
________ -'--____ • _________________________ m_~""

. \

REFERENCE MANUAL

930 LISP

L. Peter Deutsch

Butler W. Lampson

University of California, Berkeley

Document No. 30.50.40

Issued June 5, 1965

Revised November 16, 1965

Office of Secretary of Defense

Advanced Research Projects Agency

Washington 25, D. C.

'.

, .

c)

TABLE OF CON'l'ENTS

1.0 Lisp Data • • • ••••
· . · .'. 2.0 Lisp Programs • • •

2.1 Basic Function
2.2 Function Definition • · . .
2.3 Conditionals

2.4 Recursion •

3 .0 Evaluation

4.0 Arithmetic

. · . .
. . . .

.
5.0 Standard Functions •••••••••

6 • 0 Changing List Structure • • • • •

7.0 Functionals • ·

. . .
. . .

.
.

8.0 Prog ·
9.0 Property Lists

10.0 Input-Output
11.0 other Useful Functions

12.0 Error comments · . .
13.0 Special Features of the M-La.nguage Translater •

14.0 The Lisp Operating System • • • • • • • •

Appendix 1 • • • • • • • ••••

30.50.40

Maur 17, 1965

30.50.40-1-1

30.50.40-2-1

30.50.40-2-1

30.50.40-2-2

30.50.40-2-3

30.50.40-2-4

30.50.40-3-1

30.50.40-4-1

30.50.40-5-1

30.50.40-6-1

30.50.40-7-1

30.50.40-8-1

30.50.40-9-1

30.50.40-10-1

30.50.40-11-1

30.50.40-12-1

30.50.40-13-1

30.50.40-14-1

30.50.40-A-1

1.0 Lisp Data

30.50.40-1 .. 1
May 28, 1965

Lisp operates on data called S-expressions. The basic components

of the language are called atoms. An atom mB\Y' be

1) A name, which is a string of letters and digits of arbitrary

length, beginning with a letter. The particular letters and digits. used

have no significance except to distinguish the name from other names.

2) A number, written as a decimal integer of less than 24 bits,

possibly with a negative sign.

3) The special symbols T and ND:,. T stands for ~.. lin stands

for falsity and a number of other things •

. S-expressions are made up of dotted pairs. The simplest dotted

pair is a dotted pair of two atoms: (A.B). However, the components of a

dotted pair mS¥ themselves be dotted pairs: (A.(C.B», for instance.

The most cammon form for a dotted pair is a standard represen­

tation of a ~ or ordered set of dotted pairs or atoms 0 In this

representation the ordered set A,B,C,D,E would be written

(A.(B.(C.(D.(E.NIL»»). This is the reader's first introduction to Lisp

parentheses. Since the explicit notation is somewhat cumbersome, a com­

pressed form is normally used, in which the above list is written (A BCD E).

Blanks separate the elements of the list. Any number of blanks mS¥ be

used instead of one. Although the dotted pair notation is rarely seen

outside of the introductory section of a manual, it is the basis of Lisp

data and program structure and can alwB\Y's be referred back to in case of

confusion.

· .
c)

C)

2.0 Lisp prggrams

30.50.40-2-1
MBiV 28, 1965

A Lisp program is basically an S-expression which is inter-

preted as a function call according to the following rule: a list is evaluated

by taking its first element as a function name and sabsequent elements are

arguments of the function. All. arguments are evaluated before the function

is called. Arguments mBiV themselves be lists, i.e. function calls.

Thus (A B C) is a call of the function A with arguments obtained by

evaluating the atoms B and C. {A (B C) C) is a call of A with the first

argument obtained from a call of B with argument the value of C, and the

second argument the value of C.

To prevent evaluation of arguments the function QUOTE is used.

It is a function like any other, except that its argument is not evaluated,

since its job is to prevent evaluation of the argument. Thus

(A (QUOTE B) (QUOTE C» is a call of A with arguments B and C, B.21 the

values of B and C. Likewise (A (QUOTE (B C» (QUOTE C» is a call of A

with arguments the list (B C) and the atom C.

