + 1
--PRORG

NSRT
define name

VALU
LBL2

VALUI
........................ L8L3

--..--' 4 word items

3-265

Set error

flog in
LBL

Make 3 word
item

ASSEMBLR
MVPRC AND MOV[ROUTIN[S

l(PPBYTS) - TEMP
MVPRC -MOVE

BTlFT -BSZSM
- BTLFT

BTlFT -BSZSM
+ 24 -BTlFT

Byte·*BMSSM < 3?

yes

Byte < 3?

no

BSZSM + 1
-BSZSM

2*BMSSM + 1
-BMSSM

yes

L(BBWF) - TEMP

inside .. y_e_s _____ --t ...
proc'?

no

no

no

Move byte from
temp into location
given by SMPWRD

Full word?

yes

SMPWRD + 1
-SMPWRD

Clear new
sample word.

Table overflow

24-BTLFT
- SMPBIT

3-266

05 -A reg

yes

LOWER>
BREAK

no

A reg - TEMP (Iocotion)
B reg - TEMP + 3 (CHAD)
BIJSD * 219 + BSIZ * 215
+MTP -TEMP + 1

CHAD - TEMP + 2
Bits 0-4 of TEMP - BUSD
Bits 5-8 of TEMP - BSIZ
Bits 9-23 of TEMP - MTP
TEMP + 3 - CHAD
BSIZ bits - BMSK
TEMP + 2 - B reg
TEMP + 1 -A reg

ASSEMBLR
SWITCH AND EDTST ROUTINES

EDTST + J - fDTST

3-267

GTLBl

o - TEMP + 1

X2 + 2 - X2

TPFLG < O?
,,\no
I

yes

Bits 0-8 of byte
table entry for
symbol - TEMP.

Byte table entry
-X2.

C X2 point to dictionary?
yes

.J
no

Location next
~ entry tit il byte

_ X2
,

ASSEMBlR
GTL8l ROUTINE

I X2-4 - X2 --

Dictionary location -- + TEMP- ECW

GEe
get character

of Iymbol

Location for label
-TEMP + 4.

Pack c"laracter Into
location given by
TEMP + 4.

TEMP + 1 > 3?

yes

o -TEMP + 1
- (TEMP -t 4) + 1

_ TEMP + 4

3-268

EOR

1

~
I I '- no (TEMP + 1) + 1

J ---I - TEMP t 1

no

Save index

- (TlOC

__ --------~--------~no

Any entries this
BYTE?

yes

location of level
Break this level

- lVBRK
ITLOC- X2

Bih 10-23 of input item
- TEMP f 3
and SRLNK

Bits 4-5 of input item
(type) - TEMP + 2

TYPE to be

same type?

yes

DPCTN< 0 ?

yes

SRLNK > LVBPK?

yes

no

no

SR9

ASSEMBLR
SlKH ROUTINE

yes

Bits 10-23 of item
at SRlNK

SRlNK
- TEMP+-3

no

End of
chain?

LVBRK ;., SRlNK?

SRlNK ;.. NEXT?

no

3-269

no

-1- SRFG

ITlOC
-X2

NEXT :- SRLNK

yes

l--____ ITLOC - X2

SRCH + 1 - SRCH

yes

yes

NEXT -SRlNK
Move new item into

Symbol Table at
NEXT

ASSEMBLR
NSilT ROUTIN E

Store Byte Table
location of BYTE
into Symbol TobIe
step NEXT

3-270

Set D error flag.
Set error flag in

item at SRlNK
and in new item.

Reverse DRCTN.
Set NEXT to

alternate
Symbol Table

location.

NEXT-LOWER
UPPER-A

Location of level
break - LOWER

and LOW 1
NEXT-HIGH 1

Increment TEMP
for SCRP word

Associate of purged
item goes into Byte
Table entry given
by X2

yes

yes

yes

ASSEMBlR
SCRP ROUTIN E

Location of level
bl"C'ak - UPPER and

HIGH 1
NEXT-LOW 1

Location of level
break- TEMP

Complement DRCTN

TEMP NEXT

no

,TEMP + item length
-TEMP

Item an element of list?

no

Link of item- HIGH 1?

yes

no

Does Byte Table point to
this entry?

3-271

no

Reset N EX T to current
position in alternate table

Byte Table associate
- X2 as dummy Byte
Table location

ASSEMBLR
EDtnNG ROUTINES

3-272

Position character
Add chorac ter

to buffer
Decrement shift

count

no

ASSEMBLR
EDC AND EDS ROUTINES

Character -060

- A reg

Shift count = O?

Reset shift count to
18 bits

Add character to buffer
Increment buffer

Store buffer
position in EDW

Set shift count for
EDC (EDC1) to
initial value

3-273

Enter with
character in
A reg

ASSEMBlR
ENOM, POPRO, Off, ENON, ANO OUTI' ROUTINES

yes

PlOC + 1= lOC

nO

FLUSH
empty buffer Last card type 3?

no

RESET
reset buffer type

3-274

OWC+l-OWC
QlOC -OWl
L (M FLAGS) - MFLGTM
l (REl) - CHKS
l (OWl) +OWC -ICN
3 -OUTTMP

CHKS point to zero word?

no

Move word ::It location
given in CHKS to word
addressed by I CN

Add contents of word
addressed by MFLGTM
to OWl.

OWC +1 -OWC

OUTTMP <- O?

yes

e,----t~

Move PTYP and binary
flag to 1st word in
buffer

L (OWl) - CHKS
OWG - 1 - OWC

ASSI MRl.~
HlISH ANO RrSI T ROUTINI S

yes

MFlGTM + 1 - MFlGTM
CHKS + 1 - CHKS
OUTTMP-l - OUTTMP

no

3-275

OUTPUT
output data word

from CHKS

lOC -QlOC
o -REl
o -CREl
o - PREl
o -SREl
CTYP -PTYP

0-8 reg

EDTST
test listing

Print

HOME
eject page

l (PBUF) - A reg
l (EFMT) - X reg
LC - B reg

EFMT
Vlrite end-of-file

mark

ASSEMBlR
Wf OFl, PAGf AND l PRNT ROUTINf S

No print

3-276

test to print

PrInt

PRNT
prht line

Floating point?

yes

MFor
make output item

VAlU -WORD
VAlUI -WORDI
Set DPPF.
Set ') word fonn

control word
2 -CCrNC

ASSEMBLR
DED AND MFOI Il0UTINES

Double precision

yes

3-277

Bits 9-23 of VALU
-VALU +1

Bits 0-8 of VALU
-VALU

ICW++221 _ ICW

ASSEMBLR
GLOP, RDPI, GLOV, AND M':NVAI ROUTINES

Item at MODA a 3
word address item?

yes

HOA - A reg

3-278

no

VAlU - A reg
ION -8 reg

LOA -A reg

Move 4 words from
Symbol T abl e to
ICW to ICW + 3

Take 2's complement of
1st 2 words of floating
item at X2.

Increment fraction.
Carry adds to

exponent.

no

ASSEMBLR
MIFT, FLM AND FLN ROUTINES

Decrement fraction and
exponent.

Borrow from exponent.

3-279

Save location of
arguments - L 1 8. L2

Exponent of L2 - TEMPE

(L(l2»*(H(ll}) - TEMP
Exponent of LI + TEMPE
- exponent of 11

(l(L 1 »*(H(L2») + TEMP
- L(ll) and TEM P

(H(ll»*(H(L2» + TEMP +
lCL1)_ A 8. 8 regs

yes

no
Adjust
exponent

Store resul ts in
L 1 location

Overflow?

yes

Set Terror

fntf'r SCAN with hI
hytl'lol it"m ill lew

o -VALU
O-OPA
2 word, type 1 control

word -MODA
-ICW
0- STAR
o -lITF

lITF + 1 - tlTF

End of Entry

ASSEMBLR
SCAN ROUnNE

yes

Incrfl/Mf'lt storage oddrf'ls for
OPA, COA, MODA, HOA,
LOA.

TERM - OPA
ICW-MODA
VALU -LOA
VALU +1 -HOA
VALU +2 - COA

Set control word at ht
item to type 1.

o - 1st item value
Clear «' flag.
Set U flag.

0412 -TERM

3-280

Branch to
various
operation
routines
COGT,
COLT,
etc.

ASSEMBLR
SCAN ROUTINE (cont.)

llTF > O? STAR -' O? Reference item?

yes no yes

Set lew to 2 word address type I-------t~
o -VAlU

GCW
get next byte

Set E
error flag

nO

End of line?

yes

o -TERM
Set E error flag

GLOV
get value

3-281

Make 3 word
addreu item

___ -I:> Operator I

get 1st value

ASSE."ABLR
S(AN ROll TlNl (, nlll.)

- - - -i < Operator I

B reg- A reg
2 word, type I, mode (I
_Breg

A reg _ value
B reg _ICW

Decrement storage
locations for

OPA, MODA, LOA
HOA and COA

3-282

Values equal?

yes

l-Breg

Result - VAlU I- I
o - B reg

yes

Bits 9-23 of
LOA := TEMP?

no

Set R error flog

ASSEMBlR
SCAN ROUTINE (cont.)

Logical product
ofvolues-VALU t 1
037777 - B reg

A reg -B reg

Bits 9-23 of
VALU TEMP?

1st value - A reg

2nd value - A reg �.... ____ ~----I....--~

3-283

- --1- -operatorl

Toke logical
difference of

values
lew - B reg

031100000- 8 reg
Mask A reg saving

bits 0-8 .

no

Logical difference of
control words merged
with 2 word I type 1

Mask - A reg
A reg - B reg

Results address?

yes

VALU - B reg

ASSI MI\L~
SCAN ROllTlNI «(:0111.)

- --- i + Operatorl

LOA - B reg

Set ICW to
4 word floating
point type

Set I R'
error
flog

3-284

yes

yes

1st value -
2nd value
A reg

A reg-B reg

Only 2nd val ue
Ielocatable?

no

Negative of double
precision item at VALU
- VALU and VALU + 1

VALU - A reg
3 word double precision

control word - B reg

Operatorl

ASSEM8LR
SCAN ROUTINE (conI.)

- - - - -1·opt.!ratOi -1 / Operator

A reg * 2 - B reg

~---4 Divide by TEMP
Value - B reg

- -- -+- + operatorl

Scale exponent - X reg

1st mode 2 or 3?

TEMP + 2-VALU 2
TEMP+l-VALU 1
TEMP - A reg
041300000 - B reg

3-285

3 * Sca Ie - A reg
Save LOA, HOA

and COA in TEMP
to TEMP + 2

L (Scale) - B reg
L (TEMP) - A reg

1st item mo::Je 2 or 3?

no

-VALU - A reg

IVALUI· 637

no

1st value - TEMP
Scale factor - A reg

TEMP<O?

yes

A rfOg - X reg
0- B reg

Right shift A and B
reg X2 bits

ASSEMBlR
SCAN ROUTINE (cont.)

--- ~L ______ *_/_/_op __ e~ro_to_r ________ ~

Mode 3 (floating point)?

yes

Floating Point scale -47
+VALU -VALU

48- A reg

A re-g _ TEMP

A reg _ Xreg
0- B reg

Value - B reg
(l-A reg

~hift left X2 bits

A = O?

yes

Value - A reg
0- B reg

3-286

no

no

VAlU - A reg

VALU < O?

yes

-VAlU-A reg

49 -A reg

Shift A and B
right X bits

A rf'g _ VALU +
B rf'g _ A reg
Fixf'd Point mode

- B reg

ASSEMBLR
Gil ROUTINE

End of job
table overflow

eset previous
operation flag

(OPA-04000
--OPA)

Reference type control.
Word - B reg and I CW
() - A reg and VALU

3-287

GCW
get nf"xt byte

SCANC
evaluate function

Subscript - VAlU+ 1
location of ::?nd list

word - X2

f"t previous
)------.... lOPeration flag

OPA+04000- OPA)

ASSEMBLR
GIT ROUTINE (cont.)

no

MIFT
get item at X2

l-A reg

no

L(OITEM) - X2

l(ZITEM) - X2

3-288

Normalize integer:
high portion - TEMP +
Low portion - TEMP
exponent - TEMP + 2

TEMP + 2 - fraction
scaling - X2
Right shift fraction
){2 positions
Combine fraction and

integer.
High value

- VALU
Low portion plus

exponent - VALU +
Set lew to floating

type item.

GCW
get next byte

ASSEMBLR
GIT ROUTINE {cont.}

A reg + DERR
-OERR

yes

yes

Get I ist count
from VAlU.

Set I CW to vol ue type.

3-289

no

no

MIFT
get reference item

End of line?

no

get next byte

word - A reg

Item of value type?

no

I tem control word
-ICW

location of item-1
-VAlU

8

ASSEMBLR
GIl ROUTINE (cont.)

no

End of choin?

yes

SCREF - X2

no

yes

get ZERO item

3-290

Spec ial charoctf!r

es

no

Character I?

no

Character (?

no

Character ;?
no

yes

ASSEMBLR
GIT ROUTINE (cont.)

GCW
get next byte

8 - CNTR
0- VALU
o -VALU +1

GCW
get next byte

Set E
error flog

End of line?

3-291

Set item
control word
in ICW

LOC - VALU
address value
type - ICW

Blank string?

yes

GBSC
count blanks

GET
get character

Character I?

no

Pock character
into value in VALU

and VALU l 1

yes~----------L---------__

no

no

Save SCANC exit.
Save SCAN exit.
Increment SCAN

no

g,,1 element

Set element bit
in item

define element

ASSEM8lR
SCANC ROUTtNE

PASS 1

Set P error flag

PEEK
at next char?

loc of element
_ lost element

no

lst element?

3-292

get next byte

End of e.ntry

O-Areg
Value type
-Breg

e=rement SCAN levelt--___ M
pointers.
estore SCANC exit.
estore SCAN exit.

loe of element
- FRST

location of element
- LLNK.
Increment element

count.

ASSEM8lR
Ptf~ AND GNe ROUTINES

~--------~L---------~ye5
\,:....--------t~

Item alphanurm-ric ?

Special character? no

yes

Normal

Right adjust
dictionary character
in A reg

Set E error flag
0- A reg

Combine 2
characters in
A reg.

3-293

A reg - TERM

yes

get next byte

ASSEMBlR
GET AND G8SL ROUTINES

Byte blank string? ~-+-..

no

Blank-- CHR
and A reg

GBSL
count blanks

yes

yes

Step through
chain to dictionaryt-----

Reset ECW

e
get length

End of
entry

GEC
get character

Nonnal

A reg -- CHR

3-294

BeNT> O?

no

GCW
get next byte

GEC
get 2nd char.
of length

Normal

Combine characters
__ A reg

RELFG t- 1 - RElFG

no

no

ASSEM8LR
RELTST AND DPDIV ROUTINES

no

no

yes

Relocatable?

yes

RElFG t 2 - RElFG

A reg -VALUI
-X2 - X2
8 reg - A reg
Append X2 bits

from ION to A reg
A reg - VAlU

3-295

yes

Shift A and 8 right 1 .
Divide A and 8 regs

by 0,X2.
A reg - VAlUl
8 reg - A reg
0-8 reg

Divide A and B regs
by 0.X2

A reg * 2 - VALU
B reg-A reg
0- 8 reg

Divide A and 8 regs
by 0, X2

A reg ·-4 -lew
-1- X2
VALUI - A reg
VALU - 8 reg

Normal ize and
decrement
X2 + 1 - X2

no

No. characters - SIZFRC
o -VALUl
o -VALU2
o -VALU
0- PRECS

Nonnal

Character - O?

no

8 -MUlT
8 -MAXNO

no

VAlUl * MUll
-VAlUl

Product> 24 bits?

yes

r-------~------~ no
Set T error flog

ASSEMBLR
CNVRT ROUTINE

10 -MUlT
10-MAXNO

MAXNO-1 - MAXNO
Character - DOT

Set E error

VALU * MULT
-A and 8 regs

A + VALU1 -VALUI

3-296

yes

Nonnal get character

Set T error flag

yes

Overflow ?

VAlUl + 1 - VALUl

yes

Overflow?

Set T
error flog

PAS2

O-NDX

yes

Normalize VALUI
and VALU
- shift count -X2

VALUI c O?

no

X2-MINB
-23-MINC
SIZFRC -X2

SIZFRC - 9 - PWR
0-X2
FIVES + 9 -A reg
O-B reg
Normal ize A and B regs
X2-I-MINC
A reg-PWR + I
VALUI -A reg
VALU -I) reg
L(PWR + I} -X reg

get fraction

no

yes

no

no

AS'.' MI\I R
CNVR I ROUlINl (nmt.)

Single precision?

no

Set ICW to
double precision
type item

Set ICW to
floating point
type item

X2-NDX
PWR-X2

3-297

yes Set ICW to single
prec ision type
item

NOX + X2-NDX
- (MINC - MINB + V
+ SlZFRC - 2
+NDX) * * 0777
-VALU2

Normalize FIVES, X2
and store in PWR.

- shift count - V
VALUI-A reg
VALU -B reg
LC(PWR) -X reg

900 Series Only

BCIENTIPIC DATA SVSTBMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Program to complete the second assembly pass (PAS2)

PURPOSE: To complete the second assembly pass over the intermediate output tape X 1.

ACTION:

More specifically, PAS2 is to accomplish the following items:

1. To process each line of input and detect any errors thereon.

2. To generate the machine language (binary) output represented by each

line in the user's program.

3. To I ist the machine language code generated and the errors together

with the symbol ic source line.

4. To redefine symbols used as needed and to search for dupl icate symbol

definitions.

5. To generate I iterals as requested.

6. To generate items for externally defined symbols which will allow for

their definition at load time.

The main flow of PAS2 is very similar to the ASSEMBLR logic. When PAS2

is loaded, it takes the table locations generated by Pass 1 and from them sets

the origin of the literal and reference tables. The cells to obtain inputs are

initialized and the input tape Xl is rewound. The error flags are set to zero

and the print buffer is set to blanks. The routines to perform the listing are

initialized with respect to hardware device, channel, and unit. The first

record of the input text is read, and control goes to the main line processing

code to process the individual lines of input.

In the line processing code, a line is obtained by calling TEXT. If the line

is a line of procedure sample, SAM is called and, if a DO directive is

900
3-299

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

900 Series Only

Catalog No. 042016

active, DOAGN is called. PLB is called to process the label and establish

a tentative definition; the operation is obtained and the proper routine is

called to process the remainder of the line. Normally, control returns to

the main line code where the label is now defined by inserting it into the

symbol table; the line is listed, and the binary output is written on the

output file. The location counter is incremented for the word generated,

and control returns to the beginning of the main line code to fetch the next

line of input. When all lines have been processed, FINISH is loaded by

call ing the tape loader.

PAS2 is the largest overlay in the MET A-SYMBOL assembly system. DT AB,

as set in ENCODER, and POPs must be sufficiently large to allow PAS2 to

be loaded below it. The first cells of PAS2 and ASSEMBLR are common to

both routines. Many of these cells are set by ASSEMBLR (SMPWRD and

UPPER for example) and used by P AS2; therefore, care must be exerc ised in

introducing new constants or control cells to this region. FINISH, which

follows PAS2, uses some of the routines in PAS2 (for example, PRNT) and

must be loaded so as not to destroy the routines it uses or any of the memory

cells used bv them. Finallv the taDe loader has been assianed storaae in the - - I· - - - I - - - --.- - - - - _. - - - - - ..". - - - - - - .." - - - - - - . -

routines it loads to use as input buffer. None of the routines loaded by tape

loader can depend on the contents of those cells assigned to tape loader for

its buffer. PAS2 is a relocatable program assembled in one piece and origi

nated at 1354
8

, PAS2depends on the POPs having been loaded by ASSEMBLR

and does not contain the POP code.

PAS2 is loaded and executed by the tape loader after completion of

ASSEMBlR.

900
3-300

..

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

900 Series Only

Variable, but a minimum of 8192
10

cells.

TEXT
MBYT
PLB
EQU
PROC
FUNC
NAME
SAM
POPD
POPR
FNRL
PRL
END
FRL
POP
EDTST

EDIT
EDTV
EDTL
EDL
EDE
EDR
EDF
FLDC
PRNT
PLINE
HOME
TYPWRT
TYPE
TYCe
LNCT
THOME

INTYP
MFOI
RDPI
SCAN
GIT
IPL

f

SKIP:
INC t
GCW
GTSt

GECt

GNC t

CNYRTt

LBTslt
ORG
AORG t

RESt

FOR0
t

EDC
ED?
GET

t

DPDIy t

SCANC t

DOt
DOAjNt
OUTP
FLUSH t

GBSLt

PEEK t

DFLSTt

BCD t

TEXTR t

Catalog No. 042016

RESET
PAGEt
EPRNTt

MIFTt
FLMt
RELTSTt

SWITCH t

SRCH t

NSRTt

SCRp t

DEDt
GLOyt

FLNt
GLOp t

PLTST t

t These routines are the same as those described under ASSEMBLR except
that they are assembled as part of PAS2.

900
3-301

9300 Only

SCIENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Page 1 of Catalog No. 612001

IDENTIFICATION: Program to complete the second assembly pass (PAS2)

PURPOSE: To complete the second assembly pass over the intermediate output tape Xl.

ACTION:

More specifically, PAS2 is to accomplish the following items:

1. To process each I ine of input and detect any errors thereon.

2. To generate the machine language (binary) output represented by each

I ine in the user's program.

3. To I ist the machine language code generated and the errors together

with the symbolic source line.

4. To redefine symbols used as needed and to search for duplicate symbol

definitions.

5 . To generate litera I s as requested.

6. To generate items for externally defined symbols which will allow for

their definition at load time.

The main flow of PAS2 is very similar to the ASSEMBLR logic. When PAS2

is loaded, it takes the table, locations generated by Pass 1 and from them sets

the orig i n of the litera I and referenc e tabl es. The cell s to obta in i npu ts are

initial ized and the input tape X 1 is rewound. The error flags are set to zero

and the print buffer is set to blanks. The routines to perform the I isting are

initialized with respect to hardware device, channel, and unit. The first

record of the input text is read, and control goes to the main I ine processing

code to process the individual I ines of input.

In the line processing code, a line is obtained by calling TEXT. If the line

is a line of procedure sample, SAM is called and, if a DO directive is

9300
3-299

Page

ACTION
(cont.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

9300 Only

C;l Ld og No. 612001

active, DOAGN i~ coiled. PLB is called to rIOCt'\\ tilt' lobel (lIld t,\tllblish

a tentative definition; the operation is obtained and the proper routine is

called to process the remainder of the I ine. Normally, control returns to

the main line code where the label is now defined by inserting it into the

symbol table; the line is listed, and the binary output is written on the out

put file. The location counter is incremented for the word generated, and

control returns to the beginning of the main line code to fetch the next line

of input. When all lines have been processed, FINISH is loaded by calling

the tape loader.

PAS2 is the largest overlay in the META-SYMBOL assembly system. DTAB,

as set in ENCODER, must be suffic iently large to allow PAS2 to be loaded

below it.

PAS2 is loaded and executed by the tape loader after completion of

ASSEMBLR.

Variable, but a minimum of 8192
10

cells.

TEXT END PRNT GNC t DOt MIFTt
MBYT FRL HOME CNVRTt DOAGNt FLMt
PLB POP MFOI LBTSTt OUTpt RELTSTt
EQU EDTST RDPI ORGt FLUSHt SWITCHt
PROC EDIT SCAN AORG t GBSLt SRCHt
FUNC EDTV GIT RESt PEEKt NSRTt
NAME EDTL IPL t FORMt DFLSTt SCRpt
SAM EDL SKIpt EDC t BCDt DEDt
POPD EDE INCt EDSt TEXTRt GLOVt
POPR EDR Gcwt GETt RESETt FLNt
FNRL EDF GTBt DPDIVt PAGEt GLOpt

PRL FLDC GECt SCANCt EPRNTt PL TSTt

t These routines are the same as those described under ASSEMBLR except that
they are assembled as part of PAS2.

9300
3-300

ENTRY POINTS TO PAS2 (ASSEMBLY PASS 2) SUBROUTINES

Page Page
Entry Description Flowchart Entry Desc ri pt ion Flowchart

AORG 3-188 3-353 D01ZZ 3-193 3-356
BCD 3-202 3-364 D02 3-193 3-356
CNV1 3-226 3-399 D03 3-193 3-356
CNV2 3-226 3-399 DOA2 3-194 3-357
CNV3 3-226 3-400 DOA3 3-194 3-357
CNV6 3-226 3-400 DOA4 3-194 3-357
CNV7 3-226 3-400 DOA5 3-193 3-356
CNVRT 3-226 3-399 DOAGN 3-194 3-357
COAD 3-337 3-387 DODEC 3-358
COAD2 3-337 3-387 DOEND 3-193 3-356
COAD3 3-337 3-387 DOERR 3-193 3-356
COAP 3-337 3-388 DOVFW 3-193 3-356
COAS 3-337 3-387 DPDIV 3-227 3-398
COAS1 3-337 3-387 ED 3-318 3-370
COAS3 3-337 3-387 EDC 3-213 3-373
COBS 3-337 3-389 EDE 3-321 3-371
CODS 3-337 3-388 EDF 3-323 3-372
COEQ 3-337 3-385 EDIT 3-318 3-370
COGT 3-337 3-385 EDITP 3-318 3-370
COIQ 3-337 3-388 EDl 3-320 3-372
COLD 3-337 3-386 EDR 3-322 3-372
COlP 3-337 3-386 EDS 3-214 3-373
COlS 3-337 3-386 EDTl 3-320 3-371
COlS1 3-337 3-386 EDTST 3-317 3-366
COlS2 3-337 3-386 EDTV 3-319 3-371
COlS3 3-337 3-386 END 3-313 3-361
COlS4 3-337 3-386 ENDF 3-313 3-361
COlS6 3-337 3-386 ENDM 3-375
COlS6A 3-337 3-386 ENDN 3-375
COlSZ 3-337 3-386 ENDS 3-313 3-361
COLT 3-337 3-385 EPRNT 3-219 3-379
COlT1 3-337 3-385 EQU 3-308 3-353
COlT2 3-337 3-385 EQU3 3-308 3-353
COlT3 3-337 3-385 EQU4 3-308 3-353
COXQ 3-337 3-388 EQU6 3-308 3-353
COXQ1 3-337 3-388 EQU7 3-308 3-353
DATAT 3-375 FINISH 3-341 3-401
DED 3-220 3-380 FLOC 3-324 3-373
DEF 3-375 FlM 3-224 3-382
DFlST 3-198 3-360 FlN 3-223 3-382
DO 3-193 3-356 FLUSH 3-216 3-376
DOl 3-193 3-356 FLUSH 1 3-216 3-371

3-301

ENTRY POINTS TO PAS2 (ASSEMBLY PASS 2) SUBROUTINES (cant.)

