
LISP Memo 1
MEMORANDUM

To: SDS 940 LISP Users

From: D. G. Bobrow, L. P. Deutsch, D. L. Murphy

Subject: General Structure of LISP 1.69

Date: 23 March 1967

I. INTRODUCTION

This is a preliminary memo describing the BBN LISP 1.69
system for the 50S 940 computer. It is a description of how
the system is working now, except for those places clearly
noted in the text below. Any difference between the des­
criptions given and actual operation found should be re­
ported, in writing, to the authors. At the end of this
memo there is a copy of the index to function descriptions
in the document, "The BBN LISP SYSTEM (revised October 1966)."
Those functions marked with an * have been changed from the
description in that manual. Those marked with .* have been
omitted from the current system. Some functions not marked
are no longer in the library, but are built-in subr's.
Since these changes are unimportant in terms of use of the
system, they will not be noted here. The report mentioned
is in short supply. If you do not have one, and would like
one, please send a note to Rita Doherty. When the manual
is reissued we will send you one. This will probably not be
for a period of at least one month. The description below
1s intended to summarize the differences between 940 LISP
and both the BBN PDP-l system, and the 7090 LISP 1.5 system.

Memorandum
Page 2
23 March 1967

II. FUNCTION TYPES

There are basically eight function types in the BBN LISP
System. These eight types are characterized by three
dichotomies. A function may independently have:

1. its arguments evaluated or unevaluated,
2. a fixed number of arguments to be spread (paired

with argument names),
3. be defined by a LISP expression or by machine

code.

The latter class of functions, defined by machine code,
were written in the system as subr's, or were compiled from
expressions. The basic distinction between these two sub­
types of the code class is that subr's are always in core,
while compiled function code is loaded as needed from the
drum. The three major distinctions will be testable by three
functions, evalp[fn], spreadp[fn], and exprp[fn]; the value
of each of these predicates will be T for ordinary uncompiled
LA~mDA expressions with a list of arguments.

Expressions used to define functions must start with either
LAMBDA, or NLAMBDA; indicating that the arguments of this
function are to be evaluated, or not evaluated, respectively.
Following the LAMBDA or NLAMBDA is any atom (except NIL)
or a list of atoms (possibly empty). If there is a list of
atoms, each atom in the list is the name of an argument for
the function defined by the expression. Arguments for the
function will be evaluated or unevaluated, as dictated by
LAMBDA or NLAMBDA, and paired with these argument names. If
an atom follows the LAMBDA or NLAMBDA, this function has an

Memorandum
Page 3
23 March 1967

indefinite number of arguments. If it 1s an NLAMBDA
expression, then the atom is paired to the list of arguments
(unevaluated) of the function; that is, to CDR of the form
in which this function name \'las CAR.

The case where an atom follows a LAMBDA is not yet implemented,
but will be shortly. It is our intention to evaluate each
of the arguments in turn, spread them out on the push-down
list, and bind to the atom following the LAMBDA the number
of arguments, n, that have been placed on the push-down
list. It is proposed that there exists a built in function
arg Em] which will extract the mth argument of this function
from the push-down list. This latter function will be un­
defined for m<0, will be equal to the number of arguments,
n, for m = 0, and will be undefined for m>n.

A standard feature of the BBN LISP system is that no error
occurs if a function is called with too many or too few
arguments. If a function is called with too many arguments,
the extra arguments are evaluated but ignored. If a function
1s called with too few arguments, the unsupplied ones will
be delivered as NIL. This applies to both built in and
defined functions.

There is a function PROON of an arbitrary number of arguments,
which evaluates the arguments in order and returns the value
of the last (i.e., it resembles and 1s an extension of
PROG2) •

The conditional expression has been generalized so that
instead of doublets it accepts n+l-tuplets which will be
interpreted in the following manner:

Memorandum
Page if
23 March 1967

(COND
(PI Ell E12 E13)
(P2 E21 E22)
(P3)
(p4 E41»

will be taken as equivalent to (in LISP 1.5):

(COND
(PI (PROGN Ell E12 EI3»
(P2 (PROGN E21 E22»
(P3 P3)
(p4 E4l) (T NIL»

This is not exactly true, but only because P3 is not evaluated
a second time, if needed in the third item in the second
conditional expression. Thus, a list in a COND with only
a predicate and no following expressions causes the value of
the predicate itself to be returned. Note also that NIL is
returned if all the predicates have value NIL. No error is
invoked.

