
I ;1. -I'!I 
:-----------------~S-:C:-:'I":'E-N":'T~IFIC DATA SYSTEMS 



SOS 920 Computer 
reference manual 

__ ----------________________ ~I~·~;II_I_~-----
SCIENTIFIC DATA SYSTEMS 



sos 



Contents 

I. General Description. . . . . . . . . . . . . . . . . . . . . . 

II. 

III. 

A. Introduction..... 

B. 

C. 

Machine Organization. 

1. 

2. 

3. 

4. 

Word Format. 

Registers . . 

Memory Organization 

Overflow ..... 

Special Characteristics. . . . . . • . • . • . . • . . . . 

1. 

2. 

Address Modification. 

Pragrammed Operator 

Machine Instructions 

A. Introduction. 

B. Load-Store Instructions . 

C. Arithmetic Instructions. 

D. Branch-Skip Instructions 

E. Logica I Instructions . 

F. Register Change Instructions . 

G. Shift Instructions . 

H. Control Instructions 

I. Input/Output Instructions . 

Floating Point Operations. • • • . . . • • • • • • . • . • • . . 

A. 

B. 

C. 

Double Precision Floating Point Format. 

Single Precision Floating Point Format . • 

SDS 920 Instructions For Floating Point. 

Page 

2 

2 

4 

6 

6 

7 

7 

8 

11 

11 

11 

12 

16 

21 

23 

27 

30 

32 

35 

35 

36 

36 



IV. 

V. 

VI. 

ii 

Input/Output. . . . . . . . . . . . . . . . . . . . . . . . 

A. 
B. 

C. 

D. 

E. 

F. 

Introduction . . . . . 

Methods of Input/Output 

l. 

2. 

3. 

4. 

Single Bit Input/Output. . 

Input/Output Buffer System. 

Parallel Input/Output. . 

Externa I Memory Interlace 

Priori ty I nterrupt System. . . 

Standard Input/Output Devices 

l. 

2. 

3. 

4. 

Control Panel. • . • 

Photo Electric Reader. 

Paper Tape Punch 

T ypewri ter. . . 

Optional Input/Output Devices. . • • . . . . . . . . . . 

1. 

2. 

3. 

4. 

5. 

Additional Priority Interrupt Channels. 

Additional Input/Output Buffer 

Paper Tape Spooler. . 

Magnetic Tape Systems 

Other Devices 

System Considerations. . . . . . . . . . . . . . . . . . 

l. 

2. 

Computi ng Systems. . . . • . . . 

Data Acquisition and Real Time Control 

Programming Examples 

Appendices 

A. 

B. 

C. 

D. 

E. 

Instruction List - Numerical Order. 

Instruction List - Operational Class 

Programmed Operator Instructions 

I nput/Output Address Codes 

T ypewri ter Codes 

Page 

39 

39 

39 

39 

40 

41 

41 

41 

42 

42 

46 

47 

47 

48 

48 

48 

48 

49 

50 

51 

51 

51 

55 

63 

65 

69 

73 

77 

83 



Figures 

- 1 Functional Diagram SDS 920 

IV - 1 SDS 920 Control Panel. . • • . • • • • • • . • • . • . • . . • 

IV - 2 Typical Data Acquisitions System. • • • . . . • . • . • . . . . • 

IV - 3 Typical Real Time Control System. . . . . . . . . . . . . . . . . 

Page 

5 

45 

52 

54 

iii 



I. General Description 

A. INTRODUCTION 

The SDS 920 is a high-speed, low-cost, general-purpose digital computer with the following choracter­

istics; 

24-bit word plus parity bit 

Binary arithmetic 

Single address instructions with; 

Index Register 
Indirect Addressing 
Programmed Operators 

Basic Core memory 4,096 words expandable to 16,384 words, all addressable 

Built-in floating point capability 

Mul ti -precision instructions 

Typical execution times (including memory access and indexing); 

Add; 
Multiply; 
Floating Point Operations; 

(24-bit Mantissa plus 9-bit Exponent) 

Add; 
Multiply; 

(39-bit Mantissa plus 9-bit Exponent); 

Add; 
Multiply; 

16 microseconds 
128 microseconds 

192 microseconds 
280 microseconds 

368 microseconds 
56G microseconds 

Program interchangeobility with other SDS 900 Series computers 

Parity checking of all memory and input/output operations 

1024 channels of Priority Interrupt (optional) 

Memory non-volati I e with power fai lure 



Input/Output: 

Standard: 

30G character/second Paper Tape Reader 
60 character/second Paper Tape Punch 
Automatic Typewriter 
Dual-channel Priority Interrupt 
Display and manual control of internal registers 

Optional: 

Magnetic Tape Systems (IBM compatible) 
Line Printer 
Punched Card Equipment 
Direct communication with I ~ 7090, A/Dconverters, etc. 

Buffered input/output at rates in excess of 60,000 characters/second simultaneous with com­

putation. 

FORTRAN II and Symbolic Assembler as part of complete software package 

All sil icon sem iconductors 

0
0 

to 55
0

C operating temperature range 
Di mensions: 66" x 48" x 27" 
Power: IIOV, 60 cps, 10 amps 

B. MACHINE ORGANIZATION 

I. Word Format 

The SDS 920 computer word contains 24 binary digits (bits), numbered from 0 through 23 starting at the 

left. 

I I II I I I I I I I I I II I I II I I I I I I 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Arithmetic is performed using a binary, two's complement number system. The sign bit, then, can be 

considered to be integral with the data word. For simplicity of description, SDS 920 words are written 

in octal notation where each octal digit represents 3 binary digits. For example, an SDS 920 data word 

containing alternate "ones" and "zeros" would be written in the form: 

52525252 

2 



The instruction word format of the SDS 920 is as follows: 

o 

I:NSTRUCTIO~ CODE 
. I I : I I II : 

2 345 678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Bit Number 

o 

2 - 8 

9 

10 - 23 

Function 

Relative Address Bit - A "1" in this position causes the location of the 

instruction to be added to the address at loading. This bit is not used 

in the logic of the computer. 

Index Register Bit - A "1" in this position causes the contents of bits 

1 0 - 23 of the Index Register (X Register) to be added to the address 

portion of the instruction prior to execution. 

Instruction Code - The contents of bit 2 (Programmed Operator Bit) 

determine the method of interpretation of the remaining 6 bits. If bit 2 

contains an "0", the contents of bits 3 through 8 are decoded as a 

normal instruction (see Section II). If bit 2 contains a "1 ", the 

instruction code is used to determine a subroutine entrance address. 

Indirect Address Bit - A "1" causes the computer to interpret bits 

10 - 23 of the instruction (possibly modified by indexing) as the 

memory location where the effective address of the instruction may 

be found. A "0" causes bits 10 - 23 {possibly modified by indexing} 

to be interpreted as the effective address of the instruction. 

Address - These bits normally determine the memory address referenced 

by the Instruction Code. 

For simplicity I SDS 920 instructions are written in the following manner: 

Field (Bit Positions) 

Index (0 - 1) o (or Blank) 

2 

3 

Remarks 

No Index, No Relative Address 

Index 

Relative Address 

Both Relative Address and Index 

3 



Field (Bit Positions) 

Instruction (2 - 8) 

Indirect Address (9) 

Address (10 - 23) 

Remarks 

Mnemonic (3 letters) or 

Numeric (3 octal digits) 

Blank 

Blank or 

Indirect Address 

Direct Address 

1 - 5 Octal Digits (0-37m) or 

Plus (+) or Minus (-) sign followed by 1 - 5 octal digits of relative 
address 

For example, the instruction to add to the A Register the contents of memory location defined by the sum 

of 3742 and the contents of the I ndex Register is 

1 ADD 3742 

2. Registers 

The SDS 920 contains nine arithmetic and control registers. All are full-word registers except as noted: 

4 

a. Avai lable to the programmer: 

A Register - The A Register is the main accumulator of the SDS 920. 

B Register - The B Register is an extension of the A Register. It contains the least significant 

portion of double length numbers. 

X Register - The X Register is the Index Register used in address modification. The number of 

positions shifted during normalizing are also counted in the X Register. Although the X Register 

is a full word register and is transferred to and from memory as such, only the least significant 

15 bits are used for indexing operations. 

P Register - The P Register (14 bits) contains the memory address of the current instruction. 

Unless modified it is increased by one at the completion of each instruction. 

W Register - The W Register is the input/output register of the SDS 920. Input data is auto­

matically assembled in this register and is transferred to memory under program control. 

Y Register - (optional) Identical with the W Register. Permits multiple input/output processing. 



A Register B Register 
X Register 

(Main ... ~ (Extended .. ... .. - -... (Index) 
Accumulator) Accumulator} , ~ f-
o Register ... ~ W Register 

(I nstructi on) 
... 

~ (I/o Buffer) 

,. . r ,r 

P Register C Register ~ Y Register 
{program .... (Arithmetic ~ ... .. 

r----+ Counter) _ and ----+ (I/o Buffer) 
Control) 

~~ 

S Register 
(Memory ... ... 
Address) 

,Ir 

M Register 
~ (Memory .. 

Access) 
I+-
~ 

Parallel I/o 

Memory 

Figure 1-1 Functional Diagram - SDS 920 

5 



b. Not available to the programmer: 

C Register - The C Register is an arithmetic and control register used in multiply, divide, and 

other operations. All instructions brought from memory first appear in the C Register before 

decoding. Address modification and parity generation/detection take place in the C Register. 

S Register - The S Register {14 bits} contains the address of the memory location to be accessed 

{instruction or data}. 

o Register - The 0 Register {7 bits} contains the instruction code of the instruction being 

executed. 

M Register - The M Register holds each word as it is brought out of memory. Recopying of the 

word into memory takes place from the M Register. 

3. Memory Organization 

The main memory of the SDS 920 is composed of from I to 4 random access magnetic core modules of 

4,096 words each. The maximum memory contains 16,384 directly addressable words. Each word con­

tains 24 data bits plus I parity bit. The memory words are identified in octal by addresses 00000 

through 37777. The basic computer contains 4,096 memory words identified as locations 00000 

through 07777. 

Special logic has been included in the SDS 920 to prevent changes in memory from occurring due to 

power failure {total or transient} or when power is manually shut off. Before each memory word is 

accessed, power is checked to ensure that the entire read-write cycle can be successfully completed. 

If the voltage has dropped to the point where success is not assured, the computer will halt. 

Even parity is generated for all words stored in memory I i.e., the parity bit is set either to a "0" or "1" 

so that the sum of "l's" in the 25 bit word is even. All memory words are parity checked when they are 

brought from memory. A switch on the control planel may be set so that the computer halts automatically 

if a parity error occurs. 

4. Overflow 

An overflow indicator in the computer permits the detection of arithmetic errors in the program. The 

overflow indicator is turned on if any of the following occur: 

6 

a. Addition or subtraction, resulting_ in a sum or difference, which cannot be 

contained within the A Register. 



b. Multipl ication of N by N where N is the largest negative number that can be represented 

in an SDS 920 word (40000000). This product cannot be contained within the A and B 

registers. 

c. A division operation where the absolute value of the numerator is equal to or larger 

than toe absolute value of the denominator. The quotient cannot be contained within 

the A Register. 

d. A left shift operation which shifts a bit of absolute magnitude equal to one beyond 

position 1 of the A Register. 

The status of the overflow indicator can be tested using SKIP IF SIGNAL NOT SET (40). \A/hen this 

instruction is executed, the overflow indicator is turned off. The overflow indicator can be turned off, 

without testing, using ENERGIZE OUTPUT M (02). 

Overflow indication is cumulative. If the Overflow Indicator is turned on, it remains on until turned off 

by the appropriate instruction. 

The status of the Overflow Indicator is automatically preserved when subroutines are executed (Pro­

grammed Operator, Closed or Interrupt). When a Programmed Operator instruction is executed, the 

status of the Overflow Indicator is automatically preserved in bit 0 of memory location 00 and the Over­

flow Indicator is turned off. When MARK PLACE AND BRANCH (43) is executed (during Interrupt or 

when starting a closed subroutine) the status of the Overflow Indicator is preserved in bit 0 of the loca­

tion determined by the effective address and the Overflow Indicator is unchanged. 

RETURN BRANCH (51) automatically performs a logical "or" of the contents of the Overflow Indicator 

and the contents of bit 0 of the location determined by the effective address. 

C. SPECIAL CHARACTERISTICS 

Certain features have been included in the SDS 920 which simplify programming and provide significant 

economies in program running time and memory. 

I. Address Modification 

The SDS 920 contains two techniques for the modification of instruction addresses. These techniques, 

Indexing and Indirect Addressing, may be used singly or in combination to achieve highly flexible pro­

gram operation. In both, the address is modified after the instruction has been called from memory. The 

instruction is preserved in memory in its original form. 

7 



a. Indexing 

The SDS 920 contains an Index Register for instruction modification. If the Index Bit (bit 1) in 

the instruction is set equal to 1, the contents of bits 10 - 23 of the X Register are added to the 

address portion of the instruction prior to execution. Instructions are provided for modification 

and testing of the X Register, transferring information between the X and B Registers, the X and 

A Registers, and between the X Register and memory. 

For example, if the X Register contains the value + 5 and the instruction 

1 ADD 200 

is executed, the effective address of the instruction is 205. 

b. Indirect Addressing 

If the instruction contains a "1" in the Indirect Address Bit (bit 9) the address portion of the in­

struction (possibly modified by indexing) is used to determine the location in memory which 

contains the effective address of the instruction. Since this technique allows the modification 

of many instructions using only one constant, it is extremely useful for certain types of indexing 

operations, table organization and look-up, and program organization. 

The process of indirect addressing may be iterative since the memory location containing the in­

direct address may in turn contain a "1" in the Indirect Address Bit (bit 9). In this case, the 

computer will repeat the procedure and a third address is located. There is no I imit to the number 

of times this process may be repeated. 

Addresses are modified by Indexing before the associated Indirect Address bit is interrogated. 

Indirect address can be modified by Indexing at any level. 

