
Price: $2.50

INTRODUCTION TO DATA PROCESSING

Maintenance Training

August 1966

900909A

SCIENTIFIC DATA SYSTEMS. 701 South Aviation Boulevard. EI Segundo, Calif./ 90245 • 213/772-4511

Printed in U.S.A. @1966 Scientific Data Systems, Inc.

CONTENTS
Section Page Section Page

No. No. No. No.

NUMBER SYSTEMS Phantom OR Gate 29

INTRODUCTION The AND/OR Gate 30
Logic Amplifiers 30

Counting 1 BAND - Buffered AND 32
General Expression 2 NAND - Negative AND or Not AND 32
Octa I Numbering System 2 Cable Driver 32
Binary Number System 3 Rece iver- Inverter 33
Sur:nmary 3 Receiver- Inverter- Buffer 34

Flip-Flop 34
2 CONVERSION BETWEEN NUMBERING NAND Flip- Flop 36

SYSTEMS 5 "Super" NAND Flip- Flop 38

INTRODUCTION 5 DC Flip- Flop 39
Repeater Flip- Flop 40

CONVERTING BINARY OR OCTAL
TO DECIMAL 5 6 HOW A COMPUTER WORKS 43

CONVERTING FRACTIONAL NUMBERS 6 INTRODUCTION 43

Binary/Octal to Decimal 6 ARITHMETIC - LOGICAL UNIT 43
Decimal to Binary/Octal 6

LOCATIONS AND ADDRESSES 43 Conversion of Fractions 7
Comparisons 8 PICTORIAL REPRESENTATION OF

MEMORY 43
3 USING THE NUMBERING SYSTEM 11

LOCA TION AND ADDRESS
INTRODUCTION 11 TERMINOLOGY 44

Addition 11 INSTRUCTIONS AND PROGRAMS 44
Subtraction 11

Format of an Instruction 44 Multiplication 12
Division 13 Location of Instructions 44

Complements and Complement Interpretation of the Address Part 44

Arithmetic .13 HOW A COMPUTER ADDS 44

4 LOGICAL ALGEBRA 17 Addition Instructions 45
Sequence of Perform ing Instructions 45

INTRODUCTION 17 Detai I of the Addition Operation 45

SYMBOLOGY ANO RULES OF LOGICAL Repeated Operations 46

STATES 17 WHAT HAPPENS IN THE EXECUTION

The AND Function 18 OF AN INSTRUCTION 47

OR 18 REPEA TED OPERA TI ONS 48
NOT 19

Loops 48 NOR 19
NAND 20 MEANINGS OF THE ADDRESS PORTION

VEITCH DIAGRAMS 23 OF INSTRUCTIONS 51

Mechanization of Logic 25 Address of Data to be Taken from
Memory 51

5 LOGIC ELEMENTS 27 Address of Data to be Put into Memory 51
Address of Instructions 51

INTRODUCTION 27 Unconditional Transfer Addresses 51

STANDARD LOGIC LEVELS 27 Conditional Transfer Addresses 51
Addresses which are Absolute Numbers 51

The AND Function 27 Address as Identifi cation of Input/
Expander AND Gate 271 Output Units 52
The OR Function 28 Address as Identification of Indicator
Gated Input OR Gate 29 Units 52

CONTENTS (Cont'd)

Section Page Figure Page
No. No. ~ No.

7 STORAGE SECTIONS 53 4-14 NAND Switching Circuit 20

MAGNETIC CORE MEMORY 53
4-15 NAND Logic Symbol 21

4-16 Logic Symbols 21
Basic Element of a Core Memory 53 4-17 Veitch Diagrams 23
Magnetic Field of a Core 53 4-18 Veitch Diagram Rules 25
Using Two Wires to Pass Current 55 4-19 Mechanization of Logic 25
Inhibiting Current 55 4-20 Simplified Mechanization of Logic 26
The Read Operation 56
Core Addressing 57 5-1 Cable Driver 33

Reading from Core 57 5-2 Symbolic Receiver "Pick-Off'l 33
Core Arrays 58 5-3 Rece i ver - Inverter 34

5-4 Rece i ver- Inverter- Buffer 34
APPENDIX A. CONVERSION TABLES A-1 5-5 Flip- Flop 35

Octal-Decimal Integer Conversion A-1
5-6 Central Latch and DC Set Input 35

Table
5-7 Setting/Resetting Circuitry 35

Octal-Decimal Fraction Conversion
5-8 Setting/Resetting and Central Latch 36

A-5
5-9 NAND Flip-Flop 37

Table
Table of Powers of Two A-8 5-10 Triggering Circuitry 37

5-11 Super NAND Flip- Flop 38
5-12 Central Latch and Output Buffer 39

5-13 DC Flip- Flop 39
TABLES 5-14 Repeater Flip- Flop 41

Table Page 6-1 Two Numbers in Memory 43
No. No. 6-2 Memory Before Addition Operation 45

6-3 Memory Before Executing First Instruction 45
3-1 Binary Addition, A + B 11 6-4 Memory After First Instruction 46
3-2 Octal Addition 11 6-5 Memory After Second Instruction 46
3-3 Binary Subtraction, A - B 12 6-6 Memory After Last Instruction 46
3-4 Octal Subtraction 12 6-7 Addition Program 47
3-5 Binary Multiplication 12 6-8 How A Computer Executes An Instruction 48
3-6 Octal Multiplication 12 6-9 Program of Addition, Storage and 49

Modification of Address
6-10 COMPARE and TRANSFER IF EQUAL 50

ILLUSTRA TIONS Instructions

Figure Page 7-1 Core 53

No. No. 7-2 Magnetized Core 53
7-3 Magnetization Curve 53

4-1 AND Truth Table 18 7-4 Coil with One Turn 54
4-2 AND Switching Circuit 18 7-5 Magnetization Curve 54
4-3 AND Symbol 18 7-6 Two Wire Coil 55
4-4 OR Truth Table 18 7-7 Inhibit Current Scheme 55
4-5 OR Switching Circuit 19 7-8 Conditions of Inhibit and No-Inhibit 55

4-6 OR Logic Symbol 19 Current
4-7 NOT Truth Table 19 7-9 Core Lacing and Various Currents 56
4-8 NOT Switching Circuit 19 7 -10 Sixteen - Bit Core Storage Arrangement 56
4-9 NOT Logic Symbol 19 7-11 Effects of One Core Half-Current- 57

4-10 N OR Operation 20 Flux Change

4-11 NOR Switching Circuit 20 7-12 8 x 8 Core Plane 58

4-12 NOR logic Symbol 20 7 -13 X and Y Dri ve Lines for 4- Bit 'Nords 59
4-13 NAND Operation 20 Core Memory

ii

SECTION 1. NUMBER SYSTEMS

INTRODUCTION

A mandatory requirement to understanding of modern
digita I systems is an understanding of various numbering
systems. After obtain ing an understanding of the num
bering systems, faci lity in their use comes with practice.

Nearly all of us have been trained to use the decimal
number system. We are so fami liar with the system and
man ipu lation of decima I numbers that we have never
bothered to ana Iyze the system to determ ine the exact
meaning of each integer and decimal fraction. The
ru les of other number systems are the same as those of
the decimal system. Therefore, as a prelude to study of
other systems, an analysis of the decimal system will be
presented because of its fami liarity.

The decimal system uses 10 different symbols, each repre
senting a discrete value, to display all numerical quanti
ties. These are: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
These symbols are identified by a variety of names such
as admissable marks, basic characters, basic figures,
admissible figures. We will use the term basic symbols,
or symbols.

In the decima I system, the name for which was derived
from the latin "decem" meaning ten, it is possible to
describe with anyone basic symbol any quantity of
things in the range of 0 through 9. If it is desired to
describe more than 9 things, more than one basic symbol
is required: e. g., 10, or 27, or 9376. From this, two
facts stand out:

a: In a numbering system using R number of basic
symbols it is possible to represent only R-1 things using
only one basic symbol.

b: To describe more than R-1 things more than one
basic symbol must be used in some ordered arrangement
to describe the quantity of things.

Therefore we can now define some terms and make some
basic rules:

a. RADIX or BASE of a system is the number of basic
symbols which comprise the system.

RULE 1

In any numbering system with a Radix R, a maximum of
R-1 things may be described using only one basic symbol.

Counting

Using the basic symbols of a numbering system to describe
quantities or values of things is called counting. In
counting there are rules which are followed. We should
analyze how counting is actually done and then formulate
the rule.

Assume counting in sequence from 0 to some 3-digit
number.

Starting from 0, add 1 to the least significant digit (LSD)
unti I every basic symbo I has been used.

To count beyond 9 add 1 to the next most significant digit
or second digit position and start from 0 through the basic
symbols again in the LSD position.

Continue this process unti I all basic symbols have been
used in the second digit position. When it now becomes
necessary to add 1 to the second digit position, but all
symbols have been used in the second digit position, it
will be necessary to use a third digit position.

Place a 1 in the third digit position and O's in the second
digit position and LSD position. Continue the process by
repeating steps outlined above.

This same process can go on for additional digit positions
but it would merely be repetition of the above steps. The
major facts which can be obtained from this analysis of
counting in the decima I system are:

a. A basic symbol in the LSD position has a value of
the bas i c symbo I.

b. A basic symbol in the second, third, or higher digit
position has a value which depends on its position.

Example

3 3 x 1 3 x 10
0

30 3 x 10 3 x 10
1

300 3 x 100 3 x 10
2

,..,

3000 3 x 1000 3 x 10.)

c. The basic symbol is called a coefficient and the
value it represents is determined by its position. Posi
tion values are determined by the radix raised to some
exponent va lue.

Example

37501 1 x 10
0

Ox 10
1

00

5 x 10
2

500

7 x 10
3

7000

A

3 x 10Li" 30000

37501

The number 37501 in the above example is shorthand
notation of the sum of the coefficients times the radix
raised to some exponent I eve I.

Thus far we have spoken on Iy of integer numbers, and
decimal fractions have not been mentioned. It has been
assumed that these were who Ie numbers and a decima I
point or radix point to the right of the LSD. To express
fractional numbers basic symbols are used to the right of
the radix point in digit positions which correspond to
the negative coefficient value of the radix.

Continue the system by using increased negative ex
ponents on the radix as we move to the right farther
away from the radix point.

Exampl_~

Radix Point

Coefficient Position 4 3 2 1 • • -1 -2 -3 -4

Position Exponent R3 R2 Rl R
O

R
-1

R
-2

R
-3

R
-4

We have explained what digits to the left of the radix
point mean, but what do the digits to the right of the
radix point mean?

Therefore the value of digits to the right of the radix
point also have values which depend on position.

Examples

.3 3 x 10-1 3
TO

.03 3 x 10-2 3
100

.003 3 x 10-3 3
1000

37.25 3 x 10
1

30

7x 10
0

7

2 x 10-1
.2

5 x 10-2
.05

37.25

RULE 2

The position a basic symbol occupies determines the
va lue it represents. The va lue of a digit position is
always determined by a value of the radix raised to some
exponent power.

General Expression

To express a value in any numbering system the following
genera I express ion appl ies:

N = AmRm + Am_1Rm- 1 + -- + A2R2 + A1R1 + AORO

+ A_1R- 1 + A_2R-2 + ---A_(n_l)R-(n-l) + A_nR-n

Note that in the general expression there is no radix
point indicated. The radix point always appears between
AORO and A_1R-1.

Octal N_lJl1lbering System

The previous discussion, although it referred to the
decimal system, has direct application to other number
ing systems. For instance, assume a numbering system
which has only 8 basic symbols: 0, 1, 2, 3, 4, 5, 6, 7.
From this we can determine:

Radix = 8

Highest single digit value R-l 8 - 1 7.

This system is called the octal system since there are 8
discrete values permissible using only one basic symbol.

To count in this system apply the same rules as previously
used in the decimal system.

Example

0 25 75
1 26 76
2 27 77
3 30 100
4 31 101
5
6
7 35 105

10 36 106
11 37 107
12 40 110

To express a number, say 3765. 125 in octa I it is
written the same as in decimal. The radix point is used
as before. But the number no longer represents the
same number of "things" as it would if it were a decimal
number. Looking at 3765. 125 it is impossible to tell in
which number system it was written. Therefore to be
clear about just what quantity is intended, the number
system must be specified. This is done by subscripting
the last digit of the number with the radix.

Example

3765. 125
10

101211.212
3

26347.213
8

10110.11
2

The octal system wi II be the subject of further discussion
later. Before going into this we shou Id become fami liar
with another number system that is used in digital com
puter systems: the BINARY number system.

Binary Number System

The binary number system has 2 basic symbols: 0, 1 and
thus the radix is 2. To count in th is system the same
rules apply as were previously used.

Example
Decimal Octal Binary

0 0 0
1 1 1
2 2 10
3 3 11
4 4 100
5 5 101
6 6 110
7 7 111
8 10 1000
9 11 1001

10 12 1010
1 1 13 1011
12 14 1100

3

Decimal Octal Binary

13 15 1101
14 16 1110
15 17 1111
16 20 10000

Summary

We have covered three number systems and learned how
to count in each with the major reference being the
decimal system. Now it is possible to make comparisons
and to work several examples in each system.

10
10

12
8

1010
2

37
10

45
8

100101
2

25
10

31
8

11001
2

10.125
10

12.1
8

1010.001
2

25.375
10

31.3
8

11001. 011
2

37.5
10

45.4
8

100101. 12

If you have trouble understanding these comparisons, per
haps it would be worthwhile for you to use positional
values on these and other numbers of your choosing to go
from numbers in other than the decimal system to deter
mine their decimal value.

Remember that the general expression for a number in
any system is:

N = ARm + A Rm -1 + --- A RO I + A R- 1
m m-l 0-L -1

Radix
Point

Examples

(1) 721. 328

(7 x 82) + (2 x 8 1) + (l x 80) + (3 x 8 -1) + (2 x 8 -2)

t t 2 ttl \ tot \ -1 I t -2
A2 R Al R AO R A -1 R A -2 R

1 1
(7 x 64) + (2 x 8) + (1 xl) + (3 x 8) + (2 x 64)

448 +~6 + 1 + (3 x. 125) + (2 x. 015625)
448 + 16 + 1 + .375 + .03125 = 448.0000

721. 328 = 465.40625 10

16.0000
1" 0000
.3750
.03125

465. 40625 1 0

(2) 101. 01
2

=

1 x 22 + 0 x 21 + 1 x 20 + 0 x 2 -1 + 1 x 2-2
o 1

lx4 +Ox2 +lx1 +2"+4

4 + 0 + 1 + 0 + . 25 = 4. 00
1. 00
.25

5.25

4

SECTION 2. CONVERSION BETWEEN NUMBERING SYSTEMS

INTRODUCTION

In learning the numbering systems and counting in the
various systems it was implied that there was a method
of going from one system to another, although it was
not stated. It is essential that digital systems mainte
nqnce personne I know how to get from one system to
another with facility. In the following discussion only
three number systems will be used: decimal, octal and
binary. The methods discussed wi II, however, be
usable in any system.

Digital equipment does its work by using binary number
manipulations. The reason for this is the ease with
which a binary system can be implemented electrically.
For instance a light being on or off, a transistor con
ducting or not conducting, relay contacts being opened
or closed; these are all usable as binary system indica
tors since there are only 2 states represented in each
case. This matches the two basic symbols 0 and 1.
Either state of a two-state element may be called either
o or 1 in any given system. For instance an "on" light
may be called 1 and thus the "ofr' light would be called
O. However, nothing would be wrong with calling the
"ofr' light 1 and the "on" light O. Once the stated
condition is named, however, it must be used from that
point onward.

CONVERTING BINARY OR OCTAL TO DECIMAL

To convert a binary or octal number to a decimal num
ber is a reasonable and understandable process. Remem
bering the positional system, and remembering that the
general expression for a number is N=AmRm+Am_1Rm-l
+ -- A1Rl + AORO + A_1R-l + A_2R-2 + -- AnR-n, it
wou Id be easy to convert from any system other than
decimal to the decimal system. All one needs to do is
multiply the coefficient by the radix raised to the ap
propriate power and add the products to arrive at the
decimal value of the number. Remember that decimal
arithmetic is used in conversion manipulations.

Examples

(1) 321. 58 = (3 x 82) + (2 x 8 1) + 1 x 80) + (5 x 8 -1)

(3 x 64) + (2 x 8) + (1 x 1) + (5 x • 125) = 321. 58

= 209.625 10

5

(2) 111 0 1. 12

1 x 24 + 1 x 23 + 1 x 22 + 0 x 2
1

+ 1 x 20 + 1 x 2-1

1
lx16+1x8+1x4+0x2+1xl+lx2" =

16+8+4+0+ 1 + .5= 11101. 12 = 29.5
10

The above examples work well when there is available
to you a table of values of 8 and 2 raised to positive and
negative exponents (see Appendix A). If you do not use
the tables, you can convert by continued multiplication
for integer conversion as follows:

Examples (Octal to Decimal)

(1) (2)

+1 +5
209 453

321 8 = 209 10 705
8

= 453 10

Examples (Binary to Decimal)

(1)

(3)

(2) 101101 2
x2

2
+0

2

+1

+1

CONVERTING FRACTIONAL NUMBERS

To continue this process for fractional numbers would
not work since the fractional portion is determined with
negative exponential values of the radix (R-n). There
is no easy way to convert from the octal or binary sys
tem to the decimal system of numbers for fractions. The
positional system appears to be the best method, and at
least the easiest to remember. It is not the objective of
this book to describe every number conversion system,
but rather to explain one or two methods. Additional
methods are avai lable in standard texts.

Binary/Octal to Decimal

For fractional numbers, the method recommended is
positional notation expansion as demonstrated in the
following examples:

Examples

(1) .432
8

(2)

4 x 8 -1 + 3 x 8 -2 + 2 x 8 -3

432
8+ 64 + 512 =

256 24 2 282
512 + 512 + 512 = 512 = • 550710

. 432
8

= .5507
10

.253
8

-1 -2 -3
2x8 +5x8· +3x8

2 5 3
8"+ 64 + 512 =

128 + 40 + 3 171
512 = 512 = .33410

. 2538 = . 3341 0

(3) .1011
2

1 x 2 -1 +0 x 2 -2 + 1 x 2 -3 + 1 x 2 -4 =

1 0 1 1
2+4"+8"+16 =

8 2 1 11
16+16+16 =16 = .6875

. 1011
2

= .6875
10

.5507
512 1282.0000

512

2560
2600
2560
LWOO

.33398
h71. 000

1536
---r740

1536
2040
1536
5040
4598

4420

.6875
16 111.000

96
140

128
120

112
80

6

(4) .0101
2

Ox 2 -1 + 1 x 2 -2 + 0 x 2 -3 + 1 x 2 -4

o 1 0 1
2"+4"+8+16

.0101
2

= .3125
10

Decimal to Binary/Octal

.3125
16 15.00

48
20

16
40

32
80

Thus far we have been stating a number in the binary or
octal systems and converting it back to its decimal equiv
alent. The next step is to go from the decimal system to
the binary or octal system. For integer numbers, the
following general rules apply:

a. Divide the original decimal by the radix. Use
decimal arithmetic.

b. The remainder will be the least significant digit of
the equivalent number in the new radix number system.

c. Divide the quotient by the radix. The remainder
wi II be the next to least significant digit.

d. Repeat the above steps unti I a quotient of 0 is
obtained. The remainder in each case wi II be the next
most sig~ificant digit in the equivalent number of the
new radix system •

Examples (Decimal to Octal)

(1) 341
8 /2732

10
24
33

32
12

8
4--4

42
8 1341

32
21

16
5" ---5

5
8 f42

40
2" ---2

0
8 15 ---5

2732
10

= 52548

(2) 948
8 17584

72
38

32
64

64
O~O

118
8 1948

8
14

8
68

64
"4" ~4

14
8 rTf8

8
38

32
6 ----6

1
8 n4

8
6" ~6

8 rl- ~1

7584
10

= 16,6408

(3) 10
8 f80

8
-0 ~O

1
8 110

8
2" ----- 2

o
8[1 ~1

8010 = 1208

Examples (Decimal to Binary)

(1) 2 1156 (2)
2LZ.§ rO~O
2Q2. rO~O
2 19 r 1 --- 1

2L2 r1----1
2L4 r 1 ~l
2t.f rO---O
2Ll rO~O

0 r 1 --- 1

156
10

= 100111002

2 128
2 64 rO~O
2 32 rO---O
2 16 rO---O

2 8 r 0 ----- 0
2 4 rO ~ 0
2 2 rO---O
2 1 rO~ 0

0 r1---1

128
10

= 100000002

7

(3) 2 39 (4) 2 80
2 19 r 1 --- 1 2 40 rO---O
2 9 r 1 --- 1 220 rO -- 0
2 4 r 1 ----- 1 2 10 rO ~O
2 2 rO---O 2 5 rO----O
2 1 r 0 ----- 0 2 2 rl----l

0 rl---l 2 1 rO----O
0 rl---l

39
10

= 100111
2

80
10

= 10100002

From the rules and the examples the conversion of decimal
to binary or octal systems should be clear. If you have
any trouble following the examples with the rules given,
work some problems on your own and convert and re
convert until you are familiar with the system. Remem
ber, this is for integer values only. You have not yet
been exposed to fractions and their conversion.

Conversion of Fractions

To convert decimal fractions to octal or binary fractions
the following general rules apply:

a. Multiply the decimal fraction by the radix of the
number system to which you wish to convert.

b. Record the integer portion, which wi II be the MSD
of the converted fraction.

c. Multiply the fractional portion of the result by the
radix.

d. The integer portion of the result will be the next
most significant digit of the ~onverted fraction.

e. Continue the above steps, obtaining one less
significant digit with each operation until the fractional
portion is all zeros or you have obtained the desired num
ber of places.

Examples (Decimal to Octal Fractions)

(1) .525
10

(2) .375
10

8 8
(4).200 ~4 (3).000 ---3

8
(1).600 --1 .375

10
= .3

8
8

(4).800 --4
8

(6).400 --6
8

(3).200 --3

. 525 10 = . 414638 +

(3) .2163 10
(4) .975 10

8 8
(1).7304 ---1 (7)~ ---7

8 8
(5).8432 ----5 (6).400 ---6

8 8
(6).7456 ~6 (3):260 ---3

8 8
(5).9648 ---5 (l)~ ---1

8 8
(7).7184 ---7 (4)~ ---4

.2163
10

= .156578+ .97510 = .76314
8
+

Examples (Decimal to Binary Fractions)

(1) .525
10

(2) .333
10 2 2

(l):-OSO- ---- 1 (0):666 ---0
2 2

(O):-roo- ---0 (1).332 ---- 1
2 2

(0):260 -----0 (0).664 ----0
2 2

(0).400 --0 (1):-m- ---- 1
2 2

(O)~ ---0 (O)~ ---0
2 2

(1).600 ---1 (1)~ ---1
2 2

0).200 ----] (0).624 ---0
2

.525
10

= .1000011
2

+ (1).248 --- 1

.333
10

= . 01010101 2 +

(3) .404
10

(4) .975 10
2 2

(O)~ ---0 (1).950 ---1
2 2

(1)~ ---- 1 (1). 900 ---1
2 2

(1).232 ---1 (1).800 ----1
2 2

(0):524 --- a (1).600 ----1
2 2

(1):048 --- 1 (1):260 ----1
2

. 4041 a = . a 11 01 2 + (0):400 ---- a
. 975

10
= . 1111102 +

Comparisons

Of interest now would be comparisons of decimal system
numbers converted to both octal and binary equivalents.

8

.875 10
8

.875
10 2

(7). 000 ---7 (1).750 ---1
2

(1).500 ----1
2

(1). 000 ---1

.875
10

= .78 = .111 2

and 1112=710=78

.325
10

8
.325

10 2
(2).600 ---2 (0).650 ---0

8 2
(4).800 ---4 (1).300 ----1

8 2
(6).400 ---6 (0).600 --a

8 2
(3).200 ----3 (1).200 ---1

8 2
(0).400 ---0

. 325
10

= . 2463
8

+ 2
(0).800 ----0

2
(1).600 ---- 1

2
(1).200 ---1

2
(a}. 400 ----0

2
(0).800 ---0

2
(1).600 ---1

2
(1).200 ---1

.325
10

= 010100110011 2 +

Dividing the binary equivalent into groups of three start-
ing at the binary point, we find

. 010 100 110 all
.2 4 6 3

It is apparent that the binary equivalent can be easily
converted to octal equivalent by dividing the binary
number into groups of 3 binary digits (bits) commencing
at the radix point. Then it is possible to convert to octal
equivalent by inspection of each group of 3 bits using the
knowledge that:

a = 000

1 = 001

2 = 010

3 = all

4 = 100

5 = 101

6 = 110

7 = 111

Examples

010/101/010/100/001/000. 010/010/101/000/001
2 5 24 1 0,2 2 5 0 1

001,101,011,111,110,110,111,011,110. 111,111
153766736.77

9

Th is completes the discussion of conversion from one
number system to another. It will be essential that you
have a thorough understanding of binary and octal sys
tems and are able to convert decimal, octal and binary
with ease and confidence.

