cep
CONDITIONAT, COMMAND PROCESSOR
' ' REFERENCE MANUAL

“C. A. Grant

" Document No. R-29
_YJu]\y 14, 1967
"~ Contract SD-185
" Office 6f Secretary of Defense
.Advanced Résearch Projects Agency
. Washington 25, D. C.

1.0
2.0

3.0

5.0
6.0

TABLE OF CONTENTS

IntroductiQn e e e .

Basic Syntactic Components .

2.1 Numboers .

2.8 Statements.
2.9 labels. ‘
CCP Statements .

3.1 Assignment Statements.

3.2 Internally Coded Working Functions .

2.2 Names . .
2.3 Variables
2.4 Dummy Argument Names.
2.9 Dummy Arpgument References .
2.6 String Refercnces .
2.7 Integer References.

R-29
July 1k,

-

3.3 Internally Coded Predicate Functions .

3.4 Character-send Statements .

Error Handling
4.1 Compile Time Errors
4.2 Runtime Errors.
Running A Program.

Examples

.

-

.

1967

3-10
b1

TV §
. b
. 5-1
. 6-1

R-29 . 1-1
July 14, 1967

1.0 Tntroduction

In its simplest form, CCP may be used to retrieve characters
from a user supplied file and send them to a "pseudo teletype."
The pseudo teletype will react to these characters the_samé way -
© teletype connected to the system would react in all cases. |
CCP, then, is a pseudo-typist capublé of sending characters to

the pseudo teletype.

It is possible to save the output generated by the pseudo
teletype and examine it with interhally coded CCP functions.
A CCP progrém, therefore, can cause a user program to execute
and then examine the resulting output. Cbhditional statements
in CCP will allow appropriate action to tuke place based on

the output.

CCP may be viewed as a macro processor in that arguments
con be supplied when a CCP program is to be run. These

arguments may be referred to'within the program.

CCP tzkes the form of an‘algol-like language, including
recursive, user-defined functions with substitutable arguments.

Additional features are two character-sehd functions and several

other internally coded functions.

R-29 2-1
July lh, 1967

2.0 Basic Syntactic Components

This chapter builds the small vocabulary necessary for a
full description of CCP,

2.1 Numbers
Only integer numbers are aécépted by CCP.
2.2 Names

Names are composed of letters, numbers and blanks. Names
may be of any length, but only the first and last four non-blank
characters sérve to recognize the name. At least one character
of a name must be & letter. A name may not refer to more tﬁan
one syntactic object (e.g., XYZ hay not be a label and a

variable name).
2.3 Variables

Variables may at any giveh moment be in one of thrce states:
undefined, string-yalued or integer-valued., All variables are

initially undefined. Variables may freely change state.
2.4 Dummy argument names

A dummy argument name is a name as defined above, preceded
by a ($) dollar sign.— So ‘
$aBC
$1B5
$LONG DUMMY NAME

are acceptable dummy argument names.

R-29 o2
July lhf 1967

2.5 Dummy argument references

The use of dummy argument references will be explained below.
Syntactically, a dummy argument reference consists of a dummy
argument name followed by a parenthesized expression of'any
complexity involving integers and integer-valued variables.
Therefore, v '

$ABC(5)
$18 (24(7-x/3))

are syntactically correct dummy argument references.
2.6 String references

A string refeerence is either & quoted string, a string-
valued variable reference, or a string-valued dummy argument
reference. PFor example:

ARG
*CARRIAGE RETURNS AND LINE
FEEDS AND CONTROL CHARACTERS
MAY BE IN A STRING'
XYZ
$ABC(7)
are string references (if XYZ and $ABC(7) are string-valued).

There is a special string-valued variable with the name
QUOTE which has the value (') quote-mark. This variable differs
from other variables only in the respect that it is initially

defined.

There is one other type of string, and this is the "non-
string.”" This is equivalent to a null string but has special

meaning, as will be explained later.
2.7 1Integer references

An integer reference is either an expression of any complexity

involving integers and integer-valued variables,'gz a dummy

R-29 2-3
July 1h, 1967

argument reference with an integer value. A dummy argument

reference may never appear jin an arithmetic expression.

