
t"

DDT

TlME .. SHARING DEBUGGING SY8TEM

REFERENCE MANUAL

L. Peter Deutsch
Butler W. Lampson

University of California, Berkeley

Document No .R-ll

Revised October, 1967
Contract SD .. l85

Office of Secretary of Defense
Advanced Research Projects Agency

Washington 25, D. C.

I
i

I

!
/ .

I r·
: ~ i ' --
i

(~/

\

La General

R-ll
1-1

DDT is the debugging system for the SDS 930 Time-Sharing

System. It has facilities for symbolic reference to and typeout
\

of memory cells and centr~l registers. Furthermore, it permits

the use of literals in the same manner as in the assembler. It

can also insert breakpoints into programs, perform a trace, and

search programs for specified words and specified effective

addresses. There is a command to facilitate program patching.

Finally, DDT can load both absolute and relocatable files in the

format produced by the assembler.

The system has a language for communication between DDT

and its users. The basic components of this language are

symbols, constants, and commands.

1.1 Symbols

A s~bol is any string of letters, digits, and dots (.)

containing at least one letter. (However, a digit strin~ followed

by B or D and possibly another digit is interpreted as an octal

or decimal number respectively). In symbols of more than six

characters, only the first six are Significant: thus, ALPHABET

is equivalent to ALmAB. All opcodes recognized by the assembler I

are built.in symbols, except for some I/O instructions. Dot (.)

is a built-in symbol with a special meaning explained in a later

section. There are also some constructs like ;A (the A-register),

; F (the first ce 11 beyOnd the end of the program), anq, ; M (the

mask for memory searches) which behave like symbols under some

circumstances. Their use will b~ detailed later.

Every symbol may have a value. This value is a 24-bit

integer; for most symbols it will be either an address in memory

or the octal encoding of an operation code. Examples:

.APe
AB124
l2XIZ

The following are not symbols:

l35B
AB*CD

c)

R-ll
1-2

Symbols may be introduced to DDT in two basically different

ways:

(A) They may be written. out by the assembler and read in from

the binary program file by DDT.

(B) They may be typed in and assigned values during lebugging.

It is possible for a s~mbol to be undefined. This may occur

if a program is loaded which references an external symbol not

defined in a previously loaded program. It may also occur if an
undefined symbol is typed in an expression. In general, undefined

symbols are legal input to TlDT except when their values would

be required immediately for the execution of a comxnand. Thus,

for example, the ;G (GO TO) command could not have an undefined

symbol as its argument.

Undefined symbols may become defined in severa.l ways. They

may be defined as external in the assembler (1. e., wi th :'~XT J

ENTRY, or $) and read by 'DD1:' as part of a binary program.

Alternatively, they may be defined by one of the symbol definition

commands available in DDT. When the definition occurs, the

value of the symbol will be substituted in all the expressions

in which the symbol has appeared.

If DDT types (U] after typing out the contents of a celi,

it means that the cell contains an unde:fined symbol. The cell

is closed at once so that its contents cannot be erroneously

changed.

The only restriction on this facility is that, as for

ARPAS, the undefined symbol must be the only thine in the address

field of the word in which it appears. Incorr~ct uses of

undefined symbols will be detected by DDT and will result in

the error comment (u).
DDT keeps track of references to undefined symbols by

building a pointer chain through the address fields of the

words referring to the symbol. Thus, suppose that the symbol

A is undefined and appears as follows

Sl LDA A

82 STA A ..

S3 MRG A

R-11
1-3

and nowhere else in the program. After loading, the entry for

A in DDT'a'symbol table will contain a flag indicating that it

is undefined and a pointer to 3. The above locations will

contain:

Sl LDA Sl

S2 STA Sl

S3 MRG S2

When the symbol is defined, DDT goes through the pointer chain

and fills in the value. It recognizes the end of the pointer

chain by an address which points to the cell in which it appears.

From this description it should be obvious what will happen

if the pointer chain is destroyed. A probable consequence is

that a search down the pointt:r chain will not terminate. DDT

does such searches whenever l.t prints an address. If the chain

it is searching has more than 256 links, it will print the

symbol followed by (U) and continue. Fixing up an undefined

symbol pointer chain which has been clobbered is an exercise

which we leave to the reader.

