
REFERENCE MANUAL

COMPILER PACKAGE

Butler W. Lampson

o C1 2 8 ',(Joe

Computer (ent.er l;b~ary

University of California, Berkeley

Document No. 30.60.70

Issued March 18, 1966

Revised May 18, 1966

Contract SD-185

Office of Secretary of Defense

Advanced Research Projects Agency

Washington 25, D. C .

o

30.60.70
May 18, 1966

()
TABLE OF CONTENTS

1.0 Introduction . . 1-1
2.0 Storage Allocation . 2-1
3.0 Other Parameters 3-1

3·1 Listing 3-1
3·2 Initialization 3-1
3·3 Pre-pass 3-2
3.4 Errors 3-3
3·5 The Executive 3-3
3·6 Miscellaneous 3-3
3·7 POP Addresses 3-3
3.8 POP Transfer Vector 3-4

4.0 Syntax Analysis and Code Generation 4-1
4.1 Recognizers and Comparers . 4-1
4.2 Compiling Code 4-2

(~'
~-

4.3 The Compiler Loop 4-4
4.4 Compiler Errors . 4-5

5.0 Symbol Tables and Initialization 5-1

5·1 Structure of the Symbol Table 5-1

5·2 Lookup and Insertion Routines . 5-1

5·3 Initialization 5-2
6.0 Input 6-1

7.0 Output 7-1
8.0 Pre-pass 8-1

9·0 Panic Control 9-1

10.0 The Executive .10-1

APPENDIX A CP Parameters . A-l

APPENDIX B Symbols Provided by CP B-1

1.0 Introduction

30.60.70
May 18, 1966

1-1

The compiler package (Cp) is a collection of useful POPs, subroutines and

conventions which provide a convenient framework for constructing compilers for

a wide class of languages. A subroutine is provided to read a line from any

input medium, with the facilities of the QED line edit if the input device

happens to be the teletype. A second routine converts the SOUrce line into

an internal representation in which each significant constituent of the

source line has been replaced by an integer. POPs are available to make

recursive calls on recognizers which attempt to analyze the line. Finally,

code can be put onto a list of compiled instructions; insertions are possible

at any point on the list, and when the statement is completely analyzed the

compiled code can be transcribed into core and, if desired, printed out in

symbolic form. A collection of mtscellaneous routines provide for error

correction, control of panics, initialization, par,ination and a limited amount

of control over three word/cell forward-chained lists which are used by the

code generator.

CP also provides the necessary machinery for preserving the source

language of the uSer's program and for interactively altering both source

and compiled code. The basic command language for this purpose is identical

to that of QED. The user may extend the list of commands at his discretion.

CP includes the following sections:

1) The standard macro package. This is a large collection of macros

which are used in the rest of the package. These macroS are not

needed in the user's program, although any user may of COurse take

them over if he finds them convenient.

2) The user macro package. These macros provide convenient ways of

calling for recognizers and code generation. Symbol and data

30.60.70
1-2

May 18, 1966

definition macros are also included. Most users will want to

transfer this package into their pror,ram.

3) Syntax recognizer POPs. These provide for recursive calling of

subroutines which are usually thought of as recognizers for elements

of the syntax of the language under consideration. There are two,

one skipping on successful recognition, the other on unsl1ccessful.

For examining the constituents of the source line two analogous

operations are available.

4) Error control routines. There is an error POP, which prints out

a message, calls a routine to clear the compiler, and returns to

the main loop of the compiler.

5) Code generation. The compile POP inserts a word at a specified

point on a program list. It also recognizes the special case in

which the address of the word refers to another element of the

program. An operation is available for inserting a program list

at a specified point in another one.

6) A symbol table lookup routine which works on symbols of arbitrary

length, and a routine to insert new symbols into this table.

7) Read line. This routine reads one line (up to a carriage return)

from any file. It deals correctly with multiple blanks and end

of file and recognizes line feed as a line continuation character.

If the file is teletype, it allows the user all the facilities

of the QED line edit.

8) Pre-pass. This routine decomposes a source line into an internal

form which will hopefully be more tractable for the compiler. It

assumes the availability of a string storage area into which it can

put identifiers, which it then looks up. It will collect floating

G

30.60.70
~3

May 18, 1966

point numbers as strings and deliver them to a user-provided

routine. Any character may be treated as ille~al, ignored, provide

an internal identifier or cause a transfer to a user-provided

routine. There is considerable control over the treatment of blanks.

9) Input-output. There is a character output routine which generates

a call of the line feed routine when it sees carriage return or

line feed. The line feed routine counts the number of physical

lines output and generates page spacine and page headings every 55

lines. A message printing routine is also available.

10) Initialization. From parameters supplied by the user this routine

assir,ps space for symbol table and strin~ storage, generates free

storage lists for the five word cells used by the symbol table

routines, assigns space for the compiler's storage and the user's

program, initializes various parameters and puts into the symbol

table a list of names and values supplied by the user.

