
KNOWLEDGE-BASED SYSTEMS:
A TUTORIAL

30 JUNE 1977

TM-(L)-5903/000/ 00

KNOWLEDGE-BASED SYSTEMS:
A TUTORIAL

J. A. BARNETT
M. I. BERNSTEIN

30 JUNE 1977

THE WORK REPORTED HEREIN WAS PERFORMED UNDER CONTRACT

MDA 904-76-C-0343 FOR THE MARYLAND PROCUREMENT OFFICE.

TM-(L)-5903/000/ 00

24 August 1977 A
System Development Corporation

TM-(L)-5903/000/00A

author's name

M. I. Bernstein
TM-(L)-5903/000/00, "Knowledge-Based Systems:
A Tutorial," dated 30 June 1977

Syatam Devalapment Carparation
2500 Calarada Avenue• Santa Monica, California 90406

CURRENT MO

ERRATA

Listing is by page number and line. Positive line numbers count from top of
the page, negative_ numbers from the bottom. "X ==: Y" means
"X should read as Y."

2-3 +2

2-10 +2

2-14 -6

2-20 -11

3-5 +9

3-6 +6

3-12 +2

4-1 +8

4-4 -6

4-5 +9

4-6 +l

4-6 +3

4-6 -3

4-6 -2

A-2402 C9/73l

of the vehicle ==: of a vehicle

method or operation ==: method of operation

[NILSSON71] ==: [NILSSON71])

whole line ==: ment institution system which provides interactive
support to

below under the ==:·below with the

set of four special ==: set of special

48 QUESTION 48 ==: QUESTION 48

systems. (KBS). ==: systems (KBS).

a techniqal option ==: a technical option

and plausible ==: and principles of plausible

[FREUD 60 and 55] ==: [FREUD60, 55]

[BARTLETT 32] ==: [BARTLETT32]

[BOBROW 75b and 75c], [BROWN 75b], ==: [BOBROWD75b, 75c],
[BROWN75b],

whole line==: [CHARNIAK75], [COLLINS76], [HAWKINSON75],
[MOOREJ73], [SIROVICH72], and

24 August 1977 B
System Development Corporation

TM-(L)-5903/000/00A

4-6·-l

4-9 +6

4-10 +5

4-10 +12

4-11 +12

4-11 +12

4-11 +13

4-11 +14

4-11 +15

4-11 -9

4-12 +13

4-12 -1

4-16 +4

4-18 -5

4-20 +9

4-20 -6

4-20 -1

4-21 +10

4-21 -8

4-23 +11

4-24 -12

4-25 -2

4-29 -10

[WEISS 61] ==: [WEISS61]

form which ==: from which

intelligent perfromance ==: intelligent performance

to product acceptable ==: to produce acceptable

[SHORTLIFFE 76] ==: [SHORTLIFFE76]

[ZADEH 75, ==: (ZADEH75,

74, and 65] and [GOGUEN 68]. ==: 74, 65] and [GOGUEN68].

[CARNAP 50], [HEMPEL 4 5] , and [HARRE 70]. == :
[CARNAP50], [HEMPEL45], and [HARRE70].

[TVERSKY 72] and [LUCE 65]. Also see [TORNEBOHM 66]
[TVERSKY72] and [LUCE65], Also see [TORNEBOHM66]

The first data ==·: the fir.st, data

procedural,* ==: procedural*,

[WINOGRAD 75] ==: [WINOGRAD75]

not "how ==: not "How

end state ==: end state

power,* ==: power*,

--.

"pot empty," "satisfied," and "thirsty." ==: "pot empty",
"satisfied", and "thirsty".

[FISHER 70] ==: [FISHER70]

a.nd user to ==: and used to

"A." ==: "A".

[MINSKY 67] ==: [MINSKY67]

effective program ==: effective procedure

. · temperatur~, because ==: temperature because

· if a human =: if human

24 August 1977

4-31 +8

4-31 +9

4-31 +12

4-36

4-37 -6

4-39 +l

4-40 +4

4-41 -5

4-44 -11

4-45 +10

4-45 -2

4-45 -1

4-46 -2

4-48 +6

4-48 +8

4-49 +2

4-49 +3

4-49 +4

4-51 -=-5

4-51 -3

4-51 -2

4-53 +5

c

[BOBROW'75d] ==: [BOBROWD75d]

[BOBROW73] ==: [BOBROWD73]

[R. MOORE75] ==: [MOORER75]

add at bottom of page
(:a:y)X;:,...(('fy) (""X))

System Development Corporation
TM-(L)-5903/000/00A

predicate calculate ==: predicate calculus

[P. KLAHR77] =: [KLAHRP77]

(4) (vx3) (x4) ==: (4) (¥x3)(vx4)

the box is x3 ==: the box if x3

At such ==: As such

and W in ==: and ,...W in

[P. KLAHR77 ==: [KLAHRP77,

and 75], ==: 75],

7 to 12, ==: 7 to 12, and

insert new lines
best match--Execute the rule whose LHS is the best match
to the workspace.

[Post 36] ==: [POST36]

#$1#$2==> ==: #$1#$2#==>

#l$1#$2#$3==>#$1#$2#$2#$3# ==: #l$1#$2#$3#==>#$1#$2#$2$3#

##$1#$2==> ==: ##$1#$2#==>

I el ==: I al

I e2 ==: t a2

exp [(* A (* B c))] ==: exp [(+ A (* B c))]

service manager ==: service representative

24 August 197'7

4-55 +11

4-55 -13

4-58 +10

4-60 +10

4-61 -10

4-62 -10

4-65 -6

4-65 -5

4-65 -3

4-65 -1

4-66 +l

4-66 +2

4-66 +3

4,.66 +4

4-66 +5

4-67 -1

4-68

4-69 +4

4-69 :..10

4-72 +4

4-72 +6

4-73 +7

D

service manager (SvrM) ==:

System Development Corporation
TM-(L)-5903/000/00A

service representative (SrvR)

service manager ==: service representative

rules' derived conditions. ==: rules, "derived conditions".

charge. This is an ==: charge, an

discussion in showing ==: discussion by showing

and procedures to ==: and programs to

whole line ==: [CHOMSKY63], [DAVIS76, 75], [GALLER70],
[HEDRICK76, 74], [McDERMOTTJ76a,

wholeline ==: 76b], [MINSKY67], [MOOREJ73], [NEWELL76a],
[POST43, 36], and [VERE77].

[WATERMAN75, 74 and 70] ==: [WATERMAN75, 74, 70]

[DAVIS77 and 76), and [SHORTLIFFE76, 75a, 75b, and 73] ==:
[DAVIS77, 76], and [SHORTLIFFE76, 75a, 75b, 73]

72, and 69] ==: 72, 69]

[MARTIN75] ==: [STEFIK77]

[ANDERSON76a and 76b] ==: [ANDERSON76a, 76b]

[RYCHENER76 ==: [RYCHENER76,

and 75J. ==: 75].

in the figure. ==: in the figure--the arrows connect the
relation's arguments in their order of occurrence.

DOG ---1_ BOWSER ==: DOG ISA ._ BOWSER

CAT3 ==: CAT

WFFS == : WFFs

MARY's ==: MARY'S

BOB's ==: BOB'S

[MYLOPAULOS75a and 75b] ==: [MYLOPAULOS75a, 75b]

24 August 1977

4-76 -8

4-78 +11

4-78 -3

4-78 -2

4-79 +10

4-84 +8

4-86 +4

4-89 -3

4-90 +3

4-95 -11

4-95 -6

4-95 -5

4-95 -3

4-95 -1

4-96 -12

4-97 -5

4-98 +2

4-104 +3

4-104 -6

4-105 +11

4-107 -4

4-109 -6

4-110 +11

E

System Development Corporation
TM-(L)-5903/000/00A

lines. A general ==: lines: a general

can become more ==: can be incorporated into one that is more

[DBOBROW77a, 7Tb, and 75c] ==: [BOBROWD77a, 77b, 75c]

(GOLDSTEIN76] ==: [GOLDSTEIN76]

[KAHN 75] ==: [KAHN75]

more knowledge ==: more independent knowledge

[ERMAN 75] ==: [ERMAN75]

performed are the ==: performed is the

[NILSSON 71] ==: [NILSSON71]

[HEWITT 72] ==: [HEWITT72]

4.1.2.1 ==: 4.1.2.6

[BOBROW 77a] ==: [BOBROWD77a]

[WOODS 75] ==: [WOODS75]

whole line ==: described in: [B.ARNETT75a], .[BERNSTEIN76],
[MOOREJ73] and [WOODS76].

[J. MOORE 73] ==: [MOOREJ73]

finding it. ==: finding it though the.se two costs are often
related.

some weaken ==: some weakened

system backs up ==: system could back up

graph was ==: graphs were

[P. KLAHR77] ==: [KLAHRP77]

if either ==: if either function

has been proved ==: has been proven

f < old f ==: ~ < old ~

24 August 1977

4-110 +12

4-110 +14

4..:113 +10

4-113 +13

4-114 +7

4-116 +9

4-117 -2

4-122 -11

4-122 -3

4-123 +6

4-123 +6

4-123 -12

4-125 -12

4-127 -6

. 1+-12'(-3

4-130 -14

4-132 +7

4-132 -6

4-134 +2

4-134. +4

5-1 +3

F

. h /\ . /j_ f wit new f ==: f with new r

f ==: ~

System Development CoI'l'oration
TM-(L)-5903/000/00A

[NILSSON71 and 69] ==: [NILSSON71, 69]

an entity. ==: a domain.

of the entity ==: of the domain

statistical technique. ==: stochastic technique, e.g., Monte
Carlo.

[BOBROW75b] ==: [BOBROWD75b]

about x?" ==: about X?"

[Weizenbaum 66] ==: . [WEIZENBAUM66]

''Mary ' " == : "Mary" '

[WOODS73 and 70] ==: [WOODS73, 70]

network) help ==: network) to help

becaise ==: because

complaint depart ==: complaint department

he employe, ==: he employs,

[MALHOTRA76,75a and 75b] ==: [MALHOTRA76, 75a, 75b]

true or systems ==: true of systems

[McDEBMOTT74] ==: [McDEBMOTTD74b]

[JMOORE74] ==: [MOOREJ74]

where it is ==: where it is in common use and the techniques are
commonly understood. And, though there is a fair body of
literature on a variety of topics related to KBS technology,
there is

24 August 1977

5-2 +4

5-2 +5

5-2 -5

5-3 +9

5-9 -1

5-13 +10

5-14 +10

5-14 +16

7-2 +14

7-2 +15

7-5 -8

7-5 -5

8-16 +2

A-1 -13

A-3 -9

A-25 +15

G
System Development Corporation

TM-(L)-5903/000/00A

technology. On the ==: technology, 1.lllless

other hand, the ==: the

whole line --. assure cooperation early in the planning process.

Meta-DENDRAL ==: META-DENDRAL

to implement. ==: to implement, though more difficult to modify.

aggregates, such ==: aggregates such

user's ==: users'

user's ==: users'

[MINSKY75] --. [MINSKY75])

(KRL) [BOBROWD77b]. ==: (KRL [BOBROWD77b]).

Meta-DENDRAL ==: META-DENDRAL

Meta-DENDRAL ==: META-DENDRAL

Understanding systems, ==: Understanding understanding systems,

[KLAHRD75] ==: [KLAHRD74]

[BOBROWD77a]. ==: [BOBROWD77a]).

Meta-DENDRAL ==: META-DENDRAL

30 June 1977 i
System Development Corporation

TM-5903/000/00

1. INTRODUCTION
2. KNOWLEDGE-BASED SYSTEMS .

2.1 A HYPOTHETICAL KBS
2.2 GENERAL CONCEPTS .

TABLE OF CONTENTS

2. 2. l The ·Knowledge Base.
2.2.2 Separation of KBS Elements

2.3 THE COGNITIVE ENGINE .
2.4 THE KNOWLEDGE BASE .
2. 5 THE INTERFACE.
2.6 SUMMARY

3. A KBS CASE STUDY. . . . •
3.1 THE PROBLEM DOMAIN AND THE USERS.
3.2 MYCIN'S KNOWLEDGE BASE
3.3 MYCIN'S COGNITIVE ENGINE
3.4 MYCIN'S EXPLANATIONS
3.5 MYCIN'S INTERFACES
3.6 DESIGN CONSIDERATIONS FOR MYCIN ·
3. 7 SUMMARY . • . . • • . . • •

4. TECHNIQUES USED TO CONSTRUCT KBS
4.1 KNOWLEDGE REPRESENTATION

4.1.l Characteristics and Terminology of Knowledge

1-1
2-1
2-2
2-6
2-10
2-11
2-14
2-16
2-20
2-22
3-1
3-2
3-4
3-7
3-11
3-13
3-15
3-17
4-1
4-5

Sources 4-7
4. l . 2 Methods of Representing KS 4-18
4.1.3 Comparison of Knowledge Representation

Techniques and Issues 4-79
4.2 WORKSPACE REPRESENTATION 4-85

4.2.l The CMU Blackborad 4-86
4.2.2 Move Graphs 4-90
4.2.3 KS Format and Special Methods 4-95

4.3 THE COGNITIVE ENGINE 4-96
4.3.1 Terminology, Measurements, and Characterizations

of the CE 4-97
4. 3. 2 Methods of Implementing the CE • . . . 4-106
4.3.3 CE Issues • 4-118

30 June 1977 ; i
System Development Corporation

TM-5903/000/00

TABLE OF CONTENTS
(Continued)

4.4 THE INTERFACE
4.4.l The User Interface
4.4.2 The Expert Interface and Knowledge

Acquisition . • .
5. APPLICATION CONSIDERATIONS . . .

5. 1 INITIAL CONSIDERATIONS ...
5. 2 TECHNOLOGY CONSIDERATIONS .
5.3 ENVIRONMENTAL CONSIDERATIONS
5.4 SUMMARY

6. CONCLUSIONS AND RECOMMENDATIONS
7. ANNOTATED BIBLIOGRAPHY.
8. BIBLIOGRAPHY

APPENDICES

4-120
4-121

4-130
5-1
5-2
5-7
5-12
5-14
6-1

7-1
8-1

APPENDIX A: A TAXONOMY OF KNOWLEDGE AND COGNITIVE SKILLS A-1
APPENDIX B: CURRENT WORK IN KNOWLEDGE-BASED SYSTEMS

AND RELATED AREAS. B-1

•

30 June 1977 iii
System Development Corporation

TM-5903/000/00

LIST OF FIGURES

Figure

2-1 KBS Elements and Their Relationship
4-1 Restrictions on Choices of KBS Methodologies
4-2 Knowledge Representation Fonns
4-3 Finite-State Machine Representation of a Plan to

Make and Drink a Pot of Coffee
4-4 Finite State Recognizers for (AB)* (ABAC)* D
4-5 Procedural Knowledge Example ..
4-6 Proof that Jack Lives in Boston
4-7 The Monkey and Bananas Problem
4-8 Control Mechanism for Production Systems
4-9 Use of Production Rules to Multiply
4-10 Use of Production Rules to Translate .. .
4-11 Production Rules for Automotive System KS .
4-12 Data Gathering Procedure Fact File
4-13 Exa~ple Flow in Auto Diagnostic System
4-14 Back Chaining
4-15 Fragment of Graph Structure .
4-16 Fragment of Graph Structure .
4-17 Facets of Production Systems.
4-18 Example Semantic Network ...
4-19 Example Frame Definitions ..
4-20 Inexact Match by a Frame System .

Pa'e

2-8
4-3
4-8

4-19
4-22

4-26
4-40
4-42

4-47
4-49
4-51
4-54
4-56
4-57
4-59
4-61
4-62
4-63

4-68
4-75
4-77

4-21 Comparison of Knowledge Representation Techniques . 4-80
4-22 Hearsay II levels of Representation and Knowledge

Sources (from [ERMAN 75]) 4-87
4-23 Blackboard Example. . . . 4-88
4-24 Game Tree f(J)r Tic-Tac-Toe
4-25 Example AND/OR Graph

4-91
4-93

30 June 1977

Figure

iv

LI ST 0 F FI GU RES
(Continued)

4-26 Example Move Graph and Balanced Tree ...
4-27 Chaining Examples
4-28 Depth-First Back Chaining .. .
4-29 Search with Evaluation Function
4-30 A* Search Algorithm
4-31 Alpha-Beta Pruning Example .. .
4-32 Modeling and Simulation Example
4-33 Transition Network Example
4-34 Knowledge Acquisition

APPENDIX A
Al. Outline of the Taxonomy of Knowledge and

Cognitive Skills

LIST OF TABLES

Table

System Development Corporation
TM-5903/000/00

Page

4-100
4-103
4-105
4-108
4-110
4-112
4-115
4-124
4-131

A-2

4.1 ORIGINS OF KBS TECHNIQUES. 4-2

30 June 1977

1. INTRODUCTION

1-1
System Development Corporation

TM-5903/000/00

KNOWLEDGE-BASED SYSTEMS: A TUTORIAL

This report surveys recent and current work in interactive knowledge-based
systems (KBS), defining and explaining KBS concepts and technology. Our pur
pose is to give those who may be interested in the application of such systems
a means of assessing their present potential use. We explore both the capa
bilities and the limitations of KBS technology as they are observable and
predictable in existing systems, and we provide references and a bibliog~aphy
that wi 11 permit those who want to further exp 1 ore the topic on their own.

Section 2 describes a hypothetical KBS application and defines KBS techniques
as they are understood and implemented in existing systems. Section 3 contains
a case study of MYCIN, which is, we believe, the best representative of KBS
technology. In Section 4, we describe in detail and at length the techniques
that are used to build KB systems, and in Section 5, we examine the applica
bility of existing and emerging KBS techniques and discuss what we believe are
boundary conditions and limitations. Finally, we offer our conclusions and
recommendations on how to best apply KBS technology and we suggest some direc
tions for future KBS research. The annotated bibliography should provid~
readers with adequate references to the body of KBS literature. Two appendices
are included, as well: one is our adaptation of a taxonomy of knowledge and
cognitive skills [BLOOM56], and the other is a compilation of the current KBS
research and development projects that sets forth the institution, the prin
cipal investigator, and a short description of each project.

30 June 1977

2. KNmlLEDGE-BASED SYSTEMS

2-1
System Development Corporation

TM-5903/000/00

It is necessary to distinguish, at the outset, between knowledge-based systems
and other computer-based systems that contain or incorporate knowledge. Almost
all computer programs and systems contain knowledge of at least two kinds:
knowledge about things and knowledge about what to do with things--that is, how
to manipulate or transform them. But we define a knowledge-based system as one
in which knowledge is collected in one or more compartments (called knowledge
sources) and is of the kind that facilitates problem solving (reasoning) in a
single, well-defined problem domain. Problems are solved by applying the kind
of reasoning that is used by a practitioner in the domain in which the KBS is
applied. Unlike generalized problem-solving systems, knowledge-based systems
must accumulate large amounts of knowledge in specific domains and rely on
domain-specific problem-solving techniques that can be developed to a high leve
of expertise [DAVIS77].

In considering systems for inclusion in (or exclusion from) the category of
11 knowledge-based 11 systems, we have imposed some conditions that exclude systems
that others have identified as being knowledge based. We have specifically
excluded systems that are research prototypes that were not and are not inten
ded to be put to productive use. Many of the systems that we consider to be
outside the KBS domain, as we have defined it, do, however, embody technology
that is incorporated in the KB systems we do include; in a sense, then, they
are included, if only indirectly. None of the speech-understanding systems
developed under the sponsorship of the Defense Advanced Research Projects
Agency are included, for example, yet much of the technology they embody is
incorporated in systems we do include, such as MOLGEN [STEFIK77]. This is a
conservative approach, and if it errs, it errs in the proper direction, if only
because it does not raise unwarranted expectations. We have made no attempt to
define knowledge in other than operational (or utilitarian) terms. Readers
who are interested in pursuing the philosophical aspects of the definitions of
knowledge should consult Appendix A, which is a modificatfon and summarization
of [BLOOM56].

June 1977

2. 1 A HYPOTHETICAL KBS

2-2
Systems Development Corporation

TM-5903/000/00

The following is a brief description and example of a simple, hypothetical KBS
application that illustrates most of the capabilities of KB systems. The appli
cation is one that should be familiar to most readers and would be feasible to
build, although no such system presently exists.

The hypothetical system is an automotive service consultant whose primary pur
pose is to help ensure the best service at the least cost for automobiles
brought to a service agency or garage. The system is to be used both by the
service representative, who is the primary interface between the customers and
the establishment, and by the mechanics who work on the cars. Though it func
tions as a simple data management system in routine circumstances, its value
lies in its ability to diagnose subtle problems from symptoms and problems
presented by the customer (to the service representative) or by the mechanic
when he discovers a non-routine problem in performing service and repair. Its
benefit is that it ensures a uniformly high level of service to customers and
requires of mechanics only that they have good mechanical skills, but not
necessarily good diagnostic skills, and of service representatives that they be
able to listen carefully to customers' complaints. Both customers and the
service agency benefit, because unnecessary repairs are eliminated and it is
highly likely that what has been done corrects the problem the first time.
Although the reasoning skills required by such a KB system are relatively
simple, the amount of knowledge required (exclusive of the normal data base)
is large because of the number and variety of automotive subsystems involved
and the high degree 1f their interdependence.

The data base of the system would contain a description of each car serviced at
the agency. The description would contain the configuration of the vehicle's
engine, running gear, and optional and special equipment, as well as the year
of manufacture, model, color, service history, and other pertinent data.

30 June 1977 2-3
Sys tern Deve 1. opment Corporation

TM-5903/000/00

The system would contain two basic kinds of knowledge: (1) generic knowledge
about the major elements of the vehicle (such as its cooling, ignition, and
fuel systems) and (2) knowledge about the model and its specific options.
Diagnostic knowledge would be necessary to relate symptoms to causes and to
relate specific knowledge to generic knowledge. For instance, poor engine per
formance could result from mechanical problems (valves, rings) or from related
systems (cooling, ignition, or carburetion).

The intent of the system is to recommend (1) the least expensive tests (where a
specific remedy is not obvious) that will produce the greatest amount of spe
cific information about the cause of the problem, and (2) the least expensive
repairs for the problem. The system could also recommend the best post-repair
testing to verify that the problem has been removed. The system would explain
its recommendations or conclusions if asked.

The following is a hypothetical scenario of such a system in operation. The
users are the service representative and the mechanic(s) performing the test
and repair work. The user language is a stylized English designed to convey a
maximum amount of information between the user and the system with a minimum
amount of effort.

System: Tuesday, May 3, 1977, 08:32:44
Service rep: Next customer
System: Enter owner's name or vehicle ID number
Service rep: 1743 HBAQ 8197
System: Owner is S.B. Franklin, car is 1974 Ford Gran Torino 4-dr sedan
with 351-2V engine, A/C, P/S, P/B and CA smog controls. Last service -
April 4, 1977 at 28,412 mi R&R water pump and lower radiator hose, what
is present mileage?
Service rep: 29285

30 June 1977 2-4
System Development Corporation

TM-5903/000/00

System: Please inform owner that the following regular maintenance
services are due:
l. Change oil and filter - last changed on Jan 13, 1977 at 24,842 mi.
May we be of other service?
Service rep: Battery not keeping charge, barely able to start car this a.m.
System: Any other symptoms or problems?
Service rep: No
System: Check belt tension on alternator - most likely cause.
Service rep: Why?
System: Last service required removal of fan and belts, very likely that
tension was not properly set on reinstallation.
Service rep: More (meaning more things to be checked or tested)
System: Check fluid level in battery - next most likely cause -
overcharged battery. If level is low, check alternator output and
voltage regulator.
Service rep: Replace battery?
System: No, battery is 6 mos old and should take recharge.
Service rep: Thank you. (Signal to system that session is ended for now)

·--- .

System: Car assigned number 287 in control system. First test to be
performed by J. K. Uzzi in Bay 17.

After the car is moved to the mechanic's work area and the prescribed
tests are performed, the following interchange takes place between the
mechanic and the system:
Mechanic: JKU, 17, 287 (indicating mechanic, bay, and car being serviced)
System: 1974 C>an Torino, test results please.
Mechanic: Belt tension OK, battery level OK, charge low, alternator, VR
output OK. Problem not found.
System: Test for above-normal current flow with ignition off. (Mechanic
attaches ammeter and takes reading.)
Mechanic: Reading above normal

30 June 1977 2-5
System Development Corporation

TM-5903/000/00

System: Check for faulty switch in hood light, trunk light, and
courtesy lights.
Mechanic finds faulty switch in trunk light such that light never turns
off.
Mechanic: Faulty trunk light switch R&R. Current reading normal.

What specific knowledge must such a system incorporate in order to diagnose an
suggest remedies? First, the knowledge must come from experts who have
acquired and demonstrated diagnostic skills that are better than random selec
tion. For the system to have suggested checking the belt tension of the alter
nator, it would have to know that the earlier removal of the belt could be
related to the present problem, that the severity of the problem would depend
on how poorly the tension was adjusted, and that one month and about 900 miles
before appearance of symptoms (battery failure) is not unreasonable. Since it
is a highly probable cause and the easiest to test, it ranks as the first sug-

-- . - -·-··--·--··------ ---··-·. ·-· ·--

gesti on. By requesting more information, the service representative can tell
the owner what else may be required and what will not likely be required, such
as a new battery.

The successful KB systems of today function in essentially this manner but in
the more esoteric fields of medicine, chemistry, biochemistry, and the like.
Functionally, they do not do more, though they solve more difficult problems,
in the sense that the reasoning chains may be longer. The knowledge, however,
is of a similar variety, and the interactive discourse has the same flavor of
naturalness and civility.

30 June 1977

2.2 GENERAL CONCEPTS

2-6
System Development Corporation

TM-5903/000/00·

A knowledge-based system is one that supports practitioners in a specific
knowledge domain by incorporating the knowledge acquired from experts in that
domain and applying it, in combination with certain reasoning skills, to the
solution of problems posed by the practitioners. In other words, a KBS func
tions as an intelligent assistant--a substitute for the expert human consultant
who may be needed but unavailable. A KBS may produce solutions or explanations
that are more thorough than those produced by a human expert, and may produce
them more rapidly; however, one should not assume that the KBS is inherently
better than the human. The human has imagination and the capacity for inno~
vation, which even the most expert KBS does not.

There are two kinds of knowledge-based systems: those called diagnostic (or
problem-solving) and those called pedagogic. The diagnostic systems are
designed to help their users solve problems in specific areas; the pedagogic
systems are designed to convey information about specific topics. The two have
much in common, both structurally and technologically. (The problem-solving
KBS may, of course, teach its users [SHORTLIFFE76], but that is not its
primary function.) The distinction is in the users, who are either prac
titioners or students. A pedagogical system is likely to have less expert
knowledge about an area but considerable knowledge about how an understanding
of the content of that area is best taught; a diagnostic system may contain a :
large collection of knowledge acquired from experts in an area (and may edu
cate users by repeatedly exposing them to this knowledge and to the reasoning
that goes with it}, i)ut is not designed primarily to assist a human's learning

* process.

*The user of a diagnostic or problem-solving KBS must be an experienced, know
ledgeable practitioner in the field for which the KBS is designed, since only
someone knowledgeable in the area of application can guide the diagnosis and
understand the relevance or limitations of the results. MYCIN, for example,
is intended for the doctor, not for the patient (assuming that the patient is
not a doctor).

30 June 1977 2-7
System Development Corporation

TM-5903/000/00

A KBS is composed of three components or modules: (1) an interface, (2) a
cognitive engine, and (3) a knowledge base (see Figure 2.1). (These labels are
not used uniformly in the KBS literature, but they do refer to components that
perform similar functions.) The knowledge base--the passive element in the
system--contains the knowledge sources and fact files. The existence of a
knowledge source is a necessary condition. The knowledge source contains the
11 experti se 11 --for example, the knowledge of the cause-and-effect rel ati onshi ps
or methods and procedures specific to the knowledge domain. The fact files,
if present, contain other relevant facts and data.

The cognitive engine drives the system. It performs the system 1 s problem
solving (inference-making or reasoning) operations. It applies the knowledge
in the knowledge sources and uses the fact files in the knowledge base to

answer questions or solve the problem posed by the user.

The interface provides interactive communication between the user and the sys
tem. It allows for the acquisition of data in a variety of forms--a real-time
s i gna 1, a file of observations, data provided by the user, etc. , and for the
addition or modification of knowledge in the knowledge base.

A KBS acts as a special-purpose 11 intelligent agent 11 on behalf or at the behest
of its user; it is not a general-purpose problem solver. It provides sup

portive knowledge in a well-defined, clearly bounded problem domain. As the
user 1 s agent, it must be invoked by the user, and the user must know when, why,
and how to invoke it. No present-day KBS is intended for use by a casual,
inexpert user. This is a qualitative discrimination that we make, and it is an
important one.

Parenthetically, there are a few systems that are referred to by their devel
opers as being knowledge based but are not invoked by a user, and do not carry
on any dialog with a user, but respond to the occurrence of data input Trom an
external source. Thus though a user is the individual recipient of the system

Computer System l

Knowledge-Based System •

c User! ~ t-. Interface! Cognitive.
Engine i

Language Knowledge
(Da1~i)-..._ Control

...._
Facility ~ ... -

& Use

Data i Knowledge i
Expert!)"

~ Acquisition I ~cquisition
(& Control ,

Explanation I

Figure 2-1. KBS Elements and Their Relationship

Knowledge·
Base I

Knowledge\
Source(s)

Fact I
Files 1

w
0

c....
s:::::
~
ro

l.O
"'-.!
"'-.!

N
I

00

(/)

'<
(/)

rt
ro
3

0
ro
< ro __.
0

"C
3
Cl)

-I~
3:rt
I

(.Tl(""')

l.00
0 -s
W"C
-0
0-S
0 !lJ
Oc-t__..
00 o:::s

30 June 1977 2-9
System Development Corporation

TM-5903/000/00

results, he is a passive rather than an active participant in the problem
solving process. We have not included these systems in this report, but we do
not thereby exclude them from consideration as knowledge-based systems.

The Cognitive Engine (CE) provides the central control of the KBS. Th~ CE 1 s
principal function is to carry out the plausible reasoning and inference-making
that are the heart of the system 1 s problem-solving ability. How the CE does
this affects both the power and the performance of the system, but is not the
sole determinant. A KBS 1 s ability to solve a particular problem depends on
(1) how many paths there are to a solution, (2) the ability of the Cognitive
Engine to reduce the number of paths to a minimum, (3) the knowledge in the
Knowledge Base, and (4) what information is available within the problem state
ment. Therefore, although the Cognitive Engine is in command and acts as the
driving element, the path to a solution, and the criteria for when to accept a
solution or abort a particular path or the entire effort are highly dependent 01

the content of the KB and the problem data. The strategies for how to attack a
problem and the heuristics of how best to carry on the process are part of the
knowledge contained in the CE, and, while these include criteria for selecting
from among alternative paths at any point, the CE does not contain sufficient
knowledge to determine a priori when an acceptable solution has been found or
when the effort should be aborted. These considerations are part of the
knowledge in the KB concerning the goal for the problem and the related know
ledge about what constitutes a reasonable effort. In this respect, a KBS
differs from most systems in that there is no guarantee that a solution exists
or, if one exists, that it will be found. In conventional systems, the failure
to find a solution or generate an answer implies an error in the data, the
problem formulation, or the system itself.

To qualify as a KBS, a system should possess the potential for explaining its
actions and reasoning processes with respect to an interaction with the user
or to a solution it produces. This is another function of the Cognitive Engine
(This means not that every KBS can actually explain its behavior to its users,

30 June 1977 2-10
System Development Corporation

TM-5903/000/0p

but that the functions necessary to do so can be added without changing the
method or operation of the KBS.) Explanations are given in terms of the con
~ent of the Knowledge Base, the problem data, and prior interactions with the
LlSer and are related only to past activity; the system cannot explain how it
might deal with a hypothetical case or how it will continue in solving a
present problem.

The explanation will not indicate why and how the CE took the actions it took;
it will indicate only the results of those actions in terms of the Knowledge
Base, problem data, and user responses. Even so, the explanation may at times
be rich enough for the user to infer what search and inference mechanisms the
CE used.

The CE must also provide the mechanisms that facilitate the acquisition of new
knowledge, the modification of existing knowledge, and the expunging of erron
eous or useless knowledge--all of which are done in cooperation with an expert.
A KBS does not generally permit its users to make permanent additions or
changes to the Knowledge Base.

In summary, the CE is the controlling, active element of the KBS that directs
the problem-solving activities, explains the system's behavior to its users upon
request, and manages the Knowledge Base.

2.2. l The Knowledge Base
' The Knowledge Base (KB) of a KBS must, like the Cognitive Engine, be a well-

organized, readily identifiable element of the system. Ideally, it should con
tain all of the knowledge necessary for the KBS to perform as an expert agent.:
In most present-day KBS systems, some of the knowledge resides in the Cognitive
Engine (usually for reasons of efficiency), but the trend is away from this
division of the knowledge. The KB will contain such knowledge as stipulation~

I

of the existence or non-existences of certain things, simple equivalence
relationships, relationships between the concrete and the abstract, knowledge·

30 June 1977 2-11
System Development Corporation

TM-5903/000/00

of conventions about the domain, methods of the domain, etc.--in other words,
the breadth of knowledge acquired by one who has become expert in solving prob
lems in the domain for which the KBS is designed.

As we have noted earlier, the knowledge in the KB of a pedagogic KBS differs
from that in the KB of a diagnostic KBS in two ways: (1) the knowledge of the
subject being taught need not be as great, and (2) the knowledge about how to
teach is quite rich. Since the intent of a pedagogic KBS is the education of
its user, it will not solve problems that would be useful or interesting to
workers in the domain. It is the KB, therefore, that determines the overall
power of a KBS and its usefulness to its users. This is not true of the know
ledge incorporated in the CE, because the user has little cognizance of that
knowledge. The CE must be an adequate problem-solving mechanism, but it is the
knowledge in the KB that determines the breadth, depth, and overall domain of
applicability of the KBS. Regardless of its knowledge and power, the CE cannot
find solutions to problems for which the KB does not contain adequate knowledge
on the other hand, a CE with only weak inference methods may find solutions,
albeit inefficiently, if the KB is rich enough.

2.2.2 Separation of KBS Elements

The separation of the elements of a KBS is a necessary condition for including
a system in that category, since it permits the changing of the domain of
applicability by extending, expanding, or substituting another KB independently
of the CE. There are several examples of this. EMYCIN* (for Empty MYCIN) is
the CE of MYCIN, to which several different KBs have been experimentally
attached for solving different classes of problems. Kellogg's Deductive
Processor (DP) [KELLOGG??] is an independent CE to which may be attached
various KBs related to specific data-management systems and data bases to pro
vide facilities for extracting implicit information from the explicit facts
contained in the data bases. Despite these examples, however, there exists no

* Private corrmunication.

30 June 1977 2-12
System Development Corporation

TM-5903/000/00

general theory of CEs, and, therefore, no general theory of knowledge-based
systems complete enough to permit the facility of substituting a KB from a
different domain as a means of creating a new KBS for that domain. That is,
while the CE and KB are separate, they are not completely independent of one
another.

None of the systems we have studied can modify the content of its CE or KB as
a result of having solved a problem. In other words, they do not learn or
adapt from experience or examples, even though such a capability would be
desirable. A present-day KBS can acquire additional knowledge for permanent
incorporation only from expert informants, but even this only at the initiative
of its users or informants.

KBS technology arose out of artificial-intelligence (AI) research and is just
beginning to attain a separate identity of its own, which may account for some
of the confusion about what is and what is not a KBS. KBS technology is
rapidly evolving into an engineering~Jike discipline. A KBS must meet specific
structural and organizational specifications. From one point of view, it must
incorporate many of the concepts embodied in "software engineering 11 -

specifical ly, the concept that function~ be readily identifiable and incor
porated in modules that can retain their unique identity within the integrated
whole. Thus, when we say that a KBS' must have a CE or a KB, we mean that the
functions they provide or the needs they satisfy can be uniquely associated
with the modules that implement them, and that the modules associated with one
function or need are distinct from those associated with another. This is
necessary in the cas2 of a KBS for a number of important reasons. First, the
state of the technologies needed for constructing KBS is not so thoroughly
understood that all of the correct design decisions can be made prior to
implementation and testing. Independence of the various components and
modules (as much as can at least realistically be achieved) makes change and
modification easier at least up to the point where fundamental design decisions
require change (such as the technique selected for representing knowledge).

30 June 1977 2-13
System Development Corporation

TM-5903/000/00

Of equal consideration is the fact that most KB systems are and will be
evolving systems. They will grow and change over time, as does most software,
but in somewhat unique ways. A KBS will be expected by its users to acquire
additional knowledge over time as experts gain deeper understanding in the
domain and as the need and utility to its users grow and change. This kind
of evolution cannot be accomplished in a system that is tightly bound together
as a monolithic software structure. This implies that it is not possible to
determine by external observation of a system's behavior alone whether or not
it qualifies as a KBS as we define the area. One must also examine the internal
structure for the existence of specific and separable functions or components.

In summary, then, to qualify as a KBS, a system must:.

(1) be externally invoked by an expert or student in the domain of
applicability;

(2) have an identifiable CE that reasons plausibly using the KB and
whose solution path is controlled by the content of the KB and
problem data;

(3) have the potential for explaining its behavior;

(4) have an identifiable KB that contains expert domain-specific
knowledge (this is the most critical aspect of a KBS); and

(5) be organized and structured so that its KB can be expanded and
extended and the system's performance improved.

30 June 1977

2.3 THE COGNITIVE ENGINE

2-14
System Development Corporation

TM-5903/000/00

The Cognitive Engine (CE) combines and organizes the contents of the KB in
inference or search structures in order to perform plausible or common-sense
reasoning about the domain as it applies to the problem posed by the user. The
intent of the CE is to focus the effort as narrowly as possible on the problem
(or subproblem) at hand. In order for the CE to solve problems using search
techniques (or 11 heuristic 11 search techniques, as they are most frequently
referred to), it is necessary that there exist a generator for the hypotheses
from which the solution can be constructed (e.g., DENDRAL, [BUCHANAN73]).
Solutions in domains for which no such generator is possible must be found by
applying inferential or deductive processes over the knowledge of the KSs
(e.g., MYCIN, [SHORTLIFFE76]).

The knowledge contained in the CE may be general or meta-knowledge about how to
reason (infer or search) as well as domain-specific problem-solving knowledge.
The ultimate decision about what kind and what level of knowledge to incorporate
in the CE depends on the intent of the system and the complexity of the domain,
as well as on considerations about performance, efficiency, growth, and so on.

The depth to which the system will pursue a solution is determined primarily by
the content of the KB; it is not a unilateral decision incorporated in the CE.
This raises two issues: (1) whether the system will always find an answer or
solution if one exists (this is called completeness [NILSSON71] and (2) whether
the system will find the 11 best 11 answer or solution from the set of legitimate
ones (this is called admissibility [NILSSON71]). The combination of knowledge
in the CE and in the KB determines whether or not a particular KBS satisfies
the completeness and admissibility criteria. This will be discussed in more
detail in Section 4.

30 June 1977 2-15
System Development Corporation

TM-5903/000/00

Through some existing KBSs can explain their lines of reasoning to the users and
others cannot, it is a necessary condition, as we have said, that a KBS be
capable of accommodating this requirement. The addition of an explanation com
ponent must not require that the KBS be redesigned and reimplemented. An
explanation is based on the interaction of the CE with the content of the KB.
The explanation need not (and probably cannot) include the knowledge that is
embedded in the CE, since it is usually not preserved in the solution method
and is deeply buried in the system, but may include information acquired from
interaction with the user. Despite the fact that the CE's behavior is not
incorporated in the explanation, that explanation should be understood by the
user because of the knowledge about the domain that the system and the user have
in common. (This is another reason why the user should be a worker or student i
the domain.) f1ost KBSs provide the facility for exploring the explanation to
various levels of detail.

30 June 1977 2-16

2.4 THE KNOWLEDGE BASE

System Development Corporation
TM-5903/000/00

'

As we have said, the Knowledge Base (KB} is a passive element of the KBS. Though
passive, the KB determines the performance and utility of the KBS, because the
CE depends on the knowledge in the KB. In this section, we describe the char
acteristics of the KB that are common to all of the KB systems we have studied.
They do not necessarily represent the necessary and/or sufficient conditions
for a KB.

The KB of a KBS may contain both Knowledge Sources (KSs) and fact files. At
lea~t one KS is mandatory; whether fact files are necessary depends on the
domain. The fact files that are contained in a KB are equivalent to a data
base in that they contain attribute values and the equivalent type of informa
tion that may be required for the complete solution or result. A collection
of fact files without a Knowledge Source, as we have defined it, is not a KB.
Therefore, a system in which all of the expert domain knowledge is embedded in
the CE would not, by our definition, qualify as a KBS. A Management Informa
tion System constructed from a conventional data-management system and a col-.
lection of sophisticated application programs that provides its users with
decision-making aids, trend analyses, etc., is not a KBS.

A KS contains what we have been calling knowledge. Whether a KBS has a single
or multiple KSs results from system design decisions that are both philosophi
cal and practical. Multiple KSs are usually necessary when there are multiple
11 levels 11 of knowledge, such as problem-specific knowledge and knowledge (often
called Meta-knowledge) about how the CE can best use the problem-specific
knowledge. Since the two kinds of knowledge are used for different purposes,
it is reasonable to keep th~m in different KSs. It is also often true that
more than one kind of problem-specific knowledge is acquired from different
experts and that there is no efficient single method for representing all of
th€ knowledge. Since different representations are needed, separation into
separate KSs is logical.

30 June 1977 2-17
System Development Corporation

TM-5903/000/00

A KB often contains an indication of the certainty, veracity, or credibility of
its representation of knowledge. MYCIN [SHORTLIFFE76] attaches Certainty Factor
(CFs) to each item of knowledge it contains, and its CE has a means of combining
these CFs to arrive at a certainty value for a conclusion. We have observed no
fact files in existing KBSs that contain the equivalent of CFs or other measures
of their veracity, but we see no reason why the concept cannot be readily,
applied to them. It is this property of being able to cope with less than cer
tain knowledge that imbues a KBS with its power and ability to reason
plausibly.

We cannot stress too strongly that the expert, domain-specific knowledge in the
KSs must not only represent the body of theory about the domain, it must also
contain knowledge of how to apply the theory to a given problem or class of
problems. This is the kind of knowledge that a person learns from working in
the domain and attaining the appellation 11 expert. 11 For a variety of reasons-
efficiency of representation among them--knowledge of how to apply the theory is
often incorporated in the CE rather than in a KS.

The knowledge of the KSs in the systems we have examined is of the following
types (although the knowledge in no system included all types):

(1) Methods for specifying cause-effect relationships, implications, or
inferences, using production rules, predicate-calculus expressions,
or other logical representations, depending on the richness of the
relationship to be represented.

(2) Plans of action for how one would achieve an end result in the world
external to the model that the system represents. For instance; such
a procedure may describe how to transform one chemical compound into
another for a chemical-synthesis system, or how to purify an inter
mediate compound. Or it may stipulate the usual logical steps in
solving a problem of a particular class or type. It is the equivalent

30 June 1977 2-18
System Development Corporation

TM-5903/000/00

of the instructions that come with a do-it-yourself kit or
unassembled toy or device, in that the user's intent, skill, and some
fundamental understanding of content are assumed.

(3) Declaratives that identify objects within the modeled domain and dis
tinguish them from objects that are not within the domain. These
declaratives may describe properties of objects, relationships among
objects, definitions of terms or constructs, schemata that identify
the legal relationships or transformations applicable to the domain,
or first-level abstractions, such as class or set memberships for
the elements of the domain.

(4) Meta-properties, which are a higher level of abstraction about·the·
domain and the solution space and methods. They are not always
embodied in a KS but may be incorporated in the CE, which makes them
less readily identifiable. They take the form of meta-rules--that is,
rules about using the knowledge in 1, 2, and 3 above. They provide
means for determining and assuring the consistency, coherency, and
reliability of intermediate results and steps as well as the final
solution and answers. They may also restrict the solution space in
various ways (such as pruning.and ordering a 11 move 11 tree) that
markedly improves the efficiency of the system.

(5) Advice (sometimes called heuristics) that is similar to meta-properties
in intent, but that does not carry the same strength of influence.
Advice may be a hint to the CE as to what knowledge is best to use
next or how to escape from a possible blind alley or what is the most
likely transformation that will yield a useful result. This is the
"soft" knowledge that experts acquire from experience in working in
the domain and is rarely contained in textbooks and papers. It often
consists largely of intuition and has little scientific or theoretical

30 June 1977 2-19
System Development Corporation

TM-5903/000/00

support, but is highly valuable because it is frequently the knowledg~
that gives the system (and the expert) good performance.

There are a variety of techniques that have been used to represent KSs with
these characteristics. They will be described in detail in Section 4 below.

30 June 1977

2.5 THE INTERFACE

2-20
System Development CorporatioD

TM-5903/000/00

The interface is the communication port between the system and the external
world. As such, it provides three functions: (1) interaction with the user
(i.e., accepting input and returning results, explanations, or other output,
often in English or a stylized natural language of the domain), (2) addition of
knowledge to the KB by a domain expert, and (3) acquisition by the KB of prob
lem data (e.g., real-time signals, a file of observations, user-provided data}.
The interface must logically exist, but its actual realization may make it
difficult to identify it as a separate element because of the breadth of func
tion it embodies. Some of its functions may be contained in the CE or be pro
vided by the computer-system environment within which the KBS functions, or
both. The three interfaces, when examined individually, have the following
properties and underlying rationale, and perform the following functions:

(1) The User Interface should accommodate the jargon or a lexicon
specific to the domain of the KBS and may permit a 11 natural 11

language. It provides the necessary facilities for the user as a
poser of problems and a consumer of results (answers, solutions,
termination, explanation, or whatever). It is not the port through
which expert knowledge is entered into the system, nor is it intended
to support casual, inexpert users. A KBS is analogous to an invest
ment institution in which an interactive system provides support for
investment managers. The expert knowledge for such a system is pro
vided by the 11 back-room11 analysts (who also may be users). The users
are brokers and portfolio managers; such a system is not available to
to the clients of the institution, and would not be particularly
useful to them if it were, for a variety of reasons: their lack of
fundamental knowledge of local jargon, house rules, government
regulations, trading procedures, etc. A system designed for clients
would be a different one if it were even feasible, and then one would
have to differentiate between the sophisticated or knowledgeable
clients and the casual ones.

30 June 1977 2-21
System Development Corporation

TM-5903/000/00

(2) The Knowledge-Acquisition (Expert) Interface is used by a domain
expert (who has gained some feeling for, if not an understanding of,
the computer-science aspects of the system) as the provider of
knowledge for the KSs. In some systems, the user is able to provide
additional temporary knowledge or advice to the KSs through this
interface [KELLOGG77]. Still other systems may acquire their knowl
edge through a quite different mechanism, such as that of Meta
DENDRAL, which is a system that creates the KSs for DENDRAL from
observed results of spectrographic experiments. In this case, no
human agent is directly involved in providing the knowledge to the
KSs of DENDRAL, so the interface must accommodate input of machine
generated knowledge. Associated with the Knowledge-Acquisition Inter·
face is some means of verifying the incoming knowledge, sometimes
limited to syntax checking, but often including tests for coherence
and consistency with prior knowledge both in the KSs and the CE
[SHORTLIFFE76]. It is possible that the Knowledge-Acquisition
Interface and the User Interface use some system components in com
mon, such as the language processor, but they are considered logicallJ
separate. It is not usual that the CE 1 s knowledge can be supplied,
modified, or added to through the Knowledge Acquisition Interface.

(3) The Data Interface is more conventional than the other two. It is
similar to that of most other interactive computer systems, in that
it incorporates (1) facilities for user input of parameters and data
and responses to the system's queries; (2) the mechanism for locating
and accessing data sets, files, or data bases; and (3) a capability
for accessing real-time (or quasi-real-time) data streams. The Data
Interface of each KBS need provide for only those data sources ,that
are meaningful or necessary to its operation. Many of the functions
necessary to provide the Data Interface may be drawn directly from
the computer-system environment within which the KBS functions.

30 June 1977

2.6 SUMMARY

2-22
System Development Corporation

TM-5903/000/00

A KBS can, in summary, be said to be a problem-solving or pedagogic agent for
its user(s). To qualify as a KBS, a system must have: (1) a Cognitive Engine
that reasons plausibly within the domain of application, can accommodate a
mechanism for explaining the system's problem-solving behavior, and supports
the acquisition of new knowledge; (2) a Knowledge Base that contains the
Knowledge Sources and Fact Files needed to solve problems; and (3) interfaces
through which user queries, problem data, and expert knowledge can be com
municated to the system.

30 June 1977

3. A KBS CASE STUDY

3-1
System Development Corporation

TM-5903/000/00

This section--an examination of an actual knowledge-based system, MYCIN--is
presented with two purposes in mind. The first is to provide a more detailed
view of KBS technology by examining a specific system as it relates to our
definition. The second is to encompass other related aspects of KBS technolog}
that are covered in more general terms in the later sections. MYCIN, a medi
cal consultation system, was chosen for several reasons. Most improtantly,
there exists sufficient documentation about the system to perform such a
study--namely, a book and related papers [SHORTLIFFE76, 75a, 75b, 73; DAVIS77, 7
MYCIN, in our opinion, is also the best representative system of the present
state of KBS technology. Last, but not least, it appears to have exerted sig
nificant influence on other computer scientists involved in KBS technology
development and applications. It should be noted that this study of MYCIN is
based on the content of the available literature; we have not observed the sys•
tem in use or examined the program itself. Since this section only summarizes
the system for our specific purposes here, we encourage those interested in
more detail to read Shortliffe 1 s book [SHORTLIFFE76].

30 June 1977

3. 1 THE PROBLEM DOMAIN AND THE USERS

3-2
System Development Corporation

TM-5903/000/00

Before examining MYCIN's elements, we must first understand something about
the problem domain and the intended user community. Simply stated, MYCIN is
a knowledge-based interactive computer system intended to provide advice to
physicians on prescribing antimicrobial therapy for bacterial infections. The
present version is limited to providing advice about bacterial infections of
the blood (bacteremia); the intent is to gradually broaden the system into
other infectious-disease topics. As one would imagine, the problem of ther-
apy selection and recommendation for an infectious disease is difficult and
complex. Even when restricted to bacteremia, the problem of therapy selection
poses many problems. The first is to determine whether or not the infection is
serious enough to warrant treatment. It is to no one's benefit, economically or
physically, to prescribe unnecessary drugs or other treatment, though it has been
observed to happen far too frequently. If it is determined that treatment is
warranted, there is no panacea for infectious diseases. Therefore, one should
know what organism is causing the infection, but that itself is not a simple
problem. One must obtain a specimen of the infection for culturing, analysis,
and identification by a laboratory. This is a time consuming process. It
takes from 12 to 24 hours to determine whether there is an organism and make a
preliminary identification of its general characteristics. Another 24 to 48
hours are required to obtain specific identification, and possibly even more
time to determine which specific antimicrobial drug is most effective in
either counteracting the organism or arresting its growth. In many cases, the
infection is serious enough that treatment must be begun before all of the
analysis can be com~1eted. Therefore, any recommended therapy must be based
on incomplete information. To further complicate matters, the most effective
drug against the suspected or identified organism may be totally inappropriate
for the specific patient because of age or medical conditions and problems.
Thus, any system or consulting physician must be aware of all of these complex
ities if proper advice is to be rendered in each specific case. MYCIN has
been designed to cope with just such complexities and interrelationships among
the many variables and to provide a physician with advice that is proper for
each individual patient.

30 June 1977 3-3
System Development Corporation

TM-5903/000/00

Though the problem is quite complex, the domain is well bounded. MYCIN need
not have knowledge about medicine in general, or any of the many medical
specialities that have no bearing on infectious diseases. It does require
specific knowledge that relates to local experience with various infectious
organisms in terms of resistance of known strains to specific drugs, which
varies from locale to locale. It does not need general knowledge about the
theory of infectious disease, but it must have knowledge of symptoms related
to specific infections. We will explore below in more detail the specific
kinds of knowledge incorporated in MYCIN.

MYCIN is intended to be used by physicians. The dialogue that it carries on
with the user is in the jargon of medicine and specifically that of infectious
diseases, laboratory procedures, infectious organisms, drugs, etc. Thus, a
user is expected to be a competent medical practitioner.

30 June 1977

3.2 MYCIN'S KNOWLEDGE BASE

3-4
System Development Corporation

TM-5903/000/00

MYCIN's knowledge base (KB) contains several knowledge sources--decision rules
(or production rules), clinical parameters, special functions, and procedures
for therapy selection. We will briefly describe the content and purpose of
each and indicate the method of representation for each. Detailed descriptions
of these and other representational techniques are contained in Section 4.

The primary knowledge source in MYCIN is the collection of decision, production,
or situation-action (SA) rules. Most of the other knowledge in the system
relates to the use or evaluation of the rules. Each rule consists of a
Premise, which may be a condition or a conjunction of conditions, an Action
to be taken, and sometimes an Else clause. For the action to be taken, each
of the conditions in the Premise must hold. If the truth of the Premise can
not be ascertained or the Premise is false, the action in the Else clause is
taken if one exists; otherwise, the rule is ignored. In addition, the strength
of each rule 1 s inference is specified by a certainity factor (CF) in the range
-1 to +l. (CF's will be discussed below under the topic of the cognitive
engine.) Each rule in MYCIN falls into one and only one of the following
categories:

(1) rules that may be applied to any culture,

(2) rules that may only be applied to current cultures,

(3) rules that may be applied to current organisms,

(4) rules that may be applied to any antimicrobial agent administered to
combat a ~pecific organism,

(5) rules that may be applied to operative procedures,

(6) rules that are used to order the list of possible therapeutic
recommendations,

(7) rules that may be applied to any organism,

(8) rules that may be applied to the patient,

30 June 1977 3-5
System Development Corporation

TM-5903/000/00

(9) rules that may be applied to drugs given to combat prior organisms,

(10) rules that may be applied only to prior cultures,

(11) rules that may be applied only to organisms isolated in prior culture

(12) rules that store information regarding drugs of choice.

One can readily infer from these categories both the scope of MYCIN's know
ledge embodied in rules and the intent of that knowledge. Each one of these
categories is in turn related to one (or at most two) of the ten "contexts"
with which MYCIN must deal in its reasoning processes. The ten contexts and
the creation of the system's context tree will be discussed below under the
cognitive engine.

The system also contains a collection of clinical parameters, represented as
<attribute, object, value> triples. These clinical parameters specify the
characteristics of the various contexts that appear in the context tree. The
parameters are of three fundamentally different kinds: single-valued, multi
valued, and binary (a special case of single-valued with only two possible
values, yes or no). These clinical parameters fall into six categories:
(1) attributes of cultures, (2) attributes of administered drugs, (3)
attributes of operative procedures, (4) attributes of organisms, (5) attri
butes of the patient, and (6) attributes of therapies being considered for
recommendation. Each of the parameters has a certainty factor reflecting the
system's "belief" that the value is correct and an associated set of proper
ties that is used during consideration of the parameter for a given context.
These properties specify such things as the range of expected values a prop
erty may have, the sentence to transmit to the user when requesting data from
him, the list of rules whose Premise references the parameter, the list of
rules whose Action or Else clause permits a conclusion to be made regarding
the parameter, etc. Only those properties that are relevant to each parameter
are associated with it. However, properly specifying how the parameter is to
be represented in English is mandatory for all.

30 June 1977 3-6
System Development Corporation

TM-5903/000/00

Additional information is contained in simple lists that simplify references
tJ variables and optimize knowledge storage by avoiding unnecessary duplication.
~ese lists contain such things as the names of organisms known to the system

and the names of normally sterile and non-sterile sites from which organisms
are isolated.

In conjunction with a set of four special functions, MYCIN uses knowledge
tables to permit a single rule to accomplish a task that would otherwise
require several rules. The knowledge tables contain a record of certain
clinical parameters and the values they may take on under various circumstances.
One such table contains the gramstain, morphology, and aerobicity for every
bacterial genus known to the system.

This constitutes the majority of MYCIN's knowledge base, which permits the
system to comprehend the nature of an infection without complete information
about the organism involved and provide the physician with proper advice
regarding treatment under the circumstances. This organization and structure,
along with the way the knowledge is used, facilitates the system's ability to
explain its actions and advice.

There is one knowledge source in MYCIN that is not represented by any of the
above, but is implemented as a set of functions. This is the knowledge
required for choosing the apparent first-choice drug to be recommended.
Because of the manner in which this knowledge is incorporated in the system,
its ability to explcin how the selection was made is inadequate. Ways for
representing this kr1 i.vledge as decision rules are being studied at this time.

30 June 1977

3.3 MYCIN'S COGNITIVE ENGINE

3-7
System Development Corporation

TM-5903/000/00

The following description of MYCIN's cognitive engine is somewhat simplified,
but it retains the essential flavor. MYCIN's cognitive engine is domain
independent in the sense that none of the knowledge required to provide advice
about bacteremia is embedded in it. Thus, additional rules concerning infec
tious disease may readily be added, or a new knowledge base could be substi
tuted to provide therapeutic advice about a different domain of infections.
It is possible that this CE could be applied to domains completely outside
medicine, and it is said that this has been done. But it does not follow
that MYCIN's CE is universal enough to be usable in any knowledge-based system.

The task that MYCIN performs, under the control of its CE, can be characterized
as a four-stage decision process:

(1) decide which organisms, if any, are causing significant disease;

(2) determine the likely identity of the significant organisms;

(3) decide which drugs are potentially useful,

(4) select the best drug or drugs.

A consultation session between a physician and MYCIN results from a simple two
step procedure:

(1) Create the patient "context" as the top node in the context tree.

(2) Attempt to apply the 11 goal-rule 11 to the newly created patient context.

The "goal-rule" is one of the rules from the category of those that may be
applied to the patient (as described above), and states:

If there is an organism that requires therapy and
consideration has been given to the possible existence of additional
organisms requiring therapy, even though they have not been recovered
from any current cultures,

3-8

then do the following:

System Development Corporation
TM-5903/000/00

Compile a list of possible therapies which, based upon
sensitivity data, may be effective against the organisms -
requiring treatment and
determine the best therapy recorrmended from the complied-list;

otherwise, indicate that the patient does not require therapy.

This rule obviously embodies the tasks of the four-stage decision process
given above.

The two components or programs that constitute MYCIN's CE are called MONITOR
and FINDOUT. MONITOR's function is to determine whether the conditions stated
in the Premise of a rule are true. To do so, it considers each condition of
the Premise at hand, first determining whether it has all of the necessary
information to make the determination. If it requires ·information, it calls -

:- f!INDOUT to:0btain what is needed. FINOOUT first detenriines whether the needed
information is laboratory data. If it is, it asks the physician for it. If
the physician cannot provide it, FINDOUT retrieves the· list of rules that may
aid in deducing the information and calls MONITOR to evaluate the rules.
When the process completes, control is returned to MONITOR. If the information
needed is not laboratory data, FINOOUT retrieves the list of rules that may aid
in deducing the needed information and calls MONITOR to evaluate the rules. If
the deductive process of applying the rules (backward from a goal to the data
or information needed) cannot provide the needed information, the physi-cian is
asked to provide it. In either case, control is returned to MONITOR. Given
the information that is provided by FINDOUT or that was already available, -
MONITOR determines whether the entire Premise is true. If-it is not, and
there is no Else clause, the rule is rejected. If the Premise is true or the
Else clause is invoked, the conclusion stated in the Action of the rule or in
the Else clause is added to the ongoing record of the consultation, and the
process completes. Note that there is a recursive relationship between
MONITOR and FINDOUT, such that so long as any information is needed to

30 June 1977 3-9
System Development Corporation

TM-5903/000/00

evaluate a Premise, or rules are required to develop the needed information,
the two components are in a recursively dependent and oscillating relationship
until the very first rule invoked, the 11 goal-rule 11 , is satisfied. In the
process of evaluating the rules, a great deal of related and necessary infor
mation and data are developed and retained in various tables and structures in
the workspace. They serve two purposes: (1) they prevent wasted effort that
would be required to redevelop information that has already been obtained, and
to prevent the system from endlessly chasing its tail; and (2) they provide
the necessary history required for the explanations that may be requested by
the user.

In addition to having certainty factors (Cfs) for the rules and the clinical
parameters in the knowledge base, the physician, when asked for either labora
tory data or other information that the system itself cannot deduce, may
attach a CF to his input. The default, if the physician does not provide a CF,
is assumed to be +l. The certainty factors are the key to permitting MYCIN to
perform inexact reasoning. The rationale, mathematics, and application are
thoroughly treated in [SHORTLIFFE76] and we will provide only the barest sketch
here.

A certainty factor (CF) is a number between -1 and +1 that reflects the degree
of belief in a hypothesis. Positive CFs indicate that there is evidence that
the hypothesis is valid; the larger the CF, the greater the degree of belief.
A CF=l indicates that the hypothesis is known to be correct. A negative CF
indicates that the hypothesis is invalid; CF=-1 means that the hypothesis has

been effectively disproven. A CF=O means either that there is no evidence
regarding the hypothesis or that the evidence is equally balanced. The hypothe·
ses in the system are statements regarding values of clinical parameters for thE
nodes in the context tree. To properly perform, MYCIN must deal with competing
hypotheses regarding the value of its clinical parameters. To do so, it stores
the list of competing values and their CFs for each node in the context tree.
Positive and negative CFs are accumulated separately as measures of belief (MB)

30 June 1977 3-10
System Development Corporation

TM-5903/000/00

and measures of disbelief (MD) and added to form a resultant CF for a clinical
parameter. The CF of a conclusion is the product of the CF of the rule that
gen~rated the conclusion and the tally of the CFs of the clinical parameters
that were used in substantiating the conclusion. When a second rule supports
the same conclusion, the CFs are combined by z=x+y(l-x), where xis the CF of
the ~irst supporting rule, y is the CF of the succeeding rule and z is the
resultant CF for the conclusion. The CFs permit the system to report findings
to the physician with varying degrees of certainty such as, "There is strongly
suggestive evidence that •.• , 11 "There is suggestive evidence that ... ," "There is
weakly suggestive evidence that •.• , 11 etc.

The context tree has been mentioned several times above. A brief explanation
of it is in order here. The topmost node in the tree is always the patient.
Branches are added successively to the existing nodes as FINDOUT discovers a
need for them in attempting to obtain requested information for MONITOR. Thus,
given only the patient, when MONITOR requests information from FINDOUT about
organisms in order to evaluate the first condition in the Premise of the
goal-rule, FINDOUT discovers that it cannot get organism information without
having information about cultures. Thus, context(s) concerning culture(s)
is spawned from the patient node, from which eventually are spawned contexts
for the organisms identified by the cultures. For those organisms deemed
significant, links attach to context nodes about the relevant drugs for treat
ing these organisms. Thus, the context tree is tailored for each patient as
the system progresses through its reasoning process.

MYCIN's cognitive en~ine is relatively simply yet quite powerful in that it
performs both efficiently and quite effectively in conjunction with the know-
1 edge base in providing advice on bacteremia as judged by an independent panel
of physicians (among whom, it was noted, there was some disagreement on what
the proper therapy should be in each of the cases discussed).

30 June 1977 3-11
System Development Corporation

TM-5903/000/00

3.4 MYCIN'S EXPLANATIONS

One of the primary design consideration taken in MYCIN was the requirement that
the system be able to explain its decisions if physicians were going to accept
it. Selecting rules as the representation of the system's knowledge greatly
facilitated the implementation of this capability. The physician using the
system enters the explanation subsystem automatically when the consultation
phase is completed, or he may enter it upon demand during the consultation
session at any point at which the system requests input from him. In the latte
case, he can input "WHY" to request a detailed answer about the question just
asked of him or he can input 11 QA 11 to enter the general question-answering expla
nation subsystem to explore the decisions and other aspects of the consultation
up to the point of divergence.

The explanation provides several options to the physician. Since the system
automatically (having rendered its advice) enters this mode at the end of the
consultation, the physician may simply input "STOP", which terminates the
system. He may input "HELP", which provides him with the list of explanation
options, which include:

EQ

PR

IQ

no prefix

Option

Explain a specific question asked of the physician
during the consultation--each has a sequence number,
which must accompany the EQ request.

Requests a particular rule be printed and must be
followed by the rule number.

Is a prefix for a question about information
aquired by the system during the consultation.
The question is phrased in the limited English that
MYCIN can handle.

A general question is assumed being asked about the
content of MYCIN's rules.

30 June 1977 3-12
System Development Corporation

TM-5903/000/00

Thus, the physician can ask to have Question 48 explained by inputting 11 EQ48 11 •

To which the system would respond: 48 QUESTION 48 WAS ASKED IN ORDER TO FIND
OUT THE PATIENT'S DEGREE OF SICKNESS (ON A SCALE OF 4) IN AN EFFORT TO EXECUTE
RULE068. He may then optionally input 11 PR68 11 or "WHAT IS RULE068 11 to see what
exactly was being sought and why.

One shortcoming of the explanation system is the requirement of prefixing
questions related to information acquired by the system by 11 IQ 11 to distinguish
them from the general questions about the rules. Both are dealt with by MYCIN 1 s

. simple language processor (chosen as a compromise between the need for efficient
computation to minimize response time and expressive power in posing questions).
It is unclear, particularly to the novice user, when the prefix is needed. The
designers are exploring ways of dispensing with the requirement.

On balance, the present explanation system (enhancements are being planned)
strikes a proper balance between the needs of the users and the ability to
meet those needs without unduly compl icati·ri9·-·the--s.YStem .. or ov·e-rbu-rcienin9-the -·:

available computing resources.

30 June 1977

3.5 MYCIN'S INTERFACES

3-13
System Developing Corporation

TM-5903/000/00

The present system incorporates two interfaces. One is for the using physician
through which he may answer questions posed by the system and ask questions of
it; the other is a knowledge-acquisition interface accessible only to experts
recognized as such by the system.

All of the questions asked of the user have been carefully designed not to
require the language-understanding component. Thus, instead of asking, "What
is the infectious disease diagnosis for the patient?" it asks, "Is there
evidence that the patient has a meningitis?" To which only a simple "yes" or
"no" (with the possible addition of a CF) is required.

The knowledge-acquisition interface, on the other hand, permits the expert to
input a new rule in stylized English, with prompting to obtain the rule in the
proper sequence: Premise first, condition by condition, followed by the Action
and then an Else clause if one is required. The system then translates the
rule into internal form, reordering the conditions of the Premise if necessary,
according to a set of criteria developed to improve the rule-evaluation process
It then retranslates the rule into English and requests tha!_~_he expert ~_e_cide

whether the rewritten version was the one intended. If not, the expert may
modify selected parts and is not required to restate the entire rule unless
there has been a gross misunderstanding.

The same mechanism is used when an expert wants to correct or modify an exist
ing rule. In all cases, when a new or corrected rule has been approved by the
expert, the system checks to see whether the rule is consistent with the exist
ing rule set. These consistency checks are not as complete as they might be.
If the new or modified rule subsumes or is subsumed by an existing rule, it
is not readily discoverable, and no test is made for this condition. If a
rule is discovered to be in conflict with an existing rule, it is rejected.
(The designers believe that it may be possible to accommodate these confficts
by storing conflicting rules separately and asking the user--if the situation

30 June 1977 3-14
System Development CorporatioD

TM-5903/000/00

arises--which of the two rules was about to be invoked, that is, which expert's
opinion is favored. Once a rule is accepted, all of the tables and properties
that need to refer to it are updated, since, in converting the rule to internal
form, the system determined which category it belonged in and which context it

related to.

The user and expert interfaces appear to have been well thought through and
provide a useful and civil interface to the appropriate user within the
limitation imposed by the present state of the art. The designers realize
that more can be done as technology develops and are actively pursuing those
ends.

30 June 1977

3.6 DESIGN CONSIDERATIONS FOR MYCIN

3-15
System Development Corporation

TM-5903/Q00/00

Before the actual design of the specifics of the system were undertaken,
several conditions were satisfied. It was first established that there was a
need for such a system (and an inference that, if such a system came into beins
it would be accepted by the intended users). The need was verified by observa
tion of the present state of medicine in its application of antimicrobials to
infectious diseases. It was being overdone--far too many drugs were being
prescribed too frequently. It was not being done well, too many broad-spectrurr
drugs were prescribed when more specific less toxic drugs were available, and a
inappropriate drug was being prescribed far too frequently.

Next, it was established that the chosen domain was well bounded and that
there were motivated experts who would cooperate in the design process and
provide the expert knowledge required by such a system. Given this starting
point, it was determined that the system must possess the following six

characteristics:

(1) The system should be useful. There must be a need for the
assistance provided by the system. The advice given should be
reliable; the system must be human engineered for usability by
its intended user population.

(2) The system should be educational when appropriate. The system should
not overburden the user with information he may not want, but it
should be instructive when responding to a user's informational
requests. It should provide sufficient information so that, over
time, the physician may need to consult the system only in excep
tional cases.

(3) The system should be able to explain its advice. It is observed that
physician acceptance will, to a great degree, be dependent upon whether
Jr not he is satisfied, not only with the specific advice rendered,
bu~ by the system's justification for that advice. The physcian will
not accept a dogmatic replacement for his own decisions.

30 June 1977 3-16
System Development Corporation

TM-5903/000/00

(4) The system should be able to understand questions. If the system is
to explain its advice, then it must do so in response to questions.
Hardly any physician will bother himself to learn a formal or arcane
language by which he could extract explanations. Therefore, a
natural-language facility, albeit limited, is mandatory.

(5) The system should be able to acquire new knowledge. Not only is it
hardly conceivable that one could incorporate all of the knowledge
the system would ever need at its inception, but in a continuously
changing world, new knowledge and insights are constantly developing.
Thus, if the system is to remain current with the state of knowledge
and grow in reliability and performance, it must be able to incorpo
rate new knowledge. Further, some errors are bound to occur, and the
erroneous knowledge must be changed or replaced.

(6) The system's knowledge must be easily accessed and modified. This
requirement not only sets criteria for providing the user with the
content of the system's knowledge, it sets criteria on how the knowl
edge is to be represented, in terms of how the representation
matches the knowledge that the expert uses and how he conceives it.
Thus, there should be a good match between the amount of knowledge
that can be represented in one unit and the way that it is expressed.

From those design consideration were developed a more detailed set of speci
fications and requirements th~t eventually led to construction of the present
version of the system. In hindsight, some of the decisions and tradeoffs
were less than optim1l, but ~hat is usually the case in most new ventures. The
project that developed MYCIN continues and is reviewing the original considera
tions and design decisions, with the goal of refining the system to come as close
to the ideal design as possible.

30 June 1977

3.7 SUMMARY

3-17
System Development Corporation

TM-5903/000/00

It is reasonable to conclude that MYCIN was well conceived and met the majority
of its initial requirements. It has yet to be used by the ultimate users for
whom it was designed, the doctors in the hospital wards. That will eventually
provide validation or rejection of the various assumptions put forth related
to specific functional capabilities and the impact of such a system on the
practice of medicine.

The two most obvious shortcomings (improvements are presently being sought for
both) are embedding the therapy-selection process in functions that severely
inhibit explanation of their results and the requirement that the user label
certain questions with an identifying prefix. In this sense, MYCIN is not an
ideal system, but in all other respects it is one of the best existing examples
of a well-done knowledge-based system.

30 June 1977

4. TECHNIQUES USED TO CONSTRUCT KBS

4-1
System Development Corporatio1

TM-5903/000/Q(

This section may be skipped by the reader who does not wish to read a detailec
account of the technologies used to construct a KBS. However, Section 3, A
Case Study, is highly recommended reading in order to obtain the flavor of a
KBS by examining one particular system, its capabilities, usage, and engineer
ing, in depth.

The purpose of this section is to introduce the reader to the techniques and
methodologies used to construct problem solving knowledge-based systems. (KBS
Because of the many and striking similarities between these systems and Com
puter Assisted Instruction (CAI) KBS in particular and Artificial Intelligence
(AI) systems in general, techniques used in the latter two groups are also
covered herein; these techniques are components of the 11 parts kit" from which
the next generation of KBS will be constructed. In addition to AI, several
other computer science areas have developed techniques that are used in the
construction of KBS. A partial list of the major contributions are summarized
in Table 4. 1. The list of contributors and techniques is necessarily long,
because the complexity and diversity of tasks performed by a KBS require the
utilization of many different methodologies.

The following subsections discuss KBS technologies grouped according to func
tion. Section 4.1 describes the methods used to represent the knowledge con
tained in the Knowledge Sources (KS). Section 4.2 describes the methods used
to model and represent the work-space--the dynamic state of a system during
its problem-solving activity. Section 4.3 describes techniques that are used
to construct Cognitive Engines (CE). Section 4.4 describes the techniques
used to build the interface between the KBS and the user.

i ~ 12re some overlap in the material covered in sections 4.1-4.4 because the
cno1ce of a particular technique in one area strongly affects and limits the
a van ab 1 e choices in the other areas. This effect is shown in Figure 4. 1. On
the left are shown limiting influences from the domain in which the KBS is to

30 June 1977

L

4-2
System Development Corporation

TM-5903/000/00

TABLE 4. l ORIGINS OF KBS TECHNIQUES

ARTIFICIAL INTELLIGENCE (AI)

hueristic search
inference and deduction
pattern matching
knowledge representation and acquisition
system organization

LANGUAGE PROCESSING

parsing and understanding
question and response generation
knowledge representation and acquisition

THEORY OF PROGRAMMING LANGUAGES

formal theory of computational power
control structures
data structures
system organization
parsing

MODELING AND SIMULATION

representation of knowledge
control structures
calculation of approximations

DATA BASE MANAGEMENT

information retrieval
updating
file organization

SOFTWARE ENGINEERING

system organization
documentation
iterative system development

APPLICATION AREAS

domain-specific algorithms
human engineering

30 June 1977

Available
Knowledge
Model

Expert
Reasoning L -...
Principles

User
Expectations

4-3

KB
Representation

•
CE

Methodology

.,,

Explanation
Methodology

.,..__

System Development Corporation
TM-5903/000/00

~
Workspace
Representation

I----'

....-

:

... ...-

Note: Read a __... {3 as "Choice of a Restricts Options in Choice of {3"

Figure 4. 1 Restrictions on Choices of KBS Methodologies

30 June 1977 4-4
System Development Corporation

TM-5903/000/00

perform--namely, the expert's available knowledge model, the expert's
reasoning principles and methods, and the users' expectations for the system.
These three domain-specific items constrain the selection of the techniques
and the methods to be used in the KBS for representing the KB, the CE, and the
explanation-generation mechanism. The diagram represents our perception of
the relative importance of choice in a KBS. The most important influences are
domain considerations followed by choice of a KB representation. Everything
else is of less importance. The ordering of importance is reflected in the
KBS 1 iterature and sets that 1 iterature apart from the corresponding 1 itera
ture for Artificial Intelligence. In the latter field, the most important
considerations are CE methodology and workspace representations, followed by
KB representations. Domain considerations are of relatively minor importance.

It would be extremely valuable to provide here a comparison of techniques and
methods. However, such a comparison is difficult to provide for a number of
reasons. The most important is that there does not exist a reasonable taxo
nomy (nor have we been able to invent one) on which to base it. Another
difficulty arises because of the· contraints discussed above--namely, choices
are limited by domain-specific considerations as well as technical incompati
bilities. In a sense, a techniqal option is good or bad as it is natural to
the domain. Thus, relative merit is as much a domain as a computer-scienc~
based measure. Where possible, the following sections attempt to make com
parisons based upon abstract features of the various techniques. However, the
ultimate comparisons can be made only in the context of a particular domain
and problem.

30 June 1977

4.1 KNOWLEDGE REPRESENTATION

4-5
System Development Corporation

TM-5903/000/00

The knowledge base in a KBS consists of one or more knowledge sources and may,
in addition, contain fact files. Fact files are collections of hard data such
as values and attributes, e.g., the contents of an engineering handbook or its
equivalent. A knowledge source contains an expert's knowledge about the appli
cation area--knowledge such as definitions, cause-and-effect correlations,
descriptions of plans and procedures, abstractions, problem-solving strategies,
and meta rules governing the use of the contents of other knowledge sources
(and fact files) in the system and plausible reasoning in the domain. The
purpose of this section is to characterize and describe knowledge sources and

the techniques and methodologies used to represent them in a computer. In
section 4. 1.3, an attempt is made to compare the various techniques.

The following references should be of interest to anyone desiring a deeper
introduction to the general topic of knowledge and its representation.
(Citations are provided throughout the rest of section 4.1 for the techniques
now in wide use.) We would be remiss if the only literature we mentioned was
from the computer-science community; therefore, we take this opportunity to
list a few writings outside the field that are of major historical importance.

[BLOOM56] attempts to describe and provide a taxonomy of intellectual functions
It is summarized in Appendix A.

The Greek philosopher, Plato, put forward his theory of forms to establish an
epistemology of definitional knowledge that generally resembles a basis for
semantic networks. See, in particular, 11 The Phaedrus 11 , 11 Parmenides 11 , 11 The
Republic 11 , and 11 Theaetetus 11 •

Another ancient Greek philosopher, Aristotle, developed and organized the con
cepts of a predicate calculus and its proper methods of application in dis
courses about philosophy, ethics, and law. The particular works of interest
are 11 Posterior Analytics 11 and 11Metaphysics 11 , Book 4.

30 June 1977 4-6
System Development Corporatio·n

TM-5903/000/00

[FREUD 60 and 55] describe a theory of cognitive economy and propose it as an
explanation of many intellectual functions.

In [BARTLETT 32], a theory is put forth of necessary ingredients in any expla
nation of human recall and reasoning processes. This work has been cited by.
many as the psychological basis for frames.

Some general overview and opinions about knowledge representation from the com
puter science literature are to be found in [BOBRO~ 75b and 75c], [BROWN 75b],
[CHARNIAK 75], [COLLINS 76], [HAWKINSON 75], [MOOREJ 73], [SIROVICH 72], and
[HEISS 61].

30 June 1977 4-7
System Development Corporation

TM-5903/000/00

4.1.l Characteristics and Terminology of Knowledge Sources

4.1 .1.1 Knowledge Representation Forms

A knowledge source may assume several different forms of representation through
a KBS. The domain expert imparts new knowledge to the knowledge acquisition
mechanism in the external form. The acquisition mechanism transforms or com
piles the external representation into the physical form and merges the new
knowledge into the appropriate KS. The physical form is a data structure such
as a matrix, list, or n-tuple, or a procedural representation, or some combina
tion of these forms. When another component of the system (such as the CE)
accesses the KS, the logical form is used at the interface. The logical form
is generally functional and in terms of symbolic keys or indices; that is, it
defines the set of questions that can be answered immediately by the KS. The
power avatlabl.e at the logical interface is determined by the external form of
the knowledge and the amount of compilation performed by the acquisition mech
qnism. Finally, knowledge is transformed back into the external form when the
system provides explanations to the user. Normally, the input form and expla
nation form of the knowledge are the same or similar except when the input form
is highly abbreviated or nontextual. Figure 4.2 summarizes the transformations
of knowledge representations throughout a KBS.

4.1.1.2 Knowledge Chunks

Both the external and logical knowledge representation format are partially
characterized by the term chunk size. A knowled~e chunk is a primitive unit in
the representation--that is, in a KS that contains the definitions of several
interrelated terms, the definition of a single term is a 11 chunk 11 •· Unless the
knowledge-acquisition mechanism compiles incoming chunks by combining them, the
chunk size of the external and physical representations will be approximately
the same. In the case of combination by the acquisition mechanism, the chunk
size of the logical representation will be greater.

30 June 1977

Expert

User

System Development Corporation
4-8 TM-5903/000/00

External Knowledge-

External

Acquisition
Mechanism

Figure 4.2 Knowledge Representation Forms

KS

30 June 1977 4-9
System Development Corporation

TM-5903/000/00

The concept of a knowledge chunk is important in describing a KBS because it
determines the basic unit (or grain) of behavior. The knowledge chunk is the
unit by which the expert augments (or modifies) the KS. The simplest action
that can be taken by the CE is to apply or use a single chunk. Therefore, the
most primitive explanation of system behavior is a presentation of the chunk
form which the behavior resulted.

Chunk size is an inexact and, at best, a relative measure. For certain types
of knowledge, the chunk size could be defined as the information-theoretic
entropy. (See [SHANNON 49].) However, for the kinds of knowledge required to
be in a KBS, computation of entropy is not a practical possibility. (From a
theoretical standpoint, it is not clear even what is meant by entropy for many
types of knowledge found in a KBS, e.g., definitions and rules of plausible
inference.) However, in spite of inexactness, chunk size of knowledge is an
important consideration to KBS technology for three reasons:

1. It determines the level at which the expert can instruct the system.
If the chunk size is either too large or too small, the expert is
forced into an unnatural mode of expressing his knowledge.

2. It in part determines the acceptability of the system's explanation
mechanism. Since the knowledge chunks used to derive and support the
system's conclusions form the essential part of explanations, accepta
bility is enhanced when the chunks are the same size or level of
detail used by one worker in the application field describing results
to another worker in the same field.

3. It determines the kinds and efficiency of reasoning techniques to be
used in the KBS. Larger chunk sizes generally permit shorter lines of
reasoning. For that reason, they are more likely to lead to a correct
conclusion when inexact but plausible inference techniques are used.

These three influences of chunk size all suggest the advantages of a coarse
grained knowledge source. In fact, the most successful KBS and AI systems tend
to be characterized by large chunk sizes. The representation techniques used ir

30 June 1977 4-10
System Development Corporation

TM-5903/000/QO

most of the early AI systems were predicate calculi and semantic nets; in
today's systems, these representations are gradually being replaced by produc
tion rules and frames. The continuance of the trend towards large chunks, al.ong
with the ability of a KBS to use inexact but plausible reasoning techniques,
will result in systems that are capable of intelligent perfromance as measured
by even the strictest standards.

4. 1. 1. 3 Credi bi 1 i ty Factors

All of the knowledge in a KS need not be true in an axiomatic sense; in fact,
it is unclear that a KBS would be necessary or appropriate for use in a domain
in which axiomatic knowledge is available. Much of the content of a KS may be
"rules of thumb" and working hypotheses. This raises the issue of how a system
is to use knowledge of this sort to product acceptable results. The CE, as the
reasoning component in the system, has the major responsibility in this area.
In many KB systems, the chunks in the KS are rated as to their credibility by

the experts who entered them into the system. This rating is then available to
the CE as a guide· in the reasoning process.

Besides credibility factors for individual knowledge chunks in a KS, credibility
factors can occur in other contexts in a KBS--for example, the input problem
parameters may not be known with certainty. (Another case occurs when knowledge
chunks are combined with each other and with the problem-specific parameters:
given the credibility factors of the parameter values and of the knowledge
chunks that have been used, what is the certainty of the conclusion?)

There are at least four possible meanings or interpretations of credibility
factors:

1. A probability: the fraction of the time that the chunk is true.

2. Strength of belief: how certain is the expert that the chunk is
always true?

30 June 1977 4-11
System Development Corporation

TM-5903/000/00

3. Relevance: what is the probability that use of this chunk will
ultimately lead to a completed chain of reasoning that solves the
problem at hand?

4. Acceptability: is this a preferred method (a matter of taste) or
fact to workers in the field?

It is essential that the kind of credibility factor that is to be used be
stated and agreed upon by the expert who instructs the system and by the pro
grammer who builds the CE, because the mathematics for combining and evaluating
each of the four kinds is different.

A good discussion of credibility factors, including some mathematical deriva
tions and justifications of the technique used in MYCIN can be found in
[SHORTLIFFE 76]. An approach, called "fuzzy logic" is described in [ZADEH 75,
74, and 65] and [GOGUEN 68]. A theory of 11 confi rmation 11 is described in
[CARNAP 50], [HEMPEL 45], and [HARRE 70]. A theory of choice is described in
[TVERSKY 72] and [LUCE 65]. Also see [TORNEBOHM 66] for a description of
criteria that should be met by a choice function.

4.1.1.4 Declarative versus Procedural Representations

There are three different but often confused dichotomies for representing knowl
edge in computer-based systems: (1) data versus program, (2) active versus
passive, and (3) declarative versus procedural. The first data versus program,
is at best intuitive and depends upon the evaluator's viewpoint; for example,
consider an interpreter-based program-language system: a program written in
that language is data from the standpoint of the interpreter.

The second dichotomy, active versus passive, is really not a knowledge
representation issue. Rather, it is a question of control regime and what
system component{s) is (are) responsible for instantiation and activation. An
active component is always instantiated and may instantiate and control the
activation of other components. In other words, an active component is a

30 June 1977 4-12
System Development Corporation

TM-5903/000/00

logistics manager for the available set of program counters. A passive
component is one that may operate only at the behest of a more active component.
Therefore, active and passive are the endpoints on a (partially) ordered scale
of activity. The importance of the active-passive distinction to KB system
technology is that, in general, the CE is the only active component in the
system, and each KS is strictly passive with respect to all non-KB components
in the system. This is true even when the chunks in a KS are programs, since
they are operated only by the CE. Even when a KS provides heuristic directions
to the CE about what to do next, the CE (through some sort of agenda mechanism)
still makes the flow-of-control decisions and is ultimately responsible for
resolving potential conflicts from the advice. That this is the case follows
from the logical separation of the CE and KB.

The third dichotomy, declarative versus procedural,* is really the computer
scientist's version of the epistemologist's know what and know how distinction.
It may be argued successfully that (1) there is no strictly formal difference
in the power of the two--they are both 11 universal 11 --and that (2) both are
necessary. However, the real issue is the attitude towards the management of
complexity of the interrelationships among knowledge chunks. A proponent of
procedural respresentation argues that a major part of intelligent behavior is
the ability to apply specialized rules to exploit situation-dependent relation
ships among knowledge chunks. Hence, he believes that many of the ad hoc inter
relationships should be made explicit and that procedures are the best way to
do this. On the other hand, an advocate of declarative representations believes
that parsimony is the most desirable goal for knowledge representation, and that
this is best accomp.ished using reasonably modular and independent knowledge
chunks that are combined by a general-purpose reasoning mechanism to produce
the desired results through inference and deduction.

*The remainder of section closely fol lows [WINOGRAD 75].

30 June 1977 4-13
System Development Corporation

TM-5903/000/00

An example may help to clarify some of the issues involved. A declarative
representation of the statement, 11All Chicago lawyers are clever 11 could be

.Y.(x) [CHICAGOAN(x) & LAWYER(x) ~cLEVER(x)]

A general reasoning mechanism could use this single fact for many purposes.
For instance, to answer the question, 11 Is Dan clever? 11 , it would check to see
whether Dan is from Chicago and is a lawyer. The same fact could also be used
to infer that Richard is not from Chicago, given the information that he is a
stupid lawyer. The property of being able to use the same chunk for many
purposes, as in this example, is called reversibility. In a strictly proce
dural representation, the fact would need to be represented differently for
each of the many possible usages. Each would demand a specific form, such as
11 If you find out that someone is a lawyer, check to see whether he is from
Chicago, and if so, assert that he is clever 11 • It is not possible to show a
simple example demonstrating a clear advantage of a procedural representation,
because the value of a procedural representation lies in the complex cases in
which interaction of many pieces of knowledge are involved. (However, see
Section 4.1.2.2.)

Intelligent systems can be constructed to operate in complex domains only if
they incorporate substantial bodies of both know-what and know-how knowledge.
Hence, both declarative and procedural knowledge must be present. One way of
accomplishing this is called procedural attachment; it is used in the emerg~ng
theory of frames, as well as in some production systems (see section 4.1.2.2).
The basic concept underlying procedural attachment is that most knowledge should
be expressed declaratively (as a data structure) and should permit the optional
association of programs with the knowledge chunks and/or the data items within
the chunks. The CE executes these programs whenever the knowledge associated
with them is referenced. The programs can perform local inference, detect
inconsistencies, and give the CE advice on what to do next.

30 June 1977 4-14
System Development Corporation

TM-5903/000/00

The major topic of this section has been viewpoints on dealing with complexity
in knowledge-based systems. Simon (see [SIMON69]) addresses many of the same
issues through what he calls 11 nearly decomposable systems": 11 ••• the short-run
behavior of each of the component subsystems is approximately independent of
the short-run behavior of the other components In the long run, the behavior
of any one of the components depends in only an aggregate way on the behavior
of the other components. 11 Winograd (op. cit.) goes on to comment at some
length on this remark:

One of the most powerful ideas of modern science is that many complex
systems can be viewed as nearly decomposable systems, and that the
components can be studied separately without constant attention to
the interactions. If this were not true, the complexity of real
world systems would be far too great for meaningful understanding,
and it is possible (as Simon argues) that it would be too great for

them to have resulted from a process of evolution.

In viewing systems this way, we must keep an eye on both sides of
the duality--we must worry about finding the right decomposition, in
order to reduce the apparent complexity, but we must also remember
that "the interactions among subsystems are weak but not negligible 11 •

In representational terms, this forces us to have representations
which facilitate the "weak interactions 11 •

If we look at our debate between opposing epistemologies, we see two
metaphors at opposite poles of the modularity/interaction spectrum.
Modern symbolic mathematics makes strong use of modularity at both a
global and a local level. Globally, one of the most powerful ideas
of logic is the clear distinction between axioms and rules of infer
ence. A mathematical object can be completely characterized by
giving a set of axioms specific to it, without reference to proce
dures for using those axioms. Dually, a proof method can be

30 June 1977 4-15
System Development Corporation

TM-5903/000/00

described and understood completely in the absence of any specific
set of axioms on which it is to operate. Locally, axioms represent
the ultimate in decomposition of knowledge. Each axiom is taken as
true, without regard to how it will interact with the others in the
system. In fact, great care is taken to ensure the logical indepen
dence of the axioms. Thus a new axiom can be added with the guar
antee that as long as it does not make the system inconsistent,
anything which could be proved before is still valid. In some sense
all changes are additive--we can only "know different" by knowing
more.

Programming, on the other hand, is a metaphor in which interaction is
primary. The programmer is in direct control of just what will be
used when, and the internal functioning of any piece (subroutine) may
have side effects which cause strong interactions with the function
ing of other pieces. Globally there is no separation into "facts"
and "process"--they are interwoven in the sequence of operations.
Locally, interactions are strong. It is often futile to try to
understand the meaning of a particular subroutine without taking into
account just when it will be called, in what environment, and how its
results will be used. Knowledge in a program is not changed by add
ing new subroutines, but by a debugging process in which existing
structures are modified, and the resulting changes in interaction
must be explicitly accounted for.

If we look back to the advantages offered by the use of the two types
of representation, we see that they are primarily advantages offered
by different views toward modularity. The flexibility and economy of
declarative knowledge come from the ability to decompose knowledge
into 11 what 11 and "how". The learnability and understandability come
from the strong, independence of the individual axioms or facts. On
the other hand, procedures give an immediate way of formulating the

30 June 1977 4-16
System Development Corporation

TM-5903/000/00

interactions between the static knowledge and the reasoning process,
and allow a much richer and more powerful interaction between the
'chunks" into which knowledge is divided. In trying to achieve a
synthesis, we must ask not "how can we combine programs and facts?",
but "How can our formalism take advantage of decomposability without
sacrificing the possibilities for interaction?"

If the declarative and procedural formalisms represents endpoints on
a spectrum of modularity/interaction, we should be able to see in
each of them trends away from the extreme. Indeed, much current work
in computing and AI can be seen in this light.

This section closes with a quote from [MINSKY75] about the declarative versus
procedural issue from another point of view.

I draw no boundary between a theory of human thinking and a scheme
for making an intelligent machine; no purpose would be served by
separating these today since neither domain has theories good enough
to explain--or to produce--enough mental capacity. There is, how
ever, a difference in professional attitudes. Workers from psychology
inherit stronger desires to minimize the variety of assumed mecha
nisms. I believe this leads to attempts to extract more performance
from fewer "basic mechanisms" than is reasonable. Such theories
especially neglect mechanisms of procedure control and explicit repre
sentations of processes. On the other side, workers in Artificial
Intelligence hive perhaps focussed too sharply on just such questions.
Neither have given enough attention to the structure of knowledge,
especially procedural knowledge.

It is understandable why psychologists are uncomfortable with complex
proposals not based on well established mechanisms. But I believe
that parsimony is still inappropriate at this stage, valuable as it

30 June 1977 4-17
System Development Corporation

TM-5903/000/00

may be in later phases of every science. There is room in the
anatomy and genetics of the brain for much more mechanism than
anyone today is prepared to propose, and we should concentrate
for a while more on sufficiency and efficiency rather than on
necessity.

The above quotations represent two viewpoints on the major problem facing AI-
namely, the management of complexity. Of course, this is also an issue for
research in knowledge-based systems. However, the successes to date with
knowledge-based systems have been attained by carefully controlling this com
plexity by selecting and working in domains that are sufficiently constrained
while still possessing an interesting and rich problem space. Without these
constraints, the KBS developer would have to face all of the issues that con
front the psychological modeler and AI researcher. With these constraints, he
has been able to construct practical systems with heretofore unachievable
capabilities.

30 June 1977

4. 1.2 Methods of Representing KS

4-18 System Development Corporation
TM-5903/000/00

This section describes six techniques used to implement a knowledge source and,
hence, represent knowledge in a KBS. These six were selected for discussion
because they were the six most discussed in the literature. (Many other,
lesser-known techniques have been successfully used to construct systems and
should not be ignored simply because they are not included here.) Two of the
techniques described below, finite-state machines and programs, are normally
used to represent procedural knowledge. Three of the techniques, predicate
calculus, production rules, and semantic networks, are normally used to repre
sent declarative knowledge. The sixth technique, frames, is an effective
method of combining both procedural and declarative knowledge in a single
representation.

From a theoretical viewpoint, all of these techniques have identical repre
sentational power because, combined with an appropriate and simple CE, each
can represent a universal Turing machine; therefore, the decision to use one
method instead of another is based more upon pragmatic considerations, such
as naturalness and efficiency for the intended application. Section 4. 1.3
makes a comparison of these six techniques based upon some of their inherent
properties.

4. 1.2. 1 Finite-State Machines

A finite-state machine (FSM) is a representation technique for procedural
knowledge. The FSM is a finite collection of states. Each state specifies
a computation and c decision rule to determine what state should next be

entered. Two states are special: the start state is the first state entered,
and the calculation terminates whenever the end state is entered. There are
two major uses of an FSM: the first is to represent a grammar; the second is

to represent protocols or plans of action. The use of an FSM.to represent f.~

grammars is described in Section 4.4. l. 1. (Also, see [WOODS73].) Figure 4.3
graphically shows an FSM representation of a plan of action for making and

30 June 1977 4-19 System Development Corporation
TM-!1903/000/00

Level< 6 Cups

Level~ 6 Cups

New Can Level<6 Tsp

Open Can Has Coffee In It

Empty Can

Level>6 Tsp

Light Off

Light On

Thirsty

Thirsty

Satisfied

Thirsty

t-1gur·e 4.J Finite-State Machine Representation of a Plan to Make
and Drink a Pot of Coffee

30 June 1977 4-20
System Development Corporation

TM-5903/000/00

drinking a pot of coffee. The circles are the states, and each describes an
action to be taken. The decision rule for each state is represented by
labels on the set of arcs that leave the state. An arc label is a predicate
that must be true for control to pass along it. For example, the state
marked "fill pot" has two arcs leaving it. One arc is labeled "level < 6 cups. 11

This arc keeps the FSM in the pot-fi.lling state until the water level reaches
the 6-cup line. When it is reached, the arc labeled "level ::::: 6 cups" takes
the FSM to the state at which the spigot is turned off.

Four options are available that can affect the power,* size, and reversibility
of an FSM: (1) the set of allowable computations in a state, (2) the set of
allowable predicates on the arcs, (3) parameterization, and (4) the control
mechanism. The kinds of choices available for (1) and (2) are categorized by
specification of a set of primitive actions or computations, specification of
the rules of combination of actions (e.g., functional composition, sequencing,
etc.), and specification of the memory space that can be referenced by the
primitive actions. It is also possible to make an FSM with parameters. For
example, in the FSM of Figure 4.3, the number of cups of coffee to be brewed
could be passed as an argument, and the number, six, replaced by the parameter
name on the four arcs on which it appears.

There are two primitive types of control structure** for FSM: deterministic
and nondeterministic. In a deterministic FSM, at most one arc is followed out
of the present state. This is accomplished by either requiring that at most
one arc predicate be true, or by having a rule that selects one arc out of the
set that qualifies. In Figure 4.3, the state "drink another cup 11 has arcs
leaving it labeled "pot empty," "satisfied," and "thirsty." It was assumed

*As used herein, the term finite-state machine describes a representation
methodology, not a specific restriction on computation power. For example,
if the states of the FSM are permitted access to a read-write tape of
indefinite length, full Turing power will result.

**See [FISHER 70] for a more complete taxonomy of control structures.

30 June 1977 4-21
System Development Corporation

TM-5903/000/00

that there was a selection rule that gave priority to the 11 pot empty" arc so
as to not burn the urn. If the FSM cannot leave the state it currently is in
(excepting the end state) because no arc predicate is satisfied, the operation
of the machine is said to be blocked. Blocks can occur for two reasons: firs·
an error in FSM specification--a legally occurring situation is not handled;
and second, the plan of action represented by the FSM is unsatisfiable given
the current context. The user of the FSM assumes the block has arisen for the
second reason and uses the negative result as a cue to try another method or
procedure. Sometimes the reason for the block can be determined by inspection
and user to guide the new attempt.

In a nondeterministic FSM, it is possible for several different arcs leaving
the same state to be satisfied simultaneously. The assumptions are that each
path will be followed and that, if any path finally reaches the end state,
the FSM has terminated normally. Paths through the nondeterministic FSM may
be dropped when they block. Figure 4.4 shows both a deterministic and non
deterministic FSM that recognizes symbol strings that start with zero or more
11 AB 11 , followed by zero or more 11 ABAC 11 , and are terminated by a D. (Such an
FSM is called a recognizer or an acceptor.) The states (circles) perform no
computation. The start states are labeled 11 S11 , and the end states are labeled
11 E11 • The predicates on the arcs test the next character in the input sequence
for equality. The arc predicates are abbreviated by the name of the next
necessary character. In the nondeterministic FSM, the state labeled 11 X11 has
two arcs leaving it that are both labeled with 11 A. 11 State 11 X11 is handling
two cases: (1) an 11 A11 in one of the initial 11 AB 11 groups and the second 11A11 in
the first 11 ABAC 11 group. In the example, the deterministic FSM has one more
state than the nondeterministic FSM. Classes of FSM are known such that the
number of states in a deterministic FSM must be at least an exponential func
tion of the number of states in a nondeterministic FSM that performs the same
calculation. Therefore, there is in some cases an obvious advantage to using a
nondeterministic FSM even though the interpreter (CE) is more complex.

30 June 1977 4-22
System Development Corporation

TM-5903/000/00

------- ·-. --·

Figure 4.4.

Deterministic FSM

·-------------.·---------

Nondeterministic FSM •

Finite State Recognizers for
(AB)* (ABAC)* D

30 June 1977 4-23
System Development Corporation

TM-5903/000/00

There are certain categories of restrictions, upon allowable computations in
the states and upon the arc predicates, for which deterministic and nondeter
ministic control structures yield differences in computational power. For
the simple class of FSM exemplified by Figure 4.4, there is no difference.
However, for the class of FSM in which the states can place and remove a
character on and from a pushdown stack, and in which the arc predicates can
test for equality of the next input character and/or for equality of the top
character on the pushdown stack, a power difference exists. A task that shows
the difference is the recognition of symbol strings that are symmetric around
their midpoint. A good discussion of power differentials in various classes
of FSM can be found in [MINSKY 67].

Since FSMs so closely resemble flowchart representations of procedures written
in a programming language, it is worthwhile to list some of their desirable
and undesirable characteristics in light of that comparison. The desirable
characteristics are:

(1) The ability to easily implement nondeterministic control.

(2) The ability to represent and model plans of action for which
11 procedural 11 execution inside a computer is meaningless.

(3) Reversibility--that is, an FSM may be examined to answer such
questions as what needs to occur to allow it to end up in a
particular state.

(4) New plans of action may be constructed dynamically because an
FSM representation is easily manipulated.

(5) Many disciplines, both scientific and nonscientific, represent
part of their published expert knowledge in a form similar to
that of an FSM.

30 June 1977 4-24

The undesirable characteristics of FSMs are:

System Development Corporation
TM-5903/000/00

(1) The loss of efficiency compared to compiled procedures.

(2) The enforcement of low-level uniformity in the representation,
which can make the FSM hard to understand (in a sense, FSMs are
better at representing strategies than tactics).

(3) The external format of an FSM representation can lose clarity
unless there is a graphic medium available for computer input
and display.

4. 1.2.2 Using Programs to Represent Knowledge

By definition, every computer system contains some knowledge represented by
programs, albeit trivial. The purpose of this section is to describe the
techniques used to represent non-trivial expert knowledge in programs. To be
specific, a program is code written in an effective formal language. By effec
tive is meant that at each step of execution (equivalently, at each step of
the interpretation), the next step can be unambiguously determined by an
agreed-upon set of rules. This means, of course, that the rules themselves
must constitute an effective program, for which there must exist an agreed
upon set of rules, and so on, ad infinitum. One should not, however, become
preoccupied by this "infinite regression" in the definition of effectivity;
that problem, like other problems with attempting to formalize intuitive con
cepts, belongs to the logicians and philosophers. Howe~er, the issues
involved cannot be taken lightly because a similar problem of definition is
encountered when one tries to ascribe meaning to the contents of a KS. One
widely held viewpoint is that the contents of a KS have no meaning per se and
can come to have meaning only when it is understood how the knowledge is used
and/or what effects follow from its use. From this viewpoint, there is an
analogy between the CE in a KBS and the effective rules of application for a
program.

1. !-
) \

30 June 1977 4-25
System Development Corporation

TM-5903/000/00

Programs are usually, but not always used to represent procedural knowledge;
in some instances, the majority of chunks in a declarative KS exhibit a
regularity that can be exploited by generating those chunks algorithmically.
While it is true that such an algorithm contains "how-to" knowledge--namely,
how to generate specific knowledge chunks--the user of the KS has available
only the declarative knowledge that results.

Figure 4.5 depicts a program representation of knowledge necessary to turn on
a water spigot. The example program has two arguments: a human agent, who
will perform the task, and the desired temperature of the running water.
Much world knowledge is imbedded in this program. For example,

• Water taps are in sinks.

• You need to be close to the sink to control the water taps.

• Cold water comes from the right tap, hot water from the left tap,
and temperatures in between by mixing the two.

1 Water taps are turned on by twisting clockwise and off by twisting
counterclockwise.

1 Before adjusting a mixture of water from the two taps to the desired
temperature, the hot water should run until it is at full temperature.

• Relative values of temperature such as cold, lukewarm, hot, etc.,

are used and compared.

Besides this world knowledge, the program contains knowledge about itself--for
example:

• The program will not recur indefinitely (when the cold water is turned
on to mix with the hot water).

• The program will not get stuck in an infinite loop while trying to
adjust the temperature, because only an approximate equality (~) is
necessary to terminate.

PROCEDURE turn_on_the_water(agent human, temp temperature)
locate_at(agent, 11 sink11);

IF temp= 11 cold 11

THEN tap+11 right-'--tap 11

ELSE tap+11 left_tap 11 ;

twist_tap(agent, tap, 11 right11 , 11 full_turn 11);

IF tap= 11 left_tap 11

THEN BEGIN
WHILE water temperaturet"hot 11 idle;
IF tempr"hot 11

THEN turn_on_the_water{agent, 11 cold 11);

x+11 half_turn 11 ;

UNTIL water_temperature~temp
LOOP[IF water_temperature>temp

THEN twist_tap(agent, 11 right_tap 11 , • 11 right 11 , x)
ELSE twist-tap(agent, 11 right_tap11 ,! 11 left 11 , x);

x+x/2];
END BLOCK;

END turn_on_the_water;

Figure 4.5. Procedural Knowledge Example

w
0

c...
s:::
::I
('!)

'° '"' '"'

.j::>
I

N

°'

~
VI
c-t-

~
CJ
('!)

<
CD
0
-0
3
('!)

--i ::I
3: M
l

U'1 n
'°o 0 -s
W-0 ,0
0 -s
0 ll>
0 c-1-,
00
0::::1

30 June 1977 4-27
System Development Corporation

TM-5903/000/00

• Program "locate-at" wi 11 effectively move the agent to the desired
location.

• Program "twist-tap" expects the agent to be in proximity of the tap.

It is interesting to speculate about casting these types of knowledge into
declarative rather than procedural form. Of the program's "self" knowledge,
only the last example, a case of "What can other knowledge expect of me?",
would need to be explicit. The other kinds of self knowledge shown (control
structure and what other programs do) are got from a generalized reasoning
process normally used with declarative knowledge, and hence need not be
explicated in the KS. On the other hand, all the world knowledge listed above~
including necessary temporal ordering of the steps, would need to be present
in the system. Because that knowledge is almost all ad hoc; it is not easy
to see how it could be inferred by or from general principles of reasoning.
The advantage of the program representation is that all of this knowledge is
brought together in a natural manner. The disadvantages become apparent if
one tries to extend this example to a problem domain with multiple kinds of
water spigots. Much of the present knowledge applies to only a few cases
(e.g., there are two spigots in the sink--there could be one-handled spigots),
while some of the knowledge is more universal (e.g., let the water heat up
before adjusting the temperature). The problem is simply how to preserve the
knowledge that applies to multiple cases--this is the virtue of declarative
representations.

Discussed below are two of the many options available when using programs to
represent knowledge: invocation methods and control regimes for state reten
tion. The four major methods of program invocation are: direct, procedural
attachment, demon, and pattern directed.

Direct invocation occurs when the user (using program) knows precisely which
program is to be used and includes a lexical reference to that program

June 1977 4-28
System Development Corporation

TM-5903/000/00

through a mechanism such as a subroutine ca 11. Procedural attachment was
mertioned in Section 4. 1. 1.4. The idea is that programs can be associated
wi data fields in a KS or (dynamically) with parts of the evolving workspace
representation. Then, any accessor of a data field that has an associated
program is required to invoke that program. The invoker of a program may be
unaware of both what program is invoked and what functions the invoked pro
gram is to perform. Usually, only the program that makes the attachment has
that knowledge.

Programs invoked by the third method are ca 11 ed demons. A demon is introduced
to the run-time monitor by a statement such as

DEMON(P,C)

which means 11 if condition C (a predicate or situation description) is ever
encountered during future execution of the system, call program P. 11 A demon
i:.:,. like an interrupt handler in an operating system because it sits on the
sidelines, rather like a sentinel that protects the system; they perform no
action until (and unless) a specific situation is encountered. They allow
knowledge that pertains to highly specialized or unusual situations to be
left out of the main stream, making programs more readable and easier to
organize. The run-time monitor has the task of watching for an enabling con
dition for any of the introduced demons. This can be an expensive operation
and represents the chief drawback of demons. The alternative to this kind
of invocation scheme is to make explicit in-line tests for unusual situations
with a resultant lack of clarity.

The fourth method of program invocation is variously called pattern-directed
or goal-directed invocation. In a system using this method, each program is
named by a pattern that describes the kind of tasks it performs. This pat
tern is used in lieu of the program's name. Thus, the invoking program

30 June 1977 4-29
System Development Corporation

TM-5903/000/00

specifies a goal that needs to be achieved, and the run-time monitor searches
for one or more programs whose patterns match the current goal. One of the
programs so found is selected and invoked. If that program succeeds in ful
fi 11 ing the goal, execution proceeds. If not, another program found by the
pattern-matching search can be tried. There are issues concerning in what
order to try the programs and what to do if no program can achieve the goal;
these issues are discussed further below as control regimes. An example of a
pattern for the 11 locate_at 11 goal (used in Figure 4.5) might be

(locate_at human object)

This states that the program can plan the sequence of actions necessary to
move a human into proximity to an object. Another program in the same system
could have a pattern such as

(locate_at object1 object2)

This program plans the sequence of actions necessary to move object1 into
proximity to object2. The second program performs a different task from that
o+ the first program, because the entity that is moved may require an external
agent to effect transfer. An interesting case arises if a human is defined
to be a kind of object; namely, any goal that matches the first pattern would
also match the second pattern.

Since programs operating in a system that allows pattern-directed goal invoca
tion can themselves pose subgoals, this method of invocation allows a natural
way of performing means-ends or problem-reduction analysis. Another natural
use is for theorem proving where domain-specific heuristics are imbedded with
the axio~atic knowledge. The proof proceeds through decomposing the original
problem to a set of successively smaller subproblems, the solution of which
implies the validity of the original theorem. The heuristics control the

30 June 1977 4-30
System Development Corporation

TM-5903/000/00

search by specifying the order in which subproblems are generated. The chief
sadvantage of the pattern-directed invocation technique is that, in practice,

e::fH n program must have in it a tremendous amount of information about the
u·::.r.er programs it may invoke. If it does not, glaring inefficiencies and bugs
in the form of infinite generation of subproblems or no satisfaction of cer
tain goals will surely arise. Systems using pattern-directed invocation
techniques, therefore, become increasingly difficult to modify and extend over
time.

Besides the options available in invocation techniques, there are options in
the control regimes that may be used for a system. Though there are many
facets of this topic, we are interested only in the problem of state retention
when the system faces several alternatives as to what to do next. There are
three basic choices for a control regime: sequential, parallel, and non
deterministic. In a sequential regime, the program itself explicitly makes
the cnoice of w:iat to do next and how to reestablish enough state in case
the first attempts are failures. One program invokes another and expects the
latter to return, subroutine style, at the completion of its activity. In a

,,,~:1/·. parallel regime, many subprograms can operate simultaneously or, at least, in
·some interleaved fashion. The programs themselves are responsible for
explicit synchronization activities to avoid the many problems that can arise
when various resources (such as variable bindings) are shared by the active
set of programs. A nondeterministic control regime is like a parallel con
trol regime exc.~pt that each program, when operating, is guaranteed to have
the same environment it would have if it were the only program of the acti've
set that had ever operated. A nondeterministic control regime is often called
automatic backtracking. The idea is that one of the many possible alternative
branches is followed. During execution of a branch, changes made to the com
putation state are remembered. In case a failure is encountered, the remem
bered state changes are undone, and control returns to a decision point at
which an alternate branch remains. Then this branch is followed, and so on.

30 June 1977 4-31
System Development Corporation

TM-5903/000/00

The different invocation and state-retention options discussed above differ
in their generality. The more general the mechanism used, the more complicatec
must be the run-time monitor. The penalty for complexity is loss of efficienc)
On the positive side, systems using the more general mechanisms tend to be
better organized and, hence, easier to modify and extend because a large amoun1
of bookkeeping is buried in the run-time monitor.

A good overview of recent developments discussed in this section can be found
in [BOBROW75d]. Another paper that discussed many issues of general interest
is [HEWITT73]. In [BOBROW73], a general method of providing state retention
is described--commonly called a 11 spaghetti stack. 11 [FISHER70] describes a
toxonomic theory of control structures. A few interesting systems that use
programs to represent knowledge are described in [HEWITT72], [R. MOORE75],
[SUSSMAN75], and [WINOGRAD72].

4. 1.2.3 Predicate Calculus Representation of Knowledge*

The predicate calculus is a formal symbolic notation system (formal language)
for expressing logical relationships and making assertions about a domain or
model. There are three parts to its definition: (1) syntax specification--th1
grammar that defines legal expressions in the language, (2) semantic
specifica:ion--the rules that relate the symbols in the language to objects in
the domain, and (3) legal operations--rules of inference that create legal
expressions from other legal expressions. The syntactically legal expressions
in the predicate calculus are called Well-Formed Formulae (WFF). Through the
semantic specification rules, a WFF makes an assertion about the domain. The
WFFs are said to have the value Tor F, depending on whether the assertions
are true or false of the domain. The legal operators are constrained in such

*Many definitions and examples in this section are taken from [NILSSON7l] a
book that should b'e read by anyone seriously interested in the topic.

30 June 1977 4-32
Sys tern Development Corporation

TM-5903/000/00

a way that the value (T or F) of a WFF output by a transformation can be
directly determined from the values of the WFFs input to the transformation.

The syntax specification of the first-order predicate calculus has two parts:
the specification of an alphabet of symbols and the method by which legal
expressions are constructed from these symbols. The alphabet consists of the
following set of symbols:

l. Punctuation marks: , ()

2. Logical symbols: ~ ~ v /\ (The symbols are read, respectively
as not, implies, or, and and.)

3. Quantifier symbols: v 3 (The symbol v, is called the universal
quantifier and is read for all; the symbol 3 is called the
existential quantifier and is read as there exists.)

4. n-adic function letters: fin (i ~ 1, n ~ 0) (The fiO are called
constant letters. For simplicity, it is conventional to use
lowercase letters near the beginning of the alphabet (i.e., a, b,
c), or lowercase words (e.g., line, dog) as abbreviations for the
fio· Similarly, the lowercase letters f, g, h and lowercase
function names, such as cos, are used without subscripts in place
of the other fin.)

5. n-adic predicate letters: Pin (i :::'. l, n ~ 0) (The Pio are called
proposition letters. For simplicity, capital letters near the
middle of the alphabet (i.e., P, Q, R) and capitalized predicate
names (e.g., GREATER-THAN, MALE) are used, without subscripts, as
abbreviations of the P;n.)

6. Variables: xi (The x; are frequently abbreviated by letters near
the end of the alphabet without subscripts, i.e., x, y, z.)

I'

30 June 1977 4-33
System Development Corporation

TM-5903/000/00

From these symbols, the definition of a WFF can be recursively expressed:

l. Terms

a. Each constant letter is a term.

b. Each variable letter is a term.

c. If fin is a function letter and t 1 t2···tn (n~l) are terms then

fin(t1,t2 ... tn) is a term.

d. No other expressions are terms.

2. Atomic formulae (Domain-specific Boolean-valued expressions)

a. The propositional letters are atomic formulae.

3.

h. If t 1 t 2 ... tn (n~l) are terms and Pin is a predicate letter, the
expression Pin(t1,t2···tn) is an atomic formula.

c. No other expression is an atomic formula.

WFFs

(.l • An atomic formula is a WFF.

b. If A and B are WFFs, then so are

i (~A) (Read as not A)

ii (A=>B) (Read as A implies B)

iii (AvB) (Read as A or B (or both))

iv (Ar-B) (Read as A and B)

I~• If A is a WFF and x is a variable, then the following
are WFFs:

i (Vx)A (Read as for all x, A)

ii (3x)A (Read as, there exists x such that A)

d. No other expressions are WFF.

30 June 1977 4-34
System Development Corporation

TM-5903/000/00

ine parentheses shown in 3b and 3c are usually omitted in cases where no
confusion will r~sult. Some examples of WFFs, using abbreviated notation,

are:

~P{a,g(a,b,a))

P(a,b)=>(3y) (3x) (Q(a,y)vS(x,y,a))

(LESS(a,b)~LESS(b,c))=t>LESS{a,c)

Some examples of expressions that are not WFFs are:

--f (a)

h(P(a))

Q(f(a),(P(b)=::>Q(c)))

The semantic specification rules for the predicate calculus give a 11 meaning 11

to the WFFs by making a correspondence between symbols in the calculus and
objects in the domain. The domain, O, is a nonempty set* of objects. The
necessary correspondences are:

1. Associated with every constant symbol in the WFF is some
particular element of 0.

2. Associated with every function letter in the WFF is an n-adic
function over (and into) 0.

3. Associated with every predicate letter in the WFF is some particular
n-place relation among the elements of D. (A relation may be con
sidered as 1 function whose only values are T and F.)

The specification of a domain and these associations constitute an interpreta
tion or a model of the WFFs.

*The domain set may be finite or infinite and, in fact, of any cardinality.
This raises issues about our notation, fin, Pin, and Xi, which restricts us
to countable symbols. The issues are not addressed herein.

/' .\ .
• f

30 June 1977 4-35
System Development Corporation

TM-5903/000/00

Given a WFF and an interpretation, we can assign a value, T or F, to each atomic
formula in the WFF. These values can be used in turn to assign a value, Tor F!
to the entire WFF. The process by which a value is assigned to an atomic for
mula is straightforward: If the terms of the predicate letter correspond to
elements o·~ D that satisfy the associated relation, the value of the atomic
formula is T; otherwise, the value is F. For example, consider the atomic
formula:

P(a, f(b, c))

and the interpretation

D is the set of integers

a is the integer 2

b is the integer 4

c is the integer 6

f is the (two-argument) addition function

p is the relation greater-than

With this interpretation, the above atomic formula asserts that 11 2 is greater
than the sum of 4 and 611 • In this case, the assertion is false and P{a,f(b,c))
has the value F. If the interpretation is changed so that a is the integer 11,
then the value is T.

The method of assigning a value to an atomic formula containing variables is
not so simple. For example, the atomic formula:

(\fx)P(f(x,a),x)
with the interpretation

D is the set of integers
a is the integer 1
f is the (two-argument) addition function
p is the relation greater-than

30 June 1977 4-36
System Development Corporation

TM-5903/000/00

makes the assertion, "for all x in D (x any integer), x plus one is greater
than x11 • Hence, the atomic formula has a value only under the 11 influence 11 of
the quantifier. When more than one quantifier is used, then the operation of
each may depend upon those further to the left. Let the interpretation be

D is the set of integers

P is the relation greater-than

, the WFF,

(Vx) (3y)P(y ,x)

asserts that for all x (integer) there exists a y (integer) which may depend
upon the chosen .<--such that y is greater than x. The value of this WFF is T.
However, the WFF

(3y)(Vx)P(y,x)

asserts that there exists a y (integer) such that y is greater than any
(integer) x. The value of this WFF is F.

The values of WFFs composed using logical symbols are derived by a set of rules
that are independent of the interpretation. If X is any WFF, then (-X) has the
value T when X has the value F, and (-X) has the value F when X has the value T.
Tab.le 4.2 shows how the values of WFFs composed by the other logical connectives
are determined from the values of the WFFs x1 and x2.

ven these defi niti t!nS of the l ogi ca 1 and quantifier symbo 1 s, it is easy to
show that the symbols A, v , and 3 are redundant because they can be expressed
in terms of the symbols - , => and

X vx =(-X)=>X 1 r 1 2

30 June 1977

xl

T

F

T

F

4-37
System Development Corporation

TM-5903/000/00

TABLE 4.2. DEFINITION OF THE LOGICAL CONNECTIVES

X2 xl vx2 X{'X2 X1=>X2

T T T T

T T F T

F T F F

F F F T

Several terms are used to describe properties of WFFs and the calculus itself:
A WFF that has the value T for all interpretations is called valid. It can be
shown, by consulting the truth table (Table 4.2) that the WFF (P(a)=>P(a)) has
the value T regardless of the interpretation and is therefore valid. ·A calculu!
is called decidable if there exists a general method of determining, for any
WFF in that calculus, whether it is valid. Otherwise, the calculus is sa·id to
be undecidable. If the same interpretation makes each WFF in a set of WFFs
have the value T, then this interpretation is said to satisfy the set of WFFs.
If no interpretation exists such that each WFF simultaneously has the value T,
then the set of WFFs is said to be unsatisfiable. A WFF W logically follows
from a set of WFFs, S, if every interpretation satisfying S makes the value
of W T. To prove W given S means to show that W logically follows from S.

The calculus described above is called the first-order predicate calculate and
is known to be undecidable. That is, there does not exist a procedure for dete
mining whether any arbitrary WFF is valid. If the use of quantifiers and vari
ables is prohibited, the result is called the propositional calculus, a decid
able sub3et of the first-order predicate calculus. A second-order predicate
ca·lculus comes about by allowing quantification of propositional letters (p. n

1

30 June 1977 4-38
System Development Corporation

TM-5903/000/00

and, if desired, the fin over i) in addition to the quantifications allowed in
the first-order theory. This permits WFFs of the following sort:

(¥P) (T(P)==>(¥x) (¥y) (¥z) ((P (x ,y)AP(y ,z))=>P(x ,z)))

This defines transitivity of a predicate. That is, if T(P), then Pis transi
tive. If this is to be approximated in the first-order theory, then for each
of the possibly Many transitive predicates, say P, there must be an individual
axiom of the form:

(¥x)(¥y)(¥z)((P(x,y)AP(y,z))==>P(x,z))

Obviously, the second-order form is more general and expressive than the first
order form. It is easy to see how this process of generating higher-order
calculi could be continued indefinitely by allowing quantification of the
higher-order predicate letters, such as Tin the above example. (Such a cal
culus is called "omega ordered".) However, the higher-order calculi have not
been used in KB or AI systems to date because no one has a clear notion of how
to implement procedures for using them.

The predicate calculus provides a natural way of expressing delcarative knowl
edge. A KS is a collection of WFFs and the semantic rules that relate them to
the domain of application. The included WFFs all have the value T and are
called axioms. The semantic rules are usually straightforward and implicit;
i.e., the abbreviateo names used for the fin and pin are chosen in such a way
that the correspondence to the domain is intuitive. Recall, for instance, the
example WFF used in Section 4.1.1.4:

(Vx)(CHICAGOAN(x)ALAWYER(x) ~cLEVER(x))

which asserts that all Chicago lawyers are clever. New knowledge is derived
and problems ar1~ solved by automatic proof procedures. The results have the
status of theorems and may be used to derive further results.

30 June 1977 4-39
System Development Corporation

TM-5903/000/00

Another example (taken from [P. KLAHR77]) is shown in Figure 4.6. There are
four axioms: (1) Jack is the husband of Jill, (2) Jill lives in Boston, (3) if
x1 is the husband of x2, then x1 and x2 are married, and (4) a married couple
lives in the same place. (The illustration ignores the fact that the marriage
relation is symmetric, i.e., MARRIED(x1,x2)=>MARRIED(x2,x1)). The assertion
derived is "Jack lives in Boston." The proof is shown schematically with the
reasoning chain depicted by the single arrows. Thus, the proof consists of the
above axioms as steps (1) through (4) followed by:

(5) Jack is married to Jill--because of (1) and (3).

(6) Jack lives in Boston--because of (2), (4), and (5).

When passing along the arrows, an association is established between the vari
ables and/or the terms on each side of the arrow. For example, along the arrow
labeled u1, x1 and x2 are respectively associated with Jack and Jill, and along
the arrow labeled u2, x1 and x2 are respectively associated with x3 and x4.
Each such association is called a unification. The set of all such unifica
tions are summarized, under the heading "Variable chains 11 , at the bottom of the
figure. There are three chains in the example: (Jack x1 x3), (Jill x2 x4),
and (Boston x5). The chains are formed as equivalence classes of terms and
variables so that each variable is in one and only one chain, no variable in
one chain unifies with a variable in another chain, if the chain contains more
than one element then each element unifies wjth at least one other element in
the chain, and the number of chains is maximal.

In order for a proof to be proper, there are three consistency criteria:
(1) at most one term can occur in an equivalence class--all variables in the
class then have this value; (2) if no terms occur in a class, then there must
exist an object in the domain such that all variables in the chain may legally
assume that value; and (3) either condition (1) or (2) must apply simultaneously
to every chain. (The definition of variable chains and other consistence cri
teria are more complicated than stated herein if terms are present that are
built up from fin' n>O.)

30 July 1977 4-40

AXIOMS: (1) HUSBAND (Jack, Jill)

(2) LIVES.IN (Jill, Boston)

System Development Corporation
TM-5903/000/00

(3) (Vx1) (Vx2) (HUSBAND (x1,x2)=>MARRIED (x1,x2))

(4) (Vx3) (x4) (Vx5) ((MARRIED (x3,x4) A LIVES.IN (x4,x5))=>

LIVES.IN (x3,x5))

HUSBArD(~7k,Jill) LIV ES.IN (Jill ,Boston)

HUSBAND(x 11x2) =>MAR~ I ED(x 1.x2) . l •2

LIVES.IN(Jack,Boston)

u1 u3 u4
Variable chains: Jack---.x1 -+x3 -.Jack

u1 u2

:::: ~x2 r4
. u3 u4

Boston-+ x6 _.,.Boston

Theorem: LIVES.IN(Jack,Boston)

Figure 4.6. Proof that Jack Lives in Boston

30 June 1977 4-41
System Development Corporation

TM-5903/000/00

The example shows a method of determining a value (in this case T) of the
assertion, 11 Jack lives in Boston. 11 This raises the natural question of how to
deal with the problem, 11 Where does Jack live? 11 The method described in Nilsson
(op.cit.) for solving this kind of problem is based on the resolution technique
for generating proofs in the first-order predicate calculus. The method con
sists of two parts: (1) use resolution to generate a proof for a related
problem--fo~ our example, (3x)LIVES.AT(Jack,x); and (2) use the generated proof
to find an appropriate answer to the problem--in this case, x=Boston.

The next example, known as the monkey and bananas problem, shows one method of
solving a planning problem--the method is called state-space and operators. In
the monkey and bananas problem, the monkey is initially at position a, there is
a box at position b, and a bunch of bananas hanging above position c. The
monkey cannot get the bananas unless he is standing on the box at position c.
A state in this problem consists of four facts: (1) the monkey's position,
(2) the box's position, (3) whether the monkey is on the box, and (4) whether
the monkey has the bananas. Five operators are available to transform one
state into another state: (1) the monkey can walk to any position, (2) he can
push the box around the room, (3) he can climb onto the box, (4) he can climb
off of the box, and (5) he can grasp the bananas. Thus, the problem can be
restated as, find a sequence of operators that transform the above stated
initial state (monkey at a, box at b, etc.) into the desired goal state (the
monkey has grasped the bananas).

Figure 4.7 formalizes the monkey and bananas problem in predicate claculus.
The major pred'icate letter, P, is a relation that determines valid (legal)
states. P(x1 ,x2,x3,x4,x5) is the representation of the assertion that the
monkey is at position x1, the box is at position x2, the monkey is on the box
if x3 is T and off the box is x3 is F, and the monkey has the bananas if x4 is
T and does not if x4 is F. The last term of P, x5, is a contrivance that
makes it possible to find the sequence of operators that solve the problem.

Basically~ x5 is a representation of how we have come to be in this state.
This will be clarified below.

30 June 1977 4-42
System Development Corporation

TM-5903/000/00

Axioms:

Model:

(1)

(2)

(3)

(4)

(5)

(6)

P(a, b, f, f, i)

(Vs1) (Vx1) (Vx2) (Vx3) (Vv1)P(x1, x2;f, v1, s1) =»P(x3, x2, f, v1, walk (x1, x3, s1))

(Vs2) (Vx4) ('o'x5) (Vv2)P(x4, x4, f, v2, s2) => P(x5, x5, f, v2, pushbox (x4, x5, s2))

('o's3) (Vx6) ('o'v3)P(x6, x5, f, v3, s3) => P(x5, x6, t, v3, climbbox(s3))

(Vs4) (Vx7) ('o'v4)P(x7, x7, t, v4, s4) ==> P(x7, x7, f, v4, jumpoff(s4))

('o's5)P(c, c, t, f, s5) ~ P(c, c, t, t, grasp(s5))

a is the original location of the monkey
b is the original location of the box
c is the location over which the bananas hang
t is "true"
f is "fal ;e"
walk, pushbox, climbbox, jumpoff, and grasp are the sequence of operators achieved by

applying the operator to its arguments
i is the null sequence of operators
P(x1, x2, x3, x4, x5) is the relation - can the monkey be at location x1, the box at

location x2, the monkey on the box (as x3 is tor f), the monkey has the bananas

(as x4 is tor f), after the application of the operator sequence x5?

Proof: · (1) P(a, b, f, f, i) (2) • P(b, b, f, f, walk(a, b, i))

(3) I

PJ c, I, I, pushbox(b, c, walk(a, b, i)))

(4) I
PJ c, t, f, climbbox(pushbox(b, c, walk(a, b, i))))

(s) I

P(!, c, t, t, grasp(climbbox(pushbox(b, c, walk(a, b, i)))))

Figure 4.7. The Monkey and Bananas Problem

30 June 1977 4-43
System Development Corporation

TM-5903/000/00

The initial state is defined as axiom l in Figure 4.7 as P(a,b,f,f,i)--that is,
the monkey is at a, the box is at b, the monkey is not on the box, he does not
have the bananas, and this state has been achieved by applying the null sequenc1
of operators, i. The five operators are defined by axioms 2-6.

Axiom 2 defines the walk operator as: The monkey can walk from where he is at
(x1) to any place (x3) as long as he is not on the box. Note, this axiom
explicitly states that the box stays in the same place and possession of the
bananas does not change because of walking.

Axiom 3 defines the pushbox operator as: If the monkey and the box are at the
same place (x1) and he is not on the box, then he can push the box anywhere he
wishes (x 5). Further, after pushing the box, the monkey and box will be at the
same location, and possession of the bananas does not change.

Axiom 4 defines the climbbox operator as: If the monkey and the box are at the
same place (x6) and he is not on the box, then he can climb onto the box.
Positions and possession remain the same.

Axiom 5 defines the jumpoff operator in a similar manner.

Axiom 6 defines the grasp operator as: If the monkey and the box are both at
position c (where the bananas are located), he is standing on the box, and he
does not have the bananas, then he may grasp them. Further, positions do not
change and he is still on the box.

The prob-iem is solved in a manner similar to that used for the last problem.
First, a related theorem is proved; namely:

From this proof, the values of s, x1 , x2, and x3 are found, by mechanical means,
to establish the more interesting theorem,

P(c,c,t,t,grasp{climbbox(pushbox(b,c,walk(a,b,i)))))

30 June 1977 4-44
System Development Corporation

TM-5903/000/00

P's fifth argument then gives the monkey a verified plan to get the bananas:
walk from location a to b, push the box from b to c, climb on the box, and,
finally, grasp the bananas.

The proof of the final theorem is illustrated at the bottom of Figure 4.7. The
arrows connecting the WFFs are labeled with the number of the axiom used to
draw the conclusion at the end of the arrow. It should be noted that (1) the
derived result i;, not unique--for instance, the monkey could walk all over the
room, jump.on and off the box, and generally engage in monkeyshines, until he
gets hungry enough to get down to business; and (2) it is unlikely that any
automated problem solver would find just the operator applications shown in the
f·1gure without trying several false paths. For example, after walking to the
box, walk, climbbox, and pushbox are all allowable operations. Some sort of
trial-and-error or heuristic method would be necessary to determine what step
should be next tried. These comments apply also to the previous example.

This section has been relatively lengthy because predicate calculi are the best
theoretically understood and among the oldest used techniques for representing
knowledge in a computer. We conclude by summarizing some of the characteris
tics and merits of this formalism.

The predicate calculus is clearly a declarative form of knowledge representation.
At such, it is modular and reversible. The chunk size (i.e., a WWF axiom) is
variable. In practice, however, one would never expect to encounter an axiom
that comprised more than a half dozen or so clauses because it is formulated by
a human expert. If it were any larger, its intelligibility (to a human) would
be greatly diminishe l. On the other hand, representing procedural knowledge in
the predicate calculus is at best difficult. (Consider encoding, as WFFs, the
knowledge embedded in the example shown in Figure 4.5; further consider the
difficulty of a human domain expert's doing the encoding.)

Another disadvantage of the predicate calculus is that the entire set of axioms
must be consistr!nt. That is, if a WFF, W, logically follows from the axioms,
then the WFF "'VJ does not. If an axiom set is not consistent, it is easy to

30 June 1977 4-45
System Development Corporation

TM-5903/000/00

demonstrate that every WFF has the value T. The onus of maintaining consistencJ
in a KS containing WFFs is a major problem. For one thing, it makes it impos
sible to include heuristic and possibly contradictory rules of thumb and other
sorts of expert knowledge, and thorough formalization may not be within the
state of the art of the application area.

One advantage of using the predicate calculus is that automatic procedures are
known such ·~hat if N follows from the axioms, then it can eventually be proved.
However, no theoretical upper bound exists on the amount of time it will take
to find a proof. One can attempt to evade this problem by trying to prove W
and W in parallel and quitting when either proof succeeds. However, since the
first (and higher) order predicate calculi are undecidable, it may therefore be
the case that neither proof process terminates. Hence, one must impose some
sort of resource limitation on the effort expended to derive or prove something
from the axioms.

Another characteristic of predicate-calculus representations is demonstrated by
the example of Figure 4.6--namely, there are two broad categories of axioms.
First, there are specific facts such as "Jack is Jill's husband" or "Jill lives
in Boston. 11 Second, there are general assertions such as "married couples live
at the same place. 11 In any actual application domain, the number of facts will
be overwhelming when compared to the size of the axiomatic base for a branch of
mathematics or logic. The result is impractically slow proof procedures or the
use of dif<'erent methods, in the CE, to handle facts and general knowledge. For
a good discussion of this problem and a proposed approach to using predicate
calculus in practical areas, see P. Klahr (op. cit.).

Many publications exist in the area of using the predicate calculus for a knowl
edge representation and theorem-proving techniques for solving problems. The
best introduction to the area is Nilsson (op. cit.). A sampling of other work
is to be found in [BLEDSOE73], [FIKES71], [GERLERNTER63], [GREEN68], [P. KLAHR77
and 75], f P0PLE73], [ROBINSON70 and 65], [SANDEWALL70], and [YATES70].

30 June 1977

4.1.2.4 Production Rules

4-46
System Development Corporation

TM-5903/000/00

Production rules have been used as the prinicpal method of representing
knowledge in many (if not most) of the highly successful KB systems--for
example, MYICIN and DENDRAL. Therefore, their importance is immediate. This
section describes production rules using several examples and introduces termi
nology and issues.

A production rule is a specification of a conditional action. It consists of
a left hand side (LHS), also called the condition or the antecedent, which
describes a situation, and a right hand side (RHS), also called the action or
consequence, which describes something that may legally be done in a situation
described by the RHS. For example, in 11 If you are outdoors and it is ra1n1ng,
then open an umbrella. 11 The conditions are (l) being outdoors and (2) rain.
The action is to open an umbrella.

Production system is an ambiguous term. Its original meaning was a KS com
prised of production rules. In current usage, the meaning of the term produc
tion system refers to a three-component entity: (l) a collection of production
rules, (2) a workspace, and (3) a control mechanism. The production rules are
represented by some agreed-upon syntax, by means of which the LHS and RHS are
built up from a set of primitives and symbols that correspond to objects, func
tions, and predicates in a domain. (See the previous section for a description
of similar correspondence rules when using predicate calculus formulae.) The
workspace: also called the data base, contains the total description of the
system's current sta:e or situation. The LHS of a rule describes, or is
matched against, the contents of the workspace. If a production is applied,
i.e., its LHS matches and its RHS is executed, then the RHS actions modify the
workspace.

*In systems used to do psychological modeling (e.g., PSG [NEWELL73]), the
workspace is limited by a fixed maximum number of entries, usually 7 to 12,
called the short-term memory.

30 June 1977 4-47
System Development Corporation

TM-5903/000/00

The control mechanism generally has the form shown in Figure 4.8. The first
part, represented by the FOR loop, builds the conflict set--the set of all
production rules whose LHSs are satisfied. If the conflict set is empty, then
processing is terminated, and the result is the contents of the workspace.
However, if the conflict set is not empty, then the conflict-resolution
strategy selects one member of the conflict set and the RHS of the selected
production rule is executed. The entire cycle is then repeated until the ter
mination condition is reached.

loop: conflict_set+empty;
FOR p rn set_of _production_rules

DO IF left_hand_side(p) matches work_space
THEN add p to conflict_set;

IF null conflict_set THEN terminate;
q+resolution_of(conflict_set);
execute right_hand_side(q);
GO TO loop;

Figure 4.8. Control Mechanism for Production Systems

Several conflict-resolution strategies have been used or proposed. Among them
are:

rule order--There is a complete ordering of all production rules. The
rule in the conflict set that is highest in the ordering is chosen.

rule precedence--A precedence network (which may contain cycles) deter
mines an ordering.

generality order--The most specific rule is chosen.

data order--Elements of the workspace are ordered. The rule chosen is the
one whose LHS references the highest-ranking workspace element(s).

30 June 1977 4-48
System Development Corporation

TM-5903/000/00

regency order--Execute the rule in the conflict set that was most (least)
recently executed, or the rule in the conflict set whose LHS references
the most (least) recently referenced element(s).

non-deterministic--Execute every rule in the conflict set as if it were
the only member. Computation stops when any path terminates. This is
equivalent to backup in program schemes--see Section 4.1.2. 1.

The original use of a production system formalism to perform or simulate compu
tational tasks can be traced to [Post 36]. The example shown in Figure 4.9
closely approximates the original notation. There are three rules--named I, M,
and F for convenience (the names are not part of the formalism). The rules are
applied to a workspace that is an ordered sequence of symbolic characters made
up from the two-character alphabet consisting of 1 and #. The form of each
rule is

LHS · >RHS

Both the LHS and RHS have the same form, namely, an alternating sequence of $i
and strings of characters (including empty strings) from the alphabet. A
character string matches any identical string in the workspace, and a $; matches
any string (including the empty string). The LHS is said to match if the
sequence of $i and character strings match the entire workspace in their lexi
cal order. When a production is applied, the entire workspace is replaced by
a string define~ by the RHS. The RHS defines the character sequence that is
shown, with substitutions for each $i by the characters matched by the LHS.
For example, rule I matches the work space

with $1=111 and $2=1111.
workspace as #111#1111##.

#111#1111#

Thus, the RHS, #$1#$2##, generates or defines the new
In the figure, the process of applying the rules is

shown until a final result is produced. Arrows connecting consecutive workspace

30 June 1977 4•49

PRODUCTION RULES

(I) #$1#$2===>#$1#$2##

System Development Corporation
TM-5903/000/00

(M) #l$1#$2#$3==:;>#$1#$2#$2#$3#

(F) ##$1#$2==:;>#$2#

EXAMPLE USE

#111#1111#

j1
#111 #1111 ##

IM
#11#1111#1111#

IM
#1#1111#11111111#

!M
##1111#111111111111#

IF
#111111111111#

Figure 4.9. Use of Production Rules to Multiply

30 June 1977 4-50
System Development Corporation

TM-5903/000/00

representations are labeled with the name of the applicable rule. The
conflict-resolution strategy is to use either rule Mor rule F instead of
rule I whenever there is a conflict. If the original input is a sequence of
n l's and a sequence of m l's delimited by#, i.e.,

then the result is a sequence of nm 1 's bracketed by a pair of #'s (e.g., unary
multiplication).

The next example (see Figure 4.10) shows a production system that translates
arithmetic infix expressions, composed from variable names A, B, and C and
operators + and *, into the equivalent Polish prefix expression. A Polish pre
fix expression is either a variable name or a list whose first element is a
function or operator and whose subsequent elements are arguments. Thus,
(+ exp1 exp2) is the Polish equivalent of the infix expression exp1+exp2. This
example is based upon standard techniques for constructing compiler-compilers;
see, for example, [SCHORRE64].

In the example, each production rule has the form

The LHS of the rule is the sequence pat1 ..• patn, and the RHS is
name[part1 ... partm]. Each pat; is either one of the input character set
(i.e., A, B, C, +, ot· *) or a name appearing in some rule's RHS. The LHS is
satisfied whenever each pat; exactly matches an entity in the workspace and
the entities in the workspace are contiguous and in the same order as the
appearance of the pat;. Note that it is not necessary to match the entire
workspace for the LHS to be satisfied. The RHS specifies that the matched por
tion of the workspace is to be replaced by name. Associated with name is a
value, which is part1 ... partm. (The value is not used in determining subse
quent LHS matches.) Each part; is either a character constant (from the input

30 June 1977 4-51
System Development Corporation

TM-5903/000/00

PRODUCTION RULES

(vl) A-+var[A]

(v2) B+var[B]

(v3) C+var[C]

(tl) var+term [l]

(t2) term*term+term[(*l 3)]

(al) term+exp[l]

(a2) exp+exp+exp[(+ 1 3)]

EXAMPLE USE

A+B*C I vl-3

var[A]+var[B]*var[C]

ltl
term[A]+term[B]*term[C]

lt2
term[A]+term[(* B C)]

l•l
exp[A]+exp[(* B C)]

l•2
exp[(* A (* B C))]

Figure 4.10. Use of Production Rules to Translate

30 June 1977 4-52
System Development Corporation

TM-5903/000/00

set or, in this case, one of the additi ona 1 characters 11 (11 or 'T'), or an
integer. If part; is. an integer, say k, then it specifies the value associated
with patk. The control mechanism uses the first rule that applies in the given
order--vl through a2.

The bottom portion of the figure traces the chain of modifications to a work
space whose inibal content is A+B*C. When activity terminates, the workspace
is the single part, exp, and the value associated with this part is
(+A(* BC)), the Polish-prefix equivalent of the initial infix expression.
Consecutive workspace configurations are connected by labeled arrows; the label
is the name of the production rule that caused the modification. (When several
modifications are made by the same (or similar) rules, e.g., vl, v2 and v3,
then all transformations are shown simultaneously.) When the workspace con
tents are

term[A]+term[B]*term[C]

rule t2 is applied. The table below identifies the components of the rule and
the matched parts and values for this ~ule .application:

term

*
te.rm

name term

part1

part2

part3

part4

part5

*

3

term

*
term

[B]

[C]

B

c

30 June 1977 4-53
System Development Corporation

TM-5903/000/00

Thus, this rule replaces term[B]*term[C] with term[(* BC)]. Therefore, the
entire workspace becomes

term[A]*term[(* B C)]

The rest of the example can be analyzed in a similar manner.

The last example is a production system that assists the service manager and
mechanics in an automobile repair agency (see Section 2.1). The scenario for
using this system is the arrival of a customer at the agency. He reports the

symptoms and problems to the service representative, who then enters this infor·
mation into the system. The system has at its disposal a data base of past
problems, repairs, and services performed on the vehicle, and a KS of product
ion rules that describe cause-and-effect relationships among the performance
characteristics and measurable attributes of an automobile. Using the rer1orte1
information, the past-history data base, and the KS, a diagnostic and repair pl,
is formulated and implemented.

Figure 4.11 gives a few of the production rules that might be present in such
a system. Each rule is named; however, the rule names are used only for con
venience. The format of the rules is

IF lhs 1 c1 lhs 2···Cn-l lhsn

THEN rhs1 [p1] K1 rhs2 [p2] ~- l rhsm[pm];

where the c1 and K1 are the connectives AND and OR. The LHS is everything
between the keywords IF and THEN, and the RHS is everything following the THEN.
Each lhsi is an observable or measurable condition predicate, e.g., that the
tension of the fan belt is low or the engine is overheating. Each rhsi[pi] is
a condition, rhsi, that will follow with certainty or probability, pi. Thus,

30 June 1977 4-54
System Development Corporation

TM-5903/000/00

:~,:.

Rl IF fan belt tension is low
THEN alternator output will be low [.5] AND engine will overheat [.2];

R2 IF alternator output is low THEN battery charge will be low [.7];

R3 IF battery charge is low THEN car will be difficult to start [.5];

R4 If automatic choke malfunctions OR automatic choke needs adjustment
THEN car will be difficult to start [.8];

RS IF battery is out of warranty THEN battery charge may be low [.9];

R6 IF coolant is lost OR coolant system pressure cannot be maintained
THEN engine will overheat [.7];

R7 IF there is a high resistance short AND fuse is not blown
THEN battery charge will be low [.8];

R8 IF voltage regulator output is high
THEN battery will boil off fluid [. 3];

R9 IF battery fluid is low THEN battery charge will be low [. 4];

Figure 4.11. Production Rules for Automotive System KS

30 June 1977 4-55
System Development Corporation

TM-5903/000/00

rule Rl says that, if the tension of the fan belt is low, then there are two
possible consequences:

(1) T~at about one-half of the time the output of the alternator will
be low, and

(2) About one-fifth of the time the engine will overheat.

The other production rules, R2-R9, are interpreted in a similar manner.

A fact file in the system is shown in Figure 4.12. The information included
for each observation or measure is the agent from whom to gather data and the
relative difficulty (or cost) of gathering the data. There are four possible
agents for data gathering: (1) the customer (Cust), (2) the historical data
base,, (3) inspection by the service manager (SrvM), and (4) measurement by the
mechanic (Mech). The difficulty information will be combined with the confi
dence factors in the production rules to formulate the most cost-effective and
timely plan for the needed diagnostics and repairs.

Assume that a customer arrives at the agency with the vague complaint that his
car is hard to start. The service manager enters this information, including
appropriate customer and vehicle identification. The system then grows a struc
ture similar to that shown in Figure 4.13. The boxes are labeled with observ
able or measurable symptoms and are connected by arrows labeled with the names
of the production rule they represent. To the far right of each of the unknown
values (e.g., the box labels, such as battery-fluid level), the associated
agent and relative difficulty are listed. At this point, the system would
check the data base for information about the battery's warranty. If nothing
decisive \I.as found, then the customer would be asked whether the car was run
ning hot, and the service manager would continue to make on-the-spot observa
tions. Diagnostic procedures for causes not ruled out by the procedure to date
would then be placed on an ordered schedule for a mechanic. The ordering would
be based upon (1) cost effecti veness--a function of test difficulty, estimated

30 June 1977

OBSERVATIONS

Alternator output level

Battery charge level

Battery fluid level

Choke adjustment

Choke function

Coolant level

Coolant system pressure

Difficulty to start

Engine temperature

Fan belt tension

Fuse condition

Short in electric system

Voltage regulator level

Warranties

4-56

AGENT

Mech

Mech

SrvR

Mech

Mech

SrvR

Mech

Cust

Cust

Mech

SrvR

Mech

Mech

System Development Corporation
TM-5903/000/00

DIFFICULTY

4

3

2

5

5

2

5

Data Base

l

1

3

2

8

4

0

Figure 4.12. Data Gathering Procedure Fact File

30 June 1977

Difficult
To Start

R4 Choke
Malfunction

R4 1,,.
Choke Out of ·

I+- Adjustment

R7
I
I
I
&
I

~'
I
J

_I

~ Battery
Charge Low

·~ ·~ t: R5

R9

R2

4-57

Fuses Not
Blown

Short-High
Resistance

Battery Out
of Warranty

Battery
Fluid Low

Alternator
Output Low

High Engine
Temperature

System Development Corporation
TM-5903/000/00

AGENTS

Mech (5)

Mech (5)

SrvR (2)

Mech (8)

Mech (3)

DB (0)

RB
i.......

SrvR (2)
.....-

Voltage
Regulator Mech (4)
Output High

R1 Mech (4)

Low Fan Belt
Tension

Mech (3)

R1- Cust (1)

Figure 4.13. Example Flow in Auto Diagnostic System

30 June 1977 4-58
System Development Corporation

TM-5903/000/00

probability of being necessary, and ability to eliminate other tests; and
{2) availability of resources--specialty mechanics and test equipment.

The structure shown in Figure 4.13 was grown by an algorithm called back
chaining. A condition--in this case, "difficult to start 11 --is taken as a given,
and the goal of the system is to find the cause(s). Note that the production
rules state causes, then effects. Thus, the rules are used as if the knowledge
possessed a kind of symmetry. The back-chaining algorithm is

(1) Find all rules that have the initial or derived condition as their
consequence--in this instance, rules R3 and R4.

(2) Call the antecedents of these rules' derived conditions.

(3) Repeat steps (1) and (2), and terminate when no more can be done.

Figure 4.14 graphically shows the kind of structure grown for each kind of rule
format. In each example in the figure, cl is the initial or a derived condition.

Rule El is the simplest; al is added to the set of derived conditions. Rule E2
states that if al is the case, then both cl and c2 ought to follow. Thus, al
is a derived condition, and c2 may or may not be considered a derived condition,
depending upon the particular strategy used by the system. Rule E3 is really
equivalent to two independent rules "IF al THEN cl" and "IF al THEN c2. 11

Therefore, al is added to the set of derived conditions, and the c2 part is
ignored. Rule E4 states that both al and a2 must occur to support the conclu
sion, cl. Therefore, both are derived conditions. If either al or a2 is found
to not hold, then the search for support for the other can be discontinued.
Rule ES is equivalent to the two separate rules "IF al THEN cl" and "IF a2
THEN c2." Thus, both al and a2 are added to the set of derived conditions.

30 June 1977 4-59

E1 IF a1 THEN c1

E2 IF a1 THEN c1 AND c2

c1

c2

E3 IF a1 THEN c1 OR c2

E4 IF a1 AND a2 THEN c1

E5 IF a1 OR a2 THEN c1

c1

System Development Corporation
TM-5903/000/00

a1

a1

a2

a1

a2

Figure 4. 14. Back Chaining

30 June 1977 4-60
System Development Corporation

TM-5903/000/00

In this example and discussion, we have omitted several problems that can arise.
For example, suppose that rule RB (in Figure 4-11) had been written more accu
rately as the two rules

RB~ If voltage regulator output is high
THEN the battery will overcharge

Ra~~ IF battery is overcharged
THEN battery will boil off fluid

With these new rules, a fragment of structure shown in Figure 4.13 would be
replaced by that shown in Figure 4.15. Now, the interesting conclusion is that
a high battery charge implies a low battery charge. This is an apparent con
tradiction, since both conditions cannot hold at the same time. This kind of
situation can often arise in unpredicted ways if the system contains many
rules--more than a few dozen. In this instance, the contradiction is more
apparent than real--i.e., the charge of the battery will oscillate between high
and low as the battery fluid is replaced and boils off, respectively. So, in a
sense, there is a missing rule of_the form that adding fluid to a battery whose
charge and fluid levels are low will probably allow the battery to return to
normal conditions. However, to handle this kind of situation in general, it ~s
necessary that the control mechanism or CE have some knowledge about how to
proceed when faced with apparent conflicts and contradictions. One virtue of
production systems is that ad hoc knowledge may be .relatively easily incorpo
rated in the system to handle this.

Another issue not yet raised is that the structure shown in the above figures
may actually be a graph rather than a simple tree. This may arise from several
causes. For example, assume that high engine temperature caused battery fluid
to boil off (call this Rule RlO). Then Figure 4.16 would show a fragment of
the resulting graph. Another cause of graph.structure is loops within the
rules; the simplest cause is two conditions, either of which can cause the
other to occur. For example, high engine temperature causes coolant to boil
off, and low coolant level will cause the engine to overheat. A major problem

30 June 1977

R7

,~

Battery
Charge .._ -Low

A,. ~~

R2 R9

4-61

R5

Battery RS"
Fluid ..._·

Low
-·

System Development Corporation
TM-5903/000/00

Battery RS' Voltage
Charge Req. Output
High High

Figure 4.15. Fragment of Graph Structure

with the graph structure that occurs is development of appropriate mathematical
techniques to handle the generation of the confidence (or probability} factors
used to guide the system.

The remainder of this section discusses some of the key features and character
istics of the use of production rules to make a KS. Figure 4.17 summarizes the
following discussion in showing some of the interactions among the characteris
tics.* An arrow labeled with a 11 +" means that the source characteristic
enhances the destination characteristic; the_ opposite is true for arrows labeled
with 11 - 11 •

Rules as primitive actions. In a production system, the production rule is the
knowledge chunk. The smallest grain of behavior in which the system can engage
is the application of a single rule.

Indirect limited interaction channel. Rules are constrained to see and modify
only the workspace. They cannot "call" each other as subroutines. To achieve

*The discussion and figure are based, with some modifications, on [DAVIS75].

30 June 1977

R7

RS

,~ l
Battery ...
Charge Low

j~

4-62

RS

I
R9 Battery .. R10

Fluid Low

R2

System Development Corporation
TM-5903/000/00

High Engine
i.... R1 Low Fan Belt

Temperature Tension

Alternator i.... R1
Output Low

Figure 4.16. Fragment of Graph Structure

the effect of a call, one rule must leave a unique message in the workspace
that is recognized only by the invoked rule. This becomes more difficult to do
as the number of rules increases and is a method that quickly destroys the
major benefits of using production systems, such as independence of the knowl
edge chunks.

Constrained format. The LHS and RHS of the rules are normally built from a
simple set of primitives through a straightforward ~yntax. Even though some
systems allow programmer-supplied predicates and procedures to be invoked by
the rule's LHS and RHS, some restrictions are obeyed: (1) the operation of
the LHS will not modify the workspace, and (2) operation of the RHS will per
form only conceptually simple actions. These restrictions, like those men
tioned in the previous para~raph, are accepted so that the major advantages of
the production (such as ability to explain results) will not be compromised.

Machine readability. Because of the constrained format of production rules,
machine readability is enhanced. Also, compilation by the knowledge acquisition
mechanism (such as computing links between one rule's consequence and another
rule's antecedent) is simplified.

30 June 1977

Modularity

+

1~

Extensibility

j~ j~

- +

Constrained
Format

Indirect
Limited
Interaction

~ Channel

+ l-
r+

Modifiability
of Behavior

I~
+ - Conflict-

i.- Resolu.tion
Strategy

1!·
Consistence
Checking

+f
+
f-+

Machine
Readability

4-63

- Visibility -
t-+ of Behavior ~

+ ,_.
+

-.....,

System Development Corpor~tion
TM-5903/000/00

+J

Rules As Explana-+
Primitive r+ tions of
Actions Solution

~~

+

;

Figure 4.17. Facets of Production Systems

30 June 1977 4-64
System Development Corporation

TM-5903/000/00

Modularity. Since direct interaction among rules is constrained, it is
possible to modify rules, delete rules, and add new rules as necessary because
other rules are not directly dependent upon the rules that are changed or
added.

Extensibility. Extensibility is a corollary of modularity. The ability to
augment the system to perform in an expanded domain is obviously enhanced by
the modularity and low interaction among the original rule set. On the other
hand, extensibility may be hampered because of format constraints if the
expanded domain necessitates the use of a more robust set of primitives.

Visibility of behavior flow. The issue here is not the external manifestations
of the system's performance; rather, it is the ability to understand how the
system proceeds to a solution by a step-by-step analysis of its internal work
ing. In tracing a production system with a large rule set, one may be sur
prised at how often it goes off on nonproductive tangents before exhibiting
reasonable goal-directed activity. Several things account for this. One is
that application of a single rule .is the system's step siZe, and all rules get
an opportunity to examine intermediate results. Therefore, even when one rule
"knows" the rule most likely to continue on a path to a solution, the limit on
direct rule-to-rule communication inhibits the system from focusing attentio~.
One method of increasing goal-directed behavior in a production system is the
use of higher-level, strategic and tactical rules to guide the conflict
resolution strategy. For an interesting discussion of this approach, see
[ENGLEMORE77] and [DAVIS76].

Modifiability of behavior. This is a problem closely akin to extensibility.
However, the issue here is the ability to modify the rules so that the sys tern
focuses attention better or more quickly. This is obviously aided by modular
ity of the rule set and hindered by the problems that arise when explicit con
trol and sequencing are desired in a production system.

30 June 1977 4-65
System Development Corporation

TM-5903/000/00

Explanation of solution. A production system can (and usually does) explain
and validate its solutions to problems by displaying the rules it used to
derive the solutions. Because the rules are of a situation/conclusion form and
are a reasonable chunk size, the explanation method is appealing. However, if
the behavior is too erratic (see the paragraph above on visibility of behavior
flow), the system may provide an excellent explanation and defense of a seem
ingly silly activity. Modularity of the rules also contributes to the accepta
bility of the explanation because each rule is reasonably well self-contained.

Conflict-resolution strategy. Conflict-resolution strategy has an effect on
the ability to extend the system and/or modify its behavior. For example, if
the rules are ordered, it may take a great deal of work to insert a new rule
or modify an old one, because the ordering enforces an implicit dependency
among the members of the rule set.

Consistency checking. Some control mechanisms will not work properly if the
rule set can generate inconsistent results. (See the example shown in Fig-
ure 4.15.) For such systems, it is desirable that the knowledge-acquisition
mechanism be able to determine whether such conflicts can arise. This endeavor
is aided by the simplicity of format and ease of machine processing, but can be
difficult (if not impossible) with some conflict-resolution strategies because
the strategy determines whether the conflict can ever arise and, is so, how it
will be resolved.

Some works that describe the philosophy and theory of production systems are:
[CHOMSKY63], [DAVIS76 and 75], [GALLER70], [HEDRICK76 and 74], [J. McDERMOTT76a
and 76b], [MINSKY67], [J. MOORE73], [NEWELL76a], [POST43 and 36], and [VERE77].
Some work on the use of production systems for psychological modeling are
[MORAN73a], [NEWELL72b], and [WATERMAN75, 74 and 70].

vJorks using production system models in the field of medical applications are:
[DAVIS77 and 76], and [SHORTLIFFE76, 75a, 75b, and 73]. Some works relating to

30 June 1977 4-66
System Development Corporation

TM-5903/000/00

chemistry, molecular structure, and genetics are [BUCHANAN76a, 76b, 72, and 69],
[ENGLEMORE77], [FEIGENBAUM71], [LEDERBERG68], [MARTIN75], and [MICHIE73]. Some
other works about usage of production rules are: [ANDERSON76a and 76b],
[BARNETT76b], [COLLINS76], [EVANS64], [FLOYD61], [FORGY76], and [RYCHENER76
and 75].

4. 1.2.5 Semantic Networks

A semantic network is a method of representing declarative knowledge about the
relatiQns among entities. The major application has been to embody non
syntactic knowledge (e.g., semantics and pragmatics) in natural-language
understanding systems, but this has not been the only use. Because of their
inherent generality and naturalness, semantic networks have been used to repre
sent highly interrelated information that cannot be properly processed by stand
ard data (base) management techniques.

A semantic network is a KS. It is built up from knowledge chunks that are
instances of a relation. The format of a chunk is

where rel is a relation name and the ordered tuple, (a1 ... an)' is in the rela
tion rel. For example,

ISA(DOG,MAMMAL)

means (DOG, MAMMAL) is a member of the relation ISA. ISA is conventionally
taken to be the relation, more-specific-example-of. Thus, the above is the

30 June 1977 4-67
System Development Corporation

TM-5903/000/00

representation of the fact that a DOG is a specific kind of MAMMAL. For the
example,

BETWEEN(2,l,5)

the interpretation is the obvious one; namely, 2 is between 1 and 5.

Figure 4.18 shows a semantic network (or 11 net 11). The top of the figure lists
the instances of relations using the relation names TEMP, LOC, COLOR, SIZE,
ISA, and BETWEEN. (The latter two are defined as above.) TEMP(a,b) means a is
the temperature of b; LOC(a,b) means a is located at b; COLOR(a,b) means that
a is the color of b; and SIZE(a,b) means a is the size of b. The knowledge in
a semantic net is given meaning, as demonstrated here, by defining the relation
names and other symbols used in the instances of relations, in terms of exter
nal entities. Fortunately, the correspondences of names to external entities
can be made highly mnemonic by careful choice of the names.

The graph in the middle of·Figure 4.18 shows exactly the same knowledge that is
in the set of instances at the top of the figure. The entity names are con
nected by arrows labeled with appropriate relation names. For example, the
instance,

ISA(DOG,MAMMAL)

produces the graph fragment

DOG ISA > MAMMAL

Production of graph fragments for other than binary relations is more difficult
but still straightforward--see the example of BETWEEN in the figure.

30 June 1977 4-68
System Development Corporation

TM-5903/000/00

RELATIONS

TEMP (WARM-BLOODED, MAMMAL)
ISA (DOG, MAMMAL) ISA (CAT, MAMMAL)
ISA (FIDO, DOG) ISA (BOWSER, DOG) ISA (PUFF, CAT)
LOC (MARY'S, FIDO) LOC (FIREHO~SE, BOWSER) LOC (BOB'S, PUFF)
COLOR (TAN, FIDO) COLOR (TAN, BOWSER) COLOR (BLACK, PUFF)

--SIZE (401b, FIDO) SIZE (141b, BOWSER) SIZE (41b, PUFF)
BETWEEN (MARY'S, FIREHOUSE, BOB'S)

SEMANTIC NETWORK

MAMMAL

7 fTEMP
DOG WARM-BLOODED

is(""
FIDO BOWSER

,~ 11 \COLO; 1 \-LOC L07 SIZE \I SIZE \

MARY'S 401b TAN 141b FIREHOUSE

RULESOFINFERENCE

ISA(x,y) "ISA(y,z) =>ISA(x,z)
SIZE(x,y) ASIZE(u,v) AX< u=>SMALLER(y,v)
ISA(x,y) "r(u,y) =>r(u,x)

CAT

llSA
PUFF

1 "\.-LOG
COLOR\.

BLACK BOB'S

Figure 4.18. Example Semantic Network

30 June 1977 4-69
System Development Corporation

TM-5903/000/00

The external format of knowledge in a semantic network is usually very similar
to the one used herein with the addition of a capability to factor common
parts--for example, something like:

ISA({DOG CAT3}, MAMMAL) or

SIZE{(40 lb, FIDO)(l4 lb, BOWSER)(4 lb, PUFF)}

However, the internal storage of the semantic network closely corresponds to
the graphical presentation--that is, a network structure built using pointers
and list structures. The explicit connections among the entities enhances
efficiency of programs that search through the semantic network.

The bottom of Figure 4.18 gives some examples of inference rules for the seman
tic network. The format of the rules is well-formed formulae from the predi
cate calculus. It is also possible to represent the inference rules as a
production system. This has the advantage of allowing procedural knowledge
to be used to test for complex enabling conditions that might be difficult to
express as WFFS. Variables, written as small letters, are assumed to be uni
versally _quantified. The first rule says that (for all x, y, and z) if x is a
y and y is a z, then x is also a z. An example of this is: FIDO is a DOG and
a DOG is a MAMMAL; therefore, FIDO is a MAMMAL. The second rule says that if
y and v are two entities that 11 have 11 SIZE, and the size of y is less than the
size of v, then y is SMALLER than v. Thus, the instance of the relation,

SMALLER(PUFF,BOWSER)

This inference rule defines instances of relations whose names do not appear
explicitly in the semantic network. Contrast this to the first rule above,
which states that ISA is transitive.

30 June 1977 4-70
System Development Corporation

TM-5903/000/00

The last example inference rule says that, if x is a y, and y has a property
conferred by the binary relation, r, then x has the same property conferred by
r, i.e., properties are inherited. Thus, FIDO is a MAMMAL (by the transitivity
of ISA--first rule), and a MAMMAL has the property, WARM-BLOODED (conferred by
the relation TEMP), therefore, FIDO is WARM-BLOODED. Formally,

ISA(FIDO,DOG) A ISA(DOG,MAMMAL)----i>ISA(FIDO,MAMMAL)

ISA(FIDO,MAMMAL) A TEMP(WARM-BLOODED,MAMMAL):==>TEMP(FIDO, I

WAR~;-BLOODED)

However, the indiscriminate use of the third rule can cause derivation of
incorrect results. For example,

ISA(DOG,MAMMAL) A ISA(CAT,MAMMAL) ~ISA(DOG,CAT)

In order to avoid this kind of problem, it is necessary to have some (non
syntactic) knowledge about the relations to which inference rules are applied.
One possible solution is to have a rule, such as the third example rule, for
each relation that is inheritable. (The variable, 'r, is replaced by the rela
tion name in the rule.) Another solution is to embed the interface rules in
the CE along with the necessary ad hoc knowledge to avoid the problems. Both
approaches cause problems, however, if the number of relations occurring in
the semantic network is large or if the relation set can be modified or
expanded.

A more general appraoch to the problem treats relation names and entity names
more uniformly. For example, temperature is defined as an inheritable property
by an instance like

INHERITABLE(TEMP)

30 June 1977 4-71

The third inference rule is then rewritten as

System Development Corporation
TM-5903/000/00

ISA(x,y) A r(u,y) A INHERITABLE(r) >r(u,x)

With this approach, relations can be arguments to relations, and hence have the
same properties as other entities. This is similar to higher-order rules in the
predicate calculus (see section 4.1.2.3). There are several advantages to this.
For one thir.g, instances such as

ISA(TAN,COLOR)

are allowed and provide a natural method of delineating legal values in a rela
tion and, therefore, of enhancing error detection and consistency checking.
Another advantage is improved flexibility and expandability. The major draw
back is a loss in run-time efficiency.

Another choice and tradeoff about a semantic network is the decision abo~t
which relations and which instances in the relations ought to be stored explic
itly and \vhich should be computed via the inference rules. Explicit storage
costs space, and inference rules cost computation time. For all but very small
semantic networks, some inference rules are necessary because the number of
instances of relations can grow in a highly nonlinear way; for the example in
Figure 4.18, the number of instances of the relation, SMALLER, grows as a quad
ratic function of the number of DOGs and CATs.

A technique often used with semantic networks is to make a (somewhat arbitrary)
distinction between general knowledge and specific knowledge and to store the
two in a different manner. Specific knowledge has the general characteristic
of being 11 low 11 in the tree--as shown in the middle of the figure. This means
(1) there are few if any chains below it; (2) therefore, properties have simple
values; (3) most entities in the same general classification have all and only

30 June 1977 4-72

System Development Corporation
TM-5903/000/00

a known set of properties; and (4) there are a large number of entities in a
general class. For our example, the specific knowledge can be displayed
tabularly as

ENTITY

FIDO

BOWSER

PUFF

ISA

DOG

DOG

CAT

SIZE

40lb

14lb

4lb

COLOR

TAN

TAN

BLACK

LOC

MARY 1 s

FIREHOUSE

BOB's

The above conditions make it likely that (1) the specific knowledge can be
gathered into a tabular form (perhaps a different form for different classes
of knowledge} by simple mechanical means, and (2) the specific knowledge (which
is usually most of the semantic net) can be kept in relatively inexpensive
secondary storage and even accessed through an efficient, existing data manage
ment system. The general knowledge (everything else) is kept in primary memory.
Fortunately, most processing by the inference rules occurs on other than the
"bottom" of the network, so that efficiency is maintained.

Semantic networks are by far the best available technology for representing
definitional and relational knowledge that is too complex for ordinary data
management techniques. This is the case because (1) the structure allows for
the inclusion of ad hoc and pathological information, and (2) the utilization
of inference rules permits straightforward enhancement of the inherent repre
sentational powt!r and completeness.

On the other hand, there are some disadvantages to the use of semantic networks
to represent knowledge in a KBS. The principal one is that the chunk size is
fairly small. This leads to two problems: (1) instances of relations do not
lend themselves to use in explanations of chains of reasoning developed by the
inference rules--chains can be quite lengthy and tedious, i.e., below the
threshold of interest; and (2) processing a semantic net can consume large

30 June 1977 4-73
System Development Corporation

TM-5903/000/00

amounts of computer time. Another disadvantage is that many kinds of knowledge
cannot be expressed (as instances of relations) in a natural manner. Examples
are most procedural knowledge, relative and subordinate knowledge, and quanti
fied knowle0ge. (See [WOODS75] for a thorough discussion of these and other
issues associated with the use of semantic networks.)

Some papers and articles about semantic networks and their utilization are:
[DUDA77], [GRIGNETTI75], [MYLOPAULOS75a and 75b], [NORMAN75], [QUILLIAN68],
[SCHANK75a], [SIMMONS73], [TRIGOBOFF76], [WOODS71], and [YAKIMOVSKY76].

4.1 .2.6 Frames

A research topic of great current interest in computer representation of knowl
edge is frame theory. No one has succeeded in defining frames to all research
ers' satisfaction, but there is a commonality in motivation and in some of the
proposals to date. The common motivating issues are (1) accormnodation of both
declarative and procedural knowledge in the same representational formalism,
(2) accommodation of mundane, ad hoc, and idiosyncratic knowledge along with
that which is more uniform and repetitive in nature, (3) accormnodation of par
tial and somewhat contradictory or inconsistent knowledge, and (4) ability to
plausibly ~eason from a KS with features like the above. Two major issues not
yet dealt with in the emerging theory are explanation of system behavior and
naturalness of the knowledge-acquisition interface. (These issues are related,
and both stem from an unwieldy external format of a frame. See the example
be 1 ow.)

Some of the cormnon features in proposals about frames are: (1) A frame is a
knowledge chunk that (2) has a collection of definitional and procedural knowl
':'Cge about an object, action, or concept. (3) A frame is a complex data struc
t~r~ :nat 14) has named slots corresponding to definitional characteristics and
(5) the aoil1ty to attach procedural knowledge to the slots and/or the frame
itself. Further, there can be associated with the slots: (6) restrictions on

30 June 1977 4-74
System Development Corporation

TM-5903/000/00

the contents (like data-typing information), (7) default values that can be
static or computed in terms of the values in other slots, and (8) monitors-
procedures that test for and deal with unusual conditions. There can be asso
ciated with the frame itself: (9) expectations--assumptions or predictions
based upon the existence of an entity described by the frame, (10) methods of
logging and correcting complaints that arise when expectations are not met, and
(11) specialized procedural knowledge for manipulation of the entity.

It is not possible to give a simple example that demonstrates all the above
features of a f~ame. Therefore, the example in Figure 4.19 makes no such
claim--it is offered to show some of the intended flavor of a frame system.
The top of the figure gives definitional information about a dog. The first
line states that a dog is a 11mammal 11 • The next line means that there is a slot,
named 11 kind 11 (of dog), that may be filled with a value of (type) 11 breed 11 •

(11 Breed 11 in this example is itself a frame.) The color of a dog is limited to
one or a mixture of the stated colors by the SUBSET.OF operator. Default
values are indicated by underlining, and the FROM operator is used to pick out
va 1 ues from othtir frames. Thus, the combined effect of the phrase FROM col or
OF kind is to make the default value for the color of a dog the default for his
breed. Going on, the dog frame has a slot for the number of legs that is
restricted to be no more than four with a default of four, and a weight that
is a positive number with a default weight that is determined by the typical
size of members of the same breed. The state of a dog is either "adult", the
default, or 11 puppy 11 if the age is known to be less than one year. The age of
a dog is restricted to a positive number and its default value can be calculated
procedurally by the trivial expression, 11 now-birthday 11 • The 11 dog 11 frame is
finished by declaring birthday to be a date and name to be a 11 string 11 •

The bottom of the figure shows a frame for 11 boxer 11 and declares that boxer is a
breed--but only a breed of dog. The color of a boxer is restricted to one of 1

the colors 11 tan", "brown", and "brindle", with a default of "tan". (Note, it
is legal for this to conflict with the dog frame; i.e., brindle is not mentioned · ,

30 June 1977 4-75
System Development Corporation

TM-5903/000/00

dog FRAME ISA mammal

boxer

kind breed

color SUBSET.OF {tan brown black white rust}

FROM color OF kind

leggedness 0 ... 4

weight >0, FROM size OF kind

state adult OR puppy if age <l

age >O, now-birthda~

birthday date

name string

END dog

FRAME ISA breed OF dog

color ONE.OF {tan brown brindle}

size 40 ... 60

tail bobbed OR long

ears bobbed OR floppy

temperment playful

COMPLAINTS IF weight >100 THEN ASSUME(great dane)

END boxer

Figure 4.19. Example Frame Definitions

30 June 1977 4-76
System Development Corporation

TM-5903/000/00

there.) If this breed did not have a characteristic color restriction, then
' -- --- ·- .

this slot would be omitted; this would have the effect of not giving a default
assignment for color in the above dog frame.) The next slot says that the size
of a boxer is between 40 and 60 pounds. No default is specified. Thus, the
default value for weight of a boxer in the "dog 11 frame is just this range
(rather than an exact value) when applied to a boxer. The tail and ears slots
are defined with default value "bobbed" and the respective alternatives of
"long" and "floppy". Temperament is shown to always be playful. The last line
shows an example of a complaint and ad hoc knowledge used to make a recommenda
tion, namely, if you see a giant boxer, then assume that it might be a Great
Dane instead.

Figure 4.20 shows an example use of frames in a recognition task~ The top of
the figure shows some feature values (e.g., color is tan, ears are bobbed) that
have been detected for an object, here identified as number 456. The CE has
matched the known feature values with the available frames and has manufactured
the working hypothesis shown at the bottom of the figure--namely, a boxer dog
that is assumed to have a bobbed tail and to be an adult. It is noted that
this particular boxer (object number 456) is mean and that this is exceptional.
Also, the size of the boxer was only approximately known, but the approximation
has been used in lieu of a more accurate value.

It is hard to see from this example how the CE goes about this kind of recogni
tion task. However, a possible scenario would follow these lines. A general
matching procedure would attempt to instantiate all frames in the system until
a reasonable fit was found; in the example, 11 boxer 11 is a reasonable match.
Slots that are yet unfilled would be used to hypothesize other values not yet
detected. For the boxer frame, a bobbed tail would be predicted and put on an
agenda of things to look for. Assuming there was a frame for tails, it might
possibly contain heuristic knowledge about how to more carefully scan the raw
data to confirm or deny the existence of a particular kind of tail. Other

30 June 1977

LOW-LEVEL INFORMATION

OBJECT 456

color = tan

ears = bobbed

leggedness = 4

size = 40-45

4-77
System Development Corporation

TM-5903/000/00

temperment = mean

TRIAL IDENTIFICATION

[OBJECT 456 ISA dog

kind boxer WITH [color tan

size 40-45

tail ASSUMED bobbed

ears bobbed

temperment EXCEPTIONAL mean]

color tan

leggedness 4

weight 40-45

state ASSUMED adult]

Figure 4.20. Inexact Match by a Frame System

30 June 1977 4-78
System Development Corporation

TM-5903/000/00

activity that could emanate from the boxer frame is the activation of a
complaint. Thus, if the weight of the boxer was too large, the complaint
mechanism could (tentatively) change the identification of the instantiation
of the boxer frame into one for a Great Dane. There are two advantages to
this: (1) rather than returning to a very general pattern-matching activity,
a candidate that is highly likely to be right is selected next, and (2) the
slot values for this frame can be transferred to the new frame with little
additional work.

Besides the prediction and correction activity resulting from the partial match
to a frame, a third process can be tried. Namely, if the match is good enough,
then the frame can become more informative. For our example, the transforma
tion is from a boxer to a boxer dog where more information is absorbed, e.g.,
leggedness.

The above steps (prediction, correction, and inclusion of more information)
continue until all of the low-level information is consumed and the correction
activity reaches quiescence. The belief is that this style of recognition will
be more goal directed--and hence more accurate and efficient--than general
techniques that depend upon regularity and uniformity of structure.

Some interestirg work using frame representations are [DBOBROW77a, 77b, and 75c],
. -· -----·------- - ··-

[DAV IS 76], [DUNLAVEY75], (GOLDSTEIN76], [KUIPERS75], [MALHOTRA75b], [MINSKY75],
[RUBIN75b]' and [vlINOGRAD75].

30 June 1977 4-79
System Development Corporatior

TM-5903/000/0C

4.1.3 Comparison of Knowledge Representation Techniques and Issues

This section attempts, in an informal way, to compare the six techniques
described in Section 4.1.2 for representing knowledge in a KS. It must be
stated that those six are not the only ones available. They were selected for
analysis because they are the most widely used and best documented, which
suggests that they are the techniques that have been most successful for a
variety of applications. On the other hand, there are many successful systems
and research activities that have used one-of-a-kind techniques and methods or
are attempting to discover new, general methods to enhance the above six. An
example of such a unique endeavor can be found in [KAHN 75]. This work is
cited in pr.rticular because it addresses an important issue for problem
solving systems--namely, techniques for representing knowledge of time depen
dencies and temporal history. Other examples of specialized representation
techniques are available in the literature on speech understanding systems and
game-playing programs.

4.1.3.l Comparison of Techniques

Figure 4.21 compares the six described techniques by a variety of criteria.
A three-valued scale is used: §pod, Mediocre, and Bad.* For each criterion,
the full scale range has been used even though it may be the case that no
technique deserves one of the extremal ratings. For example, none of the
technique.; has a form that is really "natura 1 to the expert." That is, none
are technical English with mathematical expressions. However, given only a
three-valued scale, it is desirable to use ali of it in order to provide
reasonable discriminations. On the other hand, the relative ratings are merelJ
the opinion of the authors, and any more than a three-valued scale would imply
unrealistic prec1s1on. (The meanings of most of the comparison criteria can
be found in Section 4.1.2.4.)

* Perhaps, to assuage the feelings of the proponents of each technique, the
scale values should be excellent, great, and good.

30 June 1977 4-80

FSM PGM

Represent declarative KS M B

Represent procedural KS G G

Represent credibility factors M M

Represent meta-knowledge B G

Represent aci hoc knowledge M G

Chunk size big big

Aid to explanation B B

Natural to expert M B

Modularity M B

Easy to extend system M B

Easy to modify behavior M M

Reusable components M B

Run-time efficiency M G

Tolerate inconsistency M M

Available theory G M

System Development Corporation
TM-5903/000/00

P.CALC PROD S.NET FRAME

G G G G

B M B G

B G M G

M G M M

B M M G

sml med sml big

M G M B

M G M B

G G G M

G G G M

B M B G

G M M B

B M B M

B G B G

G M G B

Figur~ 4.21. Comparison of Knowledge Representation Techniques

30 June 1977 4-81
System Development Corporation

TM-5903/000/00

In some sense, it is difficult to compare the techniques because, for most
applications, one of them will clearly be more natural than the others. How
ever, two general comparisons are worthy of some discussion: Predicate
calculus versus production systems, and semantic networks versus frames.

Predicate-calculus and production-system representations invite comparison
because of a striking similarity in their surface appearances. (Consider well
formed formulae written as implications and production rules written in an
IF-THEN formalism.) In fact, the predicate-calculus representation can be
modeled in a reasonably straightforward way as a production system. However,
the converse is not true, because: (1) production rules may use domain
specific procedures, (2) production rules have access to a data base in which
to maintain state in a domain-specific manner, (3) production rules may
include confidence factors, (4) production systems can tolerate inconsistent
knowledge, and (5) production rules can describe state-changing operations
better. (See the example of the monkey and bananas problem in Section 4.1.2.3.
The axiom defining each operator must produce a total state description so
that at each stage, consistency can be maintained.)

Obviously, production systems offer a more natural and more efficient tech
nology for many applications. The value of the predicate calculus is that the
theory of use is highly developed, and, if the system can rely upon the con
sistency of the knowledge, then algorithms are available to solve any problem
that has a solution. Another comparison between predicate calculus and pro
duction systems is chunk size. Because of the five above points, production
rules can express more knowledge (much of it implicit) for a given (lexical)
size. Also, it appears that the chunk size is more appropriate to the experts
using the system and providing knowledge at the acquisition interface.

The comparison between semantic networks and frames is at best tenuous, since
there is no agreed-upon definition for frames. However, an attempt at compari
son is worthwhile, because some of the differences point out directions in

30 June 1977 4-82
System Development Corporation

TM-5903/000/00

which research is going in the area of knowledge representation. The first
thing to note is that frames, as we have shown them in Section 4.1.2.6, appear
to 11 cover 11 semantic networks. This is evident when one makes a correspondence
between entity names and frame names and slot values, and between relation
names and slot types. With these correspondences in mind, the rest of the
comparison is easier to make.

First, compare the chunk size.
For frames, a chunk is the total
envolved. The second comparison

In a semantic net, a single relation is a chunk.
set of relations in which the entity is
is simply that the frame may have attached

procedures to assist the general reasoning mechanism in various ad hoc ways,
and the semantic networks do not. On the other side, the semantic network
is more amenable to use with 11 universal 11 reasoning principles, e.g., the rules
of inference. Also, uniformity in structure allows the more specific knowledge
in semantic networks to be handled in less costly ways (e.g., as an external
da .. " •. ase); frame systems are not as likely to profit from uniformity. In
summary then, it appears that frame systems are a better and more efficient
representation technique when the domain has a large amount of ad hoc or
partial knowledge and uses many idiosyncratic pri.nciples of reasoning. Seman
tic networks appear better when the domain has a high degree of regularity and
uniformity. It is our guess that the former characteristics better describe
the domains in which non-toy problem-solving KBS ultimately will perform, and,
hence, tha.t frames will ultimately replace semantic networks and the other
representation techniques for most applications. But we do not expect this to
take place before another five or ten years.

4.1.3.2 Knowledge Representation Issues

This section briefly enumerates some of the important problems and hence
research topics in knowledge representation.

Epistomology--A general definition of knowledge and understanding, though not
completely necessary, would provide a common ground for competing theories.

•

30 June 1977 4-83
System Development Corporation

TM-5903/000/00

An important issue in this area is the development of a taxonomy of knowledge
that would permit various representation and reasoning techniques to be more
adequately compared.

Higher-level knowledge--Included in this are control knowledge (what to do
next), meta-knowledge (knowledge about knowledge), and self-knowledge (under
standing limitations and capabilities). The issues are how to represent
higher-level knowledge, where to put it (i.e., in the CE or the KB), and how
to use it effectively.

Confidence factors--The problems are where to get them, where to use them, how
to combine them, and how to interpret them--hence, how they should effect the
reasoning process.

Explanations--How is a system to incorporate supporting knowledge chunks into
explanations and into defenses of its proposed solutio.ns? The problem arises
because the existing representation techniques are not flexible in format or
chunk size. Hence, the user (and the knowledge-providing expert) must some
times conform to the system, rather than the (desirable) reverse. The problem
is often made worse when the input knowledge is compiled into a physical form
from which the original chunks cannot be recovered. Also, it is unknown how
higher-level knowledge and confidence factors should be included in
explanations.

Extendability--There are several issues here: Who--the domain expert or the
system--is responsible for·mainta.ining consistency of the KB? If it is the.
system, how can such checks be automated? How· can partial knowledge be
handled? What knowledge compilation techni'ques are available that do not
preclude incremental modification and additions? How can the knowledge
acquisition bottleneck be widened by allowing more natural mode~ of expression?
This and the last issue, explanations, raise the question of how the system
interface and knowledge-representation methodologies ~hould be related.

30 June 1977 4-84
System Development Corporation

TM-5903/000/00

KS cooperation--In many KB systems, the KB consists of many fact files and
knowledge sources. The issue is how these fact files and knowledge sources
should cooperate, particularly if they are represented by different techniques.
Related topics are: How do different knowledge sources refer to the same
entity? How are discrepancies resolved when different knowledge sources provide
conflicting advice or conclusions? How does the acquisition mechanism know
where to put new chunks? How does the CE know which knowledge source to use
for which problem? How are 11 infinite loops 11 avoided when two or more knowledge
sources start passing the buck?

This list of issues about knowledge representation is in no way complete; it
omits open problems concerning a particular representation methodology (which
are, however, briefly covered in the sections about the individual methods),
and we hope it gives some flavor of the kinds of research areas that are cur
rently being pursued.

30 June 1977

4.2 WORKSPACE REPRESENTATION

4-85
System Development Corporation

TM-5903/000/00

The topic discussed in this section is methods for representing the workspace.
The workspace is the encapsulation of the system's current state in a problem
solving activity. It includes: (1) global variables--computed values, goals,
and input problem parameters; (2) an agenda--a list of activities that can be
done next; and (3) a history--what has been done (and why) to bring the system
to its current state.

The simple.;t example of. a workspace representation is the push-down stack in a
LISP-like system. The stack contains the bindings of global variables, return
addresses (a history snapshot), and the values of temporaries. There is no
agenda in a simple system other than the program counter. A more complicated
example is the data base in a production system. It contains the entire state
of the system, including an implicit agenda (the conflict set of rules that
can apply).

In most computer programs, the workspace can be represented in an ad hoc way
using whatever techniques are provided by the containing program-language sys
tem. However, this is not always adequate in KB systems because (1) the
capability to provide explanations is based in part on an ability to find the
trace of events (history) that produced the solution, and (2) a major part of
efficient plausible reasoning behavior is the procedure for selecting the next
thing to do--hence, the necessity for an explicit agenda and visibility of
enough state (global variables) to make informed decisions. Further> if a KBS
has many ~rnowl edge sources, the workspace representation may be used for
"impedance matching" and to provide a communication channel among them.

The remainder of this section will briefly describe a few techniques used to
r~present workspaces. No attempt is made to compare these techniques, because
there is rarely a choice; given a knowledge representation technique and a
procedure for reasoning in a domain, the choice of workspace representations
is strictly limited.

30 June 1977

4.2. 1 The CMU Blackboard

4-86
System Development Corporation

TM-5903/000/00

!~e Carnegie-Mellon University (CMU) speech-understanding system, Hearsay II,
employed a novel and interesting workspace representation called a blackboard-
see [ERMAN 75]~ The same technique has been adopted for use in a KBS';that
determines the structure of a protein from X-ray crystallographic data--see
[ENGLEMORE77].

The blackboard is a data structure that serves as an intermediary among multi
ple knowledge sources and the system's CE. The blackboard is two dimensional;
one dimension is levels of representation, and the other dimension is time.
In Hearsay II, the levels of representation are conceptual, phrasal, lexical
(words), syllablic, surface-phonemic, phonetic, segmental, and acoustic
parametric. The concept of level is that an entity at one level (e.g., a word)
is made up of a sequence (in time) of entities at a lower level (e.g., sylla
bles). (In the protein crystallography system, the levels form a partially
ordered hierarchy instead of a well-ordered set.)

In these systems, a KS examines entities at one level and hypothesizes or con
firms (the existence of) entities at another (usually adjacent) level. Fig
ure 4.22 shows the levels and knowledge sources in the Hearsay II system.
Arrows, labeled with KS names, show input and output levels, and some are
bi-directional. An entity in~ludes several pieces of information: a level
name, time restrictions or boundaries, a name, confidence level, and support.
Support for an entity is the collection of other entities that cause this
entity to exist.

Figure 4.23 shows a fragment of a blackboard. As depicted, the support is
ambiguous. For example, the word BAD at the· lexical level could be supported
by the existence of the phonemes B, AH, and D at the phonetic level. However,
the opposite could be true, namely, the word BAD could have been predicted
from higher-le:vel considerations and then caused the phoneme predictions.
Therefore, part of the support representation must include directionality
information. This simple example does not expose another important issue-
competition. For instance, assume the phoneme D was ambiguously recognized

------··-···----------- - ----------

30 June 1977

- Levels -

PHRASAL

LEXICAL

SYLLABIC

SURFACE
PHONEMIC

PHONETIC

SEGMENTAL

4-87
System Development Corporation

TM-5903/000/00

- Knowledge Sources -

- Semantic Word Hypothesizer

-Syntactic Parser

-Syntactic Word Hypothesizer

- - -Phoneme Hypothesizer

- - - Word Candidate Generator

·Phonological Rule Applier

- - - Phone--Phoneme Synchronizer

-Phone Synthesizer

- - - - ,-Segment--Phone Synchronizer

- - - -.-Parameter--Segment
Synchronizer

- - Segmenter-Classifier

Figure 4.22. Hearsay II Levels of Representation and
Knowledge Sources .(from [ERMAN 75])

30 June 1977

Time

.'hrasal

Lexical

Phonemic B

4-88

Noun Phrase

Bad

AH

System Development Corporation
TM-5903/000/00

Day

. D AV

Figure 4.23. Blackboard Example

30 June 1977 4-89
System Development Corporatior

TM-5903/ 000/ QC

as either a Dor a T, then the word BATTY (assuming it was in the system's
lexicon) could be in competition with the shown sequence BAD DAY. In fact,
the blackbcard is an ideal structure for representing this type of competition.
All that is done is to use a "third dimension" to allow competing entiti:es to
pile up.

To summarize, a blackboard fills the three roles of a workspace representation
by (1) global variables--the blackboard is the globally visible data strt:Jcture
in the system; (2) an agenda--when an entity is placed in the blackboard, it
is to be presented to the knowledge sources that have the entity's level as
their input level, and the set of all such presentations that have not y,et
been performed are the agenda; and (3) a history--the support represented
explicitly in the blackboard is a trace of the evolution of the system's
state.

30 June 1977

4.2.2 Move Graphs

4-90
System Development Corporation

TM-5903/000/00

Move graphs are one of the better-known methods of representing a workspace.
A good introduction to the topic can be found in [NILSSON 71]. Move graphs
are usually used in problems requiring search. Problems of this kind have,
as given, a start state and a goal state. Both states and all generated inter
mediate states are represented in a single formalism chosen for the system.
A KS provides operators--methods of transforming one state description into
another. The transformations allowed by the operators correspond to the legal
moves in a game. The problem is then to find a sequence of operators (moves)
that transform the initial state into the goal state. (For an example of this
kind of problem formulation, see the description of the monkey and bananas
problem in Section 4.1.2.3.)

The nodes in a move graph are the representations of a state; the edges con
necting the nodes are directed and labeled with the operator that produced the

transformatio~. Figure 4.24 shows a move graph for the game of tic-tac-toe,
three in a row. The initial state is the empty board and the desired final
state (not yet reached) is three X's in a line. The edges are labeled with
the name of the operator, X or 0, who has made the move. (Only positions not
equivalent by symmetry are generated.) The graph is made by first placing the
start node on an agenda. The system then loops using the following technique:
Select and remove a node from the agenda and use the KS to generate all legal
successors to the selected node. Link the new nodes to the original and place
them on the a1enda. If none of the new nodes is a goal node, then repeat the
loop. An obvious place for such a system to be smart is when it picks a node
from the agenda and generates all of its successors, a process called expanding
a node.

If the system expands nodes that are on short paths to the goal node, the
performance will be good. In some systems, a KS is used to provide knowledge
as to what node should be expanded next. An issue begged by the simple

30 June 1977
4-91

System Development Corporation
TM-5903/000/00

. . i
~
-Tt-

Figure 4. 24. Game Tree. fo.r Tic-Tac-Toe

30 June 1977
4-92

System Development Corporation
TM-5903/000/00

algorithm above is knowing when to quit, i.e., knowing when no solution is
forthcoming.

Figure 4.25 shows a different kind of move graph. The example is a formation
of a plan to get a new table (the goal node). Each node in the graph is a
subgoal of its parent node. (Since this is a graph, a node may have more than
one parent.) The goal 11 get a table" can be satisfied by satisfying either the
subgoal "make a table" or the subgoal "buy a table" and is thus called an OR
node. The subgoal "buy a table" is satisfied by satisfying both the subgoal
"get money" and_ "select a store" (at which to buy the table), and is thus
called an AND node. AND nodes in the figure are shown by connecting emanating
edges with an ampersand (&). (The operator names that caused each goal to be
expanded into subgoals have been omitted in the figure but would be present
in an actual implementation.) A workspace representation such as this is
called an AND/OR graph and is used in many systems with a predicate-calculus
or production-rule knowledge sources.

It is interesting to note that the move graph shown in Figure 4.24 is built
with the start state as its root and is expanded until a goal node is pro
duced (or the system gives up). The AND/OR graph in Figure 4.25, on the other
hand, is built with the goal state as its root. This raises the question of
how to terminate node expansion for a goal-rooted graph. The general procedure
is to continue expansion until a satisfying (to the and/or relations, in this
case) set of nodes have been generated, all of which are primitive. A primi
tive node is one that poses a problem that is known to be solvable without
search by the systl~.

A quick comparison of MOVE graphs with the CMU blackboard described in the
last section uncovers the facts that (1) MOVE graphs have a more uniform
structure that can sometimes be exploited for efficiency, and (2) the CMU
blackboard has a better structure if the problem decomposes into levels of
representation and the system has many knowledge sources. Like the CMU

30 June 1977 4-93

Make a Table

System Development Corporation
TM-5903/000/00

Get a Table

Buy a Table

--·&--

Do It Yourself Hire a Carpenter

- &- -·&- --&--

Get Tools Find Carpenter Get Money

Get Wood

Get a Blueprint Beg Borrow Steal

Select a Store

Figure 4.25. Example AND/OR Graph.

30 June 1977 4-94
System Development Corporation

TM-5903/000/00

blackboard, move graphs fill our requirements for a workspace representation:
{l) global variables--the graph represents the global data structure and
includes goals and partial results, (2) an agenda--the agenda is the set of
unexpanded nodes, and (3) a history--the labeled links in the graph give a
reason for the existence of each entity.

30 June 1977

4.2.3 KS Format and Special Methods

4-95
System Development Corporatior

TM-5903/000/0C

In some systems, the workspace can be represented by the same (or a similar}
formalism used to represent a KS. This has the obvious advantage of allowing
the system to assimilate derived knowledge into the KS in a natural manner.
In general, well-forme.d predicate calculus formulae and production rules do no1
lend themselves to this because the structures are too linear; i.e., there is
no explicit connectivity with other structures, so connectivity must be pro
vided by some method external to the formalism. This is necessary to form an
agenda, provide historical information, and collect the dynamic state into a
viewable whole.

Programs and FSMs also do not make an appropriate workspace representation,
even though there is some connectivity. The problem here is that much Qf the
state, in a system using these KS representation techniques, is buried in the
interpreter and must be explicated in order for the system to make global
decisions and maintain a history of processing. In some of the AI progrqmming
language systems, a global data base is used to contain deduced information,
current goals, and invocation patterns for the procedures. See, for example
[HEWITT 72]. Semantic networks and frames provide a better representational
formalism than the above four, for representing a workspace. This is in fact
one of the key advantages of frames for a recognition task--namely, partial
information about an entity is kept in a form that is virtually identic9l to
the definitional knowledge in the system. Links and connectivity are thus
automaticci.lly provided. See the example in Section 4.1.2.1. Also, see
[BOBROW 77a]. For a discussion of the possibilities and problems with using
semantic networks as a workspace representation and assimilating knowledge,
see [WOODS 75].

A few interesting approaches and formalisms for representing workspaces are
described in: [BARNETT 75a], [BERNSTEIN 76], [J. MOORE 73], and [WOODS 76].

30 June 1977

4.3 THE COGNITIVE ENGINE

4-96
System Development Corporation

TM-5903/000/00

In a KBS, the primary function of the cognitive engine (CE) is to perform the
task of problem solving. A secondary function of the CE is to explafn the
behavior of the system and support its derived solutions. To accomplish these
functions, the CE must (1) control and coordinate system activities and
resources; (2) plausibly reason about domain-specific problems by having
access to and using the contents of the KB, the contents of the workspace,
and knowledge and procedures embedded in the CE; and (3) link the KB with the
interface module(s). This section discusses only (1) and (2). Section 4.4
describes technologies used by the interface modules.

The CE is the most active component of a KBS. That is, it is always instan
tiated, and it controls the activation and utilization of other system
modules. (For an elaboration of the concept of an active component, see Sec
tion 4.1.1.4.) Another characterization of a CE is that it is the intelligence
or understanding component of a KBS. This follows from "S understands knowl
edge Kif S uses K whenever appropriate. 11 --a position espoused and defended in
[J. MOORE 73]. This characterization of CE function is appropriate even though
its activity may, to a degree, be guided by higher-level (control and/or meta)
knowledge in a KS because, at some point, the CE must still resolve any
residual conflicts at whatever level they occur. In an "ultimate" KBS, where
all knowledge resided in the KB and the CE was just a rudimentary interpreter,·
this would net be the case; the understanding capability would be distributed
throughout the system. However, no such ultimate system exists today, nor is
it likely to exist in the foreseeable future.

The remainder of this section introduces some of the terminology used to
describe CEs and details a few general techniques used in their construction.
(Some CE technology used only with a particular KS representation is dis-·
cussed in Sections 4.1 and 4.2.)

30 June 1977 4-97
System Development Corporation

TM-5903/000/00

4.3.1 Terminology, Measurements, and Characterizations of the CE

4.3.1.1 Effectiveness Terminology

A CE is called sound if it produces only correct or 11 I don't know 11 solutions,
i.e., it does not produce incorrect solutions. Soundness is of dubious value
for a KBS operating in a domain that includes many problems that can be
(approximately) solved only by inexact methods. It is often better for the
system to make a good guess or derive a small set of the most probable solu
tions. As used here, soundness is a property of the CE, not of the KB. That
is to say, that the CE rating is independent of the veracity of the knowledge

chunks us_ed to generate a problem solution.

A CE is called complete if it can always produce a solution to a posed problem
when a solution exists. A CE can be, in principle, complete even though it
contains some arbitrary limit on resource expenditure. This is necessary when
the domain may contain undecidable problems (see Section 4.1.2.3 for a short
discussion of the undecidability of the first-order predicate calculus). As
with soundness, we are defining completeness to be a property of the CE,
i.e., in order to be complete, the CE is not required to solve problems for
which necessary knowledge has been omitted from a KS. It is also possible to
talk about completeness of the KB and completeness of the entire KBS in a
domain. However, it is unlikely that there are interesting domains for KBSs

.1nere these latter kinds of completeness can be achieved.

A CE is admissible if it always finds a minimal-cost solution when a solution
exists. The cost is taken to mean the cost of using the solution, not neces
sarily the cost of finding it. A typical criterion in a state-space search
problem is to find the shortest sequence of operators that transform the
initial state into a goal state. A CE that can always find a solution
sequence of operators (when one exists) is complete--one that always finds a
shortest sequence (when one exists) is admissible. Hence, admissibility

30 June 1977 4-98
System Development Corporation

TM-5903/000/00

implies completeness; either implies soundness. A problem occurs at this point
because, while soundness may not be a desirable property of a KBS, some weaker
form of admissibility is. That is, even though the CE cannot guarantee that all
solutions are correct (perhaps only plausible), it is still proper and necessary
for a system acting as an expert to derive optimal or near-optimal manifesta
tions of the proposed solutions. We make no attempt herein to improve the
included definitions in light of the demands of KBS technology, but merely note

\

the issue. (These definitions originate from aspects of the formal theory of
predicate calculus and theorem proving.)

4.3.l.2 Efficiency Terminology

Besides the above definitions, which relate to problem-solving potential, there
is another class of characterizations that deal with efficiency. Efficiency is
not as easy to measure for KBS as it is for other kinds of computer systems,
because run time and dynamic memory consumption of a KBS are often highly non-
1 inear functions of some problem parameter. In many cases, the function is not
known, making theoretical comparison difficult. In other cases, the parameter
is something like the number of operators necessary to transform the initial
state into a goal state--a parameter that is not avai.lable until after the sys
tem has solved the problem.

Two efficiency measures, defined for systems using move graphs as their work
space representation or any kind of state-space search technique, are penetrance
and branching factor. The penetrance, P, is defined as

L
p = T

where L is the length of the deri.ved path from the initi.al state (or node) to
the goal, and Tis the total number of states (or nodes) generated while search
ing for a solution. If the CE proceeds directly to a soluti:on wi:thout generat
ing any false paths or unused states, the penetrance achieved its maximum value,
1. The smaller the value of P, the less directly the system proceeds to problem

30 June 1977 4-99
System Development Corporation

TM-5903/000/00

solution. Since performance is usually non-linear with L, the value of P
generally decreases with increasing L. Therefore, P is often considered as a
function of L, and the values of P(L) are estimated to characterize performance.

Computation of branching factor is made by assuming the existence of a tree
with the same total number of nodes, T, as states produced by the system in
solving a problem. The tree is further assumed to be one in which (1) every
expanded node has B descendants and (2) the tree has paths of length, L, the
number of operators in the solution path of the original problem. Therefore,

This can be rewritten as

BL+l - l
T = B - l

and solved for B, the branching factor, by iteration. By definition, B can
never be less than one. Further, small values of B indicate that the system
has made direct progress toward the solution of the problem, while large values
of B indicate that the system has wasted time expanding nodes not used in the
final solution or has included states that have not been further expanded. In
general, the branching factor of admissible systems will be larger than others
because (1) it clearly takes more work to find an optimal solution, and (2) the
value of L in the above formula will be smaller.

Figure 4.26 shows a sketch of a move graph (on the left) with T=l5 nodes and a
solution path (shown by the darkened line) of length L=3. Therefore, the pene
trance P = L/T = 1/5. To the right is shown a balanced tree with T=l5 and L=3.
As can be observed, B=2. (And this is the solution to the above definition,

30 June 1977

T = 15
L =3
p = 1/5
B =2

4-100
System Development Corporation

TM-5903/000/00

Figure 4.26. Example Move Graph and Balanced Tree

30 June 1977 4-101
System Development Corporation

TM-5903/000/00

i.e., 15 = (24-1)/(2-1).) A measure closely related to these is computation
time as a function of input length--e.g., the number of words in a sentence
input to a natural language understanding system.

Usually, the branching factor for a system varies less as a function of L than
does the penetrance because, except for small or trivial problems, the proce
dures used tend to be more exponential in L than linear. Because of this fact,
research into CE performance does not look for ways to gain linear speedups by,
say, recoding a LISP program into assembly language. Rather, methods are
sought that tamp down the relative branching factor or exponential by some
technique. For example, the alpha-beta search algorithm, discussed below can,
in cooperation with a good KS, search for a solution in a time proportional to
approximately BL/ 2, where a straightforward technique will take a time propor
tional to BL.

The terminology introduced in this and the last subsection is discussed in more
detail in [NILSSON71].

4.3.l .3 Control Terminology

Another class of terminology used to describe a CE details features of its con
trol and error-handling mechanisms. These two mechanisms are inseparable in
most CEs because the knowledge in the KB is often soft (and in fact confidence
rated), and the rules of interference are often only plausible. The simplest
approaches are backup and s·imulated non-determinism; see Sections 4.1.2.1 and
4. 1 .2.2 for more information.

The input to a CE is usually a set of initial conditions and a goal. The KB is
used in soi11e manner to find a method of obtaining the goal given the constraints
imposed by the initial conditions. There are four ways of doing this:
(1) Forv1ard chainin9--apply the KB to the givens to infer new conditions; con
tinue in this manner until the goal is satisfied. (2) Back chaining--apply the
KB to the goal to produce new subgoals; continue in this manner until the

30 June 1977 4-102
System Development Corporation

TM-5903/000/00

initial constraints or primitive conditions (known to be solvable) are reached.
(3) Chain both ways--forward chain from the initial conditions and backward
chain from the goal until a common middle term is produced. (4) Middle term
chaining--using the KB, guess a middle term and solve separately the problem
of getting from the initial conditions to the middle term and from the middle
term to the original goal; continue in this manner until a solution in terms
of primitives is generated. (This method is also called problem reduction.)
In parsing systems, method l is often called bottom-up and methods 2 and 4 are
called top-down strategies.

Figure 4.27 shows an example of the first three of these techniques. The KB
contains three rules: (1) any integer, X, can be replaced by 2X (X+2X); (2) any
even integer, 2X, can be replaced by X (2X+X); and (3) any integer, X, can be
replaced by 3X+l (X+3X+l). The problem is to transfer 4 into 20 using the
permitted operations. The top figure shows forward chaining--i.e., start with
4 and apply the operators until 20 is produced. The middle figure shows back
chaining--i.e., start with the goal, 20, and use the inverse of the above rules
and continue until 4 is produced. The bottom figure shows the chain-both-ways
technique. First, one step of back chaihing produces the nodes labeled 10
and 40. Then one step of forward chaining produces the nodes labeled 8, 2,
and 13. Finally, one more step of back chaining is done to produce the nodes
labeled 5, 3, 13, and 80. Since 13 is on both the forward and backward grown
"wave fronts", the process can terminate; otherwise, the steps of forward and
backward chaining would continue to alternate until either a solution was found
or the system gave up.

Another method of classifying a CE is by its directionality. This type of
classification is used only when the problem input is linearly ordered, such
as the waveform input to a speech recognition system or the two-dimensional
array of picture information for a vision system. There are two major varieties:
fixed directionality and variable directionality. Fixed directionality is
usually described by terminology such as left-to-right or right-to-left. The
idea is that the system processes its input data in the predetermined direction

30 June 1977

/8"-
16 25

I\ I\
32 49 50 76

10

/\
5 3

t
6

10

I\
5 3

8

4-103
System Development Corporation

TM-5903/000/00

4i··········
······ / 2"')~ ··,,,1'

Forward Chaining

, /\ J\ Ii\
14 22 52 79 20 80 121

Backward Chaining
20 ······· ...

············ •••• . 40

/ ~.

i j\
160 26 4

20 "If... Chain Both Ways
······· ······· ······

••••••• 40

I\
13 80
I
I
I
I

t2 ········"' 13
4 •••

Figure 4.27. Chaining Examples

30 June 1977 4-104
System Development Corporation

TM-5903/000/00

until either (1) all data have been consume~ and the problem successfully solved
or (2) a block is reached and no further progress can be made. In the latter
case, the system backs up to a point before the block occurred at which an
option was available. At this point, an alternative path is assumed, and proc
essing of the input is continued in the original direction. This technique is
iterated until either the problem is solved or no more alternatives exist.

A completely variable directionality in a system is often called island driving.
The idea is to start processing the input at the point or points deemed to be
the least ambiguous or contain the most robust clues as to their identity.
These "islands of reliability" are then grown, middle outward, until they col
lide or a block occurs. If a block occurs, another set of start points are
determined in the unprocessed areas. The rationale behind island driving is
that by starting in areas containing the more certain information, part of the
combinatorial explosion of fixed-directionality schemes will be avoided because
backup will rarely occur across the islands, but only between them. Mixed
strategies have been tried in several systems; e.g., proceed in a fixed direc
tion until the system gets caught up in significant backup activity. At this
point, hop forward in the fixed direction of processing and attempt to locate
a good region to work in. After completing processing of the forward region,
fill in the hole. This often helps because the region that caused the backup
is now bounded on both sides and because the contents of the bounding regions
may supply additional clues about what ought to be in the hole.

A final way of differentiating CE strategies is via the terminology breadth
first vs. depth-first. In a breadth-first system, all possible methods of
continuing are attempted in parallel. This is exemplified in Figure 4.27,
where each (horizontal) level of the graph was generated by a single cycle of
the system. In a depth-first system, some path (node, state, etc.) is selected
and a single continuation is attempted, i.e., the node is not fully expanded

all at once. This path continues growing until either the path reaches a solu
tion or some path-length constraint is violated. In the latter case, the path
is backed up to the deepest node at which an alternative expansion exists. At

30 June 1977 4-105
System Development Corporation

TM-?903/000/00

that point, another path continuation is generated. This process continues
until either a solution is produced or the alternatives that could produce a
solution within the length constraint are exhausted. A depth-first strategy
can be more efficient than a breadth-first one if a good technique exists for
ordering production of path extensions. Figure 4.28 shows an example of a
depth-first strategy combined with back-chaining for the prior problem. A
maximum path length of 4 was used as a constraint, and the order of (inverse)
operator application was (1) N+2N, (2) 2N-+N, and (3) N+3N+l. Each node has a
superscript that denotes the order in which the nodes were generated.

For further information on the concepts discussed in this section see:
[P. KLAHR77], [MILLER73], and [NILSSON71].

102

I\
53 34

l
65

Figure 4.28.

201

406

I\
so7 1311 ,

1 /\
j~\ 261 414

3209 5310 5213

Depth-First Back Chaining

30 June 1977 4-106

4.3.2 Methods of Implementing the CE

System Development Corporation
TM-5903/000/00

Most methods and techniques used to implement a CE are intimately married to

the choice of a representation technique for the KB. However, there are a few
methods that are general enough to be used with a variety of KB representa

tions. Two classes of them are discussed below: search methods and modeling/
simulation methods. The former appear in some way in nearly all KB and AI

systems; the latter are used as an alternative to closed-form solution or

search when efficiency considerations so dictate. Pattern-matching techniques,
though widely used, are not described herein; For a general introduction to the
topic, see [KANAL68].

4.3.2.l Search Techniques

Search techniques form the core technology of KB and AI systems. It is a

cover name for a variety of methods used to look for problem solutions in an

orderly manner. The field is today in a state where, for most problems, a

simple, albeit inefficient, CE can be constructed that represents any point
in the space with dimensions of: (1) depth or breadth first; (2) chaining
methods--backward, forward, etc.; and (3) directionality--fixed or island

driven. In fact, it is usually possible to construct a CE for points in the
above space that are sound, complete, or admissible.* The set of CE algo

rithms that makes this statement true is domain independent. In general,

this means that each is subject to the effects of tombinatorial explosion.
Thus, the real problem with search technology is not merely to find an algo
rithm with a specified set of characteristics, but to find one that is effi

cient and does not suffer from combinatorics when handling problems in the

intended area of application. To accomplish this, it is necessary to incor
porate domain-specific knowledge.

*Without some problem-specific knowledge, some choices are incompatible; e.g.,
depth-first is generally not compatible with completeness or admissibility.

30 June 1977 4-107
System Development Corporation

TM-5903/000/00

In order to describe places where such knowledge can be used, it is first
necessary ~:o examine a paradigm of the search technique. Search consists of
five major components: (1) select--pick the next activity to be performed
from the agenda of possible next activities, (2) expand--perform the selected
activity, which often means enumeration of some or all of the predecessor
activities; (3) evaluate--compute merit scores for activities created by the

expansion process; (4) prune--discard hopeless cases or those that appear to
have little promise; and (5) terminate--determine whether to continue process
ing and whether the problem has been sufficiently solved. Given these five
components of a search method, it is obvious that a KS providing accurate
guidance (incorporating domain-specific knowledge) for each can improve system
performance, often by orders of magnitude.

In many search methods, the selection, evaluation, and prune (if any} are
combined into a uniform numerical technique. The function used for this pur
pose is called an evaluation function. Its job is to estimate the likelihood,
f(x), that activity x will be useful in finding a solution. Figure 4.29 shows
a simplified algorithm for finding a solution to a search problem using an
evaluation function, .f.; a termination checker, solution; and an expansion
function, expansion-of. (As shown, no provision is made for picking out the
solution path; provision is made only for checking to see whether one exists.)
If the evaluation function were perfect, then the only activities expand'ed
would be solutions or activities with at least one descendent that is used in
the ultimate solution path. Assuming that the termination checker, solution,
is accurate, this algorithm is sound no matter how bad .f. and expansion of are.
However, · f either is poor or the domain admi~s-~_f ~n~~un~~~ __ pat_~ __ lengths,
then a solution may never be found. Thus, even though the algorithm is sound,
unless expansion-of and f are spectacular, it is neither complete nor
admissible.

30 June 1977 4-108
System Development Corporation

TM-5903/000/00

IF solution(start) THEN exit with success;
b-1 i st({start, f (start)});

loop: IF empty b THEN exit with failure;
n- member of b with highest f value;
delete n from b;
add n to m;
s- expansion_of(n);
FOR x IN s

DO IF solution(x) THEN exit with success;
IF x in b OR x in m THEN do nothing

OTHERWISE add {x, f(x)} to b;
END FOR;

GO TO loop;

Figure 4.29. Search with Evaluation Function

An algorithm that improves on the above by being admissible and in some cases
optimally efficient is called A*. The evaluation function, f(x) is the cost
of a solution path constrained to go through node x; hence, its value is to
be minimized. Further, f is assumed to be additive in the cost of going from
one node in a path to another. Thus, if start= n1 .•. nm =goal is an optimal
solution path, then

m-1

f(n;) = 2: K(nj ,nj+l)
j=l

where K(x,y) is the cost of going from state x to state y in one step. For
any node, n, f can be expressed as

30 June 1977 4-109
System Development Corporation

TM-5903/000/00

f(n) = f(start,n) + f(n,goal)

where f(x,y) is the minimal cost of a path (of perhaps many steps) from x to y.
The above is normally written as

f(n) = g(n) + h(n)

where

g(n) ~ f(start,n) and h(n) = f(n,goal)

The function, g, is relatively easy to calculate during search. However~ h is
not, because it presumes knowledge of the part of the search not yet com
pleted.* The approach to overcoming this difficulty is to use an approxima
tion, called a heuristic estimator, ~' in place of the exact function~ h.
(For some applications, an estimator,~' is used in place of gas well.) Thus,

II
f is approximated by f as

II II
f (n) = g(n) + h(n)

The A* al1orithm is given in Figure 4.30. To guarantee admissibility, a
II .

necessary condition is that h(n) ~ h(n) for all n. Another necessary condition
A A A .

on h is that h(x)-h(y)_::k{x,y).** Given a particular choice of h, this algo-
rithm has been proved optimal in the sense that no other admissible algorithm
will expand fewer nodes.

*The terminology assumes a forward-chaining search; for backward chaining,
g and h reverse roles.

**This is called Ute consistency condition. Without this constraint, A* will
still be admissible but no longer optimal.

30 June 1977 4-110

b-list ({start, cp, 0, O});
/I

System Development Corporation
TM-5903/000/00

loop: n+member of b with smallest f value;
IF solution(n) THEN exit with success;
delete n from b;
add n to m;
s +-expansion_of(n);
FOR x IN s

DO g -third(x) + k{n, x);
/I I\
f +-g+h(x);
IF x already in b

THEN IF new f <old f
THEN replace old f with new f
ELSE do nothing

ELSE add {x, n, g, f} to b;
END FOR

IF not empty b THEN GO TO loop;
exit with failure;·

Figure 4.30. A* Search Algorithm

The notation {u,v,w,x} in the figure is a data-structure representation of a
i

node in the workspace--u is a state description, v is the prior node (from
which this one was derived), w is the value of g for this node, and x is the

I\
value of f for this node. As opposed to the algorithm shown in Figure 4.29,
this one keeps a back-trace on history of the solution path (using the v field).

The final example of a search technique given in this section is the alpha
~ algorithm. It is normally used for searching game trees and AND/OR
graphs, respectively, for best moves or minimal-cost solutions. The descrip·
tion herein is for a two-person competitive game, e.g., tic-tac-toe. Then a

i .

\'·"

30 June 1977 4-111
System Development Corporation

TM-5903/000/00

game tree (simple move graph}, like that shown in Figure 4.24, can be generatec
so that alternating vertical levels correspond to moves by each of the players.
Suppose, further, that the game is complicated enough so that the entire game
tree cannot be generated and analyzed (for example, it has been estimated that
there are about 10120 unique chess games}. An approach to this kind of problerr
is to limit the length of the move sequences that are examined either to a
fixed maximum length or by an evaluation that can increase the length somewhat
by the intensity of the position generated after a fixed-length look-ahead.
After a length-limited path has been generated, a position is reached that
usually does not represent the termination of the actual game. Therefore,
the value of the position reached can only be approximated--such an approxi
mation function is called a static evaluator. Given this setup--a move tree
and a static evaluator--the alpha-beta algorithm can be used to prune away
some of the move sequences that must be examined.

Consider the move tree fragment shown in Figure 4.31. Nodes represent possible
(board} configurations and the arcs are labeled with move names. (Values of
the game are written in the nodes.} The two players are named MAX and MIN.
It is MAX's turn to move, and he wishes to find the move that promises the
largest value of the game (as calculated by the static evaluator}. MIN, on the
other hand, is naturally trying to make the value of the game as small as pos
sible. Now assume that move A has been evaluated, and it has been found that
the value of the game is 4 if both MAX and MIN make their best moves from that
point on. Now consider move B by MAX. MIN is shown to have two possible
responses, moves C and D. C has been evaluated and has a value of 3. There
fore, if MAX chooses move B, MIN can guarantee that the value of the game will
never be more than 3 (by choosing move C}. A smart MAX would not choose such a
ove when move A is available to him. Hence, there is no need to evaluate

.rnve D or, for that matter, any other continuations of move B. In a nutshell,
this is the essence of the alpha-beta algorithm. Of course, this pruning activ·
ity (e.g., not evaluating move Dor its consequences} is done on the whole game
tree as it is generated and is done in a dual manner for subtrees where MIN's
moves emanatt from the root.

30 June 1977 4-112
System Development Corporation

TM-5903/000/00

MAX to move - - - - - - - - - - - - -

MIN to move

MAX to move

Figure 4.31. Alpha-Beta Pruning Example

As is obvious from the ex'ample in Figure 4.31, the order in which moves are
considered can have a strong effect on pruning. For instance, if move B is
analyzed before move A, then move D would have to be analyzed because the
acceptable lower bound (4) would not yet have been generated. The pruning
activity of a1 pha-beta does not itself use any domain-specific knowledge.
Such knowledge can, of course, be used in two places: (1) in the static
evaluator and (2) by establishing the order in which moves are considered.
If the moves are o;dered in the best possible manner (i.e., best from each
player 1 s point of view when it is his turn to play), then the static eval
uator will be called only a number of times approximately proportional to BL~2
where L is the look-ahead depth and B is the average branching factor in an
unpruned move tree. Without alpha-beta, the number of static evaluations is
approximately proportional to BL. The merit of the move ordering determines
where in this range the search algorithm will perform.

30 June 1977 4-113
System Development Corporation

TM-5903/000/00

It is interesting to note that, for a given static evaluator and a fixed polic:
on path length before using it, alpha-beta is an admissible search strategy;
that is, it finds the best move. This algorithm has many uses other than game
playing. It can be applied to any situation where conflict can be identified
and strategies are sequences of steps, each of which has consequences, and
impacts the merit of the entire plan. Because of the potential pruning power,
it often pays to formulate a problem in such a way that alpha-beta can be
directly incorporated.

For more information on search methods, the interested reader should consult:
[FULLER73], [GELPERIN77], [MINSKY63], [NILSSON71 and 69], [SIMON74b], and
[SLAGLE69].

4.3.2.2 Modeling and Simulation Techniques

A model is a representation or abstraction of an entity. Thus, a KB is a
model. Section 4.1.2.3 gives a formal definition of a model (also called an
interpretation) using the predicate calculus. A model has components that
correspond to "real word'' things, properties of things, and dependencies
among them. The properties and dependencies are of two kinds: (1) generic-
something that is true for all members of a class, e.g., the behavior of any
resistor obeys Ohm's law, and (2) specific--a property or dependency that is
only true in a particular problem, e.g., the temperature of xis 10°C. The
division between generic and specific model information is a somewhat a,rbitrary
but useful distinction because the generic information ca,n be used to solve a
variety of problems. In a sense, the generic information is a KS and the
specific information is a combination of fact file(s) and problem-specific
input parameters.

A simulation is a procedure for manipulating a model in a manner consistent
with its properti£s and dependencies. The generic dependencies are stated as
transformation rule:s in terms of the specific information. The model has a

30 June 1977 4-114
System Development Corporation

TM-5903/000/00

given initial state, and some independent variable, usually time, is moved
towards a goal by the simulator. The transformation rules describe changes
in the model, i.e., new states of the entities in terms of prior states of
themselves and other entities. Available data from the simulation process
are the intermediate as well as final states. Thus, modeling and simulation
provide an ideal method of observing behavior because all reached states are
necessary and ~eflect conditions of the entity being modeled (assuming the
model is fateful). (Contrast this to search techniques where the set of gen
erated states may or may not be realistic.)

A simple example is now given to clarify some of the above concepts and ter
minology. The model is of a domain that contains three kinds of components:

(1) © --a device that has one or more inputs. The output of ©
at time t+l is the sum of its inputs at time t.

(2) 0 --a device with one input. Its output at time t+l is its
input at time t.

(3) Wires--devices used to connect together the inputs and outputs
of the other two kinds of components.

The generic properties are those described above. The specific information
is the configuration of a circuit built from these kinds of components.

Figure 4.32 shows one such circuit. The top of the figure is a schematic.
The specific information is that there is one component of type © (labeled 1
in the schematic}, one component of type () (labeled 2 in the schematic}, and
four wires (A, B, C, and D) with the connections shown. Wire A comes from
the outside and carries a value of 1 at time 0 and a value of 0 thereafter.
The other wires have an initial value of 0. Using generic information, the
simulation equations can be derived. For this simple example, these equations

can be solved to yield Bi = Ci = Fi and Di = Fi-l where Fi i~ the ith
Fibonacci number. However, for more complicated systems, the derived equations

30 June 1977 4-115
System Development Corporation

TM-5903/000/00

D

A 1 B 2

c

Initial Conditions

Ao= 1 A- =O I 1<i

Bo =Co= Do =O

Specific Information

© 1

0 2

Wire A{ , 1} e{ 1, 2} c{1,1} D { 2, 1}

Simulation Equations

B· = C· = A- 1 + C· 1 + D· 1 I I I· . I· I·

D· =B· 1 I I·

Time 0 1 2 3 4· 5 6 7 8 9 10

At 1 0 0 0 0 0 0 0 0 0 0

Bt=Ct 0 1 1 2 3 5 8 13 21 34 55

Dt 0 0 1 1 2 3 5 8 13 21 34

Figure 4.32. Modeling and Simulation Example

30 June 1977 4-116
System Development Corporation

TM-5903/000/00

may not be solvable in closed form, so some form of iteration or simulation
technique would need to be used. The bottom of the fi9ure shows the output
of a simulation run. The value on each wire is given as a function of the

independent variable, time. Even for such a simple example of this, where a
closed-form solution is available, a simulation technique can be valuable--for
instance, to examine system behavior in errorful conditions such as glitches
on one of the wires. It may in fact be faster and cheaper to perform the
simulation than to solve the set of difference equations, particularly if the
errors are introduced via a statistical technique.

In one sense, all of AI and KBS technology is a modeling and simulation tech
nology. The intent of systems built under these banners is, with some excep
tions, either to duplicate an expert 1 s performance (perhaps with some

improvements) in a particular problem domain, or to simulate some aspect
of human mental activity and behavior.* In spite of this affinity,.only a
few KB and AI systems directly borrow technology from the modeling and simu
lation field. There are many reasons for this, the most important of which
are that no well-formed theory exists for the entities and kinds of situations
that are modeled, and that size and connectivity are too large for the use of
off-the-shelf techniques. It can further be said that many KB and AI systems
themselves are models, and it is not necessary to use simulation methods to
make this true.

It is interesting to note the pervasive use of the word model in discussing
KBS. For example, the term word model is used to describe a computer's
internalized representation of a situation or state in the external environ
ment. The terms semantic model and memory model are used to describe the
underlying assumptions in a workspace and/or knowledge-representation scheme.
Also, the terms performance model and model of problem~solving behavior

*The systems of the latter type belong to a subfield of AI called psychological
modeling.

30 June 1977 4-117
System Development Corporation

TM-5903/000/00

(or simply behavior model) are used to describe assumptions built into the
processing components and organization of a system. The list of such terms
is virtually endless. In fact, it is our guess that if all the articles
written about KB and AI systems were researched, more than half of them woJJ,ld
use the terms modeling and/or simulation. We would even go on to guess that
about half of these articles coin a new term, to describe their 11 unique 11

approach, that includes the word model.

As stated above, modeling and simulation techniques have an advantage over
search techniques by making behavior more visible. Another advantage is
efficiency. Sadly, however, many, if not most, KBS problems do not lend
themselves to simulation, because these techniques demand a set of transforma
tion rules that can move the system model from one state to the next in an
orderly and fateful manner. In a way, simulation is a middle point on a
scale, with closed-form solution and search as the end points. In this light,
an interesting trend is developing--special-purpose languages developed for
AI and for simulation are beginning to look more like each other, with SIMULA
and its derivities being used in both fields. To the marriage, AI is bringing
more flexible control structures (so that inexact transformation rules c~n be
toleratec) and better data representations, while simulation is contributing
?raven efficient and workable technology.

The interested reader should consult a text such as [REITMANN71] for a general
introduction to simulation methodology. For a description of what we believe
to be the most interesting of the special purpose simulation languages, see
[DAHL73]. Other articles of more direct relevance to KBS are: [BOBROW75b],
:sROWN75b], [GRIGNETTI75], [MARK76], and [MORAN73a].

30 June 1977

4.3.3 CE Issues

4-118
System Development Corporation

TM-5903/000/00

There are many open problems associated with methods of implementing a CE for
a knowledge-based system. However, most of these problems and issues are a
dual of a problem or issue in representing a KS. For example, a CE problem,
focus of attention, concerns itself with the issue of how to guide search so
that the system expands its resources on important things and ignores others.
The corresponding KS problem is methods of representing higher-level meta and
control knowledge.

In some sense, the KB can be viewed as the encapsulation of knowledge in a
KBS using orderly and consistent theories, and the CE is what is left over.
Thus, the CE is the representation of all the knowledge that could not be
captured appropriately in the KB but must still be approximated somewhere in
the system in order to solve problems. It is no surprise, then, that the open
problems are duals. Therefore, it is clear that the major problems and issues
in KBS technology are those concerning the KS and their techniques of
representation.

A CE problem that is very mundane yet important is knowing when to give up.
For a domain without a decidable problem-solving procedure (such as theorem
proving), the issue is theoretical. But even in a domain where all problems
could be solved given enough resources, it may not be worth the effort because
of cost. A generalization of this is how to terminate fruitless paths during
search, e.g., knowing when to give up a subproblem. This is slightly differ
ent from the focus-of-attention issue, which asks for methods that refrain
from ever starting down bad paths.

Another CE problem is knowing how to approximate or reason plausibly. An
examination of the preceding sections leaves one with the impression that a
KBS reasons plausibly, because the contents of the KS are an approximation.
The actual reasonsing techniques in the CE are fairly brittle and formal.

30 June 1977 4-119
System Development Corporation

TM-5903/000/00

Thus, the issue is how to reason plausibly as a CE option whether or not the
KB is exact. Interrelated with this is development of procedures and the
mathematical theory for generating and using confidence factors as merit
estimators.

A final issue, raised by Moore and Newell [MOOREJ73], is that there exists no
space of problem-solving methods. Only a handful of general techniques are
now available. Further, no good taxonomy exists so that untried methods can
quickly be identified as points in the space (spanned by the taxonomy). It
may be the case that this is the way it must be; methods of applying and using
knowledge are actually ad hoc, and no underlying general set of descriptors
can have the necessary organizational power. If this is a valid statement,
then KBS technology will continue to evolve slowly rather than taking a few
quantum jumps to the "ultimate" systems.

30 June 1977

4.4 THE INTERFACE

4-120
System Development Corporation

TM-5903/000/00

The interface component of a KBS provides the necessary connections and
communications with the environment and user set. It is not always engineered
as a separate module in the system; usually it is integrated into the CE and
accesses the KS. This section, for reasons of clarity, discusses the inter
face as if it were distinct. A good introduction to the topics covered in
this section may be found in [DAVIS76].

The interface has three logical parts: the user interface, the expert inter
face, and the external data interface. The user interface accepts problem
statements from the user, his responses to system generated queries, and his
requests for explanations. Further, it displays results, prompts the user,
and provides him with the requested explanations. The expert interface is
the system's port for knowledge acquisition and is, therefore, used to augment
or modify the KB. It is also sometimes used by an implementor for system
debugging. The external data interface is used to input problem parameters,
communicate with external files, and send results or directions to other
automated systems. Since the functions of the external interface do not gen
erally make use of singular or interesting technology, they are not further
discussed below. However, this interface will grow in importance as KB sys
tems start wcrking in expanded problem domains. For example, a complete
medical KBS for hospital use would be connected with pharmacy records, patient
history files, patient monitoring devices, duty rosters, etc.

Usually, the user and expert interfaces communicate through a common physical
device such as a time-sharing console. Also, the entire interface borrows
many capabilities and services provided by the host operating system, such as
access methods and editors. The interesting technology associated with the
interface is not those; rather, it is the methods used to transform between
the human-engineered external formats and the more intricate internal physical
and logical formats needed for the CE, KS, and workspace representations.

\

30 June 1977

4.4. l The User Interface

4-121
System Development Corporation

TM-5903/000/00

The user interface is the most important component of a KBS in determining its
acceptability to the practitioners of the intended domain. In general, they are
neither computer scientists nor programmers, and may view the computer, espe
cially a KBS, as a feared and unworthy competitor. The quickest way to prove
the point is by demonstrating simple linguistic stupidity at the interface.
Besides guarding against (perhaps justified) paranoia, a properly functioning
user interface will smooth out and minimize the problems associated with learn
ing any new system, and in the long run improve system productivity by making
it possible for the users to be more cooperative in problem-solving activities.

In order to qualify as a KBS, the user interface must, at a minimum, be inter
active and use domain-specific jargon. The reason for requiring the system to
be interactive is simply that the state of the art does not provide techniques
for going from problem statement to 11 best 11 answer without additional informa
tion that must be solicited from the user. The problem with providing ini
tially, along with the problem statement, all information that might conceiv
ably be needed, is that most of it is unnecessary. Such a procedure would be
a waste of time and irksome to the user. Another reasoning for wanting a KBS
to be interactive is so that explanations of system behavior and results can be
solicited. Even though we have not made availability of explanations a pre
requisite for calling a system a KBS, we strongly feel that without such a
capability, no system will gain field acceptance. Such a system can be of
immense interest and value to a computer scientist but still not fulfi.ll the
purpose of a KBS--namely, to be used in a problem-solving domain by practitioners
in that domain.

Besides using domain-specific jargon, many KB systems accept and output infor
mation using an English-like natural language. Since handling natural language
and all of its complexities is equivalent to solving the entire problem of
machine understandin1 and natural intelligence simulation, it should not be

30 June 1977 4-122
System Development Corporation

TM-5903/000/00

expected in a KBS. Fortunately, some inherent constraints and simple methods
make the implementation of a suffucient subset tractable. An example is that
the system usually takes the initiative in asking questions. When questions to
the user are of the form 11 What is the value of x? 11 rather than "What's new? 11 ,

understanding the input is relatively straightforward. Also, much of the
ambiguity of natural language disappears when the dialog is restricted to a
particular domain and it is known that the user is engaged in goal-oriented
problem-solving activity.

Another desirable characteristic of the user interface is soft failure. That
is, a KBS should not blow up because the user makes a mistake, nor should, it
conceal its problems. For example, when an input is not fully understood by
the system, the user should not only be told, but should also be given guidance
as to what are acceptable responses. A useful technique to smooth over some
problems of this sort is a spelling corrector. (See [TEITLEMAN72].)

Besides the above-mentioned capabilities of the user interface, it is desirable
that it be able to provide some self-knowledge to the user. By this it is meant
that the system be able to explain how it is used and that the user be able to
ask questions such as 11 Can you handle problems about x? 11 or 11 What do you know
about Y? 11 A system with self-knowledge available has the potential to accommo
date new users in a reasonable manner.

4.4.1.l User Input

Several technique, have been used to implement the input side of the user
interface. The simplest one, mentioned above, is for the system to maintain the
initiative so that the form of the user's input can be anticipated with a great
deal of certainty. Another, ad hoc but reasonably powerful, technique is that
introduced in ELIZA [Weizenbaum 66]. ELIZA is a system that (humorously)
simulated a Rogerian psychiatrist. Inputs are matched to patterns like

30 June 1977 4-123
System Development Corporation

TM-5903/000/00

where $i matches any string of words and xi matches any single word. Responses
are built up by giving corresponding output patterns such as

Given the input 11 Joe 1 s wife, Mary, is not at home 11 , the system could produce
the response, 11 What if Mary were at home? 11 This is accomplished by matching
$2 to 11 Joe 1 s wife, 11 x1 to 11 Mary, 11 and $2 to 11 at home. 11 ELIZA and other systems
using this kind of matching technique can do a better job of 11 understanding 11

than one might imagine as long as the domain and style of dialog is sufficiently
constrained so that the pattern writer can properly anticipate what kind of
language will be used.

More powerful techniques using better language models are also available. In
fact, the purpose of many AI systems is just to deal with natural language input.
See, for example [NORMAN75], [SCHANK75a], and [WOODS71]. Perhaps the best
known and most widely used technique for parsing natural language is the Aug
mented Transition Network, ATN (See [WOODS73 and 70]). A simple transition net
work is depicted in Figure 4.33. The top of the figure shows the grammar defi
nition for a simplified version of a noun phrase (NP) as a finite-state machine.
The initial and final states are labeled, respectively, S and E. State tran
sitions are allowed when the next word in the input is of the part of speech
shown on the labeled arrows. (A jump means that a transition is made with-
out using an input word.) A sequence of words that causes transition from the
initial to the final state is accepted. A parse of the input is generated in a
straightforward manner. For example, the input

11 the big brown cow 11

would cause the output parsing

[NP [DET the] [ADJ big] [ADJ brown] [NOUN cow]]

30 June 1977

Adj

Det

Jump

4-124

Noun

System Development Corporation
TM-5903/000/00

PP

® Prep NP
S i--------~•O~-------••® Prepositional Phrase (PP)

Det A Determiner

Adj An Adjective

Prep A Preposition

Figure 4.33 Transition Network Example

State transitions can be made for reasons other than word class. The transition
network for an NP allows an optional determine {DET) followed by zero or more

adjectives {ADJ), followed by a NOUN, followed by zero or more prepositional

phrases {PP). A PP is itself defined as the network shown by the bottom figure.
Thus, a state transition can be caused by finding a phrase, accepted by another
named network, as well as satisfaction of a word class. Using the full defini

tion, the input

11 the brown cow in the red barn 11

30 June l 9i'7

can be parsed as

4-125
System Development Corporatio

TM-5903/000/0

[NP [DET the] [ADJ brown] [NOUN cow]

[PP [PREP in]

[NP [DET the] [ADJ red] [NOUN barn]]]]

As described so far, transition networks cannot handle many of the frequ~nt
complexities that occur in natural language. To behave in a satisfactory
manner, the network must operate in a nondeterministic manner, so that ambigui
ties can be resolved. Also, the transition network is normally augmentce'd (the1
it is called an ATN) with a set of registers associated with each usage of
one of the graphs (like the two shown in the figure}. As states are entered,
the va 1 ues of the registers can be set, and tests of these register values can
be added to the state-transition conditions. This makes it possible to enforc1
such constraints as number agreement; e.g., accept "he goes" but not "he go".
Also, the register test and sets can use information from a definitional knowl·
edge source (usually a semantic network} help to disambiguate phrases such as
"typed blood".

Recently, a class of methods for understanding natural language has be~ft

developed that use no explicit syntax, but instead rely on a semantic abstrac
tion of the problem domain. For example, see [BURGER77 and 75]. A system is
described that uses an abs tract of a data base description inc 1 udi ng the inter·
relationships of important words (e.g., item-names}. This abstraction, along
with knowledge of English key words (e.g., of} forms a parser. This kind of
technology has the advantage of being efficient and easy to use in a variety o1

domains. It works well as long as the domain is reasonably bounded (like a
front end to a KBS or data management system} but would not appear to be exten·
sible to more unrestricted areas.

30 June 1977 · 4-126
System Development Corporation

TM-5903/000/00

Another technique for very efficiently handling natural language input in a
restricted domain is described in [BROWN75]. The approach is to represent
the grammar as a set of context-free rewrite rules. However, the terminals
in the grarrmar are concept classes rather than word classes. (Such a grammar
is called a pragmatic grarrmar.) For example, a concept such as "something that
can have a voltage measurement" is used instead of NOUN. The parser has been
implemented as a set of procedures coded by hand from the grammar. (One possi
bility is to use standard meta~compiler methods to make an automatic parser
generator.) A clear advantage to this methodology has been the ability to
implement a sufficient natural language input capability without getting lost
in the general details of language.

4.4.1.2 Output to the User

The other half of the user interface is responsible for output generation. This
is needed to query and prompt the user, report results, give explanations, and
answer questions about the system. Except for providing explanations, these
tasks are easy relative to handling natural language input. In the first place,
many output messages are merely formatted data items and tables and thus
involve no particularly novel techniques. Further, many output messages can be
concocted by simple fill-the-hole techniques with canned templates. (See the
ELIZA example in the previous section.)

Providing explanation to the user of the system's behavior is difficult whether
or not the output is in natural language (though it usually is). The reason
for the difficulty is that the explanation must be in terms of the knowledge
chunks, problem parameters, and inference rules used to derive the results.
Thus, the explanation mechanism must be able to find these things. Next, the
internal representations must be translated to a format suited for human con
sumption. This is made harder by the fact that not all of the things are of
equal importarce, and a good explanation mechanism ought to identify and out
put only those that were most relevant or crucial for solving the problem at

\

30 June 1977 4-127
System Development Corporatic

TM-5903/000/C

hand (unless asked for additional detail, in which case the system should
respond appropriately). An aid to providing good explanations to the user is
appropriateness of chunk size. That is, the ability to provide acceptable
explanations is based upon communication being at the right 11 clip 11 level. If
the knowledge chunks used are too small, the explanation is laborious and not
convincing. On the other hand, if the chunks are too large, they may riot appe
to apply directly to the solution being described.

The most direct method of capturing elements that are useful for explan'a.'tions
is to use the workspace representation to store a history of the problem-solvi
activity. The mechanism can then start from the element(s) of the workspace
representing the problem solution and pick out the sequence of events that moV
the system from problem definition to solution. Ideally, each element 'Would
include as part of its history the rule of inference and wha't the rule was
applied nn (other workspace elements, knowledge chunks, confidence factdrs,
etc.) to produce this element. Such an approach has the advantage of ma'king
all useful information available to the explanation mechanism, includiri·g infer
mation about why other solutions were rejected. Further, the history collec
tion can be done uniformly by the CE. The disadvantage is the cost of storing
information that may never be used.

Another approach is to let the KS determine what may be most relevant fbr
an explenation. With this method, a knowledge chunk can optionally have an
explanation scheme. If it is used to produce a result that is in question, th
scheme is instantiated in its local environment to produce an exp1anation. Th
advantages of this are: (l) high-quality explanations can be produced becaise
it is possible to take idiosyncratic situations into account, and (2) the
explanation mechanism can be used for other purposes, e.g., as part of the
complaint depart for a frame. The major disadvantage is that the expert who
imparts knowledge to the system must consider the method and rrecessity of
explaining each knowledge chunk--an arduous task.

30 June 1977 4-128
System Development Corporation

TM-5903/000/00

A third method of providing explanations is to initially solve the problem
without keeping a history in the workspace. Then,
explanation, re-solve the problem in careful mode.
looks over the CE's shoulder during the re-solving

if the user asks for an
That is, the mechanism

activity and picks out the
events that are of likely interest. In a sense, the explanation mechanism
enables a set of demons that are triggered when special situations occur. At
these points, the explanation mechanism can interrupt normal processing to per
form the necessary data collection. The disadvantage of this is the ineffi
ciency introduced into the CE so that demon-like execution can occur. The
advantage is a possible gain in efficiency if explanations are only seldom
needed. Not enough is yet known to evaluate the tradeoffs.

The final problem confronting the explanation mechanism in the user interface
is translating explanations into a natural form for the user. Fortunately,
the complexity of this task is· substantially reduced by uniformities of
format in the KB and in the workspace. For example, in a production system,
it is straightforward to turn an IF-THEN rule out in reasonable English (see
Section 3, for an example). The usual approach is to have a separate scheme
for each kind of knowledge chunk in the KB and element in the workspace; most
such schemes look like sophisticated fill-in-the-blank formulae.

The main problem in providing explanations is identifying the information to
be included--the output formatting is only a secondary issue. When designing
a KBS, one must decide early whether an explanation mechanism is to be incor
porated. If so, techniques need to be built into the CE for information cap
ture and for assuring that step-by-step behavior is explainable. Were this
not part of the original design and specification, it is unlikely to be easily
added later, bP.cause important parts of the system's behavior would probably
be obscured by optimization and condensation. Good explanation mechanisms can
only exist in a system whose internal step size is an explainable unit to the
user.

30 June 1977 4-129
System Development Corporatic

TM-5903/000/l

Some articles about explanation mechanisms and natural language generation
that are of interest are: [DAVIS76], [SHORTLIFFE76], [SWARTOUT77], and
[WINOGRAD73].

30 June 1977 4-130
System Development Corporation

TM-5903/000/00

4.4.2 The Expert Interface and Knowledge Acquisition

The expert interface is the mechanism through which knowledge is added to the
KB or the KB is modified. Its intended users are experts in the problem domain
and the system implementors who are responsible for building the initial KB.
ihis interface is often called the knowledge acquisition interface. Unlike
the user interface, it can be assumed that the user of the expert interface
ha5 some knowledge and awareness of the structure and functioning of the KBS.i
This does not imply that he is a programmer; rather it means that he knows that
such things as knowledge are represented by IF-THEN production rules, or that
confidence factors are integers in the range -100 to +100.

The remainder of this section describes the knowledge-acquisition process and
the expert interface. The material is summarized in Figure 4.34.

The knowledge that goes into a KBS must originate from some external source.
The most usual is an expert in the problem domain. He can provide specific
facts, rules of thumb, and the rules of reasoning he employe, along with his
rating of confidence. By our definition of a KBS, such an expert must be at
least one of the originating sources. Members of the implementation staff for
many KB systems are experts in the problem domain in which the systems operate
and therefore provide much of the initial contents of the KB. In some systems
(e.g., MYCIN [SHORTLIFFE76]), the user can also enter knowledge, as an expert,
to tailor the system to his own particular needs.

Other originating s1urces of knowledge commonly used are journal articles,
texts, and engineering handbooks. The information from these sources often
is hard data and tabular. Therefore, it usually comprises fact files in the
KB. In a domain where the kinds of knowledge found in these sources is
sufficient for problem solving, a KBS is unlikely to be useful because a
closed-form method is known and more appropriately implemented by conventional
methods.

30 June 1977 4-131

ORIGINATING SOURCE

Domain Expert (or User)
Journals
Texts
Protocol Studies
Derived Results

ENTERED BY

Domain Expert
Implementor
User
CE

COMPILED BY

System Development Corporati
TM-5903,/000/

Knowledge Acquisition Interface
Implementor

ISSUES

Interface Language
Consistency
Accommodation
Confidence Factors

MAJOR OUTSTANDING PROBLEMS

Knowledge Acquisition
Learning
Extensibility

Figure 4.34. Knowledge Acquisitiofl

30 June 1977 4-132
System Development Corporation

TM~5903/000/00

A technique used to collect expert knowledge is the protocol study. An expert
is given problems to solve, and an experimenter either observes and records
the expert's behavior or asks for explanations of various steps. The experi
menter then analyzes the collected information and tries to determine general
patterns, knowledge used, and principles of reasoning. Some interesting work
has been done in this area. See for example, [COLLINS76], [DEUTSCH74],
[DILLER73], and [MALHOTRA76,75a and 75b].

Another originating source for knowledge is from results derived by automatic
means. One method is to remember problems that have already been solved by the
KBS and to use them to answer further questions. Though this is done by some
Al systems [SUSSMAN75] and [LENAT76], it is not done by any systems that
fit our definition of a KBS. Such a technique is called computer learning. A
problem with blind learning (saving all generated results) is that the system
either runs quickly out of space, or runs into a combinatorial explosion of
possibilities as the KB grows. What is needed is to save only those things that
are interesting or important--this is an open research problem. Another
approach to automated knowledge generation is exemplified by META-DENDRAL
[BUCHANAN76]. The program is presented with a large set of solved problems.
From this corpus, it infers production rules and confidence factors for them.
The derived rule set is used by DENDRAL for solving new problems.

Ideally, the knowledge acquisition interface can be used by domain experts and
users of the system other than the implementation staff. However, in many
KB systems, the co~plexities of adding to or modifying the KB are such that
programming skills ~re required. For such systems, a computer specialist may
need to act as an intermediary between the originating source and the KBS.
This is especially true or systems that contain large amounts of procedural
knowledge. Domain-specific knowledge becomes intimately intertwined with
control logic and programming knowledge that is part of the implementor's
intuition instead of the expert's. This can lead to two problems: (1) diffi
culty in providing explanations of system behavior and solutions in domain
specific terms, and (2) loss of modularity and extensibility.

30 June 1977 4-133
System Development Corporatic

TM-59Q~/000/I

When a KBS does not make adequate provision for a domain expert to use the
knowledge-acquisition mechanism, one should immediately find out why. If the
reason is only to avoid the bother of making another human-engineered interfac
then the only problems that will result are those of needing a go-between to
modify or extend the system. On the other hand, if the reason is that the cor
ception of knowledge chunks, and representations thereof, by domain experts ar
the KBS are radically different, then a major trouble area has likely been
spotted. Namely, it is very possible that the system will not be extensible
in ways that were not clearly understood initially by the implementors. (What
you see is all you can expect.) On the other hand, if the KBS and experts
agree on the knowledge model (representation) used, extensibility is clearly
possible within that framework in ways that are known and obvious to th~ exp.er
but not necessarily to the implementer.

The knowledge-acquisition interface has three major tasks: (1) accepting
knowledge in external format and translating it into internal format, (2) vali
dating consistency of new and old knowledge, and (3) storing the knowleCilge int
the KB. This three-step process is called compilation. Often the translation
component is built using a part of the input mechanism from the user interface
and can handle restricted natural language.

The real difficulty begins with validation of consistency and checking for
redundancy--a nontrivial task--particularly when confidence factors are
included. If knowledge is represented as well-formed predicate c.alculus
fonnulas, the methods for checking are straightforward. To check for redundan1
simply try to prove the new knowledge from the existing KB. To check for inco1
sistency, add the new to the old and try to prove something that is patently
false, say AA-A; if there is an inconsistency, the proof will s.ucceed. For
other kinds of knowledge representations, the checking is not so easy. Whethe1
or not the new knowledge is inconsistent or redundant (b~lie.ve it or not, it cc
be both wt:ien adde.d to a KB that presently has neither pF,~blem) depends upon hm

30 June 1977 4-134
System Development Corporation

TM-5903/000/00

it is going to be used as well as what the knowledge is. For a more detailed
account of the problems of maintaining consistency (see [McDERMOTT74].)

The third task performed by the knowledge acquisition interface is storing the
new knowledge into the KB, a process called accommodation. See [JMOORE74]. A
problem can occur if the system has several knowledge sources and fact files in
the KB--where should it be stored? Even-if the question of where is solved,
the problem of how should not be underestimated. Storing can be a violent
activity--it is not often that the representation of new knowledge is just
copied into permanent memory and left for later use. Rather, the internal
(physical) representation is usually a structure with links between chunks,
and the acquisition mechanism must insert the new chunk into this plexus. For
example, in MYCIN, each production rule that concludes something about feature
F is linked to every rule that tests F in its antecedent. In most instances,
the linkages computed by the knowledge-acquisition mechanism will determine
how and when the knowledge is used during normal operation of the KBS. Thus,
the insertion (as well as deletion and modification) of knowledge chunks can be
a complex operation that depends upon many things such as confidence factors,
conflict-resolution strategies, existing KB content, etc.

Surprisingly, today's principal outstanding problem with knowledge acquisition
is not computer related. It is that most disciplines (other than mathematics
and computer science) do not understand their own fundamentals in a formal
way. Therefore, in order to build a KBS for that discipline, it is necessary
to find a pool of expertise whose members are willing to rethink their methods
and procedures. On2 catalytic method for starting this process is the
protocol study mentioned above. The other outstanding problems are more
technical in nature, the principal ones being (1) methods for systems learning
to perform better by having solved similar problems, and (2) techniques to
allow systems to be gracefully extended. The latter point is particularly
important, even in the short term. If a system can easily be extended, then

30 June 1977 4-135
System Development Corporati

TM-5903/000/

it can start performing useful tasks before all the knowledge necessary to it
has been collected. This set of features (or lack thereof)--formalization,
learning, and extensibility--together create a problem called the knowledge
acquisition bottleneck. The solution of this problem is key to bringing
KBS technology to widespread dissemination.

30 June 1977

5. APPLICATION CONSIDERATIONS

5-1
System Development Corporation

TM-5903/000/0C

Though KBS technology represents a maturing technology, it has not advanced to

the state where it is a paucity of writinq related .to application selection
And, though there is a fair body of literature on a variety of topics related

to KBS technology, there is paucity of writing related to application selection

and the design decision process. With minor exceptions (e.g., [BUCHANAN75]),

there is no documentation of failures, thus denying the community one of the

most potent educational opportunities--learning from the mistakes of others.

Therefore, what follows will not, nor can it be, more than a set of general

guidelines. Put another way, we do not believe that it is possible, given the

present state of knowledge, to design and build a KBS that would support KBS

developers in selecting and designing applications over the spectrum of poten

tial applications.

The following is an amalgamation of material contained in [BUCHANAN75], discus

sions with KBS implementers, and our own observations resulting from experience

with similar and related software developments.

Though there exists a relatively diverse collection of existing and developing

KBS applications, the selection process for each new application requires con
sideration of a variety of issues. We have divided these into three major

groups. First, there is a set of initial considerations that address the issues

of the problem domain itself and the people associated with it, the experts and
the practitioners. Next, are the technology considerations that focus on the

availability of usable technology for implementing a KBS that has s~ccessfully

met the first criterion. Last, there are the equally important considerations
that are directed at determining whether or not the development environment and

the user environment are properly supportive. Each of these groups is elabo

rated below in the form of a set of questions and the underlying rationale or
concern that each addresses.

:-,o June 1977

5.1 INITIAL CONSIDERATIONS

5-2 System Development Corporation
TM-5903/000/00

Does the problem have a closed-form solution? If a closed-form solution exists
and can be implemented using conventional computer technology, then there is
no reason to consider the problem as suitable for KBS technology. On the
other hand, the closed-form solution may be so inefficient computationally,
because of the number of steps involved or because of uncontrollable combina
torial explosions, that an algorithmic implementation is unthinkable. In this
case, and when no known closed-form solution exists, the problem remains a
candidate.

Is there an expert who knows how to solve problems in the domain? If there is
no expert or group of experts to whom the typical practitioner would turn for
advice or no one who is recognized as an outstanding performer for the type of
problems involved, the likelihood of constructing a successful KBS is quite
small and not worth considering. The existence of such an expert or experts is
mandatory.

Is an expert available and can he be motivated to work on the development of
a KBS? The existence of an expert is necessary but not sufficient. He must be
an integral participating member of the development team. Without the full
cooperation of such an expert, the effort is not likely to succeed. On the
other hand, he must not be expected to become an expert in computer science

--·----- --------- - ----------- .

and KBS technology. The computer scientists and technologists must be equally
cooperative in meeting the expert at least half way. Each must be willing to
learn the essentials of the others• discipline so that effective communication
can be established. The lack of such cooperation may be difficult to determine
before the actual implementation begins, but every effort should be made to
assure it early.

There are several ways to impart the domain-specific knowledge to the KBS. One
way is for the system implementer and the expert to work as a team, with the
expert providing the knowledge and the implementer encoding and inserting it in

the system; this can be a very lengthy and time ~ons~ming P!'~S:-~§?_, _ _!?l!_t __ i_~_!:>~Q~: _

30 June 1977 5-3
System Development Corporation

TM-5903/000/0C

ably the best and possibly the only way to get a new application off the
ground. Another way is for the implementer to provide an interactive subsystem
(via the knowledge-acquisition interface} that allows the expert to impart
knowledge to the system without intervention by anyone else; this would be diff
cult to do without having partially used the first alternative to determine the
specific design specifications for the interface.

Thirdly, a separate system could be built to abstract the knowledge from observ
tions and experimental results. This would be a theory-formation program that
could infer the rules about the domain from the data, as Meta-DENDRAL does. It
is doubtful that such a system could be created without considerable experience
for it requires modeling the theory-formation abilities of the experts. Such
knowledge can be considered to reside on a higher conceptual plane than the
problem-solving knowledge required for a KBS. One of the more difficult aspect:
of constructing such a system, even if it were deemed feasible, would be pro
viding the necessary constraints that would limit it to generating only knowl
edge that is plausible within the theory, rather than all possible knowledge
derivable from the data. The generated knowledge must not only be coherent
within the theory, it must be consistent within itself.

Does the expert know--or have a model in his mind of--how he solves probl~ms?
Given that all of the above conditions can be met, one now faces the problem
of determining whether or not the expert's problem-solving knowledge can be
transferred to the proposed KBS. If the expert cannot bring forth the steps,
processes, rationale, heuristics, etc., that he uses in a reasonably orderly
manner, the chances of producing a KBS_ that emulates his ability are nil.

Is the domain w.ell bounded? In other words, is the task domain limited in
scope and i ndep.endent of other knowledge about the world? Though an opera
tional KBS may require large amounts of domain-specific knowledge, the existing
techniques are insufficient to cope with domains that require significant

30 June 1977 5-4
System Development Corporation

TM-5903/000/00

amounts of general or world knowledge. Thus, in our hypothetical example in
Section 2, the amount and kinds of knowledge required to adequately diagnose
the cause of failures in an automobile given a set of observed conditions or
symptoms may be quite large. The system need not have knowledge about automo
bile manufacturing, driving habits, or the sales philosophy of the agency to
perform its function.

Are the intended users professionals? First, it is not likely that people in
non-professional occupations confront problems of the kind for which KBS tech
nology is appropriate. Therefore, in the appropriate areas for which there is
an expert and for which the other considerations hold, the professional practi
tioners must have a thorough grounding in the field, understand what theory
does exist, be able to converse with the expert in the jargon of the field, and
confront significant problems within the domain in their daily activities. To
attempt to provide a KBS that would permit a casual user or non-professional to
perform at the level of the professional practitioners is not feasible today.

Q_Q__!:he intended users agree on an underlying 11 theory 11 and its application? It
l<:, not sufficient that there exist a coherent theory; it must be widely
accepted and agreed upon by the intended users and the chosen exp~rts. It is of

little consequence that there are competing and even conflicting theories, so
long as the competition and conflict are external to the intended users and
experts concerned with a specific implementation. It is highly unlikely that
one could successfully design and implement a KBS that could incorporate a
diversity of theoretical views. A slightly simpler form of this issue is
whether or not the intended users agree on who is and is not an expert, and
whether there is general agreement on what is a correct result or answer.

Is a plausible or reasonable solution acceptable to the intended users? Since
the power of a KBS stems from its ability to reason plausibly using incomplete
or inexact information, there is no guarantee that it will always produce the

30 June 1977 5-5
System Development Corp·ora ti on

TM-5903/000/00

11 correct 11 result; but, under the conditions, it can be expected to produce the
most reasonable or plausible result. If the intended users are unwilling to
accept such results, even when the system is able to produce credible explana
tions, the system will not be successful. One possible way (though at s'Olne
risk of wasted effort) of convincing such recalcitrant users is to bring up a
limited version of the system that performs very well on what is generally
agreed to be a very difficult problem set.

Will the system be required to provide unanticipated support over its lifetime?
Is the domain a dynamic one such that the problems that the users must solve,
though within the domain, are constantly shifting in unpredictable ways? It is
expected that there will be orderly growth in the knowledge base of a KBS, but
drastic shifts in emphasis may be quite difficult to accommodate. A KBS is not
a general problem-solver. Even within a well-bounded domain, it may be neces
sary to restrict the KBS to a subset of the problems. Though it may be possiblE
to provide the necessary flexibility, there will be added risk in doing so.

Do problem-solving protocols exist or can they be formulated? The transfer of
knowledge from the expert to the KBS can be accomplished in various ways. One
way of obtaining a working model of the expert 1 s problem-solving method is by
taking protocols while he is actually solving a problem or collection of

problems. Though this is not an exact science, it has been found workabl~ in a
good many cases. This is one aspect of KBS technology that is the least
developed, though KBS implementers and computer scientists in other, related,
areas are attempting to bring more formality and structure to the process.

Do the protocols show a reasonable consistency of reasoning-.;;do principles
surface? Does the expert approach each problem in an ad hoc manner, or does he
apply a set of heuristics and reduction processes that rapidl) focus his atten
tion on the key subproblems? Unless one can extract the essence of an orderly
reasoning process from the expert, the likelihood of producing a viable KBS is
quite small or non-existent. Even if all of the other corisiderations are met,
this remairs one of the most critical.

30 June 1977 5-6
System Development Corporation

TM-5903/000/00
--- "-----·-- -----------··-----·-·--------------------~-------·· --

Are the economics right? Would the users be willing to pay a human consultant
what the computer solution cost is likely to be? This embraces a number of
issues. The problems that are solved must be useful in that people expend a
fair amount of effort trying to solve them, and the solutions are worth the
effort. It should be expected that the use of the KBS will raise the level of
the average practitioner significantly, either by making him more productive
(less time or effort spent on each problem} or by improving the quality of his
output. Another aspect of the economics is related to data gathering and
recommended act·ions. A KBS that incorporates the proper knowledge can reduce
the cost of the information-gathering process by possibly providing adequate
solutions with less (or lower-quality} input, but there are limits beyond which
no system or person can properly perform. A KBS can also recommend the lowest
cost, lowest-risk action to be taken, but in all cases, such recommendations
should be tempered with human judgment. The role of the human practitioner is
not to be subsumed by the KBS. The KBS is a tool for his use, and the final
disposition of its results is his responsibility.

30 June 1977

5.2 TECHNOLOGY CONSIDERATIONS

5-7
System Development Corporation

TM-5903/000/00

In what follows we address issues that relate to the design and implementation
from a technological viewpoint. Some of the issues are directly related to

those above, but have a different intent in that it is assumed that, if one

has reached the point in the decision process for a KBS application where
all of the initial considerations have been satisfied, then the concerns
must turn to those of determining whether the available technology will support
a design and implementation without undue risk.

Can a first-order model be constructed from protocols and/or with the help of
expert(s)? The design of the KBS must be predicated on the model, extracted
from the expert, of his knowledge and of his reasoning process. Unless tt is
obvious that there are no unforeseeable problems, it is wise to construct a
first-order model that is either a hand simulation or (preferably) a rapidly
constructed program to determine whether the proposed method will work. If not:

it may indicate a re-examination of the design or a reappraisa.l of the selec
tion. Though the model may perform well, it does not guarantee that the final
KBS will do as well across the spectrum of problems it was designed for, but
will indicate that the approach is reasonable.

Ys there a knowledge representation that matches the 11 chunk size 11 of the expert
knowledge? The design of the data structures and procedures should reflect as
accurately as possible the expert's conceptualization of the problem domain in
order to minimize or eliminate translation requirements and problems in dis
covering and removing errors and improving the system. This is not to imply thi
the KBS must necessarily accurately model the expert's reasoning process from
a psychological viewpoint, but the expert will be a party to these processes.
A mismatch will make the knowledge transfer more difficult and error prone.
Having to invent a new knowledge representation technique increases the risk
of failure.

30 June 1977 5-8
System Development Corporation

TM- 5903/ 000/ 00

What are the necessary knowledge source(s) and their representation(s)? The
most successful KBSs to date are also the simplest ones. These represent
the most stable existing technology. Therefore, one must not only choose an
application area that has the general potential for success based upon domain
and expert knowledge criteria, but one for which the existing technology is
applicable at minimum risk. Inventing new representational techniques because
the new application poses unique requirements increases the risk of failure
unless the new technique is an obvious extension of one that is well known.
The need for a flexible and extensible system must not introduce inconsistencies
in the knowledge and conflicts in the problem-solving process, therefore, there
are a variety of techniques for dealing with less than perfect knowledge or
with information that is known to contain potential errors. Measures of
plausibility and credibility, and of the associated Certainty Functions, must
be chosen with the utmost care, for they carry a great deal of inherent
pre:Judice about the domain.

What reasoning or inference methods are needed? There are several problem-
sol ving methods (each associated with the appropriate knowledge representation)
that are candidates for implementing CEs. Among the better known are heuristic
search (which implies that there exists a constrainable search-space node gen
erator), deductive inference from rules, pattern matching, means-ends analysis,
and modeling and simulation (see Section 4). In highly complex systems with
multiple levels of ahstraction and multiple representations of knowledge,
different methods may be required to cope with the problem at each level. In
this case, one can view the CE as primarily
level problem solvers as knowledge sources.
the CE should be the simplest one possible;
becom~ obvious as the system grows.

an agenda mechanism and the local
In general the initial design for

the necessary improvements wi U

30 June 1977 5-9
System Development Corporation

TM-5903/000/00

Are the knowledge representation, chunk size, and reasoning method compatible
with one another? There are critical design issues related to the technique
selected for representing the knowledge in the KSs and the interaction with the
CE (see Section 4). It must be clearly understood that the representation
technique or techniques selected for knowledge in the KB can ~trongly prejudice
the methodology and thus the problem-solving ability of the CE. For instance,
if one chooses to represent the KB's knowledge as production rules, the CE is
limited to relatively simple inference-making processes. Overdesign of the
CE should be avoided; it has no payoff. Where multiple heterogeneous repre
sentations of knowledge are required or chosen, the CE will be relatively
complex and most likely require an evaluation and an agenda mechanism. One of
the much-discussed issues in KBS technology today is that of the 11 chunk 11 size
of the knowledge in the system (see Section 4). It is a function, first, of
how the expert conceptualizes the theory of the domain and the problem set, and
second, of the selected representation technique.

In one way or another, every CE must be imbued with the ability to plan how bes
to attack the problem (or subproblem) at hand within the constraints of the
applicable method that is compatible with the knowledge representation. Order
ing the sequence of events, evaluating the results, and determining what needs
to be done next may require only a nominal process or, in complex systems, a
sophisticated agenda mechanism.

Will meta-knowledge be required? If the design of the system for the chosen
domain is such that the knowledge about reasoning and control must be modular,
and such knowledge must be obtained from the expert, the KBS will be quite
complex, and thus the risk of failure will be increased. If, on the other hand
'-~e reasoning process and control can be incorporated in the CE, then the sys
te~ will be relatively simple and easier to implement.

30 June 1977 5-10
System Development Corporation

TM-5903/000/00

Need procedural knowledge be incorporated? Care must be taken not to embed
knowledge in code {procedures) that is better left as KSs in the long run,
even at the sacrifice of short-run efficiency. Errors of this sort in the
design will either. reduce the genera 1 fl exi bi 1i ty oT the sjslem or force ----

major modifications as the system grows. As a partial guide, all knowledge
should initially be designed to be in the KB except for the absolute minimum
that must be incorporated in the control structure of the CE.

Will the user be required to add knowledge to the system to solve his problem?
If the problems to be solved require that the user add knowledge {albeit
temporary) as contrasted to data, the knowledge-acquisition interface and asso
ciated facilities for validating the consistency of added knowledge will be
more complex {as will the control mechanism in the CE) and difficult to design
and implement, for they will have to serve a large population of users rather
than a small set of experts. Thus, the human engineering and language inter
face will be more difficult to do.

Will the system support growth? A KBS must be viewed as a dynamic system
in the sense that it should be designed to 11 grow11 in various ways from its
initial conception and implementation. The primary areas for improvement
should be: {l) increasing its inferential capabilities both as the theory of
the domain evolves and as the user's understanding increases; {2) increasing
the Knowledge Base both independently of {l) as well as in conjunction with it,
e.g., adding new KSs that broaden the problem set that can be accommodated;
{3) improving the f11"!xibility and human engineering aspects based on user
experience and needs and the implementers' understanding of the users; {4)
increasing the overall reliability of the system by refining the inferential
capability and the knowledge stemming from an understanding of the failures
or errors observed in use. This means that the design and implementation of
the problem-solving procedures must be flexible enough to permit frequent
modification, particularly in the early stages. It is most unwise to embed

30 June 1977 5-11
System Development Corporation

TM-5903/000/00

the problem-solving knowledge deep in the code. Thus, an appropriate select.ion
of KSs for the KB and a proper representation are critical to success andt growt

One must forego the short-term benefits of an ad hoc i ni ti a 1 imp 1 ementaUo·n
in order to avoid the downstream costs of redesign and major modification.
This may extract an early price in performance and immediately demonstrable
results, but we believe the penalty to be worthwhile. The system design must
also be flexible enough to accorrmodate expected changes in knowledge about:.
specific problems as well as the problem-solving strategy that is likely to
evolve over time with accumulated experience. One implication of all of this
is that the implementer's job is not finished after the first success at solv
ing a user's problem. Most KBSs to date have continued to evo,lve and improve
through several generations before entering a stable maintenance mode. lrt fact
it is not clear that any present-day KBS has reached this state.

30 June 1977

5.3 ENVIRONMENTAL CONSIDERATIONS

5-12
System Development Corporation

TM-5903/000/00

The environmental considerations are often overlooked or given minimal
attention. We believe that they should be as strongly considered as any of
the above, because they contribute in their own way to the overall success or
failure of a KBS development effort. Though all of the initial and technologi
cal considerations bode well for success, the operational and developmental
environments, if not of the proper kind, will hinder both developers and users.

Is there an interactive system for the KBS users? Recall that as we have
defined a KBS above, it must be useful to workers in the domain of application.
To be most useful, a KBS should be interactive. It is conceivable that a KBS
could be developed to run in a batch-processing environment, but the circum
stances that would dictate such a decision are inconceivable. To quote
Buchanan~ 11 A batch system just cannot provide helpful, rapid feedback and
immediate error recovery, e.g., from a simple typing error. 11 [BUCHANAN75].
Since KBS, as presently defined, are intended as expert agents to support
people, other potential applications, such as process control systems, or
11 intelligent 11 robots for remote exploration are not considered here. Thus,
we believe that the basic design philosophy for a KBS should be that of a
user oriented interactive system.

Is there an interactive development system? We believe that it makes sense
to require that the development environment for the KBS be an interactive one,
independent of whether the development environment and the user's computer
environment are one ind the same. An interactive development environment
will speed the implementation process. One of the reasons appears to be unique
to KBS. It is that the interaction with the domain expert in acquiring and
validating the knowledge provided the KBS can be done much more efficiently.
It is also generally true that, given the proper set of development support
tools, interactive development is more effective and efficient than development
in a batch environment, particularly when confronted with developing an
interactive application.

30 June 1977 5-13
System Development Corporation

TM-5903/000/00

Do the necessary tools exist, in particular a properly expressive programming
system? The development system must support the required software tools
peculiar to KBS development. In addition to the standard tools, e.g., an
editor, file management, etc., an adequate programming system is necessary,
one that provides the necessary expressive power in the language and commensu
rate debugging support. For example, the programming system should be int~rac

tive and support terminal I/0, permit incremental compilation or be interpre
tive, provide an evaluate function similar to the EVAL of LISP. For debugging
it should support symbolic interaction, break in and tracing; for data struc
tures it should provide lists or pointers (list structures), aggregates, sµch
as tuples and nodes in addition to arrays, symbolic data and identifiers with
associations or properties as provided in LISP; for control structures suffi
cient flexibility to easily process through complex structures such as r~c.µr

ring through a tree, and a backup mechanism. There is a tradeoff that must be
confronted at the outset concerning efficiency. A programming system similar
to the one just described will permit efficient and flexible development, but
not necessarily provide an efficient end product. A programming system that
will provide an efficient end product is likely to lack many of the features
that we believe are highly desirable to permit flexible and efficient devel
opment, thus increasing the time and cost of the implementation.

Will the resultant system perform efficiently? There are two aspects to
efficiency. There is efficiency in terms of the software's use of the h~rd
ware. This is a function of the programming system used, the operating
environment of the computer system, and the ability of the programmers imple
menting the system. Certain inefficiencies can be tolerated, but the system
must provide respectable response time for its users; otherwise, it will not
be used. There is no automatic way to assure efficiency unless it is designed
in from the beginning. The aspect of whether or not the system will be an
efficient problem-solver has been indirectly addressed above.

30 June 1977 5-14

5.4 SUMMARY

System Development Corporation
TM-5903/000/00

We cannot stress too strongly that the KBS must be properly organized beginning
w1th the design. Not only must it be organized and structured so that the
CE and the KB are separately identifiable entities, every element must be struc
tured so that it is easily maintained and improved at minimum cost. Multiple
KSs should be considered when designing the KB for reasons of performance and
ease of adding new knowledge. The user interface must satisfy the user's per
ception of his needs and be based on good human engineering principles (includ
ing the choice of the proper terminal in some cases) so that it is attractive
rather than repulsive. The interface must accommodate the user's views of
how the interactions should proceed, e.g., the initial setting of default
parameters, even though that may not be best or easiest from the implementer's
view. Errors should be overlooked when possible, but at a minimum the response
should be supportive and indicative of what is to be done to correct the error.
Explanations of the system's behavior must be in the most acceptable and useful
form for the user providing sufficient flexibility to accommodate the user's
change in perception with experience. Though not intended as a primary source
of debugging information, the explanations are useful both to the implementers
and the experts and should be designed to incorporate their needs. Too often,
conventional software implementations have gone astray because the developers
lost sight of the fact that the system is to be developed for the use of and to
the benefit of its users who are not likely to be computer sophisticates. The
danger is lessened in developing a KBS because of the need for domain experts,
but the principle should not be overlooked.

In conclusion, the decision to use KBS technology to solve a user's problem is
not a simple one, nor is it without a certain amount of risk. For though
much of the technology underlying KBS is well founded and understood, there
remains a great deal of craft involved in completing a system, and the skill,
knowledge, and even prejudice of the craftsman have an impact on the final
outcome.

30 June 1977

6. CONCLUSIONS AND RECOMMENDATIONS

6-1
System Development Corporation

TM-5903/000/00

The technology of knowledge-based systems has emerged from the laboratory, but
it has not achieved the status of being commonly known or commonly understood
as a way of implementing computer-based application systems. Systems have
been developed in an intriguing spectrum of application areas, from medicine
and chemistry to geology and businesses, and some general techniques have been
developed that are independent of specific applications--for example, systems
that model common-sense reasoning, deductive inference, and image understanding.
The general level of accomplishment appears to be high enough to make it worth
while to begin exploring other areas for immediate potential application.

There remain a number of unresolved issues that increase the difficulty and
potential risk of using KBS technology in new applications. Though it is
reasonably clear where KBS technology can and cannot be used, to the extent that
the high-risk applications can be identified--and, if necessary, eliminated-
there is no way of guaranteeing that a selected application is entirely without
risk. How to select techniques for representing knowledge in a system and for
constructing the control mechanisms are open issues that impact not only
specific design choices, but the performance of the system as a whole. Even
with a group of domain experts who are cooperative and well motivated, the
methodology for transferring their knowledge to the system is, at best, ad hoc;
and that transfer process is probably the most crucial process of all. This
is the area in which more research is needed to discover (or invent) what
amounts to a completely new technology: the acquisition, communication, and
representation of expertise, by which we mean the ability to use a body of
knowledge effectively in solving a particular problem.

We would not be forthright if we attempted to play down the risks that must
be faced in deciding to apply KBS technology to any application that involves
supplying assistance to persons involved in sensitive problem-solving activi
ties. On the other hand, the risks can be minimized if our criteria for
selecting potential applications are carefully observed. The development of a

30 June 1977 6-2
System Development Corporation

TM-5903/000/00

KBS application is like any other software-development activity: it carries
risks. Therefore, although we do not explicitly say so in Section 5, it is
necessary that the best possible practices pertaining to software-development

efforts in general be followed in developing a KBS application. Of particular
importance is getting the users to participate in the requirements-specification
and design processes as early as possible, and keeping those users involved
until the system is turned over to them. Also, while the knowledge and skills
required of technicians (or technologists) who are developing knowledge-
based systems are different from the knowledge and skills required of ''systems
analysts" or "programmers" developing conventional computer-based systems, the
fact that they may be involved in exotic applications of computer technology
snould not exempt them from normal management scrutiny and control. Common
sense, good judgement, and good management can do much to transform what at
the outset appears to be a risky endeavor into a highly successful and
satisfying one.

30 June 1977

7. ANNOTATED BIBLIOGRAPHY

7-1
System Development Corporation

TM-5903/000/00

The ideas in this annotated bibliography are, we believe, a cross section of
the recent literature on knowledge-based systems and related research. They
are intended to give the reader who is unfamiliar with the literature of the
field a feeling for the kind of papers that he will encounter in exploring
things on his own. Each summary or abstract is headed by the reference
pointer into the general bibliography (Section 8) and the article's title as
it appears in that entry.

ANDERSON76b - Rand intelligent terminal agent (RITA): design philosophy.
RITA is a production rule based system for constructing small but competent
agents or other rule based processes such as TECA (see Appendix B). Users
input rules in an English-like form with a restricted syntax. Rules may be
executed by one (and only one) of three monitors: LHS scan with ordered rule
set, LHS scan with unordered rule set, and RHS scan (goal directed, backward
chaining) with implicitly unordered rule set. Several agents have been imple
mented to perform various user functions. This document discusses the design
philosophy and some of the implementation details.

BALLARD76 - A ladder-structured tree for recognizing tumors in chest
radiographs.
This paper describes a computer procedure for the detection of nodular tumors
in chest radiographs. The recognition process uses a hierarchic structure in
the form of a ladder-like decision tree. After locating potential nodules, the
procedure classifies them into non-nodules, nodules that are not tumors, and
nodules that are tumors. It accurately located tumors in five of six radio~
graphs but missed some obscure ones in the sixth. The system contains a great
deal of knowledge about tumors as they appear in radiographs, but it is not
Ju,led together in a central knowledge base and is difficult to add to or
.·,-;edify, being represented as procedures.

30 June 1977 7-2

BOBROWD77a - GUS, a frame-driven dialog system.

System Development Corporation
TM-5903/000/00

GUS (Genial Understander System) is intended to engage a cooperative human in
an English language dialog directed toward a specific goal in a restricted
domain of discourse. The authors implemented GUS in order to determine whether
a modular approach for a dialog system was at all feasible and to test their
notions of reasonable lines of decomposition. GUS provided a context in which
to explore tools and techniques for building and integrating independent
modules. The major knowledge-oriented processes and structures in GUS--the
morphological analyzer, the syntax analyzer, the frame reasoner, and the lan
guage generator--were built as independent processes with well defined language
or data structures to communicate across the interfaces. They were debugged
separately and tied together by an asynchronous control mechanism. The frame
reasoner was the focus of most of the research and development. The frame
structures (which differ from Minsky's [MINSKY75] used in GUS were a first step
toward a more comprehensive Knowledge Representation Language (KRL) [BOBROWD77b].

BOBROWD77b - An overview of KRL, a knowledge representation language.
This paper describes KRL, a Knowledge Representation Language designed for use

in understander systems. It outlines both the general concepts which underlie
the research and the details of KRL-0, an experimental implementation of some
of these concepts. KRL is an attempt to integrate procedural knowledge with a
broad base of declarative forms. These forms provide a variety of ways to
express the procedures (for memory and reasoning) with specific pieces of knowl
edge, and to control the relative accessibility of different facts and descrip
tions. The formalism for declarative knowledge is based on structured concep
tual objects with as;ociated descriptions. These objects form a network of
memory units with several different sorts of linkages, each having well
specified implications for the retrieval process. Procedures can be associated
directly with the internal structure of a conceptual object. This procedural
attachment allows the steps for a particular operation to be determined by
characteristics of the specific entities involved.

30 June 1977 7-3
System Development Corporation

TM-5903/000/00

The control structure of KRL is based on the belief that the next generation of
intelligent programs will integrate data-directed and goal-directed processing
by using multi-processing. It provides for a priority-ordered multi-process
agenda with explicit (user-provided) strategies for scheduling and resource
allocation. It provides procedure directories which operate along with process
frameworks to allow procedural parameterization of the fundamental system pro
cesses for building, comparing, and retrieving memory structures. Future
development of KRL will include integrating procedure definition with the
descriptive formalism.

BOBROWD75b - Dimensions of representation.
In this paper the author proposes a framework for viewing the problems of
representation. Each of the design issues (influenced by Moore and Newell
[MOORE73]) in the framework defines a dimension of ;epresentation--a relatively
independent way of looking at representation. The dimensions referred to are:
(1) domain and range, (2) operational correspondence, (3) process of mapping,
(4) inference, (5) access, (6) matching, and (7) self-awareness.

BOBROWD75c - Some principles of memory schemata.

The form of knowledge structures (schemata) is an amalgam of the principles of
semantic networks, actors, and frames. The word schema is drawn from the
psychological literature and is most commonly associated with the work on
memory by Bartlett [BARTLETT32] and by Piaget. The central thesis is that one
schema refers to another only through the use of a description which is depen
dent on the context of the original reference. These schemata are active pro
cessing elements which can be activated from higher level purposes and expecta
tions (top-down) or from input data (bottom-up} that must be accounted for.
The desire is to specify a memory structure that allows one schema retrieved
'':;m memory to suggest others that should also be retrieved to yield human-like

~ }g"cal and metaphorical retrieval as a fundamental mode of operation.

30 June 1977 7-4
System Development Corporation

TM-5903/000/00

BOBROWR75 - Systematic understanding: synthesis, analysis, and contingent
knowledge in specialized understanding systems.
The best representation for a body of knowledge depends on how that knowledge
is to be used by the program, and thus better characterization of the uses of
knowledge is likely to lead to better ways of designing knowledge representa
tions. This paper describes the SCA model, a framework for describing the
structure of "conceptually efficient" understanding programs, based on a char
acterization of three fundamentally different ways in which knowledge is used
in such programs. The SCA model can be of use both to those designing under
standing systems and to those who wish to study existing systems to develop
insights into different approaches to representing knowledge.

BROWN75a - Uses of artificial intelligence and advanced computer technology in
education.
Advances in hardware technology will make it economically feasible for each
student to have access to computational resources currently available to only
a few elite users. The challenge facing educational technologists is to har
ness these capabilities to provide equal advances in the quality and effective
ness of CAI systems. What is needed are new instructional paradigms, not based
on the belief that computation is a scare resource.

CAI systems understand their subject domain and can use their knowledge base ~
help a student experiment with, debug, and articulate his own ideas and reason~
ing strategies. These learning environments support a kind of ''learning-by~
doing" in which a student has freedom to solve problems in his own way, with the
instructional syste~; following and criticizing the student's line of reasoning.
Examples of such systems are Goldberg's logic teaching system (1973), SOPHIE
(1975), Kimball's system for teaching symbolic integration (1973), Goldstein's
MYCROFT system for enriching the LOGO environment (1974), and Ruth's system
for criticizing sorting programs (1974).

30 June 1977 7-5
System Development Corporation

TM-5903/000/00

BROWN75b - Multiple representations of knowledge for tutorial reasoning.
This paper provides an overview of SOPHIE, an intelligent instructional system
for electronic circuit debugging. Unlike previous AI-CAI systems which attempt
to mimic the roles of a human teacher, SOPHIE tries to create a ''reactive"
environment in which the student learns by trying out ideas rather than by

instruction.

SOPHIE's expertise is derived from an efficient and powerful inferencing scheme
that uses multiple representations of knowledge including (1) simulation models
of its microcosm, (2) procedural specialists which contain logical skills and
heuristic strategies for using these models, and (3) semantic nets for encoding
time-invariant factual knowledge. In this respect SOPHIE represents a depar
ture from inferencing paradigms (of either a procedural or declarative nature)
which use a uniform representation of information.

BUCHANAN76a - Computer assisted chemical reasoning.
Application programs have the immediate goal of serving the scientist.
Research and educational programs have longer range goals of changing the way
scientists formulate problems and how they solve them. The DENDRAL programs
cut across all of these goals. Behind them are the issues involved in tutning
a computer system into a valued problem-solving assistant.

BUCHANAN76b - Automatic rule formation in mass spectrometry by means of the
Meta-DENDRAL program.
The DENDRAL computer program uses established rules of molecular fragmentation
to help chemists solve complex structural problems from mass spectral data.
This paper describes a computer program, called Meta-DENDRAL, that can aid in
the discovery of such rules from empirical data on known compounds. The pro
gram uses heuristic methods to search for common structural environments around
those bonds that are found to fragment, and abstracts plausible fragmentation
rules.

30 June 1977 7-6

COLLINS76 - Processes in acquiring knowledge.

System Development Corporation
TM-5903/000/00

The objective of this paper is to develop a theory of Socratic tutoring in the
form of pattern-action (or production) rules for a computer program. These
pattern-action rules are being programmed on a computer system for tutoring
causal knowledge and reasoning.

The production rules were derived from analysis of a variety of tutorial
dialogs. The analysis accounts for the specific teaching strategies used by
the tutors in the dialogs within a content-independent formalism.

The paper includes twenty-three production rules derived from the data analyzed,
together with segments of the data showing the actual application of the rules
in different tutorial dialogs. The strategies themselves teach students:
(1) information about different cases, (2) the causal dependencies that under
lie these cases~ and (3) a variety of reasoning skills. These include such
abilities as forming hypotheses, testing hypotheses, distinguishing between
necessary and sufficient conditions, making uncertain predictions, determining

the reliability or limitation of these predictions, and asking the right
questions when there is not enough information to make a prediction.

DAVIS77 - Production rules as a representation for a knowledge-based consulta
tion program.
The MYCIN system is at the forefront of two important trends in AI research:
applications of AI to 11 real-world 11 problems of importance, and the incorpora
tion in programs of large amounts of domain-specific knowledge.

This paper examines how the implementation of a knowledge-based consultation
program is facilitated or inhibited by the use of production rules as a knowl
edge representation. The limits of applicability of this methodology are also
investigated.

30 June 1977 7-7
System Development Corporation

TM-5903/000/00

DUDA77 - Semantic network representations in rule-based inference systems.

PROSPECTOR is a geological consultant system ~eing developed at SRI. Thts

system is intended to help geologists in evaluating the mineral potential :0f

exploration sites. Authors have been influenced by MYCIN, INTERNIST (nee

DIALOG), Trigoboff 1 s work on propagating measures of uncertainty through ia

semantic network, and by Hendrix 1 s partitioned semantic networks.

This paper describes a way to use semantic network representations in rule

based inference systems. This combination allows a designer to retain tfile
desirable modularity of a rule-based approach, while permitting an explicit,

structured description of the semantics of the problem domain. Since semantic

nets are among the leading internal representations used in computational 'lin

guistics, their use should also simplify the development of a natural lafil,guag.e

interface between the system and its users.

ENGLEMORE77 - A knowledge-based system for the interpretation of protein :x-ray

crystallographic data.

The broad goal of this project is to develop intelligent comp"utational systems

to infer the three-dimensional structures of proteins from x-ray crystallo

graphic data. The computational systems under development use both formal and

judgmental knowledge from experts to select appropriate procedures and to con

strain the space of plausible protein structures. The hypothesis generating

ant testing procedures operate upon a variety of representations of the .data,

" ', WOY"k with several different descriptions of the structure being inferred.

The system consists of a number of independent but cooperating knowledge

sources which propose, augment and verify a so.Jution to the problem as tt is

incrementally generated.

GOLDSTEIN76 - Artificial intelligence, language and the study of knowledge.

This paper studies the relationship of Artificial Intelligence to the study of

language and the \'1~,presentation of the underlying knowledge which supports the

comprehension process. It develops the view that intellig,ence is based on the

30 June 1977 7-8
System Development Corporation

TM-5903/000/00.

ability to use large amounts of diverse kinds of knowledge in procedural ways,
rather than on the possession of a few general and uniform principles. The
paper also provides a unifying thread to a variety of recent approaches to

natural language comprehension. It concludes with a brief discussion of how
Artificial Intelligence may have a radical impact on education if the principles
which it utilizes to explore the representation and use of knowledge are made

available to the student to use in his own learning experience.

GORRY74 - Research on expert systems.

Society faces a shortage in expert systems (increased demand, knowledge explo
sion). Human experts are in short supply; they are not properly distributed
with respect to the needs of society, and the mechanisms that society has
developed for maintaining supply are now inadequate.

Computer-based expert systems could improve the supply and distribution of
expert services to society. They can be mass produced, either in fact or in

principle through time-sharing systems. This will alleviate the problems of

non-uniform access and improper distribution. Secondly, computer-based expert
systems will alleviate the problem of intellectual obsolescence due to the

long time to nurture a human expert. The expert computer program is relatively
insensitive to the time at which knowledge is added to it. It is possible to
add knowledge to the program and instantly disseminate it. In order to build

a computer-based expert system, we will have to know what constitutes expertise;
therefore, the system itself in large part will represent a theory of expertise,
one that can be poked and prodded with various experimental techniques. This
investigation is easier with a separate store of knowledge. By contrast, the

formal education of human experts is by example; it does not use a corpus of
knowledge.

GORRY believes the day of computer-based experts "is a long way off", citing
intrinsic and technological problems for the distribution of expertise by
computer-based expert systems.

30 June 1977 7-9
System Development Corporation

TM-5903/000/00

GRIGNETTI75 - An 11 intelligent 11 on-line assistant and tutor--NLS-SCHOLAR.
NLS-SCHOLAR is a system that teaches computer-naive people how to use NLS, a
powerful and complex text editor. It has been designed with the belief th,at
procedural knowledge is best learned by doing. NLS-SCHOLAR can be used as an
on-line help system outside the tutorial environment. Thus the system can take
the lead at first, and fade smoothly into the background as users become pro
ficient. This capability of integrating on-line assistance and training is an
extension to the traditional notion of CAI.

KAHN75 - Mechanization of temporal knowledge.
Despite the importance of understanding time in many problem-solving sitllla.tions!
AI research has largely ignored the temporal characteristics of problems. The
application areas have been chosen to illuminate only particular aspects of a
current theory of intelligence, sidestepping the 11messiness 11 of time-related
problems. This paper considers one way in which knowledge about time can be
incorporated into problem-solving programs. Time knowledge can be embodied in
a set of problem-solving routines which are referred to as the time speci,alist.
The time specialist can then be placed in the service of a larger problem
solving program to deal with the temporal questions that arise in the latter's
domain of expertise. The problem-solving program can ask the time specialist
to make inferences and to answer questions concerning temporal specifications;
these queries and requests are phrased in a language that is determined by the
time specialist.

KLAHRD74 - Understanding understanding systems.
Makes general comments related to two papers, "How can MERLIN understand? 11

[MOOREJ73] and 11 Knowledge and its representation in a speech understanding
system" [REDDY74] that describe general features of understanding systems,
and deal with the relation between knowledge and cognition.

KUIPERS74 - A franw for frames: representing knowledge for recognition.
How can we represent in a computer program the kind of knowledge people

30 June 1977 7-10
System Development Corporation

TM-5903/000/00

manipulate easily and effectively? One of the significant discoveries of AI
has been how computationally difficult are the simple tasks of vision, language,
and common sense reasoning. New frame mechanisms have been proposed by which
the organization of previously accumulated knowledge can assist active percep
tion and understanding (and recognition). The idea is that if there is too
little computation time when a problem comes up, do some of the work in advance
and keep the computed results available. This focuses our attention on the
relationship between immediate perception, understanding, and long-term
knowledge.

This paper provides an intuitive discussion of frames which can serve as a
foundation for more precise statements.

KULIKOWSKI76 - Clinical consultation and the representation of disease
processes: some artificial intelligence approaches.
With an ever-increasing rate of growth in medical knowledge, the need for
expert consultant services grow apace. Building a flexible and sophisticated
computer-based expert consultation system is a formidable task because of the
complexity and heterogeneity of medical knowledge and our very limited under
standing of clinical reasoning processes.

Looking back over the past five years we can detect the evolution of a new
phase of computer consultation systems, marked by the building of models of
patients and diseases that combine knowledge from a variety of sources with a
diversity of structural representations, and the experimentation with a varied
array of inferential problem-solving strategies. These systems all use AI
methods in attempting to simulate the activities of an expert consultant,
although they differ substantially in scope and choice of task and methodologi
cal approaches. The CASNET program has been developed to incorporate the knowl
edge of a network of clinical researchers in glaucoma. It involves a causal
associational representation for evolving disease processes and can be used by
a variety of reasoning strategies to provide diagnostic, prognostic, and

30 June 1977 7-11
System Development Corporation

TM-5903/000/00

therapeutic recommendations, together with explanations and references to
diverse expert opinions. This representational scheme (being implemented)
generalizes the semantic description of disease processes and extends the
scope of the control strategies.

MALHOTRA75b - Design criteria for a knowledge-based English language system for
management: an experimental analysis.
The main result of this thesis is to show the utility and feasibility of a
knowledge-based conversational English language support system for managers.
Though an actual system was not implemented, Malhotra supports this feasibility
contention through a detailed experimental analysis of the problem-solving
behavior of 23 subjects with a 11 hand-simulated 11 perfect English language system.
These experimental protocols figure prominently in the discussion of the design
of a prototype management support system, one which is technologically feasible.

·The utility of such a support system to managers was confirmed by the test sub
jects in their responses to a questionnaire. The prototype management support
system was designed around a simplifying assumption of an array-structured data
base and a hypothetical lead battery manufacturing company faced with the
problem of lower profits despite increased sales. It is a big step from a simu
lated prototype system operating with simple problem conditions to an implemen

tation of a management support system over a real world problem. Nevertheless,
this thesis serves as a valuable introduction to a worthwhile application area
for knowledge-based support systems.

MELDMAN75 - A preliminary study in computer-aided legal analysis.
This paper describes a prototype computer system that can perform a simple kind
of legal analysis, the logical derivation of a legal conclusion from a particu
lar factual situation in the light of some body of legal doctrine. In an
analysis session, the lawyer user sits at a computer terminal and enters a
description of a hypothetical factual situation. A cursory reading of this
dissertation does not explain the motivation of the system: education (hypo
thetical situation) or consultation (real situation). The system explores its

30 June 1977 7-12
System Development Corporation

TM-5903/000/00

internal representations of various legal doctrines, and determines the extent
to which the hypothetical facts fall with (syllogism), or next to (analogy)
these doctrines. Often the system asks the user to supply additional facts
that it needs in order to make these determinations. The system then informs
the user of its conclusions and explains to the user the logic behind its
reasoning. Whenever possible, it supports its conclusions with references to

judicial decisions and to other authoritative assertions of law.

This kind of KBS requires explicit machine representations for specific factual
situations that are to be analyzed. It is also necessary that the system have
similar representations for more generalized situations in terms of which legal
doctrines can be expressed. Finally, the legal analysis KBS must have proce
dures for matching the specific facts being analyzed to the more general facts
contained in the doctrine.

MOOREJ73 - How can MERLIN understand?
This paper addresses the question of "How is it possible to understand?" as a
series of design issues that must be met by any understanding program (the
authors' claim). It illustrates the issues by means of current work in arti
ficial intelligence and data from psychology. It then discusses MERLIN and the
design decisions that characterize it and attempts to answer how the authors
expect Merlin to understand.

The paper introduces Bloom's Taxonomy of Knowledge [BLOOM56] but dismisses it
as not useful for their task. The design issues that are put forth to charac
terize understanding are: Representation, Action, Assimilation, Accommodation,
Directionality, Efficiency, Error, and Depth of Understanding.

MORAN73a - The symbolic imagery hypothesis: a production system model.
This dissertation puts forth the general hypothesis that human visual imagery
is symbolic in nature. Assuming that imagery operates in the context of a
cognitive system that is basically a symbolic information processor, this is

30 June 1977 7-13
System Development Corporation

TM-5903/000/00

the most parsimonious (and radical) symbolic imagery hypothesis from the
standpoint of system architecture. This claim is limited to the particular
kind of constructive visual imagery called synthetic imagery (visualization)~

novel images produced by the interpretation of verbal descriptions of an unfa
miliar spatial situation. Interest is in the information structure and content
of visual images, for this makes a useful cognitive skill.

NILSSON74 - Artificial intelligence.
This paper is a survey of Artificial Intelligence (AI). It divides the fiel~
into four core topics (embodying the base for a science of intelligence) and
eight application topics (in which research has been contributing to core
ideas). The paper discusses the history, the major landmarks, and some of the
controversies in each of these twelve topics. Each topic is represented by a
chart citing the major references. These references are contained in an exten
sive bibliography. The paper concludes with a discussion of some of the
criticisms of AI and with some predictions about the course of future research.

Nilsson 1 s guess is that we sti 11 have a good dea 1 of work to do on the problem
of how to obtain, represent, coordinate, and use the extensive knowledge we now
know is required. But these ideas will not come to those who merely think
about the problem. They will come to those who both think and experiment with

much larger systems than we have bui 1t so far. To build really larger,
11 knowledgeable 11 systems, we will have to 11 educate 11 existing programs rather
than attempt the almost impossible feat of giving birth to already competent
ones. It is expected that the combined man-machine strategy which has given
high performance results wi 11 be expanded to al low the human eKpert to trans
fer skills and knowledge to the machine.

RUBIN75b - Hypothesis formation and evaluation in medical diagnosis.
The structure of medical knowledge necessary for diagnosis is ,a cause-effect
net. The effects (findings) have a structure which consists of a main-concept
and a set of one or more property values. When a piece of dat.a is asserted to

30 June 1977 7-14
System Development Corporation

TM-5903/000/00

the system, an attempt is made to fit it into various slots or finding
specifications; several relationships between an actual finding and a finding
specification are possible: sufficient, insufficient, further, and contradic
tory specification. The fitting process is complicated by time considerations.

Need relationships like CAUSE, COMPLICATION, and DEVELOPS INTO between the
causes (elementary hypotheses) also play an important role in the global stage
of processing. Elementary hypotheses may be related to more and less specific
etiologies by CHOICE SET and ISA links, respectively. Elementary hypotheses
may have properties associated with them, such as EPISODIC DISEASE and a TIME
INDEX, both of which help to interpret RECURRENT-SYMPTOMS.

The processing for diagnosis proceeds as follows: first try to dispose of the
new finding by attributing it to an already-established etiology. Triggering
is the next step, creating active instantiations of previous inactive hypotheses.
Local evaluation determines which of the active hypotheses are to be accepted,
which rejected, and which deferred. Global assembling tries to combine many of
the local hypotheses into a more complex one which is both coherent (the ways
hypotheses can be combined are limited), and adequate (to explain all the data).
Heuristics at the various processing stages of diagnosis serve to reduce the
number of concurrently active hypotheses.

There is no implementation of the theory.

RYCHENER75 - The Studnt production system, a study of encoding knowledge in
production systems.
This paper is concerned with Studnt, a production system implementation of the
STUDENT program of Bobrow (1964). The approach is to make explicit and analyze
the knowledge embodied in STUDENT, and to measure the degree to which that
knowledge is understood by STUDENT; then determine what parts of the knowledge
represent methods, what parts contribute i nte 11 i gence, and so on.

30 June 1977 7-15
System Development Corporation

TM-5903/000/00

An important motivation behind the analysis of STUDENT is to explore the
properties of production systems (PSs) as an AI language. A PS program speci
fies its behavior in terms of condition-action rules. The conditions all refer
to a common working memory which is the complete dynamic knowledge state of the
program, and actions are simply changes to that knowledge state. In practice,
the numbers of conditions and actions within a production are both in the range
of half a dozen to a dozen. There are no control primitives as such, but
rather control is achieved through explicit elements of the working memory.
Features of this abstract formulation: (1) uniformity and explicitness of
representation of knowledge; (2) flexibility and intelligence in the sense of
doing a significant amount of condition-testing for each small sequence of
actions; (3) flexibility also in the sense of being able to respond to unex
pected items in the knowledge state; (4) modularity of knowledge organiza'tion,
following from the way knowledge is encoded in small, independent units. In
addition to these attractive properties, there is evidence that a PS-like
organization is prominent in human cognition [NEWELL72a].

Studnt is designed to do only the translation from English-subset expressfons
into algebraic equations, which is the most interesting segment of STUDENT from
the view of problem solving and natural language processing. Given an al~bra
word problem, Studnt outputs: a set of equations; the set of variables tn
those equations as represented by the input text; and a set of variables to be
solved for. Studnt is implemented in Psnlst (PS analyst), a PS languag.e speci
fically designed for AI applications.

SHORTLIFFE75b - Computer-based consultations in clinical therapeutics:
explanation and rule acquisition capabilities of the MYCIN system.
This report describes progress ·in the deve 1 opment of a-n interactive computer
program, MYCIN, that uses the clinical decision criteria of experts to advise
physicians who request advice regarding selection of appropriate anttmicrobia.l
therapy for hospital .patients with bacterial infections. ·s:i nee pa ti en ts with
infectious diseases often require therapy before complete ·tnformation about the

30 June 1977 7-16
System Development Corporation

TM-5903/000/00

organism becomes available, infectious disease experts have identified clinical
and historical criteria that aid in the early selection of antimicrobial therapy.
MYCIN gives advice in this area by means of three subsystems: (1) A Consulta
tion System that uses information provided by the physician, together with its
own knowledge base, to choose an appropriate drug or combination of drugs;
(2) An Explanation System that understands simple English questions and answers
them in order to justify its decisions or instruct the user; and (3) A Rule
Acquisition System that acquires decision criteria during interactions with an
expert and codes them for use during future consultation sessions. A variety
of human engineering capabilities have been included to heighten the program's
acceptability to the physicians who will use it. Early experience indicates
that a sample knowledge base of 200 decision criteria can be used by MYCIN to
give appropriate advice for many patients with bacteremia. The system will be
made available for evaluation in the clinical setting after its reliability
has been shown to approach that of infectious dfsease experts.

SHIDHARAN73 - A heuristic program to discover syntheses for complex organic
molecules.
The challenge of this work arises from the complexity of the task of organic
chemical synthesis, the large base of scientific knowledge and vocabulary
required, and the abstruse rules of reasoning employed by experts.

Synthesis involves (1) the choice of .a molecule to be synthesized; (2) the
formulation and specification of a plan for synthesis, involving a valid reac
tion pathway leading from readily available compounds to the target compound;
(3) the selection of specific steps of reaction and their temporal ordering
for execution; (4) the experimental execution of the synthesis; and (5) the
redesign of syntheses, if necessary, depending upon the results. Step (2)
above, formal synthesis, is the only concern of this paper.

The program takes as input a canonical representation (Wiswesser linear name)
of the target compound together with a list of conditions that must govern the

30 June 1977 7-17
System Development Corporation

TM-5903/000/00

solution of the problem. The program has at its disposal a list of compounds,
the "shelf library", that can be assumed available with some indication of cost
and availability. The program uses a reaction library containing generalized
procedures for the synthesis of functional groups of compounds. The output is
a set of proposed synthesis procedures; each proposed synthesis is to be a
valid reaction pathway from the available compounds, where each step is anno
tated with estimated yields, by-product predictions, and target molecule sepa
ration procedures.

The more challenging aspect of the problem is constructing a rational basis
for the reasoning process involved in designing organic chemical syntheses.
Syntheses are not brought forth in a flash of understanding but are developed
one step at a time. The development of these steps can be learned. Authors
have watched and interacted with a chemist (W. Fowler, one of the authors)
developing syntheses in an effort to isolate useful components of expert's
problem-solving activity. Some of these techniques are incorporated as heuris
tics within the synthesis search algorithm.

STANSFIELD76 - Wumpus advisor 1. A first implementation of a program that
tutors logical and probabilistic reasoning skills.
The Wumpus advi.sor program offers advice to a player involved in choosing the
best move in a game for which competence in dealing with incomplete and uncer
tain knowledge is required. The design and implementation of the advisor
explores a new paradigm in Computer Assisted Instruction, in which the perfor
mance of computer-based tutors is greatly improved through the application of
artificial intelligence techniques. This report describes the design of the
Advisor and outlines directions for further work. Experience with t'he tutor
is informal and psychological experimentation remains to be done.

WATERMAN74 - Adaptive production systems.
This paper presents recent results in the design and use of adaptive or self
.. ~odifyi ng production systems (PSs). The PSs are written i'n PAS-II and each is

30 June 1977 7-18
System Development Corporation

TM-5903/000/00

represented as a set of ordered production rules. The control cycle consists
of selecting one rule from the set and executing its actions. The first rule
(from top to bottom) whose conditions match the working memory is the one
selected. After the actions associated with the selected rule are executed
the cycle starts again, from the top. This process continues until no condi
tions match, or until an explicit stop is executed.

An adaptive PS is defined to be one which, through its actions, can modify its
own production rules. There are three principal ways such modifications can
take place: (1) by adding new rules, (2) by deleting old rules, and (3) by
changing existing rules. The adaptive PSs (APSs) of this paper use just one
of these three modification techniques: addition of new rules.
the APS not only contains actions which can modify the contents
memory but also actions which can add new rules to the system.

WEISS60 - Knowledge: a growth process.

In summary,
of working

Our knowledge grows the way a living body does. Author's metaphor; Scientific
knowledge grows like an organic tree, not as a compilation of collectorts items.
Far.ts, observations, discoveries, as items of information, are but the nutrient$
on which the tree of knowledge feeds, and not until they have been thoroughly
absorbed and assimilated, have they truly enlarged the body of knowledge.

The main steps of the growth process are diagrammed in the paper. The model is
abridged and oversimplified. However, it illustrates the essence of the growth
process, which is that in its growth an organism never adopts foreign matter
outright but reorganizes and assimilates it to fit its own peculiar pattern.
Organic ·growth is by assimilation, not accretion. It is appropriate to think
of the etymology of "assimilate'' in connection with frames.

30 June 1977 7-19
System Development Corporation

TM-5903/000/00

WILKS74 - Natural language understanding systems within the artificial
inte~ligence paradigm, a survey and some comparisons.
~his paper gives a survey of some important natural language understanding
systems (SHRDLU and second generation systems: Charniak's children stories,
PARRY, Simmons' semantic network, Schank's conceptual dependencies, Wilks'
templates) focusing on the problems of word sense and pronoun reference
ambiguities. Also mentions, in passing, some general background issues-
failure of generative paradigm of transformational grammarians and their suc
cessors the generative semanticists. This generative paradigm of understand
ing natural language has been superseded by the AI paradigm.

There is no agreement over the content of the AI paradigm. Two viewpoints of
11 understanding'' as applied to the computer: empirical (ability to sustain some
dialog long enough and sensibly enough to pass Turing's test) and epistemologica
(11methods and representations of knowledge by which the performance is achieved
must be of the right formal sort"). What is the most appropriate form of an
inference system: deductive inference or some other sort of inference closer
to common sense reasoning?

WINOGRAD75 - Frame representations and the declarative/procedural controversy.
The first half of this paper examines the essential features of the opposing
viewpoints of knowledge representation and provides some criteria for evaluating
ideas for representation. The second half contains a rough sketch of a particu
lar version of a frame representation (suited for understanding natural lan
guage), and suggests the ways in which it can deal with the issues raised.

The proceduralists assert that our knowledge is primarily "knowing how". The
declarativists see intelligence as resting on two bases: a general set of
procedures for manipulating facts of all sorts, and a set of specific facts
describing particular knowledge domains. From a strictly ~ormal view there
is no distinction bet.ween the positions. We can think of the interpreter or

30 June 1977 7-20
System Development Corporation

TM-5903/000/00

the hardware as the only program in a computer system, and everything else as
data; or we can view everything as a program--a fact is a simple program which
J ~;epts input questions such as 11 Are you true? 11 and answers 11 true 11 or 11 false 11 •

we must go beyond these labels to see what can be gained by looking at a piece
of knowledge from one viewpoint or the other.

30 June 1977

8. BIBLIOGRAPHY

ABELSON73

8-1
System Development Corporation

TM-5903/000/00

Abelson, R. P. The structure of belief systems, in Computer models of thought
and language, R. C. Schank and K. M. Colby (eds.), pp. 287-339. San Francisco:
Freeman, 1973.

ANDERSON76a
Anderson, R. H.; Gallegos, M.; Gillogly, J. J.; Greenberg, R. B.; and Villaneuva
R. RITA reference manual. Report R-1808-ARPA. Santa Monica CA: The Rand
Corporation, 1976.

ANDERSON76b
Anderson, R. H., and Gillogly, J. J. Rand intelligent terminal agent (RITA):
design philosophy. Report R-1809-ARPA. Santa Monica CA: The Rand Corpora
tion, 1976.

ANDERSON72
Anderson, R. H. The linguistic approach to pattern recognition as a basis for
adaptive program behavior. Proc. tenth Allerton conference on circuit and
system theory, 1972.

8.ALLARD76
:::aiiarc :, H., and Sklansky, J. A ladder-structured decision tree for recog
nizing ·cu1110rs in chest radiographs. IEEE transactions on computers, 1976.

BARNETT75a
Barnett, J. A. Module linkage and communication in large systems, in Speech
recognition, D. R. Reddy (ed.), pp. 500-520. New York NY: Academic Press,
1975.

30 June 1977

BARNETT75b

8-2
System Development Corporation

TM-5903/000/00

Barnett, J. A. A phonological rules system. Technical Memorandum TM-5478/000/00.
Santa Monica CA: System Development Corporation, 1975.

BARNETT74
Barnett, J. A., and Pintar, D. L. CRISP: a_programming language an_d system.
Technical Memorandum TM-5455/000/00. Santa Monica CA: System Development
Corporation, 1974.

BARTLETT32
Bartlett, C. F. Remembering: a study in experimental and social psychology.
Cambridge, England: Cambridge University Press, 1932.

BERNSTEIN76
Bernstein, M. I. Interactive systems research: final report to the director,
Advanced Research Projects Agency, for the period 16 September 1975 to 16 Sep
tember 1976. Technical Memorandum TM-5243/006/00. Santa Monica CA: System
Development Corporation, 1976.

BLEDSOE73
Bledsoe, W. W., and Bruell, P. A man-machine theorem proving system. Proc. of
the third international joint conference on artificial intelligence. Menlo
Park CA: Stanford Research Institute Publications, l 973.

BLOOM56
Bloom, B. S. (ed.). Taxonomy of educational objectives. New York NY: McKay,
1956.

30 June 1977

BOBROWD77a

8-3
Systems Development Corporation

TM-5903/000/00

Bobrow, D.G.; Kaplan, R.M.; Kay, M.; Norman, D.A.; Thompson, IL; and Winograd, T
GUS, a frame-driven dialog system. Palo Alto CA: Xerox Palo Alto ResearcA
Center, 1977.

BOBROWD77b
Bobrow, D.G., and Winograd, T. An overview of KRL, a knowledge representation
language, to appear in Cognitive science 1(1), 1977.

BOBROWD75a
Bobrow, D.G., and Collins, A.M. (eds.). Representation and understanding;
studies in cognitive science. New York NY Academic Press, 1975.

BOBROWD75b
Bobrow, D. G, l 975b. Dimensions of representation, in Representation and uoder
standi ng: studies in cognitive science. D.G. Bobrow and A.M. Collins (eds.),
pp. 1-34. New York NY: Academic Press, 1975.

BOBROWD75c
Bobrow, D.G., and Norman, D.A. Some principles of memory schemata, in Represen
tation and understanding: studies in cognitive science, D.G. Bobrow and
A.M. Collins (eds.), pp. 131-149. New York NY: Academic Press, 1975.

BOBROWD75d
Bobrow, D.G., and Raphael, B. New programming languages for artificial intelli
gence research. Computing surveys 6(3), pp. 155-174, 1975

BOBROWD73
Boorow, D.G., and Wegbreight, B. A model and stack implementation of multiple
environments. Comm,, ACM 16(10), pp. 591-603, 1973.

30 June l 977

BOBROWD68

8-4
System Development Corporation

TM-5903/000/00

Bobrow, D.G. Natural language input for a computer problem-solving system,
in Semantic information processing, M. Minsky (ed.), pp. 146-226. Cambridge
MA: MIT Press, 1968.

BOBROWR75
Bobrow, R.J., and Brown, J.S. Systematic understanding: synthesis, analys,is,
and contingent knowledge in specialized understanding systems, in Representa
tion and understanding: studies in cognitive science. D. G. Bobrow and

--·~

A.M. Collins (eds.), pp. 103-129. New York NY: Academic Press, 1975.

BROWN76
Brown, J.S.; Rubinstein, R.; aryd Burton, R.R. Reactive learing environment for
computer-assisted electronics~instruction. Report No. 3314. Cambridge MA:
Bolt Beranek and Newman, Inc., 1976.

BROWN75a
Brown, J.S. Uses of artifical intelligence and advanced computer technology in
education. Presented at the NSF-sponsored conference, 11 Ten-year Forecast for
Computers and Corrununications: Implications for Education, 11 1975.

BROWN75b
Brown, J.S., and Burton, R.R. Multiple representations of knowledge for tuto~ial
reasoning, in Representations and understanding:
D.G. Bobrow and A.M. Collins (eds.), pp. 311-349.
Press, l 975.

BROWN75c

studies in cognitive science,.
New York NY: Academic

Brown, J.S.; Burton, R.R.; and Bell, A.G. SOPHIE: a step toward creating a
reactive learning environment. International journal of man-machine studies
7, pp. 675-616, 1975.

30 June 1977

BROWN75d

8-5
System Development Corporation

TM-5903/000/00

Brown, J.S.; Burton, R.R.; Miller, M.; DeKleer, J.; Purcell, S.; Hausman, C.;
and Bobrow, R.J. Steps toward a theoretical foundation for com lex knowled
based CAI. Report No. 3135. Cambridge MA: Bolt Beranek and Newman, Inc., 19 5

BROWN74
Brown, J.S., and Burton, R.R. SOPHIE - a pragmatic use of artificial intelli
gence in CAI. Proc. ACM 1974 annual conference, pp. 571-579, 1974.

BRUCE75
Bruce, B. 1975. Case systems for natural language. Artificial intelligence
6, pp. 372-360.

BUCHANAN76a
Buchanan, B.G., and Smith, D.H. Computer assisted chemical reasoning. Proc.
III international conference on computers in chemical research, education and
technology, 1976.

BUCHANAN76b
Buchanan, B.G.; Smith, D.H.; White, W.C.; Griter, R.S.; and Feigenbaum, E.A.
Automatic rule formation in mass spectrometry by means of the meta-DENDRAL
program. Journal of the American Chemical Society, March 1976.

BUCHANAN75
Buchanan, B.G. Applications of artificial intelligence to scientific reasoning.
Proc. second USA-Japan computer conference. Tokyo, Japan, 1975.

BUCHANAN72
Buchanan, B.G.; Feigenbaum, E.A.; and Sridharan, N.S. Heuristic theory foun
dation: data interpretation and rule formation. Machine intelligence 7,
B. Metzler and D. Miclntie (eds.). Edinburgh, Scotland: Edil!lllburgh University
Press, 1972.

30 June 1977

BUCHANAN69

8-6
System Development Corporation

TM-5903/000/00

Buchanan, B.G.; Sutherland, G.L.; and Feigenbaum, E.A. Toward an understanding
of information processes of scientific inference in the context of organic
chemistry. Machine intelligence 5. B. Metzler and D. Michie (eds.).
Edinburgh, Scotland: Edinburgh University Press.

BURGER77
Burger, J.F. Data base semantics in the EUFID system, to appear in Proc.
second Berkeley workshop on distributed data management and computer networks,
1977.

BURGER75
Burger, J.F.; Leal, A.; and Shoshani, A. Semantic-based parsing and a natural
language interface for interactive data management. Proc. 13th annual meeting
of the Association for Computational Linguistics. Boston MA, 1975.

CARBONELL73
Carbonell, J.R., and Collins, A.M. Natural semantics in artificial intelli
gence. Proc. third international joint conference on artificial intelligence,
pp. 344-351. Menlo Park CA: Stanford Research Institute Publications, 1973.

CARBONELL70
Carbonell, J.R. AI in CAI; an artificial intelligence approach to,computer
aided instruction. IEEE transactions on man-machine systems, MM-II, pp. 190-
202, 1970.

CARLSON74
Carlson, E.D., and Sutton, J.A. A case study of non-programmer interactive
problem solving. Report RJ 1382. San Jose CA: IBM Research Laboratory,
1974.

30 June 1977

CARNAP50

8-7
System Development Corporation

TM-5903/000/00

Carnap, R. Two concepts of probability, in Logical foundations of probability,
pp. 19-51. Chicago IL: University of Chicago Press, 1950.

CARNIAK75
Charniak, E. A partial taxonomy of knowledge about actions. Proc. fourth
international joint conference on artificial intelligence, pp. 91-98. Cambridge

M

MA: Publications Dept., MIT AI Laboratory, 1975.

CHASE73
Chase, W.G. (ed.). Visual information processing. New York NY: Academic
Press, 1973.

CHOMSKY63
Chomsky, N. Formal properties of grammars, in Handbook of mathematical psy
chology, vol. 2, R.D. Luce, R.R. Bush and F. Galanter {eds.), pp. 323-418 •.
New York NY: John Wiley and Sons, 1963.

CHURCHMAN69
Churchman, C.W., and Buchanan, B.G. On the design of inductive systems: some
philosophical problems. British journal for the philosophy of science,
Autumn 1969.

COLLINS76
Collins, A. Processes in acquiring knowledge, in Schooling and the acquisition
of knowledge, R.C. Anderson, R.J. Spiro, and W.E. Montagne {eds.). Hillsdale
NJ: Erlbaum Associates, 1976.

COLLINS75a
Collins, A., and Grignetti, M.C. Intelligent CAI. Report No. 3181.
Cambridge MA: Bolt B'eranel< and· Newman, Inc., 1975.

30 June 1977

COLLINS75b

8-8
System Development Corporation

TM-5903/000/00

Collins, A.; Warnock, E.H.; Aiello, N.; and Miller, M.L. Reasoning from
incomplete knowledge, in Representation and understanding: studies in cog
nitive science, D.G. Bobrow and A.M. Collins (eds.), pp. 383-415. New York
NY: Academic Press, 1975.

DAHL73
Dahl, 0.-J.; Bertwistle, G.M.; Myhrhaug, B.; and Nygaard, K. SIMULA BEGIN
Philadelphia PA: Auerbach, 1973.

DANIEL74
Daniel, L.M. AND-OR graphs and critical paths. Information processing 74,
vol. 4, pp. 818-822. Amsterdam, Netherlands: North-Holland, 1974.

DAVIS77
Davis, R.; Buchanan, B.G.; and Shortliffe, E. Production rules as a repre
sentation for a knowledge-based consultation program. Artificial intelligence
8(1), pp. 15-45, 1977.

DAVIS76
Davis, R. · Application of meta level knowledge to the construction, maintenance
and use of large knowledge bases. Stanford AI Laboratory Memo AIM-283, Com
puter Science Dept. Report No. STAN-CS-76-552. Stanford CA: Stanford
University, 1976.

DAVIS75
Davis, R., and King, J. An overview of production systems. Stanford AI
Laboratory Memo AIM-271, Computer Science Dept. Report No. STAN-CS-75-524.
Stanford CA: Stanford University, 1975.

System Development Corporation
30 June 1977 8-9 . TM-5903/000/00

DEUTCH74
Deutch, B.G. The structure of task oriented dialogs. Proc. IEEE speech ~m
posium. Pittsburgh PA: Carnegie-Mellon University, April 1974.

DILLER73
Diller, T.C. Prosodics appearing in the SOC vocal data management dialog~~"'
Technical Memorandum TM-5171/005/00. Santa Monica CA: System Development
Corporation, 1973.

DUDA77
Duda, R.O.; Hart, P.E.; Nilsson, N.J.; and Sutherland, G.L. Semantic net\lltark
representations in rule-based inference systems, to appear in eroc. worksf!.f?lp
on pattern-directed inference systems, 1977.

DUNLAVEY75
Dunlavey, M.R. An hypothesis-driven vision system. Proc. fourth international
joint conference on artificial intelligence., pp. 616-619. Cambridge MA: ·Pub
lications Dept., MIT AI Laboratory, 1975.

ENGLEMORE77
Englemore, R.S., and Nii, H.P. A knowledge-based system for the interpre~tion
of protein x-ray crystallographic data. Computer Science Dept. Report No·.
STAN-CS-77-589. Stanford CA: Stanford University, 1977.

ERMAN75
Erman, L.D., and Les.ser, V.R. A multi-level organizati:on for problem solving
using many, diverse, cooperating sources of knowledge. Proc .. Jourth in:t~er
national joint conference on artificial intelltgence, pp. 4~3-490. Cambridge
MA: Publications Dept., MIT AI Laboratory, 1975.

EVANS64
Evans, A. An ALGOL compiler. Annual ;feview in automatic Jtt!>gramming, vol. 4,
R.E. Goodman ~.); pp. 87-124. L:onaon, <Englant'.I: flergalmnon Press, HJ'64.

30 June 1977

FAHLMAN75

8-10
System Development Corporation

TM-5903/000/00

Fahlman, S. A system for representing and using real-world knowledge. MIT
AI Laboratory memo 331. Cambridge MA: Massachusetts Institute of Technology,
1975.

FARLEY74
Farley, A. VIPS: a visual imagery and perception system; the result of a
protocol analysis. Computer Science Dept. doctoral thesis. Pittsburgh PA:
Carnegie-Mellon University, 1974.

FEIGENBAUM71
Feigenbaum, E.A.; Buchanan, B.G.; and Lederberg, J. On generality and problem
solving: a case study of the DENDRAL program. Machine intelligence 6,
B. Metzler and D. Michie (eds.), pp. 165-190. Edinburgh, Scotland: Edinburgh
University Press, 1971.

FEIGENBAUM63a
Feigenbaum, E.A., and Feldman, J. (eds.). Computers and thought. New York
NY: McGraw-Hill, 1963.

FEIGENBAUM63b
Feigenbaum, E.A. The simulation of verbal learning behavior, in Computers and
thought, E.A. Feigenbaum and J. Feldman (eds.), pp. 297-309. New York NY:
McGraw-Hill, 1963.

FIKES71
Fikes, R.E., and Nilsson, N.J. STRIPS: a new approach to the application of
theorem proving in problem solving. Artificial intelligence 2, pp. 189-208,
1971.

30 June 1977

FISHER70

8-11
System Development Corporation

TM-5903/000/00

Fisher, D.A. Control structures for programming languages. Computer Sci&nce
Dept. doctoral thesis. Pittsburgh, PA: Carnegie-Mellon University, 1970.

FLOYD61
Floyd, R.A. A descriptive language for symbol manipulation. Journal of ;b~
ACM 8, pp. 579-584, 1961.

FORGY76
Forgy, C.L. A production s_vstem monitor for parallel computers. Computer
Science Dept. technical report. Pittsburgh PA: Carnegie-Mellon Univerity,
1976.

FREUD 60
Freud, S. Jokes and t'heir relation to the unconscious. New York NY: Norton,
1960.

FREUD50
Freud, S. The interpretation of dreams. New York NY: Random House, 19'5;0~

FULLER73
Fuller, S.H.; Gaschnig, J.C.; and Gillogly, J.J. Analysis of the alpha-~;ta
pruning algorithm. Computer Science Dept. technical report. Pittsburgh PA:
Carnegie-Mellon University, 1973.

FURUGORI74
Furugori, T. Pass the car in front of you: a simulator of ca,gniti ve processes
for understanding. Proc. ACM 1974 annual conference, pp. 3$0-386. San Oiego
CA, 1974.

30 June 1977

GALLER70

8-12
System Development Corporation

TM-5903/000/00

Galler, B., and Perlis, A. A view of programming languages, chapters 1 and 2.
Reading MA: Addison-Wesley, 1970.

GELPERIN77
Gelperin, D. On the optimality of A*. Artificial intelligence 8(1), pp. 69-
76, 1977.

GELERNTER63
Gelernter, H. Realization of a geometry-theorem proving machine, in Computers
and thought, E.A. Feigenbaum and J. Feldman (eds.), pp. 134-142. New York NY:
McGraw-Hill, 1963.

GOGUEN74
Goguen, J.A. Concept representation in natural and artificial languages:
axioms, extensions and applications for fuzzy sets. Int. journal of man
machine studies 6(5), pp. 513-561, 1974.

GOGUEN68
Goguen, J.A. The logic of inexact concepts. Synthese 19, pp. 325-373,
1968.

GORRY74
Gerry, G.A. Research on expert systems. MAC technical memorandum 56.
Cambridge MA: Massachusetts Institute of Technology, 1974.

GOLDSTEIN76
Goldstein, I., and Papert, S. Artificial intelligence, language and the
study of knowledge. MIT AI Laboratory memo 337. Cambridge MA: Massachusetts
Institute of Technology, 1976.

30 June 1977

GREEN68

8-13
System Development Corporation

TM-5903/000/00

Green, B., and Raphael, B. The use of theorem-proving techniques in question
answering systems. Proc. ACM 23rd national conference, pp. 169-181.
Princeton NJ: Brandon, 1968.

GREGG74
Gregg, L.W. (ed.). K~owledge and cognition. Potomac MD: Lawrence Erlbaum
Associates, 1974.

GR I GNETTI 75
Grignetti, M.C.; Hausmann, C.; and Gould, L. An "intelligent" on-line
assistant and tutor--NLS-SCHOLAR. Proc. ACM 1975 national computer conference,
pp. 775-781, 1975.

HARRE70
Harre , R. Probability and confirmation, in Principles of scientific thinking,
pp. 157-177. Chicago IL: University of Chicago Press, 1970.

HAWKINSON75
Hawkinson, L. The representations of concepts in OWL. Proc. fourth inter
national joint conference on artificial intelligence, pp. 107-114. Cambridge
MA: Publications Dept., MIT AI Laboratory, _1975.

HAYES74
Hayes, J.R., and Simon, H.A.
Knowledge and cognition, L.W.
Erlbaum Associates, 1974.

HAYES-ROTH77

Understanding written problem instructions, in
Gregg (ed.}, pp. 167-200. Potomac MD: Laurence

Hayes-Roth, F., and Lessor, V.R. Focus of attention in the HEARSAY-II speech
understanding system. Computer Science Dept. technical report. Pittsburgh PA:

Carnegie-Mellon University, 1977.

30 June 1977

HAYES-ROTH76a

8-14
System Development Corporation

TM-5903/000/00

Hayes-Roth, F. Patterns of induction and associated knowledge acquisition
algorithms. Computer Science Dept. technical report. Pittsburgh PA: Carnegie
Mellon University, 1976.

HAYES-ROTH76b
Hayes-Roth, F., and McDermott, J. Knowledge acquisition from structural
descriptions. Computer Science Dept. technical report. Pittsburgh PA:
Carnegie-Me 11 on University, 1976.

HAYES-ROTH76c
Hayes-Roth, F., and Mostow, D.J. Syntax and semantics in a distributed speech
understanding system. Computer Science Dept. technical report. Pittsburgh
PA: Carnegie-Mellon University, 1976.

HEDRICK76
Hedrick, C.L. Learning production systems from examples. Artificial
intelligence 7 (1), 1976.

HEDRICK74
Hedrick, C.L. A computer program to learn production systems using semantic'
nets. Graduate School of Industrial Administration doctoral thesis. Pittsburgh
PA: Carnegie-Mellon University, 1974.

HEMPEL45
Hempel, C.G. Studies in the logic of confirmation, in Aspects of scientific
explanations and other essays in the philosophy of science, pp. 3~51, New York
NY: the Free Press, 1965.

HEWITT75
Hewitt, C. How to use what you know. Artificial Intelligence Laboratory
working paper 93. Cambridge MA: Massachusetts Institute of Technology, 1975.

30 June 1977

HEWITI73

8-15
System Development Corporation

TM-5903/000/00

Hewitt, C.; Bishop, P.; and Steiger, R. A universal modular ACTOR formalism
for artificial intelligence. Proc. third international joint conference on
artificial intelligence, pp. 235-245. Menlo Park CA: Stanford Research
Institute Publications, 1973.

HEWITT72
Hewitt, C. Description and theoretical analysis (using schemata) of PLANNER:
a language for proving theorems and manipulating models in a robot. Mathematics
Dept. doctoral thesis. Cambridge MA: Massachusetts Institute of Technol~gy,
1972.

HEWITT71
Hewitt, C. Procedural embedding of knowledge in PLANNER. Proc. second inter
national joint conference on artificial intelligence, pp. 167-182. London,
England: British Computer Society, 1971.

KAHN75
Kahn, K.M. Mechanization of temporal knowledge. MAC technical report MAC-TR-
155. Cambridge MA: Massachusetts Institute of Technology, 1975.

KANAL68
Kanal, L.N. Pattern recognition. Washington D.C.: Thompson, 1968.

KAY73
Kay, M. The MIND system, in Natural language processing, F. Rustin (ed.),
pp. 155-188. New York NY: Al gori thmi cs Press, 1973.

KELLOG77
Kellogg, C.; Klahr, P.; and Travis, L. Deductive methods for large data bases, to
appear in Proc. fifth international joint conference on artificial intelligence.

30 June 1977

KLAHRD74

8-16
System Development Corporation

TM-5903/000/00

Klahr, D. Understanding systems, in Knowledge and cognition, L.W. Gregg (ed.),
pp. 295-300. Potomac MD: Laurence E~lbaum Associates, 1974.

KLAHRD73
Klahr, D. A production system for counting, subsidizing and adding, in Visual
information processing, W.G. Chase (ed.), pp. 527-546. New York NY: Academic
Press, 1973.

KLAHRP77
Klahr, P. Planning techniques for rule acquisition in deductive question
answering, to appear in Proc. workshop on pattern-directed inference systems,
1977.

KLAHRP75
Klahr, P. The deductive pathfinder: creating derivation plans for inferential
question-answering. Special paper SP 3842. Santa Monica CA: System

·Development Corporation, 1975.

KOCHEN74
Kochen, M. Representation and algorithms for cognitive learning. Artificial
intelligence 5(3), pp. 199-216, 1974.

KUIPERS75
Kuipers, B.J. A frame for frames: representing knowledge for recognition,
in Representation and understanding: studies in cognitive science,
D.G. Bobrow and A.M. Collins (eds.), pp. 151-184. New York NY: Academic
Press, 1975.

30 June 1977

KULIKOWSKI76

8-17
System Development Corporation

TM-5903/000/00

Ktilikowski, C.A.; Weiss, S.; Trigoboff, M.; and Safir, A. Clinical consulta
tion and the representation of disease process: some AI approaches. Computer
Science Dept. Report No. CBM-TR-58. New Brunswick NJ: Rutgers University,
1976.

LEDERBERG68
Lederberg, J., and Feigenbaum, E.A. Mechanization of inductive inference in
organic chemistry, in Formal representation of human judgement, B. Kleinmuntz
(ed.). New York NY: John Wiley & Sons, 1968.

LENAT76
Lenat, D.B. AM: an artificial intelligence approach to discovery in mathe
matics as heuristic search. Computer Science Dept. Report No. STAN•CS-76-570.
Stanford CA: Stanford University, 1976.

LENAT75
Lenat, D.B. BEINGS: knowtedge as interacting experts. Proc. fourth inter
national joint conference on artificial intelligence, pp. 126-133. Cambridge
MA: Publications Dept., MIT AI Laboratory, 1975.

LUCE65
Luce, R.D., and Suppes, P. Performance, utility, and subjective probability,
in Handbook of mathematical psychology, R.D. Luce, R.R. Bush, and F. Galander
(eds.), New York NY: John Wiley and Sons, 1965.

MALHOTRA76
Malhotra, A., and Sheridan, P.B. Experimental determination of des1sn
requirements for a program explanation system. Research report RC 5831.
Yorktown Heights NY: IBM Research Center, 1976.

30 June 1977

MALHOTRA75a

8-18
System Development Corporation

TM-5903/000/00

Malhotra, A.· Knowledge-based English language system for management support:
analysis of requirements. Proc. fourth international joint conference on
artificial intelligence, pp. 842-847. Cambridge MA: Publications Dept., MIT
AI Laboratory, 1975.

MALHOTRA75b
Malhotra, A. Design criteria for a knowledge-based English language system for
management: an experimental analysis. MAC technical report MAC-TR-146.
Cambridge MA: Massachusetts Institute of Technology, 1975.

MARK76
Mark, W.S. The reformulation model of expertise. Technical report LCS/TR-172.
Cambridge MA: Massachusetts Institute of Technology, 1976.

MCDERMOTTD74a
McDermott, D. Assimilation of new information
standing system. MIT AI Laboratory memo 298.
Institute of Technology, 1974.

MCDERMOTTD74b

by a natural language under
Cambridge MA: Massachusetts

McDermott, D. Assimilation of new information. MIT AI Laboratory report AI
TR-291. Cambridge MA: Massachusetts Institute of Technology, 1974.

McDERMOTTJ76a
McDermott, J., and Forgy, C. Production system conflict resolution strategies.
Computer Science Dept. Technical report. Pittsburgh PA: Carnegie-Mellon
University, 1976.

MCDERMOTTJ76b
McDermott, J.; Newell, A.; and Moore, J. The efficiency of certain production
system implementations. Computer Science Dept. technical report. Pittsburgh
PA: Carnegie-Mellon University, 1976.

30 June 1977

MELDMAN75

8-19
System Development Corporatioo1

TM-5903/000/0ll

Meldman, J.A. A preliminary study in computer-aided legal analysis. MAC
technical report MAC-TR-57. Cambridge MA: Massachusetts Institute of
Technology, 1975.

MICHIE73
Michie, D., and Buchanan, B.G. Current states of the heuristic DENDRAL progrqm.:
for applying artificial intelligence to interpretation of mass spe£tra. Sch0'0-l'
of artificial intelligence experimental programming report No. 32. Edinburgh,
Scotland: University of Edinburgh, 1973.

MILLERPB75
Miller, P.B. Strategy selection in medical diagnosis. MAC technical report
MAC-TR-153, Cambridge MA: Massachusetts Institute of Technology, 1975.

MILLERPL73
Miller, P.L. A locally-organized parser for spoken input. Doctoral thesis.
Cambridge MA: Massachusetts Institute of Technology, 1973.

MlNSKY75
Minsky, M. A framework for representing knowledge, i.n The psychology of
computer vi.si.on, P. Winston (ed.). New York NY: McGraw-Hill, 1975.

MlNSKY68
Minsky, M. (ed.). Semantic information processing. Cambridge MA:
MIT Press, 1968.

MINSKY67
Minsky, M. Computation: finite and infinite machines. Englewood Cliffs NJ:
Prentice Hall, 1967.

30 June 1977 8-20
System Development Corporation

TM-5903/000/00

MINSKY63
Minsky, M. Steps toward artificial intelligence, in Computers and thought,
E.A. Feigenbaum and J. Feldman (eds.), pp. 406-450. New York NY: McGraw-Hill,
1963.

MOOREJ73
Moore, J., and Newell, A. How can MERLIN understand?, in Knowledge and
cognition, L.W. Gregg (ed.), pp. 201-252. Potomac MD: Lawrence Erlbaum
Associates, 1973.

MOORER75
Moore, R.C. Reasoning from incomplete knowledge in a procedural deduction
system. MIT AI Laboratory technical report AI-TR-347, Cambridge MA:
Massachusetts Institute of Technology, 1975.

MORAN73a
Moran, T.P. The symbolic imagery hypothesis: a production system model
(vols 1 and 2). Computer Science·Dept. doctoral thesis. Pittsburgh PA:
Carnegie-Mellon University, 1973.

MORAN73b
Moran, T.P. The symbolic nature of visual imagery. Proc. third international
joint conference on artificial intelligence, pp. 472-477. Menlo Park CA:
Stanford Research Institute Publications, 1973.

MOSES74
Moses, J. The evolution of algebraic manipulation algorithms.
processing 74: vol. 3, pp. 483-488. Amsterdam, Netherlands:
1974.

Information
North-Holland,

•· '

30 June 1977

MYLOPOULOS75a

8-21
System Develcl'pment Corporatig·n

TM-5903/000/eb

Mylopoulos, J.; Borgida, A.; Cohen, P.; and Roussopoulos, N. TORUS--a natural
language understanding system for data management. .:..P.:...ro;:.;c:...:•_..:...fo;:_;u;;..;.r...:t.:...h_1;,..;.·n_t..;;;.e.:...rn~a...:t-'-i-'-'on..;..:t}='·
joint conference on artificial intelligence, pp. 414-421. Cambridge MA:
Publications Department, MIT AI Laboratory, 1975.

MYLOPOULOS75b
Myl opoul os, J.; Cohen, P.; Borgi da., A.; and Sugar, L. Semantic networks and
the generation of context. Proc. fourth international joint conference on
artificial intelligence, pp. 134-142. Cambridge MA: Publication! Dept.,
MIT AI Laboratory, 1975.

NASH-WEBBER75
Nash-Webber, N. The role of semantics in automatic speech understanding, in
Representation and understandi:ng: s·tudies tn cognitive sc.lence, ll.G. Bobrow
and A.M. Collins (eds.), pp. 351-382. New York NY: Academic Pregs, 1975 ..

NEWELL76a
Newell, A. Producti.on systems: models of control structures, in Vis1,.1al
information processing, W.G. Chase (ed.}, pp. 463-526. New York NY:
Academic Press, 1976.

NEWELL76b
Newell, A., and Simon, H.A. Computer science as empi.rtcal inquir1: symbols
and search. Comm. ACM 19(3}, 1976.

NEWELL73
Newell, A., and McDermott, J. PSG manual. Computer Science Dept. tech.ni:cal
report. Pittsburgh PA: Carnegie-Mellon University, 1973.

30 June 1977

NEWELL72a

8-22
System Development Corporation

TM-5903/000/00

Newell, A., and Simon, H.A. Human problem solving. Englewood Cliffs NJ:
Prentice Hall, Inc., 1972.

NEWELL 72b
Newell, A. A theoretical exploration of mechanisms for coding the stimulus,
in Coding procedures in human memory, A.W. Melton and E. Martin (eds.),
pp. 373-434. Winston and Sons, 1972.

NII77
Nii, H.P., and Feiganbaum, E.A. Rule-based understanding of signals, to
appear in Proc. workshop on pattern-directed inference systems, 1977.

NILSSON74
Nilsson, N.J. Artificial intelligence, in Information processing 74,vol. 4,
pp. 778-801. Amsterdam, Netherlands: North-Holland, 1974.

NILSSON71
Nilsson, N.J. Problem solving methods in artificial intelligence.
San Francisco CA: McGraw-Hill, 1971.

NILSSON69
Nilsson, N.J. Searching, problem-solving and game~playing trees for minimal
cost solutions. Information processing 68, vol. 2, pp. 1556-1562. Amsterdam,
Netherlands: North-Holland, 1969.

NORMAN75
Norman, D.A., and Rumelhart, D.E. Explorations in cognition.
San Francisco CA: Freeman, 1975.

30 June 1977

NORMAN72

8-23
System Development Corporation

TM-5903/000/00

Norman, D.A. Memory, knowledge and the answering of questions. La Jolla CA:
University of California of San Diego, 1972.

NOVAK76
Novak, G.S. Computer understanding of physics problems stated in natural
language. Doctoral thesis. Austin TX: University of Texas, 1976.

OSHEA73
O'Shea, T. Some experiments with an adaptive self-improving teachi.ng system.
Computer Science Dept. technical report NL-18. Austin TX: University of
Texas, 1973.

POST43
Post, E.L. Formal reductions of the general combinational deci:si.on problem ..
American journal of mathematics, vol. 65., pp. 197-215, 1943 ..

POST36
Post, E.L. Finite combination processes: formulation I.. Journal of
symbolic logic, vol. I, pp. 103-105, 1936.

PAXTON76
Paxton, W.H. Experiments in speech understanding sy-s·tem control.. Al Center
technical note 134. Menlo Park CA: Stanford Research I:nstttute, 1976 ..

POPLE, H.E., Jr.; Myers, J.; and Miller, R.• DIALOG: a model of diagnostic
logic for internal medicine. Proc. fourth international joint conference
on artificial intelligence, pp. 848-855. Cambridge MA: Publications Dept.
MIT AI Laboratory, 1975.

30 June 1977

POPLE75b

8-24
System Development Corporation

TM-5903/000/00

Pople, H.E.; Jr. Artificial-intelligence approaches to computer-based medical
consultation. IEEE intercon conference. New York NY: IEEE, 1975.

POPLE73
Pople, H.E., Jr. On the mechanization of abductive logic. Proc. third
international joint conference on artificial intelligence, pp. 147-152.
Menlo Park CA: Stanford Research Institute Publications, 1973.

QUILLIAN68
Quillian, M.R. Semantic memory, in Semantic information processing,
M. Minsky (ed.), pp. :_,'-210. Cambridge MA: MIT Press, 1968.

RABIN74
Rabin, M.O. Theoretical impediments to artificial intelligence. Information
processing 74, vol. 3, tJP· 615-619. Amsterdam, Netherlands: North-Holland,
197 4.

RAMANI73
Ramani, S., and A. Newell. On the generation of problems. Computer Science
Dept. technical report. Pittsburgh PA: Carnegie-Mellon University, 1973.

REDDY76
Reddy, D.R. Speech understanding systems: summary of results of the five
year research effort. Computer Science Dept. technical report. Pittsburgh PA:
Carnegie-Mellon University, 1976.

REDDY75
Reddy, D.R. (ed.). Speech recognition. New York NY: Academic Press, 1975.

30 June 1977

REDDY74

8-25
System Development Corporation

TM-5903/000/00

Reddy, D.R., and Newell, A. Knowledge and i.ts representation in a speech
understanding system, in Knowledge and cognitioQ, L.W. Gregg (ed.),
pp. 253-285. Potomac MD: Lawrence Erlbaum Associates.

REITMAN71
Reitman, J. Computer simulation applicati.ons. New York NY:
Wiley-Interscience, 1971.

REIGER76
Reiger, C. One system for two tasks: a commonsense algorithm memory that
solves problems and comprehends language. Technical Report 435.
College Park MD: University of Maryland, 1976.

RUBIN75a
Rubin, A.O. The role of hypothesis in medical diagnosis. Proc. fourth
international joint conference on artificial intelligence, pp. 856-863.
Cambridge MA: Publications Dept. MIT AI Laboratory, 1975.

RUBIN75b
Rubin, A.O. Hypothesis formation and evaluation in medical diagnosis.
Technical report AI-TR-316. Cambridge MA: Massachusetts Institute of
Technology, 1975.

ROBINSON70
Robinson, J.A. An overview of mechanical theorem proving, in Theoretical
approaches to non-numerical problem solving, R. Banerji and M. Mesarovic (eds.),
pp. 2-20. New York NY: Springer-Verlag, 1970.

ROBINSON65
Robinson, J.A. A machine-oriented logic based on the resolution principle.
Journal of the ACM 12(1), pp-23-41, 1965.

30 June 1977

RUSTIN73

8-26
System Development Corporation

TM-5903/000/00

Rustin, R. ·Natural language processing. New York NY: Algorithmics Press,
1973.

RYCHENER76
Rychener, M.D. Production systems as a programming language for artificial
intelligence applications. Computer Science Dept. doctoral thesis.
Pittsburgh PA: Carnegie-Mellon University, 1976.

RYCHENER75
Rychener, M.D. The studnt production system, a study of encoding knowledge
in production systems. Computer Science Dept. technical report. Pittsburgh
PA: Carnegie-Mellon University, 1975.

SAMUEL63
Samuel, A.L. Some studies in machine learning using the game of checkers,
in Computers and thought, E.A. Feigenbaum and J. Feldman (eds.), pp. 71-105.
New York NY: McGraw-Hill, 1963. ·

SANDEWALL70
Sandewall, E. Representing natural language information in predicate
calculus. Machine intelligence 6. B. Metzler and D. Michie (eds.).
Edinburgh, Scotland: University of Edinburgh, 1970.

SCHANK75a
Schank, R.C. (ed.). Conceptual information processing. New York NY:
American Elsevier, 1975.

SCHANK75b
Schank, R.C. The structure of episodes in memory, in Representation and
understanding: studies in cognitive science, D.G. Bobrow and A.M. Collins
(eds.), pp-237-272. New York NY: Academic Press, 1975.

30 June 1977

SCHANK73

8-27
System Development Corporation

TM-5903/000/00

Schank, R.C., and Colby, K. (eds.). Computer models of thought and language.
San Francisco CA: Freeman, 1973.

SCHANK72
Schank, R.C. Conceptual dependency: a theory of natural language understand
ing. Cognitive psychology 3, pp. 552-631, 1972.

SCHORRE64
Schorre, D.V. META II: a syntax-oriented compiler writing language.
Proc. 19th national conference of the ACM, 1964.

SHANNON49
Shannon, C.E. The mathematical theory of communication. Urbana IL:
University of Illinois Press, 1949.

SHORTLIFFE76
Shortliffe, E.H. Computer-based medical consultations: MYCIN. New York NY:
American Elsevier, 1976.

SHORTLIFFE75a
Shortliffe, E.H., and Buchanan, B.G. A model of inexact reasoning in
medicine. Mathematical biosciences vol. 23, pp. 351-379, 1975.

SHORTLIFFE75b
Shortliffe, E.H.; Davis, R.; Axline, S.G.; Buchanan, B.G.; Green, C.C.; and
Cohen, S.N. Computer-based consultations in clinical therapeutics: evalua
tion and rule acquisition of the MYCIN system. Computers and biomedical
research vol. 8, pp. 303 ff., 1975.

30 June 1977

·sHORTLIFFE73

8-28
System Development Corporation

TM-5903/000/00

Shortliffe, ·E.G.; Axline, S.G.; Buchanan, B.G.; Merigan, T.C.~ and Cohen, S.N.
An artificial i nte 11 i gence program to advise physicians regarding anti
microbial therapy. Computers and biomedical research vol. 6, pp. 544-560,
1973.

SIMMONS73
Simmons, R.F. Semantic networks: their computation and use for understand
ing English sentences, in Computer models of thought and language,
R.C. Schank and K. Colby (eds.), pp. 63-113. San Francisco CA: Freeman,
1973.

SIMON74a
Simon, H.A., and Lea, G. Problem solving and rule induction: a unified
view, in Knowledge and cognition, L.W. Gregg (ed.), pp. 105-127. Potomac MD:
Lawrence Erlbaum Associates.

SIMON74b
Simon, H.A., and Kadane, J.B. Optimal problem-solving search: all-or-none
solutions. Computer Science Dept. technical report. Pittsburgh PA:
Carnegie;..Mellon University, 1974.

SIMON69
Simon, H.A. The sciences of the artificial. Cambridge MA: MIT Press, 1969.

SIROVICH72
Sirovich, F.
Dept. report.

SLAGLE69

Memory system of a problem solver generator. Computer Science
Pittsburgh PA: Carnegie-Mell on University.

Slagle, J., and Dixon, J. Experiments with some programs that search game
trees. Journal of the ACM 16(2), pp. 189-207, 1969.

30 June 1977 8-29
System Development Corporation

TM-5903/000/00

SRIDHARAN74
Sridharan, N.S. A heuristic program to discover synthesis for complex
organic molecules. Information processing 74 vol. 4, pp. 828-833.
Amsterdam, Netherlands: North-Holland, 1974.

SRIDHARAN73
Sridharan, N.S.; Gebernten, H.; Hart, A.J.; Fowler, W.F.; and Shue, H.J.
A heuristic program to discover synthesis for complex organic molecules.
Computer Science Dept. technical report STAN-CS-73-370. Stanford CA:
Stanford University, 1973.

STALLMAN76
Stallman, R.M., and Sussman, G.J. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. MIT AI
Laboratory memo 380. Cambridge MA: Massachusetts Institute of Technology,
1976.

STANSFIELD76

Stansfield, J.L.; Carr, B.P.; and Goldstein, I.P. Wumpus advisor 1. A first
implementation of a program that tutors logical and
skills. MIT AI Laboratory memo 381. Cambridge MA:
of Technology, 1976.

STEFIK77

probabilistic reasoning
Massachusetts Institute

Stefik, M.J., and Martin, N. A review of knowledge based problem solving as
a basis for a genetics experiment design system. Computer Science Dept.
report No. STAN-CS-n-596, Heuristic programming project memo HPP-75-5.
Stanford CA: Stanford University, 1977.

SUSSMAN73

Sussman, G.J. A computational model of skill acquisition. MIT AI Laboratory
report AI-TR-297. Cambridge MA: Massachusetts Institute of Technology, 1973.

30 June 1977

SWARTOUT77

8-30
System Development Corporation

TM-5903/000/00

Swartout, W.R. A digitalis therapy adviser with explanations. LCS/TR-176.
Cambridge MA: Massachusetts Institute of Technology, 1977.

TEITLEMAN72
Teitleman, W. Do what I mean: the programmer's assistant. Computers and
automation, April 1972.

TORNEBOHM66
Tornebohm, H. Two measures of evidential strength, in Aspects of inductive
logic, J. Hintikka and P. Suppes (eds.), pp. 81-95. Amsterdam, Netherlands:
North-Holland, 1966.

TRIGOBOFF, M. Propagation of information in a semantic net. Computer
Science Dept. Report No. CBM-TR-57. New Brunswick NJ: Rutgers University,
1976.

TVERSKY72
Tversky, A. Elimination by aspects: a theory of choice. Psychological
review 79, pp. 281-299, 1972.

UHR74
Uhr, L. EASEY: an English-like programming language for artifical intelli
gence and complex information processing. Computer Science Dept. TR-233.
Madison WI: University of Wisconsin, 1974.

VERE77
Vere, S.A. Relational production systems. Artificial intelligence 8(1),
pp. 47-68, 1977.

30 June 1977

WANG74

8-31
System Development Corporation

TM-5903/000/00

Wang; P.S. Symbolic evaluation of definite integrals by residue theory in
MACSYMA. Information processing 74 vol. 4, pp. 823-827. Amsterdam,
Netherlands: North-Holland, 1974.

WATERMAN75
Waterman, D.A. Serial pattern acquisition: a production system approach,
Psychology Dept. CIP working paper no. 286. Pittsburgh PA:· Carnegie-Mellon
University, 1975.

WATERMAN74
Waterman, D.A. Adaptive production systems. Psychology Dept. CIP working
paper no. 285. Pittsburgh PA: Carnegie-Mellon University, 1974.

WATERMAN70
Waterman, D.A. Generalization learning techniques for automating the learning
of heuristics. Artificial intelligence 1, pp. 121-170, 1970.

WEISS60
Weiss, P. Knowledge: a growth process. Science (June 10, 1960) 131,
pp. 1716-1719, 1960.

WEIZENBAUM66
Weizenbaum, J. ELIZA - a computer program for the study of natural language
communication between man and machine. Comm. ACM 9(1), pp. 36-45, 1966.

WILKS75
Wilks, Y. An intelligent analyzer and understander of English. Comm. ACM
18(5), pp. 264-274, 1975.

WILKS74
Wilks, Y. Natural language understanding systems within the artificial intelli
gence paradigm. Stanford AI Laboratory memo AIM-237. Menlo Park CA: Stanford
University, 1974.

30 June 1977

WINOGRAD75

8-32
System Development Corporation

TM-5903/000/00

Winograd, T. Frame representations and the declarative/procedural controversy,
in Representation and understanding:
and A.M. Collins (eds.), pp. 188-210.

WINOGRAD73

studies in cognitive science, D.G. Brobrow
New York NY: Academic Press, 1975.

Winograd, T. A procedural model of language understanding, in Computer models
of thought and language, R.C. Schank and K. Colby (eds.), pp. 152-186. San
Franciso CA: Freeman, 1973.

WINOGRAD72
Winograd, T. Understanding natural language. New York NY: Academic Press,
1972.

WOODS76
Woods, W.A. Speech understanding systems: final report November 1974 -
October 1976. BBN report no. 3438, vols. 1-5. Cambridge MA: Bolt Beranek and
Newman, Inc., 1976.

WOODS75
Woods, W.A. What's in a link: foundations for semantic networks in Represen
tation and understanding: studies in cognitive science, D.G. Bobrow and
A.M. Collins (eds.), pp. 35-82. New York NY: Academic Press, 1975.

WOODS73
Woods, W.A. An experimental parsing system for transition network grammars,
in Natural language processing, R. Rustin (ed.), pp. 111-154. New York NY:
Algorithmics Press, 1973.

WOODS71
Woods, W.A. The lunar science natural language information system. BBN
report no. 2265. Cambridge MA: Bolt Beranek and Newman, Inc., 1971.

30 June 1977

WOODS70

8-33
System Development Corporation

TM-5903/000/00

Woods, W.A. Transition network grammars for natural language analysis. Comm.
ACM 13(10), pp. 591-606, 1970.

YAKIMOVSKY76
Yakimovsky, Y., and Cunningham, P. DABI - a data base for image analysis with
nondeterministic inference capability. Technical memorandum 33-773. Pasadena
CA: Jet Propulsion Laboratory, California Institute of Technology, 1976.

YATES70
Yates, R.; Raphael, B.; and Hart, P. Resolution graphs. Artificial intelli
gence 1(4), 1970.

ZADEH75
Zadeh, L.A. The concept of a linguistic variable and its application to
approximate reasoning - I. Information sciences 8(3), pp. 199-249, 1975.

ZADEH74
Zadeh, L.A. Fuzzy logic and its application to approximate reasoning.
Information processing 74 vol. 3, pp. 591-594. Amsterdam, Netherlands:

North-Holland, 1974.

ZADEH65
Zadeh, L.A. Fuzzy sets. Information and control 8, pp. 338-353, 1965.

30 June 1977
System Development Corporation

TM-5903/000/00

1 . 00 KNOWLEDGE
1.10 Knowledge of specifics

1.11 Knowledge of terminology
1.12 Knowledge of specific facts

1.20 Knowledge of ways and means of dealing with specifics
1.21 Knowledge of conventions
1.22 Knowledge of trends and sequences
1.23 Knowledge of classifications and categories
1.24 Knowledge of criteria
1.25 Knowledge of methodology

1.30 Knowledge of universals and abstractions in a field
1.31 Knowledge of principles and generalizations
1.32 Knowledge of theories and structures

2.00 COMPREHENSION
2.10 Translation
2.20 Interpretation
2.30 Extrapolation

3.00 APPLICATION

4.00 ANALYSIS
4.10 Analysis of elements
4.20 Analysis of relationships
4.30 Analysis of organizational principles

5.00 SYNTHESIS
5.10 Production of unique communication
5.20 Production of a plan, or proposed set of operations
5.30 Derivation of a set of abstract relations

6.00 EVALUATION
6.10 Judgments in terms of internal evidence
6.20 Judgments in terms of exernal criteria

Figure Al. Outline of the Taxonomy of Knowledge and Cognitive Skills

30 June 1977 A-1
System Development Corporation

TM-5903/000/00

APPENDIX A: A TAXONOMY OF KNOWLEDGE AND COGNITIVE SKILLS

INTRODUCTION

This appendix presents, for those readers interested in the topic, a taxonomy
of knowledge and cognitive skills taken from LBLOOM56]. It is a functional
taxonomy of both knowledge and the related intellectual abilities and skills.
The taxonomy was developed in the mid-1950 1 s by a Committee of College and
University Examiners as a taxonomy of educational objectives. There is some
disagreement as to whether or not the taxonomy met its objectives, but we be
lieve that it is appropriately illuminating for our purposes here, despite the
fact that Moore and Newell found it insufficient for theirs: "the very strength
of such functional decompositions (to cover without being precise) also consti
tutes their main disadvantage from our current view (namely, to understand what
it is to understand). For there is nothing in the taxonomy that helps discern
the attributes of an understanding system. 11 [MOORE75] As Klahr observed,
"Perhaps one reason that the Bloom taxonomy has hung around for almost 20 years
was that it could be summarized into a one-page hierarchy of important aspects
of intellectual functioning. People could respresent a vast and complex area
in six principal chunks. 11 [KLAHRD75]. That one-page summary is presented
here (Figure Al) both as a guide to the taxonomy itself and to clarify what
immediately follows it.

As the reader may have already discovered o·n his own, and as will be seen from the

taxonomy itself, the concept of knowledge neither is simple, in the sense that
it can be rigorously defined or bounded, nor can it be divorced from the means
of acquiring or using iL The latter is equally true whether we are speaking
of humans or computerized knowledge-based systems technology.

Why and how is an understanding of knowledge in general relevant to understand
ing KBS technology? First and foremost, the central issues are the Knowledge
Sources (KSs) of a KBS and how those KSs are used in accomplishing the KBS's
function. Imagine, for a moment, a KBS that is to act as a travel agent for
aiding a user in planning business trips. To begin with, such a system must

30 June 1977 A-3
System Development Corporation

TM-5903/000/00

have a fair amount of specific knowledge (category 1.10) about schedules for
airlines, trains, ships, and other modes of transportation, and knowledge of
the terms used when referencing them. It must have knowledge of how to manipu-
1 ate these data on schedules (category 1.20) in order to determine by what
means the traveller can get from the present or proposed location to a desired
destination. The system must have knowledge about abstract concepts (category
1.30), such as the fastest way, the least expensive way, or the most convenient
way (the latter implies that it can determine the user 1 s prejudice about such
things).

But such a system must, above all, have the facility for using the KSs in a
goal-directed manner in order to satisfy the demands of its users. Thus, in
some sense it must 11 comprehend 11 (category 2. 00) the kn owl edge that is avail ab 1 e
and the domain within which the knowledge is applicable. To accomplish its pur
poses it must translate the user's request into a sequence of internal processes
and must interpret the user 1 s desires in the light of the specific and general
knowledge it has available, and ultimately apply (category 3.00) its knowledge
to produce the desired result. Since the domain in which such a system would
function needs to incorporate any of the higher-level categories of abilities
and skills, it goes without saying that it must deal with its users in their
terms and produce alternatives upon request with little or no additional data
from them.

This is only an example; as yet, such a system does not exist (though one is
being attempted [BOBROWD77a]. It is illustrative of how one may functionally
describe a particular KBS in terms of the taxonomy, but it does not resolve
the problem of how to characterize knowledge-based systems, in general.

Much of the latter portions of the taxonomy are not of direct relevance to the
issues we are addressing, though they are relevant to the broader field of
artificial intelligence (AI) from whence comes the underlying knowledge and
technology for knowledge-based systems. Though it is highly desirable to be
able to produce knowledge-based systems that incorporate many of the higher
level cognitive skills embodied in the categories of Analysis, Synthesis, and

30 June 1977 A-4
System Development Corporation

TM-5903/000/00

even Evaluation, the current state of the art in producing computer-based sys
tems that can perform these functions is at best primitive.

The Bloom taxonomy follows, but not in its entirety; we have deleted those
portions of the explanatory material that did not appear relevant or necessary,
but have included considerably more than the condensed version the authors pro
vided in their appendix. Further, we have changed some wording and added re
marks of our own (identified as such by inclusion in braces { }) to clarify or
make the particular topic more specific to knowledge-based systems. The reader
should keep in mind that this is a taxonomy of educational objectives, not a
purely abstract taxonomy of knowledge and the associated intellectual skills.*

Taxonomy of the Educational Objectives for the Cognitive Domain

KNOWLEDGE

1 . 0 KNOWLEDGE

Knowledge as defined here involves the recall of specifics and universals, the
recall of methods and processes, or the recall of a pattern, structure, or
setting. For evaluation purposes, recalling involves little more than locating
the appropriate material. Although some alteration of the material may be re
quired, this is a relatively minor part of the task. The knowledge objectives
emphasize most the process of recall. The process of relating is also involved
in that a knowledge test situation requires the organization and reorganization
of a problem such that it will furnish the appropriate signals and cues for the
knowledge the system possesses~ For example, if one thinks of a knowledge

*Some readers in 1977 may find the exclusive use of the masculine pronoun in
this material unsuitable or offensive (as in the constant reference to the
"knower" as 11 he 11). We have not attempted to neutralize references to moderate
them in accordance with contemporary sensibilities, simply because our editor
has not had the time to help us to do so. We trust that our readers will
acquiesce in this tolerance of the sensibilities of what amounts, in this re
spect, to an earlier age. We must go on record as not subscribing to a view
of knowledge as a masculine trait.

30 June 1977 A-5
System Development Corporation

TM-5903/000/00

file, the problem in a knowledge test situation is that of find~ng in the

problem or task the appropriate signals, cues, and clues ~hich will most
effectively bring out whatever knowledge is stored.

In the classification of knowledge, the arrangement is from the relatively

concrete to the more complex and abstract. Thus the knowledge of specifics
refers to types of information or knowledge which can be isolated arid retrieved
separately, while the knowledge of uniyersals and abstractions emphasizes the

interrelations and patterns in which information can be organized and structured.

While it is recognized that knowledge is involved in the more complex major
categories of the taxonomy (2.00 to 6.00), the knowledge category differs from
others in that retrieving is the major process involved here, while in the

other categories retrieving is only one part of a much mo(e complex process of
relating, judging, and reorganizing.

1.10 KNOWLEDGE OF SPECIFICS

Knowledge of specifics is the recall of specific and isolable bits of informa
tion. The emphasis is on symbols that have concrete referents and are, for

the most part, at a relatively low level of abstraction. There is a tremendous
wealth of these specifics and there must always be some selection. For classi
fication purposes, the specifics may be distinguished from the more complex
classes of knowledge by virtue of their very specificity, that is, they can be
isolated as elements or bits which have some meaning or value by themselves.
This material may be thought of as the elements from which more complex and
abstract forms of knowledge are built. {In information processing we often,

though not always, refer to this kind of information as data.}

1.11 Knowledge of Terminology

Knowledge of terminology is the knowledge of the referents for specific symbols
(verbal and non-verbal). This may include knowledge of the most generally
accepted symbol referent, knowledge of the variety of symbols which may be
used for a single referent, or knowledge of the referent most appropriate to

a given use of a symbol.

30 June 1977 A-6
System Development Corporation

TM-5903/000/00

Probably the most basic type of knowledge in a particular field is its termi
nology. In any attempt by workers to communicate with others about phenomena
within the field, they find it necessary to make use of some of the special
symbols and terms they have devised. In many cases it is impossible for them
to discuss problems in their field without making use of some of the essential
terms of that field. Quite literally, they are unable to even think about
many of the phenomena in the field unless they make use of these terms and
symbols. Some illustrative examples are:

• To define technical terms by giving their attributes, properties, or
relations.

• To be familiar with a large number of words in their common range of
meanings.

• To acquire an understanding of the vocabulary used in quantitative
thinking.

1.12 Knowledge of Specific Facts

Knowledge of specific facts is the knowledge of dates, events, persons, places,
sources of information, etc. This may include very precise and specific infor
mation, such as the exact date of an event or the exact magnitude of a phenom
enon. It may also include approximate information, such as a time period in
which an event occurred or the general order of magnitude of a phenomenon.
Knowledge of specific facts refers to those facts which can be isolated as
separate, discrete elements in contrast to those which can only be known in a
larger context.

In every field there are a large number of dates, events, persons, places,
etc., known by the specialist, which represent findings or knowledge about
the field. These can be distinguished from the terminology in that the termi
nology generally represents the conventions or agreements within a field, while
the facts are more likely to represent the findings which can be tested by
other means than determining the unanimity of workers in the field or the
agreements they have made for purposes of communi ca ti on. Such specific facts

30 June 1977 A-7
System Development Corporation

TM-5903/000/00

also represent basic elements which the specialist must use in presenting com
munications about the field and in thinking about specific problems or topics
in the field. It should also be recognized that this classification includes
knowledge about particular books, writings, and sources of information on
specific topics and problems. Thus, knowledge of a specific fact as well as
knowledge of the source which deals with the fact are both classifiable under
this heading.

Some illustrative examples are:

• The recall of major facts about particular systems.

• Recall and recognition of what is characteristic of particular
periods.

• Knowledge of physical and chemical properties of common elements
and their compounds.

• Knowledge of reliable sources of information.

1.20 KNOWLEDGE OF WAYS AND MEANS OF DEALING WITH SPECIFICS

Knowledge in this category ·is of the ways of organizing, studying, judging, and
criticizing ideas and phenomena. This includes the methods of inquiry,
chronological sequences, and the standards of judgment within a field as well
as the patterns of organization through which the areas of the fields them
selves are determined and internally organiz~d.

At a somewhat more abstract level than the specifics are the methods of organiz
ing and dealing with them. Each subject field has a body of techniques, criteria,
classifications, and forms which are used to discover specifics as well as to
deal with them once they are discovered. These differ from the specifics in
that they form the connecting links between specifics, the operations necessary
to establish or deal with specifics, and the criteria by which specifics are
judged and evaluated. It must be made clear that this class of behaviors is
only a very limited one as used here. It does not involve use of the ways and
means so much as it does a knowledge of their existence and possible use. The

30 June 1977 A-8
System Development Corporation

TM-5903/000/00

actual skills and abilities which involve their use are described in the 2.00
to 6.00 classes of the taxonomy.

Although it will frequently be found difficult to distinguish knowledge of ways
and means from knowledge of specifics for purposes of classification, several
characteristics will be useful in making these distinctions. Ways and means
will refer to processes rather than products. They will indicate operations
rather than the results of operations. They will include knowledge which is
largely the result of agreement and convenience rather than the knowledge which
is more directly a matter of observation, experimentation, and discovery. They
will more commonly be reflections of how workers in the field think and attack
problems rather than the results of such thought or problem solving.

Many of the ways and means may represent relatively arbitrary and even artificial
forms which are meaningful only to the specialist who recognizes their value as
tools and techniques in his work.

1.21 Knowledge of Conventions

Knowledge of conventions is of the characteristic ways of treating and present
ing ideas and phenomena. These are the usages, styles, and practices which are
employed in a field because the workers find they suit their purposes or because
they appear to suit the phenomena with which they deal. This may include such
varied phenomena as conventional symbols used in map making and dictionaries,
rules of social behavior, and rules, styles, or practices commonly employed in
scholarly fields.

There are many conventions and rules which the workers in a field find extremely
useful in dealing with the phenomena of a field. Although many such conventions
may be retained because of habit and tradition rather than usefulness, at some
point in time they were found to be especially significant in giving some struc
ture to the phenomena. Generally these conventions will have an arbitrary
existence since they were developed or retained because of general agreement
or concurrence of workers in the field. They are usually true only as a matter
of definition and practice rather than as a result of discovery or observation.

30 June 1977 A-9
System Development Corporation

TM-5903/000/00

In some fields these conventions make up the largest proportion of the knowl
edge of the field. {Part of the human engineering that makes a knowledge-based
system acceptable to its users is the incorporation of these kinds of
conventions.}

Some examples of knowledge of conventions are:

• Knowledge of acceptable forms of language.

• Knowledge of the ways in which symbols are used to indicate the
correct pronunciation of words.

• Knowledge of the standard representational devices and symbols in
maps and charts.

• A knowledge of the rules of punctuation.

1.22 Knowledge of Trends and Sequences

Knowledge of trends and sequences includes the processes, directions, and
movements of phenomena with respect to time. It includes trends as attempts
to point up the interrelationship among a number of specific events which are
separated by time. It also includes representations of processes which may
involve time as well as causal interrelations of a series of specific events.
Many of the trends and sequences are difficult to communicate because they
involve highly dynamic actions, processes, and movements which are not fully
represented by static verbal, graphic, or symbolic forms. {Few knowledge
based systems incorporate this kind of knowledge, and then only in the simplest
form.}

Knowledge of trends and sequences would include, for example:

• The basic knowledge of the evolutionary development of man.

• Knowledge of how Greek philosophy has affected the contemporary world.

• Knowledge of trends in computer architecture during the last fifteen
years.

30 June 1977 A-10
System Development C~rporation

TM-5903/000/00

1.23 Knowledge of Classifications and Categories

Knowledge of the classes, sets, divisions, and arrangements which are regarded
as fundamental or useful for a given subject field, purpose, argument, or prob
lem are included here. As a subject field, problem, or topic becomes wel,l de
veloped, individuals working on it find it useful to develop classifications
and categories which help to structure and systemize the phenomena. Under the
present heading is included only knowledge of the classifications and catego
ries, while the application of these to new problems is dealt with in other
parts of the taxonomy. {Most knowledge-based systems incorporate knowledge of
this kind.} Some examples are:

• Knowledge of the classifications for organic chemicals and compounds.

• Knowledge of the characteristics of organisms that can cause infectious
diseases.

1.24 Knowledge of Criteria

Knowledge of the criteria by which facts, principles, op1n1ons, and conduct
are tested or judged. Here again. is systemization which is found useful by
workers attacking the problems of a field. The utilization of the criteria in
actual problem situations will be found in 6.00 - Evaluation. The criteria
will vary markedly from field to field. They are likely to appear complex and
abstract and to acquire meaning only as they are related to concrete situations
and problems. {This kind of knowledge is central to plausible reasoning.}
This classification of knowledge includes:

• Knowledge of the criteria for judgment appropriate to work in a
particular field.

• Knowledge of the criteria by which valid sources of i-nformati on
in computer sciences can be recognized.

1.25 Knowledge of Methodology

Here is included knowledge of the methods of inquiry, techniques, and proce
dures employed in a particular subject field, as well as those employed in

30 June 1977 A-11
System Development Corporation

TM-5903/000/00

investigating particular problems and phenomena. Here, again, the emphasis is

on knowledge of the methods rather than on ability to use the methods in the

ways defined by categories 3.00 to 6.00. However, one is frequently required

to know about methods and techniques and to know the ways in which they have

been used. Such knowledge is most nearly of an historical or encyclopedic
type. This knowledge, although simpler and perhaps less functional than the

ability to actually employ the methods and techniques, is an important prelude

to such use. {It is not clear whether or not this kind of knowledge is in cur

rent systems. A somewhat simpler form than implied here is represented.}
This category includes:

• Knowing the methods of attack relevant to kinds of problems of concern
to the social sciences.

• Knowledge of the scientific methods for evaluating a new medical
treatment.

1.30 KNOWLEDGE OF THE UNIVERSALS AND ABSTRACTIONS IN A FIELD

Knowledge of the major ideas, schemes, and patterns by which phenomena and ideas

are organized are covered in this category. These are the large structures,
theories, and generalizations which dominate a subject field or which are quite

generally used in studying phenomena or solving problems. These are at the
highest levels of abstractions and complexity.

These concepts bring together a large number·of specific facts and events, de

scribe the processes and interrelations among these specifics, and thus enable

the worker to organize the whole in a parsimonious form.

These tend to be very broad ideas and plans which are rather difficult to com

prehend. {They are also the most difficult to incorporate in a computer-based

system. The problem of proper representation that will permit effective and
efficient problem solving is most important.}

1.31 Knowledge of Principles and Generalizations

Knowledge of principles and generalizations is of the particular abstractions
which summarize observations of phenomena. These are the abstractions which

30 June 1977 A-12
System Development Corporation

TM-5903/000/00

are of greatest value in explaining, describing, predicting, or determining
the most appropriate and relevant action or direction to be taken. The actual
application of these abstractions in problem situations is included in 3.00 -
Application. {This kind of knowledge is mandatory in any system that is in
tended to solve useful problems, even though restricted to a narrow domain.}

Within this category, the following are representative:

• Knowledge of propositions, of fundamental logical principles, of
propositional functions and quantifiers, and of sets.

• Knowledge of biological laws of reproduction and heredity.

• Understanding of some of the principal elements in the heritage
of Western civilization.

• Understanding of such basic biological principles as cell theory,
osmosis, and photosynthesis.

• Knowledge of the principles of federalism.

1.32 Knowledge of Theories and Structures

Knowledge of theories and structures is the body of principles and generaliza
tions, together with their interrelations, which present a clear, rounded, and
systematic view of a complex phenomenon, problem, or field. They can be used
to show the interrelation and organization of a great range of specifics. This
category differs from 1.31 in that here the emphasis is on a body of principles
and generalizations which are interrelated to form a theory of structure, while
the principles and generalizations in 1.31 are treated as particulars which
need not be related to each other. {It is this category of knowledge that dis
tinguishes systems that 11 understand 11 from those that 11merely 11 solve problems.
Most knowledge-based systems fall in the latter category.}

Examples of knowledge in this category are:

• Knowledge of the philosophic bases for particular judgments.

• Understanding of the interrelations of chemical principles and theories.

30 June 1977 A-13
System Development Corporation

TM-5903/000/00

• To understand the structure and organization of Congress.

• Knowledge of a relatively complete formulation of the theory of
evolution.

INTELLECTUAL ABILITIES AND SKILLS

Abilities and skills refer to organized modes of operation and generalized
techniques for dealing with materials and problems. The materials and prob
lems may be of such a nature that little or no specialized and technical infor
mation is required. {This is not a likely condition with respect to knowledge
based systems of the near future.} Such information as is required can be
assumed to be part of the general fund of knowledge {of which knowledge-based
systems have little or none.} Other problems may require specialized and tech
nical information at a rather high level such that specific knowledge and skill
in dealing with the problem and materials are required. The abilities and
skills categories emphasize the processes of organizing and reorganizing mate
rial to achieve a particular purpose.

2.00 COMPREHENSION

This represents the lowest level of understanding. It refers to a type of
understanding or apprehension such that the individual knows what is being
communicated and can make use of the material or idea being communicated with
out necessarily relating it to other materiaJ or seeing its fullest implica
tions. {This describes what one should generally expect as the maximum level
of achievement from present-day KBS technology. Though, according to this
taxonomy, Application (see category 3.00) ranks higher on the scale of abstrac
tion, we do not mean to imply that ,KB systems are not capable of being applied,
but rather that such systems are not likely to exhibit the higher forms of
abilities and skills put forth here in the near future.}

Three types of comprehension are considered here. The first is translation,
which means that a communication can be put into other languages, into other
terms, or into another form of communication. It will usually involve the

30 June 1977 A-14
System Development Corporation

TM-5903/000/00

giving of meaning to the various parts of a communication, taken in isolation,

although such meanings may in part be determined by the context in which the
ideas appear. The second type of behavior is interpretation, which involves

dealing with a communication as a configuration of ideas whose comprehension

may require a reordering of the ideas into a new configuration. This also in

cludes thinking about the relative importance of the ideas, their interrela
tionships, and their relevance to generalizations implied or described in the

original communication. The third type of behavior to be considered under
comprehension is extrapolation. It includes the making of estimates or pre

dictions based on an understanding of the trends, tendencies, or conditions

described in the communication. It may also involve the making of inferences
with respect to implications, consequences, corollaries, and effects which are

in accordance with the conditions described in the communication. Extrapola
tion may include judgments with respect to a universe where the communication

characterizes a sample, or conversely with respect to a sample where the com
munication describes a universe. For the purpose of classification, interpola

tion may be regarded as a type of extrapolation in that judgments with respect
to intervals within a sequence of data presented in a communication are similar
to judgments going beyond the data in the usual sense of extrapolation.

2.10 TRANSLATION

Translation behavior occupies a transitional position between the behaviors
classified under the category of knowledge and types of behavior described

under the headings of interpretation, extrapolation, analysis, synthesis,
application, and evaluation. It will usually be found that competence in

translation is dependent on the possession of the requisite or relevant knowl
edge. Translation is cowprehension, as is evidenced by the care and accuracy
with which the communication is paraphrased or rendered from one language or

form of communication into another. Translation is judged on the basis of

faithfulness or accuracy, that is, on the extent to which the material in the
original communication is preserved although the form of the communication has

been altered. {MYCIN's knowledge-acquisition subsystem demonstrates this

30 June 1977 A-15
System· Development Corporation

TM-5903/000/00

facility in the way it translates and rephrases an expert's input of a rule in
order to verify that the intent has been properly preserved.}

Examples:

Translation from one level of abstraction to another

• The ability to translate a problem given in technical or abstract
phraseology into concrete or less abstract phraseology-- 11 state the
problem in your own worcts. 11

• The ability to translate a lengthy part of a communication into
briefer or more abstract terms.

• The ability to translate an abstraction, such as some general
principle, by giving an illustration or sample.

Translation from symbolic form to another form, or vice versa

• The ability to translate relationships expressed in symbolic form,
including illustrations, maps, tables, diagrams, graphs, and mathe
matical and other formulas to verbal form and vice versa.

• Given geometric concepts in verbal terms, the ability to translate
into visual or spatial terms.

• The ability to prepare graphical representations of physical
phenomena or of observed or recorded data.

Translation from one verbal form to another

• The ability to translate non-literal statements (metaphor, symbolism,
irony, exaggeration) to ordinary English.

2.20 INTERPRETATION

In order to interpret a communication, one must first be able to translate
each of the major parts of it--this includes not only the words and phrases,
but also the various representational devices used. He must then be able to
go beyond this part-for-part rendering of the communication to comprehend the

30 June 1977 A-16
System Development Corporation

TM-5903/000/00

relationships between its various parts, to reorder, or to rearrange it so as

to secure some total view of what the communication contains and to relate it
to his own fund of experiences and ideas. Interpretation also includes compe

tence in recognizing the essentials and differentiating them from the less

essential portions or from the relatively irrelevant aspects of the communica
tion. This requires some facility in abstracting generalizations from a set

of particulars as well as in weighing and assessing the relative emphasis to

be given the different elements in the communication. In these respects, inter
pretation becomes synonymous with analysis and has characteristics in common

with evaluation.

Examples:

• The ability to grasp the thought of a work as a whole at any desired
level of generality.

• The ability to distinguish among warranted, unwarranted, or contradicted

conclusions drawn from a body of data. {Knowledge-based systems do this
to a limited extent.}

• Ability in making proper qualifications when interpreting data.

2. 30 EXTRAPOLATIOtl

Extrapolation is the extension of trends or tendencies beyond the given data to

determine implications, consequences, corollaries, effects, etc., which are in
accordance with the conditions described in the or1ginal communication. Accu

rate extrapolation requires that one be able to translate as well as interpret
a communication, and, in addition, he must be able to extend the trends or
tendencies beyond the given data and findings of the document to determine
implications, consequences, corollaries, effects, etc., which are in accordance

with the conditions as literally described in the original communication. Ex
trapolation requires that the reader be well aware of the limits within which

the communication is posed as well as the possible limits within which it can
be extended. In practically all cases, one must recognize that an extrapolation

30 June 1977 A-17
System Development Corporation

TM-5903/000/00

can only be an inference which has some degree of probability--certainty with
respect to extrapolations is rare.

Extrapolation as here defined is to be distinguished from application in that
the thinking is characterized by the extension of that which is given to inter
mediate, past, future, or other conditions or situations. The thinking is
usually less abstract than in the case of application where use is made of
generalizations, rules of procedure, and the like. {It is in this category
that much of the work in knowledge-based systems is concentrated in order to
improve performance and make the results more generally acceptable.}

Examples:

• The ability to deal with the conclusions of a work in terms of the
immediate inferences made from the explicit statements.

• The ability to draw conclusions and state them effectively (recogniz
ing the limitations of the data, formulating accurate inferences and
tenable hypotheses).

• Skills in predicting continuation of trends.

• Skill in interpolation where there are gaps in data.

• The ability to estimate or predict consequences of courses of action
described in a communication.

• The ability to be sensitive to factors which may render predictions
inaccurate.

• The ability to distinguish consequences which are only relatively
probable from those for which there is a high degree of probability.

• The ability to differentiate value judgments from predictions of
consequences.

3.00 APPLICATION

Application is the use of abstractions in particular and concrete situations.
The abstractions may be in the form of general ideas, rules of procedure, or

30 June 1977 A-18
System Development Corporation

TM-5903/000/00

generalized methods. The abstractions may also be technical principles, ideas,
and theories which must be selected and applied.

The whole cognitive domain of the taxonomy is arranged in a hierarchy, that is,
each classification within it demands the skills and abilities which are lower
in the classification order. The application category follows this rule in
that to apply something requires 11 Comprehension 11 of the method, theory, princi
ple, or abstraction applied.

One way to clarify the distinction between 11 Comprehension 11 and 11 Application 11 is
this. A problem in the comprehension category requires one to know an abstrac
tion well enough that he can correctly demonstrate its use when specifically
asked to do so. 11 Application, 11 however, requires a step beyond this. Given a
problem, an individual will apply the appropriate abstraction without having
to be shown how to use it in that situation. A demonstration of 11 Comprehension 11

shows that one can use the abstraction when its use is specified. A demonstra
tion of 11 Application 11 shows that he will use it\correctly given an appropriate
situation in which no mode of solution is specified. {There does not exist, as
yet, a knowledge-based system general enough to require the ability described
here. Though one might conclude that a system that incorporates meta-knowledge
fits the description, we believe that the intent here is considerably broader
than that.}

Examples:

• Application to the phenomena discussed on one paper of the scientific
terms or concepts used in other papers.

• The ability to predict the probable effect of a change in a factor on
a biological situation previously at equilibrium.

4.00 ANALYSIS

Analysis is the breakdown of a communication into its constituent elements or
parts such that the relative hierarchy of ideas is made clear and/or the rela
tions between the ideas expressed are made explicit. Such analyses are

30 June 1977 A-19
System Development Corporation

TM-5903/000/00

intended to clarify the communication, to indicate how the communication is
organized, and the way in which it manages to convey its effects, as well as
its basis and arrangement.

At a somewhat more advanced level than the skills of comprehension and appli
cation are those involved in analysis. In comprehension the emphasis is on
the grasp of the meaning and intent of the material. In application it is on
remembering and bringing to bear upon given material the appropriate generali
zations or principles. Analysis emphasizes the breakdown of the material into
its constituent parts and detection of the relationships of the parts and of
the way they are organized. It may also be directed at the techniques and
devices used to convey the meaning or to establish the conclusion of a
communication.

Although analysis may be conducted merely as an exercise in detecting the
organization and structure of a communication and may therefore become its
own end, it is probably more defensible to consider analysis as an aid to
fuller comprehension or as a prelude to an evaluation of the material.

No entirely clear lines can be drawn between analysis and comprehension at
one end or between analysis and evaluation at the other. Comprehension deals
with the content of material, analysis with both content and form. One may
speak of "analyzing" the meaning of a communication, but this usually refers
to a more complex level of ability than "understanding" or 11 comprehending 11

the meaning--and that is the intention in the use of 11 analysis 0 here. It is
true also that analysis shades into evaluation, especially when we think of
11 critical analysis. 11 As one analyzes the relationships of elements of an argu
ment, he may be judging how well the argument hangs together. In analyzing
the form of a communication, or the techniques used, one may express opinions
about how well the communication serves its purpose.

Analysis may be divided into three types or levels. At one level one is ex
pected to break down the mater.ial into its constituent parts, to identify or
classify the elements of the communication. At a second level he is required

30 June 1977 A-20
System Development Corporation

TM-5903/000/00

to make explicit the relationships among the elements, to determine their con
nections and interactions. A third level involves recognition of the organi
zation principles, the arrangement and structure, which hold together the com
munication as a whole. {The first two levels are obvious requirements for a
language-understanding system. The third is one of the primary goals of much
artificial intelligence research.}

4.10 ANALYSIS OF ELEMENTS

A communication may be conceived of as composed of a large number of elements.
Some of these elements are explicitly stated or contained in the communication
and can be recognized and classified relatively easily. However, there are
many other elements in a communication which are not so clearly labelled or
identified by the writer. Many of these elements may be of paramount impor
tance in determining the nature of the communication, and until the reader can
detect them he may have difficulty in fully comprehending or evaluating the
communication.

Examples:

• Ability to recognize unstated assumptions.

• Skills in distinguishing facts from hypotheses.

• Ability to distinguish factual from normative statements.

• Ability to distinguish a conclusion from statements which support it.

4.20 ANALYSIS OF RELATIONSHIPS

Having identified the different elements within a communication, one still has
the task of determining some of the major relationships among the elements as
well as the relationships among the various parts of the communication. At
the most obvious level he may need to determine the relationship of the hypoth
eses to the evidence, and in turn the relationship between the conclusions and
the hypotheses as well as evidence. Analysis would also include the relation
ships among the different kinds of evidence presented.

30 June 1977 A-21
System Development Corporation

TM-5903/000/00

At a more difficult level is likely to be the analysis of a communication into
the parts which are essential to or which form the main thesis as contrasted
with those parts or elements which may help to expand, develop, or support
this thesis. Much of analysis of relationships may deal with the consistency
of part to part, or element to element; or the relevance of elements or parts
to the central idea or thesis in the communication.

Examples:

• Skill in comprehending the inter~elationships among the ideas in a
passage.

• Ability to recognize what particulars are relevant to the validation
of a judgment.

• Ability to recognize which facts or assumptions are essential to a
main thesis or to the argument in support of that thesis.

• Ability to check the consistency of hypotheses with given information
and assumptions.

• Ability to distinguish cause-and-effect relationships from other
sequential relationships.

• Ability to analyze the relations of statements in an argument, to
distinguish relevant from irrelevant statements.

• Ability to detect logical fallacies in arguments.

4.30 ANALYSIS OF ORGANIZATIONAL PRINCIPLES

This analysis incorporates the organization, systematic arrangement, and struc
ture which holds the communication together. It includes "explicit" as well
as 11 implicit" structure. It includes the bases, necessary arrangement, and
the mechanics wrich make the communication a unit.

At an even more complex and difficult level is likely to be the task of analyz
ing the structure and organization of a communication. Rarely will the producer
of a communication explicitly point out the organizational principles he has

30 June 1977 A-22
System Development Corporation

TM-5903/000/00

used, and quite frequently he may not be aware of those principles. Thus, his
purpose, point of view, attitude, or general conception of a field may be dis~
cerned in the writing, and the reader may be unable to fully comprehend or
evaluate the communication until he has determined them.

Examples:

• Ability to analyze the relationship of materials and means of produc
tion to the 11 elements 11 and to the organization.

• The ability to infer the author's purpose, point of view, or traits
of thought and feeling as exhibited in his work.

• Ability to recognize the point of view or bias of a writer.

5.00 SYNTHESIS

Synthesis is here defined as the putting together of elements and parts so as
to form a whole. This is a process of working with elements, parts, etc., and
combining them in such a way as to constitute a pattern or structure not clearly
there before. Generally this would involve a recombination of parts of previous
experience with new material, reconstructed into a new and more or less well
integrated whole. This is the category in the cognitive domain which most
clearly provides for creative behavior.

Comprehension, application, and analysis also involve the putting together of
elements and the construction of meanings, but these tend to be more partial
and less complete than synthesis in the magnitude of the task. Also there is
less emphasis upon uniqueness and originality in these other classes than in
the one under discussion here. Perhaps the main difference between these
categories and synthesis lies in the possibility that they involve working with
a given set of materials or elements which constitutes a whole in itself. They
involve studying a whole in order to understand it better. In synthesis, on
the other hand, one must draw upon elements from many sources and put these
together into a structure or pattern not clearly there before. His efforts
should yield a product--something that can be observed through one or more of
the senses and which is clearly more than the materials he began to work with.

30 June 1977 A-23
System Development Corporation

TM-5903/000/00

It is to be expected that a problem which is classified as a task primarily
involving synthesis will also require all of the previous categories to some
extent.

It seems best to distinguish between different kinds of synthesis primarily on
the basis of the product. Such an approach does permit classification into
three relatively distinct divisions which have some practical significance.
Classification on the basis of product is not inconsistent with the taxonomy,
since the construction of different products may well require somewhat different
processes. A similar assumption is made· in the Knowledge and Analysis categories.

5.10 . PRODUCTION OF A UNIQUE COMMUNICATION

Under this we include those objectives in which primary emphasis is upon
communication--upon getting ideas, feelings, and experience across to others.
The important controlling or limiting factors in such tasks are the following:
the kinds of effects to be achieved; the nature of the audience in whom the
effects are to be achieved; the particular medium through which one expresses
himself; and the particular ideas and experiences that the student can draw
upon or that he wishes to communicate.

The product of synthesis is rendered uniqu~ because of the great latitude
allowed the individual in putting his own ideas, feelings, and experiences
into it. In other words, much of the content of the synthesis is not rigor
ously predetermined by the requirements of t~e task; it flows from the person
and is used by him if he alone deems· it worthy of i'ncorporating in his work.

Examples:

• Skill in writing, using an excellent organization of ideas and
statements.

• Ability to write creatively a story, essay, or verse for personal
pleasure, or for the entertainment or information of others.

• Ability to tell a personal experience effectively.

• Ability to make extemporaneous speeches.

30 June 1977 A-24
System Development Corporation

TM-5903/000/00

5.20 PRODUCTION OF A PLAN, OR PROPOSED SET OF OPERATIONS

Objectives that fall in this sub-category aim, in general, at the production
of a plan of operations. The production of the plan constitutes the act of
synthesis.

The product, or plan of operations, must satisfy the requirements of the task.
Usually the requirements are laid down in the form of specifi cations or data
to be taken into account. These data or specifications may be given, in which
case one may assume that they are sound, or th~y may have to be worked out by
him before he can proceed. But in any case, the specifications do furnish a
rather well-defined criterion against which the product may be evaluated. In
this sense, the product must alwaysmeet an empirical test of its soundness.
{Though some work has been done in plan production in some artificial intelli
gence research projects, particularly those concerned with robotics, they fall
short of the intent of this category.}

Examples:

• Ability to propose ways of testing hypotheses.

• Ability to integrate the results of an investigation into an effective
plan or solution to solve a problem.

• Ability to design simple tools to perform specified operations.

• Ability to synthesize knowledge of chemistry, knowledge of the unit
operations, and data available in the technical literature, and apply
these to the design of chemical processes.

5.30 DERIVATION OF A SET OF ABSTRACT RELATIONS

In this sub-category we include objectives that require one to produce, or
derive, a set of abstract relations. There seem to be two somewhat different
kinds of tasks here: (1) those in which one begins with concrete data or
phenomena and which he must somehow either classify or explain; (2) those in
which one begins with some basic propositions or other symbolic representations
and from which he must deduce other propositions or relations.

30 June 1977 A-25
System Development Corporation

TM-5903/000/00

The first type of task may also take the form of explaining certain observed
phenomena. In this case, there is little emphasis upon developing a classifi
cation scheme. The problem is to formulate a hypothesis that will adequately
account for a wide range of seemingly interrelated phenomena. As with a class
ification scheme, the hypothesis or theory must fit the facts and, in addition,
be internally consistent--i.e., free from logical contradictions. {Diagnosis}

The second broad type of task clearly begins with abstract symbols, propositions,
and the like, rather than with concrete data. The problem is to move from these
symbolic representations to deductions that can reasonably be made. In other
words, one operates within some theoretical framework, and must reason in terms
of it. He is thus quite circumscribed in what he does, although the task can
permit him to carry his thinking quite far. But always in the background are
rigorous objective criteria which his product of synthesis must meet; subjective
standards, of the sort that predominate in the first and second sub-categories,
all but vanish here. {Meta-DENDRAL performs such a process}

Examples:

• Ability to fo.rmulate appropriate hypotheses based upon an analysis of
factors involved, and to modify such hypotheses in the light of new
factors and considerations.

• Ability to perceive various possible ways in which experience may be
organized to form a conceptual structure.

• Ability to make mathematical discoveries and generalizations. {Lenat's
~ork [LENAT76] has actually been recognized as achieving this level of
accomplishment.}

Types of Errors that can occur in Synthesis

In general, a synthesis is faulty to the extent that it lacks "goodness of fit"
to the requirements of the problem. Faulty synthesis may be due to one or more
of the following factors, many ef which seem to reflect faulty comprehension and
analysis:

30 June 1977 A-26
System Development Corporation

TM-5903/000/00

(1) Misinterpreting the purpose or nature of the problem.

(2) Misinterpreting the nature of important elements and their interre
lations, confusing basic and subordinate elements.

(3) Omitting important elements.

(4) Applying irrelevant or inaccurate elements.

(5) Over-organizing the synthesis, so that the result is too artificial
or inflexible to satisfy varying requirements, as with a plan of
investigation or an architectural design.

(6) Otherwise failing to satisfy the requirements of an external theory,
framework, or of some other standard.

6.00 EVALUATION

Evaluation is defined as the making of judgments about the value, for some
purpose, of ideas, works, solutions, methods, material, etc. It involves the
use of criteria as well as standards for appraising the extent to which partic
ulars are accurate, effective, economical, or satisfying. The judgments may
be either quantitative or qualitative, and the criteria may be either those
determined by the individual or those which are given to him.

Evaluation is placed at this point in the taxonomy because it is regarded as
being at a relatively late stage in a complex process which involves some com
bination of all the other behaviors of Knowledge, Comprehension, Application,
Analysis, and Synthesis. What is added are criteria including values. Evalua
tion represents not only an end process in dealing with cognitive behaviors,
but also a major link with the affective behaviors where values, liking, and
enjoying (and their absence or contraries) are the central processes involved.
However, the emphasis here is still largely cognitive rather than emotive.

Although Evaluation is placed last in the cognitive domain because it is re
garded as requiring to some extent all the other categories of behavior, it is
not nessarily the last step in thinking or problem solving. It is quite

30 June 1977 A-27
System Development Corporation

TM-5903/000/00

possible that the evaluative process will in some cases be the prelude to the
acquisition of new knowledge, a new attempt at comprehension or application,
or a new analysis and synthesis.

For the most part, the evaluations customarily made by an individual are quick
decisions not preceded by very careful consideration of the various aspects of
the object, idea, or activity being judged. These might more properly be
termed opinions rather than judgments. Customarily, opinions are made at less
than a fully conscious level, and the individual may not be fully aware of the
clues or bases on which he is forming his appraisals. For purposes of classi
fication, only those evaluations which are or can be made with distinct criteria
in mind are considered. Such evaluations are highly conscious and ordinarily
are based on a relatively adequate comprehension and analysis of the phenomena
to be appraised. It is recognized that this may be far from the normal state
of affairs.

One type of evaluation can be made largely on the basis of internal standards
of criticism. Such internal standards are for the most part concerned with
tests of the accuracy of th.e work as judged by consistency, logical accuracy,
and the absence of internal flaws. It is recognized that even when a document,
product, or work is perfectly accurate or consistent on the basis of internal
standards, it do.es not necessarily constitute a work which can be valued highly
unless it also satisfies certain external standards. A second type of evalua
tion may be based on the use of external standards or criteria derived from a
consideration of the ends to be served and the appropriateness of specific
means for achieving these ends. Such evaluations are primarily based on con
siderations of efficiency, economy, or utility of specific means for particular
ends. This type of evaluation also involves the use of particular criteria
which are regarded as appropriate for members of the class of phenomena being
judged, i.e., in terms of standards of excellence or effectiveness commonly
used in the field or in a comparison of particular phenomena with other
phenomena in the same field. {This certainly describes one of the primary
functions of the CE, though one would use less anthropomorphic terms.}

30 June 1977 A-28

6.10 JUDGMENTS IN TERMS OF INTERNAL EVIDENCE

System Development Corporation
TM-5903/000/00

A communication may be evaluated from such internal evidence as logical accuracy,
consistency, and other internal criteria. After an individual has comprehended
and perhaps analyzed a work, he may be called upon to evaluate it in terms of vari
ous internal criteria. Such criteria are for the most part tests of the accuracy
of the work as judged by the logical relationships evident in the work itself.
Has the writer (or speaker) been consistent in his use of terms, does one idea
really follow from another, and do the conclusions follow logically from the
material presented? There are other internal standards which may be used to
determine that there are no major errors in the treatment or reporting of data
and that statements are made with some precision or exactness. It is also pos
sible to judge a work to determine whether the manner in which the writer cites
sources or documents or the care with which particulars are given is likely to
yield a high probability of accuracy.

Examples:·

• Judging by internal standards, the ability to assess general probability
of accuracy in reporting facts from the care given to exactness of
statement, documentation, proof, etc.

• The ability to apply given criteria (based on internal standards) to
the judgment of the work.

• The ability to indicate logical fallacies in arguments.

6.20 JUDGMENTS IN TERMS OF EXTERNAL CRITERIA

These judgments entail the evaluation of material with reference to selected
or remembered criteria. The criteria may be: ends to be satisfied; the tech
niques, rules, or standards by which suGh works are generally judged; or the
comparison of the work with other works in tlie field. This, type of evaluation
involves the classification of the phenomena in order that the appropriate
criteria for judgment may be employed. Thus, a work of history is to be judged
by criteria relevant to historical works rather than to works of fiction. A

30 June 1977 A-29
System Development Corporation

TM-5903/000/00

work of art may be judged by many different criteria, depending upon the classi
fication of the work (e.g., representational, expressional, as communicating a
particular message or idea). All of this involves the assumption that each
phenomenon is a member of a class and is to be judged by criteria which are
appropriate to that class. This also includes the possibility of comparing a
work with other members of the same class of work.

It should be pointed out that the classifi~ation of a work and the evaluation
of it in terms of the criteria appropriate to the class involve arbitrary judg
ments. Clearly, a work is at one and the same time a member of many different
classes. Thus, an historical work may also be a rhetorical, philosophical, or
even poetic work. The decision as to the class in which it is to be evaluated
does not preclude it from also being evaluated as a member of another class.

Quite frequently, the external criteria are derived from a member of the class
which is considered to be a 11 model 11 member (in some respects, not necessarily
11 ideal 11 or 11 best 11). This may result in the judgment 1 s focusing on the compari
son of the two members of the class rather than on the extent to which one mem
ber satisfies selected abstract criteria.

This type of evaluation may also involve the classification of a work with re
gard to the ends to be achieved by the work, followed by a judgment as to
whether the means used are appropriate to the ends in terms of efficiency,
economy, and utility. This involves the assumption that particular means
serve some specific ends better than others, and that particular ends are best
served by some specific means. It should be recognized that the major problem
in many judgments of this kind is what ends are to be considered. The ends
may be those conceived by the originator of the work or idea, or they may be
those deemed appropriate by the critic. It should also be recognized that a
particular work or idea may be evaluated in terms of many different means-ends
relationships. This may require the answering of the following questions: Do
the means employed represent a good solution to the problem posed by the end
desired? Are the means the most appropriate ones when the alternatives are
considered? Do the means employed bring about ends other than those desired?

30 June 1977

Examples:

A-30
System Development Corporation

TM-5903/000/00

• The comparison. of major theories, genera 1 i zati ans, and facts about
particular cultures.

• Judging by external-standards, the ability to compare a work with
the highest known standards in its field--especially with other
works of recognized excellence.

30 June 1977 B-1
System Development Corporation

TM-5903/000/00

APPENDIX B: CURRENT WORK IN KNOWLEDGE-BASED SYSTEMS AND RELATED AREAS

The following is a list of projects that are presently developing knowledge
based systems or performing research and development in directly related areas.
It represents the major activities, but we make no claim that it is complete.
The list is ordered by institution, and by principal investigator within each
institution, giving the name of the project if one exists and a very brief
description.

1. Bolt Beranek and Newman, Inc., Cambridge MA

a. J. S. Brown--SOPHIE, a knowledge-based instructional system.

b. A Collins--Follow-on to SCHOLAR, a system that models
common-sense reasoning.

c. G. Rider--An intelligent terminal system based on production
rules.

d. W. A. Woods--Natural-languag~ processing.

2. Carnegie-Mellon University, Pittsburgh PA

a. A. Newell--PSG, PSH, OPS, production-rule 11 programming 11 systems
that support KBS implementation, OPS is intended to optimize
rule sets.

b. D. R. Reddy--Image-understandtng system based on speech
understanding research and HEARSAY II, in particular;
continuation of speech-understanding research.

3. IBM Research Center, Yorktown Heights NY

a. A. Malhotra--Knowledge-based system for management support.

4. Jet Propulsion Laboratory, California Institute of Technology,
Pasadena CA

a. Y. Yakimovsky--A non-deterministic inference system for
image analysis.

30 June 1977 B-2
System Development Corporation

TM-5903/000/00

5. Massachusetts Institute of Technology, Cambridge MA

a. I. Goldstein--Developing a production-rule system for aircraft
simulation.

b. W. Martin, L. Hawkinson--OWL, a system for representing knowledge
and constructing knowledge-based systems.

c. W. Martin--Rule-based inventory management system.

d. M. Minsky, S. Papert--Frames, a method for representing knowledge.

e. A. Rubin--Knowledge-based system for diagnosing kidney disease.

f. J. Sussman--System for debugging (troubleshooting) electronic
circuits.

g. P. Winston--System for keeping track of icebergs.

6. The Rand Corporation, Santa Monica CA

a. R. Anderson--RITA, a production-rule system for intelligent
terminal user agents.

b. D. Waterman, R. Hayes-Roth--TECA a naval threat evaluation
and countermeasures agent built on RITA.

c. D. Waterman--System for creating RITA agents by observing
and querying the user.

7. Rutgers University, New Brunswick NJ

a. C. A. Kulikowski, A. Safir, S. Amarel--CASNET and IRIS, systems
for recommending treatment of glaucoma.

b. C. Schmidt--BELIEVER, a limited model of human intentions
based on knowledge of motives and beliefs.

8. Stanford Research Institute, Menlo Park CA

a. H. G. Barrow, J. M. Tenenbaum--Systems to understand photographic
images.

30 June 1977 B-3
System Development Corporation

TM-5903/000/00

b. R. O. Duda--PROSPECTOR, an exploratory geology program, based
on MYCIN plus Hendrix net for organizing the relevance of rules

c. N. J. Nilsson--Writing a book on knowledge-based systems:

9. Stanford University, Stanford CA

a. T. Binford--Stereo vision system similar in intent to speech
understanding systems.

b. B. Buchanan, S. Cohen--MYCIN, a rule-based system for recom
mending antimicrobial therapy for infectious diseases.

c. R. Davisj J. King--TIRESIUS, augments MYCIN 1 s explanations,
abstracts its rule model, critiques rules; has a system of
meta-rules.

d. R. Davis, J. King--EMYCIN, empty MYCIN, the framework without
any rules·.

e.. E. A. Feigenbaum, B. Buchanan, J. Lederberg--DENDRAL, a system
for analyzing electron emi.ssi:on spectograrils for determining
chemical structures, and Meta-DENDRAL, a companion system for
modeli:ng chemists analytical processes and creating rules
for DENDRAL.

f. E. A. Feigenbaum, D. Englemore, H. P. Ni.i.--Protein crystal-
1 ography, analyzes x-ray crys ta 11 ograp'hi c images to determine
stick-and-ball model of moletules.

g. E. A. Feigenbaum, J. Lederberg, N. Martin--MOLGEN, a genetic
engineering system to assist geneticists in planning laboratory
experiments concerned with manipulation of DNA with restriction
enzymes.

h. E. A. Fei.genbaum-..:DIKE, domain-independent knowledge engineer
ing, intended to remove some of the variability in knowledge
engineering.

30 June 1977 B-4
System Development Corporation

TM-5903/000/00

10. System Development Corporation, Santa Monica CA

a. J. Burger, I. Kameny--EUFID, a natural-language interface for
data management systems.

b. C. Kellogg, P. Klahr--DADM (deductively augmented data management),
a deductive processor to interface with existing data management
systems and data bases to enhance user functions.

11. University of California at Santa Cruz, Santa Cruz CA

a. W. T. Wipke--A system for synthesi·zing chemical compounds.

12. University of Maryland, College Park MD

a. C. Reiger--Conceptual modeling for natural .. language understanding.

13. University of Michigan, Ann Arbor MI

a. R. Lindsay--System to produce standard record of pathology
reports, ameliorates differences in jargon from multiple
descriptions of many pathologists.

14. University of Pittsburgh, Pittsburgh PA

a. H. Pople, J. Myers--INTERNIST (DIALOG), medical diagnosis system
for internal medicine usi.ng abduction; has more than 1000 rules.

15. Xerox Palo Alto Research Center, Palo Alto CA

a. D. G. Bobrow, T. Winograd--KRL, a knowledge representation
language for their version of Frames.

b. D. G. Bobrow- .. GUS, a general understanding system whose first
application is a travel agent.

16. Yale Untversity, New Haven CT

a. R. Schank-.. a system for understanding written material in context.

SYSTEM DEVELOPMENT CORPORATION • 2500 COLORADO AVENUE • SANTA MONICA, CALIFORNIA 90406 • 12131 393-9411

