

X Value to be SE T in A

X < = 0 0
0<X<=10 1
10<X<=15 2
15 < X < = 30 3
30 < X < = 100 4
X> 100 5

Figure 12. Value of A as a Function of X

One way of writing this program would be

> 1.0 SE T A = 0 I F X < 0: 0 @)
> 1. 1 SET A = 1 IF X > 0 AND X < = 10 @
>1.2SETA=2IFX>lOANDX<=15@l
> 1.3 SET A:- 3 IF X > 15 AND X <:.:; 30@l
> 1. 4 SE T A = 4 I F X > 30 AND X < = 100 €V
> 1. 5 SE T A = 5 IF X > 100 €V
> 1. 6 TY PE A, X @)

CAL has a powerful feature that makes conditional expres
sions possible in the example above. Using a conditional
expression, the foregoing can be achi eved in a single step.

1. 0 SET A=IF X <=0 THEN 0 ELSE IF X>O
AND X <= 10 THEN 1 ELSE IF X>10 and X <=15
THEN 2 ELSE IF X> 15 AND X <=30 THEN 3 ELSE
IF X >30 AND X <=100 THEN 4 ELSE 5

Conditional expressions take the general form

SET v=IF e
p1

THEN e
v1

ELSE IF e
p2

THEN ev2 ••• ELSE evn

When a conditional expression is evaluated, ep l is first
evaluated. If it is non-zero, evl is evaluated and its
value becomes the value of the expression. If epl is zero,
ev l is ignored and ep2 is evaluated. If the expression ends
with ELSE evn' then the value of evn will be the value of
the expression if all the epi are O. The expression may,
however, end with

IF epn THEN evn

In this event, the value of the expression is 0 if all the
epi equal O. Note that the only expressions actually eval
uated are those whose values are required in determining
the value of the expression. As another example, consider
the statement

>SET B=IF X MOD 2=OTHEN-l ELSE IF X> 100
THEN 0 ELSE 1 @)

This statement will set B to -1 if X is an even integer,
to 0 if X is not an even integer and is greater than 10, and
to 1 if X is not an even integer and is less than 10.

THE "WHERE" MODIFIER

A WHERE modifier can be appended to an expression in order
to set the value of a variable to the value of a specified
expression. The general form is

SET V = e WHERE Vl = e1

22 The WHERE Modifier

The modifier, which is evaluated first, sets the value of v
to the value of v

1
= el. For example, the step

1. 0 SET A = 51 N(Z)/COS(Z) WHERE Z = A TAN(X, Y)

has the value

SIN(A TAN(X, Y))/COS(ATAN(X, V))

In the above example, Z will be continuously evaluated.
However, it is possible to have the WHERE modifier evalu
ated only once, by placing a comma before the WHERE.
This is particularly useful in the iteration. For example:

>SET X = N(I)/Q FOR I == 1 TO 10, WHERE @)
Q = SQRT(64) @)

The WHERE modifier may be followed by more than one ex
pression; each must be separated by an ampersand sign (&)
(See the last example in this section for an example of its
use).

In a previous example, a program was written to find C
according to the following figure.

> 1. 0 DEMAND X, Y, R €V
> 2.0 SET C = SQRT(R t 2+Z t 2) WHERE @

Z = SQ R T (X t 2 + Y t 2) @l
>3.0 TYPE X, Y, R, Z, C @)

As an additional example of the use of WHERE, consider
a program to evaluate

x
e

n
x

+
N!

Given X and the number of terms, N, the program without
a WHERE clause could be written as

> 1. 1 DEMAND X, N @l
> 1.2 SET T = 1 e
> 1. 3 SE T S = 1 ®
> 1.4 DO PART 4 FOR I = 1 UNTIL T < lOE-8 e
> 4. 2 SE T T = T*X/I @)
> 4. 3 SE T S = 5+ T €V
> 5.43 TYPE 5, T, X, N e
> 5.7 TO 5 TE P 1. 1 e

x -8
A program to compute e with accuracy better than 10
utilizing WHERE clauses can be written in one step as

>1.0 SET E=l+SUM(I=l BY 1 UNTIL T<10E-8: <0
T WHERE T=XtI/F WHERE F=I*F) @)

where T=l and F= 1.

4. SPECIAL STATEMENTS (INCLUDING FILE CONSTRUCTION) AND SUBPROGRAMS

SPECIAL STATEMENTS DELETE FORM i where i is any form number or

The discussion thus far has covered statements wh ich may be
either direct or indirect. t Remember that a direct statement
is one that does not have a step number and therefore results
in a one-time execution (i.e., the statement is not saved in
a program). An indirect statement does have a step number
and is saved in a program. Execution of an indirect state
ment does not occur unti I the program is executed. The
most common two-way (direct and indirect) statements use
the TYPE and SET commands; Used as direct statements,
for example, these commands would appear as

>SETC =48
> SET B = 38
> TYPE A = SQRT(Bt2+Ct2)8

The computer would immediately execute the commands and
print

A = SQRT(Bt2+Ct2) = 5

In program form, the same commands would appear in indi
rect statements as

> 1. 1 SE T C = 4 @
> 1. 2 SE T B = 38
> 1. 3 TYPE A = SQRT(Bt2+Ct2) 8

Then, to initiate a single execution ofthe program, the user
would type a direct statement such as TO STEP 1. 1.

In addition to statements which may be either direct or indi
rect, CAL has certain statements which may be either direct
only or indirect only. The purpose of this section is to
define and illustrate the use of these special statements.

SPECIAL DIRECT STATEMENTS

The following commands may be used in direct statements
only.

DELETE STEP i. j where i.j is any statement number.

This command causes the specified statement to be
deleted.