11) Panic control. This routine acts as an overlord, clearing the

entire state of the system and setting up a fork for it to run in.

It responds to panics out of the fork in appropriate fashions.

12) Storage allocation. The system checks for overflow of symbol table,

program or string storage and takes appropriate action to obtain

more storage, calling on user-provided routines as necessary.

13) Command recognition. The user defines a command table from which

the system will recognize commands preceded by addresses in the

QED form. A number of commands for printing and altering the

symbolic are built into the system.

The remainder of this manual is devoted to a detailed description of CPo We

begin with storage allocation and other ~arameters and proceed to a consideration

of the 13 system components outlined above.

30.60.70
2-1

May 18, 1966

2.0 Storage Allocation

The initialization routine, GIN, uses the following parameters, which

must be provided by the user:

NOSYMS

LSS

ILCFS

TOP

BFS

LPROG

should contain the initial size of the symbol table.

Half this number of words will be allocated for the fixed

size table and this many five word blocks will be created

and put on a free storage list. If more space is needed

the system will attempt to obtain it automatically.

should contain the size of string storage in words.

The routine GC will be called if string storage runs out.

In this case, if some strings are no longer in use, a

garbage collection may be appropriate.

should contain the length of the compiler free storage

in words. The system will take the maximum of this

number and 300 as the size of this storage area. Three

words from this area are used by each call of CPL, and

three plus the number of local variables by each call of

RST or RSF. If more space is needed, the system will

attempt to obtain it automatically.

contains the location from which free storage cells will

be allocated down.

contains the location from which the fixed length symbol

table and the string storage area should be built up.

contains the initial length of the program area. This

space is used for both compiled code and source language

text. If more space is needed, the compiler will attempt

to obtain it automatically.

c;

30.60.70
~2

May 18, 1966

The figure on the next page depicts the arrangement of storage immediately

after initialization. The three areas at the top indicated by ** can grow.

When such growth becomes necessary, the areas lower down must be moved. It

therefore follows that

1) New symbols must not be created in the middle of computation, i.e.,

after the pre-pass. This is because movement of compiler free storage cannot

be tolerated if there is anythin~ in it.

2) The user must provide two storage allocation routines:

RPROG is called with an address in A and a displacement in B.

The routine should make sure that moving the part of the

compiled program at or above the specified address by the

specified displacement will leave everything in an

acceptable state. I.e., it should relocate all addresses

which refer to this part of the program.

is called with a number in A. The user must ensure

that the system can move the beginning of the program,

given by BPROG, down by the specified amount.

There are two more user routines connected with storage allocation.

is called after CP has assigned its permanent storage

(currently the symbol hash table). The user should

assign his permanent storage, starting at the location

in EST+5, and return the last location he uses in A.

should be the string stor~ge garbage collector if the

user wishes to do a garbage collection when string storage

is exhausted. Otherwise he can put an error routine there.

l)

c

*TOP:

EFS:

EPROG:

ESTS:

BSTS:

CEPROG:

BPROG:

ESSP

ESS

CSS

BSS

EST:

*BFS:
BST

I I ;>

I I ;>

I I ;>

Ichar addr\ ;>

~har addrl ;>

I I ;>

I I ;>

~char addrl~
I, I

~har addij ;>

I I ;>

I I ;>

;>

1:\

5*NJSYMS**

1
i

MAX(ILCFS,300)**

1
·· .. l······· ..

LPROG** ---,------

..... j
-JI

AVAILABLE

TO

USER

i
..... LSS

1
DEFINED

BY
APS

NJSYMS/2

1

Symbol Table Free
Storaf,e

Compiler Free Storage

Source Language Text

Program
Area

Compiled Program

String Storage

Area Used

User Permanent Tables

Symbol Table Hash Table

Storage Allocation for CPo ** indicates expandable area.

Ci

30.60.70
2-3

May 18, 1966

After GIN has been called, BST and EST will contain the boundaries of

the symbol table, BSS and ESS the word boundaries of string storage, SSP and

ESSP the character boundaries of string storage, BPROG and EPROG the boundaries

of the program area, RSFS the top of the symbol table free storage list. CSS

contains the last used character of string storage.

The following storage allocation and pa.rameterization macros are in the

user package:

1) DPS, which is called with a list of opcodes and generates a series

of words with labels of the form Zopcode which contain the opcode

with 0 address. Thus

DPS ADD, SUB

is equivalent to

ZADD ADD 0

ZSUB SUB 0

2) DP is for defining POPS.

DP ADD,55,SUB,54

is equivalent to

ADD OPD 5500000B,1

SUB OPD 54OOOOOB,1

3) DSV is for defining symbol values

DSV SYM1,25,SYM2,6400B

is equivalent to

SYMl EQU 25

S1M2 EQU 6400B

4) DV is for defining values

DV LOC1, 100, LOC2, 200

C'·!