2. Programmed Operator 

The use of Programmed Operators enables sub-routines to be referenced with a single instruction of the 

same form as built-in machine instructions. While instruction codes 00-77 are decoded in a normal 

manner, codes 100-177 cause the computer to enter a sub-routine uniquely determined by the code. The 

return address is autanatically recorded in memory at location 0000 so that program continuity is main­

tained. Through the use of indirect addressing, the subroutine can gain access to the effective address of 

the calling instruction. 

Programmed Operator sub-routines may be assigned three letter mnemonic designations in a manner 

identical with built-in machine instructions described in Section II. These designations are converted 

8 



to instruction codes (100-177) when the program is loaded. Subroutine input and connection is also pro­

vided by the loading system. 

Through use of Programmed Operators, symbol ic homogeneity is maintained with other computers in the 

SOS 900 series. Mnemonic designations are identical in all computers. For example, while the designa­

tion "FLA" (for Floating Add) may refer to a built-in machine instruction in one computer, it references 

a Programmed Operator subroutine in another. This technique preserves the one-to-one instruction re­

lationship and, therefore, programs wirtten for one 900 series computer may be run on any other computer 

in the series. 

A description of the use of Programmed Operators and a list of Programmed Operator instructions supplied 

with the computer are detailed in Appendix C. 

9 





II. Machine Instructions 

A. INTRODUCTION 

A description of all SDS 920 instructions is contained in this section. Instructions are g ro u p e d by func­

tional category. Tables of Instructions in numerical and functional order are given in Appendices A and 

B, respecti vel y . 

The following statements apply to the instruction descriptions: 

1. A-.:I':JI,i :::ns::tTru:::cl':t::-i o,::n,::s=ti:-:m~e~s ... a"!l!r .. e .... i""n,:"m~e':'imL.:0~ry~c~y:-c_le_s_w_h_e_re_1_c~y ... c_l_e_e_q ... u_a_l_s_8_m_i c_r_o_se_c_o_n_d_s_, ___ , ]., 5 K... tL 
and include accessing 6' Hie Instruction. 

2. Octal notat.on IS used throughout. 

3. Parentheses are used to denote "contents of." For example, "(A)" denotes "con­

tents of the A Register." 

4. Subscripted numbers identify bit positions. For example, "X
O

-
14

" means "bit po­

sitions 0 through 14 of the X Register." 

5. Indexing and Indirect Addressi ng apply to all instructions except as noted. In­

dexing does not c ha nge the instruction execution time. One additional memory 

cycle is required for each indiiect addieSS uSed. 

6. The term "effective address" applies to the instruction address after all modifica­

tions (Indexing and Indirect Address) have been completed. 

7. Examples are included where clarification is necessary. These have been chosen 

in order to fully illustrate the instruction rather tha n for practical importance of 

the example. 

B. LOAD-STORE INSTRUCTIONS 

(76) LOAD A LOA 

The contents of the memory location determined by the effective address are loaded into the A Register. 

Registers Affected: A Timing: 2 

(35) STORE A STA 

The contents of the A Register are stored in the memory location determi ned by the effective address. 

Registers Affected: M Timing: 3 

11 



(75) LOAD B LOB 

The contents of the memory location determined by the effective address are loaded into the B Register. 

Registers Affected: B Timing: 2 

(36) STORE B STB 

The contents of the B Register are stored in the memory location determined by the effective address. 

Registers Affected: M Timing: 3 

(71) LOAD INDEX LOX 

The entire contents (24 bits) of the memory location determined by the effective address are copied into 

the Index Register. 

Registers Affected: X Timing: 2 

(34) STORE INDEX STX 

The contents of the Index Register are stored in the memory location determined by the effective address. 

All 24 bits of the Index Register are stored. 

Registers Affected: M Timing: 3 

(62) EXCHANGE M & A XMA 

The contents of the memory location determined by the effective address are loaded into the A Register 

and the A Register stored in memory. 

Registers Affected: A, M Timing: 3 

C. ARITHMETIC INSTRUCTIONS 

(55) ADD M TO A ADD 

The contents of the memory location determined by the effective address are added to the A Register I 

and the result appears in A. 

12 



Overflow occurs and the overflow indicator is turned on, if both numbers are of the same sign, and the 

sign of the result is opposite. In this case the sum is incorrect. 

This instruction is also used in multi-precision addition [see ADD WITH CARRY (57)J 

Registers Affected: A, Xo Timing: 2 

(57) ADD WITH CARRY ADC 

This instruction is used to perform double precision operations. The ·Iower half of the numbers are added 

first, using ADD M TO A (55). The carry is automatically retained in the sign position of the X Register. 

The two upper halves are then added, using this instruction, which is the same as ADD M TO A (55), 

except that the carry bit previously generated is also added. 

Overflow resulting from the addition of the lower half of the numbers is not meaningful and the Overflow 

Indicator is turned off prior to execution of this instruction. 

Overflow can occur as in ADD M TO A (55). 

Example: 

Location 

Assume the A and B Registers contain a double precision number to which 

the double precision number in Locations 1020 and 1021 is to be added. 

The least significant half appears in 1020. The program is as follows: 

Instruction A B 

Prior to Execution 20314624 71510426 

1021 

15034166 

15034166 

15034166 

15034166 

15034166 

2100 XAB 71510426 20314624 

2101 ADD 1020 04010426 20314624 

2102 XAB 20314624 04010426 

2103 ADC 1021 35351013 04010426 o 

1020 

12300000 

12300000 

12300000 

12300000 

12300000 

NOTE: Since the process is self-propagating, this instruction may be used in performing additions of any 

precision. 

Registers Affected: A, Xo Timing: 2 

13 



(63) ADD A TO M ADM 

The contents of the A Register are added to the memory location determined by the effective address, and 

the result stored in the same memory location. 

Overflow can occur in the same manner as AI)) M TO A (55). 

Registers Affected: M Timing: 3 

(61) MEMORY INCREMENT MIN 

The contents of the memory location determined by the effective address are increased by one, and the 

resultant sum replaced in the same memory location. Overflow can occur in the same manner as ADD M 

TO A (55). 

Registers Affected: M Timing: 3 

(54) SUBTRACT M FROM A SUB 

The contents of the memory location de term ined by the effective address are subtracted from the A Register 

and the result appears in A. 

Overflow occurs and the overflow indicator is turned on, if both numbers are of different signs and the 

sign of the result does not agree with the original sign of A. In this case the difference is incorrect. 

This instruction is also used in multi-precision subtraction [see SUBTRACT WITH CARRY (56) j 

Registers Affected: A, Xo Timing: 2 

(56) SUBTRACT WITH CARRY SUC 

This instruction is used to perform double precision operations. The lower half of the numbers are sub­

tracted first, using SUBTRACT M FROM A (54). The carry is automatically retained in the sign position 

of the X Register. The two upper halves are then subtracted using this instruction, which is the same as 

SUBTRACT M FROM A (54) except that the carry bit previously generated is used. 

Overflow resulting from the subtraction of the lower half of the numbers is not meaningful and the Overflow 

Indicator is turned off prior to execution of this instruction. 

14 



Overflow can occur as in SUBTRACT M FROM A (54). 

Example: 

Location 

Assume the A and B Registers contain a double precision number from 

which the double precision number in Locations 1075 and 1076 is to 

be subtracted. The least significant half appears in 1075. The program 

is as follows: 

Instruction A B 1021 

Prior to Execution 36142070 31567000 14236213 

2100 XAB 31567000 36142070 14236213 

2101 SUB 1075 03447000 36142070 14236213 

2102 XAB 36142070 03447000 14236213 

2103 SUC 1076 21703655 03447000 o 14236213 

1020 

26120000 

26120000 

26120000 

26120000 

26120000 

NOTE: Since the process is self-propagating, this instruction may be used in performing subtractions of 

any precision. 

Registers Affected: A, Xo Timing: 2 

(64) MULTIPLY MUL 

The A Register is multiplied by the contents of the memory location determined by the effective address. 

The product is located in the A and B Registers; the most significant portion is in A. The sign of the pro­

duct is in AOi BO is part of the product and is not treated as a sign bit. Since the multiplier and multi-

pi icand are treated as fractional quantities, the contents of B
23 

are not meaningful. The original contents 

of B do not affect the operation and are destroyed. If the contents of both the multiplier and multiplicand 

have the value 40000000, overflow will occur and the overflow indicator is turned on. 

Example: 

Multiplying 3 by 3 is represented as follows: 

Before Execution 

After Execution 

A 

00000003 

00000000 

B 

Not Meaningful 00000003 

00000022 00000003 

Registers Affected: A, B Timing: 16 

15 



16 

(65) DIVIDE DIV 

The contents of the A and B Registers, treated as a double precision number, are divided by the contents 

of the memory location determined by the effective address. The quotient appears in the A Register, the 

remainder in B. The sign of the remainder is identical with the sign of the original contents of the A 

Register. 

Overflow wil ~ occur and the overflow indicator turned on, if 1 s (A~) < - 1 

In this case, the results are not arithmetically correct. 

Example: 

Dividing 7 by 3 is represented as follows: 

Before Execution 

After Execution 

A 

00000000 

00000002 

B 

00000016 

00000002 

Registers Affected: A, B 

D. BRANCH-SKIP INSTRUCTIONS 

(OJ) BRANCH UNCONDITIONALLY 

Memory 

00000003 

00000003 

The next instruction is taken from the location determined by the effective address. 

Registers Affected: None 

(41) INCREMENT INDEX & BRANCH 

Timing: 28 

BRU 

Timing: 1 

BRX 

The contents of the Index Register are incremented by one. If the resultant Index Register value contains 

a "1" in bit 9 of the index (i .e., the address bits are negative) control is transferred to the location 



determined by the effective address. If the Index Register is positive, the next instruction is taken in 

sequence. The most significant bits of the Index Register (bits 0 - 8) have no effect on the execution of 

this instruction. 

Registers Affected: X Timing: 1, if branch 
2, if no branch 

(43) MARK PLACE AND BRANCH BRM 

The contents of the P Register are stored in the memory location determined by the effective address, 

and control is transferred to the subsequent memory location. The status of the Overflow Indicator is 

stored in bit 0 of M. Bits 1 - 9 of M are set to zero. 

Example: 

Location Instruction 

01517 BRM 522 

Overflow 
Indicator Location 0522 P Register 

Before Execution 
1 __ \ 

01517 \VIII 

After Execution 1 (on) 40001517 00523 

Note: This instruction is normally used to enter subroutines where a return to 

the main program will occur after the subroutine has been completed. 

RETURN BRANCH (51) is used to return to the main program. 

Registers Affected: M Timing: 2 

(51) RETURN BRANCH BRR 

The contents of the memory location determined by the effective address are incremented by one and the 

least significant 14 bits stored in the P Register. A logical "or" is performed between bit 0 and the 

Overflow Indicator and the result placed in the Overflow Indicator. 

Example: 

Location 

2100 

2000 

Contents 

BRR 2000 

00003220 

If the instruction in location 2100 is executed, the next instruction will be taken from location 3221. 

17 



Note: This instruction is normally used to return to the main program after 

completion of a subroutine in conjunction with MARK PLACE AND 

BRANCH (43). 

Registers Affected: None Timing: 2 

(40) SKIP IF SIGNAL NOT SET SKS 

This instruction determines the status of one-bit (on/off) signals, the identity of the signals being deter­

mined by the effective address. If the instruction is in location l and the signal is set (i.e. = 1), the 

next instruction will be taken from l + 1. If the signal is not set (i .e. = 0), the next instruction will be 

taken from l + 2. 

Appendix D contains a full description of the signals which may be sensed by this instruction. 

18 

Indirect addressing and indexing do not apply to this instruction. 

Registers Affected: None 

(50) SKIP IF A EQUALS M 

Timing: 1, if no skip 
2, if skip 

SKE 

The contents of the A Register are compared with the contents of the memory location determined by the 

effective address. If the instruction is in location l, and (A) f (M), the next instruction will be taken 

from l + 1. If (A) = (M), the next instruction wi II be taken from l + 2. 

Registers Affected: None 

(73) SKIP IF A GREATER THAN M 

Timing: 2, if no skip 

3, if skip 

SKG 

The contents of the A Register are algebraically compared with the contents of the memory location de­

termined by the effective address. If the instruction is in location l, and (A) :s; (M), the next instruction 

is taken from l + 1. If (A) > (M), the next instruction is taken from l + 2. 

Registers Affected: None Timing: 2, if no skip 

3, if skip 



(60) REDUCE M, SKIP IF NEGATIVE SKR 

The contents of the memory location de term ined by the effective address are reduced by one and the re­

sult replaced in the same memory location. If the instruction is in Location L, and the result is positive, 

the next instruction is taken from L + 1. If the result is negative, the next instruction is taken from 

L + 2. 

Overflow can occur in the same manner as in SUBTRACT M FROM A (54). 

Registers Affected: M Timing: 3 

(70) SKIP IF A M ON B MASK SKM 

The contents of the A Register are compared with the contents of the memory location, determined by the 

effective address, wherever a "1" appears in the corresponding position of the B Register. If the instruc­

ion is in Location L, and the selected contents of A and M do not agree, the next instruction is taken 

from L + I. If A and M agree, the next instruction is taken from L + 2. 

Example: 

A 

00043007 

B 

00077000 

Memory 

57643240 

Since a comparison is made in bit positions 9 - 14 only (as determined by B), comparison is found and the 

skip will occur. 

Note: This instruction can be used to search through tabular sets of compressed information 

where comparison is required in certain bit positions. INCREMENT INDEX AND 

BRANCH (41) is normally used with this instruction to provide a 3 cycle search loop. 

Registers Affected: None Timing: 2, if no skip 

3, if skip 

(53) SKIP IF M NEGATIVE SKN 

If the instruction is in Location L and the contents of the memory location determined by the effective 

address are positive, the next instruction is taken from L + 1. If the contents are negative, the next in­

struction is taken from L + 2. 

Registers Affected: None Timing: 2, if no skip 
3, if skip 

19 



(72) SKIP IF M AND A DO NOT COMPARE ONES SKA 

The contents of the A Register are compared, bit by bit, with the contents of the memory location de­

termined by the effective address. If the instruction is in Location L and both (A) and (M) have corres­

ponding "1'5" in any bit position, the next instruction is taken from L + 1. If A and Memory have no 

corresponding "1'5" in any bit position, the next instruction is taken from L + 2. 

The instruction logically "ands" corresponding bits in A and Memory, based on the following table: 

A 

o 
o 

Memory 

o 

o 

Result 

o 
o 
o 

If the result produces a "1" in any bit position, a skip will not occur. 

Note: Different configurations of the memory word result in a wide variety 

of conditional instructions for use by the programmer. Some repre­

sentative ones are: 

Memory Configuration 

400000OO 

77777777 

00000001 

Instruction 

Skip if A is Positive 

Skip if A = 0 

Skip if A is Even 

Registers Affected: None Timing: 2, if no skip 
3, ifskip 

(52) SKIP IF M AND B DO NOT COMPARE ONES SKB 

The contents of the B Register are compared, bit by bit, with the contents of the memory location de­

termined by the effective address. If the instruction is in Location L and bath B and Memory have corres­

ponding "1'5" in any bit position, the next instruction is taken from L + 1. If B and Memory have no 

corresponding "I's" in any bit position, the next instruction is taken from L + 2. 

The instruction logically "ands" corresponding bits in A and Memory, based on the following table: 

B - Memory Result 

0 0 0 

0 0 

0 0 

20 



If the result produces a "1" in any bit position, a skip will not occur. 

Note: Different configurations of the memory word result in a wide variety of conditional 

instructions for use by the programmer. Some representative ones are: 

Memory Configuration 

Registers Affected: None 

40000000 

77777777 

00000001 

Instruction 

Skip if B is Positive 

Skip if B = 0 

Skip if B is Even 

(74) DIFFERENCE EXPONENTS AND SKIP 

Timing: 2, if no skip 

3, if skip 

SKD 

The contents of bits 15 - 23 of the memory location determ ined by the effective address are subtracted 

from bits 15 - 23 of the B Register. The absolute magnitude of the difference is stored in bits 15 - 23 

of the X Register. If the instruction is in Location L and the difference is positi ve 

[i.e. (M 15 _ 23) :5:(B
15 

_ 23) ] the next instruction is taken from L + 1. If the difference is negative 

[ i.e. (M 15 _ 23) > (B 15 _ 23) ] the next instruction is taken from L + 2. 

This instruction is used in floating point addition and subtraction. 

Registers Affected: X 

E. LOGICAL INSTRUCTIONS 

(14) EXTRACT 

Timing: 2, if no skip 

3, if skip 

ETR 

A logical "and" is performed between corresponding bits of the A Register and the memory location de­

termined by the effective address. The result appears in A. The operation takes place according to the 

following table: 

A 

o 
o 

M 

o 

o 

Results in A 

o 
o 
o 

21 



Example: 

Registers Affected: A 

(16) 

Before Execution 

After Execution 

MERGE 

A 

64231567 

00231500 

M 

00777700 

00777700 

Timing: 2 

MRG 

A logical "inclusive or" is performed between corresponding bits of the A Register and the memory lo­

cation determined by the effective address. The result appears in A. The operation takes place according 

to the following table: 

Example: 

Registers Affected: A 

(17) 

A 

o 
o 

Before Execution 

After Execution 

M 

o 
Result in A 

o 

A 

06446254 

06746756 

EXCLUSIVE OR 

o 

M 

02340712 

02340712 

Timing: 2 

EOR 

A logical "exclusive or" is performed between corresponding bits of A Register and the memory location 

determined by the effective address. The result appears in A. The operation takes place according to the 

following table: 

22 



Note: Selected bit positions of the A Register may be inverted by proper configuration of the memory 

word. If all "l's" appear in the memory word, a "l's complement" of A results. 

Registers Affected: A Timing: 2 

F. REGISTER CHANGE INSTRUCTIONS 

All of the instructions in this group operate as micro-instructions using the same instruction code. Each 

of the low order nine bits of the operand determine one operation to be performed. The programmer may 

specify combinations of these bits to perform simultaneous functions. 

The function of each address bit is as follows: 

Address Bit 

23 

22 

21 

20 

19 

18 

17 

16 

15 

Function 

Clear A 

Clear B 

Copy (A) into B 

Copy (B) into A 

Copy (B) into X 

Copy (X) into B 

Bits 15-23 only * 

Copy (X) into A 

Copy (A) into X 

*See STORE EXPONENT (4600122) for special function of this bit 

Example: 

The following instruction copies (A) into B and clears the A Register: 

04600005 

Both functions are performed simultaneously, i.e. each bit of A is copied 

into B and that position of A is cleared. 
23 



24 

Indirect addressing and indexing do not apply to these instructions. 

These instructions require one machine cycle regardless of the number of functions performed. As an aid 

to the programmer I the most useful combinations have been assigned mnemonic designations and are recog­

nizable by the loader. These instructions follow. 

(4600001 ) CLEAR A CLA 

The contents of the A Register are set to zero. 

Registers Affected: A Timing: 1 

(4600002) CLEAR B CLB 

The contents of the B Register are set to zero. 

Registers Affected: B Timing: 1 

(4600003) CLEAR AB ClR 

The contents of the A and B Registers are both set to zero. 

Registers Affected: A, B Timing: 1 

(46000004) COpy A INTO B CAB 

The contents of the A Register are copied into the B Register 

Registers Affected: B Timing: 1 

(4600010) COpy B INTO A CBA 

The contents of the B Register are copied into the A Register. 

Registers Affected: A Timing: 1 



(4600014) EXCHANGE A AND B XAB 

The contents of the A Register are copied into the B Register and, simultaneously, the B Register is 

copied into A. 

Registers Affected: A, B Timing: 1 

(4600200) COPY INDEX INTO A CXA 

The contents of the Index Register are copied into the A Register. 

Registers Affected: A Timing: 1 

(4600400) COPY A INTO INDEX CAX 

The contents of the A Register are copied into the Index Register. 

Registers Affected: A Timing: 1 

(4600600) EXCHANGE INDEX AND A XXA 

The contents of the Index Register are copied into the A Register and, simultaneously, the A Register is 

copied into the Index Register. 

Registers Affected: A, X Timing: 1 

(4600020) COpy B INTO INDEX CBX 

The contents of the B Register are copied into the Index Register. 

Registers Affected: X Timing: 1 

(400040) COPY INDEX INTO B CXB 

The contents of the Index Register are copied into the B Register. 

Registers Affected: B Timing: 

25 



(4600060) EXCHANGE INDEX AND B XXB 

The contents of the Index Register are copied into the B Register and, simultaneously, the B Register is 

copied into the Index Register. 

Registers Affected: B, X Timing: 1 

(4600122) STORE EXPONENT STE 

The least significant 9 bits of the B Register are copied into the Index Register. Bit 15 of the Index Regi­

ster (the sign of the exponent) is then extended into bit O. The 9 low order bits of B are then cleared. 

26 

Example: 

Before Execution 

After Execution 

B 

64152713 

64152000 

Index 

77777713 

Note: This instruction assists in the manipulation of floating point double precision 

numbers where the fraction is stored in the high order 39 bits and the expon­

ent in the low order 9 bits. 

Registers Affected: B, X 

(4600140) LOAD EXPONENT 

Timing: 1 

LDE 

The least significant 9 bits of the Index Register are copied into the least significant 9 bits of the B Re­

gister. The previous contents of the 9 least significant bits of B are destroyed. 

Example: 

Before Execution 

After Execution 

B 

34765712 

34765151 

Index 

00000151 

00000151 

Note: This instruction assists in the manipulation of floating point double precision 

numbers where the fraction is stored in the high order 39 bits and the expon­

ent in the low order 9 bits. 

Registers Affected: B Timing: 1 



(4600160) EXCHANGE EXPONENTS XEE 

The least significant 9 bits of the B Register and Index Register are exchanged. No information is lost 

in the exchange. Bit 15 of the Index Register (the sign of the exponent) is then extended into bit O. 

Example: 

Before Execution 

After Execution 

B 

67142355 

67142133 

Index 

77777133 

00000355 

Note: This instruction assists in the manipulation of floating point double precision 

numbers where the fraction is stored in the high order 39 bits and the expon­

ent in the low order 9 bits. 

Registers Affected: B, X 

G. SHIFT INSTRUCTIONS 

Timing: 1 

These instructions use the instruction code to.determine the direction of shift (66 = right; 67 = left). Bits 

10 - 11 of the instruction address determ ine the method of shifting in accordance with the following Table: 

Contents of Bits 10 - 11 

00 

10 

01 

Method of Shifting 

A, B Shift 

A, B Cycle 

Normalize (Left only) 

The number of shifts is specified in bits 18 - 23 of the instruction address • 

. Indirect addressing may be used with these instructions, bits 10 and 11 of the effective address determin­

ing the method of shifting. 

Indexing is performed on the low order six bits of the address only. It is thus possible to index the num­

ber of shifts without affecting the method of shifting. 

(66000XX) RIGHT SHIFT AB RSH 

The contents of the A and B Registers are shifted right N bit positions, N being specified in the low 

order six bits of the instruction. The sign bit of A is not shifted but its value is copied into vacated bit 

positions. The sign bit of B takes part in the shifting. Bits shifted beyond the lowest order bit of Bare 

lost. 

27 



28 

Example: 

If the instruction is: 

Before Execution 

After Execution 

RSH 00022 

A 

45261237 

77777745 

B 

27651260 

26123727 

Note: Scaling of floating point numbers may be performed with this instruction by 

use of indexing where the difference of exponents is placed in the Index Regis­

ter as a positive quantity. 

Registers Affected: A, B 

(66200XX) RIGHT CYCLE AB 

Timing: If N is the number of shifts, 
N 

2 + 2' N even 

N + 1 
2 + -r-' N odd 

RCY 

The contents of the A and B Registers are shifted right, in a ring fashion, N bit positions. N is speci­

fied in the six lowest order bits of the instruction. The signs of A and B participate in the shifting. No 

information is lost in this operation. 

Example: 

If the instruction is: RCY 00017 

Before Execution 

After Execution 

Registers Affected: A, B 

(67oooXX) 

A 

61245703 

37701612 

LEFT SHIFT 

B 

41637701 

45703416 

Timing: If N is the number of shifts, 
N 

2 + "2-' N even 

N + 1 
2 + --2-' -,N odd 

LSH 

The contents of the A and B Registers are shifted left N bit positions. N is specified in the six lowest 

order bits of the instruction. The sign bit of A is shifted. Zeros are copied into the vacated bit positions. 

The sign bit of B takes part in the shifting. Bits shifted beyond position 0 of A are lost. 

Overflow occurs and the Overflow Indicator is turned on if a bit is shifted beyond bit position 1 of A that 

differs from the sign of A. 



Example: 

If the instruction is: LSH 00022 

Before Execution 

After Execution 

Registers Affected: A, B 

(67200XX) 

A 

46712370 

70641327 

LEFT CYC LE AB 

B 

64132711 

11000000 

Timing: If N is the number of shifts, 
N 

2 + 2' N even 

2 + ~,N odd 

LCY 

The contents of the A and B Registers are shifted left, in a ring fashion, N bit positions. N is specified 

in the six lowest order bits of the instruction. The signs of A and B participate in the shifting. No in­

formation is lost in this operation. 

Example: 

If the instruction is: LCY 00011 

Before Execution 

After Execution 

Registers Affected: A, B 

A 

71432560 

32560341 

B 

34156723 

56723714 

Timing: If N is the number of shifts, 
N 

2 + 2' N even 

N + 1 
2+ ~2-' N odd 

(67100XX) NORMALIZE AND DECREMENT X NOD 

The contents of the A and B Registers are shifted left and a one is subtracted from the Index Register for 

each bit position shifted. Shifting terminates when either (a) a bit appears in bit position 1 of A which 

is opposite to the sign of A, (i.e., IAI ;;:, 1/2), or (b) N shifts have occurred (N being specified in the 

six lowest order bits of the instruction). The programmer must ensure that N is sufficiently large to per­

mit the normalize to be completed. 

The shifting rules are identical with LEFT SHIFT (67000XX). 

29 



30 

Decrementing of the Index Register occurs regardless of the contents of the Index Bit. 

Example: 

If the instruction is: NOD 00030 

Before Execution 

After Execution 

A 

00004632 

23153705 

B 

76124035 

20164000 

Index 

00000000 

77777765 

Note: This instruction is normally used in conjunction with RIGHT SHIFT (66000XX) 

to manipulate floating point numbers. 

Registers Affected: A, B, X Timing: if R is the resultant number 

of shifts, 
R 

2 + '2' R even 

R + 1 
2 + -2-' R odd 

H. CONTROL INSTRUCTIONS 

(00) HALT HLT 

The computer halts computation and the HALT light on the control panel is turned on. To resume compu­

tation, the operator must first return the "Run-Idle-Step" switch to the "Idle" position. The next instruc­

tion will be executed (and the HALT light turned off) if this switch is then placed in either "Run" or 

"Step." Indirect addressing and indexing do not apply to this instruction. 

Registers Affected: None Timing: 1 

(20) NO OPERA TI ON NOP 

This instruction executes without effect on the A Register, B Register, or memory. Indirect addressing 

and indexing do not apply to this instruction. 

Registers Affected: None Timing: 1 



(23) EXECUTE EXU 

The instruction in the memory location determined by the effective address is executed without changing 

the contents of the P Register. If the Execute Instruction is in location l, and the effective address of 

this instruction is M, instructions are performed in the following order: 

l 

M 

l + 1 

If in the above sequence M contains a Branch instruction, control will not return to l + 1, but to the 

effective location of the branch. If M contains a Skip instruction, control will return to l + 1 or l + 2, 

depending on whether a skip takes place. 

If M contains another Execute instruction, the process will continue except that control will return to 

l + 1 after completion of the first normal (Non-Branch, Non-Skip, Non-Execute) instruction. 

Registers Affected: None Timing: 1 

(77) COpy EFFECTIVE ADDRESS INTO INDEX EAX 

The effective address of the instruction is copied into t}le Index Register. Three distinct types of opera­

tions are performed using this instruction as a function of the contents of the Index Bit and Indirect Add­

ress Bit. These are summari zed as follows: 

Instruction 

EAX M 

1 EAX M 

EAXI M 

Function 

M t (X) .... X 

Effective Address 

of M ... X 

Description 

The address portion of the instruction 

is copied into the Index Register. 

