
I
mTERACTIVE MACHmE-LANGUAGE PROGRAt-MING

I
I

Butler W. Lampson

University of California, Berkeley

Document No. 30.50.·11

Revised October 11, 1966

Office of the Secretary of Defense

Advanced Research Projects Agency

WaShington 25, D.C.

~1

I

I
I

I

c)

AB~CT

An integrated system is described for writing and debugging programs

in an interactive environment. It includes complete facilities for sym~

bolic examination and modification of the binary program and data Which

can be used in conjunction with very powerful macro, conditional and string-

handling features • Assembly is directly into core, at a speed of about

200 lines per second, so that relocatable binary is eliminated. During

, debuggin,g, changes made in the binary program can be automatically incor-

porated into the symbolic. The system as a whole permits machine language

programs to be ,written and debugged with much less effort than is called

for by conventional techniques.

1.

I
, I , /

!

--~~~~----~-------------

2.

INTRODUCTION

The problems of machine language programming, in the broad sense of

I

coding in which it is possible to write each instruction out explicitly,

have been curiously neglected in the literature. There are still many

problems which must be coded in the hardware language of the computer on

which they are to run, either because of stringent time and spa.ce requirements

or because no suitable higher level language is available.

It is a sad fact, however, that a large number of these problems never

run at all because of the inordinate amount of effort required to write and

debug machine language programs. On those that are undertaken in spite of

this obstacle, a great deal of tim~ is wasted in struggles between programmer

and computer which might be avoided if the proper systems were available.

o Some of the necessary components of these systems, both hardwe.re and software,

have been developed and intensively used at a few installations. To most

programmers, however, they remain as unfamiliar as other tools which are

presented for the first time below.

In the former category fall the most important features of a good

assembler [1,2]: macro-instructions implemented by character substitution,

conditional assembly instructions, and reasonably free linking of independently

assembled programs. The baSic components of a debugging system are also known

but relatively unfamiliar [5,6]. For these the essential prerequisite is an

interactive environment, in which the power of the computer is available at a

console for long periods of time. The batch processing mode in which large

systems are operated today of course precludes interaction, but programs for

small machines are normally debugged in this way, end as time-sharing becomes

C)
/

more wide-spread the interactive environment will become common.

c)

c'!

It is clear that interactive debugging systems must have abilities

very different from those of off-line systems. Large volumes of output are

intoler~ble, so that dumps and tracls are to be avoided at all costs. To take

the place of dumps, selective exami·ati.on and alteration of memory locations is

provided. Traces give way to brenkpotnts, which cause control to return to the

system at selected instructions. It is a.lso essential to escape from the

swit'ches-and-lights console debugging common on small ma.chines without adequate

software. To this end, type-in and type-out of information must be symbolic

rather than octal where this is convenient. The goal, which can be very nearly

achieved, is to make the symbolic representation of an instruction produced by

the system identical to the original symbolic written by the user. The emphasis

is on convenience to the user and rapidity of communication.

The combination of an assembler and a debugger of this kind is a powerful

one which can reduce by a factor of perhaps five the time required to write and

debug a machine language program. A full system for interactive machine language

programming (IMP), however, can do much more and, if properly designed, need not

be more difficult to implement. The basic ideas behind this system are these:

1) Complete integration of the assembler and the debugging system, so that

all input goes through the same processor. Much redundant coding is thus eliminated,

together with one of two different languages serving the same purpose: to specify

instructions in symbolic form. This concept requires that code be assembled

directly into core (or into a core image on secondary storaee). Relocatal)1.e

output and relocatable loaders are thereby done away with.

A remark on terminology: it will be convenient in the sequel to apeak of

the "assembler" and the "debugger" in the IMP system. These terms should be

understood in the light of the foregoing: different parts of the same language

are being referred to, rather than distinct languages.

2) Commands for editing the symbolic source program. The edit commands

simultaneously modify the bina.ry progr~ in core and the symbolic on secondary

stora£e. Corrections made during debugging are thus automatically incorporated

4.

into the symbolic, and the labor of keeping the latter current is almost eliminated.

3) A powerful string-handling cripability in the a.8seinbler which makes it

quite easy' to write macros for compi1inl~ algebraic expressions, to take a 'poplllar

example which can be handled in a few other systems, but rather clumsily. The

point is not that one wants to write such macros, but that in particular appli-

cations one may want macros of a similar degree of complexity.

These matters are discussed in more detail in the following. We consider the

assembler first and then the debugger, since the comme.nd language of the latter

makes heavy use of the assembler's features.

Before beginning the discussion, it may be well to describe briefly the

machine on which this system is implemented. It is a Scientific Data Systems 930,

a 2 microsecond, single address computer with indirect addressing and one index

register. Our system includes a drum which is large enough to hold for each user

all the symbolic for a program being debugged, together with the system, a core

image of the program and some tables. Backup storage of at le~st this size is

essential for the editing features of the IMP system. The rest of the system could

be implemented after a fashion with tapes.

o

o

(\
)

The Basic Assembler

The input format of the a.ssembler was originated on the TX-O at Mrr" It
. I

has been adopted by DEC for most of its machines, but is unknown or unpopular

elsewhere in the industry. Although it looks strange at first, it has sub-

stantial advanta.ges in terms of simplicity, both for the user and for the system.
I

The latter is a non-negligible consideration, equally often ignored and over-

emphasized.

The basic idea is that the assembler processes each line of input as an

expression (unless it is a directive or macro C8.ll)[41 The expression is

evaluated and the value is put into core at the word addressed by the location

cOlmter, after which the location counter is advanced by 1. Expressions are

made up of operands, which may be symbols, constants, numeric or alpha-

numeric, and parenthesized subexpressions; and ?perators. Available operators

are +, -, *, /, . AND, . OR, .NOT with their usual meaning and precedence;

.E (equals), .G (greater), .GE, .L, .LE, .NE, which are binary operators with

precedence less than +, and yield 1 or 0 depending on whether the indicated

relation holds between the operands or not; and #, a unary operator with lowest

precedence which causes its operand to be taken as a literal. This means that

it is assigned a storage location, which is the same as the location assigned

to other liter6,ls with the same value, and the address of this location is the

value of the literal. Blanks have the following significance: any string of

blanks not at the beginning or end of an expression is taken as a single plus

sign. An expression is terminated by carriage return or semi-colon. Several

instructions may therefore be written on one physical line. This trivial feature

proves in practice to have significant advantages.

5.

C) It is not immediately clear how instructions arc conveniently

vrritten as expressions, and in fact the scheme used depends on the fact

that the object machine is a single-address, word oriented computer with

a reasonable number of modifiers in a single instruction. It would vTork

on the PDP-6, but not on the IBM 7030.

The idea is sll"ilple: all operation code nmemonics are predefined

symbols with values equal to the octal encodings (If the instructions.

On the SDS 930, for instance, LIlA (load A) is defined as 7600000 (all

numbers are in octal). The expression LIlA+200 then evaluates to 7600200.

When the convention about spaces is invoked, the expression

LIlA 200

evaluates to the same thing, which is just the instruction we expect

from this symbolic line in a conventional assembler.

Modifiers are handled in the same spirit. In the 24 bit word of the

930 there is an index bit, vThich is the second from the left, and an in

direct bit, which is the tenth. With the predefined symbols

I:::40ooo

X ="2 0000000

the expression LIlA I 200 X

evaluates to 27640200. In more conventional form. it would look like

this: LDA* 200,2

There is little to choose between them for brevity or clarity. Note that

the order of the terms in the expression is arbitrary.

The greatest advantages of the uniform use of expressions accrue to

the assembler, but the programmer gains a good deal of flexibility.

Examples will readily occur to the reader.

Using this convention the implementation of the basic assembler is

very simple. Essentially all that is required 1s an expre.ssion analyzer

6.

o

C)

and evaluator, vlhich will not run to more than three or four hundred in-

structions on arty machine. !$ecause all assembly, I is into core, there is

no cuch thing as relocatabllity.

T\.ro rather conventional methods are provide(~ for defining symbols.

A symbol appearing at the beginning of a line and follovled by a comma :I.s
I

defined to be the current value of the location counter. Such a symbol

may not be redefined. In addition, a line such as

dei'ines SIN. Any earlier definition is simply overridden.

The right side may of' course be any expression 'Vlhich can be evaluated.

The special symbol. refers to the location counter. It may appear

on the left of a = sign. Thus, the line

A, .=::. 40

is equivalent to

A ESS 40

in a conventional assembler.

Note that the first punctuation character in a line of input to the

assembler roost be cortrraa or space. The character • is not a punctuation

character, but behaves exactly like a letter. Symbols reserved by the

system begin vlith dot ordinarily. For convenience in forming negative

addresses, the symbol .• is provided with a permanent value such that .• -1

is -1 truncated to the address field. On the 930, a two's complement

machine 1-1ith a 14 bit address field, .• is 4oooo~

7.

