
xes
Xerox Data Systems

90 00 03D

FORTRAN II

REFERENCE MANUAL

for

XDS 900 SERIES COMPUTERS

90 00 03D

October 1970

Price: $3.00

Xerox Data Systems/701 South Aviation Boulevard/EI Segundo, California 90245

@ 1964 -1970, Xerox Data Systems, Inc Printed in U.S.A.

REVISION

This publication, 90 00 03D, is a minor revision of the XDS 900 Series FORTRAN II
Reference Manual, 90 00 03C, dated February 1967. Changes to the previous edition
are indicated by a line in the margin of the page.

RELATED PUBLICATIONS

Title Publ ication No.

XDS 910 FORTRAN II Operations Manual 90 00 11

XDS 920/930 FORTRAN II Operations Manua I 90 00 46

NOTICE

The specifications of the software system described in this publication are subject to change
without notice. The availability or performance of sume features may depend on a specific
configuration of equipment such as additional tape units or larger memory. Customers
should consult their XDS sales representative for detai Is.

II

CONTENTS

Introduction

I. XDS 900 Series FORTRAN II Programs

Program Preparation
Example: FORTRAN Program

II. Arithmetic - Basic Elements

.

Quantities
Constants
Identifiers.
Variables

Scalar Variables.
Array Variables . .

Functions
Expressions - Formation
Eva I uat ion.

Integer Expressions .
F I oat i ng- Po i nt Express ions
Mixed Expressions

Statements. . .
Assignment. .
CALL. . . .

III. Control

Statement Numbers
Unconditional GO TO .
IF.
DO
CONTINUE
Computed GO TO
Assigned GO TO
ASSIGN
SENSE LIGHT
IF SENSE LIGHT
IF SENSE SWITCH .
IF FLOATING OVERFLOW
PAUSE
STOP..
RETURN

-iii-

Page

3
5

9
9

10
11
11
11
12
15
17
17
18
18
19
19
20

21
21
22
22
24
24
25
25
26
26
27
27
27
28
28

IV. Input-Output

Input-Output Statements.
Input-Output Records
Input-Output lists .
ACCEPT.
TYPE
PRINT
ACCEPT TAPE.
PUNCH TAPE. .
READ
PUNCH .. .
Magnetic Tape Operations
READ INPUT TAPE.
REAC TAPE. . . .
WRITE OUTPUT TAPE
WRITE TAPE
BACKSPACE .
REWIND. .
END FILE
FORMAT ..

Numerical Fields.
Scale Factors
AI phanumeric Fields.
Alphanumeric Format Fields
Mixed Fields
Blank or Skip Fields. . . .
Commas in Input Records
Repetitions of a Field Spec ification
Repetition of Groups
Multiple Record Specifications. . .
Piintei Caidage Contiol

V. Declarations

Classification of Identifiers .
DIMENSION.
Subprogram Defi n it ion Statements
Dummy Identifiers
Arithmetic Function Definition Statement.
Function Subprograms
FUNCTION
Subroutine Subprograms .
SUBROUTINE
Impl icit Declaration
Memory A II ocat ion. .
COMMON
EQUIVALENCE
Further Rules for COMMON and EQUIVALENCE.

-iv-

Page

29
30
30
32
32
32
33
33
33
33
34
34
34
34
35
35
36
36
37
37
38
39
40
41
41
41
41
42
42
44

45
45
46
47
47
48
49
50
50
51
52
53
53
55

Appendix A.
Appendix B.
Appendix C.
Appendix D.
Appendix E.

Spec ia I Featu res.
Diagnostics.
Syntax.
Syntax for XDS 920/930 FORTRAN II
XDS 920/930 FORTRAN II Statements

Page

. . . . 57
59
65
67
73

Index. 75

-v-

l.

2.

3.

FIGURES

FORTRAN II Sampl e Program .

Example of FORTRAN Statement

Typical Input Card.

-vi-

Page

4

6

7

I NTRODUCT ION

This manual is intended as a reference manual for the XDS 900 Series FORTRAN II System and

assumes the reader is familiar with the general principles of FORTRAN programming.

TheXDS 900 Series FORTRAN II language provides engineers and scientists with an efficient and

easily understood means of writing programs for the XDS 900 Series computers. Programming is

accompl ished by the use of expressions wh ich resembl e accepted mathematical notations, allow

ing the programmer to concentrate on the probl em to be sol ved rather than the detail s of computer

operation. In addition, features are included for use at run time and compile time to reduce the

cost and time required for program checkout.

The XDS 900 Series FORTRAN II processor contains additional features (such as ACCEPT, TYPE)

and fewer restrictions (for example, mixed expressions are permitted) than FORTRAN II processors

written for other computers. These FORTRAN II processors are a direct subset of the X DS 900 Series

FORTRAN II processor.

With the provision that reasonabl e restrictions are met, the X DS 900 Series FORTRAN II processor

will compile and run FORTRAN II programs written for other computers.

These restrictions are:

1. The memory capac ity of the X DS 900 Series computer must be suffic i ent to hoi d the compi! ed

program and all subroutines required at run time. Normally, less memory will be required on

the X DS 900 Series System than on other systems.

2. All peripheral equipment (such as magnetic tapes) called for in the program, must be attached

to the XDS 900 Series computer. The system checks for the presence of required equipment.

3. Integer quantities are limited to 8,388,607 and floating-point precision is limited to

approximately twelve decimal digits. In general, these precisions exceed those of other

systems.

-1-

4. The program must be a lega I FORTRAN II program, i. e., one that does not use the

veiled characteristicsofaparticular compiler - computer pair to achieve a result in

variance with, or not covered by, the currently accepted definition of FORTRAN II

statements and programs as given in this manual. Most i Ilega I programs wi II be caught

by the system.

Only a basic XDS 900 Series Computer, with 4096 words of core memory, paper tape and type

writer input/output, is required for complete processing and solution of FORTRAN II programs.

For 4096-word configurations, the only important limitation on source program size is the num

ber of distinct symbols and labels used in the program. Programs with as many as 325 symbols

and labels may be compi led on the XDS 920/930 and programs with as manyas 2000n theXDS 910/

925. In practice, this is no limitation since the number of labels may be expected to be pro

portional to the program size, and no practical limitation exists on the size of FORTRAN pro

grams wh ich may be compi led on an XDS 900 Series Computer with greater than 4096 words of

core memory.

Refer to the appropriate FORTRAN II Operations Manual for the operating description of this

system:

Manual

XDS 910 FORTRAN II Operations

XDS 920/930 FORTRAN II Operations

-2-

XDS Publ ication No.

900011C

900046D

I. XDS 900 SERIES FORTRAN II PROGRAMS

An XDS 900 Series FORTRAN II program consists of a sequence of statements which specify

the procedure to be followed by the computer. These statements fall into four general

categories:

INPUT/OUTPUT statements which call for transmission of information

between computer storage and various input-output devices.

ARITHMETIC statements which indicate calculations to be performed.

CO NTRO L statements that dete rm i ne the sequence in wh ich statements

will be performed.

DECLARATION statements that supply information about the program

rather than specifying operations.

PROGRAM PREPARATION

The sequence of statements comprising an XDS 900 Series FORTRAN II program is written

on a coding form. This information is then punched on cards or paper tape for entry into

the computer. The same coding form is used for either input medium.

Figure 1 illustrates an XDS 900 Series FORTRAN II program written on a standard XDS 900

Series FORTRAN II coding form. Each statement of the program is written on a separate

I inei however, a statement too long to fit on one I ine may util ize as many as three con

tinuation lines.

Each I ine of the coding form is divided into 72 spaces or columns and each space may con

tain one character. When cards are used as the input medium, each I ine of the coding form

corresponds to a card and each space to a card column. Figure 2 illustrates the statement

on line 6 of the example as it would appear on a punched card.

The columns of the coding form are grouped into fields. The first field, columns 1 through

5, is used for the statement number, if any. These numbers perm it cross reference between

statements within a program. Bianks and ieading zeros in this fieid are ignored.

-3-

PROBLEM

PROGRAMMER

r-- C FOR COMMENT

1+ .:
STATEMENT a

NUMBER U
5 6 7 10

,

15

F S'R'M'A'r' (' F'1'O'. '2')'

20 25

XlD~5
Xerox Data Systems

FORTRAN CODING SHEET
73 I den ti fi cat ion 80 ,....--,

FORTRAN STATEMENT
30 3S 40 45

.--, I

---r--r-.--,---r- i

, .--, , I

, I

---r---..--r-,---r- I I

r-,---r- I I

--,--.-~ I

"--,---r- I I

~'----,---r-

---y----r--r-~ i
I t-r-r-,-- 5
~
I EN,' p', ' ' , , , , ,~.~,.--,----y----y-

-~.-.-r-·~~'i--r-~'-~

~r-I

~r-I

~r-I

I

--y--r--r- I

, -.----r--r- I

~r--I

..---r--r-- i

--r---r-r-,---r-

r-I

~r-I

-'---'---'---,---r-- i

-,---,---,-- I .

-,--,--r-,---r- i

Figure 1, FORTRAN II Sample Program

50

,

I

I

I

I

I

.
I

I

.

PAGE OF

DATE

55 60 65 70 72
, , I . I

I I , , I I

, I , I . I

I , , I

I , , , I ' i , ,
, , , I

I I , I I

I I . , I

I -.- , ,

I I I

I I

I

, I I

I I

I

, , , . I

, I , I I

,

, I . .
I

I

I

I I i

I I

I

505-8-144

The second field, columns 7 through 72, is used for the statement itself. Except for certain

alphanumeric strings, blanks in this field are ignored and are used to aid readabil ity.

Column 1 serves another function, that of specifying comment lines and compiler control lines.

A "C" in column 1 indicates that the line is a comment and is not to be processed. Comments

appear in program listings but do not otherwise affect the program. An asterisk, "*11, in column

1 indicates that the line is a compiler control line. No control lines are necessary, but any

number of them may precede the program. They have no effect, but will be listed even when

program I isting is suppressed.

EXAMPLE

The simple program illustrated in Figure 1 points out many of the properties of an XDS 900 Series

FORTRAN II program. It is shown as it would appear on a standard XDS 900 Series FORTRAN

coding form.

The purpose of the program is to find the average of a set of 100 prices and to type the average

on the console typewriter.

Line 1 is a control line.

The DIMENSION statement of line 2 declares PRICES to be an array of 100 numbers. Th is

declaration causes storage sufficient for 100 numbers to be set aside and allows PRICES to

appear with subscripts in the program.

Line 3 is an input statement which reads numbers from punched cards and places them in con

secutive locations of the array PRICES. Reading will continue until all of the 100 values

declared for PRICES have been entered.

The READ statement refers to FORMAT statement number 5 (I ine 10) for specification of how

prices are punched on the cards. The FORMAT spec ifies that the prices are punched one to

a card, occupy ten columns each, and have two digits to the right of the decimal point. A

typical input card, pictured in Figure 3, gives $1. 85 as the price of May wheat.

The calculation proper begins with the assignment statement of line 4. Th is statement sets

-5-

I
0-
I

2 SUtt - SUM tPR rCES(~~)
I III 1

1 I II I
00000011000011000000001111000
1 2 3 4 5 6 7 • 9 10 " 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 37 38 394041 4243 44 45 46 47 46 49 50 51 52 53 54 55 56 57 56 59 60 61 62 63 64 65 66 67 66 69 70 71 72 73 74 75 76 77 78 7980

1 11

22221212222212222222221211222

333333333313333333331333

444444411444411444444441 4'144

555555555555555555555155

6 Ii 6

777777777777777771777777 '17 77 7 7

8888888888188888888888818188

99999999999999999911999 9!~ 9 99 9 9
1 2 3 4 5 I 7 6 9 10 " 12 13 14 15 16 17 18 19 20 21 22 23 24 l~5 26 17 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 46 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 E4 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

111111 5081

Figure 2. Example of FORTRAN Statement

I
'J
I

1.85 MAY WHEAT
I I III

I
0000000000000000000101000100000000006000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 21 24 25 26 27 28 29 30 31 ~2 33 34 35 36 17 38 :!Z 40 41 42 43 44 45 46 47 48 49 50 51 52 53 5~ 55 56 57 58 59 60 61 62 63 64 65 66 61 68 69 10 11 12 13 14 15 16 n 18 19 80

11

2 2' 2

3333333133333333333333333133333333 j: 3 33333333333 3 3 3 3 3 3 3 3 3 3 3 3 333333333333333333333

44444444444444444144

55555555515555555555555155

6666666666666666666661666666666666666666666666666666 66666

777777777777777177

83888881188888888881881888

99
I 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 lJ 24 25 26 2'1 28 29 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 41 48 49 50 51 52 53 54 55 56 51 58 59 60 fl 62 63 64 65 66 67 68 69 10 11 12 13 14 15 15 n 18 19 80

IBM 5081

Figure 3. Typical Input Card

the variabl e SUM to zero as an initial val ue.

Line 5 is a control statement (called a DO statement) which causes the statement following

(number 2) to be executed 100 times. The variabl e K is set to one for the first execution and

then is increased by one for each subsequent execution. The last time statement 2 is performed,

K has the val ue 100.

Statement 2 adds one of the PRICES to SUM and assigns the result to SUM. The particular price

used from the array of PRIC ES will be determined by the val ue of K, which appears as a sub

script. The first execution uses PRICES (1), the first number in the array; next time PRICES (2)

is added in, and so on. After PR IC ES (1 00) has been added to SUM, the program proceeds to

the next statement.

At th is point SUM contains the sum of the numbers read in from cards. The assignment state

ment of line 7 now divides this sum by 100 and assigns the result to AVERAGE. This, of course,

is the answer.

The output statement of line 8 causes the val ue of AVERAGE to be typed on the consol e type

writer in the form spec ified by FORMAT number 5. Note that th is is the same format as was

used during input. The typed number will have the same form as the original data and might

appear as follows: 2.35

After typing the answer the program proceeds to the control statement STOP and halts. Line

11 is the End Card, indicating the end of the program.

-8-

QUANTITIES

II. ARITHMETIC

BASIC ELEMENTS

The XDS 900 Series FORTRAN II Compiler is concerned with two modes of numerical quantities:

integer quantities and floating-point quantities.

Integer quantities are used to represent integers of magnitude less than 8,388,608.(1)

Floating-point quantities are used to represent the real numbers to a precision of almost 12

decimal digits. The magnitude of a floating-point quantity must be zero or between the limits

1077 and 10-77 .(1)

CONSTANTS

Constants are numbers which appear in a source program in expl icit numerical form. They may

be integer or floating-point.

Integer constants are represented by a string of decimal digits. A maximum of seven digits is

allowed, excluding leading zeros.

EXAMPLES:

1973

32768

o
Floating-point constants are represented by a string of digits which contains a decimal point

11.11 embedded in the string or at either end of the string. A floating-point constant may

contain any number of digits; however, only the most significant 12 digits will be used,

excluding leading zeros.

(1) These limit values are due to the internal representation of numbers in the XDS 900 Series

Computers. Integers are represented as 24 bit, two's complement binary numbers. Floating

poi nt numbers are represented as a 39 bit two's compl ement mantissa and a 9 bit two's

compl ement characteristic.
-9-

EXAMPLES:

3.14159265359

.004579

1.

o.
A floating-point constant can be given a scale factor by appending an "E" followed by an

integer constant. The integer constant indicates the power of ten by which the floating

point constant is to be multipl i ed. The magnitude of the resulting number must be between

the limits of 10-
77

and 10
77

or be zero.

The seal e factor constant may be preceded by a "+" or II _" sign to indicate positive or

negative powers of ten. If the sign is omitted, the power is considered positive.

EXAMPLES:

1. E-18 means 10-18

.0271828E+2 means 2.71828

1.973E3 means 1973.

A third alternative allows a floating-point constant to be expressed as an integer constant

follov/ed by a scal e factor.

IDENTIFIERS

EXAMPLES:

5E-2

lE+76

25E3

means

means

means

.05
1(l6
IV

25000.

Identifiers are used to name variables, subprograms, and dummy arguments of subprogram

definitions. An identifier is a string of letters and digits. Identifiers may be of any lengthi

however, only the first eight characters will be used. The first character of the string must

be a letter.

-10-

VARIABLES

EXAMPLES:

M

DISCRIMINANT

CL2RW7

Variabl es represent quantities wh ich may take on a number of val ues and are referred to by

name. They may be integer or floating-point, representing respectively integer or floating

point quantities. The identifier used to name an integer variabl e must beg in with I, J, K, L,

M, or N. Variables not identified as integer will be considered to be floating-point.

Variables may be scalar variables or array variables.

Scalar Variabl es

Scalar variables represent a single quantity and are denoted by scalar identifiers.

Array Variabl es

EXAMPLES:

Integer seal ar variabl es

N

INDEX

K12

Floating-point scalar variables

SIGMA

Xl

ERROR

An array variable represents a single element of an array of quantities rather than a single

quantity. An array variable is denoted by the identifier (the array identifier) which names

the array, foil owed by a subscript list enclosed in parentheses. The subscript I ist is composed

of arithmetic expressions (see page 15) separated by commas.

-11-

EXAMPLES:

Integer array variables

K (3)

K (N+ 1)

MOVE (-1, M)

Floating-point array variables

X (N, 1, 1, M)

VOLTAGE (2* N+1, L, L+1)

Each expression gives the value of the corresponding subscripto The number of subscript

expressions must equal the number of dimensions of the array.

Any expression may be used as a subscript. In particular, subscripting may be cascadedo

If the value of a subscript is a floating-point number, it will be truncated to an integer

before being used as the subscripto The value of a subscript must be not less than the minimum

and not greater than the maximum specified for the arrayo

FUNCTIONS

EXAMPLES:

X (M* N+M-l)

K (THETA)

BRANCH (1+MOD(BRANCH (2*NODE),3»

Functions are subprograms wh ich are referenced as basic elements in arithmetic expressions.

A function acts upon one or more quantities, called its arguments, and produces a single

quantity called the function value. A function is denoted by the identifier wh ich names

the function, followed by an argument I ist enclosed in parentheses.

FORM: identifier (argument, argument, ••• , argument)

An argument may be an arithmetic expression or an array identifier.

Provision is made for both integer and floating-point functionso Functions produc ing integer

values are integer functions, and functions producing floating-point values are floating-point

functions.

-12-

Identifiers of integer functions must begin with I, J, K, L, M, or N. Functions not so

identified are considered to be floating-point functions.

The mode of a function is independent of the modes of its arguments, i. e., an integer

function may have floating-point arguments, etc.

EXAMPLES:

SIN (2* PI* TIME)

DOLLARS (PRICE)

MOD (M, K)

Functions constitute closed subroutines; that is, they appear only once in the object program,

regardless of the number of times they are referenced in the source program.

Many I ibrary functions are included in the XDS FORTRAN System. These include elementary

functions such as SIN, SQRT, etc. and arithmetic functions such as ASS, MOD, etc.

-13-

EXPRESS IONS

FORMATION

An expression is a sequence of constants, variables, and functions separated by operation

symbols and parentheses in accordance with mathematical convention and the rules stated

below. An expression has a single numerical value, namely, the result of the calculations

spec ified by the arithmetic operations and quantities occurring in the expression.

The arithmetic operation symbols are +, -, *, I, and ** denoting, respectively, addition,

subtraction, multiplication, division, and exponentiation.

An expression may consist of a single basic element, i.e., a constant, variable, or function.

For exampl e:

3.1415926

X(N)

SQRT (ALPHA)

Basic el ements may be combined through use of the arithmetic operation symbol s to form

compound expressions, such as:

ALPHA+BETA

P I*RAOIUS**2

SQRT (THETA*THETA)

Compound expressions may be enclosed in parentheses and regarded as a basic el ement:

(A+ B)/(C + D)

((FEET))

POWER(M*(N(K)+ 1)+ 1)

-15-

An entire expression can be preceded by a + or - sign as in:

+A

-(-X+Y+Z)

ALPHA(-M, N+l)

However, two operation symbols may not appear in sequence. In other words, use the form

A*(-B)

instead of the illegal form

A*-B

By repeated use of the above rules, all legal expressions may be constructed.

When the precedence of operations with in an expression is not expl ic itly given by

parentheses, it is understood to be the following:

PRECEDENCE

1

2

3

SYMBOL

**

* and /

+ and-

OPERATIONS

Exponent iat ion

Multipl ication and Division

Addition and Subtraction

Operations of equal precedence are grouped from left to right. For example, the expression

A+B*C**D

is interpreted:

A+(B*(C**D»,

while the expression:

A/B/C/D

is interpreted to mean

((A/B)/C)/D

-16-

and

A**B**C

is interpreted to mean

(A**B)**C.

Similarly,

A/B*C

is interpreted to mean

(A/B)*C

and

A/B*C/D

is interpreted

((A/B) *C)/D

Permutable sequences of operations will be reordered, if necessary, to increase object program

effie iency.

EVALUATION

The numerical value of an expression may be of integer or floating-point mode. The mode of

an expression is determined by the modes of its constituents. Three cases arise: all constituents

are integer (integer expression); all constituents are floating-point (floating-point expression);

both types of constituents occur (mixed expression). All of these cases are allowed in the XDS

900 Seri es F ORTRA Nil.

Integer Expressions

An integer expression is eval uated using integer arithmetic throughout, giving an integer val ue
24

as the result. All results will be reduced modulo 2 . Fractional parts arising in division are

truncated, not rounded. For example, 5/2 yields 2; 2/3 yields O.

-17-

EXAMPLES:

L

1+2* J 1

(M+ l)*KA-INDEX

Floating-Point Expressions

Floating-point expressions are evaluated using floating-point arithmetic throughout, yielding a

floating-point value. All results are limited in magnitude to the range 10-
77

to 10
77

or zero.

EXAMPLES:

(X(N-1)+X(N+ 1)) /(2.0*DX)

SINF(THETA-ALPHA)

Mixed Expressions

Mixed expressions are eval uated by first converting all integer quantities to floating-point

quantiti es and then eval uating the expression as if it were a fl oati ng-point expression.

The result is a floating-point quantity.

EXAMPLES:

Y+2

Y**N+N*X

A(K) *C OSF (2*P 1* KIN)

-18-

STATEMENTS

Assignment Statement

The assignment statement spec ifies an expression to be eval uated and a variabl e, call ed the

statement variable, to which the expression value is to be assigned.

FORM: variable = expression

Note that the sign "=" does not mean equality but replacement. The first example below is

not an equation but is a val id assignment statement meaning "take the val ue of X, add one,

and assign the resul ting val ue to X.II

EXAMPLES:

X = X+l

K = N*(L-l)

Y(M) = SINF(.06*M)

SUM = SUM+TERM*X/N

The val ue of the expression in an assignment statement is made to agree in mode with

the statement variable when the replacement is performed. Thus, an integer expression

value is converted to a floating-point value if the statement variable is a floating

point variable, and a floating-point expression value is truncated to an integer if the

statement variabl e is an integer variabl e.

For instance, in the statement

Z = N*(N-l)

the integer value of the expression is converted to floating-point before assignment

to Z.

-19-

CALL Statement

FORMS: CALL identifier

CALL identifier (argument, argument, ..• , argument)

Th is statement is used to call, or transfer control to, a subrouti ne subprogram. The identifi er

is the name of the subroutine.

The arguments, as in the case of functions, may be given as arithmetic expressions or array

identifiers. Unl ike a function, however, a subroutine may have more than one result and

may use one or more of its arguments to return these resul ts to the call ing program. A

subroutine may require no arguments at all, in which case the first form of the CALL

statement is used.

EXAMPLES:

CALL DUMP

CALL FACTOR (A+l, 2*COS(THETA)*B(K), Rl, R2)

CALL DOT (M, Y, Y, LENGTH)

The name of the subroutine has no bearing on the mode of its resul ts. For instance, in

the last example above the integer variable LENGTH might be the result of the subprogram

DOT.

-20-

III. CONTROL

The normal flow of a FORTRAN program is sequential through the statements in the order in

which they are presented to the compiler. Control statements allow the programmer to specify

the flow of the program. To this end, statements can be given numbers to be referenced by

control statements.

Statement Numbers

A statement number consists of an unsigned integer constant of five digits or I esse Leading

zeros are ignored; for exampl e, 0002 and 2 are considered identical.

AI though statement numbers appear in the source program as integers, they are not to be

confused with numerical quantities. They represent a distinct type of basic quantity, viz.

labels. Labels are used for identification of addresses in the object program.

Since statement numbers are used for identification, they must be unique; that is, no two

statements may have the same number. No order or sequence is impl ied by the magnitudes

of the statement numbers. Non-referenced statements need not be numbered; in fact, un

necessary numbering is wasteful of compi! er storage.

Unconditional GO TO Statement

FORM: GO TO n

where n is a statement number.

Th is statement transfers control to the statement numbered n.

EXAMPLES:

GO TO 15

GO TO 957

-21-

IF Statement

FORM: IF (expression) n
1

, n
2

, n3

where n l' n2, n3 are statement numbers.

Th is statement transfers control to the statement n l' n
2

, or n3 if the val ue of the expression

is, respectively, less than, equal to, or greater than, zero.

EXAMPLES:

IF (M(K) - JOB) 5, 2, 4

IF (y) 14, 15, 15

In the first example above, control is transferred to statement 5 if M(K) < JOB, to statement 2

if M(K) = JOB, and to statement 4 if M(K) > JOB.

DO Statement

The DO statement allows a series of statements to be executed repeatedly under control of a

variable whose value can change between repetitions and which may be integer or floating-point.

FORMS:

DO n scalar variable = expression l' expression
2

DO n scalar variable = expression l' expression
2

, expression
3

where n is a statement number.

Th is statement causes the statements that follow, up to and including statement n, to be

executed repeatedly. This group of statements is called the range of the DO statement.

The scalar variable of the DO statement is called the index. The values of expression l'

expression
2

, and expression
3

are called, respectively, the initial, I imit, and increment

values of the index. If expression
3

is not stated (first form), it is understood to be 1.

Initially, the statements of the range are executed with the initial value assigned to the

index. This initial execution is always performed, regardless of the values of the limit

and increment. After each execution of the range, the increment value is added to the

value of the index and the result is compared with the I imit value. If the value of the

index is not greater than the limit value, the range is executed again using the new vaiue

-22-

of the index. In case the increment val ue is negative, another execution will be per

formed if the new val ue of the index is not I ess than the I imit val ue.

After the last execution, control passes to the statement immediately following statement n.

Exit may also be effected by a transfer from within the range of the DO statement.

The range of a DO statement may include other DO statements provided that the range of each

II insidell DO statement is contained compl etely with i·n the range of an "outside" DO statement.

In other words, the ranges of two DO statements may not partially intersect one another.

Only total intersection or no intersection is allowed.

The index of a DO statement is treated as any other scalar variable. It is available for use

with in the range of the DO statement and outside of the range. The val ue of the index may

be changed within the range of the DO statement. Similarly, the I imit and increment val ues

of the DO statement may be altered within the range of the DO statement.

A zero val ue of the increment is considered positive.

It is perm issibl e to transfer into the range of a DO statement from outside of its range.

EXAMPLES:

D02L=l, N

DO 5 V = END, START, - .025

As an illustration of the use of DO statements, consider the sequence below.

DO 4 L = 0, M

CORR (L) = 0

DO 3 K = L, N-l

3 CORR (L) = CORR (L) +X(K-L) *X(K)

4 CORR (L) = CORR (L) / (N-L)

Given that X and CORR are suitably specified arrays and that N>M>O, these statements will.

evaluate the autocorrelation function:

1
CORR (L) =

N-L

N-l

L X (K) X (K~L)
K=L

-23-

The summation is performed by the II inside" DO statement whose range ends with statement

3. The "outside" DO statement performs the division and changes the value of l.

CONTINUE Statement

FORM: CONTINUE

This statement is a dummy, or lido nothing", statement used primarily to serve as a target

point for transfers, particul arl y as the I ast statement in the range of a DO statement. For

example, in the statement sequence:

DO 5 1= 1, MAX

GO T05

X = SUM

5 CONTINUE

If the GO TO is intended to begin another execution of the DO range, without performing

the statement X = SUM, the CONTINUE statement provides the necessary target address.

Computed GO TO Statement

The computed GO TO statement allows transfer of control to one of a group of statements, the

particul ar statement chosen depending on conditions at run time.

-24-

FORM: GO TO (n
1

, n
2

, n
3

, •••. , n
k
), expression

where n
1

n
2

, •••• , n
k

are statement numbers. The comma preceding the expression is optional.

Th is statement transfers control to statement n
1

, n2' •••• , n
k

depending on whether the expression

has the value I, 2, •••• , k respectively.

EXAMPLE:

GOT 0 (7, 1 2, 3, 4), K + 1

will transfer control to the statement numbered 12 if K has the value 1.

The value of the expression is truncated to an integer if required. Expression values

outside the range 1, 2, •••. , k cause a run time error indication.

EXAMPLE:

GO TO (13,27, 1,4,6), V (J)

Th is statement transfers control to statement 6 if V (J) has the val ue 5.728. A val ue

of .57 for V (J) causes an error indication.

Assigned GO TO Statement

FORM: GO TO variabl e

Th is statement transfers control to the statement whose number was I ast assigned to the

variable by an ASSIGN statement. The variable must appear in some previously executed

ASSIGN statement.

EXAMPLES:

GO TO L

GO TO EXIT (3)

The variable of an assigned GO TO statement is a control variable and has a label as a value,

not a numerical quantity. A control variabl e may be shared between a program and its sub

programs, I ike any other variabl e. The variabl e may appear in an ASS IG N statement in on~

program and be used in an assigned GO TO in another program.

ASS IG N Statement

FORM: ASSIGN integer TO variable

Th is statement sets the val ue of the variabl e for a subsequent assigned GO TO statement. The

GO TO statement. -25-

EXAMPLES:

ASSIGN 6 TO L

ASSIGN 72 TO EXIT(3)

As an example of the use of the ASSIGN and assigned GO TO statements consider the

sequence below.

25 X = R*COS (THETA) *SIN (PHI)

Y = R*SIN (THETA) *SIN (PHI)

Z = R*COS (PH I)

GO TO EXIT

Th is sequence may be used as a subroutine by other parts of the program. For instance the

statements:

7

ASSIGN 7 TO EXIT

GO TO 25

will cause the subroutine to be executed and control returned to statement 7.

SENSE LIGHT Statement

FORM: SENSE LIGHT expression

During compilation, a storage cell, initial ized to zero, is set aside for flags. Th is statement

causes one bit of th is cell to be set to one. The particular bit chosen is spec ified by the

value of the expression, truncated if necessary. The integer so derived is checked at run

time and must be one of the integers 0, 1, 2, ••• , 24. A zero value Causes all bits to be

set to zero.

EXAMPLES:

SENSE LIGHT 3

SENSE LIGHT 2*X+ 1

IF SENSE LIGHT Statement

FORM: IF (SENSE LIGHT expression) n
1

, n
2

where n 1 and n
2

are statement numbers.

This statement transfers control to stateme,nt n
1

or n
2

depending on whether a bit in the

flag cell is one or zero. The particular bit tested is specified by the value of the expression,

truncated if necessary. The resul ting integer, wh ich is checked at run time, must be one of

the integers 1, 2, ••• , 24. The bit is set to zero after the test.
-26-

EXAMPLES:

IF (SENSE LIGHT 3) 1, 2

IF (SENSE LIGHT 2*1</3) 12, 7

IF SENSE SWITCH Statement

FORM: IF (SENSE SWITC H expression) n
1
, n

2
where n 1 and n

2
are statement numbers.

Th is statement transfers control to statement n
1

or n
2

depending on whether a sense ~witch is

SET or RESET. The particular sense switch used is specified by the value of the expression,

truncated if necessary. The resulting integer, checked at run time, must be 1, 2, 3, or 4.

EXAMPLES:

IF (SENSE SWITC H 3) 1, 2

IF (SENSE SWITCH K+2) 14, 5

IF FLOATING OVERFLOW Statement

FORM: IF FLOATING OVERFLOW n
1

, n
2

wh ere n 1 and n 2 are statement numbers.

This statement tests for overflow on floating-point arithmetic operations. Arithmetic overflow

occurs when the exponent of a floating-point result is out of bounds or 0 floating-point zero

division is attempted. If the indicator is one, indicating that an overflow has occurred, control

is transferred to statement nr If no overflow has occurred, control passes to statement n
2

• The

overflow indicator is initialized to zero and is set to zero after an IF FLOATING OVERFLOW

statement.

EXAMPLE:

IF FLOATING OVERFLOW 15, 32

PAUS E Statement

FORM: PAUSE

PAUSE integer

-27-

This statement halts the machine. The integer and the location of the PAUSE are displayed.

Program execution may be resumed from the computer console.

EXAMPLE:

PAUSE 62

STOP Statement

FORM: STOP

This statement causes termination of the program and returns control to the system.

RETURN Statement

FORM: RETURN

This statement returns control from an external subprogram to the call ing program. Thus, the

last statement executed in a subprogram wi II be a return statement. It need not be physically

the last statement in a program, but can be any point in the subprogram at which it is desired

to term inate execution. Any number of RETURN statements can be used.

-28-

IV. INPUT-OUTPUT

INPUT-OUTPUT STATEMENTS

Input-output statements call for the transmission of information between computer storage and

various input-output units such as the console typewriter, magnetic tapes, paper tapes, etc.

In general, an input-output statement must provide:

1. Specification of the operation required.

TYPE

2. The statement number of a FORMAT statement which will specify the format of the

data and the sort of conversions required between the internal and external forms of

the data, e.g.,

TYPE 6

3. A list of the variables whose values are being transmitted. The listed order of the

variables must be the same as the order in which the information exists on the input

medium or will ex ist on the output medium.

For example, the statement

TYPE 6, ALPHA, BETA, GAMMA

says "type on the console typewriter the values of the variables ALPHA, BETA, and GAMMA

in that order and as specified by the FORMAT statement numbered 6."

Similarly, the statement

ACC EPT 4, WINE, WOMEN, SONG

says, "accept from the console typewriter the values of WINE, WOMEN, and SONG

according to format 4."

-29-

INPUT-OUTPUT RECORDS

All information appearing on external media (such as punched cards, magnetic tape, etc.)

is grouped into records. The maximum amount of information allowed in one record and the

manner of separation between records depends upon the medium. For punched cards, each

card constitutes one record; on the consol e typewriter, a record is one I ine; and so forth.

The actual amount of information contained in each record is spec ified by the FORMAT

statement.

Each execution of an input or output statement initiates the transmission of a new data

record. Th us the statement

READ 2, EIN, ZWEI, DREI

is not necessarily equivalent to the statements

READ 2, EIN

READ 2, ZWEI

READ 2, DREI

since, in the second case, at least three separate records (in this case, punched cards) are

required, whereas the singl e statement

READ 2, EIN, ZWEI, DREI

may require one, two, three, or more records depending upon format 2.

If an input-output statement requests I ess than a full record of information, the unrequested

part of the record is lost and cannot be recovered by another input-output statement.

For instance, in the case of punched cards, two READ statements cannot input information

from the same card, nor can two PU NC H statements output information on the same card.

If an input-output statement requests more than one record of information, successive records

are transm itted unti I the statement is compl ete.

INPUT-OUTPUT LISTS

The I ist portion of an input-output statement indicates the order of transmission of the

variable values. On input, the new values of the listed variables may be used in subscript

or control expressions for variables occurring later in the list. For example

ACCEPT 5, K, A(K+l), X, Y(K}

-30-

reads in a new value for K and uses this value in the subscripts of the variables A and Y.

Indexing similar to that used in DO statements is allowed in input-output I ists for handl ing

array variables. The variables to be transmitted are listed, followed by the index control,

and the whole is enclosed in parentheses to act as a single element of the list:

(variable, variable, ••. , index control)

The index control has the same form as in the DO statement:

scalar variable = expression
1

, expression
2

, expression
3

or

scal ar variabl e = expression l' expression
2

The rules for repetition are the same as those for the DO statement. For example, the

statement

TYPE 8, (FORCE (J), J = 1,3)

is equivalent to

TYPE 8, FORCE (1), FORCE (2), FORCE (3)

Each group enclosed within parentheses acts as an eiement of the list and is taken in order.

Thus the statement

READ 2, (X(K), Y(K), K = 1, 2)

is equivalent to

READ 2, X(1), Y(1), X(2), Y(2)

but th e statement

READ 2, (X(K), K = 1, 2), (Y(K), K = 1, 2)

is equ ivai ent to

READ 2, X(l), X(2), yO), Y(2)

Indexing of this nature can be compounded in the same fashion as DO statements. For example

ACCEPT TAPE 2, ((TRIX(J, K), J = 1,10), K = 1,15)

means accept from paper tape a 10 by 15 matrix in the order

TRIX(l, 1), TRIX(2, l), •.• , TRIX(10,1), TRIX(l, 2), ••. , TRIX(10, 15)

If an entire array is to be transmitted, the indexing information may be omitted. The entire

-31-

array is transm itted in order of increasing subscripts with the first subscript varying most rapidly

(i. e., columnwise). Thus, the above example can be written simply as

ACC EPT TAPE 2, TRIX

When more than one array is I isted, the entire arrays are transmitted in the order they

appear on the list.

ACC EPT Statement

FORM: ACC EPT n, list

Th is statement causes information to be read from the console typewriter and put into storage

as values of the variables in the list. The data is converted from external to internal form as

spec ified by FORMAT statement n.

EXAMPLE:

ACCEPT 14, A, J

TYP E Statement

FORM: TYPE n, list

This statement causes the values of variables in the list to be read from storage and typed on

the console typewriter. The data is converted from internal to external form as specified by

FORMAT statement n.

EXAMPLE:

TYPE 14, K, (WESTCHESTER(L), L = 1, K)

PRINT Statement

FORM: PRI NT n, list

Th is statement causes the values of variables in the list to· be read from storage and printed

on the on-I ine printer. The data is converted from internal to external form as specified by

FORMAT statement n.

EXAMPLE

PRINT 3, (HIC j HAEC j HOC)

-32-

ACC EPT TAPE Statement

FORM: ACC EPT TAPE n, list

This statement causes information to be read from paper tape and put into storage as values of

the variables in the list. The data is converted from external to internal form as specified by

FORMAT statement n.

EXAMPLE:

ACCEPT TAPE 17, 8(J), J = 1, M

PUNCH TAPE Statement

FORM: PUNCH TAPE n, list

This statement causes the values of variables in the I ist to be read from storage and punched

on paper tape. The data is converted from internal to external form as specified by FORMAT

statement n.

EXAMPLE:

PUNCH TAPE 2, A, K, 8(2, 1)

READ Statement

FORM: READ n, list

This statement causes information to be read from punched cards and put in storage as values

of the variables in the list. The data is converted from external to internal form as specified

by FORMAT statement n.

EXAMPLE:

READ 1 21, A, Z, (X (K), K = A, Z + 1)

PUNCH Statement

FORM: PUNCH n, list

Th is statement causes the val ues of variabl es in the I ist to be taken from storage and punched

on cards. The data is converted from internal to external form as specified by FORMAT state

ment n.

EXAMPLE:

PUNCH 123, ((A(K, J), K = 1, 10), J = 2, 14, 2)

-33-

Magnetic Tape Operations

Input-output statements which refer to magnetic tape units differ somewhat from those above.

Since several tape units may be connected to the computer, the number of the tape unit required

must be given by the input-output statement. This number is given by the value of an arithmetic

expression, truncated to an integer if necessary. The tape number so specified is checked at run

time for compatibil ity with the actual machine configuration.

Information may be transferred to or from magnetic tape in two forms; binary and Be D (Binary

Coded Decimal). The binary form, used primarily for intermediate storage purposes, involves

no data conversion and therefore no FORMAT statement reference.

READ INPUT TAPE Statement

FORM: READ INPUT TAPE expression, n, list

Th is statement causes BCD information to be read from a magnetic tape unit and put in storage

as values of the variables in the list. The number of the tape unit is equal to the value of the

expression, truncated if necessary. The data is converted from external to internal form as

spec ified by FORMAT statement n.

EXAMPLE:

REP.D INPUT TAPE 3, 5, A

READ INPUT TAPE K, 5, {A (J), B(J), J = 1, 10)

READ TAPE Statement

FORM: READ TAPE expression, list

This statement causes binary information to be read from a magnetic tape unit and put in

storage as val ues of the variables in the I ist. The number of the tape unit is equal to

the val ue of the expression, truncated if necessary.

EXAMPLE:

READ TAPE 3, A, B

READ TAPE K, A, B, C(4,4)

-34-

WRI TE OUTPUT TAPE Statement

FORM: WRITE OUTPUT TAPE expression, n, list

This statement causes the values of the variables in the list to be read from storage and written

on magnetic tape in BCD form. The number of the tape unit will be equal to the value of the

expression, truncated if necessary. The data is converted from internal to external form as

specified by FORMAT statement n.

EXAMPLES:

WRITE OUTPUT TAPE 3, 5, A

WRITE OUTPUT TAPE K, 5, (A(J), B, J = 1, 10)

WRITE TAPE Statement

FORM: WRITE TAPE expression, list

This statement causes the values of variables in the list to be read from storage and written on

magnetic tape in binary form. The number of the tape unit is equal to the value of the expression,

truncated if necessa ry.

EXAMPLES:

WRI TE TAPE 3, A, B

WRITE TAPE K+3, A, B, C

BAC KSPACE Statement

FORM: BACKSPACE expression

This statement directs a magnetic tape unit to backspace a record. The number of the tape unit

is equal to the value of the expression, truncated if necessary.

EXAMPLES:

BACKSPACE 3

BACKSPACE K(N)

-35-

REWIND Statement

FORM: REWIND expression

This statement directs a magnetic tape unit to rewind the tape. The number of the tape unit

is equal to the value of the expression, truncated if necessary.

EXAMPLES:

REWIND 3

REWIND ALPHA

END FILE Statement

FORM: END FI LE expression

This statement directs a tape unit to write an end-of-file mark on the tape. The number of the

tape unit is equal to the value of the expression, truncated if necessary.

EXAMPLE:

END FILE 3

-36-

FORMAT Statement

All input or output activity involving conversion of data requires the use of a FORMAT

statement to spec ify the external format of the data and the type of conversion to be used.

Any FORMAT statement can be used with any input-output medium (magnetic tape, paper

tape, console typewriter, etc.).

FORMAT statements are not executed and may be placed anywhere in the program.

FORM:

where S is a data field specification.

The separating commas may be omitted if no ambiguity results.

Numerical Fields

Conversions of numerical data during input-output may be one of three types:

1)

2)

3)

type-E

internal form - binary floating-point

external form - dec imal floating-point

type-F

internal form - binary floating-point

external form - dec imal fixed-point

type-I

internal form - binary integer

external form - dec imal integer

These types of conversions are specified by the forms:

1)

2)

3)

Ew.d

Fw.d

Iw

where E, F, and I specify the type of conversion required, w is an integer specifying

the width of the field, and d is an integer specifying the number of decimal places to

the right of the dec imal poi nt.

-37-

As an example, in using the statement

FORMAT (18, F8.3, E15.6)

the line

32 4.263 -0.186214E-22

could be typed on the console typewriter.

Note that the decimal fixed-point number (type F) has a decimal point but no exponent,

whereas the decimal floating-point (type E) has an exponent. On output the exponent

always has the form shown i.e., an II E" followed by a signed, two-digit integer. On

input, however, the II E" or the "+" sign, or the entire exponent may be omitted on the

external form. For example, the following are all valid E15.6 fields:

.317250+2

.317250E2

.042739-45

31064

The field width w includes all of the characters (decimal point, signs, blanks, etc.) which

comprise the number. If a number is too long for its specified field, the excess characters

are lost. Since numbers are right justified in their fields, the loss is from the most

significant part of the number.

During input, the appearance of a decimal point "." in an E or F type number overrides the

d specification of the field. In the absence of an explicit decimal point, the point is

For example, a number with external appearance 271828E-1 and specification E12.5 is

interpreted as 2.71828E-1.

Seal e Factors

Seal e factors can be spec ified for F and E type conversions. A seal e factor has the form

nP where P is the control or identifying character, and n is a signed or unsigned integer

spec ifying the scale factor. In F type conversions, the seal e factor spec ifies a power of

ten, such that

external number = (internal, number) * (power of ten)

-38-

With E type conversions, the scale factor is used to change the number by a power of

ten and then to correct the exponent such that the resul t represents the same real number

as before, but now has a different form. For example, if the statement

FORMAT (F10.3, E14.4)

corresponds to the line

14.614 -0.6861 E-OO

then the statement

FORMAT (-2PF 10.5, 1 P E14.3)

corresponds to the line

.14614 -6.861 E-01

The scale factor is assumed zero if none has been given. However, once a value has been

given, it holds for all E and F type conversions following the scale factor within the format

statement. A zero scale factor can be used to return conditions to normal. Scale factors

have no effect on type I convers ions.

Alphanumeric Fields

Alphanumeric data can be handled in much the same manner as numeric data through use

of the form Aw where A is the control character and w is the number of characters in the

field. The alphanumeric characters are transmitted as the va lue of a variabl e of an input

output list.

For exampl e the statements

READ 2, X

2 FORMAT (A5)

couse five characters to be input from a punched card and placed in memory as the

val ue of the variabl e X.

Although w may have any value, the maximum number of characters transmitted is

determined by the space allotted for the value of the variable. For an integer variable,

the maximum is four characters; for a floating-point variable, the maximum is eight.

Characters beyond the maximum are lost on input and replaced with blanks on output.

A field width of less than the maximum causes blanks to be filled in after the given

characters until the maximum is reached. That is, the characters are left justified.

-39-

Alphanumeric Format Fields

Alphanumeric fields may be specified within a FORMAT statement by simply enclosing the

alphanumeric string in dollar signs II $11 •

For exampl e, the statement

FORMAT ($ TEST COMPLETE $)

can be used to type

TEST COMPLETE

on the consol e typewriter .•

The characters of an alphanumeric format field are not transmitted as values of variables.

The characters are stored in the memory space allotted to the format specification itself

and are transmitted to and from this space during input and output. The alphanumeric

field is allotted space sufficient for exactly the number of characters, k, appearing

between the dollar signs. An input-output list is not required for transmission of this

type of field. During input, k characters are extracted from the input record and replace

the k characters included within the specification. During output, the k characters

specified, or the k characters which have replaced them, become part of the output record.

For exampl e, the statements

ACCEPT 2

2 FORMAT ($ TEST COMPLETE $)

can be used to replace the 15 characters TEST COMPLETE with the 15 characters

Then the statement

TYPE 2

will type

NONCONVERGENT

An alternate method of specifying alphanumeric format fields is allowed. In this method,

the alphanumeric string is preceded by the form kH, where k is the number of characters

in the string. Blanks are counted. For instance. thp format in the example above can be

written:

FORMAT (15H TEST COMPLETE)

-40-

Mixed Fields

An alphanumeric format field spec ification may be followed by any field spec ification to

form a mixed field specification. For example, the use of the statement

FORMAT ($ VELOC ITY = $, FB.4)

can result in the output line

VELOC ITY = 6.4142

An alphanumeric field specification can also be followed by the repeated field and

multiple record specifications outlined below.