The address portion of the instruction 

is added to the contents of the Index 

Register and the results copied into 

the I ndex Register. 

The effecti ve address of the i nstructi on 

is copied into the Index Register. 

The nine highest order bits of X are not affected by this instruction. 

Registers Affected: X Timing: 2 

31 



32 

I. INPUT/OUTPUT INSTRUCTIONS 

The Input/Output Instructions for the SDS 920 are designed to communicate with external devices either 

in conjunction with the interrupt system, or in an independent fashion. When the Input/Output Instruc­

tions are used with the interrupt system, the interrupt signal itself provides synchronization. When the 

instructions are used without the interrupt system, the computer provides an automatic delay to synchron­

ize with the external device; the instructions "lock up" until the computer is synchronized with the input 

or output transfer. 

(12) MINTO W BUFFER WHEN READY MIW 

The contents of the memory location specified by the effective address are copied into the W Buffer 

Register. If the interrupt is employed, it synchronizes the transfer; if not, the operation will not take 

place until the W Buffer Register has been emptied. The computer will lock up until that time. 

Registers Affected: None Timing: 2 + wait 

(32) W BUFFER INTO M WHEN READY WIM 

The contents of the W Buffer Register are transferred to the memory location specified by the effective 

address. The W Register is cleared and is available for re-loading by the external device. If the inter­

rupt is employed, it synchroni zes the transfer; if not, the computer wi II lock up unti I the W Register has 

been fi lied and then perform the transfer. 

Registers Affected: M Timing: 3 + wait 

(10) MINTO Y BUFFER WHEN READY MIY 

The contents of the memory location specified by the effective address are copied into the Y Buffer Reg­

ister, an optional Input/Output Register. If the interrupt is employed, it synchronizes the transfer; if not, 

the operation will not take place until the Y Buffer Register has been emptied. The computer will lock 

up until that time. 

Registers Affected: None Timing: 2 + wait 

(30) Y BUFFER INTO M WHEN READY YIM 

The contents of the optional Y Buffer Register are transferred to the memory location specified by the 

effective address. The Y Register is cleared and is available for re-loading by the external device. If 



the interrupt is employed, it synchronizes the transfer; if not, the computer will lock up until Y has been 

fi II ed a nd the n perform the tra nsfer . 

Registers Affected: M Timing: 3 + wait 

(13) PARALLEL OUTPUT POT 

The contents of the effective address are held in the C Register for parallel transfer to an external de­

vice. Unless synchronized by the interrupt, the computer locks up until released by the external device. 

The externa I device is specified by the 14 bits of the effective address. 

The effective address determines both the external device selected and the memory location of the data. 

Thus information transmitted to an external device is stored in a memory location unique to that device. 

Note: A typical use for this instruction is for sending a parallel output to a digital-analog converter. 

Registers Affected: None Timing: 2 +wait 

(33) PARALLEL INPUT PiN 

Unless synchronized by the interrupt, the computer "locks up" until the external device transfers parallel 

data, up to 24 bits, into the C Register. When the trQnsfer is completed, the external device releases 

the computer and the contentS of the C Register (i ncludi ng computer-generated parity) are stored in the 

memory location specified by the effective address. The external device is specified by the effective 

address. 

The effective address determines both the external device selected and the memory location of the data. 

Thus information received from an external device is stored in a memory location unique to that device. 

Note: This instruction is used to receive data from such devices as analog-digital converters. 

Registers Affected: M Timing: 3 +wait 

(02) ENERGIZE OUTPUT M EOM 

This instruction provides an 8 microsecond output pulse and certain output control signals. The effective 

address of the i nstructi on determi nes the desti nation of the pulse. 

Appendix D contains a full description of the use of this instruction. 

Indirect addressing and indexing do not apply to this instruction. 

Registers Affected: None Timing: 1 

33 





III. Floating Point Operations 

The SDS 920 is designed to manipulate floating point numbers in a fast, efficient manner, due to the in­

clusion of a special group of instructions in the SDS 920 Instruction List. Floating point relieves the pro­

grammer of the burden of maintaining the binary point while arithmetic operations are being performed. 

The scaling of numbers is automatically maintained by compact Programmed Operator subroutines designed 

for the SDS 920. Numbers are represented in the form 

and where F is the fractional number and E is the exponent. 

Floating Point operations may be performed in either single or double precision on the SDS 920. Double 

precision is used when accuracy of approximately 11 decimal digits must be maintained. Single pre­

cision permits faster execution times when approximately seven decimal digits of accuracy are required. 

A. DOUBLE PRECISION FLOATING POINT FORMAT 

MOST SIGNIFICANT WORD LEAST SIGNIFICANT WORD 

\:t~ __ ±I'========:2I ___ t ___ lkt 
v 

Fractional Number (38 bits) plus sign Exponent (8 bits) plus sign 

Double Precision Floating Point operations in the SDS 920 are performed using a fractional number of 

39 bits (38 bits plus sign) and an exponent of 9 bits (8 bits plus sign). Numbers can be represented with 

F equal to 11 decimal digits plus sign and multiplier as high as 10±73. 

The Programmed Operator subroutines which perform Double Precision Floating Point operations are: 
Approx. 

Designation Name Function Execution Time 

FLA Floating Add Floating (A, B) + (M,M+l) ... A,B 368 fJSec 

FLS Floating Subtract Floating (A, B) - (M,M+l) --+ A,B 368 fJSec 

FLM Floating Multiply Floating (A, B) x (M,M+l) ... A,B 560 fJsec 

FLD Floating Divide Floating (A, B) (M,M+l) A,B 800 flsec 

35 



36 

B. SINGLE PRECISION FLOATING POINT FORMAT 

FRACTIONAL WORD EXPONENT WORD 

Not Used H I I I}I I 
~ 2~ 0 2} 

V 
\ 

V 

Fractional Number (23 bits) plus sign Exponent (8 bits) plus sign 

Single Precision Floating Point operations in the SDS 920 are performed using a fractional number of 24 

bits (23 bits plus sign) and an exponent of 9 bits (8 bits plus sign). Numbers can be represented with 

F equal to 6 decimal digits plus sign and an exponent as high as 10±73. The Programmed Operator sub­

routines which perform Single Precision Floating Point operations are: 
Approx. 

Designation Name Function Execution Time 

FSA Floating Add, Floating (A) + (M) ... A 192 lJSec 
Single Precision Exponent in B,M + 

FSS Floating Subtract, Floating (A) - (M) ... A 192 ~sec 
Single Precision Exponent in B,M + 

FSM Floating Multiply Floating (A) x (M) ... A 280 ~sec 
Single Precision Exponent in B,M + 

FSD Floating Divide Floating (A) - (M) ... A 368 lJSec 
Single Precision Exponent in B,M + 

C. SDS 920 INSTRUCTIONS FOR FLOATING POINT 

In order to maintain accuracy in floating point operations, all fractional numbers must be in normalized 

form, i.e., shifted to the left to eliminate leading insignificant digits. When numbers are inserted into 

the computer, and when a floating point arithmetic operation has been performed, the fractional number 

must be normalized and the exponent adjusted to reflect the change in the fractional number. In the 

SDS 920, NORMALIZE AND DECREMENT X (67100XX) is used to 

a) shift the fractional number to the left to eliminate leading insignificant digits and 

b) adjust the exponent (contained in the X Register) for each bit position shifted. 



When performing floating point addition and subtraction, it is necessary to align the numbers so that the 

exponents are equal before the arithmetic is performed. In the SDS 920, DIFFERENCE EXPONENTS AND 

SKIP (74), determines in one instruction 

a) which of the numbers is to be shifted and 

b) the number of positions to be shifted to align the numbers. Alignment is performed using 

SHIFT AB (66000XX), Index Bit equal to one, with the number of shifts located in the X 

Register. 

Manipulation of the exponent is required in all floating point operations. Capability is included in the 

Register Change Instructions to 

a) transfer the exponent portion of the word to and from the A, B and X Registers and 

b) clear exponent bits when arithmetic is to be performed. 

These operations can be performed in effective combinations in one machine cycle (8fJsec). 

37 





IV. Input / Output 

A. I NTROOUCTION 

The SOS 920 is capable of sending and receiving information at character rates of up to 500 kc. Provi­

sions are included for handling the following types of data: 

1. Single bit input, such as equipment on/off status and breakpoint switches. 

2. Single bit output, such as start/stop signals to external devices. 

3. Seven bit parallel input/output where parity generation/detection and 

character-to-word assembly is automatic. Simultaneous input and output 

ca n be performed. 

4. Parallel input/output of up to twenty-four bits under ciocking controi 

of the external device. Transfers are under program control. 

5. Input/output, under external control, of up to twenty-four bits. The 

externa I devi ce interlaces i nput/ output operations wi th computer 

program operation by having direct control over the computer's main 

memory. 

In addition, a flexible Priority Interrupt System is included which permits efficient input/output control 

over a large variety of devices. 

B. METHODS OF INPUT/OUTPUT 

1. Single Bit Input/Output 

The SDS 920 is provided with instructions which transmit an eight microsecond pulse to set external sig­

nals (ENERGIZE OUTPUT M (02) ) and test the status of these signals (SKIP IF SIGNAL NOT SET (40) ). 

Since the address portion of each instruction is used to identify the external signal, over 16,000 distinct 

signals can be connected. Address configurations have been assigned for standard input/out addressing 

and computer signals. These addresses are described in Appendix D. Addresses not defined may be used 

for special single-bit communication as required. 

39 



2. I nput/Output Buffer System 

The Input/Output Buffer, or W Register, contains a full-word register plus the associated control circuit­

ry needed to transfer full data words to and from the computer's memory and seven-bit characters to and 

from external devices. Parity detection/generation is automatically performed in the buffer; the parity 

bit is not part of the computer word. 

Input/Output Operations using the Input/Output Buffer are performed in the following manner: 

E NERGI ZE OUTPUT M (02) sets the I nput/Output address, I nput or Output Status, and the character 

count (1 - 4 characters)(see Appendix D). Normally, this actrvates the external unit and the opera-

tion is begun. W BUFFER I NTO MEMORY WHEN READY (32) and MINTO W BUFFER WHEN READY 

(12) are then used to transfer information between memory and the W Register. When the W Register has 

been filled on input (or emptied on output), an interrupt occurs to cause the computer to unload (or fill) 

the buffer. The programmer has the option, however, of disabling the interrupt prior to starti ng if the 

computer is not to perform simultaneous computation and input/output. In this case, when the input/ 

output instruction is executed, the computer will "Iock up"in this instruction until the W Register has been 

emptied (or filled). 

The character counter, as set by the program, determi nes the number of characters requi red to fi II the 

buffer. The character counter is set as follows: 

Character Counter 

00 

01 

10 

11 

Number of Characters to Fi II Buffer 

2 

3 

4 

If the program sets a character count of "1", the buffer is determined to be full when one character is re­

ceived from the input device and stored in the least significant six bits of the W Register. If the program 

sets a character count of "4", four characters are sequentially received from the input device and stored 

in the W Register; the first character appears in the most significant portion, and the last in the least sig­

nificant six bits. Output operations are performed in the same manner. 

The Input/Output Buffer provides a 5.5 character buffer between the computer and the external device. 

When the W Register has been emptied (or fi lied), an additional character may be completely processed 

before the W Register must be accessed. Typically, the maximum time available between successive input 

(or output) instructions is C + 1.5 character ti mes, where C is the Character Count. 

While the W Register is being emptied (or filled) by the external device, other computation can be per­

formed. 



3. Parallel Input/Output 

Data can be transferred between the SDS 920 and other devices, one word at a time (twenty-four bits in 

parallel). Two instructions are provided for such parallel data transfers, PARALLEL INPUT (33) and 

PARALLEL OUTPUT (13). 

PARALLEL INPUT (33) and PARALLEL OUTPUT (13) addresses determine both the selected external unit 

and the memory location accessed. Thus, information to or from a device is stored in a memory location 

unique to that devi ce. 

When PARALLEL INPUT (33) is executed, a "ready" signal plus the 14 address bits are transmitted to the 

peripheral unit. The address bits uniquely identify the unit to be connected, such as an analog-to-digital 

converter. The ready signal causes the external unit to transmit up to 24 information bits directly into the 

C Register. After the information has been transmitted, the external unit sends a "complete" pulse to the 

computer. When received by the computer, memory parity is generated and the word stored in the mem­

ory location determined by the address. 

Parallel output functions in a similar manner. 

4. External Memory Interlace 

The SDS 920 is designed so that external devices may communicate directly with the computer's memory 

while internal computation is being performed. 

Information is entered into (or taken from) the W (and/or Y) buffer and computation is automatically 

halted when the buffer is full (or empty). An externally-held address controls the operation of the mem­

ory during this period, which is two machine cycles. The computer is then restarted. The computer can 

be halted in this manner during a long instruction (over 3 machine cycles). The maximum transfer rate 

is approximately 200,000 characters per second. 

C. PRIORITY INTERRUPT SYSTEM 

The SDS 920 has two priority interrupt channels for handling of asynchronous input/output devices in 

conjunction with the Input/Output Buffer. The channels are identified as Priority Interrupt Channel 30 

and Priority Interrupt Channel 31, the lower-numbered channel having the highest priority. Each chan­

nel causes the computer to interrupt to a unique memory location, corresponding to the channel number. 

41 



When an interrupt signal is received, the present instruction is completed and control is then transferred 

to the memory location correspondi ng to the channel number. The P Register is left unchanged by 

operation. The next instruction executed .is MA"RK PLACE AND BRANCH (43). This instruction stores 

the present contents of the P Re"gister and initiates the required subroutine. When the subroutine is 

completed, control must be returned to the interrupted program usi ng BRA NCH UNCO NDITI ONALL Y 

(01) with indirect addressing. This instruction automatically clears the Interrupt Channel. 