S-expressions are extremely inconvenient for complex functions,

so Lisp programs are normally written in M-expressions. M is for meta.

Function calls in M-expressions look like those of ordinary mathematics.

The S~expression (A B C) corresponds to the M-expression a[b;c]. Note the

use of brackets and semicolons. The lower case letters are customary in

handwritten M-expression, upper case being reserved for S-expressions

appearing within the M-expressions. On the teletype, of course, lower case

is not available.

2.1 Basic function

Lisp has the following basic functions:

car [x] takes a list as its argument and has the first element

as its value. Thus car ['(A B C)t] is A. In M-language the single quote is

used in place of the function QUOTE. Car of an atom is an error. Further

examples: car [t«(A B) C) (D E F»t] is «A B) C); car ['«A B C»·] is

(A B C).

c; 30.50.40-2-2
Maur 28, 1965

cdr [x] takes a list as its argument and has the list of the

elements after the first as its vaJ.ue. If there is only one element, the

vaJ.ue is NIL. cdr of an atom is illegal. Thus cdr [. (A Be)'] is (B C).

Note that car [' (A B)'] is A but cdr [' (A B) t] is (B), .!!2t. B. The vaJ.ue

of cdr is alwaurs a list unless it is NIL.
cons [x;y] takes two arguments and has the dotted pair of them

as its vaJ.ue. Thus cons ['A'; 'B'] is (A.B). Because of the convention

for WTiting lists as dotted pairs, cons ['A';' (B CD) t] is (A BCD).

Note that cons is .!!2t. symmetric in its two arguments: cons [' (B C b) t ; t A']

is «B C D).A), not (B C D A).

atom [xl is a predicate. This is, its vaJ.ue is either T or NlL.

In particular, atom [xl is T if x is atomic. Thus atom [tAt] is T, atom

[t(B C),] is NIL.

eq [x;y] is another predicate. Its value is T if x and y are

the same atom and NIL otherwise.

These are the fundamentaJ. operations of Lisp. In addition, there

are function definitions and conditionaJ.s.

2.2 Function definition

The method of defining functions in M-language will be clear

from the following example:

conscar [x;y] = cons [car[x];y]

The list of atoms after the function name is the list of bound variables.

When the function is ca.l1ed its actuaJ. arguments are evaJ.uated. The old

vaJ.ues of the atoms x and y are then saved and their vaJ.ues are set to the

values of the arguments. Thus, when they are evaJ.uated in the function

definition, the vaJ.ues they provide will be the vaJ.ues of the actuaJ.

arguments. When the function is finished, the old val.ues of x and y are

restored. In this waur the function definition is completeJ.¥ insulated

from any other uses to which x and y mB¥ have been put, and other functions

which use x and y need not be concerned about what conscar does to them.

30.50.40-2-3
Ma¥ 28, 1965

The matter of eValuation and bindings is very important in Lisp

and will receive fUrther discussion later. The important points to remember

are 1) a function call sets the values of the atoms used in the def-

inition to the values of the actual arguments in the call. The old values

are restored afterwards.

2) whenever an expression appears as a function argument it

is evaluated. If it is an atom, the eValuation produces its latest

binding.

Another wa¥ of writing the above function definition makes the

binding more explicit:

conscar = lambda. [[x ;y]; cons[car(x];y]]

Lambda. is a function which ma¥ be used by the running program to define

new functions. It differs from an ordinary function in that it expects

its first argument to be a list of atoms and does not eValuate it.

Conditional.s

The one remaining maj or f'eature of' Lisp is the method f'or

handling conditional. branches. This ma¥ be illustrated by a function

definition:

neq[x;y] = [eq[x;y] # NIL; T#T]
The first bracket after the = signals the start of a conditional, which

is composed of' a number of' clauses of the f'orm expression # expression.