1.2 Block Structure

A limited facility called the block structure facility is

provided to simplify the referencing of local symbols which

are defined in more than one program. Note that DDT's block

structure has only a tenuous connection with the block structure

of ALGOL. The block structure of a program is organized in

the following manner: every IDENT read by DDT is part of a

binary program file begins a new block. Any local symbol known

to DDT has a block number associated with it; global symbols

do not have a block number. Undefined symbols are always treated

as global.

The name of a block is the symbol in the label field of' the

IDENT. If two IDENTs with the same symbol are read, the message

(ALREADY LOADED) is printed, and the local symbol table from the

former occurrence of the block will be deleted.

,

i'

c)

C)

(:

Global symbols must be unique within an entire program and

are recognized at all times. If a multiple definition is encoun

tered, the latest one takes precedence. Local symbols are

recognized according to the following rules:

(1) At any given time one block is called the primary

block. All local symbols associated with the primary

block will be recognized.

(2) If a symbol is used "!hich is neither global nor in the

primary block, the entire symbol table is scanned for

it. If it occurs in only one block, the symbol is

recognized properly. If it occurs in more than one

block, the error message (A) is printed.

(3) A symbol may be explicitly qualified by writing:

SYMA&SYMB

SYMA must be the name of a block. SYMB is then referenced

as though the block whose name is SYMA were prunary.

(4) When a ce 11 is opened (see Section 2.1), the blof.!k to

which the symbolic part of its location belongs;)ecomes

primary. Thus, NN&x'YZl causes block NN to become

primary; if ABC is a unique local symbol in bloc){ IQ,

then ABCI causes PQ to become primary.

1. 3 Li terals

Literals have the same format and meaning in DDT as in the

assembler, i.e., the two characters' =' Signal the beginning

of a literal, which is terminated by any of the characters

which ordinarily terminate an expression. In contrast to the

assembler, the expression in a DDT literal must be defined.

The literal is looked up in the literal table. If it is

found, the address which has been aSSigned to it is the value

of the symbol. If it does not appear in the literal table,

it is stored at the address which is the current value of ;F,

and this address is taken as the value of the literal. ;F

is increased by 1. For example, if the literal -1 does not

already exist in the literal table and ;F is lOOOB, then LDA =-1

(

(-

causes -1 to be stored at lOCOB, and is equivalent to LOA 10OOB;

the new value of ;F is 100lE. Exception: In patch mode (see

Section 2.8), literals are saved and not stored until the patch

is completed since otherwise they would interfere 'd th the

patch.

When DDT types out a symbol whose value is an addreas in

the literal table, it will type out in the same fo:r:mat in which

it would be input; that is, as ::: followed by the numeric value

of the literal.

1.4 Constants

A constant is any string of digits, possibly followed by a

B or D, in turn possibly followed by another digit. The number

represented by the string is evaluated, truncated to 24 bits and

then used just like the value of a symbol. The radix fo:t~

numbers is normally 8 (octal), but may be changed arbitra.rily

by the commands described in Section 2.4 below. If a nUl'.lber is

terminated by B or D, it is interpreted as octal or deCllml

respectively regardless of the current radix. A digit following

the B or D is interpreted as a power of 8 or 10 respecti\~ly by

which the number is to be multiplied. Thus 1750B=l75Bl=lOOOD=lD3.

Constants are always printed by DDT in the current radix.

It is possible to enter numeric op codes by typing the

number followed by an€ sign. Thus l00~ =14400000B if the current

radix is decimal (lOOD=144B).

1.5 Commands

A command is an order typed to DDT which instructs it to

something. The commands are listed and their functions explained

in Section 2 below.

1.6 E~ressions

An e::sgression is a string of numbers or symbols connected

by any of a large number of operators. These operators have the

following significance:

+

.* ,
;/
;&
j<

addition
subtraction
(integer) multiplication
(integer) division
(AND)
(188)

;= (EQL) as in ARPAS
;> (GTR)
;% (OR) .

