
Price: $2.50 

INTRODUCTION TO DATA PROCESSING 

Maintenance Training 

August 1966 

900909A 

SCIENTIFIC DATA SYSTEMS. 701 South Aviation Boulevard. EI Segundo, Calif./ 90245 • 213/772-4511 

Printed in U.S.A. @1966 Scientific Data Systems, Inc. 



CONTENTS 
Section Page Section Page 

No. No. No. No. 

NUMBER SYSTEMS Phantom OR Gate 29 

INTRODUCTION The AND/OR Gate 30 
Logic Amplifiers 30 

Counting 1 BAND - Buffered AND 32 
General Expression 2 NAND - Negative AND or Not AND 32 
Octa I Numbering System 2 Cable Driver 32 
Binary Number System 3 Rece iver- Inverter 33 
Sur:nmary 3 Receiver- Inverter- Buffer 34 

Flip-Flop 34 
2 CONVERSION BETWEEN NUMBERING NAND Flip- Flop 36 

SYSTEMS 5 "Super" NAND Flip- Flop 38 

INTRODUCTION 5 DC Flip- Flop 39 
Repeater Flip- Flop 40 

CONVERTING BINARY OR OCTAL 
TO DECIMAL 5 6 HOW A COMPUTER WORKS 43 

CONVERTING FRACTIONAL NUMBERS 6 INTRODUCTION 43 

Binary/Octal to Decimal 6 ARITHMETIC - LOGICAL UNIT 43 
Decimal to Binary/Octal 6 

LOCATIONS AND ADDRESSES 43 Conversion of Fractions 7 
Comparisons 8 PICTORIAL REPRESENTATION OF 

MEMORY 43 
3 USING THE NUMBERING SYSTEM 11 

LOCA TION AND ADDRESS 
INTRODUCTION 11 TERMINOLOGY 44 

Addition 11 INSTRUCTIONS AND PROGRAMS 44 
Subtraction 11 

Format of an Instruction 44 Multiplication 12 
Division 13 Location of Instructions 44 

Complements and Complement Interpretation of the Address Part 44 

Arithmetic .13 HOW A COMPUTER ADDS 44 

4 LOGICAL ALGEBRA 17 Addition Instructions 45 
Sequence of Perform ing Instructions 45 

INTRODUCTION 17 Detai I of the Addition Operation 45 

SYMBOLOGY ANO RULES OF LOGICAL Repeated Operations 46 

STATES 17 WHAT HAPPENS IN THE EXECUTION 

The AND Function 18 OF AN INSTRUCTION 47 

OR 18 REPEA TED OPERA TI ONS 48 
NOT 19 

Loops 48 NOR 19 
NAND 20 MEANINGS OF THE ADDRESS PORTION 

VEITCH DIAGRAMS 23 OF INSTRUCTIONS 51 

Mechanization of Logic 25 Address of Data to be Taken from 
Memory 51 

5 LOGIC ELEMENTS 27 Address of Data to be Put into Memory 51 
Address of Instructions 51 

INTRODUCTION 27 Unconditional Transfer Addresses 51 

STANDARD LOGIC LEVELS 27 Conditional Transfer Addresses 51 
Addresses which are Absolute Numbers 51 

The AND Function 27 Address as Identifi cation of Input/ 
Expander AND Gate 271 Output Units 52 
The OR Function 28 Address as Identification of Indicator 
Gated Input OR Gate 29 Units 52 



CONTENTS (Cont'd) 

Section Page Figure Page 
No. No. ~ No. 

7 STORAGE SECTIONS 53 4-14 NAND Switching Circuit 20 

MAGNETIC CORE MEMORY 53 
4-15 NAND Logic Symbol 21 

4-16 Logic Symbols 21 
Basic Element of a Core Memory 53 4-17 Veitch Diagrams 23 
Magnetic Field of a Core 53 4-18 Veitch Diagram Rules 25 
Using Two Wires to Pass Current 55 4-19 Mechanization of Logic 25 
Inhibiting Current 55 4-20 Simplified Mechanization of Logic 26 
The Read Operation 56 
Core Addressing 57 5-1 Cable Driver 33 

Reading from Core 57 5-2 Symbolic Receiver "Pick-Off'l 33 
Core Arrays 58 5-3 Rece i ver - Inverter 34 

5-4 Rece i ver- Inverter- Buffer 34 
APPENDIX A. CONVERSION TABLES A-1 5-5 Flip- Flop 35 

Octal-Decimal Integer Conversion A-1 
5-6 Central Latch and DC Set Input 35 

Table 
5-7 Setting/Resetting Circuitry 35 

Octal-Decimal Fraction Conversion 
5-8 Setting/Resetting and Central Latch 36 

A-5 
5-9 NAND Flip-Flop 37 

Table 
Table of Powers of Two A-8 5-10 Triggering Circuitry 37 

5-11 Super NAND Flip- Flop 38 
5-12 Central Latch and Output Buffer 39 

5-13 DC Flip- Flop 39 
TABLES 5-14 Repeater Flip- Flop 41 

Table Page 6-1 Two Numbers in Memory 43 
No. No. 6-2 Memory Before Addition Operation 45 

6-3 Memory Before Executing First Instruction 45 
3-1 Binary Addition, A + B 11 6-4 Memory After First Instruction 46 
3-2 Octal Addition 11 6-5 Memory After Second Instruction 46 
3-3 Binary Subtraction, A - B 12 6-6 Memory After Last Instruction 46 
3-4 Octal Subtraction 12 6-7 Addition Program 47 
3-5 Binary Multiplication 12 6-8 How A Computer Executes An Instruction 48 
3-6 Octal Multiplication 12 6-9 Program of Addition, Storage and 49 

Modification of Address 
6-10 COMPARE and TRANSFER IF EQUAL 50 

ILLUSTRA TIONS Instructions 

Figure Page 7-1 Core 53 

No. No. 7-2 Magnetized Core 53 
7-3 Magnetization Curve 53 

4-1 AND Truth Table 18 7-4 Coil with One Turn 54 
4-2 AND Switching Circuit 18 7-5 Magnetization Curve 54 
4-3 AND Symbol 18 7-6 Two Wire Coil 55 
4-4 OR Truth Table 18 7-7 Inhibit Current Scheme 55 
4-5 OR Switching Circuit 19 7-8 Conditions of Inhibit and No-Inhibit 55 

4-6 OR Logic Symbol 19 Current 
4-7 NOT Truth Table 19 7-9 Core Lacing and Various Currents 56 
4-8 NOT Switching Circuit 19 7 -10 Sixteen - Bit Core Storage Arrangement 56 
4-9 NOT Logic Symbol 19 7-11 Effects of One Core Half-Current- 57 

4-10 N OR Operation 20 Flux Change 

4-11 NOR Switching Circuit 20 7-12 8 x 8 Core Plane 58 

4-12 NOR logic Symbol 20 7 -13 X and Y Dri ve Lines for 4- Bit 'Nords 59 
4-13 NAND Operation 20 Core Memory 

ii 



SECTION 1. NUMBER SYSTEMS 

INTRODUCTION 

A mandatory requirement to understanding of modern 
digita I systems is an understanding of various numbering 
systems. After obtain ing an understanding of the num
bering systems, faci lity in their use comes with practice. 

Nearly all of us have been trained to use the decimal 
number system. We are so fami liar with the system and 
man ipu lation of decima I numbers that we have never 
bothered to ana Iyze the system to determ ine the exact 
meaning of each integer and decimal fraction. The 
ru les of other number systems are the same as those of 
the decimal system. Therefore, as a prelude to study of 
other systems, an analysis of the decimal system will be 
presented because of its fami liarity. 

The decimal system uses 10 different symbols, each repre
senting a discrete value, to display all numerical quanti
ties. These are: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. 
These symbols are identified by a variety of names such 
as admissable marks, basic characters, basic figures, 
admissible figures. We will use the term basic symbols, 
or symbols. 

In the decima I system, the name for which was derived 
from the latin "decem" meaning ten, it is possible to 
describe with anyone basic symbol any quantity of 
things in the range of 0 through 9. If it is desired to 
describe more than 9 things, more than one basic symbol 
is required: e. g., 10, or 27, or 9376. From this, two 
facts stand out: 

a: In a numbering system using R number of basic 
symbols it is possible to represent only R-1 things using 
only one basic symbol. 

b: To describe more than R-1 things more than one 
basic symbol must be used in some ordered arrangement 
to describe the quantity of things. 

Therefore we can now define some terms and make some 
basic rules: 

a. RADIX or BASE of a system is the number of basic 
symbols which comprise the system. 

RULE 1 

In any numbering system with a Radix R, a maximum of 
R-1 things may be described using only one basic symbol. 

Counting 

Using the basic symbols of a numbering system to describe 
quantities or values of things is called counting. In 
counting there are rules which are followed. We should 
analyze how counting is actually done and then formulate 
the rule. 

Assume counting in sequence from 0 to some 3-digit 
number. 

Starting from 0, add 1 to the least significant digit (LSD) 
unti I every basic symbo I has been used. 

To count beyond 9 add 1 to the next most significant digit 
or second digit position and start from 0 through the basic 
symbols again in the LSD position. 

Continue this process unti I all basic symbols have been 
used in the second digit position. When it now becomes 
necessary to add 1 to the second digit position, but all 
symbols have been used in the second digit position, it 
will be necessary to use a third digit position. 

Place a 1 in the third digit position and O's in the second 
digit position and LSD position. Continue the process by 
repeating steps outlined above. 

This same process can go on for additional digit positions 
but it would merely be repetition of the above steps. The 
major facts which can be obtained from this analysis of 
counting in the decima I system are: 

a. A basic symbol in the LSD position has a value of 
the bas i c symbo I. 

b. A basic symbol in the second, third, or higher digit 
position has a value which depends on its position. 



Example 

3 3 x 1 3 x 10
0 

30 3 x 10 3 x 10
1 

300 3 x 100 3 x 10
2 

,.., 

3000 3 x 1000 3 x 10.) 

c. The basic symbol is called a coefficient and the 
value it represents is determined by its position. Posi
tion values are determined by the radix raised to some 
exponent va lue. 

Example 

37501 1 x 10
0 

Ox 10
1 

00 

5 x 10
2 

500 

7 x 10
3 

7000 

A 

3 x 10Li" 30000 

37501 

The number 37501 in the above example is shorthand 
notation of the sum of the coefficients times the radix 
raised to some exponent I eve I. 

Thus far we have spoken on Iy of integer numbers, and 
decimal fractions have not been mentioned. It has been 
assumed that these were who Ie numbers and a decima I 
point or radix point to the right of the LSD. To express 
fractional numbers basic symbols are used to the right of 
the radix point in digit positions which correspond to 
the negative coefficient value of the radix. 

Continue the system by using increased negative ex
ponents on the radix as we move to the right farther 
away from the radix point. 

Exampl_~ 

Radix Point 

Coefficient Position 4 3 2 1 • • -1 -2 -3 -4 

Position Exponent R3 R2 Rl R
O 

R 
-1 

R 
-2 

R 
-3 

R 
-4 

We have explained what digits to the left of the radix 
point mean, but what do the digits to the right of the 
radix point mean? 

Therefore the value of digits to the right of the radix 
point also have values which depend on position. 

Examples 

.3 3 x 10-1 3 
TO 

.03 3 x 10-2 3 
100 

.003 3 x 10-3 3 
1000 

37.25 3 x 10
1 

30 

7x 10
0 

7 

2 x 10-1 
.2 

5 x 10-2 
.05 

37.25 

RULE 2 

The position a basic symbol occupies determines the 
va lue it represents. The va lue of a digit position is 
always determined by a value of the radix raised to some 
exponent power. 

General Expression 

To express a value in any numbering system the following 
genera I express ion appl ies: 

N = AmRm + Am_1Rm- 1 + -- + A2R2 + A1R1 + AORO 

+ A_1R- 1 + A_2R-2 + ---A_(n_l)R-(n-l) + A_nR-n 

Note that in the general expression there is no radix 
point indicated. The radix point always appears between 
AORO and A_1R-1. 

Octal N_lJl1lbering System 

The previous discussion, although it referred to the 
decimal system, has direct application to other number
ing systems. For instance, assume a numbering system 
which has only 8 basic symbols: 0, 1, 2, 3, 4, 5, 6, 7. 
From this we can determine: 

Radix = 8 

Highest single digit value R-l 8 - 1 7. 

This system is called the octal system since there are 8 
discrete values permissible using only one basic symbol. 



To count in this system apply the same rules as previously 
used in the decimal system. 

Example 

0 25 75 
1 26 76 
2 27 77 
3 30 100 
4 31 101 
5 
6 
7 35 105 

10 36 106 
11 37 107 
12 40 110 

To express a number, say 3765. 125 in octa I it is 
written the same as in decimal. The radix point is used 
as before. But the number no longer represents the 
same number of "things" as it would if it were a decimal 
number. Looking at 3765. 125 it is impossible to tell in 
which number system it was written. Therefore to be 
clear about just what quantity is intended, the number 
system must be specified. This is done by subscripting 
the last digit of the number with the radix. 

Example 

3765. 125
10 

101211.212
3 

26347.213
8 

10110.11
2 

The octal system wi II be the subject of further discussion 
later. Before going into this we shou Id become fami liar 
with another number system that is used in digital com
puter systems: the BINARY number system. 

Binary Number System 

The binary number system has 2 basic symbols: 0, 1 and 
thus the radix is 2. To count in th is system the same 
rules apply as were previously used. 

Example 
Decimal Octal Binary 

0 0 0 
1 1 1 
2 2 10 
3 3 11 
4 4 100 
5 5 101 
6 6 110 
7 7 111 
8 10 1000 
9 11 1001 

10 12 1010 
1 1 13 1011 
12 14 1100 

3 

Decimal Octal Binary 

13 15 1101 
14 16 1110 
15 17 1111 
16 20 10000 

Summary 

We have covered three number systems and learned how 
to count in each with the major reference being the 
decimal system. Now it is possible to make comparisons 
and to work several examples in each system. 

10
10 

12
8 

1010
2 

37
10 

45
8 

100101
2 

25
10 

31
8 

11001
2 

10.125
10 

12.1
8 

1010.001
2 

25.375
10 

31.3
8 

11001. 011
2 

37.5
10 

45.4
8 

100101. 12 

If you have trouble understanding these comparisons, per
haps it would be worthwhile for you to use positional 
values on these and other numbers of your choosing to go 
from numbers in other than the decimal system to deter
mine their decimal value. 

Remember that the general expression for a number in 
any system is: 

N = ARm + A Rm -1 + --- A RO I + A R- 1 
m m-l 0-L -1 

Radix 
Point 

Examples 

(1) 721. 328 

(7 x 82) + (2 x 8 1) + (l x 80) + (3 x 8 -1) + (2 x 8 -2) 

t t 2 ttl \ tot \ -1 I t -2 
A2 R Al R AO R A -1 R A -2 R 

1 1 
(7 x 64) + (2 x 8) + (1 xl) + (3 x 8) + (2 x 64) 

448 +~6 + 1 + (3 x. 125) + (2 x. 015625) 
448 + 16 + 1 + .375 + .03125 = 448.0000 

721. 328 = 465.40625 10 

16.0000 
1" 0000 
.3750 
.03125 

465. 40625 1 0 



(2) 101. 01
2 

= 

1 x 22 + 0 x 21 + 1 x 20 + 0 x 2 -1 + 1 x 2-2 
o 1 

lx4 +Ox2 +lx1 +2"+4 

4 + 0 + 1 + 0 + . 25 = 4. 00 
1. 00 
.25 

5.25 

4 



SECTION 2. CONVERSION BETWEEN NUMBERING SYSTEMS 

INTRODUCTION 

In learning the numbering systems and counting in the 
various systems it was implied that there was a method 
of going from one system to another, although it was 
not stated. It is essential that digital systems mainte
nqnce personne I know how to get from one system to 
another with facility. In the following discussion only 
three number systems will be used: decimal, octal and 
binary. The methods discussed wi II, however, be 
usable in any system. 

Digital equipment does its work by using binary number 
manipulations. The reason for this is the ease with 
which a binary system can be implemented electrically. 
For instance a light being on or off, a transistor con
ducting or not conducting, relay contacts being opened 
or closed; these are all usable as binary system indica
tors since there are only 2 states represented in each 
case. This matches the two basic symbols 0 and 1. 
Either state of a two-state element may be called either 
o or 1 in any given system. For instance an "on" light 
may be called 1 and thus the "ofr' light would be called 
O. However, nothing would be wrong with calling the 
"ofr' light 1 and the "on" light O. Once the stated 
condition is named, however, it must be used from that 
point onward. 

CONVERTING BINARY OR OCTAL TO DECIMAL 

To convert a binary or octal number to a decimal num
ber is a reasonable and understandable process. Remem
bering the positional system, and remembering that the 
general expression for a number is N=AmRm+Am_1Rm-l 
+ -- A1Rl + AORO + A_1R-l + A_2R-2 + -- AnR-n, it 
wou Id be easy to convert from any system other than 
decimal to the decimal system. All one needs to do is 
multiply the coefficient by the radix raised to the ap
propriate power and add the products to arrive at the 
decimal value of the number. Remember that decimal 
arithmetic is used in conversion manipulations. 

Examples 

(1) 321. 58 = (3 x 82) + (2 x 8 1) + 1 x 80) + (5 x 8 -1) 

(3 x 64) + (2 x 8) + (1 x 1) + (5 x • 125) = 321. 58 

= 209.625 10 

5 

(2) 111 0 1. 12 

1 x 24 + 1 x 23 + 1 x 22 + 0 x 2 
1 

+ 1 x 20 + 1 x 2-1 

1 
lx16+1x8+1x4+0x2+1xl+lx2" = 

16+8+4+0+ 1 + .5= 11101. 12 = 29.5
10 

The above examples work well when there is available 
to you a table of values of 8 and 2 raised to positive and 
negative exponents (see Appendix A). If you do not use 
the tables, you can convert by continued multiplication 
for integer conversion as follows: 

Examples (Octal to Decimal) 

(1 ) (2) 

+1 +5 
209 453 

321 8 = 209 10 705
8 

= 453 10 

Examples (Binary to Decimal) 

(1 ) 

(3) 

(2) 101101 2 
x2 

2 
+0 

2 

+1 

+1 



CONVERTING FRACTIONAL NUMBERS 

To continue this process for fractional numbers would 
not work since the fractional portion is determined with 
negative exponential values of the radix (R-n). There 
is no easy way to convert from the octal or binary sys
tem to the decimal system of numbers for fractions. The 
positional system appears to be the best method, and at 
least the easiest to remember. It is not the objective of 
this book to describe every number conversion system, 
but rather to explain one or two methods. Additional 
methods are avai lable in standard texts. 

Binary/Octal to Decimal 

For fractional numbers, the method recommended is 
positional notation expansion as demonstrated in the 
following examples: 

Examples 

(1) .432
8 

(2) 

4 x 8 -1 + 3 x 8 -2 + 2 x 8 -3 

432 
8+ 64 + 512 = 

256 24 2 282 
512 + 512 + 512 = 512 = • 550710 

. 432
8 

= .5507
10 

.253
8 

-1 -2 -3 
2x8 +5x8· +3x8 

2 5 3 
8"+ 64 + 512 = 

128 + 40 + 3 171 
512 = 512 = .33410 

. 2538 = . 3341 0 

(3) .1011
2 

1 x 2 -1 +0 x 2 -2 + 1 x 2 -3 + 1 x 2 -4 = 

1 0 1 1 
2+4"+8"+16 = 

8 2 1 11 
16+16+16 =16 = .6875 

. 1011
2 

= .6875
10 

.5507 
512 1282.0000 

512 

2560 
2600 
2560 
LWOO 

.33398 
h71. 000 

1536 
---r740 

1536 
2040 
1536 
5040 
4598 

4420 

.6875 
16 111.000 

96 
140 

128 
120 

112 
80 

6 

(4) .0101
2 

Ox 2 -1 + 1 x 2 -2 + 0 x 2 -3 + 1 x 2 -4 

o 1 0 1 
2"+4"+8+16 

.0101
2 

= .3125
10 

Decimal to Binary/Octal 

.3125 
16 15.00 

48 
20 

16 
40 

32 
80 

Thus far we have been stating a number in the binary or 
octal systems and converting it back to its decimal equiv
alent. The next step is to go from the decimal system to 
the binary or octal system. For integer numbers, the 
following general rules apply: 

a. Divide the original decimal by the radix. Use 
decimal arithmetic. 

b. The remainder will be the least significant digit of 
the equivalent number in the new radix number system. 

c. Divide the quotient by the radix. The remainder 
wi II be the next to least significant digit. 

d. Repeat the above steps unti I a quotient of 0 is 
obtained. The remainder in each case wi II be the next 
most sig~ificant digit in the equivalent number of the 
new radix system • 

Examples (Decimal to Octal) 

(1 ) 341 
8 /2732

10 
24 
33 

32 
12 

8 
4--4 

42 
8 1341 

32 
21 

16 
5" ---5 

5 
8 f42 

40 
2" ---2 

0 
8 15 ---5 

2732
10 

= 52548 



(2) 948 
8 17584 

72 
38 

32 
64 

64 
O~O 

118 
8 1948 

8 
14 

8 
68 

64 
"4" ~4 

14 
8 rTf8 

8 
38 

32 
6 ----6 

1 
8 n4 

8 
6" ~6 

8 rl- ~1 

7584
10 

= 16,6408 

(3) 10 
8 f80 

8 
-0 ~O 

1 
8 110 

8 
2" ----- 2 

o 
8[1 ~1 

8010 = 1208 

Examples (Decimal to Binary) 

(1) 2 1156 (2) 
2LZ.§ rO~O 
2Q2. rO~O 
2 19 r 1 --- 1 

2L2 r1----1 
2L4 r 1 ~l 
2t.f rO---O 
2Ll rO~O 

0 r 1 --- 1 

156
10 

= 100111002 

2 128 
2 64 rO~O 
2 32 rO---O 
2 16 rO---O 

2 8 r 0 ----- 0 
2 4 rO ~ 0 
2 2 rO---O 
2 1 rO~ 0 

0 r1---1 

128
10 

= 100000002 

7 

(3) 2 39 (4) 2 80 
2 19 r 1 --- 1 2 40 rO---O 
2 9 r 1 --- 1 220 rO -- 0 
2 4 r 1 ----- 1 2 10 rO ~O 
2 2 rO---O 2 5 rO----O 
2 1 r 0 ----- 0 2 2 rl----l 

0 rl---l 2 1 rO----O 
0 rl---l 

39
10 

= 100111
2 

80
10 

= 10100002 

From the rules and the examples the conversion of decimal 
to binary or octal systems should be clear. If you have 
any trouble following the examples with the rules given, 
work some problems on your own and convert and re
convert until you are familiar with the system. Remem
ber, this is for integer values only. You have not yet 
been exposed to fractions and their conversion. 

Conversion of Fractions 

To convert decimal fractions to octal or binary fractions 
the following general rules apply: 

a. Multiply the decimal fraction by the radix of the 
number system to which you wish to convert. 

b. Record the integer portion, which wi II be the MSD 
of the converted fraction. 

c. Multiply the fractional portion of the result by the 
radix. 

d. The integer portion of the result will be the next 
most significant digit of the ~onverted fraction. 

e. Continue the above steps, obtaining one less 
significant digit with each operation until the fractional 
portion is all zeros or you have obtained the desired num
ber of places. 

Examples (Decimal to Octal Fractions) 

(1 ) .525
10 

(2) .375
10 

8 8 
(4).200 ~4 (3).000 ---3 

8 
(1).600 --1 .375

10 
= .3

8 
8 

(4).800 --4 
8 

(6).400 --6 
8 

(3).200 --3 

. 525 10 = . 414638 + 



(3) .2163 10 
(4) .975 10 

8 8 
(1).7304 ---1 (7)~ ---7 

8 8 
(5).8432 ----5 (6).400 ---6 

8 8 
(6).7456 ~6 (3):260 ---3 

8 8 
(5).9648 ---5 (l)~ ---1 

8 8 
(7).7184 ---7 (4)~ ---4 

.2163
10 

= .156578+ .97510 = .76314
8
+ 

Examples (Decimal to Binary Fractions) 

(1 ) .525
10 

(2) .333
10 2 2 

(l):-OSO- ---- 1 (0):666 ---0 
2 2 

(O):-roo- ---0 (1).332 ---- 1 
2 2 

(0):260 -----0 (0).664 ----0 
2 2 

(0).400 --0 (1):-m- ---- 1 
2 2 

(O)~ ---0 (O)~ ---0 
2 2 

(1).600 ---1 (1)~ ---1 
2 2 

0).200 ---- ] (0).624 ---0 
2 

.525
10 

= .1000011
2

+ (1).248 --- 1 

.333
10 

= . 01010101 2 + 

(3) .404
10 

(4) .975 10 
2 2 

(O)~ ---0 (1).950 ---1 
2 2 

(1)~ ---- 1 (1). 900 ---1 
2 2 

(1).232 ---1 (1).800 ----1 
2 2 

(0):524 --- a (1).600 ----1 
2 2 

(1):048 --- 1 (1):260 ----1 
2 

. 4041 a = . a 11 01 2 + (0):400 ---- a 
. 975

10 
= . 1111102 + 

Comparisons 

Of interest now would be comparisons of decimal system 
numbers converted to both octal and binary equivalents. 

8 

.875 10 
8 

.875
10 2 

(7). 000 ---7 (1).750 ---1 
2 

(1).500 ----1 
2 

(1). 000 ---1 

.875
10 

= .78 = .111 2 

and 1112=710=78 

.325
10 

8 
.325

10 2 
(2).600 ---2 (0).650 ---0 

8 2 
(4).800 ---4 (1).300 ----1 

8 2 
(6).400 ---6 (0).600 --a 

8 2 
(3).200 ----3 (1).200 ---1 

8 2 
(0).400 ---0 

. 325
10 

= . 2463
8 

+ 2 
(0).800 ----0 

2 
(1).600 ---- 1 

2 
(1).200 ---1 

2 
(a}. 400 ----0 

2 
(0).800 ---0 

2 
(1).600 ---1 

2 
(1).200 ---1 

.325
10 

= 010100110011 2 + 

Dividing the binary equivalent into groups of three start-
ing at the binary point, we find 

. 010 100 110 all 
.2 4 6 3 

It is apparent that the binary equivalent can be easily 
converted to octal equivalent by dividing the binary 
number into groups of 3 binary digits (bits) commencing 
at the radix point. Then it is possible to convert to octal 
equivalent by inspection of each group of 3 bits using the 
knowledge that: 

a = 000 

1 = 001 

2 = 010 

3 = all 

4 = 100 

5 = 101 

6 = 110 

7 = 111 



Examples 

010/101/010/100/001/000. 010/010/101/000/001 
2 5 24 1 0,2 2 5 0 1 

001,101,011,111,110,110,111,011,110. 111,111 
153766736.77 

9 

Th is completes the discussion of conversion from one 
number system to another. It will be essential that you 
have a thorough understanding of binary and octal sys
tems and are able to convert decimal, octal and binary 
with ease and confidence. 