2.8 Statements

There are four types of statements in CCP. They are:
a) Assignment statements
b) Internally coded working functions
c¢) Internally coded predicate functions
d) Character-send mode statements.
Each type of statement will be fully explained in the next
chapter. Any number of statements (or fractions thereof) may
appear on one line. Carriage returns, line feeds, and blanks

are, except within & quoted string, completely disregarded.
2.9 Labels

Labels are identified by names. A statement (or a labeled
statement) may be labeled by preceeding the statement by a label
name followed by a (:) colon. A label name may not be used

more than onée to label a‘spatement.

LABEL:
DOUBLY: LABELED:

R-29 3-1
July 14, 1967

3.0 CCP Statements

3.1 Assignment statements

There are two categories of assignment statements:

a) <Variable>

]

<String reference>,
b) <Variable> = <Integer reference>,
Note that each type of assignment statement is terminated

with a comma.

It is permitted that variables change from string-valued to
integer-valued freely. Examples of assignment slatements are:
A =3, B=A,

R-29 3-2
July 14, 1967

3.2 Internally coded working functions

JUMP(<1label>)
Execution of this function causes an unconditional

transfer of control to the indicated label.

SJUMP(<1abel>)
Transfer to the label takes place only if the current
predicate value is success (see next section). Otherwise,
the flow.of control passes to the next statement in the

program.

FJUMP(<label>)
Transfer is effected only if the current predicate

value is failure.

FUNCTION(<1abel>, <dummy argument name>, <list of local variables>)
This statement causes a function to be associated with
the label. References to arguments given to the funclion
when called will be made with the indicated dummy argument
name. The list of. variables will be considered local
to the function. There mnay be only one FUNCTION stntement
for a given label. Two or more different functions may
. use the same dummy argument name. Examples:
FUNCTION (ABC,$DUMMY)
FUNCTION (XYZ, $DUM, TEMPl, TEMP2)

CALL{<label>, <list of arguments>)
This statement will call the function associsted with
the label. If a call to ABC (defined above) is executed:
CALL(ABC, 100, 'PEACE')
then $pUMMY(1) will be integer-valued with the value 100
and $DUMMY(2) will be string-valued with the value 'PEACE'.

The zero-th reference is always integer-valued with the

R-29 3-3
July 1b, 1967

number of arguments supplied as its value. So in this
instance $DUMMY(0) is equal to two. References to $pUMMY (N)
vhere N is less than zero or greater than two will bé errors.
Tabels must be passed as arguments enclosed in (") double-
quote marks. So _
‘ CALL(ABC, "IABEL")

\ ' *
ABC: JuMP($DUMMY(1))
causes a transfer to the statement labeled with ILAREL.

Arguments provided in a CALL statement must be string
references, expressions of any complexity, labels or

dummy argument references. So
CALL(ABC,7,X%5-Y/Z, 'MOTHER', $XYZ(7), "ILABEL")

is syntactically correct.
To return from a called function, there are three ways:
JUMP(RETURN) - causes a return fo the next lower level,
feinstating the value of predicacy ihat existed when
the function was called. '
JUMP(SRETURN) - causes a return, and changes the value
of predicacy at the lower level to success.
JUMP(FRETURN) - causes a return and changes the value

of predicacy at the lower level to failure.

SCALL(<label>, <list of arguments>)
The CALL is executed only if the current value of

predicacy is success.

FCALL(<1list of arguments>)
The CALL is executed only if the current value of

predicacy is failure.

CONCAT{<variable>, <string reference>, <string reference>)
Execution of this statement causes the value of the
variable to become the string obtained by concatenating

the two siring references.

R-79 31
July 14, 1967

CNSTNU(<variable>, <string reference>)

This converts the first numeric string of characters
in the string reference to a decimel integer and sets
the value of the variable to this integer. A (+) plus
sign or (-) minus sign will be considered numeric
characters. ‘ _

e.g. CNSTNU(X, 'ABC123ABC') cause X to become 123

CNSTNU(X, '10') cause X to become 10
CNSTNU(X, 'A-A5') cause X to become O

CNNUST(<variable>, <integer reference>)
This function causes the integer to become converted
into a string of digits, signed only if negative, and

stored as the value of the varisble.

