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CHAPTER ONE

INTRODUCTION

This tutorial manual illustrates the programming features of
APPLE (A Parallel Programming Language).* APPLE is based on
K. E. Iverson's APL (A Programming Language, Wiley, 1962), a

language that uses generalized operators to concisely express

mathematical algorithms on multi-dimensional data structures.

The generalized operators of APL and its successor APL\360
permit a programmer to express manipulations of arrays almost as
easily as he can express manipulations of scalars in
conventional programming languages (e.g. FORTRAN, PL/I, etc.).
The advantage of these operators is that wheﬁ the programmer
writes arithmetic expressions involving arrays, he does not have
to go through the tedious process of writing nested loops to
control the processing of the arrays. Instead, he is able to
express the process as it conceptually occﬁrs: in parallel on

all of the elements of the arrays.

That programmers tend to think in terms of parallel processes on

......... o o o =

* APPLE 1s not to be confused with the RADC assembly language
bearing the same name which was produced for an associative
processor.
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arrays is borne out by the APL\360 code produced by its large
number of commercial users, who write their code as if it could
be executed in parallel even though it is executed on a
sequential computer. Many payroll programs, for example, treat
the set of base salaries as a vector. Withholding taxes,
voluntary deductions, and so forth, are then computed for the
entire vector, at once, rather than on an employee-by-employee
basis, because the same algorithm is used to process every

employee.

One of the primary benefits of APL has been the elimination of
unnecessary loops and bookkeeping. For example, a programmer
writes loops far less frequently in APL in than in FORTRAN or
PL/I. This tends to reduce the number of situations in which

coding errors can be introduced into a program.

However, because gpr\360 is not a complete progfamming language,
it does not eliminate all such situations. The only control
operator in APL\360 is the GOTO operator. The basic control
operators--e.g., IF and DO--that have been included in FORTRAN
and other languages dating from the 1950's aré absent from APL.
Paradoxically, one can write elaborately eloquent arithmetic
expressions in APL but must resort to the techniques of assembly

language programming in order to perform them more than once.

Dijkstra, Mills, Schorre and others have blamed a majority of

programming errors on the unrestricted use of the GOTO
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statement. Since one can control program flow only with GOTO's

in APL, it was clear that there was a need for other control
operators in APPLE if the possibility of coding errors was to be

reduced significantly.

consejuently, APPLE contains such features as conditional
statements, conditional expressions, operators for writing
loops, and case statements. These control operators eliminated
any need for the GOTO operator. Therefore, there is none in

APPLE.

Other unique features of APPLE increase the clarity of
exposition and simplify the coding process. These features
further generalize APL's concepts and conventions for

manipulating arrays and defining functions and operators.

APPLE is sufficiently extensible that all of its operators can
be defined in the language itself. A formal specification of
APPLE is contained in the "ILLIAC IV Language Requirements
Study: Final Report," SDC document TM-5074,/000/00, 31 January

1973.
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CHAPTER TWO

HOW TO USE THIS TUTORIAL

In this tutorial, we assume that you have had some programming
experience. We do not assume a sophisticated understanding of
programming languages. The manual is self-contained, so you
should be able to learn how to use APPLE by reading the
descriptions and working out the examples that have been

provided.

Because APPLE treats many mathematical concepts differently than
do most other languages--certainly FORTRAN or PL/I--it is
important that you read Chapters 3, 4, 6 and 7 closely, even
though you may be familiar with many of the concepts. It is
especially important tﬁat you be aware of the differences in how

to subscript arrays or evaluate arithmetic expressions.

The tutorial is organized so that each chapter builds on its

predecessors.

Pay close attention to the discussions on the order of
evaluation in Chapters 4 and 10. The concept is easily learned,

but you must understand it thoroughly in order to program in
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APPLE.

APPLE has not yet been implemented on any computer.
Consequently, we have not included any description of
input/output or systems interface procedures. Those
descriptions will be made available along with each APPLE

implementation.
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CHAPTER THREE

WHAT IS AN ARRAY?

The ILLIAC IV is a powerful computer. It was designed to
data operands. For example, if we wanted to double each of a

set of 50 numbers, the ILLIAC could double them all at once.