SECTION 3. USING THE NUMBERING SYSTEM 

INTRODUCTION 

The systems of numbers and counting, and the methods 
of converting a number from one system to its equivalent 
in another system were presented in Sections I and II. 
The next step is to manfpulate the numbers in order to 
make them do useful work. The basic elements of arith
metic: addition, subtraction, multiplication and divi
sion are the operations which will be covered. 

Addition 

Addition in binary or octal number systems is performed 
in the exact manner that is employed in the decimal sys
tem. The generation of a "carry" is in effect when the 
sum of the digits exceeds {overflows} the basic symbols. 
To make the procedure a little more clear, "truth" tables 
for both binary and octal addition are given below: 

TABLE 3-l. BINARY ADDITION, A + B 

A B Sum Carry 

0 0 0 0 

0 0 

0 0 

0 

TABLE 3-2. OCTAL ADDITION 

0 1 

1 2
0 

2 

£:) 3 
Z 
w 4 Q 
Q « 5 

6 

7 

Legend: y 
x 

AUGEND 

2 3 

3
0 

4
0 

4
0 

5 

6
0 

y = Carry 
x = Sum 

4 

50 

6
0 

7
0 

0
1 

Augend 
+ Addend 

Sum 

5 6 

6
0 

7
0 

7
0 

0
1 

0
1 1 1 

1 1 21 

21 3
1 

4
1 

7 

0
1 

1 1 

21 

3
1 

4
1 

51 

6
1 
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Therefore, to add in either system we can use the tables 
above in order to aid in understanding. 

Examples 

Decimal 

29 
+20 
49 10 

67 
+15 

82 10 

201 
49 

169 
17 

436
10 

320 
251 
427 
998

10 

27 
32 
10 
69

10 

Octal Equiv 

35 
+24 
618 

103 
17 

122 8 

311 
61 

251 
21 

664
8 

500 
373 
653 

1746
8 

33 
40 
12 

105
8 

Binary Equiv 

011101 
+010100 

110001 2 

001000011 
001111 

0010100102 

11001001 
00110001 
10101001 
00010001 

110110100
2 

101000000 
011111011 
110101011 

1111100110
2 

011011 
100000 
001010 

1000101
2 

As can be seen, "carries" in any system are treated the 
same. Addition of more than two rows of numbers is not 
necessary because in computer work there is no require
ment to add or manipulate more than two numbers at a 
time. 

Subtraction 

Truth tables for octal and binary number systems are given 
below for reference in working the examples. Little time 
is spent dwelling on points because the rules are the same 
regardless of the system. 



TABLE 3-3. BINARY SUBTRACTION, A - B 

A 

o 
o 

B 

o 

o 

Difference 

o 

o 

Carry 

o 

o 
o 

TABLE 3-4. OCTAL SUBTRACTION 

MINUEND 

0 1 2 3 4 5 6 7 
I 

00 10 20 30 40 50 60 7
0 0 

1 7
1 00 10 20 30 40 50 6

0 

0 
2 6

1 
7

1 00 10 20 30 40 50 

Z 3 51 6
1 

7
1 00 10 20 30 40 

w 
I 

4
1 51 6

1 
7

1 00 10 20 30 « 4 e:::: 
I-

3
1 4

1 51 6
1 

7
1 00 10 20 co 5 ::J 

(/) ,J 1 • 1 ,..1 1 ""7 1 0 ,0 

Legend: 
xY Y = Carry Minuend 

x = Difference -Subtrahend 
Difference 

Examples 

Decimal Octal Equivalent Binary Equivalent 

23 27 010111 
-15 -17 -001111 
810 108 0010002 

64 100 001000000 
-25 -31 -011001 
3910 47 8 100111 2 

219 333 011011011 
-146 -222 -010010010 
-nl0 llT8 001001001 2 

346 532 101011010 
-165 -245 -010100101 
18110 265 8 010110101 2 

Multiplication 

Binary and octal multiplication are identical to decimal 
multiplication. The maior difference is that the tables 
are different and must be memorized if one is to become 
rapid and expert in their use. The tables for each sys
tem are given as follows: 
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TABLE 3-5. BINARY MULTIPLICATION 

MULTIPLIER 

0 1 

10 
j::Z 0 0 0 
--l« 

::J~ 
1 1 I I~ ~J 'I 0 J 

Examples 

A=O B = 1 AxB=O 

A = 1 B = 1 AxB=l 

A=O B = 0 AxB=O 

A = 1 B = 0 AxB=O 

There are no other combinations and remembering the 
table is relatively easy. 

TABLE 3-6. OCTAL MULTIPLICATION 

MULTIPLIER 

V I L- .. oJ V 

0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 
0 2 0 2 4 6 10 12 14 16 
Z 
« 3 0 3 6 11 14 17 22 25 u 
:::t 
0... 4 0 4 10 14 20 24 30 34 j:: 
--l 
::J 5 0 5 12 17 24 31 36 43 
~ 

6 0 6 14 22 30 36 44 52 

7 0 7 16 25 34 43 52 61 

Examples 

A = 5 B = 7 A x B = 438 

A = 2 B = 4 A x B = 108 

A = 6 B = 3 A x B = 228 

Examples: using the multiplication tables. 

Decimal Octal Binary 

7 7 111 
5 5 101 

35 10 438 111 
000 

111 
100011 2 

8 10 1000 
4 4 100 

32 10 40
8 1000002 



Decimal Octal Binary 

27 33 011011 
8 10 1000 

216
10 

330
8 

011011000
2 

51 63 11 0011 
2 2 10 

102
10 

146
8 001100110

2 

100 144 1100100 
63 77 111111 

300 1274 1100100 
600 1274 1100100 
6300

10 
14234

8 
1100100 

1100100 
1100100 

1100100 
1100010011100

2 

The reader should go through the above examples to 
develop an understanding of the processes. 

Division 

Octal and binary division are identical to decimal 
division. Remember, when analyzing the examples 
below, that you must use the multiplication table of 
the system in which you are doing the division. 

Decimal 

6.8 
iJ 27.2 

-24 
32 

-32 
00 

Octal 

6.63 
.±J 33. 15 

-30 
31 

-30 
-15 

-14 
-1 R 

110. 110011 
~ 011011.001101 

-100 
101 

-100 
--110 

-100 
100 

-100 
--110 

-100 
101 

-100 
--1 R 

The binary division example is stopped with a remainder 
but could have been just as easi Iy carried on. 
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Decimal 

5.9 
2J 29.5 

-25 
45 

-45 
o 

2.5 
!QJ25.O 

-20 
50 

-50 
o 

3 
~ 

-39 
o 

11. 0 
!.!J 121. 0 

-11 
-11 

-11 
o 

Octal 

5.71 

~ 
-31 
44 

-43 
-10 

-5 
3R 

2.4 

.!Lf3l.O 
-24 
50 

-50 
o 

3 

~ 
-47 
o 

13.0 
.EJ 171.00 

-13 
41 

-41 
o 

101. 111001 
!QlJ 11101. 100 

-101 
---roo 1 

-101 
1001 
-101 

1000 
-101 
-1-10 

-101 
-1000 

-101 
-1-1 R 

10. 1 
!Q.!QJ 11 00 1. 000 

-1010 
-1-010 

-1010 
--0 

11. 0 
.!lQ.!J 1 00111. 00 

-1101 
1101 

-1101 
--0 

1011.0 
~ 1111001.00 

-1011 
---WOOO 

-1011 
lOT 1 

-1011 
--0 

Complements and Complement Arithmetic 

SDS computer systems hold negative numbers in memory 
in two's-complement form. Single precision numbers 
have the most significant digit position of a computer 
word as the sign bit and the remainder of the word 
represents the magnitude of the number. This conven
tion allows the sign of a number to be used as an inte
gral part of the number in all arithmetic operations and 
obviates the need for keeping track of a detached sign 
with computer logic. A "0" bit denotes a positive sign 
and a II 1" denotes a negative sign. In this system, the 
negative of a number is its two's complement. 



An algorithm for finding the two's complement of a 
binary number is: 

To find the two's complement of a binary num
ber B that has N significant bits, including the 
sign bit, subtract it from the number 2 N+ 1 ex
pressed in binary form. (The number 2N+ 1 is a 
1I0ne ll followed by N zeroes.) 

A more simple method of deriving the two's complement 
of a binary number IS to invert all O's and l's and add 1 
to the least sign ificant digit. (The inversion of l's and 
O's forms what is called a one's complement.) This is 
the same as subtracting a binary number from an equal 
number of 1 digits, and adding 1 to the least significant 
digit. 

Examples: Find the two's complement of the given 
numbers. 

Method 1 

1000000 
(-) 011001 

1001112 

1000000 
(-) 001001 

1101112 

- 2 10 -(0000102) 1000000 

Method 2. 

-(0010012) 

- 000010 
1111102 

100110 (one's complement) 
+ 1 

100111
2 

(two's complement) 

110110 (one's complement) 
+ 1 

110111
2 

(two's complement) 

111101 (one's complement) 
+ 1 

111110
2 

(two's comp lement) 

In SDS systems, the sign bit is the first bit position to 
the left of the most significant magnitude bit. Thus, if 
an SDS computer word was only 6 bits long, instead of 
24, some common decimal values would be represented 
in binary format as fo I lows, considering that on Iy nega
tive numbers are complemented and the binary point is 
to the right of the least significant digit. 
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Decimal 
Number 

Octal Complement Binary 
Equivalent Equivalent Plus 1 

3 03 
2 02 
i Oi 
0 00 

-1 ( -)01 
-2 (-)02 
-3 (-)03 
-31 (-)37 

77 
76 
75 
41 

Sign Magnitude 

Bit\ \ Bits 

~
6Ooil' 

o 00010 
a 00001 
o 00000 
1 11111 
1 11110 
1 11101 
1 00001 

When using two's complement notation, an N-bit 
integer can be expressed as: 

Thus, 

+5 = 0101 = 0 [-(2
3)J + 1(22) + 0(2

1
) + 1(20) 

= 0 + 4 + 0 + 1 = +5 

and, taking the two's complement of 0101 to obtain the 
binary equivalent of -5, 

-5 = 1011 = 1 [-(23)J + 0(22) + 1 (21) + 1 (20 ) 

=-8+0+2+1 

= -8 + 3 = -5. 

The following examples show how two's complement 
numbers automatically yield the correct result when 
used arithmetica Ily in a computer. 

Decimal Number 

+20 
-03 
+17 

Binary Equivalent 

010100 
111101 

(1) 01 0001 21 8 = 17 1 0 

Lost ~arry <:) 

Note that the carry out of the most significant (sign bit) 
position is III0st". Nevertheless, the value remaining 
is the correct answer because the positive IIcarry" into 
the negative sign position "cancels" the negative sign bit. 

Decimal Number 

-32 
+24 
-::s 

Binary Equivalent 

100000 
011000 

( ) 111 000 = - 1 0 =-8 
~_ 8 10 

No Carry"::> 



To find the decimal equivalent of a binary two's 
complement number: 

A. Subtract one. Form the one's complement 

c. Find the decimal equivalent. The negative 
of this result is the decimal equivalent. 

As the above examples indicate, the sign bit is an inte
gral part of the number to which it is attached and its 
value, plus or minus, is automatically taken care of 
during the use of the two's complement arithmetic. 
This property is used when numbers of different length 
are added. For example, assume that these two signed, 
two's complemented, negative numbers of 6-bit and 
3- bit length are added: 

Decimal Binary 

-21 101011 
-03 101 
-24 -I 110000 = -16 

10 

Note that the third least significant bit of the first 
number is added to the sign bit of the second number 
causing an erroneous result. This error is corrected by 
filling in the empty bit positions with the value of the 
sign bit of the shorter number. 

Decimal Binary 

-21 101011 
-03 111101 
-24 (1) 101000 -24

10 

This property suggests: 

1) Filling the empty bit positions with the sign 
value of a positive number, that is, zero, has 
no changing effect on the result, and 

2) If the two's complement is taken by the method 
suggested where N is the largest number's length, 
the sign value is automatically appended to the 
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smaller number. For example, if the complement 
of 03 is taken using N = 6, 

1000000 
011 

111101 

the sign is properly appended to the number. 

This procedure is called "extending" the sign of a 
number. 

Note that if the sign bit of -5 (1011) is extended four 
places to 11111011, this can be interpreted as 

_(2
7

) + 1 (26) + 1 (2
5

) + 1 (24) + 1 (23) + 0(22) 

+ 1 (2
1
) + 1 (20) 

- 128 + 64 + 32 + 16 + 8 + 0 + 2 + 1 

-128+123 = -5. 

Thus the actual value ofa binary number is unchanged 
by the sign-bit extension. 

It was previously noted that when performing addition or 
subtraction in the computer, carries out of the sign bit 
do not always signify a true overflow condition or cause 
the overflow indicator to set. For example, in an addi
tion it is impossible to produce a true overflow if the 
signs of the operands are un I ike. A true overflow occurs 
when the result of an addition or subtraction results in a 
number too large to be expressed by the machine number 
range. The computer sets the overflow indicator during 
an addition on Iy when the signs of the two operands are 
the same, but the sign of the result is opposite. In a 
subtraction, accomplished in the computer by forming 
the two's complement of the subtrahend and then adding 
to the minuend, the test for overflow is similar to that 
for addition. That is, overflow occurs when both num
bers have the same sign after the subtrahend has been 
complemented, but the sign of the result is opposite. 





SECTION 4. LOGICAL ALGEBRA 

INTRODUCTION 

Ordinary algebra is the symbolic expression for relation
ship of mathematical variables. This algebra we learned 
in high school. 

There is another variety of algebra known as logical or 
Boolean algebra. Logical algebra differs from ordinary 
a Igebra in two respects. 

a. The Symbols do not represent numerical values. 

b. Arithmetic operations are not performed. 

Boolean algebra is an aid for analyzing logical thought. 
In fact, George Boole, the developer of this algebra, 
published the algebra in a book entitled liThe Laws of 
Thoughtll • Boolean algebra is ideal for describing the 
action of switching circuits which is important in digital 
computer design since a switch may represent the 
characteristic ON and OFF states of computer intelli
gence. The operation of a digital computer can be 
described by logic equations using Boolean symbology. 

SYMBOLOGY AND RULES OF LOGICAL STATES 

Letter symbols are used to represent dependent or inde
pendent variables which are always two valued: either 
zero or one; true or false; voltage or no voltage, etc. 

Every logica I quantity must exist in one or the other of 
the two possible states. No other values are allowed. 
In addition a logical quantity is single valued; that is, 
no quantity may be simultaneously both true and false. 

Any quantity that is true is equa I to any other quantity 
that is true and any quantity that is false is equal to any 
other quantity that is false. 

Every logical quantity has an opposite. If the quantity 
is true the opposite, or reverse of that quantity is false, 
and vice versa. 

Letters of the alphabet are generally used to represent 
the variables of Boolean algebra. These letter symbols 
are known as terms. 

Logic operations that can be performed in algebra are: 

a. AND = X = • = 
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b. OR = + 

c. Inverse or negative = symbol over barred, e. g. 
A or"S". 

The X, ., + of logic algebra in no way resembles the 
function of these same symbols when used in ordinary 
algebra. 

a. The AND operation - a combination of variables 
has a true state output when all the variables are true, 
and for all other conditions the output state is fa Ise. 
The AND operation is represented by a dot or absence 
of any symbol between variables. 

b. The OR operation - a combination of variables 
has a true state output when anyone or more of the 
variables is true and a false state output when all 
variables are false. The OR operation is represented by 
a + between variables. 

c. An expression is a combination of terms and 
operators. 

A logical equation is a complete statement of equality 
of the two expressions separated by the = sign. 

To express the complement of a logic term, expression, 
or equation, place a bar over it. 

Examples: 

(1) AB+C 

(2) A + B= C 

(3) A + B= C 

(4) A + B=A B 

(5) ABC =A + B + C 

Word description 

A and B 0 r no t C 

A~ B equal C 

Not (A or B) equals the 
complement of C 

. Not (A or B) equal the 
complement of A and the 
complement of B 
Not (A and B and C) equals 
Not A or Not B or Not C 

The operation described by the overbarred symbol or 
term is called the NOT operation. It denotes the 
inverse or complement of the term or symbol that is 
overbarred. 



There are two additional operations which are combina
tions of the fundamental three (AND, OR, NOT). 
These additional operations are NOR and NAND. 

NOR and NAND can be considered to be: 

NOR = OR i. e., the output of the OR is 
complemented. 

NAND = AND i. e., the output of the AND is 
complemented. 

To go into these logic operations in more detail, it is 
necessary to define further some of the principles which 
must be considered. In dealing with logic the binary 1 
is taken to mean the true state and the binary 0 is taken 
to mean the false state. In computers, voltage levels 
are used to represent true or false, for instance false = 
o volts, true = +8 volts might well be a set of conditions 
within a computer. 

The AND Function 

Expressed as a logical equation, the AND function 
might be used as fo Ilows: 

f = A· B. C = ABC = (A) (B) (C) where f denotes 
a logical function - in this case the AND. 

A, B, and C represent true logical quantities. 

The equation says that f wilt be true only when A and B 
and C are true a II at the same time. One method Of 
showing all possible conditions of all variables A, B,C, 
and the function f is the truth table. Figure 4;-1 is a 
truth table of the above equation which uses 1 and 0 to 
replace true and false respectively. 

f=A·B·C 

A B C f 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 
I 

1 0 

1 0 

I 

0 

I 

0 

1 0 1 0 

I 1 1 0 0 

Figure 4-1. AND Truth Table 

The AND function might further be illustrated by a 
series of switches as shown below. If the light when 
I ighted represents the true state of the function, the 
only way the true state at the light can be obtained 
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is for all switches to be in the true (closed) state. 

Figure 4-2. AND Switching Circuit 

The logic symbol of an AND operation is: 

Figure 4-3. AND Symbol 

The symbol of Figure 4-3 is known as the AND gate. 

OR 

Expressed in a logical equation the OR function might 
be used as fo I lows : 

f=A+B+C where f denotes a logical function, 
in this case the OR. 

A, Bj' and C represent true logical quantities. 

The equation says that the function f will be true if A 
OR B OR C are true. Figure 4-4 is the truth table of 
the above function which uses 1 and 0 for true and false 
respectively. 

f=A+B+C 

A B C f 

o o o o 
o 0 

o 0 

o 
o 0 

o 
o 

Figure 4-4. OR Truth Table 

The OR function might further be illustrated by a series 
of switches arranged in parallel as shown below. The 
light when lighted represents the TRUE state of the 
function. The only way the FALSE state at the light 



can be obtained is for all switches to be FALSE (open). 
The TRUE state will be realized when anyone of the 
switches is TRUE {c losed}. 

O. 
1 

Figure 4-5. OR Switching Circuit 

The logic symbol for an OR operation is: 

Au------+-~ 

B~---------------~--_+----------_o 

C o-----------------+------~ 

Figure 4-6. OR Logic Symbol 

The symbol of Figure 4-6 is known as the OR gate. 

NOT 

The NOT operation is a negating, inverting, or comple
menting operation. The impl ication is that you get from 
the NOT operation the opposite of what you put into the 
input of the operation. 

The NOT operation is indicated by a bar drawn over the 
logical quantity. For instance: 

f = A Where f denotes the logical function 
NOT A denotes a true logical quantity. 

When reading this equation, one would read, or say, IIf 
equals NOT A" or II f equals A overbarll or II f = A-barll. 

If A is true then A must be false and vice versa. A truth 
table for the NOT function is given below in Figure 4-7. 

f = A 

a 

Figure 4-7. NOT Truth Table 

A circuit which may be thought of as representative of 
the NOT is shown in Figure 4-8 below. The light f is 
TRUE when it is lighted. In this case, the only way 
the TRUE state of the light f can be obtained is for the 
switch A to be open {false}. The switch can be labled 
any way we choose, thus the two conditions given in 
the truth table, Figure 4-7. 

f 

a 

Figure 4-8. NOT Switching Circuit 

The logic symbol for a NOT operation as used by SDS 
is: 

A 
A 

Figure 4-9. NOT Logic Symbol 

The symbol of Figure 4-9 is known as an Inverter. 

NOR 

The NOR operation is a combination of OR and NOT, 
two of the three fundamental logical operations. The 
word NOR is a contraction of the statement II NOT OR". 

Expressed in a logical equation the NOR operation 
might be used as follows: 

f=A+B+C 

Th is equation says: 

Where f denotes the logical NOR 
operation A, Bf C are TRUE 
logical quantities. 

a. f is false if anyone or more of the logical 
quantities is true. 

b. f is true only when all of the logical quantities 
are false. 



The truth table of the NOR operation is: 

f=A+B+C 

A B C f 

0 0 0 

0 0 0 

0 0 0 

0 0 

0 0 0 

0 0 

0 0 

0 

Figure 4-10. NOR Operation 

The NOR operation might be further illustrated by a 
switching circuit as shown in Figure 4-11. The light 
wi II represent TRUE when I ighted, and from inspection 
of Figure 4-11, it wi II be readi Iy seen that the light f 
can be TRUE only when all the logical quantities 
(switches) are FALSE (open). Anyone or more logical 
quantity being TRUE wi II cause the light f to extinguish 
and thus be FALSE. 

f 

o 

Figure 4-11. NOR Switching Circuit 

The logic symbol for the NOR operation is a combination 
of OR and NOR in SDS logic symbology. As shown in 
Figure 4-12. 

Figure 4-12. NOR Logic Symbol 

The symbol of Figure 4-12 is known as the NOR gate. 
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NAND 

The NAND operation is a combination of AND and 
NOT, two of the three fundamental logical operations. 
The word NAND is a contraction of the statement NOT 
AND. 

Expressed in a logical equation the NAND operation 
might be used as follows: 

f = ABC 

Th is equation says: 

Where f denotes the logical operation 
NAND. A, B, C are true logical 
quantities. 

a. f is true when anyone or more of the logical 
quantities is false. 

b. f is false only when all the logical quantities are 
true. 

The truth table of the NAND operation is Figure 4-13. 

f = ABC 

A B C f 

0 0 0 1 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 

Figure 4-13. NAND Operation 

The logical NAND operation might be further illustrated 
by a switching circuit as shown in Figure 4-14. The 
light will represent true when lighted. From inspecting 
Figure 4-14, it will be readily seen that the light f will 
be false (unlit) only when all switches are true (closed). 

f 

Figure 4-14. NAND Switching Circuit 



The logic symbol for the NAND operation is a combina
tion of the AND and NOT in SDS logic symbology as 
shown in Figure 4-15. 

A~-----' 

Bo---4 

C 

A 0---1 

Bo-----I 
Co-----1 

Figure 4-15. NAND Logic Symbol 

The symbol of Figure 4-15 is known as the NAND gate. 

Summary of the 5 operations and their symbols. 

A 

0 

0 

0 

0 

LOGICAL 
QUANTITIES 

B 

0 

0 

o 
o 

LOGICAL 
FUNCTION 

C 

0 

0 

o 

o 

(OR) *NOT f(NOR) f(AND) **f(NOT) 

0 0 1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

* using OR as input to NOT function. 
** using AND as input to NOT function. 
All other functions use A, B, C, as inputs. 

f(NAND) 

0 
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A 00----4-.-.... 
A+B+C 

Bo---+--~-~~ 

Co---+--; 

OR 

T 

NOT 

A [)::e ABC 
B 

C 

AND NAND 

~~ ~A+B;C 

NOR 

Figure 4-16. 

In the preceding work discussed in this section, we 
have gone over the operation of AND, OR, NOT, 
NOR, and NAND. These operations have been dis
cussed as a method of leading into the algebraic 
properties of logic and logical algegra. From what 
has been said previously it is now possible to discuss 
other properties of logical algebra. These other pro
perties will be stated in logical algebraic form, and 
where necessary, additiona I comments wi II be made. 
From what has gone before, many of the statements 
will be self explanatory. 

0 

Identities are statements of absolute equality between 
the left member and the right member separated by an 
equality sign. In the case listed below the equations 
are correct, regardless of the values of the variables. 
The reader should verify the validity of the following 
statements for himself by substituting the "true" (1) and 
IIfalse" (0) for the variables in all possible situations. 

IDENTITIES 

1. A +A = 1 9. 1 + A = 1 

2. AA =0 10. OA=O 

3. A· A = A 11. (A + B) (A + C) = A + BC 

4. A + AB = A + B 12. A=A 

5. A + AB = A 13. (A+B) = A x B or A B 
6. A+A=A 14. AB=A+B 

7. O+A=A 15. A(B+C) = AB + AC 

8. lA = A 



Examples of proofs for the above identities. 

(1) A + A = 1 If A = 1 then A = 0 

A+A=1+0=1 

I f A = 0 then A = 1 

A+A=O+l=l 

The statement is true for all possible values of A, and 
thus the identity has been proven. 

(4) A 

o 

o 

A 
o 

o 

B 

o 
o 

AB 

o 
o 
o 

A+AB 

o 

This table proves that A + AB = A + B 

(11) (A + B) (A + C) = A + Be 

A B C (A+B) (A+C) BC (A+B) (A+C) 

0 0 0 0 0 0 o x 0 

0 0 0 0 o x 

0 0 0 0 o x 0 

0 1 1 x 

0 0 0 1 x 

0 0 1 x 

0 0 1 x 

1 x 

A+B 

o 

A + BC 

o + 0 

o + 0 

o + 0 

= o + 

1 + 0 

1 + 0 

1 + 0 

1 + 

Therefore the identity has been proven since the identity 
holds true for all possible combinations of variables. 

The reader should work out this same sort of proof for any 
of the identities he feels there may be some question 
about. It is mandatory that the reader be able to justify 
every identity and in addition be able to use these iden
tities from memory since these are used in many cases to 
simplify logical equations. 