Blank or Skip Fields

The specification kX may be used to include k blank characters in an output record, or

to skip k characters of an input record. k must not equal zero.

Consider:

FORMAT ($TIME$, FB.4, 12X, X, FB.2)

Th is statement can be used to output

TIME 1.2B63 X -14B.61

where twelve blanks separate the two quantities.

Commas in Input Records

On input the occurrence of a comma with in a numerical field causes term ination of the

field. This allows simpl ified preparation of data records using commas as field terminators

For example, a data record using the format

FORMAT (19, 4F12.6)

may be punched

5, 3. 14, 7. 2, 16.5, 9.34

The field width spec ified in the format must be greater than the number of chara cters

encountered before the comma.

Repetitions of a Field Specification

It may be desired to input or output successive fields with in one input or output record

according to the same fiel d spec ifications. Th is is done by preceding the control character

(E, F, I, or A) by the number of repetitions (k) desired. Thus, the statement

FORMAT (12A6)

-41-

specifies during input that twelve fields of six characters each are to be accepted from the

input records.

The number of repetitions must not be zero.

Repetition of Groups

Parentheses can be used for repetition of groups of field spec ifications. Thus the statement

FORMAT (2(E6.1, F10.6), F6.6)

is equivalent with

FORMAT (E6.1,F10.6, E6.1, F10.6, F6.6)

Alphanumeric fields can be repeated also in this manner. Thus

FORMA T (2($ AZ IMUTH $))

is equivalent to

FORMAT ($ AZIMUTH $, $ AZIMUTH $)

Nesting of group repetitions is not allowed. The number of repetitions must not be zero.

Mul tipl e Record Spec ifications

To handle a file of input-output records (a page of printed I ines, a deck of cards, etc.)

where different records have different field specifications, a slash "/" is used to indicate

a new record. Thus, the statement

F 0 RlV\A T (2F6.4/13, F6.4)

is equival ent to the statement

FORMAT (2F6.4)

for record one, and the statement

FORMA T (13, F6.4)

for record two.

If the field specifications of the first record are different from that of following records

(master record at the start of a fi Ie, etc.), then the field spec ifications of the first record

(master record) should be followed by the field spec ifications of the following records

(data records) enclosed in parentheses as shown in the statement below.

FORMAT (6110, F 12.2/(6E12.0))

In general, if transmission of data is to continue (as specified by the variable I ist of an

-42-

input-output statement) when the end of a format statement (except for parentheses) has been

reached, the format is repeated on the next input-output record from the last open pa

renthesis. Thus, both the slash and the sequence of closing parentheses at the end of a

FORMAT statement indicate the termination of a record.

For example the statements

PUNCH 2, (A(K), K = 1, N)

2 FORMAT (E15.6)

cause the values of A(l), A(2), etc. to be punched one value to a card.

However, if

2 FORMAT (3E15.6)

is used, the values are punched three to a card. All values have format E15. 6.

The tota I of a II fi e Id wi dths spec ified for any record is the length of the record. If the rec

ord length specified is greater than the maximum allowed on a particular device, the excess

characters are lost.

Maximum record lengths are:

l. Typewritten line 80 characters

2. Punched card 80 characters

3. Paper tape 80 characters

4. Magnetic tape 132 characters

5. Printed line 132 characters

Blank lines may be introduced in printed text by using consecutive slashes.

43

Printer Carriage Control

The first character of every line of information output to the line printer controls the move

ment of the paper form through the printer as follows:

Character

blank

a

+

any other

Action

Single space

Double space; character is not printed

Eject to top of form; character is not printed

Suppress spacing; character is not printed

Single space; character is printed

44

v. DECLARATIONS

A declaration is a description of certain properties of the program, rather than a

spec ification of computation or other action. Several FORTRAN statements are used

solely for the purpose of supplying the system with declarative information. These

statements are primarily concerned with the interpretation of identifiers occurring in

the source program and memory allocation in the object program.

CLASSIFICATION OF IDENTIFIERS

Each identifier appearing in a source program is classified as to the language element it identifies.

Four main classifications are recognized:

seal ar identifiers

array identifiers

subprogram identifiers

dummy identifiers

The classification is made according to the context in wh ich the identifier first physical I y

appears in the source program. Th is first appearance amounts to a dec I aration, expl ic it

or impl ic it I of the proper interpretation of the identifier throughout the program.

DIMENSION Statement

The DIMENSION statement is used to declare an identifier to be an array identifier and

to spec ify the number and I im its of the array subscripts. Any number of arrays may be

declared in a single DIMENSION statement.

The information provided by a DIMENSION statement is required for allocation of

storage for arrays. Each array variable appearing in a program must represent an element

of an array declared in a DIMENSION statement. The array variable must have the same

-45-

number of subscripts as were declared for the array and the value of each subscript must

be within the limits specified by the DIMENSION statement. The DIMENSION statement

must precede the first appearance of the array variabl e in the program.

FORM: DIMENSION Sl' S2' .•. , Sk

where S is an array spec ification.

Each array specification gives the array name and the minimum and maximum values

each of its subscripts may assume, thus:

name (min/max, min/max, ••• , min/max)

The minima and maxima must be integers, signed or unsigned. The minimum must not exceed

the maximum. Thus both negative and zero subscripts are permitted.

For example, the statement

DIMENSION X(-1/6, 2/5)

spec ifies X to be a two-dimensional array with the first subscript varying from -1 to 6,

inclusive, and the second from 2 to 5, inclusive.

Minimum values of 1 may be omitted. For instance

DIMENSION Y(3, 4, 2)

is taken to be

DIMENSION Y(1/3, 1/4, 1/2)

EXAMPLES:

DIMENSION X(10)

DIMENSION X(10), Y(5, 0/6)

DIMENSION INDEX (-12/-8,7/20), ARG (400), FUN (2, 2, 2, 2)

SUBPROGRAM DEFINITION STATEMENTS

The subprograms which may be called, or referred to, by a FORTRAN program are classified

as external or internal subprograms.

Internal subprograms are defined within the call ing program. The definition is accompl ished

in a single statement-the arithmetic function definition statement. These subprograms

-46-

are defined, and referrable, only within the program containing the definition.

External subprograms are defined outside of the program which refers to them and are

complete programs conforming to all the rules of FORTRAN programs. They may be compiled

independently or with the main program which refers to them. The library programs included

in the system are external subprograms.

Two types of external subprograms are available: the FUNCTION subprogram and the

SUBROUTINE subprogram. The use of the declarations FUNCTION and SUBROUTINE

in the definition of external subprograms is described in the sequel.

A subprogram, internal or external. may call other subprograms during its execution; however,

recursion is not perm itted.

DUMMY IDENTIFIERS

Subprogram definition statements declare certain identifiers to be dummy identifiers. These

identifiers represent the arguments of the subprogram. When used in the subprogram they

indicate the sort of elements wh ich may appear as arguments and how the arguments are

to be used. The dummy identifiers are replaced by the actual arguments when the sub

program is executed.

Arithmetic Function Definition Statement

FORM: identifier (identifier, identifier, •••) = expression

This statement serves to define an internal function for use in a particular program. The

entire definition is contained in the single statement and this definition holds only in the

program containing it. The appearance of a function name in an expression suffices to call

the function during the eval uation of the expression at run time. The function has a singl e

value whose mode is determined by the function identifier.

The defining expression for a function may include external functions or other previously

defined internal functions.

The list of identifiers enclosed in parentheses represents the argument list of the function.

These identifiers are dummy identifiers. They have meaning and must be unique only

-47-

within the definition statement and may be identical to identifiers appearing elsewhere in the

program. These identifiers must agree in order, number, and mode with the actual arguments

presented to the function at run time. The number and mode of the arguments are checked at

run time.

All arithmetic statement functions must precede the first executable statement of the program.

An argument of the function is specified in the defining expression through use of its corres

ponding identifier. Expressions are the only permissible arguments of internal functions; there

fore the dummy identifiers may appear only as scalar identifiers in the defining expression.

They may not appear as array subprogram identifiers.

Identifiers wh ich represent quantities other than arguments of the function can be used in the

defining expressing. These quantities act as parameters, i. e., the function is evaluated

using values which are current at the time the function is called.

EXAMPLE:

NUMBER (K) = K* (K + 1)/2

BINV (X, B) = (X + B/X)/2

CATEN (X) = A(X)* BINV (EXP(X/A(X), 1)

In the last example, X is a dummy identifier and A(X) is a parameter.

FUNCTION Subprograms

A FUNCTION subprogram is a program wh ich, as a function of one or more arguments, computes

and returns a single result, and is called or referred to by the appearance of its name in an ex

pression. A FUNCTION subprogram begins with a FUNCTION declaration and returns control

to the main program by means of one or more RETURN statements.

FORM: FUNCTION Identifier (identifier, identifier, ...)

RETURN

RETURN

-48-

FUNCTION Statement

FORM: FUNCTION identifier (identifier, identifier, 0..)

This statement declares the program which follows to be a FUNCTION subprogram. The first

identifier is the name of the function being defined. This identifier must appear as a

scalar variable during execution of the subprogram.

Identifiers appearing on the list enclosed in parentheses are dummy identifiers representing

the function arguments. They must agree in order, number, and mode with the actual

arguments presented to the function at run time. The number and mode of the arguments

are checked at run time. FUNCTION subprogram arguments may be expressions or array

names; therefore the dummy identifiers may appear as scalar or array identifiers. They

may not appear as subprogram identifiers. Dummy identifiers which represent the names

of arrays must appear in DIMENSION statements in the subprogram. Furthermore, the

declared dimensions of each must equal the dimensions of the actual arrays presented to

the function at run time.

A function must have at I east one argument.

EXAMPLES:

FUNCTION FIND (TABLE, X)

FUNCTION MEMBER (SET, FORM)

As an example of a FUNCTION subprogram consider the following pro~ram which finds

the inner product of two 3-dimensional vectors.

FUNCTION DOT (Vl, V2)

DIMENSION Vl (3), V2(3)

DOT = 0

DO 2 K = 1, 3

2 DOT = DOT + V 1 (k) * V2 (k)

RETURN

-49-

The arguments of this function are floating-point array names, represented by the dummies

Vl and V2. The value of the function is the single floating-point quantity DOT.

SUBROUTINE Subprograms

A SUBROUTINE subprogram differs from a FUNCTION subprogram in that it can be referred

to only by a CALL statement and it may return more than one value. A SUBROUTINE sub

program begins with a SUBROUTINE declaration and returns control to the main program by

means of one or more RETURN statements.

FORM:

SUBROUTINE Statement

FORM:

SUBROUTINE identifier (identifier, identifier, •••)

RETURN

RETURN

SUBROUTINE identifier (identifier, identifier, •••)

The SUBROUTINE statement must be the first statement of a SUBROUTINE subprogram. The

first identifier is the name of the subroutine. The identifiers appearing on the I ist enclosed

in parentheses are dummy identifiers representing the arguments of the subroutine. These

identifiers must agree in order, number, and mode with the actual arguments presented to

the subroutine at run time. The number and mode of the arguments are checked at run time.

SUBROUTINE subprograms may have expressions or array names as arguments, so the dummy

identifiers may be used as scalar or array identifiers. Dummy identifiers may not be used as

subprogram identifiers.

-50-

Dummy identifiers which represent array names must appear in DIMENSION statements in

the subprogram. The dimensions so declared must equal the corresponding dimensions of the

actual arrays specified when the subroutine is called.

A SU BROUT IN E subprogram may use any of its dummy identifiers to represent resul ts or val ues

of the subroutine.

A SU BROUT IN E subprogram need not have any arguments at all.

EXAMPLES:

SUBROUTINE SORT

SUBROUTINE FACTOR (COEF 1 ,COEF2,COEF3, ROOT1, ROOT2)

SUBROUTINE NORMALlZE(X, K)

The program below is an example of a SUBROUTINE subprogram which finds the outer

product of two 3-dimensional vectors.