SECTION 3. USING THE NUMBERING SYSTEM

INTRODUCTION

The systems of numbers and counting, and the methods
of converting a number from one system to its equivalent
in another system were presented in Sections I and II.
The next step is to manfpulate the numbers in order to
make them do useful work. The basic elements of arith
metic: addition, subtraction, multiplication and divi
sion are the operations which will be covered.

Addition

Addition in binary or octal number systems is performed
in the exact manner that is employed in the decimal sys
tem. The generation of a "carry" is in effect when the
sum of the digits exceeds {overflows} the basic symbols.
To make the procedure a little more clear, "truth" tables
for both binary and octal addition are given below:

TABLE 3-l. BINARY ADDITION, A + B

A B Sum Carry

0 0 0 0

0 0

0 0

0

TABLE 3-2. OCTAL ADDITION

0 1

1 2
0

2

£:) 3
Z
w 4 Q
Q « 5

6

7

Legend: y
x

AUGEND

2 3

3
0

4
0

4
0

5

6
0

y = Carry
x = Sum

4

50

6
0

7
0

0
1

Augend
+ Addend

Sum

5 6

6
0

7
0

7
0

0
1

0
1 1 1

1 1 21

21 3
1

4
1

7

0
1

1 1

21

3
1

4
1

51

6
1

11

Therefore, to add in either system we can use the tables
above in order to aid in understanding.

Examples

Decimal

29
+20
49 10

67
+15

82 10

201
49

169
17

436
10

320
251
427
998

10

27
32
10
69

10

Octal Equiv

35
+24
618

103
17

122 8

311
61

251
21

664
8

500
373
653

1746
8

33
40
12

105
8

Binary Equiv

011101
+010100

110001 2

001000011
001111

0010100102

11001001
00110001
10101001
00010001

110110100
2

101000000
011111011
110101011

1111100110
2

011011
100000
001010

1000101
2

As can be seen, "carries" in any system are treated the
same. Addition of more than two rows of numbers is not
necessary because in computer work there is no require
ment to add or manipulate more than two numbers at a
time.

Subtraction

Truth tables for octal and binary number systems are given
below for reference in working the examples. Little time
is spent dwelling on points because the rules are the same
regardless of the system.

TABLE 3-3. BINARY SUBTRACTION, A - B

A

o
o

B

o

o

Difference

o

o

Carry

o

o
o

TABLE 3-4. OCTAL SUBTRACTION

MINUEND

0 1 2 3 4 5 6 7
I

00 10 20 30 40 50 60 7
0 0

1 7
1 00 10 20 30 40 50 6

0

0
2 6

1
7

1 00 10 20 30 40 50

Z 3 51 6
1

7
1 00 10 20 30 40

w
I

4
1 51 6

1
7

1 00 10 20 30 « 4 e::::
I-

3
1 4

1 51 6
1

7
1 00 10 20 co 5 ::J

(/) ,J 1 • 1 ,..1 1 ""7 1 0 ,0

Legend:
xY Y = Carry Minuend

x = Difference -Subtrahend
Difference

Examples

Decimal Octal Equivalent Binary Equivalent

23 27 010111
-15 -17 -001111
810 108 0010002

64 100 001000000
-25 -31 -011001
3910 47 8 100111 2

219 333 011011011
-146 -222 -010010010
-nl0 llT8 001001001 2

346 532 101011010
-165 -245 -010100101
18110 265 8 010110101 2

Multiplication

Binary and octal multiplication are identical to decimal
multiplication. The maior difference is that the tables
are different and must be memorized if one is to become
rapid and expert in their use. The tables for each sys
tem are given as follows:

12

TABLE 3-5. BINARY MULTIPLICATION

MULTIPLIER

0 1

10
j::Z 0 0 0
--l«

::J~
1 1 I I~ ~J 'I 0 J

Examples

A=O B = 1 AxB=O

A = 1 B = 1 AxB=l

A=O B = 0 AxB=O

A = 1 B = 0 AxB=O

There are no other combinations and remembering the
table is relatively easy.

TABLE 3-6. OCTAL MULTIPLICATION

MULTIPLIER

V I L- .. oJ V

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7
0 2 0 2 4 6 10 12 14 16
Z
« 3 0 3 6 11 14 17 22 25 u
:::t
0... 4 0 4 10 14 20 24 30 34 j::
--l
::J 5 0 5 12 17 24 31 36 43
~

6 0 6 14 22 30 36 44 52

7 0 7 16 25 34 43 52 61

Examples

A = 5 B = 7 A x B = 438

A = 2 B = 4 A x B = 108

A = 6 B = 3 A x B = 228

Examples: using the multiplication tables.

Decimal Octal Binary

7 7 111
5 5 101

35 10 438 111
000

111
100011 2

8 10 1000
4 4 100

32 10 40
8 1000002

Decimal Octal Binary

27 33 011011
8 10 1000

216
10

330
8

011011000
2

51 63 11 0011
2 2 10

102
10

146
8 001100110

2

100 144 1100100
63 77 111111

300 1274 1100100
600 1274 1100100
6300

10
14234

8
1100100

1100100
1100100

1100100
1100010011100

2

The reader should go through the above examples to
develop an understanding of the processes.

Division

Octal and binary division are identical to decimal
division. Remember, when analyzing the examples
below, that you must use the multiplication table of
the system in which you are doing the division.

Decimal

6.8
iJ 27.2

-24
32

-32
00

Octal

6.63
.±J 33. 15

-30
31

-30
-15

-14
-1 R

110. 110011
~ 011011.001101

-100
101

-100
--110

-100
100

-100
--110

-100
101

-100
--1 R

The binary division example is stopped with a remainder
but could have been just as easi Iy carried on.

13

Decimal

5.9
2J 29.5

-25
45

-45
o

2.5
!QJ25.O

-20
50

-50
o

3
~

-39
o

11. 0
!.!J 121. 0

-11
-11

-11
o

Octal

5.71

~
-31
44

-43
-10

-5
3R

2.4

.!Lf3l.O
-24
50

-50
o

3

~
-47
o

13.0
.EJ 171.00

-13
41

-41
o

101. 111001
!QlJ 11101. 100

-101
---roo 1

-101
1001
-101

1000
-101
-1-10

-101
-1000

-101
-1-1 R

10. 1
!Q.!QJ 11 00 1. 000

-1010
-1-010

-1010
--0

11. 0
.!lQ.!J 1 00111. 00

-1101
1101

-1101
--0

1011.0
~ 1111001.00

-1011
---WOOO

-1011
lOT 1

-1011
--0

Complements and Complement Arithmetic

SDS computer systems hold negative numbers in memory
in two's-complement form. Single precision numbers
have the most significant digit position of a computer
word as the sign bit and the remainder of the word
represents the magnitude of the number. This conven
tion allows the sign of a number to be used as an inte
gral part of the number in all arithmetic operations and
obviates the need for keeping track of a detached sign
with computer logic. A "0" bit denotes a positive sign
and a II 1" denotes a negative sign. In this system, the
negative of a number is its two's complement.

An algorithm for finding the two's complement of a
binary number is:

To find the two's complement of a binary num
ber B that has N significant bits, including the
sign bit, subtract it from the number 2 N+ 1 ex
pressed in binary form. (The number 2N+ 1 is a
1I0ne ll followed by N zeroes.)

A more simple method of deriving the two's complement
of a binary number IS to invert all O's and l's and add 1
to the least sign ificant digit. (The inversion of l's and
O's forms what is called a one's complement.) This is
the same as subtracting a binary number from an equal
number of 1 digits, and adding 1 to the least significant
digit.

Examples: Find the two's complement of the given
numbers.

Method 1

1000000
(-) 011001

1001112

1000000
(-) 001001

1101112

- 2 10 -(0000102) 1000000

Method 2.

-(0010012)

- 000010
1111102

100110 (one's complement)
+ 1

100111
2

(two's complement)

110110 (one's complement)
+ 1

110111
2

(two's complement)

111101 (one's complement)
+ 1

111110
2

(two's comp lement)

In SDS systems, the sign bit is the first bit position to
the left of the most significant magnitude bit. Thus, if
an SDS computer word was only 6 bits long, instead of
24, some common decimal values would be represented
in binary format as fo I lows, considering that on Iy nega
tive numbers are complemented and the binary point is
to the right of the least significant digit.

14

Decimal
Number

Octal Complement Binary
Equivalent Equivalent Plus 1

3 03
2 02
i Oi
0 00

-1 (-)01
-2 (-)02
-3 (-)03
-31 (-)37

77
76
75
41

Sign Magnitude

Bit\ \ Bits

~
6Ooil'

o 00010
a 00001
o 00000
1 11111
1 11110
1 11101
1 00001

When using two's complement notation, an N-bit
integer can be expressed as:

Thus,

+5 = 0101 = 0 [-(2
3)J + 1(22) + 0(2

1
) + 1(20)

= 0 + 4 + 0 + 1 = +5

and, taking the two's complement of 0101 to obtain the
binary equivalent of -5,

-5 = 1011 = 1 [-(23)J + 0(22) + 1 (21) + 1 (20)

=-8+0+2+1

= -8 + 3 = -5.

The following examples show how two's complement
numbers automatically yield the correct result when
used arithmetica Ily in a computer.

Decimal Number

+20
-03
+17

Binary Equivalent

010100
111101

(1) 01 0001 21 8 = 17 1 0

Lost ~arry <:)

Note that the carry out of the most significant (sign bit)
position is III0st". Nevertheless, the value remaining
is the correct answer because the positive IIcarry" into
the negative sign position "cancels" the negative sign bit.

Decimal Number

-32
+24
-::s

Binary Equivalent

100000
011000

() 111 000 = - 1 0 =-8
~_ 8 10

No Carry"::>

To find the decimal equivalent of a binary two's
complement number:

A. Subtract one. Form the one's complement

c. Find the decimal equivalent. The negative
of this result is the decimal equivalent.

As the above examples indicate, the sign bit is an inte
gral part of the number to which it is attached and its
value, plus or minus, is automatically taken care of
during the use of the two's complement arithmetic.
This property is used when numbers of different length
are added. For example, assume that these two signed,
two's complemented, negative numbers of 6-bit and
3- bit length are added:

Decimal Binary

-21 101011
-03 101
-24 -I 110000 = -16

10

Note that the third least significant bit of the first
number is added to the sign bit of the second number
causing an erroneous result. This error is corrected by
filling in the empty bit positions with the value of the
sign bit of the shorter number.

Decimal Binary

-21 101011
-03 111101
-24 (1) 101000 -24

10

This property suggests:

1) Filling the empty bit positions with the sign
value of a positive number, that is, zero, has
no changing effect on the result, and

2) If the two's complement is taken by the method
suggested where N is the largest number's length,
the sign value is automatically appended to the

15

smaller number. For example, if the complement
of 03 is taken using N = 6,

1000000
011

111101

the sign is properly appended to the number.

This procedure is called "extending" the sign of a
number.

Note that if the sign bit of -5 (1011) is extended four
places to 11111011, this can be interpreted as

_(2
7

) + 1 (26) + 1 (2
5

) + 1 (24) + 1 (23) + 0(22)

+ 1 (2
1
) + 1 (20)

- 128 + 64 + 32 + 16 + 8 + 0 + 2 + 1

-128+123 = -5.

Thus the actual value ofa binary number is unchanged
by the sign-bit extension.

It was previously noted that when performing addition or
subtraction in the computer, carries out of the sign bit
do not always signify a true overflow condition or cause
the overflow indicator to set. For example, in an addi
tion it is impossible to produce a true overflow if the
signs of the operands are un I ike. A true overflow occurs
when the result of an addition or subtraction results in a
number too large to be expressed by the machine number
range. The computer sets the overflow indicator during
an addition on Iy when the signs of the two operands are
the same, but the sign of the result is opposite. In a
subtraction, accomplished in the computer by forming
the two's complement of the subtrahend and then adding
to the minuend, the test for overflow is similar to that
for addition. That is, overflow occurs when both num
bers have the same sign after the subtrahend has been
complemented, but the sign of the result is opposite.

SECTION 4. LOGICAL ALGEBRA

INTRODUCTION

Ordinary algebra is the symbolic expression for relation
ship of mathematical variables. This algebra we learned
in high school.

There is another variety of algebra known as logical or
Boolean algebra. Logical algebra differs from ordinary
a Igebra in two respects.

a. The Symbols do not represent numerical values.

b. Arithmetic operations are not performed.

Boolean algebra is an aid for analyzing logical thought.
In fact, George Boole, the developer of this algebra,
published the algebra in a book entitled liThe Laws of
Thoughtll • Boolean algebra is ideal for describing the
action of switching circuits which is important in digital
computer design since a switch may represent the
characteristic ON and OFF states of computer intelli
gence. The operation of a digital computer can be
described by logic equations using Boolean symbology.

SYMBOLOGY AND RULES OF LOGICAL STATES

Letter symbols are used to represent dependent or inde
pendent variables which are always two valued: either
zero or one; true or false; voltage or no voltage, etc.

Every logica I quantity must exist in one or the other of
the two possible states. No other values are allowed.
In addition a logical quantity is single valued; that is,
no quantity may be simultaneously both true and false.

Any quantity that is true is equa I to any other quantity
that is true and any quantity that is false is equal to any
other quantity that is false.

Every logical quantity has an opposite. If the quantity
is true the opposite, or reverse of that quantity is false,
and vice versa.

Letters of the alphabet are generally used to represent
the variables of Boolean algebra. These letter symbols
are known as terms.

Logic operations that can be performed in algebra are:

a. AND = X = • =

17

b. OR = +

c. Inverse or negative = symbol over barred, e. g.
A or"S".

The X, ., + of logic algebra in no way resembles the
function of these same symbols when used in ordinary
algebra.

a. The AND operation - a combination of variables
has a true state output when all the variables are true,
and for all other conditions the output state is fa Ise.
The AND operation is represented by a dot or absence
of any symbol between variables.

b. The OR operation - a combination of variables
has a true state output when anyone or more of the
variables is true and a false state output when all
variables are false. The OR operation is represented by
a + between variables.

c. An expression is a combination of terms and
operators.

A logical equation is a complete statement of equality
of the two expressions separated by the = sign.

To express the complement of a logic term, expression,
or equation, place a bar over it.

Examples:

(1) AB+C

(2) A + B= C

(3) A + B= C

(4) A + B=A B

(5) ABC =A + B + C

Word description

A and B 0 r no t C

A~ B equal C

Not (A or B) equals the
complement of C

. Not (A or B) equal the
complement of A and the
complement of B
Not (A and B and C) equals
Not A or Not B or Not C

The operation described by the overbarred symbol or
term is called the NOT operation. It denotes the
inverse or complement of the term or symbol that is
overbarred.

There are two additional operations which are combina
tions of the fundamental three (AND, OR, NOT).
These additional operations are NOR and NAND.

NOR and NAND can be considered to be:

NOR = OR i. e., the output of the OR is
complemented.

NAND = AND i. e., the output of the AND is
complemented.

To go into these logic operations in more detail, it is
necessary to define further some of the principles which
must be considered. In dealing with logic the binary 1
is taken to mean the true state and the binary 0 is taken
to mean the false state. In computers, voltage levels
are used to represent true or false, for instance false =
o volts, true = +8 volts might well be a set of conditions
within a computer.

The AND Function

Expressed as a logical equation, the AND function
might be used as fo Ilows:

f = A· B. C = ABC = (A) (B) (C) where f denotes
a logical function - in this case the AND.

A, B, and C represent true logical quantities.

The equation says that f wilt be true only when A and B
and C are true a II at the same time. One method Of
showing all possible conditions of all variables A, B,C,
and the function f is the truth table. Figure 4;-1 is a
truth table of the above equation which uses 1 and 0 to
replace true and false respectively.

f=A·B·C

A B C f

0 0 0 0

0 0 1 0

0 1 0 0

0 1
I

1 0

1 0

I

0

I

0

1 0 1 0

I 1 1 0 0

Figure 4-1. AND Truth Table

The AND function might further be illustrated by a
series of switches as shown below. If the light when
I ighted represents the true state of the function, the
only way the true state at the light can be obtained

18

is for all switches to be in the true (closed) state.

Figure 4-2. AND Switching Circuit

The logic symbol of an AND operation is:

Figure 4-3. AND Symbol

The symbol of Figure 4-3 is known as the AND gate.

OR

Expressed in a logical equation the OR function might
be used as fo I lows :

f=A+B+C where f denotes a logical function,
in this case the OR.

A, Bj' and C represent true logical quantities.

The equation says that the function f will be true if A
OR B OR C are true. Figure 4-4 is the truth table of
the above function which uses 1 and 0 for true and false
respectively.

f=A+B+C

A B C f

o o o o
o 0

o 0

o
o 0

o
o

Figure 4-4. OR Truth Table

The OR function might further be illustrated by a series
of switches arranged in parallel as shown below. The
light when lighted represents the TRUE state of the
function. The only way the FALSE state at the light

can be obtained is for all switches to be FALSE (open).
The TRUE state will be realized when anyone of the
switches is TRUE {c losed}.

O.
1

Figure 4-5. OR Switching Circuit

The logic symbol for an OR operation is:

Au------+-~

B~---------------~--_+----------_o

C o-----------------+------~

Figure 4-6. OR Logic Symbol

The symbol of Figure 4-6 is known as the OR gate.

NOT

The NOT operation is a negating, inverting, or comple
menting operation. The impl ication is that you get from
the NOT operation the opposite of what you put into the
input of the operation.

The NOT operation is indicated by a bar drawn over the
logical quantity. For instance:

f = A Where f denotes the logical function
NOT A denotes a true logical quantity.

When reading this equation, one would read, or say, IIf
equals NOT A" or II f equals A overbarll or II f = A-barll.

If A is true then A must be false and vice versa. A truth
table for the NOT function is given below in Figure 4-7.

f = A

a

Figure 4-7. NOT Truth Table

A circuit which may be thought of as representative of
the NOT is shown in Figure 4-8 below. The light f is
TRUE when it is lighted. In this case, the only way
the TRUE state of the light f can be obtained is for the
switch A to be open {false}. The switch can be labled
any way we choose, thus the two conditions given in
the truth table, Figure 4-7.

f

a

Figure 4-8. NOT Switching Circuit

The logic symbol for a NOT operation as used by SDS
is:

A
A

Figure 4-9. NOT Logic Symbol

The symbol of Figure 4-9 is known as an Inverter.

NOR

The NOR operation is a combination of OR and NOT,
two of the three fundamental logical operations. The
word NOR is a contraction of the statement II NOT OR".

Expressed in a logical equation the NOR operation
might be used as follows:

f=A+B+C

Th is equation says:

Where f denotes the logical NOR
operation A, Bf C are TRUE
logical quantities.

a. f is false if anyone or more of the logical
quantities is true.

b. f is true only when all of the logical quantities
are false.

The truth table of the NOR operation is:

f=A+B+C

A B C f

0 0 0

0 0 0

0 0 0

0 0

0 0 0

0 0

0 0

0

Figure 4-10. NOR Operation

The NOR operation might be further illustrated by a
switching circuit as shown in Figure 4-11. The light
wi II represent TRUE when I ighted, and from inspection
of Figure 4-11, it wi II be readi Iy seen that the light f
can be TRUE only when all the logical quantities
(switches) are FALSE (open). Anyone or more logical
quantity being TRUE wi II cause the light f to extinguish
and thus be FALSE.

f

o

Figure 4-11. NOR Switching Circuit

The logic symbol for the NOR operation is a combination
of OR and NOR in SDS logic symbology. As shown in
Figure 4-12.

Figure 4-12. NOR Logic Symbol

The symbol of Figure 4-12 is known as the NOR gate.

20

NAND

The NAND operation is a combination of AND and
NOT, two of the three fundamental logical operations.
The word NAND is a contraction of the statement NOT
AND.

Expressed in a logical equation the NAND operation
might be used as follows:

f = ABC

Th is equation says:

Where f denotes the logical operation
NAND. A, B, C are true logical
quantities.

a. f is true when anyone or more of the logical
quantities is false.

b. f is false only when all the logical quantities are
true.

The truth table of the NAND operation is Figure 4-13.

f = ABC

A B C f

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Figure 4-13. NAND Operation

The logical NAND operation might be further illustrated
by a switching circuit as shown in Figure 4-14. The
light will represent true when lighted. From inspecting
Figure 4-14, it will be readily seen that the light f will
be false (unlit) only when all switches are true (closed).

f

Figure 4-14. NAND Switching Circuit

The logic symbol for the NAND operation is a combina
tion of the AND and NOT in SDS logic symbology as
shown in Figure 4-15.

A~-----'

Bo---4

C

A 0---1

Bo-----I
Co-----1

Figure 4-15. NAND Logic Symbol

The symbol of Figure 4-15 is known as the NAND gate.

Summary of the 5 operations and their symbols.

A

0

0

0

0

LOGICAL
QUANTITIES

B

0

0

o
o

LOGICAL
FUNCTION

C

0

0

o

o

(OR) *NOT f(NOR) f(AND) **f(NOT)

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

* using OR as input to NOT function.
** using AND as input to NOT function.
All other functions use A, B, C, as inputs.

f(NAND)

0

21

A 00----4-.-....
A+B+C

Bo---+--~-~~

Co---+--;

OR

T

NOT

A [)::e ABC
B

C

AND NAND

~~ ~A+B;C

NOR

Figure 4-16.

In the preceding work discussed in this section, we
have gone over the operation of AND, OR, NOT,
NOR, and NAND. These operations have been dis
cussed as a method of leading into the algebraic
properties of logic and logical algegra. From what
has been said previously it is now possible to discuss
other properties of logical algebra. These other pro
perties will be stated in logical algebraic form, and
where necessary, additiona I comments wi II be made.
From what has gone before, many of the statements
will be self explanatory.

0

Identities are statements of absolute equality between
the left member and the right member separated by an
equality sign. In the case listed below the equations
are correct, regardless of the values of the variables.
The reader should verify the validity of the following
statements for himself by substituting the "true" (1) and
IIfalse" (0) for the variables in all possible situations.

IDENTITIES

1. A +A = 1 9. 1 + A = 1

2. AA =0 10. OA=O

3. A· A = A 11. (A + B) (A + C) = A + BC

4. A + AB = A + B 12. A=A

5. A + AB = A 13. (A+B) = A x B or A B
6. A+A=A 14. AB=A+B

7. O+A=A 15. A(B+C) = AB + AC

8. lA = A

Examples of proofs for the above identities.

(1) A + A = 1 If A = 1 then A = 0

A+A=1+0=1

I f A = 0 then A = 1

A+A=O+l=l

The statement is true for all possible values of A, and
thus the identity has been proven.

(4) A

o

o

A
o

o

B

o
o

AB

o
o
o

A+AB

o

This table proves that A + AB = A + B

(11) (A + B) (A + C) = A + Be

A B C (A+B) (A+C) BC (A+B) (A+C)

0 0 0 0 0 0 o x 0

0 0 0 0 o x

0 0 0 0 o x 0

0 1 1 x

0 0 0 1 x

0 0 1 x

0 0 1 x

1 x

A+B

o

A + BC

o + 0

o + 0

o + 0

= o +

1 + 0

1 + 0

1 + 0

1 +

Therefore the identity has been proven since the identity
holds true for all possible combinations of variables.

The reader should work out this same sort of proof for any
of the identities he feels there may be some question
about. It is mandatory that the reader be able to justify
every identity and in addition be able to use these iden
tities from memory since these are used in many cases to
simplify logical equations.

The following identities may seem trivial but they prove
some very important features of the operations stated.
These features wi II be covered with each of the identi
ties which are called theorems.

1. A+B=B+A

AB = BA

These two statements say that the order of arrangement
of the logica I quantities does not affect the truth of the

22

statement. In other words, the AND and OR operations
are commutative.

2. A + (B + C) = (A + B) + C = A + B + C

A(BC) = (AB)C = ABC.

These statements say that the order of performing the
logical operations in a given statement does not affect
the end result, which in each case, for each line
above, wi II be the same. In other words the AND and
OR operations are associative.

The next step is to apply the information given pre
viously in this section. In application the aim will be
to simplify logic statements which appear at first glance
to be complicated.