The following identities may seem trivial but they prove 
some very important features of the operations stated. 
These features wi II be covered with each of the identi
ties which are called theorems. 

1. A+B=B+A 

AB = BA 

These two statements say that the order of arrangement 
of the logica I quantities does not affect the truth of the 
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statement. In other words, the AND and OR operations 
are commutative. 

2. A + (B + C) = (A + B) + C = A + B + C 

A(BC) = (AB)C = ABC. 

These statements say that the order of performing the 
logical operations in a given statement does not affect 
the end result, which in each case, for each line 
above, wi II be the same. In other words the AND and 
OR operations are associative. 

The next step is to apply the information given pre
viously in this section. In application the aim will be 
to simplify logic statements which appear at first glance 
to be complicated. 

Given the following statement, simplify it as much as 
possible using the identities given previously. 

f=ABC+ABD+AC+ABCD+AC 

rearrange the terms and group: 

f=ABC+AC+ABCD+AC+ABD 

= A(B C + C) + A{B C D + C) + A B D 

Apply the simplifying identity A + A B = A + B to the 
first two terms as follows: 

BC+C~B+C 

BCD + C = BD + C 

Substitute the resu It in the statement to get 

f = A(B + C) + A(B" D + C) + A B D 

Expand to get 

f=AB+AC+ASD+AC+ABD 

Apply the simplifying identity A + A B = A to the terms 
AB+ABD 

AB+ABD=AB 

Substitute the resu It to get 

f=A B+A C +A SD+AC 

No further simplification appears possible. Therefore 
the fo !lowing identity: 

ABC+ABD +AC +ABCD+A C =AB+AC 

+AC+ASD 

By this simplification it was possible to reduce the num
ber of logical quantities from 14 to 9, which represents 



considerable reduction in logical statement complexity 
and in hardware when it is implemented. 

There is no assurance in the reduction or simplification 
system used that the statement has been reduced to its 
absolutely simplest firm. At least this is the case for a 
beginner or someone not completely familiar with 
reduction possibilities. There should be a more certain 
less laborious method to use in simplifying logic state- ' 
ments. A simplification system, for a reasonable num
ber of variables is the Veitch diagram. 

VEITCH DIAGRAMS 

Veitch diagrams are a quick and easy way to find the 
simplest logical equation needed to express a given 
function. Veitch diagrams may be constructed for any 
number of variables, but they become difficult to use 
when more than 4 variables are involved. Veitch 
diagrams for use with two through six variables are 
illustrated in Figure 4-17. 

A A 
A A 

0 A A 

:EE 
2 VARIABLES 

I 

B 

B 

B 

A 

ci 

E 
A 

c I 

B 

E 

I 

c 

c 

C '--y----J C 
C 

3 VARIABLES 

E 

A A I 

C c 

5 VARIABLES 

A 

c 
f 

c 

6 VARIABLES 

A 

Ic 

Figure 4-17. Veitch Diagrams 
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B 

D 

B 
5 

C C Ie 
I 

4 VARIABLES 

[5 

D 

[5 

0" 

D F 

-

5 -

-

D F 

-
[5 

-



Each variable has 2 possible states. Therefore, the 
number of squares in the diagram, to represent all 
states must be equa I to 2n, where n is the number of 
variables to be indicated by the diagram. Thus, for 4 
variables there must be 24 squares, or 16 squares. For 
an 8 variable diagram, the number of squares would be 
256, a rather large diagram. For variables in excess 
of 5 or 6, it is recommended that the student refer to 
Boolean algebra texts for other methods of simplification. 

Each square of a Veitch diagram refers to a unique 
combination of variables. This is. illustrated below for 
a 4 variable Veitch diagram. 

A A Square # Variables 

1 2 3 4 D ABCD 
B 

5 6 7 8 2 ABCD 
D 

9 10 11 12 7 ABC D 
B 

13 14 15 16 D 16 ABCD 

C 
-

C C 

To illustrate the use of the Veitch diagram the same 
equation as was previously used to illustrate the simpli
fication identities wi II be diagrammed. 

f=ABC+ABD+AC+ABCD+AC 

4 variables: A, B, C, D 

A A 

1 2 3 4 
B 

5 6 7 8 

9 10 ·11 12 
B 

13 14 15 16 
- -
C C C 

-
D 

D 

-
D 

The numbers in each 
square are for clarity 
in explanation only 
and are not a part of 
a standard Veitch 
diagram. 

Plot the terms of the logical function term by term. The 
diagram, when this operation is completed, would 
appear as shown below. A 11111 placed in each square is 
representative of a term. Remember that a term entered 
in a Veitch diagram may cause more than one square to 
have a 1 entered in it. Be certain you have placed a 1 
in every square wh ich represents the term. 
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A A 
-

1 1 1 D ABC = 2 & 6 
B 

1 1 1 
ABD =1&2 

D AC = 1, 5, 9 & 13 
1 1 

B 
ABeD = 16 

I 1 I I , , -
AC = 3, 7, il, i5 

I ~ I 

There are a few rules which are used with the Veitch 
diagram to insure that the resultant simplified equation 
is in fact correct: 

1. If lis are located in adjacent squares or at 
opposite ends of any row or column, one of the variables 
may be dropped. 

Example: adjacent squares 15 & 16 

(15) (16) 

ABCD + ABCD 

A B 5 (C + C) = A B 15 

Opposite ends of a row or column 13 & 16 

(13) (16) 

ABeD + ABCD 

BCD {A + A) = Be is 

2. If any row or column of squares, any block of 4 
squares or the 4 end squares of any adjacent rows or the 
four corner squares are fi lied with lis, two of the 
variables may be dropped. 

Example: 

(1) 

Consider squares 1, 5, 9, 13. These could 
be represented by A C, since B & 8, D & D 
have been used. This can be better illus
trated by simplifying just the 4 terms repre
sented by these squares. 

(5) (9) (13) 

ABCD+ABCD+A8CD+ABCD 

ABC (D+ D) + A BC (D + D) 

ABC+ABC 

A C (B + S) = A C. 

Thus squares 1, 5, 9, 13 can be represented by the 
term AC. 



3. If any 2 adjacent rows or columns, or the top and 
bottom rows, or the right and left hand columns are 
completely fi lied with lis, three of the variables may 
be dropped. 

Example: For th is example, assume that the two left 
columns are fi lied with lis. Thus we would 
be considering squares 1, 2, 5, 6, 9, 10, 
13, 14. 

(1 ) (2) (5) (6) (9) (10) (13) (14) 

A BCO+A BCO+A BC D+A BC D+ABC D+ASCD+ABCO+ASCO 

ABO (C+C) + ABD(C+C) + ASD(C+C) + ASD(C+C) 

ABO + ABD + ABD + ABD 

AB (0 + D) + AS (0 + D) 

AB +AS A(B + S) = A 

This same example can be worked out for the other con
ditions which permit dropping three variables. This is 
left as a readerls exercise. 

4. To reduce the original equation to its simplest form, 
sufficient simplification must be made until all lis have 
been included in the final equation. Ones may be used 
more than once and largest possible combinations should 
be used. 

The rules above are illustrated in Figure 4-18. 

Now we can look at the Veitch diagram and come up 
with the simpl ified resultant equation. 

f=ABC + ABD +AC +ABCD +AC 

I A I A 

B 

C 

AA~D} f=AB+AC+AC+ABD 
"------- AC 

~------------ AB 

Figure 4-18. Veitch Diagram Rules 

The ovals and circ les are used to insure groupings and 
also to insure that all lis are used at least once in the 
simplified statement. The circle cannot be used for the 
four corners or ends of columns or rows as detailed in 
the rules. However, XiS or OIS may be used to indicate 
usage. 
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From the ru les, ill ustrations, and discuss ions it shou I d 
have been deduced by the reader that to drop a 
variable both the variable and its inverse must appear 
in two terms with the other variables of the terms being 
identical. The only simplification identity that has 
been applied is A +A = 1. This is best illustrated by 
looking at squares 15 & 16. It is obvious that both C 
and C can be dropped. Further, looking at column 1, 
squares 1, 5, 9, 13, it is again obvious that Band S, 
and D and 0 appear along with AC and thus B, S, D, 
and 0 can be dropped. 

Learning to recognize these essentials, and which 
variables can be dropped, is the secret to success with 
use of the Veitch diagram in logic simplification. 

Mechanization of Logic 

Logic mechanization may take many forms. At this 
point it is not worth whi Ie to discuss what forms they 
may take, but rather to look at the logic symbols of 
mechanization. For instance we could look at the 
logic described by the equation, 

f = A BC + ABO + AC + A BC 0 + AC 

ABC D 

ABC 

ABO 

ABe 5 

AC 

Figure 4-19. Mechanization of Logic 

This is the mechanized version of the same equation 
with which we started earlier in this section. 



To see the reduction in mechanization complexity, the 
simpl ified and reduced version of the equation is shown 
below. 

f=AB+AC+AC+ABD 

ABC D 

AB 

AC 

AC 

ABO 

Figure 4-20. Simplified Mechanization of Logic 

It is not worthwhile to go further with -mechanizot~on of 
logic since this will be the subject of your study in the 
SDS School for which you are registered. 
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SECTION 5 LOGI C ELEMENTS 

INTRODUCTION 

Numbering system manipulation, logical algebra 
operations, symbols, and terms have been the subject 
of previous sections. The actual electronics of imple
mentation used in hardware has not been presented. In 
this section we will be concerned with the general 
theory of various standard electronic circuits used in 
S DS computers. 

Prior to starting this study, it is necessary that we 
understand the objective being sought. The general 
understanding of how a particular circuit works rather 
than the specific considerations of resistor, transistor, 
capacitor or voltages chosen by the design engineer is 
the main objective. It is true that the understanding of 
the "why" would be beneficial if we were to be pre
pared to design equipment. This is not the case and we 
will concern ourselves only with "how". 

STANDARD LOGIC LEVELS 

The SDS logic circuits are based on the use of diode 
gating and representation of logic signals as DC voltage 
levels. The standard logic levels wi II be as shown 
below. Bear in mind that the value of true could be 
+4 or +6, but for th is discussion +8 has been chosen. 

o False OV 

True +8V 

Functions of any conceivable complexity can be carried 
out by the proper combination of signals according to 
simple ru les. The gating configuration used to imple
ment the desired functions can be AND, OR, NAND, 
NOR or combinations of all of these. The results of 
gating operations are usua Ily presented to fI ip-f1ops 
that perform the function of remembering the output 
condition of gates even though the outputs may have 
been transitory. The flip-flop circuits used are essen
tia��y all the same. 

The AND Function 

The AND functions are those that have two or more 
terms, all of which must be true in order for the logical 
expression to be true. That is, if Q = A· B· C, then 
Q will be true only when A and Band C are true. SDS 
AND gates are formed by using diodes with a common 
anode connection such that any input he Id at ground 
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wi II hold the output at ground. On Iy when each input 
is at true, a nominal +8V, will the output rise to +8V 
or true. 

Standard AND gate 

A 

B 

C 

A 

B 

C 

Symbol 

+25 V 

Circuit 

If the A input is false (O V) the top diode wi II conduct 
heavily and the anode will be at approximately 0 V due 
to the 1 R drop across Rg. If then inputs Band/or Care 
true (+8 V) they wi II be reverse biased and cannot in 
that condition affect the 0 V established at the output by 
the top diode. If all diodes have 0 V inputs then the 
output is 0 V and the current through Rg is the result of 
all diodes conducting simultaneously. 

If a II inputs are true (+8 V) the diodes sti II conduct more 
or less equally but the drop across Rg is only 17 V and 
the anodes and hence the output is locked at about +8 V, 
or true. The voltage at the anodes will differ from 8 V 
by the voltage drop across a diode, which from a prac
tical point of view is insignificant. 

The AND gate shown above is only a. 3-input AND. The 
standard AND gate can be expanded to include up to 30 
input terms by adding more diodes. These diodes are 
provided by the expander AND gates. 

Expander AND Gate. 

Expander AND gates are designated symbolically by a A 
at the output terminal. Physically they are the same as 
the AND gate except that they do not include gate load 
resistors. 



A 0---1 

B 

C 
~ 

Q 

Symbol 

ABC 

~ :EI--...... _--O 
Q 

Circuit 

The operation of the expander AND gate is identical 
with that described for the standard ANDI if one added 
an external load resistor with +25 V as shown be low: 

+25 V 

;: S o_--t---o 
In actuol practice the expander AND gate is combined 
with the standard AND gate as shown below: 

A 

B 

C 

D 

E 

F 

A 

B 

C 

D 

E 

F 

Q 

Symbol 

:! I 
S3 

Circuit 

Q 

ABCDEF 

+25 

iR9 

OQ 
I 
I 
I 
I 
I , 
0 
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The OR Function 

OR functions are those that have two or more terms any 
of which being true wi II cause the logical expression to 
be true. That iS I if Q = A + B + C1 Q will be true if 
A or B or C is true. SDS OR gates are diode circuits l 

arranged so that any input held at a nominal +8 V 
(true) wi i i cause the output to be true (+8 V). 

The standard OR gate: 

A 

B 

C 

A n---+-~ 

B 

C 

Symbol 

Circuit 

Q 

Inspection of the standard OR gate circuit reveals that 
the input diode and associated resistor Rg are identical 
to the configuration of the AND gate. The difference 
between a standard AND gate and a standard OR gate 
is the inc lusion of the output diodes and individual 
diode load resistors on the OR gate. 

In the standard OR gate the anode of any input diode 
will follow the input. The voltage at the bottom of 
any load resistor will be determined by the input to its 
associated diode. Thus an output diode anode has on it 
the voltage appearing at the input terminal associated 
with it. 

To make the standard OR diodes work at a II there must 
be a load resistor and source of voltage attached to 
their common-connected cathodes. Though it is not 
shown in the diagram of the circuit, it must be there to 
have the circuit work at all. The circuit configuration 
would thus be: 



+25 

-25 Volts 

~--..---o--~ 

The AND oriented input diodes can be ignored for this 
circuit explanation since this has been explained in the 
discussing of the standard AND. Thus the OR circuit 
can be explained using only the following circuit. 

-25 Volts 

A 

B 

c 

If an OR facing diode has +8 V at the input or anode 
terminal, the output at its cathode will be +8 V regard
less that the other diodes have 0 V at their anode. 
With 0 V at the anode and +8 V at a cathode, a diode 
is reverse biased and effectively out of the circuit. 
Thus with anyone or more inputs true (+8 V) the output 
wi II be true. 

In this type of circuit it is essential that all unused 
input terminals be grounded. If this precaution is not 
taken, the output of the standard OR will be true at all 
times regardless of the inputs at the used terminals. To 
explain the reason for the necessity of grounding unused 
input terminals, assume that input C is unused, ungroun
ded, and terminals A and B are used and have false 
inputs. Under these conditions we would normally 
expect a false output at Q. However, with terminal C 
open, the anode of the C output diode would attempt to 
go to +25 V. The result would be conduction through 
the C output diode since it is now forward- biased. As 
a result, the output terminal would go positive and 
remain there. A positive output at Q represents a true 
condition which is not what we would expect with false 
at both used input terminals. Thus under any circum
stance the output would be true, if an unused terminal 
of a standard OR were left ungrounded. 
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Gated Input OR Gate 

Inspection of the diode previously shown reveals that 
the input diode and associated resistor of the standard 
OR gate are identical to the circuit for an AND gate. 
The basic difference between a standard AND gate and 
a standard OR gate is the inc lusion of the output diode 
on the OR gate. It fo I lows that the outputs of standard 
AND gates can be ORed by adding the required diodes 
in the OR-facing direction. Diodes connected in this 
manner are referred to as gated input OR gates. A 
connection for such an arrangement cou Id be: 

A 

B 

c 

o 

Symbol 

+25 

~I 
+25 

Circuit 

Phantom OR Gate 

Q=A·B+C·D 

-25 

~f_ 
~Q 
I 
I 
o 

A more common and versati Ie way to obtain diodes in the 
OR-facing direction when ORing the outputs of AND 
gates is to use an extra input diode of the AND gate as 
the output diode. 

A lJ----i 

B 

C 

D 

AB 

I A. B + C. D r---------- O 

CD 

Symbol 



+25 V 

:=a i A~ I 
I I 
! I _ 
I------------------~ 
I +25 A . B + c· D 

Circuit 

Inspection wi II show that th is diode configuration is the 
same as that shown for the gated input OR gate. To 
clarify the logical operation on logic diagrams, the 
connection of the diodes is sometimes drawn as follows: 

A 
B 

i', Q =A·B+C·D 
~--------------~-~ 

1.,7 

C 

D 

The OR gate represented by the dashed lines is referred 
to as a phantom OR gate and readi Iy c lari fys the fact 
that the output of the AND gates has been ORed to
gether. 

The AND/OR Gate 

The circuit configuration described above with the OR 
portion being called a phantom OR is generally referred 
to at SDS as the AND/OR gate. The AND/OR gate is 
used as shown below: 

A 
B 

C 
D 

Q 

Symbol 
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A +25 V 
-25 V 

B J 
I 
I 

Q 

+25 V 

C 

D 

Circuit 

NOTE: It is felt that sufficient operation and description 
of diode circuitry has been presented to this point. If the 
reader feels the necessity to apply voltages and analyze 
the individual circuits, it is left to him as an exercise to 
do so. Understanding of these circuits is essential to 
understanding the computer when it is studied in school. 

It is possible to increase the inputs to the AND/OR gate 
by use of an expander AND as shown in the following 
symbols. A drawing of the circuit is not shown. The 
reader can draw the circuit, if he feels the necessity. 
Enough information on circuits has been given thus far to 
make the drawing a simple task. 

A 

B 

C 

D 

E 

F 

G 

~--------------------~Q 

Q = ABCDE + FG 

Symbol for Expanded AND/OR 



Logic Amplifiers 

Logic amplifiers are used to amplify the output of diode 
gate structures, to generate the logical complement or 
inverse of an input signal, and to provide additional 
driving capabi I ity for heavily loaded logic terms. 

SDS Logic amplifiers consist of an input diode with a 
controlled reverse voltage breakdown point (Zener 
diode) followed by either a single-grounded emitter 
transistor in the case of an inverter or two transistors 
in the case of a buffer amplifier. 

A 1>-+--0 Q 

Q=A 

Inverter Symbol 

+8 V 

_--o---oQ 

A 

-25 V 

Inverter Circuit 

A Q 

Q=A 

Buffer Amplifier Symbol 

+8 +8 

-25 -25 
Buffer Amplifier Circuit 

NOTE: In practice the base resistor and coupling 
Zener diode to the second transistor may be eliminated. 

Q 
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To explain the operation of these circuits, a discussion 
of the inverter circuit is undertaken. The buffer ampl i
fier will be explained also since the two circuits are 
identical in theory of operation. The only difference 
being that an input signal to an inverter is inverted once 
and in a buffer ampl ifier it is inverted twice. 

+8 V 

Output 

Input 

-25 V 

Inverter Amplifier Circuit 

When the input is held at 0 V (false) the input diode 
and base resistor provide a negative voltage bias to 
prevent the transistor from conducting. The Zener diode 
wi II have broken down and be conducting in a reverse 
direction under this condition and be holding the base at 
a nominal - 4 V. With the base-emitter cut off, the 
transistor is in a cut-off state and collector voltage wi II 
rise to +8 V (true). 

When the input rises to +8 V, the Zener diode wi II 
conduct more heavily in the reverse direction, but sti II 
maintain the nominal 4 V drop across it. Therefore t 

+4 V wi II be attempting to appear at the base of the 
transistor. The transistor base-emitter junction will 
thus be forward-biased and will, due to base-emitter 
current, limit the voltage at the base to some fraction 
of a volt near ground. The transistor being in fu II 
conduction will drop the collector voltage to near 
ground potentia I (~+ .6 V) and the output will be 
false (approximately 0 V). 

Therefore, with false (0 V) in we have gotten true (+8 V) 
out and with true in we have gotten false out, and we 
have an inverter amplifier. 

This same explanation applies to the second transistor 
circuit in series in the buffer amplifier circuit. An 
input signal goes through two inversions, one each as 
it passes through each transistor circuit, and as a 
result comes out unchanged in state but bolstered in 
capabi lity, and we have a buffering (non -inverting) 
amplifier. 

In SDS equipment there are combinations of all the 
circuits discussed previously to generate specific func
tions for specific needs in mechanization of logic. The 
symbols and functions of these combination circuits will 



be given and discussed briefly. However, the circuits 
for them will not be analyzed since such discussion 
would be repetition of analyses which have been given 
previously. 

BAND - Buffered AND 

This is a combination of the non- inverting buffer 
amplifier and AND circuitry. 

Symbol 

Logically the output of this combination of circuitry is 
the same as the output of a standard AND. The buffer 
amplifier is used to bolster the output to make the output 
capable of driving a heavier load than the direct AND 
output. 

NAND - Negative AND or Not AND 

This is a combination of the inverting amplifier and the 
standard AND circuitry. 

A~QI_ .. ~ A~ 
~~--~Q=~~~ 

Q - ABC Q =QI = ABC Q =QI = ABC 

Symbol 

logically the output of this combination of circuitry is 
the complement, or the inverse of the output of the 
standard AND. The inverting is used to accomplish the 
inversion as well as bolster the output signal drive 
capabi I ities. 

The notable thing here is the significance of the small 
circle used with the logical amplifier symbol. In every 
case where a c irc Ie is used at the output of a log ica I 
amplifier symbol the indication is that the input signal 
has been inverted. This is true whether the circle is 
unfilled (as shown above) or partially filled as shown 
below: 

Line Receiver 

A Q 
~ 0-----1 ~ 

Q=A 

Symbol 
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The line receiver is used in receiving signals from some 
remote unit, inverting the signal for use, and changing 
the amplitude level where necessary. Logically, it 
serves the same function as an inverting amplifier, even 
though in actual use it does change signal amplitudes to 
the desired level where necessary. 

Line Driver 

A Q 

Q=A 

Symbol 

The line driver is used in preparing a signal for trans
mission from one un it to another un it, to match the 
transmission line impedance, invert the signal and 
change the amplitude of the signal where necessary. 
Loaicallv, it serves the same function as an inverting 
am~plifie~ "even though in actual use it does change -

levels of signals and does match the impedance of the 
transmission line. 

Cable Driver 

When it is desirable to distribute signals by means of 
33-ohm coaxia I cable, a cable driver is used rather 
than an ordinary inverter or buffer amplifier. Figure 5-1 
shows a cable driver which may be used to drive one or 
two terminated 33-ohm cables. The output is from two 
unterminated collectors in parallel and hence must be 
terminated by 33 ohms to :+4 V at the receiving end of 
each cable connected to the driver. Further details on 
usage wi II be discussed when receiver-inverters and 
receiver-inverter:"'buffers are considered. 

Input to Q1 is made by means of a conventional diode 
gate of the sort that was discussed in the NAND gate. 
If Q 1 is cut off, Q2 is saturated and Q lis collector is 
held at Q2 1s Vbe sat = +0.8 V. If Q 1 is saturated, its 
collector is at Vbe sat = +0.4 V. Since Q lis collector 
shifts only 0.4 V from saturation to cutoff, there is no 
need for shunting D 1-D3 with the familiar resistor
capacitor combination to compensate for Mi lIer effect 
capac itance. 

The driving output to the cable or cables is taken from 
the paralle led co I lectors of Q3 and Q4. Such a paral
lel combination has not only twice the power handling 
capacity of a single transistor but also only half the 
saturation resistance, permitting the "false ll output to 
approach ground despite the large current handled by 
the parallel combination. 



To take advantage of a para lie I combination, the 
bases must be driven equa Ily. If the bases were 
merely paralleled like the collectors and emitters, 
the transistor with the lower Vbe would receive most 
of the avai lable drive current and the transistors wou Id 
not do equal amounts of work. So as not to encounter 
such a problem, the circuit of Figure 5-1 mutually 
isolates the drives to Q3 and Q4 whenever these 
transistors are saturated. If Q2 is saturated, co lIec
tor current flows down through R 1 and 04 and through 
R2 and 05. Thus points Pl and P2 are both at a 
potential of 0.4 +0. 7V = + 1. 1 V. Since VRl and 
VR2 both have a Zener voltage of 3. 3 V, Q3 and Q4 
are reverse-biased 1. 1 -3.3 = -2.2V. IfQ2 is cut 
off, however, points P1 and P2 are mutually isolated 

+16 

Gateo-~ __ 4-~~ __ ~~~~~~_ 
Input 

Ga t e {)--+It--' 

Input 

+16 

by diodes 04 and 05 connected back to back in series, 
and Q3 and Q4 are saturated by current from separate 
600-ohm drive resistors R1 and R2 respectively. 

Since Q3 and Q4 are handling rather heavy base 
currents in order to switch heavy co II ector currents, 
there is the possibi lity of the circuit being slowed 
down by a stored charge in the base. So that stored 
charge wi II not be a problem, the capacitors shunting 
VR 1 and VR2 are made considerably larger than would 
be necessary on Iy to compensate for Mi lIer-effect 
capacitance. Thus the bases of transistors Q3 and Q4 
are over driven whi Ie the transistors are switching 
from one state to the other to "speed Up" the 
transition. 

.-------r-OOu tpu t 

Input 

Ql,Q2 are 216 
Q3,Q4 are 217 

Output 

Symbol 

Figure 5-1. Cable Oriver 

Rece i ver- Inverter 

Signals are "picked off" 33-ohm coaxial cables by 
receivers as shown symbolically in Figure 5-2. 
Coaxial cables must be terminated in their charac
teristic impedance of 33 ohms regardless of rece iver 
placement so that reflections do not occur in the line. 
The loading effect of the receivers is sufficiently 
small that the impedance discontinuities in the cable 
created by their presence do not cause significant 
reflections. Since, in addition, receivers draw very 
little current, a very large number of receivers may 
be driven from 33 ohm coaxial cable by one cable 
driver. 
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Receiver- Receiver-
Inverter Inverter 

Receiver Receiver 
Inverter Inverter 

Figure 5-2. Symbolic Receiver II Pick- Off" 



Figure 5-3 shows a receiver- inverter. As the name 
implies, the output is the inverse of the logical signal 
present on the coaxia I line to which it is connected. 
There is a Iso a receiver- inverter- buffer wh ich has both 
inverted and non- inverted outputs. This latter circuit 
sha II be discussed later. 