C·:
j

is equivalent to

LOCl DATA 100

LOC2 DATA 200

30.60.70
2-4

May 18, 1966

~) DPOP is for defining POPs whose values have already been set by

DSV or EQU. Thus

DSV VPOP1,2l,VPOP2,40

DPOP POP1, POP2

is equivalent to

POPl POPD l2l00000B,1

POP2 POPD l4000000B,1

Note that DPOP expects the symbol containing the POP number to be

followed by the POP name.

6) DEF reserves storage

DEF A,B,C

is equivalent to

$A

$B

$C

ZRO

ZRO

ZRO

o

o

o

Cj

3·0 Other Parameters

3.1 Listing

30.60.70
3-1

May 18, 1966

If CODFLG is negative, compiled instructions will be listed after

they have been put into the program. They are put onto the file indicated

by LISTF, which is initialized to 1. The format is one instruction per

line, symbolic opcode and numeric address. If either index or indirect

bits are on, two digits indicating the state of these two bits will

a.ppear after the opcode. CODFLG is in CP temporary storage.

Opcode are taken from two tables called OPTAB for codes 0 to 77 and

POPTAB for codes 100 to 177. The appropriate word is picked up and

printed as three characters.

Each time RDL is called to read a new line, it will type the

character in BLCHAR if the input file is the teletype.

For a description of pagination, see section 7 below.

3.2 Initialization

The initialization routine GIN, in addition to setting up storage

as described in the previous section, also sets various flags and counters

to their initial values, requests a page heading, and starts off the page

numbering with page 1. The flag BRFBEG will suppress the typing

associated with initialization if it is negative.

The routine IST, which is called by GIN, initializes the symbol table

from the string INS. This string contains a series of entries, each one

of which may have either of the following forms:

a) the character /, which indicates that the string is finished;

b) a string of characters which will be taken as a symbol to be

looked up, followed by a comma, followed by any number of fields

of the form

<letter> <octal number>

30.60.70
3-2

May 18, 1966

followed by a semi-colon. The octal numbers are collected and

interpreted according to the preceding letter as follows:

V set first value word

W set second value word

B set top 8 bits of first name word

C set top 8 bits of second name word

I store index indirect through STIDX + number

For explanation of the terms value word, name word and index,

see section 5.1.

STIDX is a table used by I fields as indicated above.

SETUP is a user routine which 1s called before the processing of

each new source line.

To start up CP, call GIN and then transfer to RUBOUT after

performing any other initialization required by the particular

language being implemented.

3· 3 Pre-pass

For a discussion of the meaning of the parameters listed here, see

section 8 below:

CHTAB character table

ICTAB initial character table

PPSET pre-pass initialization

PPNL number lookup

ILCHAR illegal character exit

IEOS internal identification of end of statement

()

C)

3.4 Errors

30.60.70
3-3

May 18, 1966

If the fork control logic is being used

MEMTRP

IITRP

is the location to which control will go after a memory

trap;

is the location to which control will go after an

illegal instruction trap.

RERR is called from a few places when CP runs into serious

trouble. This is a disaster.

OVFWW is called when a call of GC returns without skipping.

3.5 The Executive

For a discussion of these parameters, see section 10.

BCT beginning of command table

ECT end of command table

FSTAT find statement

3.6 Miscellaneous

The line edit reads characters from SEIFN and writes them on SEOFN.

These locations are built into the system and set to 0 and 1 respectively.

A user can, if he wishes, put them in his temporary storage and change them.

TCFIM is the address of a message. Error comments (address of

CERRX pops) with addresses smaller than this will be

prefixed by this message.

3.7 pop Addresses

At the very beginning of CP is a collection of EQU's which define

the values of the various POPs. The user will need this information if he

c'

o

30.60.70
3-4

May 18, 1966

is to use these POPs in his own program. He may alter the assignments

to suit his fancy.

3.8 POP Transfer vector

After a system which includes CP has been loaded, the POP transfer

vector must be transcribed into a permanent table, from which it can be

rewritten by GIN whenever the system is started. A transfer to FSTART

will do this, returning with a BRS 10.

· ,

4.0 Syntax Analysis and Code Generation

4.1 Recognizers and Comparers

30.60.70
4,,1

May 18, 1966

Syntax analysis in CP is done by recursive calls of routines

called recognizers. The design of recognizers is left to the pro-

grammer; the system provides only two recursive call POPs:

RST recognize and skip if true

The POP calls the routine addressed. It expects to find at the

beginning of this routine a list of addresses terminated with a -1

word. The contents of each word addressed by this list is saved on a

linear stack called RPL, together with the address of the call, the

address of the recognizer, and the input pointer LBLOC. Control then

goes to the word after the -1.

A recognizer returns with a true exit by going to T. This causes

all the saved words except LBLOC to be restored and sends control to

the second location after the RST which called it. A transfer to F

is exactly the same, except that the input pointer is restored and

control goes to the first location after the RST.