Given the following statement, simplify it as much as
possible using the identities given previously.

f=ABC+ABD+AC+ABCD+AC

rearrange the terms and group:

f=ABC+AC+ABCD+AC+ABD

= A(B C + C) + A{B C D + C) + A B D

Apply the simplifying identity A + A B = A + B to the
first two terms as follows:

BC+C~B+C

BCD + C = BD + C

Substitute the resu It in the statement to get

f = A(B + C) + A(B" D + C) + A B D

Expand to get

f=AB+AC+ASD+AC+ABD

Apply the simplifying identity A + A B = A to the terms
AB+ABD

AB+ABD=AB

Substitute the resu It to get

f=A B+A C +A SD+AC

No further simplification appears possible. Therefore
the fo !lowing identity:

ABC+ABD +AC +ABCD+A C =AB+AC

+AC+ASD

By this simplification it was possible to reduce the num
ber of logical quantities from 14 to 9, which represents

considerable reduction in logical statement complexity
and in hardware when it is implemented.

There is no assurance in the reduction or simplification
system used that the statement has been reduced to its
absolutely simplest firm. At least this is the case for a
beginner or someone not completely familiar with
reduction possibilities. There should be a more certain
less laborious method to use in simplifying logic state- '
ments. A simplification system, for a reasonable num
ber of variables is the Veitch diagram.

VEITCH DIAGRAMS

Veitch diagrams are a quick and easy way to find the
simplest logical equation needed to express a given
function. Veitch diagrams may be constructed for any
number of variables, but they become difficult to use
when more than 4 variables are involved. Veitch
diagrams for use with two through six variables are
illustrated in Figure 4-17.

A A
A A

0 A A

:EE
2 VARIABLES

I

B

B

B

A

ci

E
A

c I

B

E

I

c

c

C '--y----J C
C

3 VARIABLES

E

A A I

C c

5 VARIABLES

A

c
f

c

6 VARIABLES

A

Ic

Figure 4-17. Veitch Diagrams

23

B

D

B
5

C C Ie
I

4 VARIABLES

[5

D

[5

0"

D F

-

5 -

-

D F

-
[5

-

Each variable has 2 possible states. Therefore, the
number of squares in the diagram, to represent all
states must be equa I to 2n, where n is the number of
variables to be indicated by the diagram. Thus, for 4
variables there must be 24 squares, or 16 squares. For
an 8 variable diagram, the number of squares would be
256, a rather large diagram. For variables in excess
of 5 or 6, it is recommended that the student refer to
Boolean algebra texts for other methods of simplification.

Each square of a Veitch diagram refers to a unique
combination of variables. This is. illustrated below for
a 4 variable Veitch diagram.

A A Square # Variables

1 2 3 4 D ABCD
B

5 6 7 8 2 ABCD
D

9 10 11 12 7 ABC D
B

13 14 15 16 D 16 ABCD

C
-

C C

To illustrate the use of the Veitch diagram the same
equation as was previously used to illustrate the simpli
fication identities wi II be diagrammed.

f=ABC+ABD+AC+ABCD+AC

4 variables: A, B, C, D

A A

1 2 3 4
B

5 6 7 8

9 10 ·11 12
B

13 14 15 16
- -
C C C

-
D

D

-
D

The numbers in each
square are for clarity
in explanation only
and are not a part of
a standard Veitch
diagram.

Plot the terms of the logical function term by term. The
diagram, when this operation is completed, would
appear as shown below. A 11111 placed in each square is
representative of a term. Remember that a term entered
in a Veitch diagram may cause more than one square to
have a 1 entered in it. Be certain you have placed a 1
in every square wh ich represents the term.

24

A A
-

1 1 1 D ABC = 2 & 6
B

1 1 1
ABD =1&2

D AC = 1, 5, 9 & 13
1 1

B
ABeD = 16

I 1 I I , , -
AC = 3, 7, il, i5

I ~ I

There are a few rules which are used with the Veitch
diagram to insure that the resultant simplified equation
is in fact correct:

1. If lis are located in adjacent squares or at
opposite ends of any row or column, one of the variables
may be dropped.

Example: adjacent squares 15 & 16

(15) (16)

ABCD + ABCD

A B 5 (C + C) = A B 15

Opposite ends of a row or column 13 & 16

(13) (16)

ABeD + ABCD

BCD {A + A) = Be is

2. If any row or column of squares, any block of 4
squares or the 4 end squares of any adjacent rows or the
four corner squares are fi lied with lis, two of the
variables may be dropped.

Example:

(1)

Consider squares 1, 5, 9, 13. These could
be represented by A C, since B & 8, D & D
have been used. This can be better illus
trated by simplifying just the 4 terms repre
sented by these squares.

(5) (9) (13)

ABCD+ABCD+A8CD+ABCD

ABC (D+ D) + A BC (D + D)

ABC+ABC

A C (B + S) = A C.

Thus squares 1, 5, 9, 13 can be represented by the
term AC.

3. If any 2 adjacent rows or columns, or the top and
bottom rows, or the right and left hand columns are
completely fi lied with lis, three of the variables may
be dropped.

Example: For th is example, assume that the two left
columns are fi lied with lis. Thus we would
be considering squares 1, 2, 5, 6, 9, 10,
13, 14.

(1) (2) (5) (6) (9) (10) (13) (14)

A BCO+A BCO+A BC D+A BC D+ABC D+ASCD+ABCO+ASCO

ABO (C+C) + ABD(C+C) + ASD(C+C) + ASD(C+C)

ABO + ABD + ABD + ABD

AB (0 + D) + AS (0 + D)

AB +AS A(B + S) = A

This same example can be worked out for the other con
ditions which permit dropping three variables. This is
left as a readerls exercise.

4. To reduce the original equation to its simplest form,
sufficient simplification must be made until all lis have
been included in the final equation. Ones may be used
more than once and largest possible combinations should
be used.

The rules above are illustrated in Figure 4-18.

Now we can look at the Veitch diagram and come up
with the simpl ified resultant equation.

f=ABC + ABD +AC +ABCD +AC

I A I A

B

C

AA~D} f=AB+AC+AC+ABD
"------- AC

~------------ AB

Figure 4-18. Veitch Diagram Rules

The ovals and circ les are used to insure groupings and
also to insure that all lis are used at least once in the
simplified statement. The circle cannot be used for the
four corners or ends of columns or rows as detailed in
the rules. However, XiS or OIS may be used to indicate
usage.

25

From the ru les, ill ustrations, and discuss ions it shou I d
have been deduced by the reader that to drop a
variable both the variable and its inverse must appear
in two terms with the other variables of the terms being
identical. The only simplification identity that has
been applied is A +A = 1. This is best illustrated by
looking at squares 15 & 16. It is obvious that both C
and C can be dropped. Further, looking at column 1,
squares 1, 5, 9, 13, it is again obvious that Band S,
and D and 0 appear along with AC and thus B, S, D,
and 0 can be dropped.

Learning to recognize these essentials, and which
variables can be dropped, is the secret to success with
use of the Veitch diagram in logic simplification.

Mechanization of Logic

Logic mechanization may take many forms. At this
point it is not worth whi Ie to discuss what forms they
may take, but rather to look at the logic symbols of
mechanization. For instance we could look at the
logic described by the equation,

f = A BC + ABO + AC + A BC 0 + AC

ABC D

ABC

ABO

ABe 5

AC

Figure 4-19. Mechanization of Logic

This is the mechanized version of the same equation
with which we started earlier in this section.

To see the reduction in mechanization complexity, the
simpl ified and reduced version of the equation is shown
below.

f=AB+AC+AC+ABD

ABC D

AB

AC

AC

ABO

Figure 4-20. Simplified Mechanization of Logic

It is not worthwhile to go further with -mechanizot~on of
logic since this will be the subject of your study in the
SDS School for which you are registered.

26

SECTION 5 LOGI C ELEMENTS

INTRODUCTION

Numbering system manipulation, logical algebra
operations, symbols, and terms have been the subject
of previous sections. The actual electronics of imple
mentation used in hardware has not been presented. In
this section we will be concerned with the general
theory of various standard electronic circuits used in
S DS computers.

Prior to starting this study, it is necessary that we
understand the objective being sought. The general
understanding of how a particular circuit works rather
than the specific considerations of resistor, transistor,
capacitor or voltages chosen by the design engineer is
the main objective. It is true that the understanding of
the "why" would be beneficial if we were to be pre
pared to design equipment. This is not the case and we
will concern ourselves only with "how".

STANDARD LOGIC LEVELS

The SDS logic circuits are based on the use of diode
gating and representation of logic signals as DC voltage
levels. The standard logic levels wi II be as shown
below. Bear in mind that the value of true could be
+4 or +6, but for th is discussion +8 has been chosen.

o False OV

True +8V

Functions of any conceivable complexity can be carried
out by the proper combination of signals according to
simple ru les. The gating configuration used to imple
ment the desired functions can be AND, OR, NAND,
NOR or combinations of all of these. The results of
gating operations are usua Ily presented to fI ip-f1ops
that perform the function of remembering the output
condition of gates even though the outputs may have
been transitory. The flip-flop circuits used are essen
tia��y all the same.

The AND Function

The AND functions are those that have two or more
terms, all of which must be true in order for the logical
expression to be true. That is, if Q = A· B· C, then
Q will be true only when A and Band C are true. SDS
AND gates are formed by using diodes with a common
anode connection such that any input he Id at ground

27

wi II hold the output at ground. On Iy when each input
is at true, a nominal +8V, will the output rise to +8V
or true.

Standard AND gate

A

B

C

A

B

C

Symbol

+25 V

Circuit

If the A input is false (O V) the top diode wi II conduct
heavily and the anode will be at approximately 0 V due
to the 1 R drop across Rg. If then inputs Band/or Care
true (+8 V) they wi II be reverse biased and cannot in
that condition affect the 0 V established at the output by
the top diode. If all diodes have 0 V inputs then the
output is 0 V and the current through Rg is the result of
all diodes conducting simultaneously.

If a II inputs are true (+8 V) the diodes sti II conduct more
or less equally but the drop across Rg is only 17 V and
the anodes and hence the output is locked at about +8 V,
or true. The voltage at the anodes will differ from 8 V
by the voltage drop across a diode, which from a prac
tical point of view is insignificant.

The AND gate shown above is only a. 3-input AND. The
standard AND gate can be expanded to include up to 30
input terms by adding more diodes. These diodes are
provided by the expander AND gates.

Expander AND Gate.

Expander AND gates are designated symbolically by a A
at the output terminal. Physically they are the same as
the AND gate except that they do not include gate load
resistors.

A 0---1

B

C
~

Q

Symbol

ABC

~ :EI--...... _--O
Q

Circuit

The operation of the expander AND gate is identical
with that described for the standard ANDI if one added
an external load resistor with +25 V as shown be low:

+25 V

;: S o_--t---o
In actuol practice the expander AND gate is combined
with the standard AND gate as shown below:

A

B

C

D

E

F

A

B

C

D

E

F

Q

Symbol

:! I
S3

Circuit

Q

ABCDEF

+25

iR9

OQ
I
I
I
I
I ,
0

28

The OR Function

OR functions are those that have two or more terms any
of which being true wi II cause the logical expression to
be true. That iS I if Q = A + B + C1 Q will be true if
A or B or C is true. SDS OR gates are diode circuits l

arranged so that any input held at a nominal +8 V
(true) wi i i cause the output to be true (+8 V).

The standard OR gate:

A

B

C

A n---+-~

B

C

Symbol

Circuit

Q

Inspection of the standard OR gate circuit reveals that
the input diode and associated resistor Rg are identical
to the configuration of the AND gate. The difference
between a standard AND gate and a standard OR gate
is the inc lusion of the output diodes and individual
diode load resistors on the OR gate.

In the standard OR gate the anode of any input diode
will follow the input. The voltage at the bottom of
any load resistor will be determined by the input to its
associated diode. Thus an output diode anode has on it
the voltage appearing at the input terminal associated
with it.

To make the standard OR diodes work at a II there must
be a load resistor and source of voltage attached to
their common-connected cathodes. Though it is not
shown in the diagram of the circuit, it must be there to
have the circuit work at all. The circuit configuration
would thus be:

+25

-25 Volts

~--..---o--~

The AND oriented input diodes can be ignored for this
circuit explanation since this has been explained in the
discussing of the standard AND. Thus the OR circuit
can be explained using only the following circuit.

-25 Volts

A

B

c

If an OR facing diode has +8 V at the input or anode
terminal, the output at its cathode will be +8 V regard
less that the other diodes have 0 V at their anode.
With 0 V at the anode and +8 V at a cathode, a diode
is reverse biased and effectively out of the circuit.
Thus with anyone or more inputs true (+8 V) the output
wi II be true.

In this type of circuit it is essential that all unused
input terminals be grounded. If this precaution is not
taken, the output of the standard OR will be true at all
times regardless of the inputs at the used terminals. To
explain the reason for the necessity of grounding unused
input terminals, assume that input C is unused, ungroun
ded, and terminals A and B are used and have false
inputs. Under these conditions we would normally
expect a false output at Q. However, with terminal C
open, the anode of the C output diode would attempt to
go to +25 V. The result would be conduction through
the C output diode since it is now forward- biased. As
a result, the output terminal would go positive and
remain there. A positive output at Q represents a true
condition which is not what we would expect with false
at both used input terminals. Thus under any circum
stance the output would be true, if an unused terminal
of a standard OR were left ungrounded.

29

Gated Input OR Gate

Inspection of the diode previously shown reveals that
the input diode and associated resistor of the standard
OR gate are identical to the circuit for an AND gate.
The basic difference between a standard AND gate and
a standard OR gate is the inc lusion of the output diode
on the OR gate. It fo I lows that the outputs of standard
AND gates can be ORed by adding the required diodes
in the OR-facing direction. Diodes connected in this
manner are referred to as gated input OR gates. A
connection for such an arrangement cou Id be:

A

B

c

o

Symbol

+25

~I
+25

Circuit

Phantom OR Gate

Q=A·B+C·D

-25

~f_
~Q
I
I
o

A more common and versati Ie way to obtain diodes in the
OR-facing direction when ORing the outputs of AND
gates is to use an extra input diode of the AND gate as
the output diode.

A lJ----i

B

C

D

AB

I A. B + C. D r---------- O

CD

Symbol

+25 V

:=a i A~ I
I I
! I _
I------------------~
I +25 A . B + c· D

Circuit

Inspection wi II show that th is diode configuration is the
same as that shown for the gated input OR gate. To
clarify the logical operation on logic diagrams, the
connection of the diodes is sometimes drawn as follows:

A
B

i', Q =A·B+C·D
~--------------~-~

1.,7

C

D

The OR gate represented by the dashed lines is referred
to as a phantom OR gate and readi Iy c lari fys the fact
that the output of the AND gates has been ORed to
gether.

The AND/OR Gate

The circuit configuration described above with the OR
portion being called a phantom OR is generally referred
to at SDS as the AND/OR gate. The AND/OR gate is
used as shown below:

A
B

C
D

Q

Symbol

30

A +25 V
-25 V

B J
I
I

Q

+25 V

C

D

Circuit

NOTE: It is felt that sufficient operation and description
of diode circuitry has been presented to this point. If the
reader feels the necessity to apply voltages and analyze
the individual circuits, it is left to him as an exercise to
do so. Understanding of these circuits is essential to
understanding the computer when it is studied in school.

It is possible to increase the inputs to the AND/OR gate
by use of an expander AND as shown in the following
symbols. A drawing of the circuit is not shown. The
reader can draw the circuit, if he feels the necessity.
Enough information on circuits has been given thus far to
make the drawing a simple task.

A

B

C

D

E

F

G

~--------------------~Q

Q = ABCDE + FG

Symbol for Expanded AND/OR

Logic Amplifiers

Logic amplifiers are used to amplify the output of diode
gate structures, to generate the logical complement or
inverse of an input signal, and to provide additional
driving capabi I ity for heavily loaded logic terms.

SDS Logic amplifiers consist of an input diode with a
controlled reverse voltage breakdown point (Zener
diode) followed by either a single-grounded emitter
transistor in the case of an inverter or two transistors
in the case of a buffer amplifier.

A 1>-+--0 Q

Q=A

Inverter Symbol

+8 V

_--o---oQ

A

-25 V

Inverter Circuit

A Q

Q=A

Buffer Amplifier Symbol

+8 +8

-25 -25
Buffer Amplifier Circuit

NOTE: In practice the base resistor and coupling
Zener diode to the second transistor may be eliminated.

Q

31

To explain the operation of these circuits, a discussion
of the inverter circuit is undertaken. The buffer ampl i
fier will be explained also since the two circuits are
identical in theory of operation. The only difference
being that an input signal to an inverter is inverted once
and in a buffer ampl ifier it is inverted twice.

+8 V

Output

Input

-25 V

Inverter Amplifier Circuit

When the input is held at 0 V (false) the input diode
and base resistor provide a negative voltage bias to
prevent the transistor from conducting. The Zener diode
wi II have broken down and be conducting in a reverse
direction under this condition and be holding the base at
a nominal - 4 V. With the base-emitter cut off, the
transistor is in a cut-off state and collector voltage wi II
rise to +8 V (true).

When the input rises to +8 V, the Zener diode wi II
conduct more heavily in the reverse direction, but sti II
maintain the nominal 4 V drop across it. Therefore t

+4 V wi II be attempting to appear at the base of the
transistor. The transistor base-emitter junction will
thus be forward-biased and will, due to base-emitter
current, limit the voltage at the base to some fraction
of a volt near ground. The transistor being in fu II
conduction will drop the collector voltage to near
ground potentia I (~+ .6 V) and the output will be
false (approximately 0 V).

Therefore, with false (0 V) in we have gotten true (+8 V)
out and with true in we have gotten false out, and we
have an inverter amplifier.

This same explanation applies to the second transistor
circuit in series in the buffer amplifier circuit. An
input signal goes through two inversions, one each as
it passes through each transistor circuit, and as a
result comes out unchanged in state but bolstered in
capabi lity, and we have a buffering (non -inverting)
amplifier.

In SDS equipment there are combinations of all the
circuits discussed previously to generate specific func
tions for specific needs in mechanization of logic. The
symbols and functions of these combination circuits will

be given and discussed briefly. However, the circuits
for them will not be analyzed since such discussion
would be repetition of analyses which have been given
previously.

BAND - Buffered AND

This is a combination of the non- inverting buffer
amplifier and AND circuitry.

Symbol

Logically the output of this combination of circuitry is
the same as the output of a standard AND. The buffer
amplifier is used to bolster the output to make the output
capable of driving a heavier load than the direct AND
output.

NAND - Negative AND or Not AND

This is a combination of the inverting amplifier and the
standard AND circuitry.

A~QI_ .. ~ A~
~~--~Q=~~~

Q - ABC Q =QI = ABC Q =QI = ABC

Symbol

logically the output of this combination of circuitry is
the complement, or the inverse of the output of the
standard AND. The inverting is used to accomplish the
inversion as well as bolster the output signal drive
capabi I ities.

The notable thing here is the significance of the small
circle used with the logical amplifier symbol. In every
case where a c irc Ie is used at the output of a log ica I
amplifier symbol the indication is that the input signal
has been inverted. This is true whether the circle is
unfilled (as shown above) or partially filled as shown
below:

Line Receiver

A Q
~ 0-----1 ~

Q=A

Symbol

32

The line receiver is used in receiving signals from some
remote unit, inverting the signal for use, and changing
the amplitude level where necessary. Logically, it
serves the same function as an inverting amplifier, even
though in actual use it does change signal amplitudes to
the desired level where necessary.

Line Driver

A Q

Q=A

Symbol

The line driver is used in preparing a signal for trans
mission from one un it to another un it, to match the
transmission line impedance, invert the signal and
change the amplitude of the signal where necessary.
Loaicallv, it serves the same function as an inverting
am~plifie~ "even though in actual use it does change -

levels of signals and does match the impedance of the
transmission line.

Cable Driver

When it is desirable to distribute signals by means of
33-ohm coaxia I cable, a cable driver is used rather
than an ordinary inverter or buffer amplifier. Figure 5-1
shows a cable driver which may be used to drive one or
two terminated 33-ohm cables. The output is from two
unterminated collectors in parallel and hence must be
terminated by 33 ohms to :+4 V at the receiving end of
each cable connected to the driver. Further details on
usage wi II be discussed when receiver-inverters and
receiver-inverter:"'buffers are considered.

Input to Q1 is made by means of a conventional diode
gate of the sort that was discussed in the NAND gate.
If Q 1 is cut off, Q2 is saturated and Q lis collector is
held at Q2 1s Vbe sat = +0.8 V. If Q 1 is saturated, its
collector is at Vbe sat = +0.4 V. Since Q lis collector
shifts only 0.4 V from saturation to cutoff, there is no
need for shunting D 1-D3 with the familiar resistor
capacitor combination to compensate for Mi lIer effect
capac itance.

The driving output to the cable or cables is taken from
the paralle led co I lectors of Q3 and Q4. Such a paral
lel combination has not only twice the power handling
capacity of a single transistor but also only half the
saturation resistance, permitting the "false ll output to
approach ground despite the large current handled by
the parallel combination.

To take advantage of a para lie I combination, the
bases must be driven equa Ily. If the bases were
merely paralleled like the collectors and emitters,
the transistor with the lower Vbe would receive most
of the avai lable drive current and the transistors wou Id
not do equal amounts of work. So as not to encounter
such a problem, the circuit of Figure 5-1 mutually
isolates the drives to Q3 and Q4 whenever these
transistors are saturated. If Q2 is saturated, co lIec
tor current flows down through R 1 and 04 and through
R2 and 05. Thus points Pl and P2 are both at a
potential of 0.4 +0. 7V = + 1. 1 V. Since VRl and
VR2 both have a Zener voltage of 3. 3 V, Q3 and Q4
are reverse-biased 1. 1 -3.3 = -2.2V. IfQ2 is cut
off, however, points P1 and P2 are mutually isolated

+16

Gateo-~ __ 4-~~ __ ~~~~~~_
Input

Ga t e {)--+It--'

Input

+16

by diodes 04 and 05 connected back to back in series,
and Q3 and Q4 are saturated by current from separate
600-ohm drive resistors R1 and R2 respectively.

Since Q3 and Q4 are handling rather heavy base
currents in order to switch heavy co II ector currents,
there is the possibi lity of the circuit being slowed
down by a stored charge in the base. So that stored
charge wi II not be a problem, the capacitors shunting
VR 1 and VR2 are made considerably larger than would
be necessary on Iy to compensate for Mi lIer-effect
capacitance. Thus the bases of transistors Q3 and Q4
are over driven whi Ie the transistors are switching
from one state to the other to "speed Up" the
transition.

.-------r-OOu tpu t

Input

Ql,Q2 are 216
Q3,Q4 are 217

Output

Symbol

Figure 5-1. Cable Oriver

Rece i ver- Inverter

Signals are "picked off" 33-ohm coaxial cables by
receivers as shown symbolically in Figure 5-2.
Coaxial cables must be terminated in their charac
teristic impedance of 33 ohms regardless of rece iver
placement so that reflections do not occur in the line.
The loading effect of the receivers is sufficiently
small that the impedance discontinuities in the cable
created by their presence do not cause significant
reflections. Since, in addition, receivers draw very
little current, a very large number of receivers may
be driven from 33 ohm coaxial cable by one cable
driver.

33

Receiver- Receiver-
Inverter Inverter

Receiver Receiver
Inverter Inverter

Figure 5-2. Symbolic Receiver II Pick- Off"

Figure 5-3 shows a receiver- inverter. As the name
implies, the output is the inverse of the logical signal
present on the coaxia I line to which it is connected.
There is a Iso a receiver- inverter- buffer wh ich has both
inverted and non- inverted outputs. This latter circuit
sha II be discussed later.

Suppo~~ that the input to the receiver- inverter is raised
to +4 V. This saturates Ql and places its emitter at
4 -0.4 = +3.6 V. Point P1 is then placed at +0.96 V.
This, however, is more positive than +0. 80 V, Vbe sat
of Q2. Thus Q2 is saturated by the current flowing into
its base from the 2. 7K resistor and D2 is reverse biased
(as is, of course, D3).

If the input to Q 1 is connected to ground, Q2 shou Id
be cut off. If Q2 is cut off, Pl may drop to -1.4 V,
pulled down by the 1. 2K resistor to -16 V and limited
to -1. 4 V by the forward drops across D2 and D3. Q 1
may be on the verge of conduction, but the base of
Q2 has dropped sufficiently negative to cut it off
completely.

220

Receiver
In

Receiver -Inverter

+16

-16

Figure 5-3. Receiver- Inverter

Receiver- Inverter- Buffer

Figure 5-4 shows a circuit similar to the receiver
inverter but which also includes a non- inverted output
("buffer out"). If the input is raised to +4 V, Q 1 is
saturated and point Pl is raised sufficiently positive to
reverse bias diodes D2 and D3 and transistors Q2 and
Q3 are saturated by their individual 5.6K resistors to
+16 V. Q4 1s base is lowered to +0.4 V by Q3 satura
ting and is therefore cut off.

I f the input is connected to ground, point P 1 is pu lied
down by the 1. 2K resistor to -16 V. Pl drops to
-1. 4 V, limited by the forward drops across D2 and D4.
With Pl at this voltage Q 1 is only on the verge of
conduction, and both Q2 and 03 are cut off with a
reverse base bias of - 0.7 V in both cases. 04 is then
saturated by the current flowing down through 03 1s
collector load resistor.

Since both the receiver- inverter and the receiver
inver-ter-buffer have the same input circuit, the usage
rules for both are the same. It should be remembered,
however, that the extra transistor in the II buffer output"
causes the non- inverted output to be delayed somewhat
with respect to the inverted output.

34

+16 +16

220

Receiver In

-16V

Figure 5-4. Receiver- Inverter- Buffer

Flip-Flop

A flip- flop is illustrated in Figure 5-5. In actual ity,
there are several groups of II Set", II Reset", II Enable"
inputs and two II Gate Outputs", all groups sharing the
same II Aux. Set" and II Aux. Reset" inputs. One group
is shown for clarity.

Figure 5-6 represents only the central latch and the
DC set input. Suppose the flip-flop is in the "Reset"
state, this impl ies 01 is saturated. Thus 0 lis collector
is at 0.4 V, and 03 must also be saturated. 03,
however, is drawing practically no collector current
but has considerable base current and hence adds only
50 mi II ivolts to Vcd of 01, so that the voltage at 03 1s
collector is 0.45 V. However, the base threshold to
turn on 02 is 0.6 V (0.8 is required for saturation), and
hence 02 is turned off. Since Q2 in cut-off presents a
very high impedance to the emitter of Q4, 04 1s base
collector diode becomes forward-biased and 041s base
current flows out of its collector into the base of 01,
keeping it saturated.

The cross-coupling transistors 03 and Q4 operate with
essentia Ily constant base current (except when II DC Set"
is used) which makes them capable of extremely fast
switching. Consequently, this is one of the fastest
forms of cross-coupling that can be used in a flip- flop.

Suppose that while the flip- flop is in the reset state as
descri bed above, the DC set input is momentari Iy
grounded or connected through a resistance to a nega
tive level (the diode D2 on the DC set input prevents
excursions more negative than -0.7 V). This causes
the diode D 1 to become forward biased and the current
that was flowing into the base of Q4 and from Q4 to
Q 1 now flows to ground instead. This cuts off 04,
whi ch cuts off 01, and hence Q3 1s base current flows
to the base of Q2, saturating Q2 and thus p lacing the
flip-flop in the "Set state.

AUX
Set

Input

Reset
Output

+l6V

Set Enable Gate
Input Input Outpuc

+l6V

1200

+16V +l6V

-16V

+l6V

3.3K

Gate
Output

Reset
Input

AUX
Reset
Input

Figure 5-5. Flip- Flop

+16v +16v +16V

15K

D.C. Set
H-............ I--+-O Input

D2

Figure 5-6. Central Latch and DC Set Input

Figure 5-7 shows just the circuitry which is used in
setting and resetting the flip- flop. Suppose that the
flip-flop is in the "Resetll state (Q1 saturated) and we
wish to set it by saturating QS. In the absence of a
clock pulse, this would have no effect because QC is
a Iready saturated. However, suppose QC is cut off and
QS is saturated. Then the co I lector of QC rises to +4 V
plus the drop across DC (4. 0 V + O. 7 V) = 4. 7 V and
point P2 rises to 4.7 V plus the drop across 03 (4.7 V +
0.7 V) = 5.4 V. If QS is saturated, however, point P 1
is held down to Vce sot of QS plus the drop across 01
(0.4+ 0.7 = + 1. 1 V). This leaves C 1 charged, with a
voltage across it of (5.4 V - 1. 1 V) = 4. 3 V with the
right- hand end (P2) positive.

35

+16

fOint PI I

Clock Input
(Nonnally SaturateiJj

+16

DC

+4v
Saturate
lo_Reset

Figure 5-7. Setting/Resetting Circuitry

When the clock pulse falls (which occurs very quickly),
P2 falls down rapidly to +1. 1 V. Since the voltage
across C 1 can't change instantaneously, C 1 must sti II
have 4.3 V across it after P2 has dropped to 1. 1 V, so
Pl drops to (1. 1 -4.3) = 3.2 V. At this point, refer
to Figure 5-8 which shows the circuitry of Figure 5-7
together with the central latch. Now that Pl has gone
negative, 06 is, for the first time, forward biased while
both Oland 02 are reverse biased.

Figure 5-8. Setting/Resetting and Central Latch

The on Iy way C 1 can discharge then, is to draw current
out of the base of Ql, cutting it off. The 100-ohm
resistor in series with D6 forces the discharge to take
place slowly enough to insure that Q 1 stays cut off
unti I the latch is fu Ily regenerated.

QR, on the other hand, remained cut off during this
procedure i clearly, one shou Id not try to set and
reset a f1ip- flop at the same time. Since QR was cut
off, P3 rose and fell with P2 and no charge was built
up on C2.

We can refer back to Figure 5-5 for most of the
remainder of our discussion of this flip- flop. Q6 and
Q7 are buffer amplifiers. If connected through load
resistors to +4 V, they will provide logical voltage
outputs whi ch wi II be II true" when the flip - flop is in
the respective states indicated by the two outputs. If,
for example, Q 1 is cut off, we want Q6 saturated.
However, when Q 1 is cut off, current from Q3 is going
to the base of Q2 to keep it saturated. Thus we need
the 3K resistors to + 16 V to provide drive to Q6 and
Q7. The 47-ohm resistors going to the bases of Q6 and
Q7 prevent these transistors from diverting drive from
Q3 or Q4 which should be going to the bases of Q2 and
Q 1 respectively.

QS and QR are straightforward inverting amplifiers with
the exception of the antisaturation circuit. This circuit
is necessary because there are norma Ily severa I sets of
input gates and thus the drives to the bases of QS and
QR vary with the number of input gates given "true"
inputs at a given time. Some flip- flops have inputs
arranged so that the drive to turn on the input ampli
fiers QS and QR is constant (see, for example, the
NAND- flop) and hence antisaturation circuits on these
transistors are not necessary.

36

The clock amplifier, composed of QC and Q5, is a
comparatively straightforward non- inverting amplifier
with an input impedance of 600 ohms (many such clock
inputs in parallel have a combined impedance of 33
ohms which is the impedance of the lines on which the
c lock is distributed).

The upper I imit of QC IS collector swing is clamped, as
has been observed. In addition, QC is also equipped
with an antisaturation circuit so that the saturation
potentials ofQR, QS, and QC are equalized.

NAND- Flip- Flop

Figure 5-9 shows a variation on the flip- flop called
a NAND flip-flop. The central latch and buffer
amplifiers are the same as in the flip- flop previously
discussed. The triggering circuitry, however, is
somewhat different.

In Figure 5-10 is shown just the setting and resetting
circuitry. Normally, QC is saturated, P2 is at +0.4 V
and Pl and P3 are at + 1. J V. If either QRl or QS 1 is
saturated, ne i ther P 1 nor P3 will be affected as long as
QC is saturated (and has the same V ce sat as QS 1 and
QR1) because, in the case of Pl, Vce sat of QC plus
the drop across D 1 equa Is V ce sat of QR 1 plus the drop
across D3, and similarly for P3. Suppose we cut off
QR1, leaving QS1 saturated. When the clock pulse
rises to +4 V, P2 rises to 4.7 V and Pl rises to +5.4 V
(4.7 plus the additional drop across D 1). But if QS 1 is
saturated, P3 is at O. 4 V +0. 7 V = 1. 1 V and D2 is back
biased. Thus P3 is held at the same voltage it was
before the clock pulse. When the clock pulse falls,
P3 is unchanged, but P 1 goes from +5.4 V to 1. 1 V, a
fall of 4. 3 V. Since the voltage across C 1 canlt change
instantaneously, the upper terminal of Cl, which was
at +0.7 V (drop across D5), falls the same amount as P1
to become 0.7 V -4.3 V = 3.6 V. This, as in the case
of the previously-discussed flip-flop, forward biases
D7 and cuts off the leftmost of the two latch transistors
shown in Figure 5-10 by pulling current out of its base.

Since the drive applied to the bases of QS 1 and QR 1
when it is desired to saturate them does not vary as it
does in the previously-discussed flip-flop, no anti
saturation circuits are needed on these transistors and
hence none is needed on the clock amplifier as long as
the transistors have close to the same Vce sat.

Inputs to the NAND- flop are made through, as the name
implies, a system of NAND gates. The gates are similar
to the NAND gate discussed previously, except that the
two gates which include QRl and QS1 do not include the
47 pf capacitor and associated resistor to compensate for
Miller-effect capacitance. Miller-effect capacitance
only occurs when the collector moves in response to a
signal at the base. In this case, the logic usage rules
dictate that the input signals be present in time for QR 1
and QS1 to assume their final states before the clock

pulse rises. Thus no Mi Iler-effect occurs because the
collectors of QRl and QS 1 are held fixed by the clock
amplifier whenever their base signals are changing.

To set the flip-flop, we want to saturate the leftmost
latch transistor and cut off the right one. Thus we want
QS 1 cut off and QR 1 saturated. To saturate QS 1, the
II Low True Resetll input must be high (+4 V) and either
the IIReset in all or the "Reset in bll or the liGate
Common" must b;-false (low). To c~ off QS 1 either
the II Low True Set in all or the II Low True Set in bll must
be false (low) or the IISet in a" and the IISet in b" and
II Gate Commo~ must be true (high). Thus conditio~
for placing the NAND- flop in a given state are: one or
more of the II Low Truell inputs for the desired state must

Reset Reset Gate
In a In b Common

Cut Off
To Rese~_

+l6V

+16V

..L

Low
True
Reset

Figure 5-9.

be low, or a II of the II Set/Resetll inputs for the desired
state and the II Gate Common II must be true; in addition,
all of the II Low True ll inputs for the opposite state must
be High (normal true = 4 V) and at least one of the II Set/
Reset" inputs for the opposite state or the gate common
must be false. If these conditions a-;; met for at least
10 nsec before the start of the clock pulse and main
tained during the clock pulse, the NAND-flop will
en ter the des i red state when the clock pu Ise fa lis.

The clock amplifier is a non- inverting amplifier simi lar
to that used in the previously-discussed flip-flop,
except that QC has no antisaturation circuit. This is
because QS 1 and QR 1 have none, and it is desirable
for all three transistors to have the same Vce sat.

NAND Flip- Flop

Low ow
Tr\le True
Set Set
In a In b

+16V

Set Set
In In
a :c

Cut Off
--To reset

Figure 5-10. Triggering Circuitry

37

"Super" NAND Flip- Flop

The circuit of Figure 5-11 is a "super NAND flip- flop"
with more flexible input gating than the" NAND flip
flop" previous Iy discussed. The method of setting and
resetting the central latch is the same as that used in
the" NAND flip- flop".

The central latch, however, contains the addition of
D 1- D4, as shown in Figure 5-12. These diodes limit
the upper positive excursions of the collectors of latch
transistors Q 1 and Q2, which is necessary because of
the way in which Q5 is used. Suppose Q2 is saturated.
Then its V ce is +0.4 V and Q5 is a Iso saturated. But
because Q5 has considerable base current but very
small collector current, its Vce is only about +0.05 V.

...
::l
o

+16 +16 +16 +16

-16

This places +0.45 V at the base of Q6 which is insuffi
cient to turn it on, since the base threshold is +0.6 V.
If we cut off Q2, however, its collector is pulled up to
+2. 1 V by the 3K resistor R. This cuts off Q5 in the
normal mode but forward biases its base-collector
diode, feeding Q5 1s base current to the base of Q6 and
saturating the latter transistor. When Q5 is operating
in this latter mode, its base is at + 1. 6 V. To avoid
breaking down its base-emitter junction, D1, D2 and
D4 are provided to limit Q2 1s collector {and hence Q5 1s
emitter} to +2. 1 V.

The rest of the circuitry in the "super NAND flip- flop"
has been discussed previous Iy; the changes in the
centra I latch and output buffers were made on Iy to
permit the latch transistors to drive extra outputs with
out overload.

+16 +16 +16 +16

..

.) ..
0::

::l o

Figure 5-11. Super NAND Flip- Flop

38

+16 +16 +16 +16 +16

3K

Figure 5-12. Central Latch and Output Buffer

DC FI ip- Flop

Unlike other B-Series flip-flops, the HOC flip-flopll
in Figure 5-13 is not clocked. It also uses diode cross
coupl ing in the latch.

The operation of the diode cross-coupled latch is as
follows. Suppose Q 1 is saturated. I ts co II ector is then
at +0.4 V and P2 is at 0.4+ 0.7 = + 1. 1 V. P4 is at
+ 1. 1 -0.7 = +0.4 V and the base of Q2 is at +0.4
-2 x 0.7 =-1. 0 V. Thus Q2 is cut off, and point Pl
is permitted to rise to Q lis Vbe sat = 0.8 V + 3 x 0.7
= +2. 9 V, and Q 1 is thus kept saturated. The co I lector
of Q2 is actually permitted to rise to Vbe sat of Q4
plus the drop across the Zener diode VR2 (0.8 V + 3.3 V
= 4. 1 V). Thus the diode from Q2 1s collector (+4. 1 V)
to Pl (+2.9 V) is back-biased and the drive which keeps
Ql saturated comes from the 8.2K resistor from Pl to
+16 V.

So far, we have assumed that all of the "setll and IIreset ll

inputs are grounded, permitting points P3 and P4 to

assume any positive voltage. If, however, the two
inputs of any pair of set inputs (the two inputs of pair 1
are ANDed, as are the inputs of pairs 2 and 3) are both
raised to +4 V, point P3 and hence the base of Q1 will
receive drive from the 3K resistor associated with the
activated pair of inputs. Thus Q 1 wi II become satura
ted even if it was previously cut off. The same reason
ing may be appl ied to resetting the fI ip- flop. This fl ip
flop will begin regeneration whenever the logical
arrangement of the inputs calls for a change of state.

Zener diodes are used to couple the output buffers to
the central latch. Since the cross-coupling diode to
the collector of a latch transistor becomes back-biased
when the transistor is cut off, the output buffer deter
mines the maximum collector excursion of the latch
transistor. Thus the collector of the latch transistor can
rise to +4. 1 V (= 0.8 V Vbe for the buffer transistor
+3.3 V for the Zener diode), saturating the output
buffer.

+16 +16 +16 +16

+16 +16

'-v--'
Pair 1

T

Set Inputs

~
Set
Gate
Out

I
b

Reset
Gate
Out

+16

Reset Awt
In Reset

In

Figure 5-13. DC Flip- Flop

39

· Repeater Flip- Flop

The function of the repeater flip- flop is to Set and
Reset upon the receipt of either +8 VDC or 0 VDC
respectively, at the Aux Set In point, so long as there
is +8 VDC at the Common Hold In point, which is
called an "enable" voltage. If there is 0 VDC at the
Common Hold In point, then the repeater will not
change state. The Common Clock In furnishes the
circuit with a timing clock for synchronous operation
with other flip- flops. The clock's negative-going
transition causes the repeater to change state according
to its input logic. In the DC Set In mode, a negative
transition at the DC Set In point will cause the repeater
to assume the Set state, regardless of the condition of
the Common Hold In point and the Common Clock In
point. Thus, the DC Set In point provides a means of
setting the repeater asynchronously. The repeater is
a Iso provided with a Register In entry, which allows
the repeater to be wired to the output of an external
register, normally a dynamic register. Under this
modus operandi, the repeater will copy the contents of
the output stage of the external register, regardless of
the condition of the Common Hold In point. It is,
however, dependent upon the receipt of the clock at
the Common Clock In point, and as such, operates in
the synchronous mode.

Description

Assume for the moment that the repeater is in the Reset
state. In this state, the transistors wi II assume the
following conditions:

Ql, Q2, and Q5 Off Q3 and Q4 On

Q 1 is the trigger stage for the reset input; Q5 is the
trigger stage for the set input.

Set Operation

Assuming that the Common Hold In point, pin 29, is
"enabled" by +8 VDC, diodes CRl and CR12 will be
reverse-biased. With OVDC at the Aux Set In point,
pin 30, the junction of R18 andVR2 will be at ~ -3VDC,
keeping the base of Q5 negative in respect to its emitter
(reverse-biased), so Q5 will be off. When the Aux Set
In point, however, rises to +8 VDC, the bias point at
the junction of R18 and VR2 will rise positive enough to
forward bias the base of Q5, and turn Q5 on. With Q5
on, its collector falls towards 0 VDC (ground), and
current in the collector circuit causes pin 1 of T2 to go
negative in respect to pin 2. By transformer action,
pin 4 of T2 goes positive in respect to pin 3, which in
turn reverse-biases CR14 and CR15, thus causing no
further change in the repeater. With Q5 on, it is said
to be "primed". With its collector at 0 VDC, CR 6 in
the co II ector circuit is forward- biased, causing the
potential at the cathode of VR 1 in the base circuit of
Q 1 to be 0 VDC, keeping the base of Q 1 reverse-biased
and thus keeping Q 1 off.

40

The system clock appears at the Common Clock In points,
pins 43 and 42. The secondary of the input transformer
has one leg tied to ground, and the other leg tied to the
cathodes of CR23 and CR24. When the transformer
coupled c lock goes positive at the secondary, the diodes
CR23 and CR24 are reverse-biased, and therefore, the
positive swing of the clock has no effect upon the cir
cuit. When the clock swings in the negative direction,
however, the diodes CR23 and CR24 will be forward
biased, and will couple the negative-going transition
to the cathode of CR22 and to the base of Q5. Since
Ql is in the off condition, the clock will have little
effect upon the base bias of Ql. Q5, however, is in
the on condition, and the negative swing of the clock
wi II pull down the potential of the base of Q5 negative
enough to cause Q5 to turn off. When Q5 turns off, its
collector rises towards +8 VDC, causing the current in
T2 to change direction momentarily, reversing the field,
and, by transformer action, wi II cause pin 4 of T2 to
swing in the negative direction. This negative transition
wi II forward- bias CR 14 and CR 15, causing the bases of
Q4 and Q3 to go negative in respect to their emitters,
turning both transistors off. When Q4 turns off, its
collector rises toward +8 VDC, which reverse-biases
CRll, allowing the base of Q2 to go positive through
the voltage divider network Rl, Rll, and R15, turning
Q2 on. After the clock has left, Q5 will turn back on
if the Aux Set In point is again at +8 VDC. With Q3
and Q4 off, their collectors, and the Set outputs, wi II
be at +8 VDC. With Q2 on, its collector, and the
Reset outputs, wi II be at 0 VDC. The repeater is now
in the Set state.

Reset Operation

Let us assume for the moment that the repeater is in the
Set state with the Common Hold In point at +8 VDC
("enabled ll

), and the Aux Set In point at 0 VDC (no set
input). In this condition, the base of Q5 wi II be at a
negative potential in respect to the grounded emi tter,
and Q5 therefore wi II not be II primed". Q5, being off,
puts its collector potential at +8 VDC, which reverse
biases CR6. CR7 is also reverse-biased by the lIenable".
Therefore a voltage divider network of R4, VR 1, and
R 14 wi II cause the base of Q 1 to become positive in
respect to its emitter, turning Q 1 on. Q 1 is now
"primed ll

• When Q 1 turns on, its collector goes towards
o VDC, causing current in its collector circuit to put
pin 1 of Tl negative in respect to pin 2. Through trans
former action, pin 4 of T 1 becomes more positive than
pin 3, and CR13 is thus reverse-biased, causing no
further change in the circuit. When the clock appears
at the Common Clock In point, it forward-biases CR23,
CR22, and CR19. This causes the potential at the
cathode of Zener diode, VR 1 to drop, making the base
of Q 1 negalive in respect to its emitt~r, turning Q 1 off.
When Q 1 turns off, its collector rises towards +8 VDC,
causing the field of Tl to change in the same manner as
T2 did. Pin 4 of Tl wi \I then go negative in respect to
pin 3, and CR 13 wi II be forward- biased, which, in turn,

causes Q2 to turn off. When Q2 turns off, its collector
rises towards +B VDC which reverse-biases CRB, allow
ing the base potential of Q4 to rise, turning Q4 on. At
the same time, CR4 in the collector circuit of Q2 is
reverse-biased, allowing the base of Q3 to rise, turning
Q3 on. With the collector of Q4 near 0 VDC, CR11
is forward-biased, keeping the base of Q2 reverse
biased. The repeater is now in the Reset state.

DC Set Input Operation

The DC Set In point, pin 31, if used, wi II be normally
at +B VDC, thus keeping diodes CR9 and CR 10 reverse
biased. This allows the repeater to operate in the
normal manner. When, however, the DC Set In point
goes negative, it forward-biases CR9 and CR10. CR9
will couple the negative transition to the base of Q4
through C6 and R 13, causing Q4 to turn off. CR 10
wi II couple the negative transition to the base of Q3
via R 11 and C4, turning Q3 off. With Q4 off, its
collector will go towards 0 VDC, forward-biasing CR11

+ 25", ~

RI

-t 8V

j~' m

CRI

r' :;i~
CR3 CR4

CRB

EF
t-- r--

R2

~R13 RII ;: C4 R12- r: C5

;'R8

eRr I

h

~J
~ ffi~ r-~ r

~Rt9

C7

W2 RI4 RI5 RI6

-Z3V~

C~?3 CR24

and causing the base of Q2 to go negative in respect to
its emitter, turning Q2 off. The repeater is now in the
Set state. Notice that the Common Hold In po int and
the Common C lock In point had no effect upon the DC
Set In operation.

Register Input Operation

I f the Register In operation option is chosen, the
Register In point, pin 23, wi II be wired to an externa I
register. The condition of the output stage of the
external register will determine whether the repeater
wi II Set or Reset. Pin 23 is connected directly to the
base of Q5. Therefore, if the external stage is at
+B VDC j it wi II II prime ll Q5 (turn it on). When the
c lock appears, Q5 wi II turn off, causing the same chain
of events as the normal Aux Set In operation did. The
same is true for the Reset condition. Notice, however,
that in the Register In operation, the circuit did not
rely upon the condition of the Common Hold In.

R3 R4 Q5

CR2 , ,rho CR5

~S112 If- -;t:R6 CR7

f---
4 I

~R12

r- I-- I---

; C6 RI3 CRl4 CRI5 ~16 ~7 reRI 8

~

~
vR2

~
CR21

~ ~

RI7
;:

RI8

1"11 TI" 1~ AT 2

11 1
CIRCUIT I 36 3!> 31 43 42 32 33 34
QRCuIT Z 17 16 Zl 43 4Z 20 19 18

SIGNAL
NAIoIE

Figure 5-14. Repeater FI ip -Flop

41

- .30 29
23 22 29

~ ~ Z

~ ~ g
~ :i i

8

SECTION 6. HOW A COMPUTER WORKS

INTRODUCTION

A digital computer is basically a high speed device
designed to manipulate numbers. The computer has
built into it all the capabilities desired by its producer.
It is designed to have various means of placing data
within the machine and giving information via a variety
of output equipment.

The configuration of equipment using the information
input and output equipment with a digital computer is
called a data processing system. This system is a useless
cong lomeration of hardware un less a man te lis II the
system" what it is to do. To "tell" the system what to
do, the man writes a program. This program is then put
into the computer and when the system is started cor
rectly this system will lloperate under program controP'.
The system in running will do just those operations the
programmer has specified, in the sequence he has
specified, using the data he has specified, and giving
answers he has specified. If for any reason, the pro
grammer has made a mistake, the system wi II make that
same mistake. Therefore, it is essential that the pro
grammer know exactly what is to be done, and that he
makes no error in tell ing the system, by the program,
exactly what is to be accompl ished.

It is, therefore, important that the reader, as a
maintainance man for data processing systems, know
the internal functionings of the computer and how it
handles the program written for it. This discussion will
limit itself to what happens inside a computer rather
than how it happens. How it happens wi II be a matter
for later learning.

Continual reference wi II be made to information as
decimal digits and letters of the alphabet. It should be
remembered that inside the machine these are stored
and manipulated as binary codes; however, the
convention adopted here causes no loss of generality.

ARITHMETIC - LOGICAL UNIT

The arithmetic-logical unit (ALU) and the control unit
usually are located physically in the same cabinet.
Frequently the ALU is broadened to include the control
unit also, but this seldom causes any confusion. The
cabinet is large. This is understandab~e because it
contains the fast-access storage device, and the
registers for holding the data being operated upon and
for controlling operations. It also houses all the
associated electronic hardware necessary to accomplish

43

arithmetic and logical operations and to control the
transfer of information among the various units--input,
output, and storage. This latter is called "switching",
which is rather an obvious name for a function pri
mari�y concerned with setting up the electronic
commun ication lines to transfer information between
any two prescribed points. Everything discussed in this
section occurs in the ALU and the control units.

