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CHAPTER ONE 

INTRODUCTION 

rhis tutorial manual illustrates the programming features of 

A.PPLE (~ farallel grogramming Language).* APPLE is based on 

K. E. Iverson•s APL (~ f~Qg~~mming ~~ng~2g~, Wiley, 1962), a 

language that uses generalized operators to concisely express 

mathematical algorithms on multi-dimensional data structures. 

The generalized operators of APL and its successor APL\360 

permit a programmer to express manipulations of arrays almost as 

easily as he can express manipulations of scalars in 

conventional programming languages (e.g. FORTRAN, PL/I, etc.). 

The advantage of these operators is that when the programmer 

writes arithmetic expressions involving arrays, he does not have 

to go through the tedious process of writing nested loops to 

control the processing of the arrays. Instead, he is able to 

express the process as it conceptually occurs: in parallel on 

all of the elements of the arrays. 

l'hat programmers tend to think in terms of parallel processes on 

*--hPPLE-rs-not to be confused with the RADC assembly language 
bearing the same name which was produced for an associative 
processor. 
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arrays is borne out by the APL\360 code produced by its large 

number of commercial users, who write their code as if it could 

be executed in parallel even though it is executed on a 

sequential computer. Many payroll programs, for example, treat 

the set ~f base salaries as a vector. Withholding taxes, 

voluntary deductions, and so forth, are then computed for the 

entire vector, at once, rather than on an employee-by-employee 

basis, because the same algorithm is used to process every 

employee. 

One of the primary benefits of APL has been the elimination of 

unnecessary loops and bookkeeping. For example, a programmer 

writes loops far less frequently in APL in than in FORTRAN or 

PL/I. This tends to reduce the number of situations in which 

coding errors can be introduced into a program. 

However, because APL\360 is not a complete programming language, 

it does not eliminate all such situations. The only control 

operator in APL\360 is the GOTO operator. The basic control 

operat~rs--e.g., IF and oo--that have been included in FORTRAN 

and other languages dating from the 1950 1 s are absent from APL. 

Paradoxically, one can write elaborately eloquent arithmetic 

expressions in APL but must resort to the techniques of assembly 

langua~e programming in order to perform them more than once. 

Dijkstra, Mills, Schorre and others have blamed a majority of 

programming errors on the unrestricted use of the GOTO 
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statement. Since one can control program flow only with GOTO's 

in APL, it was clear that there was a need for other control 

operators in APPLE if the possibility of coding errors was to be 

reduced significantly. 

conse1uently, APPLE contains such features as conditional 

statements, conditional expressions, operators for writing 

loops, an1 case statements. These control operators eliminated 

any need for the GOTO operator. rherefore, there is none in 

APPLE. 

Other unique features of APPLE increase the clarity of 

exposition and simplify the coding process. These features 

further generalize APL's concepts and conventions for 

manipulating arrays and defining functions and operators. 

APPLE is sufficiently extensible that all of its operators can 

be jef ined in the language itself. A formal specification of 

APPLE is contained in the "ILLIAC IV Language Requirements 

Study: Final Report," soc document TM-5074/000/00, 31 January 

1973. 
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CHAPTER rwo 

HOW TO USE THIS TUTORIAL 

In this tutorial, we assume that you have had some programming 

experience. we do not assume a sophisticated understanding of 

progranming lanquages. The manual is self-contained, so you 

shoul1 be able to learn how to use A.PPLE by reading the 

descriptions and working out the examples that have been 

provi:ied. 

Because ~PPLE treats many mathematical concepts differently than 

do most other languages--certainly FORTRAN or PL/I--it is 

important that you read Chapters 3, 4, 6 and 7 closely, even 

though you may be familiar with many of the concepts. It is 

especially important that you be aware of the differences in how 

to subscript arrays or evaluate arithmetic expressions. 

rhe tutorial is organized so that each chapter builds on its 

predecessors. 

Pay close attention to the discussions on the order of 

evaluation in Chapters 4 and 10. The concept is easily learned, 

but you must understand it thoroughly in order to program in 
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~PPLE has not yet been implemented on any computer. 

consequently, we have not included any description of 

input/output or systems interface procedures. Those 

descriptions will be made available along with each APPLE 

implementation. 
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CHAPTER rHREE 

WHAT IS AN ~RRAY? 

rhe ILLIAC IV is a powerful computer. It was designej to 

simultaneously perform the same QQ~t:S!tiQ!l on a large number of 

data operands. For example, if we wanted to double each of a 

set of 50 numbers, the ILLIAC could double them all at once. 

In a conventional programming language, such as FORTRAN or PL/I, 

you woulj have to assign a unique name to each of the 50 numbers 

in order to write a program that would double each of them. One 

simple way of assigning a unique name to each of the numbers is 

to declare an ~~fgy that contains them. rhen, each number woulj 

have a unique name consisting of the name of the array and a 

subscript (or index) • The subscript would simply be a number in 

the cange 1, 2, ••• ,50. 

rhere are at least two ways to write a program that would double 

each of the 50 numbers. One way is to simply write 50 

assignment statements, each of which sets a specific element to 

twice its previous value. Another way is to write a loop that 

will iterate 50 times and in ~hich each element is replaced by 

its double. When coding a program, this latter alternative is 
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preferable since it requires less writing. Even more important, 

writing the loop reduces the possibility of your rraking 

keypunching errors. While neither of the alternatives in this 

approach seems very important, consider the problem of doubling 

100,000 numbers. In this case, we would have no alternative but 

to use an array and a loop since the program would be too long 

to write. 

While these techniques are perfectly acceptable ways of 

programming in FORTRAN or PL/I on a sequential computer like an 

IBM/370 or a PDP-10, we may ask: Why write a 1292 to double 50 

numbers on the ILLIAC when it only takes a couple of 

instructions in ILLIAC Machine Language? The answer is that 

these programming languages were not designed for computers like 

the ILLIA2, so there is no notation in the language to represent 

doublil'lg all of the numbers at once since this is impossible on 

ordinary computers. 

APPLE is not a conventional programming language. It is 

desig!'led for use with computers on which you can double 50 

numbers all at once. In fact, APPLE is designed to run on a 

"computer" where you can double 100,000 numbers at once. (Since 

no such computer exists, the APPLE compiler makes the ILLIAC 

simulate this imaginary computer. Thus, all you have to do to 

double the 50 numbers in APPLE, is to put them into an array and 
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Before we can show you how to write an APPLE program for 

doubling the array, we must first establish the terminology that 

is use1 t:::> describe arrays and their properties. While all 

programmers are familiar with arrays, few programming languages 

treat them the same way • 

.3.1 Vectors and Matrices 

A y~~t2£ is a one-dimensional array of numbers. A vector is an 

ordere1 set of elements (i.e., a first element, second element, 

etc.), an1 we know how many elements there are. It does not 

matter how you write them down--horizontally, vertically, or 

diag:::>nally; the number of elements in the vector will not change 

and there will still be a first element, second element, and so 

on. rhe number of elements in a vector is called its 

Example. If v is a vector, then we represent its dimensionality 

by writing pV· (pis the greek letter "rho. 11 ) For 

example, if v is the vector consisting of the four 

numbers (14, 3, 2, 17), then pV is equal to 4. 

A ~~tf~~ is a rectangular array of numbers. Each matrix has a 

number of ~Q~§ and a number of £Q!YIDD~· Mathematicians can 

specify a particular element of a matrix by calling out, for 

example, the third element of the fourth row, or the fourth 

element of the third column. This is com~letely unambiguous. 
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They can also call out either the entire fifth row, or the sixth 

column, or one of the diagonals of the matrix. 

A matrix has two important dimensions: the number of rows and 

the number of columns it contains. The gimg!l§iQn~!itY Qf ~ 

mst~i~ is defined as the vector whose first element is the 

number of rows and whose second element is the number of columns 

in the matrix. For a matrix M, the dimensionality of M is 

written pM. 

Example. If M is the matrix 
12 4 6 5 

8 10 22 15 

then pM is equal to the vector (2, 4). 

The g!mgn~iQnelit~ Qf ~ y~tQ• is defined to be the vector whose 

only element is the number of elements in the vector. Thus, we 

can speak of the g!mgn§i2n ygg~Q~ of a vector or matrix. 

suppose A is either a vector or a matrix. If the vector pA 

consists of only one element, then A is a vector; if pA 

consists of two elements, then A is a matrix. so we need a 

precise way of determining the number of elements in pA to 

decide whether A is a vector or a matrix. 

Since pA is always a vector, it makes sense to talk about the 

dimensionality of pA, i.e., to talk about the one-element vector 

ppA whose single element is just the number of elements in the 

vector pA~ (Here, we write ppA to mean p(pA). The parentheses 
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are n~t necessary, so we omit them.) It follows that if ppA 

equals 1, then pA contains one element, hence A is a vector. If 

ppA equals 2, then pA contains two elements, hence A is a two-

dimensional array (i.e., a matrix). 

It is cumbersome to talk about the dimension vector of the 

dimension vector of an array A. So we define the word X2D~ to 

mean the value of the unique element of the dimension vector of 

the dimension vector of an array, i.e., the value of ppA. Then, 

a vector is a rank-1 array, and a matrix is a rank-2 array. 

Mathenaticians speak of row vectors and column vectors. In 

APPLE, these are not really vectors, but matrices. This is 

because a row vector always has two important dimensions: the 

number of elements it contains and the direction in which it is 

written. This.is also true of column vectors. In order to be 

consistent with the convention of listing the number of rows 

first, then the number of columns when we talk about the 

dimensionality of a matrix. The dimension vector takes the 

following form. For a row vector R the first element of pR is 

always 1, the number of rows in the matrix, and the second 

elenent is the number of elements in the row vector. Similarly, 

the first element in the dimension vector of a column vector is 

always the number of elements in the column vector, while the 

second element is always 1. 

It is possible to determine the number of elements in a matrix 
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by l~oking at its dimension vector. The number of elements is 

equal to the product of the number of rows in the matrix and the 

number of columns in the matrix. That is, the number of 

elements in a matrix is equal to the product of the two elements 

in its dimension vector. 

Example. If Mis a matrix having 5 rows and 7 columns, 

then pM equals the vector (5, 7). There are 

35 elements in M, and 35 is the product of 5 

and 7. 

3.2 Rank-n Arrays 

In APPLE, the concept of an array is generalized to an arbitrary 

number of dimensions. we call this number the ~~!!ls of th~ 

a~~a~· For example, a rank-3 array is an arrangement of numbers 

along the three coordinate axes of Euclidian 3-space. That is, 

the elements are arranged to form the lattice points of a 

rectangular parallelepiped. If A were such an array, then pA 

woul1 be a vector (a, b, c), where a, band c correspond 

respectively to the number of planes, rows and columns of A, and 

ppA equals 3. Similarly, there are rank-4 arrays, rank-5 

arrays, and so forth. It is easy to see that the number of 

elements in a rank-n array A is the product of the elements of 

pA. 
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APPLE perllli ts you to work with an array A for which one or more 

of tne elements of pA is zero. Since the product of the 

elements of pA equals zero, it follows that A contains no 

elements. 

You will occasionally have use for empty arrays. In fact, an 

empty array occurs in the following section. 

3.4 Scalars as Rank-0 Arrays 

A scalar is a number, as distinguished from a vector, matrix, 

quaternion, etc. A scalar corresponds to a geometric point. 

In APPLE, a scalar is an array that has no dimensions whatsoever 

associated with it. consequently, there can be no elements in 

the dimension vector pS associated with the scalar S. This 

implies that ppS equals O, the number of elements in the vector 

pS. Since ppS is the rank of the arrays, we maintain 

consistency by calling a scalar a rank-0 array. 
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CHAPTER FOUR 

NOTATION FOR CONSTANl'S AND VARIABLES 

In APPLE, a £Qll§t2D~ is a number the value of which never 

chan~es during the execution of a program. 

A ~g~l~Ql~ is not a variable in the mathematical sense. Rather, 

a variable is the name by which you refer to a value that you 

wish to store someplace and access later. The value of a 

variable may change during the execution of a program, or it may 

remain constant. The significant point is that the value of a 

variable can vary according to your needs, but the value of a 

constant is always the same. 

4.1 Notation for Numbers 

APPLE permits the use of integral and rational numeric 

quantities. These numbers are called in~~g~~§ and 

The precision of the ILLIAC permits the representation of 

integers n such that -2•e~n<2•a (i.e. integers smaller in 

magnitude than 281,474,976,710,656). 
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Floating-point numbers are rational approximations to real 

numbers. rhe representation range for a floating-point number f 

is 2-163&4Slf 1<2163&3, where the significant part of the 

mantissa is correct to 48 binary figures. The floating-point 

representation is automatically used for those integers that 

cannot be represented in 48 bits. 

Inte~ers are written the same way in ~PPLE as they are in normal 

mathematics, except that the negation sign is represented by a 

raised bar (-) so that it can be distinguished from the 

subtraction operator. Commas may ~ be used to separate three 

digit fields, because the comma is an operator that has a unique 

meaning in APPLE. 

Exanple. rhe number 1,234 is written 12:i1+, while -50,762 is 

written 50762. 

Floating-point numbers are also written according to the normal 

arithnetic conventions. Here, too, the negation sign is used to 

represent negative numbers. 
; .·-" 

Example. Pi may be written as 3.141592653583271, while 

-14.337 is written 11•.337 

You may also represent numbers in scientific notation, i.e., as 

the product of a number and some integral power of 10. The 

mantissa does not need to be normalized. Here, the number is 

represented by writing the number, the letter E, and the 

integral power of 10 by which the number is to be multiplied. 
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Exanple. rhe number -47335 can be written in scientific 
notation as either -4.7335x10•, or 
-.0047335x10 7 or-47335oooooox10- 6 • In APPLE, 
these would be, respectively, 4.7335E40r 

.0047335E 7or-47335001JOOOE'-6 

4.2 Notation for Variables 

Since one or more values is stored in a variable, we must have a 

means of referring to variables. we do this by giving the 

variable a n~ID~· 

A nane consists of an alphabetic character followed by a 

(possibly empty) sequence of alphaneric characters. An 

~!QQ~Q~t!~ gh2~2£t~~ is either a letter or an underscored 

letter. A.n S!!QDS!fil~~.i£ g!:g!~§Qt~~ is either a digit, an 

underscored digit, or an alphabetic character. A name may not 

contain any imbedded blanks. 

Example. The following are names: 

,1 

d 
tl 1 
Al 
A12.J4'.)Gh~ 

4.3 rhe Equivalence Symbol 

APPLE uses the double-headed arrow (+4 to represent equality. 

This symbol is not an APPLE operator, but serves only as a meta

linguistic device. Thus, when we wish to say that the content 

- 15 -



1 September 1973 System Development corporation 
TM-5074/100/00 

of the variable A is the number 3, we write A +-+ 3. 

If we want to be more precise and insist that 11 contains the 

scalar 3, as opposed to the vector (3), we would have to specify 

two facts: one related to the numeric value contained in A, the 

other related to the rank of A. In this case, we would write: 

A +-+ 3 
p pA +-+ 0 

If .4 had been the vector containing only the number 3, then we 

could have written either pA+-+1 or ppA +-+ 1 
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CHAPTER FIVE 

BASIC ARITHMETIC OPERATORS 

APPLE provides the programmer with a large number of arithmetic 

operators. These operators are designed to operate on arrays, 

rather than on scalars. some of the operators; e.g., addition, 

subtraction, multiplication, division, exponentiation; are 

common to standard languages. The remaining operators are of 

the type commonly found in the mathematical subroutine libraries 

of major programming languages. 

The ~perators are applied to entire arrays. The multiplication 

operator can be used, for example, to double all of the elements 

of an array without your having to write a loop. It can also be 

employed to multiply each element of one array by the 

corresponding element of another array. 

In this chapter, we will introduce you to each of the arithmetic 

operators and then explain how it works. We will subsequently 

describe how you form expressions involving more than one 

operator. In a later chapter, we will show you how to 

generalize some of the arithmetic operators. 
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5.1 The scalar Monadic operators 

An operator is called m2os9i~ if it operates on only one 

argument (or 2e~•!ng). A §S!l!' m2nsgig Q~*!tQ[ is a monadic 

operator that is defined in terms of its effect on a scalar 

operand. 

Since each element of an array is a scalar, a scalar monadic 

operator applied to an array operand A produces a resultant 

array B such that pA ++ pB. Each element of B equals the appli
cation of the operator to the corresponding element of A. 

A monadic operator is written to the left of its argument. 

In the remainder of this chapter, we will use the variables 

A, B, C, D, 

c ++ 

where 

U, v to represent the following arrays: 

C2 3 0) A ++· 7 -4 -1 

-(1.33, 1. 3 3. 

u +-+ (1, 0, 

pA ++ ( 2, 3) 
pU ++ (4) 

1, 

B ++(; 3 ~) 4 

7.0, 0) D ++ (2.72, 3.14, 

0) v ++ (1, 1, 0. 

pB ++ ( 2, 3) 
pV ++ (4) 

pC ++ ( 4) 

5. 8. 148.3) 

0) 

The synbol + is used to represent the identity operator. For 

any array A, +A equals A. In symbols, we have +A +-+ A. 
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The symbol - is used to represent the negation operator. (Note 

that - is different from the negation sign -, which is only used 

for writing negative numbers.) For any array A, every element of 

11 is subtracted from o • 

Example: 

rhe synbol x is used to represent the signum operator. For a 

number x, siqnum(x) is the function whose value is: 1 if x>O, -1 

if x<O, and 0 if x=O. 

Example: 
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rhe sy:nbol is used to represent the reciprocal operator. tB 

is def inej for all nonzero arguments, its value is 1 divided by 

B. 

Example: 

-l· lJ ++ (0 . 5 
o.11+28571429 

0.3333333333 
0.25 

The sy:nbol * is used to represent the exponential operator. For 

any array A. *!l equals e ( 2. 718 2818284 ••• ) raised to the A 

power. 'rha t is, */l is the natural antilogarithm of A. 

Example: 

*A ++(1.3'.S3352832E.~-. 1 
1.09663315BE'.3 

2.00B553692E1 1.000000000E~) 
1.831563889£-2 3.678794412E 1 

The sy:nb:Jl 1a1 is used to represent the natural logarithm 

operator. For a strictly positive argument B. ~Bis the 

logarithm of n to the base e. 

Example: 
®B ++(0.6931471806 

J .9459101490 
1.098612289 
1.386294361 
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rhe synbol L is used to represent the floor operator. For a 

number x, the floor of x is the algebraically qreatest integer 

less than or equal to x. 

Example: If C is the vector defined on page 18, then 

LC+~ (1, 2, 7, O) 

The synbol r is used to represent the ceiling operator. For a 

number x, the ceiling of x is the algebraically least integer 

greater than or equal to x. 

Example: 

r c .. -... c ?. • 1 • 7 • o ) 

The s ynbol is used to represent the absolute value operator. 

rhe absolute value of a number x is the algebraic maximum of x 

and -x. 
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Example: 

IA -<··>-(2 '.l o1 ) 
'l 4 
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rhe synbol ? is used to represent the random integer operator, 

which is better known as "roll," as in the rolling of a die. 

The operand must be a positive integer array. For each scalar 

n, t,he result is a normally random integer selected from the set 

{1,2, ••• ,n} or {0,1, ••• ,n-1} according as the index origin is 1 

or O, respectively. (See section 6.1 for a discussion of Index 

Origin.) 

Example: 

The synb::>l "' is used to represent the logical complementation 

operator. rhe operator is defined only on the set {0,1} and 

transforms 1 into O and 0 into 1. 

Example: 

..... u +-+ (0, 1, o. 1) 
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rhe symbol is used to represent the generalized factorial 

operator. is not defined for negative integers. For all non-

negative integers n, the result of applying this operator is n! 

If x is not an integer, the result of applying this operator is 

the gamma function applied to x+1. If n is a negative integer, 

nl is undefined. 

Example: 

!C ++ (1.188192811. 4.08546585, 5040, 1) 

rhe symbol o is used to represent the operator that multiplies 

its operand by 'IT. 

Example: 

oc ++ (4.178318229. 4.178318229, 21.99114858, 0) 

rhe 13 scalar monadic operators are summarized in Table I. 
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TABLE I 

SCALAR MONADIC OPERATORS 

+ 

x 

* • 
L 
r 
I 

? 

0 

Identity 
Negation 

Sign um 

Reciprocal 
Exponential 
Natural 

Logarithm 
Floor 
Ceiling 
Absolute 

Value 
Random Inte
ger (Roll) 

Logical Com
plementation 

Generalized 
Factorial 

ir Times 

+A ++A 
-A ++ 0-A 

xA ++ {-~ 
if A>O 
if A=O 
if A<O 

+A ++ 1+A 
*A ++ eA 
•A++ ln A 

Algebraically greatest integer S B 
Algebraically least integer ~ B 
IA ++ { A if A~o 

-,A if A o 
Random t'nteger between IQB.Q and A 

-A ++ 1-A (for Ae:{0,1} 

!A++ { A factorial if A++ ILA 
CrA+1) if AFLA 

OA·++ irxA 

5.2 The scalar Dyadic Operators 

An operator is called gx9gi~ if it operates on two operands. A 

~g9!~~ g~9gi£ QQ~'stQ' is a dyadic operator that is defined in 

terms of its effect on a pair of scalar operands. 

If A and B are two arrays such that pA ++ pB , then the elements 

of A and B may be paired according to their positions in the two 

arrays. ;Je say that an element from A and an element from B are 

gg,,g§QQ!lf!ing ~l~~D.t§ if they share exactly the same position 

within their respective arrays; that is, the subscript that 

identifies the one element also identifies the other. The 
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application of a scalar dyadic operator to two such arrays A and 

B produces a resultant array C where PC +-+ pA +-+ PB and an 

element of c corresponds to the result of applying the operator 

to the corresponding elements of A and B. 

A dyadic operator is written between its arguments. The variables 

A,B,C,D,U,V used in the discussion of dyadic operators 

are defined on page 18. 

The symbol + is used to represent the addition operator. 

Example: 

The symbol - is used to represent the subtraction operator. The 

argument on the right of the operator is subtracted from the 

argument on its left. 

Example: 
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rhe symbol x is used to represent the multiplication operator. 

Example: 

The synbol t is used to represent the division operator. The 

argument on the left of the operator is divided by the argument 

on its right. The operation is defined for nonzero divisors 

only. 

Example: 

The synbol I is used to represent the residue operator. If m¢0 

and n are numbers, there exists an integer q such that n = mq + 

r, where OS r < tmt. The symbol r represents the ~~eig~~ of n 

modulo m. The definition that follows is extended to cover the 

case m = 0: the residue of any nonnegative n, modulo 0 is equal 

to n, but remains undefined for n < O. 
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when we ifir i te 11 I il, we mean the residue of u modulo A. 

Example: 

AIB +->-(0 0 5) 
0 0 0 

CIU ++ (O.OG, 0.48, 1.2. 148.3) 

rhe symbol L is used to select the algebraic minimum of its two 

operands. 

Example: 

11 L li ~-+ (- 2 _ 3 _ o ) 
'/ LI 1 

CLD +~ (1.33, 1.33, 5.8, 0) 

rhe sy:nbol r is used to select the maximum of its two operands. 
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Example: 

AIJ! +4(; ~ ~) 
CfD ++ (2.72, 3.14, 7, 148.3) 

rhe symb::>l * is used to represent the exponentiation operator. 

In or1er to raise A to the B power, you write A*B. 

Example: 

A *li +-+ 11. OOOOOOOOOEO 2. 700000000E'1 
8.235430000£5 2.560000000E2 

o.ooooooooogo 
1. ooo:JOOOOOEO 

P*A ++ 2.500000000E-1 2.700000000E1 1.000000000EO 
8.235430000£5 3.906250000E-3 1.000000000EO 

D * C ~---)- ( 3 • 7 8 4 2 2 2 3 1 5 , 0 • 2 1 8 3 1 4 9 9 5 9 , - 2 ? 0 7 9 8 • 4 1. 6 ti , 1 ) 

Note that A*H is not always defined. For example, A*O. 5 is the 

square root of A , which is defined only for nonnegative A • Of 

course, 3 2 * o. 2 ~-~ - 2 since o. 2 +-+ f 5 and 2 * 5 +-+ 3 2. 
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rhe synbol • is used to represent the, logarithm operator. The 

logarithm of A to the base B is written B•A • By definition, A 

and B must be strictly positive and we may have A ++ 1 if and 

only if B ++ 1 The common logarithm of A is written 10•A. 

Example: If 

rhen 

T•B ++(0.3010299957 0.4771212547 0.6989700043) 
0.8450980400 0.6020599913 0.0000000000 

The synbol o is used to represent the family of operators for 

all of the trigonometric and hyperbolic functions, which are 

collectively referred to as the circular functions. This 

applies to the trigonometric functions since they are defined in 

terms of the unit circle, and to the hyperbolic functions as a 

consequence of the relations sinh iz = i sin z, cosh iz = 
i cos z, and tanh iz = i tan z, where i2=-1. 

A circular function is invoked by writing AoB, where the value 

of A is used to identify the particular circular function, as 
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follows. 

The following trigonometric functions are defined for angles in 

radian measure: 

10B is equivalent to sin B. 
20B is equivalent to cos B. 
30B is equivalent to tan B • 
-10B is equal to arcsin B •. where 1~IB 
-20B is equivalent to arccos B, where 10:: IB 
- 30B is equivalent to arctan B· 

Three functions are useful in trigonometric identities: 

40s produces the principal square root of 1+.BZ, 
ooB produces the principal square root of 1-BZ, 

where 1;a:: I B 
-4oB produces the principal square root of -1+s12, 

where 1s IB. 

(Here, we abused the language somewhat by writing sz to mean 

B*2• This was done to avoid confronting you with a complicated 

equivalence like -4oB +~ (-1+B*2)*0.S at this early stage. See 

section 5.5 for a discussion of the priority of operators and 

APPLE'S bracketing conventions.) 

The hyperbolic functions: 

SOB is equivalent to sinh B 
60B is equivalent to co sh B 
?OB is equivalent to tanh B 
- SOB is equivalent to arcsinh B 
- 60B is equivalent to arccosh B, where B<?:1 
-?OB is equivalent to arctanh B, where 1> I B. 

The symbol . A is used to represent the logical conjunction 

operator, AND. This operator is defined only on the set {0,1} 
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and is completely defined by its action on the vectors U and V 

(see section 5.1): 

u /\ v +~ ( 1 • 0 • 0 • 0 ) 

rhe synb~l v is used to represent the logical disjunction 

operator, OR. This operator is defined only on the set {O, 1} 

and is completely defined by its action on the vectors U and V : 

uvv +~ (1, 1, 1, 0) 

rhe synbol ~ is used to represent the exclusive disjunction 

operator. This operator's domain is extended to the set of real 

numbers; its range is {0, 1}. A;tB +~ 1 if and only if A and B 

are unequal. 

Example: 

A ;t 13 +--+ (1 0 1) 
0 1 1 

U;tV +~ (0,1,1,0) 
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rhe synbol = is used to represent the equality operator. The 

domain of this operator is the set of real numbers, while its 

range is [0,1}. A=B ++ 1 if and only if A and Bare equal. 

Example: 

11 =D +-··)- (IJ 1 0) 
1 0 0 

u :: v ;:. + ( 1 , 0 ' 0 ) 

rhe synbol ~ is used to represent the NANO operator. NAND is 

defined to be the logical complement of AND. The domain and 

range of N~ND are {0, 1). NAND is defined by its action on the 

vectors U and V: 
u~v ·- co, 1, 1, 1) 

The symbol ¥ is used to represent the NOR operator. NOR is 

defined to be the logical complement of OR. The domain and 

range of NOR is [O, 1). NOR is defined by its action on the 

vectors u and v: 

U¥ V ++ ( 0, 0 , 0 , 1 ) 
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rhe synbol < is used to represent the less-than operator. It 

maps the reals onto {O, 1}, A<B++ 1 if and only if A is less 

than ;1. 

Example: 

The synbol 5 is used to represent the less-than-or-equal 

operator. It maps the reals onto {0,1}, A5B ++ 1 if and only if 

A is not greater than B. 

Example: 

rhe sy:nbol :_'. is used to represent the greater-than-or-equal 

operator. It maps the reals onto {O, 1). A~B ++ 1 if and only 

if A is not less than IJ. 
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rhe synbol > is used to represent the greater-than operator. It 

maps the reals onto {O. 1} • A>B +~ 1 if and only if A is greater 

than tl. 

Example: 

rhe symbol is used to represent the generalized combination 

operator. 11 ! u is the number of combinations of B objects taken ,1 

at a time. If a and b are nonnegative integers. the number of 

combinations of b objects taken a at a time is given by 

C(b.a)=b!/a! (b-a) ! The generalized combination operator uses 

almost the same formula. but replaces the factorial operator 

with the monadic generalized factorial operator. consequently, 

the generalized combination operator is defined for all 

arguments for which the generalized factorial operator is 

defined. 
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Example: Let 
x + ··)- ( 2 • J ' 4 ' 2 • 1 • 1 • 0 ) 

y -<--)- ( 5 • 3 • 2 • 6 • 5 , 8 • 8 ) 

Then 
X!Y +-+ (10,1,0,0.00129538533G,B,1) 

rhe synbol ? is used to represent the random-selection-without-

replacement operator. The result of writing A?;:: (where A :0;B) is 

a vector H such that pR +-+ A and the elements of R are randomly 

selected without replacement from the set {1, 2, ••• , b} or (0, 

1, ••• , b-1} according as the index origin is 1 or 0, 

respectively. (See Section 6.1 for a discussion on index 

origin.) The operator ? is defined only for nonnegative scalar 

integer arguments. The operator can be used to simulate the 

dealing of bridge hands, for example. 

Examples: 

b ? -<- -i-- ( H , 7 , 3 , 2 , lf , S ) 

G ? ll -<-->- ( 8 , S , 2 , :J , 1 , 4 ) 

13?52 +-+ (25,47,1U,29,15,5,11,34,4~,12,49,15,10) 
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rhe 36 scalar dyadic operators are summarized in Table II (see 

next page) • 
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TABLE II 
SCALAR DYADIC OPERATORS 

+ 

x . .. 
I 

~ 
* • 
__ .Q __ 

A 

v 
;t: 

= 

> 

? 

70B 
603 
SOB 
408 
30B 
20B 
10B 

008 
108 
20B 
30B 
40B 
SOB 
60B 
708 

Addition 
Subtraction 
Multiplication 
Division 
Residue 
Minimum 
Maximum 
Exponentiation 
Logarithm 

Qi.rs:ula-" 

arctanh B 
arccosh B 
arcsinh B 
(-1+B*2)*.5 
arctan B 
arccos B 
arcsin B 
(1-B*2)•.5 
sin B 
cos B 
tan B 
(1+B*2)*.5 
sinh B 
cosh B 
tanh B 

AND 
OR 
Exclusive OR 
Inequality 
Equality 
NANO 
NOR 
Less Than 
Less Than Or 

:Equal 
Greater Than 

Or :Equal 
Greater Than 
Generalized 

combination 
peal 

A+8 
A-B 
AxB 
AtB 
AIB 
ALB 
Af B 
A*B 
A•B 

AAB 
AVE 

+-+ 

+-+ 
+-+ 

+-+ 

+-+ 

B(mod 
min {_A, 
max{A, 
AB 
log AB 

A) 
B} 

B} 

Domain 

1>IB 
B~1 

1SIB 

1'?!:IB 
1'?!:IB 
1'?!:IB 

Aot:B +-+ (AvB)AA'i'IB if A, B €{0,1} 
A;t:B 
A=B 
A'i'IB +-+ -AAB 
A¥B +-+ -A vB 
A<B 
ASB 

A'?!:B 

A>B 
A!B +-+ (!B)t(!A)x!B-A 
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Suppose that the symbol • is some scalar dyadic operator. If 

there is a number L such thatL•B +~ B for every value of B, L 

is called a !~!t i9~ntitY 2! •. Similarly, if there is a number 

R such that A•R +~A for every value of A, then R is called a 

~ight !ggn~i~Y 2! •· If • has both a right identity R and a left 

identity L, it follows from elementary algebra that R +~ L. 

Table III summarizes the -identity elements of the 36 scalar 

dyadic operators. 
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TABLE III 
IDENTITY ELEMENTS OF SCALAR DYADIC OPERATORS 

QQ~J;S!t.QJ; I&t!: l!l~n.ti!:Y B!sib.t ig~ntitY 

+ 0 0 
none 0 

x 1 1 
. none 1 

* none 1 

* none none 
I 0 none 
0 none none 
v 0 0 
A 1 1 
'/'( none none .., none none 

1 none 
r -co -co 

L 00 00 

? l.QB.Q 
The following identity elements apply only to the domain {0,1}: 

> none 0 
~ none 1 
< 0 none 
s; 1 none 
= 1 1 
;t 0 0 

5.4 Right-Associative Operators 

An operator Jt is g§§Q£ig:t.iY!ll if, for any A, B, C, we always have 

AJt(BJtC) +~ (AJtB)Jt~ For such an operatorr there is never any 

ambiguity; you can write A•B~C and everybody knows what you 

mean. 

However, not all operators are associative. For example, the 

subtraction operator is not associative since, e.g., (5-4)-3=-2, 

while 5-(4-3)=4. (The first interpretation is called a ltlt 
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e§§QS!sti~o: the second is a xigbt s§!Q~ia~i2D·> It is ambiguous 

to write 5-4-3, since it is reasonable to interpret this 

expression with either grouping of terms. 

Before we tell you which interpretation APPLE makes, let us look 

at a slightly more involved expression involving subtraction, 

say a-b-c~d-e-f-g. 

First, let us look at the parsing (((((a-b)-c)-d)-e)-f)-g. 

Since -b=(-1)b, we have 

(( (( (a-b) -c)'-d) -e) -f) -g = (( (((a+ (-1) b) + (-1) c) + (-1) d) + 
+ (-1) e) + (-1) f) + (-1) g 

= a+(-1) (b+c+d+e+f+g) 
= a- (b+c+d+e+f+g) 

since addition is associative. we see that this parsing is 

equivalent to subtracting the sum of all the other terms from 

the first term. rhis parsing is called a !~!t=a§§Qgieti~ 

If we had used the other parsing, we would have 

a- (b- (c- (d- (e- (f-g))))) = (a-b) +c- (d- (e- (f-g))) 
= (a-b) + (c-d) +e- (f-g) 
= (a-b) + (c-d) + (e-f) +g 
= (a+c+e+g)·-(b+d+f) 

That is, you take the sum of the first, third, ••• terms and 

subtract the sum of the second, fourth, ••• terms. This is 

associative parsing of a-b-c-d-e-f-g is more interesting than 

the left-associative parsing, a-(b+c+d+e+f+g). Division and 

exponentiation are also nonassociative operations. They are 
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also more interesting when given the right-associative 

interpretation than when given the left-associative 

interpretation. For example, with left-association A*B*C*D*E is 

just A*(BxCxDxE). Under right-association, it is equal to the 

Since right-associative parses are generally more interesting 

for nonassociative operators than left-associative parses, all 

~PPLE operators i~~ ~~it~g a§ {ight:i§§Q£iatiY~ QQ~~!tQ~§· 

This applies not only to expressions involving repetitions of 

the same operator, but to expressions involving mixtures of 

APPLE operators as you will see in the next section. 

s.s Bracketing conventions and Operator Priorities 

Consider the expression 2+3x4. The rule·s of algebra say that 

this expression evaluates to 14, i.e., to 2+12. This is because 

algebra assigns a higher priority to the multiplication operator 

than t~ the addition operator. If you had wanted this 

expression to evaluate to 20, you would have had to parenthesize 

the quantity you wanted evaluated first, writing (2+3)x4 

instead. (Of course, you would have removed any possible 

ambiguity by writing 2+(3x4) when you wanted the expression to 

evaluate to 14, but this is not necessary when you know the 

operator priorities.) 

With a fe~ exceptions, most programming languages follow the 
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standard :>perator priorities of algebra. However, there are 

some differences in the way some languages treat an expression 

like 12+4x3. In some languages, the result is 12+12, while the 

expression evaluates to 3x3 in others. 

so far we have covered 49 APPLE operators. It would be 

difficult for anyone to remember the relative priorities between 

such a large number of operators. Many of the assigned 

pri:>rities would appear artificial. There are approximately one 

hundred operators in APPLE, hence the problem is non-trivial. 

so in order to simplify the problems of learning APPLE, there 

are no operator priorities whatever in ~he language. Instead, 

the right-associative parsing convention is extended to 

expressions involving a mixture of operators. If you want an 

operator to take priority over some other operator, all you have 

to do is parenthesize that operator and its operands. 

Returning to the expression 2+3x4, we see that it is equivalent 

to 2+(3x4) , that is, 14. But 4x3+2 is equivalent to 4x(3+2) or 

20. Hence, expressions are not necessarily commutative in 

APPLE. If you wanted to have 4x3+2 equal to 14, you would have 

to write either (4x3)+2 or 2+3x4. 

consider 12+4x3. The right-associativity of + and x means that 

the expression i~ equivalent to 12t(4x3), i.e. 1. The 

expression means that 12 is to be divided by whatever is on the 

right of the t operator. The quantity on the right of t is 4x 3, 
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i.e. 4 multiplied by whatever is on the right of x. Since that 

is just 3, we see that we are dividing 12 by4x3 , i.e. by 12. 

Note that monadic and dyadic operators can be intermixed in an 

expression. For example, 4+-30t5+6>7xea is a complicated-

looking expression. Let us add parentheses according to the 

right-associativity convention: 4+ ( - ( 3 o t ( 5+ ( 6 > ( 7x (ea))))))• (We 

know that the minus sign is ap operator since "minus thirty" 

would have been written 30. You cannot interchange and -

since -30 has an effect only on the magnitude of "thirty," while 

-3t5+6>7x8 changes the sign of ~Y~~Ything to its right. We know 

that - and e are monadic operators since each is preceded by 

some other operator rather than an operand.) 