The addresses at the beginni.lg of the recognizer define the local

variables of the routine.

RSF recognize and skip if false

is also available.

Part of the user macro package is two macros for calling recognizers:

RBT A,B recognize and branch if true

calls recognizer A and branches to B if it returns true. If B is a

number, it executes a CERRX CERRB instead of branching.

RBF recognize and branch if false

is the other macro.

Cl

30.60.70
4-2

May 18, 1966

During analysis, LBLOC points to the current element ,of the input

line. The pop

CST compare and skip if true

compares this element with the word addressed and skips if they match.

The complementary operation is

CSP compare and skip if false

The macros are

CBT and CBF

4.2 Compiling Code

Code is generated with a pop called CPL. CP maintains, in its

standard form, two lists onto which code can be generated. These are

headed by ICL and IPCL and consist of three word cells. The first word

of each cell is either 0 or a pointer to the next word, the second is

the compiled instruction, and the third is -1. Instructions are put

onto a list with the POP CPL, Whose action is illustrated in the figure

on the next page. The instruction to be compiled is taken from the A

register and put into a new list cell which is inserted just after the

cell addressed by the argument of the POP.

New list cells are asSigned downward from the top of the compiler

free storage area, while the recognizer stack grows up from the bottom.

When they collide, the free storage area is expanded as described in

the last section. Both lists and stack are reset at the beginning of

each statement. The progrrunmer therefore need not be concerned about

losing track of list cells.

The fact that code is generated onto a list makes it easy to

rearrange it and to maintain complex relationships between the order of

PL: Cl Cl: C2
OPl

MCL: C2 C2: C3
OP2

C 3 : t----=O=---I
OP3

(a) Program list and pointer before execution of

LDA oF4
CPL MCL

c) PL: Cl Cl: C2
OPl

MCL: C4 C2: c4
OP2

c 3 : 1----=0=----1
OP3

c4: C3
op4

(b) Program list and ~ointer after this CPL

FIGURE 1: Action of CPL

30.60.70
4-3

May 18, 1966

elements in the source line and the order of the ccle they generate.

A macro called C1 is in the user package.

C1 A,B

is equivalent to

LDA ZA

MRG B

CPL MCL

That is, MCL is used as the pointer to the place at which code is

currently being compiled. A may be thought of as the opcode, B as a

word containing the address. It is assumed that the cell ZA has been

constructed to hold the opcode A.

Also part of the user package are macros DP to define opcodes

and DPS to create the Z-locations to hold them. Examples:

DP ADD, 55 ,SUB,54

DPS ADD, SUB

In order to facilitate relative addressing within the code, a gimmick

has been put into CPL. When this POP receives an instruction whose address

points to a cellon a program list, it changes that address to O. The

address of the instruction in the cell pointed to is changed to the

address of the cell being constructed. That is, a backwards reference

is changed into a forward reference. When the loop in CS which transcribes

the program list sees such an address, it converts the forward reference

into a relative forward address, i.e., into the difference between the

final locations of the instruction with the forward reference and the one

being referred to. This computation is done with the subroutine COUNT,

which returns the number of cells between the list cell addressed by A

C:

30.60.70
4-4

May 18, 1966

and that addressed by B, plus 1, in A. Cells with second word =-1 are

not counted.

The user must provide a bit table with one bit for each of the 128

possible opcodes. If a bit in this table is on, the corresponding opcode

will be exempted from this test for relative reference. The address

of the first word of the table should be RRTAB; it will occupy 6 words.

CPL and CS will recognize an address as referring to the program

list if it is bigger than the contents of EPROG and if the second following

word is -1. This arrangement is successful because CPL puts -1 into the

second value word of the cell it compiles.

To create new lists, the user macro INIT is available. INIT M makes

a r~w cell, clears its contents to 0, and puts its address in M.

To insert an entire list into another one, the pop MERGE is available.

MERGE M inserts the list whose first cell is addressed by A after the cell

addressed by M. M is changed to point to the last cell of the inserted

list. A CPL is equivalent to an INIT, followed by an explicit store of

the binary word to be compiled, followed by a MERGE.

To sequence down a list, the pop LVDI (load value double and increment)

is available. LVDI M returns without skipping if M points to the last

cell of a list. Otherwise it changes M to point to the next cell, puts

the second and third words of this all into AB, and skips.

4.3 The Compiler Loop

The main loop of the compiler starts at CS. It does the following

things:

a) calls RDL to read a line (section 6)

b) calls the user routine SETUP, which may do any initialization

it likes

o

C)

calls the pre-pass GNE

30.60.70
4-]

May 18, 1966

c)

d)

e)

calls the user recognizer STAT, expecting it to return true

puts compiled code and text into program area unless the

statement is direct (see section 10).

f) loops

Step (e) involves taking the instructions off the list ICL in order

and adding them to the program area at the address in PLOC. If CODFLG

is negative each instruction will be listed (see section 3.1).