Suppo~~ that the input to the receiver- inverter is raised 
to +4 V. This saturates Ql and places its emitter at 
4 -0.4 = +3.6 V. Point P1 is then placed at +0.96 V. 
This, however, is more positive than +0. 80 V, Vbe sat 
of Q2. Thus Q2 is saturated by the current flowing into 
its base from the 2. 7K resistor and D2 is reverse biased 
(as is, of course, D3). 

If the input to Q 1 is connected to ground, Q2 shou Id 
be cut off. If Q2 is cut off, Pl may drop to -1.4 V, 
pulled down by the 1. 2K resistor to -16 V and limited 
to -1. 4 V by the forward drops across D2 and D3. Q 1 
may be on the verge of conduction, but the base of 
Q2 has dropped sufficiently negative to cut it off 
completely. 

220 

Receiver 
In 

Receiver -Inverter 

+16 

-16 

Figure 5-3. Receiver- Inverter 

Receiver- Inverter- Buffer 

Figure 5-4 shows a circuit similar to the receiver
inverter but which also includes a non- inverted output 
("buffer out"). If the input is raised to +4 V, Q 1 is 
saturated and point Pl is raised sufficiently positive to 
reverse bias diodes D2 and D3 and transistors Q2 and 
Q3 are saturated by their individual 5.6K resistors to 
+16 V. Q4 1s base is lowered to +0.4 V by Q3 satura
ting and is therefore cut off. 

I f the input is connected to ground, point P 1 is pu lied 
down by the 1. 2K resistor to -16 V. Pl drops to 
-1. 4 V, limited by the forward drops across D2 and D4. 
With Pl at this voltage Q 1 is only on the verge of 
conduction, and both Q2 and 03 are cut off with a 
reverse base bias of - 0.7 V in both cases. 04 is then 
saturated by the current flowing down through 03 1s 
collector load resistor. 

Since both the receiver- inverter and the receiver
inver-ter-buffer have the same input circuit, the usage 
rules for both are the same. It should be remembered, 
however, that the extra transistor in the II buffer output" 
causes the non- inverted output to be delayed somewhat 
with respect to the inverted output. 
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-16V 

Figure 5-4. Receiver- Inverter- Buffer 

Flip-Flop 

A flip- flop is illustrated in Figure 5-5. In actual ity, 
there are several groups of II Set", II Reset", II Enable" 
inputs and two II Gate Outputs", all groups sharing the 
same II Aux. Set" and II Aux. Reset" inputs. One group 
is shown for clarity. 

Figure 5-6 represents only the central latch and the 
DC set input. Suppose the flip-flop is in the "Reset" 
state, this impl ies 01 is saturated. Thus 0 lis collector 
is at 0.4 V, and 03 must also be saturated. 03, 
however, is drawing practically no collector current 
but has considerable base current and hence adds only 
50 mi II ivolts to Vcd of 01, so that the voltage at 03 1s 
collector is 0.45 V. However, the base threshold to 
turn on 02 is 0.6 V (0.8 is required for saturation), and 
hence 02 is turned off. Since Q2 in cut-off presents a 
very high impedance to the emitter of Q4, 04 1s base
collector diode becomes forward-biased and 041s base 
current flows out of its collector into the base of 01, 
keeping it saturated. 

The cross-coupling transistors 03 and Q4 operate with 
essentia Ily constant base current (except when II DC Set" 
is used) which makes them capable of extremely fast 
switching. Consequently, this is one of the fastest 
forms of cross-coupling that can be used in a flip- flop. 

Suppose that while the flip- flop is in the reset state as 
descri bed above, the DC set input is momentari Iy 
grounded or connected through a resistance to a nega
tive level (the diode D2 on the DC set input prevents 
excursions more negative than -0.7 V). This causes 
the diode D 1 to become forward biased and the current 
that was flowing into the base of Q4 and from Q4 to 
Q 1 now flows to ground instead. This cuts off 04, 
whi ch cuts off 01, and hence Q3 1s base current flows 
to the base of Q2, saturating Q2 and thus p lacing the 
flip-flop in the "Set state. 
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Figure 5-5. Flip- Flop 
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Figure 5-6. Central Latch and DC Set Input 

Figure 5-7 shows just the circuitry which is used in 
setting and resetting the flip- flop. Suppose that the 
flip-flop is in the "Resetll state (Q1 saturated) and we 
wish to set it by saturating QS. In the absence of a 
clock pulse, this would have no effect because QC is 
a Iready saturated. However, suppose QC is cut off and 
QS is saturated. Then the co I lector of QC rises to +4 V 
plus the drop across DC (4. 0 V + O. 7 V) = 4. 7 V and 
point P2 rises to 4.7 V plus the drop across 03 (4.7 V + 
0.7 V) = 5.4 V. If QS is saturated, however, point P 1 
is held down to Vce sot of QS plus the drop across 01 
(0.4+ 0.7 = + 1. 1 V). This leaves C 1 charged, with a 
voltage across it of (5.4 V - 1. 1 V) = 4. 3 V with the 
right- hand end (P2) positive. 
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Figure 5-7. Setting/Resetting Circuitry 

When the clock pulse falls (which occurs very quickly), 
P2 falls down rapidly to +1. 1 V. Since the voltage 
across C 1 can't change instantaneously, C 1 must sti II 
have 4.3 V across it after P2 has dropped to 1. 1 V, so 
Pl drops to (1. 1 -4.3) = 3.2 V. At this point, refer 
to Figure 5-8 which shows the circuitry of Figure 5-7 
together with the central latch. Now that Pl has gone 
negative, 06 is, for the first time, forward biased while 
both Oland 02 are reverse biased. 



Figure 5-8. Setting/Resetting and Central Latch 

The on Iy way C 1 can discharge then, is to draw current 
out of the base of Ql, cutting it off. The 100-ohm 
resistor in series with D6 forces the discharge to take 
place slowly enough to insure that Q 1 stays cut off 
unti I the latch is fu Ily regenerated. 

QR, on the other hand, remained cut off during this 
procedure i clearly, one shou Id not try to set and 
reset a f1ip- flop at the same time. Since QR was cut 
off, P3 rose and fell with P2 and no charge was built 
up on C2. 

We can refer back to Figure 5-5 for most of the 
remainder of our discussion of this flip- flop. Q6 and 
Q7 are buffer amplifiers. If connected through load 
resistors to +4 V, they will provide logical voltage 
outputs whi ch wi II be II true" when the flip - flop is in 
the respective states indicated by the two outputs. If, 
for example, Q 1 is cut off, we want Q6 saturated. 
However, when Q 1 is cut off, current from Q3 is going 
to the base of Q2 to keep it saturated. Thus we need 
the 3K resistors to + 16 V to provide drive to Q6 and 
Q7. The 47-ohm resistors going to the bases of Q6 and 
Q7 prevent these transistors from diverting drive from 
Q3 or Q4 which should be going to the bases of Q2 and 
Q 1 respectively. 

QS and QR are straightforward inverting amplifiers with 
the exception of the antisaturation circuit. This circuit 
is necessary because there are norma Ily severa I sets of 
input gates and thus the drives to the bases of QS and 
QR vary with the number of input gates given "true" 
inputs at a given time. Some flip- flops have inputs 
arranged so that the drive to turn on the input ampli
fiers QS and QR is constant (see, for example, the 
NAND- flop) and hence antisaturation circuits on these 
transistors are not necessary. 
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The clock amplifier, composed of QC and Q5, is a 
comparatively straightforward non- inverting amplifier 
with an input impedance of 600 ohms (many such clock 
inputs in parallel have a combined impedance of 33 
ohms which is the impedance of the lines on which the 
c lock is distributed). 

The upper I imit of QC IS collector swing is clamped, as 
has been observed. In addition, QC is also equipped 
with an antisaturation circuit so that the saturation 
potentials ofQR, QS, and QC are equalized. 

NAND- Flip- Flop 

Figure 5-9 shows a variation on the flip- flop called 
a NAND flip-flop. The central latch and buffer 
amplifiers are the same as in the flip- flop previously 
discussed. The triggering circuitry, however, is 
somewhat different. 

In Figure 5-10 is shown just the setting and resetting 
circuitry. Normally, QC is saturated, P2 is at +0.4 V 
and Pl and P3 are at + 1. J V. If either QRl or QS 1 is 
saturated, ne i ther P 1 nor P3 will be affected as long as 
QC is saturated (and has the same V ce sat as QS 1 and 
QR1) because, in the case of Pl, Vce sat of QC plus 
the drop across D 1 equa Is V ce sat of QR 1 plus the drop 
across D3, and similarly for P3. Suppose we cut off 
QR1, leaving QS1 saturated. When the clock pulse 
rises to +4 V, P2 rises to 4.7 V and Pl rises to +5.4 V 
(4.7 plus the additional drop across D 1). But if QS 1 is 
saturated, P3 is at O. 4 V +0. 7 V = 1. 1 V and D2 is back
biased. Thus P3 is held at the same voltage it was 
before the clock pulse. When the clock pulse falls, 
P3 is unchanged, but P 1 goes from +5.4 V to 1. 1 V, a 
fall of 4. 3 V. Since the voltage across C 1 canlt change 
instantaneously, the upper terminal of Cl, which was 
at +0.7 V (drop across D5), falls the same amount as P1 
to become 0.7 V -4.3 V = 3.6 V. This, as in the case 
of the previously-discussed flip-flop, forward biases 
D7 and cuts off the leftmost of the two latch transistors 
shown in Figure 5-10 by pulling current out of its base. 

Since the drive applied to the bases of QS 1 and QR 1 
when it is desired to saturate them does not vary as it 
does in the previously-discussed flip-flop, no anti
saturation circuits are needed on these transistors and 
hence none is needed on the clock amplifier as long as 
the transistors have close to the same Vce sat. 

Inputs to the NAND- flop are made through, as the name 
implies, a system of NAND gates. The gates are similar 
to the NAND gate discussed previously, except that the 
two gates which include QRl and QS1 do not include the 
47 pf capacitor and associated resistor to compensate for 
Miller-effect capacitance. Miller-effect capacitance 
only occurs when the collector moves in response to a 
signal at the base. In this case, the logic usage rules 
dictate that the input signals be present in time for QR 1 
and QS1 to assume their final states before the clock 



pulse rises. Thus no Mi Iler-effect occurs because the 
collectors of QRl and QS 1 are held fixed by the clock 
amplifier whenever their base signals are changing. 

To set the flip-flop, we want to saturate the leftmost 
latch transistor and cut off the right one. Thus we want 
QS 1 cut off and QR 1 saturated. To saturate QS 1, the 
II Low True Resetll input must be high (+4 V) and either 
the IIReset in all or the "Reset in bll or the liGate 
Common" must b;-false (low). To c~ off QS 1 either 
the II Low True Set in all or the II Low True Set in bll must 
be false (low) or the IISet in a" and the IISet in b" and 
II Gate Commo~ must be true (high). Thus conditio~ 
for placing the NAND- flop in a given state are: one or 
more of the II Low Truell inputs for the desired state must 

Reset Reset Gate 
In a In b Common 

Cut Off 
To Rese~_ 

+l6V 

+16V 

..L 

Low 
True 
Reset 

Figure 5-9. 

be low, or a II of the II Set/Resetll inputs for the desired 
state and the II Gate Common II must be true; in addition, 
all of the II Low True ll inputs for the opposite state must 
be High (normal true = 4 V) and at least one of the II Set/ 
Reset" inputs for the opposite state or the gate common 
must be false. If these conditions a-;; met for at least 
10 nsec before the start of the clock pulse and main
tained during the clock pulse, the NAND-flop will 
en ter the des i red state when the clock pu Ise fa lis. 

The clock amplifier is a non- inverting amplifier simi lar 
to that used in the previously-discussed flip-flop, 
except that QC has no antisaturation circuit. This is 
because QS 1 and QR 1 have none, and it is desirable 
for all three transistors to have the same Vce sat. 

NAND Flip- Flop 

Low ow 
Tr\le True 
Set Set 
In a In b 

+16V 

Set Set 
In In 
a :c 

Cut Off 
--To reset 

Figure 5-10. Triggering Circuitry 
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"Super" NAND Flip- Flop 

The circuit of Figure 5-11 is a "super NAND flip- flop" 
with more flexible input gating than the" NAND flip
flop" previous Iy discussed. The method of setting and 
resetting the central latch is the same as that used in 
the" NAND flip- flop". 

The central latch, however, contains the addition of 
D 1- D4, as shown in Figure 5-12. These diodes limit 
the upper positive excursions of the collectors of latch 
transistors Q 1 and Q2, which is necessary because of 
the way in which Q5 is used. Suppose Q2 is saturated. 
Then its V ce is +0.4 V and Q5 is a Iso saturated. But 
because Q5 has considerable base current but very 
small collector current, its Vce is only about +0.05 V. 

... 
::l 
o 

+16 +16 +16 +16 

-16 

This places +0.45 V at the base of Q6 which is insuffi
cient to turn it on, since the base threshold is +0.6 V. 
If we cut off Q2, however, its collector is pulled up to 
+2. 1 V by the 3K resistor R. This cuts off Q5 in the 
normal mode but forward biases its base-collector 
diode, feeding Q5 1s base current to the base of Q6 and 
saturating the latter transistor. When Q5 is operating 
in this latter mode, its base is at + 1. 6 V. To avoid 
breaking down its base-emitter junction, D1, D2 and 
D4 are provided to limit Q2 1s collector {and hence Q5 1s 
emitter} to +2. 1 V. 

The rest of the circuitry in the "super NAND flip- flop" 
has been discussed previous Iy; the changes in the 
centra I latch and output buffers were made on Iy to 
permit the latch transistors to drive extra outputs with
out overload. 

+16 +16 +16 +16 

.. 

.) .. 
0:: 

::l o 

Figure 5-11. Super NAND Flip- Flop 
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Figure 5-12. Central Latch and Output Buffer 

DC FI ip- Flop 

Unlike other B-Series flip-flops, the HOC flip-flopll 
in Figure 5-13 is not clocked. It also uses diode cross
coupl ing in the latch. 

The operation of the diode cross-coupled latch is as 
follows. Suppose Q 1 is saturated. I ts co II ector is then 
at +0.4 V and P2 is at 0.4+ 0.7 = + 1. 1 V. P4 is at 
+ 1. 1 -0.7 = +0.4 V and the base of Q2 is at +0.4 
-2 x 0.7 =-1. 0 V. Thus Q2 is cut off, and point Pl 
is permitted to rise to Q lis Vbe sat = 0.8 V + 3 x 0.7 
= +2. 9 V, and Q 1 is thus kept saturated. The co I lector 
of Q2 is actually permitted to rise to Vbe sat of Q4 
plus the drop across the Zener diode VR2 (0.8 V + 3.3 V 
= 4. 1 V). Thus the diode from Q2 1s collector (+4. 1 V) 
to Pl (+2.9 V) is back-biased and the drive which keeps 
Ql saturated comes from the 8.2K resistor from Pl to 
+16 V. 

So far, we have assumed that all of the "setll and IIreset ll 

inputs are grounded, permitting points P3 and P4 to 

assume any positive voltage. If, however, the two 
inputs of any pair of set inputs (the two inputs of pair 1 
are ANDed, as are the inputs of pairs 2 and 3) are both 
raised to +4 V, point P3 and hence the base of Q1 will 
receive drive from the 3K resistor associated with the 
activated pair of inputs. Thus Q 1 wi II become satura
ted even if it was previously cut off. The same reason
ing may be appl ied to resetting the fI ip- flop. This fl ip
flop will begin regeneration whenever the logical 
arrangement of the inputs calls for a change of state. 

Zener diodes are used to couple the output buffers to 
the central latch. Since the cross-coupling diode to 
the collector of a latch transistor becomes back-biased 
when the transistor is cut off, the output buffer deter
mines the maximum collector excursion of the latch 
transistor. Thus the collector of the latch transistor can 
rise to +4. 1 V (= 0.8 V Vbe for the buffer transistor 
+3.3 V for the Zener diode), saturating the output 
buffer. 
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Figure 5-13. DC Flip- Flop 
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· Repeater Flip- Flop 

The function of the repeater flip- flop is to Set and 
Reset upon the receipt of either +8 VDC or 0 VDC 
respectively, at the Aux Set In point, so long as there 
is +8 VDC at the Common Hold In point, which is 
called an "enable" voltage. If there is 0 VDC at the 
Common Hold In point, then the repeater will not 
change state. The Common Clock In furnishes the 
circuit with a timing clock for synchronous operation 
with other flip- flops. The clock's negative-going 
transition causes the repeater to change state according 
to its input logic. In the DC Set In mode, a negative 
transition at the DC Set In point will cause the repeater 
to assume the Set state, regardless of the condition of 
the Common Hold In point and the Common Clock In 
point. Thus, the DC Set In point provides a means of 
setting the repeater asynchronously. The repeater is 
a Iso provided with a Register In entry, which allows 
the repeater to be wired to the output of an external 
register, normally a dynamic register. Under this 
modus operandi, the repeater will copy the contents of 
the output stage of the external register, regardless of 
the condition of the Common Hold In point. It is, 
however, dependent upon the receipt of the clock at 
the Common Clock In point, and as such, operates in 
the synchronous mode. 

Description 

Assume for the moment that the repeater is in the Reset 
state. In this state, the transistors wi II assume the 
following conditions: 

Ql, Q2, and Q5 Off Q3 and Q4 On 

Q 1 is the trigger stage for the reset input; Q5 is the 
trigger stage for the set input. 

Set Operation 

Assuming that the Common Hold In point, pin 29, is 
"enabled" by +8 VDC, diodes CRl and CR12 will be 
reverse-biased. With OVDC at the Aux Set In point, 
pin 30, the junction of R18 andVR2 will be at ~ -3VDC, 
keeping the base of Q5 negative in respect to its emitter 
(reverse-biased), so Q5 will be off. When the Aux Set 
In point, however, rises to +8 VDC, the bias point at 
the junction of R18 and VR2 will rise positive enough to 
forward bias the base of Q5, and turn Q5 on. With Q5 
on, its collector falls towards 0 VDC (ground), and 
current in the collector circuit causes pin 1 of T2 to go 
negative in respect to pin 2. By transformer action, 
pin 4 of T2 goes positive in respect to pin 3, which in 
turn reverse-biases CR14 and CR15, thus causing no 
further change in the repeater. With Q5 on, it is said 
to be "primed". With its collector at 0 VDC, CR 6 in 
the co II ector circuit is forward- biased, causing the 
potential at the cathode of VR 1 in the base circuit of 
Q 1 to be 0 VDC, keeping the base of Q 1 reverse-biased 
and thus keeping Q 1 off. 
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The system clock appears at the Common Clock In points, 
pins 43 and 42. The secondary of the input transformer 
has one leg tied to ground, and the other leg tied to the 
cathodes of CR23 and CR24. When the transformer
coupled c lock goes positive at the secondary, the diodes 
CR23 and CR24 are reverse-biased, and therefore, the 
positive swing of the clock has no effect upon the cir
cuit. When the clock swings in the negative direction, 
however, the diodes CR23 and CR24 will be forward
biased, and will couple the negative-going transition 
to the cathode of CR22 and to the base of Q5. Since 
Ql is in the off condition, the clock will have little 
effect upon the base bias of Ql. Q5, however, is in 
the on condition, and the negative swing of the clock 
wi II pull down the potential of the base of Q5 negative 
enough to cause Q5 to turn off. When Q5 turns off, its 
collector rises towards +8 VDC, causing the current in 
T2 to change direction momentarily, reversing the field, 
and, by transformer action, wi II cause pin 4 of T2 to 
swing in the negative direction. This negative transition 
wi II forward- bias CR 14 and CR 15, causing the bases of 
Q4 and Q3 to go negative in respect to their emitters, 
turning both transistors off. When Q4 turns off, its 
collector rises toward +8 VDC, which reverse-biases 
CRll, allowing the base of Q2 to go positive through 
the voltage divider network Rl, Rll, and R15, turning 
Q2 on. After the clock has left, Q5 will turn back on 
if the Aux Set In point is again at +8 VDC. With Q3 
and Q4 off, their collectors, and the Set outputs, wi II 
be at +8 VDC. With Q2 on, its collector, and the 
Reset outputs, wi II be at 0 VDC. The repeater is now 
in the Set state. 

Reset Operation 

Let us assume for the moment that the repeater is in the 
Set state with the Common Hold In point at +8 VDC 
("enabled ll

), and the Aux Set In point at 0 VDC (no set 
input). In this condition, the base of Q5 wi II be at a 
negative potential in respect to the grounded emi tter, 
and Q5 therefore wi II not be II primed". Q5, being off, 
puts its collector potential at +8 VDC, which reverse
biases CR6. CR7 is also reverse-biased by the lIenable". 
Therefore a voltage divider network of R4, VR 1, and 
R 14 wi II cause the base of Q 1 to become positive in 
respect to its emitter, turning Q 1 on. Q 1 is now 
"primed ll

• When Q 1 turns on, its collector goes towards 
o VDC, causing current in its collector circuit to put 
pin 1 of Tl negative in respect to pin 2. Through trans
former action, pin 4 of T 1 becomes more positive than 
pin 3, and CR13 is thus reverse-biased, causing no 
further change in the circuit. When the clock appears 
at the Common Clock In point, it forward-biases CR23, 
CR22, and CR19. This causes the potential at the 
cathode of Zener diode, VR 1 to drop, making the base 
of Q 1 negalive in respect to its emitt~r, turning Q 1 off. 
When Q 1 turns off, its collector rises towards +8 VDC, 
causing the field of Tl to change in the same manner as 
T2 did. Pin 4 of Tl wi \I then go negative in respect to 
pin 3, and CR 13 wi II be forward- biased, which, in turn, 



causes Q2 to turn off. When Q2 turns off, its collector 
rises towards +B VDC which reverse-biases CRB, allow
ing the base potential of Q4 to rise, turning Q4 on. At 
the same time, CR4 in the collector circuit of Q2 is 
reverse-biased, allowing the base of Q3 to rise, turning 
Q3 on. With the collector of Q4 near 0 VDC, CR11 
is forward-biased, keeping the base of Q2 reverse
biased. The repeater is now in the Reset state. 

DC Set Input Operation 

The DC Set In point, pin 31, if used, wi II be normally 
at +B VDC, thus keeping diodes CR9 and CR 10 reverse
biased. This allows the repeater to operate in the 
normal manner. When, however, the DC Set In point 
goes negative, it forward-biases CR9 and CR10. CR9 
will couple the negative transition to the base of Q4 
through C6 and R 13, causing Q4 to turn off. CR 10 
wi II couple the negative transition to the base of Q3 
via R 11 and C4, turning Q3 off. With Q4 off, its 
collector will go towards 0 VDC, forward-biasing CR11 
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and causing the base of Q2 to go negative in respect to 
its emitter, turning Q2 off. The repeater is now in the 
Set state. Notice that the Common Hold In po int and 
the Common C lock In point had no effect upon the DC 
Set In operation. 

Register Input Operation 

I f the Register In operation option is chosen, the 
Register In point, pin 23, wi II be wired to an externa I 
register. The condition of the output stage of the 
external register will determine whether the repeater 
wi II Set or Reset. Pin 23 is connected directly to the 
base of Q5. Therefore, if the external stage is at 
+B VDC j it wi II II prime ll Q5 (turn it on). When the 
c lock appears, Q5 wi II turn off, causing the same chain 
of events as the normal Aux Set In operation did. The 
same is true for the Reset condition. Notice, however, 
that in the Register In operation, the circuit did not 
rely upon the condition of the Common Hold In. 
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SECTION 6. HOW A COMPUTER WORKS 

INTRODUCTION 

A digital computer is basically a high speed device 
designed to manipulate numbers. The computer has 
built into it all the capabilities desired by its producer. 
It is designed to have various means of placing data 
within the machine and giving information via a variety 
of output equipment. 

The configuration of equipment using the information 
input and output equipment with a digital computer is 
called a data processing system. This system is a useless 
cong lomeration of hardware un less a man te lis II the 
system" what it is to do. To "tell" the system what to 
do, the man writes a program. This program is then put 
into the computer and when the system is started cor
rectly this system will lloperate under program controP'. 
The system in running will do just those operations the 
programmer has specified, in the sequence he has 
specified, using the data he has specified, and giving 
answers he has specified. If for any reason, the pro
grammer has made a mistake, the system wi II make that 
same mistake. Therefore, it is essential that the pro
grammer know exactly what is to be done, and that he 
makes no error in tell ing the system, by the program, 
exactly what is to be accompl ished. 

It is, therefore, important that the reader, as a 
maintainance man for data processing systems, know 
the internal functionings of the computer and how it 
handles the program written for it. This discussion will 
limit itself to what happens inside a computer rather 
than how it happens. How it happens wi II be a matter 
for later learning. 

Continual reference wi II be made to information as 
decimal digits and letters of the alphabet. It should be 
remembered that inside the machine these are stored 
and manipulated as binary codes; however, the 
convention adopted here causes no loss of generality. 

ARITHMETIC - LOGICAL UNIT 

The arithmetic-logical unit (ALU) and the control unit 
usually are located physically in the same cabinet. 
Frequently the ALU is broadened to include the control 
unit also, but this seldom causes any confusion. The 
cabinet is large. This is understandab~e because it 
contains the fast-access storage device, and the 
registers for holding the data being operated upon and 
for controlling operations. It also houses all the 
associated electronic hardware necessary to accomplish 
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arithmetic and logical operations and to control the 
transfer of information among the various units--input, 
output, and storage. This latter is called "switching", 
which is rather an obvious name for a function pri
mari�y concerned with setting up the electronic 
commun ication lines to transfer information between 
any two prescribed points. Everything discussed in this 
section occurs in the ALU and the control units. 

LOCATIONS AND ADDRESSES 

Because different equipments vary in specifications of 
their memories this section, for purposes of simplicity, 
assumes specifications which are completely represen
tative and wi II serve to provide an understanding of 
what happens inside the machine. This fictitious 
computer has a magnetic storage, with information 
stored in the form of "words" consisting of five char
acters each. There is a capacity of 2,048 words. The 
words all have a specific location in magnetic storage, 
and every location has an address, ranging from 0000 
to 2047. Convention, based on requirements of the 
earlier computers, dictates that the first location have 
the address 0000, not 0001, and this practice is carried 
over into present day computer terminology. Thus the 
address of the last location is always one less than the 
total number of words that can be stored. 