LOCATIONS AND ADDRESSES

Because different equipments vary in specifications of
their memories this section, for purposes of simplicity,
assumes specifications which are completely represen
tative and wi II serve to provide an understanding of
what happens inside the machine. This fictitious
computer has a magnetic storage, with information
stored in the form of "words" consisting of five char
acters each. There is a capacity of 2,048 words. The
words all have a specific location in magnetic storage,
and every location has an address, ranging from 0000
to 2047. Convention, based on requirements of the
earlier computers, dictates that the first location have
the address 0000, not 0001, and this practice is carried
over into present day computer terminology. Thus the
address of the last location is always one less than the
total number of words that can be stored.

PICTORIAL REPRESENTATION OF MEMORY

The 2048 words of memory can be represented pictorially
as many lots on a long street. Each lot contains five
characters, and each has an address of its own; the
first lot is the street (memory) address 0000, the second
is 0001 and so on up to the last, which is 2047. Now
assume that two of the lots have information or data in
them; the lot with the address 1000 has the number
25640 and the next lot address 1001, has the number
14628. The rest of the lots are empty; that is, there is
no information in them. A special character is assigned
as a II blank", or contains all O's (OOOOO). After placing
the two numbers in the memory locations wi th addresses
1000 and 1001, memory can be represented as:

Address F~f~~ -+---+--~~'
Content LU

Figure 6-1. Two Numbers in Memory

It should be remembered that the numbers in memory
are stored as binary code characters, not as decimal
characters, but no genera I ity is lost in picturing them
and talking about them as ordinary decimal numbers.

For purposes of illustration in this section, it wi II be
assumed that any information required is avai lable in
memory, without considering how it got there. In the
next section, memory wi II be explained.

LOCATION AND ADDRESS TERMINOLOGY

It is a bit cumbersome to continue referring to the
location in memory as II the location whose address is
100011

, or some other address. Consequently, the
convention wi II be adopted that address 1000 and
location 1000 wi II mean the same thing i.e., the
location in memory wi th address 1000. Therefore, in
the example being used, the number 25640 is located
or stored at address 1000 and 14628 at address 1001.

INSTRUCTIONS AND PROGRAMS

The operation to be performed by the computer is to add
the two numbers stored at addresses 1000 and 1001 and
put the sum into address 1002. So far, the machine has
the two numbers, but no way of knowing what it is
supposed to do. Obvious Iy, some II instructions ll are
required. It would be well to find out just what
II instructions ll are and what II instructions ll look I ike.
An order te II ing the computer what operation to perform
is called an instruction. A series of instructions to be
fo Ilowed by the machine in performing a sequence of
operations is ca lied the program. An instruction, for
example, may tell the machine to ADD. This tells it
what it is supposed to do, but it does not te II it what
number it is to add. The number to be added must, of
course, be in memory and the instruction must inc lude
information telling the equipment just what number is
to be added. Because every location in memory has an
address which the machine can find immediately,
inclusion of the address as part of the instruction will
give it the necessary information to find the number to
be added. An instruction, then, must consist of ~o
parts: an operation part, telling the computer what to
do, and an address part, telling it where to get the
information to be operated on.

With four digits required to identify everyone of the
2048 locations in memory, a complete instruction can
be put into one 5- character wordpr6vided its operation
part consists of only one character since one character
has a possibility of being anyone of 64 combinations of
binary digits. That many different operations cou Id be
provided and still limit the length of the instruction to
one word of 5 characters. In practice, this is not ample;
some computers have a Imost that many di fferent opera
tions' but others operate with only 16 or 32.

44

It is important to note that the instruction does not
include the number to be added; it only tells the
machine where to go in memory to find the number.

Format of an Instruction

The instruction, then, consists of a one-character
operation part and a four- character address part. The
computer interprets the operation part and sets up the
circuits necessary to accomplish that particular operation.
The address part tells it where to get the information.
The operation of adding to be performed in the example
obviously requires an ADD instruction. The character
II All wi II be assigned for this purpose. The equipment
wi II recognize this character II A" as an order to add.
Therefore, if a number located at address 1500 is to be
added, the instruction in words would read ADD 1500,
but in machine language it would be abbreviated to
A 1500, exactly five characters for one word.

Location of Instructions

It was noted that the instructions as we II as data are
stored in memory. Consequently, before the addition of
the example can be accomplished, it wi II be necessary
to have in memory the necessary instructions for
performing this operation. Because memory contains
some instructions and information to be operated on, it
is well to keep them separate by assigning blocks of
addresses in memory for the exclusive purpose of storing
instructions and other blocks for storing data. In this
example, instructions wi II be stored in memory at the
beginning of address 0000.

Interpretation of the Address Part

The instruction IIA1500 11 was assigned as that which
would tell the computer to add the number located at
address 1500 to something. It is important to note that
this instruction does not mean to add the number 1500 to
another number. The distinction between address in
memory, which is simply a location and the content of
that location must be borne in mind at all times. The
reason for the necessity of this distinction will become
apparent in later paragraphs.

H OW A COMPUTER ADDS

Returning to the addition of the two numbers, 25640 at
address 1000 and 14628 at address 1001, it is apparent
thdt instructions are necessary and must be placed in
memory to perform th is operation. Operations are not
performed in memory, but in a special type storage
device called a register. The register in this equipment
has a capacity of ten characters or two words, and
following standard practices it will be referred-to-as an
accumulator. The methods of addition will be to place
the number located at address 1000 into the accumulator,

and add to it the other number, putting the sum of the
two into the accumulator. This sum will then be stored
at address 1002.

Addition Instructions

It is now necessary to determine what instructions are
required to accomplish this addition. The first one
must place the number 25640, from address 1000 in the
accumulator. Is the ADD instruction sufficient for this
purpose? Not by the method of operation decided
above. There is a chance that the data from a previous
operation may be in the accumulator and the ADD
instruction wou Id actua Ily add 25640 to whatever was
present before. The accumulator must first be set to
all zeros, and because addition is a frequent operation,
it will be convenient to have an instruction which wi II
first clear the accumulator (i.e., set it so it contains
all zeros), and then place in it the number 25640. This
instruction will be called RESET ADD and will be
denoted by the letter code II R". Therefore, the first
instruction is RESET ADD 1000 in code Rl000, which
means: set the accumulator to 0 and then add into it
the number located at address 1000.

Once the number 25640 is in the accumulator, the ADD
instruction will accomplish the following: take the
number found at the location specified by the address,
add it to the number in the accumulator, and place the
sum of the two in the accumulator, removing the

original number there. Therefore, ADD 1001, in code
A 1001, will take the num ber 14628 found in address
1001 and add it to 25640 in the accumulator, and place
the sum 40268 in the accumulator, wiping out the 25640
that was there.

It is now necessary to store the number 40268 in location
1002. Another operation is involved; which wi II be
called STORE the character, code liS". The instruction
STORE 1 002, in code S 1 002, wi II instruct the machine
to take the number in the accumulator and store it in
the location with address 1002 wiping out any informa
tion in that location. The three instructions, then, wi II
accomplish the addition desired. It is only necessary to
place the instruction in memory and determine the
method of sequence of operation in the equipment.

Sequence of Perform ing Instructions

It appears that a simple way of having a computer
perform a sequence of operations is to have it start with
the instruction at the first address, do whatever the
instruction says, take the instruction of the next address,
and so on. This turns out to be very convenient. The
computer of this example is designed to perform opera
tions in just that manner i therefore, the three instruc
tions necessary to accomplish the addition are placed in
memory beginning with the location at address 0000.
Before beginning the addition operation, memory looks
like this:

Figure 6-2. Memory Before Addition Operation

Detai I of the Addition Operation

It will be helpful in obtaining an understanding of
machine operation to repeat the addition example in
detail, depicting exactly what happened in carrying
out each instruction. It is assumed that before begin
ning the sequence of instructions, the accumulator
contains the number 182359. It makes no difference
what number, if any, is actually there, because the

0000182359 I

instruction wi II make sure that it is cleared before the
addition begins. Similarly, though memory is assumed
to be empty except for the three instructions, and the
two numbers to be added, it makes no difference if
there are other data locations not used.

Before executing the first instruction, memory and the
accumulator look I ike this. The arrow indicates that
the first instruction is the next to be carried out:

Accumu lator

Figure 6 -3. Memory Before Executing First Instruction

45

After executing the first instruction RESET ADD 1000,
the memory looks like Figure 6-4. (The arrow indicates

t 0000025640

that the second instruction is the next to be performed.)

/ 2046 /2047 (

~I I .

Accumulator

Figure 6-4. Memory After First Instruction

Notice that the RESET ADD 1000 instruction erased
the number 182359 that was in the accumulator. Also
notice that memory address 1000 sti II contains the
number 25640. Although transferred to the accumulator,
it still remains available in memory for further use if

required. After execution of the second instruction
ADD 1001, memory and the accumulator look like
Figure 6-5. (The arrow indicates that the third instruc
tion is the next to be performed.)

/ 2046 / 2047 /

~...&.....---.L----L-:S'" .t I I I
t 0000040268 Accumulator

Figure 6-5. Memory After Second Instruction

Note that the accumu lator now contains the sum of the
two numbers which has replaced the 25640 that was
there.

0000040268

Finally, after execution of the last instruction STORE
1002, memory and accumulator look like Figure 6-6.

/ 2047 /

I I
Accumu lator

Figure 6-6. Memory After Last Instruction

Notice that the STORE instruction placed the contents
of the accumulator in memory location 1002, but left
the number in the accumulator where it i·s available for
other operations.

Rep~ated Operations

In practice it is seldom that only two members are added
together for a single sum. An adding machine or pencil
and paper would be faster and more economical than
using a computer. Suppose that instead of adding a

46

single pair of numbers, the problem called for adding
500 pairs and storing 500 different sums. The first 500
numbers are stored in memory, beginning at location
0500 (and of course ending at 0999): The next 500 are
stored in location 1000 through 1499. Answers are to
be put in locations 1500 through 1999. The problem
calls for adding the numbers in location 0500 to the
number in location 1000 and storing the sum in 1500,
then the number in 0501 to the one in 1001 and storing
the sum in 1501, etc. Obviously the way to do this is
to use the three instructions already developed. See

Figure 6-7.

RESET ADD 0500 R0500
ADD 1000 AlOOO
STORE 1500 S1500
RESET ADD 0501 R0501
ADD 1001 A1001
STORE 1501 51501

--
RESET ADD 0999 R0999
ADD 1499 A1499
STORE 1999 S1999

Figure 6-7. Addition Program

Not only would the person writing instructions soon
become finger weary, but 1500 separate instructions
are required. Since the original data and the answers
require 1500 words of storage in memory, a total of
3000 words is beyond the 2048 words of capacity avai 1-
able. Therefore, to satisfy the joint requirements of
cutting down the number of instructions for the operation
and for minimizing the amount of storage space needed
to carry the program in memory, a more practica I
1.-. 'I so IUTIOn IS neeaea.

A brief study of the instructions revealed that a regu lar
cycle of RESET ADD, ADDA, and STOREA is formed.
The only difference is in the addresses. The addresses,
it wi" be noted, increase in a regular pattern. The
address of each instruction being one more than the
address of the last similar instructioni RESET ADD 1501
rollows RESET ADD 0500, RESET ADD 0502 follows
RESET ADD 0501. If it would be possible to go through
the first three instructions then add 1 to each of the
three addresses and repeat the programi add 1 again to
each of the three instructions and repeat the programi
etc., it appears that a large number of instructions
(1500 in this case) could be reduced to a very few.
Can this be done? Instructions are not data but is it
possible to operate on them in the same manner as on
data? Before this question is answered it will be instruc
tive to consider in detai I exactly what happens in the
machine during the execution of a single instruction.

WHAT HAPPENS IN THE EXECUTION OF AN
INSTRUCTION

For the sake of illustration, memory contains three
instructions used in the addition example:

Memory Location 0000
0001
0002

RI000
AlDOl
S1002

Obviously, the first order of business for the machine
is to find the instruction in location 0000; it can do
noth ing unti lit has the instruction avai lab Ie. More
generally, after completing the operation called for
by the instruction the machine must find the next one.

47

It needs some means of keeping track of where it is in
performing a long series of operations. Because memory
is on Iy a place to store instructions and data and does
not enter into any computations it appears that something
else must be provided to enable the equipment to know
what instruction it is to perform next. Likewise, it
appears that the equipment needs some place to put an
instruction temporari iy whi ie it examines the operation
part to determine what is to be done and the address
part to determine where the data is to come from or
where it is to be stored. The function of keeping track
of what instruction is to be executed is done by a special
register called the Address Counter. The temporary
holding place for the instruction is the Instruction
Register. Both are part of the control unit.

Suppose now that the Address Counter is initially set at
0000 and the addition operation commences. The first
thing the equipment does is to inspect the number
located in the Address Register -- 0000. It goes to th is
address and transfers the contents -- the first instruction
-- to the Instruction Register. At the same time, a 11111
is added to the contents of the Address Counter so it now
contains 0001. The transfer of the instruction to the
instruction Register does not remove it from memory; it
sti II remains avai lable for use later just as other data.

The Instruction Register may be considered as consisting
of two parts. Into one part the operation code is placed.
Into the other, the address. The equipment inspects the
operation code and interprets it as an order to accomplish
a specific function (in this case to RESET ADD) and sets
up the electronic circuits necessary to do this operation.
When the circuits are properly established it looks at
the address part of the Instruction Register and determines
what location is involved and performs the RESET ADD
operation on the number in that location. The operation
completed, the equipment turns to the Address Counter
where it now finds 0001. The operational cycle is
repeated in the same manner as the first instruction and
when the next instruction is to be performed, the Address
Register reads 0002. The complete carrying out of one
instruction may then be considered as involving the
following separate steps which are also shown in Figure
6-8.

a. Determine location of instruction
b. Obtain instruction; reset address counter
c. Interpret instruction and set up necessary

circuits
d. Execute the instruction

The first three steps (a, b, c) are often combined into
the interpretation part of the cycle. The last step is
called the execution part. Regardless of the nomen
clature and type of computer, the instruction cycle can
be considered as consisting of the four steps described.
A complete understanding of what occurs in carrying out
an instruction will make clear the general operation
within a digital computer.

Looks at
address counter I 0 .. -... Goes to t1tl~

_0.t.dres.s .,)71f111J---
Takes instruction to

, Instruction Register

[j1000 l-'~G)~

0 ¢.Lk .0 d-f~
4 00 s at operation co e

Looks at

'0
Operates

~ ' __ ",0 ... -_~0

Figure 6-8. How A Computer Executes An Instruction

REPEATED OPERATIONS

With an understanding of what happens in the instruction
cycle, the method of changing the addresses of instruc
tions to permit condensing the length of the program
required to perform repeated sequences of operation can
be understood. Instructions that wi II be remembered
ere stored in memory in exactly the same manner as data.
In the examples so for, all data have been straight
numbers and the three operation codes have been letters,
but it is evident that data can include alphabetical
information and likewise that there is nothing to prevent
some operation code from being numbers. If the entire
contents of memory could be spread out for inspect.ion,
instructions and data cou Id not be differentiated from
one another. The machine treats each impartially; how
it considers each depends entirely on what part of the
instruction cyc Ie it is in. If by some chance data is
stored in the location of ail instruction, as soon as the
address counter reaches the address of that location, the
equipment wi II transfer the content -- the data -- to
the instruction register, treat the first digit as a opera
tion code and the last four as address and proceed to

48

execute that instruction. Similarly, if the address part
of an instruction is the location of another instruction
(or the same one, for that matter), the equipment will
take the contents of the specified location -- the
instruction -- and perform the designated operation on
it. The first condition of course is to be avoided and
presents a programming error, the second is of consider
able use in programming repeated sequences of operations.

The method of programming a repeated sequence of
instruction can now be developed. The data consists
of 500 numbers if' locations 0500- 0999. 500 more
numbers in 1000-1499, and the pairs of numbers in
locations 500 apart are to be added with the resu Iting
sum stored in sequential locations 1500-1999. From
previous work it is known that the following instructions
will add the first pair and store the resulting sum:

RESET ADD
ADD
STORE

0500
1000
1500

R0500
A1000
S1500

The next step is to take the first instruction and increase
the address by II 111 . Th is can be accomp I ished by
placing the first instruction in the accumulator, adding
II 111 to it, and storing the resul t back in the location of
the first instruction. The same thing is to be done with
the second and third instructions. With the three
instructions used in the in itial add ition example, the
location of storage vv'as not incorporated \vith the
program. Several more instructions are now to be added.
It will be convenient if-the listing shows where the
instructions are to be placed in memory. The first three
instructions are:

0000
0001
0002

RESET ADD
ADD
STORE

0500
1000
1500

R0500
A1000
S1500

Because the address counter increases by one with each
instruction, the next goes in memory location 0003.
This instruction is to place RESET ADD 0500 (in code
R0500) into the accumulator. After the STORE instruc
tion is executed the sum of the first addition is still
there. However, RESET ADD will clear the accumulator
and place into it the contents of the address placed into
it. The address of R0500 is 0000. Therefore; the next
instruction is:

0003 RESET ADD 0000 ROOOO

A 11111 is to be added to this, but so far this digit is not
available. Therefore, a'lIlli will be assumed to be in
memory in some unused ~ocation. There is room starting
with 2001. So in 2001 the quantity 00001 is stored.
The next instruction is:

0004 ADD 2001 A2001

After completing this operation the accumulator contents
are R0501. This is exactly what is desired and it is
stored back in location 0000:

0005 STORE 0000 SOOOO

A similar set of instructions will change ADD 1000 to
ADD 1001 and another set of three STORE 1500 to
STORE 1501.

It is probably obvious by now that the notations as to
the contents of the accumulator wi II be quite helpful.
Therefore, in writing the complete sequence of instruc
tions, so far completed, this wi II be included and a
systematic format for writing instructions adopted. Two
other new conventions will also be introduced. Usually
in writing instructions the exact figure or contents of
the address iocations are not known. All that is speci
fied is that the contents of a certain address wi II be
operated on in accordance with the instruction. A
short form for IIcontents of address ___ II will be helpful.
This will be denoted by (m), where IIm ll is the address.
The second convention concerns a marking for addresses

49

which wi II change during the course of a problem and
are keyed by enclosing the starting address in squared
brackets. In this example the first RESET ADD address
0500 (because it is going to change during the course
of the operation) the instruction wi II be written
RESET ADD [0500]. The brackets are an aid to the
programmer in being certain that all variable addresses
are modified during the course of the sequence of
operations. Consequently, the instructions necessary
to accomplish the first addition and modify the addresses
for subsequent operations are shown in Figure 6-9.

Instruction Op~ration

Location Word Code Address Accumulator

[ooooJ RESET ADD R 0500 (0500)
[OOOlJ ADD A 1500 (0500) + (1000)
[0002J STORE S 1500 (0500) + (1000)
0003 RESET ADD R 0000 R0500
0004 ADD A 2001 R0501
0005 STORE S 0000 R0501
0006 RESET ADD R 0001 A1000
0007 ADD A 2001 A1001
0008 STORE S 0001 A100l
0009 RESET ADD R 0002 S1500
0010 ADD A 2001 51501
0011 STORE S 0002 S1501
2001 a 0001

Figure 6-9. Program of Addition, Storage and
Modificotion of Address-

The 12 instructions make the initial addition and storage
of the sum and modi fy the address of the fi rst three
instructions so that at the end of the steps the first
three instructions are in coded characters, R0501,
A1001, and S1501. This is the exact requirement for
adding the next pair of figures and storing the result.
All that remains now is to instruct the machine to return
to the beginning -- that is to address 0000 -- for its
next instruction.

After completing the last instruction, the one in location
0011, the address counter contains 0012. If in this
memory location an instruction can be placed, which
will tell the machine to return to the location 0000 for
its next instruction, instead of the normal progression
to location 0013, the objective wi II be accomplished.
This instruction is called TRANSFER and it means: do
nothing with this instruction, but go to location shown
in the address for the next one. The address part of
the TRANSFER instruction is always the location in
which the machine will find its next instruction. It
constitutes a means of breaking the normal progression
or sequence of instruction execution. In effect, all
that happens during the execution phase of instruction
is the resetting of the address counter to the specified
address -- in this case 0000 -- wiping out the sequentia I
address norma Ily there. Therefore, the instruction at

0012 is:

0012 TRANSFER T 0000 Transfers back
to 0000.

This accomplishes the objective desired; the 1500
instructions norma lIy required have been reduced to
13. Of course each addition requires 13 steps instead
of three or four times as much time to complete the
addition. However, arithmetic operations are performed
at high rates of speed in the ALU and it is almost always
more effective overa II to perform the address modification
than it is to take most of the space in memory for
instructions and thereby be forced to move in small
blocks of data severa I times to comp lete the operation.

A program of this kind in which a sequence of operations
is performed on one set of data and then the program
transferred back to the beginning for performance of
another set and so on is called a loop. There is only
one thing missing in the loop developed above. The
machine would never stop repeating it. There are only
500 numbered pairs to be added, but the computer
doesn't know that. After completing the last addition
required (the addresses are 0999, 1499, and 1999) it
would modify the addresses to 1000, 1500, and 2000
and continue adding. It will not continue forever,
sooner or later an address in an instruction wi II exceed
the 2047 or the program may replace a good instruction
with gibberish which will have as its first character an
invalid operation code either of which will cause the
equipment to stop. Obviously this is an undesirable
state of affairs, because good data which may be
required for subsequent operations may be replaced by
"garbage". Being "caught in a loop" is to be avoided.

The way out is to insert a test in the program by means
of which the computer can determine when it has
completed the required number of cycles around the
loop. This test condition is easy to develop. It is
known in this example that when STORE 1999 has been
executed, the problem is completed. The equipment
however, wi II continue operating on instructions and
performing modifications of instructions specified by
the instructions in 0003 through 0011. After completing
the instruction located in 0011, the accumulator contains
STORE 2000, in code S2000, and at this point it is
known that the operation is completed. (Note that it is
not complete when the accumu lator contains S 1999 after
instruction 0011 -- the last pair of figures is sti II to be
added). Now suppose that after this instruction the
contents of the accumulator is compared with a constant
S2000 stored somewhere in memory just for this purpose
As long as the contents of the accumu lator do not equa I
this constant, the problem is to continue. As soon as
equality is reached the machine is to be stopped. This
requires two new instructions, which are defined as

50

follows:

0012

0013

0014

(1) The instruction COMPARE m in code "Cm"
means: compare the contents of the accumu lator
with the contents of memory location "m" then
go to the next instruction to find out what to do.

(2) The instruction TRANSFER IF EQUAL means: as
the resu It of the previous comparison if the
accumulator contents are equal to the specified
memory location contents go to the location "m"
which is the address part of this instruction, for
the next instruction; if the contents of the
accumulator and memory are not equal continue
in normal sequence for the next instruction. In
the example the instructions are inserted after
0011, the TRANSFER instruction being renum
bered; S2000 being stored in memory location
2002. (See Figure 6-10.)

COMPARE C 2002 Compares contents of
Accumulator with
S2000, C (2002)

TRANSFER E 0015 Loop exit; equal after
IF EQUAL last number pair is

added.
TRANSFER T 0000 Loop repeats as long

as accumu lator is not
equal to S2000.

0015 MACHINE
STOP

Figure 6-10. COMPARE and
TRANSFER IF EQUAL Instructions

Thus 15 steps are repeated in sequence by the computer
for every pair of additions. The last step is reached only
when the problem is completed. It is not necessary, of
course, that this be a machine stop, it could just as well
be the beginning of another phase of the overall problem
to be solved, the additions being justone portion.

Loops are common in computer programming techniques
and all must meet two requirements:

a. The addresses of instructions must be correctly
modified, and

b. An exit in the form of a test, must be provided to
stop the operation when the problem is complete.

Th is program is typica I of a loop and with the instructions
used it is as short as possible. Because of the commonness
of the loop instructions, computers usua Ily have one or
two instructions specifically designed for the modifications
of addresses. Use of the instructions would permit this
loop to be shortened by two instructions.

MEANINGS OF THE ADDRESS PORTION OF
INSTRUCTIONS

It will be observed from the instructions, which were
developed for the solution of the multiple addition.
problem, that the address portion of the instruction may
have different meanings depending upon what the
operation part of the instruction calls for. For example
RESET ADD, ADD, and COMPARE instructions the
equipment is instructed to take the contents from a
specified memory location and do something with it .• In
the STORE instruction it is told to put the contents of
the accumulator into the specified memory location.