The Interrupt System may be enabled or disabled by the program, as required, using ENERGI ZE OUTPUT 

M (02), or may be manually enabled from the Control Panel, overriding the interrupt status set by the 

program. When each interrupt operation is obeyed, MARK PLACE AND BRANCH (43) is executed im­

mediately during the next machine cycle. 

Additional priority interrupt channels are also available (see Section E). 

D. STANDARD I NPUT/OUTPUT DEVICES 

1 . Control Panel 

The SDS 920 is equipped with a convenient control panel, both to permit operator intervention and to 

display the internal status of the computer. A diagram of the control panel is shown in Figure IV-1. Con­

tained on the control panel are the following: 

42 

a. Displays 

(1) PROGRAM LOCATION - 14-bit P Register is continuously displayed. 

(2) REGISTER DISPLAY - A 24-bit register display is provided in conjunc­

tion with a rotary selection switch. This display will contain values of 

different internal registers depending on the location of the rotary se­

lection switch. These are: 

Rotary Selection Switch Position 

C 

A 

B 

X 

Display 

C Register (which contai ns the full 

instruction immediately prior to 

executi on) . 

A Register 

B Register 

X Register 

(3) OVERFLOW - The status of the overflow indicator is reflected by this 

display. A description of the operation of this indicator is contained in 

Section I. 



(4) HAL T - This indicator is turned on whenever HALT (00) is executed. 

It is turned off whenever an instruction other than HALT (00) is executed. 

(5) MEMORY PARITY - This indicator is turned on whenever a memory 

parity error occurs. It is turned off by returning the RUN-I OLE-STEP 

Switch to the IDLE position. This indicator operates in conjunction 

with the PARITY Switch described below. 

(6) I NTERRUPT ENABLED - When this indicator is on, the Interrupt Sys­

tem is enabled. 

(7) INPUT/OUTPUT - Six of these indicators reflect the address of the 

Input/Output Unit presently connected to the W Register (see Ap­

pendix D). The seventh indicator reflects the validity of the Input/ 

Output Error data. 

Switches 

(1) CLEAR - When the computer is in IDLE, depressing this switch 

clears the contents of the register being displayed (see REGISTER 

SWITCHES for resetting). 

(2) REGISTER SWITCHES - These 24 switches, located directly below 

the Register Display, permit insertion of information directly into 

the register being displayed. The computer must be in IDLE and 

the register cleared. Depressing a switch places a "1" in the cor­

responding bit position of the register being displayed. 

(3) RUN-I OLE-STEP - This is a three-position toggle with two sta­

tionary positions and a spring-loaded momentary position in STEP. 

In the RUN position, computation occurs at machine speed. In 

the IDLE position, the computer idles immediately after an in­

struction has been read from memory. If the Register Switch is in 

the "C" position, the complete instruction may be viewed in the 

Register Display. In the STEP position, the instruction is executed 

and the computer returns to the IDLE state. The switch must be 

released to the I DLE position before another STEP may be per­

formed. 

(4) REGISTER - The function of this rotary switch is described under 

Register Display. 

43 



(5) HOLD - If this switch is in the UP position, the P Register will 

not be stepped. This switch permits execution of additional in­

structions during checKout without changing the program stored 

in memory. 

(6) MEMORY PARITY - If this switch is in the HALT position, the 

computer wi II enter an IDLE state whenever a memory parity er­

ror occurs. If this switch is in the CONTI NUE position, the 

computer will not change state when memory parity occurs. 

(7) I NTERRUPT ENABLED - If this switch is in the COMPUTER 

position, the Interrupt System may be enabled or disabled under 

program control. If this switch is in the ENABLE position, the 

Interrupt System is enabled regardless of program operations. 

(8) BREAKPOI NT - The status of these four switches may be de­

tected by the program using SKIP IF SIGNAL NOT SET (40). 

They are used to control pre-determined options within the 

program. 

(9) START - This switch is used to initialize the control section of 

the computer. The W Buffer is reset, the P Register is cleared, 

and HALT (00) is automatically executed. The RUN-IDLE-STEP 

Switch must be in IDLE when this switch is depressed. 

(10) FILL - Depressing this switch causes the computer to read one 

word (4 characters) automatically from Paper Tape Reader No.1 

into memary location'0002 and execute the instruction. Simul­

taneously, the X Register is set to the value 77777772 (-6). The 

following short program (called a "bootstrap") can then be loaded 

and executed without further action by the operator. The bootstrap 

is capable of loading a binary tape of any length into any portion 

of memory. 

LOCATION INSTRUCTION 

0002 WIM 0011 

0003 BRX 0002 

0004 LOX 0010 

0005 WIM (endi ng address of 
program + 1) 

0006 BRX 0005 

0007 BRU EXIT 

0010 (number of words in pro-
gram as a negative value) 



o 

o 

FILL 

o 
~AP'GIN TEST 

'~2 

OVERFLOW HALT 

INTERRUPT MEMORY 
ENABLE D PARITY 

B ENABLE 

POWE 
COMPUTER 

HALT 

--INPUT-OUTPUT-- ----PROGRAM LOCATION------ o --- UNIT --- ERROR HOLD 

10000 O:g] []J @]]Io 0 0110 0 0110 0 0110 0 o~ 
REGISTER 

REGISTER DISPLAY C 

10 0 OI[[]]]IO 0 ol[[]]JIO 0 0110 0 0110 0 0110 0 0 ~. 
x 

o 2 3 4 5 6 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 

000000000000000000000000 

o SET 0---& -Gr----G S5:T Bf~EAKPOINT 
RESET RESET 

RUNe 
IDLE @ 

STEP 

Figure IV-l Control Panel 



46 

The sequence of operations performed by the operator to load a pro­

gram using the FILL Switch is as follows: 

(a) Insert the program to be loaded in Paper Tape Reader 

No.1. The initial portion of the tape contains the 

bootstrap program. 

(b) Set the RUN-IDLE-STEP Switch in the IDLE position. 

(c) Depress START 

(d) Set the RUN-IDLE-STEP Switch in the RUN position. 

(e) Depress FI LL 

If the loading system is present in memory, only steps (b) and (c) 

above need be performed. An unconditional branch to the initial 

location of the loading system can then be executed, using the 

Register Switches. 

(11) POWER - This is a back-lighted switch which applies power to 

the computer. 

(12) MARGIN TEST - This rotary switch is used during maintenance to test 

computer operation under marginal test conditions. 

2. Photo Electric Reader 

The SDS 920 Photo Electric Reader reads 7-channel paper tape into the computer at 300 characters per 

second. A Paper Tape Spooler with two removable 8" NAB tape reels can be provided for tape handling. 

The paper tape format is as follows: 

Parity Data Channels 

o 
o 
o 

o 

o 

76540321 
o 

o 

Direction of 

j Travel 



All characters will contain a parity bit such that the number of holes in each character is odd. Charac­

ters at the beginning of a tape which are without holes in any of the seven channels are ignored by the 

reader and are not transmitted to the computer. 

Paper tape information is read into the SOS 920 as follows: 

The computer program addresses the reader and sets the character count simultaneously, using ENERGIZE 

OUTPUT M (02). When addressed, the photo reader automatically turns on and begins reading paper 

tape. No information is transmitted to the computer until a character is detected with a hole in at least 

one of the channels. Each character is transferred to the Input/Output Buffer as is detected. At the 

buffer, parity is checked and the character is shifted serially into the W Register. The character count 

is reduced by one. If the W Register is full, the information is held in the character flip-flops until the 

buffer has been emptied. This procedure continues until either leader appears on the tape or the reader 

is turned off by the program. ENERGI ZE OUTPUT M (02) is used to disconnect the reader and simultan­

eously turn it off by placing an address, different from that of the reader, in the Input/Output address 

flip-flops. 

Parity errors or any other errors detected by the buffer system cause the Input/Output Error Indicator to 

be turned on. Information transfer, however, continues until either the end of the data or a programmed 

stop. The Input/Output Error Indicator can be sensed, at any time, by the program. Normally, however, 

the program will sense errors after a block of information has been read or when an error is suspected 

(i.e., false codes received). 

3. Paper Tape Punch 

The SOS 920 Paper Tape Punch operates at 60 paper tape characters per second. A removable 8" NAB 

tape reel is provided for handling the output tape. Seven paper tape channels are punched per character; 

six data channels and one parity channel generated in the Input/Output Buffer. The paper tape format 

is shown under Photo Electric Reader. 

Addressing (including energizing and de-energizing) the Paper Tape Punch is identical with the Photo 

Electric Reader. 

4. Typewriter 

The SOS 920 Typewriter is used for both input and output. Data can be manually inserted from the type­

writer into the Input/Output Buffer. Information can be transmitted from the Input/Output Buffer 

directly to the typewriter for printing of information. The typewriter is operated at a 15 character per 

second printing rate. The typewriter input/output codes are detailed in Appendix E. 

47 



48 

A Breakpoint Switch is used to indicate to the computer that entry of information through the typewriter is 

required. The computer is programmed to peri~dically sense the Breakpoint switch and, if on, address the 

typewriter. A light on the typewriter is turned on whenever a typewriter input is requested by the program. 

When the light is on, the operator may type a key which is transmitted directly to the Input/Output Buffer. 

The Interrupt System is normally used for typewriter input since the character input rate is extremely slow 

compared to the computation speed of the SDS 920 (approximately 10,000 instructions may be executed be­

tween each character typed on the keyboard). 

Output characters are transmitted to the typewriter via the Input/Output Buffer. Up to four output charac­

ters can be stored in an S DS 920 computer word for transfer to the W Register. The Interrupt System is 

normally used in typewriter output. 

E. OPTIONAL INPUT/OUTPUT DEVICES 

1. Additional Priority Interrupt Channels 

Additional priority interrupt channels are available with the SDS 920 in groups of 16 channels, to as many 

as 1024 channels. Each channel is assigned a priority status - no channels being on the same priority level. 

A channel of a given priority may not cause an interrupt to occur if an interrupt with higher priority is 

being obeyed. In this case, the interrupt is held until higher priority interrupts have been completed. 

2. Additional Input/Output Buffer 

The SDS 920 is pre-wired to include an additional Input/Output Buffer identical to the standard buffer. 

The register contained with this buffer is called the Y Register. The standard SDS 920 instructions M 

INTO Y BUFFER v\HEN READY (10) and Y BUFFER INTO M WHEN READY (30) are used to transfer data 

between the Y Register and memory. 

Input/Output devices may be connected to either the W or the Y Buffer, as desired. 

Two additional channels of priority interrupt are supplied with this Input/Output Buffer to facilitate simul­

taneous operations. 

~ 

3. Paper Tape Spooler 

A Paper Tape Spooler is available with the SDS 920 for use with the Paper Tape Reader. The Paper Tape 

Spooler contains two removable 8" NAB tape reels and take-up arms for controlled tape feeding. Manual 

switches are included for Forward/Reverse and On/Off. 



4. Magnetic Tape Systems 

Two types of Magnetic Tape Systems are available with the SDS 920. A practically unlimited number of 

these can be connected to the computer. Both Systems record in standard I Biv\ format with 7 bits per char­

acter. 

Redundant heads are provided for parity checking by a " read-after-write" system. Longitudinal parity and 

standard gaps are automatically generated during writing operations. Parity can be detected by the program 

at any time, although detection is typically performed at the end of reading or writing one record. A 

Ready signal is provided in each tape unit and this signal can be sensed by the program before any read­

write operation. If "Ready" is on, the magnetic tape unit is ready in all respects to send or receive data. 

a. Program -Control I ed Buffer System 

The Magnetic Tape System, using the Program-Controlled Input/Output Buffer, operates at 

character transfer rates up to 30 kc in the SDS 920. The computer is available for simulta­

neous computing for a large portion of the time during read-write operations. At 2 kc, 4.8% 

of computer time is used for input/output while at 15 kc, 36% is used. 

During write operations, the program transmits data, one word at a time, to the Input/Out­

put Buffer. Here characters are formed and parity bits are generated. Each character is 

transmitted to the Tape Unit in parallel. When the last word of the record has been trans­

ferred to the Input/Output Buffer, the program signals the Tape Unit that no further data 

is to be sent. Longitudinal parity and an end-of-record gap are automatically generated 

and the Tape Unit stops. Vvhen the record has been completed, the computer is interrupted 

for error-checking purposes. 

During read operations, the program controls inputs in a similar manner. When the inter­

record gap appears under the read head, data input ceases and the computer is interrupted. 

This indicates to the program that the record is complete. 

The system provides for rapid scanning of the tape in either direction, under program con­

trol. When in the scanning mode, the Tape Unit moves in a forward or reverse direction 

at reading speed. An interrupt is provided to the computer when each inter-record gap is 

detected. The computer has the option of continuing the scan by signalling the Tape Unit 

using ENERGIZE OUTPUT M (02). If no signal is transmitted by the computer, the Tape 

Unit stops. This enables the computer to search for a required record by either counting 

inter-record gaps, or by record identification. When the computer is interrupted, the 

last word of the record is present in the Input/Output Buffer. This word may be used to 

identify the record. 

49 



50 

Portions of the tape may be erased, under program control, using a special Input/Output 

Address (see Appendix D). In this mode, inter-record gap is written on the tape for each 

character transmitted by the program. 

A 15 kc magnetic tape unit is normally employed with the Program-Controlled Buffer 

System. 

b. Automatic External Memory Interlace System 

The Magnetic Tape Unit, using external memory interlace, includes storage for memory 

control information. Information transfer takes place through one of the input/output 

buffers. Since these operations are not under program control, only a small fraction of 

the available time (typically 5% at a 15 kc character rate) is used. During the remain­

ing time, input/output and computation proceed simultaneously. 

Prior to reading or writing a record, the SDS 920 program transmits the following informa­

tion to the Tape Unit using PARALLEL OUTPUT (13): 

(1) starting memory address 

(2) number of words 

The computer starts the read-write process using ENERGIZE OUTPUT M (02). The com­

plete operation is then performed without computer intervention. Upon completion of 

transmission, the computer is interrupted to perform read-write error checking. If, 

during the read operation, the number of words requested by the computer is smaller 

than the length of the tape record, an error indicator is turned on. No transmission 

occurs after the number of words read into the computer are equal to the number reques­

ted and the Tape Unit stops when the inter-record gap appears. 

5. Other Devices 

In addition to the Input/Output units described herein, the SDS 920 is capable of being effectively con­

nected to a wide range of devices. Some of these are: 

a. 

b. 

c. 

Punched Card Reader 

Punched Card Punch 

Line Printers 

d. Disc Files 

e. 

f. 

g. 

Analog-to-Digital Converters 

Digital-to-Analog Converters 

Other S OS Computers 

Practically any number of these devices can be used in any combination with the SDS 920. 



F. SYSTEM CONSIDERATIONS 

The SDS 920 is easily integrated into a wide range of computing systems as well as systems for data acqui­

sition and real time control. 

As indicated in this section, the SDS 920 is designed to operate -- without special buffering equipment -­

with a wide range of input/output devices. All of these have been designed with standard interface 

characteristics so that the construction of a complex system simply requires the interconnecting of the 

various elements rather than any extensive engineering design. 

1. Computing Systems 

Appendix 0 is a listing of typical devices that can be employed with the SDS 920 to construct compre­

hensive systems. In addition, another SDS computer can be used as a satellite input/output processor with 

the SDS 920 so as to minimize the time spent in input/output. 

With the addition of a second input/output buffer (see Section E), the SDS 920 can serve as a high-speed 

universal data converter between various media and various formats. For example, the SDS 920 can con-

vert gapless magnetic tape to gapped tape at character rates of up to 5 kc. 

2. Data Acquisition and Real Time Control 

The SDS 920 as a system component is best discussed in connection with block diagrams. 

a. Data Acquisition 

Figure IV-2 is a typical data acquisition system. Analog signals of various sorts are multi­

plexed, under the control of the SDS 920, into an analog-to-digital converter. The digital 

output of the converter is read into the SDS 920 together with any number of other digital 

inputs and the computer performs one or a II of the followi ng functions: 

(1) Zero correction 

(2) Full-scale correction 

(3) Conversion to engineering units 

(4) Formatti ng for recordi ng on magneti c tape 

(5) Selection and printing of certain data points 

(6) Selection of points for plotting via digital-to-analog converters 

(7) Limit comparison and display 

(8) Computation of performance variables on the basis of the acquired data 

(9) Transmission of some of the data to other computers and systems 

A typical system can process 2500 inputs/sec while performing operations (1), (2), (3), and (4). 

51 



-------0 

-------<0 

------0 
Various 
Analog 
Inputs 

Direct Digital 
Inputs 

Analog-to­
Digital 

Converter 

Figure IV-2 

SDS 920, 

Digita I-to­
Analog 

Converter 

Typical Data Acquisition System 

Magnetic Tape 

Display 

Other Computers 
and Systems 



b. Real Time Control 

Figure IV-3 is a typical control system. Input variables -- which may be digital or analog -- are 

entered into the SOS 920 through the appropriate input devices together with input control signals. 

The latter are processed by the Priority Interrupt System that selects the order in which various 

functions are to be performed. Some of the functions may require special programs to be executed. 

These are stored on magnetic tape or in a disc file. The computer transforms the incoming data, 

prints the results, uses some results to generate analog voltages for controlling devices such as 

valves or other actuators, and generates control signals to start, stop, and signal various other 

operations. A manual keyboard facilitates changes in limits, scale factor, etc. 

53 



-
Control 

Input 
Signals 

-

-
In put Variables: 

In dustria I Process 
Radar Data 

Com munications Link 

Output 
Control 
Signals 

Output 
Variables 

~ 

... 

etc. 

-

.. -.-

---.. 

Figure IV-3 

Priority J I Display Interrupt I 

~Ir 

Magnetic Tapa 

- .. or 
SDS 920 

... ... 
Disc File 

~ 

.... Multiple .. 
Printers 

,. 
Digital to 

Analog Manual 

Converters Keyboard 

Typical Real Time Control System 



V. Programming Examples 

The programming examples included in this section make use of many of the powerful instructions included 

in the SDS 920. Special emphasis has been given to input/output programming. Octal notation is used 

throughout, except as noted. 

A. EXAMPLE NO.1 (PAPER TAPE INPUT) 

1. Problem 

Read a binary paper tape (previously generated by the computer) into memory from Paper Tape Reader 

No.1. The ending location has been entered through the typewriter and is stored (plus one) as an ad­

dress in a location internal to the program. The program must be relocatable. The Interrupt System is 

not used since simultaneous computation is not being performed. The first word on the binary tape con-

rains the total number of words to be read. The last word contains a complement check sum of all pre-

ceding data words. The first word is not included in the sum. 

2. Program 

Location 

L 

L+6 

L+7 

L + 10 

L + 11 

L + 13 

Instruction 

EOM 20004 

EOM 01304 

2 WIM +16 

CLA 

2 SUB +14 

046 00401 

2 WIMI +13 

2 ADDI +12 

2 BRX -2 

SKS 20010 

2 BRU ERROR 

2 SKA +4 

2 BRU ERROR 

EOM 00000 

BRU REST 

OCT77777777 

Remarks 

Disable I nterrupt System 

Address and start reader 

Word count .... temp. storage 

o -A 

Complement of Word Count - A 

o .... A, A - X combined 

ith Word ... Memory 

Accumulate check sum 

X + 1 .... X; complete? 

Complete; Input/Output Error? 

Yes - to Error Routi ne 

No Error; Check Sum = 0 ? 

No - to Error Routi ne 

Check Sum = 0; Disconnect 

To Rest of Progra m 

Constant for Skip on Zero 

55 



56 

2. Program 

Location 

L + 21 

Storage - 18
10 

words 

Instruction 

OCTOOOOOOOO 

1 HLT LOC 

Remarks 

Temporary storage 

Ending location plus one with Index Bit equal to 1 

Timing - (136 + 64i) ~sec where i = no. of words 

3. Explanation 

All instruction which refer to memory locations within the program have been assigned to a Relative 

Address Bit = 1. Starting at L the first word on the input tape is complemented and stored in the Index 

Register where it is used to count the input words and for address modification. The 3 instruction loop 

starting at location L + 6 performs the input of all data words. The ending location plus one is stored 

in location L + 21 with an Index Register Bit = 1. The instructions in locations L + 6 and L + 7 both re­

fer to this location as an indirect address. The effective address of the instructions in L + 6 and L + 7 

is the ending location + 1 + tndex. During the last complete pass, the Index Register is equal to -1. 

The effective address, then, is the ending location. The instructions in L + 11 and L + 13 test for Input/ 

Output Error and Check Sum Error, respectively. If an error exists, the program branches to an ERROR 

routi ne (not shown). 

This input program requires only 64 ~sec of computer time for each input word. Since the Paper Tape 

Reader, operating at 300 characters per second, makes a word avai lable to the SDS 920 every 13.3 m sec, 

over 99% of the time is available for other computation. It is possible to receive data using this pro-

gram at character rates over 30 kc. 



B. EXAMPLE NO.2 (MAGNETIC TAPE OUTPUT) 

1. Problem 

Write a record on Magnetic Tape Unit No.1 using the W Register: 100 data words start ing at location 

2000. Computation is performed simultaneously with writing and the interrupt system is enabled. 

The A, B, and X Registers are not used by this program except during the initializing pass. This permits 

the main program to continue without being disturbed. Note that a faster and simpler program is possible 

if this restriction is removed. 

2. Program 

Location Instruction Remarks 

30 BRM 40 Interrupt Channel 130 Entrance 

31 BRM 47 I nterrupt Channel 131 Entrance 

32 LDA 54l Initial Entrance -
33 STA 41 

Set up initial address and word count; 
34 LDA 55J Start Magnetic Tape Unit 11 
35 STA 56 

36 EOM 01350 

37 BRU OUT Initial Exit 

40 HLT 0 Channel 130 Return Address Storage 

41 (MIW SJART) Word - W Buffer 

42 MIN 41 I ncrease address by one 

43 SKR 56 Reduce Word Count by one; Done? 

44 BRU I 40 No; Return to Main Program 

45 EOM 10100 Yes; send Last Word Signal to W Buffer and 

46 BRUI 40 Return to Main Program 

47 HLT 0 Channel 131 Return Address Storage 

50 SKS 20010 Error? 

51 BRU ERROR Yes; Branch to Error Program 

52 EOM 00000 No; Disconnect 

53 BRUI 47 Return to Main Program 

57 



2. Program 

Location I nstructi on Remarks 

54 MIW 2000 Initial Address 

55 OC TOOOOO 143 Word Count -1 

56 OC TOOOOOOOO Temporary Storage 

Storage - 23
10 

words 

Timing - (152 + 96i) !JSec where i = number of words 

In this case, where i = 100, computation time 

Maximum transfer rate - 41.6 kc 

12,952 !JSec 

At 15 kc, 64% of time available for other computation 

3. Explanation 

The program is first entered at location 31 where the starting address and number of words to be trans­

ferred are initialized. At location 36, Magnetic Tape Unit No.1 is started and control is returned to 

the main program at location 37. Each time the W Buffer is ready to receive a word, Priority Interrupt 

Channel #30 is energized and the instruction in location 30 is next executed. At location 30, the P 

Register is stored in location 40 and a branch to location 41 occurs where the output sequence begins. 

The memory word is transferred to the W Register, the memory address is increased by one, and the word 

count is reduced by one. The A, B, and X Registers are not changed by these instructions. When a 

total of 100 words have been transferred, a skip occurs at location 43 and the W Buffer is signaled that 

the last word has been transmitted. 

When the last word has been completely written on Magnetic Tape Unit No.1, Priority Interrupt Channel 

#31 is energized and the instruction in location 31 is next executed. The Error Indicator is then checked. 

If an error has occurred during the write operation, the program branches to an Error Routine (not shown) 

where corrective action is taken. 

Since Priority Interrupt Channel #30 is of a higher priority than Channel #31, an interrupt from Channel 

#31 cannot take place while a Channel #30 interrupt is being obeyed. The branch instructions in loca­

tion 44 or 46 automatically clear Priority Interrupt Channel #30. 

58 



C. EXAMPLE NO.3 (ANALOG INPUT SCANNING) 

1. Problem 

A 12-bit Analog-to-Digital Converter and Multiplexer are connected to the SDS 920. Bring into the 

computer the digital outputs of the converter and check against upper and lower limits. If within limits, 

convert to engineering units and store the data. The conversion formula is ax + b, where a and bare 

unique conversion coefficients and x is the data. 

Assume that there are 64 converter inputs. All related information is located in corresponding positions 

of tables, i.e., Upper Limits (2000 - 2077), Lower Limits (2100 - 2177), "a" coefficients (2200 - 2277), 

"b" coefficients (2300 - 2377), Converted Data Storage (2400 - 2477) and Raw Input Storage (2500-

2577). 

The program starts at location 1 000. 

2. Program 

Location I nstruc ti on 

1000 LDX 1016 

1001 EOM 30001 

1002 1 PIN 2600 

iOO3 LDA 2iOO 

1004 1 SKG 2600 

1005 BRU OUT 

1006 1 LDA 2600 

1007 1 SKG 2200 

1010 BRU OUT 

1011 1 MUL 2300 

1012 1 ADD 2400 

1013 1 STA 2500 

1014 BRX 1001 

1015 BRU REST 

1016 OCT77777700 

Storage - 15
10 

words 

Remarks 

Set Index with -100
S 

Step Multiplexer, Start conversion 

ith Raw Data ..... Storage 

Upper Limit -> A 

Upper Limit .... Raw Data? 

No. -to Out of Limits Routine 

Yes. Raw Data .... A 

Raw Data .... Lower Limit 

No - to Out of Limits Routine 

a (x) 

ax + b 

Converted Data .... Storage 

X + 1.... Xi Complete? 

Yes - Proceed 

Complement of 100 

Timing - (24 + 2S0i) !-,sec where i = no. of points 

59 



2. Proaram 

3. Explanation 

Since all storage is related to the data point being sampled, the Index Register can be used to gain access 

to all locations. As the Index Register is chonged, a different set of data becomes available. 

ENERGIZE OUTPUT M (02) in location 1001 performs the dual function of stepping the Multiplexer and 

starting the conversion. By proper placement of this instruction, processing of the ith point may be per­

formed in parallel with the conversion of the i + 1 point. Therefore, conversion time is not a factor in 

calculating program time. 

D. EXAMPLE NO.4 (BREAKPOINT TESn 

1. Problem 

Read the Breakpoint Switches and test as follows: 

2. Program 

Location 

L 

L + 2 

L + 4 

60 

Breakpoint Configuration 

1111 

0111 

1011 

1101 

Rest 

Instruction 

SKS 20740 

BRU 1000 

SKS 20440 

2 BRU +4 

SKS 20340 

BRU 1020 

BRU 2000 

Result 

Branch to 1000 

Branch to 1020 

Branch to 1040 

Branch to 1060 

Branch to 2000 

Remarks 

All on ? 

Yes - exit 

No; #1 and #4 on ? 

Yes 

No; #2, #3, and #4 on 

Yes - exit 

No - exit 

? 



Location 

Storage - 10
10 

words 

Timing - 16 - 56 lJSec 

3. Explanation 

Instruction 

SKS 20100 

BRU 1040 

BRU 1060 

Remarks 

#3 on ? 

Yes - exit 

No; #4 on - exit 

The Breakpoint Switches may be tested in "or" combinations (see Appendix 0). Use was made of this 

feature to test for all switches ON (at location L), and for other combinations (at locations L + 2 

and L+4). 

E. EXAMPLE NO.5 (TABLE SEARCH) 

1. Problem 

A table of data is contained in memory where each word is of the following form: 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

The table is arranged so that all entries with the same alphabetic characters are grouped together, 

ordered numerically. Alphabetical order is not maintained. 

A subroutine is required which enters new information into this table. The new word, in the above form, 

is in the A Register upon entry. The subroutine is required to search the table for the correct storage lo­

cation, store the new entry, and precess the remainder of the words one position. 

61 



62 

2. Program 

Location Instruction Remarks 

L EXIT 

2 LDB Mask - B 

2 LDX "Length" -0 X 

L + 3 

L+5 

L + 10 

L + 12 

Storage - 171 0 words . 