PICTORIAL REPRESENTATION OF MEMORY 

The 2048 words of memory can be represented pictorially 
as many lots on a long street. Each lot contains five 
characters, and each has an address of its own; the 
first lot is the street (memory) address 0000, the second 
is 0001 and so on up to the last, which is 2047. Now 
assume that two of the lots have information or data in 
them; the lot with the address 1000 has the number 
25640 and the next lot address 1001, has the number 
14628. The rest of the lots are empty; that is, there is 
no information in them. A special character is assigned 
as a II blank", or contains all O's (OOOOO). After placing 
the two numbers in the memory locations wi th addresses 
1000 and 1001, memory can be represented as: 

Address F~f~~ -+---+--~~' 
Content LU 

Figure 6-1. Two Numbers in Memory 



It should be remembered that the numbers in memory 
are stored as binary code characters, not as decimal 
characters, but no genera I ity is lost in picturing them 
and talking about them as ordinary decimal numbers. 

For purposes of illustration in this section, it wi II be 
assumed that any information required is avai lable in 
memory, without considering how it got there. In the 
next section, memory wi II be explained. 

LOCATION AND ADDRESS TERMINOLOGY 

It is a bit cumbersome to continue referring to the 
location in memory as II the location whose address is 
100011

, or some other address. Consequently, the 
convention wi II be adopted that address 1000 and 
location 1000 wi II mean the same thing i.e., the 
location in memory wi th address 1000. Therefore, in 
the example being used, the number 25640 is located 
or stored at address 1000 and 14628 at address 1001. 

INSTRUCTIONS AND PROGRAMS 

The operation to be performed by the computer is to add 
the two numbers stored at addresses 1000 and 1001 and 
put the sum into address 1002. So far, the machine has 
the two numbers, but no way of knowing what it is 
supposed to do. Obvious Iy, some II instructions ll are 
required. It would be well to find out just what 
II instructions ll are and what II instructions ll look I ike. 
An order te II ing the computer what operation to perform 
is called an instruction. A series of instructions to be 
fo Ilowed by the machine in performing a sequence of 
operations is ca lied the program. An instruction, for 
example, may tell the machine to ADD. This tells it 
what it is supposed to do, but it does not te II it what 
number it is to add. The number to be added must, of 
course, be in memory and the instruction must inc lude 
information telling the equipment just what number is 
to be added. Because every location in memory has an 
address which the machine can find immediately, 
inclusion of the address as part of the instruction will 
give it the necessary information to find the number to 
be added. An instruction, then, must consist of ~o 
parts: an operation part, telling the computer what to 
do, and an address part, telling it where to get the 
information to be operated on. 

With four digits required to identify everyone of the 
2048 locations in memory, a complete instruction can 
be put into one 5- character wordpr6vided its operation 
part consists of only one character since one character 
has a possibility of being anyone of 64 combinations of 
binary digits. That many different operations cou Id be 
provided and still limit the length of the instruction to 
one word of 5 characters. In practice, this is not ample; 
some computers have a Imost that many di fferent opera
tions' but others operate with only 16 or 32. 
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It is important to note that the instruction does not 
include the number to be added; it only tells the 
machine where to go in memory to find the number. 

Format of an Instruction 

The instruction, then, consists of a one-character 
operation part and a four- character address part. The 
computer interprets the operation part and sets up the 
circuits necessary to accomplish that particular operation. 
The address part tells it where to get the information. 
The operation of adding to be performed in the example 
obviously requires an ADD instruction. The character 
II All wi II be assigned for this purpose. The equipment 
wi II recognize this character II A" as an order to add. 
Therefore, if a number located at address 1500 is to be 
added, the instruction in words would read ADD 1500, 
but in machine language it would be abbreviated to 
A 1500, exactly five characters for one word. 

Location of Instructions 

It was noted that the instructions as we II as data are 
stored in memory. Consequently, before the addition of 
the example can be accomplished, it wi II be necessary 
to have in memory the necessary instructions for 
performing this operation. Because memory contains 
some instructions and information to be operated on, it 
is well to keep them separate by assigning blocks of 
addresses in memory for the exclusive purpose of storing 
instructions and other blocks for storing data. In this 
example, instructions wi II be stored in memory at the 
beginning of address 0000. 

Interpretation of the Address Part 

The instruction IIA1500 11 was assigned as that which 
would tell the computer to add the number located at 
address 1500 to something. It is important to note that 
this instruction does not mean to add the number 1500 to 
another number. The distinction between address in 
memory, which is simply a location and the content of 
that location must be borne in mind at all times. The 
reason for the necessity of this distinction will become 
apparent in later paragraphs. 

H OW A COMPUTER ADDS 

Returning to the addition of the two numbers, 25640 at 
address 1000 and 14628 at address 1001, it is apparent 
thdt instructions are necessary and must be placed in 
memory to perform th is operation. Operations are not 
performed in memory, but in a special type storage 
device called a register. The register in this equipment 
has a capacity of ten characters or two words, and 
following standard practices it will be referred-to-as an 
accumulator. The methods of addition will be to place 
the number located at address 1000 into the accumulator, 



and add to it the other number, putting the sum of the 
two into the accumulator. This sum will then be stored 
at address 1002. 

Addition Instructions 

It is now necessary to determine what instructions are 
required to accomplish this addition. The first one 
must place the number 25640, from address 1000 in the 
accumulator. Is the ADD instruction sufficient for this 
purpose? Not by the method of operation decided 
above. There is a chance that the data from a previous 
operation may be in the accumulator and the ADD 
instruction wou Id actua Ily add 25640 to whatever was 
present before. The accumulator must first be set to 
all zeros, and because addition is a frequent operation, 
it will be convenient to have an instruction which wi II 
first clear the accumulator (i.e., set it so it contains 
all zeros), and then place in it the number 25640. This 
instruction will be called RESET ADD and will be 
denoted by the letter code II R". Therefore, the first 
instruction is RESET ADD 1000 in code Rl000, which 
means: set the accumulator to 0 and then add into it 
the number located at address 1000. 

Once the number 25640 is in the accumulator, the ADD 
instruction will accomplish the following: take the 
number found at the location specified by the address, 
add it to the number in the accumulator, and place the 
sum of the two in the accumulator, removing the 

original number there. Therefore, ADD 1001, in code 
A 1001, will take the num ber 14628 found in address 
1001 and add it to 25640 in the accumulator, and place 
the sum 40268 in the accumulator, wiping out the 25640 
that was there. 

It is now necessary to store the number 40268 in location 
1002. Another operation is involved; which wi II be 
called STORE the character, code liS". The instruction 
STORE 1 002, in code S 1 002, wi II instruct the machine 
to take the number in the accumulator and store it in 
the location with address 1002 wiping out any informa
tion in that location. The three instructions, then, wi II 
accomplish the addition desired. It is only necessary to 
place the instruction in memory and determine the 
method of sequence of operation in the equipment. 

Sequence of Perform ing Instructions 

It appears that a simple way of having a computer 
perform a sequence of operations is to have it start with 
the instruction at the first address, do whatever the 
instruction says, take the instruction of the next address, 
and so on. This turns out to be very convenient. The 
computer of this example is designed to perform opera
tions in just that manner i therefore, the three instruc
tions necessary to accomplish the addition are placed in 
memory beginning with the location at address 0000. 
Before beginning the addition operation, memory looks 
like this: 

Figure 6-2. Memory Before Addition Operation 

Detai I of the Addition Operation 

It will be helpful in obtaining an understanding of 
machine operation to repeat the addition example in 
detail, depicting exactly what happened in carrying 
out each instruction. It is assumed that before begin
ning the sequence of instructions, the accumulator 
contains the number 182359. It makes no difference 
what number, if any, is actually there, because the 

0000182359 I 

instruction wi II make sure that it is cleared before the 
addition begins. Similarly, though memory is assumed 
to be empty except for the three instructions, and the 
two numbers to be added, it makes no difference if 
there are other data locations not used. 

Before executing the first instruction, memory and the 
accumulator look I ike this. The arrow indicates that 
the first instruction is the next to be carried out: 

Accumu lator 

Figure 6 -3. Memory Before Executing First Instruction 
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After executing the first instruction RESET ADD 1000, 
the memory looks like Figure 6-4. (The arrow indicates 

t 0000025640 

that the second instruction is the next to be performed. ) 

/ 2046 /2047 ( 

~I I . 

Accumulator 

Figure 6-4. Memory After First Instruction 

Notice that the RESET ADD 1000 instruction erased 
the number 182359 that was in the accumulator. Also 
notice that memory address 1000 sti II contains the 
number 25640. Although transferred to the accumulator, 
it still remains available in memory for further use if 

required. After execution of the second instruction 
ADD 1001, memory and the accumulator look like 
Figure 6-5. (The arrow indicates that the third instruc
tion is the next to be performed. ) 

/ 2046 / 2047 / 

~...&.....---.L----L-:S'" .t I I I 
t 0000040268 Accumulator 

Figure 6-5. Memory After Second Instruction 

Note that the accumu lator now contains the sum of the 
two numbers which has replaced the 25640 that was 
there. 

0000040268 

Finally, after execution of the last instruction STORE 
1002, memory and accumulator look like Figure 6-6. 

/ 2047 / 

I I 
Accumu lator 

Figure 6-6. Memory After Last Instruction 

Notice that the STORE instruction placed the contents 
of the accumulator in memory location 1002, but left 
the number in the accumulator where it i·s available for 
other operations. 

Rep~ated Operations 

In practice it is seldom that only two members are added 
together for a single sum. An adding machine or pencil 
and paper would be faster and more economical than 
using a computer. Suppose that instead of adding a 
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single pair of numbers, the problem called for adding 
500 pairs and storing 500 different sums. The first 500 
numbers are stored in memory, beginning at location 
0500 (and of course ending at 0999): The next 500 are 
stored in location 1000 through 1499. Answers are to 
be put in locations 1500 through 1999. The problem 
calls for adding the numbers in location 0500 to the 
number in location 1000 and storing the sum in 1500, 
then the number in 0501 to the one in 1001 and storing 
the sum in 1501, etc. Obviously the way to do this is 
to use the three instructions already developed. See 



Figure 6-7. 

RESET ADD 0500 R0500 
ADD 1000 AlOOO 
STORE 1500 S1500 
RESET ADD 0501 R0501 
ADD 1001 A1001 
STORE 1501 51501 

--
RESET ADD 0999 R0999 
ADD 1499 A1499 
STORE 1999 S1999 

Figure 6-7. Addition Program 

Not only would the person writing instructions soon 
become finger weary, but 1500 separate instructions 
are required. Since the original data and the answers 
require 1500 words of storage in memory, a total of 
3000 words is beyond the 2048 words of capacity avai 1-
able. Therefore, to satisfy the joint requirements of 
cutting down the number of instructions for the operation 
and for minimizing the amount of storage space needed 
to carry the program in memory, a more practica I 
1.-. 'I so IUTIOn IS neeaea. 

A brief study of the instructions revealed that a regu lar 
cycle of RESET ADD, ADDA, and STOREA is formed. 
The only difference is in the addresses. The addresses, 
it wi" be noted, increase in a regular pattern. The 
address of each instruction being one more than the 
address of the last similar instructioni RESET ADD 1501 
rollows RESET ADD 0500, RESET ADD 0502 follows 
RESET ADD 0501. If it would be possible to go through 
the first three instructions then add 1 to each of the 
three addresses and repeat the programi add 1 again to 
each of the three instructions and repeat the programi 
etc., it appears that a large number of instructions 
(1500 in this case) could be reduced to a very few. 
Can this be done? Instructions are not data but is it 
possible to operate on them in the same manner as on 
data? Before this question is answered it will be instruc
tive to consider in detai I exactly what happens in the 
machine during the execution of a single instruction. 

WHAT HAPPENS IN THE EXECUTION OF AN 
INSTRUCTION 

For the sake of illustration, memory contains three 
instructions used in the addition example: 

Memory Location 0000 
0001 
0002 

RI000 
AlDOl 
S1002 

Obviously, the first order of business for the machine 
is to find the instruction in location 0000; it can do 
noth ing unti lit has the instruction avai lab Ie. More 
generally, after completing the operation called for 
by the instruction the machine must find the next one. 
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It needs some means of keeping track of where it is in 
performing a long series of operations. Because memory 
is on Iy a place to store instructions and data and does 
not enter into any computations it appears that something 
else must be provided to enable the equipment to know 
what instruction it is to perform next. Likewise, it 
appears that the equipment needs some place to put an 
instruction temporari iy whi ie it examines the operation 
part to determine what is to be done and the address 
part to determine where the data is to come from or 
where it is to be stored. The function of keeping track 
of what instruction is to be executed is done by a special 
register called the Address Counter. The temporary 
holding place for the instruction is the Instruction 
Register. Both are part of the control unit. 

Suppose now that the Address Counter is initially set at 
0000 and the addition operation commences. The first 
thing the equipment does is to inspect the number 
located in the Address Register -- 0000. It goes to th is 
address and transfers the contents -- the first instruction 
-- to the Instruction Register. At the same time, a 11111 
is added to the contents of the Address Counter so it now 
contains 0001. The transfer of the instruction to the 
instruction Register does not remove it from memory; it 
sti II remains avai lable for use later just as other data. 

The Instruction Register may be considered as consisting 
of two parts. Into one part the operation code is placed. 
Into the other, the address. The equipment inspects the 
operation code and interprets it as an order to accomplish 
a specific function (in this case to RESET ADD) and sets 
up the electronic circuits necessary to do this operation. 
When the circuits are properly established it looks at 
the address part of the Instruction Register and determines 
what location is involved and performs the RESET ADD 
operation on the number in that location. The operation 
completed, the equipment turns to the Address Counter 
where it now finds 0001. The operational cycle is 
repeated in the same manner as the first instruction and 
when the next instruction is to be performed, the Address 
Register reads 0002. The complete carrying out of one 
instruction may then be considered as involving the 
following separate steps which are also shown in Figure 
6-8. 

a. Determine location of instruction 
b. Obtain instruction; reset address counter 
c. Interpret instruction and set up necessary 

circuits 
d. Execute the instruction 

The first three steps (a, b, c) are often combined into 
the interpretation part of the cycle. The last step is 
called the execution part. Regardless of the nomen
clature and type of computer, the instruction cycle can 
be considered as consisting of the four steps described. 
A complete understanding of what occurs in carrying out 
an instruction will make clear the general operation 
within a digital computer. 



Looks at 
address counter I 0 .. -... Goes to t1tl~ 

_0.t.dres.s .,)71f111J---
Takes instruction to 

, Instruction Register 

[j1000 l-'~G)~ 

0 ¢.Lk .0 d-f~ 
4 00 s at operation co e 

Looks at 

'0 
Operates 

~ ' __ ",0 ... -_~0 

Figure 6-8. How A Computer Executes An Instruction 

REPEATED OPERATIONS 

With an understanding of what happens in the instruction 
cycle, the method of changing the addresses of instruc
tions to permit condensing the length of the program 
required to perform repeated sequences of operation can 
be understood. Instructions that wi II be remembered 
ere stored in memory in exactly the same manner as data. 
In the examples so for, all data have been straight 
numbers and the three operation codes have been letters, 
but it is evident that data can include alphabetical 
information and likewise that there is nothing to prevent 
some operation code from being numbers. If the entire 
contents of memory could be spread out for inspect.ion, 
instructions and data cou Id not be differentiated from 
one another. The machine treats each impartially; how 
it considers each depends entirely on what part of the 
instruction cyc Ie it is in. If by some chance data is 
stored in the location of ail instruction, as soon as the 
address counter reaches the address of that location, the 
equipment wi II transfer the content -- the data -- to 
the instruction register, treat the first digit as a opera
tion code and the last four as address and proceed to 
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execute that instruction. Similarly, if the address part 
of an instruction is the location of another instruction 
(or the same one, for that matter), the equipment will 
take the contents of the specified location -- the 
instruction -- and perform the designated operation on 
it. The first condition of course is to be avoided and 
presents a programming error, the second is of consider
able use in programming repeated sequences of operations. 

The method of programming a repeated sequence of 
instruction can now be developed. The data consists 
of 500 numbers if' locations 0500- 0999. 500 more 
numbers in 1000-1499, and the pairs of numbers in 
locations 500 apart are to be added with the resu Iting 
sum stored in sequential locations 1500-1999. From 
previous work it is known that the following instructions 
will add the first pair and store the resulting sum: 

RESET ADD 
ADD 
STORE 

0500 
1000 
1500 

R0500 
A1000 
S1500 



The next step is to take the first instruction and increase 
the address by II 111 . Th is can be accomp I ished by 
placing the first instruction in the accumulator, adding 
II 111 to it, and storing the resul t back in the location of 
the first instruction. The same thing is to be done with 
the second and third instructions. With the three 
instructions used in the in itial add ition example, the 
location of storage vv'as not incorporated \vith the 
program. Several more instructions are now to be added. 
It will be convenient if-the listing shows where the 
instructions are to be placed in memory. The first three 
instructions are: 

0000 
0001 
0002 

RESET ADD 
ADD 
STORE 

0500 
1000 
1500 

R0500 
A1000 
S1500 

Because the address counter increases by one with each 
instruction, the next goes in memory location 0003. 
This instruction is to place RESET ADD 0500 (in code 
R0500) into the accumulator. After the STORE instruc
tion is executed the sum of the first addition is still 
there. However, RESET ADD will clear the accumulator 
and place into it the contents of the address placed into 
it. The address of R0500 is 0000. Therefore; the next 
instruction is: 

0003 RESET ADD 0000 ROOOO 

A 11111 is to be added to this, but so far this digit is not 
available. Therefore, a'lIlli will be assumed to be in 
memory in some unused ~ocation. There is room starting 
with 2001. So in 2001 the quantity 00001 is stored. 
The next instruction is: 

0004 ADD 2001 A2001 

After completing this operation the accumulator contents 
are R0501. This is exactly what is desired and it is 
stored back in location 0000: 

0005 STORE 0000 SOOOO 

A similar set of instructions will change ADD 1000 to 
ADD 1001 and another set of three STORE 1500 to 
STORE 1501. 

It is probably obvious by now that the notations as to 
the contents of the accumulator wi II be quite helpful. 
Therefore, in writing the complete sequence of instruc
tions, so far completed, this wi II be included and a 
systematic format for writing instructions adopted. Two 
other new conventions will also be introduced. Usually 
in writing instructions the exact figure or contents of 
the address iocations are not known. All that is speci
fied is that the contents of a certain address wi II be 
operated on in accordance with the instruction. A 
short form for IIcontents of address ___ II will be helpful. 
This will be denoted by (m), where IIm ll is the address. 
The second convention concerns a marking for addresses 
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which wi II change during the course of a problem and 
are keyed by enclosing the starting address in squared 
brackets. In this example the first RESET ADD address 
0500 (because it is going to change during the course 
of the operation) the instruction wi II be written 
RESET ADD [0500]. The brackets are an aid to the 
programmer in being certain that all variable addresses 
are modified during the course of the sequence of 
operations. Consequently, the instructions necessary 
to accomplish the first addition and modify the addresses 
for subsequent operations are shown in Figure 6-9. 

Instruction Op~ration 

Location Word Code Address Accumulator 

[ooooJ RESET ADD R 0500 (0500) 
[OOOlJ ADD A 1500 (0500) + (1000) 
[0002J STORE S 1500 (0500) + (1000) 
0003 RESET ADD R 0000 R0500 
0004 ADD A 2001 R0501 
0005 STORE S 0000 R0501 
0006 RESET ADD R 0001 A1000 
0007 ADD A 2001 A1001 
0008 STORE S 0001 A100l 
0009 RESET ADD R 0002 S1500 
0010 ADD A 2001 51501 
0011 STORE S 0002 S1501 
2001 a 0001 

Figure 6-9. Program of Addition, Storage and 
Modificotion of Address-

The 12 instructions make the initial addition and storage 
of the sum and modi fy the address of the fi rst three 
instructions so that at the end of the steps the first 
three instructions are in coded characters, R0501, 
A1001, and S1501. This is the exact requirement for 
adding the next pair of figures and storing the result. 
All that remains now is to instruct the machine to return 
to the beginning -- that is to address 0000 -- for its 
next instruction. 

After completing the last instruction, the one in location 
0011, the address counter contains 0012. If in this 
memory location an instruction can be placed, which 
will tell the machine to return to the location 0000 for 
its next instruction, instead of the normal progression 
to location 0013, the objective wi II be accomplished. 
This instruction is called TRANSFER and it means: do 
nothing with this instruction, but go to location shown 
in the address for the next one. The address part of 
the TRANSFER instruction is always the location in 
which the machine will find its next instruction. It 
constitutes a means of breaking the normal progression 
or sequence of instruction execution. In effect, all 
that happens during the execution phase of instruction 
is the resetting of the address counter to the specified 
address -- in this case 0000 -- wiping out the sequentia I 
address norma Ily there. Therefore, the instruction at 



0012 is: 

0012 TRANSFER T 0000 Transfers back 
to 0000. 

This accomplishes the objective desired; the 1500 
instructions norma lIy required have been reduced to 
13. Of course each addition requires 13 steps instead 
of three or four times as much time to complete the 
addition. However, arithmetic operations are performed 
at high rates of speed in the ALU and it is almost always 
more effective overa II to perform the address modification 
than it is to take most of the space in memory for 
instructions and thereby be forced to move in small 
blocks of data severa I times to comp lete the operation. 

A program of this kind in which a sequence of operations 
is performed on one set of data and then the program 
transferred back to the beginning for performance of 
another set and so on is called a loop. There is only 
one thing missing in the loop developed above. The 
machine would never stop repeating it. There are only 
500 numbered pairs to be added, but the computer 
doesn't know that. After completing the last addition 
required (the addresses are 0999, 1499, and 1999) it 
would modify the addresses to 1000, 1500, and 2000 
and continue adding. It will not continue forever, 
sooner or later an address in an instruction wi II exceed 
the 2047 or the program may replace a good instruction 
with gibberish which will have as its first character an 
invalid operation code either of which will cause the 
equipment to stop. Obviously this is an undesirable 
state of affairs, because good data which may be 
required for subsequent operations may be replaced by 
"garbage". Being "caught in a loop" is to be avoided. 

The way out is to insert a test in the program by means 
of which the computer can determine when it has 
completed the required number of cycles around the 
loop. This test condition is easy to develop. It is 
known in this example that when STORE 1999 has been 
executed, the problem is completed. The equipment 
however, wi II continue operating on instructions and 
performing modifications of instructions specified by 
the instructions in 0003 through 0011. After completing 
the instruction located in 0011, the accumulator contains 
STORE 2000, in code S2000, and at this point it is 
known that the operation is completed. (Note that it is 
not complete when the accumu lator contains S 1999 after 
instruction 0011 -- the last pair of figures is sti II to be 
added). Now suppose that after this instruction the 
contents of the accumulator is compared with a constant 
S2000 stored somewhere in memory just for this purpose 
As long as the contents of the accumu lator do not equa I 
this constant, the problem is to continue. As soon as 
equality is reached the machine is to be stopped. This 
requires two new instructions, which are defined as 
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follows: 

0012 

0013 

0014 

(1) The instruction COMPARE m in code "Cm" 
means: compare the contents of the accumu lator 
with the contents of memory location "m" then 
go to the next instruction to find out what to do. 

(2) The instruction TRANSFER IF EQUAL means: as 
the resu It of the previous comparison if the 
accumulator contents are equal to the specified 
memory location contents go to the location "m" 
which is the address part of this instruction, for 
the next instruction; if the contents of the 
accumulator and memory are not equal continue 
in normal sequence for the next instruction. In 
the example the instructions are inserted after 
0011, the TRANSFER instruction being renum
bered; S2000 being stored in memory location 
2002. (See Figure 6-10.) 

COMPARE C 2002 Compares contents of 
Accumulator with 
S2000, C (2002) 

TRANSFER E 0015 Loop exit; equal after 
IF EQUAL last number pair is 

added. 
TRANSFER T 0000 Loop repeats as long 

as accumu lator is not 
equal to S2000. 

0015 MACHINE 
STOP 

Figure 6-10. COMPARE and 
TRANSFER IF EQUAL Instructions 

Thus 15 steps are repeated in sequence by the computer 
for every pair of additions. The last step is reached only 
when the problem is completed. It is not necessary, of 
course, that this be a machine stop, it could just as well 
be the beginning of another phase of the overall problem 
to be solved, the additions being justone portion. 

Loops are common in computer programming techniques 
and all must meet two requirements: 

a. The addresses of instructions must be correctly 
modified, and 

b. An exit in the form of a test, must be provided to 
stop the operation when the problem is complete. 

Th is program is typica I of a loop and with the instructions 
used it is as short as possible. Because of the commonness 
of the loop instructions, computers usua Ily have one or 
two instructions specifically designed for the modifications 
of addresses. Use of the instructions would permit this 
loop to be shortened by two instructions. 



MEANINGS OF THE ADDRESS PORTION OF 
INSTRUCTIONS 

It will be observed from the instructions, which were 
developed for the solution of the multiple addition. 
problem, that the address portion of the instruction may 
have different meanings depending upon what the 
operation part of the instruction calls for. For example 
RESET ADD, ADD, and COMPARE instructions the 
equipment is instructed to take the contents from a 
specified memory location and do something with it .• In 
the STORE instruction it is told to put the contents of 
the accumulator into the specified memory location. 

It is thus apparent that the meaning of the address 
part must be considered in conjunction with the operation 
part. Because this meaning is not always obvious, 
instruction manuals explaining the operation codes 
available for a specific equipment always define very 
carefully and precisely exactly what happens when an 
instruction is carried out and what the address part means. 
In operation, the equipment interprets the address part 
of an instruction in conjunction with the operation part, 
i. e., it "knows ll that in the TRANSFER instruction the 
address part is the location where it wi II find its next 
instruction, and not a place in memory where it is to 
obtain data for execution of the TRANSFER instruction. 
In genera I, the address part of an instruction can be 
considered as falling into one of 8 categories: 

Address of Data to be Taken From Memory 

The operation part of some in·structions require data to 
be taken from memory and some specified operation 
accomplished on that data. Such instructions as RESET 
ADD, ADD and COMPARE have been described. Others 
are MULTIPLY, DIVIDE, SUBTRACT and RESET SUBTRACT 
which are arithmetic operations quite similar to those 
a Iready discussed. Data can a Iso be taken from memory 
and be put into some other type of storage. For example, 
in taking information from memory and putting it on the 
magnetic tape, one instruction would select a tape unit 
and the next might be an instruction like WRITE m, which 
means; II take the contents of memory location IIm ll and 
put it in the magnetic tape unit just hooked Up". 