DELETE PART i
number.

where i is any expression or part

This command causes the specified part (with all
its steps) to be deleted. In the case of expressions,
it causes the expression to be evaluated and the
part equal to the integer portion to be deleted
(this latter point 'Ni!! become clear in the exam
ples to follov0.

tIn examples given in previous chapters, statements were
used that did not meet this criteria. These statements,
used to compl ete a program or program segment, wi II be
fully discussed in this chapter.

expression

This command causes the specified form number
to be deleted; in the case of expressions, it causes
thp pxprf'ssion to hf' f'valuated and the form equal

to the integer porti on to be deleted.

DELETE i where i is any variable

This command causes the value of the indicated
variable to be deleted without changing the
program.

DELETE ALL

This command causes the entire program in process
to be destroyed and returns the user to the CAL
beginning sequence o

As an example of thE' DELETE statement, consider the fl")lIow
ing program segment.

> 1. 70 DOPA R T 1 0 FOR I = 1 TON @)
> 1. 75 TO S TE P 1. 0 8
> 1. 80 TYPE "EQUA nONS ARE SINGULAR" 8
> 1. 85 TO STEP 1. 0 @)

>2.00 TYPE IN FORM 2:1 @)
>2.10 DEMAND A(I, J) FOR J=l TO N @)

>3.00
>3.10
>3.20
>3.3
>3.4
>3.5

>4.0
>4.1
>4.2
>4.3
>4.35
>4.4

>5.0
>5.1
>5.2
>5.3
>5.4

>6.0
>6.1

>7.0
>7.1

SET L=O @)

SET G=O e
DO PART 4.0 FOR I=J
SET R(G)=R(J) @)
SET R(J)=G @)
DO PART 5 FOR K=J+1

TO N@)

TO N@)

TO SETP 4.2 IF ABS(A(R(I), J» > L @)
TO STEP 4. 4@)
SET L=A(R(I), J)@)
SET G=R(I)@)
TYPE L, G, R, A, J @)
SET 1=1 @)

TO STE P 5.4 IF ABS(A(R(K), J» < 1 E-5 @)
SET M=A(R(K),)/ A(R(J), J) @)
DO PART 6.0 FOR L=J TO N @)
SE T B(R(K» =B(R(K» =M*B(R(J» @)
SET K=K €V

SET A(R(K), L)=A(R(K), L)=M*A(R(J), L) @)
SET A(R(K), L)=O IF ABS(A(R(K), L» <.000001 @l

TO STEP 1. 8 IF ABS(A(R(I), I) < 1E-5 @
DONE@)

Special Statements (Including File Construction) and Subprograms
23

The following DELETE commands are now executed.

DELETE STEP 1. 75 @)
DELETE STEP 1. 85 @)
DELETE STEP 2 §
DELETE STEP 4.4 @

A relisting of the program would now appear as

1. 70 DO PART 10 FOR 1=1 TO N
1.80 TYPE "EQUA nONS ARE SINGULAR"

2. 10 DEMAND A(I, J) FOR J=l TO N

3.00
3. 10
3.20
3.3
3.4
3.5

4.0
4. 1
4.2
4.3
4.35

5.0
5. 1
5.2
5.3
5.4

SET L=O
SET G=O
DO PART 4.0 FOR I=J TO N
SET R(G)=R(J)
SET R(J)=G
DO PART 5 FOR K=J+l TO N

TO STE P 4.2 IF ABS(A(R(I), J» > L
TO STEP 4.4
SET L=A(R(I), J)
SET G=R(I)
TYPE L, G, R, A, J

TO STEP 5.4 IF ABS(A(R(K), J» < 1 E-5
SET M=A(R(K), J)/ A(R(J), J)
DO PART 6.0 FOR L=J TO N
SET B(R(K»=B(R(K»=M*B(R(J»
SET K=K

6.0 SET A(R(K), L)=A(R(K), L)=M*A(R(J), L)
6. 1 SET A(R(K), L)=O IF ABS(A(R(K), L» < . 000001

7.0 TO STEP 1.8 IF ABS(A(R(I), I» < 1 E-5
7.1 DONE

The DELETE PART command is now executed as shown.

DELETE PART 4.0 €l
DELETE PART 7.0 @>

The program would now appear as

1. 70 DO PART 10 for 1=1 TO N
1.80 TYPE "EQUA nONS ARE SINGULAR"

2. 10 DEMAND A(I, J) FOR J-l TO N

3.00 SET L=O
3. 10 SET G=O
3.20 DO PART 4.0 FOR I=J TO N
3.3 SET R(G)=R(J)
3.4 SET R(J)=G
3.5 DO PART 5 FOR K=J+l TO N

5.0 TO STE P 5.4 IF ABS(A(R(K), J» < 1 E-5
5. 1 SET M=A(R(K), J)/ A(R(J), J)
5.2 DO PART 6.0 FOR L=J TO N
5.3 SET B(R(K»=B(R(K»=M*B(R(J»
5.4 SET K=K

24 Special Statements

6.0 SET A(R(K), L)=A(R(K), L)=M*A(R(J), L)
6. 1 SET A(R(K), L)=O IF ABS (A(R(K), L» < . 000001

If the DELETE PART command had specified an expression
such as A*B+2.5, where A=l and B=2, the command would
be

DELETE PART A*B+2. 5

This would be interpreted as

(a) DELETE PART lx2+2. 5
(b) DELETE PART 4.5

which would be equivalent to the integer portion of 4. 5, or

DE LE TE PART 4. 0

If the command DELETE ALL is executed, the whole program
segment is completely destroyed so that the storage is com
pletely free for reuse. At execution of the DELETE ALL
command, the computer prints

CAL

NUMBER OF STATEMENTS NEEDED =

HEADING, PLEASE

Note that this is the same result as when CAL is initiated
after LOG IN.

