
CCP

° CONDITIONAL C(1'1MAND PROCESSOR

REFERENCE MANUAL

o 0

C. °A; Gront

Document No. R-29

''-July14, 1967 °

Contract SD-185

° Office of Secretnryof Defense

Advanced Research Projects Agency

Washi~gton° 25, D. C.

R-29.

July 14, 1967

TABLE OF' CONTENTS

1.0 Introduction. . . . • • . · 1-1

240 Basic Syntaetic Components .. . • 2-1

2.1 Number:; • • • • • • • • · ~.?-l

Names·'. 2-1

3·0

4.0

5·0
6.0

2·3 Varial)les•..

~~ .4 Dumm.v A r nument Name s • •

·2.5 Dummy Argument References.

2.6
.. 2.7

2.8

2.9
CCP

. 3.1

String References .

IntcfjE:r References. .

Statements.

Labels. . .'

Statements

Assignment Statements. .

.. .

3·2 Internally Coded Working Functions .
3·3 Internally Coded Predicate Functions

3.4 Character-send Statements ·
Error Handling · .
4.1 Compile Time Errors . . ·
4.2 Runtime Errors. .- . . ·
Running A Program. .

Examples ' ..

. . .

. . ~ .
. .

. . .

.

.

.

• • • ~?..;]

· 2-1

· 2-2

. ... 2-2

• 2-:-2

. . 2-3

· 2-3
· 3-1

• 3-1

• 3-2

· 3-7
· .. 3-10

• 4-1
4-1
4-1

· 5-1
· .. 6-1

R-29 1-1

. July 14, 1961

1.0 Introduction

In its simplest form, CCP may be used to retrieve charncters

from a user supplied file and send them to a "pseudo teletype."

The pseudo teletype vTi11 react to these ch~rncters the. snme way

[! teletype connected to the system would react in all cases.

ecp, then, is a pseudo-typist capable of sending characters to

the pseudo teletype.

It is possible to save the output generated by the pseudo

teletype and examine it with internally coded CCP functions.

ACCP program, therefore, can cause a user progrnm to execute.

Dnd then examine the resulting output. Conditional statements

in CCP will allow uppropriate action to take place based on

the output.

CCP may be viewed as a macro processor in thClt arguments

can be supplied when a CCP program is to be ·run. These

arguments may be referred to. within the program.

CCP takes the form of an- algol-like language, including

recurSive, user-defined- functions with substitutable arguments.

Additional features are two character-send functions and several

other internally coded functions.

R-29 2-1

July 14, ~-967

2.0 Basic Syntactic Comuonents

This chapter builds the small vocabulary necessary for a

full description of CCP.

2.1 Numbers

Only integer numbers are accepted by cepe

2.2 Names

Names are composed of letters, numbers and planks." "Names

may be of any length, but only the first and last four "non-blank

characters serve to recognize the name. At least one character

of a name must be a letter. A name may not refer to more than

one syntactic object (e.g., XYZ may not be a label and. a

variable name)."

2.3 Variables

Variables may at. any given moment be in 'one ·of three states :

undefined, string-valued or integer-valued. AIl variab1es arc

i.nit l.ally undefined. Variables may freely change state.

" 2.1~ Dummy argument names

A dummy argument name is a name as defined a'bove, preceded·

by a ($) dollar sign. So

$ABC

$lB5

$LONG DUMMY NAME

are acceptable dwnmy argument names.

R-29 2-2

July 14, 196'7

2.5 Dummy argument references

The use of dummy argument references will .be explained below.

Syntactically, a dummy argument reference consists of a dumm,Y

argument name followed by a parenthesized expression of any

complexity involving integers and integer-valued variables.

Therefore;

$ABC(5)

$lB5 (2t(7-X/3))

are syntactically correct dummy argument references.

2.6 string referen'ces

A string reference is either a quoted string, a string

valued variable reference, or a string-valued dummy argument

reference. For example:

'ABC'

'CARRIAGE RETURNS AND LJNE

FEEDS AND CONTROIJ CHARACTERS

MAYBE m A STRlliG'

XYZ

$ABC(7) .

are string references (if XYZ and $ABC(7) are string-valued).

There is a special string-valued variable with the name

QUOTE which has the value (,) quote-mark. This. variable differs

from other variables only in the respect that it'is initially

defined.

There. is one other type of string, and this is the "non-.

string." This is equivalent to a null string but has special

meaning, as will be explained later.

2.7 Integer references

An integer reference is either an expression of any complexity

involving integers and integer-valued variables, .~ a dummy

R-29 2-3
July iI" 196r

(

~rgument reference with an integer value! A dummy argument

reference mriy never appear in an arithmetic expression.

2.8 statements

There are four types of statements in CCP. They are:

a) Assignment statements

b) Internally coded working functIons

c) Internally coded predicate functions

d) Chnracter-send mode statements.

Each type of stn,tement \-rill be fully expla ined in the next

chapter. Any number of statements (or fractions thereof) may

appear on one line. Carriage returns, line feeds, and blnnks

are, except within [i 'quoted string, completely disregarded.

2.9 Labels

Labels are identified by names. A statement (or a labeled

statement) may be labeled by preceeding the statement by a label

name followed by a (:) colon. A label name may not be used

more than once to label a statement.

LABEL: '

DOUBLY: LABELED:

R-29. 3-1
.July Ill, 196'(

'3.0 eep statements

3.1 Ar;s:ignment statements

There are two categories of assignment statements~

a) <variable> = <String reference>,

b) <variable> = <Integer reference>,

Note that each type of assignment statement is terminated

with a comma.

It is permitted that variables change from string-valued to

. integer-valued freely. Examples of assignment statements are:

A =: 3, B =: A,

A = . t LOVE I , .

XYZ =-At(B-7!A),

A .- $DUMMY(l),

B = $DUMMY(2),

R-29 3-2

July 14, 19f)'(

3. ~~ Internnlly coded ",orking functions

JUMP«lnbel>)

Execution of this function causes Dn unconditionul

transfer of control to the indicated label.

SJUMP«1abel>)

Transfer to the label takes place on.ly if the current

predicate value is success (sec next section). Otherwise,

the flov! of control passes to thl::; next statement in the

program.

FJUMP«label.">)

Transfer is effected only if the current predicate

. value is failure.

FUIIJ'CTION«label> , <dummy argument name>, <list of local vari.ables»

This statement causes a function to be associnted with

the label. References to arguments given to the function

when called will be made with the indicated dummy argument

name. The list of- variables will be cons idered locnl

to the function. There IDfly be only one r1JNCTION stntement

ror a given label. Two or more different functions m::-Iy

. use the same dummy argwnent name.· Examples:

FUNCTION (ABC,$DUMMY)

FUNCTION (XYZ, $ DUM , TEMPI, TEMP2)

CALL «labei> , <list of arguments»

This statement will call the function associated with

the label. If a call to ABC (defined above) is executed:

CALL(ABC, 100, 'PEACE')

then $DUMMY(I) 1-rill be integer-valued with the value 100

and $D~1Y(2) will be string-valued with the value 'PEACE'.

The zero-th reference is nlwnys integer-valued with the

R-,29 3-3
'July ll~, 196'(

number of arguments supplied as its value. So in this

instance $DUMMY(O) is equal to two. References to $DUlv1MY(N)

where N is less than zero or greater than two will be errors.

Labels must be passed as arguments enclosed in (") double

,quote marks. So

CAT.JL(ABC, "!ABEL") .
, .

ABC: JUMP($Dm~(l))

causes a transfer to the statement labeled with LABEL.

Arguments provided in a CALL statement must be string

references, expressions of any complexity, labels or

dummy argument references. So

CAI,L(ABC, 7 ,Xt5-Y/Z, It·l0THER' ,$XYZ(7) , "LABEL")

is syntactically correct.

To return from a called function, there are three "rays:

JUMP(RETURN) - causes, a return to the next lo\·rcr level,

reinstating the value of predicacy that existed when

the function was called.

JUMP(SRETURN) - causes a return, and changes the va.lue

of predicacy-at the lower level to success.

JUMP(FRETURN) - causes a return and changes the value

of predicacy at the 10v1er level to J'ailure.

SCALL«label>, <list of arguments»

The CALL is executed only ~f the current value of

predic~cy is success.

FCALL«list of arguments»

The CALL is executed only if the current value of

predicacy is failure.

CONCAT«variable> , <string 'reference>,' <string reference»

Execution of this statement causes the value of the

variable to become the string obtained by concatenating

the two string references.