1 SKM BEGIN 

2 BRU +11 

1 SKG BEGIN 

2 BRU +4 

2 BRX -2 

1 STA BEGIN 

2 BRR -11 

1 XMA BEGIN 

2 BRX -1 

2 BRU -4 

2 BRX -12 

2 BRU -6 

OCT 77777700 

OCT LENGTH 

Timing - (72 + 32i) ~sec where i = table length 

3. Explanation 

Letters Identical 

No; Branch to modify X 

Yes; New> Old? 

Yes 

No, X + 1 ... X, End? 

Yes; Store Entry 

Exit 

Precess Table 

X + 1 - Xi End? 

Yes; Store last entry and exit 

X + 1 - X; End? 

Yes; Go to store 

Letter Mask 

Value for length of table 

At location L + 3, the table is searched for letter agreement. If agreement is not found, the new entry 

is stored at the end of the table and EXIT takes place. When letter agreement is found, the subroutine 

enters a numerical comparison at location L + 5. The word is then exchanged with the table word it is to 

replace at L + 12 and the remainder of the table precessed by one. 



V I. Appendices 

63 





Appendix A 

SDS 920 INSTRUCTION LIST - NUMERICAL ORDER 

I nstr. 
Code Designation Name Function Timing 

00 HLT HALT Halts Computation 

01 BRU BRANCH UNCONDITIONALLY M ..... P 

02 EOM ENERGIZE OUTPUT M 
8 ~ec pulse to Point(s) 
a dres~ed 

10 MIY MINTO Y BUFFER WHE N READY (M) ..... Y 2 + wait 

12 MIW MINTO W BUFFER WHEN READY (M) ..... W 2 + wait 

13 POT PARALLEL OUTPUT (M) ..... Unit M in Parallel 2 + wait 

14 ETR EXTRACT (A) and (M) ..... A 2 

16 MRG MERGE (A) or (M) ..... A 2 

17 EOR EXCLUSIVE OR (M) (Aj or (M) (A)..... A 2 

20 NOP NO OPERA TI ON 

23 EXU EXECUTE I nstr. M is performed, 
P unchanged 

30 YIM Y BUFFER INTO M WHEN READY (Y) ..... M 3 + wait 

32 WIM W BUFFER INTO M WHEN READY ~)""'M 3 + wait 

33 PIN PARALLEL INPUT (Unit M) ..... M in Parallel 3 + wait 

34 STX STORE INDEX (X) ... M 3 

35 STA STORE A (A) ..... M 3 

36 STB STORE B (B) ..... M 3 

40 SKS SKIP IF SIGNAL NOT SET If Signal = I, P + 1 ..... P I, 2 
If Signal = 0, P + 2 ..... P 

41 BRX INCREMENT INDEX AND BRANCH (X) + 1 ..... X I, ,2 
If X Neg., M ..... P 
If X Pos., P + 1 ..... P 

43 BRM MARK PLACE AND BRANCH (P) ..... M; M + 1 ..... P 2 

4600001 CLA CLEAR A "0" ..... A 

4600002 CLB CLEAR B "0" ..... B 

4600003 CLR CLEAR AB 110 11 ..... A, B 

4600004 CAB COpy A INTO B (A) ..... B 

65 



Instr. 
Code Designation 

4600010 CBA 

4600014 XAB 

4600020 CBX 

4600040 CXB 

4600060 XXB 

4600122 STE 

4600140 LDE 

4600160 XEE 

4600200 CXA 

4600400 CAX 

4600600 XXA 

50 SKE 

51 BRR 

52 SKB 

53 SKN 

54 SUB 

55 ADD 

56 SUC 

57 ADC 

60 SKR 

61 MIN 

62 XMA 

63 ADM 

64 MUL 

65 DIV 

66 

Name 

COpy B INTO A 

EXCHANGE A AND B 

COPY B INTO INDEX 

COpy INDEX INTO B 

EXCHANGE INDEX AND B 

STORE EXPONENT 

LOAD EXPONENT 

EXCHANGE EX PONENTS 

COpy INDEX INTO A 

COPY A INTO INDEX 

EXCHANGE INDEX AND A 

SKIP IF A EQUALS M 

RETURN BRANCH 

SKIP IF M AND B DO NOT 
COMPARE ONES 

SKIP IF M NEGAT IVE 

SUBTRACT M FROM A 

ADD M TO A 

SUBTRACT WITH CARRY 

ADD WITH CARRY 

REDUCE M, SKIP IF NEGATI VE 

MEMORY INCREMENT 

EXCHANGE M AND A 

ADD A TO M 

MULTIPLY 

DIVIDE 

Function 

(B) -+ A 

(A)~ (B) 

(B) -+ X 

(X) -+ B 

(X)~(B) 

(B 15-23) -+ X 15-23 

o -+ B15_23 , X 15 -+ X O- 14 

(BI5-23)~ (X 15-23) 

(X) -+ A 

(A) -+ X 

(X)~ (A) 

If (A) t- (M), P + 1 -+ P 
If (A) = (M), P + 2 -+ P 

(M) + 1 - P 

If (B) (M) ~ 1, P + 1 -+ P 
(B) (M) = 0, P + 2 -+ P 

If (M) <! 0, P + 1 - P 
If (M) < 0, P + 2 - P 

(A) - (M) - A 

(A) + (M) - A 

(A) - (M) - Carry -+ A 

(A) + (M) + Carry -+ A 

(M) - 1 -+ M 
If M Pos' r P + 1 - P 
If M Neg., P + 2 -+ P 

(M) + 1 -+ M 

(A)- (M) 

(A) + (M) -+ M 

(A) x (M) -+ A, B 

(A) +- (M) -+ A, R -- B 

2, 3 

2 

2r 3 

2, 3 

2 

2 

2 

2 

3 

3 

3 

3 

16 

28 



Indr. 

66000XX RSH RIGHT SHIFT AB AB Shift Right N Places 
N 

2 + 2' Even 

2+~ Odd 
2 ' 

66200XX RCY RI GHT CYCLE AB AB Cycled Right N Places 

67000XX LSH LEFT SHIFT AB AB Shift Left N Places 

67100XX NOD NORMALIZE AND AB Left and X - 1 - X 
DECREMENT X Until AO f A1 or N Shifts 

67200XX LCY LEFT CYCLE AB AB Cycled Left N Places 

70 Si<M SKIP IF A = M ON B MASK If (B) (A) I (B) (M), P + 1 - P 2, 3 
-If (B) (A) = (B) (M), P + 2 - P 

71 LDX LOAD INDEX (M) - X 2 

72 SKA SKIP IF M AND A DO NOT If (A) (M) ~ 1, P + 1 -P 2, 3 
COMPARE ONES (A) (M) = 0, P + 2 -P 

73 SKG SKIP IF A GREATER THAN M If (A) s (IVv, P + 1 - P 2, 3 
If (A) > (M),P + 2- P 

74 SKD DIFFERENCE EXPONENTS I(B 15-23) - (M 15-23 )1- X 15- 23 
2, 3 

AND SKIP 
If difference is positive, P + 1 -P 
If difference is negative,P+2 .... P 

75 LDB LOAD B (M) .... B 2 

76 LDA LOAD A (M) - A 2 

77 EAX COpy EFFECTIVE ADDRESS Effective Address - X 2 
INTO INDEX 

67 





Appendix B 

SDS 920 I NSTRUCTION LIST - OPERATIONAL CLASS 

Instr. 
Designation Code Name Function TIming 

LOAD-STORE: 

LOA 76 LOAD A (M) .... A 2 

STA 35 STORE A (A) .... M 3 

LOB 75 LOAD B (M) .... B 2 

STB 36 STORE B (B) .... M 3 

LOX 71 LOAD INDEX (M) .... X 2 

STX 34 STORE INDEX (X) .... M 3 

XMA 62 EXCHANGE M AND A (A)~ (M) 3 

ARI THMETIC: 

ADD 55 ADD M TO A (A) + (M) .... A 2 

ADC 57 ADD WITH CARRY (A) + (M) + Carry .... A 2 

ADM 63 ADD A TO M (A) + (M) .... M 3 

MIN 61 MEMORY INCREMENT (M) + 1 .... M 3 

SUB 54 SUB TRACT M FROM A (A) - (M) .... A 2 

SUC 56 SUBTRACT WITH CARRY (A) - (M) - Carry .... A 2 

MUL 64 MULTIPLY (A) x (M) .... A, B 16 

DIV 65 DIVIDE (A) -:- (M) .... A, R .... 8 28 

BRANCH-SKIP: 

BRU 01 BRANCH UNCONDI TI ONALL Y M -P 

BRX 41 INCREMENT I NDEX AND BRANCH (X) + 1 .... X 1, 2 
If X Neg., M ..... p 
If X Pos., P + 1 .... p 

BRM 43 MARK PLACE AND BRANCH (P) .... Mj M + 1 .... P 2 

BRR 51 RETURN BRANCH (M) + 1 .... p 2 

SKS 40 SKIP IF SIGNAL NOT SET If Signal = 1, P + 1 .... p 
1, 2 

If Signal = 0, P + 2 .... p 

69 



Instr. 
Designation Code Name Function Timing 

BRANCH-SKIP: 

SKE 50 SKIP IF A EQUALS M If (A) f (M), P + 1 .... P 
2, 3 

If (A) = (M), P + 2 - P 

SKG 73 SKIP IF A GREATER THAN M If (A) :s; (M), P + 1 - P 2, 3 
If (A) > (M), P+2-P 

SKR 60 REDUCE M, SKIP IF NEGATIVE (M) - 1 - M 3 
If (M) Pos., P + 1 - P 
If (M) Neg., P + 2 .... P 

SKM 70 SKIP IF A = M ON B MASK If (B)(A) f (B)(M), P + 1 .... P 
2, 3 IF (B)(A) = (B)(M), P + 2 .... P 

SKN 53 SKIP IF M NEGATIVE If (M) ~ 0, P + 1 .... P 
2, 3 

If (M) < 0, P + 2 .... P 

SKA 72 SKIP IF M AND A DO NOT If (A)(M) ;?:1, P + 1 .... P 
2, 3 COMPARE ONES If (A)(M) = 0, P + 2 .... P 

SKB 52 SKIP IF M AND B DO NOT If (B)(M) ~ 1, P + 1 .... P 
2, 3 

COMPARE ONES If (B)(M) = 0, P + 2 .... P 

SKD 74 DIFFERENCE EXPONENTS I (B 15- 23) - (M15- 23) , .... X15- 23 AND SKIP 
2, 3 If Difference is Pos., P + 1 .... P 

If Difference is Neg., P + 2 .... P 

LOGICAL: 

ETR 14 EXTRACT (A) and (M) .... A 2 

MRG 16 MERGE (A) or (M) .... A 2 

EOR 17 EXCLUSIVE OR (M)(A) or (M)(A) - A 2 

REGISTER CHANGE: 

CLA 4600001 CLEAR A "0" .... A 

CLB 4600002 CLEAR B "0" - B 

CLR 4600003 CLEAR AB "0" - A, B 

CAB 4600004 COpy A INTO B (A) -B 

CBA 4600010 COpy B INTO A (B) .... A 

XAB 4600014 EXCHANGE A AND B (A)- (B) 

CXA 4600200 COpy I NDEX I NTO A (X) .... A 

CAX 4600400 COpy A INTO INDEX (A) .... X 

XXA 4600600 EXCHANGE INDEX AND A (X)- (A) 

CBX 4600020 COpy B INTO INDEX (B) .... X 

70 



I nstr. 
Designation Code Name Function 

REGISTER CHANGE: 

CXB 4600040 COpy INDEX INTO B (X) ... B 

XXB 4600060 EXCHANGE I NDEX AND B (X)*-+(B) 

STE 4600122 STORE EXPONENT (B 15-23) ... X15- 23 

o -B15-23X15 ... XO- 14 

LDE 4600140 LOAD EXPONENT (X15- 23) ... 815-23 

XEE 4600160 EXCHANGE EXPONENTS (B15- 23)<- (X15- 23) 

SHIFT: 

RSH 66000XX RIGHT SHIFT AB AB Shift Right N Places 
N 

Even, 2 +2' 

Odd 2 + N + 1 , 2 

RCY 66200XX RIGHT CYCLE AB AB Cycled Right N Places 

LSH 67000XX LEFT SHIFT AB AB Shift Left N Places 

Ley 67200XX I L~T ,..'/,.... L An 
LLr I '- I '-LL 1-\0 AS Cycled Left N Places 

NOD 67100XX NORMALIZE AND DECREMENT X AB Left a nd X - 1 - X 
Unti I AO f A 1, or N Shifts 

CONTROL: 

HLT 00 HALT Halts Computation 

NOP 20 NO OPERA TI ON 

EXU 23 EXECUTE Instruction M is performed, 
P unchanged 

EAX 77 COpy EFFECTIVE ADDRESS Effective Address - X 2 
INTO INDEX 

INPUT/OUTPUT: 

MIW 12 MINTO W BUFFER WHEN READY (M) -W 2 + wait 

WIM 32 W BUFFER INTO M WHEN READY NY) -M 3 + wait 

MIY 10 MINTO Y BUFFER WHEN READY (M) -Y 2 + wait 

YIM 30 Y BUFFER INTO M WHEN READY (Y) -M 3 + wait 

POT 13 PARALLEL OUTPUT (M) - Unit M in Parallel 2 + wait 

PIN 33 PARALLEL INPUT (Unit M) - M in Parallel 3 + wait 

EOM 02 E NERGI ZE OUTPUT M 8 jJsec Pulse to Point(s) 
Addressed 

71 





Appendix C 

PROGRAMMED OPERATOR INSTRUCTIONS 

A library of Programmed Operator subroutines is available to greatly extend the SDS 920 instruction list. 

A partial list of these subroutines is indicated below. Each subroutine is specified by a unique mnemonic 

code and represents an available instruction which may be used directly in preparing 920 programs. Up to 

64 of these Programmed Operator instructions may be used in preparing anyone program. 