The DELETE ALL command is especially useful to correct a
type of error common to i nexperi enced programmers. For
example, a program to calculate the square roots of a series
of numbers is written and appears as

> 1. 0 DEMAND N@>
> 1.2 DO PART 2 FOR 1=1 TO N @)
> 1. 3 TO STE P 3. 0 @

> 2.0 DEMAND A(I), B(I) @>
> 2.2" SET C(I)=SQRT(B(I) t2+A(I) t 2) @)
> 2.4 TYPE B(I), A (I), C(I)@)

> 3.0 DONES

This program is executed successfully. Now without exe
cuting the DELETE ALL command, the programmer proceeds
to write another program to find the average of a series
of numbers.

>1.0 DEMAND N@)
> 1. 1 DO PART 2 FOR 1=1 TO N @
> 1.3 SET F=O @)
> 1.4 SET V=F/M@)

> 2. 0 DEMAND A(I), B(I) @>
> 2. 1 SET C(I)=A(I)*B(I) @)
> 2. 3 SET F=F+C(I)@)
> 2.4 TYPE B(I), A(I), C(I) @>

At execution, the program would appear to CAL as

1.0 DEMAND N
1. 1 DO PART 2 FOR 1=1 TO N
1.2 DO PART 2 FOR 1=1 TO N
1. 3 SET F=O
1. 4 SET V =F/M

2.0 DEMAN D A(I), B(I)
2. 1 SET C(I)=A(I)*B(I)
2.2 SET C(I)=SQRT(B(I) t 2+A(I) t 2)
2.3 SET F=F+C(I)
2.4 TYPE B(I), A(I), C(I)

Notice that every place in which the second program had
a number exactly the same as the first program, that step
was replaced. However, wherever the second program had
a gap in its numbering (i.e., 2.1, -, 2.3) and this number
gap was equivalent to a number in the first program, the
first program remained intact. To clarify, 2.0 of the sec
ond program replaced 2.0 of the first (the fact that they
were the same statement is coincidental). 2.1 is from the
second program, whereas 2.2 is from program one. The end
result is that program two finds the average of

C(I)=SQRT(A(I) t 2+B(I) t 2) FOR 1=1 TO N,

but the programmer's intent was to find the average of

C(I)=A(I)*B(I) FOR J=l TO N

This overlay feature has several editing advantages which
will be discussed later. In this case, however, if program
one is to be saved, the procedure should be

(1) Load program one to the di sc fi I e.

(2) DELETE ALL (this is necessary as the program is
still in core).

(3) Then proceed to write program two.

Other direct statements include those which utilize the GO
and STE P commands.

GO

This command permits continuation of execution after an
interrupt, an executor's error, or after a PAUSE statement
is executed (the PAUSE statement is explained below in
the section on indirect statements, which also includes an
example of how the GO command works).

STEP

This command causes the next statement of the program to
be executed, after wh ich control returns to CAL (as though
a PAUSE had been executed). For example, the user has
typed the foil owi ng sequence of statements.

> 1.0 PAUSE@
> 1. 1 SET A=SIN(A+SIN A) (§
> 1. 2 SET B=SIN(A+SIN B)@
> 1.3 SET D=SIN(B+SIN D)@

The following would then be useful for debugging these
statements by executing them step by step and observing
the variables. A, Band D must have values.

> TOSTE P 1. 0 e
PAUSE IN STATEMENT 1.0
> STEP @) (Step 1. 1 would be executed)
> TYPE A@
A=9.7
> STE P @ (Step 1. 2 is executed)
> TYPE B @ (request value of B)
B=O.9

Thus, by direct interaction, the user may correct his pro
gram a step at a time if he so desires.

SPECIAL INDIRECT STATEMENTS

The commands discussed in this section (PAUSE and DONE)
may be used in indirect statements only; i. e., those which
require a statement number and are stored in program form.

PAUSE

This command causes a message to be printed out and pro
gram execution to stop. During the pause, the user may
make corrections, etc. The command may be made con
ditional by utilizing modifiers. As an example of the use
of PAUSE, consider the following program to read in a two
dimensional array of numbers whose dimensions are Nand M.

1.1 DO PART 2 FOR 1=1 TO N
1.1 TYPE "AT PAUSE MAKE CORRECTIONS AND TYPE IGOIII
1.2 PAUSE
1.3 TO STEP 3.0

If N=2 and M=3, the following would occur at execution.

A(l,1)=2
A(l,2)=4
A(l,3)=3
A(2,1)=5
A(2,2)=6
A(2,3)=2

A T PAUSE MAKE CORRECTIONS AND TYPE 'GO I

PAUSE AT STEP 1.2
>

Suppose that the values of A(2, 1) and A(2, 2) were sup
posed to be 6 and 5, respectively, instead of 5 and 6. The
> sign directly below the PAUSE statement indicates that
CAL will accept a direct command. Thus, at this point the
user may type

> SET A(2, 1}= 6 @
> SET A(2, 2)=5 @)

By typing GO at this point, execution will begin again at
step 1.3, which indicates that the program should transfer
to step 3. O. The corrected values have now replaced the
original entries.

The PAUSE statement is also useful in terminating a program.
For example, the last two statements in a program might be

> 20. 0 TYPE "IF RE-EXECUTION IS DESIRED TYPE 0)
ITO STEP 1. 0 1 OTHERWISE HIT THE ESCAPE 0)
KEY ONCE TO RETURN TO CAL, TWICE TO 0)
RETURN TO THE EXECUTIVE MONITOR" @>

> 20. 1 PAUSE @)

At the execution of steps 20.0 and 20. 1 the message would
be printed, plus

PAUSE AT STE P 20. 1

>

Special Statements 25

The program wi II re-execute if the user then types

> TO S TE P 1. 0 @)

If the user wished to terminate the program he would follow
the instructions given in the message.