R-~!9]-)l

July· 14, 196'(

CNST.NU«vari.nbJe>, <string reference»

This converts the first numeric string of ellOracters

in the string reference to a decinwl integer and sets

the value of the variable to this integer. A (+) plus

sign or (-) minus sign vril1 be considered numeric

characters.

e.g. CNSTNU(X, 'ABC123ABC') cause X to beeome 1~)3

CNSTIHJ(X, '10') cause X to become 10

CNSTHU(X, ' A-A5 ') cause X to become 0

CNNUST«variabl~>, <integer reference»

This function causes the integer to become converted

into a string of' digits, signed only if ·negative, and

stored as the· value of the variab'le.

ERCOMP«label>)

Execution of this function causes a transfer to the

label only if during compile-time errors were detected

in the program.

I

ERJUMP«label>)

This function saves the label and will cause transfer

to the label in the event that a run-tbne error occurs.

If a second run-time error occurs before another ER,nffi1P

st~tement is executed, execution halts.

COMMENT«string reference»
/

This function causes the string to be printed on the

te;tetype \-,hen this function is executed.

TTYON«integer reference»

This function determines whether or not out-put of the

pseudo teletype is to be printed on the controlling (user)

teletype. Initially, the output is not printed. To

cause the output to be printed, execute TTYON with the

vulue of the integer reference non-negative. To turn

,R-29 3-5

July lJ+, 1967

the teJ.ctype off, execute TrYON with a negative a.rgument.

Note that TTYON and OUTFlLE arc completely independent

of each other.

OUTr'ILE«string reference»

This function opens the file specified by the string

reference and causes all ou~put of the pseudo teletJ~e

to be diverted to the file. The file is opened. at its

beginning.

REO~«string r~ference»

Same as above except file is opened at its end

(i.e., output from the pseudo teletype is added to the

contents of this file.)

SETFIAG(<string reference>,)

The string referenced is written on the current outfile

between two control ([) left-bracket characters. Thi.s

flag may be used by the predicate functions'MATCH and

GSTRING, to be described below.

ERSFLAG«string reference»

This function erases all flags written on the file

indicated by the string reference.

Tll.1E«integer reference>, <label»

This function spec~fies that a transfer to the indicated

label is effected if and only if the next character-send

statement does not terminate within N seconds, where N

is the value of this integer reference.

INTERACT(<mode character»

Read about character-send statements before trying to

understand this function. This ftUlction may be used to

R-29 3-6
July]){, 196'/

allow interaction to take place between the user (via

the teletype) 'and the pseudo teletype.. The mode character

(C-'or » determines whether&'-mode or >-mode is desired~

All characters are sent literally except that control

(~) left arrow causes a ruboutto be sent, control ([)

left-bracket causes termi~ation of the mode, and rub out

terminates the CGP program. \-lhen INTERACT is executed,

several bells will ring to let the user know.

R-29 3-7

July l~., 1967

Inb:?rnally Coded Predicate Funct ions.

During execution of a CCP progrrun, there is a state of

be ing, known as predicacy, which ex} sts vii th one of' two

values: suecess or failure. Initially (when a program

starts) and each time a function is c,alled, predicacy is

automatically set to success. Thereafter, the only ways

the value of predicacy rna.'! be changed are b.y executing one

of the following predicate functions, or by returning from

a called function via SRETUHN or FRF.!TUHN. Predj cacy may be

tested for by any of the previously CX1)lai.ned functions

SCALL, FeALI" SJUMP, and FJUMP.

NmJIJ(<string reference»

Sets predicacy to success if the stri.ng rcfercn~e is

the null string, else sets predicacy to failure.

EqUAL«integer reference>, <integer reference»

Success if the. tvlO integers are the same value, . else

failure.

GRTR«integer reference>, <inteB€r reference»

Success if the first integer is greater than the second,

else failure.

STREQI,(<string reference>, <string reference»

Success if the tyro strings are exactly the same,

else failure.

MATCH«string ref!>, <string ref2>, <string ref3>, <string ref4»

This function executes a search on the file specified

.by string reference 1. The string referenced by string

reference 2 is the string of characters searched for.

MATCH changes the value of predicacy to success i.f the

string is found, else changes the value to failure. '.I~he

R-29, 3-8

bounds 'of the search are indicated with string references

3 and 4 in the follovling complicated manner.

If string reference 3 is a flag by SETFLAG, the search

commences after the first occurrence of this flag. If

string reference 3 is the C') null string, the search

will begin after the point where the search vias most

recently discontinu~d. If the () non-string is specified,

then the search begins at the beginning of the file (see

example below for clarification).

String reference 4 determines where the search vTill

terminate. If string referen~e 4 is a flag set by

SETli'IAG, then the search will termj:nate at the first

occurrence of this flag after the search has started.