Now to evaluate the expression. we start with the most nested 

subexpression. es is the natural logarithm of a, i.e., 

2.0794415417and7x2.0794415417 ++ 14.5560907919. Next, 

6>14.5560907919 ++ o. 5+0 ++ 5, and 30t5 ++ 6· Next, -6 ++ -6 

and 4+-6 ++ 2• so we see that 4+-30t5+6>7xes ++ 2. 

Expressions are never evaluated backwards in APPLE, although 

they ~~~ evaluated from the right. When you write 4-5-6, the 

result is 5 since 5-6 ++ -1 and 4--1 ++ 5. 
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CHAPTER SIX 

ELEMENTARY ARRAY MANIPULATIONS 

In this chapter, you will be introduced to a class of operators 

that are useful in manipulating arrays. These manipulations 

include the familiar process of extracting one or more elements 

from an array by subscripting. Since those elements that have 

been extracted are arrays, recall that scalars are rank-0 

arrays, you will be forming a subarray of the original array 

each time you subscript into it. The subarray may consist of 

more than one element. 

Subscripting is only one means of forming subarrays of an 

original array. You will be introduced to techniques for 

forming subarrays consisting of elements satisfying some set of 

properties, as well as techniques for taking various cross 

sections of an array. 

We will also describe ways of rotating and transposing arrays, 

of combining several arrays to make a bigger array, and of 

changing the dimensionality of arrays. 
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§Ub2~[iRting is the process by which you specify one or more 

elements of an array. The subscript of a specific array element 

is known as the !ng~~ of that element. 

There is some confusion between the way programming languages 

refer to the first element in a vector. In some languages, that 

element has an index of 1, while its index is 0 in other 

languages. Depending on the programmer's particular needs, one 

of these indexing conventions is often preferable over the 

other. 

Since only you, the programmer, know which indexing convention 

is preferable for your personal application, APPLE leaves the 

choice up to you. The ing~~ Qr!g!u is the value of the index of 

the first elements of a vector. The index origin is contained 

in the rank-0 arraylQRQ. IORG normally contains the value 1. 

If you want to specify its value, you begin your program with 

either 
l.QRQ + o 

or 
l.QRQ + 1 

The value of IQRQ will remain constant throughout the body of 

your program. For the time being, the values of lQEQ are re

stricted to o or 1. Eventually, the language may be extended 

to permit arbitrary integral values of IQEQ. 

- 45 -



1 September 1973 

6.2 Indexing of Arrays 

System Development corporation 
TM-5074/1001'00 

In tne following subsections, you will be given the necessary 

vocabulary and notations for subscripting arrays. 

Recall that if X is some array and pX +-+ o, then X is an empty 

vector (since x contains no elements, and ppX +-+ 1, so X is a 

vector) • 

we will be using the empty vector of ten enough to require giving 

it a name for easy reference. The name of the empty vector is 

-
£. 

suppose you wanted to generate a vector that consists of all of 

the permissible values of indices, in ascending order, for some 

vector v. Clearly, such a vector consists of pV elements. If 

IQRQ +-+ o, then this vector is (0,1, •••• -1+pV) if IQRQ +-+ 1, 

then this vector is (1,2, •.• ,pV). 

In APPLE, you need only write 1pV to produce this vector. The 

operator i produces the desired vector. In fact, all you need 

to do to get a vector of length n, where n~O, is write 1n. 
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15 ++ (1,2,3,4,5) 
11 ++ (1) 
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while if IQRQ ++ o then 

15 ++ (0,1,2,3,4) 
10 ++ (0) 

If we write 1 o, from the definition of 1, we should get a vector 

of length o. A vector of length o can only be the empty vector 

€. Hence, regardless of whether IQRQ ++ 1 or IQRQ ++ o, we will 

always have 10 ++ €. 

so far, 1N is defined only for nonnegative integers N, whereN 

is either a scalar or a one-element·vector. we will soon extend 

the definition of 1 to cover all rank-0 and rank-1 arrays 

consisting of nonnegative integers. 
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If you want to indicate the k-th element of some vector V, where 

1 SikS P y, the a ppropr ia te index would be k + IQli'.Q:- 1. For example , 

if you want the first element and IQRQ ++ 1, you want the index 

to be 1+1-1, i.e. 1; while if IQBQ ++ o, then you want the index 

to be 1+0-1, i.e. o. correspondingly, if you wanted the fifth 

element, the index would be either 5 or 4. You should convince 

yourself that k+IQHG-1 is always an element of tpV. 

Scalar subscripting is exactly like subscripting in other 

progranming languages. In order to select the k-th element of 

v, you write V(K), where K is the appropriate index 

corresponding to IQBG. and k. For example, suppose IQRQ ++ 1 and 

v ++ ( 1. 5. 7. 9. 3. 4, 1. )· Then V[ 1] ++ 1, V[ 3] ++ 7, V[ 6] ++ 4. If 

IQB.G. ++ or then V[ 1] ++ 5, V[ 3] ++ 9, and V[ 6 J ++ 2. 

When you subscript a vector with a scalar, the result is· a 

scalar. 

You are not restricted to using scalars as subscripts, however. 

If you subscript a vector with a vector, the result is a vector 

of the same dimensionality as the subscript vector. For 

example, if A ++ [ 2, 1. 5. 4] and Vis the vector we used in the 

previous example, if IQ/1.G. ++ 1, V[A J ++ ( 5, 1. 3, 9) and IQRG ++ o, 

then v [A J ++ ( 7 • 5 , 4 , 3 ). 
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wl1t•ll y.>u :1l1l>llcri11t '' vect.ot. w1U1 au .:aLtdy, tlat:~ 1-~sult hc:tt:I Uld 

same dimensionality as the subscripting array. 

Example: 
If IQ!lQ 

then 

+--lo- 1 and 1-1 is the 

i! +-+ 7 3 5 5 
2 1 1 2 

V[ W J +-.._ 2 7 3 3 

~i 1 1 5 

rank-2 array 

The nunber of elements in an array A is the product of the 

elements of the vector pA• Since A has ppA coordinates, any 

subscript of A must be composed of ppA components. These are 

separated from one another by the delimiter(;). rhe first 

subscript you list applies to the first coordinate of A; the 

second one applies to the second coordinate, and so forth. If 

A- •- • l_Qgq+k- 1 and I the J~-th coordinate of A, it is 

reguired that I be in the range lQHQs I s IQBQ + (pA)[K]-1 • 

rhat is, a coordinate subscript must lie in the range 1, •.• ,(p!l)[XJ 

if !.Q!if +-+ 1, or o, ••• , (pA[K]-1 if !.£!!.~ +-+ o. This 

is always equivalent to saying that a coordinate subscript is an 

element of the vector 1pA[KJ. 
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If IQllQ ++ 1 and A is the rank-2 array 

A +-->- 3 ti 5 b 
8 7 2 1 

rhen pA -<--;- ( 2, t1) 

rhe subscript for the first coordinate must be either 1 or 2; 

the subscript for the second coordinate must be 1, 2, 3 or 4. 

When you write A[1;1], you specify the scalar 3. We also have 

A [ L ; :i J -+->- 2, A [ L ; lj ] -<--+ b and A [ 2 ; 1 ] +--+ 8 • 

Just as you can subscript a vector with an array, you can also 

subscript an array with an array. The result is an array B 

whose rank p P r1 is equal to the sum of the ranks of the 

coordinate subscripts. The dimensionality ofB ,pB, is the 

vector that is composed of the dimension vector for the first 

coordinate subscript, followed by the dimension vector for the 

second coordinate subscript, and so forth. 

For example, we can subscript A with the vector (1, 2) for the 

first coordinate and the scalar 3 for the second coordinate, 

thereby producing the array composed of A[1;3] and A[2;3]. The 

result must be a rank-1 array since pp(1,2) +-+ 1 and pp3 +-+ o 

and J + o +->- 1. The dimension vector of the result is the 

vect~r (2, €) +-+ (2) since p(l, 2) +--+ 2and p3 +-+ €. Therefore, 

we must have A[l 2; 3] +--+ (5, 2) 

APPLE permits you to write vectors in subscript expressions 
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either with or without parentheses. Of course,. for the sake of 

clarity,. you could have written ,1 ! ( 1, 2); J J if you had wished. 

Now,. suppose we have a matrix 

c +-+ 1 ~) 

2 2 

so that riC ++ (2, J). When we writeALC;3 4 J,. what should the 

result,. n,. be? 

Wt:~ know that ppiJ <-,_ 3(since ppB +-+ 2 and pp(3,!J-) +--+ 1),. and 

, , ( 2, ~3 , 2) the catenation ( composition) of 0 c and p ( 3, tJ) ). 

For simplicity, call E +-+ ( 3, IJ ). We can deduce t:he elements of 

/1, as follows. DI- 1; 1; 1 J must correspond to the Ci~ 1: 1 J -th row of A 

and the 1"'11 I -th column of A • Hence,. 

iJ[1;1;1J +-+ 11 [ J ; 3 ] +--+ ,-
,) 

Similarly, we obtain: 

[![ 1 ; 1 ; 2 ] +--)>- /l[1;LI] +-+ 6 
DL1;:;;1J -<--+ 11[1;3] +-)o- 5 
D[1;2;2] -("·-+ /l[l;lf] +--+ 6 
I! [ :1 ; 3 ; 1 J -(-·-+ ,1[2;3] +-+ 2 
/i[1;J;2] +--+ Al2;4] +-+ 1 
j} I_ 2 ; 1 ; 1 ] -(-·+ 11[2;3] +--+ 2 
JJ[2;1;2J +-·-·~ A[2;4] +--> 1 
Ji[2;2;1] +·- -)>- A [ 1 ; 3 J +--+ 5 
/) [ ;) ; 2 ; 2 "] +-+ A [ 1 ; 4 J -(--)o- 6 
D[2;3;1] +-->- A[2;3] +-+ 2 
D[2;3;2] +-+ A[2;4] +--+ 1 
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we can graphically represent D as 

D +-+ 

5 6 
5 G 
2 1 

2 1 
5 6 
2 1 

Finally, suppose you want the first plane of n. You could write 

iJL 1; 1 2 3; 1 2 J.. The result would be a rank-2 array of 

dimensionality (:3,2~ (Why?) It would consist of D[1;1;1J, 

fl[ 1; 1; 21 and so forth, as expected. Recalling that t 3 +-+ ( 1, 2. ~J) 

and 12 +~ (l,~), you could also write D[1;13;12J. 

By convention, instead of writing 1(pA)[K] as a 

subscript for the k-th coordinate of an array A, you 

can elide* the subscript for that coordinat_e, writi..Pg 

any required semicolon separators as you normally 

would. 

Formally, we have the equivalences 
A l ; d ; f: ; ••• ; Y ; Z ] +·+ JI. [ 1 ( p A ) [ .[_QJJ.Q] ; J; K • •• Y ; Z] 
ALI;;K; ..• Y;Z] +-+ A[I;t(pA)[1+IQli~];K; •.. Y;Z] 

A[I;J;K; ••• ;Y;] +-+ A[I;J;K; ... ;Y;1(0A)[lQllG+-l+ppA]] 

Hence, instead of writing D L 1; i 3; t 2 J, you can write JJ [ 1; ; J, and 

the ~PPLE compiler will deduce the content of the elided 

coordinate subscripts. 

* Elide--to omit. 
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when ~e constructed the array D in section 6. 2. 4, the order in 

which we listed its elements was significant. we started with 

the element whose subscript was l.QIUi. in each coordinate. 

subsequently, we allowed the right-most coordinate subscript to 

vary most rapidly, then the subscripts in the coordinate field 

secon~ from the right, and so on. This ordering is called an 

QgQm~t~' Q{Q~•ing since the indices appear in the order they 

would follow had they been placed on the individual wheels of an 

automobile odometer. (Wheel K of the odometer is numbered with 

the elements of i ( pD )[K], starting with IQR!:i·) 

It is sometimes useful to view an array as a vector. In APPLE, 

the comma (,)is used monadically to represent the ravel 

operator. The •sY~l Q~ ~n ~••~X is the vector whose elements 

are those of the original array in the odometer order. In 

particular, the ravel of a scalar is the vector· whose only 

element is the scalar. 

Thus, we see that 

,D ++ (5,6,5,6,2,1,2,1,5,6,2,1) 

6.4 Array Index Generation 

Here, we generalize upon the definition of the monadic operator 

Supp0se A is some array and N ++ pA, so that N is a vector. l. 

- 53 .. 



1 September 1973 System Development corporation 
TM-5074/100/00 

Then, we define iA to be the matrix of dimensionality 

p(iN) ++ ((p,A),(ppA))• That is iN has as many rows as there 

are elements in A and as many columns as the rank of A. Thus, 

i1vcontains a column for every component of a subscript of A and a 

row for every element of A. 

The rows of iN are in odometer order, so that the i-th row of iN 

is the index associated with the element of A that corresponds 

to the i-th element of ,A (i.e.1 <iN)[I] is the index in A of 

(,A )[I]). 

Example: Let us refer back to the array D constructed in 
section 6.2.4. pD ++ (2,3,2) , so let us look at ipD. 

~e have 

1 1 1 
1 1 2 
1 2 1 
1 2 2 
1 3 1 
1 3 2 

ipD ++ 2 1 1 
2 1 2 
2 2 1 
2 2 2 
2 3 1 
2 3 2 

Now let us look at a few examples of the concordance 
between lPD and D. 

First, 

D ++ 

5 6 
5 6 
2 1 

2 1 
5 6 
2 1 

and , , D ++ ( s • 6 , 5 , 6 , 2 , 1 , 2 , 1 , 5 , 6 , 2 , 1 ) • Now, ( , D ) [ 3 J ++ s 
and . ( i p D ) [ 3 ; J ++ ( 1 , 2 , 1 ) • we see that D [ 1 ; 2 ; 1 J ++ s. 
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We also have, (,D)[11] ++ 2, (ipD)[11;] ++ (2,3,1) 

and D[2;3;1) ++ 2. 

In this example, we assumed thatJ::QBQ ++ 1 • If 
I.QliJi. ++ QI it follows that 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
0 2 0 
0 2 1 

.lPD ++ 

1 0 0 
1 0 1 
1 1 1 
1 1 2 
1 2 0 
1 2 1 

6.5 rhe Subscript Generator 

suppose A is an array and I is some row of lPA. There is an 

element of I for each component of A· But in order to subscript 

A by r, there must be semicolon delimiters present between the 

elements of I. 

The monadic operator ;/ is used to generate scalar subscripts. 

Its only action is placing a semicolon between the elements of a 

vector. 

Thus, if pA ++ (4,7,3,5,8), the vector I++ (2,3,2,1,6) is 

certainly a row of the matrix ipA. we have 

A[;/I] ++ A[2;3;2;1;6]. 
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Suppose A is an array and K is an element of 1ppA, that is, K 

is an element of (o.1, ••• ,-1+ppA) if IQRQ ++ 1, or an element of 

(0,1, •••• -1ppA) if IQRQ ++ o. Suppose that I is some array in 

which each element of I is an element of 1(pA)[KJ so that I is a 

vali~ subscript array for component K of A. Then, if the only 

component of A that you want to subscript is component K, you 

may do so by writing A[[K]I]. 

K must be an integer scalar, or the integer scalar content of a 

variable. 

Example: suppose IQRQ +-+ 1 and A is 'the rank-3 array. 

3 4 5 
2 1 3 
0 7 6 

-2 4 8 

A ++ 

5 9 2 
1 1 3 
4 0 7 
3 9 8 

Then pA ++ (2,4,3). Now, [1;;] is the first plane 
of A. This could be written [[1]1], which 
says the subscript 1 is to be applied to 
coordinate [1] of A only. 

When we write A[[2]2 3], 
have pA[[2]2 3] +-+ (2,2,3) 

A[[2]2 3] +-+ 

2 1 3 
0 7 6 

1 1 3 
4 0 7 

We can also look at A[[3]2 3]. 
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if ( 'r,' I ,, 1l [ I • ~ l ,, l l 

A[[:3]2 3] +-+ 

6.7 Reshaping Arrays 

• 

l! 

1 
7 

9 
1 
0 
9 

' 

'.! 
:) 
b 

2 
3 
7 
8 

( ' 
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11. ,') .1n<l 

Any array can be transformed into a vector by use of the ravel 

operator. Any array A can also be transformed into an array B 

of different dimensionality. To do this you use the reshape 

operator P. The reshape operator is dyadic, while the shape 

operator P that yields the dimension vector of an array--its 

shape--is a monadic operator. 

When you want to transform A into B so that pB +-+ R, where H is 

some vector of nonnegative integers, you write B + RpA 

B must contain a number N of elements equal to the product of 

the elements of R since pB ++ R. B receives its elements from A 

accoriing to the formula: 
B[;/(ipB)[I]] +-+ A[;/(ipA)[lQliG+NII-lQBQ]] 

rhis formula is another way of saying that a vector v is 

constructed from enough repetitions and partial repetitions of 

the elements of ,A that V contains as many elements as B will 

contain. In odometer order, the first element of B will be the 
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first element of V, the second element of 13 will be the second 

element of v, and so forth. 

Example: Suppose I.QB.Q +--+ 1 and A is the rank-3 array 

1 2 3 4 
5 6 7 8 
9 10 11 12 

J1 of--+ 

13 11+ 15 16 
1 7 18 19 20 
21 22 23 24 

Then pil +-"+ (2,3,4). 

Recall that 
t24 ++ (1,2.3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,1A,19,20,21,22,23,24) 

If 124 were reshaped so that its dimension were(2,3,4), 

it would be equivalent to A. That is, 

(2,3,4)p124 +--+A. 

rhe vector l 60 has 6 0 elements. But, when we write 

(2,3,'+)p160, we are only using the first ?xJxt~ +--+ 21+ 

elements of 160. Therefore, 

(2,3,4)pt60 +-+ (2,3,4)pt24 +-+A. 

Verify that 

1 2 3 L+ 

5 G 7 1 
2 3 4 5 

(2,3,4)p17 +--+ 

6 7 1 2 

"' ,; 4 5 6 
7 1 2 3 

Note also that 
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(G,ti)pA +--+ 

( 1+ , 6 ) pA +--+ 

Finally, (10)p3 

p(t0)3 +-+ ( and 

1 2 
5 6 

3 
7 
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4 
fJ 

9 10 11 1 2 

12 14 15 1G 
17 18 19 20 
21 22 23 24 

1 2 3 4 5 6 
7 8 9 10 11 12 

12 14 15 16 17 18 
1CJ 20 21 22 23 24 

is the scalar 3. This is true since 

pp(10)p3 - ++ 0 +--+ pe: 

6.8 ~rithmetic Array Manipulations 

This section introduces the very useful classes of operators 

that enable you to perform arithmetic processes on the elements 

of an array. 

It is often desirable to obtain the sum or product of the 

elements of a vector. In APPLE, you write +IV in order to 

obtain the sum of the elements of V ; you write xiv in order to 

obtain the product of the elements of V • 

rhe su:n ::>f the elements of a vector is usually considered to be 

a scalar. In APPLE, while V is a vector, +IV is a scalar. 

Thus, the rank of +IV is equal to the rank of v reduced by 1. 

For this reason, +IV is read as the "plus reduction of v." 
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Example: 

+/(2,3,4,7,-5,2) ++ 13 
x/(2,3,4,7,-5,2) ~+ 1680 

You can use any of the operators from Table III (see section 

5.3) in conjunction with the slash to form a reduction operator. 

The effect of reduction is to place the dyadic scalar operator 

between the elements of the vector operand, and then to evaluate 

the resulting expression. consequently, - I ( 2, 3, 4. 7. - '.i, 2 )+-+2- 3- 4- 7 - - :)- 2.,, 

-11. If p v -+-+ 1 for any operator ll, ~IV +->- ( 1 o) p V. 

If pV ++ o. for any operator•., ~1v -<-+ (10)pI, where .I is the 

identity element associated with •· 

It is useful to note that x/pA is the number of elements in the 

array A. When A is a scalar,pA -++ c • Since x/pA is always 

equal to the number of elements in any array, regardless of its 

rank. 

Note that we always have L/1N ++ l.QB.Q. for any N, and 

r; lN +-l- N-1+IQ!J..Q.• We will use this notation frequently when we 

write subscript expressions that are independent of the value of 

l.QB.Q.• 

suppose A is a rank-n array and suppose • is a scalar dyadic 

operator from Table III (see Section 5.3). Then ~/[KJA is the 

application of ~ over the elements of coordinate K of A. The 
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result is an array of rank N-1. Its dimension vector is 

obtained from pA by suppressing (pA)[KJ. 

Exalllple: Suppose I.QB.Q ++ 1 and pA ++ ( 2. i1) where 

Then 

11 ++ 2 5 7 1 0 
4 3 1 2 

+/[1]A ++ (6,8,8,12) 
+/[2]A ++ (24,10) 
-/[1]11 ++ ( -2. 2. 6. 8) 
-/[2]A ++ (-6,0) 

Suppose pB ++ (3,3,3) where 

1 2 3 
4 5 6 
7 8 9 

10 11 12 
B ++ 13 14 15 

16 17 18 

19 20 21 
22 23 24 
25 26 27 
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Then 

30 3 3 36 
+/[1] B ~--·~ 3 <) l~ 2 45 

48 51 54 

12 15 18 
+/[2] B +-+ 39 42 45 

66 69 72 

6 15 24 
+/[3] B +-+ 33 42 51 

60 69 78 

19 20 21 
[/[1] 13 ++ 22 12 14 

25 26 27 

7 8 9 
r;L2J B ++ 16 17 18 

25 26 27 

3 6 9 
f /[3] [) ·+-+ :l 2 15 18 

21 2 i+ 27 

1 2 3 
L/[1J p 

~J ++ 4 5 6 
'! 8 9 

1 2 3 
L/[2] }] ++ 10 11 12 

19 20 21 

1 4 7 
L/[3] B ++ 10 13 16 

19 22 25 

When K is the last coordinate of A, you may elide the Cr/1ppA] 

and ~rite •IA. Hence, if A is the matrix from the example, we 
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+l[2]A ++ +IA 
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If A is any one-element array (i.e., xlpA ++ 1 , then •l[K]A is 

a one-element array of rank Of-1+ppA. For example 

tl(1,1,1,1,1)p3 ++ (1,1,1, 1)p3 whiletl( iO)p3 ++ '( iO)p3. 

The accum~lation operator \ is the analogue of the reduction 

operator. If • is one of the operators from Table III (see 

section 5.3), •\Vis the •-reduction of the elements of v, 

starting with the i-th element of v. In other words,•\V is a 

vector of the "partial sums" obtained in the evaluation of •IV· 

Example: Suppose 

v ++ ( 5 • 4 • 3 • 2 • 1 ) 
then 

x\V ++ (120, 24, 6, 2. 1 ) 
and 

-\ v ++ ( 3. 2. 2 • 1. 1 ) 

As in the case of array reduction, •\[K]A is the application of • 

over the elements of coordinate K of A and p•\[K]A ++ A. 

Example: If IQRQ ++ 1 and M is the rank-2 array 
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2 1 77 3 
M ++ 9 1 10 2 

rhen 

11 0 3 1 
+\[1]M ++ 9 1 10 2 

13 11 10 3 -+\[2]M ++ 4 13 12 2 

9 1 7 3 
f \[1]M ++ 9 1 10 2 

7 7 7 3 
f\[2]M ++ 9 2 2 2 

6.9 The :atenation of vectors 

If v and ware any two vectors, then you can construct a new 

vector x ++ v,w where pV,W ++ (pV)+pW and X[1pVJ ++ v 

X[(pW)p (pV)+tpW] ++ W 

That is, the first pV elements of v,ware the elements of V and 

the last pW elements of V,W are the elements of w. 

v, w is called the £~!:~!Je!:i2D of v and w. The catenation 

operator(,) is a dyadic operator. If either v or w is a scalar, 

it is treated as a vector, so that v,w is a vector of dimension 

(p,V)+p,W. 

Example: If U is the scalar 1 and V and W are the vectors 

v ++ (2,3,4) 
w ++ ( 5 ' 6 ' 7 • 8 ) 

rhen 
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v. h' 
lJ , Iv 

~ -> ( 2 , 3 , 11 , '.i , b , '/ , B ) 

+ .,. ( 1 ' 5 ' 6 ' '/ ' u ) 
u. v. // +~ (1,2,3,4,5,6,7,B) 

6.10 · ·rhe Interval Operator (Optional on First Reading) 

The synbol J is used to represent the monadic operator that 

produces an interval vector. The argument of Jis a vector 

LJ~'N.ORG,S. J LEN,ORG,S is the vector of length LEtl whose least 

element equals ORG. S' must be either o or 1 • If s ++ o , 

successive elements increase by 1; if otherwise, the elements 

decrease by 1 • 

Note that J is independent of the value of l.Q[]J.d. • 

J 5,3,0 ++ (3,4,5,6,7) 
J 5,3,1 ++ (7,6,5,4,3) 

6.11 rhe subarray Function (Optional on First Reading) 

It is often desirable to work with a subarray B of an array A 

where ppB +-* ppA and the hyperplanes of B are adjacent 

hyperplanes of A. For example, if pA ++ (3,5,7) we might want 

to construct an array 

B ++ A[1 2;4 3 2;3 4 5] ++ ALJ 2,1,0;J J,2,l;J 3,3,3] 
The dyadic operator ~ is useful for this purpose. The right 

argument of ~ is A and the left argument is a rank-2 array p 

where pP ++ {(ppA),3). The rows of Pare the vectors required 

by the interval operator J in the expression above. rhat is, 

the elements of P satisfy the formula 

- 65 -



1 September 1973 system Development corporation 
·rM-5074/100/00 

B ++ F/J.A++A[I F[IQB~;J;] F[IQBQ+1;]; •.• ;J F[f/1ppA;JJ 

Thus, for the example, F would be the matrix 

2 1 0 
p ++ 3 2 1 

3 3 3 

rhe n:::>nadic use of /J. on an array A produces the matrix F such 

that p /J.A ++ A. F satisfies the fol lowing conditions: 

p P ++ ( p p A ) , 3 
F[;L/13] ++ (pA) 

F[;l+L/13] ++ (ppA)p[QEQ 
F[;f/t3] ++ (ppA)pO 

Example: 

If pA ++ (2,3,5,7) and IQllQ ++ 1 
rhen 

If pB 
rhen 

2 1 0 
llA ++ 3 1 0 

5 1 0 
7 1 0 

++ ( 3 • 5 • 6 • 8 • 2 ) 

3 0 0 
5 0 0 

/J.B ++ 6 0 0 
8 0 0 
2 0 0 

and l.QB.Q ++ 

- 66 -

0 



1 September 1973 System Development Corporation 
rM-5074/100/00 

An array cross section is obtained when all of the component 

subscripts are either scalars or elided. For example, if A is a 

rank-4 array, the following are some possible cross sections of A. 

A 
A L 1 ; ; ; J 
A[;1;3;] 
r1[1;;2] 
A[1;2;3;1] 

The dyadic cross section operator ~ is primarily used for 

formalizing the subscripting of an array by scalars. The right 

argument of A is the array to be subscripted. The left argument 

of A is a rank-2 array c, pG +-+ (ppA),2. The elements of the 

first column of G are either o or 1 as follows: 

If coordinate Kisto be elided, then C[K;J +->- (O,O) 

If coordinate K is to be subscripted by tl~ scalar s, 

then 

G[K;] +-+ (1,S) 

Example: If pA +-+ (2,3,5,7), [QllQ +-+ 1, and 

Then 

1 2 
G +-+ 0 0 

1 4 
1 6 

G AA +-+ A [ 2 ; ; 4 ; 6 ] 
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6.12 compression and Expansion 

supp~se U is a vector whose elements belong to the set {0,1}. 

rhen u is called a .!Qgi,gg! y~g:tQ!"· Then if x is any vector such 

that p V +-+ p X, we can form the subvector U IX (read "the U 

compression of X11 ), where pUIX +-+ +Ill. The elements of VIX are 

the X[I J such that UL I J +-+ 1. 

Example: If u and V are the vectors 

v +-+ { 1,2,3,5,7 ,:11,13) 
u +-+ (1,0,0,1,0, 1 , 1.) 

then 
UIV -<--+ ( 1 • 5 • 1 1 • 1 3 ) 

since 
-u -<--+ (0,1,1,0,1,0,0) 

("'U)IV +-+ ( 2 • 3 • 7 ) 

The logical compression operator is extended to arrays, as 

follows. Let A be an array, and let u be a logical vector such 

that for some component I of A, pU +-+ (pA)[IJ. Then, Ul[I] t1 

the U compression along coordinate I of A is defined as 

Ul[I] A +-+ A[[I] Ull(pA)[I]] 
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A and U are 

u +-+ (1,1,0} 

1 2 3 
4 5 6 
7 8 9 

10 11 12 
A +-+ 13 14 15 

16 17 18 

19 20 21 
22 23 24 
25 26 27 

Then 
1 2 3 
1i 5 6 
7 8 9 

U([1] A +-+ 

10 11 12 
13 14 15 
1G 17 18 

and 
1 2 
4 5 
7 8 

10 11 
U/[2] 11 +-+ 13 14 

16 17 

19 20 
22 23 
25 26 

and 
1 2 3 
L~ 5 6 

U/[3] A +-+ 10 11 12 
13 14 15 

19 20 21 
22 23 24 
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If 1 +-->- r / lppA then U/[IJ A may be written as U/li .. 

The logical expansion of a vector is the analogue of the logical 

compression of the vector.. In this case, if V is any vector and 

u is a logica 1 vector, where P V +-+ +I U, then u IV is the vector 

having zeros wherever u has zeros, and whose remaining elements 

are taken in order from v. 

Example: 

(1,1,0,1,0)\(1,2,4) +-+ (1,2,0,4,0) 

The logical expansion operator is extended to arrays, as 

follows. Let A be an array and let U be a logical vector such 

that for some component I of A, +IV +-+ (pA )[IJ .. Then U\lIJA, 

the U expansion along coordinate I of A, is defined as the array 

whose dimension is given by 

p(U\[J]A)[J] +-+ pU 

and for Kan element of ippA, p(U\[IJA)[KJ +--+ (pA)[KJ 

where K;t.J and for every element J of lP u, 

(U\A)[[I]J] +-+ A[[I]+/U[1J]]xU[J] 
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The following example clarifies the situation. 

Example: Suppose I.QfiQ. +-+ 1 and u and A are 

u +-• (1,0,l,0) 

2 4 
6 8 

A +-• 

1 3 
5 7 

rhen 
2 1+ 

6 8 

0 0 
0 0 

U\[1]A +-+ 

1 3 
5 7 

0 0 
0 0 

and 

2 lj 

0 0 

6 H 
0 0 

U\[ 2JA ..:-+ 
1 3 
() 0 
,-
:) 7 

0 () 

2 0 4 0 
G 0 8 0 

U\ [ 3 ]A ..:--+ 

1 0 3 0 
r-
;) 0 7 0 

If I+-+ I /1pp1l1 then U\[I]A may be written as U\A. 
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The following relation occurs between the expansion and 

compression of any array A by any logical vector u. 

U/[I]U\[I]A ++ A 

6.13 Prefix and suffix vectors 

A Qt~fi~ ~~£tQ~ is a logical vector P whose first R components 

are ones and whose remaining (pP)-R components are zeros. A 

§Yfti~ x~~iQ* is a logical vector s whose last R components are 

ones and whose remaining ( pS )-R components are zeros. 

rhe dyadic operator for specifying a prefix vector is a; the one 

for specifying suffix vectors is w. In both cases, the left 

argument L is the length of the vector to be constructed, and 

the right argument R is the number of ones required in the 

vector. 

Example: 

7a3 ++ (1,1,1,0,0,0,0) 
7w3 ++ (0,0,0,0,1,1,1) 

Prefix vectors are useful for selecting the first R components 

along some coordinate of an array; suffix vectors are useful for 

selecting the lastR components along some coordinate of an 

array. 
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Example: suppose lQB.Q. +-+ 1 and A is the array 

1 2 3 4 5 

A 6 7 8 9 10 
+-+ 

13 14 15 11 1 2 
16 1 7 18 19 20 

rhen 

1 2 3 lj. 5 
( tf ;x 2 ) I [ 1 ] A -<--)-

6 7 8 g 10 

11 12 13 1 l~ 
( t~ 1u 2 ) I [ 1 J A +-+ 15 16 17 1 8 

3 1+ 5 
8 ~J 10 

(5wJ)/[2]A ++ 13 111 15 
18 1:; 20 

6.14 The Monadic Transpose Operator 

If ~ is any rank-n array, where n~2, the monadic transpose of A, 

written QA, is equivalent to A with its last two coordinates 

interchanged. If il is a matrix, then QA is the transpose of A. 

Formally, for (ppA)~2, 

p~A +-+ pA[t-2+ppA), cr/1ppA), -1+r/1ppA) 

and for any row L of ipQA, we have 

A[;/L] +-+ (~A)[;/L[M]] 

where 
M +-+ (t-2+ppA), (f/1ppA}, -1+f/1ppA) 

Example: If 

1 2 3 4 
5 6 7 8 

A +-+ 

9 10 11 12 
13 14 15 16 
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Then 1 5 
2 G 
3 7 
!\ 8 

~A +--!-

9 13 
10 11+ 
11 15 
12 16 

6.15 The Take Operator 

The take operator is a generalization of the pref ix and suffix 

operators. It permits you to form a subarray B of an array A by 

writing Tt/l, where '1' is a vector of integers such that p T -+--i- p pA 

and ( 17') <; pl!. 

The effect of the take operator is that 

pB ~---+ I pA 

and coordinate I of B receives the first 2"[IJ elements from 

coordinate I of A if T[I]2':0; otherwise B receives the last T[I] 

elements of coordinate I of A when T[I]<O. 

The take operator can be expressed, as follows. 
'l' t A ~--+ Pt.A 

where 

F +--+ ~(3,ppA)p( IT),(((pT)pIQBQ)+(T<O)x(pA)-jT),(pT)pO 

~PPLE has a convention that makes it easier to write certain 

take vectors. If you only want to subset the last few 
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coordinates of A, you may write T+A where (pT)<ppA. This is 

equivalent to writing (((-(ppA)apT)/pA),T)tA. 

Also, if you want to subset a few coordinates of A and keep the 

rest intact, you may write Tt[I]A where I is the vector of 

coorjinates in which you are interested. This is equivalent to 

writing BtA, where p/3 +--+ ppA and B[I] +--+ T, while 

(I~1ppA)/B +-+ (I~1ppA)/pA. 

Examples: suppose [Ql]_(i_ +--+ 1 and ppA +--+ 3, where 

1 2 3 4 
5 6 7 8 
9 10 11 12 

A +-··>-

13 14 15 16 
17 18 19 20 
21 22 23 24 

Then 

1 2 3 
(1,2,3)tA +-+ 5 6 7 

2 3 i+ 

( 1 ' 2 • -3)tA +-+ 6 7 8 

19 20 
( - 1 • - ') - 2)tA 23 24 ,_ . +--+ 

6 7 8 
10 11 12 

( 2 • 3)tA +--+ 18 19 20 
22 23 24 

since, by convention, ( 2' 
- 3)tA ( 2. 2 • -3)tA +-+ 

Finally, 

- 75 -



1 September 1973 System Development corporation 
TM-5074/100/00 

5 6 7 8 
( 1, - :?)t[1,2]A ++ 9 10 11 12 

5 6 7 8 
9 10 11 12 - 2t[2]A +-+ 

17 18 19 20 
21 22 23 24 

6.16 rhe Drop Operator 

rhe drop operator + is the analogue of the take operator. When 

you write T+A, the first or last IT[IJ components of coordinate I 

of A are suppressed according as T[I] is positive or negative. 

For:nally, 

T+A +·+ Cb.A 

where 
G +-+ ~(3,ppA)p((pA)-IT,(((pT)pIQBQ)+O[T),(ppA)pO 

The c3nventions mentioned for the take operator also apply to 

the drop operator. 

Examples: Suppose lQRQ +-+ 1 and A is the array defined in 

section 6.15. 

rhen 

(1,2,3)+A +-+ (1,1,1.)p3 

3 4 
7 8 

11 12 
2+A +-+ 

15 16 
19 20 
23 24 
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If A is any array, then ¢[I]A is the reversal of coordinate 

I of A. Formally, 

¢ [I ] A +-+ H t:i.A 

where 

H +-+ ~(3,ppA)p(f:i.A)[;IQB.QJ,(6A)[;1+l.QBQJ,((ppA)pI)=tppA 

If I +-+ f It p pA, then I may be elided. 

Example: As in section 6.15, suppose l.QB.Q +-+ 1 and 

A+-+ (2,3,4)pt24 

rhen 
13 14 15 16 9 10 11 12 
17 18 19 20 5 6 7 8 
21 22 23 24 1 2 3 4 

¢[1]A +-+ <j>[2 ]A ~-+ 

1 2 3 4 21 22 23 24 
5 6 7 8 17 18 19 20 
9 10 11 12 13 14 15 16 

4 3 2 1 
8 7 6 5 

12 11 10 9 

¢A +-+ 

16 15 14 13 
20 19 18 17 
24 23 22 21 
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6.18 The Mask and Mesh Operators 

The mask and mesh operators combine the power of the compression 

and ex~ansion operators in an extremely useful way in that they 

permit you to construct a new array from the logically selected 

portions of the other arrays. 

Let U be a logical vector and suppose X and Y are arrays where 

pX +-+ pY. Then, the u mask of coordinate K of x and Y is 

written U/[K](X;Y). The resultant array is composed of the 

elements of coordinate K of Y, corresponding to the ones of u, 

and the elements of coordinate K of x, corresponding to the 

zeros of u. 