DONE

This statement is ignored unless a DO PART statement is in
force, in which case the DO PART is terminated. Since
DO PARTS are used many times in iterative loops, the
DONE command is frequently used to terminate a loop.
For example, an array (q) contains quantities of parts ship
ped to customers and a corresponding array (15) contains the
unit price (customer identity has a one to one correspon
dence with the subscript value; i.e., when the subscript is
"i" this corresponds to a code "i" for that customer1s name).
If a zero value occurs in either the q array or the 15 array,
the calculation is to move to the next set of values. The
program segment to perform this, assuming the arrays q and
15 have already been input to the program, would be

> 3.0 DO PART 4 FOR I = 1 TO Nt @)
> 4.0 DONE IF Q(I) = 0 OR P(I) = 0 @)
> 4. 1 SET C(I) = A(I)*P(I) @)
> 4.2 TYPE I, C(I)@)

At execution, whenever Q(I) or P(I) are zero, the DONE
command will return execution to the DO command in
step 3. O. The DO command causes an incrementation of
I and then re-execution of part 4. O.

SUBPROGRAMS

Mathematical functions such as SQRT, EXP, etc., are pre
defined functions and, as such, are always available in
CAL. However, there are often functions or special pro
cedures that are not predefined but would be useful for a
program being written. It is then up to the user to define
his own functions. This is possible in CAL and can be done
in severa! ways. The most common way is to construct and
use CAL "subprograms". Each subprogram, when supplied
to the computer along with the main program, will then
serve as if it were a predefined function.

Subprograms are somewhat independent and can thus be
tested separately in many cases. Groups of tested sub
programs forming progressively larger subsystems can be
tested separately until finally the entire system of programs
may be proven as a working unit. This independence of
parts means that several programmers may work effectively
under one supervi sor on separate subsections of a large
project, depending on the nature of the project.

Another useful property of subprograms is that they may
always be added to the "library" of a computer system
when they prove useful enough. Thus they become pre
defined functions for all programs written in the future.

t N equals total entries in the array.

26 Subprograms

Statements of the type previously discussed can be combined
to form a subprogram. Consider the following program which
calculates the product of N*(N-1)*(N-2} ••. 1. The product
is call ed the factorial of N.

> 1.0 SET N = 10 @)
> 2.0 DO PART 5.0 (§
> 2. 1 TY PE P (§

> 5.0 SET P = PROD (1=1 TO N:I)@)

In this example, Step 5.0 is called the subprogram, Step 2.0
is the call to the subprogram, N is the argument, and P is
the result of the subprogram.

This type of subprogram has a definite limitation, in
that only the factorial of N can be calculated by step 5.0.
It would be more convenient to have a subprogram that
could calculate the factorial of any variable. It is possible
to construct such subprograms in CAL by using DEFINE
statements (which are always written without step numbers).
In this way, CAL lets the user define a step or many steps
in a general sense so that any variable or variables can be
acted upon.

ONE-STEP SUBPROGRAMS

To define the subprogram that consists of one step only, the
user uses the following form of the DEFINE statement.

DEFINE f [v
1
, v2, ••• ,v n] = e

where f is any variable name, v is any variable and e is
any expression. For exampl e

DEFINE F [A, B, C] = A*B+C

The call to a subprogram is the appearance of the function
name in a statement, which initiates the execution of the
subprogram. Either of the following statements, for example,
would call the subprogram for execution:

1. 0 SET X = Y + Z + F [1, 2, 3]

or

TYPE F[X, Y, z+51

The arguments of the subprogram are included in brackets in
the call. They may be variables, constants, or expressions.
The variables in brackets in the original definition are called
local variables or dummy arguments. There must always be
the same number of arguments as local variables.

Note that while the DEFINE statement is always a direct
statement, the call to the subprogram may appear in either
a direct or indirect statement.

Consider again the factorial example, N*(N-l)*(N-2) ... 1.
Using the DEFINE statement, the subprogram could be
written as

DEFINE F [N] PROD(I FOR I = 1 TO N)

To execute the subprogram for N = 10, the user cou Id type

TYPE F [10]

We can consider another example.

DEFINE F [X, Y, Z, W] = XtW +Y/Z

The call

TYPE F [3, 4, 2, 2]

would cause the computer to evaluate X t W + Y /Z, using
the values 3, 4, 2, and 2 for X, Y, Z, and W, respectively,
and to print the result. Thus F = 3 t2 + 4/2 = 11, and 11
would be printed as the result of subprogram F.

Using the same subprogram definition, the following steps
could also be used to cause the computer to print the same
result.

> SET A = 3 @l

> SET B = 4 @l

> SET C = 2 <§

> SET D = 2 @l

> TYPE F [A, B, C, D] @)

The effect of this call is that the value of A has been
assigned to X, B to Y, C to Z, and D to W. In this case,
the arguments are A, B, C, and D, while the local vari
ables are X, Y, Z, and W.

The local variables in a subprogram are not related to any
variables in the main program, even if they have the same
name. Local variables are assigned no location in memory.
Their function is only to serve as placeholders. This point
can be made clear with another example.

>DEFINE E [I, J, K, L, M] = (I+J+K)/(L+M) E"i9

>1.0 SETI=10@)

>2.0 TYPE E [1, 2, 3, 4, 5] @)

>5.0 TYPE I @)

Note that I appears as a variable in the main program and
a~ a dummy variable in the definition statement. The value
of I in the main program is set to 10 before the subprogram
is executed. Thus, the main variable I will have the value
of 10 when step 5.0 is executed, even though the dummy
variable I is given the value of 1 in step 2. O. When the
subprogram is executed by the call in step 2.0, I will have
the value of 1 but this will not affect the I of step 5.0. This
characteristic is true only in the case of local variables.