If string reference 4 is the () non-string, or if the

flag is not encountered in the file during the search,

then the search Hill terminate at the end of the file.

Assume the file /X/ has the following characters, with

flags (F1) and' (F2):

~(Fl)1~(~'2)1~
, J .

·1 2 3

Then the following program will count· the occurrences

of the string '12' in regions land 3:

LOOPl:

REGION 3 :

LOOP3 :

EXIT:

COUNT = 0,

MATCH(r/x/" '12'" rFI')

'COUNT = COuNT + 1,

MATCH('/X/ t, '12 t , If, '.Fl')

MATCH('/X/', 'l?', 'F'2')

COUNT = COUNT + 1, .

MATCH(1 /X/', t 12', ")

FJUMP(REGION3)

SJUMP(LOOP1)

li'JUM p(EXI'J?)

SJUMP(LOOP3)

R-29 3-9

July It~, 1967

GS'l'RING(<string ref D, <variable>, <string ref 2>, <string ref 3>,

<string ref 4>, <string ref 5» -

'rhis function executes a search on the file specified by

string reference 1. It searches for a string of characters

preceded by the string referenced by string reference 2

and followed by the string referenced by string reference 3.
If such a string is found, then the value of the variable

is set to this . string, and the value of predicacy is set

to success. If not found, the variable i.s set to the null

string and the value of predicacy is set to failu~. Str ing

references '-t- and 5 spec ify the bounds of the search j n the

same wa.y the bounds are set in the function M1\TCH.

Consid.er the file /yl whose contents, with flags (1~3)

and (F4) are as follows:

ABCDCD7F(F'3)/.l/2/3/4/(F1J,:)1/1/1/

The statement

GSTRING('/y/', X, 'CD t
, '7')

succeeds with X = 'CD~'.
The follo\,ring program calls the user funct 1-on EXAMINE for

each number found between (I) slashes on the file:

LOOP:

EXIT:

GSTRING('/y/',x,'/','/t)
CALL (EXAM JNE, X)

GSTRING(' /Y/' ,X, '/t, '/1,")

~"\JUMP(Exrr)

SJUMP(LOOP)

Carefully notice that this program will call EXAMINE for

all 7 cases. The flag (FIt) will be ignored completely.

R-29 3-10
. ! /" July 1. ~, 1907

3.4 Character-send statements

There are two modes for sending characters to the pseudo

teletype. (3:"mode insures that the Time-Sharing executive

is the listening program by sending several rubouts. >-mode

does not disturb the pseudo teletype before sending characters.

F'or example, the CCP statement

(~CAL. !

first causes several rubouts to be sent, then a C, an A,

a L, an(i finally a (.) period. The exclamation point indicates

the termination of the statement. Character-send statements may

also be terminated with a (c{o) 'Percent sign, and the dIstinction

will be described below. If the next CCP character-senci statement

is
>SET A = l!

Then the characters

SET A == 1

would be sent, and CAL would still be listening. The pseudo

teletype is initially set in BEGINNER mode (see document *-2~~).

It is possible for the value of a string-valued dummy' .

argument reference to be sent in character-send "mode, ano this

is indicated by including the reference in the statement:

if $DUMMY(3) is 'XYZ t and $DUMMY(l~) is '/XY.Z' then the

charact~rs sent ,.,rill be several rubouts and then:

COPY FILE XYZ TO /XYZ.

To cause the string value of a variable to be sent, the

variable name must be preceded by a .($) dollar sign and followed

by a (.) period: If X has the value '/FlIE/', then

>GO TO $X •• !"

causes the strjng

GO TO /FIIE/.

to be sent.

R-29 3-11

July 14., 1967

If a control «(-) left arrOv1 is found :i.n the' statement, then

a ru.bout will be sent to the pseudo teletype instead of that -

character. If a control ([) left-bracket is found in the statc

ment~ then the statement will immediately terminate (as if the

(~)' exclamation point had appeared at that point.) Clearly

the value of this convention is se,en only where variable and

dummy arswnent references are involved. Carriage returns and.

line feeds are not normally sent .
. ~'~ f'I't'D
~.~_ "(,1:' •

$x ..
1,5
YES

c c c
(-- (-- ~

4;y

COPY FILE /A/ TO /B/.

If X has the value 'jA/' and Y has the yalue 'AB]cCD', then

the characters sent will be

QED./A/.l,5.YES rubout rubout AB

In the sending of variable and dummy argument re"ferences,

all characters are sent literally except control (<-) left arrow

and control ([) left bracket. i.e., if X js '$Y.' then

>$X. !

causes the charact~rs

$Y.
to be sent.