Formally, 

Example: 

pU/[K](X;Y) +-+ pX +-+ pY 
U/[K] U/[K](X;Y) +-+ U/[K]Y 

(-U)/[K] U/[K](X;Y) +-+ (-U)/[K]X 

suppose l.QB.Q. +-+ 1 and 

1 3 5 7 
A +-+ 9 11 13 15 B ++ 

17 19 21 23 

Then 

(1,0,0,1)/[2](A;B) +-+ 
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Let u be a logical vector and suppose X and Y are arrays where 

ppX ++ pp.Y. Suppose that for some component I, we have 

(((ppX)pI)~tppX)/pX ++ ((ppY)~1ppY)/pY. That is, except for 

coordinate I, the dimension vectors for x and Y are equal. In 

addition, 

( p X )[I ] +-,.. + /-U 
{pY) LIJ ~ +IV 

'l'hen we define U\[I](X;Y). the U mesh of coordinate I of X and Y 

as the array of dimension 

pU\[I](X;Y) ++ ((I-!~~~)t(pX)),(pU),(J+1-!Q~q)+(pX) 

That is, the resultant array consists of the elements of the 

u expansion of coordinate I of y and the -u expansion of 

coordinate I of x. 

Example: Suppose IORG ++ 1 and A and B are 

1 2 3 4 100 20 0 300 1rno 
A +-+ 5 G 7 8 B ++ 500 600 7·00 800 

9 10 11 12 

1 2 3 4 

rhen 5 6 7 8 
(0,0,1,0,1)\[1](A;B) ++ 100 200 300 400 

9 10 11 12 
500 600 700 800 

6.19 rhe Rotate Operator 

suppose A is an array and N is a scalar integer. You can rotate 
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the elements of coordinate I of A cyclically N positions to the 

left if N~o, or N positions to the right if N is negative. This 

is done by using the dyadic operator ip, writing N<l>A • A cyclic, 

left rotation means that the left-most elements migrate around 

to the right-most position in their coordinate. Since the 

coordinate is of length ( pA) [I 1 the rotation moves elements 

(pA)LIJIN positions to the left or right. 

Formally, N~[I]A +-+ A[[I]((ppA)plQRQ)+(pA)[JJl({ppA)pN)+1(pA+[I] 

Example: If l.Qll.Q +--+ 1 and 

1 2 3 
4 5 6 
7 8 9 

10 11 12 
A -<--+ 13 14 15 

16 17 1 fl 

19 20 21 
22 23 24 
25 26 27 

rhen 

4 5 6 
7 8 9 
1 2 3 

13 14 15 
7<1>[ 2 JA +-+ 1<1>[2]A+-+ 16 17 18 

10 11 12 

22 23 24 
25 26 27 
19 20 21 

and 
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1 'j 20 21 
22 23 2 It 
25 26 27 

1 2 3 
2<1> [ 1 ]A-+--+-- 1<H 1 ]A +--+- 4 

,. 
:J G 

7 8 9 

10 11 12 
13 1 It 15 
1G 17 18 

I f A is an array sue h that p p A +--+- - 1 + p p B and 

( ((ppli)pI);r1ppD)/pli ~-+ pA(i.e., the dimension vectors of A and E 

are in agreement after (pB)[IJ is suppressed, A¢[IJB is defined 

as the rotation of coordinate I of B by A· 

Formally, if L is a row of irB, then 

(A¢[I]B)[;/L] +--+- (A[;/((ppB)pI)~1ppB)/L]¢FAB)[C] 

where c ++ (((ppB)pI)=1ppB)/L 

F ++ ~((((ppB)pJ)=1ppB)/(O;l)),(((ppB)pl)=1ppB)/(O;L) 
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Example: Suppose 

2 
A +--+ 2 

1 

1 
4 
7 

1 () 
!! <--+ 13 

16 

19 
2') 

25 

'l'hen 

l.QB.Q. 

1 2 
2 3 
1 2 

2 3 
5 6 
8 9 

1 1 12 
14 1 5 
17 18 

20 21 
23 24 
26 27 

-<--+ 1 and 
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'/ r 9 ,J 

1 8 3 
lt 2 G 

16 17 12 
A$[2]D +-+ 10 11 15 

13 14 18 

22 23 2 'I 
25 26 21 
19 20 24 

and 

19 11 21 
22 23 G 
16 17 27 

1 20 3 
A$[1]B -<--+ It 5 15 

25 2G 9 

10 2 12 
13 14 24 

7 8 1U 

3 1 2 
[" 
,) (j 4 
') 7 8 

12 10 11 
11$[1]B +-+- 15 13 14 

16 17 18 

20 21 19 
23 2 lt 22 
2 '/ 25 26 

6.20 The catenation of Arrays 

In section 6.9, we defined the catenation of vectors. Two 

arrays A and B may be catenated along coordinate I provided 

either: 
( 1 ) p p A +-+- p p B 

or ( 2 ) 1 +--+- I ( p p A ) - p p B 
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or (3) B or A is a scalar 

ang (4) the coordinates along which A and B are to be 
joined are of the same dimension. 

The meanfng of condition (4) is the following. 

(a) If (ppA) +-+ (ppB)• then 
((ppA)pI)~1ppA)/pA +-+ (((pp8)pI)~1ppB)/pB 
That is, pA and pB are identical for every 
coordinate, except possibly coordinate I. 

(b) If 1 +-+ (ppA)-ppB, then Bis considered as if its 
dimension vector is (((ppA)pI)=1ppA)\(1;pB). This 
dimension vector must satisfy condition (a). 

(c) If 1 +-+ (ppB)-ppA, then A is considered as if its 
dimension vector is (((ppB)pI)=1ppB)\(1;pA). This 
dimension vector must satisfy condition (a). 

(d) If A or B is a scalar, it is treated as though its 
dimension vector is identical to that of the 
nonscalar in all components, except for a unit 
component. 

Then the catenation along coordinate I of B and A, written 

A, [I JB, is the array c such that 

C[[I]1(pA)[I]]+-+ A 
C [ [1 J ( p A )[I]+ ( p B )[I]] -<--+ 13 

Example: If IQB.fi. +-+ 1 and 

1 3 5 7 
A +-+ 9 11 13 1 ,. .::> 

2 4 6 8 
13 +~10 12 14 16 

Then 
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A,[1]B +-+ 

A,[2]D ++ 

If 

c +-+ 

rhen 

A,[1]C +-+ 

A,[1]2 +-+ 

A,[2]2 +-+ 

System 

1 3 5 7 
9 11 13 15 
2 4 G 8 

10 12 14 16 

1 3 5 7 2 
9 11 :l 3 15 10 

50 51 S2 53 
54 5 5 56 57 

58 59 GO 61 
62 63 G4 65 

1 3 5 7 
9 11 13 15 

50 51 52 53 
54 55 56 57 

58 5 CJ so 61 
62 63 64 65 

1 3 5 7 
9 11 13 15 
2 2 2 2 

1 3 5 7 2 
9 11 13 15 2 

4 
12 

6.21 rhe Lamination of Arrays 
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G 8 
14 16 

When two arrays, ll and B, are laminated together on coordinate 

I, a new coordinate that has indices t 2 is formed before 

coordinate I· The argument A fills the first index of the new 

coordinate; the argument B fills the second index of the new 
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coordinate. The notation is A: [I ]B, where either pA +-+ pB or A 

or 13 is a scalar and I is an element of t1+((ppA)rppB)If A or B 

is a scalar, it is considered as if it were reshaped to have the 

sane shape as the nonscalar argument. 

Example: Suppose IQRQ +-+ 1 and A and Bare the same as in 

section 6. 20. 

Then 

1 3 5 7 
9 11 13 15 

A:[l]b' ~--+ 

2 4 6 8 
10 12 14 16 

1 3 5 7 
2 4 6 8 

A:[2]iJ +-+ 

9 11 13 15 
10 12 11+ 16 

1 2 
3 4 
5 6 
7 8 

11:[3]8 ..(_--~ 

9 10 
11 12 
13 14 
15 16 

1 3 5 7 
9 11 13 15 

A:[1]5 +-+ 

5 5 5 5 
5 5 5 5 
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6.22 The Dyadic Transposition of Arrays 

The dyadic transposition of an array is a generalization of a 

monadic transposition of an array. The V transpose of A is 

written V~A, where V is a vector containing one element for each 

coordinate of A. 

The values of the elements of Vindicate the dimension of the 

resulting array. If you want the result R to be of rank ppR, V 

must contain, in any order, at least one of each of the elements 

from 1ppR. Further, the elements of V are limited to the values 

contained in 1pp& 

If the same value appears more than once in v , which must occur 

if (ppR)<pV, then the repeated dimension of R is to be formed 

from more than one dimension of A. For example, suppose that 

ppA +-+ 4, IQliQ +-+ 1,and V +-+ (2,1,2,2). The result R +-+ V~A 

must be an rank-2 array since 2 +-+ r Iv .... The first dimension of R 

is formed from the second dimension of A. The second dimension 

of R is formed from the first, third and fourth dimensions of A. 

rhus, the elements to be selected from A are of the form 

A[I;J;I;I], where I and J are scalar integers. This is the 

diagonal passing through A[1;1;1;1] and through the first, 

second and fourth dimensions of A. The diagonal contains no 

more elements than the shortest of the dimensions from which it 

is taken. 

- 87 -



1 September 1973 System Development corporation 
TM-5074/100/00 

In sunnary, the vector V of positive integers must satisfy the 

conditions: 

(1) pV ~--+ ppA. There must be an element in V for 
every component of A. 

(2) Every element of V must be an element of 1 p pA. 

(3) Every element of l r / v must be an element of v • 
(For example, if ppA +-+ 6 and the largest 
element in V is 5, V must contain all of the 
elements of ls. Since V must have six 
components, one of the elements of tS must be 
repeated.) 

Then, the transpose of 11 by V is defined as: 

(a) pp l/~/1 ~--+ 1+( r /V)-l.QB.Q 

(b) For each element I oft pp V~A , 
p(V~A)[I] ++ l/(V=(pV)pI)/pA 

(c) For each row L of .lP V~A, 
(V~A)[;/L ++ AL;/L[V]JA 

In order to better understand dyadic transposition, study the 

following detailed examples. 

Examples: Suppose IQ!l.Q +-··)- 1, 
pA ~--.. (5,7,3,8), 
and v +·• (2,1,2,2)· 
Then if R +-+ V~A, 
p pi\' <-+ 2• 
From property (b), we see that 

( pR) [ 1 J +.-JI- LI ( C 2, 1, 2, 2) = (1, 1, 1, 1) ) I ( s, 7, 3, 8) +-+ LI Co, 1, o, o) IC s, 7, 3, 8) +-+ 7 
( pH ) L 2 J +·+ L I ( ( 2 , 1 , 2 , 2 ) = ( 1 , 1 , 1 , 1 ) ) I ( 5 , 7 , 3 , 8 ) ++ l / ( 5 • 3 , E ) ..:--,,. .• 

Therefore, ( pR) +->- ( 7, 3) 

From property (c), we can determine the 
mapping between elements of A and R. 
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( V~A ) l 1 ; 1] ++ A[;/(1,1)[2 1 2 21J +-+ A [ 1 ; 1 ; 1 ; 1 ] 
( V~A ) L 1; 2] ++ A[;/(1,2)[2 1 2 2] J ++ A[2;1;2;2] 
( V~A )[ 1; 3] +-+ A[;/(1,3)[2 1 ,, 

2JJ +-;.- A[3;1;3;3l ,_ 

( V~A ) [ 2 ; 1] +--+ ;1[;/(2,1)[2 1 2 2]] +--+ 11[1;2;1;1] 

. . . 
( V~A) [ 5; 2 J +--+ A[;/(5,2)[2 1 2 2]] +-+ A [ 2 ; 5 ; 2 ; 2 ] . . . 
( V~A ) [ 7 ; 3 J +--+ A [ ; I ( 7 , 3 ) [ 2 1 2 2] J +--+ A [ 3 ; 7 ; 3 ; 3 J 

rhus, you see that the elements of V~A ++ A[I;J;I;IJ, 
where J is an element of l7and I is an element of 13. 

Suppose we want X +-+~A where W +-+ (3,1,2,2) Then pp +-+ 3 
and pX +-+ (7,3,5). The mapping between A and xis given 
by 

X[I;J;K] +--+ A[K;I;J;J] 

where I is an element of 17, J is an element of 13, and 
K is an element of 15. 

Finally, suppose 

1 2 3 
4 5 6 
7 8 9 

10 11 12 
B +--+ 

13 14 15 
16 17 18 
19 20 21 
22 23 24 

Verify that the following are true: 

(see next page) 
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( 1. 1 • 1 ) lsiB +-+ 

( 1 , 1 • 2 ) ISl B +--+ 

( 1 • 2 • 1 ) ISl T3 +-+ 

( 2 ' 1 • 1 ) ISl lJ +--+ 

(1,2,2)~B +--+ 

(2,1,2)~B +--+ 

(2,2,1)1SlB +--+ 

( 1 , 2 , 3 ) Isl B +--+ 

( 1 , 3 , 2 ) ~ B +--+ 

System Development Corporation 
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(1,13) 

1 2 3 
13 14 15 

1 4 7 10 
13 16 19 22 

1 13 
5 17 
9 21 

1 5 9 

13 17 21 

1 14 
4 17 
7 20 

10 22 

1 16 
2 17 
3 1B 

B 

1 4 7 10 
2 5 8 11 
3 6 9 12 

13 16 19 22 
14 17 20 23 
15 18 21 24 
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( 3 ' 1 • 2 ) /st 13 +-~ 

(3,2,1)/stB +--+ 

l 13 
2 14 
3 J 5 

t1 1 G 
5 17 
6 18 

7 19 
8 20 
9 21 

10 22 
11 23 
12 24 

1 13 
tj. 16 
7 19 

10 22 

2 11+ 
r 17 .J 

8 20 
11 23 

,., 
15 '·' 

G 1tl 
'J 2:1 

12 24 
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(2,1,3)tl?B 

(2,1,l)tl?B +~ 

1 
13 

4 
16 

+~ 

7 
19 

10 
22 

1 4 
:l 3 16 

2 5 
111 17 

3 6 
15 18 

System Development Co~poration 
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2 3 
14 15 

5 6 
17 18 

8 9 
20 21 

11 12 
23 24 

7 10 
19 22 

B 11 
20 23 

9 12 
21 24 
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CHAPTER SEVEN 

EXPRESSIONS, STATEMENTS AND PROGRAMS 

so far, y~u have seen a number of APPLE'S arithmetic and 

manipulative operators. You have nearly enough information to 

write a program. However, you need to learn about APPLE 

statements and expressions before you can write a program. 

In this chapter, we will cover everything you need to write a 

simple program using APPLE operators. In the following 

chapters, you will be introduced to operations on arrays, as 

well as how to define your own functions and operators. 

7.1 Elenentary Definitions 

An ~Ket~~~iQn is any well-defined combination of operators and 

operands. Expressions always have a value. 

A §t~t~ment is an expression whose value is the empty vector. 

Statements always perform some action. In FORTRAN, they 

include, for example, assignment statements, DO statements, IF 

statements, and so forth. 
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7.2 :=onformability conventions for scalar Dyadic operators 

Let us ree"xamine the simple expressions A •B where• is some 

scalar dyadic operator. Until now, we have stated that this 

expression is defined only when pA +-+ pB. Two such arrays are 

said to be ~QDfQ•IDQQl~· The result is an array C, where 

pC ++ pA +-+ pB and for any subscript L from .ipC, we have 

C [ ; I L ] ++ A [ ; I L ] • B [ ; IL ] 

we will now extend the definition of conformability with respect 

to a scalar dyadic operator. 

First, suppose only one of the two operands, operand A, is a 

one-element array. CA is a one-element array if and only if 

1 -<-+ x I pA· Thus, A might be a scalar or a one-element vector.) 

we subsequently define A•D to be the array C +->- ( (pB)pA•B (If 

13 was the one-element array, we would have C +-)-. A•(pA)pb) That 

is, the scalar operand is applied to every element of the non-

scalar operand. 

Example: If IQli.Q <-+ 1, then 

1. + l 5 -<-+ ( 2 • 3 ' 4 • 5 , () ) 

If 

1 3 LI 

11 -<---)> 2 7 8 
Then 

2 6 8 -Ax 2 +-+ 4 14 16 
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If both operands are one-element arrays, then A•B is defined to 

be the array c where c +-+ ((ppAHppB)p(,A)•,U. That is, the 

rank of the resultant one-element array equals the maximum of 

the ranks of the operands. 

If neither of the operands is a one-element array, the arrays 

are conformable only when the two arrays satisfy one of the 

following two conditions. 

(1) Assume that (ppA)>ppB and (-ppB)tpA ++ pB. That is, 

the last ppB elements of pAare identical to pB. 

(If (ppB)>ppA,everything works when you mentally 

interchange their names.) Then, the arrays are 

conformable and c ++ A•(pA)pB 

(2) If (1) is not true, but there are non-negative 

scalar integers M and N such thatM<p pA and N<p pB 

and 

M+pA ++ N+pB 

Then A and B are conformable only if MtpA ++ Np 1 or 

NtpA ++ Np1 • The result is of rank ppC ++ (ppA)fppB, 

pC ++ (~(ppC)p(~pA),Dp1)f~(ppC)p(~pB),Dp1 and 

C +-+ ((pC)pA)•(pC)pB, where D +-+ j(ppA)-ppB. 

In all other cases, A and B are non-conformable arrays. 

Examples: If pA +-+ (2,3,5) and (pB) ++ (1,1,1,2,3,5) then A and B 
are conformable and pA•B ++ (1,1,1,2,3,5). If 

pE ++ (1,4,3,2,8) and pF +-+ (1,1,6,4,3,2,8), then E and F 
are conformable and pE•F ++ (1,1,6,4,3,2,8). If 

pG ++ (1,2,3,5,6,2,8) and pH++ (1,1,1,1,1,1,1,1,2,s). 
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rhen G and 11 are conformable and 
p G' ~ ll +->- ( 1 , 1 , 1 , 1 , 2 , 3 , 5 , G , 2 , 8 ) • 

If p v +-)- ( 1. 2, 3, 4) and p W +->- ( 1, 3, 3, 4), V and W are llQ!: 
conformable. (Why?) 

Up until now, we were very careful to write expressions like 

(1=-ppA) as ((ppA)pl)=-ppA. so that the conformity requireMents 

were trivially satisfied. For the remainder of this tutorial, we 

can use the conformity conventions just described. 

7.3 Specification Expressions 

If A is a variable and you want to store the value of an 

expression E into A, you use the specification operator + and 

write 

By definition, the shape of A will equal the shape of E, i.e., 

pA ~-~• pE. Since + is a dyadic operator, you may use it anywhere 

you would use any other dyadic operator. The value of A+E is 

the new value of A· 

Let E be any well-formed, array-valued expression. Then, F is a 

~g~~gt ~1Qt~~2!Qn on E if it is a well-formed expression 
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consisting of an arbitrary number of the following operators 
applied to E. 

( 1) take 

(2) drop 

(3) reversal 

(4) rotate 

(5) subscripting 

(6) t:. 

(7) ~ 

(8) compression 

(9) expansion 

(10) mesh 

( 11) mask 

( 12) transposition 

rhen, if F is a select expression on the previously specified 

array A, when you write (F)+(E). If (PF)>pE the specification 

is equivalent to A+F+E. Another way of looking at this 

concept is: the left-hand side of a specification may be any 

selection expression on A that could have been written as a 

subscript expression on A. 

Examples: Suppose l..Ql.lJi. -<--+ 1 and A has been specified as 

A + ( 2 , 3 ) p 1 b. Then 

A[1 2 ;3] + i2 

produces 

1 2 1 
A +-+ '+ 5 2 
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This could also have l>ecm written as either 

((0,0,1)/A) + t2 
or ( -1 +A) + t 2 

we also can write 
(~A) + (3,2)p6+t6 

producing 

7 g 11 
A +-+ 8 10 12 

7.4 conditional Statements 

APPLE, like many programming languages, contains conditional (or 

"IF") statements. A single conditional statement always 

contains some test (i.e., an expression that evaluates to a 

logical scalar). If the test is satisfied (evaluates to 1), 

then the expression associated with the conditional statement is 

evaluated. If the test fails (evaluates to 0) , then control is 

transformed to the statement immediately following the 

conditional statement. 

~ more intricate conditional statement consists of a test with 

its associated expression and an ordered sequence of 

alternatives. If the test succeeds, its associated expression 

is evaluated and control is transferred to the statement 

immediately following the entire conditional statement. If the 

test fails, each of the alternative tests is executed until 

either some one of them is satisfied or they all fail. As soon 

as the first alternative test is satisfied, its associated 
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expression is evaluated and control is transferred to the 

statement immediately following the entire conditional 

statement. 

rhe sinplest kind of conditional statement fits on one line. It 

is of the form 

IE test Xft&li expression 

rhere is also a version with an alternative. This takes the 

form 

IE test tll~il expression 1 ~La~ expression 2 

In the conditional statement, if the test is true, then 

expression 1 is evaluated and control transfers to the statement 

immediately following. If the test is false, expression 2 is 

evaluated and control is transferred to the statement 

immediately following. 

Examples: 

IE A>10 Xll&ll X + +/Y 

If 1 +-+ A>1othen Xis redefined as +IY. 
Otherwise X retains its original value. 

IE A >10 Xll~il X + +/Y ~L£& X + r;y 

rhis time X will be changed regardless of the value of A> 1 o • 

- 99 -



1 September 1973 system Development corporation 
rM-5074/100/00 

rhe statement is equivalent to X + (A>10)/(f/Y;+/Y) 

If a conditional statement will not fit on one line, it is 

necessary to use a multi-line conditional statement. This form 

is far more powerful than the one-line conditional statement, 

which cannot control the conditional execution of a set of 

statements. 

The simplest type of multi-line conditional statement involves 

only one test and has no alternatives. It is of the form 

IE test 

Ii.ti. Id. If. 

statement 1 
statement 2 

• 

• 
statement n 

Here, if the test is true, statement 1 •••• , statement n are all 

executed in order. If the test is false, control is passed to 

the statement immediately following the associated ENQIE.. 

There is also a multi-line conditional statement with an 

alternative. 
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It is of the 
l..f. 

form 
test 

sl 
s2 

sn 
fl.L.§..!I t 1 

t2 

tm 

System Development Corporation 
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If the test is true, statements s1, ••• ,sn are executed and 

control transfers to the statement immediately following the 

associated gllnit• If the test is false, then statements 

t1, ••• ,tm are executed and control is transferred to the 

statement immediately following the !INllIE. 

The most general type of multi-line conditional statement allows 

you to write as many conditional alternatives as you need and an 

~~£~ alternative if you want one. 
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It is of the form 

I.E. test 1 
s1 
s2 

sn 
Q!i IE test 2 

t1 
t2 

tm 
QB. IE test 3 

u1 

ul 

vk 

• 

System Development corporation 
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First, if test 1 is true, then statements s1, ••• ,sn are 

evaluated, and control is passed to the statement immediately 

following the associated ~MQIE· If test 1 is false, test 2 is 

evaluated. If test 2 is true, statements t1, ••• ,tm are 

evaluated and control is passed to the statement immediately 

following the associated ~llQIE· This process continues until 

either a test is true and its associated statements are 

executed, or until all of the alternatives have been exhausted. 

If the last alternative is an aLQ~, its associated statements 
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will be executed if all the preceding tests have failed. 

You shoulj note that any of the statements associated with a 

test or an ~L~~ can, itself, be a conditional statement. If 

such a conditional statement is executed, it is treated exactly 

as if it was a conditional statement occuring elsewhere in a 

program: it will either be a one-line conditional statement, or 

there will be an ~~QIE associated with it. 

Example: 

IE (A<B)v C>D + Q+R 
X++/Y 
Z+~A 

Q!J. l.f. (A>B)AD;eO 
X + /l l-D 
l.f. Q>H 

Z + Vls:(R 
E.L{j_tl_ Z + ( 4> V) ~R 
E.fl.!2£E 

f /d/i./i. Z + ( p Z ) pO 
il. !J. QI f. 

In this example, D is specified in the first test .. 

Regardless of the truth of that test, D will 

retain the value Q+R until it is respecified 

elsewhere. The QH IE alternative, which will be 

executed only if the first test fails, contains a 

conditional statement of its own.. That statement 

determines the value of z. If both tests fail, z 

is respecified as an array of zeros. 
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You should indent conditional statements the way we have 

done in this example. When you do, it is very easy to 

identify the statements associated with each alternative. 

This is especially true when a conditional statement 

contains other conditional statements nested within it. 

7.5 conditional Expressions 

The right-hand side of any specification may be a conditional 

expression. A conditional expression looks exactly like a 

conditional statement, §~ggQ~ that there is now a value 

associated with it. This is because every APPLE statement is an 

expression the value of which is discarded. 

when a conditional statement becomes a conditional expression, 

its value is the value of the last expression in the alternative 

that is executed. If it is possible that none of the 

alternatives be executed, you must be sure to include an &L~E 

alternative, otherwise the value of the conditional expression 

will be undefined. 

The shape of the value of a conditional expression is determined 

by the shape of the last expression in ~ggh of its alternatives. 

This shape is determined exactly the way it would be determined 

if these expressions were to be operated on by some dyadic 

scalar operator. That is, these expressions must be pair-wise 
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conformable. Therefore, the shape of the result of a 

conditional expression is the conformed shape of the last 

expression of each alternative of the conditional expression. 

Example: You can calculate the value of !v, 

where Nis a nonnegative scalar integer by writing 

FACTORIAL + lE N=O XligN 1 EL~~ x/1N+1-lQRQ 

7.6 Iteration Statements 

Iteration statements are akin to the DO-loops of FORTRAN. They 

provide a convenient means of performing the same set of 

calculations repeatedly on some set of elements. 

rhis statement is of the form 

aQ I ~ V 
s1 
s2 

sn 
liE~~dX 

where I is a variable name, V is an array-valued expression, an~ 

s1,s2, ••• ,sn are statements. Statements s1, ••• ,sn will be 

executed together (pV)[lQHQJ times, each time with I assuming 
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one of the values 
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V[[IQBQ]lQBaJ.V[LlQRQ]1+£QBQ], •••• V[[IQllQJr/\(pV)[£QBQJ] 

Thus, if IQB.Q. +-+- 1 and you write 

QQ Ug. 6ic 15 
A[I] + 2xI 

B.E.Eli.d'I. 

Then, this is equivalent to your having written 

A[6] +- 12 
A[12] + 24 
'1[18] + 36 
A[24] + 48 
A[30] +- 6 0 

Of c::>urse, you could have writtenA[6x1SJ +- 2xI in this case, 

but that is because the body of the loop only contained one 

statement. Since the body of the loop can contain arbitrarily 

many statements of arbitrary complexity, you could write, e.g., 

I2.Q JS. .lPB 
F + ~((I=tppB)/(0;1)), (I=tppB)/(O;J) 
(PAZ)+ A[;/(I~1ppB)/J]$FAB 

B. !i. E. fl.11 'l 

In this code, Bis an arbitrary array, and J successively takes 

on the value of each row of .lPB. If the dimension of B is 

unknown at coding time, this loop could not be written as a 

sequence of statements without use of some form of iteration. 
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rhe ~lllk& statement is of the form 
fl. lf. .J.. l.t. t;_ t:e s t 

s1 
s2 

sn 

!i Ji f. lf/A. 'l. 

The test is any expression that evaluates to a logical scalar, 

and the s1, ••• ,sn are statements. 

The test is evaluated and, if true, statements s1, ••• ,sn are 

evaluated. Then, the test is reevaluated. If it is true, 

statements s1, ••• ,sn are evaluated again. This process 

continues until the test is false, at which time control is 

transferred to the statement immediately following the BEE&d'l.. 

rhe li.fll..ld.li statement is useful for controlling some process that 

must iterate while some condition is satisfied, e.g., a 

numerical approximation process. Note that iteration continues 

as long as the test is true. Consequently, you must provide a 

means for either causing the test to eventually evaluate to 

false, or make use of one of the operators described in Section 

7.6.4. 

Example: 

~llIL~ A/EPSILONslX-Y 
x + ( IX-14>X)f2 
y + ( IY+( l<l>Y)+W(-1<.j)Y))f3 

B.. E. EJl. Ii T. 
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will be iterated until every component of the absolute 

value of X-Y is less than EPSILON. 

fJ.!i'l.l.lt. statements are written 

UN'PI L test 
----- s1 

s2 

sn 

where the test is any expression evaluating to a logical scalar, 

and sl, ••• ,sn are statements. 

rhe se~uence of statements is iterated until the test is true. 

For a given test 1' , the loop Y..ll'l.Ild. T is equivalent to the loop 

Ual~E-T. Two kinds of conditional loops are provided to permit 

programmers who think in terms of a termination condition, 

rather than in terms of a continuation condition, to directly 

translate their thought process into APPLE code. 
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It is often necessary to prematurely terminate one or more 

iterations of a loop because some boolean condition is 

satisfied. APPLE provides you with three anadic operators, 

[i.e., having no operands] with which you can direct the flow of 

control within such loops. 

The first of these operators is QXQ~~, which 

terminates execution of the current iteration and 

transfers control to the top of the loop for the 

next iteration. 

rhe LEAY.E. operator causes control to be 

transferred to the statement immediately following 

the B~EE.AX associated with the loop. This causes 

the loop to definitively stop iterating. 

rhe ~KlX operator causes control to be transferred 

to the statement immediately following the RE.E&dX 

associated with the outermost loop in which the 

instruction occurs. 

If there are no nested loops, E.J.1.'I. and L.E.AY.!J. are equivalent and 

either operator may be used. But, if ~XIX is encountered in a 

nested body of loops, then ~!1 of the loops stop iterating 

immediately. 
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rhe Qd~E statement is a simplification of the conditional 

statement. It is used when you want to evaaluate one of a set 

of expression sequences based on the value of some scalar 

expression, usually integer-valued. 

The Qtl~lll. statement takes the form 

Q!J.3.lf scalar expression 
value list 1 + statement sequence 1 
value list 2 + statement sequence 2 

• 
• 
• 

value list n + statement sequence n 
JiL.§..!!l. statement sequence 
gl:J..[d.Q 

The I:;,[.,_§.lfl. clause is optional. If together, the value lists 

exhaust the possible values of the scalar expression, you do not 

have to provide an "f:l.Lii'lll. clause. 

The value list is a sequence of scalar constants, separated from 

each other with semicolons. The statement sequences may contain 

any combination of APPLE statements, including conditional or 

iteration statements. 

Example. This Qtl!ilf statement computes ! N and stores it in Z • 

N and z are assumed to be one-element, nonnegative 

scalar integers. 
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o -+ ;: ~·· x I 1 + t N 
1 -+ Z + x/iN 
iili fd.{;_ 

we could also write this code sequence using two Q!l{iE 

statements. 

0;1-+ z ~- 1 

iiL{ifll. Q.!13.l:l. l.Qli.Q. 
0 ->- Z + X/1+1N 
1 -+ Z + X/1N 

lf. li.12. Q 

~f course, this could have been more concisely 

written as Z ~- x/£QB.Q+1N, but our intent was only 

to illustrate the use of the Qd~/ll. statement in an 

elementary context. 

7.8 rne Q~§E Expression 

rhe Qfl.::l.fl. statement is a simplification of the conditional 

statement, so any k4{iE statement can be rewritten as a 

conditional statement. There is a Qd{i& expression in the APPLE 

language. The same conformability conventions apply to Qd3& 

expressions as apply to conditional expressions. 
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Example: we could rewrite the second example of section 7.7 as: 

z ~- C.1.W.E. N 
O;l-+ 1 
r.::.L.§!i r.A§.E. 

0 -+ 

1 -+ 

lQfl_(}. 
x/l+tN 
x/iN 

E..til2.Q 
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CHAPTER EIGHT 

ARRAY OPERATIONS 

so far, we have investigated scalar operations on conformable 

arrays, and manipulative operations that produce subarray and 

permutations of the elements of arrays. Your background is now 

sufficiently strong in APPLE so that we can consider the class 

of operators that perform numerical manipulations on arrays. 

8.1 The Index of an Array within an Array 

Suppose A is some vector or a one-component array and Bis an 

arbitrary array. Then A lZ3, the index in A of B is an array such 

that 

pA t B +-·+ pB 

and for each row Lof .lPB, (AlB)[;/LJ is the least index I such 

that (,A )[J] -<--;. lJ[ ;/L]. If JJ[ ;IL] is not an element of A, then 

(A1fl)[;/L] ++ 1+f/1p,A • 
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Example: If Lt!.li.il. •·• l, ii"' (.l,-··1.~1 .0.1,11,1) and 

1 3 2 
7 4 5 

n +-+ 

0 1 4 
3 2 1 

Then 
5 1 3 
2 6 8 

AtB ~--·)-

I~ 5 G 
1 8 .-;:) 

Note that A[5] +-+ A[7] +-+ 1, but the index 

returned to A1B is always 5 since 5 is the least 

index I for ~hich A [I J +-+ 1 • Note also that an 

index of 8 was returned for the two elements 5 and 

2, which are not contained in 11. 

You can tell if every element of B is an element of /1 since, if 

that is the case, we must have 

1 +->- v I ( , ;l t B ) ::; r I 1 p A 
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Let A and B be two arbitrary arrays. Then, AEB is a logical 

array ~f the same rank as A and contains a 1 corresponding to 

each element of A that is present somewhere in B. 

Example: suppose A and H are the arrays from the example in 

section 8.1. 

rhen 

A E:.11 ·+--+ ( 1 • 1 • 1 • 1 • 1 • 1 • 1 ) 

and 

1 1 1 
1 1 0 

BEA +-+ 

1 1 1 
1 0 1 

8.3 Sorting 

If 11 is a vector, then ~A is a vector, p~A +-+ pA, such that 

( ~11) [I]iS the index of t+he I-th smallest element of A. That is, 

11 r .t-,1 Jis a vector whose first element is the least element of A 

and each ~f whose remaining elements is no less than its 

predecessor element. 

Just as ~A can be used to sort the elements of A into ascending 

order, tA +-+ ~~A can be used to sort A into descending order. 
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Examples: If IQ!lQ. ++ 1 and A +-+(6,3,5,3,9,3,1) 

Then 
!A +-+ (7,2,4,G,3,1,5) 

WA+-+ (5,1,3,6,4,2,7) 

8.4 ~uter Products 

Suppose A and B are any two arrays and 1:1 is any scalar dyadic 

operator. rhe 1:1 .QY!:~f Qf.QQQ£!: of A and B, written A 0 • l:!B, is an 

array containing the 1:1 product between every element of A and 

every element of B. 

Formally,pAo.itB +-+ (pA),pD and for each row L of lPA 0 .1:1B, 

(Ao.1:1B)[;/L] ++ A[;/(ppA)tL]!:!B[;/(-ppB)tL] 
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Examples: Suppose A ++ (1,2,3,4,S,G,7) 

Then 

1 2 3 4 5 6 7 
2 4 6 8 10 12 111 
3 c 9 12 15 18 21 

Ao. xA +·-+ 4 B 12 16 20 24 28 

5 10 15 20 25 30 '.3 5 

6 12 18 24 30 36 42 
'/ 111 21 28 35 ll2 49 

l 0 0 0 0 0 0 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

A 0 • =A -<!··+ 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 

0 0 0 0 0 1 0 

0 0 0 0 0 0 1 

1 1 1 1 1 1 1 
0 1 1 1 1 1 1 
0 0 1 1 l 1 1 

A 0 • ~A +--+ 0 0 () 1 1 1 1 
0 0 0 0 1 1 1 
0 0 0 0 0 1 1 
0 0 () () 0 0 1 

0 6 6 
0 12 12 
0 45 13 

((2.3)p(6,12,45,8, - s,2))0.L(0,67,13) +-+ 
0 8 8 
5 5 5 
0 2 2 

8.5 Inner Products 

The ~PPLE inner product is a generalization of the linear 

algebra inner product of two matrices. suppose that A and B are 
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two ;natrices such that 1 t pA -<--... 1 t PB. The following code 
produces the inner product c of A and B. 

C+((1tpA),-1tpB)pO 
12.Q L ~ .lPC 

C[;/L]++/A[1tL;]xB[;1+L] 
B. Ti. E. ll. A X 

(In normal parlance, C[I;J] is the sum of the componentwise 

product of the I-th row of A with the J-th column of B.) 

The A.PPLE notation for this inner product is A+. xn. 

In general, if A and B are matrices satisfying ltpA ++ ltpB and 

~ and ~ are two scalar dyadic operators from Table III (see 

section 5.3), then the ~-~inner product of A and Bis written 

A~.*B, where pA•.*B ++ (1tpA),-1tpB and for any row L of .ipA•.*B 

A•.*H[;/L] ++ ~/A[1tL;]*B[;1+L] 

Examples: 

1 2 1 2 3 9 12 15 
3 '-I +.x 4 5 6 ++ 19 26 33 
5 6 29 40 51 

1 2 1 2 3 5 7 9 
3 4 +.r 4 ,-

;) G ++ 7 8 9 
5 6 11 11 11 

In the remainder of this section we generalize the inner product 

to conformable arrays of arbitrary rank. 
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If ppA ++ ppli ++ 0 then A~.•B ++ ~IA•B. 