The f'irst expression in the f'irst clause is evaluated. If its value is

not NIL, the second expression is evaluated and its value Is the value

of' the entire conditional. The remaining clauses are ignored. If' the

first expression turns out to be NIL, the second expression is ignored

and attention turns to the second clause. This process proceeds until a

first expression is found whose value is not Nn". The absence of such

an expression is an error.. For this reason it is usual to terminate

conditionals with T:#, which becomes the catch-all alternative. The

reader will observe from this that the value of T is always T. Likewise,

the value of Nn" is alwa¥s Nn".

2.4 Recursion

30.50.40-.2-4
November 16, 1965

This is not a new feature of Lisp, but it is so important that

it deserves speciaJ. treatment. A function definition mau contain calls on

any functions, including the one being defined. Because of the machinery

for binding variables which has aJ.read;y' been discussed, the programmer need

not worry about the identity of the arguments. Example:

equaJ.[x;y) = [atom [x] #[atom[y] # eq[x;y); T#NILJ; atom (Y]#NIL;

equaJ. [car[x];car[y)]# equaJ.[cdr[x]; cdr[y]J; T#N~]

This function compares two arbitrary lists for equality. The definition

saus : if x is atomic then if y is atomic the value is eq[x;y], which is

aJ.ready defined. If x is atomic and y not atomic they cannot be equal.

If x is not atomic, compare car [xl and car [y]. If they are equal, x and

y are equaJ. if cdr [x] and cdr [y] are. If car [x] and car [y J are not

equal then x and y are not.

The secret of good Lisp programming is knowing how to use

recursion. THnrK RECURSIVELY. Recursion can be avoided With PROO,

but people who use PRoo too much will never get to Heaven.

3.0 Eval.uation

30.50.40-3-1
Noveliber 16, 1985

What is eval.uated? . Everything except the argument of QUarE,

the first argument of LAMBDA, SETQ and moo, and pieces of conditional.s

which don't get eval.uated acc<n"ding to the rules.

What does eval.uation do? Atoms are replaced by their most recent

binding. Functions have their arguments eval.uated and then get ca.lled.

QUOTE simply disappears and leaves its literal. argument. (Note the

implications: it is almost al.w8\Vs wrong to use QUOTE except on data.

If, for instance, you quote a function argument in a definition it will

~ be replaced by its actual. argument, since it will not be evaJ.uated).

Lambda and conditional.s do peculiar things as described above.

Bindings determine the val.ues of atoms. The val.ue of a number,

T or m, is alW8\VS what you think it is 0 All other atoms m8\V have val.ues

which are acquired by giving them bindings. The most cammon W8\V of doing

this is to use them as arguments in a. definition of a function. When the

C) function is called the atoms used as arguments acquire new bindings and

therefore new values. The old val.ues are .!!Z. lost; they are saved on the

pushdown list until the function terminates and then restored. This means

that outside the function (olj-{he names used for the arguments are not

important. Except for one thing: if the function uses~, which does

an extra eval.uation of its argument, and the argument of eval. when eval.uated

once turns out to be one of the function arguments, the second eval.uation

will get the most recent binding, which will not be the one the atan had

in the ca.lling :f\mction. Thus the definitions

d.um[x] = cons [x;eval.[y]]

redum [y;z] = dum [z]

will cause redum ['(QUOTE A)'; 'Bt] to have the val.ue (B.A), fI.s expected;

it will cause redum ['Z';,'A'] to have the val.ue (A.A), again as expected;
but if re2dum [w;x] = redum [x;w]

then re2dum [. At; ·X· J has the val.ue (A.A), not (A.X), because in dum

the most recent binding of x is .the one produced by the ce.ll of dum, namely
r

t· 'f
y

........ J
------------~------------------~---

, .
30.50.40-3-2

November 16,. 198J

A, not the one produced by the ca.1J. of re2dum, which is X. More reaJ.istic

examples are aJ.so more complex (that is rea.lly possible).

There is another wB¥ to get bindings, with the fUnction ~.

set[x;y] evaJ.uates its first argument and expects to get an atom. It

then evalua.tes its second argument and destroys the current binding of

evaJ.[x], replacing it with evaJ.[y). Amore useful function is setq,

which quotes its first argument. If x is not a function argument in

a definition, then setq[x;'A'J sets the vaJ.ue of x to A permanently.