Page Page
Entry Description Flowchart Entry Desc ription Flowchart

FNRL 3-311 3-359 GIT44 3-339 3-392
FNRLl 3-311 3-359 GIT99 3-339 3-392
FNRL2 3-311 3-359 GIT351 3-339 3-392
FORM 3-189 3-354 GIT352 3-339 3-392
FRERR 3-315 3-363 GITA 3-339 3-394
FRL 3-315 3-362 GITA2 3-339 3-394
FRL4 3-315 3-362 GITC 3-339 3-394
FRL4A 3-315 3-363 GITE 3-339 3-394
FRL4B 3-315 3-362 GITL 3-339 3-394
FRL4C 3-315 3-362 GITS1 3-339 3-391
FRL4E 3-315 3-362 GITS2 3-339 3-391
FRL5 3-315 3-362 GITS3 3-339 3-391
FRL5A 3-315 3-362 GITS4 3-339 3-390
FRL5B 3-315 3-362 GITS5 3-339 3-391
FRL6 3-315 3-363 GITS8 3-339 3-390
FRL8 3-315 3-363 GITS9 3-339 3-391
FRND 3-315 3-362 GITX 3-339 3-394
FUNC 3-309 3-355 GLOP 3-239 3-381
GBSL 3-237 3-397 GLOV 3-221 3-381
GVSL2 3-239 3-397 GNC 3-235 3-396
GCW 3-181 3-351 GNC3 3-235 3-396
GEC 3-183 3-352 GNCE 3-235 3-396
GET 3-236 3-397 GNCER 3-235 3-396
GETl 3-236 3-397 GOl 3-198 3-360
GET4 3-236 3-397 GTB 3-182 3-352
GET6 3-236 3-397 GTBl 3-182 3-352
GIT 3-339 3-390 GTLBL 3-208 3-402
GITl 3-339 3-390 GTRBL 3-390
~ IT')
'-'IlL

") ")")r\
.)-,).)7

'"' I"'\I""'\~ ,j-,j'f4 HOME 3-328 3-374
GIT3 3-339 3-390 INC 3-180 3-351
GIT9 3-339 3-392 INTYP 3-334 3-378
GITll 3-339 3-390 IPL 3-177 3-349
GIT31 3-339 3-393 LBERR 3-307 3-348
GIT32 3-339 3-393 LBTST 3-184 3-351
GIT33 3-339 3-392 LINE 3-346
GIT34 3-339 3-393 LINSYM 3-347
GIT35 3-339 3-391 LNl 3-346
GIT35A 3-339 3-391 LN1A 3-346
GIT37 3-339 3-393 LN4 3-346
GIT41 3-339 3-390 LNCT 3-332 3-378
GIT42 3-339 3-393 LNDPV 3-347
GIT43 3-339 3-392 LNE 3-347

3-302

ENTRY POINTS TO PAS2 (ASSEMBLY PASS 2) SUBROUTINES (cont.)

Page Page
Entry Description Flowchart Entry Desc ription Flowchart

LNEN 3-347 PRL1 3-311 3-359
LNEND 3-347 PRL2A 3-311 3-360
LNERR 3-347 PRL3 3-311 3-359
LNFRM 3-347 PRL7 3-311 3-360
LNLOC 3-347 PRNT 3-325/3-326 3-374
LNVAL 3-347 PROC 3-3-9 3-355
M3WAI 3-381 RDIP 3-336 3-381
MBYT 3-306 3-350 RELTST 3-225 3-398
MFOI 3-335 3-380 RES 3-188 3-354
MIFT 3-238 3-382 RESET 3-217 3-376
NAME 3-309 3-355 RET3A 3-306 3-350
NOEDT 3-317 3-366 RET5 3-306 3-350
NOEND 3-347 RET10 3-306 3-350
NRST 3-210 3-368 REZZ 3-306 3-350
NS1A 3-210 3-368 SA2 3-309 3-355
NS1B 3-210 3-368 SAM 3-309 3-355
NS1C 3-210 3-368 SC2 3-212 3-369
NS1D 3-210 3-368 SC3 3-212 3-369
NS3 3-210 3-368 SCAN 3-337 3-383
NS3A 3-210 3-368 SCAN1 3-337 3-383
NS9 3-210 3-368 SCAN2 3-337 3-383
NS99 3-210 3-368 SCAN21 3-337 3-383
ORG 3-188 3-353 SCAN23 3-337 3-383
ORGl 3-188 3-353 SCAN3 3-337 3-383
OUTP 3-215 3-375 SCAN6 3-337 3-385
OUTP1 3-215 3-375 S.CAN7 3-337 3-383
PAGE 3-218 3-379 SCAN9 3-337 3-384
PEEK 3-234 3-396 SCAN9E 3-337 3-384
PL1 3-307 3-348 SCAN98 3-337 3-384
PLB 3-307 3-348 SCAN99 3-337 3-384
PLB2 3-307 3-348 SCANC 3-232 3-395
PLB3 3-307 3-348 SCANC1 3-232 3-395
PLBEX 3-307 3-348 SCANC2 3-232 3-395
PLINE 3-327 3-374 SCANC3 3-232 3-395
POP 3-316 3-365 SCANC6 3-232 3-395
POP1 3-316 3-365 SCANC8 3-232 3-395
POP2 3-316 3-365 SCANC9 3-232 3-395
POP3 3-316 3-365 SCANF 3-337 3-384
POP4 3-316 3-365 SCANK 3-337 3-384
POPD 3-310 3-355 SCANL 3-337 3-384
POPR 3-310 3-355 SCANR 3-232 3-395
PRL 3-311 3-359 SCN998 3-337 3-384

3-303

ENTRY POINTS TO PAS2 (ASSEMBLY PASS 2) SUBROUTINES (cont.)

Page Page
Entry Description Flowchart Entry Desc ript ion Flowchart

SCNC11 3-232 3-395 TEXT3 3-202 3-364
SCRP 3-212 3-369 TEXTR 3-202 3-364
SKIP 3-179 3-351 THOME 3-333 3-378
SR5 3-209 3-367 TXT2 3-305 3-349
SR6 3-209 3-367 TXT3 3-305 3-349
SR7 3-209 3-367 TXT5 3-305 3-349
SR9 3-209 3-367 TYCC 3-331 3-378
SRCH 3-209 3-367 TYPE 3-330 3-377
SWITCH 3-207 3-366 TYPWRT 3-329 3-377
TEXT 3-305 3-349 UNDEF 3-347
TEXT1 3-305 3-349 WEOFL 3-343 3-402
TEXT2 3-202 3-364

3-304

, ;1 • -I'; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 0420

Catalog No. 9300: 6120

IDENTIFICATION: Obtain next line of text (TEXT)

PURPOSE: To obtain the next line of input to be processed.

ACTION: TEXT takes the following actions:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREME NTS:

SUBROUTINES
USED:

1. If the line is to be obtained from the procedure sample area, TEXT calls

SKIP to skip to the end of the current line.

2. If the line is to be listed, it is reconstructed by calling MBYT. The

line is not output on the symbolic output file.

3. If the line is not to be listed, TEXT obtains the bytes by calling GTB

and stores them in BBUF.

TEXT is a relocatable routine assembied as part of PAS2.

BRM TEXT
end-of-file return
normal return

70
8

cells

IPL SKIP
EDS GTB
EDC MBYT

3-305

* " • -1*; SCIENTIPIC DATA SVST.MS

50S PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Reconstruct symbolic lines (MBYT)

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME N TS:

SUBROUTINES
USED:

To reconstruct I ine images for printing and to enter bytes into byte buffer,

BBUF.

MBYT obtains bytes by colling GTB. The byte is stored in BBUF, and the

byte table entry is obtained and placed in ECW. The dictionary characters

represented by the byte are obtained by calling GEC and are stored into the

image by calling EDC. The first portion of continued lines is listed. INC

is used to obtain comment characters.

MBYT is a relocatable routine assembled as part of PAS2.

BRM MBYT

102
8

cells

GTB
IPL
INC

GEC
EDC
GBSL

3-306

* ;1 I -*; SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042(
Catalog No. 9300: 612(

IDENTIFICA TION: Process label fields (PLB)

PURPOSE: To scan the label field of a line, set a tentative definition of the label (if it

is present), and set the cell WLLVL to indicate the procedure level at which

the label is to be defined.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
TECHNIQUE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

WLLVL calls GCW to obtain the bytes of the label field and the blank fol

lowing the label. If the line is a comment, PLB exits with an end-of-line

flag in the A register. WLLVL is set to reflect the level at which the label

is to be defined. A tentative definition is made for the label, setting it

equa I to the location counter va I ue; th i s tentati ve defi n iti on in the form of

an address item is placed in LBL through LBL+3.

PLB is a relocatable routine assembled as part of PAS2.

BRM PLB
end-of-line return
norma I return

134
8

cells

GCW
GEC

GBSL
PLTST

3-307

t ;1 I -*; SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Process EQU directives (EQU)

PURPOSE: To process the EQU directive.

ACTION: The operand field of the line is evaluated by calling SCAN. The value re

turned by SCAN is used to construct an item definition in LBL to LBL +3. If

the operation is a reference, LBL is set to zero and return is made to LINSYM.

In constructing the item definition, EQU uses the associate set for the ten

tative definition of the symbol by PLB and the type and mode bits of the op

erand field. NSRT is called to define the item. When an undefined value

appears in the operand field, the U error flag is set, the * flag is reset, a

zero value is assumed, and control returns to the main line code at LNVAL.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

EQU is an open subroutine assembled as part of ASSEMBLR.

EQU is assembled as part of PAS2 and is called by executing the directive

branch table. Return is to the main line code.

107
8

cells

SCAN
NSRT

MFOI
RDPI

3-308

I ;fjr -II; SCIENTIFIC 6ATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042011
Catalog No. 9300: 61200

IDENTIFICATION: Process lines of procedure sample (PROC, FUNC, NAME and SAM)

PURPOSE: To skip sample lines and at the same time keep sufficient track of the sample

nesting to determine when the end of the sample is reached.

ACTION:

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

PROC and FUNC set the sample processing flag, increment the nested sample

count, and go to SA2. NAME is synonymous with SA2. SAM calls PLB to

process the label and then tests the operation field for a directive that is a

NAME, PROC, FUNC or END. If the operation field contains one of these,

SAM executes the proper routine by using the directive branch table; other

wise, control goes to SA2 where the label flag (LBL) is reset and control is

returned to the main line routine at LINSYM.

All these routines are open routines assembled as part of PAS2.

PROC, FUNC, and NAME are called by using the directive branch table.

SAM is called by the main line code when the sample processing flag is ON.

528 words tota I

PLB
GCW
GBSL

3-309

,. */ • _1* I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

IDENTIFICATION: Process undefined mnemonics and POPD directives (POPD and POPR)

PURPOSE: To cause the lines with undefined mnemonics or POPD directives to be

ignored.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCES:

MEMORY
RE QUIRE ME NTS:

SUBROUTINES
USED:

POPR defines any waiting label, increments CCINC, and goes to POPD

where LBL is reset before returning to the main line code at LNLOC.

POPD and POPR are open routines assembled as part of PAS2.

POPD is called by using the directive branch table. POPR is called by the

I ine code when an undefined operation is encountered.

5 cells total

LBTST

3-310

SCIENTIFIC DATA SYS,'EMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042011

Catalog No. 9300: 61200

IDENTIFICATION: Process PROC and FUNC reference lines (FNRL and PRL)

PURPOSE: To process the fine referencing a PROC or FUNC.

ACTION: The procedure level is tested to determine if space exists to process the line;

if it does not, the routine is exited. The temporary procedure level (PLVT)

PROGRAMMING
TECHNIQUES:

is incremented, a flag is set to indicate whether the reference was to a PROC

or FUNC, WLLVL is set equal to PLVT, and the symbol table direction is re

versed. PLV and the location counter are saved, and the pass is set to first.

DFLST is called to define the parameter list elements. PLV is set to PLVT;

BYT, ECW, and TERM are saved. The starting location of the switch is

called to reset the origin of the next byte of input. The old input position

is saved for resuming later. PLB is called to obtain the PROC or FUNC line

label, and a test is made to determine whether the PROC is a l-pass or a 2-

pass PROC. If it is a 1-pass PROC, the PASS for this level is set equal to

the PASS at the next lower procedure level. The I ist item is constructed

using the element linkage established by DFLST, the list identification is ob

tained from the PROC label by PLB, and the value is associated with the

NAME item. NSRT is called to place the list item into the symbol table.

SKIP is called to bypass the remainder of the PROC line.

The temporary setting of the procedure level PLVT before defining the list

parameters is done so that the parameters wi II be inserted into th e correc t

table position. Since a FUNC reference is possible befote finishing the def

inition of the list, the PLV flag must remain unaltered so that characters are

obtained and labels processed, etc., in the normal manner: however, it must

3-311

PR()GRAMMINC,

TECHNIQUES:
(cant.)

CALLING
SEQUENCE:

MEMORY
RE QUIR EME N TS:

SUBROUTINES
USED:

900 Series: 042016
Ca~alog No. 9300: 612001

bp rf'mf'mbf'rf'd thot thi 5 ndd i tiona I referenct' mllst be completed. These

routines are open routines assembled as part of PAS2.

PRL is called by the main line code when a procedure reference is encountered.

FNRL is called SCANC when a function reference is encountered. Both re-

turn to the main I ine code.

225
8

cells total

DFLST
SWITCH
GBSL
NSRT

PLB
GCW

SKIP

3-312

SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 04201
Catalog No. 9300: 61200

IDENTIFICATION: Process END directives (END)

PURPOSE: To process END directives.

ACTION: There are four separate cases involved in processing END lines:

PROGRAMMING
TECHNIQUES:

1. The END of the program. Control goes to tape loader to load FINISH.

2. The END of user sample. The sample level count is decremented and,

if zero, the sample processing flag is reset. Control goes to LINSYM

in the main I ine code.

3. The END of a PROC reference. If this is the first pass of a 2-pass PROC,

the PASS is set to secondiSWITCH is called to reset the line origin to the

first line of the PROC; the location counter is reset; error flags for * and

U errors are cleared; and GCW is called to get the first byte of the PROC

line from sample. Control then goes to the start of the main line code.

If this is the second pass of the PROC, any waiting label is defined by

calling NSRT; SWITCH is called to reset the line origin to the point at

which the PROC was entered; SCRP is called to purge local symbols from

the table; the externa I parameters are restored; PLV and PLVT are decre

mented; and control is returned to the end of the main I ine code.

4. The END of a function reference. SCAN is called to define the operand

field of the END line. SWITCH is called to reset the line origin to the

point of entry, SCRP is called to purge the symbol table, the parametcls

are reset, PLV and PLVT are decremented, ond control goes to SCANR

in the SCANC routine.

END is an open routine assembled as part of PAS2.

3-313

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

Catalog No 900 Series: 042016
• 9300: 612001

END is called by executing the directive branch table.

117acells

SWITCH SCAN
SCRP NSRT
GCW

3-314

SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 04201
Catalog No. 9300: 6120(

IDENTIFICATION: Process FORM reference lines (FRL)

PURPOSE: To process FORM reference lines.

ACTION: The FORM control word is obtained and saved. CCINC is set to the number

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

of words generated by the FORM. The form control word is normal ized to

determine the number of bits to be generated; this number is set in BITSS.

The normalized FORM goes to WRD2 and WRD2+10 SCAN iscalledtoevalu

ate the expressions in the operand field and FLDC to determine the field ~ize

for each expression. The data are positioned and stored into WORD and

WORD+ 1. If an expression is relocatable, WMODR is set. If an expression

is a reference, the value is taken from the location indicated as the value

and the value of the location counter is placed into the location indicated

as the value. In this way the references are linked for the loader.

FRL is an open routine assembled as part of PAS2.

FRL is entered when the line code encounters a FORM reference. Return IS

to the I ine code at LNFRM.

3078 cells

SCAN
FLDC

MFOI
GLOV

3-315

I '[:ii-ill » SCIENTIFIC DATA SVSTBMB

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Se ri es: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Process programmed operator references (POP)

ACTION: CCINC is incremented, and the programmed operator item is obtained. The

operation code from the programmed operator is set to WORD. If the pro

grammed operator is an external reference, type IERR is set. SCAN is called

to obtain the address and index fields which are inserted into WORD. If the

address is a reference, the contents of the cell addressed by VALU is used as

the value and the location counter is stored in the cell addressed by VALU.

WMODP is set (as is WMODR, if needed).

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

RE QUIREME NTS:

SUBROUTINES
USED:

POP is an open routine assembled as part of PAS2.

POP is called by the main I ine code when a programmed operator item is en

countered. POP returns to the I ine code at LNFRM.

1308 cells

SCAN GLOV

3-316

t ;[:ii-ill; SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 04201~
Catalog No. 9300: 61200

IDENTIFICATION: Test to list line (EDTST)

PURPOSE: To determine if the current line should be listed.

ACTION: Lines are listed only if:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

1. Listing is requested, and

2. The pass at the current I eve I is the second pass, and

3. A procedure or function reference is not being processed, or

4. A procedure or function reference is being processed and data have been

generated at this point for output.

EDTST is a relocatable routine assembled as part of PAS2.

Data generated flag to B register
BRM EDTST
Listing-4'o-be-<:lone return
Do-not-I ist return

218 cells

None.

3-317

s ;1 I -It I SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Edit full lines for listing (EDIT)

PURPOSE: To format a line for listing and cause it to be listed and to cause the data

generated to be output.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME N TS:

SUBROUTINES
USED:

EDTST is called to determine whether listing is to be done. EDE, EDL, and

EDR are called to format the error flags, location, and data, respectively.

PRNT is called to output the line to the listing. The binary data are output

by calling OUTP.

EDIT assumes that a FORM control word for formatting the data has been

placed in WRD2 and WRD2+ 1, that the datum is in WORD and WORD+ 1, and

that double-prec ision flag (DPPF) is negative if the datum is double-prec ision.

EDIT is a relocatable routine assembled as part of PAS2.

Control words set as noted
BRM EDIT

43
8

cells

EDTST
EDE
EDL
EDR

EDS
PRNT
OUTP

3-316

, II • -1* I SCIENTIFIC DATA SYSTEMS

SDS P~UGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Edit value fields (EDTV)

PURPOSE: To format the value field of a line and cause the line to be listed.

ACTION: EDTV calls EDE to format the error flags; EDF is called to format the value;

and PRNT is called to output the line to the listing.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

EDTV assumes that the datum to be output is in WORD and WORD+ 1 and that

DPPF is negative if the datum is double-precision. EDTV is a relocatable

routine assembled as part of PAS2.

Control words set as indicated above

BRM EDTV

228 cells

EDE EDF
EDS PRNT

3-319

* *r:ol* * BCI.NTIPIC DATA BVBT.MB

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Edit locations (EDTL and EDL)

PURPOSE: To format the location field of the listing. EDTL also formats the errors and

causes the I ine to be listed.

ACTION:

PROGRAMMING
TECH NI QUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

EDTL calls EDE to format the error flags, EDL to format the location, and

PRNT to output the line. EDL calls EDS to initialize the buffer position to

store the location and EDF to place the location characters in the buffer.

Both routines are relocatable routines assembled as part of PAS2.

BRM EDTL
or

BRM EDL

16
8

cells total

by EDTL: EDE
EDL
PRNT

by EDL: EDS
EDF

3-320

, 'I • _It I SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 042016

Catalog No. 9300: 612001

IDENTIFICATION: Format error flags (EDE)

PURPOSE: To format the error flags for the I isting and to set QPESW.

ACTION: QPESW is incremented if any error flags other than I or * have been set.

PROGRAMMING
TECH NIQUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

The error flags are tested, and for each one set the equivalent letter code is

placed in the listing by calling EDC. The flags are reset when found set.

EDE is a relocatable routine assembled as part of PAS2.

BRM EDE

23
8

cells

EDS
EDC

3-321

* II • -1* I SC •• NTIPIC DATA SVBT.MB

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Format data fields (EDR)

900 Series: 042016
Catalog No. 9300: 612001

To format the data field for the listing under the control of a FORM

control word.

EDR normalizes the FORM control word and determines the number of bits

of data. The datum in WRD 1 and WRD 1+ 1 is positioned, and F LDC is

called to determine the field size. The proper number of bits of data are

loaded into the B register and low order character of the A register. EDF

is called to insert the field into the listing buffer. EDC is called to insert

a blank character between each field processed.

The FORM control word is assumed to be in WRD2 and yYRD2+ 1. The

datum is assumed to be in WRD 1 and WRD 1+ 1. EDR is a relocatable routine

assembled as part of PAS2.

Data and form control word as indicated
BRM EDR

107
8

cells

FLDC
EDF
EDC

3-322

* 'I • -I' I BC •• NTIPIC DATA BVBT.MB

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Insert data fields into I isting buffer (EDF)

900 Series: 04201(
Catalog No. 9300: 61200

To insert the data contained in the A and B registers into the listing

buffer.

EDF calls EDC to store in the A register the individual characters which

are shifted from the B register until all characters are stored as-determined

by CNTR.

EDF is a relocatable routine assembled as part of PAS2.

Character count to CNTR
First character to A reg ister
Remainder of field left-adjusted in B register
BRM EDF

128 cells

EDC

3-323

sr:w-i1~ BCI.NT.P.C DATA SVST.MS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
R E QU IR EM E N TS :

SUBROUTINES
USED:

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

Determine field sizes of a FORM word (FLOC)

To determine the size of a field in a FORM control word.

FLOC removes the sign bit of a FORM control word in WRD2 and WRD2+ 1

and normalizes the result to determine the field size. BITSS contains the

number of bits remaining in the control word and is decremented by the

size of this field. The result is in the A register.

FLOC is a relocatable subroutine assembled as part of PAS2.

FORM control word to WRD2 and WRD2+ 1
FORM length to BITSS
BRM FLOC
end -of -F aRM return
norma I return

328 cells

None

3-324

900 Series Only

s ;1 .. -It; SCIENTIFIC DATA SYST.MB

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

List one line of output (PRNT)

To list one line.

Catalog No. 042016

PRNT calls the listing output routine to write the line. The left portion

(nine words) of the I isting buffer are cleared to blanks, and LC is set to

print data only.

The I/O routine called is set by the initialization code for PAS2. PRNT

is a relocatable routine assembled as part of PAS2.

BRM PRNT

148 cells

List output routine, normally PLINE

900
3-325

9300 Only

t 'I • -'* I SCIENTIPIC DATA SYSTaMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: List one line of output (PRNT)

PURPOSE: To list one line.

Catalog No. 612001

ACTION: PRNT calls the I isting output routine to write the I ine. The left portion (nine

words) of the listing buffer are cleared to blanks, and LC is set to print data

only.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

The I/O routine called is set by the initial ization code for PAS2. PRNT is a

relocatable routine assembled as part of PAS2.

BRM PRNT

148 cells

List output routine

9300
3-326

900 Series Only

* 1/ • -1* I SCIENT.pIC DATA SVSTaMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
R E QU IR EME N TS :

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Write I isting on the printer (PLlNE)

Catalog No. 042016

To write the line of listing output to the on-line printer.

PLINE executes a MIW loop to output the required number of words to the

printer.

PLINE is initialized as to channel and unit assignments by the initialization

code for PAS2. If a buffer error or print fault occurs, PLINE halts. Step

ping causes processing to resume. PLINE is a relocatable routine assem

bled as part of PAS2.

Word count to B register
Buffer location to A register
BRM PLINE

26
8

cells

None

900
3-327

I II • -1* I SCIENTIFIC DATA SYST.MS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Home paper on the printer (HOME)

900 Series: 042016
Catalog No. 9300: 612001

To space to the top of the next page on the on-I ine printer or call the

proper routine if the listing is other than on the printer.

If the I isting is on the on-I ine printer HOME eiects the page by skipping

to the proper channel.

HOME is initialized by the initialization code of PAS2 as to unit and

channel assignments if the printer is to be used. If not, a branch instruc

tion is inserted in HOME to cause control to go to the proper routine for

homing the page. HOME is a relocatable routine assembled as part of

PAS2.

BRM HOME

10
8

cells

None

3-328

YUU)eries Unly

* 1/ • -1* I BCI.NTIPIC DATA BVBT.MB

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
R E QU I R EME N TS:

SUBROUTINES
USED:

SOS PROGRIM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

Write a line of listing on the typewriter (TYPWRT)

To output lines of listing on the on-line typewriter.

TYPWRT determines the number of characters to output, returns the

carriage by calling TYCC, and tabs to the correct starting point by again

calling TYCC. Characters are output by calling TYPE. If a line is

longer than 72
10

characters, it is output in two lines. LNCT is called to

maintain a line count.

TYPWRT is initial ized by INTYP, which sets the control I inkage to call

TYPWRT when typed listing is indicated. TYPWRT is a relocatable

routine assembled as part of PAS2.

BRM TYPWRT

478 cells

LNCT
TYPE
TYCC

900
3-329

900 Series Only

* 'I • -1* I SCI.NTIPIC DATA SVST.MS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Type a specified number of words {TYPE}

Catalog No. 042016

To output to the on-line typewriter the number of words indicated in the

index register from the location specified in the A register.

TYPE outputs to the typewriter from the location specified by the A

register the number of words indicated by the index register {count is in

negative form}. Blanks are converted to 12
8

, and a MIW loop is used to

output the words.

TYPE is initialized by INTYP as to unit and channel assignments. TYPE is

a relocatable routine assembled as part of PAS2.

Buffer location to A register
Negative word count to index register
BRM TYPE

26
8

cells

None

900
3-330

900 Series Only

t 'I • -1* I SCIENTIPIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

IDENTIFICATION: Output one character to the typewriter (TYCC)

PURPOSE: To output the high-order character of the A register to the typewriter.

ACTION: TYCC writes the high-order character in the A register on the typewriter.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

TYCC is initialized as to unit and channel by INTYP. TYCC is a relocatable

routine assembled as part of PAS2.

Character to A register
BRM TYCC

148 cells

None

900
3-331

900 Series Only

* ;1 I -I'; SCIENTIPIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Keep listing line counts (LNCT)

Catalog No. 042016

To count lines output on the typewriter and call THOME when 50 lines

have been typed.

LNCT increments the line count and, if it is greater than 50, calls

THOME.

LNCT is a relocatable routine assembled as part of PAS2.

BRM LNCT

7 cells

iHOME

900
3-332

900 Series Only

, II • -It I SCI.NTIPIC DATA SVST.MS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION .

Catalog No. 042016

Home paper on typewriter (THOME)

To space paper on the typewri ter

THOME spaces the typewriter listing 66 - CTR lines by calling TYCC

with a carriage return character.

THOME is a relocatable routine assembled as part of PAS2.