MULTIPLE-STEP SUBPROGRAMS

To write subprograms longer than one step, another form of
the DEFINE statement is available.

DEFINE f [v
1
, v

2
, ••. ,v

n
]: statement

where f !S C!11' vcdcb!e !1a~e a!"!d v !s a!"!y vadab!e. For
example

DEFINE X [A, B, C] TO PART 5

or

DEFINE W [M, N] : TO STEP 4.2

Again, the DEFINE statement is always a direct one. When
used in this form, the call must always be an indirect state
ment. The following is an example of a valid call to a
multi-step subprogram.

1.0 SET F =W [M, N]

The local variables have the values of the arguments, as
described above. However, to terminate the subprogram
the user must include a RETURN statement, which will also
assign the value of e to the variable name, f. The form of
the statement is

RETURN e

where e is any expression.

As an example of subprograms with more than one step, con
sider the sales tax program in chapter 3. This would appear
as a subprogram as follows.

>DEFINE S [C]: TO STEP 10.0 <3
> 1. 0 DEMAND X @)

>2.0 TYPE S [X] <§

> 10.0 SET T = • 04*IP(C) @

>10.1 SET T = T+.Ol IF FP(C) >.15 <§

>10.2 SET T = T+.Ol IF FP(C) >.37 <§

>10.3 SET T = T+.01 IF FP(C) > .62@)

>10.4 SET T = T+.Ol IF FP(C) >.84 @l

> 10.5 RETURN T @)

All of part 10 is executed with the value of the argument X
assigned to local variable C. Step 10.5 assigns the value T
to S and returns control to step 2. O.

In terminating a subprogram with the RETURN statement, the
user must take care that the range of any DO or FOR com
mands are complete before the RETURN appears. Otherwise,

Program Fi I es 27

the part will not be completed. The following example
illustrates the correct placement of a RETURN statement.

>DEFINE Z [N]: TO STEP 10.0 @

>1.0 SETX = Z [30] @

> 10. 0 SET S = 0 €V

> 11. 0 SET Q = O@

>12.0 DO PART 14 FOR I 1 TO N@

> 13.0 TO STEP 15.0 @)

> 14.0 DEMAND A(I) @

> 14. 1 SE T S = S + A (I) @)

> 14. 2 SET Q = Q + A(I)*A(I) (§

>15.0 TYPE S/N @

> 16.0 TYPE SQRT (Q - «S*S)/N)/N-l) @

> 17. 0 RETURN S @)

This subprogram reads N numbers, and calculates and prints
the mean and standard deviation. Execution begins with
step 10.0 and continues to step 12.0 which sends it to
part 14. Part 14 is completed before execution is returned
to step 13.0. Execution ends with steps 15,16, and 17.
If the RETURN had been included in part 14, within the
range of the DO command, CAL would reject the program
for syntax error.

A RETURN is never used when the subprogram is defined
with a DO statement. The reason for this is that DO PART
or DO STEP is not finished until the whole subprogram has
been completely executed. Thus, the RETURN statement is
unnecessary. Consider the following example:

>DEFINE S [C]: DO PART 10.0 @

>1.0

>2.0

DEMAND X@>

SET P = S [X] ~

28 Program Files

>3.0 TYPE T @)

>10.0 SET T = .04*IP(C)8

>10.1 SET T = T + .01 IF FP(C) >. 15@>

>10.2 SET T = T + .01 IF FP(C) > .37@>

> 10.3 SET T = T + .01 IF FP(C) > .62 @l

>10.4 SET T = T + .01 IF FP(C) >.84 @>

Note that in this example, the purpose of step 2.0 is to ini
tiate the program. P and S, after execution, have the value
of zero. Therefore, step 3. 0 was necessary to pri nt the
"resu It II of the subprogram.

This section has presented the basic rules for constructing
subprograms. Increasing familiarlity with the DEFINE
statement wi II suggest other usefu I possibi I ities for subpro
grams. For example, the following subprogram definition
allows the user to choose, at execution time, which sections
of statements to execute.

DEFINE F [I]: TO STE P I

PROGRAM FILES

Programs may be saved in the form of files. Each user may
have a number of his own files which are private to him.
The command to save a program written in CAL is

>DUMP @)
TO/file/ (§
NEW (old) FILE e

This command takes all the steps and forms in memory and
writes them onto the specified file. To bring the steps back
from the file into CAL, the user types

> LOAD e
FROM /file/ @)

For more information about program files, see the Terminal
User's Guide.

5. INPUT jOUTPUT - DATA FILE CONSTRUCTION

One of the most powerful features of CAL is that it allows
the user to input numerical information while the program
is in the execution mode. CAL also provides instructions
for formatting both teletype input and output information
and, finally, has the capability of reading and writing data
fi les.

THE "DEMAND" STATEMENT

The DEMAND statement is the executable command which
allows numerical input by the user during program exe
cution. The general form of the expression is

DEMAND (variable), (variable), .•• , (variable) @>

The command causes each variable name to be typed out
one at a time. As each variable on the list comes up, CAL
waits for the user to input a value for that variable. The
variable request I ist generated by CAL is in the order that
the variables appeared in the DEMAND statement.

> DEMAND X, Y, Z, A, R @>

At execution, CAL causes the computer to print

X = (user enters numeric value) @>
Y = (user enters numeric value) e
Z = (user enters numeric value) @>
A = (user enters numeric value) @>
R = (user enters numeric value) @)

When numerical data is being typed in response to the
DEMAND statement, any non-numeric characters typed
before the number will be ignored. For example

> DEMAND X, ye
X =A3
Y = LM4

would assign 3 to X, and 4 to Y.

If a mistake is made during the typing of a number, the
entry may be deleted by striking QC, which deletes all
characters typed so far and allows the number to be retyped.
To terminate a unique entry, the character following the
number must be a carriage return, space, comma, or semi
colon. If a carriage return is used as a terminator, the next
data request will occur on the next I ine. When a space is
typed, the next data request will appear on the same line
if addi tional data requests are yet to be satisfied in the par
ticular demand statement being executed.

"DEMAND" STATEMENTS WITH MODIFIERS

The DEMAND statement may be used in combination with
modifier clauses, such as FOR, IF, WHERE, UNTIL and
WHILE.

For example, the DEMAND statement used with a FOR clause
wou Id look and execute as follows.

4. 1 DEMAND A(I) FOR I = 1 TO 4 @)

At execution the computer wi ii print

A(l) = (Operator enters number plus e)

A(2) = (Operator enters number plus@»)

A(3) = (Operator enters number plus @»)

A(4) = (Operator enters number plus @»)

A two dimensional matrix, A, with dimensions of m rows
and n columns may be input by a DEMAND statement as
follows.

1.0 DO PART 2.0 FOR I = 1 TO M@>
2.0 DEMAND A(I, J) FOR J = I TO N @)

At execution, the computer will start with "1" set equal to
one and will request the elements in the first row for
J = 1 TO J = N, then "1" wi II be set to the value 2 and
the sequence in J repeated, e. g.,

A(l,l) =

A(l, N) =

A (2, 1) =

A(2, N)

A(M,l)

A(M, N) =
Another example would be

5.2 DEMAND X(I) FOR I = 1 TO 100 WHILE @
X(I-l)#0, WHERE X(O) = 1

X(l)
X(2)
X(3)

(this will continue until I = 100 or the input is zero)

THE "FORM" STATEMENT FOR INPUT

CAL allows the user to control the form of his input by using
the command

DEMAND IN FORM e: vl, v2' ••. ' vn (where e is
any expression and v any variable)

and its corresponding

FORM n: G (where n is a constant, the numeri-
/I # # cal evaluation of the expression e)

Input/Output - Data File Construction 29

Often programs are written by one person and used by many.
When this is the case, the type of input required must be
carefully explained to the user, so he knows when and what
to type. This can be accomplished by using the FORM and
DEMAND IN FORM commands.

The form and demand in form commands work by eval
uating the expression e. The corresponding form state
ment defines what will be printed and how many numbers
will be accepted. All text (including blanks) in the form
statement is printed. One number (in either decimal or
scientific notation) is accepted for each "III sign. The
"#11 sign is not printed.

As an example, three variables to be input represent a unit
cost (C), a quantity (Q), and a discount (D). The CAL
statements are

1. 1 DEMAND IN FORM 1: C, Q, D@

FORM 1: @

UNIT COST = II QUANTITY = II DISCOUNT = II

At execution, the computer would print the first portion of
the text and then wait for the user to type the fi rst number.
Then the computer prints the second portion of text and
waits for the second number to be typed, and so on.

UNIT COST = 9.65 QUANTITY = 500 DISCOUNT = .05

The user terminates each number with a comma, semicolon,
or blank. (Note that the user types a I ine feed (not a
carriage return) after FORM 1 :).

The same example could also appear as

>1.1 DEMAND IN FORM 1: C,Q,DE>
>FORM 1: @)

UNIT COST = II @
QUANTITY = 1/ @
DISCOUNT = , 0

Similarly, at execution the computer would type the first
portion of text and wait for a number.

UNIT COST = 9.659
QUANTITY = 5008
DISCOUNT = .05 ®

However, in this example, when a space, comma, or semi
colon following the number is typed by the user, the com
puter will print a carriage return, I ine feed and the next
porti on of text.

Note that the FORM statement never has a line number.

One "I" sign should appear in the FORM statement for each
variable in the demand list.

The FORM statement is also used by those who want no
printing at all before input. This is particularly useful
when the data to be typed is on a paper tape. Consider the
following example.

30 Data Input from Paper Tape/rhe Form Statement for Output

The A matrix used in one of the previous examples could be
read, one row at a time, across the paper by using the
following.

>1.0 DO PART 2.0 FOR I = 1 TO M@
>2.0 DEMAND IN FORM 1: A(I,J) FOR J = 1 TO N@)

FORM 1: (0
1/ II II II II II II II II

In this case, the variable name is not printed. The com
puter wi II expect a number (i n any form) for each II. The
user might type

9.1,8.3,7.2, ••••••.•••••.•••••...••.• 6.0 @
3.2, •••.••....•.•••......••.••.......• 4.2@

3.2, •••••••.••••••••••••••••••.•.••.•• 3.1@

As before, each number may be terminated by a space,
comma, or semicolon.

DATA INPUT FROM PAPER TAPE

This data could have been typed directly or typed off line
onto a paper tape. The latter method is often used to reduce
typing time. The procedure to follow for this example is:
(1) prepare an off-line tape by punching the value ofal' 1
(comma, semicolon or blank) al' 2 (comma, semicolon or
blank) to a 1, n (carriage return, etc., and (2) press the tape
reader button, turn the TD switch on and the program will
accept the tape at full teletype speed. The computer is
unable to distinguish between input from paper tape and
di rect typing.

THE "FORM" STATEMENT FOR OUTPUT

The TYPE statement may also be used with the FORM
statement.

TYPE IN FORM 1:

FORM 1: (0
%%%% • % % % %% . % %

Note again that the user types a line feed and the computer
supplies the carriage return.

The significance of the percent sign is to tell the computer
in what form the number should be printed.

For example

%%%.% tells the computer to print a sign, two
digits, a decimal point, and then one digit.

-42.3
(+)21.9
49.0
-1.5

(plus signs are not printed)

(no leading zeros are printed)

Text to be printed may also appear in a FORM statement.

For example

>FORM 2 ®

VOL = %%%%.% AREA = %%%%.%9

When the following command is executed (where V = 452.1
and A = 205.9)

> TYPE IN FO!U'l\ 2 : V, .A. e
the computer wi II type

VOL = 452.1 AREA = 205.9

The percent sign will always produce a number in decimal
notation. To produce a number in scientific notation, the
11#11 sign is used.

The syntax of the FORM statement for numbers in scientific
notation is

>FORM 1: 0)
######, #11####, ••• , ###### @

A minimum of SIX 11#11 symbols is required to denote a scien
tific notation field. The six 11#11 symbols are required to
provide space for the sign, the decimal point, at least one
significant digit, the "EII denoting a power of ten, the sign
of the exponent, and the exponent itsel f. For example, to
output the number 1. 1 E -3, 30. 13+ 12, and 50. 265E -5, the
form statement would be

>FORM 1:@
######, ########, ######### @

Note that the fields in either decimal or scientific notation
used in the FORM statements, are del imited by a blank. If
commas appear, as in the example above, they will be
printed.

As described, a FORM statement is uniquely identified by
a number appearing directly after the word II FORM" • The
syntax rules for FORM statements for output are

• The identification number must be immediately
preceded by a space and followed by a colon.

• The colon is always followed by a I ine feed ®
carriage return @) and then the field designation.

• Two types of field designators are available:
decimal number (the % symbol) and scientific
notation (the # symbol).

• A form statement may have several field linesi
each intermediate line must be terminated by line
feed-carriage return, and the last I ine by a car
riage return-I ine feed.

• Text may appear in the numerical fields.

Another example is given below.

>29 TYPE IN FORM 1: C, Q, D e
>FORM 1:@

UNIT COST = %%.%%, QUANTITY=%%%%.,®
DISCOUNT =%.%%8

At execution the format would appear as

UNIT COST = 1.25
DISCOUNT =.05

QU AN TITY 235

If column form instead of row were desired the FORM state
ment would have to be written as

>FORM 1: ®
UNIT COST = %%.%% (0
QUANTITY = %%%.0)
DISCOUNT = %.%% 9

If there are more numbers in the TYPE statement than fields
in the form, the form is reused as often as necessary. If a
FOR modifier is used immediately after the I ist of expres
sions, the form will not be initialized each time around for
FOR. Instead, output will take place as though all the
expressions generated by the FOR had been written in the
TYPE statement. Thus

>FORM 1:®
%%%% %%%% %%%% %%%% %%%% %%%% @l

>TYPE IN FORM 1: It2 FOR I = 1 TO 14@)

will resu I tin

1
49

169

4
64

196

9
81

16
100

25
121

36
144

If there are fewer numbers to be printed than indicated by
the FORM statement, an extra line feed is used in the FORM
command.

For example, the desired result is to print a lower triangular
matrix which would appear as

where the dimensions are N by N and the maximum element
size may be ±99.99.

The output sequence in the program would be

>4.0 DO'STEP 20 for 1= 1 TO N @)
>20.0 TYPE IN FORM 5: A(I, J) FOR J = I UNTIL ®

J > N OR J > I @

>FORM 5: 0)
0)

%%%. %% %%%. %% •••• %%%. %% %%%. %% ®

Data Input from Paper T ape/fhe Form Statement for Output 31

In addition, there must be N+ 1 fields specified by the
FORM statement. At execution, the resul t would be

INPUT FROM FILES

The CAL language has the facility to accept input data from
data files. A data file is one that has been created and
defined previously by use of the executive mode, another
subsystem, or by CAL itself. A data file differs from a pro
gram file, in that the program file contains the steps of a
program, and a data file contains numbers to be read by a
program.

To open a data file to read in CAL, the instruction is

OPEN "Name" FOR INPUT AS FILE (expression)

For example, assume a matrix A with row dimension M and
column dimension N has been stored previously in a file
named II MATRIX. II The CAL statement to input this to a
program might appear as

>1.0 OPEN "MATRIX" FOR INPUT AS FILE 999<§
> 1. 1 DO PART 2.0 FOR I = 1 TO M e
> 1. 2 CLOSE 999 e

>2.0 DO PART 3.0 FOR J = 1 TO N E9
>3.0 READ FROM 999: A(I, J)@)

The general form of the READ statement is

READ FROM (expression): v l' V 2' ••• , v n

In the example above, STEP 1.2 will close the file. The
command is

CLOSE (expression)

At execution, this command will close the file; i. e., it is
transferred from memory to the disc. The fi Ie then is
unavailable for input until it is reopened.

Similarly, a file may be written on by using the "WRITE
ON" statement. Consider the following example.

> 1. 0 OPEN "DATA" FOR OUTPUT AS FILE 1 @>
>2.0 DO PART3FORI=1 TO 100@)
>2.5 TO STEP 4.0@
>3.0 WRITE ON 1: I @
>4.0 CLOSE 1 @)

The general form for the WRITE ON command is

WRITE ON (expression): e
3

• •• e
2

, ••• , en

After execution, the file called DATA would appear as

i = i
I = 2
I = 3

32 Input from Files

If this file is subsequently read by a CAL program, the non
numeric characters would be ignored so that it would seem
as though the file contained only 1, 2, 3, etc. However
in the case of subscripted variables, the numerical value
of each subscript is written on the file, so that if the file
were to be read by a CAL program the subscripts would be
mistakenly read as data. Consider the following program.

>1.0 OPEN "DATA" FOR OUTPUT AS FILE 18
>2.0 DO PART 20 FOR 1=1 TO 5@)
>3.0 TO STEP 22 @)
>20.0 DO PART 21 FOR J = 1 TO 5 @)
>21.0 DEMAND A(I, J) @>
>21. 1 WRITE ON 1: A(I, J) @)
> 22.0 CLOSE 1 @)

This program causes CAL to write the following on the file
called DATA.

A(1, 1) = 1
A(1, 2) = 2
A(l,3)=3
A(l,4)=4
A(1,5)=5
A(2,1) = 6
A(2, 2) = 7
A(2,3) = 8
A(2,4) = 9
A(2,5) = 10
A(3, 1) = 11
A(3,2) = 12
A(3,3) = 13
A(3,4) = 14
A(3, 5) = 15
A(4, 1) = 16
A(4, 2) = 1
A(4,3) = 18
A(4,4) = 19
A(4, 5) = 2
A(5, 1) = 21
A(5, 2) = 22
A(5, 3) = 23
A(5,4) = 24
A(5, 5) = 25

To a CAL program, the fi Ie DATA would incorrectly appear
as

1, 1, 1, 1, 2, 2, 1, 3, 3, etc.

To avoid this confusion, the user should use the WRITE ON
statement with a form statement.

WRITE ON (expression) IN FORM (expression):e1···, en

Thus, if statement 21. 1 in the preceding program were
changed to

>21. 1 WRITE ON 1 IN FORM 1: A(I, J) @

>FORM 1: e
%%%%%% (§

the resulting file DATA would correctly appear to a CAL
program as

1, 2, 3, 4, 5, 6, 7, ••• ,25

APPENDIX. CAL SUMMARY

NUMBERS

Integer (no decimal), e. g., 30000

Floating point (has a decimal part), e. g., 30000.00

Scientific notation, e. g., 30E3 (where E3 means 3 to the
power of 10)

Numbers may be input as integers if they have less than
8 digits; otherwise, they must be in scientific notation.

VARIABLES

Examples of legal variables: A, B, C, ••• ,Z; A(1), A(2), ••• ,
A{N); B{l), B(2), ••• B{N), etc.; A{l, 2), A{N, M);
A{{X{N)+3, A{M+l).

Examples of illegal variables: A1, B1, AB, etc.

ARITHMETIC OPERATORS

In order of precedence:

Exponentiation

Unary minus (e. g., -A t 2 = negative of A2)

*, / Multipl ication, division

+, - Addition, subtraction

LOGICAL OPERATORS

In order of precedence:

Equal to

Not equal to

> Greater than

< Less than

NOT

AND OR

Replacement

ABS(A)

SIN(A)

COS(A)

TAN(A)

ATAN(X,Y)

MATHEMATICAL FUNCTIONS

Absol ute val ue of A

Sine of A

Cosine A

Tangent of A

Arctangent (X/Y) (71" > R > - 71")
(the trigonometric functions take their
arguments in radians or return results in
radians)

EXP(A)

LOG{A)

LOG10{A)

IP(B)

FP(B)

SUM{A, B, C, D, ..•)

PROD(A, B,C •••)

MAX(A, B,C, •••)

MIN(X,Y,Z,A,B, •••)

e MOD n

E to the power A

Natural logarithm

Base 10 logarithm

Pnc:itivp c:nllnrp root of A . - - .. - - - - -I - - - - - - - - -

Integer part of B (If B=246. 25,
IP=246)

Fractional part of B (If B=246. 25,
FP=.25)

Sums the list

Finds the product of the list

Finds the maximum in the list

Finds the minimum in the list

Modular arithmetic

COMMANDS (Direct or Indirect Statements)
Direct {with statement number} or indirect {without state
ment number}:

SET V = e

TYPE STEP n. n

TYPE PART e

TYPE ALL STE PS

TYPE ALL VALUES

TYPE ALL

TYPE IN FORM e: e
l
, e

2
, ••• ,e

n

TYPE FORM e

TYPE ALL FORMS

TYPE "string"

TO STEP n. n

TO PART e

DO PART n. n

DO PART e

PAGE

LINE

(Causes CAL to ski p a page)

(Causes CAL to skip a line)

COMMANDS (Direct Statements Only)

RETURN e

PAUSE

DONE

(Used with multiple-step subprograms,
i.e., function statements)

(Hal ts program and waits for instructions)

(Stops a DO PART)

Appendix 33

DELETE v (v = any variable)

DELETE STEP n. n

DELETE PART e

DELETE ALL

INPUT FROM

OUTPUT TO

DUMP @)

TO/File Name/

LOAD@)

FROM/File Name/

EDIT STE P n. n

EDIT FORM e

DE FI NE f [v l' v 2' v 3" •• J =e

(f is any variabl e name
v is any variable
e is any expression)

DEFINE f [v1, v2' ••• , v n]: statement

GO
STEP
CANCEL

IF e
UNLESS e
FOR v = e

WHERE e

BYe

IF e THEN e

34 Appendix

MODIFIERS

TO e
WHILE e
UNTIL e

ELSE e

EDIT CHARACTERS

Prints t and deletes preceding character

Prints \ and deletes preceding word

Prints - and deletes preceding line

Throws away the rest of the old I ine and ends
the edit.

Copies a character

Skips a character and prints %.

Copies up to character C, inclusive

Skips up to character C, inclusive

Retypes

Retypes and al igns

Copies rest of old.1 ine but does not end
the edit.

Copies and prints out rest of old I ine and
ends the edi t.

Copies rest of old line but does not print it
out; end the edit.

Allows characters to be inserted between
two points; first EC prints a < while the
second prints a > and returns user to edit
mode.

505 SCIENTIFIC DATA SYSTEMS · 1649 Seventeenth Street · Santa Monica. California 90404

Ul
o
Ul

CD
~ o
(")
}>
r
:0
IT1

~
:::n
IT1
Z
(")
IT1

~
}>
Z
C
}>
r