Address of Data to be Put Into Memory 

This is the reverse condition of that above; the STORE 
instruction previously defined is an example. Instruc
tions of this type tell the machine to take the information 
from some specified place which depends upon the opera
tion part and store it in the memory location given by the 
address part. In addition to the STORE instruction others 
of this type involve taking data from some other storage 
device such as a magnetic drum or from an input unit and 
storing the data in designated memory locations. 
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Address of Instructions 

The address part of the instruction may be the location 
in memory where the next instruction wi II be found. 
The instructions are used to break the normal sequence 
of executing operations. There are two types. 

Unconditional Transfer Addresses 

If the operation part of an instruction is an unconditional 
transfer, the machine always goes to the memory location 
shown as the address part for its next instruction. Every 
computer has one instruction of this type. That is all that 
is needed. The TRANSFER instruction defined previously 
is an unconditional one -- the machine has no option, 
but a Iways breaks the sequence of execution of operation. 

Cond i ti ona I Trans fer Addresses 

If the operation part of an instruction is a conditional 
transfer, the machine mayor may not go to the memory 
location shown as the address part of its next instruction. 
It goes to this location only if the conditions of the 
transfer are met, otherwise it takes its next instruction 
in the normal sequence 0. e.; the one in the memory 
location next following the conditional transfer instruc
tion). The TRANSFER IF EQUAL instruction used in 
the addition example is typical, if the two words 
compared are equal, the machine transfers to the address 
shown for its next instruction. If not equa I, it takes the 
next instruction in sequence and ignores the transfer 
operation. Every computer has several cond-iHona-i 
transfer instructions and examples are II transfer only if 
one number is larger than another", IItransfer if the 
accumulator contains a", and others. 

Address Which are Absolute Numbers 

Some instructions tell the machine to perform operations 
which have nothing to do with the memory location or 
other components, in which case the number shown in 
the address portion serves a special purpose. As an 
example, multiplication of money values frequently 
result in an answer in the accumulator four or five 
figures to the right of the decimal point. Suppose that 
there are five digits which are to be cut down to two by 
dropping the last three digits. This can be accompl ished 
by telling the equipment to shift the contents to the 
accumulator three places to the right and to discard the 
figures moved out during the shift out operation. An 
instruction such as SHIFT 0003 wi II do this. The 
operation part instructs the equipment to shift and the 
address part instructs how many places to shift. Shift 
operations are usually necessary in multiplication and 
division operations in a computer to be sure that decimal 
points for units positions of answers are properly positioned. 



Address as Identification of Input/Output Units 

Obviously, if the ALU and the control unit are to use 
the various input/output units, some means must be 
provided to identify the units so that the proper 
electronic circuits can be set up to connect the desired 
unit to memory. All such units are therefore, assigned 
address numbers which may be the same as some locations 
in memory but the operation part of the instruction is 
the machine signal that memory is not involved. For 
example a tape unit may be address 0200 which is also 
a memory location. The operation part of the instruction 
to connect an input/output unit may be to SELECT. The 
complete instruction SELECT 0200 tells the equipment 
to set up communication lines to connect memory with 
tape unit 0200. 

Address as Identification of Indicator Units 

All computers have a number of special indicators 
which perform various functions. For example, in 
adding numbers it may have been determined that the 
maximum size of the answer would never exceed five 
digits. A larger answer wou Id turn on "overflow 
indicator" and this indicator could be checked by an 
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instruction to determine if it was on or not. By the use 
of a conditional transfer instruction special instructions 
would be followed by the machine to handle the over
flow condition. As an example suppose the "overflow 
indicator" was assigned 1000. The instruction CHECK 
1000 would mean determine the condition of the 
"overflow indicator". The next instruction would be a 
conditional transfer such as TRANSFER IF ON to "mil; 
if the indicator were ON, the equipment would go to 
location "m" for its next instruction (this might be the 
first location of a series of special instructions to handle 
the overflow condition) and if not ON it would proceed 
to the next instruction in the normal sequence. Similar 
indicators are provided to signal such factors as end of 
magnetic tape, end of paper typewriter, no more cards 
in the card punch, or an error in a printed line, and 
all can be interrogated automatically by the machine 
in a manner similar to the example given. 

This ends our discussion of the general subject II How a 
Computer Works". It was not the intention to give any 
detailed information with regard to any specific 
computer, but rather to give a general understanding 
of computers from a very basic point of view. 



SECTION 7. STORAGE SECTIONS 

MAGNETIC CORE MEMORY 

The most common high speed storage used in today's 
digital computers is the magnetic core memory. This 
type of data storage is based on the use of one core 
element for each "bit" of information storage capabil
i ty of core memory. 

Before describing the memory operation in detai I, a 
review of the theory of core operation is presented. 
The kind of core memory most widely used is the co
incident current variety, and only this variety will be 
discussed. 

Basic Element of a Core Memory 

The basic element of a core memory is the core itself. 
A core is a II doughnut" formed of ferrous .materia I and 
a bonding agent. The core is extremely small and 
appears as fo Ilows: 

@ ~$kness 
J-t Inside Diameter ~L 

Outside Diameter 

Figure 7 -1. Core 

The sizes range from an outer diameter of about 1/8 
inch to sizes which require magnification to work with 
them. 

A core made primarily of ferrous material is highly 
magnetic, and tends to hold a magnetized state once 
it has been subjected to a magnetizing fie Id. A core, 
just manufactured, that is subjected to a magnetizing 
force (H) develops a magnetic field (B). Assuming the 
magnetizing force can be polarized in either direction, 
we would be able to change the direction of the mag
netic fie Id (B) in the core. 

If we were to wrap the core with a few turns of wire 
and pass current through the looped wire in either di
rection, the magnetic field about the loops of wire 
would be the magnetizing force exerted on the core. 
The following diagram shows the result of such an oper
ation. 
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Figure 7 -2. Magnetized Core 

Notice that as the direction of current changes the 
direction of (B), the magnetization within the core 
changes. This can be displayed using graphs of (B) and 
(H) for a given core material. Assuming that the core 
was unmagnetized when the process started, the follow
i ng will exp la i n the graph. 

+ 
t 

i 3 

--H-+ 
----------------~ 2 

3 
4 
5 

7 

Figure 7 -3. Magnetization Curve 

Magnetic Field of a Core 

The core, when starting with no magnetic fie Id (B), 
wi II begin from the 0 position, or the crossing of the 
8 - H lines at their 0 points. Once subjected to a 
magnetizing force, the curve of a core's magnetic 
field witt never again get to that particular point on 
the graph without having special treatment to get it 
there. 



When current is' applied to the magnetizing coi I in 
the direction shown by the current waveforms (path I), 
the magnetizing force in will force the field within 
the core along path 1 of the graph. The field within 
the core will remain at, or near, the saturated level 
shown unti I the magnetizing force drive current is re
versed. We call this saturation because no matter how 
much more we increase the magnetizing force (H), the 
magnetic fie Id within the core does not rise in propor
tion. 

Now consider path 2 of the current waveform. The 
current through the coi I is decreasing and the strength 
of the magnetic field within the core follows path 2. 
When we get to the point where (H) is zero, the (6) 
curve sti II shows near saturation. This indicates that 
once a core has been saturated by a magnetizing force 
and the magnetizing force is removed, the core wi II 
hold some magnetic field and not go to zero. This 
feature of a core is called remanence and the field it 
contains is called the residual magnetic field. 

If we now continue along the current waveform path 2 
from the zero point toward the left, the magnetic field 
in the core wi II decrease from its saturated condition 
and go into saturation in the opposite direction with a 
complete Iy reversed fie Id. 

In considering current waveform pcith 3, the core field 
wi II follow curve 3 and go into saturation with a fu II 
reversal of the fie Id within the core. 

The amount of current in the winding to produce the 
magnetizing force field is dependent upon the number 
of turns of the coi I (N) and the current passing through 
the coil (I) in the relationship. 

~ = NI 

It is conceivable that we could have a coil of one turn 
and with increased current the same core saturation 
result could be obtained. The configuration of such a 
device would be as shown in the following diagram. 

I 
- -

Figure 7 -4. Coi I with One Turn 

Again let us go to the graph of magnetizing force (H) 
and core fie Id strength (6) in Figure 7 -3. From further 

amplification of the graph we may gain further informa
tion. 
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Figure 7-5. Magnetization Curve 

Magnetizing force required to saturate the 
core to saturation fie Id strength 

~m = Saturation core field strength. 

1/2Hs = Residual or remanent core field strength 
in the absence of magnetizing force after 
having been saturated. 

Note that with 1/2 Hs magnetizing force the core field 
strength does not change appreciably regardless of 
which direction the core is saturated or whether the 
magnetizing force (1/2 Hs) is positive or negative. 

From Figure 7 -5, it is seen that if the core had been 
saturated in the positive direction by a positive mag
netizing force, Hs, and then the magnetizing force 
dropped to 0, there would remain in the core a field 
of strength ~r, very near the saturation leve I. If, now, 
a negative magnetizing force is caused to be present 
to the level-1/2 Hs the field within the core would re
main polarized in the same direction and decrease 
slightly in amplitude. If this negative magnetizing 
force is removed, the core fie Id wi II return to the ap
proximate level %r. Further, if a negative magnetiz
ing force of -Hs is applied, the field within the core 
will go through the critical point at the knee of the 
curve when the magnetizing force passes -He and as 
the magnetizing force increases in amplitude, the core 
field will change polarity very rapidly, go beyond the 
lower knee of the curve and wi II saturate again in the 
opposite, or negative direction. 

When the negative magnetizing force is removed, or 
reduced to 0, the core fie Id wi II settle to a leve I of 
-~r. This same reasoning process can be applied to 



the graph to now get the core saturated in a positive 
direction. This is left as an exercise for the students. 
The major points to note in Figure 7-3 and discussion 
are as fo Ilows: 

a. Once saturated, a core field wi II return to ± ~r 
when the magnetizing force is removed. 

b. ± 1/2Hs wi II not change the core fie Id appreci
ably from ± ~r. 

c. ± Hc is of greater amplitude than ± 1/2Hs and 
as a result there is little likelihood that 1/2 Hs will 
disturb the ± ~r field strength amplitude of a core. 

d. ± Hs drives the core well beyond the knee of 
the saturation level of a core. 

Using Two Wires to Pass Current 

Thus far we have talked of current in one wire only but 
it is also possible that the current cou Id be divided into 
two equal parts and passed through two separate wires 
thus creating the same effects as was accomplished with 
one wire. The configuration wouid be as shown in 
Figure 7-6. 

Wire X 

Wire Y 

Figure 7 -6. Two Wire Coi I 

Note that the current passing through each wire from 
either side of the core considered separately, is 
designated as 1/2 the current required to saturate the 
core to 0(10 ) or 1/2 the current required to saturate the 
core to 1 (II). The "0" and 11111 field directions were 
arbitrari Iy chosen in this case. 

The fields of magnetizing force created by currents 
flowing through wires "X" and "Y" are additive. Thus 
if we were to consider the fie Id resu lting from current 
flowing from left- to- right in both X and Y, that field 
would be approximately twice the field that would be 
caused by current flowing in only one of the wires, 
either X or Y. 

Further, if current were flowing in X from left- to- right 
and in Y from right-to-Ieft, the resulting field of mag
netizing force would be approximately zero. 
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Inhibiting Current 

With this information we can now insert another wire 
through the core and use it to prevent magnetizing the 
core in the 1 direction by causing current to pass 
through that third wire always in a direction which 
would prevent 1 core field saturation when desired, by 
merely turning the third wire current off when 1 core 
field is desired, and on when No-lor 0 core field is 
desired. We would have a system of preventing or 
inhibiting 1 when desired for the core. The configuration 
would be: 

Wire X 

Inhibit 
Wire 

Wire Y 

Figure 7 - 7. Inhibit Current Scheme 

1/21 1 

It must be explained that inhibit current wi II be equal 
to about the va lue of 1/2 1

0
• If we now wish to record 

a zero magnetic field in the core, assuming it is already 
saturated and at zero, and we know that 1/2 11 will 
flow in both X and Y wires, we must do something to 
prevent thecumufative action of the 11 current from 
switching the core field. To do this we must turn on 
the inhibit wire current before the X and Y wire cur
rents are perm i tted to flow. 

The following diagrams show the conditions with inhibit 
and no inhibit currentg The cores are assumed to be 
polarized to 0 at the time the currents flow and the 
currents start and stop at the same instanto 

IInhib = o ___ .... ~~ 

Core Set to 1 

Core Remains Set at 0 

Figure 7 -8. Conditions of Inhibit and No- Inhibit Current 



What has been discussed thus far is the writing process 
that takes place in magnetic core systems. Cores are 
set at 0 prior to the "write" series of events which 
will provide X and Y half currents to the selected 
cores. Those cores which are to remain at 0 wi II a 1-
ways have the inhibit half current flowing in the wire 
associated with those individual cores. 

The Read Operation 

Once the information is in the core, how is the infor
mation obtained out of the core for use when desired 
and then restored to the core for retention in memory? 
We have said that all cores are set to zero, after which 
se lected lis are "written" back into the memory cores o 

It shou Id be obvious now that when cores are set to 
zero, only these which had a 1 polarization will have 
a complete reversal of core field. It is this changing 
core fie Id which indicates that the core had a 1 in 
it when it was set to O. To gather this information or 
to "sense" the change, a conductor in the presence of 
the rapidly changing field is required. The conductor 
in the changing magnetic field will have a voltage 
induced in it and this voltage can be amplified and 
used as a 1 indicator. Therefore another wire must be 
laced through the core for sensing the change in polar
ity when the core is set to O. 

Setting the selected cores to 0 is known as the read 
operation. It is only during this period that a change 
of core polarity contains usable information and there
fore, only during this period are the "sensing amplifiers" 
activated and able to amplify a 1 voltage from the 
sense wire, if it is present. The core configuration now 
appears as in Figure 7-9: 

Figure 7-9. Core Lacing and Various Currents 

It shou Id be noted that ha If currents are reversed at 
X and Y for read and write. Inhibit current flows only 
during write and a Iways in the same direction. 

In the case of the core being polarized to 1 the read 
half currents flowing in X and Y wi II cause the field of 
fhecore to rapidly charlgepoldrity and the collapsing 
and bui Iding core field wi" occur when a 1 is written 
into a core wh ich was previous Iy reset to zero by the 
read half currents. However, at this time the voltage 
induced in the sense wire is ignored. 
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Thus far we have talked about single cores. However 
single cores are not used alone, but are gathered to
gether to handle multiple bits of storage. An example 
of how they are arranged for storage of 16 bits of infor
mation is given in Figure 7 -10. 

Yo 

l I 
Xo Xl X3 

Inhibit Sense 

Figure 7-10. Sixteen-Bit Core Storage Arrangement 

Figure 7-10 points up pertinent information with regard 
to core memories as follows: 

a. Adjacent X lines have current flowing through 
them in opposite directions. 

b. Adjacent Y lines have current flowing through 
them in opposite directions. 

c. The inhibit lines parallel the Y lines and the 
current wi II flow on Iy in one direction, i. e., in the 
direction of Y read half-current. 

d. One X and one Y line can address only one 
core with fu II current, and this is the core at the cross
over point. All other cores on the X line and Y line 
in use are subjected to only half current. 

e. "It is possible to get either polarity of signal 
from the sense line as input to the sense amplifier cir
cuits. 

f. Cores on the Y drive line and X drive line, not 
at the crossover point have noise generated by the half 
current disturbing the core, which induces a small 
voltage in the sense winding. The amplitude of the 
vo Itage is dependent upon the flux change and the 



polarity is determined by the direction of flux change 
with respect to the sense winding. 

g. All voltages induced in the sense winding are 
algebraically additive. 

That the currents in adjacent X lines and adjacent Y 
lines are in opposite directions is a matter of core 
plane design. What is shown in Figure 7-10 is one core 
plane capable of holding 16 discrete bits of 1 or 0 in
formation. The reason for wiring the core plane in this 
way will become clear as we begin to stack core planes 
and as we go on with the discussion of the points men
tioned previously. 

Core Addressing 

Whether we read or write in the core memory, only one 
X drive line and one Y drive line are used to address a 
single core in a core plane. For instance if we use Xo 
and Yo drive lines, we selected the core which is sub
jected to the cumulative magnetic fields created by 
half current in Xo and half current in Yo. All other 
cores on line Xo and line Yo are subjected to the mag
netic force caused by half currents in lines Xo and Yo. 
These cores not selected are called "half selected. II 

This applies to either read or write operations. 

It wi II be noted that the inhibit winding goes through 
every core in the plane and the current in this winding 
has been specif.ied to be always in the same direction 
as current in all Y lines which would cause a 0 to be 
written in the selected core. In other words, the in
hibit current cancels the effect of the Y current for all 
cores in the selected Y line. Assuming that the arrows 
alongside X and Y drive lines in Figure 7 -10 are shown 
in the 1 direction of current, the current in the inhibit 
winding would be as shown in Figure 7-10. 

From previous discussions on core theory for a single 
core, and the above discussion on single core selection 
in a core p lane, further discussion of how information 
is stored in a unique location within the core plane 
would be redundant. All that is needed is to know 
how a core is IIselected ll and then the theory of a 
single core applies to that selected core for informa
mati on storage. The only lines of concern during this 
operation are selected X and Y drive lines and the 
inhibit winding. 

Reading from Core 

Reading from core memory requires more discussion 
since there are actions here which are not apparent 
without investigation. The on Iy liiles used in reading 
are the selected X and Y drive lines and the sense 
winding. 

From preceding single core theory it is obvious that 
when the se lected X and Y lines have currents in each 
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of them in such directions to drive the selected core to 
zero a large change of flux wi II cause a large voltage 
in the sense winding. Further, if the selected core was 
at zero, a much smaller voltage wi II be induced in the 
sense winding since the resultant change of fields 
strength in the se lected core is sma lIer. 

In addition to the effect of the read half currents in 
the selected X and Y lines on the selected core, there 
is the effect of the half currents in both X and Y on 
half selected cores. These half selected cores will 
also undergo a small change in flux and cause a cor
respondingly small voltage to be induced in the sense 
winding. 

Regardiess of the source of the induced voltages in the 
sense winding the voltage appearing at the sense wind
ing terminals is the algebraic sum of the induced volt
ages. 

Because of the way a core plane is wired and the direc
tion of currents in each X and Y line, the voltages in
duced in the sense winding by individual half selected 
cores tend to cancel one another. In other words the 
voltage induced in the sense winding by one core half
current-flux change wi II tend to force current in the 
sense winding in one direction and the effect of another 
core ha If-current-flux change wi II tend to force sense 
winding current in theopposite direction. Figure 7 -11 
is a segment of Figure 7-10 using Xo and Yo to explain 
this point. 

, , , , , , , , , 

Sense 

Figure 7 -11. Effects of One Core 
Half-Current-Flux Change 



Referring to Figure 7 -11, we see the cores are number
ed with two numbers. These are in the form X, Y, with 
the numbers representing the subscript numbers of the 
X and Y drive I ines that lace through the individua I 
cores. Also, the sense winding is traced in only one 
direction. The arrow associated with each segment of 
the sense winding as it passes through a core indicates 
the direction of tracing the sense winding. 

The fully selected core (0,0) with X and Y half cur
rents going in to the core in one direction and the di
rection of sense-winding tracing in the opposite direc
tion produces a zero going indication at the sense wire 
terminals. Knowing this we can then say that for the 
half selected cores: 

a. If the sense -winding trac ing arrow and the di
rection of half current are opposite, a small 0 signal is 
produced. 

b. If the sense-winding tracing arrow and the di
rection of half current are the same, a small 1 signal 
is produced. 

Therefore, we can now count these half selected cores 
wh ich produce sma II lis and OIS. 

Core I 1 ..Q.... 

0, 1 X 

0,2 X 

0,3 X 

1,0 X 

2,0 X 

3,0 X 

4 2 

Thus the effect of the 1 signal which could reduce the 
amplitude of the fully selected signal is offset by cores 
(0, 1) and (3,0) generating in the sense winding 0 sig-
na Is to offset the 1 effect of cores (0,2), (0,3), (1,0) 
and{2,O). This effect does not seem significant in this 
case since the core plane is very small and only 50% 
reduction in cancelling effect from half selected cores 
result. However, as core planes increase in size to 
64 x 64 or 4096 cores in a plane, this reduction becomes 
significant. 

It is left as a student exercise to draw out a simple 
8 x 8 plane as in Figure 7 -12 and prove to himsel f that 
in this case the opposing induced voltages from half 
currents cause greater than 50% core noise reduction due 
to cancellation. 
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Figure 7-12. 8 x 8 Core Plane 

Core Arrays 

Thus far we have been concerned with single cores and 
single core planes. The next step in logical sequence 
is to use the core planes in arrays in order to be able 
to store and retrieve information in a manner that we 
can handle more than one bit of information at a time. 

The core plane we discussed previously is also called a 
"bit-plane". The name bit-plane comes from the fact 
that in digital computers using core memory there is 
one such plane for every bit in a computer word. Thus, 
a 6-bit computer word wou Id require 6-bit planes, and 
a 24-bit computer word would require 24 bit-planes. 

The number of words that can be stored in a memory is 
a function of the number of X and Y drive lines per 
bit-plane. As an example, a 4096 word memory for 
24-bit word length would require 24 bit-planes, each 
of which has 64 X and 64 Y drive lines. 

The diagram of Figure 7 -13 shows the X and Y drive 
lines for 4-bit words in core memory. Note particular
ly in Figure 7-13: 

a. Each end of an Xo drive line of each plane, 
except the top and bottom, is attached to the end of a 
Xo drive line of an adjacent plane by a connecting 
wire external to the core planes. Therefore, all Xo 
drive lines are in series. 

b. Each end of a Y (}_ drive line of each plane, ex
cept the top and bottom, is attached to the end of a 
YO drive line of an adjacent plane by a connecting 
wire external to the core plane. Therefore, all YO 
drive lines are in series. 



1 
t 

fu lIy se lected 
cores, 1, for each 

bit of the word. 

Bit- Plane 1 

Bit- Plane 2 

Bit- Plane 3 

Figure 7 -13. X and Y Drive Lines for 4-bit Words in 
Core Memory. 
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c. The driven end of the Xo and YO drive lines 
are attached to current drivers which can supply cur
rent in either direction. The ends of the series con
nections of Xo and YO drive lines, opposite the driven 
ends, are grounded. Therefore the same Xo half cur
rent flows through all plane Xo drive lines and the 
same YO half current flows through all plane YO drive ,. 
lines. 

d. In each bit-plane, only one core is fully select
ed. The selected cores in all planes are in the same 
relative physical location in each bit-plane. 

e. All even numbered X drive I ines are attached to 
drivers on the same side of the core plane, and all odd 
numbered X drive lines are attached to drivers on the 
opposite side of the core plane. 

f. All even numbered Y drive lines are attached to 
drivers on the same side of the core plane, and all odd 
numbered Y drive lines are attached to drivers on the 
opposite side of the core plane. 

g. There is required for each X line a separate cur
rent ddver, and for each Y line a separate current 
driver. 

Since we are interested in storing individual bits in 
each bit-plane, and reading individual bits from each 
bit-plane, the sense winding and inhibit winding of 
each bit-plane are exclusive to their bit-plane. 
Therefore, a separate inhibit current driver is required 
for each plane, and a separate sense amplifier is needed 
for each plane. 

There are many different ways of accomplishing plane 
wiring, current driving, and sensing. Those presented 
here are only intended to give a reader a basic under
standing of core memory theory. 