Strings of characters encoded in ASCII may be written surrounded by single

or double quotes, I or ". If the string 1s less than 4 characters in length,

it is equivalent to the number obtained by left-justifying it in a 24 bit

word. Otherwise, it must appear alone on a line and generates enough words

I

I

C\
)

to accoDDDOdate all its characters. Strings in Simple quotes are scanned. for

and & (see below); those in double quotes are taken literally.

The characters space * signal a comment, which is ignored up to the next

carriage return. An initial * also has this effect.

There remains one point about the basic assembler which is crucially im-

portant to the implementation: the treatment of undefined symbols ~ When an

exPression is encountered during assembly, there is no guarantee that it can be

evaluated, since all the symbols in it may not be defined. This is the reason

why IIIOst assemblers are two pass: the first pass serves to define the symbols.

The increase in speed obtained by looking at the symbolic only once is so great,

however, that it is worth a good deal of trouble. Even if every expression

contains an undefined symbol on the first pass, it still takes only one-fifth

8.

as long to evaluate the already analyzed expressions as to read the input again, and

this for a program with no ~ros. The assembler therefore keeps track of un-

defined expressions explicitly.

There is a general way of doing thiS, in which the undefined expression,

translated for convenience into reverse Polish, is added to a list of such

expressions, together with the address of the word it is to occupy. At suitable

intervals this list is scanned and all the newly defined expressions are evaluated

and inserted in the proper locations. For complex expreSSions there is no avoiding

some such mechanism, and it has the advantage of Simplicity. It is, however,

wasteful of storage and also of time, since an expression may be examined many

times while it is on the list before it can be evaluated. One important case can

be treated much more effiCiently, and this is the case of an instruction with an

undefined address, which includes perhaps 90 per cent of the occurrences of

undefined expressions.

For example, when the assembler sees this code:

x,

A,

B~U A
IDA B
STA C

*BRANCH UNCONDITIONAL

the instruction at X has an undefined address which b~comes defined when'

the label A is encountered. This situation can be kept track of by putting

in the symbol table entry for A the location of the first word containing A

as an address. In the address of this word we put the location of the second

such word, and so build a list through all the words containing the undefined

symbol A as an address. The list is terminated by making the address field

9.

point to i tsel! • When the symbol is defined we simply run down the chain and fill

in the proper value. This scheme will work as long as the address field contains

only A, since there is then no other information which must be preserved. Note

that no storage is wasted and that when A is defined the correct address can

be filled in very quickly.

o

C)

Strings and Macros

The description of the basic assembler is now complete, except tor a tew

non-essential details, and we turn to the macro. and string handling tacility.

There is a uniform method for delimiting strings ot characters, which may be

illustrated by the assignment of such a string as the value ot a symbol:

A = <B,(C,n),E,F>

In order to describe the result ot using A after this assignment, we intro

duce a distinction between the appearance ot a symbol in a literal and in a

normal context.

A symbol inside string brackets < > or single quotes or in a macro argument

is· in a literal context; all other contexts but one are normal. In a normal con

text, the value of the symbol, whether a string or a number, is substituted for

the symbol. In a literal context, on the other hand, the characters of the

symbol are passed <1JI unaltered. The case of a symbol on the lett side of an

aSSignment is an exceptional one; such a symbol is of course not normally

evaluated.

To permit the value of a symbol to be obtained in a literal context, the

convention is introduced that a colon preceding the symbol causes it to be

evaluated if the colon is at the top level of parentheses, brackets and quotes.

If its value is a string, the characters ot the string replace the symbol; if

it is a number, the shortest string of digits which can represent the number in

the prevailing radix replaces the symbol. Colon in a normal context is illegal.

For. convenience in delimiting string names a second colon may tollow a name

preceded by a colon. This second colon serves only to delimit the name and is

otherwise ignored. Thus if

AB = <XIZ>

then <:AB> = <XYZ> and <:AB:CD> = <XYZCD>

10.

__________ ~~----------. __ --J

c) \ .
There are t~es when it is desirable to force evaluation of a symbol in

a normal context when it would normally pass unevaluated. The character &
I

preceding the symbol has this effect; it is ex~t~like : except that it acts

only in a normal context. Continuing the previous example:
/

VW&AB = VWX'YZ· and

&AB = 12 is equivalent to X'YZ = 12

A string may be thought of as having two kinds of structure:

1) It is composed of a sequence of characters

2) It is composed of a sequence of substrings delimited by commas
not enclosed in parentheses, brackets, or quotes.

With reference to the first structure, a single character may be selected by

a subscript enclosed in brackets. Referring to the string assigned to A~' we

note that

A[2] is <,>, A[6] is <D>, and A[71 is <p.

By an obvious extension of this notation,

A[3,7] is«.C,D» and A[9,1l] is <E,F.>.

Subscripts which reference the substring structure are enclosed in

parentheses. Thus

A(l) = and A(2) = <C,D>.

Note that a Single pair of parentheses surroWlding a substring is removed.

Subscripting may be iterated:

Subscripting is applied only to a string-valued symbol which is in a norma+

context or is evaluated by a colon. Subscripting of a name on the left aldeot

an assignment forces it to be evaluated even if it is not preceded by a colon.

Two operations, .L and .Ie, determine respectively the number of substrings

and the number .f characters in their arguments. Thus

.L(A)=4, .L(A(2»=2 and .Ie(A)=ll.

11.

C')
/

(')

Having dealt with the general machinery for handl.1ng strings, we now

turn to the slight refinement which adds macros with arguments to the system.

This talces the form of a modification to .the ordina.:ry line assigning a

string to .a symbol, which permits an argument string to be specified. Thus

STORE <ARG> :=

<.RPl'.FOR T=l, .L(ARG(2»,1

.. <ST&ARG(l) ARG(2)(T»>

defines a macro with two arguments, the first a string which, when

appended to <ST> creates a store instruction, and the second a list of

locations to be stored into. Whenever STORE is used, the string of

characters beginning with the first following non-blank character and

ending with a line delimiter or unmatched right parenthesis is made the

value of ARG. The string which is the value of STORE is then substituted

for it as usual.

STORE might be called with

STORE A, (Sl,S2,S3)

-wnichis, because of the definition, equivalent to

.RPT.FOR T~1,3,1

<STA <S1,S2,S3>(T»

To complete the expansion we must consider the .RPl' directive which

has been used above. This directive causes the string which follows to be

scanned repeatedly. It takes one of two forms:

1. .RPl' N < ••• >

which causes N repetitions

2. .RPl'.FOR J=nl,n2,n3 < ... >

whIch causes (n2- nl) /n3+l repetitions with J initiaJJ.y set to nl,

and then incremented by n3 until it exceeds n2. Zero repetitions are

possible. Then3·lWl.Y be elided it· it is L

12.

C';
/

c)

()

The STORE macro ca.ll above mq now be seen to expand into

3TA 31

STA S2

STA 33

We illustrate ,,11th two :further examples. The first is a generalized
I

MOVE 1!lacro which takes as its arguments a sequence of pairs at' lists. The

first list of each pair specifies the locations to load from, while the

second giyes the corresponding locations to store into. A list 1n8iY" of

course have only one element.

thus

MOVE <ARG> =
<:RPT.FOR Sl=1,.L(ARG),2
*'I'I!IS LmE STEPS THROUGH THE PAIRS OF LISTS
<.RPT.FOR S2=1,.L(ARG(Sl»
*THIS LINE STEPS THROUGH THE ElEMENTS OF Om: PAIR OF LISTS

< LDA ARG(Sl)(S2)
S~A ARG(Sl+1)(S2) »>

MOVE A,:8,C,D

becomes

LDA A
STA :e
LDA C
STA D

So does

MOVE (A,C),(:e,D)

Suppose that we have some two-word data structures to manipula.te.

We can attach to the name of each structure a string of the form <A,!>.

A is the. address of the first word of the structure, :e of the second.

A macro can do this and assign the storage.

TW <ARG> =
< . TWS1=TV1S+l

ARG(l)=<TW:TWS,TW:TWSl>

TW&TWS, 0

TW&TWS1, 0

TWS=TWS+2 >

13.

c)

(\
~J

Now, if we call TW twice after setting TWS to 1:

TW A
'IW :B

we will have given A the value <TWl,'IW2> and ~ the value <'IW3,TW4> and

defined the f(Jur 'IW symbols.

We can nQ'W use A and B in the MOVE macro. In fact

MOVE A,~

expands to

LDA TWl
STA TW3
LDA TW2
STA TW4

With the addition of one more device we can proceed to the defin:i.tion

of a very grandiose macro. The direct i ves . IF and • EI,SF, used thuG:

.IF ,El < ... >

.E~SF E2 < ... >

.ET,SF'.En < ... >

caUSe each E. in turn to be evaluated until one is greater than O. The
~

string following this one is then scanned and the rest of the structure

ignorefi.

