
MEMORANDUM LISP Memo 2 

TO: SDS 940 LISP Users 
FROM: Warren Teltelman 
SUBJECT: Recent Improvements to 940 LISP Library 
DATE: 10 April 1967 

tlme[x;n;g] Time executes the computation x, n 
number of times, and prints out 
the number of conses and computa­
tion time per iteration. Garbage 
collection time is not included, 
i.e. it is subtracted out. Ir n 
is NIL~ it Is set to 1. If g 1s 
T, garbage collection time is also 
printed. 

Example: 

TI~~ «CONS NIL NIL) 1000 T) 

GARBAGE COLLECTION 
2458 CELLS 
1 CONSES 
0.01 SECONDS 
GARBAGE COLLECTION TIME: 23 SECONDS 
(NIL) 

TI!~ «CONS NIL NIL» 
1 CONS 
0.0 SECONDS 
(NIL) 



t4emorandum 
Page 2 
10 April 1961 

prettyfi1e[1;f] 

brkfn[??] 

break[l] 

Prettyfile performs a prettydef 

on the list of functions 1, 
writing them out onto drum file 
If/, complete with STOP. 

BRKFN 1s a convenient function to 
use as a break function when this 
facility is working. BRKFN calls 
BREAKl with ?? as the form in 
question. Thus if you do 
BREAKFN[BRKFN], the next time an 
error occurs, you will instead go 
to BREAKl which will print 
(COfJIPUTATION BROKEN) and then you 
can interrogate ??, and either go 
on, or quit, etc. 

BREAK is analagous to the old 
BREAKLIST which no longer exists. 

It takes a list of functions and 
sets up a BREAK as before, except 

it also allows specifying condi­
tions other than T. Thus, 
BREAK(FOO FOOl (F002 (GREATERP X 5) y» 
is the same as BREAKLIST(FOO FOOl) 
plus BREAK(F002 (GREATERP XS) Y) 
in the old system. 

break~[fn;when;what] This is the old BREAK. 



Memorandum 
Page 3 
10 April 1961 

breakl[zbrklexp;brklwhen;brklfn;brklwhat] 

unbreak[l] 

breakonce[fn] 

- -This is relativ~ly unchanged 
except that it has been made 
more error proof, especially when 
it is used by trQce. BREAK1 now 
recognizes the command t, and calls 
RESET which takes you back to 
evalquote. 

Same as the old UNBREAKLIST, 
which no longer exists 

BREAKONCE is a new breaking 
function. It is especially 
useful with recursive functions. 
BREAKONCE establishes a break 
on fn in the normal way but this 
break occurs only on the first 
time that the function is 
entered. For example, you can 
now do BREAKONCE(MAPLIST) and 
only one break will occur for 
each call to MAPLIST, regardless 
of how long the list is. 



Memorandum 
Page 4 
10 April 1967 

trace[l] TRACE now works in conjunction 

with BREAKI. It takes a list of 

functions similar to BREAK, and 
redefines them using a call to 
BREAKI so that BREAKI will print 
the value of the arguments and 

the value of the function without 

actually brt?aking. Recent improve­
ments to TRACE are: 

(1) The user can specify the values of 

interest to him in addition to or 
instead of the arguments of the 

function, by writing a list 

headed by the function followed 
by the values of interest, in 

place of just the function name. 

Example: 

TRACE(FOO (FOOl Y (CAR Z») 
(FOa FOOl) 

FOO(A B (C D» 
FOG: 
X = A 
Y = B 
Z = (C D) 

FOOl: 
Y = A 
(CAR Z) = NIL 

etc. 

arguments of FOa 



Memorandum 
Page 5 
10 April 1967 

(2) The user can specify the level 

to which the arguments, or values, 
are to be printed by writing 

(FN N X Y Z ... ) in the call to 
TRACE. N is taken to be 4 if not 

specified by this device. 

(3) If an error occurs, or RUBOUT is 

pressed, while a function is being 

traced, a normal BREAK occurs and, 

the user can proceed from that 

point. 

Example: 

TRACE (FACTORIAL) 
(FACTORIAL) 

FACTORIAL(2) 
FACTORIAL: 
N = 2 

FACTORIAL: 
N = 1 

FACTORIAL: 
RUBOUT ... RUBOUT pressed here 

(FACTORIAL BROKEN) ... BREAK occurs 
N 
o 
EVAL 



Memorandum 
Page 6 
10 April 1967 

untrace[x] 

FACTORIAL EVALUATED 
FACTORIAL 
1 
OK 
FACTORIAL exit from BREAK 

FACTORIAL = 1 

FACTORIAL = 2 
2 

No longer exists: use unbreak 

All of the break and tracing functions may be done 

any number of times without harm, i.e. it is 

unnecessary to unbreak before breaking with different 

conditions, tracing or using breakonce. Similarly, 

all of these functions add the functions broken or 
traced to a list which is the value of the atom ALL. 

By doing UNBREAK(ALL) at any time, all functions that 

have been broken or traced since the last time ALL 
was set to NIL will be restored to their original 

form. ALL will then be set to NIL. 