ERCOMP(<1abel>) .

Execution of this function causes a trénsfer to the
label only if during compile-time errors were detected
in the program.

s
ERJUMP(<1label>)

This function éaves the label and will cause transfer
to the label in the event that a run-time error occurs.
If a second run-time error occurs before another ERJUMP

statement is executed, execution halts.

- COMMENT(<string reference>)
This function causes the string to)ﬁe printed on the

teletype when this function is executed.

TTYON(<integer reference>)

This function determines whether or not output of the
pseudo teletype is to be printed on the controlling (user)
teletype. Initially, the output is not printed. To
cause the output to be printed, execute TTYON with the

value of the integer reference non-negative. To turn

‘R-29 3-5
July 14, 1967

the teletype off, exccute TTYON with a negative arguncnt.
Note that TTYON and OUTFIIE are completely independent
of each other,

OUTFILE(<string reference>)

This function opens the file specified by the string
reference and causes all output of the pseudo teletype
to be diverted to the file. The file is opened at its
beginning.) .

REOPEN(<string reference>)
Same as above except file is opened at its end

(i.e., output from the pseudo teletype is added to the
contents of this file.)

SETFIAG(<string reference>)

The string referenced is written on the current outfile
between two control ([) left-bracket characters. This
flag may be used by the predicate functions MATCH and
GSTRING, to be described below.

ERSFIAG(<string reference>)
This function erases all flags written on the file

indicated by the string reference.

- TIME(<integer reference>, <label>)

This function specifies that a transfer to the indicated
label is effected if and only if the next character-send
statement does not terminate within N seconds, where N

is the value of this integer reference.

INTERACT(<mode character>)
Read about character-send statements before trying to

understand this function. This function may be used to

R~-29 3-6
July 1h, 1967

allow interaction to take place between the user (via

the teletype) and the pseudo teletype. The mode character
(Zor >) determines whether(@-mode or >-mode is desired.
All characters are sent literally except that control

(¢) left arrow causes a rubout to be sent, control ([)
left-bracket causes termination of the mode, and rubout
terminates the CCP program. When INTERACT isvexecuted,

several bells will ring to let the user know.

R-29 3=
July 14, 1967

3.% 1Inlernally Coded Predicate Functions
During execution of a CCP program, there is a state of

being, known as predicacy, which exists with one of two

values: success or fajilure. Initially (when a program

starts) and each time a function is called, predicacy is
automatically set to success. Thereafter, the only ways
the value of predicacy may be changed are by executing one
of the following predicate functions, or by returning f{rom
a called funclion via SRETURN or FRETURN. Predicacy may be
tested for by any of the previously explained functions

SCALL, FCALL, SJUMP, and FJUMP.

NULL{<string reference>)
Sets predicacy to success if the string reference is

the null string, else sets predicacy to failure.

EQUAL{<integer reference>, <integer refercnce>)
Success if the two integers are the same value, else

failure.

GRTR(<integer reference>, <integer reference>)
Success if the first integer is greater than the second,

else failure.

STREQL(<string reference>, <string reference>)

Success if the two strings are exactly the same,

else failure.

MATCH(<string refl>, <string ref2>, <string ref3>, <string refl>)
This function executes a search on the file specified

by string reference 1. The string referenced by string
reference 2 is the string of characters searched for.
MATCH changes the value of predicacy to success if the

string is found, else changes the value to failure. The

R-29 3-8

bounds of the search are indicated with string references

3 and 4 in the following complicated manner.

If string reference 3 is a flag b& SETFIAG, the search
commences after the first occurrence of this flag.b If
string reference 3 is the (") null string, the search
will begin after the point where the search was most
recently discontinued. If the () non-string is specified,
then the search begins at the beginning of the file (see

example below for clarification).

String reference 4 determines where the search will
terminate. If string reference 4 is a flag set by
SETFIAG, then the search will terminate at the first
occurrence of this flag after the search has started.
If string reference 4 is the () non-string, or if the
flag is not encountered in the file during thé search,

then the search will terminate at the end of the file.

Assume the file /X/ has the following characters, with
flags (F1) and (F2):
{

12312312 (Fl)%35\i33(F2)%33wi33
1 2 3

Then ihe following program will count the occurrences

of the string '12' in regions 1 and 3:

COUNT = O,

MATCH('/X/*, '12',,'F1') FIJUMP(REGION3)
LOOP1: COUNT = COUNT + 1,

MATCH('/X/', '12', ", 'F1') SJUMP(LOOP1)
REGION3: MATCH('/X/*, '12', 'F2') FJUMP(EXTT)
LOOP3: COUNT = COUNT + 1,

MATCH('/X/', '12', ") SJUMP(LOOP3)

EXIT:

R-29 3-9
July 14, 1967

GSTRING(<string ref 1>, <variable>, <string ref 2>, <string ref 3>,
<string ref 4>, <string ref 5>) -

This function executes a search on the file specified by
string reference 1. It searches for a string of characters
preceded by the string referenced by string reference 2
and followed by the string referenced by string reference 3.
If such a string is found, then the value of the variable
is set to this string, and the value of predicacy is set
to success. If not found, the variable is set to the null
string and the value of predicacy is set to fajlure. String |
references 4 and 5 specify the bounds of the search in the

same way the bounds are set in the function MATCH.

Consider the file /Y/ whose contents, with flags (F3)
and (Fk) are as follows:
ABCDCD7FAF3)/1/2/3/4/ (Fu)l/l/l/

The statement
GSTRING('/Y/', X, 'CD', '7')
succeeds with X = 'CDf§’.
Tﬁe following program calls the user function EXAMINE for

each number found between (/) slashes on the file:

GSTRING('/Y/*,X,'/*,'/") FJUMP(EXIT)
LOOP: CALL(EXAMINE, X)
GSTRING('/Y/', X, /', /', ") SJUMP(L.OOP)

EXIT:

Carefully notice that this program will call EXAMINE for
- all 7 cases. The Tlag (F4) will be ignored completely.

R-29 3-10
July 1b, 1967

3.4 Character-send slatcments

There are two modes for sending characters to the pseudo-
teletype. (“-mode insures that the Time-Sharing executive
is the listening program by sending several rubouts. >-mode
does not disturb the pseudo teletype before sending characters.
For example, the CCP statement
(% CAL. !

first causes several rubouts to be sent, then a C, an A,
a L, and finally a (.) period. The exclamation point indicales
the termination of the statement. Character-send statements may
also be terminated with a (%) percent sign, and the distinction

will be described below. If the next CCP character-send statement

is
>SET A = 1!
Then the characters
SET A = 1

would be sent, and CAL would still be listening. The pseudo
teletype is initially set in BEGINNER mode {(see document $-22).

It is possible for the value of a string-valued dummy
argument reference to be sent in character-send mode, and this

is indicated by including the reference in the statement:
COPY FIIE $pUMMY(3) TO $pUMMY(L).%

if $pUMMY(3) is *XYZ' and $DUMMY(L) is '/XYZ' then the
characters sent will be several rubouts and then:

COPY FILE XYZ TO /XYZ.

To cause the string value of a variable to be sent, the
variable name must be preceded by a {$) dollar sign and followed
by a (.) period: TIf X has the value '/FIIE/', then ‘

>GO TO $X..!
causes the string
60 TO /FIIE/.

: ’ : to be sent.

R-29 3-11
July 14, 1967

If a control («) left arrow is found in the~statehent, then
a rubout will be sent to the pscudo telétype instead of that
character. I a control ([) left-bracket is found in the state-
“ment, then the statement will immediately terminate (as if the
() exclamation point had appeared at that point.) Clearly
the value of this convention is seen only where variable and
dummy argument references are involved. Carriage returns and
line feeds are not normally sent.
égQED.
$x..
1,5
YES

ccec
— —

$Y
COPY FIIE /A/ TO /B/.

If X has the value '/A/' and Y has the value 'AB]SCD', then
the characters sent will be

QED./A/.1,5.YES rubout rubout AB’

In the sending of variable and dummy argument references,
all characters are sent literally except control («) left arrow
and control ([) left bracket. i.e., if X is '$Y.' then

>$X. !
causes the characters
$Y.

to be sent.

If it is desired that the characters $,!, %, «—, (©, cr, 1f
"be sent without the above-méntioned conventions, then they must
be preceded by a ($) dollar sign. (This does not hold within
variable or dummy argument references.) A ($) dollar sign
found in any context other than those herctofore described

will cause a compile error. The CCP statement

R-29 3-12
July 14, 1967

>$i8$:

sends

<A

to the pseudo teletype.

Now the difference between terminating a character-send
mode statement with (!) exclamation point or (%) will be
explained. When (!) exclamation point is used, the flow of
control will not pass to the next statement until the last
character has been sent and the pseudo teletype is again waiting
for input. Termination with (%) causes completion of the

statement as soon as the last character is sent.

R-29 b1
July 14, 1967

k.0 Error Handling

4.1 Compile Time Errors

Syntactic errors will be discovered at compile-timeAand error
messages giving the line number and an explanation wiil be generated
to the teletype. After each discovered syntactic error, CCP Qill
search through>the input text for a labeled statement. At this
point compilation will continue. Whether or not there were
compilation errors can be tested at runtime with the function

ERCOMP.

When a name is found to have double use, an error message
is generated and the irst use remains in effect (e.g., doubly
used label, or a name first used as a variable and then as a

label).
4.2 Runtime Errors

Runtime errors will likewise result in hopefully elucidative
error messages. Possible runtime errors are: {finding an out-of-
bounds dummy argument reference, using a wrong-type variable or

trying to execute a statement which did not compile correctly.

When a runtime error is encountered, a check is méde to see
if an ERJUMP statement has been executed. 1If such a statement
was executed, and no runtime errors have occurred since, then
the stack is reset to level O and a transfer to the ERJUMP label
is executed. A message is printed on the teletype indicating

this activity. Otherwise, execution of the program is terminated.

R-29 5-1‘
July 14, 1967

5.0 Running a Program

CCP programs are best composed in QED. If serious-work is
being done, it is suggested that free use of the functions ERCOMP
and ERJUMP is made. | .

When calling the subsystem,CCP, a list of arguments is
requested. Arguments may be supplied in exactly the same manner
as in a CALL function. Typing a ()) right parenthesis will
terminate the list, and CCP will request the name of the file
on which the program lies. A typical encounter with CCP might
appear as follows (underlined characters are typed by CCP):

@ CCF.
ARGUMENTS: (27, '/FIIE', "IABELL", 215)
INPUT: /CCP. ’\

BAD EXPRESSION AT LINE+2
NAME USED WRONGLY LINE+7
'STEFTAG' IS NOT A CCP FUNCTION AT LINE 12

*%% COMPIIED WITH 3 ERRORS %¥¥

COMPILE ERROR ENCOUNTERED
LINE 2, IEVEL O
ERJUMP TRANSFER TO IABEL 1

OUT-OF-BOUNDS DUMMY REFERENCE
LINE 36, LEVEL 7
NO ERJUMP TRANSFER

I®

R-29 5.2
July 14, 1967

The arguments given to CCP at runtime are referred to with

2 special dummy argument name. In the above example:

$(1) is 27
$(2) is '/FILE' etc.
and

$(0) is b

R-29 6-1
July 14, 1967

6.0 Examples

N
This program expects a list of files in pairs that are to

be copied. When the argument '!' is:found, the rest of the
arguments are files to be assembled. Checks are made during

the copying that no errors occurred.

FRCOMP(EXIT)
FUNCT ION(COPYCHECK, $DUM)
N =1, ,
100P1: STREQL($(N), '!') SJUMP(ASSEMBIE)
OUTFILE('/$x")
@COPY FILIE $(N) TO $(N+1).!
CALL (COPYCHECK)
N = N+2, JUMP(LOOP1)

ASSEMBLE: EQUAL{$(0),N) SJUMP(EXIT)
@ARPAS.$(N+1), $ (W+2). !

_N = N+2, JUMP(ASSEMBIE)

COPYCHECK: MATCH('/$X', '. cr 1f 1f') SJUMP(RETURN)
- INTERACT(>) JUMP(RETURN)

EXIT:

