
$1.50

SDS 940
OlDS DIAGNOSTIC SYSTEM

REFERENCE MANUAL

50S 901591-AOO February 1969

505
SCIENTIFIC DATA SYSTEMS. 701 South Aviation Boulevard. EI Segundo, Calif., 90245 • 213/772-4511

@ 1969, Scientific Data Systems, Inc.

RELATED PUBLICATIONS

LISTINGS

OLDS 3.0 Control tv'bnitor 870029-51 A

UNIT 0 CPU 0 Diagnostic 870030-51A

UNIT 1 CPU 1 Exerc iser 870031-51A

UNIT 2 FPAU Diagnostic and Exerc iser 870032-51A

UNIT 3 MEM 1 Diagnostic for the 2nd 16K 870033-51A

UNIT 4 MEM 2 Diagnostic for the 3rd 16K 870034-51 A

UNIT 5 MEM 3 Diagnostic for the 4th 16K 870035-51 A

UNIT 12 RAD Diagnostic for Channel E 870036-51A

UNIT 15 RAD Diagnostic for Channel W 870037-51 A

UNIT 21 DISC Diagnostic for Channel W 870038-51A

UNIT 23 CTE 10/11 Diagnostic 870039-51A

Updating Instructions 870029-61 A

1 • PROG RAMMI NG

TABLE OF CONTENTS

1. 1 OFF LINE DIAGNOSTIC SYSTEM CONTROL PROGRAM (OLDS)

1. 1. 1 OBJ ECTIVE

1. 1. 2 STRUCTURE

1. 1. 3 CONTROL LANGUAGE (SYNTAX)

1. 1. 3. 1 Level Syntax

1. 1. 3.2 Abstracts

1. 1. 3. 3 Identifiers

1. 1. 3.4 Lists

1. 1. 3.5 Transfers

1. 1. 3.6 Variables

1. 1. 3.7 Uti I ities

1. 1. 3.8 Editing

1. 1.4 BREAKPOINT OPTIONS

1. 1.5 OPERATING PROCEDURES (USE OF SYNTAX AND BREAKPOINTS)

1.1.5.1 Loadi ng thi! System

1. 1.5.2 fv\anual Starting

1.1.5.3 Initializing

1.1.5.4 Independent Operation

1. 1.5.5 Error Procedure

1. 1. 5. 6 Copying

1. 1. 5.7 Editing and Checking

1. 1. 5. 8 The Loader

1. 1.6 INTERFACE REQUIREMENTS

1. 1.6. 1 Unit Level Interface

1. 1.6.2 Definition of Unit Parameters

1. 1. 6.3 Definition of Unit Variables

1. 1.6.4 Function Level Interface

1. 1.6.5 Definition of Function Parameters

1. 1. 6. 6 Function Variables Table

1. 1.6.7 Object Levei Interface

ii

TABLE OF CONTENTS (Cont.)

1. 1. 6.8 The Use of ERROR and REPORT Messages

1. 1.6.9 Other Interface Requ irements

1. 1. 6. 10 List of t-Aajor Subroutines

1. 2 UNIT 0 CPU DIAGNOSTICS

1.2. 1 Pretest

1.2.2 Function 0 940 tv\onitor tv\ode CPU Diagnostic

1.2. 3 Function 1 940 User t-Aap Diagnostic

1.2.4 Function 2 940 tv\onitor/User Transition Diagnostic

1.2.5 Function 3 940 Privileged Instruction Diagnostic

1.2.6 Function 4 Real Time Clock Diagnostic

L3 UNIT 1 CPU EXERCISER

1. 3. 1 Function 0 Instruction Examiner

1.3.2 Function 1 Add Exerc iser

1. 3. 3 Function 2 Sh ift Exerc iser

1. 3.4 Function 3 t-i,ultiply Exerciser

1.3.5 Function 4 Divide Exerciser

1. 3.6 Not Installed

1.3.7 Not Insta lied

1. 3.8 Not Insta II ed

1. 3.9 Not Installed

1. 3. 10 Not Insta lied

1. 3. 11 Not Insta lied

1. 3. 12 Not Insta II ed

1. 3. 13 No tins ta II ed

1. 3. 14 No tins ta II ed

1. 3. 15 Not Installed

1. 3. 16 Not Installed

1. 3. 17 Not Installed

1. 3. 18 Not Installed

1. 3. 19 Not Installed

1. 3.20 Not Installed

iii

TABLE OF CONTENTS (Cont.)

1. 3.21 Not Installed

1. 3.22 No tIns ta II ed

1. 3.23 Function 22 Multiply Analyzer

1. 3.24 Function 23 Divide Analyzer

1.4 UNIT 2 FPAU DIAGNOSTICS AND EXERCISERS

1.4. 1 Function 0 - FPAU Diagnostics

1.4.2 Function 1 - FPAU Add Exerc iser

1.4. 3 Function 2 - FPAU Subtract Exerc iser

1.4.4 Function 3 - FPAU Inverse Subtract Exerciser

1.4.5 Function 4 - FPAU Mu Itiply Exerc iser

1.4.6 Function 5 - FPAU Divide Exerciser

1.4.7 Function 6 - FPAU Inverse Divide Exerc iser

1.4.8 Function 7 - FPAU Spec ia I Cases

1.4.9 Function 8 - Not Insta II ed

1. 4. 10 Function 9 - Not Insta II ed

1. 4. 11 Function 10 - Not Installed

1. 4. 12 Function 11 - Not Installed

1. 4. 13 Fu nction 12 - FPAU Add Simulator

1. 4. 14 Function 13 - FPAU Subtract Simulator

1. 4. 15 Function 14 - FPAU Inverse Subtract Simulator

1. 4. 16 Function 15 - FPAU Multiply Simulator

1. 4. 17 Function 16 - FPAU Divide Simulator

1. 4. 18 Function 17 - FPAU Inverse Divide Simulator

1. 4. 19 Function 18 - FPAU Add Uti I ity

1. 4. 20 Function 19 - FPAU Subtract Utility

1. 4. 21 Function 20 - FPAU Inverse Subtract Util ity

1. 4. 22 Function 21 - FPAU Multiply Utility

1. 4. 23 Function 22 - FPAU Divide Util ity

1. 4. 24 Function 23 - FPAU Inverse Divide Utility

iv

TABLE OF CONTENTS (Cont.)

1. 5 UNIT 3 MEM 1 DIAG NOS Tie FOR THE 2 ND 16K

1 • 5. 1 Fu nc t ion 0 No tIns ta II ed

1. 5. 2 Function 1 940 tv\ap Diagnostic

1.5.3 Function 2 940 M-Register Diagnostic

1.5.4 Function 3 940 Address Driver Diagnostic

1. 5. 5 Function 4 940 Memory Noise Test

1.5.6 Function 5 940 Memory Signal Bouncer

1. 6 UNIT 4 MEM 2 DIAGNOSTIC FOR THE 3RD 16K

Refer to Functions for Unit 3

1.7 UNIT 5 MEM 3 DIAGNOSTIC FOR THE 4TH 16K

Refer to Functions for Unit 3

1.8 UNIT 6

1. 9 UNIT 7

1. 10 UNIT 8

1. 11 UNIT 9

1. 12 UNIT 10

1.13 UNIT 11

1. 14 UNIT 12 E CHANNEL AND 9367 RAD TEST

1. 14. 1 Function 0 Not Installed

1. 14.2 Function 1 E Channel Test

1. 14. 3 Function 2 RAD Primary Test for RAD Addresses 0 to 17777

1. 14.4 Function 3 RAD Addresses 20000 to 37777

1. 14.5 Function 4 RAD Addresses 40000 to 57777

1. 14.6 Function 5 RAD Addresses 60000 to 77777

1. 14.7 Function 6 RAD Head Analysis for RAD One

1. 14.8 Function 7 RAD Head Analysis for RAD Two

1. 14.9 Function 8 RAD Head Analysis for RAD Three

1. 14. 10 Function 9 RAD Head Analysis for RAD Four

v

TABLE OF CONTENTS (Cont.)

1. 14. 11 Fu nction 10 RAD Exerc iser

1. 14. 12 Function 11 Partial Sector Test

1. 14. 13 Function 12 Read RAD Utility

1. 15 UNIT 13 F CHANNEL RAD

1. 16 UNIT 14

1. 17 UNIT 15 W CHANNEL AND 9367 RAD TEST

1. 17. 1

1. 17.2

1.17.3

1. 17.4

1.17.5

1. 17.6

1.17.7

1.17.8

1.17.9

1. 17. 10

1.17.11

1. 17. 12

1.17.13

Function 0 Not Assigned

Function 1 W Channel Test

Fu nction 2 RAD Primary Test for RAD Addresses 0 to 1 n77
Function 3 RAD Addresses 20000 to 37777

Function 4 RAD Addresses 40000 to 57777

Fu nction 5 RAD Addresses 60000 to 7nn
Function 6 RAD Head Analysis for RAD One

Function 7 RAD Head Analysis for RAD Two

Function 8 RAD Head Analysis for RAD Three

Function 9 RAD Head Analysis for RAD Four

Fu nction 10 RAD Exerc iser

Function 11 Partial Sector Test

Function 12 Read RAD Utility

1. 18 UNIT 16 Y CHANNEL RAD

1. 19 UNIT 17

1. 20 UNIT 18 E CHANNEL DISC

1.21 UNIT 19 F CHANNEL DISC

1.22 UNIT 20

1. 23 UNIT 21 W CHANNEL DISC DIAGNOSTICS

1. 23. 1 Function 0 Not Installed

1. 23. 2 Function 1 TMCC Diagnostic

1. 23. 3 r- . • 1"\,... . I I ,..,... • • \ • ,. I I • ~ I 'T ,. r-unctlon L Lontroller ulagnosTlc vVlTnour uara I ransrer

vi

1. 23.4

1. 23. 5

1. 23. 6

1. 23.7

1. 23. 8

1. 23. 9

1. 23.10

1.23.11

1.23.12

1.23.13

1. 23.14

1. 23.15

1. 23. 16

1. 23. 17

1. 23. 18

1. 23.19

1. 23. 20

1.23.21

1. 23. 22

1. 23. 23

1. 23. 24

TABLE OF CONTENTS (Cont.)

Controller Diagnostic with Data Transfer

Function 4 Header Verification and Addressing Test

Function 5 Data Products 5045 Disc File Diagnostic

Not Installed

Not Installed

Not Insta lied

Not Installed

Function 10 Disc Exerciser

Not Installed

Not Installed

Not Installed

No tIns ta II ed

Not Insta II ed

Not Installed

Not Insta lied

Function 18 Write Protect Switch Test

Function 19 Single Increment vs. Time Plotter

Function 20 Mu Itiple Increment vs. Time Plotter

Function 21 Write Headers

Function 22 Write Header Test

Sector Dump

1. 24 UNIT 22 Y CHANNEL DISC

1.25 UNIT 23 CTE 10/11 TEST

vii

1. 1 OFF LINE DIAGNOSTIC SYSTEM CONTROL PROGRAM (OLDS)

This document outlines the 940 Off Line Diagnostic System Control Program. A
brief summary of its objectives and structure will be given. However, particular
emphasis will be placed on the OLDS syntax, the interface requ irements between
OLDS and its component 940 diagnostic programs and the operating procedure for
OLDS.

For the remainder of this document the word "control" refers to the System Control
program and the word "operator" refers to the person running or using the Program.

1. 1. 1 OBJECTIVE

The purpose of OLDS is to design a flexible control feature in a compact program,
providing a common interface between the operator and all 940 diagnostic
programs. Th is common interface has the following advantages:

Simple syntax, common to all 940 diagnostic programs.

Standard operating procedure, common to a II 940 diagnostic programs.

Uniform breakpoint settings, common to all 940 diagnostic programs.

Common interrupt, trap and POP receivers.

Common input/output handlers.

These advantages will enable an operator to run any 940 diagnostic program by
merely knowing how to communicate with OLDS.

1. 1.2 STRUCTURE

OLDS is designed to handle four logical program control levels. These are
defined to be:

System level program

Unit level program

Function level program

Object level program

These levels are designed to enable program modularity and ease of modification.
The definition associated with each level is as follows:

System level program: The set of all 940 diagnostic programs, OL DS, and any
940 configuration.

1.1 -1.1.2

Unit level program: A program which will completely diagnose, exercise
and adjust an entire unit of a 940 system. A unit is a major subset of the
System. A unit is always confined to 16K of core.

Function level program: A sel f-initial izing program designed to diagnose,
exercise and/or adiust a particular portion of a device of a 940 system. A
Function is a major subset of a Unit.

Obiect level program: An autonomous self-initializing body of code, devoted
to diagnosing a module, a small portion of back panel wiring or a cable.

An Object program is a major subset of a Function program and the smallest
denomination of the System.

1. 1. 3 CONTROL LANGUAGE (SYNTAX)

1. 1. 3. 1 Level Syntax

The following characters specify the four control levels:

5 System level control

U Unit level control

F Function level control

a Object level control

1. 1. 3.2 Abstracts

A short explanation of each level can be requested by call ing for the abstract.

SA Ca lis for the System abstract

UA Calls for the Unit abstract

FA Ca lis for the Fu nction abstract

OA Calls for the Object abstract

1. 1. 3. 3 Identifiers

A short title concerning the level is printed as the identifier.

51 Calls for the System identifier message

UI Calls for the Unit identifier message

i. i. 3 - i. L 3. 3

1. 1. 3.4 Lists

FI Calls for the Function identifier message

01 Calls for the Object identifier message which is the starting
core address for the particu lar obi ect test.

A list of all identifiers is output.

1.1.3.5 Transfers

SL Not allowed. An error flag is printed. (V check mark)

UL Unit list - This rewinds mag tape zero and then reads each
unit and I ists the unit identifier message. After the last unit,
the tape is rewound and positioned in front of the first unit.
No unit has been processed by OLDS control so this command
must be followed by a system transfer (ST) to recover control.

FL Function List - This lists each function ID message in the
current unit.

OL Not allowed. An error flag is output.

This command causes a controlled transfer to the selected level.

ST System transfer - A system transfer rewinds mag tape zero and
simu lates a mag tape fill. It reloads the entire system inc lud
ing control.

UT Unit transfer - If a unit transfer is made to a unit other than
the current unit, mag tape zero is rewound and each unit is
loaded until the selected unit is found and started. If the unit
is not found, or the unit is not selected in the unit access word,
(see system variables) "ILLEGAL UNIT" will be outputted.

If a unit transfer is made to the current unit, the unit is started
by skipping preset code that may change the unit variables
according to the system variables. Th is command is used to
restart the current unit, particularly after the unit variables
have been changed.

In either case the unit is locked in and will run indefinitely.
Only a system transfer or removing the UIW-FIW lock will
return automatic control.

FT Function transfer - If a function transfer is made to a function
other than the current function, core is searched for the func
tion and the function is started. If the function is not found

1. 1. 3. 4 - 1. 1. 3. 5

"ILLEGAL FUNCTION" will be outputted. The new function
will be the only function running. The Unit may be recovered
by a unit transfer to the current unit.

If a function transfer is made to the current function, the
function is restarted by skipping any preset code that may
change the function variables from the system or unit variables
is skipped. This command is used to restart the current function
particularly after the function variables have been changed.

OxxxxxT Object Transfer - This sets the machine registers according to
the object variables and executes a BRU xxxxx.

OT Object Transfer - This sets the machine registers according to
the object variables and restarts the current object test.

xxxxxxT Halt and Transfer - This outputs "RTC OFF", turns the Real
Time Clock off, sets the machine registers according to the
object variables and halts. The halt is followed by a

1. 1. 3. 6 Variables

BRU xxxxx.

T Transfer - This continues the program from the point is was
forced to exit.

Each level has optional variables which can be modified. The maximum
amount of variables for any level is eight.

SV Displays System variables

UV Displays Unit variables

FV Displays Function variables

OV Displays Object variables

The variables display may be stopped at any time by toggl ing Breakpoint 4.
This will allow a faster input from the console typewriter to change any
variable.

Eleven characters control the changing of any variable.

COMMA (,) If no numeric characters are entered before a comma,
eight dashes will be printed to set the next variable.
Any allowable characters inputted before the comma
will be added logically to the variable word using
1 + 1 = 0, 1 + ° = 1. Therefore, bits can be added
or deleted.

~ 1 '1 /
I. ' • .). 0

UAW

PERIOD (.)

SLASH (/)

0-7

Replace this variable with the new characters.

Input Error-Ignore last input.

Allowable characters. All other characters will
cause an error flag to be printed.

EXAMPLE

STATUS UIW/FIW RADSIZ DSCSIZ MEMSIZ SEED TIME

67004004 40000000 0000000 20004000 0000400 00000007 36 (BP4 Toggled)

-------- 40004000" -------- 40004000. (carriage return terminates)

-sv

UAW STATUS UIW/FlW RADSIZ DS (BP4 Toggled)

67004004 00004000 000000000 40004000 00004 (BP4 Toggled)

(Carriage return terminates without changes).

Eight variables are displayed at the system level.

UAW Unit Access Word

The 24 bits define 24 possible units that the system can accept. The present
assignments are listed in the table of contents.

Unit descriptions can be found in the Table of Contents 1. 2 to 1. 25.

STATUS

BIT 0 = 1

BIT 3 = 1

BIT 6 = 1

BIT 12 =

BIT 15 =

BIT 21 =

The 24 bits in STATUS define special applications.

44404404

Output to I ine printer address 60 if it is ready.
Output to console typewriter for all other cases.

The computer was operating with enabled interrupts.

Enable and keep a log of real time clock interrupts.

Read RAD only to preserve data.

Read DISC only to preserve data.

940 definition bit which must stay set.

1. 1. 3. 6A

UIW/FIW

RADSIZ

BITS 0, 1, 2

BITS 3, 4, 5

BITS 12, 13, 14

BITS 15, 16, 17

DSCSIZ

BITS 0, 1, 2

BITS 3, 4, 5

The first four octals force a pass count for the unit
tha tis ru n n i ng •

40004000

If bit 0 is set the unit will loop indefinitely. The
last four octals control the cycle count for a
function that is running. Octal 4000 or if bit 12
is set the function will not exit.

Each channel uses a specific octal to define the
amount of rads available. The numbers 0-4 call
none, or 1-4 rad cabinets (drums).

20004000

Rads present on E channel
number}.

nit r- I I Kaas presen on r cnanne
number}.

Rads present on W channel
number}.

Rads present on Y channel
number}.

(U NIT 12 uses th is

(U NIT 13 uses th is

(U NIT 15 uses th is

(U NIT 16 uses th is

No other octals are assigned.

Each channel uses a specific octal to define the
disc which is available for testing. Octal 1
implies 8 discs. Octal 2 implies 16 discs.
Octal 4 impl ies 32 discs.

77007700

Disc present on E channel
number).

Disc present on F channel
number}.

(U NIT 18 uses th is

(U NIT 19 uses th is

BIT BITS 12, 13, 14 Disc present on W channel (U NIT 21 uses th is
number).

BITS 15, 16, 17 Disc present on Y channel (U NIT 22 uses th is
number).

No other octals assigned.

1. 1. 3. 6B

MEMSIZ The size of the memory is specified by a
number 1-4.

00000007

One to four doors or 16K to 64K can be specified.

BITS 21, 22, 23 Memory size in multiples of 16K

SEED The random number generators in all units use this
common location for their seed number. Th is
number will vary as long as CONTROL is in core.

TIME

When a system is restarted the seed value begins
at zero.

If the Real Time Clock is running, the octal count
is held in the TIME cell.

Unit variables will always include the Function Access Word and seven others
if needed by the unit. These variables are explained in the Unit Abstract and
by their titles.

FAW Bits 0-23 in this word control access to functions
0-23. A lIone ll bit allows access.

The eight options for a function are entirely dependent on the particular .needs
of a function. These variables are explained in the function abstract and by
the titles.

The seven obj ect variables displayed are:

AREG

BREG

XREG

OVRFLO

RL1

RL2

This is the value of the A register at the time any
object test transferred to the control mode. It can
be changed and wi" become the new value at
transfer back to the test.

This is the value of the B register.

This is the value of the X register.

Bit 0 shows the state of the overflow bit. (Zero or
one).

The relabel ing register 0-3 contents at the last
setting are held in RL 1. If the value is changed,
relabeling will change.

Relabeling register 4-7.

1. 1. 3. 6C

RL4

ERRORS

1. 1. 3.7 Uti I ities

The monitor relabel ing register is normally set to
6, 7 to access the fu II first 16K. See RL 1.

Th is cell logs the entire system error count.

Control has two utility functions which can print or modify any core address
from 0-177777 by direct addressing.

YxxxxxxP

xxxxxxM

1. 1. 3.8 Editing

The print symbol wi II display the octal contents
from the input address xxxxxx until Break-
point 4 is toggled and aborts the printout. This
listing can be sent to the line printer by setting
bit zero of the STATUS word to a one. The actual
input address is automatically relabeled. A
specific count of one through seven words can be
displayed before the printout stops if Y is any
number greater than zero. The fu II 8 octa Is must
be entered, i. e., 30000200 wi II display three
words starting at location 200.

The modify symbol allows any address (0-64K) to
be changed. The rules governing changing
variables apply here (see 1. 1. 3. 6. SYNTAX).

A maximum of eight sequential addresses can be
modified before the M uti I ity transfers back to
control. In any case, a carriage return will end
the modify mode.

These commands allow the OLDS tape to be edited or added to.

yE xx Edit - This rewinds mag tapes zero and one.
Control is written on mag tape one from core with
the current system variables. Successive units are
read from mag tape zero, the unit 10 message out
putted, and then written on mag tape one. When
unit xx is read, one of the following is done
according to y.

y = 0 Control is returned to the Typewriter.

y = 1 A paper tape fill is simulated.

y = 2 A card fill is simulated.

1. 1. 3. 7 - 1. 1. 3. 8

1. 1. 4

yC xx

B

E 24

The edited units ID message will not be typed
until after the continue edit is done.

Continue Edit - Th is is identical to the edit
feature except that it continues from its current
position. It starts by outputting the current unit
ID message and then writing the current unit on
mag tape one. xx is the next unit to be edited.

Back Space - AkJg Tape zero is backspaced one
unit.

Copy All - This command copies an OLDS tape
putting in the current system variables.

BREAKPOINT OPTIONS

The following breakpoint options which are tested in OLDS will be fixed for
all 940 diagnostic programs. Individual diagnostic programs are not to include
any breakpoint tests:

BPT1 Set - Loop on current object test.
Reset - Proceed to next obj ect test.

BPT2 Set - Do not proceed to control on errors.
Reset - Proceed to control on errors.

BPT3 Set - Inh ibit error messages.
Reset - Output error message on selected periphera I
devices.

BPT4 Toggle - Go to control and/or terminate output (BPT-1, 2,
3 are ignored).
Not Toggled - Normal operations (BPT -1, 2, 3 are tested).

To proceed to control from an output loop, set BPT3, then set BPT4, reset
BPT3 and wait one second. When BPT4 is reset, control will be accessed.

1. 1. 5 OPERATING PROCEDURES

1. 1. 5. 1 Loading the System

The binary tape loads from the "W" channel, using only a "WIM" (W to
memory) and a "BRU" (Branch) instruction. The explanation of the loader can
be found in Section 1. 1. 5. 8. The magnetic tape unit address is zero.

Memory clear, set run, and fill from mag tape. Control will read into
iocations 30 through 4000 and set operation for cutomatic running. Each unit
wiii then be read in, operated, and dismissed untii the finish of the last unit.

1.1.4 -1.1.5.1

Tape will then rewind and begin with the first unit after by-passing control to
preserve any variable changes.

1. 1. 5. 2 tv\anual Starting

If typewriter control is required at load time, breakpoint four should be set
before loadi ng the system.

The control program will load, print the control dash, and wait for input from
the typewriter. Any control functions can be used at this time. Usually the
system variables are adjusted to conform to the particular system being tested.
Automatic control will return if a T is input. If a UXXT is input the XX unit
will lock in and run. Function transfers will also lock in the function. See
Section 1. 1. 3. 5 TRA NS FERS.

1. 1. 5. 3 In itia I izing

System variables can be changed at any time control to the typewriter is
requested by toggl ing BP4. The SV directive does this.

To change unit variables, the unit must have been loaded before the variables
can be accessed by the UV directive. If the unit is dismissed, the variables
will be reset according to the system configuration. Any changes will have to
be re-entered. This condition is also valid for the function and object level.

Usually, the particular unit or function is locked in by a forced transfer.
Since this condition disallows any dismissal, the variables can be changed at
any time.

1. 1.5.4 Independent Operation

If the UIW/FIW lock is set any unit or function will not exist except for
transfers out of the unit or function. In this case, the new unit or function is
still locked. An object test is locked by breakpoint one.

A typical typewriter control could be:

U-o ---------------

U-2 ---------------

U -12 ---------------

U-23 ---------------

U -0 ---------------

Unit ID's which were printed during
auto-run control

1
Unit ID's which were printed during
auto-run control

1. 1.5.2 - 1. 1.5.4

-sv BP4 toggled called control

UIW/FIX System variables

00000000 requested.

4.JOT UNIT zero transfer or transfer to same unit

-U2T BP4 toggled and U2 selected

U-2 -------- UNIT ID, MESSAGE

-SV BP4 toggled and variables requested.

UIW/FIW

40000000 Clear unit

00000000 Iteration Word

-T

U-12 -------------- Automatic

U-23 -------------- Operation proceeds

U~ --------------

Any unit, function, or object can be run as an individual program. Usually,
an error stop at control determines whether a loop condition is necessary, but
this predetermined loop can be set at any time. The loop necessary to
duplicate any process cannot be readily defined, but if the variables, and the
identifiers are printed, some decision can be made as to the next step. Perhaps
obtaining the function listing (FL) would be beneficial in finding an alternate
subprogram to analyze the error results.

The print feature (xxxxxxP) can also be useful to list the failing object test
for study of the micro instructions.

1. 1. 5. 5 Error Procedure

When an error is located by a program, information is displayed and control is
returned to the keyboard. Information displayed by a diagnostic may include
the logic equation involved. Location of possible bad module{s), module type,
or signal name{s). An exerciser will display the error and will give information
pertinent to location of the problem.

At this time, the operator has several options. He may identify the unit
fvnction, or object test by typing UI, FI, or 01 respectively. 01 'vvill print

1. 1.5.5

the core location of the object test, identifying the start of the last object
test. By typing UV, FV, or OV, the current variables wi II be displayed.
Object variables (OV) include contents of central registers, the status of
relabeling registers and overflow, and the error count at the time the error
was discovered.

If the operator wishes to loop on the failing object test, he may set Break
point one (BP1) and type ~T. Setting Breakpoint two (BP2) will inhibit the
error halt, and setting Breakpoint three (BP3) will inhibit the error typeout.
Keyboard control may be regained by toggling Breakpoint four (BP4).

If the operator wishes to continue from where the error was detected without
looping, he types T with BPl reset. Again, the setting of BP2 and BP3 will
determine whether or not to halt on or report errors. If T is typed and BPl is
set, the program wi II loop on the current obj ect test.

If the operator suspects that he is making an operating error, he may request a
unit, function, or object abstract by typing UA, FA, or OA respectively.
Information pertinent to operation at the various levels is included in the
abstract.

1. 1. 5. 6 Copying

Any 940/930 with two mag tape units may be used to copy the OLDS tape.

tiount the source tape on mag tape zero. Set BP4 and execute a mag tape
fill. When the tape stops, reset BP4. Control will be returned to the console
typewri ter .

If it is wished to change the system variables do so now as explained in
Section 1. 1.3.6.

tiount the new tape on mag tape one. Be sure it has a fi Ie protect ri ng
installed (not file protected).

Type E24 (CR), both tapes will rewind and the copying will begin. The
Unit ID message will be output after each unit is read and before it is written.

Wait until both tapes have stopped and control is returned to the console
typewriter.

The new tape is now complete and may be checked.

1. 1. 5.7 Editing and Checking

Editing may be done on any 940/930 with two mag tapes and a card or paper
tape reader for the edit source.

1. 1. 5. 6 - 1. 1. 5. 7

tv10unt the source OLDS tape on mag tape zero. Set BP4 and execute a mag
tape fill. When the tape stops release BP4, control will return to the console
typewri ter.

If the system variables are to be changed, do so now as described in
Section 1. 1. 3. 6.

tv10unt the new tape on mag tape one. Be sure it has a file protect ring (not
file protected).

To begin an edit, type yE xx (CR), where y is the edit source and xx is the
unit to be edited. Both tapes are rewound and a control record is written
from core on mag tape one and successive units are copied from mag tape zero
to mag tape one until unit xx has been read. As each unit is written on mag
tape one, the unit ID is output.

y specifies the edit source where:

y = ° control is returned to the console typewriter.

y = 1 a paper tape fill is simulated.

y = 2 a card fill is simulated.

If y = 0, the unit may be edited using the modify command.

If y = 1 or 2, the new unit is read in and control is returned to the console
typewri ter.

To continue, type yC xx (CR), where y is the edit source and xx is the next
unit to be edited. This operates identically to the E directive above except
that the tapes are not rewound and the control record is not generated.

To insert a new unit use either an E xx (CR) or C xx (CR) where xx is the
unit number the new unit is to follow. Control will return to the console
typewriter. Now type B; this will backspace mag tape zero. Now manually
execute a card or paper tape fill as desired which will read in the next unit.

Control will again be returned to the console typewriter. Now the edit may
be continued or terminated as desired.

Type C30(CR) to complete the edit function. Wait until both tapes have
stopped moving end the control is returned to the console typewriter. The new
tape is now complete.

To check the new tape, remove the file protect ring from the tape on mag tape
one. Reset mag tape one to be mag tape zero. Force the other tape unit to
the NOT READY condition. Type UL The units will be read and each unit
identifier will be printed on the console typewriter. When the last unit is

1. 1.5.7A

read, control will return to the console typewriter. The tape will rewind and
position in front of the first unit. Any re-reads or an unsuccessful cycle will
mean a bad or marginal tape. A new tape should be made.

1. 1. 5. 8 The Loader

The format of the code on the OLDS tape is a WIM to an address followed by
the code word to be put at the address. This motif was used because it taxes
the input channel least. Therefore, there is a greater probability of success
fully loading a unit program under adverse conditions.

Any tape record has the following format:

WIM 3

WIM 4 loader

BRU 2

WIM xxxxx

DA T A program record

WIM xxxxx+l

DATA

BRU START

When a fill is executed, the hardware forced WIM 2 will read the WIM 3 off
the tape into location 2 and step to location 2. The WIM 3 will read the
WIM 4 off the tape to location 3 and step to location 3. The WIM 4 will now
read the BRU 2 to location 4, and step to location 4. The BRU 2 will return
the control to location 2 and the WIM 3 will read the next tape word. Th is
word is a WIM xxxxx. The next tape word is the data to be stored at xxxxx.
Through the remainder of the tape block, a WIM xxxxx will be read previous
to the data to be put at that location. The last tape word is a BRU START
wh ich goes to location 3 and causes the loader to branch to the starting
location of the loaded program.

1. 1.5.8

1. 1. 6 INTERFACE REQUIREMENTS

The following interface specifications must be strictly observed by all
940 diagnostic programs.

1. 1.6. 1 Unit Level Interface

All programs will start with ORG 4000 or BSS 4000. The first two executable
instructions of a Unit program must be:

BRM UNIT

NOP UPT

where UPT is a label, selected by the User, pointing to the beginning of a
Unit Parameter Table.

The last instruction of a Unit program must be BRM DONE.

The Unit Parameter Table and Unit Variable Table will have the following
format. The label and operand names can be chosen by each programmer.

*

* U NIT PARAMETER TABL E

*

(octa I number)

1) UPT NOP UIM Unit identifier message address

2) NOP UAM Unit abstract message address

3) NOP UVM Unit variables message address

4) TWO UVT Unit variables display control word

*

* UNIT VARIABLES TABLE

*

5) UVT DATA (octal number) Unit identifier

6) DATA (octal number) Function access word

1. 1. 6 - 1. 1. 6. 1

Where ONE and TWO are OPD defined as:

ONE OPD 01000000

TWO OPD 02000000

1. 1.6.2 Definition of Unit Parameters

Entry one. The operand field of entry one UIM, must point to a Unit
Identifier Message.

Example - UIM BCD • U NIT IDENTIFIER II •

Entry two. The operand field of entry two - UAM, must point to a Unit
Abstract Message which will describe the Unit's use.

Example - UAM BCD • U NIT ABSTRACT II I

Entry three. The operand field of entry three - UV M, must point to a Unit
Variable /\t\essage, which defines the Unit variables. It must be in a format
compatible with the variables to be displayed directly below it.

Example - UVM BCD • FAW UNIT ID II •

Entry four. This is a control word used to display the Unit variables.

The op-code field, bits 3 to 8, must contain the number of variables to be
displayed, not to exceed eight (10

8
).

The operand field will point to the Unit Variables Table.

1. 1.6.3 Definition of Unit Variables

Entry five. The contents of UVT is an octal word, with a bit set, correspond
ing to the Unit identifier number--i. e., Unit No. 3 is 04000000. The bit
position will correspond to the Unit number.

Entry six. The operand field of entry six is a Function access word, which
controls the access of the various Functions contained in the Unit.

Only those Functions, whose Function Identifier corresponds to a bit set in this
word, will be accessed by CONTRL.

The Function access word is set-up such that bit zero wi II correspond to
Function zero, etc.

The Functions will be accessed sequentially by CONTRL, from the most
significant to the least significant bit position.

i. i. 6. 2 - i. i. 6. 3

1. 1.6.4 Function Level Interface

Each Function must observe the following interface requirements:

The first two executable instructions of a Function must be

BRM FUNCTION

NOP FPT1

where, FPT1 points to the Function Parameter Table.

The label FPT1 is not fixed and may vary for different Functions.

The last instruction of a Function must be BRM FDONE.

The Function Parameter Table must have the following format. Label and
operand names are not fixed and may be varied for each function.

*

* FUNCTION PARAMETER TABLE 1

*

1) FPT1 NOP F1 M1 Function Identifier Message Address

2) NOP FAMl Fu nction Abstract Message Address

3) NOP FVM1 Function Variables Message Address

4) ONE FVT1 Function Display Control Word

5) PZE FUNC2 Address of Next Function

6) DATA (Octal) Function Identifier Number

where ONE is OPD defined.

1. 1.6.5 Definition of Function Parameters

Entry one. The operand field of entry one - F1M1, will point to a Function
identifier message.

Entry two. The operand field of entry two - FAM1, will point to a Function
abstract message. This message will describe the Function's use.

Entry three. The operand field of entry three - FVM1, will point to a
Function variable message, which defines the Function variables. It must be
in a format compatible with the variables to be displayed directly below it.

1. 1. 6. 4 - 1. 1. 6. 5

Entry four is a control word for the display of Function variables. The op-code
field, bits 3 to 8 must contain the number of variables to be displayed. The
operand field will contain an address or label pointing to the Function Variables
Table.

Entry five. This parameter is a link to the next Function. The op-code field
will contain a PZE. The operand field will contain an address or label
pointing to the next Function.

The contents of FPT1 is an octal word with a bit set, corresponding to the
Function identifier number, i. e., Function number 1 is 20000000.

1. 1.6.6 Function Variables Table

The format of the Function Variables Table is up to the programmer, correlation
must be maintained between the Function Variables Table and the pointers in
the Function Parameters Table which point to the entries in the Function
Variables Table. Also, there can be no more than eight (8) entries.

The FUNCTN subroutine, in OLDS, moves the parameters in a System storage
area and pre-sets all changeable interrupt BRU's to the normal state (BRU
DIVERT).

Any Function Variables which are dependent on system configuration such as
memory size, device size of optional hardware must be constructed from the
System variables and stored in the Function Variables Table prior to accessing
the first Object program within the Function.

1. 1. 6. 7 Obj ect Level Interface

Each Object program in a Function must observe the following interface
requ irements:

The first instruction in an Obj ect program must be,

BRM OBJECT

OBJECT will test breakpoint 4, one of only two means of entering CONTRL.

The last instruction of an Object program must be,

BRM END

END will test breakpoint 1 and either repeat the current Object program or
proceed to the next Object program.

1. 1. 6. 6 - 1. 1. 6.7

If interrupts, traps, or POP's are antic ipated, the fo Ilowi ng instructions are
required to be set up before they occur:

BRM RETURN

Nap INT

where INT is a return address for the interrupt which is serviced in an Object
program. Traps and POP's are serviced similarly.

The BRM RETURN will direct the response of an interrupt, trap or POP to one
or more return addresses specified in the operand field of the Nap instructions.

If an Object program detects an error, the following instructions are required
to process the error,

BRM ERROR

Nap ERMSG

where ERMSG points to an error message.

All error messages will use the BCD directive and terminate with a II (37)
8

symbol.

The following example illustrates the format of a typical Object program,

*

*

*

OBJCT1

OBJECT PROGRAM

BRM OBJECT

BRM RETURN

Nap TRAP

CLA

STA RL 1

STA RL2

EOM 020400

POT

EOM

1.1.6.7A

RL1

021000

OBJECT

PROGRAM

POT RL2

STA 0, 4

BRM ERROR

NOP ERMSG 1

BRU FINISH

TRAP LOA DIVERT

EOR =ROT

SKA =37777

BRU *+2

BRM ERROR

NOP ERMSG2

FINISH BRM END

where the dash (-) indicates the pertinent interface information.

1. 1. 6. 8 The Use of "ERROR" and "REPORT II Messages

Messages may be outputted through REPORT which does not interface CONTRL,
and ERROR which does.

These rules apply to both.

All message pointers must have NOP's in the operand field;

NOP ERRMSG

Messages may be I inked together by the presence of a bit in position zero.

NOP MSGS 1, 4

NOP MSGS2, 4

NOP MSGS3.

i. 1. 6. 8

The contents of registers A, B, X and overflow may be outputted by setting
Bi t 1;

Nap MSGS1, 4

Nap MSGS2, 2

A message which outputs the registers must be by itself or the last message in a
linked chain.

1. 1.6. 9 Other Interface Requ irements

Users may use only the following System subroutines:

UNIT

FUNCTN

OBJECT

DIVERT

RETURN

ERROR

END

FDONE

DONE

REPORT

Under no circumstance will a user use any other System subroutine.

All messages will use a BCD directive and terminate with a (11)(378) symbol.

All labels required to interface between OLDS and the various Program levels
are to be defined by EQU directives. This will eliminate all uses of external
references and definitions.

1. 1.6. 10 List of f\A.ajor Subroutines

OLDS is composed of the following subroutines all designed to perform specific
functions:

CONTRL This sub-program controls all operator input to OLDS and
its component diagnostic programs as well as handl ing most

1. 1. 6.9 - 1. 1. 6. 10

UNIT

DONE

of the output from OLDS. Th is routine is entered through
OBJ ECT or ERROR.

A subroutine to pick-up all required parameters and
variables necessary to define a specific Unit level program
and interfaces the currently loaded user program to the
system.

A subroutine which determines if a Unit is to be dismissed
or not.

FUNCTN A subroutine to pick-up all required parameters and
variables necessary to define a specific function level
program.

FDONE

OBJECT

END

RETURN

DIVERT

ERROR

REPORT

A subroutine which terminates a function.

A subroutine to mark the starting address of the last object
program to be initiated. This routine contains the only
linkage to contro I and processes the 'return to contro /'
option.

A subroutine which processes the tight loop option.

A subroutine that maintains address linkages to the current
object program for all POP, trap and interrupt receivers.

A subroutine that marks the locations where interrupts,
traps and POP's are received.

Th is subrouti ne is the common error reporti ng routi ne used
by all 940 diagnostic programs. The "inhibit error output
and error halt options II are processed by this routine.

Common output handler used by all 940 diagnostic programs.

1. 1. 6. i OA

1.2

1. 2. 1

UNIT 0 940 CPU DIAGNOSTIC AND PRETEST

Pretest

The purpose of PRETEST is to verify the correct operation of all the instructions
used by the executive. The following instructions are tested in the 930 mode:

LDA LDB LDX

STA STB STX

BRM BRR

SKA SKB SKE SKM SKN SKS

ETR EOR MRG

MIN

LCY 2 RCY 1

MIW (To te I etype)

It is assumed that the following instructions and operations operate without
errors:

WIM

NOP

BRU

HLT

EOM (To device and buffer)

SKS (To device and buffer)

Manual Register Exchange

Breakpoint Tests

PRETEST will not attempt to diagnose failures. If an error is detected, the
program will come to a ha It.

Breakpoints are utilized as follows:

BPl Set - Loop on current test

Reset - Continue to next test

1.2 - 1.2.1

BP2 Set - Do not halt on errors
Reset - Halt on errors

BP3 Set - Loop on PRES ET
Reset - Perform WIM Test, Monitor tv'tap Test, return to the

executive and load first Unit from the diagnostic
tape.

At errors, the halts will indicate as follows:

LOCATION

04017
04027
04037
04047
04060
04071
04102
04113
04124
04135
04145
04156
04165
04172
04177
04210
04217
04224
04231
04242
04251
04256
04263
04275
04304
04311
04316
04330
04337
04342
04351
04363
04372
04377
04404
04415
04424

1. 2. 1 A

CAUSE

S KS skipped
SKE didn't skip
SKE didn't skip
SKE didnlt skip
S KE skipped
5 KE skipped
S KE skipped
S KE skipped
S KE skipped
5 KE skipped
SKE didn't skip
SKE didn't skip
A error during S KE
B error during S KE
X error during S KE
S KA didn It skip
A error during SKA
B error during S KA
X error during SKA
5 KA didn It skip
A error during SKA
B error during S KA
X error during SKA
SKA skipped
A error during SKA
B error during S KA
X error duri ng S KA
SKA skipped
A error duri ng S KA
B error during S KA
X error during SKA
S KA skipped
A error during SKA
B error during SKA
X error during S KA
5 KM didn't skip
A error during S KM

LOCATION

04431
04436
04447
04456
04463
04470
04502
04511
04516
04523
04535
04542
04551
04556
04570
04577
04604
04611
04622
04631
04636
04643
04655
04664
04671
04676
04707
04716
04725
04730
04741
04750
04755
04762
04774
05003
05010
05015
05027
05036
05043
05050
05062
05071
05076
05101
05120

1. 2. 1 B

CAUSE

B error during S KM
X error during SKM
S KM didn It skip
A error during SKM
B error during S KM
X error during S KM
SKM skipped
A error during S KM
B error during S KM
X error during S KM
SKM skipped
A error during S KM
B error during SKM
X error duri ng S KM
SKM skipped
A error during S KM
B error during S KM
X error during S KM
S K N didn It skip
A error during SKN
B error during S K N
X error during SKN
S KN skipped
A error during S KN
B error during S KN
X error during S KN
S KB didn It skip
A error during SKB
B error during S KB
X error during S KB
S KB didn It skip
A error during SKB
B error during S KB
X error during SKB
SKB skipped
A error during S KB
B error during S KB
X error during SKB
SKB skipped
A error during S KB
B error during SKB
X error during S KB
S KB skipped
A error during S KB
B error during S KB
X error during SKB
,A, error during ETR

LOCATION

05125
05132
05147
05154
05161
05176
05203
05210
05236
05245
05250
05276
05303
05310
05336
05343
05350
05376
05403
05410
05425
05432
05437
05454
05461
05466
05503
05510
05515
05532
05537
05542
05561
05566
05573
05610
05615
05622
05637
05644
05651
05666
05673
05700
05717
05727
05734

1. 2. 1 C

CAUSE

B error during ETR
X error during ETR
A error during EOR
B error during EOR
X error during EOR
A error during MRG
B error during MRG
X error during MRG
A error during MIN
B error during MIN
X error during MIN
A error during MIN
B error during MIN
X error during MIN
A error during MIN
B error during MIN
X error during MIN
A error during MI N
B error during MIN
X error during MIN
A error during RCY
B error during RCY
X error during Rey
A error during Rey
B error during Rey
X error during Rey
A error during Rey
B error during Rey
X error during Rey
A error during Rey
B error during Rey
X error during Rey
A error during Ley
B error during Ley
X error during Ley
A error during Ley
B error during Ley
X error during Ley
A error during Ley
B error during Ley
X error during Ley
A error during Ley
B error during Ley
X error during Ley
MAR K error duri ng BRM
A error during BRM
B error during BRM

1. 2. 2

1. 2.3

1, 2. 4

1. 2. 5

1. 2. 6

LOCATION

05741
05752
05760
05770
05775

CAUSE

X error during BRM
BRR went to MARK instead of MARK+ 1
BRR clobbered MARK
A error during BRR
B error during BRR

Function 0 - 940 tv\onitor tv\ode CPU Diagnostic

This function locates failures in the 940 tv\onitor tv\ode and gives module
locations of the probable fault.

Function 1 - 940 User tv\ap Diagnostic

This function locates failures in the User Map and the Memory Trap logic and
gives modu Ie locations of the probable fau It. No use of upper memory is made
and the diagnostic wi II operate with only 16K of memory present.

Function 2 - 940 tv\onitor/User Transition Diagnostic

This function locates failures in the transitions between user and monitor modes.
It also checks the monitor to user transition trap logic. It gives module loca
tions of the probable fault.

Function 3 - 940 Privileged Instruction Diagnostic

This function locates failures in the privileged instruction logic and gives
module locations of the probable fault.

Function 4 - 940 Real Time Clock Diagnostic

This function locates failures in the RTC and checks the time against the
computer clock ± 100/0 and gives module locations of the probable fau It.

1.2.2 - 1.2.6

1. 3 UNIT 1 - 940 CPU EXERCISER

1. 3. 1

1.3.2

This unit contains the exercisers and special functions devoted to the CPU.
There is only one Unit Variable, FAW, which contains bits corresponding to
the functions to be activated. Normally, Functions 0, 1, 2 and 3 are
automatica Ily activated.

Function 0 - General Instruction Exerciser

This function is based on the 930 Instruction Examiner and operates on data
blocks in the same manner. It presets the registers, the operand, and overflow,
executes the instruction, and then checks for skip, registers, operand, and
overflow.

At an error, the message will tell the type of error result, and the expected
result .

There are six Function Variables:

CREG This is the initiai operand

AREG This is the initial A Register

BREG This is the initial B Register

XREG This is the initial X Register

FIW This is the number of passes per function

INST This is the instruction under test; if the error occurs during a
multiple or divide with BP2 reset, lock the object test in by
setting BP1; from CONTROL do a F 22T for a multiply or a
F 23T for a divide. Th is wi II type out the function identifier
of the analyzer, type T to get a breakdown of the problem by
clock times. Do a F OT and the program will return to the
same test case for trouble shooting.

Function 1 - 940 Add Exerciser

This function generates random adds and compares them against the result of a
simu lated add. It generates random numbers for A, B, X and operand,
executes the add, and compares the registers and overflow against a simu lated
add which uses only the logical instructions.

At an error, the message will tell the type of error, the error resu It, and the
expec ted resu It.

1. 3 - 1. 3.2

1.3.3

1.3.4

There are six Fu nction Variables:

SEED The starter for the random number generator

CREG The initial operand

AREG The initial A Register

BREG The initial B Register

XREG The initial X Register

FIW The number of passes per function

A specific ADD may be tested by:

Do a F 1T and toggle BP4 to reach CONTROL, preset the Function Variables
for the add to be tested, set BP1 to lock that test in, and type aT. The add
exerciser will then be locked in on that add.

A specific random number sequence may be run again:

Do a F 1 T and toggle BP4 to reach CONTROL, set the starting SEED in the
Function Variables.

Do a F 1T. The exerciser is now running through a random number sequence
determined by the SEED.

Function 2 - 940 Shift Exerciser

This function generates random shifts and compares them against simulated
shifts in the same manner as the Function 1.

Error output and the function variables are the same as Function 1.

Function 3 - 940 Multiply Exerciser

This function generates random multiplies and compares them against a
simulated multiply in the same manner as the add exerciser.

Error output and the Function Variables are the same as Function 1.

Specific multiplies or random sequences may be initiated in similar manner to
Function 1.

In addition, if any error occurs, a breakdown of the multiply by computer
clocks times may be printed. Lock the test in by setting BP1.

1. 3. 3 - 1. 3. 4

1.3.5

Reach CONTROL either by BP4 or an error stop. Do a F 22T, th is wi II type
the function identifier message. Type T for a breakdown of the test case.

Set BP1, do a F 2T, and the program will return to the same test.

Function 4 - 940 Divide Exerciser

This function generates random divides and compares them against a simulated
divide in the same manner as the add exerciser. Error output and the Function
Variables are the same as Function 1.

Specific divides or random sequences may be initiated in similar manner as
Function 1.

In addition, if an error occurs, a breakdown of the Divide by computer clock
times may be printed.

Lock the test in by setting BP1.

Reach CO NTROL either by BP4 or an error stop. Do a F 23T. Th is wi II type
out the function identifier message. Type T to get a breakdown of the test
case. Set BP1, do a F 3T, and the program will return to the same test.

1. 3.5

1. 3.23

1. 3.24

Function 22 - tv\ultiply Analyzer

This function simulates the steps of a multiply and prints the results at each
computer clock time. It is the same simulator used by the Multiply Exerciser.
No use of the adder or the right shift adder is made. Only logical, and
register exchange instructions are used.

This function may be used with Function a or Function 2 as described above.
In addition, specific multiplies may be analyzed.

Toggle BP4 to get to CONTROL.

Do a F 22T, setting BP4, the function identi fier message wi II be typed.

Set up the Function Variables.

Type T, the program will display the multiply steps, and return to CONTROL.

Function 23 - Divide Analyzer

This function simulates the steps of a divide and prints the results at each
computer clock time. It is the same simulator used by the Divide Exerciser.

No use of the adder or the right shift adder is made. Only logical and
register exchange instructions are used.

This function may be used with Function a or Function 3 as described above.
In addition, specific divides may be analyzed.

Toggle BP4 to get to CONTROL.

Do a F 23T. The function identifier message will be typed.

Set up the Function Variables.

Type T, the program will display the divide steps, and return to CO NTROL.

1. 3.23 - 1.3.24

1. 4 UNIT 2 - FLOATING POINT ARITHMETIC UNIT FPAU

1.4. 1

1.4.2

The diagnostic is similar to other diagnostics under the OLDS system. It will
give the probable locations of module failures.

The exercisers generate random test cases and compare the result of the FPAU
operations with simulated results. Ifan error occurs, the actual and expected
results are printed.

The special case exerciser checks particular cases such as divide by zero.

The simulators give the correct result of any specified test case. They can
also give the correct state of the FPAU registers at any clock time.

The utilities give the actual result of any specified test case. They can also
give the actual state of the FPAU registers at any clock time.

If an error occurs in any exerciser, do a function transfer to the appropriate
simulator to get the correct result. The failing test case is already preset in
the function variables.

Then do a function transfer to the appropriate uti I ity to get the actua I resu It.
Executing a FL directive will I ist the identifiers of the various simu lators. The
failing case is still preset in the function variables.

To return to the exerciser, set BP1 to loop, set BP2 and BP3 to suppress error
halt and error typeout. Do a function transfer back to the exerciser. The
exerciser will loop on the failing test case and the FPAU may be examined.

Function 0 - FPAU Diagnostic

Function - Add Exerc iser

This function generates random add test cases and compares the results with a
simu lator.

If a failure occurs, the actual and the expected FPAU may be displayed by
doing a function transfer to the add utility. The correct steps may be displayed
by doing a function transfer to the add simulator.

Specific Test cases may be run.

1. Toggle BP4 to reach control.

2. Set the function variables to the desired values.

3. Set BPl to loop in the test case.

4. Type T.

The specified test case is now being run.

i. 4 - 1. 4. 2

1.4.3

1.4.4

1.4.5

Function 2 - Subtract Exerciser

Th is function generates random subtract test cases and compares the resu It with
a simulator.

If a failure occurs, the actual and the expected result will be given. The
intermediate steps of the FPAU may be displayed by doing a function transfer
to the subtract utility. The correct steps may be displayed by doing a function
transfer to the subtract simu lator.

Specific test cases may be run.

1. Toggle BP4 to reach control.

2. Set the function variables to the desired values.

3. Set BP1 to loop in the test case.

4. Type T.

The specified test case is now being run.

Function 3 - Inverse Subtract Exerc iser

Th is function generates random inverse subtract test cases and compares the
result with a simulator.

If a failure occurs, the actual and the expected result will be given. The
intermediate steps of the FPAU may be displayed by doing a function transfer
to the inverse subtract utility. The correct steps may be displayed by doing a
function transfer to the inverse subtract simu lator.

Specific test cases may be run.

1. Toggle BP4 to reach control.

2. Set the function variables to the desired values.

3. Set BP1 to loop in the test case.

4. Type T.

The specified test case is now being run.

Function 4 - Multiply Exerciser

This function generates random multiply test cases and compares the result with
a simulator.

1. 4. 3 - 1. 4.5

1.4.6

1.4.7

If a failure occurs, the actual and the expected result will be given. The
intermediate steps of the FPAU may be displayed by doing a function transfer
to the mu Itiply util ity. The correct steps may be displayed by doing a function
transfer to the mu Itiply simu lator.

Specific test cases may be run.

1. Togg I e BP4 to reach contro I.

2. Set the function variables to the desired values.

3. Set BP1 to loop in the test case.

4. Type T.

The specified test case is now being run.

Function 5 - Divide Exerciser

This fJnction generates random divide test cases and compares the result with
a simulator.

If a failure occurs, the actual and the expected result will be given. The
correct steps may be displayed by doing a function transfer to the divide
simulator.

Specific test cases may be run.

1. Toggle BP4 to reach control.

2. Set the function variables to the desired values.

3. Set BPl to loop in the test case.

4. Type T.

The specified test case is now being run.

Function 6 - Inverse Divide Exerciser

Th is function generates random inverse divide test cases and compares the
resu It with a simu lator.

If a failure occurs, the actual and the expected result will be given. The
intermediate steps of the FPAU may be displayed by doing a function transfer
to the inverse divide uti! ity. The correct steps may be displayed by doing a
function transfer to the inverse divide simu lator.

1 ALl A "7
I 0 - I. At. I

1.4.8

Specific test cases may be run.

1. Toggle BP4 to reach control.

2. Set the function variables to the desired values.

3. Set BP1 to loop in the test case.

4. Type T.

The specified test case is now being run.

Function 7 - Special Case Exerciser

This function checks special arithmetic cases such as division by O. It operates
on data blocks in the same way the CPU instruction examiner does. The
function variables give the op-code and operands. Th is function may be used
with the utility and simulator functions in the same way as the other exercisers.

1.4.8

1. 4. 13

1. 4. 14

1. 4. 15

Function 12 - Add Simulator

This function allows add cases to be simulated and the intermediate steps
displayed.

The function variable format controls the display:

a := Display result only

= Display odd clock times only

2 := Display even clock times only

3 := Display all clock times

Refer to the section 1.4 for use of this function with the exerciser.

Function 13 - Subtract Simu lator

This function allows subtract cases to be simulated and the intermediate steps
displayed. The function variable format controls the display:

a := Display results only

:= Display odd clock times only

2 := Display even clock times only

3 := Display all clock times

Refer to the section 1.4 for use of this function with the exerciser.

Function 14 - Inverse Subtract S imu lator

This function allows inverse subtract cases to be simulated and the intermediate
steps displayed.

The function variable format controls the display:

a Display result only

:= Display odd clock times only

2 := Display even clock times only

3 := Display all clock times

Refer to the section 1.4 for use of this function with the exerciser.

1.4.13 - 1.4. is

1. 4. 16

1. 4. 17

1. 4. 18

Function 15 - Multiply Simulator

This function allows multiply cases to be simulated and the intermediate steps
displayed. The function variable format controls the display:

0 = Display result only

= Display odd clock times only

2 = Display even clock times only

3 = Display all clock times

Refer to the section 1. 4 for use of this function with the exerc iser.

Function 16 - Divide Simu lator

This function allows divide cases to be simulated and the intermediate steps
displayed. The function variable format controls the display:

0 = Display result only

= Display odd clock times only

2 = Display even clock times only

3 = Display all clock times

Refer to the section 1.4 for use of this function with the exerciser.

Function 17 - Inverse Divide Simulator

Th is function allows inverse divide cases to be simu lated and the intermediate
steps displayed. The function variable format controls the display:

o = Display resu I t on Iy

= Display odd clock times only

2 = Display even clock times only

3 = Display all clock times

Refer to section 1.4 for use of th is function with the exerc iser.

1.4.16 - 1.4.18

1. 4. 19

1. 4. 20

1. 4.21

Function 18 - Add Util ity

This function allows add cases to be presented to the FPAU. Format is the
display control word.

0 = Display resu It only

= Display odd clock times

2 = Display even clock times

3 = Display all clock times

Refer to section 1.4 for the use of th is function with the add exerc iser.

Function 19 - Subtract Uti I ity

Th is function a Ilows subtract cases to be presented to the FPAU. Format is
the display control word.

0 = Display result only

= Display odd clock times

2 = Display even clock times

3 = Display all clock times

Refer to section 1.4 for the use of th is function with the subtract exerc iser.

Function 20 - Inverse Subtract Util ity

This function allows inverse subtract cases to be presented to the FPAU.
Format is the display control word.

o Display result only

= Display odd clock times

2 Display even clock times

3 = Display all clock times

Refer to section 1.4 for the use of this function with the inverse subtract
exerciser.

1.4.19 - i.4.2i

1. 4.22

1. 4. 23

1. 4. 24

Function 21 - MJltiply Utility

This function allows multiply cases to be presented to the FPAU. Format is the
display control word.

0 = Display resu It only

= Display odd clock times

2 = Display even clock times

3 = Display all clock times

Refer to section 1. 4 for the use of this function with the multiply exerciser.

Function 22 - Divide Uti I ity

This function allows divide cases to be presented to the FPAU. Format is the
display control word.

0 = Display resul t only

= Display odd clock times

2 = Display even clock times

3 = Display all clock times

Refer to section 1.4 for the use of this function with the divide exerciser.

Function 23 - Inverse Divide Util ity

This function allows inverse divide cases to be presented to the FPAU. Format
is the display control word.

0 = Display result only

= Display odd clock times

2 = Display even clock times

3 = Display all clock times

Refer to section 1.4 for the use of th is function with the inverse divide
exerciser.

1. 4. 22 - 1. 4. 24

1. 5 UNIT 3 - 940 MEMORY DIAGNOSTIC AND EXERCISER FOR
THE 2ND 16K

1. 5. 2

1. 5.3

1. 5. 4

1. 5. 5

This unit contains the diagnostics and exercisers which are necessary to check
addresses 40000 to 77777 octal. There is only one Unit Variable, FAW, which
contains bits corresponding to the function to be activated. Normally
Functions 1, 2, 3 and 4 are automatically activated. Operation in the non
interleaved mode is necessary for correct diagnosis.

Function 1 - 940 Map Diagnostic

This function diagnoses fault in the User Map, Monitor iVKlp, and the Memory
Traps. The diagnosis does not depend on the correct operation of any upper
memory. Error messages will describe which module locations are associated
with the probable fault and the signal names involved. These are all in the
CPU.

There are no Function Variables.

Function 2 - 940 M-Register Diagnostic

This function checks that ones and zeros can be stored in all four quadrants of
the memory under test. Error messages will describe which modu Ie locations
are associated with the probable fault, and the signal names involved. These
are all in the memory. There are no Function Variables.

Function 3 - 940 Address Driver Diagnostic

This function spreads addresses through all upper core, and checks specific
addresses to determine address drive and sink modu Ie failures. Error messages
will describe module locations that are associated with the probable fault, and
the signal names involved. These are all in the memory.

There are no Function Variables.

Function 4 - 940 Memory Noise Test

This function generates worst case noise patterns and access histories. This
function is suitable for a memory "SHMOO".

Error messages will state either parity error end give the location involved, or
memory noise error and give the error word, the expected word, and the
address.

There are no Function Variables.

1. 5 - 1. 5.5

1. 5. 6 Function 5 - 940 Memory Signal Bouncer

This function is a Scope Aid. It causes all RL flip-flops, all M flip-flops,
all L I ines, and all SEL I ines to bounce, for an aid in signal tracing.

There are no Function Variables or error routines.

1.5.6

1. 6 UNIT 4 - 940 MEMORY DIAGNOSTIC AND EXERCISER FOR THE
3RD 16K

This unit is similar to Unit 3. (Refer to all Functions in Unit 3.)

1.6

1. 7 UNIT 4 - 940 MEMORY DIAGNOSTIC AND EXERCISER FOR THE
4TH 16K

This unit is similar to Unit 3. (Refer to all Functions in Unit 3.)

1.7

1. 8 UNIT 6

Not assigned.

1.8

1. 9 UNIT 7

Not assigned.

1.9

1. 10 UNIT 8

Not assigned.

i. iO

1. 11 UNIT 9

Not assigned.

1. 11

1. 12 UNIT 10

Not assigned.

1. i2

1.13 UNIT 11

Not ass igned.

1. 13

1. 14 UNIT 12 - E CHANNEL AND 9367 RAD TEST

1. 14. 1

1. 14.2

1. 14. 3

1. 14.4

1. 14.5

1. 14. 6

1. 14.7

1. 14.8

Unit 12 includes a failure analysis for E channel with one RAD controller and
four mechanical RAD. The error outputs are relative to the channel or RAD,
depending on the particular function which is in process. Signal names and
probable modules which could cause the response are printed in the error
messages.

Function 0

Not assigned.

Function 1 - E Channel Test

The channel is exercised without benefit of an I/O device to attempt an
analysis of faults particular to the channel only. No Function Variables are
used.

Function 2 - RAD Primary Test for RAD Addresses 00000 to 17777

Th is function checks basic responses from the RAD controller and its I ink to the
first selector unit. Error listings will call the SEL Unit if the probable cause is
in that section of the RAD. There are no Function Variables.

Function 3 - RAD Addresses 20000 to 37777

The second RAD select unit is tested in this function with similar error reports
as defined in Function two.

Function 4 - RAD Addresses 40000 to 57777

Function four operates similar to Function two.

Function 5 - RAD Addresses 60000 to 77777

Function five operates similar to Function two.

Function 6 - RAD Head Analysis for RAD One

This function tests each head access for proper addressing and correct data
transfer. The coordinates of the head in question will be printed in the error
message.

Function 7 - RAD Head Analysis for RAD Two

This function is similar to Function six.

1.14-1.14.8

1. 14.9 Function 8 - RAD Head Analysis for RAD Three

This function is similar to Function six.

1. 14. 10 Function 9 - RAD Head Analysis for RAD Four

This function is similar to Function six.

1. 14. 11 Fu nction 10 - RAD Exerc iser

This function will exercise a specific section of any of the four RADs on the
E channel, or all the RAD units as a composite. There are eight Function
Variables:

CORlO

CORHI

RADlO

RADHI

FIXBlK

CYCLES

PATTERN

MODE

The lowest usable core address is 27000.

Variable to 177700.

Variable from 00000.

Variable to 77777.

A specific block length in sectors can be forced.

The function will repeat according to the cycle count.
If CYCLES is = -1, the function will exit only if
forced by a CONTROL input.

Any octal configuration can be used as a pattern.

The MODE word defines a set of changeable operation
types.

Early is defined as the transmission of two separate blocks of data with minimum
latency or wait. Not early is defined as random delay or latency between
transmissions.

The configuration of one bits in the MODE word determines the type of
operation as follows:

Rad Addresses (Bits 0-2)

Core Addresses (Bits 3-5)

1. 14. 9 - 1. 14. 11

001-Random
01 O-Sequentia I
1 DO-Fixed

DOl-Random
01 O-Sequentia I
100-Fixed

Data (Bits 6-8)

Transmission tv\ode (Bits 9-11)

DOl-Random
01 O-Sequentia I
100-Fixed

ODD-Random S KS, early or
interrupt

DOl-Same as 000
OlD-Random, early, without

interrupt
Oll-Random, early with interrupt
1 DO-Fixed, not early, without

interrupt
101-Fixed, not early, with

interrupt
110-Fixed, early, without

interrupt
lll-Fixed, early, with interrupt

The RAD drive for either buffer one (Bits 12-14) or buffer two
(Bits 15 -17) is determ i ned as fo I iows:

ODD-buffer not selected
001
OlD-Random selection of either
011 read or write
100-buffer not selected
1 Ol-Fixed read only
110-Fixed write only
lll-Will result in read only

For further details on MODE word usage see Unit 12, Function 10 abstract.

Bit 18 is set for Data chaining mode.

Bit 21 is set to print all errors. If it is a zero, only the first three errors are
printed. However, the error count is kept for the entire sector and will be
displayed when the sector is fully checked.

1. 14. 12 Fu nction 11 - Partia I Sector Test

This function tests the inhibited increment and zero pad on partial sector
blocks. There are three variables:

RAD ADRS

WD COUNT

PATTERN

This defines which sector.

Defines the word count less than one sector or
77 (octal) words.

Any octal configuration can be used.

1. 14. 12

1.14.13 Function 12 - Read RAD Utility

This function can be used to read any sector on the RAD. The print utility
can be used to display the sector data. There is one variable RAD ADRS.
This determines which sector is to be read.

1.14.13

1. 15 UNIT 13 F CHANNEL RAD

Not installed.

i. 15

1. 16 UNIT 14

Not assigned.

1. 16

1. 17 UNIT 15 W CHANNEL AND 9367 RAD TEST

Unit 15 includes a failure analysis for the W channel, but in all other respects
it is identical to Section 1. 14.

, ,..,
I. 1/

1. 18 UNIT 16 Y CHANNEL AND 9367 RAD TEST

Not installed.

1. 18

1. 19 UNIT 17

Not assigned.

1. 19

1. 20 UNIT 18 E CHANNEL DISC DIAGNOSTICS

Not installed.

1.20

1. 21 UNIT 19 F CHA N N EL DISC DIAGNOSTICS

Not insta lied.

1. 21

1. 22 UNIT 20

Not Assigned.

1.22

1. 23 UNIT 21 - W CHANNEL DISC DIAGNOSTICS

This unit tests the disc on channel W.

There are three unit parameters:

FAW Function activation word, one bits contained in this word
correspond to functions that are to be activated in the
automatic mode. Legal functions are functions 1, 2, 3,
4, 5, and 10. Functions 18 through 23 do not need to be
selected, since they are special and are not activated in
the automatic mode.

DOOT17 Activation bits for arms 0 through 17 (octal). Bits in the
most significant portion of this word permit the correspond
ing discs to be used. The absence of a bit prohibits a disc
from being used. I. e., if disc 10 (octal) is not to be used,
the corresponding bit (Bit 8) would be a zero.

D20T37 Activation bits for arms 20 through 37 (octal). This
variable combines with the variable DOOT17 to provide
selective control for all discs. These variables have
priority over all function variables, permitting discs to be
skipped within a large operating range of discs. I. e., for
a 32 Disc System, DOOT17, DOOT17 = 73777400, D20T37
= 37777400, HIDISC - 777777, and LODISC = 0 would
allow all discs to be used except for discs 3 and 20 (octal).
These variables are preset when the unit is loaded accord
ing to the system variable "DSCSIZ".

A few conven t ions mus t be fo IIowed wh en us i ng th is un it.

Changing unit variables - Normally, changing the unit variables requ ires that
a unit transfer (-U 21T) be executed. However, in most cases, changing
"DOOT17" and ID20T37" does not require restarting the unit, and a continue
(T transfer) is sufficient. If the file is keyed in the exerciser with a disc
deactivated, an error will result if a read attempt is made on that disc (see
fu n c t ion 1 0) •

Changing function variables - Normally when changing function variables, a
function transfer is necessary to check and use the change. The special
functions are the exceptions to this rule.

Special functions - Functions 18 through 23 are special functions and are not
normally accessed. If the operator wishes to use one of them, he must execute
a function transfer to that function. When the function is entered, an identi
fication message is printed on the error device and control returned to the
keyboard. At this time, the operator should set the function variables to his
requirements and type T. \Vhen the operation is completed, the 10 message

1.23

1. 23. 1

1. 23. 2

1. 23. 3

will be output and control returned to the keyboard. A new function will not
be entered without operator intervention.

Automatic operation - In order to increase the efficiency of the system when
running in the automatic mode, all diagnostics will be run and the disc will be
keyed in the first pass. When the disc has been keyed, a flag is set in control
(it is not a variable), and the unit will be dismissed. When the unit is
restarted, only those diagnostics which do not destroy the integrity of the disc
will be run (Functions 1, 2, and 5), as well as the exerc iser, regardless of the
function activation word.

If the disc is software write-protected, functions which destroy the integrity of
the disc will be skipped. These are functions 3 and 4. In addition, the
exerciser is forced to a special running mode. (See Function 10.)

Function 0

Not assigned.

Function 1 - T MCC Diagnostic

This function tests several basic TMCC operations without the use of an
external device. The interlace registers, interrupts, and several skips are
tested. If an error is detected, it is reported a source location(s} and log ic
page(s}. I. e., 20043 (25) indicates that the suspected problem is located on
card 20D, Pin 43, and the signal can be found on logic page 25.

There are no function variabl es.

Function 2 - Controller Diagnostic Without Data Transfer

This function tests as many operations of the disc file controller as possible
without involving data transfer. The address register, skips (legal and illegal),
header veri fication, and position verification are checked.

Because of the complexity of the disc file controller, an attempt is made to
give as much information as possible when an error occurs. Information dis
played usually includes a brief indication of the failure, logic equations that
are directly involved, source modules, and logic pages.

The following assumptions are made:

Write header switch is off.

Write protect switches are all up or not write protected.

Error/stop switch is in the continue mode.

File is on-line.

Headers are good.

1. 23. 1 - 1. 23. 3

1. 23. 4

1. 23. 5

1. 23. 6

The object tests which use discs deleted from IDOOT17" and "D20T37 1 II will
be skipped.

There are no function variables.

Function 3 - Controller Diagnostic with Data Transfer

This function tests disc file controller operations while transferring data,
parity generation and checking, address registration incrementing, termination
of various states are included. Error reporting is the same as function 2.

Object tests using discs deleted from "DOOT17II and "D20T37II will be
skipped. In addition, if the disc is software write-protected or has been
previously keyed, this function will be skipped.

There are no function variables.

Function 4 - Header Verification and Addressing Test

This function verifies the ability to address the entire disc file and also
verifies all headers. During the first pass, the first word of each sector is
tagged with its own address. In the second pass, the first word of the sector is
checked. If the data does not compare with the address, an error message
will be printed. If an I/O error is detected, an appropriate error message
will be printed. No attempt is made to diagnose the error.

Discs which have been deleted from IDOOT17" and "D20T37" will be skipped.
If the disc has been previously keyed or is software write-protected, th is
function will be skipped.

There are no function variables.

Function 5 - Data Products 5045 Disc File Diagnostic

Th is function contai ns obj ect tests wh ich are designed to locate some of the
problems in the data products 5045 disc fi Ie. Some of the position decoder
(PDBA) logic, the timing, and the clear logic is tested.

Object tests using discs deleted from "DOOT17II and ID20T37" will be skipped.

There are no function variables.

1.23.11 Function 10 - Disc Exerciser

This function exercises the disc in one of several different modes, automatically
or under operator control. The eight function variables are as follows:

OPMODE

LOCORE

Contro I word for mode of operation

Starting core address. Th is must be greater than
34000

1. 23. 4 - 1. 23. 11

HICORE

LODISC

HIDISC

LENGTH

PATTERN

COUNTERS

Ending core address. For a 925/930, maximum
core address is 37777. For a 940, it is 177777.

Starting disc address

Ending disc address. tv\aximum disc is 777777 for
a 32 disc system.

Control for transmission length. If LENGTH is
negative random length records wi II be used. If
L E NG TH is positive it is the fixed record length,
in sectors, to be used.

For a 940, the maximum fixed length is 340 sectors
(14K); if the OPMODE is set for Compare tv\ode,
the maximum fixed length is 160 sectors (7K). The
I ength cannot be greater than the di fference
between HICORE and LOCORE.

Data that will be transmitted in the fixed data mode.

Bits 9 through 12 are the number of retry attempts
to be made if an I/O error is detected. Bits 18
through 23 are the number of data errors to be
displayed after the first error detected in a given
sector.

The bits in the variable OPMODE have the following significance:

o Fixed disc addressing (uses address in LODISC)

- Sequential disc addressing

2 - Random disc addressing

3 Fixed core addressing (uses address in LOCORE)

4 - Sequential core addressing

5 Random core addressing

6 Fixed data (pattern is used as a data word. The sector
address is added to last word in the sector).

7 - Sequential data (disc address is in most significant 18 bits).