R-11
1-6

;+ x;+y means x;*3+y, or (R)x+y in ARPAS
,- x;-y means x;*3-Y, or (R)x-y in ARPAS
;: remainder on (integer) division
,$ ([t,R)

Expressions are evaluated strictly left to right: all aperators

have the same precedence. Parentheses are not allowed. The

first symbol or number may be preceded by a minus sign. Blank

acts like plUS, except tha.t the following operand is truncated

to 14 bits before being added to the accumulated value of the

expression. The value of an expression is a 24-bit integer.
An expression may be a single symbol or constant.

Examples: 1DA has the value
LDA 10 has the value

'1600000
7600010 if the
radix is octal

LDA. 10D has the value 76000ll~
If SYM is a symbol with the value 1212, then

SYM has the value
SYM 10 has the value
LDA SYM has the value

1212
1222
07601212

If this 1a.st expression were put into a cell and later

executed by the pro~ the effect would be to load the contents
of SYM, register 1212, into the A register.

When DDT types out expressions, two mode switches control

the format of the output. Comtna.nds for setting these modes

are described in Section 2.4 below. The word printout mode

determines whether quantities will be printed as constants or

as symbolic expressions. In the latter case, the opcode (if

any) and the address will be put into symbolic form. If the first

nine bits of the value are 0 or 1, no opcode will be printed;

in the latter case a negative integer will be printed. If the

opcode is not recognizable as a symbol, it will be typed as a

number followed by ~~~.
JI

R-ll
1-7

The address printout mode controls the format in which

addresses are typed. DDT .types addresses when asked to open

the previous or the next cell, when it reports the results of

word and address searches, and on breakpoints. In relative

mode, addresses are typed in symbolic form, i.e., as the largest

defined symbol smaller than the address plus a constant if

necessary. If the constant is bigger than 200 octal, or if the

value of the symbol is less than some minimum value (settable

by the user, but normally the lowest location of the program)

the entire address is typed a.s a constant. In absolute mode,

addresses are always typed as constant.

1. 7 The gpen Cell

One other major ingredient of the DDT language is the open

cell. Certain commands cause a cell to be "opened. II 'I'h:l.s means

that its contents are typed out (except in enter mode, for

which see the, command), followed by a tab. If the user·types

an expression followed by a ·~arriage return, it will be inserted

into the cell in pla.ce of the current contents, and the cell

will then be closed. The current location is given by the symbol

tt." (dot) which always has as its value the address of the last

cell opened, whether or not it is still open.

Note:

(1) Comma and star (for indirect addressing) may be used

in expressions as they are used in the assembler;

e.g. LDA* 0,2 has the value 27640000.

(2) DDT will respond to any illegal input with the

character ? followed by a tab (if a .cell is open) or

carriage return (otherwise), after which it will behave

as if nothing had been typed Since the last tab or

carriage return. The command? also erases everything

typed since the laHt tab or ca.rriage return.

1.8 Memory Allocation and DDT

DDT may cause the time-sharing system to assign memory for

use either by DDT itself or by the user's program. DDT's memory

c)

R-ll
1-8

is used to hold the symbol table, which starts in page 0 and

grows upward in memory. The symbol table contracts at the end of

each load of a binary file and when symbols are killed; this

co~traction may cause memory to be released.

DDT acquires program memory when it is required for loading

a binary file or when a. ; U (execute) command is gi'Ten an,i the

value of ;F is such that a new block is needed to hold the

instruction to be executed. For executing an instruction, DDT

requires location ;F, ;F+l s.nd ;F+2. Memory is ne'Jer grabbed

for examine.tion of a register; however, entering information

with \ can cause memory to be assigned. Attempts to open locations

not assigned will cause DDT eo type 1. This means that upon

initial entry to DDT no registers are available for examj.nation.

The easiest way to obtain memory is to simply start typing in a

program using the \ command.

