
.J

(
"

,...--;'

,

I

REFERENCE MANUAL

Q. E. D.

TIME-SHARING EDITOR

D. C. Anglu1n

L. P. Deutsch

Document No. R ... 15

Revised March 26, 1968

Contract SD-185

Office of Secretary of Defense

Advanced Research Projects Agency

Washington, D. C. 203g:)

". t"

()

I
..i.,.\

I') I

c)
TABLE OF CONTENTS

1.0 Introduction . . • . . . • .

1.1 A St~mary Description •

1.2 Command Mode, Formats

1. 3 Notation rind Conventions

').0 Addressing Text

.1 Legal .Addresses

.2 Type Address Commands

::'·3 Examples for Secti.on 2.0

3·0 Pr:Lnting Text

4.0 S:lving Text on Files

5.0 Destroying, Creating and Changing Lines

5·1 Deleting Lines

~.? Adding Lines

5.3 Chnnging Parts of Ltnes

'5 .4 Control Characters :Lor Text Input

6.0 Substitute . .

7.0 String Buffers

7.1
'(• 2

8.0 Mode

8.1

8.2

8.3

Loading, Deleting, I1nd Printing Buffers

The Uses of String Buffers

and Tab-Setting Commands

Quick/Verbose Mode

Ignore Characters Mode

Tab-Setting .

9.0 Returning from QED and Panic Messages

The Normal Return

Rubout

Panic Messages

APPENDIX A: Index of Control Characters

APPENDIX B: Index of Commands

1-1

1-1

1-1

:'-1

2-1

2-3

2-3

3-1
4-1
5-1

5-1

5-1

5-3
'5 _l~

6-1
7-1

7-1

7-3
8-1

8-1

8-1
8-2

9-1

9-1

9-1

9-2

() .

()

c)

1-1

1.0 Introduction

1.1 A Summarl Description

QED is a ,rather powerful program for editing symbolic text

which runs under the 930 time-sharing system. Its input and

output are symbolic files which can also be handled by the

'executive COPY command. It has extensive facilities for

inserting, deleting and changing lines of text, a line edit

feature, a powerful symbolic search feature, automatic tabs

which may be set by the user, and thirty-six buffers. Text

can be read from any file and written onto any file. A replace

command permits all occurrences of a specified string of characters

to be replaced with another string.

1. 2 Command Mode t Formats

To enter QED from the executive type QED. (underlined --
portions are typed by the user.) QED will type a * and the user

may type any of the commands des~ribed 1n this manual. When
.~"I,,<;'

the operation of a command ~terminated and ~ED is ready for

another command, it again types *; at this point QED is waiting

for commands a.nd is said to be in "command mode."

The formats ~1the various commands are of three basic types:

1. A single (non-alphanumeric) character (possibly preceded

by line address(es)), for example: / and t, which

requires no confirming dot, but rather begins its

specified function as soon as the character is typed.

2. A command word (possfbly preceded by line address(es)),

for example: TABS and MODIFY, which require a confirming

dot before the spec ified function is begun. In typing

the command word, the user onll ~ ~ initial

letter, then ~~D recognizes the command and types the

rest of it. The user may then type a dot (.) to

confirm the command, or any other character, in which

case the command will be aborted.

1-2

3. Mavericks, namely: READ FROM, WRITE ON, SUBSTITUTE and

the buffer commands ,LOAD, GET, JAM, BUFFER and KILL)

each of which is,specified by typing its initial

letter (QED types the rest) but otherwise has a unique

format (for fuller explanation ~ee individual descrip
tions) •

For a list of all commands recognized in command mode (and the

locations of their descriptions) see Appendix B.

1.3 Notation and Conventions

A character with a following superscript C is a control

character and is typed by pressing the control key together with

the key for the basic character, for example, DC is control D

and is typed by holding down the control key and pressing the key

for D. Control characters do not have any printing characters

normally associated with them; to emphasize that nothing is

printed when they are typed, in the examples they are enclosed in

parentheses (which, apart from the function of emphasizing this

fact, should be ignored). In certain contexts, QED will print

some character when a control character is typed (e.g.,

11 for B
C

, 't for A c, \ for WC
). This is noted in the individual

descriptions of the control characters, section 5.4. Also,

when a control character is part of the text being input from

output to the teletype, QED will represent CC as &C (where 2-
is some printing character), for example, t

C will be typed as &,.
IQ' is used throughout this manual to indicate a Single

(arbitrary) character. t!f,I~1 and fl' are described in under

text addreSSing, section 2.1. Apart from theBe special symbols,

(in the examples and format-specifications) lower case letters,

parentheses, and underlining are used for comments, explanation,

and variable ,structures (always specified more fully in their

descriptions); and all other characters are literally typed by

QED or the user in specifying or executing the operation concerned.

2-1

2.0 Addressing Text

The text being edited is held in a single buffer, called

the main text buffer.. It consists of· a series of lines delimited

by carriage returns (CR' s) . The line is the only addressable

unit of text.

2.1 Legal Addresses

Lines may be addressed in the following ways:

1. By decimal numbers. The first line is numbered 1.

2. By. (called 'dot'), which refers to the current

line. The value of . is changed by many of the

editor's commands, as noted below.

3. By $, which always refers to the last line in the main

text buffer.

4. By labels. The structure : text: typed in command mode

causes a search for the indicated text at the beginning

of a line and followed by a character which is not a

letter or a digit. When typing in the .:text, A c, WC
,

Q C and VC have the ir usual functi;ons (see sect ion 5.4).

The text may contain any characters, may be a. maximum

of 30 characters long, and is terminated by a colon (:).

The search begins with the line after the current line,

and cycles to the beginning of the buffer if it runs

off the end. Buffer 0 is loaded with the text searched

for. If the search succeeds, • addresses the line

where the label was found, and the value of :text: is

also this line. (Note that QED does not type any response

specifically to indicate that a search succeeded.)

If there is no line with the specified label in the

main text buffer, QED types ? and restarts command input.

(In this case. is not changed.)

The search may be begun at line ~ where ~ is any

legal address), instead of at .+1, by typing ~:text:

For example, .:ABC: begins the search at the current

line.

. 5. By arbitrary text. The structure [text] causes a

search for the specified text anywhere in the main

text buffer. The text may contain any characters

2-2

(and arbitrarily many of them) and is terminated by J.
The search proceeds in the same way as the label

search (4), and has the same effect when it succeeds

or fails. ~[text] starts the search of line ~, as

in label search.

6. By a legal address followed by +, - or space, followed

by another legal address. This construction has the

obvious meaning with the following qualifications:

a) Space is treated as +

b) !+~,!~" or ~-~ where! is any legal address and

~ is a search is equivalent to AB, i.e., the search

for ~ is begun at ~ and if it is successful, . and

~+! (or! ! or ~-!!) address the line where the

search succeeded.

c) After a search has been given in an address, . and $
may not be added to or subtracted from the address

being constructed. E.g., :text:+$, [text]-~, and

:text:+9-. are not legal addresses.

d) There can only be one occurrence of . or $ in a

given address. E.g., $-., .+., $+$-15 are not

legal addresses.

Throughout the remainder of this manual, the symbols ~ and

1! will represent any legal line addresses. Also, the symbol.!

will indicate that a single line address, !, may be given; or

a pair of line addresses separated by a comma (thus: !,!!),

where the second address is at least as great as the first. In

this latter case, the interval is inclusive, i.e., !,~ specifies

lines! through!!. (!,!! where !! is less than ~ is treated as

an illegal parameter.) Or, one may type@, which addresses

all the lines in the main text buffer. (And is thus equivalent

to 1,$.)

(.. !

'--/

2-3

Generally, if ~ line addresses

the interval is taken to be just the

*DELETE. is equivalent to *. DELETE •

are typed before a command,

current line. For example:

and */ is equivalent to
*./ Exceptions to this are:

*APPEND. , which is equivalent to *$APPEND.
*READ FROM, which is equivalent to *$READ FROM
*WRITE ON, which is equivalent to *l,$WRITE ON

If an address being typed in is deemed to be illegal, QED types

? and restarts command input. When a command is given, negative

line addresses are converted to 1, and an address greater than

that of the last line is treated as an illegal parameter, i.e.,

QED types ? and restarts command input.

(Note: examples for text-addreSSing and type address

commands are in section 2.3.)

2.2 Type Address Commands

To facilitate text addreSSing, there are two commands which

convert between absolute line numbers and symbolic addresses.

A= (where A is any legal address) causes QED to type
the line number of the line addressed by!.

A+- causes QED to type the "symbolic address" of the
line addressed by A. (That is, the label of the
last line preceding A which has a label, followed
by a decimal number Indicating its displacement
from A. (The label part of the address is enclosed
in colons)). For this camnand, any line which
begins with something other than a carriage-return
or a blank has a label, and the label typed out will
terminate with the first character after the initial
one which is not a letter or a digit. For example,
the label typed out for the line *AB**C will be
:*AB:, and that for **AB*C will be :*:

2.3 Examples for Section 2.0

It is assumed that the reader is familiar with the command

/ which types out the line or lines addressed .

. --------------------------,--------------------------,-------------------------------------

,*@/
FIRST LINE
SECOND

THIRD
FOURTH: ~ Lm .
##FIFTH
*11
FIRST LmE
*.=1
*.~FIRST
*$=5
:4/
##FIFTH
*:SECOND:==2
*.~2
*:FOURTH:/
FOURTH! ! LINE
*:FOUR:?
*:FOURTH~ :/
FOURTH! ! LINE
*:FOURTH!! :1
*:FOURTH! :<f-:FOURTH:
*[#]=5
*[H! ~L)=4
*(ST]=l
*.~FmST:

*[FT]~#:
*[INE]=l
*.=1
*[INE)=4
*[INE]=l
*. [INE]=l
*2[INE]=4
'*5 [mE}::l
*4[m]=4
*:FmST:[INE]=l
*l[IRST] [IRD] [INE]=4
*:FIRST: :SECOND: [mD] [FI]~#:
*.=5
*.1/
!
*1/
FIRST LmE
*.+2/

THIRD
*.~SECOND:1
*.+2=5
*. 2~#:
*$-2=3
*

2-4

(1

3-1

3.0 Printing Text

As text is kept "out of sightH in the main text buffer, the

user must explicitly direct QED to type out a line or lines

for his inspection.

There are four basic print commands (in each, the value of

. is changed to the last line typed out):

y types out the lines(s) addressed by the
interval I.

line-feed types out the next line (i.e., .+1).

IPRINT.

Examples:

*1,$/
FmST LINE
SECOND

types out the previous line (i.e., .-1).

allows formatted printing of the line(s)
addressed by 1) on the next line, QED types
DOUBLE? and expects the user to type Y or N
(which will be completed as YES or NO, respec
tively) in response, to indicate whether he
desires double-spacing of the text. Q~D then
types the lines in pages of 54 (single-spaced)
or 27 (double-spaced) lines; before each page,
QED types a number of line-feedS, a short dashed
line, and an equal number of line-feeds. Also,
the last page is filled out to the size of the
others and marked at the bottom with a dashed
line.

THmD
FOURTH! ! LINE
Fr:F'rff.
*1'
FOURTH! ! LINE
*1'

THmD
*
FOURTH: ! LINE

*
##FIFTH

*
?

*1/

FmST LINE
*t?
*2, :FOURTH:PRINT.
DOUBLE? YES

SECOND

THmD

FOURTH! !LINE

*

3-2

4-1

4.0 Saving Text On Files

The following two commands enable the user to move text

between QED's main text buffer and symbolic files. They accept

file names in the format required by the executive.

~D FRa.1 (file name).

.±WRITE ON (file name).

Examples:

*15,17/
A BCD
12345678
EFGH
*15,17WRITE ON /TEST/.
9 WORDS.
*$=115
*READ FRa.1 /TEST/.
9 WORDS.
*$=1l8
*$-2,$/
A BCD
12345678
EFGH
*

QED reads all the text from the
specified file (which should be
type 3, symbolic) and appends it
after line ~.

*READ FRa.1 is the same as *$READ FRa.1.

After QED has finished reading the
text, it types out the number of
"words" read, (One ftword" is approxi
mately 3 characters.) and returns
to command mode.

The main text buffer is not cleared
before the READ •

QED replaces the contents of the
specified file with the lines in
the interval !.

*WRITE ON is the same as
*l,$WRITE ON

After QED has finished writing the
text, it prints out the number of
"wordS I! written and returns to
command mode.

The main text buffer is unaffected
by the WRITE.

(the lines read were appended, and
the main text buffer was not cleared
first.)

'-J
'.

5-1

5.0 Destroying, Creating and Changing Lines

The following sections describe the heart of QED: the

commands by which the user changes the text held in the main

text butfer:

5.1 Deleting Lines

IDELETE.

Example:

*1,4/
FmST LINE
SECOND

THmD
LINE FOUR
*$=115
*2,3DELETE.
*.=1
*$=113
*1,2/
FmST LINE
LINE FOUR

*

5.2 Adding Lines

causes the line(s) addressed to be
deleted from the main text buffer;
• is set to the line before the
first one deleted.

print the first four lines

there are 115 lines in the main text buffer.
delete the second and third lines •
• is the line before the first one deleted (#2).
there are 2 fewer lines in the main text buffer.

the old second and third lines have been deleted.