If it is desired that the characters $,!, %, C
<-, (c, cr, If

'be sent without the above-mentioned conventions, then they must

be preceded by a ($) dollar sign. (This doe's not hold \·,ithin

variable or dummy argument references.) A ($) dollar sign

found in any context other than those heretofore described

will cause a compile error. The CCP statement

sends

to the pseudo teletype.

R-29 3-12

July Ih, 19CJ'7

Now the difference between terminating a character-send

mode statement with (!). exclamation point or (%) 'vill be

explained. Hhen (!) exclamation point is used, the flow of

control 'Hill not pass to the next statement until the last

character has been sent and the pseudo teletype :is again waiting

for input. 'fermination ",ith (i) causes .completion of the

statement as soon as the last character is sent.

R-~~9 ·4-1

July 11~, 1967

4.0 Error Handling

4.1 Compile Time Errors

Syntactic errors vTil1 be discovered at compile-time an~ error

messages giving the line number and an explanation will be generated

to the teletype. After each discbvered syntactic error, CCP will

search through the input text for a labeled sta.tement. At this

-point compilation vrill continue. "Ihether or not there were

compilation errors can be tested at runtime with the function

ERCOMP.

When a name is found to have double use, an error message

is generated and the first use remains in effect (e.g., doubly

used label, or a namq first used. as a variable and then as a

label) .

4.2 Runtime Errors

Runtime errors will likewise result in hopefully elucidative

error messages. Possible runtime errors are: finding an out-oi'

bounds dunnny argument reference, using a 'VITong-type variable or

trying to execute a statement which did not compile correctly.

vfuen a runtime error is encountered, a check is made to see

if an ERJUMP statement bas been executed. If such a statement

was executed, and no runtime errors have occurred since, then

the stack is reset to level 0 and a transfer to the ERJUMP label

is executed. A message is printed on the teletype indicating

--tbis activity. Otherwise, execution of the program is terminated.

R-29 5-1

July 14, 1967

5.0 Running a Program

CCP programs are best composed in Q,ED. If serious Hark is

being done, it is suggested that free use of the functions ERCOMP

and ERJill~P is made.

\'lhen calling the subsystem CCP, a list of arguments is

requested. ArBumcnts may be supplied in exactly the same manner

as in a CATJL function. Typing a ()) right parenthesis will

terminate the list, and CCP ,·,ill request the name of the file

on which the proe;rrull lies. A typical encounter vli th CCP might

appear as follows (underlined characters are typed by CCP):

~CCE:
ARGUMENTS: (27, '/FILE', "IABEL1" , 21'5)

INPUT: /ecp.

BAD EXPRESSION AT LINE+2

NAME USED YlHONGLY LINE+7

'STEFtAG' IS NOT A CCP FUNCTION AT LINE 12

*** COMPILED HITH 3 ERRORS1<-X*

COMPILE ERROR ENCOUNTERED

LINE 2, LEVEL 0

ERtlUMP TRANSFER TO LABEr. 1

OUT-OF-BOUNDS DUMMY REFERENCE

LINE 36, LEVEL 7

NO ERJUMP TRANSFER

END

R-29 5-2

July 14, 1967

The arguments given to CCP at runtime are referred to with

a special dummy argument name. In the above ex.ample:

$(1) is 27
$(2) is '/FlLE' etc.

and

$(0) is 4

R-29 6 .. i
July 14, 1967

6.0 Examples

This program expects a list of files in pairs that are to

be copied. When the argument I!' is~found, the rest of the

arguments are files to be assembled. Checks are made during

the copying that no errors· occurred.

ERCOMP(EXIT)

FUNCTION(COPYCHECK,$DUM)

N ~ 1,

IDOPl: STREQL($(N), .!.) SJUMP(ASSEMBLE)

OUTFlLE(' /$X t
)

@COPY FILE. $(N) TO $(N+l). !

CALL (COFYCHECK)

N = N+2, ~1P(LOOPl)

ASSEMBLE: EQUAL($ (0) ,N) SJUMP(EXIT)

@ARPAS.$(N+l),$(N+2). !

. N = N+2, JUMP(ASSEMBLEJ

COFYCHECK: MATCH(' /$X', '. cr If 1f1) SJUMP(RETURN)

JNTERACT(» J1JMP(RETURN)

EXIT:

