Xerox Data Systems

. IS
1 -4 A

b Tt

¥

‘ S i G I

o fad B k : v ket D wd UH W0l Wb e
BRI ! g Bd Vo Bl ey sl

61 Lag i b %;‘ i N ia% Bl G R e g -

i) By] A) ;)

e A E . '

XDS FORTRAN II

90 00 03D

FORTRAN II
REFERENCE MANUAL

for

XDS 900 SERIES COMPUTERS

90 00 03D

October 1970

XDS

Price: $3.00

Xerox Data Systems/701 South Aviation Boulevard/El Segundo, California 90245

© 1964 -1970, Xerox Data Systems, Inc.

Printed in U.S.A.

REVISION

This publication, 90 00 03D, is a minor revision of the XDS 900 Series FORTRAN II
Reference Manual, 90 00 03C, dated February 1967. Changes to the previous edition
are indicated by a line in the margin of the page.

RELATED PUBLICATIONS

Title Publication No.
XDS 910 FORTRAN II Operations Manual 90 00 11
XDS 920/930 FORTRAN II Operations Manual 90 00 46

NOTICE

The specifications of the software system described in this publication are subject to change
without notice. The availability or performance of sume features may depend on a specific
configuration of equipment such as additional tape units or larger memory. Customers
should consult their XDS sales representative for details.

CONTENTS
Page

Introduction o 0 L L s e s e oo

XDS 900 Series FORTRAN II Programs

w

Program Preparation
Example: FORTRAN Program 5

Arithmetic - Basic Elements

Quantities L L L L L L L s s o . .9
Constants L .. oo,
Identifiers. 00
Varigbles 0000000 N
Scalar Variables N
Array Variables 0000001
Functions o o L L0000 s s s s 12
Expressions - Formation 15
Evaluation. L. Lo 0L L Lo L. 7
Integer Expressions o L . . 0oL 17
Floating=Point Expressions 18
Mixed Expressions . 18
Statements. L L . o e e e e e e e e e e e 19

Assignment 0 L 0 0 0 e e e e e e e a9
CALL. o . .. s s .2

Control

Statement Numbers 002
Unconditional GOTO27
CONTINUE v v v v v v vt e e e e v v 24
Computed GOTO o v v v v v v v v v v . 2
Assigned GOTO 25
ASSIGNo L s s s s e s e e ... 25
SENSELIGHT« « o v v v v v e e e e s 26
IFSENSELIGHT « o o o v v v v v v v v o . 26
IFSENSESWITCH« v v .. 27
IF FLOATING OVERFLOW « v v v v v v v o 27
PAUSE L. ..o e e e e 27
STOP. oo e e e s e e e e e e .. 28
RETURN« v v v v v v v ... 28

IV.

Input-Output

Input-Output Statements .

Input-Output Records .

Input-Output Lists

ACCEPT .

TYPE .

PRINT . . .

ACCEPT TAPE.

PUNCH TAPE .

READ . .

PUNCH .

Magnetic Tape Operattons

READ INPUT TAPE .

REAC TAPE. . . .

WRITE OUTPUT TAPE

WRITE TAPE

BACKSPACE

REWIND .

END FILE

FORMAT. .
Numerical Fields .
Scale Factors
Alphanumeric Flelds
Alphanumeric Format Fields .
Mixed Fields . . .
Blank or Skip Fields .
Commas in Input Records .o
Repetitions of a Field Specification .
Repetition of Groups .
Multiple Record Specnf:cotlons .

C

Dutntne (Cmpnt age A.,.x..u\l
rrinrer Larriage \“onrroi

Declarations

Classification of Identifiers .
DIMENSION . ..
Subprogram Definition Statements
Dummy Identifiers .o
Arithmetic Function Deflnutlon Statement
Function Subprograms .

FUNCTION

Subroutine Subprograms

SUBROUTINE

Implicit Declaration

Memory Allocation .

COMMON. .

EQUIVALENCE

Further Rules for COMMON cmd EQUIVALENCE .

-lv~-

Page

29
30
30
32
32
32
33
33
33
33
34
34
34
34
35
35
36
36
37
37
38
39
40
41
4]
41
41
42
42

AA
a4

45
45
46
47
47
48
49
50
50
51
52
53
53
55

Appendix A.
Appendix B.
Appendix C.
Appendix D.
Appendix E.

Index .

Special Features .

Diagnostics .

Syntax.
Syntax for XDS 920/930 FORTRAN II
XDS 920/930 FORTRAN II Statements

-V=-

Page

57
59
65
67
73

75

1.

2.

3.

FIGURES

FORTRAN 1I Sample Program

Example of FORTRAN Statement .

Typical Input Card .

-vi-

Page

INTRODUCTION

This manual is intended as a reference manual for the XDS 900 Series FORTRAN [l System and

assumes the reader is familiar with the general principles of FORTRAN programming.

The XDS 900 Series FORTRAN Il language provides engineers and scientists with an efficient and
easily understood means of writing programs for the XDS 900 Series computers. Programming is
accomplished by the use of expre;sions which resemble accepted mathematical notations, allow-
ing the programmer to concentrate on the problem to be solved rather than the details of computer
operation, In addition, features are included for use at run time and compile time to reduce the

cost and time required for program checkout.

The XDS 900 Series FORTRAN Il processor contains additional features (such as ACCEPT, TYPE)

and fewer restrictions (for example, mixed expressions are permitted) than FORTRAN Il processors
written for other computers, These FORTRAN || processors are a direct subset of the XDS 900 Series
FORTRAN Il processor,

With the provision that reasonable restrictions are met, the XDS 900 Series FORTRAN Il processor

will compile and run FORTRAN 1| programs written for other computers,

These restrictions are:

1. The memory capacity of the XDS 900 Series computer must be sufficient to hold the compiled
program and all subroutines required at run time. Normally, less memory will be required on
the XDS 900 Series System than on other systems.

2, All peripheral equipment (such as magnetic tapes) called for in the program, must be attached
to the XDS 900 Series computer, The system checks for the presence of required equipment.

3. Integer quantities are limited to 8,388,607 and floating~point precision is limited to
approximately twelve decimal digits, In general, these precisions exceed those of other

systems,

4., The program must be a legal FORTRAN II program, i.e., one that does not use the
veiled characteristics of a particular compiler - computer pair to achieve a result in
variance with, or not covered by, the currently accepted definition of FORTRAN II
statements and programs as given in this manual. Most illegal programs will be caught

by the system.

Only a basic XDS 900 Series Computer, with 4096 words of core memory, paper tape and type-

writer input/output, is required for complete processing and solution of FORTRAN II programs.

For 4096-word configurations, the only important limitation on source program size is the num-
ber of distinct symbols and labels used in the program. Programs with as many as 325 symbols
and labels may be compiled on the XDS 920/930 and programs with as many as 200 on theXDS 910/
925. In practice, this is no limitation since the number of labels may be expected to be pro-
portional to the program size, and no practical limitation exists on the size of FORTRAN pro-
grams which may be compiled on an XDS 900 Series Computer with greater than 4096 words of

core memory.

Refer to the appropriate FORTRAN II Operations Manual for the operating description of this

system:
Manual XDS Publication No.
XDS 910 FORTRAN II Operations 200011C

XDS 920/930 FORTRAN II Operations 900046D

I. XDS 900 SERIES FORTRAN II PROGRAMS

An XDS 900 Series FORTRAN II program consists of a sequence of statements which specify
the procedure to be followed by the computer. These statements fall into four general

categories:

INPUT/OUTPUT statements which call for transmission of information
between computer storage and various input-output devices.
ARITHMETIC statements which indicate calculations to be performed.
CONTROL statements that determine the sequence in which statements
will be performed.

DECLARATION statements that supply information about the program

rather than specifying operations.

PROGRAM PREPARATION

The sequence of statements comprising an XDS 900 Series FORTRAN II program is written
on a coding form. This information is then punched on cards or paper tape for entry into

the computer. The same coding form is used for either input medium.

Figure 1 illustrates an XDS 900 Series FORTRAN II program written on a standard XDS 900
Series FORTRAN II coding form. Each statement of the program is written on a separate
line; however, a statement too long to fit on one line may utilize as many as three con-

tinuation lines.

Each line of the coding form is divided into 72 spaces or columns and each space may con-
tain one character. When cards are used as the input medium, each line of the coding form
corresponds to a card and each space to a card column. Figure 2 illustrates the statement

on line 6 of the example as it would appear on a punched card.

The columns of the coding form are grouped into fields. The first field, columns 1 through
5, is used for the statement number, if any. These numbers permit cross reference between

statements within a program. Blanks and leading zeros in this field are ignored.

-3-

PROBLEM

PROGRAMMER

XDS

Xerox Data Systems

FORTRAN CODING SHEET

PAGE

80
~

73 ldentification

Ty

DATE

OF

STATEMENT
NUMBER

—— C FOR COMMENT
v

FORTRAN STATEMENT

Figure

1.

FORTRAN II Sample Program

S
6|7 10 15 20 25 30 35 40 45 50 55 60 65 70 72
l E AIM'P'L'E' v’r T 77T v 7T vy Y §y oy v+ r §¢ v+ r1r—— ¢ vV v r—+v—g|¢ - v —7r—J T 7+ v v [r—vVrr[—ri1rrur 5 rr Ty LN R R B S B |
T DIMENSION PRICES(o)ff-. LN B Sanek A NN B S B SR BAN SN S SR BEN SN BN BE S S SN S AN SR A NS NN N R R LABIE SN JN R HEE NAR R {
LANEN SR Sann 4 EA D 5 P R c E S T | IR R Bt Sy A SN SN S S RN S SR SN B S B SR B SN NN SN SR BN BN R S S R | LN S IS DA BN N dama |
—rr v T ASHEN SN S N Sani M S S S Se S e S SR SN AN SN SUN SHI SEES SN Sne Sasy SN NS Seu A Sune SEND Sute SR A Sus e Snas Snes Sum s & T T T T T T
SUM_= O
-
7 LIRS S SN S S 5 SN U SRen SEnh S NEN SEne SR Sume S SEED SR S SE Sun SE Sui SE Sun S S SR S SEan Sunn SE S S R S M BN SR S SR BN S S R S | LJMN R R B BN B S |
-
D 1,100
0 2 K=1,
T T T 1’2 S'U'M' T ‘S’U‘M‘ T ‘P'R'I -c 'E vsv(lxv] T LA S R B S Sats SRS St S S S BN U AR e Su BRSNS B St AU SR NS e S S Sunn R S S S S | LN S B N BN BN R |
T T T LU SR SURY (0 N S s BN SR S SUNE] SPGR e AU SN S B S LANSS BEEN SEn S Sumt Suun SRS SR B S S NUNE S S S S BN S Su S S SE S S BN S B SN S S S | LN AN SR BN B B S |
AYERAGE = SUM/100.0
T T T’Y’P’E' .5. T 'Alv'E'R'AIG'E' — Y LANSE [N SEan Buss Sash Suue SES S Samn SRS S S SHIEL AN Suen Sy MAnn AN S Bene Sons SEED Shu SENe Sumn Saas (NN S Sans Sete Sy | LANSEE S BRI Bt B S B |
T T S-T-evP; v ‘v’ LN SN Semn S S S SEm Suaes Sane S Senes Se e S S | BN SR B B Se BE St e St S SR e S S S S SESE SR SR Sut BE Sun mm e me LA S S A e S See |
T T T, LSRLSUEN AN PO SN 0 RS R RS, SN R rul S SN S B B A B Sun SR S S S R SEm Sk S REN B S Sa S NEN SR SEE SR Mane NI SN SUN S S S SN S R S Sun S s Sae e | LUNE AN S B S B |
5 FORMAT(F10.2)
™7 T EIN'D' | NS U S S N SN S SN B S SR SEE SN RN SN A Sut Su Sum SHE SRt SE Sunet S NA SN S S Se SEN S B B SR BN SN SE SE B BN SN SR SE RESh NN SRS SENe S pam | YT T T
T YUY LARMN B S S SR SHan SEs S0 SN SN AU AN R SUN S Sat S Sume NN Snnie Sa S e Bum Sei suns S S Sua S Sene S S BEES 5 SR e S Seae S S S S Sy SEE Seant Sums S s | T T T
LSRN B S | LSRN BN BN SN BN SEER e S M S S N S SUMD SN SEm S San S Ses Sun S S SN i S S Same SIS SN Net S R SR SN S S RENE S SEN S Sune NEN S BN SE S SN SN BN S S T T T
LB N S LA A A S B SR R S B A S S By B S S S S SN NS S S A S 0 AN NN A S S S S S SN S S N S SN S SUS S SN MAn NS NN AN ey SR S S Sner Sum § LA S RN BE B S m |
T LN AN B S BN SN SN BN N S SN S AN N SR SR S S S SN AN S SR S S S Al Saser SR SEN S S S R S SR S S SN SN B R By AEM ARG SN I Sy R AN R B B ¢ LN SN NN N NN B N |
T LA S B S SN S SR SN SR i SRS Sunk Sy RN S S BEn S BN SNN Su S S SN S Su Sl a SEE S BEn Sunn ShS Stet Mees A SN S SN 55 A S [S S S S SN S Sem S M | LAY BN R I B M |
T LA S SN SR S S A Sy BAn S R SN S SR Sa S SE SRS BEEL S A A S S AR S S S B S S S S SN SN S SR SN GHN SN SUS SN S S SN S SN S N S S Sa | LANNSL AUND NS MRS SR B N |
T L/NNL R S S S S S S B S S SR S SH S A S S At S S S A S Sl St S SEN S S Sy SRS SR S S S SEE S S SE SN BRSNS SN SN e Sy SN et Sees e ma | Ty T T T T
LANNS Bl Sum LN B S B S S S SN AN S S B S S S S BN S SR SE S SR A S S S SEEL S S S SN ARG S Sene St MAse Sust Sees Bane Svne SENS NS SEan Suas Suns SRS Snes Shan Aee Ea 1 LEMNN S SN S S S A |
7 L e S S e e e R I S e e S e LN S S S S S S S S S S S B S S SUN e RENE S S S Sene NGRS A SENS: Suns S S Bu S Sum e ¢ YT T T T T
T T LI S S S S S S Y (LA S St S Sa S S LN A S S SIS A Sl Sy S SEE S Sun e SN SN Sun EE EE SHES S AU SUNR AN SN S Saey SR SEE S Sene s 1 LN S N N S B B ¥
—r T AN SEu S B S Seun SUAS S SHNN Sun Sun S S SR Sace S S SR S LA S S S S S s M SN S S B SN SN SN SRS SNae SN SUNS SUNS e S BENN SEN SN SUN S B S R S E T v T
v LN S Sty B A S B S B S S S e A AU S e ene S S S St S Sl St S R S s S EE S SN S S SEN SR S SR SENS SEN BN SH HE H L L | LN S [N B RN B B |
+~— T LU St S Sm Snm Sume Sasn B s Sem auns S BN SRS S SN | AN S S S S S Sunel e DU SN SRS S S EEN A S Snn Sun S Sane Sum S S e S SR S H HES S e | AN S SN AN Sumes M S |
v LANIEL AN S SE S Sun S S B Su S S Se S A S S B S Sua S Se SR R S Sunel oy S S S S S SU S SE S S IS SN SRS S S B Se S S S S S S A LANED SN BN SN SR S e
SDs-8-144

The second field, columns 7 through 72, is used for the statement itself. Except for certain

alphanumeric strings, blanks in this field are ignored and are used to aid readability.

Column 1 serves another function, that of specifying comment lines and compiler control lines.
A "C" in column 1 indicates that the line is a comment and is not to be processed. Comments

"*" " in column

appear in program listings but do not otherwise affect the program. An asterisk,
1 indicates that the line is a compiler control line. No control lines are necessary, but any
number of them may precede the program. They have no effect, but will be listed even when

program listing is suppressed.

EXAMPLE

The simple program illustrated in Figure 1 points out many of the properties of an XDS 900 Series
FORTRAN II program. It is shown as it would appear on a standard XDS 900 Series FORTRAN

coding form.

The purpose of the program is to find the average of a set of 100 prices and to type the average

on the console typewriter.

Line 1 is a control line.

The DIMENSION statement of line 2 declares PRICES to be an array of 100 numbers. This
declaration causes storage sufficient for 100 numbers to be set aside and allows PRICES to

appear with subscripts in the program.

Line 3 is an input statement which reads numbers from punched cards and places them in con-
secutive locations of the array PRICES. Reading will continue until all of the 100 values

declared for PRICES have been entered.

The READ statement refers to FORMAT statement number 5 (line 10) for specification of how
prices are punched on the cards. The FORMAT specifies that the prices are punched one to
a card, occupy ten columns each, and have two digits to the right of the decimal point. A

typical input card, pictured in Figure 3, gives $1.85 as the price of May wheat.

The calculation proper begins with the assignment statement of line 4. This statement sets

2 SUM = SUM +PRICES(K? \

000000QQOOCOOFQOO0O000OCOOJEO000
12345678 9101112131415161718192021222326252627 202930 31 32 33 34 35,35 37 38 39 D41 42 43 44 45 46 47 48 49 50 51 52 53 54 55,56 57 58 59 60 61 62 63 64 6566 6769637071 1273 M 157677 71819 80
IRRRR AR R R R R R R

222202082222292222222222)J222122
3333333333§333333333§333
4444444 04044444444 a44484444444044444400444444044448444004400444444444444444
555
66686
T17771171711711711771718717177177199111717711171771111217177177117117177171717111711171711711711171117111171
88888883880 88830888888083J808838888883888888880888888388888088306888880808888888808888
?g??g??g9299999999'.9992

M1213 94151617 18192021222324252627 202930 31 3233 34 35 35 37 30 39 4041 4243 44 45 46 47484950 51 52 53 54 5556 57 58 59 60 616263 E4 6566 6763697071 7273147576 7178 79

91
1M 5081

Figure 2. Example of FORTRAN Statement

cQ
[#)]

. MEY WREAT
] 1 m

1
0000000000000000000fOJoOOCQOOCO0G0O000CO00G00000000000000000000000000000060000000000000

12345678 91011121314151617181920212220202525 27202930 31 2233 34 35 36 37 38 32 4041 424344 45 45 47 48,4950 51 52 53 59 55,56 57 58 59 60 61 62 63 64 65 66 67 63 63 70 71 7273 74 75 76 77 18 19 80
IRRRER! RERRERRRRERY ERR R FRRRR R RN R R R R R R R R R R R R R R R R RS RE R REERERR R R
22212
3333333§933333333333333333§33
A444884044444444404444404444444444280444444404444048444444444044444444448444448444
5555555550 5555555555555 55
6686
117717777171 17112711291 1011201100171 771717171199017711071°071117171717171117171117171171117111171111
ss8ss8o#sceseassaoBooloesss8888880888808888886888888088808880880888088880888588888
??g?gg 999999999999999999999999995999999999999999999999999999999959999993999899

910 111213 14 1516 77 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 35 37 38 39 40 41 42 43 44 45 46 47 49 49 50 51 52 53 54 55 56 57 58 S9 60 €162 63 64 6566 67 68697071 727374 75765 77 78 73 80
5081

-~

9
8

Figure 3. Typical Input Card

the variable SUM to zero as an initial value.

Line 5 is a control statement (called a DO statement) which causes the statement following
(number 2) to be executed 100 times. The variable K is set to one for the first execution and

then is increased by one for each subsequent execution. The last time statement 2 is performed,

K has the value 100,

Statement 2 adds one of the PRICES to SUM and assigns the result to SUM, The particular price
used from the array of PRICES will be determined by the value of K, which appears as a sub~
script. The first execution uses PRICES (1), the first number in the array; next time PRICES (2)
is added in, and so on. After PRICES (100) has been added to SUM, the program proceeds to

the next statement.

At this point SUM contains the sum of the numbers read in from cards. The assignment state~
ment of line 7 now divides this sum by 100 and assigns the result to AVERAGE. This, of course,

is the answer.

The output statement of line 8 causes the value of AVERAGE to be typed on the console type-
writer in the form specified by FORMAT number 5. Note that this is the same format as was
used during input, The typed number will have the same form as the original date and might

appear as follows: 2.35

After typing the answer the program proceeds to the control statement STOP and halts. Line

11 is the End Card, indicating the end of the program.

1. ARITHMETIC
BASIC ELEMENTS

QUANTITIES
The XDS 900 Series FORTRAN |l Compiler is concerned with two modes of numerical quantities:

integer quantities and floating-point quantities,

8.V

Integer quantities are used to represent integers of magnitude less than 8,388, 60

Floating-point quantities are used to represent the real numbers to a precision of almost 12
decimal digits. The magnitude of a floating=point quantity must be zero or between the limits

1077 and 10-77.(])

CONSTANTS

Constants are numbers which appear in a source program in explicit numerical form. They may

be integer or floating-point.

Integer constants are represented by a string of decimal digits. A maximum of seven digits is

allowed, excluding leading zeros.

EXAMPLES:
1
1973
32768
0
Floating-point constants are represented by a string of digits which contains a decimal point
"." embedded in the string or at either end of the string. A floating-point constant may
contain any number of digits; however, only the most significant 12 digits will be used,
excluding leading zeros.
(1) These limit values are due to the internal representation of numbers in the XDS 900 Series
Computers, Integers are represented as 24 bit, two's complement binary numbers. Floating-
point numbers are represented as a 39 bit two's complement mantissa and a 9 bit two's

complement characteristic,

-9-

EXAMPLES:
3.14159265359
.004579

1.

0.
A floating=point constant can be given a scale factor by appending an "E" followed by an
integer constant, The integer constant indicates the power of ten by which the floating-
point constant is to be multiplied, The magnitude of the resulting number must be between

the limits of]0-77 and 1077 or be zero.

The scale factor constant may be preceded by a "+" or " =" sign to indicate positive or

negative powers of ten, If the sign is omitted, the power is considered positive,

EXAMPLES:
1.E-18 means 10-18
.0271828E+2 means 2.71828
1.973E3 means 1973.

A third alternative allows a floating=-point constant to be expressed as an integer constant

followed by a scale factor,

EXAMPLES:
5E-2 means .05
1E476 means 1076
25E3 means 25000,

IDENTIFIERS

Identifiers are used to name variables, subprograms, and dummy arguments of subprogram
definitions, An identifier is a string of letters and digits. ldentifiers may be of any length;
however, only the first eight characters will be used, The first character of the string must

be a letter.

-10-

EXAMPLES:
M
DISCRIMINANT
CL2RW7

VARIABLES

Variables represent quantities which may take on a number of values and are referred to by
name. They may be integer or floating-point, representing respectively integer or floating-
point quantities. The identifier used to name an integer variable must begin with I, J, K, L,

M, or N. Variables not identified as integer will be considered to be floating=point.
Variables may be scalar variables or array variables.

Scalar Variables

Scalar variables represent a single quantity and are denoted by scalar identifiers.

EXAMPLES:
Integer scalar variables
N
INDEX
K12
Floating=-point scalar variables
SIGMA
X1
ERRCR

Array Variables

An array variable represents a single element of an array of quantities rather than a single
quantity. An array variable is denoted by the identifier (the array identifier) which names
the array, followed by a subscript list enclosed in parentheses. The subscript list is composed

of arithmetic expressions (see page 15) separated by commas.

-11-

EXAMPLES:
Integer array variables
K@)
K (N+1)
MOVE (-1, M)
Floating=-point array variables
X(N, 1, 1, M)
VOLTAGE (2* N+1, L, L+1)

Each expression gives the value of the corresponding subscript. The number of subscript

expressions must equal the number of dimensions of the array.

Any expression may be used as a subscript. In particular, subscripting may be cascaded.

If the value of a subscript is a floating=point number, it will be truncated to an integer

before being used as the subscript. The value of a subscript must be not less than the minimum

and not greater than the maximum specified for the array.

EXAMPLES:
X (M* N+M-1)
K (THETA)
BRANCH (1+MOD(BRANCH (2*NODE), 3))

FUNCTIONS

Functions are subprograms which are referenced as basic elements in arithmetic expressions.
A function acts upon one or more quantities, called its arguments, and produces a single
quantity called the function value. A function is denoted by the identifier which names

the function, followed by an argument list enclosed in parentheses.
FORM: identifier (argument, argument, . . . , argument)
An argument may be an arithmetic expression or an array identifier.

Provision is made for both integer and floating-point functions. Functions producing integer

values are integer functions, and functions producing floating-point values are floating-point

functions.

-12-

Identifiers of integer functions must begin with I, J, K, L, M, or N. Functions not so

identified are considered to be floating=point functions.

The mode of a function is independent of the modes of its arguments, i.e., an integer

function may have floating-point arguments, etc.

EXAMPLES:
SIN (2* PI* TIME)
DOLLARS (PRICE)
MOD (M, K)

Functions constitute closed subroutines; that is, they appear only once in the object program,

regardless of the number of times they are referenced in the source program.

Many library functions are included in the XDS FORTRAN System. These include elementary
functions such as SIN, SQRT, etc. and arithmetic functions such as ABS, MOD, etc.

-13-

EXPRESSIONS

FORMATION

An expression is a sequence of constants, variables, and functions separated by operation

symbols and parentheses in accordance with mathematical convention and the rules stated
below. An expression has a single numerical value, namely, the result of the calculations

specified by the arithmetic operations and quantities occurring in the expression.

The arithmetic operation symbols are +, -, *, /, and ** denoting, respectively, addition,

subtraction, multiplication, division, and exponentiation.

An expression may consist of a single basic element, i.e., a constant, variable, or function.

For example:

3.1415926
X(N)
SQRT (ALPHA)

Basic elements may be combined through use of the arithmetic operation symbols to form

compound expressions, such as:

ALPHA+BETA
PI*RADIUS**2
SQRT (THETA*THETA)

Compound expressions may be enclosed in parentheses and regarded as a basic element:

(A+B)/(C+D)
((FEET))
POWER(M*(N(K)+1)+1)

-15-

An entire expression can be preceded by a + or - sign as in:

+A
- (-X+Y+Z)
ALPHA(-M, N+I)

However, two operation symbols may not appear in sequence. In other words, use the form
A*(-B)

instead of the illegal form
A*-B

By repeated use of the above rules, all legal expressions may be constructed.

When the precedence of operations within an expression is not explicitly given by

parentheses, it is understood to be the following:

PRECEDENCE SYMBOL OPERATIONS
1 ** Exponentiation
2 *and / Multiplication and Division
+and - Addition and Subtraction

Operations of equal precedence are grouped from left to right. For example, the expression
A+B*C**D

is interpreted:
A+(B*(C**D)),

while the expression:
A/B/C/D

is interpreted to mean

((A/B)/C)/D

-16~-

and
A**B**C
is interpreted to mean

(A**B)**C.

Similarly,

A/B*C
is interpreted to mean
(A/B)*C
and
A/B*C/D
is interpreted
((A/B)*C)/D

Permutable sequences of operations will be reordered, if necessary, to increase object program

efficiency.

EVALUATICN

The numerical value of an expression may be of integer or floating=-point mode. The mode of
an expression is determined by the modes of its constituents. Three cases arise: all constituents
are integer (integer expression); all constituents are floating-point (floating=point expression) ;

both types of constituents occur (mixed expression). All of these cases are allowed in the XDS

900 Series FORTRAN |1,

Integer Expressions

An integer expression is evaluated using integer arithmetic throughout, giving an integer value
as the result, All results will be reduced modulo 2 . Fractional parts arising in division are

truncated, not rounded. For example, 5/2 yields 2; 2/3 yields 0.

-17-

EXAMPLES:

L
1+2* 41
(M+1)*KA-INDEX

Floating-Point Expressions

Floating-point expressions are evaluated using floating-point arithmetic throughout, yielding a

floating-point value. All results are limited in magnitude to the range]0-77fo 1077or zero.

EXAMPLES:
(X(N=-1)+X(N+1)) /(2.0*DX)
SINF(THETA-ALPHA)

Mixed Expressions

Mixed expressions are evaluated by first converting all integer quantities to floating-point
quantities and then evaluating the expression as if it were a floating-point expression.

The result is a floating-point quantity.

EXAMPLES:
Y+2
Y *NHN*X
A(K)*COSF(2*P I*K/N)

-18-

STATEMENTS

Assignment Statement

The assignment statement specifies an expression to be evaluated and a variable, called the

statement variable, to which the expression value is to be assigned.
FORM: variable = expression

Note that the sign "=" does not mean equality but replacement. The first example below is
not an equation but is a valid assignment statement meaning "take the value of X, add one,

and assign the resulting value to X."

EXAMPLES:
X = X+l
K = N*L-1)
Y(M) = SINF(.06*M)
SUM = SUM+TERM*X/N

The value of the expression in an assignment statement is made to agree in mode with

the statement variable when the replacement is performed. Thus, an integer expression
value is converted to a floating=point value if the statement variable is a floating=-
point variable, and a floating-point expression value is truncated to an integer if the

statement variable is an integer variable.
For instance, in the statement
Z = N*(N-1)

the integer value of the expression is converted to floating-point before assignment

to Z.

-19-

CALL Statement
FORMS: CALL identifier

CALL identifier (argument, argument, ..., argument)

This statement is used to call, or transfer control to, a subroutine subprogram, The identifier

is the name of the subroutine.

The arguments, as in the case of functions, may be given as arithmetic expressions or array
identifiers, Unlike a function, however, a subroutine may have more than one result and
may use one or more of its arguments to return these results to the calling program. A
subroutine may require no arguments at all, in which case the first form of the CALL

statement is used.

EXAMPLES:
CALL DUMP
CALL FACTOR (A+1, 2*COS(THETA)*B(K), R1, R2)
CALL DOT (M, Y, Y, LENGTH)

The name of the subroutine has no bearing on the mode of its results. For instance, in

the last example above the integer variable LENGTH might be the result of the subprogram
DOT.

-20-

I, CONTROL

The normal flow of a FORTRAN program is sequential through the statements in the order in
which they are presented to the compiler. Control statements allow the programmer to specify
the flow of the program. To this end, statements can be given numbers to be referenced by

control statements.

Statement Numbers

A statement number consists of an unsigned integer constant of five digits or less. Leading

zeros are ignored; for example, 0002 and 2 are considered identical.

Although statement numbers appear in the source program as integers, they are not to be
confused with numerical quantities. They represent a distinct type of basic quantity, viz.

labels. Labels are used for identification of addresses in the object program.,

Since statement numbers are used for identification, they must be unique; that is, no two
statements may have the same number. No order or sequence is implied by the magnitudes
of the statement numbers, Non-referenced statements need not be numbered; in fact, un-

necessary numbering is wasteful of compiler storage.

Unconditional GO TO Statement
FORM: GO TOn

where n is a statement number.
This statement transfers control to the statement numbered n.

EXAMPLES:
GO TO 15

GO TO 957

-21-

IF Statement
FORM: IF (expression) nys Nor Na

where /N 5 are statement numbers.

2 "
This statement transfers control to the statement Nys Nor OF Ny if the value of the expression

is, respectively, less than, equal to, or greater than, zero.

EXAMPLES:
IF (M(K) - JOB) 5, 2, 4
IF (Y) 14, 15, 15

In the first example above, control is transferred to statement 5 if M(K) < JOB, to statement 2
if M(K) = JOB, and to statement 4 if M(K) > JOB.

DO Statement

The DO statement allows a series of statements to be executed repeatedly under control of a
variable whose value can change between repetitions and which may be integer or floating-point.
FORMS:
DO n scalar variable = expression ,, express'lon2
DO n scalar variable = expression], expression2, expression3

where n is a statement number.

This statement causes the statements that follow, up to and including statement n, to be
executed repeatedly. This group of statements is called the range of the DO statement.
The scalar variable of the DO statement is called the index. The values of expression],
expressionz, and expression3 are called, respectively, the initial, limit, and increment

values of the index. If expression3 is not stated (first form), it is understood to be 1.

Initially, the statements of the range are executed with the initial value assigned to the
index. This initial execution is always performed, regardless of the values of the limit
and increment. After each execution of the range, the increment value is added to the
value of the index and the result is compared with the limit value. If the value of the

index is not greater than the limit value, the range is executed again using the new value

-22-

of the index. In case the increment value is negative, another execution will be per-

formed if the new value of the index is not less than the limit value.

After the last execution, control passes to the statement immediately following statement n.

Exit may also be effected by a transfer from within the range of the DO statement.

The range of a DO statement may include other DO statements provided that the range of each
"inside" DO statement is contained completely within the range of an "outside" DO statement.
In other words, the ranges of two DO statements may not partially intersect one another.

Only total intersection or no intersection is allowed.

The index of a DO statement is treated as any other scalar variable. It is available for use
within the range of the DO statement and outside of the range. The value of the index may
be changed within the range of the DO statement. Similarly, the limit and increment values

of the DO statement may be altered within the range of the DO statement.
A zero value of the increment is considered positive.
It is permissible to transfer into the range of a DO statement from outside of its range.

EXAMPLES:
DO2L=1, N
DO 5V = END, START, - .025

As an illustration of the use of DO statements, consider the sequence below.

DO4L=0, M

CORR(L)=0

DO 3 K=1L, N-1

CORR (L) = CORR (L) +X(K=-L) *X(K)
4 CORR (L) = CORR (L) / (N-L)

Given that X and CORR are suitably specified arrays and that N>M>0, these statements will.

evaluate the autocorrelation function:

p4
L

CORR (L) =-N‘TL X (K) X (K=L)
L

~
1

-23-

The summation is performed by the "inside" DO statement whose range ends with statement

3. The "outside" DO statement performs the division and changes the value of L.

CONTINUE Statement
FORM: CONTINUE

This statement is a dummy, or "do nothing", statement used primarily to serve as a target

point for transfers, particularly as the last statement in the range of a DO statement. For

example, in the statement sequence:

DO 5 I=1, MAX

X = SUM

5 CONTINUE

If the GO TO is intended to begin another execution of the DO range, without performing
the statement X = SUM, the CONTINUE statement provides the necessary target address.

Computed GO TO Statement

The computed GO TO statement allows transfer of control to one of a group of statements, the

particular statement chosen depending on conditions at run time.

-4~

FORM: GO TO (n], Nor Ngsoeeeey nk), expression

where Ny Nos weees My are statement numbers. The comma preceding the expression is optional.

This statement transfers control to statement Nys Nos eeeer N depending on whether the expression

has the value |, 2,, k respectively.

EXAMPLE:
GO TO (7, 12, 3, 4), K+l

will transfer control to the statement numbered 12 if K has the value 1.

The value of the expression is truncated to an integer if required. Expression values

outside the range 1, 2,, k cause a run time error indication,

EXAMPLE:
GOT0O(13, 27,1, 4, 6), V(J)
This statement transfers control to statement 6 if V (J) has the value 5.728. A value

of .57 for V (J) causes an error indication,

Assigned GO TO Statement
FORM: GO TO variable

This statement transfers control to the statement whose number was last assigned to the

variable by an ASSIGN statement. The variable must appear in some previously executed

ASSIGN statement.

EXAMPLES:
GOTOL
GO TO EXIT (3)
The variable of an assigned GO TO statement is a control variable and has a label as a value,
not a numerical quantity, A control variable may be shared between a program and its sub-
programs, like any other variable, The variable may appear in an ASSIGN statement in one

program and be used in an assigned GO TO in another program.

ASSIGN Statement
FORM: ASSIGN integer TO variable

This statement sets the value of the variable for a subsequent assigned GO TO statement. The

er is the number of the statement to which control will be transferred by the assi

GO TO statement,

nnnr'
Sy 19T

-25-

EXAMPLES:
ASSIGN 6 TO L
ASSIGN 72 TO EXIT(3)
As an example of the use of the ASSIGN and assigned GO TO statements consider the
sequence below,
25 X =R*COS (THETA) *SIN (PHI)
Y = R*SIN (THETA) *SIN (PHI)
Z = R*COS (PHI)
GO TO EXIT
This sequence may be used as a subroutine by other parts of the program. For instance the
statements:
ASSIGN 7 TO EXIT
GO TO 25
7 ...

will cause the subroutine to be executed and control returned to statement 7.