LAMBDA and NLAMBDA expressions also have implicit PROGN'S;
thus for example

(LAMBDA (VI V2) (Fl VI) (F2 V2) NIL)

is interpreted as

(LAMBDA (VI V2) (PROGN (FI VI) (F2 V2) NIL»

The value of the last expression following LAMBDA (or
NLAMBDA) is returned as the value of the expression.

Memorandum
Page 5
23 March 1967

III. DATA TYPES

At the current time BBN 940 LISP has as data types literal
atoms, list cells, small integers, and large integers. It
does not have floating point numbers, although these will
be added in the not too distant future.

A literal atom is known to be an atom by its address.
Therefore it has no need to have a special symbol (such as
-1) in the CAR of the atom. Literal atoms have four cells
associated with them. These are called respectively the
CAR, CDR, PNAME cell and function cell of the atom. CAR of
the atom always contains the top level binding of the atom.
If the atom has not yet been bound, the value cell contains
the special atom NOBIND. CDR of the atom is a pointer to
the atom property list, initially NIL. The PNAME cell
contains a pointer to a packed character table which contains
the print name of the atom. The function cell contains NIL
until a function by that name is defined. There is no check
in the functions CAR and CDR for atoms (except numbers);
thus, one can access directly the top level value and the
property list of an atom with CAR and CDR. One implication
not immediately obvious 1s that CAR [NIL] • NIL, and
CDR [NIL] • NIL. These latter two values are a significant
convenience in programming.

Arrays are also available in BBN LISP. Arrays are identi­
fiable as such by their posit1on in the address space.

Memorandum
Page 6
23 March 1967

t
Header Block

i- r
I
l
I

i

!
i

I
I
I
I
I
:~

/

I ~ Length

.-

Non-Pointer Area

~

Pointer Area

Relocation Information

Typical Array

Every array 1s divided as shown in the figure. The HEADER
BLOCK is four cells long and contains:

Cell: ~

1

2

3

An array may
separated as
the standard

Length of entire array.
Relative address of first word of protected
pointers.
Relative address of first word of relocation
information.
Not presently used.

contain both pOinter and non-pointer data,
shown. Pointer data is assumed to be one of
LISP types, and the pointer data cells in all

Memorandum
Page 1
23 March 1967

arrays are used as base cells for tracing during garbage
collection. The non-pointer data, beginning in the fitth'
cell of the array, 1s of unrestricted type, and will not
be used as trace pOinters during garbage collection.

Relocation information contains the relative addresses of
cells in the array which are to be relocated when the array
is used as a compiled function, and is placed in core memory.

Examples:
1. Compiled code.

a. Machine instructions and unboxed numeric
literals are in the non-pointer area.

b. Other literals and variable name pointers are
in the pointer area.

c. Relocation information area addresses all
machine instructions whose address is within
the same program, e.g., BRANCH instructions.

2. Array of lists.
All data would be in the pOinter area; the other
areas would be of length ~.

3. Array of unboxed numbers.
All data would be in the non-pointer area; the
other areas would be of length ~.

Arrays are manipulated by three functions:

array En]
which creates an array of length n, and whose value is a
pointer to the array.

Memorandum
Page 8
23 March 1967

elt [a;i]
which gets the ith element of the array pointed to by a,

seta (a, i, v)
which sets the value of array a, element 1, to the value of v.
The value of seta is the value of v. Special provision will
be made in the compiler for handling arrays efficiently.

Memorandum
Page 9
23 March 1961

IV. INPUT/OUTPUT FUNCTIONS

A. Opening and Closing Files

BBN 940 LISP 1.69 allows the user to have any number of

files open at a given time. Restr.ictions in the time­
sharing system currently limit this to a maximum of 2,
however. A file is identified by its LISP File Number
(abbreviated L.F.N.) while open; actual file names are
only used in the opening process and in the !lSYSIN' and
"SYSOUT!- functions.

The three basic file manipulation operations are:

infi1e [name; type]

used to open the file named "name h (which must be of type
'type' (i.e., binary, 2, or symbolic, 3) if 'type' is not

NIL) for input: its value 1s the L.F.N. for the file if it
was opened successfully, or NIL otherwise.

outflle [name; type]

opens the file 'name' (which is set to type 'type' if
!'type' is not NIL, and otherwise to type 3, symbolic) for
output; its value 1s the L.F.N. or NIL as for infile.

closef [file]

closes a file, where 'file' is the L.F.N. of the file to
be closed. Its value is NIL.

Memorandum
Page 10
23 March 1967

At any given time one input and one output file are
selected as primary (the exact meaning of this is given
below). Normally these are respectively files ~ (teletype
input) and 1 (teletype output). The primary input file
may be changed by

input [rile]

which sets the file whose L.F.N. is 'file' to the primary
input file. Its value is the L.F.N. of the old primary
input file. Similarly, the primary output file may be set
with

output [file]

which has the obvious effect. To read the current setting
of the primary input or output file, either

input []

or

output []

may be used.

