R

et L 2 AP 7 P DU
nvesLlLgavCr : MEELVIN

——
O
(0@

AUG 31 1%

oo A
0 L

University of California, Derkeley

g W. Pirtie
 om— Y .
(415 6h2.7220



2-1

- o A2 N o ) P g i i S - - S .
2.0 User Aids end Problen.oriented Progrowming Lengsueses

A number of projects involving the design or implementation
of problem-oriented programming languages and languages to
otherwise aid the user of the system are underway. Our goals
in these endeavors are to make actusl use of the languages
in subsequent work as well as to apply the best programming
practice to subsystems running in our particular kind of system

environment.

2.1 Question-Answering System

The HELP system and its related routines--all called QAS,
the Question-Answering System--was originally developed in the
project about two years ago. It was planned at that time that
the system would be used to provide assistance to users of the
time-sharing system at times when they would otherwise be forced
to refer to system manuals which are always bulky, not well
organized, and frequently out of date. The assumption that
the user is somevhat familiar with a particular subsystem and
its associlated terminology restricts the questions which may be
asked sufficiently that a relatiVely simple algorithm can be
used to answer questions posed in unrestricted English form.

Unfortunately, the QAS written two years ago could not
be fully implemented due to a lack of capebility in the time-
sharing system. The current TSS has undergone considerable
revision since then, and a large-cspacity disk file has been _
added to the system. Thﬁs, the question-answering system developed
two years ago has been reimplementéd with a pumber of new
features and with an encoding scheme for the data base which
permits it to be stored much more compactly.

The systems consists of two progrems, one for creating data
bases and modifying them, and one for answering questions. A
dafa base consists basically of a colleétion of messages and one
or more listslof key words associated with each message.- When

the system is asked“a question, it extracts all of the key words




known Lo it from the question, making allovanca for minor
syntactical verilations such asg plurals and past tenses, and then
searches for a message which is associasted with the largest
possible subset of those key words. This message is then typed
out. If several messages are associated with key-word subsets
of the same size, theyiare a8ll typed. If it is not pertinent
or if he is not interested, the user may silence the printing
of one message and go on to the next. : o

A message is stored as an array of pointers to a dicticnary
which contains all the words used in any of the messages.
Special characters, numbers, and other peculiarities of the message
are encoded directly. A message may incorporate another message
as part of it and may append another message to itself. In
other words, the routine which types out messages interprets
a simple langusge which includes transfer and subroutine jump
commands, as well as direct and indirect references to operands.
This scheme permits messages to be stored very ccmpactly, which
is important to successful use of this system since the amount
of text in a data base can be quite extensive. The association
of key-word lists with messages is recorded in a tree structure
which can be searched rapidly. 7

Data bases have been constructed for the user interface
to the time-sharing system (i.e., the system calls), for the
graphic system, and for the editor. We are now in the process
of improving these data bases and creating others. It is intended
that every major subsystem will have e HELP command which will
-permit the user to call on the gquestion-answering system and
obtain information about the suststem in a matter of & few

seconds.




2-3

2.2 Conversaiional Algebraic Language

A new version of CAL, a languege patierned on JOSS, hes
been written. The new implementation cozntains a small number
of new language features, of which the most notable are the
admission of six character names, random number functions,
integer variables, and alphanumeric input-output. The most
importent features of the new implementation center around
increased execution efficiency: o

a) In the absence of any declaration, arrays are implemented
by a hash teble scheme which makes it unnecessary to
‘search a list comparsble in length to the number of
elements in the array in order to find a particular
element. In this scheme a hash table of some fixed
size is allocated when the variable is first referenced
with subscripts, and a chain is built from each entry
of this hash table to hold those elements of the array
which hash into that- entry. ’

b) Arrays may be declared by a statement which specifies
the ﬁumber'of subscripts and the upper and lower bounds
of each subscript. The indicated amount of space is
allocated for the array, and references to it thereafter
proceed at high speed. An array may be reallocated
at any time during execution of the program.

¢) Actual machine instructions (or floating point ‘pops' when
necessary) are compiled for most operations. The majox
exceptions are: array references, which require a

- subroutine call to check the legality of the subscripts;
function calls; and transfers of control, which require
a search for the step to be transferred to. Code for
each statement is compiled in a form which permits it
to execulbe anywhere in memory. Relative branch end
relative subroutine call and return ‘POPs’ are used to
maeke this possible. The result, especially when integer
variables ére used as much as possible, is code which

is less efficient than that produ@ed by a good Fortran



4.

-compiler by a factbr of two or three, an enormous
inprovement over the older implementation, as well as
over the interpretive versions of similar languages
in uss elsewhere.

The cne other notable festure of the implementation is that

()]

all important tables and storage areas are paged, using routines
similar to those originally developed with the 940 LISP systen.
This permits more or less indefinite expansion of the size of
both program and data. The overhead associsted with paging is
leés than 20 percent as long &as no drunm referencés are required.
Allocation of storage is done in such a way as to keep adjacent
statement and adjacent array elements together‘as much as possible,
and to keep the source language text of the statemént separate
from the cbject code, since it is not required at run time.
Scaler veriables and constants are not paged.

A number of irritating points in the old implementztion
heve also heen cleaned up: the treatment of function arguments,
restarting and countinuing the program after an interruption
or error, and the ability to type in a complete expression in
response to a program request for input.

In the near future en extensive collection of commends for
controlling the graphics system will be added. These will have
two major purposes:

a) To permit unrestricted access to ell facilities of the
graphics system other than vector mecde from the CAL
language.

b) To provide a convenient mechenism for automatic
scaling, labeling and plotting of a greph with a

mininum of attention from the user.

2.3 SHOBOIM

A reasonsbly complete implementation of the SNOBOLA
language developed at Bell Laboratories has been completed.

The implementation is most notable for providing:

-



st RSN AT A e

sk

o S o

P P,

R e

2-5
a) Incremental creation and modification of the provram,
using an editing language which is a subset of QED,

our standard text editor.

b) Completely paged storage of both data and progranm,
allowing & total of about e quarter of s million
words to be used for storage. All the features of
the B=l1 Laboratories language h wve. been included,

with a few minor exceptions such as real numbers.

The entire system including editor, compiler and run-time
routines, occupies about 8000 words of re-entr ant code.

The system has just .been ccompleted and is in the flnal
stages of debugging and trial by users. Since the language
itself is extremely easy to use; and since the program
construction facilities are femiliar to all members of the
project becguse of their similarity with the editor, it is
expected that SHOBOL will find extensive gpplications in a
large veriety of string processing jobs, as well as being used
for more difficult problems.

We are now beginuning the design of a new editor which
will be clesely integrated with SPOPOL, so that users of the
editor may conveniently call on the SNOEOL pattern matching
facilities for searches and may construct SHOBOL programs to
operate on all or part of the file belng edited. We are
attenpting to maeke this interface as smooth as possible, so
that uvsers who are nol programmers can still take advantage of

at least the pa tern matching facility.

o



AUG 31 1968

ROGRESS
0
AGENC
Frojeuh: : : - PROJECT GEHIE
Date: P . - August 16, 1568
Contract Number: Sp-165
Contractor: University of California, Berkeiey
Principle Investigater: Melvin W. ?ﬁ.r‘bf‘.’e
Phene: i o (415) Ehaow7220
[4

i T

PR o
Bt o B