If an attempt to acquire or reference memory leads to a

trap, DDT types (M) and abandons whatever it is doing. ~:'his can

happen if the machine size is exceeded, or if an attempt is made

to change read-only memory.

c)

c)

2.0 DDT Commands

R-ll
2-1

In the following description of DDT commands, <S> will be

used to denote an al'bi trary symbol. <::&> or <W> will be used to

denote an arbitra.ry exp:rcss:i.on which may be typed by the us€r:

<'E> w:Hl be used when the V't\,lue of this expression i.s trunca.ted

t.o lIt bits before it is use(;. by DDT, vlhile <::VI> will deno!~c a full

21f-bit expression. <A> will be usr.:d to denote a.nJption~ Ilt-bit

expression. If none Is typEd, the last express:i.on print.ed out

\or111 usually be ltscd; deviat ions from this rule w·i.. Ll be lescribed

under the ind:t vidual commands. <F.> wHl deno te a r:lle m.me

followed by a. dot: DDT \vil1 t;ype a tab whenever i ::. e).."'Peds a

f:i,le name.

2.1 Cell Qpening Command!!.

<:A> / This opens the cell addressed by the value of <A;>. DDT

will eive a tab, t;yp€ an expression wh(ltle value is equa.l to the

contents of the register, give another tab and awaLt fur"~her

commands. The 'precise fOTm of the expression typed is dc'pendent

on the setting of the word and address printout moties. If the

user types in an expression, DDT will insert its value into

the celL Typing another command closes the cell, unless it is

a type value or symbol definition comma.nd. If ano~jher / :is

given as the next comma.nd with no preceding expression, the

contents of the cell addressed by the expression t;rped b:V DDT

are typed out. A further I repeats th:!.s process. Note, however,

that the origina.l cell opened remains the open cell; any changes

made will go into that cell.

carriage This comma.nd does not necessarily have any effect. If the

returYpecified conditions are present, however, any of the following

actions may occur:

(1) If there is an open cell, the cell is closed.

(2) If DDT is in enter mode, it leaves it.

(3) If DDT is in patch mode, the patch is terminated (for

a fuller description of this effect, see the patch

command in Section 2.8).

c)

[

R-ll
2-2

This command has the same effect a.s /, except that the

contents of the cell opened are always typed in symbolic form.

This command has the same effect as /, except tha.t the

contents of the cell opened are typed j.n constant form.

<A> $ This command has the same effect as/, except "that t'1e

contents of the cell opened are typed as a signed 'intege'.

<E> " Thi$ conunand acts like /, except t.hat the cell consi~ants

<E>; I

line
feed

are typed in ASCII. Unprintable characters, as in QED, are

preceded by &, e.g. 141 (control-A) pri.nts out as i}A.

The contents of locations <E> and <E>+l are t~eated as

an CPS stri..ng pointer, and t.he string is printed. Cell <E>

is opened.

This conunand opens the cell whose address is the cu;'rent

location plus one, i.e. the cell after the one just opem~d.

The output of DDT on this conm.a.nd is carriage retul'n, lOI~ation

(format controlled by the adlress printout mode), /, tab yalue

of contents, tab.

(=space) This is equivalent t) line feed except thai. noth:.ng is

printed. Its main \)8e is in entering programs or ci.ata, E .r,.

1000 1; 2; 3 (carriage return)

is equivalent to

1000
1001
1002

1
2
3

(carriag<~ return)
(ca.rriag(~ return)
(earriag(; return)

t This command opens the ~ell whose address is the current

location minus one, i.e. the pl.'evious cell. 'The Ol:tput ::s the

same as for the line feed command.

Example:

ABCI LDA ALPHA (line feed)

ABC +1/ STA BETA STA GAMMA (line feed)

ABC +2/ LDB DELTA t

ABc+II STA GAMMA

{ I ,

1 i
,'f <"

c)

R-ll
2-3

(This command opens the cell whose address is the last 14

bits of the value of the last expression typed. The output

is the same as for line feed..

\ This command is the sarr,e as /, except that the contents of

the cell are not typed. DDT goes into enter mode, in which the

contents of cells opened by line feed, t, or (are not t'rped.