Otherwise, 11 ~. *D is defined only if A and B satisfy one of the 

following conditions: 

( 1 ) ppA ++ 0 
( 2 ) ppB ++ 0 
( 3 ) ··-1tp11 ++ 1tplJ 
( 4) ltpB ++ 1 
( 5 ) - 1 t p/l +-I> 1 

If the cot'l.formability conditions are satisfied, then A and B are 

conceptually replaced by arrays d and '12. given by: 

(1 ') If ppA ++ o then 
cl++ (1tpB)pA 
ll.. ++ B 

(2 I) If ;) PF ~·-+ 0 then 
t1 ++ A 
l}. ++ (-1tpA)pB 

(3 1 ) If -1tpA +-+ 1tpB then 

d ++ A 
'll. +-l- B 

(4.) If 1tpB ++ 1 then 

d +4 A 
ll. ++ ((-1tpA).1+pB)pB 

(5 I) If - 1tpA ++ then 
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4 ++ <•1ppA)~((QtpB),.~1+pA)p($tppA)~A 
ll. ++ B 

Then JI~. 'fl.B +-i. !1 ~ • *ll. ++ c where 

and for each row L of J.PC 

where 

Example: 

1 2 
3 4 

,. 
:.> 6 
7 8 

8.6 change of Base 

G[;L/12] ++ ((-1+pp4)p1),o 
CC;r/12] ++ ((-1+pp4)tL),O 
II [ ; L I t 2 J ++ o , ( - 1 + p p~ ) p 1 
H [ ; r I t 2 ] ++ O • ( 1 - p p~ ) t L 

3 5 
7 9 

1 2 1 1 
3 4 3 5 

+.- +-i-
t: 
:::i 6 5 3 
7 8 1 1 

<J 7 
,-
;) 3 

rhe number 2307 = 2x103+3x102+ox101+1x100. This is a polynomial 

representation .of the number 2307 in the radix 10. We also have 

2307=3x5•+3x53+2x52+1x51+2x50 as a polynomial representation of 
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If you have a vector representation V of a number N in the base 

B, you can compute the value of N by evaluating the expression 

(x\((-1+pV)pB),1)+.xv. For example, if B +-+5 and 

V ++ (3,3,2,1,2), the expression evaluates to 

(x\(5,5,5,5,1))+.x(3,3,2,1,2) ++ (625,125,25,5,1)+.x(3,3,2,1,~ 
++ 1875+375+50+7 ++ 2307 

The APPLE notation for this conversion is B.LV (read "B decode 

V") • 

conversely, if you want the vector representation v of N to the 

base B, then you can compute V by the Euclidian Algorithm as follows: 

v + € 
Qli.X.l.L. N = 0 

V+(BIN),V 
N+LNtB 
l1. E. P. E. t1 x. 

The APPLE notation for this inverse conversion is BTN (read "B 

enco:ie N"). 

change of base can be generalized to cover mixed bases. If B is 

a vector, then BJ.V is defined when B and V are conformable for 

inner product: 

B.LV +-+ (x\{l+B),1)+.xV 

Indee:i, BJ. V is similarly defined for any arrays B and v that are 

conformable under inner product. The formal definition is 

extremely complicated, so let us look, instead, at a few 

illustrative examples. 
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Exan~les: suppose you want to know the number of seconds 
in 1 year, 20 days, 5 hours, 3 minutes and 17 
seconds. we will proceed with the assumption that 
1 year=365 days, 1 day=24 hours, 1 hour=60 
minutes, and 1 minute=60 seconds. Then we would 
have to compute 

(365X24X6Qx60),(24X60X60),(60X60),60,1)+.x(1,20,5,3,17). 
But this is equivalent to 

(x\(365,24,60.60,1))+.x(1,20,s,3,17) 
++ (1,365,24,60,60)T(1,20,5,3,17) ++ 33282197. 

Note that the first element of the vector (1,365,24,60,60) could 
have been any arbitrary number, since it is 
discarded in the evaluation of i· 

Similarly, (1,3,12)i(3,1,6) ++ 126, the number of 
inches in 3 yards, 1 foot, 6 inches. 

Neither B nor V need be integral. 
24 60 60 763 430.47 110 22563 

1 3 12 i 208 118.97 30 ++ 327 
1 20 12 43 28.07 6 1755 

14545.47 3660 
179.07 48 
995.07 252 

The inverse operation BTN is also defined for arrays B and N. 

The result is an array v such that BiV ++ N. Hence, 

pBTN +-+ (pB),pN and the "base B vectors" run along the first 

coordinate of the result. 

Examples: 

(5p5)T2442 ++ (3,4,2,3,2) 

(Sp-2) T 13 ~ (1,1,1,0,1) 

(7p2) T 13 ++ (0,0,0,1,1,0,1) 

(1780,3,12) T 126 +-+ (3,1,6) 

rhis last result is the number of yards, feet and 

inches in 126 inches. 
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0 7 2 0 
4 8 3 1 

(10,10,10,10) T (456,78g0,2345,123) +-+ 5 9 4 2 
6 0 s 3 

8.1 Matrix Inverse Operator 

Supp~se B is a non-singular matrix and ~/pB +-+ 1 so that B has 

at least as many rows as columns. Then, ~B +-+ L such that L+.xB 

is the identity matrix. L is the left inverse matrix of B and 

p L +-+ cj>p B. 

8.8 Matrix Division 

When you have a vector or matrix A and a matrix B such that 

?./pB +-+ 1, then A~B is defined when 1+pA +-+ 1tpB. By definition 

A li:JB +-+ ( [iJB) +. xA • 

Example: 

105 72 4 8 5 2 7 
97 56 ~ 3 9 2 +-+ g 3 

114 87 7 10 2 5 4 
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CHAPTER NINE 

SUBROUTINES, FUNCTIONS AND OPERATORS 

This chapter contains a discu•sion of how to write subroutines 

and functions. The difference between the role of functions in 

APPLE and those in other programming languages is that there is 

little conceptual difference between functions and operators. 

consequently, APPLE can be treated as an extensible language. 

9.1 The Distinction Between Functions and Subroutines 

A ~~Qt~~tin~ is a code sequence that is parametrically self

contained. It can be invoked from any part of a program. After 

the subroutine has completed execution, control is returned to 

the first executable statement following the point from which it 

was called. 

A subroutine may use or manipulate the contents of variables 

used by the main program, or it may use or manipulate variables 

that are accessible only by the subroutine itself. If a 

subroutine is parametrized, then the values for the parameters 

are specified at the points of the program at which the 
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A t~ngtiQD, on the other hand, always has a value associated 

with it. Like a subroutine, it may use or manipulate variables 

used by the main program, or it may use or manipulate variables 

accessible only by the function itself. A variable can be 

assigned the value of a function. But, in order for a 

subroutine to modify variables external to itself, it must 

explicitly assign values to them. 

subr~utines and functions may be anadic, monadic, dyadic or n-

adic in that they may take no arguments, one argument, two 

arguments, or n-arguments, respectively. 

If YORICK is an anadic function or subroutine, you invoke it by 

writing YORICK • If POLOlJIUS is a monadic function or 

subroutine, you invoke it by writinl} POLONIU8 A, where A is some 

expression representing the value of its parameter. If 

ROSENCRANTZ is a dyadic function or subroutine, you invoke it by 

writing A ROSENCRANTZ. a, where A and B are expressions 

representing the values of its two parameters. If GUI LDENS'l'F:IW 

is an n-adic function or subroutine, you invoke it by writing 

G'UILDENSTE'RIJ c A;B;C;D; ••• ;Z::i, where A,B, ••• ,z are expressions 

representing the values of its n parameters. 

Note that the monadic and dyadic functions and subroutines are 

written in precisely the same way monadic and dyadic operators 

are written. Since functions have values, they can be invoked 
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from within any expression. consequently, there is no 

difference between the use of the functions you define and the 

APPLE operators. In the remainder of this chapter, we will 

discuss how you may define and use your own operators in APPLE. 

9.2 The Form of a Function or Subroutine Definition 

rhe definition of a function or subroutine consists of a 

heading, a body, and a footing. 

The heading names the function or subroutine, specifies whether 

it is anadic, monadic, dyadic or n-adic, whether it is a 

function or a subroutine, and names all of the variables local 

to its body. The body consists of the APPLE statements that 

perform the computations and manipulations of the function or 

subroutine. The footing terminates the definition of the 

function or subroutine. 

rhe heading begins with the symbol v If you are writing a 

function, you subsequently specify the name by which you will 

ref er to the result in the body of the function, then the 

specification symbol+. 

If the function or subroutine is to be dyadic, you next list the 

local name of its left argument. 
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The following entry is the name of the function or subroutine. 

Then, if the function or subroutine is monadic or dyadic, you 

list the local name of its right argument. If it is n-adic, 

then you enclose the local names of the parameters in the 

brackets c and :;:) , separating the parameters with semicolons. 

Finally, if there are to be any variables local to the body of 

the subroutine or function, you list their names, preceding each 

one with a semicolon. 

Examples: The heading for the anadic subroutine YORICK is 

V Y OR.T CR 

This subroutine has no local variables. The 

heading for the anadic function HORATIO, which has 

two local variables Mand N, is 
V Z + HORATIO;M;N 

Here, the value HORATIO returns is to be explicitly stored 

in a local variable called z. 

The heading for the monadic function POLONIUS is 

V Z + POLONIUD Y 

Here, Y is the local name of the right argument of POLONIUS 

and the value of POLONIUS will be stored in z. 

If y:::>u wanted to define a monadic subroutine OPHI?LIA, you 

would write 

V OPHELIA Y 
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OPHE'L.IA was not defined as having any local variables. 

A dyadic function ROSENCRANTZ, with local variables 

(). N • .</, T would have the following heading 
~ Z + X ROSENCRANTZ Y;Q;R;S;T 

Here x and Y are the left and right arguments of 

ROSENCRANTZ , the value of which will be stored in the local 

variable z. 

If GUI f,DC:NtiTLrnN is to be a 5-adic function of A ,E, c ,D, E and 

has a local variable N, you would write the following 

heading: 

V Z + CUILDENSTERN cA;B;C;D;E~;N 

The body is an APPLE program. If the subroutine is a function, 

the result must be stored into the name you specified someplace 

in the body of the subroutine and in the heading. It, and any 

other variable names from the heading may be used as local 

variables within the body. 

The body may also use the names of variables existing outside 

the body, i.e., they are neither the result, operands, 

para~eters, nor declared local names. such variables may be 

modified from within the body. 
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rhe subr~utine of the function definition is terminated with the 

symbol v on the line following the last line of the body •. 

9.3 Call by Value 

The parameters of a function or subroutine are evaluated from 

right to left before it is entered. The resulting values are 

£QQigg into the local storage area of the routine. Then, the 

body is evaluated. 

Therefore, it is impossible to modify a variable existing 

outside the routine by using the variable as a parameter and 

then trying to modify it inside the body of the routine. The 

parameters must be considered as local varia.bles that have been 

initialized when the routine was called. 

9.4 The Scope of Names 

Inside a body, you may manipulate global variables defined 

inside other routines. If several variables have the same name, 

only one of these is accessible. In order to determine which 

variables are accessible, you follow the chain of £2ll§ 

backwards. The first time a specific name is encountered, you 

have found the one that is accessible. 
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Example: suppose that A ,B and Care names of global variables. 

rhere are defined routines F1 ,F2 and F3 with the 

following headings: 'iJ Z + F1 A; D suppose 
'iJ A F2 C 
'iJ A + F3 D 

that F1 is called first. Then, inside the body of 

F1, variables with the names Z,A,B,C and D are 

accessible. B and C are global; Z and D are 

local, ~s is A since it is the parameter of F1. 

Assume that F2 is called from within the body of F1. Then, 

the body of F2 may operate upon its own variables A and c, 

the local variables z and Din F1, and the global variable 

B. 

If the body of F2 calls F3, the body of F3 may operate upon 

its own local variables A and c from F2; the local variable 

z from F1; and the global variable B. 

If the calling sequence was different, quite new effects 

might appear. For instance, if F3 is called first; it does 

not have access to any local variable z. If the body tries 

to use z in an expression, an error will result. The 

variable A is no longer local to F1, but is the global 

variable by the same name. 

9.5 Recursion 

Functions may call themselves recursively. In such cases, each 
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incarnation of the function may be considered as a separate 

function with its own environment. In particular, the 

function's local variables are local to it and are global only 

to those routines it calls non-recursively. 

9.6 rhe B~IYBH Operator 

If you want to exit from a function prior to its completion, you 

may use the R~XQRll operator. This operator may be used either 

anadically or monadically. 

In the anadic case, R~XQBN returns the current value of the 

function's return parameter. 

In the monadic case, you write REXQBN followed by a 

specification expression, which sets the return parameter. For 

example, you could write: 

IE A ~ o XliEN BEXQBH Z + ?A 

9.7 comments 

Any line in a routine's body can be made into a comment if you 

start it with the symbol A• The comment symbol is called the 

"lantern" because it often sheds light on a complicated 

program. 
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suppose you define a monadic functionOSRIC. When you write 

OSRIC A , the function is applied to the array A in its entiri ty. 

If you would .like to apply OSRIC along coordinate I of A, you 

write z + OSRIC [I] A. 

Then, OSRIC will operate on the hyperplanes along coordinate I 

of A, producing a resulta~+ array such that 

pOSRIC [I] A++ ((I-IQRQ)+pA),(pZ),(I+1-lQRQ)6pA 

where for rows J of i(pA)[IJ 

Z[[lQRQJJJ ++ OSRIC FAA 
and 

F ++ ~((I=1ppA)/(0;1)),(I=ppA)/(O;J) 
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CHAPTER TEN 

ON THE ORDER OF EV~LUATION 

The order of evaluation in APPLE expressions is controlled by 

the rules of right association. However, you can easily 

construct examples in which it is undesirable to strictly adhere 

to this philosophy. For example, if we were to write 

X + ( 1, 0, 1, 0, O) /'l.'ERRIBLYCOMPLICA'l'i,'D1:.,'XPJ?J,'3.':ION 

we see that X will receive only 40 percent of the value that was 

computed on the right side of the specification symbol. If 

there is no specification of any part of the remaining 60 

percent of TL'RHiiJJ,'fCOMPLICA'l'io'DEXPRE'SDION , then we have wasted 

consijerable computing power in its evaluation. 

consequently, there is a slight, but important, modification to 

the principle of right association in APPLE: 

No portion of a select expression is evaluated unless 

it is subsequently stored into a variable. 

rhis principle has an interesting consequence. consider the 

code: 
B +-+ ( 1 , 0 , 2 , 0 ) 
Y + (B~O)\(B~0)/4~B 
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Now strict adherance to right association yields disastrous 

results since the machine must divide 4 by 0 twice. But 

suppose, instead of producing an interrupt, the result of 

division by 0 is the undefined scalar []. Then, 

4+8++ (4,0,2,0) • continuing the evaluation, we see that 

(B~0)/(4,0,2,0) +-+ (4,2). At this point, the unwanted [J has 

disappeared. Next, (B~0)\(4,2) ++ (4,0,2,0). Thus, when all 

has been computed, we have Y +-+ (4,0,2,0). 

This was undoubtedly what the programmer had intended. APPLE'S 

modification to the principle of right association tends to 

correspond to what programmers find natural. 

The APPLE compiler maps all selection expressions into a 

standard form (given in Section 1.11 of the APPLE 

specification) • The compiler is then able to distinguish the 

necessary and unnecessary computations, suppressing the latter. 
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AN INDEX OF SYMBOLS 

This appendix is an index of APPLE operators. 

It is divided into two parts: arithmetic 

operators and array operators. 
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ARITHMETIC OPERATORS 

MOHAIHC DYADIC 

Symbol I.fame Page Syml.Jol Name Page 

+ identity 18 + addition 25 

negation 19 subtraction 25 

x sign um 19 x multipli-
cation 26 

~ reciprocal 20 t division 26 

* exponen- * exponen-
ti al 20 tiation 28 

• natural logarithm 29 
logarithm 20 

L floor 21 r maximum 27 

r ceiling 21 L minimum 27 

al.Jsolute residue 26 
value· 21 

? roll 22 ? deal 35 

negation 22 combination 34 

factorial 23 0 circular 
function 29 

0 pi times 23 " AND 30 

v OR 31 

;I! not equal 31 

= equal 32 

* ~~A~~D 32 

.., NOR 32 

< less than 33 

~ less than 
or equal 33 

> greater than 34 
;:: greater than 

or equal 33 
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ARRAY OPERATORS 

MONADIC DYADIC 

Symbol Name Page Symbol Name Page 

t iota 46 t index of 113 

odometer 53 E element of 115 

ravel 53 E row of 105 -
p shape 8 laminate 85 

[I] partial 56 catenate 64 
subscript 

p reshape 57 
~1 reduction 59 

I compression 68 
I{\ accumulation 59 

\ expansion 65 
J interval 65 

!::. subarray 65 
IS) transpose 73 

!::. cross section 67 
<!> reversal 77 

\ ( ; ) mask 78 
/; subscript 55 

generator I ( ; ) mesh 79 

/). whole array 67 a prefix 72 

lil matrix 123 (JJ suffix 72 
inverse 

IS) transposition 87 
IF 98 

t take 79 
ELSE 101 

..y drop 76 
DO 105 

<P rotate 79 
UNTIL 108 

+ specif icat.:ii.on 96 
WHILE 107 

'f grade down 115 
LE'AVE 109 

Ji grade up 115 
CYCLE 109 

0 • l:( outer product 116 
EXIT 109 

!If. JO( inner product 117 
RETURN 131 ------ decode .L 120 

T encode 121 

It] matrix divide 123 
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APPENDIX II A Fast Fourier Transfo:an 

In this appendix a simple program that perfo:ans a Fast Fourier Tranfo:an is 
delineated and described. It is assumed that you are familiar with the way 
FFT's work, (If not, we recamnend that you read "A Guided 'Ibur to the Fast 
Fourier Transfonn," by G. D. Bergland, IEEE Spectrum, July, 1969, pp. 41-51. 
This paper includes a canprehensive bibliography.) 

The algorithm we follow is an adaptation of a nethod developed by R.D. Schnidt 
and camnunicated to the author by W. Juran, Proprietary Computer Systems, Inc., 
Van Nuys, cal. 91406. 

We assurre that the input data is an a rank-2 array B, where pB ++ (L, 2 ) , with 
L an integral p::>wer of 2 not exceeding sane fixed number, say, 256. Each row 
of'B consists respectively of the real and imaginary parts of a data value. 

First, ·we produce a simple preprocessing function. The algorithms for trans
fonnations for tine to .frequency and frequency to tirre are essentially the 
same. The only difference is that in the time to frequency transfonnation, the 
result must be divided by the number of data sample p::>ints. 

With this in mirrl, we can write our simple driver fl.mction, FAST. We will 
make FAST dyadic: the second parameter is the data, while the first parameter 
A detennines that the transfo:an is time to frequency if A ++ 1 and frequency 
to tine otherwise. 