It is thus apparent that the meaning of the address
part must be considered in conjunction with the operation
part. Because this meaning is not always obvious,
instruction manuals explaining the operation codes
available for a specific equipment always define very
carefully and precisely exactly what happens when an
instruction is carried out and what the address part means.
In operation, the equipment interprets the address part
of an instruction in conjunction with the operation part,
i. e., it "knows ll that in the TRANSFER instruction the
address part is the location where it wi II find its next
instruction, and not a place in memory where it is to
obtain data for execution of the TRANSFER instruction.
In genera I, the address part of an instruction can be
considered as falling into one of 8 categories:

Address of Data to be Taken From Memory

The operation part of some in·structions require data to
be taken from memory and some specified operation
accomplished on that data. Such instructions as RESET
ADD, ADD and COMPARE have been described. Others
are MULTIPLY, DIVIDE, SUBTRACT and RESET SUBTRACT
which are arithmetic operations quite similar to those
a Iready discussed. Data can a Iso be taken from memory
and be put into some other type of storage. For example,
in taking information from memory and putting it on the
magnetic tape, one instruction would select a tape unit
and the next might be an instruction like WRITE m, which
means; II take the contents of memory location IIm ll and
put it in the magnetic tape unit just hooked Up".

Address of Data to be Put Into Memory

This is the reverse condition of that above; the STORE
instruction previously defined is an example. Instruc
tions of this type tell the machine to take the information
from some specified place which depends upon the opera
tion part and store it in the memory location given by the
address part. In addition to the STORE instruction others
of this type involve taking data from some other storage
device such as a magnetic drum or from an input unit and
storing the data in designated memory locations.

5i

Address of Instructions

The address part of the instruction may be the location
in memory where the next instruction wi II be found.
The instructions are used to break the normal sequence
of executing operations. There are two types.

Unconditional Transfer Addresses

If the operation part of an instruction is an unconditional
transfer, the machine always goes to the memory location
shown as the address part for its next instruction. Every
computer has one instruction of this type. That is all that
is needed. The TRANSFER instruction defined previously
is an unconditional one -- the machine has no option,
but a Iways breaks the sequence of execution of operation.

Cond i ti ona I Trans fer Addresses

If the operation part of an instruction is a conditional
transfer, the machine mayor may not go to the memory
location shown as the address part of its next instruction.
It goes to this location only if the conditions of the
transfer are met, otherwise it takes its next instruction
in the normal sequence 0. e.; the one in the memory
location next following the conditional transfer instruc
tion). The TRANSFER IF EQUAL instruction used in
the addition example is typical, if the two words
compared are equal, the machine transfers to the address
shown for its next instruction. If not equa I, it takes the
next instruction in sequence and ignores the transfer
operation. Every computer has several cond-iHona-i
transfer instructions and examples are II transfer only if
one number is larger than another", IItransfer if the
accumulator contains a", and others.

Address Which are Absolute Numbers

Some instructions tell the machine to perform operations
which have nothing to do with the memory location or
other components, in which case the number shown in
the address portion serves a special purpose. As an
example, multiplication of money values frequently
result in an answer in the accumulator four or five
figures to the right of the decimal point. Suppose that
there are five digits which are to be cut down to two by
dropping the last three digits. This can be accompl ished
by telling the equipment to shift the contents to the
accumulator three places to the right and to discard the
figures moved out during the shift out operation. An
instruction such as SHIFT 0003 wi II do this. The
operation part instructs the equipment to shift and the
address part instructs how many places to shift. Shift
operations are usually necessary in multiplication and
division operations in a computer to be sure that decimal
points for units positions of answers are properly positioned.

Address as Identification of Input/Output Units

Obviously, if the ALU and the control unit are to use
the various input/output units, some means must be
provided to identify the units so that the proper
electronic circuits can be set up to connect the desired
unit to memory. All such units are therefore, assigned
address numbers which may be the same as some locations
in memory but the operation part of the instruction is
the machine signal that memory is not involved. For
example a tape unit may be address 0200 which is also
a memory location. The operation part of the instruction
to connect an input/output unit may be to SELECT. The
complete instruction SELECT 0200 tells the equipment
to set up communication lines to connect memory with
tape unit 0200.

Address as Identification of Indicator Units

All computers have a number of special indicators
which perform various functions. For example, in
adding numbers it may have been determined that the
maximum size of the answer would never exceed five
digits. A larger answer wou Id turn on "overflow
indicator" and this indicator could be checked by an

52

instruction to determine if it was on or not. By the use
of a conditional transfer instruction special instructions
would be followed by the machine to handle the over
flow condition. As an example suppose the "overflow
indicator" was assigned 1000. The instruction CHECK
1000 would mean determine the condition of the
"overflow indicator". The next instruction would be a
conditional transfer such as TRANSFER IF ON to "mil;
if the indicator were ON, the equipment would go to
location "m" for its next instruction (this might be the
first location of a series of special instructions to handle
the overflow condition) and if not ON it would proceed
to the next instruction in the normal sequence. Similar
indicators are provided to signal such factors as end of
magnetic tape, end of paper typewriter, no more cards
in the card punch, or an error in a printed line, and
all can be interrogated automatically by the machine
in a manner similar to the example given.

This ends our discussion of the general subject II How a
Computer Works". It was not the intention to give any
detailed information with regard to any specific
computer, but rather to give a general understanding
of computers from a very basic point of view.

SECTION 7. STORAGE SECTIONS

MAGNETIC CORE MEMORY

The most common high speed storage used in today's
digital computers is the magnetic core memory. This
type of data storage is based on the use of one core
element for each "bit" of information storage capabil
i ty of core memory.

Before describing the memory operation in detai I, a
review of the theory of core operation is presented.
The kind of core memory most widely used is the co
incident current variety, and only this variety will be
discussed.

Basic Element of a Core Memory

The basic element of a core memory is the core itself.
A core is a II doughnut" formed of ferrous .materia I and
a bonding agent. The core is extremely small and
appears as fo Ilows:

@ ~$kness
J-t Inside Diameter ~L

Outside Diameter

Figure 7 -1. Core

The sizes range from an outer diameter of about 1/8
inch to sizes which require magnification to work with
them.

A core made primarily of ferrous material is highly
magnetic, and tends to hold a magnetized state once
it has been subjected to a magnetizing fie Id. A core,
just manufactured, that is subjected to a magnetizing
force (H) develops a magnetic field (B). Assuming the
magnetizing force can be polarized in either direction,
we would be able to change the direction of the mag
netic fie Id (B) in the core.

If we were to wrap the core with a few turns of wire
and pass current through the looped wire in either di
rection, the magnetic field about the loops of wire
would be the magnetizing force exerted on the core.
The following diagram shows the result of such an oper
ation.

53

-
+100-----\

Figure 7 -2. Magnetized Core

Notice that as the direction of current changes the
direction of (B), the magnetization within the core
changes. This can be displayed using graphs of (B) and
(H) for a given core material. Assuming that the core
was unmagnetized when the process started, the follow
i ng will exp la i n the graph.

+
t

i 3

--H-+
----------------~ 2

3
4
5

7

Figure 7 -3. Magnetization Curve

Magnetic Field of a Core

The core, when starting with no magnetic fie Id (B),
wi II begin from the 0 position, or the crossing of the
8 - H lines at their 0 points. Once subjected to a
magnetizing force, the curve of a core's magnetic
field witt never again get to that particular point on
the graph without having special treatment to get it
there.

When current is' applied to the magnetizing coi I in
the direction shown by the current waveforms (path I),
the magnetizing force in will force the field within
the core along path 1 of the graph. The field within
the core will remain at, or near, the saturated level
shown unti I the magnetizing force drive current is re
versed. We call this saturation because no matter how
much more we increase the magnetizing force (H), the
magnetic fie Id within the core does not rise in propor
tion.

Now consider path 2 of the current waveform. The
current through the coi I is decreasing and the strength
of the magnetic field within the core follows path 2.
When we get to the point where (H) is zero, the (6)
curve sti II shows near saturation. This indicates that
once a core has been saturated by a magnetizing force
and the magnetizing force is removed, the core wi II
hold some magnetic field and not go to zero. This
feature of a core is called remanence and the field it
contains is called the residual magnetic field.

If we now continue along the current waveform path 2
from the zero point toward the left, the magnetic field
in the core wi II decrease from its saturated condition
and go into saturation in the opposite direction with a
complete Iy reversed fie Id.

In considering current waveform pcith 3, the core field
wi II follow curve 3 and go into saturation with a fu II
reversal of the fie Id within the core.

The amount of current in the winding to produce the
magnetizing force field is dependent upon the number
of turns of the coi I (N) and the current passing through
the coil (I) in the relationship.

~ = NI

It is conceivable that we could have a coil of one turn
and with increased current the same core saturation
result could be obtained. The configuration of such a
device would be as shown in the following diagram.

I
- -

Figure 7 -4. Coi I with One Turn

Again let us go to the graph of magnetizing force (H)
and core fie Id strength (6) in Figure 7 -3. From further

amplification of the graph we may gain further informa
tion.

54

6

-H~~--.-~----;-+-----~----- H

Hs

I
I

_rf.. I
""ma

I

I I
I I I

- H I 1/2 Hs s -H c

Figure 7-5. Magnetization Curve

Magnetizing force required to saturate the
core to saturation fie Id strength

~m = Saturation core field strength.

1/2Hs = Residual or remanent core field strength
in the absence of magnetizing force after
having been saturated.

Note that with 1/2 Hs magnetizing force the core field
strength does not change appreciably regardless of
which direction the core is saturated or whether the
magnetizing force (1/2 Hs) is positive or negative.

From Figure 7 -5, it is seen that if the core had been
saturated in the positive direction by a positive mag
netizing force, Hs, and then the magnetizing force
dropped to 0, there would remain in the core a field
of strength ~r, very near the saturation leve I. If, now,
a negative magnetizing force is caused to be present
to the level-1/2 Hs the field within the core would re
main polarized in the same direction and decrease
slightly in amplitude. If this negative magnetizing
force is removed, the core fie Id wi II return to the ap
proximate level %r. Further, if a negative magnetiz
ing force of -Hs is applied, the field within the core
will go through the critical point at the knee of the
curve when the magnetizing force passes -He and as
the magnetizing force increases in amplitude, the core
field will change polarity very rapidly, go beyond the
lower knee of the curve and wi II saturate again in the
opposite, or negative direction.

When the negative magnetizing force is removed, or
reduced to 0, the core fie Id wi II settle to a leve I of
-~r. This same reasoning process can be applied to

the graph to now get the core saturated in a positive
direction. This is left as an exercise for the students.
The major points to note in Figure 7-3 and discussion
are as fo Ilows:

a. Once saturated, a core field wi II return to ± ~r
when the magnetizing force is removed.

b. ± 1/2Hs wi II not change the core fie Id appreci
ably from ± ~r.

c. ± Hc is of greater amplitude than ± 1/2Hs and
as a result there is little likelihood that 1/2 Hs will
disturb the ± ~r field strength amplitude of a core.

d. ± Hs drives the core well beyond the knee of
the saturation level of a core.

Using Two Wires to Pass Current

Thus far we have talked of current in one wire only but
it is also possible that the current cou Id be divided into
two equal parts and passed through two separate wires
thus creating the same effects as was accomplished with
one wire. The configuration wouid be as shown in
Figure 7-6.

Wire X

Wire Y

Figure 7 -6. Two Wire Coi I

Note that the current passing through each wire from
either side of the core considered separately, is
designated as 1/2 the current required to saturate the
core to 0(10) or 1/2 the current required to saturate the
core to 1 (II). The "0" and 11111 field directions were
arbitrari Iy chosen in this case.

The fields of magnetizing force created by currents
flowing through wires "X" and "Y" are additive. Thus
if we were to consider the fie Id resu lting from current
flowing from left- to- right in both X and Y, that field
would be approximately twice the field that would be
caused by current flowing in only one of the wires,
either X or Y.

Further, if current were flowing in X from left- to- right
and in Y from right-to-Ieft, the resulting field of mag
netizing force would be approximately zero.

55

Inhibiting Current

With this information we can now insert another wire
through the core and use it to prevent magnetizing the
core in the 1 direction by causing current to pass
through that third wire always in a direction which
would prevent 1 core field saturation when desired, by
merely turning the third wire current off when 1 core
field is desired, and on when No-lor 0 core field is
desired. We would have a system of preventing or
inhibiting 1 when desired for the core. The configuration
would be:

Wire X

Inhibit
Wire

Wire Y

Figure 7 - 7. Inhibit Current Scheme

1/21 1

It must be explained that inhibit current wi II be equal
to about the va lue of 1/2 1

0
• If we now wish to record

a zero magnetic field in the core, assuming it is already
saturated and at zero, and we know that 1/2 11 will
flow in both X and Y wires, we must do something to
prevent thecumufative action of the 11 current from
switching the core field. To do this we must turn on
the inhibit wire current before the X and Y wire cur
rents are perm i tted to flow.

The following diagrams show the conditions with inhibit
and no inhibit currentg The cores are assumed to be
polarized to 0 at the time the currents flow and the
currents start and stop at the same instanto

IInhib = o ___ ~~

Core Set to 1

Core Remains Set at 0

Figure 7 -8. Conditions of Inhibit and No- Inhibit Current

What has been discussed thus far is the writing process
that takes place in magnetic core systems. Cores are
set at 0 prior to the "write" series of events which
will provide X and Y half currents to the selected
cores. Those cores which are to remain at 0 wi II a 1-
ways have the inhibit half current flowing in the wire
associated with those individual cores.

The Read Operation

Once the information is in the core, how is the infor
mation obtained out of the core for use when desired
and then restored to the core for retention in memory?
We have said that all cores are set to zero, after which
se lected lis are "written" back into the memory cores o

It shou Id be obvious now that when cores are set to
zero, only these which had a 1 polarization will have
a complete reversal of core field. It is this changing
core fie Id which indicates that the core had a 1 in
it when it was set to O. To gather this information or
to "sense" the change, a conductor in the presence of
the rapidly changing field is required. The conductor
in the changing magnetic field will have a voltage
induced in it and this voltage can be amplified and
used as a 1 indicator. Therefore another wire must be
laced through the core for sensing the change in polar
ity when the core is set to O.

Setting the selected cores to 0 is known as the read
operation. It is only during this period that a change
of core polarity contains usable information and there
fore, only during this period are the "sensing amplifiers"
activated and able to amplify a 1 voltage from the
sense wire, if it is present. The core configuration now
appears as in Figure 7-9:

Figure 7-9. Core Lacing and Various Currents

It shou Id be noted that ha If currents are reversed at
X and Y for read and write. Inhibit current flows only
during write and a Iways in the same direction.

In the case of the core being polarized to 1 the read
half currents flowing in X and Y wi II cause the field of
fhecore to rapidly charlgepoldrity and the collapsing
and bui Iding core field wi" occur when a 1 is written
into a core wh ich was previous Iy reset to zero by the
read half currents. However, at this time the voltage
induced in the sense wire is ignored.

56

Thus far we have talked about single cores. However
single cores are not used alone, but are gathered to
gether to handle multiple bits of storage. An example
of how they are arranged for storage of 16 bits of infor
mation is given in Figure 7 -10.

Yo

l I
Xo Xl X3

Inhibit Sense

Figure 7-10. Sixteen-Bit Core Storage Arrangement

Figure 7-10 points up pertinent information with regard
to core memories as follows:

a. Adjacent X lines have current flowing through
them in opposite directions.

b. Adjacent Y lines have current flowing through
them in opposite directions.

c. The inhibit lines parallel the Y lines and the
current wi II flow on Iy in one direction, i. e., in the
direction of Y read half-current.

d. One X and one Y line can address only one
core with fu II current, and this is the core at the cross
over point. All other cores on the X line and Y line
in use are subjected to only half current.

e. "It is possible to get either polarity of signal
from the sense line as input to the sense amplifier cir
cuits.

f. Cores on the Y drive line and X drive line, not
at the crossover point have noise generated by the half
current disturbing the core, which induces a small
voltage in the sense winding. The amplitude of the
vo Itage is dependent upon the flux change and the

polarity is determined by the direction of flux change
with respect to the sense winding.

g. All voltages induced in the sense winding are
algebraically additive.

That the currents in adjacent X lines and adjacent Y
lines are in opposite directions is a matter of core
plane design. What is shown in Figure 7-10 is one core
plane capable of holding 16 discrete bits of 1 or 0 in
formation. The reason for wiring the core plane in this
way will become clear as we begin to stack core planes
and as we go on with the discussion of the points men
tioned previously.

Core Addressing

Whether we read or write in the core memory, only one
X drive line and one Y drive line are used to address a
single core in a core plane. For instance if we use Xo
and Yo drive lines, we selected the core which is sub
jected to the cumulative magnetic fields created by
half current in Xo and half current in Yo. All other
cores on line Xo and line Yo are subjected to the mag
netic force caused by half currents in lines Xo and Yo.
These cores not selected are called "half selected. II

This applies to either read or write operations.

It wi II be noted that the inhibit winding goes through
every core in the plane and the current in this winding
has been specif.ied to be always in the same direction
as current in all Y lines which would cause a 0 to be
written in the selected core. In other words, the in
hibit current cancels the effect of the Y current for all
cores in the selected Y line. Assuming that the arrows
alongside X and Y drive lines in Figure 7 -10 are shown
in the 1 direction of current, the current in the inhibit
winding would be as shown in Figure 7-10.

From previous discussions on core theory for a single
core, and the above discussion on single core selection
in a core p lane, further discussion of how information
is stored in a unique location within the core plane
would be redundant. All that is needed is to know
how a core is IIselected ll and then the theory of a
single core applies to that selected core for informa
mati on storage. The only lines of concern during this
operation are selected X and Y drive lines and the
inhibit winding.

Reading from Core

Reading from core memory requires more discussion
since there are actions here which are not apparent
without investigation. The on Iy liiles used in reading
are the selected X and Y drive lines and the sense
winding.

From preceding single core theory it is obvious that
when the se lected X and Y lines have currents in each

57

of them in such directions to drive the selected core to
zero a large change of flux wi II cause a large voltage
in the sense winding. Further, if the selected core was
at zero, a much smaller voltage wi II be induced in the
sense winding since the resultant change of fields
strength in the se lected core is sma lIer.

In addition to the effect of the read half currents in
the selected X and Y lines on the selected core, there
is the effect of the half currents in both X and Y on
half selected cores. These half selected cores will
also undergo a small change in flux and cause a cor
respondingly small voltage to be induced in the sense
winding.

Regardiess of the source of the induced voltages in the
sense winding the voltage appearing at the sense wind
ing terminals is the algebraic sum of the induced volt
ages.

Because of the way a core plane is wired and the direc
tion of currents in each X and Y line, the voltages in
duced in the sense winding by individual half selected
cores tend to cancel one another. In other words the
voltage induced in the sense winding by one core half
current-flux change wi II tend to force current in the
sense winding in one direction and the effect of another
core ha If-current-flux change wi II tend to force sense
winding current in theopposite direction. Figure 7 -11
is a segment of Figure 7-10 using Xo and Yo to explain
this point.

, , , , , , , , ,

Sense

Figure 7 -11. Effects of One Core
Half-Current-Flux Change

Referring to Figure 7 -11, we see the cores are number
ed with two numbers. These are in the form X, Y, with
the numbers representing the subscript numbers of the
X and Y drive I ines that lace through the individua I
cores. Also, the sense winding is traced in only one
direction. The arrow associated with each segment of
the sense winding as it passes through a core indicates
the direction of tracing the sense winding.

The fully selected core (0,0) with X and Y half cur
rents going in to the core in one direction and the di
rection of sense-winding tracing in the opposite direc
tion produces a zero going indication at the sense wire
terminals. Knowing this we can then say that for the
half selected cores:

a. If the sense -winding trac ing arrow and the di
rection of half current are opposite, a small 0 signal is
produced.

b. If the sense-winding tracing arrow and the di
rection of half current are the same, a small 1 signal
is produced.

Therefore, we can now count these half selected cores
wh ich produce sma II lis and OIS.

Core I 1 ..Q....

0, 1 X

0,2 X

0,3 X

1,0 X

2,0 X

3,0 X

4 2

Thus the effect of the 1 signal which could reduce the
amplitude of the fully selected signal is offset by cores
(0, 1) and (3,0) generating in the sense winding 0 sig-
na Is to offset the 1 effect of cores (0,2), (0,3), (1,0)
and{2,O). This effect does not seem significant in this
case since the core plane is very small and only 50%
reduction in cancelling effect from half selected cores
result. However, as core planes increase in size to
64 x 64 or 4096 cores in a plane, this reduction becomes
significant.

It is left as a student exercise to draw out a simple
8 x 8 plane as in Figure 7 -12 and prove to himsel f that
in this case the opposing induced voltages from half
currents cause greater than 50% core noise reduction due
to cancellation.

58

Figure 7-12. 8 x 8 Core Plane

Core Arrays

Thus far we have been concerned with single cores and
single core planes. The next step in logical sequence
is to use the core planes in arrays in order to be able
to store and retrieve information in a manner that we
can handle more than one bit of information at a time.

The core plane we discussed previously is also called a
"bit-plane". The name bit-plane comes from the fact
that in digital computers using core memory there is
one such plane for every bit in a computer word. Thus,
a 6-bit computer word wou Id require 6-bit planes, and
a 24-bit computer word would require 24 bit-planes.

The number of words that can be stored in a memory is
a function of the number of X and Y drive lines per
bit-plane. As an example, a 4096 word memory for
24-bit word length would require 24 bit-planes, each
of which has 64 X and 64 Y drive lines.

The diagram of Figure 7 -13 shows the X and Y drive
lines for 4-bit words in core memory. Note particular
ly in Figure 7-13:

a. Each end of an Xo drive line of each plane,
except the top and bottom, is attached to the end of a
Xo drive line of an adjacent plane by a connecting
wire external to the core planes. Therefore, all Xo
drive lines are in series.

b. Each end of a Y (}_ drive line of each plane, ex
cept the top and bottom, is attached to the end of a
YO drive line of an adjacent plane by a connecting
wire external to the core plane. Therefore, all YO
drive lines are in series.

1
t

fu lIy se lected
cores, 1, for each

bit of the word.

Bit- Plane 1

Bit- Plane 2

Bit- Plane 3

Figure 7 -13. X and Y Drive Lines for 4-bit Words in
Core Memory.

59

c. The driven end of the Xo and YO drive lines
are attached to current drivers which can supply cur
rent in either direction. The ends of the series con
nections of Xo and YO drive lines, opposite the driven
ends, are grounded. Therefore the same Xo half cur
rent flows through all plane Xo drive lines and the
same YO half current flows through all plane YO drive ,.
lines.

d. In each bit-plane, only one core is fully select
ed. The selected cores in all planes are in the same
relative physical location in each bit-plane.

e. All even numbered X drive I ines are attached to
drivers on the same side of the core plane, and all odd
numbered X drive lines are attached to drivers on the
opposite side of the core plane.

f. All even numbered Y drive lines are attached to
drivers on the same side of the core plane, and all odd
numbered Y drive lines are attached to drivers on the
opposite side of the core plane.

g. There is required for each X line a separate cur
rent ddver, and for each Y line a separate current
driver.

Since we are interested in storing individual bits in
each bit-plane, and reading individual bits from each
bit-plane, the sense winding and inhibit winding of
each bit-plane are exclusive to their bit-plane.
Therefore, a separate inhibit current driver is required
for each plane, and a separate sense amplifier is needed
for each plane.

There are many different ways of accomplishing plane
wiring, current driving, and sensing. Those presented
here are only intended to give a reader a basic under
standing of core memory theory.

APPENDIX A. CONVERSION TABLES

Octal-Decimal Integer Conversion Table

0000
to

0777
(Octal)

Octal

0000
to

0511
(Decimal)

Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

1000
to

1777
(Octal)

0512
to

1023
{Decimal}

I 0 2 3 4 5 6 7 I
0000 0000 0001 0002 000) 0004 0005 0006 0007
0010 0008 0009 0010 0011 0012 0013 0014 0015
0020 0016 0017 0018 0019 0020 0021 0022 0023
0030 0024 0025 0026 0027 0028 0029 0030 0031
0040 0032 0033 0034 0035 0036 0037 0038 0039
0050 0040 0041 0042 0043 0044 0045 0046 0047
0060 10048 0049 0050 0051 0052 0053 0054 0055
0070 10056 0057 0058 0059 0060 0061 0062 0063

0100 10064 0065 0066 0067 0068 0069 0070 0071
0110 0072 0073 0074 0075 0076 0077 0078 0079
0120 0080 0081 0082 0083 0084 0085 0086 0087
0130 0088 0089 0090 0091 0092 0093 0094 0095
0140 10096 0097 0098 0099 0100 0101 0102 0103
0150 0104 0105 01.06 0107 0108 0109 0110 0111
0160 0112 0113 0114 0115 0116 0117 0118 0119
0170 0120 0121 0122 0123 0124 0125 0126 0127

0200 0128 0129 0130 0131 0132 0133 0134 0135
0210 0136 0137 0138 0139 0140 0141 0142 0143
0220 0144 0145 0146 0147 0148 0149 0150 0151
0230 0152 0153 0154 0155 0156 0157 0158 01~9
0240 0160 0161 0162 0163 0164 0165 0166 0167
0250 0168 0169 0170 0171 0172 0173 0174 0175
0260 0176 0177 0178 0179 0180 0181 0182 0183
0270 0184 0185 0186 0187 0188 0189 0190 0191

0300 0192 0193 0194 0195 0196 01~7 0198 0199
0310 0200 0201 0202 0203 0204 0205 0206 0207
0320 0208 0209 0210 0211 0212 0213 0214 0215
0330 0216 0217 0218 0219 0220 0221 0222 0223
0340 0224 0225 0226 0227 0228 0229 0230 0231
0350 0232 0233 0234 0235 0236 0237 0238 0239
0-360- -Q-24-0--Q-m---D-24-2--0-24-3----W4+-0-245--{)246--{)247·
0370 0248 0249 0250 0251 0252 0253 0254 0255

0 1 2 3 4 5 6 7

1000 0512 0513 0514 0515 0516 0~17 0518 0519
1010 0520 0521 0522 0523 0524 0525 0526 0527
1020 0528 0529 0530 0531 0532 0533 0534 0535
1030 0536 0537 0538 0539 0540 0541 0542 0543
1040 0544 0545 0546 0547 0548 0549 0550 0551
1050 0552 0553 0554 0555 0556 0557 0558 0559
1060 056(} 0561 0562 0563 0564 0565 0566 0567
1070 0568 0569 0570 0571 0572 0573 0574 0575

1100 0576 0577 0578 0579 0580 0581 0582 0583
1110 0584 0585 0586 0587 0588 0~89 0590 0591
1120 0592 0593 0594 0595 0596 0597 0598 0599
1130 0600 0601 0602 0603 0604 0605 0606 0607
1140 0608 0609 0610 0611 0612 0613 0614 0615
1150 0616 0617 0618 0619 0620 0621 0622 0623
1160 0624 0625 0626 0627 0628 0629 0630 0631
1170 0632 0633 0634 0635 0636 0637 0638 0639

1200 0640 0641 0642 0643 0644 0645 0646 0647
1210 0648 0649 0650 0651 0652 0653 0654 0655
1220 0656 0657 0658 0659 0660 0661 0662 0663
1230 0664 0665 0666 0667 0668 0669 0670 0671
1240 0672 0673 0674 0675 0676 0677 0678 0679

\1250 0680 0681 0682 0683 0684 0685 0686 06871
1260 0688 0689 0690 0691 0692 0693 0694 0695 1

11270 I 0696 0697 0698 0699 0700 0701 0702 0703
1

11300! 0704
1131C 0'712
132U I O'720

1 1330 I 0728
11340 I 0736

1

1350 I 0744
1360 I 0752

1
1370

1
0760

0705
1)'713
0721
0729
0737
0745
0753
0761

0706 0707
0714 0"15
0722 0723
0730 0731
0738 0739
0746 0747
0754 0755
0762 0763

0708 0709 0710 0711
0716 0717 0718 0719
0724 0725 0726 0721
0732 0733 0734 0735
0740 0741 0742 0743
0748 0749 0750 0751
0756 0757 0758 0759
0764 0765 0766 0767

A-l

I 0 2 3 4 5 6 7

0400 0256 0257 0258 0259 0260 0261 0262 0263
0410 0264 0265 0266 0267 0268 0269 0270 0271
0420 0272 0273 0274 0275 0276 0277 0278 0279
0430 0280 0281 0282 0283 0284 0285 0286 0287
0440 0288 0289 0290 0291 0292 0293 0294 0295
0450 0296 0297 0298 0299 0300 0301 0302 0303
0460 0304 0305 0306 0307 0308 0309 0310 0311
0470 0312 0313 0314 0315 0316 0317 0318 0319

0500 0320 0321 0322 0323 0324 0325 0326 0327
0510 0328 0329 0330 0331 0332 0333 0334 0335
0520 0336 0337 0338 0339 0340 0341 0342 0343
0530 0344 0345 0346 0347 0348 0349 0350 0351
0540 0352 0353 0354 0355 0356 0357 0358 0359
0550 0360 0361 0362 0363 0364 0365 0366 0367
0560 0368 0369 0370 0371 0372 0373 0374 0375
0570 0376 0377 0378 0379 0380 0381 0382 0383

0600 0384 0385 0386 0387 0388 0389 0390 0391
0610 0392 0393 0394 0395 0396 0397 0398 0399
0620 0400 0401 0402 0403 0404 0405 0406 0407
0630 0408 0409 0410 0411 0412 0413 0414 0415
0640 0416 0417 0418 0419 0420 0421 0422 0423
0650 0424 0425 0426 0427 0428 0429 0430 0431
0660 0432 0433 0434 0435 0436 0437 0438 0439
0670 0440 0441 0442 0443 0444 0445 0446 0447

0700 0448 0449 0450 0451 0452 0453 0454 0455
0710 0456 0457 0458 0459 0460 0461 0462 0463
0720 0464 0465 0466 0467 0468 0469 0470 0471
0730 0472 0473 0474 0475 0476 0477 0478 0479
0740 0480 0481 0482 0483 0484 0485 0486 0487
0750 0488 0489 0490 0491 0492 0493 0494 0495
()'7.60. -Q4.9S--Q.49.7 --O.49&- -O.499.--0500-1)5..o1--.Q502_05.03
0770 0504 0505 0506 0507 0508 0509 0510 0511

0 1 2 3 4 5 6 7

1400 0768 0769 077Q 0771 0772 0773 0774 0775
.1410 0776 0777 0778 0779 0780 0781 0782 0783
1420 0784 0785 0786 0787 0788 0789 0790 0791
1430 0792 0793 0794 0795 0796 0797 0798 0799
1440 0800 0801 0802 0803 0804 0805 0806 0807
1450 0808 0809 0810 0811 0812 0813 0814 0815
1460 0816 0817 0818 0819 0820 0821 0822 0823
1470 0824 0825 0826 0827 0828 0829 0830 0831

1500 0832 0833 0834 0835 0836 0837 0838 0839

151010840 0841 0842 0843 0844 0845 0846 0847
1520 0848 0849 0850 0851 0852 0853 0854 0855
1530 0856 0857 0858 0859 0860 0861 0862 0863
1540 0864 0865 0866 0867 0868 0869 0870 0871
1550 0872 0873 0874 0875 0876 0877 0878 0879
1560. 0880 0881 0882 0883 0884 0885 0886 0887
1570 0888 0889 0890 0891 0892 0893 089~ 0895

1600 0896 0897 0898 0899 0900 0901 0!W2 0903
1610 0904 0905 0906 0907 0908 0909 0910 0911
1620 10912 0913 0914 0915 0916 0917 0918 0919
1630 0920 0921 0922 0923 0924 0925 0926 0927
1640 0928 0929 0930 0931 0932 0933 0934 0935

11650 10936 0937 0938 0939 0940 0941 0942 0943
0945 0946 0947 0948 0949 0950 0951 11660 i0944

11670 ! 0952 0953 0954 0955 0956 0957 0958 09591

1 1700 i 0960 0961 0962
17100968 0969 0970
1720 '0916 0977 0978
1730 10984 0985 0986
1740 0992 0993 0994
1750 1000 1001 1002
1760 1008 1009 1010
1770 1016 1017 1018

0963 0964 0965
0971 0972 0973
09?9 0980 0981
0987 0988 0989
0995 0996 0997
1003 1004 1005
1011 1012 1013
1019 1020 1021

0966
0974
09811
0990
0998
1006
1014
1022

0967 1.
0975
09831
0991

1

0999/
1007
1015
1023 1

APPENDIX A. CONVERSION TABLES (Cont1d)

Octal- Decimal Integer Conversion Table (Cont1d)

0 i 2 3 4 5 6 7 0 1 2 3 4 5 6 7

2000 1024 1025 1026 1027 1028 1029 1030 1031 2400 1280 1281 1282 1283 1284 1285 1286 1287
2010 1032 1033 1034 1035 1036 1037 1038 1039 2410 1288 1289 1290 1291 1292 1293 1294 1295
2020 1040 1041 1042 1043 1044 1045 1046 1047 2420 1296 1297 1298 1299 1300 1301 1302 1303
2030 1048 1049 1050 1051 1052 1053 1054 1055 2430 1304 1305 1306 1307 1308 1309 1310 1311
2040 1056 1057 1058 1059 1060 1061 1062 1063 2440 1312 1313 1314 1315 1316 1317 1318 1319
2050 1064 1065 1066 1067 1068 1069 1070 1071 2450 1320 1321 1322 1323 1324 1325 1326 1327
2060 1072 1073 1074 1075 1076 1077 1078 1079 2460 1328 1329 1330 1331 1332 1333 1334 1335
2070 1080 1081 1082 1083 1084 1085 1086 1087 2470 1336 1337 1338 1339 1340 1341 1342 1343

2100 1088 1089 1090 1091 1092 1093 1094 1095 2500 1344 1345 1346 1347 1348 1349 1350 1351
2110 1096 1097 1098 1099 1100 1101 1102 1103 2510 1352 1353 1354 1355 1356 1357 1358 1359
2120 1104 1105 1106 1107 1108 1109 1110 1111 2520 1360 1361 1362 1363 1364 1365 1366 1367
2130 1112 1113 1114 1115 1116 1117 1118 1119 2530 1368 1369 1370 1371 1372 1373 1374 1375
2140 1120 1121 1122 1123 1124 1125 1126 1127 2540 1376 1377 1378 1379 1380 1381 1382 1383
2150 1128 1129 1130 1131 1132 1133 1134 1135 2550 1384 1385 1386 1387 1388 1389 1390 1391
2160 1136 1137 1138 1139 1140 1141 1142 1143 2560 1392 1393 1394 1395 1396 1397 1398 1399
2170 1144 1145 1146 1147 1148 1149 1150 1151 2570 1400 1401 1402 1403 1404 1405 1406 1407

2200 1152 1153 1154 1155 1156 1157 1158 1159 2600 1408 1409 1410 1411 1412 1413 1414 1415
2210 1160 1161 1162 1163 1164 1165 1166 1167 2610 1416 1417 1418 1419 1420 1421 1422 1423
2220 1168 1169 1170 1171 1172 1173 1174 1175 2620 1424 1425 1426 1427 1428 1429 1430 1431
2231) 1176 1177 n78 1179 1180 1181 1182 1183 2630 1432 1433 1434 1435 1436 1437 1438 1439
2240 1184 1185 1186 1187 1188 1189 1190 1191 2640 1440 1441 1442 1443 1444 1445 1446 1447
2250 1192 1193 1194 1195 1196 1197 1198 1199 2650 1448 1449 1450 1451 1452 1453 1454 1455
2260 1200 1201 1202 1203 1204 1205 1206 1207 2660 -1456 1457 1458 1459 1460 1461 1462 1463
2270 1208 1209 1210 1211 1212 1213 1214 1215 2670 1464 1465 1466 1467 1468 1469 1470 1471

2300 1216 1217 1218 1219 1220 1221 1222 1223 2700 1472 1473 1474 1475 1476 1477 1478 1479
2310 1224 1225 1226 1227 1228 1229 1230 1231 2710 1480 1481 1482 1483 1484 1485 1486 1487
2320 1232 1233 1234 1235 1236 1237 1238 1239 2720 1488 1489 1490 1491 1492 1493 1494 1495
2330 1240 1241 1242 1243 1244 1245 1246 1247 2730 1496 1497 1498 1499 1500 1501 1502 1503
2340 1248 1249 1250 1251 1252 1253 1254 1255 2740 1504 1505 1506 1507 1508 1509 1510 1511
2350 1256 1257 1258 1259 1260 1261 1262 1263 2750 1512 1513 1514 1515 1516 1517 1518 1519
2360 1264 1265 1266 1267 1268 1269 1270 1271 2760 1520 1521 1522 1523 1524 1525 1526 1527
2370 1272 1273 1274 1275 1276 1277 1278 1279 2770 1528 1529 1530 1531 1532 1533 1534 1535

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

3000 1536 1537 1538 1539 1540 1541 1542 1543 3400 1792 1793 1794 1795 1796 1797 1798 1799
3010 1544 1545 1546 1547 1548 1549 1550 1551 3410 1800 1801 1802 1803 1804 1805 1806 1807
3020 1552 1553 1554 1555 1556 1557 1558 1559 3420 1808 1809 1810 1811 1812 1813 1814 1815
3030 1560 1561 1562 1563 1564 1565 1566 1567 3430 1816 1817 1818 1819 1820 1821 1822 1823
3040 1568 1569 1570 1571 1572 1573 1574 1575 3440 1824 1825 1826 1827 1828 1829 1830 1831
3050 1576 1577 1578 1579 1580 1581 1582 1583 3450 1832 1833 1834 1835 1836 1837 1838 1839.
3060 1584 1585 1586 1587 1588 1589 1590 1591 3460 1840 1841 1842 1843 1844 1845 1846 1847
3070 1592 1593 1594 1595 1596 1597 1598 1599 3470 1848 1849 1850 1851 1852 1853 1854 1855

3100 1600 1601 1602 1603 1604 1605 1606 1607 3500 1856 1857 1858 1859 1860 1861 1862 1863
3110 1608 1609 1610 1611 1612 1613 1614 1615 3510 1864 1865 1866 1_867 1868 1869 1870 1871
3120 1616 1617 1618 1619 1620 1621 1622 1623 3520 1872 1873 1874 1875 1876 1877 1878 1879
3130 1624 1625 1626 1627 1628 1629 1630 1631 3530 1880 1881 1882 1883 1884 1885 1886 1887
3140 1632 1633 1634 1635 1636 1637 1638 1639
3150 1640 1641 1642 1643 1644 1645 16:~6 1647

3540 1888 1889 1890 1891 1892 1893 1894 1895
3550 1896 1897 1898 1899 1900 1901 1902 1903

3160 1648 1649 1650 1651 1652 1653 16..>4 1655 3560 1904 1905 1906 1907 1908 1909 1910 1911
3170 1656 1657 1658 1659 1660 1661 1662 1663 3570 1912 1913 1914 1915 1916 1917 1918 1919

3200 1664 1665 1666 1667 1668 1669 1670 1671 3600 1920 1921 1922 1923 1924 1925 1926 1927
3UO 1672 1673 1674 1675 1676 1677 1678 1679 3610 1928 1929 1930 1931 1932 1933 1934 1935
3220 1680 1681 1682 1683 lti84 1685 1686 1687 3620 1936 1937 1938 1939 1940 1941 1942 1943
3230 1688 1689 1690 1691 1692 1693 1694 1695 3630 1944 1945 1946 1947 1948 1949 1950 1951
3240 1696 1697 1698 1699 1700 1701 1702 1703 3640 1952 1953 1954 1955 1956 1957 1958 1959
3250 1704 1705 1706 1707 1708 1709 1710 1711 3650 1960 1961 1962 1963 1964 J965 1966 1967
3260 1712 1713 1714 1715 1716 1717 1718 1719 3660 1968 1969 1970 1971 1972 1973 1974 1975
3270 1720 1721 1722 1723 1724 1725 1726 1727 3670 1976 1977 1978 1979 1980 1981 1982 1983

3300 i728 1729 1'730 1131 1132 17;)3 1734 1135 3700 1984 1985 1986 1987 1988 1989 1990 1991
3310 1736 1737 1738 1739 1740 1741 1742 1743 3710 1992 1993 1994 1995 1996 1997 1998 1999
3320 1744 1745 1746 1747 1748 1749 1750 1751 3720 2000 2001 2002 2003 2004 2005 2006 2007
3330 1752 1753 1754 1755 1756 1757 1758 1759 3730 2008 2009 2010 2011 2012 2013 2014 2015
3340 1760 1761 1762 176-3 1764 1765 1766 1767 3740 2016 2017 2018 2019 2020 2021 2022 2023
3350 1768 1769 1770 1771 1772 1773 1774 1775 3750 2024 2025 2026 2027 2028 2029 2030 2031
3360 1776 1777 1778 1779 1780 1781 1782 1783 3760 2032 2033 2034 2035 2036 2037 2038 2039

17 784 1785 7 6 7 7 7 7 7 1 8 1 8 1 88 1 89 1790 1 91 , 3770 204 2 41 o 0 2042 2043 2044 2045 2046 2047

A-2

2000
to

2777
(Octal)

Octal

1024
to

1535
(Decimal)

Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

3000
to

3777
(Octal)

1536
to

2047
(Decimal}

APPENDIX A. CONVERSION TABLES (Cont'd)

Octal- Decimal Integer Conversion Table (Cont'd)

4000
to

4777
(Octal)

Octal

2048
to

2559
(Decimal)

Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

5000 2560
to to

5777 3071
(Octal) (Decimal)

0 I 2 3 4 5 6 7

4000 2048 2049 2050 2051 2052 2053 2054 2055
4010 2056 2057 2058 2059 2060 2061 2062 2063
4020 2064 2065 2066 2067 2068 2069 2070 2071
4030 2072 2073 2074 2075 2076 2077 2078 2079
4040 2080 2081 2082 2083 2084 2085 2086 2087
4050 2088 2089 2090 2091 2092 2093 2094 2095
4060 2Q96 2097 2098 2099 2100 2101 2102 2103
4070 2104 2105 2106 2107 2108 2109 2110 2111

4100 2112 2113 2114 2115 2116 2117 2118 2119
4110 2120 2121 2122 2123 2124 2125 2126 2127
4120 2128 2129 2130 2131 2132 2133 2134 2135
4130 2136 2137 2138 2139 2140 2141 2142 2143
4140 2144 2145 2146 2147 2148 2149 2150 2151
4150 2152 2153 2154 2155 2156 2157 2158 2159
4160 2160 2161 2162 2163 2164 2165 2166 2167
4170 2168 2169 2170 2171 2172 2173 2174 2175

4200 2176 2177 2178 2179 2180 2181 2182 2183
4210 2184 2185 2186 2187 2188 2189 2190 2191
4220 2192 2193 2194 2195 2196 219';' 2198 2199
4230 2200 2201 2202 2203 2204 2205 2206 2207
4240 2208 2209 2210 2211 2212 2213 2214 2215
4250 2216 2217 2218 2219 2220 2221 2222 2223
4260 2224 2225 2226 2227 2228 2229 2230 2231
4270 2232 2233 2234 2235 2236 2237 2238 2239

4300 2240 2241 2242 2243 2244 2245 2246 2247
4310 2248 2249 2250 2251 2252 2253 2254 2255
4320 2256 2257 2258 2259 2260 2261 2262 2263
4330 2264 2265 2266 2267 2268 2269 2270 2271
4340 2272 2273 2274 2275 2276 2277 2278 2279
rno- nau--ns-t.~-ncn-~:--n80-z287
4360 2288 2289 2290 2291 2292 2293 2294 2295
4370 2296 2297 2298 2299 2300 2301 2302 2303j

0 2 3 4 ·5 6 7

5000 2560 2561 2562 2563 2564 2565 2566 2567
5010 2568 2569 2570 2571 2572 2573 2574 2575
5020 2576 2577 2578 '2579 2580 2581 ~5'82 2583

1

5030 2584 2585 2586 2587 2588 2589 2590 2591
5040 2592 2593 2594 2595 2596 2597 2598 2599
5050 2600 2601 2602 2603 2604 2605 2606 2607
5060 2608 2609 2610 2611 2612 2613 2614 2615
5070 2616 2617 2618 2619 2620 2621 2622 2623

5100
1
2624 2625 2626 2627 2628 2629 2630 2631

5110 2632 2633 2634 2635 2636 2637 2638 2639
5120 2640 2641 2642 2643 2644 2645 2646 2647
5130 2648 2649 2650 2651 2652 2653 2654 2655
5140 2656 2657 2658 2659 2660 2661 2662 2663
5150 2664 2665 2666 2667 2668 2669 2670 2671
5160 2672 2673 2674 2675 2676 2677 2678 2679
5170,2680 2681 2682 2683 2684 2685 2686 2687

520012688 2689 2690 2691 2692 2693 2694 2695
5210 2696 2697 2698 2699 2700 2701 2702 2703
522012704 2705 2706 2707 2708 2709 2710 2711

: 5230 2712 2713 2714 2715 2716 2717 2718 2719
15240 i 2720 2721 2722 2723 2724 2725 2726 2727
1525012728 2729 2730 2731 2732 2733 2734 2735
1526012736 2737 2738 2739 2740 2741 2742 ;~~~j
5270 27';4 n"""~ 2746 ""I"!"'''' :748 2749 ~,"tV' 4'.o,"'J, l/"i,JU ':' • ..ILI

I
15300 ,27a2 2753 2154 2755 2.756 2.251 2158 2159 1
,5310! 2760 2761 2762 2763 2764 2765 2766

2'6'1 5320 2768 2769 2770 2771 2772 2773 2774 2775
5330: 2776 2777 2778 2779 2780 2781 2782 2783
5340 i 2784 2785 2786 2787 2788 2789 2790 2791 I
5350 I 2792 2793 2794 2795 2796 2797 2798 27991
5360 i 2800 2801 2802 2803 2804 2805 2806 28071

: 5370 12808 2809 2810 2811 2812 2813 2814 28151

A-3

0 2 3 4 5 6 7

4400 2304 2305 2306 2307 2308 2309 2310 2311
4410 2312 23]3 2314 2315 2316 2317 2318 2319
4420 2320 2321 2322 2323 2324 2325 2326 2327
4430 2328 2329 2330 2331 2332 2333 2334 2335
4440 2336 2337 2338 2339 2340 2341 2342 2343
445012344 2345 2346 2347 2348 2349 2350 2351

14460 2352 2353 2354 2355 2356 2357 2358 2359
4470

1
2360 2361 2362 2363 2364 2365 2366 2367

4500 2368 2369 2370 2371 2372 2373 2374 2375
4510 2376 2377 2378 2379 2380 2381 2382 23a3
4520 2384 2385 2386 2387 2388 2389 2390 2391
4~30 2392 2393 2394 2395 2396 2397 2398 2399
4540 2400 2401 2402 2403 2404 2405 2406 2407
4550 2408 2409 2410 2411 2412 2413 2414 2415
4560 2416 2417 2418 2419 2420 2421 2422 2423
4570 2424 2425 2426 2427 2428 2429 2430 2431

4600 2432 2433 2434 2435 2436 2437 2438 2439
4610 2440 2441 2442 2443 2444 2445 2446 2447
4620 2448 2449 2450 2451 2452 2453 2454 2455
4630 2456 2457 2458 2459 2460 2461 2462 24~3

·4640 2464 2455 2466 2467 2468 2469 2470 2471
4650 2472 2473 2474 2475 2476 2477 2478 2479
4660 2480 2481 2482 2483 2484 2485 2486 2487
4670 2488 2489 2490 2491 2492 2493 2494 2495

4700 2496 2497 2498 2499 2500 2501 2502 2503
4710 2504 2505 2506 2507 2508 2509 2510 2511
4720 2512 2513 2514 2515 2516 2517 2518 2519
4730 2520 2521 2522 2523 2524 2525 2526 2527
47:~ 2528 2529 2530 2531 2532 2533 2534 2535
'li5 ZSjO-ZS37 ZSj8--z5-:J9 -2540 25lf12542-2543
4760,2544 2545 2546 2547 2548 2549 2550 2551

'4770!2552 2553 2554 2555 2556 2557 2558 2559

0 2 3 4 5 6 7

540012816 2817 2818 2819 2820 2821 2822 2823
541012824 2825 2826 2827 2828 2829 2830 2831
5420 2832 2833 2834 2835 2836 2837 2838 2839
5430 2840 2841 2842 2843 2844 2845 2846 2847
5440 2848 2849 2850 2851 2852 2853 2854 2855
5450 2856 2857 2858 2859 2860 286J 2862 2863
5460 2864 2865 2866 2867 2868 2869 2870 2e7l
5470 2872 2873 2874 2875 2876 2877 2878 2879

5500 2880 2881 2882 2883 2884 2885 2886 2887
5510 2888 2889 2890 2891 2892 2893 2894 2895
5520 2896 2897 2898 2899 2900 2901 2902 2903
5530 2904 2905 2906 2907 2908 2909 2910 2911
5540

1

2912 2913 2914 2915 2916 2917 2918 2919
5550 2920 2921 2922 2923 2924 2925 2926 2927
5560 2928 2929 2930 2931 2932 2933 2934 2935
557012936 2937 2938 2939 2940 2941 2942 2943

560012944 2945 2946 2947 2948 2949 2950 2951
1561012952 2953 2954 2955 2956 2957 2958 2959
5620,2960 2961 2962 2963 2964 2965 2966 2967
5630.2968 2969 2970 2971 2972 2973 2974 2975

1564012976 2977 2978 2979 2980 2gel 2982 2983
5650'2984 2985 2986 2987 2988 2989 2990 2991

15660 !2992 2993 2994 2995 2996 2997 2998 2999
1 .5670 3GOO 3001 3002 3"'~~ IJ""!",,\II "'~"'(" :WOO 300': I vVOJ OJvv"t oJl./v..J

! !