In a conventional programming language, such as FORTRAN or PL/I,
you would have to assign a unique name to each of the 50 numbers
in order to write a program that would double each of them. One
simple way of assigning a unique name to each of the numbers is
to declare an array that contains them. Then, each number would
have a unigue name consisting of the name of the array and a

subscript (or index). The subscript would simply be a number in

the range 1, 2,...,50.

There are at least two ways to write a program that would double
each of the 50 numbers. One way is to simply write 50
assignment statements, each of which sets a specific element to
twice its previous value. Another way is to write a loop that
will iterate 50 times and in which each element is replaced by

its double. When coding a program, this latter alternative is
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preferable since it requires less writing. Even more important,
writing the loop reduces the possibility of your making
keypunching errors. While neither of the alternatives in this
approach seems very important, consider the problem of doubling
100,000 numbers. In this case, we would have no alternative but
to use an array and a loop since the program would be too long

to write.

While these techniques are perfectly acceptable ways of
programming in FORTRAN or PL/I on a sequential computer like an
IBM/370 or a PDP-10, we may ask: Why write a loop to double 50
numbers on the ILLIAC when it only takes a couple of
instructions in ILLIAC Machine Language? The answer is that
these programming languages were not designed for computers like
the ILLIAC, so there is no notation in the language to represent
doubling all of the numbers at once since this is impossible on

ordinary computers.

APPLE is not a conventional programming language. It is
designed for use with computers on which you can double 50
numbers all at once. In fact, APPLE is designed to run on a
"computer" where you can double 100,000 numbers at once. (Since
no such computer exists, the APPLE compiler makes the ILLIAC
simulate this imaginary computer. Thus, all you have to do to
double the 50 numbers in APPLE, is to put them into an array and

double the array.
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Before we can show you how to write an APPLE program for

doubling the array, we must first establish the terminology that
is used t> describe arrays and their properties. While all
programmers are familiar with arrays, few programming languages

treat them the same way.

3.1 Vectors and Matrices

A vector is a one-dimensional array of numbers. A vector is an
ordered set of elements (i.e., a first element, second element,
etc.), and we know how many elements there are. It does not
matter how you write them down--horizontally, vertically, or
diagonally; the number of elements in the vector will not change

and there will still be a first element, second element, and so

on. The number of elements in a vector is called its

S e e s s e m -

Example. If V¥ is a vector, then we represent its dimensionality
by writing pVv. (p is the greek letter *rho.") For
example, if v is the vector consisting of the four

numbers (14, 3, 2, 17), then pV is egual to 4.

A matrix is a rectangular array of numbers. Each matrix has a
nunber of rows and a number of columns. Mathematicians can
specify a particular element of a matrix by calling out, for
example, the third element of the fourth row, or the fourth

element of the third column. This is completely unambiguous.



1 September 1973 System Development Corporation
T™™M-5074/100/00
They can also call out either the entire fifth row, or the sixth

column, or one of the diagonals of the matrix.

A matrix has two important dimensions: the number of rows and

the number of columns it contains. The dimensionality of a

T — — - —

number of rows and whose second element is the number of columns
in the matrix. For a matrix M, the dimensionality of ¥ is
written pM.
Example. If M is the matrix

12 4 6 5

8 10 22 15

then oM is equal to the vector (2, 4).

The dimensionality of a vector is defined to be the vector whose

only element is the number of elements in the vector. Thus, we

- —_—— ——— — —— —— —

Suppose 4 is either a vector or a matrix. If the vector p4
consists of only one element, then 4 is a vector; if p4

consists of two elements, then 4 is a matrix. So we need a
precise way of determining the number of eiements in pA4 to

decide whether 4 is a vector or a matrix.

Since p4 is always a vector, it makes sense to talk about the
dimensionality of p4, i.e., to talk about the one-element vector
ppA whose single element is just the number of elements in the

vector pA. (Here, we write pp4 to mean p(p4d). The parentheses



1 September 1973 System Development Corporation
TM-50747100/00
are not necessary, so we omit them.) It follows that if pp4
equals 1, then p4 contains one element, hence 4 is a vector. If
pp4d equals 2, then pA contains two elements, hence 4 is a two-

dimensional array (i.e., a matrix).