The program loading system automatically organizes the interconnection between the Programmed Opera­

tor instructions and the corresponding subroutines. Each Programmed Operator instruction mnemonic code 

is converted on input to an instruction code of 100 to 177. A memory location from 100 through 177 cor­

responding to each assigned instruction code is loaded with an unconditional branch to the corresponding 

subroutine. For example, if the input program contains "ADP," the Programmed Operator instruction for 

Add Double Precision, it may be assigned instruction code 107, and the ADP subroutine may be loaded in 

memorl locations 426 through 435. If memor; location 1001 contains the instiuction ADP 3640, the flow 

of performi ng this instruction wi II be as follows: 

Instruction 
Location Code Instruction Remarks 

000 (00) HLT I ---- Return Address 

1001 (107) ADP 3640 P.O. Add Double Precision 

1002 

107 (01 ) SRU 426 Transfer to ADP Subrouti ne 

426 (34) STX 77 X .... Temporary Storage 

427 (74) EAX I 000 Effective Address -> X 

430 (46) XAS A-B 

431 (55) 1 ADD 0 Add Lower 

432 (46) XAS A- S 

433 (57) 1 ADC 1 Add Upper 

434 (71 ) LDX 77 Temporary Storage .... X 

435 (51 ) BRR 000 Return 

73 



74 

When the 920 Computer detects the instruction code of 107 for the instruction in location 1001, control is 

automatically transferred to location 107 and the contents of the program counter are automatically stored 

in location 000. Location 000 also retains an indirect address bit and is changed to: 

Location I nstructi on Remarks 

000 HLT I 1001 Return to 1 001 

The instruction in 107 then transfers control directly to the ADP subroutine. After the contents of the X 

Register are placed in temporary storage, the EAX 1000 instruction in 427 loads the X Register with the 

effective address of the Programmed Operator instruction 3640. The required instructions are then per­

formed, based on this address, and the original contents of the X Register are restored. The BRR 000 in­

struction in 435 then provides a direct transfer of control to location'1002 through the return address in 

location 000. 

Each time the instruction code 107 is detected, indicating an ADP instruction, the ADP subroutine will 

be entered and performed in the same way. If an ADP instruction is indexed or contains an indirect ad­

dress, the EAX 1000 instruction will extract the correct effective address. 



Mnemonic Code 

ADP 

ASD 

ASF 

ASN 

ATD 

ATF 

ATN 

BDF 

BID 

COS 

CSD 

DBD 

DBF 

DDP 

DIB 

EXD 

EXF 

EXP 

FFL 

FLA 

FLD 

FLF 

FLM 

FLS 

FSA 

SDS 920 PROGRAMMED OPERATOR I NSTRUCTI ONS 

Name 

Add Double Precision 

ARC SI N - Double Precision 

ARC SI N - Flooting 

ARC SIN of A 

ARC TAN - Double Precision 

ARC TAN - Flooting 

ARC-TAN of A 

Binary to Decimol - Floating 

Binary to Decimol in A 

COS of A 

COS - Double Precision 

cos- Flooting 

Decimol to Binary-Double 
Precision 

Decimol to Binary - Flooting 

Divide, Double Precision 

Decimol to Binary in A 

Exponential-Double Precision 

Exponential - Flooting 

Exponentia I of A 

Fixed Point to Flooting Point 

Floating Add 

Flooting Divide 

Flooting Point to Fixed Point 

Flootir'lg Multiply 

Flooting Subtract 

Floading Add, Single Precision 

Function 

(A,B) + (M,M+l) -+ A, B 

ASIN (A,B) -+ A,B 

Flooting ASIN (A,B) ..... A,B 

ASIN (A) .... A 

ATAN (A,B) .... A,B 

Flooting ATAN (A,B) ..... A,B 

ATAN (A) -+ A 

Floating (A,B~inary -+ A,B Decimol 

(8 digits) 
Exponent in X (3 digits) 

(A)B· -+ A B , Decimol I nary 
Binary Point at M 

COS (A) -+ A 

COS (A,B) .... A,B 

Flooting COS (A, B) 

(A, B)Decimol 

Decimal Point at M 

.... A,B 

.... A,BB· I nary 

(A,B)Decimol -+ Flooti ng A, Ii. 
"BInary 

Decimol Point at M 

(A,B) + (M,M+l) .... A,B 

(A)Decimal - A Binary 
Decimal Point at M 

e (A, B) -+ A,B 

Flootinge (A,B) .... A,B 

e (A) -+ A 

(A,B) Fixed .... (A,B) Floating 
Binary Point at bit M 

Floating (A,B) + (M,M+l) .... A,B 

Flooting (A, B) ..;.. (M, M + I) -+ A, B 

(A,B) Flooting .... (A,B) Fixed Binary 
Point at bit M 

Floating (A, B) x (M,M+l) -+ A,B 

Flooting (A,B) - (M,M+l) -+ A,B 

Flooting (A) + (M) -+ A 
Exponent in B, M + 1 

75 



Mnemonic Code Name Function 

FSD Floating Divide, Single Precision Floating (A) ~ (M) --+ A 
Exponent in B,M + 1 

FSM Floating Multiply, Single Floating (A) x (M) .... A 
Precision Exponent in B, M + 1 

FSS Floati ng Subtroct, Si ngle Floating (A) - (M) .... A 
Precision Exponent in B, M + 1 

LOP Load Double Precision (M, M+1) .... A,B 

LGD LOG - Double Precision LOG
M 

(A,B) .... A,B 

LGF LOG-Floating Floating LOG M (A, B) .... A,B 

LOG LOG of A LOG
M 

(A) .... A 

MOP Multiply, Double Precision (A,B) x (M,M+1) --+ A,B 

SOP Subtract Double Precision (A,B) - (M,M + 1) .... A,B 

SIN SIN of A SIN (A) -+ A 

SND SI N - Double Precision SIN (A,B) .... AB 

SNF SI N - Floating Floating SIN (A,B) ~ A,B 

SQD Square Root - Double Precision J(A,B) - A,B 

SQF Square Root - Floating Point Floating vA,B .... A,B 

SQR Square Root of A !(A) -A 

SrD Store Double Precision (A,B) ~ M,M +1 

76 



Appendix D 

I NPUT/OUTPUT ADDRESS CODES 

Input/Output Address Codes are used when (a) connecting external units to the Input/Output Buffer (b) 

controlling external units (c) sensing the status of external units (d) setting and sensing internal computer 

conditions and (e) setting and sensing internal indicators. Setting is performed using ENERGI ZE OUTPUT 

M (02) while sensing is performed using SKIP IF SIGNAL NOT SET (40). The address portion of these in­

structions comprises the I nput/Output Address. 

ENERGIZE OUTPUT M (02) is used to control the Input/Output Buffer. The address portion of this in­

struction is interpreted as follows: 

I NSTRUCTI ON 

EOM 

0 2 3 4 5 6 7 

Bit Positions 

12 

13 

14 

15 

16, 17 

18-23 

Examples: 

Instruction 

EOM 01304 

EOM 03341 

EOM 01344 

EOM 03344 

8 

• ADDRESS 

I I I 

9 10 11 12 13 14 15 16 17 18 19 20 2i 22 23 

Function 

= Reverse 0= Forward 

= Begin output without leader 
o = Begin output with leader 

= Start 0= Select 

1 = Y Buffer 0= W Buffer 

Character Count; 
01 = 2 characters, 
11 = 4 characters 

00 = 1 character 
10 = 3 characters, 

Unit Address Codes (see below) 

Function 

Start Paper Tape Reader *1, set W Buffer 
to accept input data and assemble 4 
characters per word. 

Start Typewriter *1, output 4 characters per word 

Start Paper Tape Punch *1, automatically generate 
6 leader frames; output 4 characters per word. 

Start Paper Tape Punch *1; do not generate leader, 
output 4 characters per word. 

77 



UNIT ADDRESS CODES 

00 Disconnect 40 

01 Type Input #1 41 Type Output # 1 

02 Type Input #2 42 Type Output #2 

03 Type Input #3 43 Type Output #3 

04 Paper Tape Input # 1 44 Paper Tape Punch Output #1 

05 Paper Tape Input #2 45 Paper Tape Punch Output #2 

06 Card Reader Input # 1 46 Card Punch Output #1 

07 Card Reader Input #2 47 Card Punch Output #2 

10 Magnetic Tape Input #1 50 Magnetic Tape Output #1 

11 Magnetic Tape Input #2 51 Magneti c Tape Output #2 

12 Magnetic Tape Input #3 52 Magnetic Tape Output 113 

13 Magnetic Tape Input #4 53 Magnetic Tape Output #4 

14 Magnetic Tape Input #5 54 Magnetic Tape Output #5 

15 Magnetic Tape Input 116 55 Magnetic Tape Output #6 

16 Magnetic Tape Input #7 56 Magnetic Tape Output #7 

17 Magnetic Tape Input #8 57 Magnetic Tape Output #8 

20 60 High Speed Printer Output #1 

21 61 High Speed Printer Output #2 

22 62 

23 63 

24 64 Incremental Plotter Output #1 

25 65 Incremental Plotter Output #2 

26 Disc File Input #1 66 Disc File Output #1 

27 Disc Fi Ie Input 112 67 Disc Fi Ie Output #2 

30 Scan Magnetic Tape #1 70 Magnetic Tape Erase #1 

31 Scan Magnetic Tape #2 71 Magnetic Tape Erase #2 

32 Scan Magnetic Tape #3 72 Magnetic Tape Erase #3 

33 Scan Magnetic Tape #4 73 Magnetic Tape Erase #4 

34 Sc~ Magnetic Tape #5 74 Magnetic Tape Erase 115 

35 Scan Magnetic Tape #6 75 Magnetic Tape Erase 116 

36 Scan Magnetic Tape #7 76 Magnetic Tape Erase #7 

37 Scan Magnetic Tape 118 77 Magnetic Tape Erase #8 

78 



INPUT/OUTPUT UNI T CONTROL 

Special control instructions to Input/Output Units are performed using ENERGIZE OUTPUT M (02). The 

address portion of this instruction is interpreted as follows: 

o 2 

Examples: 

INS TRUCTI ON 

EOM 

3 4 5 6 

Bit Positions 

12 

13 

14 

15 

16 

17 

18-23 

Instruction 

EOM 10100 

EOM 14010 

7 

ADDRESS 

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Function 

= Control Function #1 

= Controi Function #2 

= Control Function #3 

= Control Function #4 

= Y Buffer Control 

1 = W Buffer Control 

Unit Address Code 
(See I nput/Output Buffer Control) 

Function 

Terminate output connected to W Buffer 

Rewind Magnetic Tape Unit #1 

79 



INPUT/OUTPUT UNIT TEST 

The status of Input/Output Units is tested using SKIP IF SIGNAL NOT SET (40). The address partion of 

the instruction is interpreted as follows: 

o 2 

Examples: 

80 

INSTRUCTION 

3 

SKS 

4 5 6 

Bit positions 

12 

13 

14 

15 

16 

17 

18-23 

I nstructi on 

SKS 10101 

SKS 10110 

Si(:S 10210 

7 

ADDRESS 

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Function 

= Skip if signal No.1 not set 

1 = Skip if signal No.2 not set 

1 = Skip if signal No.3 not set 

1 = Skip if signal No.4 not set 

1 = Skip if signal No.5 not set 

1 = Skip if signal No.6 not set 

Unit Address Codes 
(See Input/Output Buffer Control) 

Function 

Skip if Typewriter *1 off 

Skip if Magnetic Tape Unit *1 off 

Skip if Magnetic Tape Unit'l File 

Protect off 



SETTING COMPUTER CONDITIONS 

Internal computer conditions are set using ENERGIZE OUTPUT M (02). The address portion of this in­

struction is interpreted as follows: 

INSTRUCTION ADDRESS 

EOM 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Bit Positions Function I nstructi on 

12-20 Unassigned 

21 Disable Interrupt System EOM 20004 

22 Enable I nterrupt System EOM 20002 

23 Turn Off Overflow EOM 20001 

SETTING SYSTEM CONTROL INDICATORS 

System Control Indicators are set using ENERGI ZE OUTPUT M (02). The address portion of this function 

is interpreted as follows: 

INSTRUCTION ADDRESS 

EOM : I I I , 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Bit Positions Function 

12-23 Assigned as required 

81 



82 

SENSING COMPUTER CONDITIONS 

Computer Conditions are sensed using SKIP IF SIGNAL NOT SET (40). The address portion of this in­

struction is interpreted as follows: 

I NSTRUCTI ON ADDRESS 

SKS 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Bit Position function Instruction 

12 Unassigned 

13 Skip if Y Buffer Ready SKS 22000 

14 Skip if W Buffer Ready SKS 21000 

15 Skip if Breakpoint #1 off SKS 20400 

16 Skip if Breakpoint #2 off SKS 20200 

17 Skip if Breakpoint #3 off SKS 20100 

18 Skip if Breakpoint #4 off SKS 20040 

19 Skip if Y Buffer Error off SKS 20020 

20 Skip if W Buffer Error off SKS 20010 

21 Skip if Interrupt Enabled SKS 20004 

22 Skip if Interrupt Disabled SKS 20002 

23 Skip if Overflow off and SKS 20001 
Turn Off Overflow 

SENSING EXTERNAL SYSTEM INDICATORS 

External System Indicators are sensed using SKIP IF SIGNAL NOT SET (40). The Address portion of this 

instruction is interpreted as follows: 

INSTRUCTION ADDRESS 

SKS 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Bit Positions Function 

12-23 Assigned as required 



Appendix E 

TYPEWRITER CODES 

Character Code Character Code 

A 01 Z 51 

B 02 0 60 

C 03 61 

D 04 2 62 

E 05 3 63 

F 06 4 64 

G 07 5 65 

H 10 6 66 

11 7 67 

J 21 8 70 

K 22 9 71 

L 23 I 40 

AA ..,. 
20 IV' .£'"t 

N 25 ? 00 

0 26 # 73 

P 27 / 41 

Q 30 53 

R 31 $ 33 

S 42 13 

T 43 Space 12 

U 44 Carriage Return 17 

V 45 Upper Case 15 

W 46 Lower Case 14 

X 47 Tab 32 

Y 50 Back Space 37 

83 



NOTES 



SOS 5002 


	0000
	0001
	0002
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	xBack