*THIS lVlACRO COMPILES AN ARITHMETIC EXPRESSION CONSISTING OF SINGLE- I

*LETTER VARIABLES, lUNARY + AND - AND PARENTHESES. IT CALIS THE
*HACRO ERROR IF THE EXPRESSION IS NOT lilELL FORMED.

ARITH <ARG> ""
< EXPR=-<:ARG(l).>

STK=<*>

J=l
TI=O

*APPEND • TO THE EXPRESSION
-lE-D:TITIALIZE THE STACK vlHICH HANDLES
*PARENTHESES
*INITIALIZE THE CHARACTER POINTER
*INITIALIZE THE TEMPORARY i3TORAGE COUNTER

*IF TEMPORARY STORAGE IS REQUIRED IT IS ASSIGNED AS TEMPl,
*TEMP2, ETC., AND TI KEEPS TRACK OF THE NEXT AV AILA.:BLE IJOCATION.

Xl
.IF T .NE '.'

*THIS IS THE MACRO WHICH DOES THE vlORK
<ERROR> >

-l(-CHECK THAT EXPRESSION WAS NOT TERMINATED ~Y A RIGHT PARENTHESIS.

14.

I

__ ~ _____________ , ___________________________ J

c)

c)

c)

*THIS MACRO COLLECTS A S~-EXPaESSION CONSI3TING OF OPERANDS
*STRUNG TOOETHER VlITH of lIND -. IF THE Sl.mEXPRESSION IS A SmGLE
*V JlRI.MLE, COP (CURRENT OPERAND) WILL 'BE 'THAT V ARI.MLE ON EXIT.
*OTHERWISE IT lULL BE EMPrY.

Xl ::.:
< COP '" <***> *ENSum~ THAT COP IS NOT EMPTY INITIALLY

*AN :E:MPrY COP MEANS THAT CODE HAS BEh""'N ASSEMBLED LEAVING A V ALtJE
*IN THE A REGISTER. IF COP IS A LETTER, IT IS THE VARIABI.E
*WHICH IS THE CURRENT OPERAND.

OPERAND
.RPT .FOR E~l,l,O

< T=' :EXPR[J]'
J=J+l

*GET THE FIRST OPERAND
*E IS SET TO 2 WHEN THERE ARE NO MORE + OR -
*SIGNS
*EXPECTING AN OPERATOR OR TERMINATION

.IFT.E'.'.ORT.E')' <E=2>

*SET E TO TERMINATE THE LOOP IN THIS CASE •

• ELSF T .E '+' <C<l4PILE ADD,ADD>
.ELSF T .E '-' <C<l4PILE SUB, (CNA;ADD»

* IF A + OR - IS PRESENT, GET THE SECOND OPERAND AND COMPILE CODE.

.ELSF 1 <ERROR>
»

*OTHERWISE, ERROR
*CLOSE LOOP AND MACRO

*THIS MACRO COLLECTS THE SECOND OPERAND OF A BINARY OPERATOR AND
*CONSTRUCTS CODE TO PERFORM THE SPECIFIED OPERATION. IT USES ITS
*FIRST ARGUMENT IF THE FIRST OPERAND IS IN THE A REGISTER, ITS
*SECOND ARGUMENT IF THE SECOND OPERAND MUST BE IN A AND THE FIRST
*TAKEN FROM MEMORY.

Ca.1PILE <CARG> ::::
< OPERAND *GET THE SECOND OPERAND

.IF .LC(COP).G 0

*IN THIS CASE THE SECOND OPERAND IS A SINGLE VARIABLE.

< .IF .LC (PREVOP) .G 0 <LDA PREVO?>

*IF THE FIRST OPERAND IS ALSO A VARIABLE (OR A TEMP LOCATION)
*BRING IT INTO A

CARG(l) COP> *AND COMPILE com
.ELSF 1 <CARG(2) PREVO?>

*OTHERWISE THE SECOND OPERAND MUST BE IN A, AND THE FIRST IN MEMORY

COP=< > >

*SET COP TO INDICATE A VALUE IN A AND CLOSE THE MACRO.

15.

C) *THIS MACRO COLIECTS AN OPERAND, WHICH MAY BE A PARENTHESIZED
*SUBli:XPRESSION

OPERAND-
< T.' :EXPR[J]'

J-J+l
.IF T .E '('

< .IF. u:: (COp) . E 0

*GET THE NEXT CHARACTER
*IT SHOULD BE A TETTER GR {

*IF WE ALREADY HAVE A VALUE !N A IT MUST BE SAVED IN TEMPORARY
*STORAGE WHILE THE SUBEXPRESSION IS EVALUATED. .