SUBROUTINE CROSS (Vl, V2 , V3)

DIMENS ION V 1 (3), V2(3), V3(3)

V3(1) = Vl (2)*V2(3)-Vl (3)*V2(2)

V3(2) = Vl (3)*V2(l)-Vl (l)*V2(3)

V3(3) = Vl (l)*V2(2)-Vl (2)*V2(l)

RETURN

Notice that the name CROSS plays no part in the answer. The dummy array V3 is used

to return the result.

IMPLICIT DECLARATION

Identifiers appearing in dec I aration statements such as DIMENS ION, FUNCT ION and

SUBROUTINE are explicitly classified. If the first appearance of an identifier is not in

a declaration, but in some imperative statement, the identifier is classified according to

its context, i.e., implicitly. Examples of both types of declaration are shown in the

program below. The program is a FUNCTION subprogram which finds the greatest distance

from the origin attained by a set of points. The numbers marked with a # are I ine numbers

for referenc e.

-51-

#1 FUNCTION BIG RADIUS (X, y)

#2 DIMENSION X(lOO), Y(lOO)

#3 R SQUARED (K) = X(K)*X(K)+Y(K)*Y(K)

#4 BIG R SQUARED = R SQUARED (1)

#5 DO 2 K = 2, 100

#6 IF (BIG R SQUARED - R SQUARED (K)) 1, 2, 2

#7 BIG R SQUARED = R SQUARED (K)

#8 2 CONTINUE

#9 BIG RADIUS = SQRT (BIG R SQUARED)

#10 RETURN

Line # 1 declares BIG RADIUS to be the name of an external subprogram for use in other

programs and to be the name of the scalar result of the subprogram. X and Yare declared

to be dummy identifiers representing floating-point quantities. Line #2 further declares

X and Y to represent array identifiers. Line #3 declares R SQUARED to be the name of

an internal subprogram and K to be a dummy identifier representing an integer argument.

This is because R SQUARED is used in a functional form and has not been previously declared

to be a dummy , scalar, or array identifier. The identifier K is defined to be a dummy only

with in th is sing\ e statement.

In line #4, BIG R SQUARED is implicitly declared to be a scalar floating-point variable.

Line #5 implicitly declares K to be an integer scalar variable. Notice that the K of line

#5 has no relation to the dummy K of i ine #3, and is not a dummy identifier.

K has meaning, and is used, else where in the program.

...., I • JJ,..
I ne line II,:)

Line #9 implicitly declares SQRT to be an external subprogram name, since SQRT has not

been previously declared a dummy, array, or scalar identifier and is being used as a function

identifier.

MEMORY ALLOCATION

Memory allocation declarations supply the system with suppl emental information regarding the

storage of seal ar variabl es and arrays.

-52-

COMMON Statement

FORM: COMMON identifier, identifier, ••• , identifier

The identifiers of a COMMON statement may be scalar or array identifiers. The COMMON

statement specifies that the scalars and arrays indicated are to be stored in an area also

available to other programs. By use of COMMON statements, a common storage area may be

shared by a program and its subprograms.

Each array name which appears in a COMMON statement must also appear in a DIMENSION

statement in the same program.

Quantities whose identifiers appear in COMMON statements are allocated storage in

the same sequence that their identifiers appear in the COMMON statements, beginning

with the first COMMON statement in the program.

Storage allocation for common quantities begins at the same location for all programs. Thus,

the programmer can establ ish a one-to-one correspondence between the quantities of several

programs even when the same quantities have different identifiers in the different programs.

For exampl e, if a program contains

COMMON A, B,C

as its first COMMON statement! and a subprogram has

COMMON X, V, Z

as its first COMMON statement, then A and X will refer to the same storage location. A

similar correspondence holds for the pairs B and V, C and Z.

Identifiers which correspond in this way must agree in mode for meaningful results.

EXAMPLES:

COMMON A, B,C,X, V,Z

COMMON ALPHA, THETA, MATRIX

EQU IVALENC E Statement

The EQU IVALENC E statement all ows more than one identifier to represent the same quantity.

FORM: EQUIVALENCE (R
1

, R
2

, •••), (R
k

, R
k
+

1
, ••.),

where R denotes a location reference.

-53-

The location references of an EQUIVALENCE statement may be simple scalar or array identi

fiers or identifiers appended by a single integer constant enclosed within parentheses. The

inclusion of two or more references in a parenthesis pair specifies that the quantities referenced

share the same storage location. Such a group is called an equivalence set. For example

EQUIVALENCE (HOGAN, GOAT)

spec ifies that the quantities HOGAN and GOAT are to share the same storage location.

Q.Jantities declared equivalent in this manner must be of the same mode.

To reference a specific location in an array, that location may be appended as an integer

constant to the array identifier. For exampl e, if ALPHA is a variabl e and BETA is an array,

the statement

EQUIVALENC E (ALPHA, BETA (4))

spec ifies that ALPHA and the fourth location of array BETA are to share the same storage

location.

To reference a specific quantity in a multiply-dimensioned array, the location of the quantity

must first be calculated. For example, consider a three-dimensional array spec ified by

DIMENSION CUBE (L
1
/U

1
, LiU2' L

3
/U

3
)

where Land U denote the minimum and maximum values permitted for the subscripts. To

calculate the location of the quantity

CUBE (Kl' K2, K3)

use the formula

Location = (K3-L3)*(Ul-Ll+I)*(U2-L2+l)+(K2-L2)*(Ul-L 1 +1) +K1-L1 + 1

Thus, the statement pair

DIMENSION TEMP (10), CUBE (-1/1, -3/-2, 4)

EQUIVALENCE (TEMP(4), CUBE (7))

spec ifies that the quantiti es TEMP (4) and CUBE (-1, -3, 2) are to share the same storage

location.

Notice that it is only the relative locations of the quantities within the array that matters,

since the entire arrays are adjusted to satisfy the equival ence. In the exampl e above, the

statement

EQUIVALENCE (TEMP (2), CUBE (5))

-54-

has the same effect as

EQUIVALENCE (TEMP(4), CUBE (7))

When the location of a variable is known relative to a second variable, this location may

be specified by appending an integer constant to the identifier of the second variable. The

integer to be used can be determined by considering a sequence of quantities as a one

dimensional array. For example, if we have in storage at

LOCATION

L
1

:, ALPHA

Li BETA

L3: GAMMA

L
4

: DELTA

then the statement

EQUIVALENCE (X, ALPHA (3))

spec ifies that the quantity X and GAMMA are to share the same storage location.

Note the property of equival ence is transitive; in other words, both of the statements

EQUIVALENCE (A, B), (B, C)

EQU IVALENC E (A, B, C)

spec ify that A, B, and C are to share the same storage location.

Further Rules for COMMON and EQUIVALENCE

When quantities are involved in both COMMON and EQUIVALENC E statements, the

COMMON statement takes precedence. Common storage is allocated first and quantities

equivalenced to common quantities are placed as an overlay.

Any quantity which is to be stored in common must be placed there by a COMMON statement

before being referenced by an EQUIVALENCE statement. Thus

COMMON ALEPH

EQUIVALENC E (ALEPH, BETH)

is a proper sequence, but

is not allowed.

EQUIVALENC E (ALEPH, BETH)

COMMON ALEPH

-55-

Furthermore, an equivalence is not assigned if it results in an overlay which extends beyond

the bounds of common. For -?xample, if A is a scalar and B an array of 5 quantities then

COMMON A

EQU IVALENC E (A, B (4))

would cause the array B to extend beyond the bounds of memory. The requested equiva

lence will not be assigned. However the sequence

COMMON B

EQU IVALENC E (A, B (4))

is proper. The equivalence is the same, but common is four places larger.

No equivalence set may contain a reference to more than one quantity which previously has

been equivalenced or placed in common. Thus the sequence

COMMON ONE

EQUIVALENCE (TWO, THREE)

EQUIVALENCE (ONE, TWO)

is not allowed. The equivalence may be accompl ished correctly this way;

COMMON ONE

EQUIVALENC E (ONE, T\VO, THREE)

or

COMMON ONE

EQUIVALENCE (ONE, TWO), (TWO, THREE)

-56-

1 C

= Z C

= .3 C
= ~ C
= :) C

= b C

.= I C
d C

= 9 C
10 C
1 1 C

= 12 C

= 1 :3 C
= 1~ C

= 10 C
= 16 C
= 17 C
= Id C
= 1 ~ C
= 20 C

= 21 C
= 22 C
= 23 C

= 2~ C
= 2:) C

20 C
27 C

= 2d C
= 2~

,..
~

= 30 C
= 3l C
= 32 C
= 33 C
= 3~ C
= 36 C

= 30 C
= 37 C
= 38 C

= 39
~O

= ~1

= ~~

= ~J
~.q

= "5
= .. 6
= .. 7
= .q8

= .q9
-- 50

51
52

= 53

APPENDIX A

THE F~LL~WING STATEMENTS ILLU~TRAT~ FE~TUREti ~F THE 8J~ 900 SERlE:
F~RTRAN II WHICH A~E N~T FOUND IN ~ANY OTHER Fe~T~AN ~~MPILERS.

CARD
NUr-1BER

TECHNIUUe::~

ILLU8TRATED

~o ARITH~ETIC STATEMENT FUNCTI~N: NAME N~T E~DING LN ~;
DU~MY YARIABL~ SA~~ NAMt: SJR~C~IPTED VARIA6LE uSED.

.q7 12-DIGIT ACCU~ACY.
52.53. Sb-59 STAT~MENT NuMdE~~ NOT RIGHT-JUSTIFIED.
~S MIxED M~DE EXPRESSI~N.
56 SUHSC~I~TED SU6SC~IPTS-TO A~Y LEVEL.
S7 FL~ATrNG P~INT SU~SCRIPT tX~RE5SIONS.
S8 CONSECUTIVE EXP~NENTIATl~N; ~IXED ·E· F~R~ ~F C~NSTANTS.
69 IDtNTIFIE~S OF ANY LENGTH.
60 VA~IA~LES WITH SAME NAMe:: AS FUNCTION.
b~ SU~SC~IPTED vARIA8LE ENDING IN F.
63 A~T NJM8E~ OF DI~EN~ION~.
6.q ~J~~C~IPT kANGE SPECIFICATI~N. INCLJDING lER~ AND NEGATIVE.
66 ~A~KWARD DO LOOP: C~MMA ~PTIBNAL; 5 DIGIT STATE~ENT NUMBER
67 FI~ST STATEMENT AFTE~ ·u~· N~T EXECUTABL~; i US~D T~ DEFINE

AL~HANuMERIC 3T~ING; C~~MA5 ~PTI~~AL W~ERe:: U~AMjIGU'US.
b 8 0 ~ L l't 1.1 P 'Y A R I A :1 L E. F L C7 A T I I~ G ; I NUl C E S FLO A T I I~ G f E X P r(E ~ S I ~ N 5
69 NEGATIVE SU8bC~IPTS~ MIAED M~DE SU8SCRIPT EXP~E~SI'NS.

72 D~ LO~P VARIAoLE CHANGED wITHIN LOOP.
73 D~ L~~P LIMIT CHANG~D WITHIN LO~P.
7~ '~ND' 6K AS BEGINNING OF ~TATEMENT.
75 INiEG~R~ uP T~ 8.388.60/ A~~~WED.
78 EX~RE~SION PE~MITTED IN~TEAD ~F CONSTANT;

TRANSFER INTO D~ LO~P.
79 EX~RE~SION PERMITTED IN~TEAD ~F VARIABLE; COMMA OPTI~NAL.
80 FLOATING. SUb~CRIPTED V~~IAdL~ IN ·ASSIGN~D GO TO·
81 NO ~TATEMENT NUMBER LIST ~EUUIRED.
83 BA~KWA~D I/~ LIST; PA~E~T~Edf~ ~PTI~NAL.
88 EUuIVALENCE N~T PERMITT~D T~ ALTER COMMON.
89 ·END· NOT LEFT JUSTIFIEu.