4.4 Compiler Errors

When the compiler detects an error, it can call on standard error-

hrndling machinery with the pop CERRX. If the input device is not the

teletype, the offending statement is listed on the file LISTF. The

address of the CERRX is then examined. If it is greater than TCFIM,

it prints the message starting at the address, which should follow the

conventions of TMSG (section 8). Otherwise, it prints the message

at TCFIM (which is usually

THE CORRECT FORMAT IS)

and then proceeds as before.

After printing the error message, the pop returns to the main loop

at CS.

If DEBUG is negative, the octal address of the CERRX is printed

after the error message.

Refer to the discussion (in section 4.1) of numeric branch addresses

for the recognize and compare macros.

c.

5.0 Symbol Tables and Initialization

5.~ Structure of the Symbol Table

30.60.70
5-1

May '.8, 1966

The symbol table in CP is a rather funny object which can be thought

of as an elastic hash table. It consists of a fixed length table (between

BST and EST) called the hash table, and a collection of five word cells

attached to the hash table by pointers. Each symbol in the table belongs

to one of these five word cells. The first word of the cell is a

pointer. The next two words contain a string pointer to the symbol; the

top 8 bits of each of these words are available to the user. The last two

words are value words and completely at the user's disposal. The symbol

table may be thought of as a device for associating with a string an

&ddress called the index. This address is always the address of the

first value word; this number is returned by the lookup routine.

Each word of the hash table is either 0 or a pointer to the head

of a list of these five word cells. When a symbol is looked up, a

number less than the length of the hash table is computed from the string.

This number is called a hash code. The word of the hash table

corresponding to the hash code is picked up and the list which it heads is

searched for the symbol. If a string identical to the one being looked

up is found on this list, then the symbol is already in the table and its

index can be returned. Otherwise a new cell must be added to the list

and initialized with a pointer to the string and 0 value.

5.2 Lookup and Insertion Routines

To look up a symbol, put a string pointer to it in AB and call

LKUPN. If the symbol is in the table, LKUPN skips and returns the index

in X. Otherwise it returns without a skip and with the string pointer

still in AB.

G

30.60.70
5-2

May 18, 1966

To insert a symbol, call INSN immediately after an unsuccessful

call of LKUPN without disturbing the central registers. INSN returns

the index in X, just as LKUPN does.

5.3 Initialization

The initialization routine GIN performs a number of functions

connected with storaee allocation, for which see section 2. It also

calls IST, which initializes the symbol table as described in section 3.2.

C)

C)

6.0 Input

30.60.70
6-1

May 18, 1966

The routine RDL reads one line into a source line buffer called SBUF

which has room for 300 characters. It expects to find a string pointer to

the old contents of SBUF in SIP and leaves a pointer to the new contents in

SIP and also in IP.

RDL reads from the file specified by INFIL. If this is not the

teletype, no output is generated by RDL. Multiple blanks are correctly converted,

and an end of file character sets INFIL back to the teletype. A line feed is

assumed to be followed by a carriage return and line feed; the two characters

following a line feed are therefore ignored. A carriage return is assumed to

be followed by a line feed. This character, and all characters intervening

betweel" it and the preceding carriage return, are ignored.

If the teletype is the inpllt medium, all the facilities of the Q,ED

line edit are made available by RDL. The line being edited is assumed to

be pointed to by SIP. This means that, unless the user takes special action,

the line being edited will always be the one previously typed in. "Line"

refers of COlJrse to the logical line, i. e ., the string of characters -preceding

the first carriage return (or DC or FC). Line feed is interpreted as a

continuation character and causes carriage return and line feed to be

printed. QC has bp.en modified so that it deletes one phySical line at each

application.

o

7.0 Output

30.60.70
7-1

May :'8, 1966

The system generates line feeds only in a routine called CRLF, which is

responsible for printing carriage rettITn and line feed and for advancing to

a new page if necessary ("printing" here and below means "writing on OUTFIL").

The line on the current page is kept track of in L INC NT , which starts at 55.

The page number is kept in PAGENO. If the symbol PAGES is >0 during assembly

of CP, GIN will request from the user a page heading which it will put in HBUF.

A pointer to the heading is kept in HEAD. The heading and the page number

will be printed at the top of each page. If PAGES is <0, CRLF will simply

generate carriage return and line feed.

A message output routine called n~SG is called with the (word) address

of the message in X. It writes the characters in the message string onto

OUTFIL until it sees a I and returns. It will print $ as carriage ret\oU'n and

line feed.

A character output routine called CHOUT is identical to CIO OUTFIL

except that it calls CRLF whenever it sees a carriage return or line feed.

o

o

8.0 Pre-Pass

30.60.70
8-1

May 18; 1966

If the symbol PREPAS is >0, the pre-pass routine GNE will be assembled

into CPo vfuen called, this routine calls the user initialization routine PPSET

and then performs a rather elaborate analysis of the input line, which it

finds a string pointer to in IP. The result is a series of integers starting

at LBUF. The last of these integers is pointed to by LBLOC when GNE returns,

although CS resets LBLOC to LBUF and the CST and CSF POPs assume that it

points to the element of the converted source line currently under consideration.