j:l100 j 30Ua 3009 3010 30U 3012 3013 lO14. 3015j
15710 ,3016 3017 3018 3019 3020 3021 3022 3023 1
j5720 3024 3025 3026 3027 3028 3029 3030 3031j
j5730;3032 3033 3034 3035 3036 3037 3038 3039 i
15740!3040 3041 3042 3043 3044 3045 3046 3047
I ,

!5750!3048 3049 3050 3051 3052 3053 3054 305S!
15760,3056 3057 3058 3059 3060 3061 3062 30631
!577013064 3065 3066 3067 3068 3069 307030711

APPENDIX A. CONVERSION TABLES (Cont'd)

Octal-Decimal Integer Conversion Table (Cont'd)

., I ~1 2 3 4 I v I 0 7 I 3 4 6 2

6000 3072 3073 3074 3075 3076 3077 3078 3079
6010 3080 3081 3082 3083 3084 3085 3086 3087
6020 3088 3089 3090 3091 3092 3093 3094 3095
6030 3096 3097 3098 3099 3100 3101 3102 3103
6040 3104 3105 3106 3107 3108 3109 3110 3111
6050 3112 3113 3114 3115 3116 3117 3118 3119
6060 3120 3121 3122 3123 3124 3125 3126 3127
6070 3128 3129 3130 3131 3132 3133 3134 3135

6400 3328 3329 3330 3331 3332 3333 3334 3335
6410 3336 3337 3338 3339 3340 3341 3342 3343
6420 3344 3345 3346 3347 3348 3349 3350 3351
6430 3352 3353 3354 3355 3356 3357 3358 3359
6440 3360 3361 3362 3363 3364 3365 3366 3367
6450 3368 3369 3370 3371 3372 3373 3374 3375
6460 3376 3377 3378 3379 3380 3381 3382 3383
6470 3384 3385 3386 3387 3388 3389 3390 3391

6100 3136 3137 3138 3139 3140 3141 3142 3143 6500 3392 3393 3394 3395 3396 3397 3398 3399
6110 i 3144 3145 3146 3147 3148 3149 3150 3151
6120\3152 3153 3154 3155 3156 3157 315~ 3159
613013160 3161 3162 3163 3164 3165 3166 3167
6140 3168 3169 3170 3171 3172 3173 3174 3175
6150 3176 3177 3178 3179 3180 3181 3182 3183
6160 3184 3185 3186 3187 3188 3189 3190 3191
6170 3192 3193 3194 3195 3196 3197 3198 3199

6510 3400 3401 3402 3403 3404 3405 3406 3407
652013408 3409 3410 3411 3412 3413 3414 3415
6530 3416 3417 3418 3419 3420 3421 3422 3423
6540 I 3424 3425 3426 3427 3428 3429 3430 3431
6550

1

3432 3433 3434 3435 3436 3437 3438 3439
6560 3440 3441 3442 3443 3444 3445 3446 3447
6570 \3448 3449 3450 3451 3452 3453 3454 3455

!6200 3200 3201 3202 3203 3204 3205 3206 3207
"6210 3208 3209 3210 3211 3212 3213 3214 3215

6600 1 3456 3457 3458 3459 3460 3461 3462 3463
6610 3464 3465 3466 3467 3468 3469 3470 3471

6220 3216 3217 3218 3219 3220 3221 3222 3223 6620 3472 3473 3474 3475 3476 3477 3478 3479
6230 3224 3225 3226 3227 3228 3229 3230 3231 6630 3480 3481 3482 3483 3484 3485 3486 3487
6240 3232 3233 3234 3235 3236 3237 3238 3239 6640 3488 3489 3490 3491 3492 3493 3494 3495

6250 3240 3241 3242 3243 3244 3245 3246 3247
6260 3248 3249 3250 3251 3252 3253 3254 3255
6270 3256 3257 3258 3259 3260 3261 3262 3263

665°1 3496 3497 3498 3499 3500 3501 3502 3503
6660 3504 3505 3506 3507 3508 3509 3510 3511
6670 3512 3513 3514 3515 3516 3517 3518 3519

6300 3264 3265 3266 3267 3268 3269 3270 3271
6310 3272 3273 3274 3275 3276 3277 3278 3279
6320 3280 3281 3282 3283 3284 3285 3286 3287
6330 3288 3289 3290 3291 3292 3293 3294 3295
6340 3296 3297 3298 3299 3300 3301 3302 3303
6350

1

3304 3305 3306 3307 3308 3309 3310 3311
6360 3312 3313 3314 3315 3316 3317 3318 3319
6370 3320 3321 3322 3323 3324 3325 3326 3327

6700 3520 3521 3522 3523 3524 3525 3526 3527
6710 3528 3529 3530 3531 3532 3533 3534 3535
6720 3536 3537 3538 3539 3540 3541 3542 3543
6730 3544 3545 3546 3547 3548 3549 3550 3551
6740 3552 3553 3554 3555 3556 3557 3558 3559
6750 3560 3561 3562 3563 3564 3565 3566 3567
6760 3568 3569 3570 3571 3572 3573 3574 3575
6770 3576 3577 3578 3579 3580 3581 3582 3583

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

7000 3584 3585 3586 3587 3588 3589 3590 3591

7010 3592 3593 3594 3595 3596 3597 3598 3599

7020 3600 3601 3602 3603 3604 3605 3606 3607

7030 3608 3609 3610 3611 3612 3613 3614 3615

7040 3616 3617 3618 3619 3620 3621 3622 3623

7050 3624 3625 3626 3627 3628 3629 3630 3631

7060 3632 3633 3634 3635 3636 3637 3638 3639

7070 3640 3641 3642 3643 3{i44 3645 3646 3647

7400 3840 3841 3842 3843 3844 3845 3846 3847
7410 3848 3.849 3850 3851 3852 3853 3854 3855
7420 3856 3857 3858 3859 3860 3861 3862 3863
7430 3864 3865 3866 3867 3868 3869 3270 3871
7440 3872 3873 3874 3875 3876 3877 3878 3879
7450 3880 3881 3882 3883 3884 3885 3886 3887
7460 3888 3889 3890 3891 3892 3893 3894 3895
7470 3896 3897 3898 3899 3900 3901 3902 3903

7100 3648 3649 3650 3651 3652 3653 3654 3655
7110 3656 3657 3658 3659 3660 3661 3662 3663
7120 3664 3665 3666 3667 3668 3669 3670 3671
7130 3672 3673 3674 3675 3676 3677 3678 3679
7140 3680 3681 3682 3683 3684 3685 3686 3687

7150 3688 3689 3690 3691 3692 3693 3694 3695

7160 3696 3697 3698 3699 3700 3701 3702 3703

7170 3704 3705 3706 3707 3708 3709 3710 3711

7500 3904 3905 3906 3907 3908 3909 3910 3911
7510 3912 3913 3914 3915 3916 3917 3918 3919
7520 3920 3921 3922 3923 3924 3925 3926 3927
7530 3928 3929 3930 3931 3932 3933 3934 3935
7540 3936 3937 3938 3939 3940 3941 3942 3943
7550 3944 3945 3946 3947 3948 3949 3950 3951
7560 3952 395,3 3954 3955 3956 3957 3958 3959
7570 3960 3961 3962 3963 3964 3965 3966 3967

7200 3712 3713 3714 3715 3716 3717 3718 3719
7210 3720 3721 3722 3723 3724 3725 3726 3727
7220 3728 31129 3730 3731 3732 3733 3734 3735
7230 3736 3737 3738 3139 3740 3741 3742 3743
7240 3744 3745 3746 3741 3748 3749 3750 3751
7250 3752 3753 3754 3755 3756 3757 3758 3759
7260 3750 3761 3762 3763 3764 3765 3766 3767
7270 3168 3769 3770 3771 3772 3773 3774 3775

7600 3968 3969 3970 3971 3972 3973 3974 3975
7610 3976 3977 3978 3979 3980 3981 3982 3983
7620 3984 39tr5 3986 3987 "3988 3989 3990 3991
7630 3992 3993 3994 3995 3996 3997 3998 3999
7640 4000 4001 4002 4003 4004 4005 4006 4007
7650 4008 4009 4010 4011 4012 4013 4014 4015
7660 4016 4017 4018 4019 4020 4021 1022 4023
7670 4024 4025 4026 4027 4028 4029 4030 4031

7300 3776 3777 3778 3779 3780 3781 3782 3783
7310 3784 3785 3786 3787 3788 3789 3790 3791
7320 3792 3793 3794 3795 3796 3797 3798 3799
7330 :!800 3801 3802 3803 3804 3805 3806 3807
7340 3808 3809 3810 3811 3812 3813 3814 3815
7350 3816 3817 3818 3819 3820 3821 3822 3823
7360 3824 3825 3826 3827 3828 3829 3830 3831

7700 4032 4033 4034 4035 4036 4037 4038 4039
7710 4040 4041 4042 4043 4044 4045 4046 4047
7720 4048 4049 4050 4051 4052 4053 4054 4055
7730 4056 4057 4058 4059 4060 4061 4062 4063
7740 4064 4065 4066 4067 4068 4069 4070 4071
7750 4072 4073 4074 4075 4076 4077 4078 4079
7760 4080 4081 4082 4083 4084 4085 4086 4087

17370 1 3832 3833 3834 3835 3836 3837 3838 38391 I 171014088 4089 4090 4091 .. 092 4093 4094 4095,

A-4

6000
to

6777
(Octal)

Octal

3072
to

3583
{Decimal}

Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

7000
to

7777
(Octal)

3584
to

4095
(Decimal)

APPENDIX A. CONVERSION TABLES (Cont'd)

Octal-Decimal Fraction Conversion Table

I
I
f
I

OCTAL

.000

.001

.002

.003

.004

.005

.006

.007

.010

.011

.012

.013

.014

.015

.016

.017

.020

.021

.022

.023

.024

.025

.026

.027

.030

.031

.032

.033_

.034

.035

.036

.037

.040

.041

.042

.043

.044

.045

.046

.047

.050

.051

.052

.053

.054

.055

.056

.057

.060

.061

.062

.063

.064

.065

.066

.067

,070
.071
.072
.073
.074
.075
.076
.077

DEC.

. 000000

.001953

.003906

.005859

.007812

.009765

.011718

.013671

.015625

.017578

.019531

.021484

.023437

.025390

.027343

.029296

.031250

.033203

.035156

.037109

.039062

.041015

.042968

.044921

.046875

.048828

.050781

.052734

.054687

.056640

.058593

.060546

.062500

.064453

.066406

.068359

.070312

.072265

.074218

.076171

.078125

.080078

.082031

.083984

.085937

.087890

.089843

.091796

.093750

.095703

.097656

.099609

.101562

.103515
• 105468
.107421

.109375

.111328

.113281

.115234

.117187

.119140

.121093

.123046

I

OCTAL

.100

.101

.102

.103

.104

.105

.106

.107

.110

.111

.112

.113

.114

.115

.116

.117

.120

.121

.122

.123

.124

.125

.126

.127

.130

.131

.132

.133

.134

.135

.136

.137

.140

.141

.142

.143

.144

.145

.146

.147

.150

.151

.152

.153

.154

.155

.156

.157

.160

.161

.162

.163

.164

.165

.166

.167

.170

.171

.172

.173

.174

.175

.176

.177

DEC.

.125000

.126953

.128906

.130859

.132812

.134765

.136718

.138671

.140625

.142578

.144531

.146484

.148437

.150390

.152343

.154296

.156250

.158203

.160156

.162109

.164062

.166015

.167968

.169921

.171875

.173828

.175781

.117734

.179687

.181640

.183593

.185546

.187500

.189453

.191406

.193359

.195312'

.197265

.199218

.201171

.203125

.205078

.207031

.208984

.210937

.212890

.214843

.216796

.218750

.220703

.222656

.224609

.226562

.228515

.230468

.232421

.234375

.236328

.238281

.240234

.242187

.244140

.246093

.248046

!

A-5

OCTAL

.200

.201

.202

.203
- .204

.205

.206

.207

.210

.211

.212

.213

.214

.215

.216

.217

.220

.221

.222

.223

.224

.225

.226

.227

.230

.231

.232

.233

.234

.235

.236

.237

.240

.241

.242

.243

.244

.245

.246

.247

.250

.251

.252

.253

.254

.255

.256

.257

.260

.261

.262

.263

.264

.265

.266

.267

.270

.2i1

.272

.273

.274

.275

.276

.277

DEC.

.250000

.251953

.253906

.255859

.257812

.259765

.261718

.263671

.265625

.267578

.269531

.271484

.273437

.275390

.2'(7343

.279296

.281250

.283203

.285156

.287109

.289062

.291015

.292968

.294921

.296875

.298828

.300781

.302734

.304687

.306640

.308593

.310546

.312500

.314453

.316406

.318359

.320312

.322265

.324218

.326171

.328125

.330078

.332031

.333984

.335937

.337890

.339843

.341796

.343750

.345703

.347656

.349609

.351562

.353515

.355468

.357421

.359375

.361328

.363281

.365234

.367187

.369140

.371093

.373046

I

I
I
I
l
,
!

OCTAL

.300

.301

.302

.303

.304

.305

.306

.307

.310

.311

.312

.313

.314

.315

.316

.317

'.320
.321
.322
.323
.324
.~25

.326

.327

.330

.331

.332

.333

.334:-

.335

.336

.337

.340

.341

.342

.343

.344

.345

.346

.347

.350

.351

.352

.353

.354

.-355

.356

.357

.360

.361

.362

.363

.364

.365

.366

.367

.370
"',-"!

.~, .l

.372

.373

.374

.375

.376

.377

DEC •

.375000

.37G953

.378906

.380859

.382812

.384765

.386718

.388671

.390625

.392578

.394531

.396484

.398437

.400390

.402343

.404296

.406250

.408203

.410156

.412109

.414062

.416015

.417968

.419921

.421875

.423828

.425781

.427734
~4:29687
.431640
.433593
.435546

.437500

.439453

.441406

.443359

.445312

.447265

.449218

.451171

.453125

.455078

.457031

.458984

.460937

.462890

.464843

.466796

.468750

.470703

.472656

.474609

.416562

.478515

.460468

.482421

.484375

.486328
• 4882tn
.4!W2l4
.492187
.494140
.496093
.498046

APPENDIX A. CONVERSION TABLES (Cont'd)

Octal- Decimal Fraction Conversion Table (Cont'd)

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC .

• 000000 .000000 .000100 .000244 .000200 .000488 .000300 .000732
.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736
.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740
.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743
.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747
.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751
.000006 .000022 .000106 .000267 .000206 .000511 .000306 .000755
.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759

~ 000010 .000030 ,000110 .000274 .000210 .000518 .000310 .000762
.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766
.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770
.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778

.000015 .000049 .000115 .000293 .000215 .000537 .000315 .000782

.000016 .000053 .000116 .000297 .. 000216 .000541 .000316 .000785

.000017 • QOO057 .000117 .000301 .000217 .000545 .000317 .000789

.000020 .000061 .000120 .000305 .000220 .000549 .000320 .00079"3

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797

.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801

.000023 .000072 .000123 .000316 .000223 .000560 .000323 .000805

.000024 .000076 .000124 .000320 .000224 .000564 .000324 .000808

.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812

.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816

.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820

.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823

.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827

.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831

.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835

.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839

.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843

.000036 .000114 .000136 .000358 .000236 .000602 .000336 .000846

.000037 .000118 .000137 .000362 .000237 .000606 .000337 .000850

.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854

.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858

.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862

.000043 .000133 .000143 .00037T .000243 .000621 .000343 .000865

.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .00U873

.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877

.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881

.000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885

.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888

.000052 .000160 .000152 .000404 .000252 .000648 .000352 .0(10892

.000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896

.000054 .000167 .000154 .000411 .000254 .000656 .000354 .000900

.000055 .000171 .000155 .000415 .000255 .000659 .000355 .000904

.000056 .000175 .000156 .000419 .000256 .000663 .000356 .000907

.000057 .000179 .000157 .000423 .000257 .000667 .000357 .000911

.000060 .000183 .000160 .000427 .000260 .000671 .000360 .000915

.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919

.000062 .000190 .000162 .000434 .000262 .000679
\

.000362 .000923

.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926

.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930

.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934

.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938

.000067 .000209 .000167 .000453 .000267 .000698 .000367 .000942

.000070 .000213 .000170 .000457 .000270 .000701 .000370 .000946

.000071 .000217 .000171 .000461 .000271 .000705 .000311 .000949

.000072 .000221 .000172 .000465 .000272 .000709 .000372 .000953

.000073 .000225 .000173 .000469 .000273 .000113 .000373 .000957

.000074 .000228 .000174 .000473 .000274 .000717 .000374 .000961

".000075 .000232 .000175 .000476 .000275 .000720 .000375 .000965

.000076 .000236 .000176 .000480 .000276 .000724 .000376 .000968

.000077 .000240 .000177 .000484 .000277 .000728 .000377 .000972

I I I I

A-6

APPENDIX A. CONVERSION TABLES (Cont'd)

Octal-Decimal Fraction Conversion Table (Cont'd)

OCTAL DEC. OCTAL DEC. OCTAL DEC • OCTAL DEC.

• 000400 .000976 .000500 .00.1220. .00.0.60.0. .0.01464 .0.0.070.0 .00.170.8
.000401 .000980 .000.501 .001224 .000601 .001468 .00070.1 .00.1712
.000402 .000984 .000502 .001228 .000602 ".00.1472 .000702 .00.1716
.00.0.403 .000988 .00.0503 .001232 .000603 .001476 .00070.3 .001720
.000404 .000991 .000504 .001235 .000604 .001480 .000704 .0.01724
.000405 .000995 .000505 .001239 .000605 .001483 .000705 .00.1728
.000406 .000999 .000.506 .001243 .000606 .001487 .000706 .001731
.000407 .001003 .000507 .001247 .000607 .001491 .000707 .001735

.000410 .001007 .000510 .001251 .000610 .001495 .000710 .001739

.000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743

.000412 .001014 .000512 .001258 .000612 .001502 .000712 .0.0.1747

.000413 .0010.18 .000.513 .00.1262 .000613 .0.0150.6 .00.0713 .0.0.1750.

.00.0414 .0.010.22 .000.514 .00.1266 .00.0614 .001510 .000714 ,001754

.000415 .00.1026 .0.0.0.515 .001270 .000.615 .0.01514 .000715 .001758

.000416 .001029 .000516 .001274 .00.0616 " .001518 .00.0.716 .0.0.1762

.000417 .001033 .000517 .0.01277 .000.617 .001522 .000717 .001766

.000420 .001037 .000.520 .00.1281 .000620 .001525 .000720 .001770

.000421 .001041 .000521 .001285 .000621 .001529 .00.0721 ,001773

.000422 .001045 .000522 .001289 .000622 .001533 .000722 .001777

.000423 .001049 .000523 .001293 .000623 000.1537 .000.723 .00.1781

.000424 .001052 .000524 .001296 .00.0624 .001541 .000724 .001785
,000425 .001056 .000525 .00.1300 .000625 .001544 .000725 .0017H9
.000426 .001060 .000526 .00130.4 .0.0.0626 .001548 .000.726 .001792
.000427 .001064 .00.0527 .0.0130.6 .00.0.627 .0.01552 .0.0.0.727 .001796

.000430 .001068 ,000530 .001312 .000.630 .001556 .000730 .001800

.000431 .001071 .000531 .001316 .000631 .001560 .000731 .001804

.000432 .001075 .000532 .001319 .000632 .001564 .000732 .001808

.000433 .001079 .000533 .001323 .000633 .001567 .000733 .001811
-~UUU43"4" - .001083" -.. -000534- -000-13-2-1- -.000634- --..()Ol$'1'l-0.007.3.4- _._001815._
.000435 .001087 .000535 .001331 .000635 .0.01575 .000735 .001819
.000436 .001091 .000536 .001335 .000636 .001579 .000736 .001823
.000437 ,001094 .000537 ,001338 .000637 .001583 .000737 .001827

.000440 .001098 .000540 .001342 .000640 .001586 .00.0740 .001831

.000441 .001102 .000541 .001346 .000641 .001590 .000741 .001834

.000442 .001106 .000542 .001350 .000642 .001594 .000742 .0.0.1838

.000443 .001110 .000543 .0'01354 .0.0.0.643 .00.1598 .00.0743 .001842

.000444 ,001113 ,000544 .001358 .000644 .001602 .000744 .001846

.000445 .001117 .000545 .001361 .000645 .001605 .000745 .001850

.000446 .001121 .000546 .001365 .000646 .001609 .000746 .00.1853

.000447 .001125 .000547 .001369 .000647 .001613 .000747 .001857

.000450 ,001129 ,000550 .001373 .000650 .001617 .000750 .001861

.000451 .001132 .000551 .001377 .000651 .001621 .000751 .001865

.000452 .001136 .000552 .001380 .000652 .001625 .000752 .001869
,000453 .001140 .000553 .001384 • Q00653 .001628 .000.753 .001873
.000454 .001144 .000554 .001388 .000654 .001632 ,000754 .001876
.000455 ,001148 .000555 ,001392 .000655 .001636 .000755 .001880
.000456 .001152 .000556 ,001396 .000656 .001640 .000756 ,001884
.000457 .001155 ,000557 ,001399 ,000657 .001644 .000757 .001888

.000460 .001159 .000560 .001403 .000660 .001647 .000760 ,001892
,000461 .001163 .000561 ,001407 .000661 .001651 .000761 .001895
.000462 ,001167 ,000562 .001411 .00.0662 .001655 .000762 .001899
.000463 .001171 .000563 .001415 .000663 .001659 .000763 .001903
.000464 .001174 .000564 .001419 .000664 .001663 ,000764 .001907
,000465 .0011'18 .000565 .001422 .000665 .001667 .000'165 .001911
.000466 .OOl1@2 .000566 .001426 .000666 .001670 .000766 .001914
.000467 .001186 .000567 .001430 .000667 .001674 .00076'1 .001918

I .0004'10 .001190 .000570 .001434 .000670 .001678 .0007'10 • 001922

I .000471 .0Otl94 .000571 ,OOt43! .OO06'U .001682 .000'111 .001926
.0004'12 .001197 .000572 .001441 .000672 .001686 .000772 .001930
000473 001201 000573 001445 000673 001689 000773 001934 .

I I .000·174 .001205 I .000574 .001449 .000674 .001693 .000174 .tml!3T
I .000475 .001209 .000575 .001453 .000675 .001697 .000775 .001941

I
.000476 .001213 .000576 .001457 .000676 .001701 .000'176 .001945
.000477 .001216 .0005'17 .001461 .000677 • 001705 .000777 .001949

A-7

APPENDIX A. CONVERSION TABLES (Cont'd)

Table of Powers of Two

tTL

2
4
8

16
32
64

128

256
512

1 024
2 048

4 096
8 192

16 384
32 768

65 536
131 072
262 144
524 288

048 576
2 097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864

134217728

268 435 456
536 870 912

1 073 741 824
2 147 483 648

4 294 967 296
8 589 934 592

1 7 179 869 184
34 359 738 368

68 719 476 736
137 438 953 472
274 877 906 944
549 755 ~13 888

1 099 511 627 776
2 199 023 255 552
4 398 046 511 104
8 796 093 022 208

17592186044416
35 184-372 088832
70 368 744 177 664

140 737488 355 328

281 474 976 710 656

n

0

2
3

4
5
6
7

8
9

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36
37
38
39

40
41
42
43

44
45
46
47

48

1.0
0.5
0.25
0.125

0.062 5
0.03125
0.015 625
0.007 812 5

0.003 906 25
o. 001 953 125
o. 000 976 562 5
0.000488 28125

0.000 244 140 625
0.0001220703125
0.000 061 035 156 25
O. 000 030 517 578 125

0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000003814697 265625
0.000 001 907 348 632 812 5

0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
o. 000 000 238 418 579 101 562 5
O. 000 000 119 209 289 550 781 25

0.000 000 059604644775390 625
0.000 000 029 8023223876953125
O. 000 000 014 901 161 193 847 656 25
O. 000 000 007 450 580 596 923 828 125

0.000 000 003725 290 298 461 914 062 5
O. 000 000 001 862 645 149 230 957 031 25
O. 000 000 000 931 322 574 615 478 515 625
o. 000 000 000 465 661 287 307 739 257 812 5

0.000 000 000 232830643653869628906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25

O. 000 000 000 014 551 915 228 366 851 806 640 625
O. 000 000 000 007 275 957 614 183 425 903 320 312 5
o. 000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

O. 000 000 000 000 909 494 701 772 928 237 915 039 062 5
0.000 0':)0 000 00045474735088646411895751953125
0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
0.000 000 000 000 113 686 837 721616 029 7393798828125

O. 000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
O. 000 000 000000 028 421 709 430 404 007 434 844 970 703 125
0.000 000 000 000 014 210 854 715 202 003 7174224853515625
0.000 000 000 000 007 105427 357 601 001 858 711 242675 781 25

O. 000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625

A-a

	000
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8