Atter each of the following three commands -- APPEND, INSERT,

and CHANGE -- QED expects the USE~r to type in a series of lines

(each terminated by a carriage-return), the whole series followed

by a DC to indicate the end of the series. QED then takes the

lines so collectE!d and puts them into the main text buffer in

the position specified by the command (see individual descriptions.)

(If the user does not follow the last line with a carriage-return
c .

before he types the D , QED will insert the necessary carriage-

return.) In addition to DC, !f!:. of the control charact.ers described

in section 5.4 are recognized; the line being edited is taken to

be a null line, i . e ., one containing no characters. . is changed

to the last line collected.

AAPPEND.

AINSERT.

ICHANGE.

F;xamp1es:

*1,$/
*APPEND.
NEW TEXT(Dc)
*:NEW: INSERT.
FIRST(CRJ
SECOND(D)
*1,$/
FIRST
SECOND
NEW TEXT
*2APPEND.
THIRD(DC

)

*1,$/
FIRST
SECOND
THIRD
NEW TEXT
*$CHANGE.
FOURTH(CR)
FIFTH(DC)
*1,$/
FIRST
SECOND
THIRD
FOURTH
FIFTH

*

5-2

QED expects the user to type in a sequence
of lines; when DC is typed, the APPEND is
terminated, i.e., QED takes the lines
collected and inserts them after line A
in the main text buffer. If the address
A is omitted, the collected lines will be
added to the end of the main text buffer.
This is the u'S'Ui'l command for creat ing a
body of text from scratch.

QED expects the Hser to type in a sequence
of lines; when D is typed, the INSERT is
terminated and the collected lines are
inserted before line A in the main text
buffer. -

QED'e~c~s the gser to type in a sequence
of lines; when D is typed the CHANGE is
terminated, the 1ine(s) addressed by I
are deleted, and the collected lines are
put in their place. (The interval I
and the collected text need not have the
same number of lines.)

there is nothing in the main text buffer.

a CR is supplied by QED to terminate the line.

the CR does ~ terminate the sequence of lines.

the collected lines were inserted before #1.

the collected line was inserted after #2.

the collected lines were inserted into the main
text buffer in place of the line NEW TEXT.

5-3

5 .3 Changing Parts of Lines

These two commands -- EDIT and MODIFY -- 'allow the user (via

the control characters described in section 5.4) to change just

part of a line, and thus usually require less typing than the

same change made with CHANGE (which forces the user to type a

whole line over to make a small change in it.) . is changed

to the last line edited.

AEDIT.

~,!!EDn'.

AMODIFY.

~,~ODIFY.

Examples:

QED types out line A and then expects a new line
to be typed in to replace A. All of the control
characters described in section 5.4 are recognized;
the "old line" or line being edited is line A.
In particular, CR, DC, or FC will terminate the
EDIT, and the new line replaces the old as line
A in the main text buffer.

is a convenience permitting repeated single-line
edits. Line A is typed out, and when the edit
of that line Is terminated (with CR, DC or FC),
the next line (A+l) is typed out for editing.
When the edit of the last line (line ,B) is
terminated, and the new lines replace-lines A
through !! in the main text buffer. -

is exactly equivalent to AEDIT. except that the
line being edited is not typed out at the
beginning of the edit.

is exactly equivalent to A,BEDn'. except that
the successive lines are not typed out before
the user begins to edit them.

(The underlined characters are assumed to be those typed by

the user in the EDn'.)

*:CHCR:EDlT.
CHCR SKG
CECR SKE·
*./
CECR SKE
*.MODIFY.
RLP CLA(CR)
*./
RLP CLA
*3,4EDIT.
A ZRO
Al BSS
B ZRO
Bl BSS
*3,4/
Al BSS
Bl BOO

*

=??B
=l55B(CR)

=l55B

1

1

1
1

old line #3.
new line #3.
old line #4.
new line 14.

5-4

For more (and more enlightening) examples of these two commands

see the examples in section 5.4 on control characters.

5.4 Control Characters for Text Input

The control characters described in this section facilitate

text input. All of them are recognized (and have the functions

described) in text input in the commands APPEND, INSERT, CHANGE,

EDIT, and MODIFY. In addition, those marked with an asterisk (*)

are recogn.ized in the JAM INTO command, and in spec.ifying the

text in searches and SUBSTITUTE. Finally, the following two

control characters (Ic and BC
) are always recognized (except

~ediately after a Vc):

i,J

5"5
Table of Contents for

Sectiqn 5.4

Tab and Buffer Cnll Character Page
Buffer Call BeC 5-5, 7-3
Tab I

C
5-5

Line Terminate

Carriage Return CR or MC
5-5

Escape Character

*tnke .£ literally VCC 5-5
Backspace

*one . character AC
5-5

*one word WC
5-6

*one line QC 5-7
one character (restorative) NC

5-7
Copy

one character CC 5-8
to tab stop Uc

5-8
to end of line He 5-9
up to C OCC 5-9
through .£ ZcC 5-10
rest of line (terminate) DC 5-10
rest of line (no 'typing) Fe 5-11

Skip

one cho.racter SC 5-12
up to 9. pCC 5-12
through 9. xcc 5-13

Retype

fast RC 5-14
aligned TC

5-14
Re-Edit

concatenate-re-edit yC 5-14
Mode Change

insert/ replace 5-15
ignore/usual KC 5-16

buffer 'l/usual LC 5-17
* Recognized in APPEND, INSERT, CHANGE, EDIT, MODIFY, JAM INTO, SUBSTITUTE, and

searches.

5-6

THO and Buffer Call (Always Recognized)

The Carriage Return

* M
C

The Escape Character

Examples:

*:A(V
c

) :B:/
A:B,A RATIO
*$~PPE~.
(V)(D)&D,144B(DC

)

*$/
&D,144B

*

Backspace Characters

(where Q is ~ letter or a digit) is call of string
buffer C. B is echoed as #. Typing BCC :l.s equivalent
to typing in the whole strdng of characters in buffer C.
(For a full description and examples see section 7.2) -

causes QED to space to the next tab stop (tab stops are
set with the command TABS, q.v.). If there are no more
tab stops on the line, QED types bell and takes no further
action.

is exactly equivalent to carriage-return (i.e., MC and
the CR key are two ways of typing the same character.)
QED automatically supplies a line-feed. Carriage-returns
serve to delimit lines of text. .In addition, a carriage
return terminates editing of the current line in EDIT
or MODIFY. (It does not terminate an APPEND, INSERT or

c -) CHANGE; only D terminates these latter operations.

causes the character C to be appended literally to the
text being collected and disables any control function C
might otherwise have. Q may be any character.