Most other canma.nds ca.use DDT to go out of enter mode. In

particular, carriage return has this effect. When a cell has

been opened '(d th \ , DDT thinks that it has typed out the contents.

The type value commands wi11, therefore, work on the contents

of the cell.

Th~ t~e register in special mode character [,), $ (type

as a C!~J~7J'(iiI integer), " (type in ASCII) are also preserved

by line feed, up arrow and (.

;\ This command suppresses typeout of cell addresses during

=

line feed, up arrow and (chains. Carriage return cancels the

command.

2.2 Type Value Commands

This command types the value of the last expr.~ssion typed

(;Q) in constant form. It may appear in the form <W> =, in

which case the value of the '<W> is typed. Otherwise, the

expression referred to is the one most recently typed, either

by DDT or by the user.

This command types the value of ;Q as a Signed integer.

~ This command type.s the value of ;Q in symbolic form.

This command types the value of ;Q typed as a word of text

(see fI command on previous page).

@ This command types the address part of ;Q in symbolic form.

If, for instance, the program has executed BRM X, then X\~

will cause DDT to print the address of the BroM.

. , ,

R-ll
2-4

Example:

LDA= 7600000

LIlA 10= 7600010

LDA +- IJ)A

7600000+- IJ)A

-1= 777'7777'/
-1# -1

77777777# -1

10221043' ABC

This command types ;Q a.S a character address, e.g. if the

value of the symbol X is 1000, then 3002; +- yields X; +2 .

This command types the string pointed to by the contents

of the current location and the following cell, considered as an

SPS string pointer.

<E>, <E>; I This comme.nd types the string pointed to by the p'3.ir of

expressions considered as an SPS string pointer.

2.3 Symbol Definition Commands

These commands all define the symbol as global.

<6> This command defines the value of the symbol <6> to be the

current location.

<6> @ This command defines the value of <8> to be the address

of the last expression typed by DDT or the user.

<E> <:<8» This defines <6> to have the value of <E>.

"

2.4 Mode Chansing Commands

This command is followed by a string of arbitrary characters

terminated by DC (control D). If a cell is open, the string will

be inserted into successive locations packed 3 characters per

word; otherwise, characters beyond the third will be thrown away.

For example, if no register is open, "ABCDEDc= yields 10221043.

;D (DECIMAL) This command changes the current radix (see

Section 1.4).

;0 (OC~L) This changes the current radix to octal.

<E>;R (RADIX) sets the current radix to the value of the expression,

which must be ~2.

. " ,
;$
;R

;V

R-ll
2-5

(CONSTANT) This command changes the word printout mode to

constant, i.e. makes / equivalent to [.

(SYMBOLIC) This command changes the word printout mode to

symbolic, i.e. makes / equivalent to J.
(ASCII) This makes / equivalent to " .

(SIGNED INTEGER) This makes / equivalent to :~.

(REIATIVE) This command changes the address ?rintout mode

to relative (symbolic). This mode determines the format for the

output of addresses; both in symbolic expressions and when

generated by line feed and,t.

(ABSOLUTE) This command changes the address printout mode
to absolute.

;3 (3 CHARS/WORD) This sets the" and I commandR to operate

on 8-bit characters packed 3 per word.

;4 (4 CHARS/WORD) This se-t;s the" and ' commandB to operate

on 6-bit characters packed 4 per word.

2.5 Breakpoint Commands

<E>! (BREAKPOINT) <E>! sets a breakpoint at the address given by

<E> . t , .

• I , .

the value of the expression E. (If the maximum of 4 breakpoints

has been reached, DDT will type FULL.) The effect is that if

the program executes the instruction at this address control

returns to DDT, which will print the address and the contents

of the A, Band X registers and await further commands (see

below). The break occurs before execution of the instruction

in the breakpoint location. ;L is set to the location at which

the break occurred.

(CLEAR ALL BREAKPOINTS). ! alone causes all breakpoints

to be cleared.

(CLEAR BREAKPOINT) The breakpoint at <E>, if any, is removed.

If no such breakpoint is present, ? is typed and no other action

is taken.

(LIST BREAKPOINTS) The breakpoints are listed •

<A>;P (PROCEED) This command restarts the program after a break.

The program executes the instruction at the break and goes on from

there. No breakpoint is removed unless this is speciftcally done

c

R-ll
2-6

by ! or ;! so that, if the program arrives at this location again,

another break will occur. If <E>;P is given, another break will

not occur until some breakpoint has been reached that many times.

<A>;N (NEXT) This command executes the instruction at ;L and

breaks. This program provides a trace facility in that repeated

executions of ;N will provide a running print out of the contents

of the significant internal registers, instruction by instruction.

The function is essentially the same as that of thf~ step switch

on the console. <E>;N will cause <E> instructions to be executed

before the next break occurs.

The ;N command follows the flow of control in the user's

program. In particular, it will normally trace the execution

of users' POPs (see ; ° be low) . The execution of SYSPOPs,

however, is not traced. In other words, a SYSPOP such as FAD

(floating add) is regarded as one instruction by ;N. Cells

;F, ;F+l, and ;F+2 are used by ;N and ;P.

<E>;S (STEP). This is equivalent to <E> repetitions of ;N.

Note that this is ~ the same as <E>;N.

<E>;V (ADVANCE). This is equivalent to <E> repetitions or ;P,

and is ~ the same as <E>;P.

<N>;O (pop TRACE MODE). If <N>)>O, programmed operators (POPs)

together with their associated subroutines will be treated like

machine instructions for the ;N and ;S commands, i.e. the break

will not occur until control returns to the location following

the POP. Since DDT determines when it should break by counting

POPS, BRMs, SBRMs, BRRs and SBRRs, it can be fooled by POPs

which do sufficiently peculiar things. If ~O, POP subroutines

will be traced, i.e. the first break after the POP will be at

the first instruction of the subroutine.

<N>;U (SUBROUTINE TRACE MODE). If <N>=l, BRMs or SBRMs together

with the subroutine called will be treated as single instructions

by ;N. The same algorithm is used as in ;0 to determine when to

break. If <N>=O, subroutines will be traced explicitly.

Attempts to proceed through certain instructions having to

do with forks will produce erroneous results, and breakpoints

encountered when the program is running in a fork will not do the

right thing. Attempts to proceed through unreasonable instructions

will cause the error comment

$».

R .. ll
2-7

Also, when control returns to DDT :from a breakpoint or rubout,

the interrupt mask for the program is cleared.

2.6 In;pgt/Output Commands
t

<A>; Y<F.> DDT expects to find a binary program on the file <F.>. If the

program is absolute, it is read in. If it is relocatable, it is

read in and relocated at the location specified by <A'>. If the

expression is omitted, relocatable loading commences at location

240B and continues by beginning each program in the first available

location after the preceding one, i.e. at the value of ;F at the time.

After reading is complete, the first location not used by the program

is typed out. Any local symbols on the binary file are ignored.

<A>;T<F.> This canmand is ident.ical to ;Y except that it also reads local

symbols from the file and adds them to DDT's symbol table. Any symbols

on the file will be recognized by DDT thereafter.

The following two points should be noted in connection with ;Y

and ; T comm.ands,

1) The use of an expression before ;T or ;Y when the file is

absolute (i.e. SAVE file or self-loading paper tape) is an error.

2) The block read in becomes the pr1m.ary block.

;W<F> Causes all global symbols to be written on the specified file,
r

in a format which can be read back in with jT.

;C<F.> Causes all symbols to be written on the specified file.

2.7 Search Commands

<W>;W (WORD SEARCH) <W>jW searches memory between the limits ;1 and ;2

tor cella Whose contents match <W> when both are masked by the va~e

of jM. The locations and contents of all '8uch cella are typed out.

<Wi><<W?;W will perform this search, and in addition performs the

following replae_ent: if~ i8 the address of a cell such that (Q)I\;M-w'2'

then (Q) will be replaced by (Q)l\jMiWl , (Note that this is not quite

the same al masked substitution.) Both old and new contents of the

cell will be typed out.

<W>;# (NOT-WORD SEARCH). This is the same as ;W, except that all cells

which do ~ match <W> will be printed, This is usetul, for example,
in finding and printing all non-zero cells in a given part of memory.

R-ll
2-8

<E>;E (EFFECTIVE ADDRESS SEARCH). <E>;E searches memory between

<A>)

the limits ;1 and ;2 for effective addresses equal to <E:>. Indexing,

if specified, is done with the value of ;X. Indirect address

cha.ins are followed to a depth of 64. The address~~s and contents

of all words found are typed out. When; W or ; E is complete,

• is left pointing to the last cell where the expression was

found.

2.8 The Patch Command

<A>) causes a patch to be inserted before the instruction

at "II If an expression is given, the expression is used

instead of the current contents of ".". DDT inserts in this

loca.tion a branch to the current value of ;F. When the patch

is done, ;F is updated. It then gives a carriage return and a

) and waits for the user to type in the patch. Legal input

consists of a series of expressions whose values are inst~rted

in successive locations in memory. Each of these expressions

should be terminated by line feed or ; A, exactly as thollgh

the program were being typed in with the \ command instead of

as a patch. The t command may be given in place of the line

feed and has its usual meaning, except that the contents of the

previous location are not ty~ed. Two other commands are legal

in patch mode. They are:

<A>;I

(1) Colon, which may be used to define a symbol

with value equal to the current location.

(2) Carriage return, which terminates the patch. When the

patch is terminated, DDT inserts in the next available

location the original contents of the location at which

the patCh was inserted. It then inserts in the following

two locations branch instructions to the first and

second locations following the patch. This means that

if the patch command is a skip instruction, the program

will continue to operate correctly. Any other command

given in patCh mode may cause unpredictable errors.

Is identical to the) comma.nd except tha.t it puts the instruc-

tion being patched before the new code inserted by the programmer

instead of after.

2.9 Miscellaneous Comma.nds

R-ll
2-9

;1 and? This commands erase everything typed since the last ta.b or

carriage re:turn. It is always legal.

<E>;G (GO TO) <E>;G restores the A, B and X registers which were

saved when DDT was entered (unless they have been modified) and

transfers to the loca.tion specified by the value of the expression.

;K (KILL) This command resets DDT's symbol table to its initial

state. DDT will type back--OK and wait for a confirming dot.

Any other character will abort the command.

;K
<S>&;K

(KILL). Removes only the symbol <S> from the table.

(KILL). Removes all symbols local to the block named <8>

from the table, as well as the block name itself.

<E>,<E>;L Sets ;1 and ;2 (the lower and upper bounds for searches)

to the values of the first and second expressions respectively.

; U (UNDEFINED). This command causes all undefined symhols

to be listed.

<E>;U (EXECUTE). This causes the value of the expression to be

executed as an instruction. If it is a branch, control goes to

the location branched to. In all other cases control remains

with DDT. A single carriage return is typed before execution

of the instruction. If the instruction does not branch and does

not skip, or returns to the following location, a $ and another

carriage return are typed after its execution. If the instruction

does skip, two dollar signs ($$) are typed followed by a

carriage return.

;Z (ZERO) <E>,<E>;Z sets to zero all locations between the value

of the first expression and that of the second. <E><<E>,<E>;Z

sets to the value of the first expression all locations between

the values of the second and third. ;Z alone releases all memory

accessible to the user's program. DDT will type back --OK and

wait for a confirming dot. Any other characters will abort the

command. If this memory is returned, due to later access by

DDT or a program, it will be cleared to zero.

1c& (LIST BLOCKS). The names of all blocks are printed.

1rP (FlNISHED). Control returns to the executive.
~ (PRINT MAP). The current program map (pseudo-relabeling)is printed.

<E.'>,<E>;R(SET MAP). The program mall is set as indicated. This is equivalent

to Putting the expressions in A and B respectively and executing BRS 44.

()

2.10 Special Symbols

R-ll
2-10

The value of n." is the current location, i.e. the address

of the last register opened.

The following constructs refer to various special registers

of the machine. They act like symbols in that in most c<mtexts

they are synonymous with their values. Their value is t'1e contents

of these registers as sa.ved by DDT: ;X= will print; the saved

contents of the X register. To change the contents of a. register,

& command of the form <E>;A is used. This command sets the A

register to the value of the expression. Whenever DDT executes

any command involving execution of instructions in the user's

program, it restores the values of all machine registers. If

any of these values have been changed by the user, it is the

changed value which will be restored.

;A The value of this symbol is the contents of the A register.

;B The value of this symbol is the contents of the 13 register.

;X The value of this symbol is the contents of the X r(~gister.

; I. The value of this symbol is the contents of the pro;~am

counter. The only reason for changing ;L is to set the .Location

from which ;N will begin execution.
The values of the following special symbols are used by

DDT in certain commands or are available to the programmer for

his general enlightenment. These values may be changed in the

same way that the values of the symbols for the central registers

of the machine may be changed.
;M The value of this symbol is the mask for word searches.

;~ The value of this symbol is the smallest address which DDT

will ever a.ttempt to print in symbolic form.

; 1 The value of this symbol is the lower bound for word and

effective address searches. It may also be set by the ;r~ command.

;2 The value of this symbol is the upper bound for word and

effective address searches. It may also be set by using ;L.

;Q This symbol has a value equal to the value of the la.st

expression typed by DDT or the user. It is useful, for instance,

if the programmer wishes to add one to the contents of the open

register; he need only type ;Q + 1.

(/.

;F The value of this symbol is the address of the lowest

R-ll
2-11

location in core not used by the program. New literals and

patches are ins~rted starting at this address. Note: like

all other special symbols, ;F:may be changed :by the command

<E>;F. It is also updated as necessary by p~tches and literal
definitions.

2.11 Panics i

DDT recognizes four kinds of panic cond~tions:
(1) Illegal instruction panics from th~ user's program.

(2) Memory allocation exceeded panics ~rom the user's program.

(3) Panics generated by pushing the rubout button.

(4) Panics generated by the execution of BRS 10 in the

user's program.

For the first two of these conditions DDT prints out a

message, the location of the instruction at -Jilich -the panic occurred,

and the contents of this location. The messages are as follows:

(1) Illegal instruction panic I > >
(2) Memory allocation exceeded M > >
(3) The other two types of panics cause DDT to type bell

and carriage return. ; L and • will both be equal to

the location at which the panic occurred.

If a memory allocation exceeded panic is caused by a transfer

to an illegal location, the contents of the location causing the

panic is not available and DDT, therefore, types a ?

TWo other panic conditions are possible in DDT.

(1) If the rubout button is pushed twic~ with no intervening

typing by the user, control returns to the executive.

(2) If the rubout button is pushed while DDT is executing

a command, execution and typeout are terminated and DDT

types carriage return and bell and then awaits ~ther

corrmands.

c)

R-ll
2-12

It is occasionally desirable to hold several programs With

different maps and symbol tables in DDT simultaneously. This

situation could be approximated using the DUMP and RECOVER commands

in the time-sharing executive, but several commands are provided

in DDT itself to facilitate the process.

<W?'<Wi';R (SET MAP). The pseudo-relabeling for the program is set

according to the value of <JH? and <W? This command is

essentially equivalent to executing BRS 44 with <JH? in A and

<Wi' in B.

'foE (ERASE). DDT types ... -OK and waits for a confirming dot.

Any other character will abort the command. DDT then resets

itself to its initial state, i.e. the symbol table, program map,

breakpOints and modes are all reset. The program memory, however,

is not released.

;,n (DUMP) . This command also requires a confirming dot. The

entire state of DDT is saved awa,y and 8. number typed out which

will allow this state to be retrieved by the 1B command (see

below). DDT then resets itself as described under %E above.

<E>1iR (RECOVER) • This command requires a confirming dot. If the

present state of DDT has ever been dumped (i.e. was produced by

%R), it is dumped again. Then the state is re.stored exactly as

it was when the 1JJ was given, whose number was the value of <E>.

USing an illegal number for 1~ can lead to chaos.

---------------j