DIMENSI~N A~~AY[10].MAT~IX[.q.~].LAB~L[~].~ETURN[S]
FUNCTI~NlFUNCTION) = AR~AY[I]*SyRT[rUNCTI~Nl
1=2
INTtGEf(= 83
N = 3
TIME = .~
DELTA X = .9
END = ~.u
A = . .q27/6S3.qS223
READ 27. LAe;C:L.[[MATRIX[J.Kl. !(=1.~). J=l • .ql.ArO<AY
PRINT 28. LAElEL.[[MATRI)([J.Kl. K=I • .ql. J=l • .ql

12 FO~MAT [1/4FI2.7/SF12.7//~SPACE TI~~ ce~~DINATE :i/6[dFI0.5/111
2 ~~L~HA =$~[3rl0.5/8X]/lH1]

27 FORMAT (~QI~/IOr8.~l
28 FORMAT (~LAdtL =i4IolliMATRIA =$~[~!~/8X]1

-57-

= 0"1
= 56
= 66
= 57
= 58
= 51jj

= 6U
= 61
= 62
= 6j
= 6~

= 65
= 66
= 67
= 68
= 6~

= 70
= 71
= 72-
= 73
= 741

= 75
= 76

= 77
= 70
= 7~

= 80
= 81
= H~

= 8,3

= 841
= 85
= ~6

= 81
= 88
= 8~

~

S

29 F~~MAT (~F1u.Sl

2
3

1 A = 3*A + ~.O/I + AdSF[6*INTEGE~J
B = ARWAT[M~TkIX(LABEL[IJ.I)l
C : AR~ATt-13.~ + Sy~T[A+dl]
D = 8**C**[A-5E~]
SUM ~F C~EFFICI~NTS = A+B+C+D
SIN = SIN F t lJ·]
DIMENSI~N S~kTF[5]
SQI<TF(I 1 = j

DIMENSI~~ SPACE TIME C~~RDINATE [~.~.3.8]

DIMENSI~~ ALPHAt-3/10.0/2.100/103]
RtAD ~9. [[~PAC~ TIME C~~~DINATE [1.1.J.Kl. K=1.al. J~I.3]

S~321 D~ 7. J:N+I.N.-1
11 FO~MAT [~AR~AY =$10XI0FI0.~/]

D~ 7 VELOCITY=ARRAY[Jl/TIME.O.~IGNF[DELTA X.-AR~AY[JlJ
6 ALPHA(-I.J-N.10U+VE~~CITY/2] =

2 SPACE TIME[I.1.J-N+l.MIN[7.1.S*V~L~CITYl+l]*J

IF [END-vELoCITY] 7.65.7
6:' J = J-1

N = N-l
7 END = ENU + VELeCITY*12.0123~~6789

J = INTEGER-765~321
fA = A-3Qu
VEL~CIT1 = YtL~CITY/2
IF [SEN5t S~ITCH AB~F[Al/160] 6~8

e G~ TO [9.1~1 M~D [1.2] + 1
~ A~tiIGN lu T~ RETURN[Il

GO T~ Rt::IUkNlIl
l~ ST!)?

10 PRINT 11.[ARRAY(Il. I=lU.l.-l]
PRI~T 1~. SUM ~F CeEFFICIENTS.5IN.END.VEL~CITy.~a~TF.

2 [[[SPACE TIME [1.J.K.Al. A~8.1.-1J. J=1.3.21. K=1.J.2*TIME1.
3 ([ALPHA[-I.J.IQO-Al. J=O.21. A~-3.01

COM~'ON J. ~t:TUf<N
EOUIVAL::NCE

E

r u ~ ,. I 1 .:. ~, t:" "I " ,
L "t". , U"!'1 • ~ 1'4 U J

N n

CO~M~~ ALLOCATION

77777 J 77765 RETl.J~N 77766 r:.ND

PROG~AM ALL~CATI~N

0OOl~ Ar<i<AV 00041 MATr<IX rJOQF-O LA8EL OOOf41 bl..l~TF

00070 6PACt:TI~ 01~i~ ALP~~ J2216 I 02217 INTE:.GE:<
0222.) N 02221 K l.l22~~ TIME a222~ Dt::I.TAX
02~26 A 0223J 8 02232 C 0223~ D
02230 SU"1rJFCc;E 022.q:J ~IN :J~2~2 VELt)CITY

SUdPr("..,RA"'S r(EuUlti(ED

5(.j1(T :3 I I~ N F MIN

THi:. t:ND -58-

APPENDIX B

Compiler Diagnostics

The compiler does extensive error checking on FORTRAN source programs and pinpoints de

tected errors to facilitate correction. In general, errors are non-fatal; the object program

may sti II be produced and run, bearing in mind the changes introduced by the errors, as de

scribed below.

Two types of diagnostics are provided by the compiler.

I. Statement Diagnostics

Most errors are caused by one particular statement being faulty. The compiler detects these

errors at the time it encounters such a statement and prints an error indication beneath it on

the I isting. If the compiler is operating in the non-I ist mode, only the statements in error

are I isted, along with the error indications.

Statements in error are discarded and compilation then proceeds as if they had never existed.

The compiler proceeds from left to right in translating a source statement. When an error oc

curs, the compiler notes the character at which the error became evident and prints a 6. under

neath it on the I isting. The delta may indicate an error of:

A. Omission -

B. Commission -

C. Usage -

The statement has ended and someth ing further is

required. The 6. will follow the last character in

the statement, e. g. :

A=B**
6.

The flagged character does not make sense where

it is. The compiler cannot proceed beyond it, e. g. :

A=SQRTFVB)
6.

A number or identifier wh ich is incorrect will be

flagged underneath its last character, since it was

at this point that the compiler had examined it

completely, e. g. :

COMMON ALPHA, ALPHA

-59-

An error message will also be printed on the following line. These messages are:

1. SYNTAX

At the flagged character, the statement no longer conforms to the syntax

of any recogn ized type of statement.

2. SUBSCRIPTS

The number of subscripts being used with the array does not equal the

number dec lared for the array.

3. ID DECLARATION

The identifier marked is being used in a manner which contradicts a pre

vious declaration.

4. ALLOCATION

Allocation errors may occur in three statements:

A. In a DIMENSION statement, either:

1. A negative or zero dimension is specified.

2. The lower I im it for a subscript exceeds the upper I im it.

3. The requested size of an array exceeds 16 K.

B. An identifier appears in COMMON which has previously appeared

in either COMMON or EQUIVALENCE.

C. In an EQUIVALANCE set, more than one identifier has previously

appeared in either COMMON or EQUIVALENCE.

5. NUMBER

Number errors are of two types:

A. The magnitude of the integer marked exceeds 8388607.

B. The number marked is a statement label wh ich does not fa II between

1 and 99999 inclusive.

6. OVERFLOW

The statement cannot be compi led due to either:

A. Too many continuation cards.

B. Exhaustion of the compiler's working storage. In this case,

compilation is terminated and the compiler initializes for a new job.

-60-

II. Program Diagnostics

Certain errors cannot be detected until the entire source program has been read. These will

be indicated beneath the source I isting, with the summary I isting. These are:

1. DO NEST ERRORS

The statement numbers I isted were meant to close the range of a DO

statement. The compiler cannot close the DO loop correctly if:

A. The closing statement is undefined. See under label ing errors.

B. The closing statement is a transfer. The incrementing and testing

of the DO loop w ill never take place.

C. The closing statement is with in the range of another DO statement

wh ich follows this one (i. e., the ranges partially intersect). The

results of such a situation can be determined by inspection.

2. LABELING ERRORS

The statement numbers I isted are either:

A. Undefined - The program will run normally until a transfer to one

of these statements is actually attempted. At this point, the typeout

"ERR LABL" will occur, and the program will not proceed.

B. Multiply Defined - All transfers will be made to the last statement

encountered with each of the particular numbers.

3. Errors Under COMMON ALLOCATION

If the bounds of COMMON are exceeded by improper use of EQUIVALENCE,

those variables which cannot be assigned as requested will appear under COM

MON ALLOCATION, preceded by the word "ERROR" instead of an octal lo

cation. Such variables will then be assigned again under PROGRAM ALLO

CATION as if they had never appeared in the EQUIVALANCE.

The following listing illustrates most of the different types of error diagnostics:

-61-

I
/I
/I ,
II
/I

1 C
'l C
3 C
4 C
5 C
6

ALLOCATION
* 7

ALLOCATION
* 8 C
II 9 C

* 10 C
, 11
* 12
, 13
/I 14 C
, 15 C
, 16 C

* 17 , 18

THE FOLLOWING STATEMENTS WILL ILLUSTRATE THE ERROR CHECKING
FEATURES OF THE SDS 900 SERIES FORTRAN I I

ZERO OR NEGATIVE DIMENSIONS

DIMENSION ALPHA[0]
6

DIMENSION BETA[-1,3]
b.

COMMON EXCEEDED [SEE BELOW UNDER COMMON ALLOCATION]

DIMENSION A[3],R[20]
COMt,10N X, Y , Z
EQUIVALENCE [A,Y]

FUNCTION NAME USED AS ARRAY

18 X , ROARING[I,BJ
ROARING[20,201 * GOODOLD*GONEBY

6
10 DECLARATION
, 19 C
I 20 C WRONG NUMBER OF SUBSCRIPTS
* 21 C
'22 Y * A[I,Jl

6
SUBSCRIPTS
/I 23 C
, 24 C NUMBER TOO LARGE
, 25 C
* 26 J * 123456789

NUMBER
II 27 C
28 C
/I 29 C
* 30

ALLOCATION
* 31 C
If 32 C
I 33 C
/I 34
I 35
I 36
* 37 C
I 38 C
I 39 C
I 40
, 41
I 42
/I 43

ARRAY TOO LARGE

DIMENSION ENORMOUS[1000,1000]
6

~11 SS I NG AND DU PL I CATE STATEt·1EtJT NUr·1BERS [SEE BE LO\'J]

13 X , Y
13 Y II X

GO TO 5

DO LOOP ERRORS [SEE BELOW]

DO 3 I * 1,10
DO 4 J11, 3

4 IF [X-V] 18,18,19
19 DO 6 1*1,10

-62-

1t 44
I 45
I 46
I 47
/I 48
I 49
I 50

SYNTAX
I 51

SYNTAX
I 52

SYNTAX
I 53

SYNTAX
54

SYNTAX
I 55

SYNTAX
II 56

SYNTAX
57

DO NEST

6

LABLING

13

COtH,10 fJ

77776

PROGRAr·,t

00005
00065

6
7

C
C
C

DO 7 J l 1,10
X /I X&R [I]
Y /I Y&R[I]

t·ll SCE LLAtl EOU S SYNTAX ERRORS

READ 41, [R[I], Ill]
[).

X /I 3.*[[2.&Y]*SQRT[3.14159265359/[Y**2&Z**2-4.7[P-Q]]] & ABS[P
[).

X II ALPHI\~'(BETA"n'([1.F1SQRT [12. 6~I:P~I:-Q] /3.5] -2. -1d:J

[).

3. ~':PIQ
[).

IF [P-Q] 27,16
[).

X # -[1.&2.8*[R[3]-4.*R[I]*[3.-SQRTF[P&Q/[1.&X**2]]]]]]
6.

14 F 0 R~1 A T [4 F 12 • 5, I 7 , 14 H TO TAL VA L U E S F 1 2 • 0]
[).

EtJD

ERRORS

4 3

ERRORS

5 3

ALLOCATION

X 77774 Y 77772 Z ERROR f>..

ALLOCATION

A 00013 R 00063 I 00064 J
S

SUBPROGRAMS REQUIREO

ROARltlG

THE E~JD

-63-

APPENDIX C

SYNTAX

SYNTACTICAL DEFINITIONS

This section contains the precise definition of the syntactical structure of theXDS 900 Series

FORTRAN II language. The definitions are those used by the processor itself and should serve

as a reference for any question regarding syntax.