VC prevents : which follows it from terminating the label.

(&D is typed by Q,ED) VC allows the user to enter a DC
(which types as &D) without terminating the APPEND.

The following control characters delete one or more characters from the

end of the text already typed in; all of them may be iterated. If any of these

backspace characters causes the whole line currently being typed in to be

deleted, QED gives a carriage return and line-feed; typing may then continue.

Q.ED types 6 and deletes the preceding character. In
editing, A does not affect the status of the old line.

\:1

(;
5-7

Examples:

Suppose the user has typed in part of a search:

*[ACD

and then types two AC's and continues typing:

*[ACDHBCD] /
ZABCD EF

*
in this case, the first AC deleted D, the second, C. Suppose the user

has begun an EDIT:

*:NXC :EDIT.
mec STA CHAR
NXC S,

c and now types A :

*:NXC : EDIT •
NXC STA
NXC Sf

CHAR

old line: 'TA
new line: 'NXC

CHAR'
S'

old line is still: ITA
new line :i,s now: 'NXC

CHAR'

QED types' and deletes the preceding "word". That is,
all preceding blanks are deleted, Dnd all non-blank
characters up to the next preceding blank.

Examples:

Suppose the user has begun to load a buffer:

*JAM INTO #3.
A LINE ('A LINE ' has been typed)

, c
and now types Wand continues typing.

*JAM INTO #3. ,
A LINE \CHARACTER(Dc)
*BUFFER #3·
II A CHARACTER"

*
that is, the characters 'LINE' were deleted. Suppose the user has typed:

*APPEND.
GC cro ('GC cro NEWF' has been typed)

c and now t~es Wand continues typing:

*APPEND.
GC cro NEWF\FII..ENO(D

C
)

*/
GC CIa FILENO
*

that is, the characters 'NEWF' were deleted.

*

Examples:

5-8

QED types ~, gives a ca.rriage return and line
feed, and deletes the line currently being typed
in, or if there are no characters in the current
line, the preceding line is deleted (in line
editing, the ol~ line is restored as jt was when
the edit began).

Suppose the user has begun to type in a label:

*:NXCH

c and then types Q and continues typing:

*:NXCHi:
PCER:/
PeER GCD M8P

*
that is, the characters 'NXCH' were deleted. Suppose the user starts

the following insert:

*3INSERT.
ABC
EFG
H

and now types two QC's and continues typing:

*3n:fSERT.
ABC
EFG
Hi:-
i:-
DEF
GHI(Dc)
*3,5/
ABC
DEF
GHI

*

line 'H' is deleted.
line 'EFG' is deleted.

In this caSe, the first QC deleted the line 'H', and the second deleted

the line 'EFG'.

QED types t and deletes the preceding character.
In addition, in edit mode, QED restores the last
character obliterated from the old line, if any.

()

c)

5-9

Example:

If the user has begun the following edit:

*:NXC :EDIT.
NXC STA CHAR old line: 'TA CHAR'
NXC S new line: 'NXC S'

and c then types N :

*:NXC:EDIT.
NXC STA CHAR old line is ~: 'STA CHAR'
NXC St new line is now: 'NXC

that is, c
's' to the beginning of the old line. N restored

Copy Characters

The following characters copy one or more characters from the old line onto

the end of the new line. (Except in DC and Fe) if the old line contains no more

characters, or if the character to be copied to (in ZC and Oc) does not appear

in the old line, QED rings the bell (perhaps more than once) and tak.es no other

action.

Example:

*:NXC:EDIT.
NXCHR LDA
PR

If the user

*:NXC:EDIT.
NXCRR LDA
PRC

CHAR

QED copies the next character of the old line onto
the new and types out the character copied.

old line: 'CRR LDA CHAR'
new line: 'PR'

c now types a C :

CHAR old line: 'Im LDA CHAR'
new line: 'PRC!

QED copies characters from the old line onto the
new, up to the next tab stop, and types out the
characters copied.

5-10
Example =

Suppose the tab stops are the usual ones (8,16,32,40) and the user

has begun an edit:

*32EDIT.
AB34567890
12

If the user now types U
C:

* '3 2E.'D IT .
AB34567890
1234567

old line:
new line:

134567890'
'12'

old line: '890 I
new line: '1234567'

QED copies the rest of the old line onto the new,
typing out characters typed; editing may then continue.

Example:

*133EDIT.
STORE CHR,CNT,FLGl old line: STORE

new line: . I INTI'
CHR, CNT, FLGI '

INTI

If the user types HC
: (J

*133EDIT.
old line: " (null) STORE

INIT STORE
CHR,CNT,FLGl
CHR,CNT,F!.Gl new line: I INIT STORE CHR,CNT,FLG1'

Examples:

* [FfALLE] ED TI •
SANG FfALLEWJAH!
SI

QED cmpies the old line up to, and not including, the
next occurrence of the character C after the next
character, typing out characters copie~. (Q is never
echoed.)

old line: ING HALLELUJAH! '
new line: 'SI'

If the user now types OcH:

* [HALLE 1EDTI •
SANG HALLELUJAH!
SING

old line:
new line:

'HALLELUJAH! t

I SING'

C)

If he types OCH again:

*[HALLE]EDIT .
SANG HALLELUJAH!
SING HALLELUJA

5-11

old line: 'H!'
new line: I SING HALLELUJA'

C If the user again types 0 H, QED will ring the bell and take no further

action since the line beyond the next character (the next character is H, the

line beyond is I!') corttains no further occurrences of H, i.e. QED has already

copied up to the last H of the old line.

Example:

*[HALLE]EDIT .
SANG HALLEWJAH!
SI

QED copies up through the next occurrence of the
character C in the old line. C is echoed when it
is copied,-not when it is typed.

old line: 'NG HALLELUJAH!'
new line: ' SI'

c If th~ user now types Z H:

*[HALLE]EDIT .
SANG HALLEWJAH!
SING H

c If he again. types Z H:

*[HALLE)EDIT .
SANG HALLELUJAH!
SlNG HALLELUJAH

old line: 'ALLELUJAH!'
new line: 'SING H'

old line: I , ,

new line: 'SING HALLELUJAH'

If ZCH is typed again, QED will ring the bell and take no further action,

as there are no occurrences of H in the rest of the old line.

QED copies the rest of the old line onto the new,
typing out the characters copied. In addition, DC
terminates the edit of the line in EDIT and MODIFY,
and terminates text-collection in APPEND, INSERT and
CHAN~E (also in JAM INTO).