SENSE LIGHT Statement
FORM: SENSE LIGHT expression

During compilation, a storage cell, initialized to zero, is set aside for flags. This statement
causes one bit of this cell to be set to one. The particular bit chosen is specified by the
value of the expression, truncated if necessary, The integer so derived is checked at run
time and must be one of the integers 0, 1, 2, ..., 24, A zero value causes all bits to be
sef to zero.
EXAMPLES:
SENSE LIGHT 3
SENSE LIGHT 2*X+1

IF SENSE LIGHT Statement
FORM: IF (SENSE LIGHT expression) nn

2

where n, and n, are statement numbers,

This statement transfers controi to statement n_ or ny depending on whether a bit in the

1
flag cell is one or zero, The particular bit tested is specified by the value of the expression,

truncated if necessary. The resulting integer, which is checked at run time, must be one of

the integers 1, 2, ..., 24, The bit is set to zero after the test.
-26-

EXAMPLES:
IF (SENSE LIGHT 3) 1, 2
IF (SENSE LIGHT 2*K/3) 12, 7

IF SENSE SWITCH Statement
FORM: IF (SENSE SWITCH expression) NN

where n and n, are statement numbers.

This statement transfers control to statement n, orn, depending on whether a sense switch is

SET or RESET. The particular sense switch used is specified by the value of the expression,

2

truncated if necessary. The resulting integer, checked at run time, must be 1, 2, 3, or 4.

EXAMPLES:
IF (SENSE SWITCH 3) 1, 2
IF (SENSE SWITCH K+2) 14, 5

IF FLOATING OVERFLOW Statement
FORM: IF FLOATING OVERFLOW Ny, n

2

where n]ond n, are statement numbers,

This statement tests for overflow on floating-point arithmetic operations, Arithmetic overflow
occurs when the exponent of a floating=point result is out of bounds or a floating-point zero
division is attempted, If the indicator is one, indicating that an overflow has occurred, control
is transferred to statement n,- If no overflow has occurred, control passes to statement N The
overflow indicator is initialized to zero and is set to zero after an IF FLOATING OVERFLOW

statement,

EXAMPLE:
IF FLOATING OVERFLOW 15, 32

PAUSE Statement
FORM: PAUSE
PAUSE integer

-27-

This statement halts the machine. The integer and the location of the PAUSE are displayed.

Program execution may be resumed from the computer console,

EXAMPLE:
PAUSE 62

STCP Statement
FORM: STOP

This statement causes termination of the program and returns control to the system,

RETURN Statement
FORM: RETURN

This statement returns control from an external subprogram to the calling program, Thus, the
last statement executed in a subprogram will be a return statement, It need not be physically
the last statement in a program, but can be any point in the subprogram at which it is desired

to terminate execution, Any number of RETURN statements can be used,

-28~

IV. INPUT-OUTPUT

INPUT-OUTPUT STATEMENTS

Input-output statements call for the transmission of information between computer storage and

various input-output units such as the console typewriter, magnetic tapes, paper tapes, etc.

In general, an input-output statement must provide:

1, Specification of the operation required.

TYPE
2. The statement number of a FORMAT statement which will specify the format of the
data and the sort of conversions required between the internal and external forms of
the data, e.g.,
TYPE 6
3. A list of the variables whose values are being transmitted. The listed order of the
variables must be the same as the order in which the information exists on the input

medium or will exist on the output medium,

For example, the statement

TYPE 6, ALPHA, BETA, GAMMA
says "type on the console typewriter the values of the variables ALPHA, BETA, and GAMMA
in that order and as specified by the FORMAT statement numbered 6."

Similarly, the statement

ACCEPT 4, WINE, WOMEN, SONG
says, "accept from the console typewriter the values of WINE, WOMEN, and SONG

according to format 4."

-29-

INPUT-OUTPUT REC ORDS

All information appearing on external media (such as punched cards, magnetic tape, etc.)

is grouped into records. The maximum amount of information allowed in one record and the
manner of separation between records depends upon the medium. For punched cards, each
card constitutes one record; on the console typewriter, a record is one line; and so forth,
The actual amount of information contained in each record is specified by the FORMAT

statement,

Each execution of an input or output statement initiates the transmission of a new data
record, Thus the statement
READ 2, EIN, ZWEI, DREI
is not necessarily equivalent to the statements
READ 2, EIN
READ 2, ZWEI
READ 2, DREI
since, in the second case, at least three separate records (in this case, punched cards) are

required, whereas the single statement
READ 2, EIN, ZWEI, DREI

may require one, two, three, or more records depending upon format 2,

If an input-output statement requests less than a full record of information, the unrequested

part of the record is lost and cannot be recovered by another input-output statement,
For instance, in the case of punched cards, two READ statements cannot input information

from the same card, nor can two PUNCH statements output information on the same card.

If an input-output statement requests more than one record of information, successive records

are transmifted until the statement is complete.

INPUT-OUTPUT LISTS

The list portion of an input-output statement indicates the order of transmission of the

variable values. On input, the new values of the listed variables may be used in subscript
or control expressions for variables occurring later in the list. For example

ACCEPT 5, K, A(K+1), X, Y(K)

-30-

reads in a new value for K and uses this value in the subscripts of the variables A and Y.

Indexing similar to that used in DO statements is allowed in input-output lists for handling
array variables, The variables to be transmitted are listed, followed by the index control,
and the whole is enclosed in parentheses to act as a single element of the list:

(variable, variable, ..., index control)

The index control has the same form as in the DO statement:
scalar variable = expression] , expressionz, expression3
or

scalar variable = expression] , expression

2
The rules for repetition are the same as those for the DO statement. For example, the
statement
TYPE 8, (FORCE (J), J=1, 3)
is equivalent to

TYPE 8, FORCE (1), FORCE (2), FORCE (3)

Each group enclosed within parentheses acts as an eiement of the list and is taken in order.
Thus the statement
READ 2, (X(K), Y(K), K=1, 2)
is equivalent to
READ 2, X(1), Y(1), X(2), Y(2)
but the statement
READ 2, (X(K), K=1, 2), (Y(K), K=1, 2)
is equivalent to

READ 2, X(1), X(2), Y(1), Y(2)

Indexing of this nature can be compounded in the same fashion as DO statements, For example
ACCEPT TAPE 2, ((TRIX(J, K), J=1,10), K=1, 15)
means accept from paper tape a 10 by 15 matrix in the order

TRIX(1, 1), TRIX(2, 1), ..., TRIX(10, 1), TRIX(1, 2), ..., TRIX(10, 15)

If an entire array is to be transmitted, the indexing information may be omitted. The entire

-31-

array is transmitted in order of increasing subscripts with the first subscript varying most rapidly
(i.e., columnwise). Thus, the above example can be written simply as

ACCEPT TAPE 2, TRIX

When more than one array is listed, the entire arrays are transmitted in the order they

appear on the list,

ACCEPT Statement
FORM: ACCEPT n, list

This statement causes information to be read from the console typewriter and put into storage

as values of the variables in the list. The data is converted from external to internal form as

specified by FORMAT statement n.

EXAMPLE:
ACCEPT 14, A, J

TYPE Statement
FORM: TYPE n, list

This statement causes the values of variables in the list to be read from storage and typed on

the console typewriter. The data is converted from internal to external form as specified by
FORMAT statement n.

EXAMPLE:
TYPE 14, K, (WESTCHESTER(L), L=1, K)

PRINT Statement
FORM: PRINT n, list

This statement causes the values of variables in the list to be read from storage and printed

on the on-line printer. The data is converted from internal to external form as specified by
FORMAT statement n.

EXAMPLE
PRINT 3, (HIC, HAEC, HOC)

-32-

ACCEPT TAPE Statement
FORM: ACCEPT TAPE n, list

This statement causes information to be read from paper tape and put into storage as values of

the variables in the list. The data is converted from external to internal form as specified by
FORMAT statement n.

EXAMPLE:
ACCEPT TAPE 17, B(J), J=1, M

PUNCH TAPE Statement
F ORM: PUNCH TAPE n, list

This statement causes the values of variables in the [ist to be read from storage and punched
on paper tape. The data is converted from internal to external form as specified by FORMAT

statement n.
EXAMPLE:

PUNCH TAPE 2, A, K, B(2, 1)

READ Statement
FORM: READ n, list

This statement causes information to be read from punched cards and put in storage as values

of the variables in the list. The data is converted from external to internal form as specified
by FORMAT statement n.
EXAMPLE:
READ 121, A, Z, (X(K), K= A, Z+1)

PUNCH Statement
FORM: PUNCH n, list

This statement causes the values of variables in the list to be taken from storage and punched
on cards. The data is converted from internal to external form as specified by FORMAT state-

ment n.
EXAMPLE:

PUNCH 123, ((A(K,J), K=1,10), J=2, 14, 2

-33-

Magnetic Tape Operations

Input-output statements which refer to magnetic tape units differ somewhat from those above.

Since several tape units may be connected to the computer, the number of the tape unit required
must be given by the input-output statement. This number is given by the value of an arithmetic
expression, truncated to an integer if necessary. The tape number so specified is checked at run

time for compatibility with the actual machine configuration.

Information may be transferred to or from magnetic tape in two forms; binary and BCD (Binary
Coded Decimal). The binary form, used primarily for intermediate storage purposes, involves

no data conversion and therefore no FORMAT statement reference.

READ INPUT TAPE Statement
F ORM: READ INPUT TAPE expression, n, list

This statement causes BCD information to be read from a magnetic tape unit and put in storage
as values of the variables in the list. The number of the tape unit is equal to the value of the
expression, truncated if necessary. The data is converted from external to internal form as
specified by FORMAT statement n.
EXAMPLE:
READ INPUT TAPE 3, 5, A
READ INPUT TAPE K, 5, (A(J), B(J), J =1, 10)

READ TAPE Statement
FORM: READ TAPE expression, list

This statement causes binary information tc be read from a magnetic tape unit and put in

storage as values of the variables in the list. The number of the tape unit is equal to
the value of the expression, truncated if necessary.
EXAMPLE:
READ TAPE 3, A, B
READ TAPE K, A, B, C(4,4)

-34-

WRITE OQUTPUT TAPE Statement

FORM: WRITE OUTPUT TAPE expression, n, list
This statement causes the values of the variables in the list to be read from storage and written
on magnetic tape in BCD form. The number of the tape unit will be equal to the value of the
expression, truncated if necessary. The data is converted from internal to extemnal form as
specified by FORMAT statement n.
EXAMPLES:
WRITE OUTPUT TAPE 3, 5, A
WRITE OUTPUT TAPE K, 5, (A(J), B, J =1, 10)

WRITE TAPE Statement
FORM: WRITE TAPE expression, list

This statement causes the values of variables in the list to be read from storage and written on

magnetic tape in binary form. The number of the tape unit is equal to the value of the expression,
truncated if necessary.
EXAMPLES:
WRITE TAPE 3, A, B
WRITE TAPE K+3, A, B, C

BACKSPACE Statement
FORM: BACKSPACE expression

This statement directs a magnetic tape unit to backspace a record. The number of the tape unit

is equal to the value of the expression, truncated if necessary.
EXAMPLES: -
BACKSPACE 3
BACKSPACE K(N)

-35-

REWIND Statement
FORM: REWIND expression

This statement directs a magnetic tape unit to rewind the tape. The number of the tape unit

is equal to the value of the expression, truncated if necessary.
EXAMPLES:
REWIND 3
REWIND ALPHA

END FILE Statement
FORM: END FILE expression

This statement directs a tape unit to write an end-of-file mark on the tape. The number of the

tape unit is equal to the value of the expression, truncated if necessary.

EXAMPLE:
END FILE 3

=36~

FORMAT Statement

All input or output activity involving conversion of data requires the use of a FORMAT

statement to specify the external format of the data and the type of conversion to be used.
Any FORMAT statement can be used with any input-output medium (magnetic tape, paper

tape, console typewriter, etc.).
FORMAT statements are not executed and may be placed anywhere in the program.

FORM: FORMAT (S], 52, cees Sk)

where S is a data field specification.

The separating commas may be omitted if no ambiguity results.

Numerical Fields

Conversions of numerical data during input-output may be one of three types:

1) type-E

internal form - binary floating-point

external form - decimal floating-point
2) type-F

internal form - binary floating-point

external form - decimal fixed-point
3) type-I

internal form - binary integer

external form - decimal integer

These types of conversions are specified by the forms: |

1) Ew.d
2) Fw.d
3) Iw

where E, F, and | specify the type of conversion required, w is an integer specifying
the width of the field, and d is an integer specifying the number of decimal places to

the right of the decimal point.