GNE works with a 64 word table called CHTAB which it indexes by the

internal code for the character it is processing. Characters larger than 778

are regarded as illegal, except for line feed, which is ignored, and carriage

return, which causes GNE to add IEOS to LBUF and return. Each one word entry

in CHTAB specifies the treatment to be accorded a character. This word is

organized in the following way:

Bits Function

0-2 Indexes ICTAB for transfer on initial character if FO

3 Keep following blank

4 Keep preceding blank

5 Keep following blank if next character approves

6 Keep following blank if previous character approves

7 Illegal

8 Ignore

9 Unused

10-23 Take as internal identifier if < 4000. Otherwise transfer

to this address

o

30.60.70
8-2

May 18, 1966

If the first three bits of the CHTAB entry for the first character of the

line are non-zero, GNE does an indexed branch to ICfAB.

There is a macro called CT which is part of the user package.

This macro is convenient for constructing the character table used

by GNE. Its arguments have the following significance (avoid

omittin~ them in the middle, since Arpas does not like thiS)

1 Bits 0-23. May be external. If /, ignore. If *, illegal

2 Blank treatment. Two characters, first for preceding blank,

second for following. K=keep, C-conditionally keep, N=don't keep.

3 Initial code

GNE calls a routine called CHAR to get its characters from the Source

string, which is pointed to by IP. This routine just does a GCI, returning a

carriage return if the string is exhausted. GNE puts the character it is

working on into NC and keeps the preceding character in CC.

The user can cause proceSSing of certain characters to cause transfers

out of GNE by putting the transfer addresses into CHTAn. There are several

standard points where he can re-enter GNE:

GNEll

GNE12

to process a name. The first character should have been

read (i.e., should be in NC). GDm will collect letters, digits

and dots for as long as poSSible, look up the name and put

its index into LBUF.

to process a number. The first character should have been read.

GNE will collect digits, one dot, aYJd one E, possibly followed

by a + or - and more digits. It ,vill call a user routine, PPNL,

with a string pointer to the number in AB. This routine shoulc

return an identification for the number, which will be put in LBUF.

GNE will recover the string storage used for the number.

C)

30.60.70
8-3

May 18, 1966

GNEl to start a new line - PPSET will be called again. Everything will be

reset and processinG will continue.

GNE3 for main loop. The next character should be in NC.

GNE7 with an internal identifier in A. It will be stored and CHAR called

for the next character.

GNE8 to call CHAR for the next character and loop.

When the pre-pass needs to write characters into string storage, it uses

a pop called WC, which acts like WeI but takes no address. The address given

in CSS is incremented by 1 and the character is written there.

o

o

c)

9.0 Panic Control

jU.OU. (V

9-1
May 18, 1966

If control is transferred to RUBOUT, the system will clear all input

output, reset the input and output files to teletype and the echo table to

2, wait for the user to type a character, and start up a fork in which RDL

is called from the main loop at CS.

If a panic occurs out of this fork, it is checked for type. Illegal

instruction traps print

ILLEGAL INSTRUCTION EXECUTED AT XXXX

and transfer to II'l'RP. Memory traps print

MEMORY TRAP

and transfer to MEMTRP. A BRS 10 causes the fork to be restarted as above

after resettinc; the echo table to 2 (break on control characters only) but

without any other initialization.

A rubout causes RUNFLG to be checked. If it is -1, it is reduced to -2,

PANFLG is set to -1, and the program is restarted. If RUNFLG is -2, control

goes to R1IDOUT. If it is positive and the proGram is not waiting for I/O,

the same action is taken as for RUNFLG = -1. If the program is waiting for

I/O, CCLR is called and control Goes to RUBOUT.

The idea behind all this is that RUNFLG is positive durinc; compilation

and -1 while the proe;rsID is rlmning. A running program or compile oUf';ht not

to be dismissed, since it may baye pointers in a bad state. Hence, PANFLG

is set. It can be checked at the next convenient point in the compiler or

running program. In particular, it is checked by CS after each statement

is compiled. However, if the compiler is waiting for I/O or if two rubouts

have occurred while the pror,ram is running, it seems desirable to interrupt.

The panic table starts at FT. FTA, FTB and FTX refer to the central

register locations, FTM to the location indicating the status of the fork.

(I

30.60.70
9-2

May 18, 1966

To use the program without the fork, change RBOUT3 from BRS 9 to

BRU DSTRT.

30.60.70
10-1

May 18, 1966

10.0 The Executive

The CP executive maintains the source and object program. It accepts

commands which allow the user to change the program. More commands can be

added.