Restrictions on the definitions, such as maximum length of strings, lists and so forth, are not

included here, nor is any reference to semantics. This information is found in the appropriate

section of the text.

FORM OF THE DEFINITIONS

The definitions have the general form:

construct being defined:

definition

The colon II : II means II is defined to be". The definitions usually contain other constructs

which are defined elsewhere. The following elements are not defined as constructs and are

considered basic:

integer

identifier

alphanumeric field

All constructs are written as one word or as a hyphenated sequence of words and are to be con

sidered as indivisible symbols.

The metalinguistic symbols used are parentheses, quotation marks and the plus sign. The plus

sign is read "or". Parentheses are used for grouping as in mathematical notation. Quotation

marks are used to enclose literals. A plus sign followed by a blank means 1I0r nothing ll
•

-65-

As an illustration, consider the definition below.

call-statement:

IICALLII identifier e'c' expression-list 11)11 +)

This definition is read: "A call-statement is defined to be the letters CALL followed by an

identifier. The identifier may be followed by a I eft parenthesis, an expression-I ist and a

right parenthesis or the identifier may be followed by nothing at all".

Many of the definitions are recursive. For instance the definition:

expression-I ist:

expression (", II expression-I ist +)

states that an expression I ist is a series of expressions separated by commas. Notice that at

I east one expression must be present.

-66-

APPENDIX D

SYNTAX FOR XDS 920/930 FORTRAN II

fortran-statement:

(arithmetic -statement + arithmetic -function-defi nit ion-statement + accept-statement

+ accept-tape-statement + assign-statement + assigned-go-to-statement + backspace

statement + call-statement + common-statement + computed-go-to-statement + con

tinue-statement + dimension-statement + do-statement + end-file-statement + equi-

val ence-statement + format-statement + func tion-statement + go-to-statement + i f

statement + if-floating-overflow-statement + if-sense-I ight-statement + if-sense

switch-statement + pause-statement + print-statement + punch-statement + punch-tape

statement + read-statement + read-input-tape-statement + read-tope-statement + re

turn-statement + rewind-statement + sense-I ight-statement + stop-statement + sub

routine-statement + type-statement + write-output-tape-statement + write-tape-state

ment) end-of .. statement

ari th met ic -statem ent:

variabl e "=11 expression

variable:

identifier (II (" expression-I ist II) II +)

expression-I ist:

expression (", II expression-I ist +)

expression:

("+" + II _" +) unsigned-expression

unsigned-expression:

tenn (CI+II + II_II) unsigned-expression +)

term:

factor (C' *11 + II/") term +)

-67-

factor:

primary (,1**" factor +)

primary:

variable + function + constant + "(" expression ")"

function:

identifier "(" expression-I ist ")"

constant:

(integer ("." (integer +) +) +

(" E" signed-integer +)

signed-integer:

("+11 + "_" +) integer

II II .

a ri th met ic -func t ion -d efi nit i on -statement:

integer)

identifier II (" identifier-I ist ")=" expression

identifier-I ist:

identifier (", II identifier-I ist +)

accept-statement:

II ACC EPT" integer (II," input-output-list +)

input-output-I ist:

(variabie+ ii(ii - . - .. \ ...
input-output-I ist II)") (ii, jj (index-control + input-output-list) +)

index control:

identifier "=" expression

accept-tape-statement:

II II , expression (II, II expression +)

"ACCEPT TAPE" integer (II," input-output-list +)

ass ign-statement:

"ASSIGN" integer "TOII variable

ass igned -go-to-statement:

"GO Ta" variable (11,)11 integer-list 11)" +)

-68-

backspace-statem ent:

II BAC KSPAC Ell expression

call-statement:

IICALLII identifier C'(II expression-list ")" +)

common-statement:

"COMMON" identifier-list

computed-go-to statement:

II GO TO (" integer-I ist ")" (", "+) expression

integer-I ist:

integer (",11 integer-I ist +)

continue-statement:

"CONTINUEII

dim ensi on-statem ent:

II DIMENSION II dimension-I ist

dimension-I ist:

identifier "(" limit-I ist ")" ("," dimension-I ist +)

I im it-I ist:

((signed-integer II/" signed-integer) + ("+" +) integer) ("," limit-list +)

do-statement:

II DO" integer e', 1\ +) index-control

end-fi Ie-statement:

II END FILE" expression

eq u iva I enc e-statem ent:

"EQUIVALENCE" equivalence-list

equival ence-I ist:

"(" equivalence-set ")" ("," equivalence-I ist +)

-69-

equivalence-set:

identifi er (" (" integer ") II +) II II reference-I ist

reference-I ist:

identifier ("(11 integer 11)11+) CI, II reference-list +)

format-statement:

"FORMAT C' (format-list +) ")11

format-I ist:

format-basic (CI, II +) format-list +)

format-bas ic:

"$11 alphanumeric-field "$" + (signed-integer +) liP" +

(integer +) (II/II + "XII + "H" alphanumeric-field +

"(" format-list II)" + ("1" + "A") integer +

("FIl + "Ell) integer II II integer)

funct ion-statement:

"FUNCTION II identifier "(" identifier-I ist ") II

go-to-statement:

"GO TO" integer

if-statement:

IIIF ('I expression ")" integer II II integer ", II integer

i f-fl oat i ng-overfl ow -statement:

IIIF FLOATING OVERFLOWII integer "," integer

if-sense-I ight-statement:

"IF (SENSE LIGHT" expression ")11 integer II " integer

if-sense-sw itch-statement:

"IF (SENSE SWITCH II expression II)" integer II " integer

pause-statement:

"PAUSE II (integer +)

pri nt-statement:

"PRINT II integer C',II input-output-list +)

-70-

punch -statement:

"PUNCH" integer ("," input-output-list +)

punch-tope-statement:

"PUNCH TAPE" integer ("," input-output-list +)

read-statement:

II READ" integer (", II input-output-I ist +)

read - i np ut-tape-statement:

II READ INPUT TAPE" expression

read -tap e-statem ent:

II II , integer (", II i nput-output-I i st +)

"REA D TAP E" expression ("," i nput-output-I ist +)

return-statement:

II RETURN"

rew i nd -statement:

II REWIND" expression

sense-I ight-statement:

II SENSE LIGHT" expression

stop-statement:

"STOP"

subrouti ne-statement:

"SUBROUTINE" identifier ("(" identifier-list ")" +)

type-statement:

II TYPE" integer ('I," input-output-I ist +)

write-output-tape-statement:

"WRITE OUTPUT TAPE" expression

w rite -tape -statement:

II " , integer (", II input-output-list +)

II WRITE T APE" expression (", II input-output-I ist +)

-71-

APPENDIX E

XDS 920/930 FORTRAN II Statements

18 Assignment Statement

20 Arithmetic Function Definition Statement

3. ACCEPT Statement

4. ACCEPT TAPE Statement

5. ASS IG N Statement

6,. Assigned GO TO Statement

70 BAC KSPAC E Statement

8. CAll Statement

9" COMMON Statement

10" Computed GO TO Statement

11 " CONTINUE Statement

12" DIMENSION Statement

13,. DO Statem ent

14. END File Statement

15. EQUIVALENCE Statement

16. FORMAT Statement

17. FUNCTION Statement

18. GO TO Statement

19. IF FLOATING OVERFLOW Statement

20. IF Statement

21. IF SENSE LIGHT Statement

22. IF SENSE SWITCH Statement

23. PAUSE Statement

24. PRINT Statement

25. PUNCH Statement

26. PUNCH TAPE Statement

-73-

27Q READ Statement

28Q READ INPUT TAPE Statement

29. READ TAPE Statement

30Q RETURN Statement

31 Q REWIND Statement

32" SENSE LIGHT Statement

33Q STOP Statement

34G SU BROUT IN E Statement

35. TYPE Statement

36. WRITE OUTPUT TAPE Statement

37u WR ITE TAPE Statement

-74-

INDEX

Page Page

ACCEPT 32 Blank Fields

ACCEPT TAPE 33 ignored 41

Alphanumeric Fields input records 41

Conversion 39 output records 41

Arguments CALL 20

alphanumeric 20 Closed FUNCTIONS 12

in common storage 56 Coding Forms 4

of a function 49 (see II FORTRAN, codi ng form ")

of a I ibrary subroutine 12 Comment Cards 5

(see also II Subprogram argument") COMMON 53

Arithmetic 15 CompHer 1

. "\rithmetic Expressions 15 Computer GO TO 24

Arithmetic Statements 15 Control Statements 21

functions (see "FUNCTIONS") Constants 9

meaning of 19 Conti nuation Cards 3

mode of resul t 19 CONTINUE 24

truncation of floating-point quantity 19 Control 21

Arrays Data 37

arrangement in storage 31 Data Input to Object Programs 38

in FUNCTION subprograms 31 Defining FUNCT IONS 49

in SUBROUTINE subprograms 31 DIMENSION 45

Arithmetic Function Definition Statement 46 DO

Assembler 12 index 22

ASSIGN 25 nests 23

Assigned GO TO 25 range 22

BAC KSPACE 25 satisfied 22

-75-

Page Page

sequencing 23 record lengths 43

transfer ex it from 23 repetition 41

transfer with in and out of range of 23 scale factors 38

Dummy Ident ifiers 47 variable 30

Diagnostics 59 FORTRAN

END 5 card 6

END FILE 36 coding form 4

EQUIVALENCE functions 48

not to be used to equate quantities 53 statement 3

Exponentiation 16 types of statements 3

Express ions FREQUENCY 47

floating-point 18 FUNCTION

formation 15 (see also "Subprograms,

mixed 18 FUNCTION - type ") 49

Fixed Point Functions

arithmetic 9 arithmetic statement 47

constants 9 closed (I ibrary) 12

variables 11 modes of 49

Floating Point naming 49

arithmetic 9 open (built-in) 12
,..",n .. fo,.. fo .. n rATA
,",,'-'11.;)1\,.01111.-> 7 UV IV

variables 11 assigned 25

FORMAT computed 24

alphanumeric fields 39 unconditional 21

alphanumeric format fields 40 Hierarchy of Operations 16

blank or skip 41 Identifiers 10

commas 41 IF 22

for numerical conversion 37 IF FLOATING OVERFLOW 27

lists 30 IF (SENSE LIGHT) 26

mixed 41 IF (SENSE SWITCH) 27

multiple record 42 Input/Output

numerical fields 37 lists 30

of arrays 31
-76-

Page Page

designation 29 READ INPUT TAPE 34

records 30 READ TAPE 34

statements 29 RETURN 28

Impl icit Declaration 51 REWIND 36

Library Functions 12 Scal e Factors 37

(see II Closed Functions II) SENSE LIGHT 26

List of Quantities Sense Switch Settings 27

abbreviated form 31 Sequenc i ng of Statements 21

for transm iss ion 30 Source Machine

Magnetic Tape Operations 34 Source Program 3

Mode of a Function 49 Source Program Characters 5

Memory Allocation 52 Source Statements 3

Naming Spec ial Features 57

FORTRAN functions 49 Spec ification Statements 43

functions 49 Statement

subrout i nes 50 assignment 19

Non-executabl e Statements 5 cards 3

Numerical Fields, conversion 37 (see "FORTRAN, Card ")

Object Machine numbers 3

Operation Symbols 16 920 FORTRAN II

Ordering Within a Hierarchy 16 STOP 28

Pa renth eses 15 Storage Allocation 45

PAUSE 27 Syntax

PRINT 32 form 65

. PUNCH 33 list 67

PUNCH TAPE 33 Subprogram

Program Preparation 3 arguments 47

Quantities FUNCTION - type 48

floating 9 statements 46

integer 9 SUBROUTINE - type 50

READ 33 SUBROUTINE 50

(see also "Subprogram, SUBROUTINE - type ll
)

-77-

Subscripts

Subscripted Variables

TYPE

Unconditional GO TO

(see "GO TO, Unconditional ")

Page

11

11

32

21

-78-

Variables

WRITE OUTPUT TAPE

WRITE TAPE

Page

11

35

34

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78