< TI IIITI +1:
STA TEMP&TI
COP=<TEMP:TI> >
·STK=<::COP, :STK>
Xl

*CONSTRUCT A TEMP LOCATION TO SAVE IT IN
*AND REMEMBER IT IN COP
*STICK COP ON THE FRONT OF STK

. IF T .NE ,(, <ERROR>
E=l· *RESET THE TERMINATION SWITCH FOR Xl
PREVOP-<:STK{l» *SET PREVOP TO THE OLD COP WHICH WAS SAVED
STK=<:STK(2,.L(STK»> >

*lUlMOVE OLD COP FROM STK AND TERMINATE THIS CASE. Xl HAS SET COP

.ELSF T .GE 'A' .AND T .LE 'Z'

*IF T IS A LETTER (RECALL THAT THE CHARACTER CODE IS ASCII)

< PREVOP=<::COP.>
COP=<:EXPR[J-l]> >
.ELSF 1 <ERROR> >

This macro, called by

ARITH «A+B)-(C-D»

woul,.d generate

LDA A.
ADD B
STA TEM.Pl
LDA C
SUB D
CNA
ADD '!'EMPl

Note that there are only three linea in the definition Which actually generate

code .•. Whe temporary storf'l.ge locf:l.tion TEMP1 must 'be definAd elseWhere.

16.

The implementation of all this1s quite straightforward. When a string i .•

enoountereciit is collected character by character, due attention being paid to

oolons, .. ampersands, brackets and quotes, and stored away. When it is referenced,

the routine Which delivers characters to the assembler, which we will call

., I

CHAR, is switched from the input medium to the saved .triag. This process

is of course recursive. When the string which is the current source of

chexacters ends, CHAR is switched back to the, string it was working on before.

All the variOus occurrences of strings are treated perfectiy uniformiy, except

that in,the case of macro definitions the substrings of the argument string

are delimited when the latter is collected to improve the efficiency. Perfectly

arbitrary nesting of the various constructs is possible because of the recur-

siveness of the string collection and reference routines.

In the interests of efficiency the • IF directive 1s not handled in this

way, since its subject string is scanned either once or not at all. All that

is necessary is a flag which indicates whether an .ELSF directive is to be

considered or ignored.

The debugging system

An interactive debugging system should not be deSigned for the occasional

user. Its emphasis must be on completeness, convenience and conciseness, not

on highly mnemonic COlllll1ands and self-explanatory output. The baSic capa

bilities required are quite simple in the main, but the form is all important

'. because each command will be given so many times.

One essential, completely symbolic input and output, is half taken care

of by the as.embler. The other half is easier than it might seem: given a

word to be printed in symbolic form, the symbol table is scanned for an exact

match on the opcode bits. If no match i. found, the word is printed as a

number. Otherwise the opcode· mnemonic is printed, indirect and index bits are

checked and the proper symbols printed, and the table is scanned for the larg.st

symbol not greater than the remainder of the word. This symbol is printed out,

followed if necessary by a + and a constant.

17.

o The most fundamental commands are single characters, possibly preceded

by modifiers. Thus to examine a register the user types

!xl-3; LDA I NUT8+2

where the system's response is printed in capitals. This command may be

preceded by any combination of modifiers:

C for printout in constant form
S for printout in symbolic form
o for octal radix
D for decimal radix
R for relative (symbolic) address
A . for a.bsolute address
H for printout as ASCII characters
I for printout as Signed integer
N for no printing of addresses
L (load.) for no printing of register contents

The modifiers hold until the user types a carriage return or gives another

! command.

For examining a sequence of registers, the commands + and - are available.

The former examines the preceding register, the latter the follOWing regi.ter.

In the absence of a carriage return the modifiers of the last examination hold.

The -+ command examines the register addressed by the one la.st examined.

The contents of a register may be modified after examination stmplyby

typing the desired new contents. Note that the as.embler is always part of

the command processor, and that debugging command. are differentiated by their

format from words to be assembled (as noted above, an assembler line has comma

or space as its first punctuation character, and all debugger line. have .ome

other initial p~ctuation character). Furthermore, debugging commands may occur

in macros, so t~at very elaborate operations can be constructed and then called
!

on with the two i or three characters of a macro name.

To increasf the flexibility of debugging macros, the unary operator ~

is defined. Th~ value of ~ SYM 3 is the contents of location 8YM 3. With
I

this operator mfcros may be defined to type out words depending on very

18.

I
. . 'j

',', " ',.1
~~llili<~.~~ ______ ~~ ________ .~ ______________________ ~ ______________________________ ~~ ______ ~

I

C)

complicated conditions. A simple example is

TG<A>=
< . RPT • FOR TEM:P-A (1) , 37777, 1

*SCAN THROUGH ALL OF STORAGE STARTING AT THE I£JCATIOIf GIVEN BY
*THE FmST ARGUMENT

< . IF @) TEMP .E A(2)

*IF THE CURRENT LOCATION MATCHES THE SECOND ARGtIMINT, THE SCAN IS OVER

</TEMP;
TEMPl-TEMP
TEMP=37777
::::t»

Called with TG 100,20

*RUNT OUT THE CONTENTS
*8A VE THEAD:tJJ.UilSS
*AND TERMINATE THE SCAN

it will type out the first location after 100 with contents greater than 20.

Another important command causes an expression to be typed in a specified

format. Thus if SYM has the value 125 3 then

=ap; 1253

would he the result of. giving the'" command. All the modifiera are available

but the normal mode of typeout 1s constant rather than symbolic. . If no

expression is given, the one most recently typed is taken. Thus, after the

above command, the user might try

se; SYM (the system's response, the symbolic equivalent of
125 3, follows the ;)

It is often necessary to search storage for occurrences ·of a particular

word. This may be done with a macro, as indicated above, butlons searches

would be quite slow. A faster search can be made With

1'expression;

19.

which causes all the IDcations matching the specifiedexpreasion toee typed o.ut.

The match may be masked, and the bounds of the ,earch are adjustable • This command

takes all the typeout modifiers as well as

E which searches for a specified effective address

(including indexing and indirect addressing)

C)

x which searches for all exceptional words (which do not matCh). -
For additional flexibility the user may specify a macro which will be executed

each time a matching word is found.

In addition to being able to examine and modify his program, the user also

needs. to be able to run it. . To this end he may start it at a specified location

with ,G location

If he wishes to monitor its progress he may insert breakpoints at certain locations

wi th the COIl'lDland

,:8 location

This causes execution of the program to be interrupted at the specified location.

Control returns to the system, which types some useful information and awaits

further commands. An al. teroate form of this command is

,:8 location,macro name

which causes the specified macro to be executed at each break, instead of

returning control directly to the typewriter. Very powerful conditional tracing

may be done in this way.

After a break has occurred, execution of the program may be resumed with

the ,P command. l'he breakpoint is not affected. To prevent another break until

~
the breakpoint has been passed n timet.. the form

\n; may be used. Modifiers may precede the command.

To step through the program instruction by instruction the command ,S

may be used instead of ,po It allows one instruction to be executed and then

l,)reaks again. $n; a.110ws n instructions to be exec-uted before breaking. A

fully automatic trace has been deliberately omitted, but presents no difficulties

in principle.

"

(/ THE EDI'l'OR
"

There remains one feature of great importance in the IMP system,the

SyJIlbolic editor. The debugger procides facilities, which have already been

described, for modifying the contents of core. These modifications,

however, are not recorded in the symbolic version of the program. To
'(

permit this to be done, 80 that re~loadi!:~_ will r~sult in a correctly updated

binary program, 8everal commands are available which act both on the assembler

binary and on the symbolic.

This Operation is not as straightforward as it might appear, since

there is no one to oDe'correspondence between lines of symbolic and word.

of binary. Addresses given to the debugger of course refer to core locations,

but for editing it is more convenient to address line8 of syJllbolic. To

permit proper correlation of these line reference8 with the binary program,

, a copy of the symbolic file· is made during loading wi ththe addre.8s of the

first and last assembled words explicitly appended to each line. Since the

program is not moved around during editing, these numbers do not change

except locally. When a debugging session iSf,complete, the edited symbolic

. is rewritten without this information.

We illustrate this with an example. Consider the symbolic and resull.ting

binary

81

82

MOVE A,B

AnD 0
STORE D,E

BRU 81

(200,201)

(202,202)
(203,204)

Sl

82

and the editing command

,I insert before line 82-1

LDAA
m .B
AnD 0
8TA D
mE
BRU 81

200
201
202
203
204
205

21.

C:
/

c)

which gives rise to the following.

