
C)

MODIFICATIONS TO THE SDS 930 CCMroTER

FOR THE JMPLEMENTATION OF TIME-SHARmG

W. W. Lichtenberger

M. W. Pirtle

W. J. Sanders

University of California, Berkeley

Document No. 20.10.10

Issued January 22, 1965

Revised August 27, 1965

Contract No. SD-185

Office of Secretary of Defense

Advanced Research Projects Agency

Washington 25, D. c.

C:

1-1
20.10.10

This document describes changes made to the SDS 930 used in the !Erkeley

Time-Sharing System.

1.0 GENERAL

Every multi-programming computer system must be able to provide isolation

between the independent concurrent operating programs. otherwise, such programs

mB¥ interfere by overwriting each other with data, by transferring control to

each other, by attempting to use the same input/output devices, or by halting

or otherwise hanging up the computer. Memory protection, the trapping of I/O

and illegal instructions, and centralized, system-controlled I/O will usually

solve isolation problems. The problems of relocation of program areas and

allocation of storage among the concurrent programs arise when main memory

cannot contain all of the concurrent programs and it is necessary to move them

to and from secondary storage. A mechanism which provides a solution to the

relocation and allocation problems and also provides memory protection is

discussed in Section 3.0.

G
2.0 PRIVILEGED INSTRUCTIONS

2-1
20.10.10

To insure mutual isolation of users' programs, it is necessary to restrict

users to a. subset of 930 orders. Forbidden orders are termed "privileged in

structions" • In essence, the absence of privileged instructions :f'rom the normal

repertoire redefines the machine which the user has at his disposal. We there

fore think of two computers (more precisely, two modes of operation of the 930)

--- a user's mode and an executive or monitor ~ Because both modes entail

changes in programming conventions in the 930, it is necessar,y to have a third

or normal mode. The mode of the machine is set by an EOM and control transfers

as described in Section 6.0.

The set of privileged instructions consists of all undefined order codes,

halt, all input/output orders, and all sense orders except for overflow test.

~ An attempt to execute a privileged instruction while in user mode will result

c

* in the execution of a NOP instruction and, subsequently, a trap to location 40
8

,

The program counter (p counter) is not incremented during the execution of the

NOP instruction. Consequently, the address stored by the BRM instruction in

location 408 is that of the offending instruction.

Privileged operation codes are: 00, 02 (except 0 20 00001 and 0 20 00010),

03, 04, 05, 06, 07, 10, 11, 12, 13, 15, 21, 22, 24, 25, 26, 27, 30, 31, 32, 33,

34, 40 (except the combination 0 40 20001, the overflow test), 42, 44, 45 and 47.

Defined instructions included in the abov~ list are 00 HLT, 02 EOM (except

ROV and REO), 06 EOD, 10 MIY, 11 ~RI (cf. Sect. 5.3), 12 MIW, 13 POT, 30 YJN,

32 WIM, 33 PIN, and all 40 SKS (except OVT).

* The term "trap" is to be distinguished from the interrupt defined by SDS.
The trap is a forced transfer to a fixed location; hence a trap routine is
interruptable by any other interrupt or trap condition.

o

C)

3-1
20.10.10

3 .0 MEMORY RELABELING

The address field of the 930 consists of the rightmost 14 bits, permitting

programs to access directly 16K of core. A memory extension register is pro

vided to allow programs to access 32K. The use of this register is described

in detail in the SDS 930 Computer Reference Manual.*

The standard SDS memory extension is not used in the time-sharing system.

Rather, the following memory relabeling scheme has been implemented:

Eight relabeling registers of six bits each are laid out in two

registers RL1 and RL2 as follows:

RL2

Ia,
o o 6 12

Each of these eight registers contains information as shown below:

where Fi is a flag bit and G
i

is the least significant 5 bits of Ri •

m~ be thought of as a 5-bit register Gi with an associated flag Fi •

Thus R.
~

When relabeling, the contents of G., where i is the value of the three
~

most significant bits of the address, are concatenated with the least

significant eleven bits. Thus, the address

I i I l.s.p. :: I
10 13 23

becomes

I Gi I Ls.p.]

8 13 23

*Cf. SDS 930 Computer Ref. Manual. No. 900064B, Scientific Data
Systems, Inc., Santa Monica, California, 1964, P. 4.

3-2
20.10.10

The reader will note that this scheme permits ultimate access to 64K of

memory in 2K blocks. Because azry combination of bits can be used in the eight

registers, a user's program m~ occupy as much as 16K located randomly in

non-contiguous blocks of 2K throughout the memory. The substitution of bits

(or relabeling) is performed on the address presented to the memory by the

machine, hence the user's program is effectively connected together into one

strip of continuous memory beginning at (local) location o. The problem of

relocation is thus eliminated and the problem of allocation is greatly simplified.

Memory protection reduces to allotting memory to each user in multiples of

2K and detecting when the user attempts to exceed his allotment. In our scheme,

a memory reference pointing to an Ri with the contents ,10000002 is

an indication that the block of memory involved has not been assigned, and it

o results in a NOP and a trap to location 000418• At the occurrence of the trap,

the P counter contains the location of the offending instruction, except in the

case of an attempted jump to an out of bounds location, in which case it contains

the following information:

Notation: In q: om «, q is the unrelabeled location of the operation

and 0(is the effective unrelabeled address.

q: :BRM 0({l) IX illegal, (p) = q
2)d. legal but 0(+1 illegal, (p)= ~ +1

q: :eRR 0{ {l) ~ illegal, (p) = q.
2) (~)+l illegal, (p)=(~)+l

q: pop

o

o

3-3
20.10.10

An intermediate level of memory protection is afforded by the flag bits

F i. Reading and writing in any assigned block (.!.~., (R
i

) 1= 1000000
2

) of memory is

permitted if the associated Fi= O. If F.= 1, the associated block is read-
1. -

~. An attempt to store information in a read-only block results in a NOP and

a trap to location 000438 , The P counter contains the same information as it

would in the case of an absolute protection violation.

To set RIJ. it is necessary to execute an ECN 21000, which clears the

register, followed by the execution of a POT instruction. To set RL2 an

EOM 20400 is executed.

Normal addressing is also used under certain conditions. When the re-

labeling registers are used, however, special addressing is said to apply.

------------.--------~---'

o

o

o

4-1
20.10.10

4.0 USER MOlE

The machine which the users program, 1.~., the 930 in the user mode, is

as described in the computer manual except for the following changes:

4.1 All privileged instructions are forbidden.

4.2 A new class of operations called system programmed gperators

(SYSPOP) is provided. Although system programmed operators

4.3

are, in fact, ordinary programmed operators, the user thinks

of them as new and more powerful machine instructions since

he does not have to allocate any of his own storage for them.

In addition, the user may define his own set of programmed

operators as he desires and exactly as explained in the manual.

The distinction between system and local programmed operators

is described in detail in Section 6.0.

Special addressing applies to all instructions in user mode.

c)

o

5.0 MONITOR MODE

5-1
20.10.10

In monitor mode, the 930 has its full complement of orders including

the privileged instructions. Addressing is normal, and the memory extension

register m~ even be used if desired. Two changes distinguish this mode from

the normal mode.

5.1 If an instruction is executed in which the sign bit (which is

norm.aJ.l.y unused) is one, special addressing (relabeling) applies

for that instruction only. Monitor programs can thus conveniently

access information in user areas. Special addressing will also

apply to any instruction for which the sign bit of any word fetched

during the determination of an effective address is equal to one.

More precisely, relabeling becomes effective when the sign bit

is detected, and the machine will remain in this mode for the

duration of the current instruction. Thus, if the sign bit of

a word fetched during indirect addressing is equal to one, all

further references to memory made by this instruction will be

relabeled.

5.2 Because of the technique adopted for changing modes, it is

necessary to modify the convention for storing the contents of

the overflow indicator at the time of performing subroutine

entries. Normally, the state of the overflow indicator is stored

in the sign bit of the subroutine link. Since the sign bit is

now reserved to indicate special addressing in monitor mode, it

is necessary to move the state of the overflow indicator to ~it 2

of the link. Note that this applies ~ in the case of monitor

mode and is ~ true in normal mode or user mode.

o

5-z
20.10.10

5.3 To enable interrupt routines to restore the overflow indicator

'Properly on return, a new instruction :eRI (OllOOOOO) has been

added. :eRI (!ranch and Return from Interrupt routine) functions

in a manner simila;r to :eRR with the following exceptions:

1. It does not increment the return address.

2. It first clea;rs the overflow indicator and then

sets it with the contents of !it 2 in the return

address word. (!RR simply merges the two indicators.)

3. It terminates the current priority interrupt level.

!RI is a privileged instruction and hence cannot

be executed in user mode. It should be noted that

in monitor mode, the termination of interrupt levels

is no longer accomplished by !RU*, hence it is legal

to do a !RU* in an interrupt routine. Furthermore,

ImI* m~ be executed to any depth. In normal mode,

termination of interrupt levels is accomplished

both by !RU* and !RI. The existence of a new

instruction, nRI, in normal mode is a depa;rture from

the design goal of preserving normal SDS 930 operation

in normal mode; !RI is, however, otherwise an un-

defined instruction, and it is advantageous to be

able to run ha;rdwa;re diagnostics in both monitor

and normal modes.

o
6.0 CHANGmG MODES

6-1
20.10.10

Pushing the start button on the console forces the machine into normal

mode. This is the only manner in which the transition to normal mode can be

made. The transition from normal to monitor mode is made by executing an

EOM 22000. The transition from monitor to user mode is made by executing !:EZ

jump to a relabeled location. The user can cause a transition from user to

monitor mode by executing a SYSPOP. There is no means of going directly from

normal mode to user mode.

It should be noted that, although the above-mentioned means of making

mode transitions exhaust the possibilities available to the programmer, there

are two other causes of such transitions. First, the occurrence of an interrupt

or trap when in user mode will cause a transition to monitor mode. Secondly,

o following the execution of a single instruction interrupt routine, a transition

to user mode will occur if the machine was in user mode at the time that the

C)

interrupt occurred.

In order that system subroutines be able to serve both the user and the

5,fstem itself, an indication of the mode before entry is preserved in the

subroutine link. Bit 0=1 implies a transfer from user mode, and :!it 0=0

implies an entry from the system. Bit 0 is used for this purpose in order to

make data access independent of mode (~ Section 7.0) and to restore the

proper mode upon return.

When attempting to execute a transfer from monitor mode to relabeled

memory (and thus to user mode) which is out of bounds, the resulting trap

forces Bit 0 of the link to a 1. The monitor must take this effect into account.

o
7.0 PROGRAMMED OFERATORS

7-1
20.10.10

In his program, the user may execute one of two types of programmed

operators. An instruction in which Bit 0 is 0 and !it 2 is 1 is a normal

programmed operator, local to the user's area of memory. As such, the user

must allocate space in local locations 100 through 177 for transfers to

programmed operator subroutines in his own memory. If, however, Bit 0 of

the instruction is 1 and Bit 2 .is 1, the machine changes to monitor mode

before executing the programmed operator. Thus, the user is sent automatically

to actual locations 100 through 177, where ~stem programmed operators service

his program.

System programmed operators are included in the system routines mentioned

in Section 6.0. The link for a programmed operator is location O. If a user

o executes a SYSPOP, Bit 0 of the link is 1. Since programmed operators refer to

their data indirectly via their link, special addressing is applicable and the

o

user 1 S data will be accessed. On the other hand, if the system programmed operator

is used by the system itself, Bit 0 will be 0, and normal addressing will apply.

Bit 0 may be inspected by the system to determine at interrupts whether the

user was in his own program or whether he was in a system programmed operator.

Programmers should reaJ.ize that in user's mode, :8i t 0 has significance in

the case of programmed operators. It is an error, then, to use Bit 0 of a

programmed operator as storage for any purpose. Bit 0 is otherwise unrestricted

for the user.

8.0 OTHER CHA:NGES

8-1
20.10.10

The following changes a.re not visible to the user, but serve to provide

for security of the system from user action. The occurrence of an interrupt

request t'rom the interrupt priority logic during the execution of an "execute"

instruction (or a long chain of EKUs) results in the termination of the process

and the execution of a mop. At the completion of the NOP, the highest priority

interrupt request is honored, and the P counter contains the address of the

interrupted instruction; hence, the normal. interrupt routine exit will return

to the interrupted instruction which will begin execution anew.

Simila.r.l.y, when relabeling, the execution of instructions involving indirect

addressing is interrupted when an interrupt request occurs during the indirect

addressing phase of the execution.

Also, an interrupt request at the completion of a :BRX instruction which

caJ.ls for a jump causes the. execution of a BOP (at the completion of which

the interrupt can occur). In this case the P counter contains the location

specified by the jump.

FinaJ.J.y, when in user mode interrupt requests a;re honored immediately

following the execution of ROV and REO instruct.ions.

Each of the features described above is effective both in monitor and

user mode; in normaJ. mode none function -- the CPU behaves exact.l.y as a

normaJ. SDS 930.