APPENDIX A. CONVERSION TABLES 

Octal-Decimal Integer Conversion Table 

0000 
to 

0777 
(Octal) 

Octal 

0000 
to 

0511 
(Decimal) 

Decimal 

10000 - 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

1000 
to 

1777 
(Octal) 

0512 
to 

1023 
{Decimal} 

I 0 2 3 4 5 6 7 I 
0000 0000 0001 0002 000) 0004 0005 0006 0007 
0010 0008 0009 0010 0011 0012 0013 0014 0015 
0020 0016 0017 0018 0019 0020 0021 0022 0023 
0030 0024 0025 0026 0027 0028 0029 0030 0031 
0040 0032 0033 0034 0035 0036 0037 0038 0039 
0050 0040 0041 0042 0043 0044 0045 0046 0047 
0060 10048 0049 0050 0051 0052 0053 0054 0055 
0070 10056 0057 0058 0059 0060 0061 0062 0063 

0100 10064 0065 0066 0067 0068 0069 0070 0071 
0110 0072 0073 0074 0075 0076 0077 0078 0079 
0120 0080 0081 0082 0083 0084 0085 0086 0087 
0130 0088 0089 0090 0091 0092 0093 0094 0095 
0140 10096 0097 0098 0099 0100 0101 0102 0103 
0150 0104 0105 01.06 0107 0108 0109 0110 0111 
0160 0112 0113 0114 0115 0116 0117 0118 0119 
0170 0120 0121 0122 0123 0124 0125 0126 0127 

0200 0128 0129 0130 0131 0132 0133 0134 0135 
0210 0136 0137 0138 0139 0140 0141 0142 0143 
0220 0144 0145 0146 0147 0148 0149 0150 0151 
0230 0152 0153 0154 0155 0156 0157 0158 01~9 
0240 0160 0161 0162 0163 0164 0165 0166 0167 
0250 0168 0169 0170 0171 0172 0173 0174 0175 
0260 0176 0177 0178 0179 0180 0181 0182 0183 
0270 0184 0185 0186 0187 0188 0189 0190 0191 

0300 0192 0193 0194 0195 0196 01~7 0198 0199 
0310 0200 0201 0202 0203 0204 0205 0206 0207 
0320 0208 0209 0210 0211 0212 0213 0214 0215 
0330 0216 0217 0218 0219 0220 0221 0222 0223 
0340 0224 0225 0226 0227 0228 0229 0230 0231 
0350 0232 0233 0234 0235 0236 0237 0238 0239 
0-360- -Q-24-0--Q-m---D-24-2--0-24-3----W4+-0-245--{)246--{)247· 
0370 0248 0249 0250 0251 0252 0253 0254 0255 

0 1 2 3 4 5 6 7 

1000 0512 0513 0514 0515 0516 0~17 0518 0519 
1010 0520 0521 0522 0523 0524 0525 0526 0527 
1020 0528 0529 0530 0531 0532 0533 0534 0535 
1030 0536 0537 0538 0539 0540 0541 0542 0543 
1040 0544 0545 0546 0547 0548 0549 0550 0551 
1050 0552 0553 0554 0555 0556 0557 0558 0559 
1060 056(} 0561 0562 0563 0564 0565 0566 0567 
1070 0568 0569 0570 0571 0572 0573 0574 0575 

1100 0576 0577 0578 0579 0580 0581 0582 0583 
1110 0584 0585 0586 0587 0588 0~89 0590 0591 
1120 0592 0593 0594 0595 0596 0597 0598 0599 
1130 0600 0601 0602 0603 0604 0605 0606 0607 
1140 0608 0609 0610 0611 0612 0613 0614 0615 
1150 0616 0617 0618 0619 0620 0621 0622 0623 
1160 0624 0625 0626 0627 0628 0629 0630 0631 
1170 0632 0633 0634 0635 0636 0637 0638 0639 

1200 0640 0641 0642 0643 0644 0645 0646 0647 
1210 0648 0649 0650 0651 0652 0653 0654 0655 
1220 0656 0657 0658 0659 0660 0661 0662 0663 
1230 0664 0665 0666 0667 0668 0669 0670 0671 
1240 0672 0673 0674 0675 0676 0677 0678 0679 

\1250 0680 0681 0682 0683 0684 0685 0686 06871 
1260 0688 0689 0690 0691 0692 0693 0694 0695 1 

11270 I 0696 0697 0698 0699 0700 0701 0702 0703
1 

11300! 0704 
1131C 0'712 
132U I O'720 

1 1330 I 0728 
11340 I 0736 

1

1350 I 0744 
1360 I 0752 

1
1370 

1
0760 

0705 
1)'713 
0721 
0729 
0737 
0745 
0753 
0761 

0706 0707 
0714 0"15 
0722 0723 
0730 0731 
0738 0739 
0746 0747 
0754 0755 
0762 0763 

0708 0709 0710 0711 
0716 0717 0718 0719 
0724 0725 0726 0721 
0732 0733 0734 0735 
0740 0741 0742 0743 
0748 0749 0750 0751 
0756 0757 0758 0759 
0764 0765 0766 0767 

A-l 

I 0 2 3 4 5 6 7 

0400 0256 0257 0258 0259 0260 0261 0262 0263 
0410 0264 0265 0266 0267 0268 0269 0270 0271 
0420 0272 0273 0274 0275 0276 0277 0278 0279 
0430 0280 0281 0282 0283 0284 0285 0286 0287 
0440 0288 0289 0290 0291 0292 0293 0294 0295 
0450 0296 0297 0298 0299 0300 0301 0302 0303 
0460 0304 0305 0306 0307 0308 0309 0310 0311 
0470 0312 0313 0314 0315 0316 0317 0318 0319 

0500 0320 0321 0322 0323 0324 0325 0326 0327 
0510 0328 0329 0330 0331 0332 0333 0334 0335 
0520 0336 0337 0338 0339 0340 0341 0342 0343 
0530 0344 0345 0346 0347 0348 0349 0350 0351 
0540 0352 0353 0354 0355 0356 0357 0358 0359 
0550 0360 0361 0362 0363 0364 0365 0366 0367 
0560 0368 0369 0370 0371 0372 0373 0374 0375 
0570 0376 0377 0378 0379 0380 0381 0382 0383 

0600 0384 0385 0386 0387 0388 0389 0390 0391 
0610 0392 0393 0394 0395 0396 0397 0398 0399 
0620 0400 0401 0402 0403 0404 0405 0406 0407 
0630 0408 0409 0410 0411 0412 0413 0414 0415 
0640 0416 0417 0418 0419 0420 0421 0422 0423 
0650 0424 0425 0426 0427 0428 0429 0430 0431 
0660 0432 0433 0434 0435 0436 0437 0438 0439 
0670 0440 0441 0442 0443 0444 0445 0446 0447 

0700 0448 0449 0450 0451 0452 0453 0454 0455 
0710 0456 0457 0458 0459 0460 0461 0462 0463 
0720 0464 0465 0466 0467 0468 0469 0470 0471 
0730 0472 0473 0474 0475 0476 0477 0478 0479 
0740 0480 0481 0482 0483 0484 0485 0486 0487 
0750 0488 0489 0490 0491 0492 0493 0494 0495 
()'7.60. -Q4.9S--Q.49.7 --O.49&- -O.499.--0500-1)5..o1--.Q502_05.03 
0770 0504 0505 0506 0507 0508 0509 0510 0511 

0 1 2 3 4 5 6 7 

1400 0768 0769 077Q 0771 0772 0773 0774 0775 
.1410 0776 0777 0778 0779 0780 0781 0782 0783 
1420 0784 0785 0786 0787 0788 0789 0790 0791 
1430 0792 0793 0794 0795 0796 0797 0798 0799 
1440 0800 0801 0802 0803 0804 0805 0806 0807 
1450 0808 0809 0810 0811 0812 0813 0814 0815 
1460 0816 0817 0818 0819 0820 0821 0822 0823 
1470 0824 0825 0826 0827 0828 0829 0830 0831 

1500 0832 0833 0834 0835 0836 0837 0838 0839 

151010840 0841 0842 0843 0844 0845 0846 0847 
1520 0848 0849 0850 0851 0852 0853 0854 0855 
1530 0856 0857 0858 0859 0860 0861 0862 0863 
1540 0864 0865 0866 0867 0868 0869 0870 0871 
1550 0872 0873 0874 0875 0876 0877 0878 0879 
1560. 0880 0881 0882 0883 0884 0885 0886 0887 
1570 0888 0889 0890 0891 0892 0893 089~ 0895 

1600 0896 0897 0898 0899 0900 0901 0!W2 0903 
1610 0904 0905 0906 0907 0908 0909 0910 0911 
1620 10912 0913 0914 0915 0916 0917 0918 0919 
1630 0920 0921 0922 0923 0924 0925 0926 0927 
1640 0928 0929 0930 0931 0932 0933 0934 0935 

11650 10936 0937 0938 0939 0940 0941 0942 0943 
0945 0946 0947 0948 0949 0950 0951 11660 i0944 

11670 ! 0952 0953 0954 0955 0956 0957 0958 09591 

1 1700 i 0960 0961 0962 
17100968 0969 0970 
1720 '0916 0977 0978 
1730 10984 0985 0986 
1740 0992 0993 0994 
1750 1000 1001 1002 
1760 1008 1009 1010 
1770 1016 1017 1018 

0963 0964 0965 
0971 0972 0973 
09?9 0980 0981 
0987 0988 0989 
0995 0996 0997 
1003 1004 1005 
1011 1012 1013 
1019 1020 1021 

0966 
0974 
09811 
0990 
0998 
1006 
1014 
1022 

0967 1. 
0975 
09831 
0991

1 

0999/ 
1007 
1015 
1023 1 



APPENDIX A. CONVERSION TABLES (Cont1d) 

Octal- Decimal Integer Conversion Table (Cont1d) 

0 i 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

2000 1024 1025 1026 1027 1028 1029 1030 1031 2400 1280 1281 1282 1283 1284 1285 1286 1287 
2010 1032 1033 1034 1035 1036 1037 1038 1039 2410 1288 1289 1290 1291 1292 1293 1294 1295 
2020 1040 1041 1042 1043 1044 1045 1046 1047 2420 1296 1297 1298 1299 1300 1301 1302 1303 
2030 1048 1049 1050 1051 1052 1053 1054 1055 2430 1304 1305 1306 1307 1308 1309 1310 1311 
2040 1056 1057 1058 1059 1060 1061 1062 1063 2440 1312 1313 1314 1315 1316 1317 1318 1319 
2050 1064 1065 1066 1067 1068 1069 1070 1071 2450 1320 1321 1322 1323 1324 1325 1326 1327 
2060 1072 1073 1074 1075 1076 1077 1078 1079 2460 1328 1329 1330 1331 1332 1333 1334 1335 
2070 1080 1081 1082 1083 1084 1085 1086 1087 2470 1336 1337 1338 1339 1340 1341 1342 1343 

2100 1088 1089 1090 1091 1092 1093 1094 1095 2500 1344 1345 1346 1347 1348 1349 1350 1351 
2110 1096 1097 1098 1099 1100 1101 1102 1103 2510 1352 1353 1354 1355 1356 1357 1358 1359 
2120 1104 1105 1106 1107 1108 1109 1110 1111 2520 1360 1361 1362 1363 1364 1365 1366 1367 
2130 1112 1113 1114 1115 1116 1117 1118 1119 2530 1368 1369 1370 1371 1372 1373 1374 1375 
2140 1120 1121 1122 1123 1124 1125 1126 1127 2540 1376 1377 1378 1379 1380 1381 1382 1383 
2150 1128 1129 1130 1131 1132 1133 1134 1135 2550 1384 1385 1386 1387 1388 1389 1390 1391 
2160 1136 1137 1138 1139 1140 1141 1142 1143 2560 1392 1393 1394 1395 1396 1397 1398 1399 
2170 1144 1145 1146 1147 1148 1149 1150 1151 2570 1400 1401 1402 1403 1404 1405 1406 1407 

2200 1152 1153 1154 1155 1156 1157 1158 1159 2600 1408 1409 1410 1411 1412 1413 1414 1415 
2210 1160 1161 1162 1163 1164 1165 1166 1167 2610 1416 1417 1418 1419 1420 1421 1422 1423 
2220 1168 1169 1170 1171 1172 1173 1174 1175 2620 1424 1425 1426 1427 1428 1429 1430 1431 
2231) 1176 1177 n78 1179 1180 1181 1182 1183 2630 1432 1433 1434 1435 1436 1437 1438 1439 
2240 1184 1185 1186 1187 1188 1189 1190 1191 2640 1440 1441 1442 1443 1444 1445 1446 1447 
2250 1192 1193 1194 1195 1196 1197 1198 1199 2650 1448 1449 1450 1451 1452 1453 1454 1455 
2260 1200 1201 1202 1203 1204 1205 1206 1207 2660 -1456 1457 1458 1459 1460 1461 1462 1463 
2270 1208 1209 1210 1211 1212 1213 1214 1215 2670 1464 1465 1466 1467 1468 1469 1470 1471 

2300 1216 1217 1218 1219 1220 1221 1222 1223 2700 1472 1473 1474 1475 1476 1477 1478 1479 
2310 1224 1225 1226 1227 1228 1229 1230 1231 2710 1480 1481 1482 1483 1484 1485 1486 1487 
2320 1232 1233 1234 1235 1236 1237 1238 1239 2720 1488 1489 1490 1491 1492 1493 1494 1495 
2330 1240 1241 1242 1243 1244 1245 1246 1247 2730 1496 1497 1498 1499 1500 1501 1502 1503 
2340 1248 1249 1250 1251 1252 1253 1254 1255 2740 1504 1505 1506 1507 1508 1509 1510 1511 
2350 1256 1257 1258 1259 1260 1261 1262 1263 2750 1512 1513 1514 1515 1516 1517 1518 1519 
2360 1264 1265 1266 1267 1268 1269 1270 1271 2760 1520 1521 1522 1523 1524 1525 1526 1527 
2370 1272 1273 1274 1275 1276 1277 1278 1279 2770 1528 1529 1530 1531 1532 1533 1534 1535 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

3000 1536 1537 1538 1539 1540 1541 1542 1543 3400 1792 1793 1794 1795 1796 1797 1798 1799 
3010 1544 1545 1546 1547 1548 1549 1550 1551 3410 1800 1801 1802 1803 1804 1805 1806 1807 
3020 1552 1553 1554 1555 1556 1557 1558 1559 3420 1808 1809 1810 1811 1812 1813 1814 1815 
3030 1560 1561 1562 1563 1564 1565 1566 1567 3430 1816 1817 1818 1819 1820 1821 1822 1823 
3040 1568 1569 1570 1571 1572 1573 1574 1575 3440 1824 1825 1826 1827 1828 1829 1830 1831 
3050 1576 1577 1578 1579 1580 1581 1582 1583 3450 1832 1833 1834 1835 1836 1837 1838 1839. 
3060 1584 1585 1586 1587 1588 1589 1590 1591 3460 1840 1841 1842 1843 1844 1845 1846 1847 
3070 1592 1593 1594 1595 1596 1597 1598 1599 3470 1848 1849 1850 1851 1852 1853 1854 1855 

3100 1600 1601 1602 1603 1604 1605 1606 1607 3500 1856 1857 1858 1859 1860 1861 1862 1863 
3110 1608 1609 1610 1611 1612 1613 1614 1615 3510 1864 1865 1866 1_867 1868 1869 1870 1871 
3120 1616 1617 1618 1619 1620 1621 1622 1623 3520 1872 1873 1874 1875 1876 1877 1878 1879 
3130 1624 1625 1626 1627 1628 1629 1630 1631 3530 1880 1881 1882 1883 1884 1885 1886 1887 
3140 1632 1633 1634 1635 1636 1637 1638 1639 
3150 1640 1641 1642 1643 1644 1645 16:~6 1647 

3540 1888 1889 1890 1891 1892 1893 1894 1895 
3550 1896 1897 1898 1899 1900 1901 1902 1903 

3160 1648 1649 1650 1651 1652 1653 16..>4 1655 3560 1904 1905 1906 1907 1908 1909 1910 1911 
3170 1656 1657 1658 1659 1660 1661 1662 1663 3570 1912 1913 1914 1915 1916 1917 1918 1919 

3200 1664 1665 1666 1667 1668 1669 1670 1671 3600 1920 1921 1922 1923 1924 1925 1926 1927 
3UO 1672 1673 1674 1675 1676 1677 1678 1679 3610 1928 1929 1930 1931 1932 1933 1934 1935 
3220 1680 1681 1682 1683 lti84 1685 1686 1687 3620 1936 1937 1938 1939 1940 1941 1942 1943 
3230 1688 1689 1690 1691 1692 1693 1694 1695 3630 1944 1945 1946 1947 1948 1949 1950 1951 
3240 1696 1697 1698 1699 1700 1701 1702 1703 3640 1952 1953 1954 1955 1956 1957 1958 1959 
3250 1704 1705 1706 1707 1708 1709 1710 1711 3650 1960 1961 1962 1963 1964 J965 1966 1967 
3260 1712 1713 1714 1715 1716 1717 1718 1719 3660 1968 1969 1970 1971 1972 1973 1974 1975 
3270 1720 1721 1722 1723 1724 1725 1726 1727 3670 1976 1977 1978 1979 1980 1981 1982 1983 

3300 i728 1729 1'730 1131 1132 17;)3 1734 1135 3700 1984 1985 1986 1987 1988 1989 1990 1991 
3310 1736 1737 1738 1739 1740 1741 1742 1743 3710 1992 1993 1994 1995 1996 1997 1998 1999 
3320 1744 1745 1746 1747 1748 1749 1750 1751 3720 2000 2001 2002 2003 2004 2005 2006 2007 
3330 1752 1753 1754 1755 1756 1757 1758 1759 3730 2008 2009 2010 2011 2012 2013 2014 2015 
3340 1760 1761 1762 176-3 1764 1765 1766 1767 3740 2016 2017 2018 2019 2020 2021 2022 2023 
3350 1768 1769 1770 1771 1772 1773 1774 1775 3750 2024 2025 2026 2027 2028 2029 2030 2031 
3360 1776 1777 1778 1779 1780 1781 1782 1783 3760 2032 2033 2034 2035 2036 2037 2038 2039 

17 784 1785 7 6 7 7 7 7 7 1 8 1 8 1 88 1 89 1790 1 91 , 3770 204 2 41 o 0 2042 2043 2044 2045 2046 2047 

A-2 

2000 
to 

2777 
(Octal) 

Octal 

1024 
to 

1535 
(Decimal) 

Decimal 

10000 - 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

3000 
to 

3777 
(Octal) 

1536 
to 

2047 
(Decimal} 



APPENDIX A. CONVERSION TABLES (Cont'd) 

Octal- Decimal Integer Conversion Table (Cont'd) 

4000 
to 

4777 
(Octal) 

Octal 

2048 
to 

2559 
(Decimal) 

Decimal 

10000 - 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

5000 2560 
to to 

5777 3071 
(Octal) (Decimal) 

0 I 2 3 4 5 6 7 

4000 2048 2049 2050 2051 2052 2053 2054 2055 
4010 2056 2057 2058 2059 2060 2061 2062 2063 
4020 2064 2065 2066 2067 2068 2069 2070 2071 
4030 2072 2073 2074 2075 2076 2077 2078 2079 
4040 2080 2081 2082 2083 2084 2085 2086 2087 
4050 2088 2089 2090 2091 2092 2093 2094 2095 
4060 2Q96 2097 2098 2099 2100 2101 2102 2103 
4070 2104 2105 2106 2107 2108 2109 2110 2111 

4100 2112 2113 2114 2115 2116 2117 2118 2119 
4110 2120 2121 2122 2123 2124 2125 2126 2127 
4120 2128 2129 2130 2131 2132 2133 2134 2135 
4130 2136 2137 2138 2139 2140 2141 2142 2143 
4140 2144 2145 2146 2147 2148 2149 2150 2151 
4150 2152 2153 2154 2155 2156 2157 2158 2159 
4160 2160 2161 2162 2163 2164 2165 2166 2167 
4170 2168 2169 2170 2171 2172 2173 2174 2175 

4200 2176 2177 2178 2179 2180 2181 2182 2183 
4210 2184 2185 2186 2187 2188 2189 2190 2191 
4220 2192 2193 2194 2195 2196 219';' 2198 2199 
4230 2200 2201 2202 2203 2204 2205 2206 2207 
4240 2208 2209 2210 2211 2212 2213 2214 2215 
4250 2216 2217 2218 2219 2220 2221 2222 2223 
4260 2224 2225 2226 2227 2228 2229 2230 2231 
4270 2232 2233 2234 2235 2236 2237 2238 2239 

4300 2240 2241 2242 2243 2244 2245 2246 2247 
4310 2248 2249 2250 2251 2252 2253 2254 2255 
4320 2256 2257 2258 2259 2260 2261 2262 2263 
4330 2264 2265 2266 2267 2268 2269 2270 2271 
4340 2272 2273 2274 2275 2276 2277 2278 2279 
rno- nau--ns-t.~-ncn-~:--n80-z287 
4360 2288 2289 2290 2291 2292 2293 2294 2295 
4370 2296 2297 2298 2299 2300 2301 2302 2303j 

0 2 3 4 ·5 6 7 

5000 2560 2561 2562 2563 2564 2565 2566 2567 
5010 2568 2569 2570 2571 2572 2573 2574 2575 
5020 2576 2577 2578 '2579 2580 2581 ~5'82 2583

1 

5030 2584 2585 2586 2587 2588 2589 2590 2591 
5040 2592 2593 2594 2595 2596 2597 2598 2599 
5050 2600 2601 2602 2603 2604 2605 2606 2607 
5060 2608 2609 2610 2611 2612 2613 2614 2615 
5070 2616 2617 2618 2619 2620 2621 2622 2623 

5100
1
2624 2625 2626 2627 2628 2629 2630 2631 

5110 2632 2633 2634 2635 2636 2637 2638 2639 
5120 2640 2641 2642 2643 2644 2645 2646 2647 
5130 2648 2649 2650 2651 2652 2653 2654 2655 
5140 2656 2657 2658 2659 2660 2661 2662 2663 
5150 2664 2665 2666 2667 2668 2669 2670 2671 
5160 2672 2673 2674 2675 2676 2677 2678 2679 
5170,2680 2681 2682 2683 2684 2685 2686 2687 

520012688 2689 2690 2691 2692 2693 2694 2695 
5210 2696 2697 2698 2699 2700 2701 2702 2703 
522012704 2705 2706 2707 2708 2709 2710 2711 

: 5230 2712 2713 2714 2715 2716 2717 2718 2719 
15240 i 2720 2721 2722 2723 2724 2725 2726 2727 
1525012728 2729 2730 2731 2732 2733 2734 2735 
1526012736 2737 2738 2739 2740 2741 2742 ;~~~j 
5270 27';4 n"""~ 2746 ""I"!"'''' :748 2749 ~,"tV' 4'.o,"'J, l/"i,JU ':' • ..ILI 

I 
15300 ,27a2 2753 2154 2755 2.756 2.251 2158 2159 1 
,5310! 2760 2761 2762 2763 2764 2765 2766 

2'6'1 5320 2768 2769 2770 2771 2772 2773 2774 2775 
5330: 2776 2777 2778 2779 2780 2781 2782 2783 
5340 i 2784 2785 2786 2787 2788 2789 2790 2791 I 
5350 I 2792 2793 2794 2795 2796 2797 2798 27991 
5360 i 2800 2801 2802 2803 2804 2805 2806 28071 

: 5370 12808 2809 2810 2811 2812 2813 2814 28151 

A-3 

0 2 3 4 5 6 7 

4400 2304 2305 2306 2307 2308 2309 2310 2311 
4410 2312 23]3 2314 2315 2316 2317 2318 2319 
4420 2320 2321 2322 2323 2324 2325 2326 2327 
4430 2328 2329 2330 2331 2332 2333 2334 2335 
4440 2336 2337 2338 2339 2340 2341 2342 2343 
445012344 2345 2346 2347 2348 2349 2350 2351 

14460 2352 2353 2354 2355 2356 2357 2358 2359 
4470

1
2360 2361 2362 2363 2364 2365 2366 2367 

4500 2368 2369 2370 2371 2372 2373 2374 2375 
4510 2376 2377 2378 2379 2380 2381 2382 23a3 
4520 2384 2385 2386 2387 2388 2389 2390 2391 
4~30 2392 2393 2394 2395 2396 2397 2398 2399 
4540 2400 2401 2402 2403 2404 2405 2406 2407 
4550 2408 2409 2410 2411 2412 2413 2414 2415 
4560 2416 2417 2418 2419 2420 2421 2422 2423 
4570 2424 2425 2426 2427 2428 2429 2430 2431 

4600 2432 2433 2434 2435 2436 2437 2438 2439 
4610 2440 2441 2442 2443 2444 2445 2446 2447 
4620 2448 2449 2450 2451 2452 2453 2454 2455 
4630 2456 2457 2458 2459 2460 2461 2462 24~3 

·4640 2464 2455 2466 2467 2468 2469 2470 2471 
4650 2472 2473 2474 2475 2476 2477 2478 2479 
4660 2480 2481 2482 2483 2484 2485 2486 2487 
4670 2488 2489 2490 2491 2492 2493 2494 2495 

4700 2496 2497 2498 2499 2500 2501 2502 2503 
4710 2504 2505 2506 2507 2508 2509 2510 2511 
4720 2512 2513 2514 2515 2516 2517 2518 2519 
4730 2520 2521 2522 2523 2524 2525 2526 2527 
47:~ 2528 2529 2530 2531 2532 2533 2534 2535 
'li5 ZSjO-ZS37 ZSj8--z5-:J9 -2540 25lf12542-2543 
4760,2544 2545 2546 2547 2548 2549 2550 2551 

'4770!2552 2553 2554 2555 2556 2557 2558 2559 

0 2 3 4 5 6 7 

540012816 2817 2818 2819 2820 2821 2822 2823 
541012824 2825 2826 2827 2828 2829 2830 2831 
5420 2832 2833 2834 2835 2836 2837 2838 2839 
5430 2840 2841 2842 2843 2844 2845 2846 2847 
5440 2848 2849 2850 2851 2852 2853 2854 2855 
5450 2856 2857 2858 2859 2860 286J 2862 2863 
5460 2864 2865 2866 2867 2868 2869 2870 2e7l 
5470 2872 2873 2874 2875 2876 2877 2878 2879 

5500 2880 2881 2882 2883 2884 2885 2886 2887 
5510 2888 2889 2890 2891 2892 2893 2894 2895 
5520 2896 2897 2898 2899 2900 2901 2902 2903 
5530 2904 2905 2906 2907 2908 2909 2910 2911 
5540

1

2912 2913 2914 2915 2916 2917 2918 2919 
5550 2920 2921 2922 2923 2924 2925 2926 2927 
5560 2928 2929 2930 2931 2932 2933 2934 2935 
557012936 2937 2938 2939 2940 2941 2942 2943 

560012944 2945 2946 2947 2948 2949 2950 2951 
1561012952 2953 2954 2955 2956 2957 2958 2959 
5620,2960 2961 2962 2963 2964 2965 2966 2967 
5630.2968 2969 2970 2971 2972 2973 2974 2975 

1564012976 2977 2978 2979 2980 2gel 2982 2983 
5650'2984 2985 2986 2987 2988 2989 2990 2991 

15660 !2992 2993 2994 2995 2996 2997 2998 2999
1 .5670 3GOO 3001 3002 3"'~~ IJ""!",,\II "'~"'(" :WOO 300': I vVOJ OJvv"t oJl./v..J 

! ! 

j:l100 j 30Ua 3009 3010 30U 3012 3013 lO14. 3015j 
15710 ,3016 3017 3018 3019 3020 3021 3022 3023 1 
j5720 3024 3025 3026 3027 3028 3029 3030 3031j 
j5730;3032 3033 3034 3035 3036 3037 3038 3039 i 
15740!3040 3041 3042 3043 3044 3045 3046 3047 
I , 

!5750!3048 3049 3050 3051 3052 3053 3054 305S! 
15760,3056 3057 3058 3059 3060 3061 3062 30631 
!577013064 3065 3066 3067 3068 3069 307030711 



APPENDIX A. CONVERSION TABLES (Cont'd) 

Octal-Decimal Integer Conversion Table (Cont'd) 

., I ~1 2 3 4 I v I 0 7 I 3 4 6 2 

6000 3072 3073 3074 3075 3076 3077 3078 3079 
6010 3080 3081 3082 3083 3084 3085 3086 3087 
6020 3088 3089 3090 3091 3092 3093 3094 3095 
6030 3096 3097 3098 3099 3100 3101 3102 3103 
6040 3104 3105 3106 3107 3108 3109 3110 3111 
6050 3112 3113 3114 3115 3116 3117 3118 3119 
6060 3120 3121 3122 3123 3124 3125 3126 3127 
6070 3128 3129 3130 3131 3132 3133 3134 3135 