5-12

Examples:

*210EDIT.
STORE

:mIT1
. CHR,CNT,FtGl old line: t STORE CHR,CNT,FLG1'

new line: '. INIT1 '

If DC is typed:

*f)10EDIT.
STORE

INITl STORE
*

CHR,CNT,FISl
eHR, CNT, FLG1 ~this is the new line #210

Suppose the user has begun the following edit:

*13, l!~EDIT.
A BSS 1
$A

and now types DC:

*13, l4EDIT,
A BSS
$A BSS
B BSS

1
1
1

the edit of line #13 terminates
and l:i.ne #14 is typed out for editing.

(When the user terminates the edit of line #14, the whole edit will

terminate and the lines typed in will become the new lines #13 and 14.)

Example:

*:NXCHR :EDIT.
NXCHR LDA CHAR
PV

QED copies the rest of the old line onto the new
without typing it. In addition the edit of the line
is terminated in EDIT or MODIFY. (Fc does not
terminate an APPEND, INSERT, or CHANGE.) -

old line: ' CHR
new line: t PV'

LDA CHAR'

If the user now types FC
:

*:NXCHR:EDIT.
NXCHR LDA
PV
*./
PVCHR LDA

*

CHAR

CHAR

(the characters copied are not typed out).
Note that Fe terminated the EDIT.

C:

()

~ .. , . \

~)

5-13

Skip Characters

The following control characters cause one or more characters from the

old line to be skipped; the new line is not affected. QED types % for each

character skipped. If there are no more characters in the old line, or if

the character to be skipped to (in pC and Xc) does not occur in the rest of

the old line, Q~ rings the bell and takes no further action. (Editing may

then proceed normally.)

Example:

*[CARTO]EDIT.
THE CARTONS OF SHELLS
THE CARTON

QED skips the next character of the old line.

old line: IS OF SHELLS'
new line: 'THE CARTON I

If the user now types SC:

*[CARTO]EDIT.
THE CARTONS OF SHELLS
THE CARTON%

old line: 'OF SHELLS'
new line: 'THE CARTON'

(At this point, the user could type DC and the new line 'THE CARTON

OF SHELLS' would be placed in the maln text buffer and the EDIT would

be terminated.)

Example:

* (HALLE]EDIT.
SANG HALLELUJAH!
SING

QED skips up to (not including) the next occurrence
of the charact~r £ in the old line after ~he next
character. (p is the skip analogue of 0.) C is
never echoed.

old. line:
new line:

, HALLELUJAH! I

'SING'

If the user now types peH:

* [HALLE]EDIT.
SANG HALLELUJAH!
SING%

old line is now: I HALLELUJAH! I
new line is still: ISING'

If the user again types peH:

*[HALLE]EDIT.
SANG HATJLELUJAH!
SING%%%%%%%%%%

5-14

old line: 'H! '
new line 1s still: 'SING'

c
If the user again types P H, QED will ring the bell and take no further

action, as it has already skipped ~ ~ the last H of the old line.

QED skips up through the next occurrence of the
ch~racter Q in the old line. Q is never echoed.
(X is the skip analogue of ZC.)

Example:

* [HALLE] EDIT.
SANG HALLELUJAH!
SING

If the user now types XCH:

*[HALLE]EDIT .
SANG HALLEWJAH!
SING%%

c If the user again types X H:

*[:HALLE]EDIT.
SANG HALLELUJAH 1
SING%%%%%%%%%%%

old line:
new line:

, HALLELUJAH!'
'SING'

old line: 'ALLELUJAH!'
new line is still: 'SING'

old line: '!'
new line is still: 'SING'

If XCH is typed once more, Q,EDwi11 ring the bell and take no further

action, as there are no more H'S in the old line.

Retype Characters

The following control characters .2:2. ~ affect the state of the edit, but

merely retype tlile old and new lines, to permit the user to recover in case he

has become confused about the state of the edit. Editing may then continue

normally.

()

C)

Example:

5-15

QED types line-feed and then the rest of the old
line, and on the next line, the new line so far
produced.

(Assume in this example that t indicates that AC was typed Lmd % indicates

a skipped character):

*9IEDIT.
THE MANDALA (WHICH FIGURES PROM
S1'AEtctJ.1t MD1'ANDALA 81'1'(1' (%%%

old line: 'URES PROM-'
new line: t A MANDALA (,

A MANDALA (

Example:

URES PROM- old and new lines are unchanged.

QED types out the state of the edit as in RC
, except

that the rest of the old line is properly aligned with
the new.

C C . Let us take the setup in the R example above and assume thnt T is typed

instead of RC
:

*9IEDIT.
THE MANDALA (WHICH FIGURES PROM
S1'AEtcttM1'MD1' ANDALA 8ft (1' (%%%

URES PROM
A MANDALA {

The Re-Edit Character

yC

Example:

*.EDIT.
ZHT SKG
ZHTOT

old and new lines are unchanged.

QED copies (without typing) the rest of the old line
onto the new and then the result of this concatenation
may be re-edited. That is,.Q,ED gives a carriage-return
and line-feed and editing may continue; the old line
is now the result of the Goncatenation and the new line
is nUll.

old line: SKG MAXI
new line: 'ZHTOTt

If the user now types yC:

*.EDIT.
2HT
7.HTOT

SKG MAX
old line:
new line:

'ZHTOT , ,

5-16

SKG
(null)

MAX'

(Note that the characters copied are not typed out.) Suppose the user

now types C and then DC:

*.EDIT.
ZHT SKG
7.HTOT
CHTOT SKG
*./
CHTOT sm
*

Mode Characters

EC

MAX

MAX

MAX

C)

QED changes the mode from replace to :i.nsert, and
types <; or from insert to replace, and types >.
The mode is replace at the beginning of each line; (~
in replace mode, characters typed by the user replace
those of the old line one-far-one. In insert mode,
characters typed by the user are appended to the new

Example:

*112EDIT.
RESTORING THE DAMAGED
RESTORATI

line, but the old line is unaffected. (Skips and
copies proceed as described above in either mode.)

old line:
new line:

I THE DAMAGED'
'RESTORATI'

If the user types EC and continues typing:

*1l2EDIT.
RESTORING THE DAMAGED
RESTORATI<ON OF

old line is still: 'THE DAMAGED'
new line is now: 'RESTORATION OF'

And if the user now types HC (q.v.):

*112EDIT.
RESTORING TEE DAMAGED
RESTORATI<ON OF TEE DAMAGED

old line is now:
the new line is:

'I (null)
'RESTORATION OF THE

DAMAGED'

J

Example:

5-17

QED types " and changes mode from the usual one
to one in which no chnracters are appended to the
new line; or fromthis latter mode back to the usual
one. Mode is set to the usual one at the begtnning
of each line.