Obviously 1f other devices are added, they can be given
standard numbers and specif1ed as above.

Memorandum
Page 11
23 March 1967

B. Input/Output Transmission

Without exception, functions that actually read or write on
files may be given an additional argument which is the
L.F.N. for the file on which the operation is to take
place. In fact, if the additional argument is 'NIL,'
the primary file will be used just as though the argument
had been omitted. This is a special case of the observa­
tion about omitted arguments for functions.

The following functions perform output:

feed [w]

produces "N' carriage returns and line feeds:

prinl [a]

prints its argument.

prin2 [a]

prints the atom tA' with dOUble-quote marks inserted where
required for it to read back in properly; both prinl and
prin2 print lists as well as atoms. Neither print a
carriage return upon termination, both have value 'a'.

print [x]

spaces en]
terpri []

prints the S-expression 'x'; uses prin2;

Produces tn' spaces;
Produces a carriage return and line feed;

Memorandum
Page 12
23 March 1961

The following functions perform input:

ratom []

read []

readc []

Reads the next atom. The atom is
delimited as specified by setsepr and
setbrk. At present, setsepr and setbrk
can only take numbers as arguments.
This will be changed to allow characters.
Meanwhile, chcon described below is most
useful.

Reads the next S-expression.

Reads the next character.

c. Input/Output Control Functions

These functions perform a variety of operations on the
state of files. Those marked with * do not take the
optional extra argument to indicate a file.

clearbuf [] Clears the input buffer of the file (not
particularly useful for any file other
than the teletype):

Icontrol [j] Sets modes for reading with RATOM as
follows:

J = T Eliminates LISP'S normal line buffering
(and also eliminates automatic detection
of control-A and control -Q as line­
editing characters on the TTY):

Memorandum
Page 13
23 March 1967

J = NIL

J = 0

Restores line buffering (normal).

Eliminates the echo of the character

being deleted by control -A:

J = 1 Restores the echo (normal).

*linelength [N] Sets the length of the print line for

all files. The value is the former

setting of the line length;

*position [] Gives the character position on the print

line. No guarantees are made about its
meaningfulness if output is being done
intermittently to more than one file.

*'readp [] Gives 'T' if there is something in the
input buffer (either the TSS input

buffer or LISP's line buffer) and 'NIL'
otherwise.

D. Special Functions

sysout [name] Dumps the entire state of LISP on the

file named. This name should not specify

a drum file, since more than 38K of
information (the maximum for a sequential
drum file) will always be written. ". \

Memorandum
Page 14
23 March 1967

sysln [name] Restores the state of LISP from a sysout
file. SYSIN may only be done once after
entering LISP.

Memorandum
Page 15
23 March 1967

v. OTHER FUNCTIONS IN BBN 940 LISP

allocate en] = Allocates n word of an array.
Returns a pointer to the address
of the first wQod allocated.

apply Ern; arglist] = as in LISP 1.5 with no A-list.

character en] =

chcon [x;j]

clock [j]

closer [a;x] :II

Creates an atom whose print name
is the character whose oode is n.

x atom
Returns a list of numbers repre­
senting characters in print:.name.

J = NIL pr1nl representat10n
= T prin2 representation

(not"· implemented
at present)

for J • 1, 2 as before. For J-3
it gives number of seconds of
compute time exclusive of garbage
collection.

Legal only if one has immediately
preceded it with an openr [T].
Stores 'x' into location 'at. Both
tx' and 'at must be numbers.
a<2l4 actual core location.
a>2 l4 address in virtual address -

space.

Memorandum
Page 16
23 March 1967

conscount [] =

load [f, name] =

loc [x] =

ilp [x] =

logout [] =

Number of conses since LISP
started up.

Loads from file named, and types
values if f ~ NIL.

Makes a number out of x

Unrestricted car of x with error
checks.

Exits you from LISP

logxor [xl; ..• ; xnJ = Logical exclusive or of 'x'" ... ,'xn '

max [xl; •.. ; xn] = Maximum value of 'x',; ... ;xn '

openr [a] =

trace [] =

Minimum value of 'Xl'; ••. ; 'xn'

Value 1s number in a as defined
in closer. If a = T this allows
you to do ~ closer.

This is now an NLAMBOA and uses
BREAKl. It takes an indefinite
number of arguments. It will ask
for ARGUMENTS for subr's and com­
piled functions. Give an atom or
argument list as required. Do not
trace fsubr's like plus.