A CP command can be preceded by 0, 1 or 2 arguments. Each argument is

the address of a logical ~ (string of characters bounded by carriage returns)

in the source program. This address is fonned out of a base and any number of

displacements. The base may be

referring to the current line

:string: referring to the first line after the current one which begins

with the specified string followed by a character which is not

a letter or digit. The source program is regarded as a ring

for this search.

[string] is like the : construction except that any occurrence of the

string will do.

The displacements must be decimal integers. They are separated by +, -, or

spaces (equivalent to +). The arguments are separated by commas.

Each argument, once recognized, occupies five words in ARGBUF. The first

two words are a string pointer to the text of the statement, the next two a

string pointer to the label of the nearest preceding labeled statement, and

the last the distance of this statement. A routine called FTARG generates

an error if there are no arguments and copies a single argument to make two.

The user must supply a routine called FSTAT which, called with a string

pointer in AB and a number in X, will return in AB the first and last cells

occupied by the code for the statement specified by the given label and

displacement.

Commands are specified by a command table which the user must provide.

The part of the command table built into CP is listed in the CP temporary

t

(j

o

30.60.70
10-2

May 18, 1966

storage package. The table begins at BCT and ends just before ECT. It must

be alphabetized. Each entry has the form:

several words containing the characte~of the command, the

last filled out by 200 characters.

a word with the sign bit set containing the address to go to

when the command is recognized.

When a command is recognized, which occurs when enough characters have been

typed to identify it, the remainder of the command is types out unless QCKFLG

is negative. There is a macro called CD for defining commands. Its use is

illustrated by the definitions of the built-in commands.

The built-in commands and their functions are as follows:

APPEND o args starts input at the end of the current program

CHANGE 1 or 2 args deletes the specified lines and accepts input
to replace them

CODE 0 args causes the code produced by the compiler to
be listed

DELETE 1 or 2 args deletes the specified lines

EDIT 1 arg types the specified line, deletes it, makes it the
line being edited and accepts input to replace it

INSERT 1 arg accepts input to go before the specified line

MODIFY 1 arg like edit but does not type

NO CODE 0 args inverts CODE

PRINT 0,1 or 2 args prints the specified part of the source program

QUICK 0 args suppresses command completion

READ FROM 0,1 or
2 args

accepts input from a file specified after words
and puts it at the end or before the specified
statement

VERBOSE 0 args inverts QUICK

WRITE 0,1 or 2 args like PRINT, but on a specified file

o

o

o

I 0,1 or 2 args

o args

line feed o args

like PRINT

print preceding line

print next line

30.60.70
10-3

May 18, 1966

The routine OKTOGO is available to require that the next character be a

dot, and to output a carriage return after it.

The label CPEXER is the error exit for the exec. It prints ? and goes

to get another command.

The entry point to the executive is EXEC. This is the place to go when

the compiled program returns from execution and wants to return control to

the executive.

A very useful routine for copying strings is built into CPo The sequence

LDA =PTRl

LDB =PTR2

SBRM COPYST

will cause the string specified by the pointer at PTRl to be copied onto the

end of the string in PTR2. The second word of PTR2 will be increased by the

appropriate amount. The two words after the last word copied into will be

destroyed. If the strings overlap, only downward copying will work, since

the copying is done from the beginning of the string to the end.

This routine moves the strings word by word, using shifts and m~sks.

It is about 20 times as fast as a GCI-WCI loop.

The executive interprets all input (except after INSERT, CHANGE, APPEND,

EDIT and MODIFY commands) as commands with preceding arguments, except where

the first character is a blank. In this case the input is taken to be a direct

statement, which is analyzed and compiled. The compiled code is put into the

input buffer, starting at LBUF. When the statement has been compiled, control

c)

C)

o

goes to the address XDS which must be supplied by the user.

30.60.70
10-4

May 18, 1966

When input is being accepted after an INSERT, CHANGE, APPEND, EDIT or

MODIFY command, each line (terminated by carriage return) is taken to be a

statement which is immediately compiled. Any error gives rise to an error

comment and prevents code from being generated. During input of each line,

the line last input, or the one just deSignated by an EDIT or MODIFY command,

is being edited, and all QED control characters apply, with the exception

that an initial DC indicates the end of input and sends control back to

the exec. This is the on~y way, aside from rubout, to terminate input.

Input after an EDIT or MODIFY is not automatically restricted to one

statement.

CJ

,

)

A-l

APPENDIX A: CP Parameters -- Symbols which must be provided by the user.

NAME

NOSYMS

LSS

ILCFS

TOP

LPROG

BFS

INS

SETUP

STIDX

CHTAB

PPSET

ICTAB

PPNL

ILCHAR

IEOS

APS

RPROG

MSPACE

GC

. FSTAT

BCT

ECT

TCFIM

BLCHAR

OPTAB

POPTAB

OVFLOW

IITRP

MEMTRP

RERR

XDS

RRTAB

SECTION

2.0

2.0

2.0

2.0

2.0

2.0

3·2
3·2

8.0

8.0

8.0

8.0

8.0

8.0

2.0

2.0

2.0

2.0

10.0

10.0

10.0

4.4
3·1
3·1
3·1
3·4
3.4
3.4
3.4

10.0
4.2

TYPE

v
V

V

V

V

V

String

S

T

T

S

T

S

A

V

S

S

S

S

S

T

T

T

V

T

T

S

A

A

S

A

T

DESCRIPTION

Number of symbols

Length of string storage

Initial length of compiler free storage

Top of available memory

Initial length of program area

Bottom of available memory

Initialization for symbol table

Routine called before compiling each source
line

Table for storing addresses of strings
being initialized

Character table for pre-pass

Routine called before pre-pass on each
Source line

Initial character table for pre-pass

Routine called with each number by pre-pass

Go here on illegal character

Internal identifier for end of statement

ASSign permanent storage

Relocate program

Make space available

string storage garbage collector

Find statement

Beginning of command table

End of command table

Dividing address for error messages

Character typed by exec

Table of mnemonics for opcodes

Table of, mnemonics for popcodes
~~ .

Called it GC returns too little free storage

Go here on illegal instruction trap

Go here on memory trap

Called on unexpected errors

Go here to execute direct statement
Bit table to suppress relative reference checking

o

o

o

B-1

APPENDIX B: Symbols provided by CP to the user.

RST

RSF

CST

CSF

Cpt

MERGE

LVDI

WC

CERRX

LKUPN

INSN

BST

EST

GIN

FSTART

RDL

CHAR

GNE
GNEl

GNE3

GNE7
GNE8

GNEll

GNE12

LBLOC

LBUF

SBUF

T

F

COUNT

INDL

FLOC

ICL

IPCL

MCL

SECTION

4.1
4.1
4.1
4.1
4.2
4.2
4.2
8.0

4·3
5·2
5·2
5·1
5·1
3·2
3.8

6.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
4.1
8.0
6.0
4.1
4.1
4.2
4.2
4.2
4.2
4.2
4.2

TYPE

P

P

P

P

P

P

P

P

P

S

S

T

T

S

A

S

S

S

A

A

A

A

A

A

V

T

T

A

A

S

S

V

V

V

V

DE SCR IPrION

Recognize and skip if true

Recognize and skip if false

Compare and skip if true

Compare and skip if false

Compile instruction

Merge one program list into another

Sequence down program list

Write chararter on string storage

Compiler error

Look up name

Insert name

Beginning of symbol table

End of symbol table

General initialization

First start; transcribe POP transfer vector

Read a line

Get a character for pre-pass

The pre-pass routine

To start over on a new line

Main loop of pre-pass

Return internal identifier to pre-pass

Call CHAR and go to main loop

Process name

Process number

Input pointer

Input buf'fer

Source line buffer

True return from recognizer

False return from recognizer

Count instructions in program list

Initialize a program list

Location counter in program buffer

Initial word of the standard program list

Initial word of another standard program list

Starts equal to ICL

(J

o

NAME

CS

CSA

RUBOUT

DSTRT

FT
FTA

FTB

FTX

FTM

CROUT

CRLF

TMSG

INFIL

OUTFIL

LISTF

LINCNT

PAGENO

HBUF

EXEC

CPEXER

BPROG

EPROG

CEPROG

BSTS

ESTS

ARGBUF

DEL

FTARG

OKTOGO

COPYST

PANFW

RUNFW

DEBUG

BRFBEG

CODFW

SECTION

4.2
4.2
9·0
9.0

9·0

9·0

9·0

9·0
9.0

7.0

7.0

7.0
6.0

7.0

3·1
7.0

7.0
7.0

10.0

10.0

2.0

2.0

2.0

2.0

2.0

2.0

10.0

10.0

10.0

10.0

9·0

9·0
10.0

3·2
3.1

TYPE

A

A

A

A

V

V

V

V

V

S

S

s
V

V

V

V

V

T

A

A

T

T

T

T

T

T

S

S

S

S

V

V

V

V

V

DESCRIPI'ION

Beginning of compiler loop

Print carriage return, then go to CS

Set up fork and go to exec

Address to simulate BRS 9 for debugging

First word of fork table (program counter)

Second word of fork table (A register)

Third word of fork table (B register)

Fourth word of fork table (X register)

Seventh word of fork table (status)

B-2

Print character, treating cf and lf specially

Print carriage return and line feed. Paginate
if necessary

Type message

Input file

Output file

Listing file

Line count on this page

Page number

Heading buffer

Entry pOint to exec

CP exec error entry

Beginning of program area

End of program area

Current end of program

Beginning of source program (character address)

End of source program (character address)

Argument buffer

Delete subroutine

Force two arguments

Wait for dot

Copy string

Panic (rubout) flaP,

Program running flag

Debug flag

Brief beginning flag

Code listing flag

B-3

0 Types: A address to which control may be transferred

p rop

s subroutine called with SBRM

T table

V single word whose value is of concern