The code for FAST is slDwn below, where we presume that IORG +-+ 1: 

V Z + A FAST B; C 

[1J IE - <<c + $pB)[2J)Eo,1a xagN RgxuRH z + (pB)pERR 

[2] Z + ~CpFFT((1+2eC[2])p2)p~B 

[3] Z[;2] + -Z[;2] 

[4] APFT RETURNS CONJUGATE OF RESULT 

[5) IE 1=A Xll~ll Z + ZtC[2] 

v 

Here, we insist in line [1] that the number of rows in B be a power of 2 less 
than or equal to 256. If not, FAST returns an array Z containing a predefined 
error value contained in ERR. 
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In line [2], the nonadic function FFT is invokerl, returning an array wmse 
transp:>sa:J. value is store:l in z. We will look nore closely at line [ 2 J, 
m::rnentarily. 

Line [3] produces the canplex conjugate of the result of FFT. 

And line [4] divides by the rnmiber of data p:>ints if the transfonn was t:ime 
to frequency. 

When FFT is invokoo on line [2], its argument is a rank 1+21iC[2] restructurdng 
of B such that ,B[[1]1] consists of the pure real data components and 
,B[[1]2J consists of the pure imaginary data components. For example, if we 
had starte:l with B ++ ~ ( 2 , 16 )( t 16 ) , - t 16 then the argument X transmi tta:J. to 
FFT would have been 

X ++ (2,2,2,2,2)p~B 

i.e., 
1 2 
3 Lf 

X[1;1;;;] ++ 

5 6 
7 8 

9 10 
11 12 

X[1;2;;;] ++ 

13 14 
15 16 

The imaginary canp:>nents X[ 2; 2; ; ; J and X[ 2; 2;;; J are just the respective 
negatives of these. The motivation for this restructuring will soon become 
apparent. 

The FFT must take care of the requira:J. binary sortings on this array. The 
first such sorting is the one in which the real and imaginary components 
respectively assume the p:>sition dete:rmine:l by reversing the binary encoding 
of their index in ,X[[1]1J and ,XL[1[2JJ. This can easily be achieved by 
the transp:>sition, since each coordinate of X is indexa:J. by either 1 or 2. 
The general desired array Y is given by Y ++ (1,<l>1+tL2~x/HpX)~X. 

In terms of our example array X, this is 
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Y +-+ (1,5,4,3,2,)~X 

Here, 

1 9 
5 13 

YL1;1;;;J +-+ 

3 11 
7 15 

2 10 
G 1 Lf 

Y[1;2;;;] +->· 

4 12 
8 16 

Again, the imaginary canponent is symetric to the real canponent. 

Next, we need. the appropriate array of cosines and sines for the real and 
irnaginary canponents. These are given by the array T where 

T +~ (2,1)0.00(~1M-1)~((M-1)p2)p0,(1-1+llf2)x2fN 

and 

M +-~ L2®x/1+pX 

fl -<-->- x I 1 + p .X 

Tha.t is T[[1J1] consists of the cosines of the appropriately transposed 
array of multiples of 21f divided by the number of data points; i.e., 
0,(02fN),(o4tN), ... ,(02x-1+N12)1N. T[[1]2] consists of the sines of the 
appropriately transposed array of the same multiples of 021N. 

Before "We proceed. any further, ·"We list the function FFT. 
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V Y + FFT X;J;Q;M;N;T 
[1] M+l2611N+-x/1-tpX 
[2] Y+(1,¢1+tM)~X 
[3] T+(2,1)0.00(¢1M-1)~((M-1)p2)p0,(1 1+Nt2)x2~N 

( Lt ] J + 2 + p p 'J' 
[ 5 J 1(!.!ll..[dl. 1 
[G] Q+-/[J+J-1] Y 
[7] Y+(+/[J] Y):[J] (-/[1] TxQ):[l] +/[1] Tx¢[1] Q 
LBJ lE Js1tpY XllEI llEXQBll 
[9] T+(1,-1¢1+1M-1)~T,[2] T+(1,0)/[2] T 
L 1 o J B.i:l.E.1JJ.<l.T. 

v 

Lines [1] - [3] contain the code for defining the initial sorted. arrays 
Y and T. 

The loop spanning lines [5] - [10] iterates until the condition on line [8] 
is satisfied. The variable J is used to control the processing of the data, 
starting with the last coordinate of Y and ooncluding when the second coord
inate has been processed. Y and Tare restructured in lines [7] and [9] 
to conrespond to the sortings required. by the algorithm. 

The easiest way for you to understand the way the algorithm vx:>rks is for you 
to try following its execution on a small array, say one with eight elements. 
You can then use a fonn of mathematical induction to verify that it vx:>rks on 
the higher-dimensional cases. · 
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Individual differences and group interaction. Since each evaluator will 

have his own set of values (S.'s), there may be collected diverse values of 
J 

S. for the group of evaluators. This divergence can come from differences 
J 

in R values and/or w (weights) values. The Delphi technique or simpler 
a 

group interaction may be used at this time. The Delphi technique may have 

been used earlier for both R and w values, but the evaluators are not likely 
a 

to come to a complete agreement on one set of values (but eventually there 

will be fewer sets than the number of evaluators). Any group interaction may 

yield some influence toward agreement. Some studies on group planning seem to 

indicate that people may widely disagree on objectives and criteria but may 

readily agree to favor certain alternatives. 

Let us see how different sets of S. 's for different evaluators can be 
J 

compared. Let B represent a composite attribute of all ai's that have been 

considered. In our park example, B will be "acceptable park design with all 

the features properly balanced." Sj values can now be used to produce 

R (A ) for each evaluator automatically (associating Sj values with numbers 
B j 

in the interval [O, l]). A display of R6's for all alternatives A1 , A2 , ••• 

A can be made for each evaluator (see Figure 4). The total display of all 
n 

such values of all the evaluators may be shown in a scrambled order to maintain 

anonymity, if desired. In addition, a statistical group response, such as 

quartiles (Q1 , M (median), Q3) of each R6(Aj) value, can be calculated .. 

Seeing where his own evaluation stands within the group response may aid him 

in understanding the overall evaluation. 
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.-- - - - - ------1 
I 

I 

I L Evaluator E : RS I I 1 

Al A2 A3 A n 

r - - - -:- - - - --: - - -.1 
I 

Evaluator E2: RS I I I Jo 
Al A2 A3 A n 

• 
• 

• • 
• 

• 

------ -- - - -.1 

Evaluator Ek: RS I I I L 
Al A2 A3 A n 

Figure 4. Overall Evaluation of Alternatives 
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As an evaluator studies 1 the relative merits of alternatives and gains a deeper 

understanding of trade-off implications, his total conception of the situation 

grows and his fuzzy-set mapping may become more defined. If R8 is his 
(t) 

preference function operating on the fuzzy-set at time t with respect to the 

global criterion imposed by 8, then as t increases, R tends to converge 
8 (t) 

toward a more precise function; i.e., the evaluator becomes better able to 

sort out alternatives. 

Fuzziness (or impreciseness) of many decision-making situations is usually 

caused by a mixture of ignorance, randomness, and intrinsic fuzziness. This 

kind of exercise can help the evaluator to separate out types of fuzziness 

involved and learn to identify where more information is needed (case of 

ignorance), where probablistic treatment is needed (randomness), and where 

increased awareness of other value systems besides his own is needed 

(intrinsic fuzziness). 

In complex decision situations where many competing factors must be properly 

accounted for simultaneously, the interactive system can be made to keep track 

of the evaluator's tendencies. For example, suppose the evaluator is 

excessively cost oriented and his assignments of grades of membership for the 

cost attributes fall consistently outside the interquartile range (Ql, Q3) of 

the group response. The system can remind him of other important factors and 

trade-off considerations. 
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Interacting with other evaluators through the system and seeing where his own 

evaluation stands within the group response may influence him to take additional 

factors into account or to adjust his preference functions. If he feels 

strongly about his preferences, he can try to persuade others by stating the 

reason why the value should be lower (or higher) than the values (in the 

interquartile range) expressed by the 75 percent majority. 

The process of interaction and reevaluation can be repeated until, it is to be 

hoped, convergence is attained. Polarization may occur but completely flat 

distribution is not likely for most value-laden questions. Individuals seem 

more responsive to value-oriented questions than to factual questions; that 

is, changes of opinion seem more readily attainable on value-oriented issues 

than on the factual ones. 
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SUMMARY STEPS OF MACHINE-AIDED EVALUATION 

There are seven evaluation steps to be considered, some of them will be 

elaborated on in the following pages. For simplicity, the procedure assumes 

a single user (evaluator) and group interaction is not emphasized. Steps are 

presented in the "usual" order but can be reordered at the user's direction. 

1. List alternatives by name or number assigned to each. 

2. List criteria for evaluation in terms of attributes. 

3. Rank attributes and assign weights. 

4. List values in their "natural" description (numerical or non numeric) 

for each alternative's attributes. 

5. Determine grades of membership of all values of attributes. 

6. Calculate the sunnnary value of each alternative. 

7. Repeat any or all the steps above. 

The list of alternatives and attributes may be prepared in advance 

covering steps 1, 2, and 4 and can be thought of as an attribute-alternative 

table (Figure 5). Unlike mathematical tables, this table can contain both 

numerical and; nonnumerical descriptions, even lengthy discussions supple

mented by pictures that can be referenced. Therefore, the physical form of 

the information may not look like the table in Figure 5. 
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Attributes 

a m 

18 

Alternatives 

Figure 5. An Attribute-Alternative Table 

A 
n 

Following is an expanded description of the seven evaluation steps. 

1. List alternatives by name or number assigned to each. 

2. List criteria for evaluation in terms of attributes. 

SP-3590 

Attributes can be given on a nonconunittal trial basis with full recognition 

that they are likely to be inadequate or incomplete; or they can be carefully 

selected by a group of people (e.g., policy makers, planners, experts, 

representatives of the public). Attributes may be separated into two groups, 

"desirable attributes" and "undesirable attributes", or they can be all mixed 

together. Subsequent instructions will reflect the choice. 
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3. Rank attributes and assign weights. 

Attributes are rank ordered in terms of their relative importance in 

contributing to the objectives. If there are many attributes and ranking 

is difficult, machine assistance can be provided by showing only two 

attributes at a time to the evaluator. Judging the relative importance 

of two attributes is much easier than ranking the whole list.* 

If the evaluator's judgment of importance is transitive and total in 

ordering, the attributes are listed in the order of importance, possibly 

placing two or more in the same rank in case of a tie. The logic 

(computer programs) inside the machine can easily check any inconsistency 

and ask the evaluator to compare again those attributes whose rankings 

are in conflict. If the inconsistency is not removed, it is likely that 

at least one attribute should be redefined in terms of two or more other 

attributes, or some attributes should be grouped together as one. An 

experienced evaluator usually can sense which ones are in need of adjustment. 

* Showing two attributes at a time makes comparison easier but the 
resulting ordered list should be reexamined as a whole to guard against 
any possible context shifts, which may result when only two items are 
compared at a time. 
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When ranking is complete, the attributes are displayed in rank order. 

The evaluator is now asked to assign weight w. to each attribute, starting 
]. 

at the top-ranked one(s) with the weight of 100. Using this as the point 

of reference, the other attributes are also assigned weights. These 

weights should reflect the relative "strengths of effects" of attributes 

contributing to the objectives. 

4. List attribute values in their "natural" description (numeric or non -

numeric) for each alternative's attributes. 

If the attribute values are given in verbose descriptions, they can be 

condensed to a few key words to be displayed along side the names of 

attributes. The original information sheets should also be available 

to the evaluator. 

5. Determine "grades of membership" of all the attribute values. 

Using the fuzzy-set concept, each attribute value is judged in terms of 

"grade of membership" -- i.e., a number in the interval [O,l]. Since 

comparability is important in value judgement, other values of the same 

attribute from different alternatives can be shown one or two at a time 

for comparison. In Figure 5, this process corresponds to moving hori-

zontally across the alternative on the same attribute line. When all 

the attribute values are judged in this way, a new table of values is 

created within the uniform scale. When it is displayed, it will look 

exactly like Figure 5 containing a single number (between 0 and 1) in 
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each cell of the table. Seeing the total array of numbers may prompt him 

to change his earlier choice of values. 

6. Calculate the sunnnary value of each alternative. 
m 

The summation S. = 
J 

l: 
i•l 

w. R (A.) is calculated for each alternative 
1 Cii J 

A. as one of the basic machine aids, but some other forms of getting the 
J 

summary value may be tried out. The evaluator can specify his own ideas 

easily with the man-machine communication language, User Adaptive 

Language (UAL) (see Hormann, et al [1970]). 

If attributes have been separated into "desirable attributes" and 

"undesirable attributes," S.'s are calculated using only those a's 
J 

in the desirable category, ands: =l: w. (1 - R (A.)) is calculated using 
J i 1 Cii J 

only those a's in the undesirable category. Weights, attached to attri-

butes, remain the same since they should reflect the "strength of effects" 

regardless of desirability or undesirability. The difference, S. - S~ 
J j 

for the alternative A. may be called the "net-benefit value." Comparing 
J 

these values presumably will indicate a tentative conclusion concerning 

which alternatives are best. 

7. Repeat any or all the steps above. 

The evaluator is encouraged to go back and examine his previous judgments. 

it is usually advisable, the first time around, to use first impressions 

in making attribute rankings and in making a judgment of grade of 
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membership without too much deliberation. Stepping through the whole 

sequence rather quickly the first time, rather than dwelling on a single 

factor in detail, will give him a better understanding of how certain 

factors are accounted for in the total evaluation. 

Iterating the evaluation process tends to bring many assumptions into 

the open, and the evaluator may become more aware of how the conclusions 

are related to the assumptions. For example, assumptions on the objec

tives will influence the interpretation of objectives and criteria in 

terms of attributes and will also influence attribute ranking and weight 

assignments. Assumptions on political and technical constraints on the 

proposed designs will certainly influence many decisions. Probing into 

them with "what if" questions may separate out "real" constraints from 

imagined ones or those that can be overcome by negotiation or by. 

creative problem solving. 

The evaluator may, in the light of new insights and understanding, wish 

to redefine objectives and specify relevant attributes more carefully. 

Interacting with the other evaluators, or even with the policy makers, 

may bring further clarification. Possible use of the Delphi technique 

has been discussed, so it will not be dealt with here. 
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Complex trade-off implications, which are typically nebulous, can be 

made clearer if bar graphs such as those shown in Figure 3 are used. 

They can be rearranged to show the R values of different alternatives 
ai 

horizontally for each a .• The evaluator may be encouraged to ask "what 
1 

if" questions on possible trade-offs that are not evident in the design 

alternatives; the answers may suggest a new or modified design. 

POTENTIAL APPLICATIONS 

There are a number of areas of potential application for this method. 

1. Complex equipment with many performance criteria. 

Evaluation of different designs of complex equipment such as aircraft 

and underwater exploration vehicles can use machine-aided evaluation. 

In these, many attributes must be included in evaluation and they cover 

both factual information and subjective value information. This class 

of problems is less fuzzy not only because factual information tends to 

dominate but because the physical boundary in measuring operational 

behavior is relatively clear. 

2. Selection of suitable locations for large 'complexes. 

The problem of selecting a suitable location for a large complex, such as 

a new housing development, often requires careful consideration of many 

attributes that are qualitative in nature. Among many possible locations, 

one or a few candidates are usually selected in order to proceed with 
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designing, legal and financial negotiations, etc. Other examples of 

large undertakings whose location decisions tend to affect various 

segments of our society are: manufacturing plants, airports, hospitals, 

health-care centers, sanitariums, rehabilitation centers, educational 

institutions, trade centers, highways, and transportation networks. 

3. Complex combination of things that interact. 

Making an appropriate EDP system selection from all possible combinations 

of available hardware/software products to meet the user needs is a complex 

problem. Guessing at a suitable hardware/software mix is hard enough, 

but evaluation of a wide number of configurations when the components 

interact usually requires an advanced modeling technique (Sutherland 

[1971]). Information on the performance characteristics of hardware and 

software components are separately available, but very little information 

can be had on the total performance characteristics for specific 

configurations--unless the pieces are all of the same manufacture. After 

modeling produces the system's performance characteristics, our technique 

can be used in total performance evaluation. 

A similar situation facing the decision maker is the selection of 

alternative designs of hospitals, schools, housing complexes, or research 

laboratories. 
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Another area of interest is compensation programs to provide employees 

many different options. Companies who can provide many options will 

have a definite advantage in employee inducement and retention. 

4. Long-range large scale programs comprised of many projects that are 

interrelated and interdependent. 

Many government programs such as health care, welfare, education, and 

foreign aid programs are in this category. This is an area of great 

importance because of its far-reaching effects, both intended and 

unintended. It is also the area of greatest difficulty because of its 

complexity, unclear boundary (sphere of effects are not clearly definable) 

and future-oriented consideration. 

These programs or measures that tend to create many side effects or that 

produce long-term effects or irreversible conditions, must receive extra 

care in planning. Although the future is always uncertain and, therefore, nc 

forecasting techniques can claim total accuracy, a variety of forecasting 

techniques combined with modeling can produce some indication of types of 

impacts a given program might make in the future. 

After possible consequences of alternative courses of action are generated, 

the consequences can be arranged within a "decision-event map," indicating 

interrelation of actions taken, their intended results and possible side 

effects, and intervening events that are likely to happen. 
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Concentrating on the consequences in the time-stream (rather than at 

one point in time), our technique can still be employed by using attri

butes that explicitly indicate future impacts. (e.g., "rate of yearly 

increase in food production in country X, during 1970-1975, after 

introduction of farming equipment" or "number of farm workers in country 

X migrating yearly into cities during 1970-1975"). 

Admittedly, any future-oriented evaluation is very tenuous. However, 

evaluating programs to assist underdeveloped countries is a more 

amenable problem than evaluating our own future possibilities. We can 

use the U.S. and other developed countries as models in planning to 

avoid possible undesirable consequences and to promote those attributes 

that are desired by the country. Although exact correspondence between 

the model and the real consequences in a given country cannot be 

expected, hindsight is readily available while foresight is not. 

\, 

·~ ... 
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S~Y 

The importance of including many criteria of various types and degrees 

of imprecision has been discussed. The man-machine fuzzy-set approach 

described here is our first attempt to tackle this task. Insight gained 

in using these techniques may lead to improvements or to new ideas and 

techniques. 

Systematic analyses of the situation supplemented by intuitive judgment was 

emphasized. The following points may be worth reviewing: 

Consistency in treatment of all alternatives with many attributes 

describing desirability or undesirability. One aspect of consis

tency achieved here is the making of everything into a value

oriented judgment; even though attribute values may be factual, 

determining their worth in relations to the objectives requires a 

judgmental decision. The fuzzy-set concept allows explicit 

treatment of imprecise value judgments. 

Comparability. Since absolute judgment is far more difficult than 

relative judgment, the man-machine techniques facilitate comparison 

by bringing in other relevant factors. In addition, the fuzzy-set 

treatment of attribute values make them commensurable, and complex 

trade-off possibilities can be explored much more readily than 

without such assistance, 
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Systematic use of the knowledge and experience of experts as well as 

opinions of people from different backgrounds. Those techniques 

(such as the Delphi) for direct involvement of people can fit 

naturally into the on-line interactive system. 
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