Memorandum
Page 17
23 March 1967

VI. USING LISP ON THE 940

In order to use LISP you should have in your file directory
an entry which points to the file on tape which is a
sysout file of the basic system. This basic LISP system
file, called BSCSYS on Bobrow's files, contains a binary
image of LISP after it has been initialized and loaded
with the library. You do not need a copy of the library
if you have this file. If you do not have such an entry
consult D. Murphy.

Call LISP by typing LIS; the system will respond P; you
type~; when LISP finally responds READY, type the
following:

SYSIN (BSCSYS)

After typing the above, terminated by a carriage return,
the system will find that file on the tape. When it has
read it successfully, it will respond with a T. At this
point you are talking to LISP evalquote (indeed you were
talking to evalquote before you did the SYSIN).

When typing into the computer, typing a control-Q will
clear the entire input line buffer erasing the entire line
up to the last carriage return. Typing control-A erases
the last character typed in but will not go beyond the
last carriage return. Using these line editing features,
the user will get echoing as determined by the function
control[j] as defined above.

Memorandum
Page 18
23 March 1967

To abort a type-in completely one can press the RUBOUT key.
Pressing it once will just ring a belli pressing it a
second time will cause control to go back to evalquote.
Pressing the RUBOUT button while an evaluation is in pro­
gress is like pressing the BREAK key on the PDPl LISP,
or on Project MAC 7090 LISP. It causes an untrace unless
an errorset is in force. A second RUBOUT will cause con­
trol to be immediately returned to evalquote.

Memorandum
Page 19
23 March 1967

VII. Index to Functions Described in AFCRL-66-l80 (Revised)

In the following, * indicates the function has been
modified as described; ** indicates the function has
been omitted from 940 LISP 1.69.

name of description
function section IIll pa~e
add 41
addl 51
addfree 42
and 26
append 26

* apply 39
assoc 37
atom 16
attach 27

** bploc 54
break 48
breakl 49
breaklist 49
car, cdr, (etc) 15

* character 23
clearbuf 22

* clock 53
* closer 54

** comfn 54

** commacro 54
cond 16
cons 15
control 56
copy 37

Memorandum
Page 20
23 March 1967

name of description
function section 1112 Ea~

** crn (see Icc) 53
define 29
defineq 30
deflist 41
difference 52

*if disp 33

** disp11s 34
divide 52
e 34
edite 43
editf 43
editp 43
editv 43
eq 15
equal 25
error 25
errorset 25
ersetq 25
eval 24
evala 39
evalr 39

** fcomfn 54

* feed 22
function 16

if fntyp 2!J

gcgag 42

gensym 33
get 35

if getbs 21
getd 24

getp 41

Memorandum
Page 21
23 March 1967

name of description
function section III z 2age
go 18
greaterp 51
intersection 38

** laa 57
last 28
lconc 28

length 28
lessp 51

* line length 57
list 18

* load 30
logand 34
logor 34

* logout 53

** magin 57

** magout 57
map 37
mapc 36
map car 36
map con 36
map cone 36
map11st 37
member 32
minfs 56
minus 51
minusp 51
nconc 27

** nnconc 21
nlsetq 25
not 16
nth 42

Memorandum
Page 22
23 March 1967

name of description
function section IlIa Eage
null 16
numberp 51
ob11st 16

* openr 54
or 26
pack 31
plus 51
prettydef 28
prettyprint 28

* prinl 19
* print 19
* prin2 19

prog 18
progl 23
prog2 23
progn 23
prop 38

** punch 20

-* punchon 19
put 40
putd 24
putdq 24

** putm 54
quit 25

quote 16
quotient 52

** quotemode 53
radix 54
ratest 55

* ratom 20

rat oms 20

rdflx 26

Memorandum
Page 23
23 March 1967

name of description
function section 1II z Eage

* read 20

** readin 22

* reclaim 42
remainder 52

** remob 31
remove 39
remprop 39
return 19
reverse 38

** rewind 57

** rim 54
rp1aca 33
rplacd 33
sas.soc 37
select 41
selectq 42
set 23

* setbrk 20

setq 23
setqq 24

* setsepr 20

-- soro 57
subl 51
sublis 39
subst 38

* sysin 55

* sysout 55
tconc 21

* terpr1 19
• time 42

times 51

Memo'randum
Page 24
23 March 1967

name of description
function· section 1I12 Ea8e

** tra 55

* trace 35

** tracp 35

* typein 20

• typeout 19
unbreak 48
unbreak1ist 49
union 38
unpack 31
untrace 35

* vag 53
zerop 51