BRM THOME

128 cells

TYCC

900
3-333

900 Series Only

* II • -'* I BCI_NTIPIC DATA BVBT_.B

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

5DS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Initialize the typewriter routines (INTYP)

Catalog No. 042016

To set the linkage to use the typewriter routines for listing output and to

initialize the typewriter routines as to channel and unit assignments.

INTYP sets the location of TYPWRT into PRINT and the branch to HMTW

into the HOME routine. The unit and channel assignments for listing are

obtained and the I/O instructions in the various typewriter routines set.

INTYP is a relocatable routine assembled as part of PAS2.

BRM INTYP

Ni I. INTYP resides in an output buffer.

None

900
3-334

t ;/ I _1* I SC.aNT.fI.C DATA SYSTaMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 04201

Catalog No. 9300: 61200

Make 2-word floating-point values (MFOl)

To convert th~ 3-word internal floating-point items into items with two

value words.

MFOI rounds the floating-point value to 37
10

fractional bits. If overflow

occurs, FLN is called to rescale the result. The exponent is moved into the

low-order bits of the low-order data word.

MFOI is a relocatable routine assembled as part of PAS2.

Floating-point item to V ALU through V ALU+2
BRM MFOI

25
8

words

FLN

3-335

•

tIll -1* I SCIENTIPIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

900 Series: 042016
Catalog No. 9300: 612001

Reverse double-precision data words (RDPI)

To reverse double-precision values for output.

The data words in WORD and WORD+ 1 are reversed.

This routine must be 'NOPed' for 9300 format outputs.

Double precision value to WORD and WORD+ 1
BRM RDPI

6 cells

None

3-336

IDENTIFICATION:

PURPOSE:

ACTION:

SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Evaluate expressions (SCAN)

900 Series: 042016
Catalog No. 9300: 612001

To evaluate an expression and leave the control word of the results in the

B register and ICW and the value in VALU through V ALU+2 with the low

order portion of the va lue in the A register.

SCAN obtains the items in the expression by calling GIT and the connec

tors by calling GNC. The items and connectors are obtained in pairs. If

the connector obtained is of higher priority than the previous connector,

the item value and the connector are saved in the SCAN operations table

and the table pointers are incremented. If the connector is of lower

priority, the previous operation is performed. The type of operation to be

performed is determined by executing an operations branch table which

carries control to the various operation routines.

The operation routines perform the indicated operation between a pair of

operands one of which is located in the SCAN operations table and the

other of which is located in ICW and V ALU to VALU+2. The first item is

always the one in the SCAN operations table. The result of the operation

is placed in the cells ICW and VALU to VALU+2, and the pointers to the

operations branch table are decremented to point to the previous item.

When a leading :-~ (equals) mark is encountered, SCAN searches the literal

table to find the literal location. If the literal is not in the table, it is

inserted. The value of a literal is the location of the literal in the object

program. A leading * (asterisk) mark causes a flag to be set which will

result in the value of the expression being interpreted as an address quantity.

3-337

ACTION:
(cont.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
RE QUIREME NTS:

SUBROUTINES
USED:

Catalo No 900 Series: 042016
g • 9300: 612001

This * flag will also be output with the resulting value so that expressions

of the format P (*i) may be properly interpreted.

When the last operation to be performed is a terminator, SCAN tests for the

I iteral flag being set; if it is, SCAN takes zero as the value of the expres

sion. If the * flag is ON, the value is converted to a 3-word address val ue

and the sign bit of VALU is set.

Upon exit, the contents of TERM are

o if blank terminated

1 if comma terminated

2 if right parenthesis terminated

The cell STAR contains 1 if the expression had a leading * and 0 otherwise.

The SCAN operations table is really a series of short tables each of which is

indirectly addressed. The table positions are incremented or decremented by

incrementing or decrementing the indirect point words. SCAN is a relocata

ble routine assembled as part of PAS2.

Byte table entry for the first byte of the expression ECW
BRM SCAN

1266
8

cells

GCW
GIT
GNC

MIFT
GLOV
GLOP

RELTST
FLM
FLN

3-338

SCIENTIFIC DATA SYSTEMS

SOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Ser i es: 0420·

Catalog No. 9300: 6120(

IDENTIFICATION: Get next item of an expression (GIT)

PURPOSE: To obtain the value of an item and store it in VALU through VALU ~2 with

its control word in ICW.

ACTION: GIT evaluates the following types of items:

a Iphanumeric constants

location counter reference

function references

subscripted symbols (parameters)

symbol ic items

numeric items

lists

list count

parenthetical expressions

1. Alphanumeric constants are evaluated by obtaining the characters from

the dictionary which comprise the constant and packing them together

into VALU and VALU+l.

2. The value of location counter reference IS the current value of CC.

3. Function references are evaluated by calling SCANC (which in turn

calls FNRL).

4. Subscripted symbols are evaluated by calling SCANC to obtain the sub

scripts and by stepping through the I ist to extract the proper element.

5. Symbolic items are obtained by picking the item out of the symbol table.

When an undefined symbol is encountered, the reference table is

searched for the symbol. If the symbol is not in the table, a reference

3-339

ACTION:
(cant.)

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

Ca1:alog No. 900 Series: 042016
9300: 612001

item with zero value is inserted into the table. The value of the refer

ence is taken as the location of the reference value in the reference

table.

6. Numeric items are evaluated by calling CNVRT. If a numeric item is a

mixed floating point number, the integer and fractional parts are ob

tained by separate calls on CNVRT and the parts are then combined by

GIT.

7. Lists are obtained by inserting the elements of the list into the symbol

table by calling SCANC and generating a list item giving the location

of the first element and the number of elements.

8. List counts are evaluated by finding the appropriate list item and ex

tracting the element count from it.

9. Parenthetical expressions are obtained by calling SCANC. GIT does

not differentiate between lists and parenthetical expressions; the dis

tinction is made by SCANC.

GIT works with the SCAN and SCANC routines and is really a major section

of the overall expression evaluation processing. GIT is a relocatable routine

assembled as part of PAS2.

Byte table entry for first byte to ECW
BRM GIT

4728 words

GCW
GLOV
CNVRT
PEEK

SCANC
MIFT
GBSL
GET

3-340

9300 Only

SCIENTIFIC DATA SYSTEMS

SDS PROGRAM LIBRARY
PROGRAM DES'CRIPTION

Page 1 of Catalog No. 612001

IDENTIFICATION: Program to output literals and references (FNSH or FINISH)

PURPOSE: To output the I iterals, references, and END records to the binary and listing

outputs.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

The system tape is rewound, the transfer value is obtained by calling SCAN

(left in core from PAS2), and the END line is listed by calling EPRNT if no

transfer address and EDTV if there is a transfer address. The I iterols ar~

taken from the literal table and output to the listing and binary files by call

ing EDIT. When the literals are completed, the references are obtained and

output. GTLB is used to reconstruct the symbols, and EDTL is called to list

them. OUTP is called to write the references to the binary fi Ie. When all

the references are out, the END record is written on the binary output fi Ie ,

by calling OUTP; the binary output file is closed; and, the last page isejected

for a listing or an end of file written for magnetic tape.

FINISH is loaded over parts of the PAS2 code. When the FINISH absolute

deck was made, the external references from PAS2 were loaded with FINISH

since the table's origins and certain subroutines from PAS2 are used by

FINISH. Care must be exercised, therefore, when changing either PAS2 or

FINISH to preserve these communications. FINISH is an absolute program

separately assembled.

FINISH is loaded and executed as a separate overlay of the assembly system

by the tape loader.

9300
3-341

Page

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

Same as for PAS2

SCANt
EPRNTt

GLOVt

EDTSTt

EDTVt

EDITt
RDPIt

GTLBLtt

EDTLt
OUTpt

9300 Only

CLOSE
ttt

HOMEt

GEC t

ENTRY POINTS TO FINISH SUBROUTINES

Entry

FINISH
GTLBL

Page
Description Flowchart

3-341
3-208

3-401
3-402

tThese routines are part of PAS2.

ttGTLBL is described under ASSEMBLR.

Catalog No. 612001

tttREWW and CLOSE are described under MSCONTRL.

9300
3-342

900 Series Only

I *1 I _\1 I SCIENTIFIC DATA SYSTEMS

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMEN TS:

SUBROUTINES
USED:

SDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

Catalog No. 042016

Write end-of-file marks on listing output (WEOFL)

To write an end-of-file mark on the listing output on magnetic tape.

WEOFL calls the end-of-file routine associated with listing output (EFMT)

to write an end-of-file mark.

WEOFL is an absolute routine assembled as part of FINISH.

BRM WEOFL

6 cells

End-of-fi Ie routine for magnetic tape

900
3-343

Initialize tables
switches, buffers
and 110 routines

get next line

Normal

Process Ii ne

FRl
generate data

POP
generate POP

PRL
process list
and PROC line

Flag error
step CC.

Process end
sample, PftOC
or FUNC ref.

no

yes

no

PAS 2
OVERALL FLOW

lnitialize line
oriented parameters.

3-344

no

no

DIRT
branch tabl e

PAS2
START ROUTINE

Initialize TOP I
AQPESW I lAOO,
LITO, LTBl,
lTBE, AlN, UTC,
CC, MCC, CHAD,
BUSO, BStZ, BMSK,
PASS, TBlOC, LBl,
OOTB, Wllvt,
FNFG, SI'FG, and
MTP, + 3

Initialize calls to
binary output devices.
Clear OWC.

OPEN
binary output file

Initial ize CTYP.
Clear print buffer.
Clear WMOOC.
Clear error flags.
Initial i.Le print routine.

READ
get 1st line

EOF

3-345

normal

LINE

Clear relocation flags
Reset SCAN level
Reset location increment
Save location parometers
(CHAD, BS[Z, BMSK, MTP,
BUSD) for beginning of line

Nonnal

Save ECW for
operand in DRCTV
ABYT - POPBYT

no

PAS 2
LINE ROUTlNE

o - DPPF
o -lDUF
Max (CC, MCE) - MCC

3-346

yes

es

DIRT
branch table

--1 DIRECTIVE I

Set E
error flag
l-CCINC

O-Breg

yes

PAS2
LINE ROUTINE (cont.)

End of record ?

no

No Print

print location

No Print

3-347

Set I error flag
1 -CCINC

EDTV
prlnt value

no

Character S?
yes

yes

PAS2
PlB ROUTINE

A reg -WlLVL
Current byte table
location of lobel

- BYTlOC
ECW-A

Set label type to
address va I ue •
Set label val ue
:: location

counter.

More than yes
63 blanks? r--------------......

v

no

Set l error flag
Clear current label

PL V-CPINC - TEMP
lBL-CfltNC - l8l
o - L8L-CPlNC

3-348

no

no

ye~

more than
15 blanks?

Blank string?

GCW
blanks

Move label from
lower proc level.

Set BYlOC from
lower level.

Set value CC

Is there a
waiting label?

In PROC?

no

line number
to CBU F-l and
CBUF-2

move byte to
BBUF

yes

no

yes

PAS2
IPL AND TEXT ROUTINES

SKIP
to end of

current line

yes

3-349

es

TEXT + 1
- TEXT

SKIP
sk ip comments

GTI
get next byte

Byte - L(BYTE)
BYTE + 1 - BYTE

BYTE> BBUF + 80? ,.....ye5 ____ --.l ..

no

BYTE > 2?

yes

no

GBSl
count blanks

PAS2
MBYT ~OUT'NE

Byte

Get dictionary
address of byte
into EeW

3-350

IPL
initial ize line

IPL
initialize line

No. comment
characters
- CCNT

get character

PAS2
LBTST, SKIP, INC, AND GCW ROUTINES

Load A reg
from L(BYTE).

BYTE + 1 - BYTE

3-351

yes

BMSK - BMSK6
077 - BMSK
BS(Z - BSIZ6
6-BSIZ

BMSK- BMSK
Byte _ BMSK 6

BS(Z6 - BSIZ
BMSK6 - A reg

GTB
get byte

Byte - BYT
Location of
Byte Table entry
-ABYT

Byte table entry
- B reg and ECW

ECW -8 reg
Load A indirectly

from ECW·
Extract character

from dicthnary
entry given at ECW •

Character _ NCE
Step ECW to point

at next entry
character.

NCE - A reg
GEC + 1_ GEC

PAS 2

GEC AND GT8 ROUTINES

3-352

End of
file

left adjust input
word in 8 reg.

8USD + 8SIZ - 8USD
aSlz - X reg

Merge byte from
N 8YTE and new
input word

Increment 8S1Z
by 1 and size of yes
BMSK by 1
8MSK + 1 - A reg_

-A -A reg
A reg -N8YTE
A reg -8YT
A reg -X reg

no

Shift byte
into A reg and
mask

byte =:. 0 ?

no

Contents of LBL at
current proc level
-ELBC

Value -... LBL + 1 and WORD
bits 0-8 of ICW- bits 0-8
of LBL

*flag on?

yes

Set • flog in
label value

value - LBL + 2
VALU- LBL+ 1

no

PAS2
EQU, ORG, AND AORG ROUTINES

CC
LBL + 1

NSRT
define lobel

3-353

reverse words

VALU2-
lBl + 3

VAlU
WORD

Move 2nd word
of value to lBl + 2
and to WORD :t- 1

PAS2
RES AND FORM ROUnNES

0-l8C+l
0- l8C + 2
0- BTCNT

l8l + 1 and l8l + 2
ttl rotated

left VAlU bits

Terminotor ~ , ?
no

Rotate l8l + 1
and l8l + 2 right
1 bit position

altNT > 24 ?

yes

Set mode in
l8l to 3 word,
type 2, mode 0
item

3-354

Y'"

l8l + 2 - L8l + 1
)-no ____ --I .. Set mode bits to 2

word, type 2, mode
o item

NSRT
define FORM

item

Set SMPFG positive
PRCNT + 1 - PRCNT

ClRl8l
o -l8l

PAS2
NAME, SAM, PROC FUNC, PO PO AND POPR ROUTINES

CCtNC + 1 - CCINC

Directive?

yes

3-355

DIRT
branch table

PROC, FUNC,
NAME, or
END

Set up label as
'2 word, type 1,
mode 0, value
item with unit

PAS2
DO ROUTINE

Increment DO label
value.

CHAD - OOTAB -t 4

Store skip count
in bits 6-11 of
OOTAB + 3

yes

Set E elTOf flag

no

3-356

0018-5
-00T8

yes

Void DO?

Set I ines to
do in OOTAB + 1
and 00TA8 + 3 = 1

no Is there another
line to do?

DO count-l-
DO count at DOT AB + 3
Origincl lines to do and

yes

ye~

lines to skip from OOTAB + 3
- OOTAB + I

Increment DO label value

PAS2
DO ROUTINE (cont.)

yes

no

yes
In proce::lure?

no

skip outer lines

3-357

Number J inel
to do -TEMP

Finished all lines?

no

OOOEe
decrement outer

OOT8-5 - TEMP + 1

TEMP + 1 > L(OOTAB)

yes

level this do ~
current proc level

no

yes

PAS2
OOOEe ROUTINE

OOTB- X

lines to do-l -
lines to do no ,..----------------1 (for 00 at TEMP + 1)

'------f (TEMP + 1)-5 - TEMP + 1

3-358

e
PASS-PINC - PASS
CCINC - CCVAl
0- CCINC

PAS2
FNRl AND PRl ROUTINES

I+---=--C At highest permitted
proc level?

no

PlVT + CPINC
- PlVT
and WllVl

B reg - PRFG
reverse NEXT

NEXT -TBLOC
-DRCTN - DRCTN
PlV-lPlV

Is this a PkOC?

yes

End of line?

no

yes

-----"----- yes
More than 7 blanks?

no

3-359

More than
7 blanks?

no

PASS - PlNC

2 word mode, 3
item-ICW
0- value

0- B reg

GBSC
count blanks

no

Old line position
- REFPOS

Old CHAD- CHD'NRD
MTP2- SVMTP
MPT + 02000 - MTP + 2

PlVT - PLY
BYT - PRBYT
ECW- PRECW
TERM - PTERM
PROC ORIGIN
- PROR
ELEMENT ZERO
WORD -LBL +

PINC

DFLST
evaluate list

LBL 07

Mode of lCW
_ mode of LBL

VALU -LBl + 1

Is there a zero element?

023000000
- LBl + 2

SCAN
get 1st element

Set element flag in
ICW

o -tolCW
associate

clefine element

es

na

PAS2
FNRL AND PRL ROUTINES (cont.)

DFLST ROUTINE

yes Set U
error

no 021000000---.
lBl + 2

Zero element valup.
- LBL + 3
item length + 2
- item length
field of lBL

Loc of element

- FST

yes

3-360

rncrement element
count in FST

Location of
element -* LNK

Location of
element_
*lNK

no

SKIP
to end of PROC line

O-lBl

NSRT
define proc list item

Set rcw to 2 word,
type 3 item

FST ~VAlU

PRBYT- BYT
lPlV-PlV
PREON- EON
PTERM- TERM

PAS2
END ROUTINE

PlUT -CPINC - PlUT

llC =lC ?
yes

3-361

yes

yes

no

PAS2

FRL ROUTINE

X2-ITlOC
CCINC • 1 - CONC
o -FRlCNT

O4OOOOOOO -WRD21
0- WRD2

0- EXPCT

-I -DPPF
CCINC + 1 - CCINC
High form word - WRD2

Low word - WRD21
and DATA + 1

Form Word - WRD21
Form Word - DATA + 1
0- WRD2
0- DATA

no

1st pass?

o -WORD
O-WORDI
Left adjust fonn

words in WRD2 and
WRD21

Form size - 8lTSS

FRLCNT + size
-+ FRlCNT

EXPCT + 1 -+ EXPCT
shift WORD and
WORD1 left by
amount of field size

3-362

040000000 - WRD7
0- WRD21

no

no

Double precision?

Set E flag

Truncate
value.

Set T flag.

sign of
value

Set T error flag

no

Set U error flag
o -+ V flag
o -+ VAlU

Relocatable?

yes

Set WMODR

Pb.S2
FRL ROUTINE (cant.)

Add high order
value word to
WORDl .

CC - location given
by VALU

Contents of word
addreaed by value
-VALU

3-363

Set E error flag

GBSL
count blanks

GET
next character

Next byte blanks?

no

LBTST
define label

PAS2
TEXTR AND BCD ROUTINES

0100- TEXTC

GCW
get next byte

> - TEXTC
56- A reg

A reg-1 - CNTT

SPC - A reg

no

060- A reg

3-364

012- SPC

SPC- A reg
-1 - CNTT

yes

X2-ln0C
- SVERR
1- CC(NC

location of
POP value
- [TlOC

External pnp

yes

.----..... --....... yes

yes

Set WMODC
and WMODR as
indicated.

Trim value to
14 bits.

PAS2
POP ROUTlNE

Connect I inkage for
reference.

last reference location
-VAtu

Set WMODR
VERR - SVERR
a - VERR

no

no

3-365

Set index
into WORD
UERR . VERR
- UERR
a - VERR

Merge value into
WORiJ.
Add indirect flag
if needed.

Place fonn word
into WRD2
a -WRD21
a-WORDI
set WMODP
SVERR - VERR

A re9 - TEMP (location)
B reg - TEMP+ 3 (CHAD)
BUSD· 2 19 + BSIZ * 215

+ MTP -TEMP + 1
CHAD- TEMP+ 2
Bits 0-4 of TEMP
-BUSD

Bits 5-8 of TEMP
-BS(Z

Bits 9-23 of TEMP
-MTP

TEMP + 3 - CHAD
BSIZ bits - BMSK
TEMP + 2- B reg
TEMP + 1 -A reg

PAS2
SWITCH AND EDTST ROUTINE

no

no

yes

no

---1 .. __ p_r_in_t_e_x_it __ -,

EDTST + 1 - EDTST

3-366

Location of level.
Break this level
-LVBRK

lTLOC -X 2

Bits 10-23 of i~mut item

no

- TEMP + 3 and SRLNK.
Bits 4-5 of input item (type)
-. :MP +2

Type to be considered?
(SRFG negative)

yes

(nput item and item
at SRLN K same type?

yes

DRCTN < O?

yes

no

PAS2
SRCH ROUTINE

yes

Bits 10-23 of item
at SRlNK
- SRlNK
- TEM +3

no

End of
Chain?

ITLOC--+ X 2

no

LVBRK > SRlNK NEXT> SRlNK?

yes

-1-SI'FG

ITLOC -- X 2
'-__ """I""' __,,)-..&-------t~ SRCH + 1 - SRCH

3-367

no

Set Byte Table
entry to point
to NEXT

yes

NEXT - SRlNK
Move new item
into Symbol
Tobie ot NEXT.

PAS2
NSRT ROUTINE

Store Byte Tab e
location of Byte
into Symbol Table
step NEXT

3-368

Set D error flag.
Set error flag in

item at SRLNK
and in new item.

Revene DRCTN .
Set NEXT to

altemate
Symbol Table
location .

NEXT
lOWER

UPPER -A

location of level break
- lOWER and lOW1

NEXT- HIGHl

no

es

Associate of purged item
goes into Byte Table
entry given by Xl

PAS2
SCRP ROUTINE

yes

yes

ocation of level break
- UPPER and
HIGH1
EXT- lOW1

location of level break

- TEMP
'Complement ORCTN

TEMP", NEXT?

no

TEMP + item
length - TEMP

I tem an element
of list?

no

link of item> HlGH1?

yes

3-369

yes

no

Reset NEXT to
current position
in altemate
table

Byte Table
associate

- X2
as dummy
Byte table
location

test to print

no
I-----t~ print

1st pass current level?

no

Double precision value?

yes

OUTP
output high value

WORDl -WORD
LOC+ 1- LOC

OUTP
output low value

PAS2
EDIT ROUTINE

print

OUTP
output binary value

print line

3-370

initialize EOC
routine

5: ..)e precision?

no

7-CNTR

yes

PAS2
EOTV, EOn, AND EOE ROUTINES

edit location

PRNT
print line

3-371

no

Set QPESW if any
error flags other
than I or * are on

initialize EOC
routine

Error flag on?

yes

Finished error flags?

yes

edit location

Remove edited bits
from WRDl and
WRD11 left adjust
remaining data with
high order word in
WRDl

(TEMP + 1) - 1 - CNTR
right adjust WRDl1 by 3

PAS2
EDl, EDR AND EDF ROUTINES

left adJust FORM
control words for
data field.

High order form
word - WRD2

low order form
word -WRD21

No. bits - BITSS
Left adjust data:

high word to WRD 1,
low word to WRD11

Size - TEMP
Size/3 - A reg
o -TEMP + 1

Remainder > O?

yes

End of
fields

- TEMP + 2 bits and merge
into WRDl l---------t t-------------......

O-TEMP +1
CNTR -A. 3-8

EDF

Octal characters (A reg)
- CNTR, remainder
- TEMP + 2 and X2

More than 7 characters?

no

yes No. characters -7
-TEMP +1
7- CNTJ

edit CNTR charact.rs~_-_------l~-----_--------I
from WRDl

3-372

WRO? - A rf'g (high fol"Tl word)
WR021 - B rf'g (low word)
-1 -X2
Complement sign of A reg
NOI"'nOI i%1" A and 8 regs
L.ft adJust A and 8 regs
A r~- WR02
B r .. g _ WR021
- X2 - A (shift count)

BITSS - A rl"g
f) - BITSS

PAS2
FLOC, EDC AND EDS ROUTINES

BITSS - shift count
- BITSS

Shift count - A reg

3-373

Position
dlOrocter.

Add character
to buffl"r.

Of'crf'rnf'l"lt
shift count.

Storf' bufff'r position
in EOW.

Sf't shift count for
fOC (fOC 1) to
initial vall)~

cllOrocter - 060
-Arer.

Reset shi ft count
tolBbits.

Add c~rocter to
buffer.

InCrf'rnent buffer.

Entpr with
character
in A reg

8
PRINT -X2
l(PBUF) - A reg
lC -B reg

Clear print buffer
to blanks SlC
-lC

Skip to channell.
Energize f-rinter.
T ermi nate outpu t .

PAS2
PRNT, PUNE AND HOMl ROUTINES

PRINT contains
location of output
routine.

For tape this is
WMTB.

For mag tape
output, HOME
becomes a NOP
routine via
WMTlST

3-374

YOO Ser it.') Only

Compute last address
ofimoge.

Add index field and
store in DPTW.

Skip to channel ~
disable interupts.

- word count

- X2

Output word indirectly
from DPTW

no

Terminate output
on buffer

no

no

PAS2
ENDM, POPttD, DEF, ENDN, AND OUlP ROUTINES

Binary output
requested?

yes

24 :- word count?

yes

no

PLOC + 1 = LaC?

no

FLUSH
empty buffer?

RESET
reset buffer type

e

W

3-375

+ +0100000
-WORD

MlOC-.. QlOC

lOC -PlOC
WORD - buffer
Set relocation flags

for word.

Move 3 words to
output buffer from
location given
in WORD

Move 1 more word
to buffer

DWC+ 1
-owe

owe +1 -OWC
QlOC-OWl
L(MFLAGS) - MFLGTM
L(REL) - CHKS
L(OW1) + OWC -ICN
3 -OUTTMP

PAS2
FLUSH AND RESET ROUTINES

PTYP = 31

yes

yes

Move word at location given
in CHKS to word addressed
by ICN.

Add cattents of word addressed
by MFLGTM to OWl

OWC +1-0WC

Move PTYP and binary flag
to 1st word in buffer.

l(OW1) - CHKS
OWC -1 -OWC

MFLGTM + 1 - MFlGTM
CHKS + 1 - CHKS
OUTTMP - 1 - OUTTMP

3-376

LOC QlOC
O-REL
O-CIlEl
o -PREL
o -SREL
CTYP-PTYP

900 Serie!> Only

PAS2
lYPWRT AND lYPE ROUTINES·

Disconnect buffer.
R !duce lC for words

of trailing blanks.

-18 --+ X reg

lC-18 --+ lC
-lC -X reg
CTR+1-CTR

900
3-377

Pack output word
replacing 601

$ with
1215 type packed
word

TYCe
type carriage

return

EDWW +1

- EDWW

no

Type character from
TMP

es

900 Series Only

PAS2
INTYP, lNCT, TYCC, AND THOME ROUTINES

900
3-378

PTWL- P~NT
HTW -HOM
Unit and channel - TEMP
Channel - X reg
S.,t all channel dependent

I/o commands in TYPWRT,
THOME, TYPE, and TYCC
routines. Using TEMP,
set all unit and chonnel
dependent I/O commands
in above routines.

PAS2
PAGE AND EPRNT ROUT[NES

test to print

Print

eject page
EOE

set up error nags

3-379

VALU- WORD
VALUI - WORDl
Sf't DPPF
Sf!t 2-word form contro

word 2 - CCINC

PAS2
OED AND MFOI ROUTINES

Double precilion? .. n_o _______ -e~

yes

Make 2 word floating
value by putting scale
in low order word

3-380

no

Value- VALU
Signs - VALUI

Round vol ue to
next higher value

8i ts 0-8 of VALU
-VALU

ICW++221 _ICW

PAS2
GLOP, RDPI, GLOV, AND M3WAI ROUTINES

yes

VALUl -A reg
lew -8 r"g

Item at MODA a 3
word address item?

yes

3-381

VALU -A reg
ICW -8 reg

LOA -A reg

Move 4 words from
Symbol Tabl. to ICW
to ICW + 3

Take 2's complement of 1st
2 words of floating item
at X2.

Ove morma I ized?

no

Increment fraction.
Carry adds to eKponent.

yes

PAS2

MIFT, FLM AND FlN ROUTINES

Save location of arguments
- L 1 & l2 exponent

Exponent of L2I - TEMPE

(L(L2» • (H(l1» - TEMP
Exponent of L 1 + TEMPE
- exponent of 11

(L(ll)) • (H(l2» + TEMP
- L(Ll) and TEMP

(H(ll»· (H(L2» + TEMP
+ L(Ll)- A and B regs

Overflow?

yes

Decrement fraction and
exponent.

Borrow from exponent

3-382

no

no

Adjust exponent

o -VALU
O-OPA
2 word, type

1 control
word
-MODA
-ICW
0- STAR
0- LlTF

lITF I 1
- LITF

yes

yes

Enter SCAN
wi th 1 st byte
of item in
ECW.

PAS2
SCAN ROUTINE

Set control word
of 1st item to
type 1.

o -1st item
value

Clear * flag
Set U flag

3-383

Nonnal eKi t

no

Increment storage
address for OPA,
COA, MODA,
HOA, LOA.

TERM -OPA
ICW-MODA

LU -LOA
VALU + 1 -HOA
VALU +2 -COA

End of entry

Branch to
various
operation

- - - - - - - routines
COET,
COLT,
etc.

LITF > O?

yes

Reference item?

no

no

Step to next
literal Table entry

PAS2
SCAN ROUTINE (cont.)

Operation is
terminator

no

Set E error Aag

Move item at ICW
to location given
by LTBL.

Increment L TBL by
item length

LITC + 1
-LITe

Relocation flag
-VALU

Location
-VAlU+ 1

Set I CW to 3 word
add,.. type

STAR> O?

no

Set * flag on item

GCN
get next byte

3-384

Address type?

no

Make address type
item

Set E error flag
O-iERM

operator I

get 1st value

no

PAS2
SCAN ROUTINE (cont.)

< operator I

8 reg - A reg
2 word, type 1,
mode 0 - B reg

Decrement storage
I~ations for OPA,
MODA, LOA, HOA,
and COA

3-385

= operatorl

2nd value - TEMP

GLOP
get 1st value

Val ues equal?

yes

1- 8 reg

Both absol ute?

no

Bits 9-23 of
LOA = TEMP?

no

PAS2
SCAN ROUTINE (cont.)

- - - ~ - operotor I

get 1st value

logical product of
values
VAlU + 1

007m - B re

Areg-Breg

Both values
absolute?

Set R
error
t1ag

no

yes

Take logical
difference of
values

leN - B reg

t-----+I B reg - VALU + 1

Set I enor Rag

2nd value
- A reg

3-386

031100000
- Breg

Mask A reg
saving bits 0-8

-, + ope rotor

2nd value _ TEMP

logical difference of
con trot words merged
with 2 word, type 1
mask_ A reg

A reg _8 reg

no

VALU - 8 reg

LOA- 8 reg

PAS2

SCAN ROUTINE (cOllt.)

S.t (CW to .. word
floating point type

Set R elTOr flag

A reg- VAlU + 1 "'---4 8 reg _ VALU

3-387

yes

1st value - 2nd value
-Areg

A reg- 8 reg

Negative of double
precision item at
VAlU - VALU
and VALU t 1

VALU -A reg

3 word doubl e
precision control
word - 8 reg

ION -A reg

----I * + operatorl

Power of 10 -A reg

TEMP + 2
-VALU2

TEMP + 1
-VALUl

TEMP -A reg
041300000
-8

no

PAS2
SCAN ROUTINE (cont.)

yes

scale Fl T. PT.

3-388

3*scale -A reg
Save LOA, HOA

and COA in
TEMP to TEMP + 2

A reg -X reg
A reg - 30-

VALU + 1

get 1st value

Areg*2-Breg
Divide by TEMP

value -B reg

VALU + 1 !': 07
no

30 -)(reg

L{scale) - B reg
L(TEMP) - A reg

1st value
-TEMP

Scale factor
-A reg

PAS2
SCAN ROUTINE (will.)

op~rotor I

Floating point
scale - 47 + VAlU
-VAlU

get 1st value

Value - B reg
o -A reg
Shift left X2 bits

3-389

A reg -Xreg
HOA -A reg
lOA -B reg

no

Shift A and B
right X bits

A reg -VAlU + 1
B reg - A reg
Fixed point mode
-Breg

- 8re
9

item in B reg
in Symbol Table?

yes
~--...

PEEK
ot next character

PAS2
Gil ROUTINE

Reset previotA
operation flag
(OPA-04000
-OPAl

Insert reference in
symbol table.

location - VALU
step I iteral location.

3-390

get next byte

End of job
table overflow

no

Zero element

Subscript
VALU +1

Location of 2nd
list word - X2

yes

Item a list?

Set previous
operation flag
(OPA + 04000
_OPA)

OPA - 04000-0PA
(remove operation
flag)

no

PAS2
GIl ROUTINE (conI.)

location of zero
element -X2

MIFT
get item at

X2

3-391

Get element
location -X2

PEEK
at next character

nO

L(OITEM) -X2

Floating point item?

yes

1 - A reg

yes

Normal ize integer
High portion - TEMP-tl
Low portion - TEMP
Exponent - TEMP ~ 2

TEMP -t 2 - fraction scaling

- X2
Right shift fraction

X2 positions.
Combine fraction and integer.
High value - VALU

Low portion plus exponent
- VALU .. 1

Set ICW to floating type item

GCW
get next byte

PAS2

GIT ROUTINE (cont.)

yes

List requested?

Get I ist count from
VALUe

Set ICW to value type

3-392

no

Set * error flag

no

yes

Previous control word
-Areg

PAS2
Gil ROUTINE (cont.)

~-------.~---------------------------------,

Command type?

no

Item control word

- lew
Location of item-l
- VAlU

yes

3-393

no

End of chain?

yes

list type item?

yes

MIFT
get ZERO item

no

List type
-A reg

PAS2
Gil ROUTINE (cant.)

Special
character

8- CNTR
J----"~--tI~ 0 - VALU

0- VALU+

Set E
error flag

3-394

LOC -VALU
Add val ue type' -
-ICW

Save SCANC exit.
Save SCAN exit.
Increment SCAN

level pointen.

no

Set element
bit in item

PAS2
SCANC ROUTINE

t--t--e ... Set P error nag

O-OPA

Decrement SCAN level
pointen.

Restore SCANC exit.
Restore SCAN exit.

Loc of element
- last element

loc of element
- FRST

3-395

End of entry

loc of element
-llNK

Increment element
count,

o -A reg

Value type

- Breg

no

Does ECW point
to dictionary?

no

0- A reg

Item 01 phanumeri c?

no

PAS2
PEEK AND GNC ROUTINES

yes
Blank- A reg

~_--r ___ Right adjust dictionary ____ ..
character in A reg

yes

no

Set E error flag
O-A reg A reg - TERM

Special character? 1----------------....
Term = O?

yes
no

get next byte

)..-__ - Combine 2 characters 1-------4.,.
in A reg

3-396

PAS2
GET AND GBSl ROUTINES

~_~--I~ Blank - CHR 1-----'
and A reg BCNT> 0

no
no

no

e

3-397

PAS2
RELTST AND DPDIV ROUllNES

no

Relocatable1 no

yes

RElFG + 1-RElFG 1-----.....
no

no

14---- \RELFG + 2 - RELFGI

Restore B reg
RELFG - A reg

A reg -VALU1
-X2 -X2
B reg -A reg
Append X2 bi" from

ION to A reg
A reg -VALU

3-398

yes

Shift A and' 8 right 1,
Divide A and 8 regs by

0, X2
A reg -VALU1
B reg _ A reg
0- B reg

Divide A and B regs by
0, X2

A reg * 2 - VALU
8 reg_ A reg
O-Breg

Divide A and B regs by
0, X2

A reg*4-1CW
-1-X2
VAW1- A reg
VALU - B reg

Normalize and
decrement

X2+1-X2

X2 < 01

no

No. characte~
- SIZFRC
0- VALUl
0- VALU2
O-VALU
0- PRECS

no

a-MULT
8-MAXNO

end of string

GEC
get character

normal

end of string

PAS2
CNVRT ROUTINE

10-MULT
10-MAXNO

MAXNO-l
- MAXNO

Character
_ DOT

~--------------------~~---------------1

Set E error

no

no

-A and 8 regs
A +VALUl
-VAL 1

3-399

yes

Bit 23 of VALU = l?

8 reg + character
-A reg

Set T error flag

Normalize VALU1
and VALU
- shift count X2

PAS2
CNVRT ROUTINE (cont.)

precision type item

yes Set ICW to single
precision type Item

NDX + X2- NDX
yes -(MINC-MINB + V +

)---!...:.:.....,...------.... ..------------t SIZFRC-2 + NDX)
""'--------' **(J177-VALU2

X2-MINB
-23- MINC
SIZFRC- X2

no
Normalize FIVES, X2

and store in PWR.
no - rhift count - V

}-....:.:.::....--------,..----------... VALU1 _ A reg
""'--------' VALU - B reg

SIZ FRC-9 - PW'R
O-X2
FIVES + 9- A reg
0-8 reg
Norm<d ize A and 8 regs
X2-1- MINC
A re9- PWR + 1
VALU1- A reg
VALU- S reg
L(PWR + 1) - X reg

get fraction
X2-NDX
PWR- X2

3-400

l(PWR) - X reg

Blank 1st 7
words of print
image

FINISH

EPRNT
print end

line

Set up a I iterol
L-__________ -I _____ ...I. ____t ... in normal format

l(l8l) - WORD
Reference value
-lBl + 2

punch "end
cord

3-401

of data.
Maximum of CC

and MCC - MCC.

print and punch
" literal

900 Series Only

write EOF list

FINISH
WEOFL AND GTLBL ROUTINES

no

3-402

Set EON to point to
dictionary entry for
byte

get character

normal

Insert character into
location addressed by
WORD

yes

WORD + 1 - WORD

End of entry

900 Series Only

Fil,ld Read

B Binary mode flag

C Channel

U Unit

I 0 routine Location of input routine

EOF routine Not used

Dummy control word Temporary storage

Control word First word read

Words 7-45 Rema i nder of record read

ITEM AND TABLE FORMATS USED BY ENCODER

Dictionary Item Format

where:

bits
word

o
1

2

3

o 3 4 5 6
_1

L 1 T

4th

L is the number of characters in entry

T is type of string:

o - blank

1 - specia I

2 - numeric

3 - alphanumeric

1st

11 12

Write

Binary mode flag

Channel

Unit

Location of output routine

Location of EOF routine

To initialize control word

First word to write

Remainder of record to write

17 18 23

2nd 3rd

14th 15th

Entries are fu II words, as many as needed to represent the stri ng, wi th a maximum of four words.

The 1st through 15th are characters comprising the string (except for type 0 (blank) strings, where

the following one or two characters give the string length).

900
4-3

CPO (Search Table) Item Format

bits o 1 3 4 56
words I I

o DI I 8

1

2

where:

D is direction token from item:

o if lesser

1 if greater

B is balance of table from item:

o if in balance

1 heavy greater

2 heavy t esser

I

I

900 Series Only

8 9

DICTIONARY is location of dictionary entry for item.

LESSER is location of item smaller than this item.

GREATER is location of item larger than this item.

APO (Dictionary Address Table) Item Format

DICTIONARY

LESSER

GREATER

VALLJ DICTIONARY

bits o
where:

VALU is byte value of entry.

DICTIONARY is location of dictionary item for entry.

900

4-4

23

23

900 Series Only

ITEM TABLE FORMATS USED IN META-SYMBOL

Byte Table Entry

Entry for byte b is in STBL - b. Byte table consist of one word with the following format:

N T F

(4) (2)

6 7 8 9 10

where:

A

(14)

C is character position of first character of string in dictionary.

N is number of characters in dictionary string entry.

T is type:

o - Blank string

1 - Special character string

2 - Numeri c character stri ng

3 - Alphanumeric character string

23

F - The interpretation of F depends upon wh ich routine is operative:

PREA and SRNK

F is flag for interpreting A field.

PAS1, PAS2, FNSH

field

no. of bits

bit number

F is used to detect illegal forward references. F is set to 1 when item is defined during

~econd pass.

A - If F = 0, A is address of word in dictionary containing first character of string. If F = 1,

A is address of item in item table with the string of this byte as key. That item will also

have an F and an A field which are interpreted in the same manner. Eventually they will

be an item with 0 in the F field, and the A field of this item will locate the word in the

dictionary containing the first character of string.

Dic tionary T abl e Entry

Entry for string s follows entry for string s-1.

Dictionary strings, with control characters removed, are packed one following the other without

regard to word boundaries. The first character of a string is stored in the character position

following the position of the last character of the previous string.

900
4-5

900 Series Only

Symbol Table Entries

First word is control word. Interpretation of remainder of item is determined by control word.

where:

L is length of entry, inc luding control word.

I is item flag: ° if item; 1 if element of list.

A
(14)

T is type: 1 if value; 2 if command; 3 if list; ° if reference.

E is error flag.

M is mode. Interpretation is determined by type (T).

F - The interpretation of F depends upon which routine is operative:

PREA and SRNK

F is flag for interpreting A field.

PAS1, PAS2, FNSH

field
no. of bits

F is used to detect illegal forward reference. F is set to 1 when item is defined during

second pass.

A - If F = 0, A is address of word in dictionary containing first character of string. If
F = 1, A is address of another item in table (either next item with the same key, if

I = 0, or next element of I ist, if I = 1). In this case, A is called the assoc iate.

Value item (T = 1). The mode of a value item has the following interpretation:

M = °
M = 1
M = 2
M = 3

Single-precision absolute.

Sing le-prec ision address.

Double-prec ision absolute.

Double-prec ision floating point.

If M = 0, 2, or 3, the datum (or value) follows in the next one to three words. If M = 1 and

L = 2, the next word has the following format:

not used

V

(15)

900
4-6

field

no. of bits

23

900 Series Only

where:

S is the asterisk flag: 1 if definitions of item was preceded by an asterisk.

C is the common flag: if common bias is to be added.

R is the relocation flag: 1 if relocation bias is to be added.

V is the value of address quantity.

If M = 1 and L = 3, the following two words have this format:

o 1 67 89

where: S, C, R and V have the same mean i ng as above.

If the mode is 3, a 3-word floating-point value follows.

WORD 1

WORD 2

WORD 3

Least significant 24 bits of fraction.

Most significant 24 bits of fraction.

Exponent.

If the mode is 2, the 2-word double-precision value follows.

WORD 1

WORD 2

Least significant 24 bits of value.

Most significant 24 bits of value.

field

23 bits

Command Item (T = 2). The mode of a command item determ i nes the sub -type.

Form Command (M = 0). Form pattern is in next word. Form pattern is a word with a 1 in the

first bit position of each field and zeros elsewhere.

Procedure Name (M = 1). The control word is followed by the sample control word:

o

P
(5)

B
(4)

8 9 10

900
4-7

W field
(14) no ~ of bits

23

900 Series Only

where:

P is starting bit position of sample in sample storage word.

B is size of first byte of sample.

Z - If an impl ied parameter follows (as determined by L in the control word) and if Z = 0,

the parameter is a 1-word absolute value; if Z = 1, it is a I ist word (see list word type).

W is the address of word in sample storage containing first bit of sample.

If an impl ied parameter is present, it follows in the next word.

Directive (M = 2). The control word is followed by a word containing an index to the directive

branch table entry to perform the directive task.

POP Definition (M = 3). The control word is followed by a programmed operator definition word:

bits .1 OS J 2
N

where:

. S is subtype: o - local POP definition

1 - PO Preference

2 - external POP definition

N is programmed operator code.

A I
23

A is value of location counter for POP definitions and zero for POP reference.

List Type (T = 3). This type refers to items which can be referred to in. a functional notation.

This includes both list items and function names. The mode determines which sub-type the item is.

List Item {M=O}. The control word for a list item is followed by a list word:

o

N

{8}

9()O

4-8

S

(14)

23

field

no. of bits

900 Series Only

where:

N is number of elements in list.

S is address of first element of list. This is element number 1. If the length of a list item is

greater than 2, a sub-item follows the I ist word. The sub-item is element O.

Function Name (M = 1). The control word for a function name item is followed by a sample

control word as described under procedure name item.

Literal Table Entries

First word is control word. Interpretation of remainder of item is determined by control word.

o 2 3 5 6 7 8 9 10

where:

L is length of entry, including control word.

E is truncation error flag.

A

(14)

23

M is mode. The mode of a I iteral item has the following interpretation:

M = 0

M = 1

M = 2

M = 3

Single-precision absolute.

Sing I e -prec i si on address.

Double-precision absolute.

Double-precision floating point.

field

no" of bits

If M = 0, 2, or 3, the datum (or val ue) follows in the next one or two words. If M = 1,

the next word has the following format.

not used

(6)
o 1 6 7 8 9

900
4-9

V

(15)

23

field

No. of bits

900 Series Only

where:

S is asterisk flag: 1 if definition of item was preceded by an asterisk.

C is common flag: 1 if common bias is to be added.

R is relocation flag: 1 if relocation bias is to be added.

Vis va lue of address quanti ty.

R is relocation flag: 1 if A is relocatable.

A is location the I iteral wi II occupy when program is loaded.

DO Table (DOTAB) Format

DOTAB proc level of DO location of DO label value

+1 lines left to
do

(6) (11)

+2 bits used byte
byte word size

(5) (4) (14)

+3 I ines to do DO count
(6) (11)

+4 contents of CHAD for first line

Procedure Storage Table Values

PTERM

FST

Term i nator of reference parameter list (TERM):

o if blank
1 if comma
2 if right parenthesis

CNT

o
1st ELEMENT LOC

900
4-10

number of bits

number of bits

number of bits

number of bits

number of bits

23

LNK

PRECW

LrLV

TBLOC

SVMTP

PRORG

PROR

CHDWRD

PRPOS

REFPOS

CCVAL

PRFG

PASS

PRBYT

LBL

LBL1-
LBL3

ELBL

BYTLOC

WLLVL

900 Series Only

Location of last element in list.

Byte table entry from ECW at end-of-parameter list definition.

Value of PLV when proc was entered.

Origin of first symbol table entry at current PROC level.

Location of last word in input buffer at lower PROC level.

Location of last NAME item sample pointer word.

Sample table location of procedure sample for current PROC.

CHAD the current word of input after processing reference list.

Sample location of PROC line encountered when processing from the sample
storage area.

Location of next input byte following procedure reference parameter list.

Value of CC (location center) at start of PROC reference.

PROC/FUNC flag: negative if neither; zero if PROC reference; 1 if FUNC
reference.

Pass at current PROC level: neg,ative if first; positive if second.

Va I ue of BYT after processi ngreference parameter Ii st.

Symbol table control word for a label waiting to be defined. Zero if no
waiting label.

Value of waiting label.

Contents of label on EQU line before calling SCAN.

Location in BYTE table of byte for current waiting label.

Procedure level at which a waiting label is defined.

Formats of Certain SCAN Communication Cells

ICW. This is the control word 'for an item evaluated by SCAN; it is the symbol table control

word format without dictionary or symbol table pointer.

bits

900

4-11

zero

23

900 Series Only

where:

L is length

I is element of list

T is type

E is error

M is mode

VALU through VALU+2. This is the value associated with the item at lew.

TERM term inator of expression:

o if blank
1 if comma
2 if right parenthesis

ST AR leading * flag: 1 if leading * on expression; zero otherwise

Sample Procedure and Function Entries, in order of occurrence. Procedure and function samples

are packed one after the other. A sample follows the preceding sample in the next bit position

without regard to word boundaries. The first bit of a sample is stored in the bit position following

the position of the last bit of the previous sample.

The first line in the sample is the procedure of function line. If the sample is within another

sample, the NAME I ines wi II follow. Otherwise, the next line is the line following the last

NAME I ine. The remaining lines of the sample follow, through the END line.

900
4-12

900 Series Only

SECTION 4

ITEM AND TABLE FORMATS USED IN META-SYMBOL

STANDARD I/O CONTROL WORD

contents U A

bits

where:

M is a decimal/binary mode flag; -1 for binary

C is channel designation

U is unit number

A is location of I/O routine to perform the function

Standard I/O control word - RAD

NR A

o 9 10 23

where:

NR is file number

A is address of I/O I inkage routine to perform the function.

STANDARD I/O CONTROL FLAG

contents

bits

U

900
4-1

Code

23

23

900 Series Only

MSFNC FORMAT

contents

bits

A nonzero field indicates the function is to be performed.

C - compatibility mode
51 - symbolic input
TO - intermediate outputt

BO - binary output

LO - Ii sti ng output
EI - encoded input
EO - encoded output
SO - symbol ic output

STANDARD INPUT/OUTPUT PACKET FORMAT

word
o
1

2
3

4

5
6

7

bits 0 1
I
J

B C

B C

34 9 10
I -.l
I

LOCATION

CHECKSUM

MAX

U I/O Routine

U EOF Routine

Dummy Control Word

Control Word

..... - ---
45

--------------------C----- -----

where the fields have the following meaning:

23

J

LOCATION

CHECKSUM

MAX

Location of next data word

Temporary storage

Last location of buffer

Location for next data word

Exclusive 'OR' of words

Last location of buffer

t TO is always set to nonzero.

900
4-2A

900 Series Only

where:

M is decimal/binary mode flag; -1 for binary

C is channel designation

U is unit number

Code is o for no operat ion

1 for card operati on

2 for paper tape operati on

3 for magneti c tape operati on

If the entire cell is zero, the function is not to be completed.

900
4-2

9300 Only

SECTION 4

ITEM AND TABLE FORMATS USED IN META-SYMBOL

ITEM AND TABLE FORMATS USED BY ENCODER

Dic tionary Item Format

where:

bits
word
o

2

3

o

L

3 4 5 6
I

I T

4th

L is the number of charac ters in entry

T is type of string:

o - blank

1 - spec ial

2 - numeric

3 - alphanumeric

11 12

1st

17 18

2nd 3rd

14th 15th

23

Entries are full words, as many as needed to represent the string, with a maximum of four words.

The 1 st through 15th are characters comprising the string (except for type 0 (blank) strings, where

the following one or two charac ters give the string length).

CPO (Search Table) Item Format

bits
words
o

2

o 1
I

01

345 6
I I

I B I

8 9

9300
4-1

23

DICTIONARY

LESSER

GREATER

where:

D is direction taken from item:

o if lesser

1 if greater

B is balance of table from item:

o if in balance

1 heavy greater

2 heavy lesser

9300 Only

DICTIONARY is location of dictionary entry for item.

lESSER is location of item smaller than this item.

GREATER is location of item larger than this item.

APO (Dictionary Address Table) Item Format

VAlU DICTIONARY

bits o

where:

VAlU is byte value of entry.

DICTIONARY is location of dictionary item for entry.

ITEM TABLE FORMATS USED IN META-SYMBOL

Byte Table Entry

23

Entry for byte b is in STBl - b. Byte table consists of one word with the following format:

o 1 3

N

(4)

A

(15)

9300
4-2

23

field

no. of bits
bit number

9300 Only

where:
C is character position of first character of string in dictionary.

N is number of characters in dictionary string entry.

T is type:

o - Blank string

1 - Special character string

2 - Numeric character string

3 - Alphanumeric character string

F - The interpretation of F depends upon which routine is operative:

PREA and SRNK

F is flag for interpreting A field.

~A?l., .. PA.S1~_. FNSH.

F is used to detec t illegal forward references. F is set to 1 when item is defined during

second pass.

A - If F = 0, A is address of word in dictionary containing first character of string. If

F = 1, A is address of item in item table with the string of this byte as key. That item

will also have an F and an A field which are interpreted in the same manner. Eventually

they will be an item with 0 in the F field, and the A field of this item will locate the

word in the dictionary containing the first character of string.

Dic tionary Table Entry

Entry for string s follows entry for string s-l.

Dic tionary strings, with control c harac ters removed, are packed one follow ing the other without

regard to word boundaries. The first character of a string is stored in the character position fol

lowing the position of the last character of the previous string.

Symbol Table Entries

First word is control word. Interpretation of remainder of item is determ ined by control word.

01234567d9

where:

L is length of entry, including control word.

I is item flag: 0 if item; 1 if element of list.

9300
4-3

A
(15)

23

field
no. of bits

9300 Only

T is type: 1 if value; 2 if command; 3 if list; ° if reference.
E is error flag.

M is mode. Interpretation is determ ined by type (T).

F - The interpretation of F depends upon which routine is operative:

PREA and SRNK

F is flag for interpreting A field.

PAS1, PAS2, FNSH

F is used to detect illegal forward references. F is set to 1 when item is defined during
second pass.

A - If F = 0, A is address of word in dictionary containing first character of string. If
F = 1, A is address of another item in table (either next item with the same key, if
I = 0, or next element of list, if I = 1). In this case, A is called the associate.

V~~ ite~{T = 1). The mode of a value item has the following interpretation:

M = °
M = 1
M = 2
M:::: 3

Single-precision absolute.

Single-precision address.

Double-prec ision absolute.

Double-prec ision floating point.

If M =- 0, 2, or 3, the datum (or value) follows in the next one to three words. If M = 1 and
L = 2, the next word has the following format:

not used

where:

9

V

(15)

field

no. of bits

23

S is the asterisk flag: 1 if definitions of item was preceded by an asterisk.

C is the common flag: if common bias is to be added.

R is the relocation flag: 1 if relocation bias is to be added.

V is the val ue of address quantity.

If M = 1 and L = 3, the following two words have this format:

o 1 6 9

9300

4-4

field

23 bits

9300 Only

where:

S, C, R and V have the same meaning as above.

If the mode is 3, a 3-word floating-point value follows.

WORD 1

WORD 2

WORD 3

Least significant 24 bits of fraction.

Most significant 24 bits of fraction.

Exponent.

If the mode is 2, the 2-word double-prec ision value follows.

WORD 1

WORD 2

Least significant 24 bits of value.

Most significant 24 bits of val ue.

Command Item (T = 2). The mode of a command item determines the sub-type.

Form Command (M = 0). Form pattern is in next word. Form pattern is a word with a in the

first bit position of each field and zeros elsewhere.

Procedure Name (M == 1). The control word is followed by the sample control word:

o

where:

P
(5)

B
(4)

W
(14)

P is starting bit position of sample in sample storage word.

B is size of first byte of sample.

field
no. of bits

23

Z - If an impl ied parameter follows (as determ ined by L in the control word) and if Z = 0,

the parameter is a l-word absolute value; if Z = 1, it is a I ist word (see I ist word type).

W is the address of word in sample storage containing first bit of sample.

If an implied parameter is present, it follows the next word.

Directive (M == 2). The control word is followed by a word containing an index to the directive

branch table entry to perform the directive task.

9300

4-5

9300 Only

POP Definition (M = 3). The control word is followed by a programmed operator definition word:

N A

bits 23

where:

S is subtype: o - local POP defin ition

1 - POP reference

2 - external POP definition

N is programmed operator code.

A is value of location counter for POP definitions and zero for POP reference.

List Type (T = 3). This type refers to items which can be referred to in a functional notation.

Th is inc I udes both I ist items and func tion names. The mode determ ines wh ich sub-type the item

is.

List Item (M = 0). The control word for a I ist item is followed by a I ist word:

S field

(8 no. of bits

o 23

N is number of el ements in list.

S is address of first element of list. This is element number 1. If the length of a list item is

greater than 2, a sub-item follows the I ist word. The sub-item is element O.

Function Name (M = 1). The control word for a function name item is followed by a sample

contro I word as described under procedure name item.

9300
4-6

9300 Only

L i tL~ro I T obi e Entries

First word i~ control word. Interpretation of remainder of item is determined by control word.

0123 56789

where:

L is length of entry, including control word.

E is truncation error flag.

A
(15)

23

M is mode. The mode of a I iteral item has the following interpretation:

M 0 Single-prec ision absolute.

M Single-prec ision address.

M 2

M -- 3

Double-prec ision absolute.

Double-prec ision floating point.

field
no. of bits

If M = 0, 2, or 3, the datum (or val ue) follows in the next one or two words. If M = 1, the

next word has the following format.

not used

v field

no. of bits
9 23

where:

5 is asterisk flag: 1 if defin ition of item was preceded by an aste"risk.

C is common flag: if common bias is to be added.

R is relocation flag: 1 if relocation bias is to be added.

V is value of address quantity.

R is relocation flag: 1 if A is relocatable.

A is location the literal will occupy when program is loaded.

9300
4-7

9300 Only

DO Table (DOTAB) Format

DOTAB proc level of DO location of DO label value

(9)

+1 I ines I eft to
do

(6) (11)

+2 bits used byte
byte word size

(5) (4) (14)

+3 I ines to do I ines to sk ip DO count
(6) (6) (11)

+4 contents of CHAD for first line
(24)

Procedure Storage Table Values

PTERM

FST

LNK

PRECW

LPLV

TBLOC

SVMTP

PRORG

PROR

CHDWRD

o

Term inator of reference parameter I ist (TERM):

o if blank
1 if comma
2 if right parenthesis

CNT 1st ELEMENT LOC

Location of last element in list.

23

Byte table entry from ECW at end-of-parameter I ist definition.

Value of PLV when proc was entered.

Origin of first symbol table entry at current PROC level.

Location of last word in input buffer at lower PROC level.

Location of last NAME item sample pointer word.

Sample table location of procedure sample for current PROC.

CHAD the current word of input after processing reference list.

9300

4-8

number of bits

number of bits

number of bits

number of bits

number of bits

PRPOS

REFPOS

CCVAL

PRFG

PASS

PRBYT

LBL

LBL1-
LBL3

ELBL

BYTLOC

WLLVL

9300 Only

Sample location of PROC I ine encountered when processing from the sample
storage area.

Location of next input byte following procedure reference parameter list.

Value of CC (location center) at start of PROC reference.

PROC/FUNC flag: negative if neither; zero if PROC reference; 1 if FUNC
reference.

Pass at current PROC level: negative if first; positive if second.

Value of BYT after processing reference parameter list.

Symbol table control word for a label waiting to be defined. Zero if no waiting
label.

Value of waiting label.

Contents of label on EQU I ine before call ing SCAN.

Location in BYTE table of byte for current waiting label.

Procedure level at which a waiting label is defined.

Formats of Certain SCAN Communication Cells

ICW. This is the control word for an item evaluated by SCAN; it is the symbol table control

word format without dic tionary or symbol table po inter.

bits o 12 34 56 7 8

where:

L is length

I is element of list

T is type

E is error

M is mode

9300
4-9

zero

23

9300 Only

VALU through VAL+2. This is the value associated with the item at lew.

TERM term inator of expression:

o if blank
1 if comma
2 if right parenthesis

STAR leading * flag: 1 if leading * on expression; zero otherwise

Sample Procedure and Function Entries, in order of occurrence. Procedure and function samples

are packed one after the other. A sample follows the preceding sample in the next bit position

without regard to word boundaries. The first bit of a sample is stored in the bit position following

the position of the last bit of the previous sample.

The first I ine in the sample is the procedure of function I ine. If the sample is within another

sample, the NAME lines will follow. Otherwise, the next line is the line following the last

NAME line. The remaining lines of the sample follow, through the END line.

9300

4-10

900 Series Only

SECTION 5

OPERATIONAL INFORMATION

The META-SYMBOL assembly system encompasses several core overlays and much communication

between segments. The purpose of this section is to summarize the steps taken in modifying

portions of the system, to explain how to make system tapes, to define error messages and error

halts, and to suggest items to be checked in the event of trouble.

UPDATING META-SYMBOL ON MONARCH SYSTEM TAPES

Use the standard MONARCH ASSIGN, UPDATE, and COpy control cards. Insert in the update

deck the binary (encoded in the case of PROC) decks to be changed and do a normal update.

When updating a section of META-SYMBOL, all portions of the labeled segment must be updated.

For example, to insert a new PROC deck, one must also insert the PREASM absolute deck pre

ceding it.

Binary patches may be inserted at the end of the absolute binary deck just preceding the END

card.

If PREASM, SHRINK, ASSEMBLR, PAS2, or FINISH is modified through reassembly, it is neces

sary to convert the program to absolute before placing it on the updated system tape.

The order of the deck is as follows:

ENCODER
POPS (910 or 920 depending on object machine)
S4B
MON1
Basic Tape Loader
MSCONTRL
PREASM (absolute deck combining parts 1 and 2 and the POPS)
Standard procedure deck (910, 920, or 9300)
SHRI N K (abso lute deck)
ASSEMBLR (absolute deck of pass 1 containing pass 1 parts 1-5 and POPS)
PAS2 (absolute deck of pass 2)
FINISH (absolute deck of FINISH)

900
5-1

900 Series Only

MAKING THE ABSOLUTE PROGRAM DECKS

Following is a I ist of steps needed to make the various absolute decks:

1. PREA

Load with zero relocation bias PREASM part 1, the POP deck (910, or 920), and

PREASM part 2. Load the absolute program maker (Cat. No. 0000188) and dump from

ce II 100 through 126. Dump from 1505 through the end of PREASM part 2.

2. SRNK

Remove the END card from PREASM part 2 and load PREASM part 1, POP, PREASM

part 2, and SHRINK at relocation bias zero. Load the absolute program maker and

dump from 3615 through the end of SHRINK.

3. PAS 1

Load the POPs with a relocation bias sufficient to put them after PAS2. After the POPs

are loaded, clear the relocation bias to zero (clear the A register) and load parts 1 to 5

of the assembler pass 1. Load the absolute program maker and dump from 100 to 126 and

from 1600 through the end of the POPs.

4. PAS2

Remove the external symbol definition cards (type 1 cards) from the beginning of the

relocatable deck. The balance is a loadable absolute deck.

5. FNSH

Take the external symbol definitions from PAS2 and place them in front of the FINISH

relocatable deck. Load the external definitions and FINISH. Load the absolute pro

gram maker and dump from 4506 to the end of the FINISH program.

900
5-2

900 Series Only

ERROR MESSAGE CODES

The standard abort message is "META-SYMBOL ERROR XX. II

Where XX has the following mean ings:

XX Interpretation

01 Insuffic ient space to compl ete encod ing of input.

02 Corrections to encoded deck but encoded input file is empty.

03 End of file detected while reading encoded input.

04 Insuffic ient space to complete preassembly operations.

05 Insuffic ient space to complete the assembly.

06 Data error. META-SYMBOL does not recognize the data as anything meaningful.

07 Requested output on a device which is not available.

08 Corrections out of sequence.

09 End of file detected by ENCODER when trying to read intermediate output tape Xl.

10 Not used

11 Byte larger than dictionary (bad encoded deck).

12 Not ENCODED deck

13 Checksum error reading system tape.

14 Preassembler overflow (ET AB)

15 Not used

16 Data error causing META-SYMBOL to attempt to process procedure sample beyond end of
table.

Errors 05, 06, and 16 are accompanied by a printout which shows the value of certain internal

parameters at the time of the abort:

LINE NUMBER

BREAK 1

LOCATION COUNTER

UPPER

LOWER

BREAK

SMPWP-D

LTBE
SECOND PASS ONLY

LTBL

The last six of these are useful in determining the nature of the assembler overflow.

900
5-3

900 Series Only

PAS 1 Overflows

During PAS1 all memory not in use is allocated to four partially dynamic tables. UPPER is set to

top of available memory; SMPWRD is set to bottom of available memory; lOWER and BREAK are

set to bottom of available memory + BREAK 1.

Odd procedure level symbols are saved in decending order from top of memory (note main program

is considered level 1); UPPER is updated to continuously point to the next high avai lable cell.

Even procedures and external definitions are built upward from the original value of LOWER, and

lOWER is modified. If lOWER> UPPER, one type of PAS1 overflow has occurred.

User procedure sample is built upward from SMPWRD, and SMPWRD is modified. If SMPWRD >

BREAK, the second type of overflow has occurred.

PAS2 Overflows

At the beginning of PAS2, lTBE is set equal to BREAK, lOWER is set equal to BREAK, and

l TBl is set equal to SMPWRD which is just above user sample. During PAS2 the area between

lOWER and UPPER is used in a manner similar to that of PAS1 and can overflow if lOWER>

UPPER.

External reference tables are builtdown from BREAK using lTBE as a pointer. Literals are built

up from SMPWRD using l TBl as a pointer. If l TBl > l TBE, overflow has occurred.

I/O ERROR MESSAGES AND HALTS

When an I/O error is detected a simple message is typed and the computer halts. The action

taken if the halt is cleared depends on the type of error and the device involved. There are

three types of error. The message consists of a 2-letter indication of the type of error and a

2-dig it indication of the I/O device. The letter indicators are defined below; the 2-dig it

number is the unit address number used in EOM selects (see Reference Manual for appropriate

900 Series Computer).

Buffer Error (BE)

1. Examples:

BEll buffer error while reading magnetic tape 1

BE42 buffer error while writing magnetic tape 2

900
5-4

900 Series Only

2. Action on clearing halt.

a. Magnetic tape input

Since ten attempts are made to read the record before halting, continueing causes

META-SYMBOL to accept the bad record.

b. Paper tape or card input

Try again.

c. Magnetic tape output

Try again.

d. Output other than magnetic tape.

Continue.

Checksum Error (CS)

1. Examples:

CS06 checksum error card reader.

CS 11 checksum error reading magnetic tape 1.

2. Action on clearing halt

Accept bad record.

Write Error (FP) - Try ing to write on file protected tape

1. Example:

FP42 Magnetic tape 2 file protected

2. Action on clearing halt

Checks again.

900
5-5

900 and 9300 Series

SECTION 6

META-SYMBOL CONCORDANCE OPTION

DESCRIPTION OF THE OVERALL PROCESSING

The program to provide the concordance I isting is loaded as two separate overlays following

FINISH on the MONARCH system tape.

If a request for a concordance has been made, FINISH saves the locations of the dictionary

and symbol tables and then calls the tape loader to load the first overlay of the concordance

program, CO NC RD.

If exceptions to the normal case are indicated, CONCRD reads the exception control records

consisting of EXCLUDE or INCLUDE records from the symbolic input device and retains the

I ist of symbols to be included or excluded. The intermediate output tape, Xl, is then scanned

to extract the symbols and line numbers to appear in the concordance listing. Symbols to

appear in the listing are converted from the encoded to symbolic format and are retained

in core. The line numbers containing symbolic definitions or references to appear in the

listing are written to the scratch file on X2. For each definition or reference to appear

on a line, a pointer word giving the location of the symbol in core and a flag indicating

defin ition or reference is written on X2. As each symbol reference is encountered, a count

of the number of half words needed to retain the reference line number is kept with the

symbol.

When the entire encoded input fi Ie has been processed, the tapes X 1 and X2 are rewound

and the second overlay, CON2, of the concordance routine is loaded.

CON2 rewinds the system tape and then passes through the symbol table and determines the

total core requirement to retain the reference line numbers for the program. If the number

of words needed to retain the reference I ine numbers exceeds the core avai lab Ie, the

symbols that appear at the end of the I isting are ignored and a recount is made. Th is process

of el im ination of later symbols is continued until a subset of symbols is obtained for which

all reference line numbers can be retained. Space is then allocated for reference line

numbers for each symbol or each symbol in the subset, the scratch tape X2 is read, and

the reference and definition line numbers are stored into blocks for each symbol.

6-1

900 and 9300 Series

The symbol table is then searched for the lowest remaining entry, using a modified linear

search technique, and the I isting is formatted and output. When the symbol table becomes

empty the core requirements for any remaining symbol reference I ine numbers is determined

and these are read and processed. Again, if there is insufficient space for all of them they

are taken in segments.

When all symbols have been listed, control returns to MONARCH.

6-2

XIDIS Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Ser i es: 850086

850088
Catalog No. 9300: 860083

IDENTIFICATION: CONCRD

PURPOSE: To process the exception control records, scan the encoded program

fi Ie, generate the concordance scratch output fi Ie, determine space

requirements needed to retain the reference I ines number for each

symbol, and expand the symbols to appear on the concordance output

from the i r encoded format.

ACTION: CONCRD performs the following functions:

1. CONCRD determines the locations of the unit assignment table

entries for the various I/O functions and calls INIT to initialize

the I/O routines.

2. GETXC is called to process the INCLUDE and EXCLUDE records.

3. RECON is called to initial ize the parameters to process the encoded

input file.

4. The LINE routine is called to process the encoded input file,

determine which symbols to include in the listing, reconstruct

the symbols to be included, output the scratch tape X2 and maintain

the reference line number storage requ i rements for each symbo I.

5. CONCRD rewinds the encoded input tape X 1 and scratch tape

X2 before calling the tape loader to load the second overlay

of the concordance routine X, CON2.

6-3

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQ U IREM E NT S:

SUBROUTINES
USEO:

900 Series: 850086, 850088
Catalog No. 9300: 860083

I/O assignments are determined from the unit assignments maintained

by MONARCH. CaNCRO overlays 2 cells of the tape loader in

order to reset the carling locations of the typewriter error message

routine and the abort routine used by the loader. CaNCRO is given

three words of control information by FINISH, which are located in

lower core. CaNCRO is an absolute program, part of wh ich is

origined just below the start of the encoded dictionary; this part is

initial ization code that may be destroyed after the initialization

process is completed. CaNCRO is coded in 910-925 subset code.

Control is transferred to CaNCRO by the tape loader upon completion
of the loading process.

CaNCRO uses all available memory.

REWW
INIT
GETXC
RECON
LINE

6-4

XIDIS Xerox Data Systems

XOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Se ri es: 850086

850088
Catalog No. 9300: 860083

IDENTIFICATION: LINE

PURPOSE: To obtain and process lines of encoded program text, generate the

symbol table of reconstructed symbols, output the reference and

definition line numbers and pointers to the scratch tape, and maintain

a count of the memory storage requirements associated with each

symbol.

ACTION: LINE calls PLBL to obtain the label and operation bytes for the line.

The label, if any, is tested for inclusion into the concordance listing

and, if it is to be included, the symbol is entered into the symbol

table. The byte table pointer is changed to point to the symbol table

entry, the line number of the label is output to the scratch tape,

followed by a pointer word indicating the location of the symbol

tab I e entry.

The operation field is processed and tested for special action (PROC,

FUNC, NAME, END, TEXT, BCD, etc.). If the operation is to

appear in the I isting it is counted as a reference to the appropriate

symbol. If the symbol is not in the symbol table it is inserted.

The operand field is then scanned by calling VFLD and the reference

line number is output, followed by the symbol pointer word. If the

referenced symbol does not appear in the symbol table it is inserted,

together with a flag indicating that the symbol definition is unknown.

Comments are skipped by calling SKIP.

Line continues processing text lines until the program END line has

been processed.

6-5

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USEO:

900 Series: 850086, 850088
Catalog No. 9300; 860083

LINE is an open routine called by the CONCRO program and

assembled as part of CONCRO.

BRU LINE

return is to location STOP in CONCRO.

3648 cells plus constants.

PLBL
TSTTYP
TSTOP
GTOC
GET
SKIP

STC
COMP
OUTPUT
TSTEX
VFLO

6-6

XIDIS Xerox Data Systems

IDENTIFICATION: TSTTYP

XOS PROGRAM LIBRARY
PROGRAM DESCRIPTION

PURPOSE: To determine the type of label definition.

900 Series: 850086
850088

Catalog No. 9300: 860083

ACTION: TSTTYP locates the symbol table entry generated by META-SYMBOL

for a given symbol and from this determines the type of definition

associated with a symbol.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQ UI REME NTS:

SUBROUTINES
USED:

TSTTYP is a closed routine assembled as part of CONCRD.

byte number to LBYTE

byte tabl~ entry to LBCDE

BRM TSTTYP

on exit the type code is in LTYPE

66
8

cells plus constants.

None

6-7

X!D!S Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Catalog No. 9300: 860083

IDENTIFICATION: PLBL

PURPOSE: To process the line of text through the operation field retaining the

byte number and byte table entry for the label and operation

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

code.

PLBL obtains the bytes for the line of text by calling GTB. The label

and operation code bytes are retained, as is the byte table entry for

each. The current sample level is retained as the label level unless

the label is external, in wh ich case it is reduced by one. The first

nonblank byte of the operand field is obtained to be analyzed by

the VFLD routine.

PLBL is a closed routine assembled as part of CONCRD.

BRM PLBL

end of I ine return

norma I return

1118 ce lis pi us constants and storage cells.

GTB

GTDC

6-8

X[CiS Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Cata log No. 9300; 860083

IDENTIFICATION: TSTOP

PURPOSE; To reconstruct the operation code and test it for certain operations

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

(PROC, FUNC, NAME, END, TEXT, BCD, FORM, POPD, OPD).

TSTOP obtains the symbolic operation code and tests it against a list

of directives. If the operation matches, control goes to the code to

process that class of directive. PROC and FUNC cause the sample

level to be incremented and the label type to be set to list. END

decrements the sample level. Name decrements the label level by 1

and sets the label type to operator. FORM, POPD, and OPD set the

label type to operator. BCD and TEXT cause flags to be set to prevent

the BCD message from being interpreted as symbolics.

TSTOP is a closed routine assembled as part of CONCRD.

BRM TSTOP

166
8

cells plus constants and storage ce"s.

GTDC
STC
GET

6-9

XIDIS Xerox Data Systems

IDENTIFICATION: TSTEX

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Cgtglog No. 9300; 860083

PURPOSE~ To test each operator that is to be deleted from the I isting and, if it

is not critical (see TSTOP), to purge the entry from the byte table.

ACTION: TSTEX tests the operation code against a list of special directives. If

the operation is not any of these, the byte table entry for the symbol

PROGRAMMING
TECHNIQUES~

CALLING
SEQUENCE:

MEMORY
REQ U I REtv1 E I'~T s:

SUBROUTINES
USED:

is set to zero.

TSTEX is a closed routine assembled as part of CaNCRO.

location of symbol to CLOC

symbo I I ength to A reg ister

BRM TSTEX

33
8

cells plus constants and storage cells.

None

6-10

X!C!S Xerox Data Systems

XOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Cata log No. 9300: 860083

IDENTIFICATION: VFLD

PURPOSE: To process the operand fields of the program text.

ACTION: VFLD scans the operand field for symbolic items. As they are encoun

tered they are tested for inclusion in the concordance listing. If the

symbol is to -appear in the listing and has not been previously encoun

tered, it is reconstructed and inserted into the symbol table. The

space requirement (one or two halfwords) is tallied in the symbol

control word and the location of the symbol is output to the scratch

file. If the Ii ne number of the current line has not been output to the

scratch file, it is output preceding the symbol table pointer. Alpha

numeric data is skipped and, if the line is a TEXT or BCD line, only

the count field is processed.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQ UIREME NTS:

SUBROUTINES
USED:

VFLD is a closed routine assembled as part of CONCRD.

First byte of field to NBYT

First byte table entry to BCW

BRM VFLD

210
8

cells plus constants and storage cells.

GTDC
STC
COMP
GTB
OUTPUT

SKPQT
GET
TSTTYP
TSTEX

6-11

XIDlS Xerox Data Systems

IDENTIFICAT ION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

CaMP

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Catalog No. 9300: 860083

To compare a symbol with the entries in a table of symbols.

CaMP compares a symbol at CLOC with length SLNG with the entries

in a table of symbols at CMTB. CMLN gives the numbers of symbols in

the table CMTB.

CaMP is a closed routine assembled as part of CONCRD.

symbol to CLOC

length to SLNG

table address to CMTB

table length to CMLN

BRM COtv\P

not found exi t

symbol found exit

on exit cell TEMP+2 contains the location of the symbol entry if found.

518 cells plus constants and storage cells.

None

6-12

XIDIS Xerox Data Systems

IDENTIFICATION:

PURPOSE:

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

SKPQT

XOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Cata log No. 9300: 860083

To skip an a Iphanumeric constant unti I an apostrophe (') is encountered.

SKPQT obtains bytes by calling GTB until an apostrophe is obtained.

SKPQT is a closed routine assembled as part of CONCRD.

BRM SKPQT

end of line return

norma I return

16
8

cells plus constants.

GTB
GTDC

6-13

XID~ Xerox Data Systems

IDENTIFICATION: SKIP

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Catalog No. 9300: 860083

PURPOSE: To skip to the end of lines of text, including any comments.

ACTION: SKIP calls GTB until an end of line is detected; it then calls GCM

until the comments have been passed.

PROGRAMMING SKIP is a closed routine assembled as part of CONCRD.
TECHNIQUES:

CALLING BRM SKIP
SEQUENCE:

MEMORY 23
8

cells plus constants and storage cells
REQUIREMENTS:

SUBROUTINES GTB
USED: GCM

6-14

XIDIS Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Cata log No. 9300: 860083

IDENTIFICATION: GTDC

PURPOSE: To get the first symbolic character for a byte, given the table entry for

the byte.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GTDC stores the symbol length for the byte in LN, sets CNT to the

previous dictionary character position for STC. The location of the

dictionary entry is then determined and the first word of symbolics

obtained, positioned, and placed in DWRD. GTC is called to extract

the first character of the entry, wh ich is placed in CHR and the A

register at "exit.

GTDC is a closed subroutine assembled as part of CONCRD.

byte table entry to BCW

GRM GTDC

exit character in CHR and A register

44 octal cells plus constants and storage cells.

GTC

6-15

X!C\S Xerox Data Systems

XOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Ser i es ~ 850086

Catglog No. 9300;

IDENTIFICATION: GET

PURPOSE~ To get the second and following symbolic characters for a byte.

850088
860083

ACTION: GET decrements the character count, LN, and, if the string is empty,

exits through the end of string exit. If additional characters remain,

GET calls GTC to obtain the next character, which is placed in

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

CHR and the A register on a normal exit.

GET is a closed subroutine assembled as part of CONCRD. •

BRM GET

end of string exit

normal exit

13
8

cells plus constants and storage cells.

GTC

6-16

XIDIS Xerox Data Systems

XOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Catalog No. 9300: 860083

IDENTIFICATION: OUTPUT

PURPOSE : To output a word to the scratch file on unit X2.

ACTION: OUTPUT stores the contents of the A register into the output

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQ UIREMENTS:

SUBROUTINES
USED:

buffer OBUF. If the buffer is filled, the WMTB routine is called to

wri te the buffer to t he scratch fi Ie. The buffer is then cleared to zero

and the location for the next data word is in i tia I ized •

OUTPUT is a closed routine assembled as part of CONCRD. It

assumes a standard I/O calling sequence to call the tape write

routine.

word to output to A reg ister

BRM OUTPUT

228 cells plus constants and storage cells.

I/O routine associated with writing scratch tape, WMTB.

6-i7

XJDlS Xerox Data Systems

IDENTIFICATION: CLOSE

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

PURPOSE: To close the scratch output file X2.

900 Series~ 850086
850088

Catalog No. 9300: 860083

ACTION: CLOSE empties the output buffer OBUF by calling the WMTB routine

and then writes an end-of-file on X2.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
II<:~I"\.
V..IL..IJ.

CLOSE is a closed routine assembled as part of CONCRD. CLOSE

uses standard I/O calling sequences to perform the I/O functions.

BRM CLOSE

15
8

cells plus constants and storage cells.

WMTB

6-18

X!CIS Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION

IDENTIFICATION: RECON

900 Ser i es: 850086
850088

Cata log No. 9300: 860083

PURPOSE: To initialize parameters for reading the encoded input file.

ACTION: RECON initializes the input buffer location, byte size, byte table

location, and related parameters for interpreting the encoded text fi Ie,

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

Xl.

RECON is a closed routine assembled as part of CONCRD.

BRM RECON

378 cells plus constants and storage cells.

None

6-19

X!D!S Xerox Data Systems

XOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series= 850086

850088
Catalog No. 9300= 860083

IDENTIFICATION= GTC

PURPOSE: To get the next symbol ic character from the specified location.

ACTION: GTC extracts the next character from DWRD. If DWRD is empty as

determined by CNT, the next word is obtained from the location

address by BUF. If the buffer is empty (wh i ch is not possible when

obtaining characters from the dictionary) the next input record is

obtained by calling INPUT.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GTC is a closed routine assembled as part of CONCRD.

Number of characters in string, - 1 to CNT

word containing next character, left-adiusted in DWRD

location of word containing character to BUF

BRM GTC

on exit the character is in CHR and the A register. CNT, DWRD, and

BUF are reset to obtain the next character.

55
8

cells plus constants and storage cells.

INPUT

6-20

Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Cata log No. 9300: 860083

IDENTIFICATION: GTB

PURPOSE: To obtain the next byte of encoded input from the fi Ie on Xl.

ACTION: GTB extracts the next BSZ bits from BWRD. When BWRD becomes

empty, the next word is taken from the location given by BLOC.

When the buffer becomes empty, INPUT is called to obtain the next

encoded record. GTB steps the byte size when a zero byte is

encountered.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GTB is a closed routine assembled as part of CONCRD.

BRfv\ GTB

on exit SCW contains the byte table entry for the byte, BYT contains

the byte number, NBYT contains the negative of the byte number.

The contents of BCW are in the B register, the byte number is in the

A register, and the X register contains NSYT.

103
8

cells plus constants and storage cells.

INPUT

6-21

X!O!S Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Catalog No. 9300;

IDENTIFICATION: GCM

PURPOSE: To obtain comment characters from the encoded input file.

ACTION: GCM gets the next six bits of encoded information from the encoded

input fi Ie. BWRD contains the current encoded word addressed by

BLOC. BIT contains the number of bits BWRD which have been used.

INPUT is used to obtain the next encoded record when the input

buffer becomes empty.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUiREMENTS:

SUBROUTINES
USED:

GCM is closed routine assembled as part of CONCRD.

BRM GCM

50
8

cells plus constants and storage cells.

INPUT

6-22

860083

X!D!S Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850083
Catalog No. 9300: 860083

IDENTIFICATION: STC

PURPOSE: To store the character in the A register into the character position

indicated by SCHR in the word addressed by SLOC.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

STC positions the character in the A register to the character position

indicated by SCHR and adds the character to the word addressed by

SLOC. When the word becomes filled, SLOC is incremented and the

new location is cleared.

STC is a closed routine assembled as part of CONCRO.

character position to SCHR

word position to SLOC

character to A reg ister

BRM STC

23
8

cells plus constants and storage cells

None

6-23

XD15 Xerox Data Systems

XOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Se r i es: 850086

850088
Catalog No. 9300~ 860083

IDENTIFICATION: INPUT

PURPOSE: To read and checksum an encoded input record from Xl.

ACTION: INPUT reads a maximum40-word record from Xl into the encoded

input buffer CBFE and checksums the image.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

INPUT is a closed routine assembled as part of CaNCRO. INPUT

uses the standard META-SYMBOL calling sequence to call RMTB.

BRM INPUT

end of file exit

normal exit

478 cells plus constants, storage cells, and buffer.

RMTB

6-24

XIDIS Xerox Data Systems

XOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series~ 850086

850088
Cata log No. 9300: 860083

IDENTIFICATION: GETXC

PURPOSE: To process the concordance exception control records (INCLUDE,

EXCLUDE, and ~EOF).

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GETXC initializes the cells to locate the lists of exclusions or

inc I us ions, then tests to see if exceptions are to be processed. If

there are no exceptions, control returns to CONCRD; otherwise the

exceptions are processed and tables of symbols to be excluded and/or

included are bui It. GSYM is called to obtain the symbols on the

control card. The appearance of *ALL results in flags (NONE for an

EXCLUDE and ALL for an INCLUDE) being set, indicating a general

exception.

GETXC is a closed routine assembled as part of CONCRD. It is

origined in middle core to be overlaid by tables after it has been

executed.

BRM GETXC

1718 cells, all resuable, plus constants and storage cells.

GSYM TYPMSG

I/O routine associated with symbolic input.

6-25

X!Oi5 Xerox Data Systems _ I l

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Catalog No. 9300: 860083

IDENTIFICATION: GSC

PURPOSE: To get the next symbolic character of the exception control record.

ACTION: GSC extracts the next character from the symbolic input buffer and

steps the indicators to obtain the next character.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

GSC is a closed routine assembled as part of CONCRD. It is origined

in middle core to be overlaid by tables.

BRM GSC

end of I ine exit

normal exit

278 cells, all reusable, for table plus constants and storage cells.

None

6-26

XiC\S Xerox Data Systems

XOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850086

850088
Catalog No. 9300: 860083

IDENTIFICATION: GSYM

PURPOSE: To obtain the next symbol from the exception control record.

ACTIO N: GSYM ca lis GSC to obtai n characters from the contro I record.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQ UIREMENTS:

SUBROUTINES
USED:

Leading blanks are ignored. COMMA, blank, or end of record

te.rminate the symbol. STC is called to pack the characters into

core. The symbol size is set in SIZE.

GSYM is a closed routine assembled as part of CONCRD. It is

origined in middle core to be overlaid after the exception records

have been processed.

BRM GSYM

25
8

cells, all reusable, plus constants and storage cells.

STC GSC

6-27

I/O AND I/O INITIALIZATION ROUTINES

The input/output device routines used in CONCRD and their attendant initialization

routines are basically a subset of the routines found in MSCONTRL, ENCODER, and other

portions of META-SYMBOL.

Unit and channel assignment are taken from the Unit Assignment Table maintained by

MONARCH. To find unit assignments, the contents of cell 1, which is set by MONARCH,

is used as an index to the table location.

6-28

X!D!S Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Se r i es ~ 850087

850089
Cata log No. 9300: 860084

IDENTIFICATION: CON2

PURPOSE: To determine the space needed for each symbol to retain all reference

line numbers for the symbol, to read the concordance scratch tape X2,

to build the reference line number table in accordance with the space

allocation, to search the symbol table for the alphanumeric sequence in

which to print the concordance, and to edit and print the concordance

listing.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

CON2 calls the allocation routine ALLOC to determine wh ich symbols

are to be processed in this edit pass, and to allocate the storage

requirements for the reference I ine numbers associated with each symbol.

ST RNO is then ca lied to read the scratch tape X2 and to store the

reference and definition line numbers into blocks, each of which

contains all the line numbers associated with a given symbol. SRCH

is then called to fetch the lowest entry in the table and EDIT is

called to format and print the concordance listing for the symbol. When

each symbol is output, its symbol table entry is purged" When all

symbols have been output, control returns to MONARCH"

Communication between CONCRD and CON2, which are separate

core overlays, is maintained in locations between 200
8

and 300
8

.

The program CON2 has an absolute origin that starts at location 300
8

"

Control is transferred to CON2 by the tape loader when the program

has been loaded" Control returns to MONARCH when the concordance

listing has been completed"

6 -29

MEMORY
REQ UI REM E NT S:

SUBROUTINES
USED:

All available core storage.

REWW
INPRT
ALLOC

STLNO
SRCH
EDIT

900 Series: 850087, 850089
Catalog No. 9300: 860084

I/O routine to perform end-of-fi Ie action on the I isting output

(EFMT, HOME, or THOME).

6-30

XjDlS Xerox Data Systems

XOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850087

850089
Catalog No.9300: 860084

IDENTIFICATION: ALLOC

PURPOSE: To allocate the available memory to allow space for the references to

each symbol to be stored together in a single block of core. If space

is not available for all references, to determine the number of symbols

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

for which space is available. To set a parameter indicating which symbols

are to be included in this edit pass and allocate core accordingly.

ALLOC scans the symbol table established by CONCRD and determines

the space needed for reference line numbers for the concordance. If

the space needed is greater than that available, those symbols appearing

last in the collating sequence are dropped and a recount is made. This

process is repeated unti I a subset of the symbols that appear at the

beginning of the collating sequence has been selected and can be

processed with the available storage capacity. ALLOC then scans the

symbol table, and for each symbol which is to appear in this edit pass

sets a pointer to the first location for the symbol's reference line

number block. An initial entry is then made in the block, indicating

the location (relative) in which to store the line number containing

the next reference to the symbol. ALLOC exits when the linkages have

a II been set.

ALLOC sets a pointer to a table of masks. Any symbol that has an

absolute value larger than the indicated mask is excluded from this

edit pass. ALLOC is a closed routine assembled as part of CON2.

BRM ALLOC

6-31

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

900 Series: 850087, 850089
Catalog No. 9300; 860084

134
8

cells plus constants and storage cells.

None

6-32

X!D!S Xerox Data Systems

XOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850087

850089
Catalog No. 9300: 860084

IDENTIFICATION: STLNO

PURPOSE: To read the concordance scratch tape X2 and to establish the reference

line number table.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

STLNO reads the scratch tape X2 by calling the magnetic tape read

routine RMTB. The data is then processed and the reference and

definition line numbers for each symbol are stored in the space

allocated for them. When entering line numbers, only those symbols

which are less than the allocation mask are considered.

ST LNO uses the standard META-SYMBOL call sequence to call the

RMTB I/O routine. STLNO is a closed routine assembled as part of

CON2.

BRN\ STLNO

1428cells pi us constants and storage cells.

RMTB

6-33

X[C1S Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850087

850089
Catalog No. 9300: 860084

IDENTIFICATION: SRCH

PURPOSE: To obtain the lowest entry in the symbol table.

ACTION: SRCH is a modified linear search routine capable of comparing variable

length entries. When SRCH is entered, the origin of the symbol

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

table is entered in LAST and the previous contents of LAST are placed

in STRT as the location of the first symbol to consider. Symbols

following STRT are then compared to the symbol addressed by STRT

unti I an entry is found that precedes STRT in the collating sequence.

The contents of STRT are then moved to LAST and the location of the

lower entry is placed in STRT. When the end of the table is reached,

the routine exits with STRT pointing to the lowest entry.

SRCH is a closed routine assembled as part of CON2.

BRM SRCH

on exit STRT points to lowest symbol

1748 cells plus constants and storage cells.

None

6-34

X!D[S Xerox Data Systems

XOS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850087

850089
Catalog No. 9300: 860084

IDENTIFICATION: EDIT

PURPOSE: To format the line images for the concordance listing and to cause

the line to be written to the listing output media.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

EDIT extracts the symbol type from the symbol table entry and translates

this to a one- or two-character alphanumeric type flag. The defining

I ine number is converted to BCD code and inserted into the image. The

symbol is moved into the print buffer and padded with trailing blanks.

The reference line numbers are obta i ned, converted to BC D by ca II i ng

CNVRT, and inserted into the image by calling STRNO. When the

entire list of references has been processed, any partial line image is

output by calling the listing output routine, the buffer is set to blanks,

and an exit is made from EDIT.

EDIT is a closed routine assembled as part of CON2. The standard

META-SYMBOL call sequence is used to call the I isting output

routine.

location of symbol table entry to STRT

location of symbol to CFT

BRM EDIT

160
8

locations plus constants and storage cells.

CNVRT STRNO

I/O routine associated with listing output (PRNT, TYPWRT, WMTB).

6-35

Xerox Data Systems

XDS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Series: 850087

850088
Cata log No. 9300: 860084

IDENTIFICATION: STRNO

PURPOSE: To in$ert reference line number$ into the concordance pr'int image and

to cause the line image to be output whe'n filled.

ACTION:

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

STRNO places the reference line number contained in the A register

on entry into the next available position in the print image: if the

line image is complete, the listing output routine is called to write the

line and the buffer is cleared to blanks.

STRNO is a closed routine assembled as part of CON2.

line number to A register

BRM STRNO

43
8

cells plus constants and storage cells.

I/O routine for listing output (PRNT, TYPWRT, WMTB).

6-36

XIDIS Xerox Data Systems

XoS PROGRAM LIBRARY
PROGRAM DESCRIPTION 900 Seri es~ 850087

850089
Cata log No. 9300: 860084

IDENTIFICATION: CNVRT

PURPOSE: To convert binary line number to BCD with lead blanks.

ACTION: By successive division, CNVRT generates the BCD number from the

binary number contained in the A register on entry. The BCD result

is then edited and lead zeros are replaced by blanks. Results are

left in the A register.

PROGRAMMING
TECHNIQUES:

CALLING
SEQUENCE:

MEMORY
REQUIREMENTS:

SUBROUTINES
USED:

CNVRT is a closed routine assembled as part of CON2.

binary number to A register

BRM CNVRT

40 ce lis pi us constants and storage ce lis.
8

None

6-37

I/O ROUTINES AND INITIALIZATION ROUTINES

The input/output routines and attendant initialization routines used in CON2 are basically

the same as those used in MSCONTRL, PAS2, and other portions of MET A-SYMBOL. Unit

and channel assignments are taken from the Unit Assignment Table maintained by MONARCH.

6-38

900 and 9300 Series

SECTION 7

ITEM AND TABLE FORMATS USED BY THE CONCORDANCE PROGRAM

SYMBOL TABLE ENTRY FORMAT

control word

symbo I - from
1-4 words left-adjusted
with trailing zeros

where

[

o 2 - 5 6 - 19

D I HIT I W

D is a one-bit flag, 1 if symbol definition line number is unknown.

H is not used.

T is type code:

o - absolute

1 - relocatable

2 -list

3 - operation

4-external-absolute

5 - external-relocatable

6 - external-list

7 - externa I-operation

W is the number of halfwords of reference I ine numbers.

L is the number of characters in symbol.

20 - 23

I L

After the ALLOC routine has been executed, the control word is given the following format~

o - 1 2-5 6 - 19 20 - 23

T I A

where

H is the high 2 bits of the definition line number.

Tis type, as above.

A is the address of first word of reference I ine number block for th is symbol.

Lis I ength, as above.

7-1

900 and 9300 Series

If the first word of the symbol is zero, the symbol has been previously output to the

concordance listing.

REFERENCE LINE NUMBER BLOCK FORMAT

o 11 12

DEF

NO.

NO.
NO.

where

DEF is the low 12 bits of the definition line number.

SIZE is the number of words in the block.

23

SIZE

NO.

NO.

NO. are reference line numbers packed two per word unless the line number is

greater than 2
12

2, in which case the high 10 bits all contain l's and the line

number is in the low 14 bits.

RECORD FORMAT OF CONCORDANCE SCRATCH TAPE X2

The record size maximum is 40 words. Words have the following format:

o 1 2 8 9 23

D I A

where

L is the line number flag. If L = 1, the line number is A. If L is zero, A is the location

in the symbol table of a symbol entry.

D is the definition flag if L = 0 and D is not zero. The symbol at A was defined at the

last preceding I ine number. If L = 0 and D = 0 the symbol at A was referenced

at the last preceding I ine number.

BYTE TABLE FORMAT

During the concordance run, entries in the byte table are modified to reflect definitions of

concordance symbols. If a byte table entry is zero, the symbol represented by the entry is to

be excluded from the corcordance.

7-2

900 and 9300 Series

When a symbol is inserted into the concordance symbol table, the associate field (bits 9

to 23) of the byte table entry is modified to point to the new symbol location.

EXCLUDE AND INCLUDE TABLE FORMATS

symbo I - from 1 -4 words with
trailing zero characters

where

L is the symbol length in characters.

20 - 23

I L

7-3

Determine memory size,
I/O control cells, and
initialize I/O routines.
Rew i nd tapes.

GETXC

Process excepti ons.

RECON
Initialize cells to
process Xl fi Ie.

LINE
Proc ess lin es of text,
build symbol table,
general scratch file,
X2, rewind tapes.

LOADER

Load CON2.

CONCORDANCE OVERALL FLOW

Rewind system tape,
initialize I/O routines
for listing.

ALLOC
Allocate memory for
reference line numbers.

STLNO

Sui Id reference line
number table.

SRCH

Find lowest symbol.

normal

EDIT

Format and print line.

7-4

empty
table
exit

LISTING OF SUBROUTINES

Page Page
Subroutine Contained In Des Chart Subroutine Contained In Des Chart

~BORT MSCONTRL 3-12 3-32 EDS PAS1 3-214 3-273
AORG PAS1 3-188 3-151 PAS2 3-214 3-373

PAS2 3-188 3-353 EDTL PAS1 3-272
PAS2 3-320 3-371

BCD PAS1 3-202 3-364 EDTST PAS1 3-267
PAS2 3-202 3-364 PAS2 3-317 3-366

EDTV PAS1 3-272
CHAR ENCODER 3-52 3-82 PAS2 3-319 3-371
CLOSE MSCONTRL 3-8 3-34 EFC MSCONTRL 3-29 3-38
CNVRT PAS1 3-226 3-296 EFMT MSCONTRL 3-21 3-37

PAS2 3-226 3-399 EFPT MSCONTRL 3-17 3-33
PREA 3-132 3-147 END PAS1 3-199 3-260

CRD ENCODER 3-67 3-91 PAS2 3-313 3-361
CRDB ENCODER 3-68 3-92 EPRNT PAS1 3-219 3-276
CRDH ENCODER 3-69 3-92 PAS2 3-219 3-379

EQU PAS1 3-187 3-251
DEC ENCODER 3-45 3-77 PAS2 3-308 3-353
DED PAS1 3-220 3-277

PAS2 3-220 3-380 FETCH PREA 3-137 3-150
DELETE ENCODER 3-46 3-77 FLDC PAS1 3-272
DFLST PAS1 3-198 3-259 PAS2 3-324 3-373

PAS2 3-198 3-360 FLM PAS1 3-224 3-279
DO PAS1 3-193 3-255 PAS2 3-224 3-382

PAS2 3-193 3-356 FLN PAS1 3-223 3-279
DOAGN PAS1 3-194 3-256 PAS2 3-223 3-282

PAS2 3-194 3-357 FLUSH PAS1 3-216 3-275
DODEC P,A S 1 3-195 3-257 PAS2 3-216 3-376
DPDIV PAS: 3-227 3-295 FNRL PAS1 3-196 3-258

PAS2 3-227 3-398 PAS2 3-311 3-359
PREA 3-134 3-149 FORM PAS1 3-189 3-252

PAS2 3-189 3-354
EDC ENCODER 3-72 3-93 FRL PAS1 3-201 3-263

PAS1 3-213 3-273 PAS2 3-315 3-362
PAS2 3-213 3-373 FUNC PAS1 3-190 3-253

EDE PAS1 3-272 PAS2 3-309 3-355
PAS2 3-321 3-371

EDF PAS2 3-323 3-372 GBC PREA 3-123 none
EDIT PAS1 3-272 GBSL PAS1 3-237 3-294

PAS2 3-318 3-370 PAS2 3-237 3-397
EDL PAS2 3-320 3-372 GBW PRE A 3-128 3-145
EDR PAS2 3-322 3-372 GCW PAS1 3-181 3-249
EDS ENCODER 3-73 3-93 PAS2 3-181 3-351

A-l

Page Page
Subroutine Conta ined In Des Chart Subroutine Contained In Des Chart

GCW PREA 3-126 3-145 INRDT ENCODER 3-70 3-92
GEC PASl 3-183 3-250 INRPT ENCODER 3-64 3-91

PAS2 3-183 3-352 INTYP PAS2 3-334 3-378
GET PASl 3-236 3-294 IPL PAS1 3-177 3-247

PAS2 3-236 3-397 PAS2 3-177 3-349
S4B 3-105 3-113 ITMOV SRNK 3-162 3-166

GIT PAS1 3-230 3-287
PAS2 3-339 3-390 LBTST PAS1 3-184 3-249

GLOP PASl 3-239 3-278 PAS2 3-184 3-351
PAS2 3-239 3-381 LNCT PAS2 3-332 3-378

GLOV PASl 3-221 3-278
PAS2 3-221 3-381 M3WAI PASl 3-222 3-278

GNC PASl 3-235 3-293 MBYT PASl 3-178 3-248
PAS2 3-235 3-396 PAS2 3-306 3-350

GPDC PREA 3-135 3-150 MFOI PASl 3-277
GTB PASl 3-182 3-250 PAS2 3-335 3-380

PAS2 3-182 3-352 MIFT PASl 3-238 3-279
PREA 3-127 3-145 PAS2 3-238 3-382

GTCHR PREA 3-133 3-149 MOVE PASl 3-206 3-266
GTCR SRNK 3-160 3-165 PREA 3-125 3-144
GTLBL FNSH 3-208 3-402 S4B 3-103 3-113

PASl 3-208 3-268 SRNK 3-125 3-144
PAS2 3-208 3-402 MRKBYT PREA 3-131 3-147

GTUNT MSCONTRL 3-30 3-38 MVITM SRNK 3-158 3-165
MVPRC PAS1 3-206 3-266

HOME PAS1 3-272 PREA 3-125 3-144
PAS2 3-328 3-374 MVTAB ENCODER 3-61 3-90

IAVJ Iv\SCONTRL 3-27 3-38 NAME PASl 3-205 3-265
IN ENCODER 3-59 3-88 PAS2 3-309 3-355
INC ENCODER 3-54 3-83 S4B 3-101 3-112

PAS1 3-180 3-249 NSRT ENCODER 3-57 3-86
PAS2 3-180 3-351 PASl 3-210 3-270
PREA 3-130 3-146 PAS2 3-210 3-368

INCRD ENCODER 3-66 3-91 NUM S4B 3-100 3-109
INEFC MSCONTRL 3-28 3-38
INEFPT MSCONTRL 3-16 3-33 OCTC S4B 3-99 3-109
INIT ENCODER 3-48 3-78 OPEN MSCONTRL 3-6 3-33
INPCB MSCONTRL 3-23 3-37 ORG PAS1 3-188 3-251
INPCH MSCONTRL 3-25 3-38 PAS2 3-188 3-353
INPPT MSCONTRL 3-14 3-32 OUT ENCODER 3-60 3-88
INPUT MSCONTRL 3-10 3-34 OUTe ENCODER 3-55 3-83

A-2

Page Page

Subroutilll' COlltoilH'd III Des Chart SuL)I"olJ t i I'll' Contained In Des Chart

OUTP PAS1 3-215 3-274 RE LTS T PAS2 3-225 3-398
PAS2 3-215 3-375 RES PAS1 3-188 3-252

OUTPUT MSCONTRL 3-7 3-33 PAS2 3-188 ' 3-354
RESET ENCODER 3-62 3-90

PACK PREA 3-138 3-150 PAS1 3-217 3-275
PAGE PAS1 3-218 3-276 PAS2 3-217 3-376

PAS2 3-218 3-379 S4B 3-104 3-113
PARAMS S4B 3-102 3-112 REWW MSCONTRL 3-13 3-32
PBC MSCONTRL 3-24 3-38 RMTB MSCONTRL 3-22 3-37
PCB MSCONTRL 3-37 RMTBU MSCONTRL 3-18 3-35
PCH MSCONTRL 3-26 3-38
PEEK PAS1 3-234 3-293 SAM PAS1 3-203 3-264

PAS2 3-234 3-396 PAS2 3-309 3-355
PI (RDPD) PREA 3-136 3-150 SAMPLE SRNK 3-163 3-167

PLB PAS1 3-185 3-245 SCAN PAS1 3-228 3-280
PAS2 3-307 3-348 PAS2 3-337 3-383

PLINE PAS1 3-272 SCANC PAS 1 3-232 3-292

PAS2 3-327 3-374 PAS2 3-232 3-395

PLTST PAS1 3-186 3-246 SCRP PAS 1 3-212 3-271

POP PAS1 3-201 3-264 PAS2 3-212 3-369

PAS2 3-316 3-365 SKIP ENCODER 3-47 3-78

POPD PAS1 3-191 3-254 PAS 1 3-179 3-249

PAS2 3-310 3-355 PAS2 3-179 3-351

POPR PAS1 3-192 3-254 SMPTRN SRNK 3-159 3-166

PAS2 3-310 3-355 SRCH ENCODER 3-56 3-84

PPTB MSCONTRL 3-15 3-33 PAS 1 3-209 3-269

PRL PAS1 3-196 3-258 PAS2 3-209 3-367

PAS2 3-311 3-359 STCR SRNK 3-161 3-165

PRNT PAS1 3-272 STORE ENCODER 3-51 3-82

PAS2 3-325/326 3-374 SWITCH PAS 1 3-207 3-267

PROC PAS1 3-190 3-253 PAS2 3-207 3-366
PAS2 3-309 3-355

PTCH ENCODER 3-44 3-77 TBOUT ENCODER 3-63 3-90

PUT S4B 3-106 3-113 TENC S4B 3-98 3-108
TEX PREA 3-129 3-146

RCRD ENCODER 3-53 3-83 TEXT PAS 1 3-176 3-247

RDPI PAS1 3-278 PAS2 3-305 3-349
PAS2 3-336 3-381 TEXTR PAS 1 3-202 3-263

RDPT ENCODER 3-71 3-92 PAS2 3-202 3-364

RDTP PREA 3-139 3-150 THOME PAS2 3-333 3-378

READ MSCONTRL 3-11 3-35 TRACOR ENCODER 3-39 3-74
RELTST PAS1 3-225 3-295 TRAIL ENCODER 3-58 3-88

A-3

Page Page
Subroutine Contained In Des Chart Subroutine Contained In Des Chart

TRAIL PREA 3-58 3-154 VAL PREA 3-124 3-144
TRANS ENCODER 3-49 3-79
TYCC PAS2 3-331 3-378 WEOFL FNSH 3-343 3-402
TYPE PAS2 3-330 3-377 PAS 1 3-276
TYPWRT PAS 1 3-272 WMTB MSCONTRL 3-20 3-36

PAS2 3-329 3-377 WMTBU MSCONTRL 3-19 3-35
WRITE MSCONTRL 3-9 3-34

A-4

APPENDIX B

HOW TO MAKE A 900 META-SYMBOL SYSTEM

This appendix describes the aspects of the system that the user needs to know to generate a

working META-SYMBOL system, and in particular, emphasizes the pitfalls the user must

avoid if he wishes to modify META-SYMBOL successfully. For deeper understanding, the

reader should consult a set of META-SYMBOL listings and a system map of the MONARCH

tape. Although the 910 and 920 systems do not operate interchangeably, the listings are

identical; the difference lies in the use of POPS and method of creating system overlap

(910 = 910/925; 920 = 920/930 throughout the discussion). The discussion which follows

describes the generation of both 910 and 920 systems. (Note: Although the 9300 META

SYMBOL operates like 900 META-SYMBOL, its method of generation is so radically dif

ferent as to merit only this cursory note.)

The present MET A-SYMBOL Assembler has eight overlays. Because of space considerations,

only IIcommon ll I/O is resident (MSCONTRL); the I/O for LO to the printer, being used

only in PAS2, FINISH, and CON2, is written in-line in these passes. (The ramifications

of this may be seen in the present Unbuffered Printer Update Packages.) Of the eight

overlays, the first is loaded by the MONARCH Loader, and intercommunication between

the programs that make up this overlay is by external references and definitions. The last

seven overlays, on the other hand, are absolute decks with no external references or

definitions, since the small resident system overlay loader (TAPE LOADER) can load only

the restricted absolute, unblocked format. All intercommunication between overlays is

through absolute locations, assembled into the routines of each overlay as absolute EQU's.

Even through IIrelocatable ll decks are used in constructing absolute overlays, the whole system

is extremely sensitive to relocation of any segment or change in size and arrangement of tables.

THE ROUTINES OF META-SYMBOL

The routines of META-SYMBOL are listed below, numbered as individual assemblies and

identified by the overlay in which they are used. (The POPS are indicated only as separate

assemblies, although in essence they are included in each overlay. The procedure will be

explained later.)

8=1

1 . 920 POPS

2. 910 POPS

3. ENCODER

4. S4B

5. MON1 OVERLAY 1

6. TAPELOADER

7. MSCONTRL

8. PREASSEMBLER PART1 (Pl)] 9. PREASSEMBLE R PART2 (P2)
OVERLAY 2

10. SHRINK]

11 . ASSEMBLER PART1 (M 1)

12. ASSEM BLE R PART2 (M2)

13. ASSEMBLER PART3 (M3) OVERLAY 4

14. ASSEMBLER PART4 (M4)

15. ASSEMBLE R PART5 (M5)

16. PAS2] OVERLAY 5

17 • FINISH] OVERLAY 6

18. CONCORDANCE PART1 (CONCRD)] OVERLAY 7

19. CONCORDANCE PART2 (CON2)] OVERLAY 8

Assemblin"g the Routines of META-SYMBOL

Each routine may be assembled with META910 or META920, except for the 910 POPS, which

must be assembled with META 910, and the 920 PSEUDO POPS, which must be assembled

with META920. Each routine is preceded by PROCedures that define 920 instructions with

operation codes between octal 100 -117. This causes any 920 instruction to POPoneither910

or 920. For example, the OP code for CAB is 100, for SKR, 107. This is true for each

routine. These arbitrary POP codes are generated no matter whether the routine is assembled

with META910 or META920. Of course, the 910 POPS and 920 POPS should contain no

POPS themselves; I flags on any instructions in these routines, indicates they have been

incorrectly assembled.

B-2

Note that a Ithough POP codes are generated for 920 instructions and I flags occur on these

instructions, these codes are unique; nowhere is a POP reference/definition item generated

or used. For example, for SKR exp it is as though the op code 0107 were merged with the

value of expo The machinery in the PROCS preceding each routine that generates the I flag

without producing a POP reference item is worthy of the user's attention. Again, it is

important to note that POPS for 920 instructions are unique, forced, and exist in META910

and MET A920.

How POPS are used in the META-SYMBOL Assembler

As noted, a 920 instruction not in the 910 subset will POP on both 910 and 920 systems

through a unique POP transfer location in 100 - 117 that is identical for each routine and

for both 910 and 920 systems. Let us trace the execution of an ADM instruction first in the

920 system and then in the 910 system. If we looked at the ADM instruction in memory at

location L, it would be 0112 in both systems. On the 920, POP code 112 causes a transfer

to location 0112, which contains a BRM CHANGE, where CHANGE is located in the

relocatable section of the 920 PSEUDO POPS. The PSEUDO POPS then replaces the POP

instruction at location L with the actual 920 instruction for ADM, retaining the index,

indirect, and address characteristics, and executes the instruction. Thus, when a POP

instruction is encountered on the 920, it is replaced by the actual instruction. In loops con

taining a POP instruction, the POP occurs only the first time and "the instruction itself is

executed all other times in location L of that overlay. On a 910 system, the ADM instruc

tion at location L is a 0112. When the POP occurs, the instruction is simulated by the 910

POPS, and no modification takes place.

Note that both the 910 POPS and 920 PSEUDO POPS contain both AORGS and RORGS.

The AORGS define the absolute section 100 - 117 where the POP transfers are located. The

RORGS define the relocatable section of both packages, which will be located at different

points in memory for different overlays.

DTAB

In ENCODER and 910 POPS there is a cell labeled DTAB DATA N. It is AORGed at 01372.

This cell is extremely important, since it contains the address of the top of the longest

B-3

overlay in the META-SYMBOL system, and is used for the beginning of certain tables. At

present, since PAS2 is the longest, the value in DTAB would be calculated as the last

location in PAS2 plus the length of the relocatable section of the POPS being used in that

system. For example, if PAS2 ended at 013500, DTAB for 920 would contain 013500 + 048

(length of relocatable section of 920 PSEUDO POPS) 013548. We would probably set

DTAB to 013600 to allow a little leeway, depending on the tightness of the system. On

910, DTAB = 013500 + 0260 = 013760, or 014000 for safety. DTAB may be set too high,

but not too low. It must clear the top of PAS2+POPS. The DTAB value for 920 is assembled

into the DTAB cell in ENCODER, the 910 value is assembled in the DTAB cell in the 910

POPS. (Note: The 920 POPS contains no DT AB.) As description of the system continues,

the determination of DTAB value will also be more clearly seen (see also Figure B-1).

OVERLAY 1

The routines in OVERLAY 1 in the order of loading by the MONARCH loader are as

follows (A1 and A2 records are indicated also):

Al METASYM

A2 ENCODER

ENCODER (BIN)

910 POPS OR 920 PSEUDO POPS (BIN)

A2 MON1

S4B (BIN)

MON1 (BIN)

A2 MSCONTRL

TAPELOADER (BIN)

MSCONTRL (BIN)

ENCODER is ORGed at 01372. Although it is a relocatable program,. it is loaded at 0 and

its ORG effectively absolutely positions it at 01372. Note that its references to MSCONTRL

and TAPELOADER are absolute through EQU's. These must be changed in all overlays if

change is necessary. The last definition in ENCODER is ZTABLES EQU $+01640. This value

of ZTABLE can be changed only with discretion. ENCODER is the routine that reads in

8-4

Symbolic/Encoded cards, builds a dictionary in core, merges corrections where necessary,

and outputs an encoded bit string to tape Xl. ENCODER contains the 920 value for DTAB.

910/920 POPS

The 910 POPS or 920 PSEUDO POPS are loaded so that the transfer vector has an AORG

0100 and the relocatable section is located above ENCODER. These function thus for the

first overlay only and are repositioned for succeeding overlays. If the 910 POPS are loaded,

a new 910 value for DTAB (AORG 1372) overlays the 920 value loaded in ENCODER. If

920 POPS are loaded, the initial 920 value in DTAB is unchanged.

S4B

S4B (RORG 0) is relocated above the POPS. If the C option is called, it translates from old

Symbol 4 code to Modern META-SYMBOL code; it translates such items as VFD to FORM,

etc. The actua I translation is done during encoding and the ENCODED or Source Output

(including LO) contains the translation into META-SYMBOL language.

MON1

MON1 is a relocatable routine with RORG 0, loaded just above S4B. It is the I/O initiali

zation section of META-SYMBOL. By querying the MONARCH Unit Assignment Table and

MSFNC (0273 in MSCONTRL, the cell that the MONARCH Action routine initialized with

parameters on the META control card), it initializes the unit and channel numbers in all

resident I/O in MSCONTRL. After initialization, MONl is overlaid by Encoder tables.

TAPE LOADER

The TAPE LOADE R (AORG 2) is a short loader used to load overlays from the systems tape.

It reads only absolute subset of the 900 Standard Binary Format, unblocked records only; it

can search the system tape for ~2 labels.

MSCONTRL

MSCONTRL (AORG 0200) contains the resident I/O information. It is responsible for all

input/output except the printing to the line printer or typewriter done by PAS2 or

8-5

Concordance (CON2) when listing. If PAS2 puts I isting out to magnetic tape for instance,

the magnetic tape routine in MSCONTRL is used. MSCONTRL also contains the ABORT

logic for typing out the META-SYMBOL ABORT message and returning to MONARCH.

MSCONTRL, which is the last program of OVERLAY 1 to be loaded, contains an end

transfer to ENCODE, a cell containing a BRU to TRACOR, the entry point of ENCODER.

Thus E NCO DER is the first program to be executed after the loading of the first overlay.

OVERLAY 2

PREASSEMBLER PART 1 is a relocatable program with an origin of octal 1403. Loading this

at 0 effectively positions this overlay absolutely in the correct place. Looking down to

approximately line 167 of the listing of PREASSEMBLER PART 1, we find an ORG 01540

followed by some EOMls and SKSls. If we follow the octal addressing, we note that this

section effectively overlays the preceding reserve area. In addition, around line 348,

just preceding the label PREASSEM, there is another ORG at PIE RT + 2. This is the

initialization section of PREASSEMBLER, and is overlaid later by quantities placed into the

reserve section defined at the beginning of the program. Further on, at about line 416,

there is another ORG at CHNG1+2 following the comment "END OF INITIALIZATION

CODE". This is the actual operating portion of the PREASSEMBLER. Note that the lowest

portion in memory where meaningful coding exists is octal 1540, where those EOM IS and

SKSI S are established. The relocatable section of the POPS will be loaded between P1 and

P2. The second portion of the PREASSEMBLER is RORGed at O. It is also relocatable and

is loaded after PREASSEMBLER PART 1 and the POPS. Note that PREASSEMBLER PART 2 has

as its last cell the label $LLITX and the unique literal 01234567. It uses this to find the end

of its own string of literals and thus begin its tables.

Procedures

Since the PROCS go on the tape just as they come in ENCODED form, it is not necessary to

alter them. However, there is a machine definition card that must precede every PROC

deck on the system tape. The description of this card is contained in the SYMBOL and MET A

SYMBOL Reference Manual, under the heading !!System Procedures!!. The PREASSEMBLER

B-6

searches the tape for the ~ 2 lobe I of the proper set of P ROC S, loads it into memory, and

builds all the symbol tables accordingly as it makes its first pass through the byte string on

Xl.

OVERLAY 3

The next program is SHRINK, AORG at octal 4000. It has external references to many

labels in PREASSEMBLER PARTS 1 and 2, and overlays only a portion of part 2 (i .e., the

portion from octal 4000 to the end of SHRINK). Note that the second to the last label in

SHRINK is called PSMPLC EQU $+0100. This effectively allows room for the literals and

gives SHRINK some working storage. The purpose of SHRINK is to purge unwanted proce

dures from the procedure sample table so that more table space can be allowed for the rest

of the assembly.

OVERLAY 4

M 1 through M5 are the portions of the first pass of the Assembler. This pass was spl it

into portions only because it could not be assembled in 8K as a single overlay. Note that

M1 is RORGed at octal 1407. Although it is a relocatable program, loading it at 0

effectively places it correctly in memory. M2 through M5 have RORGS of 0 and are located

consecutively following M 1. The loading of these five programs, plus the POPS, constitutes

the whole of ASSEMBLER PART 1.

OVERLAY 5

PAS2 is an absolutely origined program (AORG 01407). It is put on the tape just as it comes

from the assembly, with definition cards removed. The definition cards from PAS2 are used

to satisfy the external references in FINISH, the next overlay.

OVERLAY 6

FINISH is an absolutely origined overlay with an AORG of octal 4700. It overlays a

portion of PAS2 and makes references to routi nes in P AS2.

B-7

OVERLAYS 7 AND 8

CONCORDANCE PARTS 1 and 2 are both assembled absolute and they go on the system tape

exactly as they come from the assembly.

This concludes one rough run over the META-SYMBOL decks. If he wishes, the user can

familiarize himself with the system by going through and marking all cells that are absolute,

by noting all the intercommunication that is done by absolute cells, Old by mapping the origins

of each overlay.

CONSTRUCTION OF THE OVERLAYS

This section describes both how the overlays are to be formed in memory, and the absolute

overlay created for the META-SYMBOL tape. A following section will describe the actual

System Make procedure in more detail.

Overlay 1

Overlay 1 consists of the binary decks as they come from assembly in the following order:

6.1 META SYM

6.2 ENCODER

(Binary deck of ENCODER)

(Binary deck of 910 or 920 POPS)

6.2 MON1

(Binary deck of S4B)

(Binary deck of MON1)

6.2 MSCONTRL

(Binary deck of TAPE LOADER)

(Binary deck of MSCONTRL)

These routines make up the first overlay. When a META-SYMBOL card is encountered by

the MONARCH System, it goes to the META-SYMBOL action routine that searches the

system tape for the 6.1 MET ASYM label. Ignoring 6.2's, it loads decks up to the end transfer,

which is on MSCONTRL. Before this, the cell MSFNC is initialized by the action routine

B-8

according to the parameters on the META-SYMBOL card. ENCODER is loaded by the

MONARCH loader at 0 and its ORG of octal 1372 positions it in memory. The POPS, which

have a relocatable origin of 0 and an absolute origin of 0100; S4B, which has a relocatable

origin of 0; followed by MON1, which has a relocatable origin of 0, are then loaded,

following ENCODER. This completes the relocatable section of the first overlay. TAPE

LOADER is then loaded, starting at absolute origin of octal 2. Finally MSCONTRL is

loaded, with an absolute origin of octal 200. All references and definitions are satisfied

by MONARCH loader and control is transferred to the end transfer location of MSCONTRL,

initiating the META-SYMBOL system. From here on, the MONARCH system is not used;

the MET A-SYMBO L TAPE LOADER takes care of loading a II overlays necessary for the

execution of the META-SYMBOL assembly. Control is returned to MONARCH only on

completion of the assembly and/or CONCORDANCE or in an ABORT situation. The first

overlay is the only one on the system tape that contains external references and definitions.

It is also the only overlay loaded by the MONARCH loader.

Overlay 2

Overlay 2 consists of PREASSEMBLER PART 1 (Pl), the POPS (910 or 920), and P2. It is

formed by loading PREASSEMBLER PART 1, the suitable POPS, and PREASSEMBLER PART 2

into memory with the MONARCH loader and dumping out in absolute version 100 to 117,

whi ch contain the POP transfer locations, and octa I 1540 through the top PART 2 of

PREASSEMBLER. Generally, in making the absolute decks, reserve locations are not to be

dumped; only meaningful data is output. The reserves are often used as intercommunication

between two different overlays; by dumping them in making the absolute decks we may over

lay some meaningful data meant to be left in memory between overlays. Therefore, although

PREASSEMBLER PART 1 is ORGed at 01403, only from 01540, the first meaningful data, is

dumped.

Overlay 3

The third overlay, SHRINK, is formed by loading Pl, POPS, and P2, along with the

SHRINK deck, to satisfy all references and definitions, and then dumping from the

beginning (octal 4015) to the end of SHRINK.

B-9

Overlay 4

The fourth overlay, ASSEMBLER is formed by loading the POPS into memory at a position

where they are not overlaid by PAS2 and yet lie under the value of DTAB. After the

MONARCH loader has been used to load the POPS, and M 1 through M5, then the portion

0100 to 0117 is dumped absolutely and the portion from 01705, which is the first meaningful

data ce II of ASSEM BlE R PART 1, through the top of POPS is dumped. Th is forms the

ASSEMBLER overlay.

Overlay 5

PAS2 is formed by stripping the definition cards from the front of the binary deck as it came

from the assembly and using this absolute deck as the overlay. Note that when the deck is

read into CORE, it uses the POPS left there by PAS1. Remember that DTAB was calculated

so that if the POPS were loaded directly beneath DT AB, PAS2 could load in without over

laying the POPS. Therefore, the binary deck for PAS2 is used as it comes from the

assembly but without definition cards.

Overlay 6

FINISH overlays a portion of PAS2; it makes references to labels and subroutines in PAS2.

Note that it is an absolutely origined deck. To form the FINISH overlay, the definitions

from PAS2 are attached to the FINISH binary deck which is loaded into memory, and the

portion from the beg inning (04700) to the end of FINISH is punched out.

Overlays 7 and 8

The overlays for CONCORDANCE PARTS 1 and 2 are put on the system tape exactly as

they come from th e assemb I y •

ACTUALLY MAKING THE SYSTEM

Assume that the user is at a machine with a card punch, a set of binary decks, a

MONARCH System, and a copy of Program Catalog Number 850643, Binary Dump to Paper

Tape or Cards. The user then loads this into memory with the MONARCH loader at DTAB or

B-10

above, but where it does not conflict with the MONARCH loader tables. It remains

resident in memory during. the making of all overlays. Note the entry location for this

dump routine. Also note that for the punching of cards, break points 3 and 4 must be set;

otherwise, a tape with bootstrap is punched.

Overlay 2 PREASSEMBLER

First, boot the MONARCH system. Using the ~LOAD STOP commands, load PREASSEMBLER

PAS1 at 0, load the 910 or 920 POPS, and load PREASSEMBLER PART 2. Note that the

loader stops after the loading of each of these decks. After PART 2 has been loaded, the

C register contains the transfer address and the B register contains the last location plus 1.

Next, transfer to the dump program. Dump location 100 through 117 with no transfer

address (i .e., set X = 0). Now dump location 1540 through the top of PART 2 with the

transfer address in the X register. The deck punched out is now the absolute deck for

PREASSEMBLER. This is preceded by a 6.2 PREASSEM card in the system deck. The PROC

decks follow, with their ~2 cards and the machine identification card discussed earlier.

Overlay 3 SHRINK

To form the SHRINK overlay, first set up a binary deck as follows: P1, POPS, P2 with its

end card removed, and the SHRINK deck. This effectively loads SHRINK as though it were

part of P2. If the end transfer were left on PART 2, the SHRINK deck cou Id not be loaded.

Next, boot MONARCH in. Using the ~LOAD STOP function, and a bias of 0, load Pl,

POPS, and then the third deck, consisting of P2 plus SHRINK. Note the ending location

and transfer address of SHRINK. Then, using the punch program, punch from the beginning

of meaningful data in SHRINK, 04015, through the end of SHRINK, with transfer address

in the X register. It is not necessary to punch out the POPS at this time as they will be left

there from the PREASSEMBLER overlay. SHRINK does not overlay the POPS. This constitutes

the SHRINK overlay deck for the system and is now put in the system deck with a A2 SHRINK

card preceding it.

B- i i

Overlay 4 ASSEMBLER

Assuming that the calculation for DTAB has been done, the user must now calculate a bias

for the POPS, approximately 42 or 260 octal locations below DT AB, depending on which

POP system he is using. If the MONARCH loader with the stop function is being used,

load the POPS at this bias. When the loader stops, reset the bias in the A register to 0 and

load overlays M 1 through M5. Because of the ORG on M 1, M 1 through M5 will be

located correctly in memory. After having loaded the POPS in at its bias below DT AB,

and loaded M 1 through M5, punch out locations 100 through 117 for the POPS transfer

locations, and 1705 through the top of the POPS with an end transfer as determined from the

values in the C and B registers. The user will now have an absolute deck consisting of 100 to

117 and 1705 through the top of the POPS with an end transfer. This constitutes the

absolute overlay of the ASSEMBLER.

Overlay 5 PAS2

To form overlay 5, PAS2, strip the DEF cards (type 1) from the front of the binary deck,

that came from the assembly, and use the remaining deck as the absolute overlay. Look at

the listings, being careful to determine that the last location on PAS2 lies below the current

bias for the POPS. When that check is made, the deck is ready to go on the system.

Overlay 6 FINISH

To make the FINISH overlay, put the DEF cards from PAS2 onto the front of the FINISH

binary deck. Load the deck with the MONARCH loader into 0, STOP. Its absolute origin

biases it correctly. After loading, determine the final location in B and the transfer

location from C. Punch from the beginning (04705) through the end of FINISH, with the

transfer address. Do not punch the POP locations or any of PAS2, since these will still be

in CORE from the previous overlay at execution time. Th is absol ute deck is now the overlay

for FINISH.

Overlays 7 and 8 CONCORD and CON2

The CONCORDANCE PARTS 1 and 2 overlays are the binary decks from, the assembly.

B-12

These constitute the overlays for MET A-SYMBOL for MONARCH tape. Make sure that every

overlay is preceded with the proper ~2 label card. Note that it is possible to remake a

single overlay and to replace it by using the UPDATE procedure on the MONARCH tape.

However, take care that such things as the values of DT AB and the linkages with the POPS

for that overlay are properly taken care of. Table B1 describes the final overlay deck

structure for system update.

REVIEW

A final review follows of the making of overlays to indicate the exact nature of the decks

used to update the META-SYMBOL processor on the MONARCH tape.

Following the ~1 METASYM 10 card is the A2 ENCODER ID, the binary decks for

ENCODER and 910 or 920 POPS, a 2 MON1 10, the S4B and MON1 binary decks, a A2

MSCONTRL 10, and binary decks of TAPELOADER and MSCONTRL. This constitutes

OVERLAY 1 and is loaded by the MONARCH loader upon encountering a AMETA control

card. Overlay 2 is preceded by a A2 PREASSEM 10. The absolute overlay was formed by

loading P1, the POPS, and P2, and dumping 0100 - 117 and 01540 to top of P2 with an end

transfer into P2. It is (] single absolute deck.

The six procedure decks follow, each one an encoded deck preceded by a A2 PROCXXXX

10 and a machine identification card. Overlay 3 is preceded by a A2 SHRINK 10. The

absolute deck is formed by loading P1, POPS, P2 (without end card), and SHRINK binary

deck, and dumping 04015 (beginning of SHRINK) to the end of SHRINK, with transfer

address. It is a single absolute deck. Overlay 4 is preceded by an A2 ASSEMBLER 10.

The absolute deck is formed by calculating DTAB, loading the POPS at a bias below DT AB,

resetting the bias to zero, loading M 1 - M5, and dumping 0100 - 117 and 01705 to the top

of the POPS, with end transfer into M5. It is a single absolute deck. Overlay 5 is preceded

by a A2 PAS2 10. It is a single absolute deck from the assembly with the definition cards

removed (type 1). Overlay 6 is preceded by a A2 FINISH 10. The absolute overlay is

formed by putting the definition cards from PAS2 on the front of the FINISH deck, loading

it at 0, and dumping from the beginning (04700) to the top of FINISH, with end transfer.

B-13

It is a single absolute deck. Overlay 7 is preceded by 0.62 CaNCRO 10. It is formed by

using the binary deck direct from assembly. Overlay 8 is preceded by a.62 CON2 10. It

is formed by using the binary deck direct from assembly.

This completes the description of ABS overlays for the creation of the META-SYMBOL tape.

The only difference, then, between the 910 and the 920 topes is the POPS that are used.

The size of the POPS makes the size of the overlays differ and makes the value for DTAB

differ for the two systems. Only a 910 system with a 910 POPS will run on a 910/925.

Only a system containing 920 PSEUDO POPS will run on the 920/930. Although the

MONARCH system tapes run interchangeably on both systems, processors do not.

During the creation of the system a careful map of loading and dumping should be kept in

case the system does not function correctly. Remember that reserve locations at the begin-

n ing of the overlays are not punched out. A Iso, the I isti ngs must be studied carefully to

determine that useful information is not neglected. For instance, remember the situation of

the PREASSEMBLER where the origins are reset in the body of PART 1 of the PREASSEMBLER.

Assemblies to create the binary decks may be done with either Meta 910 or 920, since any

instructions not in the 910 subset are automatically forced to POP by the procedure definition

at the beginning of the deck (except 910,1920 POPS). If a reassembly is done, check that

the POP operation codes on the listing correspond with the actual transfers in the pops.

None of the overlays uses the pop machinery of the MONARCH loader. All POP operation

codes must be generated absolutely at assembly time, or the system wi II not function.

The complete discussion here has been oriented to creating a system using card input and

output. It seems that this could be done equivalently on paper tape, with two exceptions.

In the making of the SHRINK overlay, the end card was removed from P2 to orient properly

the loading of the SHRINK overlay with P1, POPS, and P2, so that definitions and references

could be satisfied. Also, PAS2 defin itions were used on the FINISH deck. On paper tape

this might be difficult, although possible.

CONCLUSION

Hopefully, by using this discussion, the information in the SYMBOL and META-SYMBOL

Reference Manual and the META-SYMBOL Technical Manual (Section 5, "Operational

B-14

Information"), the user may successfully create his own META-SYMBOL system. It is

suggested that the user try to recreate an existing system before trying any modifications.

B-i5

META-SYMBOL DICTIONARY AND TABLES

r-______ ~------~--------~~~~~~------~--------+_------_+------~DTAB

~~~ __ ~~~~~ ________ ~~~~~ ______ ~ ________ ~ ______ ~ ______ ~o 
1 2 3 4 5 6 

ENCODER, PREASSEM SHRINK ASSEMBLER PAS2 FINISH 
etc. 

7 
CONCRD 

FIGURE B-1. META-SYMBOL OVERLAY STRUCTURES 

8 
CON2 



Table B-1. The META-SYMBOL Update Package 

~1 METASYM 

~2 ENCODER 

ENCODER BINARY (as assembled) 

910 or 920 POPS BINARY (as assembled) 

~2 MON1 

S4B BINARY (as assembled) 

MON 1 BINARY (as assembled) 

~2 MSCONTRL 

TAPE LOADER BINARY (as assembled) 

MSCONTRL BINARY (as assembled) 

~2 PREASSEM 

PREASSEM ABSOLUTE (P1 +POPS+P2) 
(loaded and dumped) 

~2 PROC910 

910 PROC (as assembled + machine identification card) 

etc. 

~2 PROCB93H 

9300 BUSINESS PROCS 

~2 SHRINK 

SHRINK ABSOLUTE (P1+POPS+P2+SHRINK loaded - SHRINK dumped) 

~2 ASSEMBLE R 

ASSEMBER ABSOLUTE (M 1 - M5+POPS, POPS biased below DTAB) 
(loaded and dumped) 

~2 PAS2 

PAS2 BINARY (as assembled, less definition cards [type 1]) 

~2 FINISH 

FINISH ABSOLUTE (FINISH+PAS2 DEFS) 
(loaded and FINISH dumped) 



.62 CONCRD 

CONCORDANCE PTl BINARY (as assembled) 

L\2 CON2 

CONCORDANCE PT2 BINARY (as assembled) 

8-18 



APPENDIX C 

META-SYMBOL ENCODED I/O FORMAT - 900 or 9300 SERIES 

An encoded program is an almost exact, but less voluminous, representation of original source 

code. The principle of its organization is relatively simple. The entire source program is 

broken down into a set of unique sequences of characters (called character strings) and a 

table of these unique character strings, called the dictionary, is established. The actual 

program is then represented to the dictionary by an ordered set of references called the text. 

Source code is obtained by replacing each dictionary reference with the character string to 

which it points. 

Embedded in the text are punctuation flags which indicate such conditions as end-of-line, 

end-of-fi Ie, and length-of-comment. Also embedded in the text are the actual comments 

that appear in the source code. Comment fields are excl uded from the character string 

defin ition and di ctionary formation process. 

Example 1. Organization of an Encoded Program 

The organization of an encoded program may be illustrated by the following two lines 
of code: 

LABEL/\!\ LOA/\!\ 076,\/\/\ COMMENTS,\ HERE· 

/\/\/\/\/\ END 

These two lines may be represented by a text with the following dictionary: 

Dictionary 

Reference Number Character String 

1 LABEL 
2 /\/\ 

3 LDA 
4 076 
5 /\/\/\ 

6 /\/\/\/\/\ 

7 END 

Text 13 characters 

~ 2 4 51END OF LINE FLAG 113 (LENGTH OF COMMENT)I COMME~TS" HERE' 

C-i 



beginning of next line 

(; 7 I END OF LINE FLAG 10 (LENGTH OF COMMENT) I END OF FILE I 
The text is read by replacing its reference numbers, one at a time, with the character 
strings to wh ich they correspond. Note that dupl icate items (111\1\11 in our example appear 
only once in the dictionary. 

DETAILED DESCRIPTION 

Dictionary 

The dictionary is a table of unique source character strings. Source code is divided into 

character stri ngs in the followi ng way: 

A I ine of source code is moved, one character at a time, into a character string accumulator. 
-

The type (blank, special, numeric, or alphanumeric) of the first character is determined, 

then the type of each subsequent character is compared with that of the first before it is 

placed in the accumulator. If an unequal compare is made, the new character becomes the 

first of the next string and the string being accumulated is terminated. The treatment of 

alphanumeric characters is an exception. Alphabetic and numeric characters are treated as 

the same type during character string accumulation. However, an alpha !!switch!! is set 

whenever an alphabetic character is accumulated. When the string is terminated, this 

switch is tested. If it is on, the string is alphanumeric, if off, numeric. A character string 

is arbitrarily terminated when it contains 15 characters. 

Each entry in the dictionary specifies four items of information: 

1 . Number of characters in the stri ng 

2. Type of character stri ng 

3. The character string itself 

4. Byte number (position of entry in the table; initialized at three). 

The dictionary is in a packed format. Only its first entry is guaranteed to start at a word 

boundary. Each entry comprises from 12 to 96 bits. The entry format is as follows: 

C-2 



bit 1 4 5 6 7 12 13 1 8 19 90 91 96 

L I T lIst char·12nd char·1 < < I 15th char. I 
where: 

L is the number of characters in the string (1 ~ L ~ 15) 

T is the type of character stri ng: 

o - blank 

1 - special 

2 - numeric 

3 - alphanumeric 

Each entry is just long enough to contain L, T, and exactly L characters. If T = 0, the 

character string is interpreted as a binary count of the number of spaces (internal 160's") 

represented by the entry, in which case a "one-character" string may represent as many as 

077 spaces. 

"Byte number" is not explicitly entered. It is inferred from the position of the entry in the 

dictionary. The byte numbers 0, 1, and 2 are reserved as punctuation. Byte number 3 is 

associated with the fi~t dictionary entry, byte number 4 with the second, and so on. 

Example 2. Dictionary 

Suppose the first four character strings in the dictionary are LABE L, /\/\, LDA, and 076. 
The beginning of the dictionary would look like the following: 

Word 
Appearance 

1 2 
27432122 25430402 

......... ' y -I ... 

3 4 
17432421 16000706 " I---..,-.... ~ __ J 

These words would be interpreted in the following manner: 

It is known that the first entry starts on a word boundary. So, the first six bits (octal 27) 
are known to specify the first character string length and type. 

Octal 27 in binary is 010111; therefore, we have L = 0101
2 

= 5, and T = 112 = 3. This 
means that the next five characters (1010 octal digits or 3010 bits) are to be 
interpreted as an alphanumeric character string. Accordingly, we interrupt 4321222543 
to be the character stri ng LABE L. 

The next six bits are the length and type of the second dictionary entry. Octal 04 in 
binary is 000100; therefore, L = 1 and T == O. Note that T == o. Th is means that the 



next character (two octal digits or six bits) contains a count of the number of spaces 
represented by this entry. That next character is 02, and it is interpreted as the char
ac ter stri ng. 

The next six bits are the length and type of the third entry. Octal 17 in binary is 
001111; therefore, L = 3 and T -- 3, indicating a three-character alphanumeric string. 
The next three characters are LOA. 

For the last entry, L = 3, T = 2; therefore, the next three characters (or 18 bits) are 
interpreted as a three-character numeric string. We interpret 000706 to be the 
character string 076. 

Text 

Note: Statements made without explanation in this section will be better understood after 

study of the next section, which describes the dictionary-text generation algorithm. 

The text is an ordered set of byte numbers with embedded punctuation and comments. This 

data is in a highly packed format. 

The first item ('byte') of the text always points to the first entry in the dictionary. That 

is, the first byte always contains the byte number 3. The minimum number of bits required 

to contain the number 3 is hvo. Accordingly, the size of the first text byte is arbitrarily 

set at two bits, and the byte is said to have a byte size of two. 

The text (excluding comments) is written with a monotonically increasing byte size. For any 

given size, the first attempt to write a byte number too large for that size will always occur 

when the byte number is an integral power of 2 (i .e., 2
n
). Specifically, for a byte size of 

P bits, the first such attempt will occur on the byte number 2
P 

(e.g., if P = 4, the byte 

number will be 24 = 0208 = 100002). When this condition arises, a P-bit byte containing 

the byte number 0 is written. This is the last P-bit byte in the text. The next byte written 

wi II have P+ 1 bits. 

Oictionary-Text Generation Algorithm 

Consider the general case. 

1. A character string is defined. 

2. The di ct ionary is searched for the presence of that same character stri ng. 

C-4 



3. If that string is already present, its dictionary byte number is placed in a byte of 

the currently used size. Suppose that the current byte size is 7 and the char

acter string being considered already has a byte number of 5. The byte 0000101 

is then added to the text. Processing then returns to step 1 • 

4. If that string is not already present, it is entered into the dictionary along with 

its length and type code. The corresponding byte number is equal to 1 plus the 

highest previously used byte number (it occupies the next available dictionary 

position). This byte number is then used to define a byte of the currently used 

byte size. Suppose the current byte size is 5, and the byte number is 036, then 

the byte 11110 is added to the text. 

Consider the case in which a newly defined byte number is an integer power of 2 (i .e., 2n
). 

This will always be a number which is too large to be contained in a byte of the current 

size. Extending the illustration immediately above: 

Byte Size 

5 

5 

5 

What happens is the following: 

Octal Byte No. 

036 

037 

040(2
5

) 

Binary Byte No. 

11110 (five bits) 

11111 (five bits) 

100000 (six bits) 

Byte 

11110 

11111 

? 

1. A byte of the current size containing the value 0 is added to the text. 

2. The current byte size is incremented (BS + 1-BS). 

3. When later read back, an all-zero byte is interpreted as a byte number = 2
BS

• 

In our example, we defined a byte number of 040 when the current byte size was 5, 

so we added the byte 00000 to the text. When being read (later) the byte size 

is known (remember this is an ordered set of bytes) so our all-zero byte is inter

preted as 2
5 

= 040 and is also recognized as a signal that subsequent bytes have a 

length of six bits. Further, the six-bit zero byte 000000 implies the byte number 

2
6 

= 0100 and signals that subsequent bytes will be seven bits long. Note that if, 

at the time the current byte size is 010, a character string identical to that with 

byte number 040 (=2
5

) is encountered, the byte 00100000 is added to the text. 

C-5 



Punctuation and Comments 

Recall that the initial byte number was defined as 3. The byte numbers 0, 1, and 2 are 

reserved as special flags (or punctuation). The significance of the byte number 0 has 

already been discussed. The byte number 1 indicates end-of-line and will be more fully 

discussed. The byte number 2 is an end-of-fife flag. 

Source input is expected to be in a format wh ich is compatible with that described in the 

META-SYMBOL Reference Manual. If the third (operand) field is nonblank, it will be 

followed by a blank string whose termination signals an end-of-I ine condition. If the 

third field is blank, the termination of its character string indicates end of line. 

End of I ine is indicated in the text by a byte of the currently-being-written size which 

contains the byte number 01. If this condition arises while bytes are being written with a 

length of four bits, the byte 0001 is added to the text. If there is no comment present, the 

blank string that signaled the end-of-line condition will include the end of the source 

record. Such a blank string is not entered in the dictionary or referenced by the text. 

When the operand field contains a I ist that is continued on a subsequent physical record, 

the line containing that operand field is extended to include the entire list. The blank 

field that terminates the physical record of such a to-be-continued operand field is 

encoded through column 80, and its character string also includes any leading blqnks on 

the continuation record. In this situation, a single encoded line will represent more than 

one physical source record. 

The end-of-line byte is unconditionally followed by a six-bit count of the number of 

comment characters on that line. Th is count may be zero. If the count is not zero, it is 

immediately followed by the actual comment characters in XDS internal format. The 

comment characters (or the count if it is zero) are immediately followed by the first byte 

of the next I ine of code. 

Asterisk-comment (*) lines are treated like any other line, except that the end-of-line flag 

is added to the text just before the first nonblank comment character is processed. If there 

are no nonblank characters, the end-of-I ine flag immediately follows the byte that refer

ences the asterisk. 

C-6 



After the last line of source is encoded, an end-of-file flag is written. This flag is a byte 

of the currently-being-written size which contains the byte number 2. 

Additional Comments 

1 • Only the first 72 characters of each source record (card) are encoded (except in 

the case of a continued list). 

2. The first word of each encoded record is a control word in the following format: 

o 2 3 8 9 11 12 23 

I T I L I E == 7 I folded checksum I 
where= 

T is the record type: 

o - if part of program text 

1 - if part of program dictionary 

3 - if last record in fi Ie 

L is the number of words in the record, including the control word. 

E is always seven, which signifies an encoded record. 

3. An encoded file comprises a dictionary followed by its text. The dictionary is 

terminated with a zero length entry. The text is terminated by a byte with byte 

number 02. 

4. An encoded program is described as an "almost" exact representation of original 

source code because of the restriction on comment length. The maximum count 

that can be represented in six bits is on = 63
10

• This means that any comment 

character beyond the 63rd is truncated at the time the program is encoded. 

5. META-SYMBOL assembles with source code in encoded form. Therefore, 

comment 4 above appl ies to any program assembled by META-SYMBOL. 

6. The special character "delete-code" ( ), internal code 077, cannot be encoded 

properly by the META-SYMBOL routine ENCODER. According to the design of 

ENCODER, when an end-of-line condition is encountered, the internal code on 
is inserted into the next-character-to-be-processed save location. Its presence 

there subsequently cues end-of-I ine flagging and comment field addition to the 

C-7 



text. Internal 077 does not become an actual part of the source input; it is 

merely inserted into a temporary cell through which every character encoded 

passes. 

When the character "delete code" is actually present in the source program, one 

of two things happens. If it is used in a comment field, it is processed normally 

since comment fields are not encoded. If it is used anywhere else, it cues 

end-of-line processing. That is: 

a. The character string being accumulated is terminated. 

b. The appropriate dictionary and text entries are made. 

c. An end-of-line byte is added to the text. 

d. A comment count is output, followed by the actual comment. In this 

situation, the balance of the source I ine, from the "delete code" on, is 

treated as a comment. 

e. If an end-of-line condition arises while a blank string is being accumulated, 

it is assumed that the end of the source record has been reached and that the 

blank string represents trailing blanks on the source line. In this case, that 

string causes no entries into the dictionary or text. The balance of the line 

(including the "delete code") is, however, treated as a comment. 

During PAS2, any attempt by the subroutine GET to access a character from a 

given line, after the end-of-line flag has been detected, results in the default 

accessing of the character blank (060). For an example of th is situation, try 

using a "delete code" within the range of a TEXT directive. 

Conclusion 

The following example i "ustrates the foregoing discussion: 

Example 3. Encoding of Source Program 

Let us encode the following five I ine source program. 

1. AB6DN\AEQUI\IV\N\O1 2345/VVVVVVV\ ------------ /VV\ 

1 5 72 

C-8 



2. 

3. 

4. 

5. 

$ENTRYMI\NOB INSTRUCT ION,..L INE"C OMME NTIVV\-IVV\ 
1 5 72 

MIV\ LDA /\I\N\I\ A B6 D I\NVV\ N\/\ 

1 5 72 

*/\MASTERISK" LINE 1\ COMMENT IV\A • NII\ 
1 5 72 

N\/\ END 1\1\1\ E NT RY IV\I\M • NII\ 
1 5 72 

The first character string is AB6D; it is a four-character alphanumeric string. Its 
dictionary entry is 2321220624. The leading 23 indicates L = 0100

2 
= 4 and 

T = 112 = 3. It is the first entry in the dictionary, so it can be referenced by a 
byte number of 03. Accordingly, the text begins with a two-bit byte equal to 3 
(i.e., 11). 

The second string is IV\/\, a three-character blank field. Its dictionary entry is 
0403. The leading 04 indicates L = 0001,< T = O. The character 03 indicates 
three blanks. It is the second entry in the dictionary, and can be referenced by a 
byte number of 4. Accordingly, a two-bit byte (we are still in a two-bit-per-byte 
mode) indicating the byte number 04 is added to the text. In this case, two bits 
cannot contain the value 04, so an all-zero byte of two bits (i.e., 00) is added. 
The writing of an all-zero byte means that the next byte will be one bit longer. 

At this point, there are two entries each in the dictionary and text. They are: 

Dictionary -'23212206240'403 

Text (a bit string) - 1100 

The third character string is EQU, a three-character alphanumeric string. Its 
dictionary entry is 17255064. The leading 17 indicates L = 00112 = 3, T = 112 = 3. 
This is the third entry in the dictionary. It is referenced by the byte number 05. 
The last byte written in the text was a two-bit all-zero byte. Therefore, bytes are 
now to be written in a three-bit-per-byte mode. Accordingly, the byte 101 is 
added to the text. 

The fourth string is another set of blanks, IV\N\I\. Its dictionary string is 0405. 
The leading 04 indicates L = 1, T = O. Since T = 0, the 05 must specify a five
character sequence of blanks. The terminology in this situation may be confusing. 
The actual "character-string" is the single character with the internal represen
tation 05. Since this string is specified as type 0, the character 05 is understood 
to represent the set of characters IV\/\/\I\. This dictionary entry is associated with 
the byte number 06. Accordingly, the three-bit byte 110 is added to the text. 
The text now contains the bits 1100101110. 

C-9 



The next string is the six-character set 012345. A six-character numeric string 
impl ies L = 06 = 01102, T = 02 = 102. Therefore, the dictionary entry is 
32000102030405. This is the fifth dictionary entry, so it is referenced by byte 
number 07. The three-bit byte 111 is added to the text. The text now contains 
the bits 11 00 1 0 11 1 0 111 • 

The last string processed was the operand field; therefore, end-of-line processing 
begins. The blank string which immediately follows the operand field includes 
the end of the source record, so it is not included in the dictionary or text. The 
next byte added to the text is an end-of-line flag. Since we are currently writing 
bytes of three bits each, the end-of-line flag is the byte 001. This byte is 
immediately followed by a six-bit character count specifying the length of the 
comment on the source line. There is no comment on th is I ine, so the character 
count 000000 is added to the text. 

At this point, the dictionary and text are as follows: 

(Byte Number) (3) (4) (5) (6) (7) 
.. ~ ~~-"--.. ~ , 

Dictionary - 2321220624040317255064040532000102030405 
T ex t (b its tri ng) -1!.Q2.!Q! UQ UJ QQJ POOOOQ 

3 4 5 6 7 E OL comment length 

Encoding of the second source line now begins. The first string is the single 
special character "$". Its dictionary entry is 0553 (05 implies L = 1, T = 1). 
Its byte number is 010, so the appropriate three-bit byte is added to the text. 
The new text byte is 000; indicating a byte number equal to 23 and further 
indicating that the byte size is to be increased by one bit. 

The next string 'is the five-character alphanumeric (type 3) string ENTRY. Its 
dictionary entry is 272545635170 and its byte number is 011. The four-bit byte 
1001 is added to the text. 

The next string is a three-character blank field. Such a string is already in the 
dictionary (the second entry), so no additiona I entry is made. A four-b it byte 
(the current size) containing the byte number of that dictionary entry, 04, is 
therefore added to the text. That byte is 0100. 

The three-character alphanumeric string NOP is then entered into the dictionary 
as 17454647 (L = 3, T = 3). Its byte number, 012, is then added to the text in 
a four-bit byte, 1010. 

There is no operand field present, so end-of-line processing begins. The blank 
string which immediately follows the last string (the operation field) is 
term inated by a comment. This blank string is 027 characters long and is entered 
into the dictionary as 0427 (L -- 1, T 0). The byte number of the blank string, 

C-l0 



013, is added to the text as 1011. Then the four-bit end-of-line byte, 0001, is 
added to the text. Next, the six-bit comment character count is added. 
INSTRUCTION" LINEA COMMENT. has a length of 031, so the count 
011001 is used. Immediately following the count in the text is the actual 
031 character (0226 bit) comment in XDS internal format, unfortunately not 
constrained to respect standard character and word boundaries (i. e., a 
character may begin on any of the three bits of an octal digit). 

The th i rd I ine has four character stri ngs: 

Source 

IVVV\ 

LDA 
IVVVV\ 

AB6D 

Dictionary Entry 

0404 
17432421 

previously defined 
pre v i ous I y defi ned 

Byte Number 

014 
015 

06 
03 

Text Addition 

1100 
1101 
0110 
0011 

There are no comments, so the end-of-I ine byte 0001 and the character count 
000000 are added to the text, concluding the third line. 

The fourth line is an asterisk-comment line. These lines are encoded normally, 
except that end-of-I ine processing begins with the first nonblank character 
(if any) after the leading asterisk. 

This line has two character strings: 

Source 

* 

Dictionary Entry 

0554 
previously defined 

Byte Number 

016 
04 

Text Addition 

1110 
0100 

Then comes the end-of-I ine byte, 0001, followed by the comment length 
010110 (026) and the 0204 bit comment. 

The last I ine of code has four character strings: 

Source 

NV\ 

END 
NV\ 

ENTRY 

Dictionary Entry 

previously defined 
17254524 

previously defined 
previously defined 

Byte Number 

04 
017 

04 
011 

Text Addition 

0100 
1111 
0100 
1001 

These bytes are followed by the end-of-I ine byte 0001 and the comment length 
000000. 

C-i i 



The last record of a source input file is followed by a ~EOF record. This 
record cues i-he generation of an EOF byte. This byte is of the currently 
being written size (four bits) and contains the byte number 02 .. Our file is 
ended with the byte 0010. Our dictionary is terminated with the entry 
00 (L ~ 0, T=-O). 

A detailed dictionary and text for the program just encoded is given below. 

Dictionary 

(byte number) (03) (04) (05) (06) (07) (010) 

Actual Entry -'23212£206240403'17255064040532000102030405055'3 

(character (AB6D) (03
t
) (EQU) (05

t
) (012345) ($) 

string) (011) (012) (013}(014) (015) (016) (017) 

27254;635170~745~47~0404174;2421055.4172545245D 
(ENTRY) (NOP) (027t)(04t) (LOA) (*) (END) 

Text - See next page. 

t Number of characters in "blank string". 

C-12 



() 
I 

W 

Text - for Example 3, Encoding of Source Program 

o char. 031 char. 
Interpretation -- 0 304 0 5 0 6 0 7 EOl comment 0 1 0 () 1 1 04 0 1 2 0 1 3 EOL comment N 

Actual Bit String ---1 1 00 1 0 1 1 1 0 1 1 1 00 1 00000 0 0 0 0 1 0 0 1 0 1 00 1 0 1 0 1 0 1 1 000 1 0 1 1 00 1 0 1 1 0 0 1 1 00 1 0 1 
VVVVVVVVVVVVVVVVVVVVV 

Octal Appearance -- 6 2 7 3 4 4 0 0 2 2 4 5 2 6 1 3 1 3 1 4 5 

S T R u c T o N /\ l N E 

110010110011101001110100010011110011011001100110100101110000100011011001100101010101 
V V V V V V V V V V V V V V V V V V V V V V V V V V V V 
62635 1 642 3 6 3 3 1 4 6 456 0 4 3 3 1 452 5 

o char. 
c o M M E N T 014 015 06 o 3 EOl comment 0 1 6 

110000010011100110100100100100010101100101110011011011110011010] 100011000100000011 1 0 
vvvvvvVVVVVV~/VVVVVVVVVVVVVVV 
602 346 4 4 4 4 2 5 4 5 6 3 3 3 6 3 261 420 1 6 

026 char. 
04 EOl comment A s T E R s K l N --------- --- ~-----... ..----- ~-----, ~-------. .---------, ,.------, ,..-----, .------, ,.------, ,.----- ,..--------. ---------. 

01000001010110010001110010110011010101101001011001110010100010110000100011011001100101 
VVVVVVVVVVVVVVVVVvVVVVVVVVVV~ 
202 5 4 4 3 4 5 4 6 532 2 6 3 4 505 4 1 066 3 1 2 

o char. 
E c o M M E N T 04 0 1 7 04 0 1 1 EOl comr'"ent EOF 

..-------. ~------. -------.. ----.... ...--------. .--------.. ,..-------. ,------.. ~---. -------. --------- ...----, ---- ----.... -------.. 
010101110000010011100110100100100100011010110010111 00 11 0 11 0 11 0 1 00 1111 0 1 00 1 001000100000000100 
/VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV 
534047151110531346664751104004 



Xerox Corporation 
701 South Aviation Boulevard 
EI Segundo, California 90245 

XEROX 

Reader Comment Form 
We would appreciate your comments and suggestions for improving this publ ication. 

Publ ication No. I Rev. Letter I Tit Ie I Current Date 

How did you use this publication? Is the material presented effectively? 

o Learning o Installing 0 Sales o Fully Covered OWel1 o Well Organized o Clear Illustrated o Reference o Maintaining 0 Operating 

What is your overall rating of this publication? What is your occupation? 

0 Very Good 0 Fair o Very Poor 

o Good o Poor 

Your other comments may be entered here. Please be specific and give page, column, and line number references where 
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form. 

I I Your Name & Return Address 

I 

2190(12172) 

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if rrrailed in U.S.A.) 



Staple 

Fold 

Attn: Programming Publications 

Fold 

BUSINESS REPLY MAIL 
No postage stamp necessary if mailed in the United States 

Postage will be paid by 

Xerox Corporation 
701 South Aviation Boulevard 
EI Segundo, California 90245 

Staple 

First Class 
Permit No. 229 

EI Segundo, 
California 


	0000
	0001
	0002
	0003
	0004
	0005
	1-900-01
	1-900-02
	1-900-03
	1-900-04
	1-900-05
	1-9300-01
	1-9300-02
	1-9300-03
	2-900-01
	2-900-02
	2-900-03
	2-900-04
	2-900-05
	2-900-06
	2-900-07
	2-9300-01
	2-9300-02
	2-9300-03
	2-9300-04
	2-9300-05
	2-9300-06
	3-000
	3-001
	3-002A
	3-002B
	3-002
	3-003A
	3-003B
	3-004A
	3-004B
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032A
	3-032B
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038A
	3-038
	3-039A_900
	3-039B_900
	3-039C_900
	3-039D_900
	3-040A_9300
	3-040B_9300
	3-040C_9300
	3-040D_9300
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116A
	3-116B
	3-116
	3-117A_900
	3-117B_900
	3-117C_900
	3-117D_900
	3-117E_900
	3-117F_900
	3-118A_9300
	3-118B_9300
	3-118C_9300
	3-118D_9300
	3-118E_9300
	3-118F_9300
	3-122A
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140A
	3-140
	3-141
	3-142
	3-143
	3-144
	3-145
	3-146
	3-147
	3-148
	3-149
	3-150
	3-151
	3-152
	3-153
	3-154
	3-155
	3-156
	3-157
	3-158
	3-159
	3-160
	3-161
	3-162
	3-163
	3-164
	3-165
	3-166
	3-167A
	3-167
	3-169A_900
	3-169B_900
	3-169C_900
	3-170A_9300
	3-170B_9300
	3-170C_9300
	3-172
	3-173
	3-174
	3-175
	3-176
	3-177
	3-178
	3-179
	3-180
	3-181
	3-182
	3-183
	3-184
	3-185
	3-186
	3-187
	3-188
	3-189
	3-190
	3-191
	3-192
	3-193
	3-194
	3-195
	3-196
	3-197
	3-198
	3-199
	3-200
	3-201
	3-202
	3-203
	3-204
	3-205
	3-206
	3-207
	3-208
	3-209
	3-210
	3-211
	3-212
	3-213
	3-214
	3-215
	3-216
	3-217
	3-218
	3-219
	3-220
	3-221
	3-222
	3-223
	3-224
	3-225
	3-226
	3-227
	3-228
	3-229
	3-230
	3-231
	3-232
	3-233
	3-234
	3-235
	3-236
	3-237
	3-238
	3-239
	3-240
	3-241
	3-242
	3-243
	3-244
	3-245
	3-246
	3-247
	3-248
	3-249
	3-250
	3-251
	3-252
	3-253
	3-254
	3-255
	3-256
	3-257
	3-258
	3-259
	3-260
	3-261
	3-262
	3-263
	3-264
	3-265
	3-266
	3-267
	3-268
	3-269
	3-270
	3-271
	3-272
	3-273
	3-274
	3-275
	3-276
	3-277
	3-278
	3-279
	3-280
	3-281
	3-282
	3-283
	3-284
	3-285
	3-286
	3-287
	3-288
	3-289
	3-290
	3-291
	3-292
	3-293
	3-294
	3-295
	3-296
	3-297A
	3-297
	3-299A_900
	3-299B_900
	3-299C_900
	3-300A_9300
	3-300B_9300
	3-300C_9300
	3-302
	3-303
	3-304
	3-305
	3-306
	3-307
	3-308
	3-309
	3-310
	3-311
	3-312
	3-313
	3-314
	3-315
	3-316
	3-317
	3-318
	3-319
	3-320
	3-321
	3-322
	3-323
	3-324
	3-325
	3-326
	3-327
	3-328
	3-329
	3-330
	3-331
	3-332
	3-333
	3-334
	3-335
	3-336
	3-337
	3-338
	3-339
	3-340
	3-341
	3-342
	3-343
	3-344
	3-345
	3-346
	3-347
	3-348
	3-349
	3-350
	3-351
	3-352
	3-353
	3-354
	3-355
	3-356
	3-357
	3-358
	3-359
	3-360
	3-361
	3-362
	3-363
	3-364
	3-365
	3-366
	3-367
	3-368
	3-369
	3-370
	3-371
	3-372
	3-373
	3-374
	3-375
	3-376
	3-377
	3-378
	3-379
	3-380
	3-381
	3-382
	3-383
	3-384
	3-385
	3-386
	3-387
	3-388
	3-389
	3-390
	3-391
	3-392
	3-393
	3-394
	3-395
	3-396
	3-397
	3-398
	3-399
	3-400
	3-401
	3-402
	4-900-03
	4-900-04
	4-900-05
	4-900-06
	4-900-07
	4-900-08
	4-900-09
	4-900-10
	4-900-11
	4-900-12
	4-900-1
	4-900-2A
	4-900-2
	4-9300-01
	4-9300-02
	4-9300-03
	4-9300-04
	4-9300-05
	4-9300-06
	4-9300-07
	4-9300-08
	4-9300-09
	4-9300-10
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	7-01
	7-02
	7-03
	7-04
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	replyA
	replyB