Sl MOVE A,B (200,20l) Sl LDAA 200
STA B 201

ADDC r!02'1512) BRU .END 202
SUB F 1513,1513) BRU .END 1 203
STORE D,E 1514,204) STA E 204

S2 BRU Sl 2<Y5, 2(15) S2 BRU Sl 2<Y5 ...
• END ADDC 1512

SUB F 1513
STA D 1514
BRU Sl 4 1515
BRUS15 1516·

All the BRU (branch unconditional) instructions are inserted to guarantee

that the right thing happens if any of the instructions causes a skip. The

alternative to this rather simple-minded scheme appears to be complete

reassembly, which has been rejected as too slow. The arrangement outlined

will deal correctly with patches made over other patches; although the

binary may come to look rather peculiar the symbolic will alWays be readable.

TO give the user access to the readable symbolic the command

,L symbolic line address[,symbolic line address];

(where the contents of the brackets is optionally included) causes the

specified block of lines to be printed. Two other edit commands are available:

,D symbolic line address(,symbolic line address];

which deletes the specified block of lines, and

,C srune arguments;

which deletes and then inserts the text whichfo1lows. Deleting 81 1 from the

original program would result in binary as follows

Sl LDA A
BRU .END
BRU .END 1
STA D
STA E

S2 BRU 81 ...
• END STA B

BRU Sl 3

22.

C/

·C':

The implementation of these commands is quite straightforward. One

entire edit command is collected and the new text,if any, is assembled.

Then the changed core addresses are computed and the appropriate record of

the symbolic file rewritten.

The scheme has two drawbacks: it does not work properly for skips of

more than one instruction or for subroutine calls which pick up a~guments

from following locations, and it leaves core in a rather contusing state,

especially after several patches have been made at the same location. The

first difficulty can be avoided by changing large enough segments of the

symbolic. The second can be alleviated by reassembly whenever things get

too unreadable.

The only other pablished approach to the problem of patching binary

. [7] 10
programs automatically is that of Evans , who keeps re cation information

and relocates the entire program after each change. This procedure is not

very fast, and in any event is not practical for a system with no relocation.

EFFICIENCY

The IMP system depends for its viability on fast assembly. The

implementation techniques discussed in this paper have permitted the first

version of the assembler to attain the unremarkable but satisfactory speed

of 200 lines per second. Simple character handling hardware would probably

double assembly speed on simple assemblies and produce even greater improvement

on programs with many maeTOS and repeats.

USing the. latter figures, we deduce that a program of 10,000 instructions,

a large one by most standards, will load in g5seconda. This number indicates

that the cost of the IMP approach is not at' all unreasonable -- far more

computer time, including overhead, is likely to be spent in the debugging operations

I

~ __ -r--__ '_-------"---------------------J

·C.J ,-

which follow this load. When only minor changes are made1t is, of course,

possible to save the binary core image and thus avoid reloading.

In spite of the, speed of the assembler, it i. p08sible that a relocatable

loader might be a desirable adjunct to the system.
.' I I

There are no basic reasons

why it should not be included.

As to the size of the system, the assembler is about 2500 instructions,

the debugger and editor about 2000.

The ideas in this paper owe a great deal to many attmulatingconversations

between the author and Peter Deutsch. I am especially indebted to him for the

1deathat all strings in the input ca,n be handled uni:torm.lyhwith string brackets.

A system very similar to this one has been implemented by him for the CDC 3100.

24.

~~--..,-'------~------':'------'----------------)

C)

25.

REFERENCES

1. M. Halpern, "XPOP - A Metalanguage Without Metaphysics," Proc. AFIPS

Conf., Vol. 25 (Fall, 1964)

2. G. Mealy, "Anatomy of an Assembly System," RAND Corporation (Dec. 1962)

3. C. N. Mooers, "TRAC, A Procedure-Describing Language for the Res.ctive

Typewriter," Comm. ~.2J 3, pp. 215-219 (March, 1966)

4. The MIDAS Assembly Program, internal memorandum, MIT, Cambridge, Massachusetts

5.

6.

S. Boilen et al, "A Time-Sharing Debugging System for a Small Computer,"

AFIPS Conf. Proc. 23 (1963 FJCC), Spartan Books, Washington D. C.,

pp. 51-58

L. P. Deutsch and B. W. Lampson, "DDT - Time-Sharing Debugging System

Reference Manual," Project GENIE Doc. 30.40.10 (May 1965)

7. Thomas G. Evans and D. L. Darby, "DEBUG - An Extension to Current Online

Debugging Techniques," Comm. ACM ~ 5 (May 1965), pp. 321-325