-37-

As an example, in using the statement
FORMAT (18, F8.3, E15.6)
the line

32 4.263 -0.186214E-22

could be typed on the console typewriter.

Note that the decimal fixed-point number (type F) has a decimal point but no exponent,
whereas the decimal floating-point (type E) has an exponent. On output the exponent
always has the form shown i.e., an "E" followed by a signed, two-digit integer. On
input, however, the "E" or the "+" sign, or the entire exponent may be omitted on the
external form. For example, the following are all valid E15.6 fields:

.317250+2

.317250E2

.042739-45

31064
The field width w includes all of the characters (decimal point, signs, blanks, etc.) which
comprise the number. If a number is too long for its specified field, the excess characters

are lost, Since numbers are right justified in their fields, the loss is from the most

significant part of the number,

During input, the appearance of a decimal point "." in an E or F type number overrides the
d specification of the field. In the absence of an explicit decimal point, the point is
positioned d places from the right of the field, not counting the exponent

if nresent
y T present

For example, a number with external appearance 271828E-1 and specification E12.5 s

interpreted as 2,71828E-1,

Scale Factors

Scale factors can be specified for F and E type conversions. A scale factor has the form
nP where P is the control or identifying character, and n is a signed or unsigned integer
specifying the scale factor. In F type conversions, the scale factor specifies a power of
ten, such that

external number = (internal number) * (power of ten)

-38-

With E type conversions, the scale factor is used to change the number by a power of
ten and then to correct the exponent such that the result represents the same real number
as before, but now has a different form. For example, if the statement
FORMAT (F10.3,E14.4)
corresponds to the line
14,614 -0.6861E-00
then the statement
FORMAT (-2PF10.5, 1PE14.3)
corresponds to the line
14614 -6,861E-01
The scale factor is assumed zero if none has been given. However, once a value has been
given, it holds for all E and F type conversions following the scale factor within the format
statement. A zero scale factor can be used to return conditions to normal. Scale factors

have no effect on type 1 conversions.

Alphanumeric Fields

Alphanumeric data can be handled in much the same manner as numeric data through use
of the form Aw where A is the control character and w is the number of characters in the
field. The alphanumeric characters are transmitted as the value of a variable of an input-

output list,

For example the statements
READ 2, X
2 FORMAT (A5)
cause five characters to be input from a punched card and placed in memory as the

value of the variable X,

Although w may have any value, the maximum number of characters transmitted is
determined by the space allotted for the value of the variable, For an integer variable,
the maximum is four characters; for a floating=-point variable, the maximum is eight.
Characters beyond the maximum are lost on input and replaced with blanks on output,

A field width of less than the maximum causes blanks to be filled in after the given

characters until the maximum is reached. That is, the characters are left justified.

-39-

Alphanumeric Format Fields

Alphanumeric fields may be specified within a FORMAT statement by simply enclosing the

alphanumeric string in dollar signs "$".

For example, the statement

FORMAT ($ TEST COMPLETE $)
can be used to type

TEST COMPLETE

on the console typewriter..

The characters of an alphanumeric format field are not transmitted as values of variables.
The characters are stored in the memory space allotted to the format specification itself
and are transmitted to and from this space during input and output. The alphanumeric
field is allofted space sufficient for exactly the number of characters, k, appearing
between the dollar signs, An input-output list is not required for transmission of this
type of field. During input, k characters are extracted from the input record and replace
the k characters included within the specification, During output, the k characters
specified, or the k characters which have replaced them, become part of the output record.
For example, the statements

ACCEPT 2

2 FORMAT ($ TEST COMPLETE $)

can be used to replace the 15 characters TEST COMPLETE with the 15 characters
NONCONVERGENT from the conso le ty
Then the statement

TYPE 2
will type

NONCONVERGENT

An alternate method of specifying alphanumeric format fields is allowed. In this method,
the alphanumeric string is preceded by the form kH, where k is the number of characters
in the string. Blanks are counted. For instance. the format in the example above can be

written:

FORMAT (15H TEST COMPLETE)

-40-

Mixed Fields
An alphanumeric format field specification may be followed by any field specification to
form a mixed field specification. For example, the use of the statement
FORMAT ($ VELOCITY = §,F8.4)
can result in the output line
VELCCITY = 6.4142
An alphanumeric field specification can also be followed by the repeated field and

multiple record specifications outlined below.

Blank or Skip Fields

The specification kX may be used to include k blank characters in an output record, or
to skip k characters of an input record. k must not equal zero.
Consider:
FORMAT ($TIMES, F8.4, 12X, X, F8.2)
This statement can be used to output
TIME 1.2863 X -148.61

where twelve blanks separate the two quantities.

Commas in Input Records

On input the occurrence of a comma within a numerical field causes termination of the
field. This allows simplified preparation of data records using commas as field teminators
For example, a data record using the format

FORMAT (19, 4F12.6)
may be punched

5,3.14, 7.2, 16.5, 9.34

The field width specified in the format must be greater than the number of characters

encountered before the comma.

Repetitions of a Field Specification

It may be desired to input or sutput successive fields within one input or output record
according to the same field specifications. This is done by preceding the control character
(E, F, 1, or A) by the number of repetitions (k) desired. Thus, the statement

FORMAT (12A6)

-41-

specifies during input that twelve fields of six characters each are to be accepted from the

input records,
The number of repetitions must not be zero,

Repetition of Groups

Parentheses can be used for repetition of groups of field specifications. Thus the statement
FORMAT (2(E6.1, F10.6), F6.6)
is equivalent with
FORMAT (E6.1,F10.6, E6.1, F10.6, F6.6)
Alphanumeric fields can be repeated also in this manner, Thus
FORMAT (2($ AZIMUTH $))
is equivalent to
FORMAT ($ AZIMUTH $, $§ AZIMUTH $)

Nesting of group repetitions is not allowed. The number of repetitions must not be zero.

Multiple Record Specifications

To handle a file of input-output records (a page of printed lines, a deck of cards, etc.)
where different records have different field specifications, a slash "/" is used to indicate
a new record. Thus, the statement

FORMAT (2F6.4/13, F6.4)
is equivalent to the statement

FORMAT (2F6.4)
for record one, and the statement

FORMAT (I3, F6.4)

for record two.

If the field specifications of the first record are different from that of following records
(master record at the start of a file, etc.), then the field specifications of the first record
(master record) should be followed by the field specifications of the following records
(data records) enclosed in parentheses as shown in the statement below.

FORMAT (6110, F12.2/(6E12.0))

In general, if transmission of data is to continue (as specified by the variable list of an

-42-

input-output statement) when the end of a format statement (except for parentheses) has been
reached, the format is repeated on the next input-output record from the last open pa-

renthesis. Thus, both the slash and the sequence of closing parentheses at the end of a

FORMAT statement indicate the termination of a record.

For example the statements
PUNCH 2, (A(K), K =1, N)
2 FORMAT (E15.6)

cause the values of A(1), A(2), etc. to be punched one value to a card.

However, if
2 FORMAT (3E15.6)

is used, the values are punched three to a card. All values have format E15. 6.

The total of all field widths specified for any record is the length of the record. If the rec-
ord length specified is greater than the maximum allowed on a particular device, the excess

characters are lost.

Maximum record lengths are:

1. Typewritten line 80 characters

2. Punched card - 80 characters
3. Paper tape - 80 characters
4. Magnetic tape - 132 characters

5. Printed line 132 characters

Blank lines may be introduced in printed text by using consecutive slashes.

43

Printer Carriage Control

The first character of every line of information output to the line printer controls the move-

ment of the paper form through the printer as follows:

Character Action

blank Single space

0 Double space; character is not printed

1 Eject to top of form; character is not printed
+ Suppress spacing; character is not printed
any other Single space; character is printed

44

V. DECLARATIONS

A declaration is a description of certain properties of the program, rather than a
specification of computation or other action. Several FORTRAN statements are used
solely for the purpose of supplying the system with declarative information. These
statements are primarily concerned with the interpretation of identifiers occurring in

the source program and memory allocation in the object program.

CLASSIFICATION CF IDENTIFIERS

Each identifier appearing in a source program is classified as to the language element it identifies.

Four main classifications are recognized:

scalar identifiers

array identifiers

subprogram identifiers

dummy identifiers
The classification is made according to the context in which the identifier first physically
appears in the source program. This first appearance amounts to a declaration, explicit

or implicit, of the proper interpretation of the identifier throughout the program.

DIMENSION Statement
The DIMENSION statement is used to declare an identifier to be an array identifier and

to specify the number and limits of the array subscripts. Any number of arrays may be

declared in a single DIMENSION statement.

The information provided by a DIMENSICN statement is required for allocation of
storage for arrays, Each array variable appearing in a program must represent an element

of an array declared in a DIMENSION statement, The array variable must have the same

-45-

number of subscripts as were declared for the array and the value of each subscript must
be within the limits specified by the DIMENSION statement. The DIMENSION statement
must precede the first appearance of the array variable in the program,

FORM: DIMENSION S], S ;S

or weer O

where S is an array specification.
Each array specification gives the array name and the minimum and maximum values
each of its subscripts may assume, thus:
name (min/max, min/max, ..., min/max)
The minima and maxima must be integers, signed or unsigned. The minimum must not exceed

the maximum, Thus both negative and zero subscripts are permitted.

For example, the statement
DIMENSION X(-1/6, 2/5)
specifies X to be a two-dimensional array with the first subscript varying from -1 to 6,

inclusive, and the second from 2 to 5, inclusive,

Minimum values of 1 may be omitted. For instance

DIMENSION Y(@3, 4, 2)

is taken to be
DIMENSION Y(1/3, 1/4, 1/2)
EXAMPLES:
DIMENSION X(10)
DIMENSION X(10), Y(5, 0/6)
DIMENSION INDEX (-12/-8,7/20), ARG (400), FUN (2, 2, 2, 2

SUBPROGRAM DEFINITION STATEMENTS

The subprograms which may be called, or referred to, by a FORTRAN program are classified

as external or internal subprograms,

Internal subprograms are defined within the calling program. The definition is accomplished

in a single statement-the arithmetic function definition statement. These subprograms

-46-

are defined, and referrable, only within the program containing the definition.

External subprograms are defined outside of the program which refers to them and are
complete programs conforming to all the rules of FORTRAN programs. They may be compiled
independently or with the main program which refers to them. The library programs included

in the system are external subprograms.

Two types of external subprograms are available: the FUNCTION subprogram and the
SUBROUTINE subprogram. The use of the declarations FUNCTION and SUBROUTINE

in the definition of external subprograms is described in the sequel.

A subprogram, internal or external, may call other subprograms during its execution; however,

recursion is not permitted.

DUMMY IDENTIFIERS

Subprogram definition statements declare certain identifiers to be dummy identifiers, These

identifiers represent the arguments of the subprogram. When used in the subprogram they
indicate the sort of elements which may appear as arguments and how the arguments are
to be used. The dummy identifiers are replaced by the actual arguments when the sub-

program is executed,

Arithmetic Function Definition Statement

FORM: identifier (identifier, identifier,...) = expression
This statement serves to define an internal function for use in a particular program. The
entire definition is contained in the single statement and this definition holds only in the
program containing it. The appearance of a function name in an expression suffices to call
the function during the evaluation of the expression at run time. The function has a single

value whose mode is determined by the function identifier,

The defining expression for a function may include external functions or other previously

defined internal functions.

The list of identifiers enclosed in parentheses represents the argument list of the function,

These identifiers are dummy identifiers, They have meaning and must be unique only

—47-

within the definition statement and may be identical to identifiers appearing elsewhere in the
program. These identifiers must agree in order, number, and mode with the actual arguments
presented to the function at run time. The number and mode of the arguments are checked at

run time.
All arithmetic statement functions must precede the first executable statement of the program.

An argument of the function is specified in the defining expression through use of its corres-
ponding identifier. Expressions are the only permissible arguments of interal functions; there-
fore the dummy identifiers may appear only as scalar identifiers in the defining expression.

They may not appear as array subprogram identifiers.

Identifiers which represent quantities other than arguments of the function can be used in the
defining expressing. These quantities act as parameters, i.e., the function is evaluated

using values which are current af the time the function is called.

EXAMPLE:
NUMBER (K) = K* (K+1)/2
BINV (X, B) = (X+B/X)/2
CATEN (X) = A(X)* BINV (EXP(X/A(X), 1)

In the last example, X is a dummy identifier and A(X) is a parameter.

FUNCTION Subprograms

A FUNCTION subprogram is a program which, as a function of one or more arguments, computes
and returns a single result, and is called or referred to by the appearance of its name in an ex-
pression. A FUNCTION subprogram begins with a FUNCTION declaration and returns control

to the main program by means of one or more RETURN statements.

FORM: FUNCTION Identifier (identifier, identifier, . . .)

RETURN

RETURN

—48-

FUNCTION Statement

FORM: FUNCTION identifier (identifier, identifier, ...)

This statement declares the program which follows o be a FUNCTION subprogram, The first
identifier is the name of the function being defined, This identifier must appear as a

scalar variable during execution of the subprogram.

Identifiers appearing on the list enclosed in parentheses are dummy identifiers representing
the function arguments, They must agree in order, number, and mode with the actuadl
arguments presented to the function at run time. The number and mode of the arguments
are checked at run time, FUNCTION subprogram arguments may be expressions or array
names; therefore the dummy identifiers may appear as scalar or array identifiers, They
may not appear as subprogram identifiers, Dummy identifiers which represent the names

of arrays must appear in DIMENSION statements in the subprogram, Furthermore, the
declared dimensions of each must equal the dimensions of the actual arrays presented to

the function at run time.

A function must have at least one argument,

EXAMPLES:
FUNCTION FIND (TABLE, X)
FUNCTION MEMBER (SET, FORM)

As an example of a FUNCTION subprogram consider the following program which finds

the inner product of two 3-dimensional vectors,

FUNCTION DOT (V1, V2)
DIMENSION V1 (3), V2(3)

DOT =0
DO2K=1, 3

2 DOT = DOT + V1 (k) * V2 (k)
RETURN

—49-

The arguments of this function are floating=point array names, represented by the dummies

V1 and V2. The value of the function is the single floating=-point quantity DOT.

SUBROUTINE Subprograms
A SUBROUTINE subprogram differs from a FUNCTION subprogram in that it can be referred
to only by a CALL statement and it may return more than one value. A SUBROUTINE sub-

program begins with a SUBROUTINE declaration and returns control to the main program by

means of one or more RETURN statements.

FORM: SUBROUTINE identifier (identifier, identifier, . . .)

RETURN

RETURN

SUBROUTINE Statement
FORM: SUBROUTINE identifier (identifier, identifier, . . .)

The SUBROUTINE statement must be the first statement of a SUBROUTINE subprogram. The
first identifier is the name of the subroutine. The identifiers appearing on the list enclosed
in parentheses are dummy identifiers representing the arguments of the subroutine. These

identifiers must agree in order, number, and mode with the actual arguments presented to

the subroutine at run time. The number and mode of the arguments are checked at run time.
SUBROUTINE subprograms may have expressions or array names as arguments, so the dummy
identifiers may be used as scalar or array identifiers. Dummy identifiers may not be used as

subprogram identifiers.

-50-

Dummy identifiers which represent array names must appear in DIMENSION statements in
the subprogram. The dimensions so declared must equal the corresponding dimensions of the

actual arrays specified when the subroutine is called,

A SUBROUTINE subprogram may use any of its dummy identifiers to represent results or values

of the subroutine,

A SUBROUTINE subprogram need not have any arguments at all.
EXAMPLES:
SUBROUTINE SORT
SUBROUTINE FACTOR (COEF1,COEF2,COEF3,RO0T1,ROOT2)
SUBROUTINE NORMALIZE(X, K)
The program below is an example of a SUBROUTINE subprogram which finds the outer
product of two 3-dimensional vectors,
SUBROUTINE CROSS (V1, V2, V3)
DIMENSION V1(3), V2(3), V3(3)
V3(1) =V1(2)*V2(3)-V1(3)*V2(2)
V3(2) = V1(3)*V2(1)=-V1(1)*V2(3)
V3(3) = VI1(1)*V2(2)-V1(2)*V2(1)
RETURN
Notice that the name CROSS plays no part in the answer. The dummy array V3 is used

to return the result.

IMPLICIT DECLARATION
Identifiers appearing in declaration statements such as DIMENSION, FUNCTION and

SUBROUTINE are explicitly classified. If the first appearance of an identifier is not in

a declaration, but in some imperative statement, the identifier is classified according to
its context, i.e., implicitly. Examples of both types of declaration are shown in the
program below, The program is @ FUNCTION subprogram which finds the greatest distance
from the origin attained by a set of points, The numbers marked with a # are line numbers

for reference,

-51-

#1 FUNCTION BIG RADIUS (X, Y)

#2 DIMENSICN X(100), Y(100)

#3 R SQUARED (K) = X(K)*X(K)+Y(K)*Y(K)

#4 BIG R SQUARED = R SQUARED (1)

#5 DC 2 K=2, 100

*6 IF (BIG R SQUARED - R SQUARED (K)) 1, 2, 2

#7 1 BIG R SQUARED = R SQUARED (K)

#8 2 CONTINUE

#9 BIG RADIUS = SQRT (BIG R SQUARED)
#10 RETURN

Line # 1 declares BIG RADIUS to be the name of an external subprogram for use in other
programs and to be the name of the scalar result of the subprogram. X and Y are declared

to be dummy identifiers representing floating=point quantities, Line #2 further declares

X and Y to represent array identifiers, Line #3 declares R SQUARED to be the name of

an internal subprogram and K to be a dummy identifier representing an integer argument,
This is because R SQUARED is used in a functional form and has not been previously declared
to be a dummy, scalar, or array identifier. The identifier K is defined to be a dummy only

within this single statement.

In line ¥4, BIG R SQUARED is implicitly declared to be a scalar floating=point variable.
Line #5 implicitly declares K to be an integer scalar variable, Notice that the K of line
#5 has no relation to the dummy K of line 73, and is not a dummy identifier. The line #5

K has meaning, and is used, else where in the program,

Line #9 implicitly declares SQRT to be an external subprogram name, since SQRT has not
been previously declared a dummy, array, or scalar identifier and is being used as a function

identifier,

MEMORY ALLOCATION

Memory allocation declarations supply the system with supplemental information regarding the

storage of scalar variables and arrays,

-52-

COMMON Statement
FORM: COMMON identifier, identifier, ..., identifier
The identifiers of a COMMON statement may be scalar or array identifiers, The COMMON

statement specifies that the scalars and arrays indicated are to be stored in an area also
available to other programs. By use of COMMON statements, a common storage area may be

shared by a program and its subprograms,

Each array name which appears in a COMMON statement must also appear in a DIMENSION

statement in the same program,

Quantities whose identifiers appear in COMMON statements are allocated storage in
the same sequence that their identifiers appear in the COMMON statements, beginning
with the first COMMON statement in the program,

Storage allocation for common quantities begins at the same location for all programs, Thus,
the programmer can establish a one-to-one correspondence between the quantities of several
programs even when the same quantities have different identifiers in the different programs.
For example, if a program contains

COMMON A, B,C
as its first COMMON statement, and a subprogram has

COMMON X,Y,Z
as its first COMMON statement, then A and X will refer to the same storage location, A

similar correspondence holds for the pairs B and Y, C and Z,

Identifiers which correspond in this way must agree in mode for meaningful results.
EXAMPLES:
COMMON A,B,C,X,Y,Z
COMMON ALPHA, THETA, MATRIX

EQUIVALENCE Statement
The EQUIVALENCE statement allows more than one identifier to represent the same quantity.
FORM: EQUIVALENCE (R], R) (Rk’ R 1” 0 PN

where R denotes a location reference.

-53-

The location references of an EQUIVALENCE statement may be simple scalar or array identi-

fiers or identifiers appended by a single integer constant enclosed within parentheses. The

inclusion of two or more references in a parenthesis pair specifies that the quantities referenced

share the same storage location. Such a group is called an equivalence set. For example
EQUIVALENCE (HOGAN, GOAT)

specifies that the quantities HOGAN and GOAT are to share the same storage location,

Quantities declared equivalent in this manner must be of the same mode.

To reference a specific location in an array, that location may be appended as an integer
constant fo the array identifier, For example, if ALPHA is a variable and BETA is an array,
the statement

EQUIVALENCE (ALPHA, BETA (4))
specifies that ALPHA and the fourth location of array BETA are to share the same storage

location.

To reference a specific quantity in a multiply-dimensioned array, the location of the quantity
must first be calculated. For example, consider a three-dimensional array specified by
U

DIMENSION CUBE (L,/U,s L,/U,, L3/ N
where L and U denote the minimum and maximum values permitted for the subscripts, To
calculate the location of the quantity

CUBE (K, Ko K3)
use the formula

H = - * - * - - * - -
Location (K3 L3) (U] L]+I) (U2 L2+l)+(K2 L2) (U] L ! +1) +K] L] + 1

Thus, the statement pair

DIMENSION TEMP (10), CUBE (-1/1, -3/-2, 4)

EQUIVALENCE (TEMP(4), CUBE (7))
specifies that the quantities TEMP (4) and CUBE (=1, -3, 2) are to share the same storage

location.

Notice that it is only the relative locations of the quantities within the array that matters,
since the entire arrays are adjusted to satisfy the equivalence, In the example above, the

statement

EQUIVALENCE (TEMP (2), CUBE (5))

~54-

has the same effect as

EQUIVALENCE (TEMP(4), CUBE (7))

When the location of a variable is known relative to a second variable, this location may
be specified by appending an integer constant to the identifier of the second variable, The
integer to be used can be determined by considering a sequence of quantities as a one-

dimensional array. For example, if we have in storage at

LOCATION
L]: ALPHA
L2: BETA
L3: GAMMA
L4: DELTA

then the statement
EQUIVALENCE (X, ALPHA (3))
specifies that the quantity X and GAMMA are to share the same storage location.

Note the property of equivalence is transitive; in other words, both of the statements
EQUIVALENCE (A, B), (B, C)
EQUIVALENCE (A, B, C)

specify that A, B, and C are to share the same storage location.

Further Rules for COMMON and EQUIVALENCE
When quantities are involved in both COMMON and EQUIVALENCE statements, the

COMMON statement takes precedence. Common storage is allocated first and quantities

equivalenced to common quantities are placed as an overlay,

Any quantity which is to be stored in common must be placed there by a COMMON statement
before being referenced by an EQUIVALENCE statement, Thus

COMMON ALEPH

EQUIVALENCE (ALEPH, BETH)
is a proper sequence, but

EQUIVALENCE (ALEPH, BETH)

COMMON ALEPH

is not allowed,

-55-

Furthermore, an equivalence is not assigned if it results in an overlay which extends beyond
the bounds of common. For =xample, if A is a scalar and B an array of 5 quantities then
COMMON A
EQUIVALENCE (A, B (4))
would cause the array B to extend beyond the bounds of memory. The requested equiva-

lence will not be assigned. However the sequence

COMMON B
EQUIVALENCE (A, B (4))

is proper. The equivalence is the same, but common is four places larger.

No equivalence set may contain a reference to more than one quantity which previously has
been equivalenced or placed in common. Thus the sequence

COMMON ONE

EQUIVALENCE (TWO, THREE)

EQUIVALENCE (ONE, TWO)
is not allowed, The equivalence may be accomplished correctly this way;

COMMON ONE

or
COMMON ONE
EQUIVALENCE (ONE, TWO), (TWO, THREE)

-56-

N nun l’ [1] ll“l o n N

WENTCGU 2N~

COODDOOOCOoO0O0O0000O00O00O0O0O0O00O00O0O000O000O00O0000OoO0CoOo0000

APPENDIX A

THE FOLLOWING STATEMENTS ILLUSTRATE FEATURES B8F THE SJS 900 SERIE
FORTRAN 11 wHICH ARE NO8T FOUND IN MaNY O8THER FORTRAN COMPILERS.

CARD TECHNIGQUES
NUMBER ILLUSTRATED

40 ARITHMETIC STATEMENT FUNCTION: NAME NOT ENDING [N F3
DUmMMY VARIABLE SAME NAMES SJURSCRIPTED VARIABLE JUSED.
47 12-DIGIT ACCURACY.
5253, 56~59 STATEMENT NUMOERS NOT RIGHT=JUSTIFIED.
55 MIXED MBDE EXPRESSION.
§6 SUMSCKIFPTED SUBSCRIPTS~TO ANY LEVEL.
87 FLOATING PBINT SUBSCRIPT EXPRESSIONS.
58 CONSECUTIVE EXPANENTIATIOGNS MIXED ®E®* FORA OF CONSTANTS.
§9 [DENTIFIERS BF ANY LENGTH.
60 VARIAGLES wITH SAME NAME AS FUNCTION,
62 SUMSCRIPTED VvaRIABLE ENDING IN F.
63 ANYT NUMBER OF DIVMENSIONS.
64 SJBSCRIPT KANGE SPECIFICATION, INCLJUDING LER® AND NEGATIVE.
66 BACKWARD D& LOOP: COMMA BPTIBNALS S DIGIT STATEMENT NUMBER
67 FIKST STATEMENT AFTER *ul® NOT EXECUTABLES $ USED To DEFINE
ALFHANUMERIC S3TRING: COMMAS BMPTIONAL WHERE UMAMSIGUBUS.
68 DY LOUP VARIASLE FLUATINGS INDICES FLOATING EXPRESSIBNS
69 NEGATIVE SUBSCRIPTSs MIXED MAOE SUBSCRIPT EXPRESSIONS.
72 D% LOOP VARIABLE CHANGED wITHIN LOGP.
73 DO LBGP LIMIT CHANGeD WITHIN LOGBP.
74 *END® 0K AS BEGINNING OF oTATEMENT.
75 INIEGERS UP Td B8+388.,60/ ALLOWED.
78 EXPFRESSION PERMITTED INSTEAD 8F CONSTANTS
TRANSFER INTO DO LOOP.
79 EXPRESSION PERMITTED INSTEAD O6F VARIABLES COMMA OPTIONAL.
80 FLOATING, SURSCRIPTED VARIASLE IN *ASSIGNED GO To°
81 N§ STATEMENT NUMBER LIST rREJUIRED.
83 BACKWARD I/0 LISTS PANKENTHESES OPTIONAL.
88 EWUIVALENCE NoT PERMITTeD T8 ALTER COMMON.
89 *END® NOT LEFT JUSTIFIEU. '

DIMENSISN ARRAY[10) ,MATRIX[4,4] LABEL[4]RETURNIS)
FUNCTIONLFUNCTION]) = ARRAY[[)I*SuRTIFUNCT]IUN]

I = 2 :

INTEGEKR = 83

N =3

TIME = .5

DELTA X = .9

END = 4.u

A = ,427/765345223

READ 27, LABELSIIMATRIXIJsK)s K=1s4]s J=1+49]4ARRAY
PRINT 28, LABEL+[IMATRIX[JoK]s K=1s4],s J=1+4]

12 FORMAT (//4F12.7/5F12.7//$SPACE TIME CEOKRDINATE 23/6(aF10.5/1//

27
28

2

$ALFHA =$4[3F10.5/8X1/1H1]
FORMAYT [20I14/10F8.4)
FORMAT [$LABEL =$4[5//SMATRIA =84[415/8X]]

-57-

54 29 FORMAT [8Flu.S]

= 53 1 & = 3*%A + 4,0/1 + ABSFI6*INTEGER]

= 58 2 B = ARKAYIMATRIXILABELIIILI)

= 57 3 C = ARRAY(=13.4 + SURT(A+B])

= 58 q D = BxxCxx[pA=-8SEQ]

= 5y 8 SUM OF CrEFFICIENTS = A+B+C+D

= 60 SIN = SINF[u]

= 61 DIMENSION SukTFIS)

= 62 SARTFII] = 3

= 63 DIMENSION SPACE TIME CBORDINATE (4444348

= 64 DIMENSION ALPHA(=-3/10,0/2,100/103]}

= 63 READ ¢9+ [(SPACE TIME COBORDINATE [leleJeKle K=1eBls J=2],3]
= 66 54321 DB 7+ J=N+l o Ny=}

= 67 11 FOKMAT [$ARRAY =310X10F1Q.4/]

= 68 DB 7 VELOCITY=ARRAY[J)/TIME+D+SIGNFIDELTA Xs=ARRAYI[J]]
= 69 € ALPHA[=14J=NolOU+VELBCITY/2] =

= 70 2 SPACE TIME([LlweloeJ=N+l MINI[7+15*VELBCITY#]1]*]J

= 71 IF [END=VELOCITY] 7,6%.7

= 72 68 J = J=1

= 73 N = N=1

= 74 7 END = ENU + VELBCITY=*12.0123436789

= 75 J = INTEGER-7654321

= 76 A = A=-300

= 77 VELBCITY = VvELGOCITY/2

= 78 IF ISENSe SWNITCH ABsFlAl/160) 6.8

= 73 8 GO TO [9,14] MOD [1,2) + |

= aQ S ADSIGN 1U To KRETURNII)

= 8l GY TO& REIURNITI

= 42 14 STOP

= 83 10 PRINT 11+IARRAY(Ile I=10el,e-11

= 84 PRINT 12, SUM OF CBEFFICIENTS,SIN,END,VELOCITY,3QRTF,
= 85 2 LIISPACE TIME [loeJeKeAly AzBoloe=lle Jzle342)0 Kzloede2*xTImME),
= &6 3 [[ALPHA[-leQIOD-A)o J=0'2)0 Q=-3QO]

= B/ COMMON J, RETURN

= 83 EUUIvaLENCE [RETURNLENDI

= 8y E N 0

CommaN ALL3CATIGN
77777 J 77765 RETURN 77765 END

PROGRAM ALLBCATIOGN

00014 ArRxAY 00047 MATRIX A00EQ0 LABEL 000€4 SuRTF
00076 SPACETIM Q01475 ALPHa Jeézle 1 02217 INTEGEX
02223 N 02221 K g2222 TIME J2224 DELTAX
J2c26 A 02233 8 Qeée3e C U234 D

J2¢30 SBUMBFCOE (02243 SIN Je242 VELGOCITY

SU3FPROGRAMS REUWUIRED

SURT ARSF S INF SIGNF MIN M D

THe END -58-

APPENDIX B

Compiler Diagnostics

The compiler does extensive error checking on FORTRAN source programs and pinpoints de-
tected errors to facilitate correction. In general, errors are non-fatal; the object program
may still be produced and run, bearing in mind the changes introduced by the errors, as de-

scribed below.

Two types of diagnostics are provided by the compiler.

I. Statement Diagnostics

Most errors are caused by one particular statement being faulty. The compiler detects these
errors at the time it encounters such a statement and prints an error indication beneath it on
the listing. If the compiler is operating in the non-list mode, only the statements in error

are listed, along with the error indications.
Statements in error are discarded and compilation then proceeds as if they had never existed.

The compiler proceeds from left to right in translating a source statement. When an error oc-
curs, the compiler notes the character at which the error became evident and prints a A under-

neath it on the listing. The delta may indicate an error of:

A. Omission = The statement has ended and something further is
required. The A will follow the last character in

the statement, e.g.:

A=B**
A

B. Commission - The flagged character does not make sense where

it is. The compiler cannot proceed beyond it, e.g.:

A=SQRTF(/B)
A

C. Usage - A number or identifier which is incorrect will be
flagged underneath its last character, since it was
at this point that the compiler had examined it
completely, e.g.:

COMMON ALPHA, ALPHA

AN

£a

-59-

An error message will also be printed on the following line. These messages are:

1. SYNTAX

At the flagged character, the statement no longer conforms to the syntax

of any recognized type of statement.

2. SUBSCRIPTS

The number of subscripts being used with the array does not equal the

number declared for the array.

3. ID DECLARATION

The identifier marked is being used in a manner which contradicts a pre-

vious declaration.

4. ALLOCATION

Allocation errors may occur in three statements:

A. In a DIMENSION statement, either:
1. A negative or zero dimension is specified.
2. The lower limit for a subscript exceeds the upper limit.

3. The requested size of an array exceeds 16 K.

B. An identifier appears in COMMON which has previously appeared
in either COMMON or EQUIVALENCE.

C. In an EQUIVALANCE set, more than one identifier has previously
appeared in either COMMON or EQUIVALENCE.

5. NUMBER

Number errors are of two types:
A. The magnitude of the integer marked exceeds 8388607.

B. The number marked is a statement label which does not fall between
1 and 99999 inclusive.

6. OVERFLOW
The statement cannot be compiled due to either:
A. Too many continuation cards.
B. Exhaustion of the compiler's working storage. In this case,

compilation is terminated and the compiler initializes for a new job.

-60-

II. Program Diagnostics

Certain errors cannot be detected until the entire source program has been read. These will

be indicated beneath the source listing, with the summary listing. These are:

1.

DO NEST ERRORS

The statement numbers listed were meant to close the range of a DO

statement. The compiler cannot close the DO loop correctly if:
A. The closing statement is undefined. See under labeling errors.

B. The closing statement is a transfer. The incrementing and testing

of the DO loop will never take place.

C. The closing statement is within the range of another DO statement

which follows this one (i.e., the ranges partially intersect). The

results of such a situation can be determined by inspection.

LABELING ERRORS

The statement numbers listed are either:

A. Undefined - The program will run normally until a transfer to one
of these statements is actually attempted. At this point, the typeout
"ERR LABL" will occur, and the program will not proceed.

B. Multiply Defined - All transfers will be made to the last statement

encountered with each of the particular numbers.

Errors Under COMMON ALLOCATION

If the bounds of COMMON are exceeded by improper use of EQUIVALENCE,
those variables which cannot be assigned as requested will appear under COM-
MON ALLOCATION, preceded by the word "ERROR" instead of an octal lo-
cation. Such variables will then be assigned again under PROGRAM ALLO-
CATION as if they had never appeared in the EQUIVALANCE.

The following listing illustrates most of the different types of error diagnostics:

-61-

e W W W M S
OO E WN =

OOO0O 0

ALLOCATION

18

13
13

7
ALLOCATION
8 ¢
9 C
19 C
11

12

13

1 C
15 ¢
16 C
17

18

ID DECLARATION
19 ¢
20 C
21 ¢
22
SUBSCRIPTS
23 ¢
24 C
25 C
26
NUMBER

27 ¢
28 C
29 C
30
ALLOCATION
31
32 C
33 C
3

35

36

37 ¢
38 C
39 C
49

41

42

43

THE FOLLOWING STATEMENTS WILL

ILLUSTRATE THE ERROR CHECKING

FEATURES OF THE SDS 9@@ SERIES FORTRAN 11|

ZERO OR NEGATIVE DIMENSIONS

DIMENSION ALPHA[Q]

A

DIMENSION BETAIL-1,3]

A

COMMON EXCEEDED [SEE BELOW UNDER COMMOM ALLOCATION]

DIMENSION A[3],R[20]

COMMON X,Y,Z

EQUIVALENCE [A,Y]

FUNCTION NAME USED AS ARRAY

X # ROARINGI
ROARING[20,2

WRONG NUMBER OF SUBSCRIPTS

A

Y # All,J]
A

I,
gl

B

]
GOODOLD*GONEBY

NUMBER TOO LARGE

J # 123456789

A

ARRAY TOO LARGE

DIMENSION ENORMOUS[1000,1000]

A

MISSING AMD DUPLICATE STATEMENT NUMBERS [SEE BELOW]

X #Y
Y # X
GO TO

DO LOOP ERRORS [SEE BELOW]

5

DO 3 141,10

DO L4 J#1,3

IF [X-Y) 18,18,19
DO 6 1#1,10

-62-

Ly DO 7 J#1,10
45 6 X # X&RI[1]
L6 7 Y # Y&R[I]
L7 C
48 C MISCELLAMEOUS SYNTAX ERRORS
L9 C
50 READ 41, [R[I1]1, 1#1]
A
SYNTAX
51 X # 3,%[[2.&Y)*SQRTI[3.14159265359/ [Y**2&Z**%2~-4,7[P-Q)J1]1 & ABSI[P
A
SYNTAX
52 X # ALPHA®BETA**[1,&SCRT[12.6%P*=Q1/3.5]1=2,%%y
A
SYNTAX
53 3.%P#Q
A
SYNTAX
54 \F [P-Q] 27,16
A
SYNTAX
55 X # =[1,82.8*%[R[3]=4,.,*%R[1]1*[3,~-SQRTFI[P&Q/[1,&X**21]11111
A
SYNTAX
56 14 FORMAT [4F12,5,17,14HTOTAL VALUES Fl12.01]
A

SYNTAX
57 END
DO NEST ERRORS

6 4 3
LABLING ERRORS

13 5 3
COMMON ALLOCATION

77776 X 77774 Y 77772 Z ERROR A
PROGRAM ALLOCATION
gopos A pppP13 R 0pg63 1 gopgou J

ggp6s B
SUBPROGRAMS REQUIRED

RCARIMNG

THE EMND

-63-~

APPENDIX C

SYNTAX

SYNTACTICAL DEFINITIONS

This section contains the precise definition of the syntactical structure of the XDS 900 Series

FORTRAN || language. The definitions are those used by the processor itself and should serve

as a reference for any question regarding syntax.

Restrictions on the definitions, such as maximum length of strings, lists and so forth, are not
included here, nor is any reference to semantics, This information is found in the appropriate

section of the text.

FORM OF THE DEFINITIONS

The definitions have the general form:
construct being defined:
definition

The colon means "is defined to be". The definitions usually contain other constructs
which are defined elsewhere. The following elements are not defined as constructs and are
considered basic:

integer

identifier

alphanumeric field

All constructs are written as one word or as a hyphenated sequence of words and are to be con-

sidered as indivisible symbols.

The metalinguistic symbols used are parentheses, quotation marks and the plus sign. The plus
sign is read "or". Parentheses are used for grouping as in mathematical notation. Quotation

marks are used to enclose literals. A plus sign followed by a blank means "or nothing".

-65-

As an illustration, consider the definition below,
call -statement:

"CALL" identifier ("(" expression=list ")" +)

This definition is read: "A call-statement is defined to be the letters CALL followed by an
identifier. The identifier may be followed by a left parenthesis, an expression=list and a

right parenthesis or the identifier may be followed by nothing at all".

Many of the definitions are recursive, For instance the definition:
expression=|ist:
expression ("," expression=list +)
states that an expression list is a series of expressions separated by commas, Notice that at

least one expression must be present,

-66~

APPENDIX D

SYNTAX FOR XDS 920/930 FORTRAN 11

fortran-statement:

(arithmetic-statement + arithmetic-function-definition-statement + accept-statement
+ accept-tape-statement + assign-statement + assigned-go-to-statement + backspace-
statement + call-statement + common-statement + computed-go-to-statement + con-
tinue-statement + dimension-statement + do-statement + end-file-statement + equi-
valence=-statement + format-statement + function-statement + go-to-statement + if~
statement + if-floating-overflow-statement + if-sense-light-statement + if-sense-
switch-statement + pause-statement + print-statement + punch-statement + punch-tape-
statement + read-statement + read-input-tape-statement + read-tape-statement + re-
turn-statement + rewind-statement + sense-light-statement + stop-statement + sub-
routine-statement + type-statement + write-output-tape-statement + write-tape-state-
ment) end-of-statement

arithmetic-statement:

variable expression

variable:
identifier ("(" expression-list nyn
expression=-|ist:

expression ("," expression-list +)

expression:

("+" +"=" +) unsigned-expression
unsigned-expression:

term (("+" + "=") unsigned-expression +)

term:

factor (("*" +"/M) term +)

-67-

factor:

primary ("**" factor +)

primary:

variable + function + constant + "(" expression ")"

function:

identifier "(" expression-list ")"
constant:

(integer ("." (integer +)+) + "." integer)

("E" signed=~integer +)
signed-integer:

(u+u 4 Man +) in’reger
arithmetic-function-definition-statement:

identifier "(" identifier-list ")=" expression
identifier=list:

identifier ("," identifier=list +)
accept-statement:

"ACCEPT" integer ("," input-output-list +)
input-output-list:

{(variable + "(" input-output=list ")") (*,” (index-control + input-output-list) +)
index control:

"=" expression "," expression ("," expression +)

identifier

accept-tape-statement:

"ACCEPT TAPE" integer (", " input-output-list +)

assign-statement:

"ASSIGN" integer "TO" variable

assigned-go~to-statement:

"GO TO" variable (",)" integer-list ")" +)

-68-

backspace-statement:

"BACKSPACE" expression

call-statement:

"CALL" idenl‘ifier ("(” eXpl'eSSI.On-Iisl' II)II +)

common-statement:

"COMMON?" identifier-list

computed-go-to statement:

"GO TO (u infeger-lisi' n)u (n, L)expression

integer-list:

integer ("," integer-list +)

continue-statement:

"CONTINUE"

dimension-statement:

"DIMENSION" dimension-list

dimension-list:

identifier "(" limit=list ")" ("," dimension-list +)
limit=list:

((signed-integer "/" signed-integer) + ("+" +) integer) ("," limit=list +)
do-statement:

"DQO" integer (", " +) index-control

end-file-statement:

"END FILE" expression

equivalence-statement:

"EQUIVALENCE" equivalence-list

equivalence-|ist:

"(" equivalence-set ")" ("," equivalence-list +)

-69-

equivalence-set:

identifier ("(" integer ")" +) ", " reference-list

reference-list:

identifier ("(" integer ")"+) (", " reference-list +)

format-statement:

"FORMAT (" (format-~list +) ")"

format-list:

format-basic ((", " +) format-list +)

format-basic:
"$" alphanumeric-field "$" + (signed-integer +) "P" +
(integer +) (/" + "X" + "H" alphanumeric-field +
"(" format-list ")" + ("I" + "A") integer +

("F" + "E") integer "." integer)

function-statement:

"FUNCTION" identifier "(" identifier-list ")"

go-to~statement:

"GO TO" integer

if-statement :

"IF (" expression ")" integer ”," integer ","

.
integer

if-floating-overflow-statement:

"IF FLOATING OVERFLOW" integer "," integer

if-sense-light-statement:

"IF (SENSE LIGHT" expression ")" integer "," integer

if-sense-switch-statement:

“IF (SENSE SWITCH" expression ")" integer "," integer

pause-statement:

"PAUSE" (integer +)

print-statement:
"PRINT" integer ("," input-output-list +)
-70-

punch-statement:

"PUNCH" integer ("," input-output-list +)
punch-tape-statement:
"PUNCH TAPE" integer ("," input-output-list +)
read-statement:
"READ" integer ("," input-output-list +)
read-input-tape-statement:
"READ INPUT TAPE" expression "," integer ("," input-output-list +)

read-tape-statement:

"READ TAPE" expression ("," input-output-list +)

return-statement:

"RETURN"

rewind=-statement:

"REWIND" expression

sense~light-statement:

"SENSE LIGHT" expression

stop-statement:

"STOP"

subroutine-statement:

"SUBROUTINE" identifier ("(" identifier-list ")" +)

type-statement:
"TYPE" integer ("," input-output-list +)
write~output-tape-statement:

"WRITE OUTPUT TAPE" expression "," integer ("," input-output-list +)

write-tape~-statement:

"WRITE TAPE" expression ("," input-output-list +)

71~

APPENDIX E

XDS 920/930 FORTRAN II Statements

—
©

Assignment Statement
Arithmetic Function Definition Statement
ACCEPT Statement

ACCEPT TAPE Statement
ASSIGN Statement

Assigned GO TO Statement
BAC KSPACE Statement
CALL Statement

COMMON Statement
Computed GO TO Statement
CONTINUE Statement

12, DIMENSION Statement

13, DO Statement

14, END File Statement

15, EQUIVALENCE Statement
16, FORMAT Statement

17, FUNCTION Statement

18, GO TO Statement

19. IF FLOATING OVERFLOW Statement
20, IF Statement

21, IF SENSE LIGHT Statement
22, IF SENSE SWITCH Statement
23. PAUSE Statement

24, PRINT Statement

25, PUNCH Statement

26, PUNCH TAPE Statement

W
e . . °

*OCDNO\U’!

L

— —
pu— ()
© L]

-73-

27,
28,
29.
30,
31,
32,
33,
34,
35.
36.
37,

READ Statement

READ INPUT TAPE Statement
READ TAPE Statement
RETURN Statement

REWIND Statement

SENSE LIGHT Statement
STOP Statement
SUBROUTINE Statement
TYPE Statement

WRITE OUTPUT TAPE Statement
WRITE TAPE Statement

-74-

ACCEPT
ACCEPT TAPE
Alphanumeric Fields
Conversion
Arguments
alphanumeric
in common storage
of a function
of a library subroutine
(see also " Subprogram argument")
Arithmetic
.arithmetic Expressions
Arithmetic Statements
functions (see "FUNCTIONS")
meaning of

mode of result

truncation of floating=point quantity

Arrays
arrangement in storage
in FUNCTION subprograms
in SUBROUTINE subprograms

Arithmetic Function Definition Statement

Assembler
ASSIGN
Assigned GO TO
BAC KSPACE

INDEX

Page

32
33

39

20
56
49
12

15
15
15

19
19

31
31
31
46
12
25
25
25

Blank Fields

ignored
input records

output records

CALL
Closed FUNCTIONS

Coding Forms

(see "FORTRAN, coding form")

Comment Cards

COMMON

Compiler
Computer GO TO

Control Statements

Constants

Continuation Cards
CONTINUE

Control

Data

Data Input to Object Programs
Defining FUNCTIONS
DIMENSION

DO

~75-

index
nests
range

satisfied

Page

41
41
41
20
12

53

24
21

24
21
37
38
49
45

22
23
22
22

sequencing
transfer exit from
transfer within and out of range of
Dummy Identifiers
Diagnostics
END
END FILE
EQUIVALENCE
not to be used to equate quantities
Exponentiation
Expressions
floating-point
formation
mixed
Fixed Point
arithmetic
constants
variables
Floating Point
arithmetic
constants
variables
FORMAT
alphanumeric fields
alphanumeric format fields
blank or skip
commas
for numerical conversion
lists
mixed
multiple record

numerical fields

Page
23
23
23
47
59

36

53
16

18

15
18

11

O

11

39
40
41
41
37
30
41
42
37

-76~

record lengths
repetition
scale factors
variable
FORTRAN
card
coding form
functions
statement
types of statements
FREQUENCY
FUNCTION
(see also "Subprograms,
FUNCTION - type")
Functions
arithmetic statement
closed (library)
modes of
naming
open (built-in)
GO 10
assigned
computed
unconditional
Hierarchy of Operations
Identifiers
IF
IF FLOATING OVERFLOW
IF (SENSE LIGHT)
IF (SENSE SWITCH)
Input/Output
lists

of arrays

Page
43
41
38
30

48

47

49

47
12
49
49
12

25
24
21
16
10
22
27
26
27

30
31

designation

records

statements
Implicit Declaration
Library Functions

(see " Closed Functions")
List of Quantities

abbreviated form

for transmission
Magnetic Tape Operations
Mode of a Function
Memory Allocation
Naming

FORTRAN functions

functions

subroutines
Non-executable Statements
Numerical Fields, conversion
Object Machine
Operation Symbols
Ordering Within a Hierarchy
Parentheses
PAUSE
PRINT
" PUNCH
PUNCH TAPE
Program Preparation
Quantities

floating

infeger

READ

Page
29
30
29
51
12

31
30
34
49
52

49
49
50

37

16
16
15
27
32
33
33

(4%]
W N0

-77-

READ INPUT TAPE
READ TAPE
RETURN
REWIND
Scale Factors
SENSE LIGHT
Sense Switch Settings
Sequencing of Statements
Source Machine
Source Program
Source Program Characters
Source Statements
Special Features
Specification Statements
Statement
assignment
cards
(see "FORTRAN, Card")
numbers
920 FORTRAN 1I
STOP
Storage Allocation
Syntax
form
list
Subprogram
arguments
FUNCTION - type
statements
SUBROUTINE - type
SUBROUTINE

(see also "Subprogram, SUBROUTINE - type")

Page
34
34
28
36
37
26
27
21

w O W

57
43

(98]

28
45

65
67

47
48
46
50
50

Subscripts
Subscripted Variables
TYPE
Unconditional GO TO
(see "GO TO, Unconditional")

Page
11
11
32
21

-78-

Variables
WRITE OUTPUT TAPE
WRITE TAPE

Page
11
35
34

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78