If x is a fUnction argument, then the setq overrides the current binding,

but when that binding is destroyed by the termination of the fUnction

whose caJ.l produced it, the effect of the setq is aJ.so lost.

When the user types in to Lisp at the console, he is taJ.king

to evaJ.. More preCisely, what he types is substituted for X in the form

(PRlET X), where PRlET is a function which prints its argument. This means

that evaJ. is applied once to whatever is typed. Hence, typing an atom

causes its vaJ.ue to be printed out. If the atom is a fUnction name,

its vaJ.ue is the S-expression fUnction definition.

Typing (CONS A B) probably gives an error, unless A and B hlEVe

been setq'ed. On the other hand (CONS (QUOTE A) (QUOTE B» gives (A.B).

. ,

L
r'~··)

/

C)

Ci

4.0 Arithmetic

30.50.40-4-1

MB\Y 28, 1965

There are a few Lisp functions for operations on numbers. ~

takes any number of arguments and adds them together to get its result.

Times multiplies its arguments. ~ divides the first argument by the

second. Rem takes the first argument modulo the second. Note that because

arguments are evaluated before the functions are called, the expression

(a+b) (c+d) is evaluated in Lisp by times [plus[a;b];plus[c;d]l.

To compare numbers the predicate sE2. is available ; it is true

if the first argument is greater than the second. The predicate numbp

is true if its argument is a number. All of these functions except

numbp give errors if their arguments are non-numeric.

Minus is a function of one numeric argument which returns the

negative of the argument as its value.

c)

5.0 Standard functions

30.50.40-5-1
November 16, 1965

The following functions are either built into the 930 Lisp
system or in the librar,y:

~ takes its arguments and strings them together into a list. It is one

of the few standard functions which take a variable number of arguments.

member [x;y] is true if x is a member of the list y. The definition is

member [x;y] ::: [null [y]#N!L; equal. [x;car[y]]#T; T# member [x;cdr[y]]]

equal [x;y] is true if x equal.s y. It was defined above.

subst [x;y;z] substitutes x for all occurrences of the S-expression y

in z. subst [x;y;z] = [atom[z]#[eq[z;y]#x;T#zJ;T#cons[subst
[x;y;car[z]]; subst [x;y;cdr[z]]]]

sassoc [x;a;u] searches the nair ~ a for a dotted pair whose first
element is x and returns this pair as its value. A pair list is a list of

dotted pairs. If there is no such pair the value is the value of the

function u of no arguments.

sassoc [x;a;u] = [null[a]# u[1; eq[caar[&];x]#Car[a];T#sassoc[x;cdr[~];u]]

pair [x;y] has as value the list of pairs of corresponding elements of the

lists x and y. It can be used to construct pair lists of the kind searched

by sassoc.

append [x;y] combines its two arguments into one new list. It is B:2i like

cons.
append [x;y] = [null[x]#Y;T#cons[car[x];append[cdr[x];y])]

~ take s a:ny number of arguments and is T if none of them is NIT., NIL

otherwise. I'; ",' r e1-.L~t. ... t .. L .·j;T+tJIL]) ... wILl

o

30.50.40-5-2
M/3¥ 28, 1965

nuJ J (x] is T if x is NIL or the empty list (), which is the same thing.

otherwise it is NILo null is exactly the same as not, which is therefore

not provided. ; " ~ L~~\"J1['J.] ~~L1;r"lP"_] 11- N1LJ
~

gensym[] has as va.lue a symbol guaranteed different from any other in the

world.

length (xl has the" number of elements in x as its va.lue.
'i ,~ _: Li\Ld~[y'I·r!) . .,. t k)t11~ [cJv)]]

reverse [xl has as value the list with the elements of x in reverse order.

~ has a.lready been discussed. It evaluates its argument again. Do not

forget that the argument is alW/3¥s eva.luated once.

r

prog2 [x;y] has as its va.lue the va.lue of y. Its function is to get both

x and y evaJ.uated.