6400 3328 3329 3330 3331 3332 3333 3334 3335 
6410 3336 3337 3338 3339 3340 3341 3342 3343 
6420 3344 3345 3346 3347 3348 3349 3350 3351 
6430 3352 3353 3354 3355 3356 3357 3358 3359 
6440 3360 3361 3362 3363 3364 3365 3366 3367 
6450 3368 3369 3370 3371 3372 3373 3374 3375 
6460 3376 3377 3378 3379 3380 3381 3382 3383 
6470 3384 3385 3386 3387 3388 3389 3390 3391 

6100 3136 3137 3138 3139 3140 3141 3142 3143 6500 3392 3393 3394 3395 3396 3397 3398 3399 
6110 i 3144 3145 3146 3147 3148 3149 3150 3151 
6120\3152 3153 3154 3155 3156 3157 315~ 3159 
613013160 3161 3162 3163 3164 3165 3166 3167 
6140 3168 3169 3170 3171 3172 3173 3174 3175 
6150 3176 3177 3178 3179 3180 3181 3182 3183 
6160 3184 3185 3186 3187 3188 3189 3190 3191 
6170 3192 3193 3194 3195 3196 3197 3198 3199 

6510 3400 3401 3402 3403 3404 3405 3406 3407 
652013408 3409 3410 3411 3412 3413 3414 3415 
6530 3416 3417 3418 3419 3420 3421 3422 3423 
6540 I 3424 3425 3426 3427 3428 3429 3430 3431 
6550

1

3432 3433 3434 3435 3436 3437 3438 3439 
6560 3440 3441 3442 3443 3444 3445 3446 3447 
6570 \3448 3449 3450 3451 3452 3453 3454 3455 

!6200 3200 3201 3202 3203 3204 3205 3206 3207 
"6210 3208 3209 3210 3211 3212 3213 3214 3215 

6600 1 3456 3457 3458 3459 3460 3461 3462 3463 
6610 3464 3465 3466 3467 3468 3469 3470 3471 

6220 3216 3217 3218 3219 3220 3221 3222 3223 6620 3472 3473 3474 3475 3476 3477 3478 3479 
6230 3224 3225 3226 3227 3228 3229 3230 3231 6630 3480 3481 3482 3483 3484 3485 3486 3487 
6240 3232 3233 3234 3235 3236 3237 3238 3239 6640 3488 3489 3490 3491 3492 3493 3494 3495 

6250 3240 3241 3242 3243 3244 3245 3246 3247 
6260 3248 3249 3250 3251 3252 3253 3254 3255 
6270 3256 3257 3258 3259 3260 3261 3262 3263 

665°1 3496 3497 3498 3499 3500 3501 3502 3503 
6660 3504 3505 3506 3507 3508 3509 3510 3511 
6670 3512 3513 3514 3515 3516 3517 3518 3519 

6300 3264 3265 3266 3267 3268 3269 3270 3271 
6310 3272 3273 3274 3275 3276 3277 3278 3279 
6320 3280 3281 3282 3283 3284 3285 3286 3287 
6330 3288 3289 3290 3291 3292 3293 3294 3295 
6340 3296 3297 3298 3299 3300 3301 3302 3303 
6350

1

3304 3305 3306 3307 3308 3309 3310 3311 
6360 3312 3313 3314 3315 3316 3317 3318 3319 
6370 3320 3321 3322 3323 3324 3325 3326 3327 

6700 3520 3521 3522 3523 3524 3525 3526 3527 
6710 3528 3529 3530 3531 3532 3533 3534 3535 
6720 3536 3537 3538 3539 3540 3541 3542 3543 
6730 3544 3545 3546 3547 3548 3549 3550 3551 
6740 3552 3553 3554 3555 3556 3557 3558 3559 
6750 3560 3561 3562 3563 3564 3565 3566 3567 
6760 3568 3569 3570 3571 3572 3573 3574 3575 
6770 3576 3577 3578 3579 3580 3581 3582 3583 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

7000 3584 3585 3586 3587 3588 3589 3590 3591 

7010 3592 3593 3594 3595 3596 3597 3598 3599 

7020 3600 3601 3602 3603 3604 3605 3606 3607 

7030 3608 3609 3610 3611 3612 3613 3614 3615 

7040 3616 3617 3618 3619 3620 3621 3622 3623 

7050 3624 3625 3626 3627 3628 3629 3630 3631 

7060 3632 3633 3634 3635 3636 3637 3638 3639 

7070 3640 3641 3642 3643 3{i44 3645 3646 3647 

7400 3840 3841 3842 3843 3844 3845 3846 3847 
7410 3848 3.849 3850 3851 3852 3853 3854 3855 
7420 3856 3857 3858 3859 3860 3861 3862 3863 
7430 3864 3865 3866 3867 3868 3869 3270 3871 
7440 3872 3873 3874 3875 3876 3877 3878 3879 
7450 3880 3881 3882 3883 3884 3885 3886 3887 
7460 3888 3889 3890 3891 3892 3893 3894 3895 
7470 3896 3897 3898 3899 3900 3901 3902 3903 

7100 3648 3649 3650 3651 3652 3653 3654 3655 
7110 3656 3657 3658 3659 3660 3661 3662 3663 
7120 3664 3665 3666 3667 3668 3669 3670 3671 
7130 3672 3673 3674 3675 3676 3677 3678 3679 
7140 3680 3681 3682 3683 3684 3685 3686 3687 

7150 3688 3689 3690 3691 3692 3693 3694 3695 

7160 3696 3697 3698 3699 3700 3701 3702 3703 

7170 3704 3705 3706 3707 3708 3709 3710 3711 

7500 3904 3905 3906 3907 3908 3909 3910 3911 
7510 3912 3913 3914 3915 3916 3917 3918 3919 
7520 3920 3921 3922 3923 3924 3925 3926 3927 
7530 3928 3929 3930 3931 3932 3933 3934 3935 
7540 3936 3937 3938 3939 3940 3941 3942 3943 
7550 3944 3945 3946 3947 3948 3949 3950 3951 
7560 3952 395,3 3954 3955 3956 3957 3958 3959 
7570 3960 3961 3962 3963 3964 3965 3966 3967 

7200 3712 3713 3714 3715 3716 3717 3718 3719 
7210 3720 3721 3722 3723 3724 3725 3726 3727 
7220 3728 31129 3730 3731 3732 3733 3734 3735 
7230 3736 3737 3738 3139 3740 3741 3742 3743 
7240 3744 3745 3746 3741 3748 3749 3750 3751 
7250 3752 3753 3754 3755 3756 3757 3758 3759 
7260 3750 3761 3762 3763 3764 3765 3766 3767 
7270 3168 3769 3770 3771 3772 3773 3774 3775 

7600 3968 3969 3970 3971 3972 3973 3974 3975 
7610 3976 3977 3978 3979 3980 3981 3982 3983 
7620 3984 39tr5 3986 3987 "3988 3989 3990 3991 
7630 3992 3993 3994 3995 3996 3997 3998 3999 
7640 4000 4001 4002 4003 4004 4005 4006 4007 
7650 4008 4009 4010 4011 4012 4013 4014 4015 
7660 4016 4017 4018 4019 4020 4021 1022 4023 
7670 4024 4025 4026 4027 4028 4029 4030 4031 

7300 3776 3777 3778 3779 3780 3781 3782 3783 
7310 3784 3785 3786 3787 3788 3789 3790 3791 
7320 3792 3793 3794 3795 3796 3797 3798 3799 
7330 :!800 3801 3802 3803 3804 3805 3806 3807 
7340 3808 3809 3810 3811 3812 3813 3814 3815 
7350 3816 3817 3818 3819 3820 3821 3822 3823 
7360 3824 3825 3826 3827 3828 3829 3830 3831 

7700 4032 4033 4034 4035 4036 4037 4038 4039 
7710 4040 4041 4042 4043 4044 4045 4046 4047 
7720 4048 4049 4050 4051 4052 4053 4054 4055 
7730 4056 4057 4058 4059 4060 4061 4062 4063 
7740 4064 4065 4066 4067 4068 4069 4070 4071 
7750 4072 4073 4074 4075 4076 4077 4078 4079 
7760 4080 4081 4082 4083 4084 4085 4086 4087 .... . 

17370 1 3832 3833 3834 3835 3836 3837 3838 38391 I 171014088 4089 4090 4091 .. 092 4093 4094 4095, 

A-4 

6000 
to 

6777 
(Octal) 

Octal 

3072 
to 

3583 
{Decimal} 

Decimal 

10000 - 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

7000 
to 

7777 
(Octal) 

3584 
to 

4095 
(Decimal) 



APPENDIX A. CONVERSION TABLES (Cont'd) 

Octal-Decimal Fraction Conversion Table 

I 
I 
f 
I 

OCTAL 

.000 

.001 

.002 

.003 

.004 

.005 

.006 

.007 

.010 

.011 

.012 

.013 

.014 

.015 

.016 

.017 

.020 

.021 

.022 

.023 

.024 

.025 

.026 

.027 

.030 

.031 

.032 

.033_ 

.034 

.035 

.036 

.037 

.040 

.041 

.042 

.043 

.044 

.045 

.046 

.047 

.050 

.051 

.052 

.053 

.054 

.055 

.056 

.057 

.060 

.061 

.062 

.063 

.064 

.065 

.066 

.067 

,070 
.071 
.072 
.073 
.074 
.075 
.076 
.077 

DEC. 

. 000000 

.001953 

.003906 

.005859 

.007812 

.009765 

.011718 

.013671 

.015625 

.017578 

.019531 

.021484 

.023437 

.025390 

.027343 

.029296 

.031250 

.033203 

.035156 

.037109 

.039062 

.041015 

.042968 

.044921 

.046875 

.048828 

.050781 

.052734 

.054687 

.056640 

.058593 

.060546 

.062500 

.064453 

.066406 

.068359 

.070312 

.072265 

.074218 

.076171 

.078125 

.080078 

.082031 

.083984 

.085937 

.087890 

.089843 

.091796 

.093750 

.095703 

.097656 

.099609 

.101562 

.103515 
• 105468 
.107421 

.109375 

.111328 

.113281 

.115234 

.117187 

.119140 

.121093 

.123046 

I 

OCTAL 

.100 

.101 

.102 

.103 

.104 

.105 

.106 

.107 

.110 

.111 

.112 

.113 

.114 

.115 

.116 

.117 

.120 

.121 

.122 

.123 

.124 

.125 

.126 

.127 

.130 

.131 

.132 

.133 

.134 

.135 

.136 

.137 

.140 

.141 

.142 

.143 

.144 

.145 

.146 

.147 

.150 

.151 

.152 

.153 

.154 

.155 

.156 

.157 

.160 

.161 

.162 

.163 

.164 

.165 

.166 

.167 

.170 

.171 

.172 

.173 

.174 

.175 

.176 

.177 

DEC. 

.125000 

.126953 

.128906 

.130859 

.132812 

.134765 

.136718 

.138671 

.140625 

.142578 

.144531 

.146484 

.148437 

.150390 

.152343 

.154296 

.156250 

.158203 

.160156 

.162109 

.164062 

.166015 

.167968 

.169921 

.171875 

.173828 

.175781 

.117734 

.179687 

.181640 

.183593 

.185546 

.187500 

.189453 

.191406 

.193359 

.195312' 

.197265 

.199218 

.201171 

.203125 

.205078 

.207031 

.208984 

.210937 

.212890 

.214843 

.216796 

.218750 

.220703 

.222656 

.224609 

.226562 

.228515 

.230468 

.232421 

.234375 

.236328 

.238281 

.240234 

.242187 

.244140 

.246093 

.248046 

! 

A-5 

OCTAL 

.200 

.201 

.202 

.203 
- .204 

.205 

.206 

.207 

.210 

.211 

.212 

.213 

.214 

.215 

.216 

.217 

.220 

.221 

.222 

.223 

.224 

.225 

.226 

.227 

.230 

.231 

.232 

.233 

.234 

.235 

.236 

.237 

.240 

.241 

.242 

.243 

.244 

.245 

.246 

.247 

.250 

.251 

.252 

.253 

.254 

.255 

.256 

.257 

.260 

.261 

.262 

.263 

.264 

.265 

.266 

.267 

.270 

.2i1 

.272 

.273 

.274 

.275 

.276 

.277 

DEC. 

.250000 

.251953 

.253906 

.255859 

.257812 

.259765 

.261718 

.263671 

.265625 

.267578 

.269531 

.271484 

.273437 

.275390 

.2'(7343 

.279296 

.281250 

.283203 

.285156 

.287109 

.289062 

.291015 

.292968 

.294921 

.296875 

.298828 

.300781 

.302734 

.304687 

.306640 

.308593 

.310546 

.312500 

.314453 

.316406 

.318359 

.320312 

.322265 

.324218 

.326171 

.328125 

.330078 

.332031 

.333984 

.335937 

.337890 

.339843 

.341796 

.343750 

.345703 

.347656 

.349609 

.351562 

.353515 

.355468 

.357421 

.359375 

.361328 

.363281 

.365234 

.367187 

.369140 

.371093 

.373046 

I 

I 
I 
I 
l 
, 
! 

OCTAL 

.300 

.301 

.302 

.303 

.304 

.305 

.306 

.307 

.310 

.311 

.312 

.313 

.314 

.315 

.316 

.317 

'.320 
.321 
.322 
.323 
.324 
.~25 

.326 

.327 

.330 

.331 

.332 

.333 

.334:-

.335 

.336 

.337 

.340 

.341 

.342 

.343 

.344 

.345 

.346 

.347 

.350 

.351 

.352 

.353 

.354 

.-355 

.356 

.357 

.360 

.361 

.362 

.363 

.364 

.365 

.366 

.367 

.370 
"',-"! 

.~, .l 

.372 

.373 

.374 

.375 

.376 

.377 

DEC • 

.375000 

.37G953 

.378906 

.380859 

.382812 

.384765 

.386718 

.388671 

.390625 

.392578 

.394531 

.396484 

.398437 

.400390 

.402343 

.404296 

.406250 

.408203 

.410156 

.412109 

.414062 

.416015 

.417968 

.419921 

.421875 

.423828 

.425781 

.427734 
~4:29687 
.431640 
.433593 
.435546 

.437500 

.439453 

.441406 

.443359 

.445312 

.447265 

.449218 

.451171 

.453125 

.455078 

.457031 

.458984 

.460937 

.462890 

.464843 

.466796 

.468750 

.470703 

.472656 

.474609 

.416562 

.478515 

.460468 

.482421 

.484375 

.486328 
• 4882tn 
.4!W2l4 
.492187 
.494140 
.496093 
.498046 



APPENDIX A. CONVERSION TABLES (Cont'd) 

Octal- Decimal Fraction Conversion Table (Cont'd) 

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC . 

• 000000 .000000 .000100 .000244 .000200 .000488 .000300 .000732 
.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736 
.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740 
.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743 
.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747 
.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751 
.000006 .000022 .000106 .000267 .000206 .000511 .000306 .000755 
.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759 

~ 000010 .000030 ,000110 .000274 .000210 .000518 .000310 .000762 
.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766 
.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770 
.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774 

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778 

.000015 .000049 .000115 .000293 .000215 .000537 .000315 .000782 

.000016 .000053 .000116 .000297 .. 000216 .000541 .000316 .000785 

.000017 • QOO057 .000117 .000301 .000217 .000545 .000317 .000789 

.000020 .000061 .000120 .000305 .000220 .000549 .000320 .00079"3 

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797 

.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801 

.000023 .000072 .000123 .000316 .000223 .000560 .000323 .000805 

.000024 .000076 .000124 .000320 .000224 .000564 .000324 .000808 

.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812 

.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816 

.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820 

.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823 

.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827 

.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831 

.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835 

.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839 

.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843 

.000036 .000114 .000136 .000358 .000236 .000602 .000336 .000846 

.000037 .000118 .000137 .000362 .000237 .000606 .000337 .000850 

.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854 

.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858 

.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862 

.000043 .000133 .000143 .00037T .000243 .000621 .000343 .000865 

.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869 

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .00U873 

.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877 

.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881 

.000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885 

.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888 

.000052 .000160 .000152 .000404 .000252 .000648 .000352 .0(10892 

.000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896 

.000054 .000167 .000154 .000411 .000254 .000656 .000354 .000900 

.000055 .000171 .000155 .000415 .000255 .000659 .000355 .000904 

.000056 .000175 .000156 .000419 .000256 .000663 .000356 .000907 

.000057 .000179 .000157 .000423 .000257 .000667 .000357 .000911 

.000060 .000183 .000160 .000427 .000260 .000671 .000360 .000915 

.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919 

.000062 .000190 .000162 .000434 .000262 .000679 
\ 

.000362 .000923 

.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926 

.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930 

.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934 

.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938 

.000067 .000209 .000167 .000453 .000267 .000698 .000367 .000942 

.000070 .000213 .000170 .000457 .000270 .000701 .000370 .000946 

.000071 .000217 .000171 .000461 .000271 .000705 .000311 .000949 

.000072 .000221 .000172 .000465 .000272 .000709 .000372 .000953 

.000073 .000225 .000173 .000469 .000273 .000113 .000373 .000957 

.000074 .000228 .000174 .000473 .000274 .000717 .000374 .000961 

".000075 .000232 .000175 .000476 .000275 .000720 .000375 .000965 

.000076 .000236 .000176 .000480 .000276 .000724 .000376 .000968 

.000077 .000240 .000177 .000484 .000277 .000728 .000377 .000972 

I I I I 

A-6 



APPENDIX A. CONVERSION TABLES (Cont'd) 

Octal-Decimal Fraction Conversion Table (Cont'd) 

OCTAL DEC. OCTAL DEC. OCTAL DEC • OCTAL DEC. 

• 000400 .000976 .000500 .00.1220. .00.0.60.0. .0.01464 .0.0.070.0 .00.170.8 
.000401 .000980 .000.501 .001224 .000601 .001468 .00070.1 .00.1712 
.000402 .000984 .000502 .001228 .000602 ".00.1472 .000702 .00.1716 
.00.0.403 .000988 .00.0503 .001232 .000603 .001476 .00070.3 .001720 
.000404 .000991 .000504 .001235 .000604 .001480 .000704 .0.01724 
.000405 .000995 .000505 .001239 .000605 .001483 .000705 .00.1728 
.000406 .000999 .000.506 .001243 .000606 .001487 .000706 .001731 
.000407 .001003 .000507 .001247 .000607 .001491 .000707 .001735 

.000410 .001007 .000510 .001251 .000610 .001495 .000710 .001739 

.000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743 

.000412 .001014 .000512 .001258 .000612 .001502 .000712 .0.0.1747 

.000413 .0010.18 .000.513 .00.1262 .000613 .0.0150.6 .00.0713 .0.0.1750. 

.00.0414 .0.010.22 .000.514 .00.1266 .00.0614 .001510 .000714 ,001754 

.000415 .00.1026 .0.0.0.515 .001270 .000.615 .0.01514 .000715 .001758 

.000416 .001029 .000516 .001274 .00.0616 " .001518 .00.0.716 .0.0.1762 

.000417 .001033 .000517 .0.01277 .000.617 .001522 .000717 .001766 

.000420 .001037 .000.520 .00.1281 .000620 .001525 .000720 .001770 

.000421 .001041 .000521 .001285 .000621 .001529 .00.0721 ,001773 

.000422 .001045 .000522 .001289 .000622 .001533 .000722 .001777 

.000423 .001049 .000523 .001293 .000623 000.1537 .000.723 .00.1781 

.000424 .001052 .000524 .001296 .00.0624 .001541 .000724 .001785 
,000425 .001056 .000525 .00.1300 .000625 .001544 .000725 .0017H9 
.000426 .001060 .000526 .00130.4 .0.0.0626 .001548 .000.726 .001792 
.000427 .001064 .00.0527 .0.0130.6 .00.0.627 .0.01552 .0.0.0.727 .001796 

.000430 .001068 ,000530 .001312 .000.630 .001556 .000730 .001800 

.000431 .001071 .000531 .001316 .000631 .001560 .000731 .001804 

.000432 .001075 .000532 .001319 .000632 .001564 .000732 .001808 

.000433 .001079 .000533 .001323 .000633 .001567 .000733 .001811 
-~UUU43"4" - .001083" -.. -000534- -000-13-2-1- -.000634- --..()Ol$'1'l- .... .0.007.3.4- _._001815._ 
.000435 .001087 .000535 .001331 .000635 .0.01575 .000735 .001819 
.000436 .001091 .000536 .001335 .000636 .001579 .000736 .001823 
.000437 ,001094 .000537 ,001338 .000637 .001583 .000737 .001827 

.000440 .001098 .000540 .001342 .000640 .001586 .00.0740 .001831 

.000441 .001102 .000541 .001346 .000641 .001590 .000741 .001834 

.000442 .001106 .000542 .001350 .000642 .001594 .000742 .0.0.1838 

.000443 .001110 .000543 .0'01354 .0.0.0.643 .00.1598 .00.0743 .001842 

.000444 ,001113 ,000544 .001358 .000644 .001602 .000744 .001846 

.000445 .001117 .000545 .001361 .000645 .001605 .000745 .001850 

.000446 .001121 .000546 .001365 .000646 .001609 .000746 .00.1853 

.000447 .001125 .000547 .001369 .000647 .001613 .000747 .001857 

.000450 ,001129 ,000550 .001373 .000650 .001617 .000750 .001861 

.000451 .001132 .000551 .001377 .000651 .001621 .000751 .001865 

.000452 .001136 .000552 .001380 .000652 .001625 .000752 .001869 
,000453 .001140 .000553 .001384 • Q00653 .001628 .000.753 .001873 
.000454 .001144 .000554 .001388 .000654 .001632 ,000754 .001876 
.000455 ,001148 .000555 ,001392 .000655 .001636 .000755 .001880 
.000456 .001152 .000556 ,001396 .000656 .001640 .000756 ,001884 
.000457 .001155 ,000557 ,001399 ,000657 .001644 .000757 .001888 

.000460 .001159 .000560 .001403 .000660 .001647 .000760 ,001892 
,000461 .001163 .000561 ,001407 .000661 .001651 .000761 .001895 
.000462 ,001167 ,000562 .001411 .00.0662 .001655 .000762 .001899 
.000463 .001171 .000563 .001415 .000663 .001659 .000763 .001903 
.000464 .001174 .000564 .001419 .000664 .001663 ,000764 .001907 
,000465 .0011'18 .000565 .001422 .000665 .001667 .000'165 .001911 
.000466 .OOl1@2 .000566 .001426 .000666 .001670 .000766 .001914 
.000467 .001186 .000567 .001430 .000667 .001674 .00076'1 .001918 

I .0004'10 .001190 .000570 .001434 .000670 .001678 .0007'10 • 001922 

I .000471 .0Otl94 .000571 ,OOt43! .OO06'U .001682 .000'111 .001926 
.0004'12 .001197 .000572 .001441 .000672 .001686 .000772 .001930 
000473 001201 000573 001445 000673 001689 000773 001934 . 

I I .000·174 .001205 I .000574 .001449 .000674 .001693 .000174 .tml!3T 
I .000475 .001209 .000575 .001453 .000675 .001697 .000775 .001941 

I 
.000476 .001213 .000576 .001457 .000676 .001701 .000'176 .001945 
.000477 .001216 .0005'17 .001461 .000677 • 001705 .000777 .001949 
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APPENDIX A. CONVERSION TABLES (Cont'd) 

Table of Powers of Two 

tTL 

2 
4 
8 

16 
32 
64 

128 

256 
512 

1 024 
2 048 

4 096 
8 192 

16 384 
32 768 

65 536 
131 072 
262 144 
524 288 

048 576 
2 097 152 
4 194 304 
8 388 608 

16 777 216 
33 554 432 
67 108 864 

134217728 

268 435 456 
536 870 912 

1 073 741 824 
2 147 483 648 

4 294 967 296 
8 589 934 592 

1 7 179 869 184 
34 359 738 368 

68 719 476 736 
137 438 953 472 
274 877 906 944 
549 755 ~13 888 

1 099 511 627 776 
2 199 023 255 552 
4 398 046 511 104 
8 796 093 022 208 

17592186044416 
35 184-372 088832 
70 368 744 177 664 

140 737488 355 328 

281 474 976 710 656 

n 

0 

2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

32 
33 
34 
35 

36 
37 
38 
39 

40 
41 
42 
43 

44 
45 
46 
47 

48 

1.0 
0.5 
0.25 
0.125 

0.062 5 
0.03125 
0.015 625 
0.007 812 5 

0.003 906 25 
o. 001 953 125 
o. 000 976 562 5 
0.000488 28125 

0.000 244 140 625 
0.0001220703125 
0.000 061 035 156 25 
O. 000 030 517 578 125 

0.000 015 258 789 062 5 
0.000 007 629 394 531 25 
0.000003814697 265625 
0.000 001 907 348 632 812 5 

0.000 000 953 674 316 406 25 
0.000 000 476 837 158 203 125 
o. 000 000 238 418 579 101 562 5 
O. 000 000 119 209 289 550 781 25 

0.000 000 059604644775390 625 
0.000 000 029 8023223876953125 
O. 000 000 014 901 161 193 847 656 25 
O. 000 000 007 450 580 596 923 828 125 

0.000 000 003725 290 298 461 914 062 5 
O. 000 000 001 862 645 149 230 957 031 25 
O. 000 000 000 931 322 574 615 478 515 625 
o. 000 000 000 465 661 287 307 739 257 812 5 

0.000 000 000 232830643653869628906 25 
0.000 000 000 116 415 321 826 934 814 453 125 
0.000 000 000 058 207 660 913 467 407 226 562 5 
0.000 000 000 029 103 830 456 733 703 613 281 25 

O. 000 000 000 014 551 915 228 366 851 806 640 625 
O. 000 000 000 007 275 957 614 183 425 903 320 312 5 
o. 000 000 000 003 637 978 807 091 712 951 660 156 25 
0.000 000 000 001 818 989 403 545 856 475 830 078 125 

O. 000 000 000 000 909 494 701 772 928 237 915 039 062 5 
0.000 0':)0 000 00045474735088646411895751953125 
0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 
0.000 000 000 000 113 686 837 721616 029 7393798828125 

O. 000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
O. 000 000 000000 028 421 709 430 404 007 434 844 970 703 125 
0.000 000 000 000 014 210 854 715 202 003 7174224853515625 
0.000 000 000 000 007 105427 357 601 001 858 711 242675 781 25 

O. 000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
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