(Underlined characters are those which would normally have been appended

to the new line but were not because of the KC mode.)

*19, 20EDIT .
CHC CIO FILE
CHC

old line:
new line:

'CIO
'CHC

FILE'

If the user types KC and then HC (q.v.):

*19,20EDIT.
CHC CIO
CHC "CIO

FILE
FILE

old line: ff (null)
new line: 'CHC

If the user now types carriage return:

*19,20EDIT.
CRC CIO FILE
CHC "CIO FILE (CR)

""SK;;';G~-""';;'=';;;T7""'B~"" old line:
new line:

SKG
'CHC

=77B'

Note that although the CR caused the edit of the next line to begin, it

was not appended to the new line, so that the new line is "left over" for the

edit of line #20. C
Also, the K mode has been reset to the usul'll one by the

beginning of the l:i.ne #20 edit. Suppose the user now types KC and then Ue (q.v.):

*19,20EDIT.
CHC CIO FILE
CHC "CIO FILE(CR)

"""SKG::::':;:'::"'--~=7~7B;;:;;:::'.l,.;:.;.;. old line: 'SKG
new line: ' CHC

Now suppose the user types KC and then DC (q.v.):

*19, 20EDIT.
CHC CIa FILE
CHC "CIO FlLE(CR)

.".,.SK;;:G::.=-----:=7~7;;;B:::;;;..l.,.;;.;;.;.

=77B If "SKG *----

=77B'

5-18

Note that the single line fCHC SKG =17B' replaced the old

lines #19 and 20.

Example:

QED changes mode from the usual one to one in which
characters which are (or normally would be) appended
to the new line are also collected in a special (non
addressable) internal buffer, and types [; or from this
latter mode back to the usual one, and types]. Buffer
~ is cleared.' Whenever LC is echoed as], t,he text in
this internal buffer is loaded into buffer 1. This
act ion is also taken when the user termin"ltes a line
in this special mode. The mode is reset to the usual

one at the beginning of each line.

(Assume that [and] indicate that LC was tY11ed):

*BUFFER #1.
!lABC ft

*: INIT2 'APPEND.

',)

STORE (FtGl,FLG2,FLG3(CRJ
STOW [Fw4 , FLG5] J FLG6 (D)

* ... 1,./

(note that the mode is reset by CR)

STORE FLG1,FLG2,FLG3
STORE FLG4,FLGB,FLG6

*BUFFER #1-
"FLGl,FLG2,FLG3
FLG4, FLG5 II

*

(LC did not affect the append
itself)

6-1

6.0 Substitute

The SUBSTITUTE command allows the user to substitute one string

of characters for another in all or some of its occurrences in the

main text buffer. There are options giving the user a variable

amount of oontrol over the individual substitutions and allowing

him to see each substitution before and/or after it is made.

The format of the command is:

In VERBOSE mode:

ISUBSTITUTE (options)/textn/FOR/text°j

In QUICK mode:

IS (options)/textn/textO
,

Where the underlined portions of the command B,re typed by

the user. In place of I, the user may employ any character except

: or blank to delimit the two strings of characters, textn and

text 0
• To allow the user to make this command more readable,

blanks are ignored except in the two strings.

Textn and text° are strings of characters; neither may
o contain carriage-returns, and text should not be the null string.

The control characters vC
, AC

, QC and WC (described in section 5.4)
may be used while typing in the strings.

° When the character terminat ing text is typed, the SUBSTITUTE

begins and proceeds generally as follows: QED begins on the first

line of the specified interval (!) and searches for occurrences

of texto. The search continues through the last line of the

specified mterval (at which point the search, and the SUBSTITUTE,

terminate) or until an occurrence is found. In this case QED may

or may not make the substitution of textn for textO (according

to the "options" specified). In either case, the search continues

immediately after that occurrence of the text° (or the textn that

replaced it) and proceeds as above, until the end of the interval

is encountered. At that point, QED types out an integer which is

the number of substitutions actually made.

6-2

'I'he options possible are:

:G

:W

:L

:V

:N

which causes QED to make all substitutions without
typing. (It will terminate after N substitutions
if :! (q.v.) has been typed.) -

Each time an occurrence of the string textO is found,
QED types out the line containing it (with the
occurrence in question enclosed in double quotes)
and expects the user to type:

S

option

any
other

non-blank
ciharacter

which causes QED to make the substitution
and continue, or

which causes QED to change to that option
and wait for the user to type S, another
option, or some other character.

which causes QED to continue without making
the substitution.

after all the substitutions in a given line are made,
the line is typed out. (There must be at least one
substitution made in the line for this to happen.)

is the combination of :W and :L.

where N is a string of digits (terminated by the
first non-digit following it) caus~s QED to make at
most N substitutions. That is, QED will terminate
the SUBSTITUTE normally when it has made N substitu
tions. (If this option is omitted, the SUBSTITtn~
will terminate only when the end of the interval I
is reached.) -

Options ma~ be concatenated (e.g., SUBSTITUTE :L:19!A! FOR !B!
which will make at most 19 substitutions and list each one made)

and are interpreted thusly:

:0

:N

(£ is G, W, L, or V) overrides all previous :~.

(! is an integer) overrides all previous : N.

The final £ and! are merged.

One m~y choose to give no options, which causes QED to make

all substitutions in the interval, without typing.

:J

(J

c)

()

()

6-3

As exwmples of the SUBSTITUTE command, consider:
portions typed by the user.)·

(underlined

* .:.§.UBSTITUTE :V.HAS GIVEN II FOR .GAVE.
HE "GAVE" SEVERAL RECITALS, OF
S
HE HAS GIVEN SEVERAL RECITALS l' OF
1
*:ADDR:p, .+3
ADDRl ADD ALPHA

Broc *-1
ADDR2 ADD BETA

note use of • instead of /

ADD GAMMA
* ~UBSTITUTE
ADDiU."SUB . ALPHA
ADDR2 SUB BETA

:L/ SUB/ FOR / ADD/

SUB GAMMA
3 * :ADDR31: , • +2
ADDR31 . ADD DELTA

BRiC *-1
ADD EPS

*.-2A.SUBSTITUTE :W/SUBL
"ADD R3l ADD DELTA
1Q..!
2
~.-2,·L
ADDR3l SUB DELTA

moe *-1
SUB EPS

*

FOR IADDI

(note use of blanks to keep
the labels ADDRl and ADDR2 from
being changed)

(note the use of :G to change
options, and K to prevent a
substitute)

()

\) :
. I

c:\

7-1

7.0 Strini Buffers

Thirty-six string buffers are available to the user, named by

the digits (0-9) and letters (A-Z). Their contents may be any

string of eharacters. The contents of buffers 0 and 1 are affected

by searche$, SUBSTITUTE, andLe , as noted in the description of

these features. In general, string buffers 0-9 are reserved to

joint use by QED and the user, 1. e., both may affect their contents,

and this should be borne in mind when buffers 0-9 are used. It is

advisable to use the lettered buffers (A-Z) when one wants the

contents of a buffer to be changed only when he explicitly changes

them (with LOAD, GET, KILL or JAM).

7.1 w$.ding, Deleting and Printins Buffers

Each of the following five commands is specified by its first

letter; QED then completes the command up through the number sign

(#). The user then types a letter or a digit (Q) to specify a

buffer and then gives a confirming dot (.). (In QUICK mode, QED

only types out I to complete the command; the user then proceeds

as above. For example, in QUICK mode the command to print buffer

E will look like: *!f!:.. where the underlined portions are typed

by the user.)

Any string buffer may be loaded with one of the three following

commands. A buffer is always cleared before it is loaded.

~ IQ. where C is a letter or a digit causes QED to
load string buffer C with the lines specified

,!GET IQ.

JAM lJNTO #Q.

by I. . is changed-to the last line loaded.

causes QED to load buffer C with the specified
lines, which are then deleted from the main text
buffer. . is: changed to the line before the
first one loaded.

causes· Q,ED to go into text input mode. The user
may type in text (VC, AC, QC, we are recognized
and have the functions described in section 5.4),
terminated by a DC. QED then loads buffer Q
with the collected text.

7-2

The contents of a string buffer may be printed with:

BUFFER #9..- Which types the contents of buffer C, enclosed
in double quotes. -

To delete ~he contents of a buffer, type

KILL 1<1. which clears buffer C. (Note: to delete the
contents of the main-text buffer type
1, $DELETE.)

Examples: (suppose buffer E contains 'ABC')

*BUFFER IE.
"ABC"
*J A;t1 I NT 0 # E •
NEW CaNTENTS(D

c)
*8 UFFER IE.
"NEW CONTENTS"
*1/
FI RST Ll NE
*lLOAD HE.
*BUFFEFI HE •
.. F'l RST LI NE

* 1 ,4/
FI RST Ll NE
SECOND
THI RD
Fa UH TH I I Ll N E
*2,3GET #5.
* 1 ,2/
FIRST LINE
Fa UR TH! ! LI N E
*B U F FER # 5 •
"SECOND
Ttl1 RD ..
*K I LL II 5.
·*8 UFFER #' 5.

*

(The double quotes are supplied by
the BUFFER command.)
(Note that no CR is supplied before
the DC; the contents of buffers need not
be lines.)

(The old second and third lines were deleted.)

(Buffer 5 contains no text.)

.J

c

C/I

7-3

7.2 The Uses of String Buffers

BCN is recognized at all t~es, and is equivalent
to the user's typing the string of characters
.in buffer!! (with th~ exception of command errors,
noted beeow), The B is echoed or a letter, as I,
and if B Q is typed, where Q. is not a digit QED
types ? and ignores both BC and the character Q..

Thus,string buffers can be used to. minimize typing in text

input; for example, suppose buffer W contains f BSS I' and the

user does the following INSERT. Assume in this example that I
indicates that BC was typed:

*llINSERT.
AJ/W(CR)
A2/FW{CR)
B]j:W(CR)
B2/FW(CR)
*11,14/
Al BSS 1
A2 BSS 1
Bl BSS 1
B2 BSS 1
*

Another use of string buffers is that of moving text. For

example (assume that I indicates that BC waS typed):

*:TEMPI:,.+2!
TEMPI BSS 1
TEMP2 BSS 1
TEMP3 BSS 1
*. -2, .GET Ix.
*115 INSERT.
Ix
*115,117/
TEMPI BSS 1
TEMP2 BSS 1
TEMP3 BSS 1
*

(GET deletes the lines after loading the buffer)

(Note: buffer W still contains the three lines)

This sequence of commands was used to take the three lines in

question from their old position and insert them before line 1115.

7-4

Also, buffers may be used as a !,aurce of commands. (An error

in a comm~d taken from a buffer causes control to return directly

to the user, i.e., the whole hierarchy of buffers is aborted; the

contents of the buffers are not changed, of course. Rubout has

the same efrfect.) When commands are taken from buffers only

characters explicitly printed with the commands /, PRlNT, line-feed,

t, :;, +-) ", or BUFFER are typed out. As an example of commands

from buffers consider:

*JAM INTO IJ.
:ABC:E.XYZ(VC)(DC)&D(DC)

*BUFFER IJ.
" :ABC "E • XYZ'&D"
*(Bc)lJ

*

&D is typed by QED; note the use of yO
to enter a DC.

QED types out DC as &D.
is typed by QED.

At this point, all labels 'ABC' in the main text buffer have been

changed to .XYZ I • The error of the search :ABC: when there are

no more labels of that form causes control to return to the user.

Buffer's used in this way may call other buffers; that is,

if BC~ is inserted in a buffer (with yO) then when those characters

are accessed by QED in reading from the buffer, they will cause

a transfer to buffer ! until this latter is exhaUsted, at which

time contro,l returns to the characters following the BC! in the

original buffer. Buffer! may call other buffers, in the same

manner. (However, if the contents of the calling buffers are

altered by the operations of the called buffer, peculiar things

may result.) For example, if we have:

*BUFFER IF.
"lE.&H!
&BN"
*BUFFER IN.
1t.+lE.&H!
&BN"

*

I')

:J

I)

7-5

Then if(BC)F is typed, each line of the main text buffer will

be edited in turn (nothing will be typed out), and at the end,

i.e., when Ql:D finally types *, each line will have! at the end.

The error of calling for .+1 (in buffer N) when. is the last

line returns control to the user.

•• !

• I

!\J I

(J

c)

8-1

8.0 Mode and Tab-Setting Command!

8.1 Quick/Verbose Mode

QUICK.

VERBOSE.

Examples:

*llEDIT.
CIA
CLB

*QUICK.
*.E.

CLB

causes command completion (in command mode) to
be suppressed' except in the cases of READ FROM
and WRITE ON.

restores command completion disabled by QUICK.
This is the usual mode.

(verbose mode: 'DIT t is typed by Q,ED)

(quick mode: 'DIT' not typed by QED)

CLX
*RF..AD FROM /T/.
901 WORDS.

('READ FROM' is unaffected)

*v.
*llEDIT.

*

CLX
CLAB

('ERBOSE I is not typed by QED)
(mode is verbose again)

8.2 Ignore Characters Mode

"

Examples:

causes characters typed by the user to be ignored
(carriage return is still supplied with line-feed;
rc (tab) and BC (buffer call) are still recognized)
until the next DC, Rubout also restores the mode
to the usual one. In addition, if this command
is read from a buffer, characters up to the next
DC are typed out. This is useful for printing
messages from buffers, as usually nothing
except explicit print commands causes printing
from buffers.

*"THIS IS NOT(CR)
RECOGNIZED (CR)
BY QED(DC)

*lLOAD.
" (CR)
MESSAGE(Vc) (Dc)&D(Dc)
*lBUFFER.
""
MESSAGE&D"
*(Bc}/fl
MESSAGE

*

c &D is typed by Q;ED; note the use of V
to enter a DC without terminating the LOAD.

Only the first and last tt are supplied by QED.

-----------------------.,.-------------------)

8-2

8.3 Tab-Setting

TABS.

Example:

*TABS.
5,10.

*

QED gives a carriage return and line-feed and
then expects a, string of at most twelve decimal
numbers separated by commas (,) and terminated
by a dot (.); none of the numbers is to exceed
80. Also, the numbers should be in ascending
order of magnitude to avoid peculiar results.
If the input is deemed illegal, QED types? and
then the user may continue typing. QED sets
the tab stops to the specified positions. The
tab character is IC• (Full description in
section 5.4.) The tab stops are initialized
upon entry into QED to 8, 16, 32, 40.

sets the tab stops to 5 and 10.

C)

:J

9-1

9·0 Returning from QED and Panic Messages

9·1 The Normal Return

When the user is in command mode, the command

FINISHED. may be used to return to the exec. If the last
command previous to the FINISHED command was a
WRITE command, or if there is no text in the main
text buffer, QED simply returns the user to the
exec. If there is text in the main text buffer
and the last command was not WR ITE ON, QED type s
WRITE OUT: (to remind the user to save his text
on a file before he leaves QED) and returns to
the exec.

If the user has returned to the exec from QED and called no

other subsystem, nor done anything to cause a RESET, he may

continue QED by typing

~ONTINUE QED.

This preserves the state of QED as it was before he returned to

the exec (in particular, the main text buffer is unchanged).

However, typing

~D

will get the user a "fresh" copy of QED, and in particular, one

with nothins in the main text buffer.

For example, after the sequence:

*FINISHED.
WRITE OUT!

@.DRUM BLOOKS LEFT = 10 OUT OF 110
@CONTINUE QlW.
*
the user may continue using QED just as though this sequence had

not been typed.

9.2 Rubout

The rubout button may be pressed at any time. If QED is

inputting text, rubout will cause QED to ring the bell. If a

second rubout is typed (with no intervening typing) the command

will be aborted and the text being input will be ~.

9-2

In all other cases, typing a single rubout during the execution

of a command will cause the current operation to be aborted, and

QED will return to command mode. If QED is in the middle of

pr.inting or writing a large number of lines, . will· be set to the

last line printed or written. The value of . may be unpredictably

affected by aborting commands in this way.

In conunand mode, two rubouts with no intervening typing will

return the user to the exec. This is not the normal return

(see section 9.1 for the normal method of returning), but the

user may continue QED with the executive command

~ONTINUE QED.

a.s described in section 9.1.

9.3 Pa,ic Messages

In certain contexts, QED will type out a message to warn

the user of a condition he might not otherwise be aware of:

NO ROOM. indicates that the operation being executed
caused a memory trap. (Check machine size if
UNUSED MEMORY is >0.)

WON'T FIT.

#1 FULL.

I-O ERROR.

NEARLY FULL

EDIT TERMIINATED

indicates that the attempt to load a string
buffer will overflow the area allocated for
string buffers. The buffer concerned will have
been cleared but not loaded.

indicates that the operations of LC (q.v.) have
filled the special internal buffer allocated
for them, and no more characters will be collected

. using L c . Text input may continue normallY.

indicates that a READ or WRITE was terminated
on some abnormal condition, possibly an unexpected
end of record.

indicates that text input has caused the internal
text-collection buffer to fill nearlY to capacity.
The user may continue inputting text as usual,
but if he does not terminate text inpUt before
the internal buffer overflows, he will get the
message:

c indicating tha.t QED simulated a D and terminated
text input. QED then returns to command mode.

----------------------r-----------~------------~-------------------------------------
/

(\
/

AC

BCN

eC

DC

EC

F
C

GC

HC

I
C

JC

K
C

LC

W
NC

oCe
pCe
QC

RC

SC

TC

UC

vCe
We

xCe
yC

ZCe
C
~

ec
[c

\C

t
C

]c

APPENDIX A: INDEX OF CONTROL CHARACTERS

backspace one character (t)

call of buffer! (#)
copy (typing) one character

copy (typing) rest of line and terminate

cha.nge insert/replace mode « , »
copy (no typing) rest of line and terminate

(bell) no function

coPy (typing) rest of line

tab

cannot be typed in

change ignore/usual mode (")

change bufferl/usual mode ([,])

(carriage return) terminate line (and edit)

backspace one character, restorative (t)

copy (typing) up to Q
skip up to Q (%% ... %)
backspace one line (~)

retype, fast

skip one character (%)
retype, aligned

copy (typing) to next tab stop

take Q literally

backspace word ()

skip through Q (%% ... %)
concatenate and re-edit

copy (typing) through Q
no function

no function

no function

no function

no function

no function

(See also the table of contents for section 5.4)

Pa.~e

5-5

5-5) 7-3
5-8

5-10

5-15

5-11

5-9
5-5

5-16

5-17

5-5

5-7

5-9
5-12

5-7

5-14

5-12

5-14

5-8

5-5

5-6

5-13

5-14

5-10

,)

C)

(\1
j

APPENDIX B: INDEX OF COMMANDS

Command Pa~e
n

8-1
/ 3-1
== 2-3
t 3-1
<!- 2-3
(line-feed) 3-1
APPEND 5-2
BUFFER 7-2
CHANGE 5-2
DEtETE 5-1
EDIT 5-3
FINISHED 9-1
GET 7-1
INSERT 5-2
JAM INTO 7-1
KILL 7-2
LOAD 7-1
MODIFY 5-3
PRINT . 3-1
QUICK 8-1

READ FROM 4-1

SUBSTITUTE 6-1

TABS 8-2

VERBOSE 6-1

WRITE ON 4-1

Note: A description of searches is in #4 and 5 under section 2.1, pages

2-1 and 2-2.

-
..

i'.) " .