~ [x] = car[car[x])

cadr [x] = car(cdr[x]]

~ [x] = cdr[car[x]]

~ [x] = cdr[cdr[x]]

define [xl takes as its single argument a list of things to be defined. Each

of these things is either a list of two elements:

(function name S-expression)

which sets the literal S-expression to be the va.lue of the function name; or

a list of three elements:

(function name (list of variables) S-expression)

which sets the value of the function name to (LAMBDA (list of variables)

S-expression) •

Each element of the first kind is equi vaJ.ent to

function name = 'S-expression'
and each element of the second kind is equiva.lent to

function name [list of variables] = 'S-expression'.

function [xl is exactly equiva.lent to quote [x].

"

6.0 Changing list structure

30.50.40-6-1

MB\V 28 t 1965

A dotted pair in memory is a word with two pOinters, one to the first

element of the pair and the other to the second. The list (A BCD) then looks

like this:

C~ •

Because of this use of pointe~s, a list m~ be a member of many other lists,

each of which has a pointer to it. When a new list is generated by cons,

a single memory word is used.. In it are placed pointers to the two elements

of the dotted pair being created by the cons. . No account is taken of other

lists of which either element m~ be a member.

These considerations are important for proper use of two functions

which explicitly change pointers in an existing list structure, since these

functions can affect ~ the lists which have pOinters to the cell being

changed. If the programmer is not a.lert, he mau not be aware of how many such

lists there are.

rplaca [x;y] replaces the first element of the dotted pair x with a pointer

to y.

rplacd [x;y] replaces the second element of the dotted pair x with a pointer

to y.

rplaca looks something like cons [y;cdr[x]], but it is ~ the same. It does

not create a new word, and it permanently changes x.

A useful function which makes use of these operations is nconc,

which is like append except that it does not copy its first argument. For

this reason it is somewhat more efficient than append. It is aJ.so much more

da;ogerous.. UnJ.ess you are very sure of what you are doing, do not use

",

30.50.40-6-2

MS\Y' 28, 1965

nconc except when the first argument has just been created by list or same

similar function. Ncone does a rplacd on the last element of its first
argument.

()

7.0 Functionals

30.50.40-7-1
May 28, 1965

It is possible, as the discerning reader will already have noticed,

for a function to have fUnctions as arguments. Such functions are called

fUnctionals, and they are very usefUl. The most usefUl ones are the true

Lisp programmer's substitute for iteration; they are the mapping fUnctionals.

maplist (x;f] runs down the list x and applies the function f to each sublist

obtained by taking elements off the :front of x. The values are then cons 'ed

together. The definition is clearer: maplist (x;f] = [null[x]#NIL;T#

cons[f[x]; maplist[cdr[x];f]]]

Since this is rarely exactly what is wanted, there are several

other mapping functions which may be more suitable for particular applications.

mapcon [x;f] = [null[x]#NIL;T#nconc[f[x]; mapcon[cdr[x];f]]1

is like maplist except that it uses nconc rather than cons. It is not safe

if the value of f is a list the last element of which is on any other lists.

map[x;f] = [null[x]#NIL;T#prog2[f[x]; map[cdr[x] ;f]]] is like maplist

except that it does not save the values of f. ' It is good when f is being

executed for its effect rather than its value.

mapcar [x;f] =' [null[x]#NIL; T#cons[f[car[x]]; mapcar[cdr[x] ;f]]] is like

maplist except that it applies f to each element of x in turn, instead of to

each tail in turn.

C)

8.0 Prog

30.50.40-8-1
November 16, l~

As we have already mentioned, there is in Lisp a feature which allows

the programmer to write sequences of statements, just like Fortran, and transfer

between ~hem. To do this, use the pseudo-function .P!,Q&, thus

reverse [x] = prog [[y] ;
a; {null (xJ# return [y]];

setq [y; cons [car[x]];y]];
setq[x; cdr [x]] ;
go [a]]

which defines the library function reverse. Note that statements are separated

by semicolons. The program variables are specified in the first list of the

prog definition; they are bound by the prog and are set to NIL when it is

entered. They ma;y be regarded as function arguments which are a.lwa;ys NIL

when the function is called.