8 Random data

9 Not used

1.23.11A

10 Compute while transferring data

11 Use interrupts

12 Buffer 1 operation fixed {read or write}

13 - Write Buffer 1

14 Read Bu ffer 1

15 Buffer 2 operation fixed {read or write}

16 Write Bu ffer 2

17 Read Buffer 2

18 Not used

19 Compare mode

20 Key mode

21 Execute dummy seek before each disc access

22 Time all seeks

23 Time all searches

In the compare mode, operation is controlled by the status of Buffer 1. If
Bu ffer 1 is fixed read, a read-read-compare-write-read-compare operation
will result. This operation will not destroy the integrity of the disc. If
Buffer 1 is fixed write, a write-read-compare operation will result to allow
data to be checked as it is being written.

In the key mode, the disc will be keyed with the selected data. The unit will
not be dismissed, until the keying is complete.

There are several parameter combinations which are not allowed in the
exerciser. These will be flagged as errors.

Disc addressing not specified.

Core address i ng not spec ifi ed.

Data not specified.

Fixed core, fast mode.

Buffer 1 fixed operation, write and read.

1.23.11B

Buffer 2 fixed operation, write and read.

No Buffer selected.

Compare mode, Buffer 1 operation not fixed.

Compare mode, Buffer 2 operation not fixed.

Compare mode, Buffer 2 not read.

Compare mode, length random.

Fixed length too large.

Fixed length greater than 14K (340B sectors)

Compare mode, length greater than 7K (160B sectors).

Fixed length = 0

Locore less than 34000B.

Hicore greater than 177777B.

Hicore greater than 37777B, not 940.

Hicore minus locore less than 64D (1 sector).

Hidisc less than lodisc.

Hidisc greater than 777777.

Key mode, disc addressing not sequential, buffer 1 or 2 fixed in
read mode.

10 STATUS

ERR FLAG

TIS-TSB

SRT DISC

END DISC

SRT CORE

an indication of the state at the time of failure.

a flag used with 10 status to indicate which error
was detected.

time is and time should be for positioning time
errors.

starting disc address.

ending (pinned) disc address.

starting core address.

1.23.11C

END CORE

BLK LENGTH

ending (pinned) core address.

transmit block length.

Bits in the word 10 status and err flag have the following significance:

a Fi I e no ton lin e

- Controller not ready (500 ms timeout)

2 - Controller error set

3 Track not verified

4 Disc write protected (during write attempt)

5 - Write header switch on

6 Not used

7 - Seek time error

8 Not used

9 Search time error

10 Not used

11 Not used

12 - Channel error set

13 Channel active (500 ms timeout)

14 - Word count not zero

15 Not used

16 Not used

17 Not used

18-20 Current retry number

21-23 - Current phase

a Inactive

Disc seek

1. 23. 11 D

2 Disc seek (retry)

3 - Write Bu ffer 1

4 - Read Bu ffer 1

5 - Write Buffer 2

6 Read Bu ffer 2

If a data error is detected, the following information is displayed:

WORD IS Bad data

WORD SB Good data

DISC ADD Disc address of bad data

CORE ADD Core address of bad data

START DISC Starting disc address

LENGTH Transmitted block length

WORD NO Word number within the sector

ERROR NO Error number with in the sector

In the compare mode, WORD IS comes from Buffer 2 and WORD SB comes from
Buffer 1.

When function lOis entered, if the disc has not been keyed, the key mode is
set (OPMODE = 22126610). If the disc has been keyed, the automatic
running mode is set (OPMODE = 11133307). If the disc is software write
protected, the R-R-C-W-R-C mode is set and will not destroy the integrity of
the disc (OPMODE = 11135527) see compare mode explanation.

In order to reset the sequential disc pointer, type 0 15271T. This pointer is
not reset by typing F lOT. The pointer will be reset and control returned to
the keyboard. If T is typed, a function 10 transfer will be executed.

1.23. 19 Function 18 - Write Protect Switch Test

This special function tests the status of the write protect switches by positioning
the arms to position 0 and then testing the switches. If a disc is found to be
write-protected, the message 'write protected - disc XX' wi II be printed on
the error device.

1.23.19

There are two function variables.

START Starting arm number 0-37 (octol)

END Ending arm number 0-37 (octol)

The function will continue to run until BP4 is toggled. Discs deleted from the
variables 'DOOT17 1 and I D20T37 , will be skipped.

1.23.20 Function 19 - Single Increment vs. Time Plotter

Th is special function times the arm movements from position 0 to position 1 to
position 2 etc., ending at position 63. At this point, the motion is reversed
and the time is measured from position 63 to position 62 to position 61, etc.,
until position 0 is reached. The times for all movements are then entered into
a graph which is output on the error device. The symbols used are:

Plus Sign Forward direction times

Minus Sign - Reverse direction times

Delta Sign - Equal forward and reverse times

Discs will be sequentially tested using the Istart' variables. If a disc does not
come ready within 500 milliseconds, an error message is output and the test
aborted.

The graph is scaled as follows:

Horizontal Scale - Ending arm position

Vertical Scale Positioning time in milliseconds

Typical range in times is from 140 ms to about 200 ms. There are no existing
specifications to indicate just what are good and bad times, however, in many
cases, a problem has been indicated by irregu larities in the graphs. For
example, a disc file that is rotating too slowly, and a disc file with timing
logic set incorrectly both had graphs whose minimum positioning times were
5 to 10 milliseconds too long (effectively displacing the graph). Other
problems such as sticky arms will result in high positioning times. In several
cases, comparing the graph of a suspected bad arm, with that of a good arm
has shown problems.

1.23.21 Function 20 - Mu Itiple Increment vs. Time Plotter

This special function times all possible combinations of 1, 2, 3, ... 64
positions moved and records the maximum and minimum times for each increment
value on a graph. Discs are tested sequentially using the START arid END
variables. For each arm is approximately 18 minutes. Then run time graph is
output to the I ine printer.

1.23.20 - i.23.21

The graph is scaled as follows:

Horizontal Scale - Number of positions moved.

Vertical Scale tv\aximum and minimum positioning times in
mill iseconds.

Typical positioning times range from 140 to 350 milliseconds depending upon
the amount of positions moved.

If the disc does not come ready within 500 milliseconds, an error message is
output and the disc is aborted.

1.23.22 Function 21 - Write Header

This special function will write the headers on sequential addresses according
to the variables START and END. These variables are in the form of disc pot
words. START should have an address starting at sector 0, head pair O. I. e.,
777600 is disc 37, track 77, header pair 0, sector O.

1.23.23 Function 22 - Write Header Test

The purpose of this function is to provide the operator with a tool for use in
locating problems encountered in header writing. No attempt is made to
diagnose errors, just to provide a program for use while scoping. BP1 must be
set.

The function variables are START and END, which are the starting and ending
disc addresses in the form of disc pot words. The same variables will be used
until breakpoint 1 is reset, at which point the control will revert to the
keyboard. The sector count must range from 1 to 128.

1. 23. 24 Function 23 - Sector Dump

The purpose of this special function is to provide the operator with a means of
dumping one sector on the disc to the error device. The control will be
returned to the keyboard when the print is completed.

1. 23. 22 - 1. 23. 24

1. 24 UNIT 22 Y CHANNEL DISC DIAGNOSTICS

Not Insta lied.

i.24

There is one variable:

SECTOR Address to be read and printed.

1. 25 UNIT 23 CTE - 10/11 TEST

This unit test is composed of 16 functions designed to test the CTE-l0 and one
CTE-ll unit.

To use this unit test, the user must insert the CTE-ll loop test card into
slot 3 of those CTE-ll Units he wishes to test.

Function 1 will test channels 0-3

Function 2 will test channels 4-7, etc.

Function 16 will test channels 74-77

The channels to be tested must be set as bits in the system variable SYSIZE.
Each bit corresponds to four channels or one CTE-11.

Bit Position Channel

o 0-3

4-7

2 10-13

3 14-17

4 20-23

5 24-27

6 30-33

7 34-37

8 40-43

9 44-47

10 50-53

11 54-57

12 60-63

1.25

Bit Position Channel

13 64-67

14 70-73

15 74-77

The program assumes the following standard cable connections. Cable W303
in slot 1 of the CTE-10 will address channels 0-17, where channels 0-3 will
be on the first CTE-11, channels 4-7 will be on the second CTE-11, channels
10-13 will be on the third CTE-11 and channels 14-17 will be on the
fourth CTE-11.

Cable W304 in slot 2 of the CTE-10 will address channels 20-37, where
channels 20-23 will be on the first, channels 24-27 on the second, channels
30-33 on the third and channels 34-37 will be on the fourth CTE-11.

Cable W305 in slot 3 of the CTE-10 will address channels 40-57, where
channels 40-43 will be on the first, channels 44-47 on the second,
channels 50-53 on the third and channels 54-57 on the fourth CTE-11.

Cable W305 in slot 4 of the CTE-10 will address channels 60-77, where
channels 60-63 will be on the first, channels 64-67 on the second,
channels 70-73 en the th ird and channels 74-77 on the fourth CTE-11.

The following tests are performed for every channel:

Test the POT and PIN connections to verify that the CTE-10 is
addressable.

Test the scanner to verify that it is changing values.

Test the ready 5 KS under channel activated and deactivated
conditions.

Test the channel status 5 KS under channel activated and deactivated
conditions.

Acknowledge and verify the ON and OFF interrupts.

Test the channel addressing capability, verify that the POT and PIN
word has identical addresses when acknowledging an interrupt.

Test the transmit buffer empty SKS when the buffer is empty.

Acknowledge and verify the receive interrupt and test the transmit
buffer not empty SKS.

1.25A

Acknowledge and verify the transmit buffer empty interrupt.

Transmit a character consisting of all ones to the channel.

Acknowledge the receive interrupt and verify the character.

Test the over-run bit and verify that it is not set by a single
character transmission.

The error messages are designed to give the following information:

A brief description of the detected error.

A message directing the user to the specific CTE-ll unit.

Signals and module locations which can cause the error. All CTE-l0
modu I e locations are denoted by AXX whereas a II CT E-ll modu Ie
locations are denoted by JXX.

The user can find the specific channel the error was detected on by
executing the following on the keyboard.

01

If the user looks at the listing at the address AAAAA he will find the
specific channel causing the error.

1.25B

	000
	001
	002
	003
	004
	005
	006
	007
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23_Unit0
	24
	25
	26
	27
	28_Unit1
	29
	30
	31
	32_Unit2
	33
	34
	35
	36
	37
	38
	39
	40_Unit3
	41
	42_Unit4
	43
	44
	45
	46
	47
	48
	49
	50_Unit12
	51
	52
	53
	54
	55
	56_Unit15
	57
	58
	59
	60
	61
	62_Unit21
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73_Unit23
	74
	75