Labels of statements are atoms followed by semicolons. Transfers are

done with the function S2. To leave the prog, execute the fUnction return ,

which delivers its argument as the va.lue of the prog. If the prog is left

because the last statement was executed and did not include a go, its value

is Nn..

The function setq takes the place of the Fortran assignment statement.

It is of course the same function that is available outside of progs to set

variables. This conclusion follows from the genera.l rule that a statement in

a prog ma;y be any S- or M-expression which would be lega.l as the argument of

a function. The one exception is that a conditional used alone as a statement

is permitted to run off the end. Progs may of course be nested and may in fact

appear wherever any other function call is legal.

9.0 Property Lists

30.50.40-9-1

May 28, 1965

A:n atom in Lisp is like a hatrack with hooks on which ve:rious

things can be hung. Some of these have already been discussed: the value,

which is an S-expression; and the print name, which is the name of the atom

and not accessible to the programmer except on input-output.

There is one more hook which is not used by the Lisp system itself

for anything. This is the property~. It is an S-expression like the value,

and its only function is to provide a convenient place to keep information about

the atom. There e:re two functions connected with it.

setlis [x;y] sets the property list of the atom x to be the S-e~ession y.

getlis [xl has as its value the property list of the atom x.

C)

10.0 Input-output

30.50.40-10-1

November 16, 1965

Lisp does input-output with a small number of useful functions.

~ is a function of no arguments which reads a single S-expression from

the current input medium. Read will treat any punctuation character except

() II and dot as an atom. It will also take arry string of characters enclosed

in a double quote as an atom. The first character of the string is not

checked for double quote, i.e., to input II as atom write IIllfi.

print [xl prints the S-expression x on the current output medium.

prinl [xl prints the single atom x on the current output medium.

input [xl sets the input medium to the file whose name is the atom x.

output [x] does the same for the output medium.

The input medium can also be set fram the teletype. Both input and output

media are reset to teletype by pushing the rub out button and by any error.

xnen the input or output medium is SWitched, the former input or output file

is closed (unless it is the teletype). File names need not be quoted.

terpri is a function of no arguments which prints a carriage return and line feed.

11.0 other useful functions

30.50.40-11-1

May 28, 1965

trace [xl takes a ~ of function names and changes the definitions so that

the function name and the arguments are printed each time the function is

caJ.led, and the function name and the value are printed each time the function

exits.

untrace [xl reverses the action of trace. Untracing functions which have not

been traced is likely to cause an error. If it does not, the function definition

will not be correct afterwards.

nlamda [[x]; definition] is like lambda with the following exception: When

the function defined by the nlamda is called, its arguments are collected

li tera.lly and made into a list. x is then bound to .this list. The arguments

are !!9i evaluated. Using nlamda it is possible to write so-caJ.led pseudo­

functions like quote, which do not follow the usual Lisp rules. In fact, quote

is defined by

quote [x] ::: nlamda [[x]; car [x]]

12.0 Error comments

30.50.40-12-1

M~ 28, 1965

Errors detected by the interpreter cause three character error

comments and return control to the Lisp supervisor. The err:or comments are:

Code

IAR

ICD

ILS

IRP

IOO
NNA

POE

SCE

111

IAF

rnA
mL

UAS

GCH

IIF

lIP

lIT
mM

PR1

additional information

atom

first arg

First arg'

first arg

argument

function

atom

line

line

line

line

argument

meaning

tried to take CAR or CDR of an atom

ran off the end of a CONn

tried to SETQ a non-atom or number T or NIL

tried to RPLACA or RPLACD an atom

tried to SETLIS or GETLIS a non-atom

non-numeric argument for an arithmetic function

ran off pushdown list

storage capacity exceeded

disaster. give up

illegal atom used as function name

wrong number of arguments for built-in function

wrong nwnber of arguments for LAMBDA

unbound atom evaluated

garbage collector snarled. give up

) or • at the beginning of an S-expression

o not followed by (or atom

• atom not followed by)

illegal number

ERIN! called with non-atomic argument

13.0 Special features of the M-language translator

30.50.40-13-1

November 16, 1965

The internal operation of Lisp is exclusively in S-expressions, but in

practice all input and output of programs is done in M-language. Each list

read from the input may contain either a single function definition or a single

function call to be evaluated. Thus, to define cadr the following teletype

input might be used:

$(CADR [X] = CAR [CDR[X]])

to which Lisp would respond

(CADR)

$

The translator types $ to indicate that it is waiting for more input.

The M-language translator has a number of useful features, some of

which are not yet implemented. The form which is now implemented is the one

used in the function definitions in this manual; that is, it has no binary

operators except the = of function definition and accepts no special symbols

except single quotes. To this there are two exceptions:

1) Double quotes may be used to input unmentionable characters as described

in section 9.

2) A function of one argument may be written without brackets surrounding

the argument. Thus car cdr car x is equivalent to car [cdr[car [xl]] .

A useful function for examining function definitions is see (x] where x is

either a single function name or a list of names. This function prints out the

definitions in M-language.

30.50.40-14-1

(/ November 16, 1965

\
\

\
\

14.0 The Lisp Operating System

To call in the Lisp system give the executive command

@ LISP.

The Lisp system will then read in the library and type $. At this point the

M-language translator is in control and remains in control until either control

returns to the exec, or the user types $ himself. In either case Lisp will be

in S-language mode: each S-expression read in will be evaluated and the result

printed out, as discussed in section 3. To return to M-language, type (XM).

To change the input medium, type bell (control G), followed by a file

name. Data is read from this file until an end of file is encountered, after

which control returns to the teletype. Pushing the rub out button always returns

control to the teletype.

During input of text, AC (contrOl A) deletes the most recently typed

character in the current line. If there are no characters left in the current line,

it has no effect. c
Q deletes the current line completely. Once a carriage return

has been typed, nothing can delete the line except the rubout button. Carriage

return looks the same as space, and the system always provides a line feed.

Whenever the Lisp system is doing anything, pushing the rubout button

terminates the activity and returns control to the teletype. If this happens

during computation, some atoms may have rather strange bindings. other than

this, no trouble can be caused by pushing the rubout button.

After the rubout button has been pushed, pushing it again without typing

anything else will cause control to revert to the exec. To return to Lisp

without initializing the system, give the exec command

@ CONTINUE LISP.

(~)

I
\
\

30.50.4o-A-l

November 16, 1965

Appendix 1: Functions is the Li:3p SystCIi;

The following f'Lmctions aJ.'e machine coded in the Lisp system.

Function name Page

atom 2-2
car 2-1
cdr 2-2
caa.r 5-2
cadr 5-2
cdar 5-2
cddr 5-2
eond 2-3
cons 2-2
eq 2-2
equal 2-4
eval 3-1
gensym 5-2
getlis 9-1
go 8-1
gtp 4-1
lambda 2-3
length 5-2
liGt 5-1
member 5-1
minus 4-1
neone 6-1
nlamda 11-1
null 5-2
numbp 4-1
plus 4-1
prinl 10-1
print 10-1
prog 8-1
prog2 5-2
quat 4-1
quote 2-1
read 10-1

return 8-1
rplaca 6-1
rplacd 6-1
setlis 9-1
setq 3-2
subst 5-1
terpri 10-1
times 4-1

The following functions are in the Lisp library

Function name Page

define 5-2 ('
< and ~~ ..

append 5-1
function 5-2
map 7-1
mapcar 7-1
mapcon 7-1
map1ist 7-1
or 5-1
pair 5-1
rem 4-1
reverse 5-2
sassoc 5-1
see 13-1
set 3-2
trace 11-1
untrace 11-1
xm 14-1

30·50.4o-A-2

November 16, 1965