It is cumbersome to talk about the dimension vector of the

dimension vector of an array A4. So we define the word rank to
mean the value of the unique element of the dimension vector of
the dimension vector of an array, i.e., the value of ppd. Then,

a vector is a rank-1 array, and a matrix is a rank-2 array.

Mathematicians speak of row vectors and column vectors. In
APPLE, these are not really vectors, but matrices. This is
because a row vector always has two important dimensions: the
number of elements it contains and the direction in which it is
written. This is also true of column vectors. In order to be
consistent with the convention of listing the number of ro&s
first, then the number of columns when we talk about the
dimensionality of a matrix. The dimension vector takes the
following form. For a row vector R the first element of pR is
always 1, the number of rows in the matrix, aﬁd the second
elenent is the number of elements in the row vector. Similarly,
the first element in the dimension vector of a column vector is
always the number of elements in the column vector, while the

second element is always 1.

It is possible to determine the number of elements in a matrix
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by looking at its dimension vector. The number of elements is

equal to the product of the number of rows in the matrix and the
number of columns in the matrix. That is, the number of
elements in a matrix is equal to the product of the two elements

in its dimension vector.

Example. If ¥ is a matrix having 5 rows and 7 columns,
then pM equals the vector (5, 7). There are
35 elements in ¥, and 35 is the product of 5

and 7.

3.2 Rank-n Arrays

In APPLE, the concept of an array is generalized to an arbitrary

number of dimensions. We call this number the rank of the

array. For example, a rank-3 array is an arrangement of numbers
along the three coordinate axes of Euclidian 3-space. That is,
the elements are arranged to form the lattice points of a
rectangular parallelepiped. If 4 were such an array, then p4
would be a vector (a, b, ¢}, where a, b and ¢ correspond
respectively to the number of planes, rows énd columns of 4, and
ppd equals 3. Similarly, there are rank-4 arrays, rank-5
arrays, and so forth. It is easy to see that the number of
elements in a rank-n array 4 is the product of the elements of

p A

- 11 -
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3.3 Empty Arrays

APPLE permits you to work with an array 4 for which one or more
of the elements of pA is zero. Since the product of the
elements of p4 equals zero, it follows that 4 contains no

elements.

You will occasionally have use for empty arrays. In fact, an

empty array occurs in the following section.

3.4 Scalars as Rank-0 Arrays

A scalar is a number, as distinguished from a vector, matrix,

quaternion, etc. A scalar corresponds to a geometric point.

In APPLE, a scalar is an array that has no dimensions whatsoever
associated with it. Consequently, there can be no elements in
the dimension vector oS associated with the scalar S. This
implies that ppS equals 0, the number of elements in the vector
0S. Since pps is the rank of the array 5, we maintain

consistency by calling a scalar a rank-0 array.

- 12 -
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CHAPTER FOUR

NOTATION FOR CONSTANIS AND VARIABLES

In APPLE, a constant is a number the value of which never

—— — - —— —a—

changes during the execution of a program.

A variable is not a variable in the mathematical sense. Rather,
a variable is the name by which you refer to a value that you
wish to store someplace and access later. The value of a
variable may change during the execution of a program, or it may
remain constant. The significant point is that the value of a

variable can vary according to your needs, but the value of a

constant is always the same.
4.1 Notation for Numbers

APPLE permits the use of integral and rational numeric
quantities. These numbers are called integers and

e e i

floating-point numbers, respectively.

The precision of the ILLIAC permits the representation of
integers n such that -248<n<248 (i.e. integers smaller in

magnitude than 281,474,976,710,656).

- 13 -
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Floating-point numbers are rational approximations to real

numbers. The representation range for a floating-point number f
is 2-16384<|f[<216383, yhere the significant part of the
mantissa is correct to 48 binary figures. The floating-point
representation is automatically used for those integers that

cannot be represented in 48 bits.

Integers are written the same way in APPLE as they are in normal
mathematics, except that the negation sign is represented by a
raised bar () so that it can be distinguished from the
subtraction operator. Commas may not be used to separate three
digit fields, because the comma is an operator that has a unique

meaning in APPLE.

Exanple. The number 1,234 is written 1234, while -50,762 is

written 50762,

Floating-point numbers are also written according to the normal
arithmetic conventions. Here, too, the negation sign is used to

represent negative numbers.

Example. Pi may be written as 3.141592653583273, while

-14,337 is written 14.337
You may also represent numbers in scientific notation, i.e., as
the product of a number and some integral power of 10. The |
mantissa does not need to be normalized. Here, the number is
represented by writing the number, the letter F, and the

integral power of 10 by which the number is to be multiplied.

- 14 -
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Exanple. The number -47335 can be written in scientific
notation as either -4.7335x10¢, or
-.0047335%107 0or-47335000000%x10-6. In APPLE,
these would be, respectively, Ty.7335F40C

T.00U7335E 70X 47335000000F 6 e
4.2 Notation for Variables

Since one Oor more values is stored in a variable, we must have a

means 0f referring to variables. We do this by giving the

variable a name.

A name consists of an alphabetic character followed by a

(possibly empty) sequence of alphameric characters. An

Lnbuicassnsl Cewdtmcammeaeas

— e s s’ e e s e s e o o i . -

underscored digit, or an alphabetic character. A name may not

contain any imbedded blanks.

Example. The following are names:

N N = N = S
[ i =

N

feo

3U56HC

4.3 The Equivalence Symbol

APPLE uses the double-headed arrow (<«») to represent equality.
This symbol is not an APPLE operator, but serves only as a meta-
linguistic device. Thus, when we wish to say that the content

- 15 -
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of the variable 4 is the number 3, we write 4 «»> 3,

If we want to be more precise and insist that 4, contains the
scalar 3, as opposed to the vector (3), we would have to specify
two facts: one related to the numeric value contained in 4, the
other related to the rank of 4. In this case, we would write:

A «» 3
ppAd <> 0

If 4 had been the vector containing only the number 3, then we

could have written either p4d<=+1 or ppd <> 1 .,
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CHAPTER FIVE

BASIC ARITHMETIC OPERATORS

APPLE provides the programmer with a large number of arithmetic
operators. These operators are designed to operate on arrays,
rather than on scalars. Some of the operators; e.g., addition,
subtraction, multiplication, division, exponentiation; are
common to standard languages. The remaining operators are of
the type commonly found in the mathematical subroutine libraries

of major programming languages.

The operators are applied to entire arrays. The multiplication
operator can be used, for example, to double all of the elements
of an array without your having to write a loop. It can also be
employed to multiply each element of one array by the

corresponding element of another array.

In this chapter, we will introduce you to each of the arithmetic
operators and then explain how it works. We will subsequently
describe how you form expressions involving more than one
operator. In a later chapter, we will show you how to

generalize some of the arithmetic operators.

- 17 -
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5.1 The Scalar Monadic Operators

An opérator is called mopnadjic if it operates on only one
argument (or operand). A scalar monadic operator is a monadic

operator that is defined in terms of its effect on a scalar

operand.

Since each element of an array is a scalar, a scalar monadic
operator applied to an array operand A4 produces a resultant

array B such that p4 «»> pB. Each element of B equals the appli-
cation of the operator to the corresponding element of 4.

A monadic operator is written to the left of its argument.

In the remainder of this chapter, we will use the variables

A, B, ¢, D, U, Vto represent the following arrays:

"2 3 0 2 3 5
A<+ 7 41 B «\7 4 1
¢ «> (1.33, ~1.33, 7.0, 0) D <> (2.72, 3.14, ~5.8, 148.3)

U""‘* (1’ Og 1, O) V‘-—* (1$ 1) 09 O)

where

pA <+ (2, 3) pB «+ (2, 3) pC «+ (u) pD «+ (y)
pU <+ (U4) pV <= (u)

5.1.1 The Identity Operator

The symbol + is used to represent the identity operator. For

any array A, +4 equals 4. In symbols, we have +4 <+ A,
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Example:

5.1.2 The Negation Operator

The symbol - is used to represent the negation operator. (Note

that - is different from the negation sign ~, which is only used
for writing negative numbers.) For any array 4, every element of

Als subtracted from 0.

Example:

-4 e ( 2 T3 0
7 oou 1

5.1.3 The Signum QOperator

The symbol * is used to represent the signum operator. For a
number x, signum(x) is the function whose value is: 1 if x>0, -1

if x<0, and 0 if x=0.

Example:
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5.1.4 The Reciprocal Qperator

The symbol : is used to represent the reciprocal operator. 5
is defined for all nonzero arguments, its value is 1 divided by

B.

Example:

B «>[0.5 0.3333333333 0.2
0.1428571429 0.265 1

5.1.5 The Exponential QOperator

The symbol * is used to represent the exponential operator. For
any array A, =/ equals e (2.7182818284...) raised to the 4

power. That is, x4 is the natural antilogarithm of A.

Example:

*/A «+(1.3533528325 1 2.00855369231 I.OOOOOOOOOEQ
(1.096633158E3 1.8315638894 2 3.67879u412F 1

The symbdol @ is used to represent the natural logarithm
operator. For a strictly positive argument B, @B is the
logarithm of 3 to the base e.

Example:

®n ++(O.6931U71806 1.098612289 1.609437912
1.9459101490 1.386294361 0.000000000
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5.1.7 The Floor Operator

The symbol | is used to represent the floor operator. For a

number x, the floor of x is the algebraically greatest integer

less than or equal to x.

Example: If ¢ is the vector defined on page 18, then

The symbol | is used to represent the ceiling operator. For a
number x, the ceiling of x is the algebraically least integer

greater than or equal to x.

Example:

The symbol | is used to represent the absolute value operator.

The absolute value of a number x is the algebraic maximum of x

and -x.
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[4 <>f2 3 0
741

5.1.10 The Random Integer Operator (Rell)

Example:

The symbol ? is used to represent the random integer operator,
which is better known as "roll," as in the rolling of a die.

The operand must be a positive integer array. For each scalar
n, the result is a normally random integer selected from the set
{1,24«+.4n} or {0,1,...,n=-1} according as the index origin is 1
or 0, respectively. (See Section 6.1 for a discussion of Index

Origin.)

Example:

5.1.11 The Logical complementation Operator (NOT)

The synbol ~ is used to represent the logical complementation
operator. The operator is defined only on the set {0,1} and

transforms 1 into 0 and 0 into 1.

Example:

~U <> (0, 1, 0, 1)
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5.1.12 The Generalized Factorial Jperator

The symbol ! is used to represent the generalized factorial
operator. } is not defined for negative integers. For all non-
negative integers n, the result of applying this operator is n!
If x is ndot an integer, the result of applying this operator is
the gamma function applied to x+1. If n is a negative integer,
n! is undefined.

Example:

'C +> (1.188192811, 4.08546585, 5040, 1)

5.1.13 The Multiple of 1 Operator

The symbol © is used to represent the operator that multiplies

its operand by .

Example:

oC <+ (4,178318229, ~4.,178318229, 21.99114858, 0)
5.1.14 Summary of Scalar

The 13 scalar monadic operators are summarized in Table I.
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TABLE I

SCALAR MONADIC OPERATORS

Name

Identity
Negation

Signum

Reciprocal
Exponential
Natural
Logarithm
Floor
Ceiling
Absolute
Value
Random Inte=-
ger (Roll)
Logical Com-
plementation
Generalized
Factorial
+ Times

A
0-4
1 if 4>0
x4 > { 0 if A4=0
T1 if A<0
A «> 134
x4 <> e

®A<«+ 1n A

Algebraically greatest integer < B

Algebraically least integer 2 B

|4 <> { A if 420

Random Integer between IQRG and 4

~4 <+ 1-4 (for Aef{0,1}

1A <> { A factorial if 4 «» |LA4A
(TA+1) if A#LA

OA <« 1mxA

5.2 The Scalar Dyadic Operators

An oparator is called dyadic if it operates on two operands. A

- e

terms of its effect on a pair of scalar operands.

If Aand B are two arrays such that p4 <> pB , then the elements

of Aand B may be paired according to their positions in the two

arrays.

We say that an element from 4 and an element fromB are

—— e e

within their respective arrays; that is, the subscript that

identifies the one element also identifies the other. The
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application of a scalar dyadic operator to two such arrays A and
B produces a resultant array C where pC <> pA <> 058 and an
element of ¢ corresponds to the result of applying the operator

to the corresponding elements of 4 and B.

A dyadic operator is written between its arguments. The variables
A,B,C,D,U,V used in the discussion of dyadic operators

are defined on page 18.

5.2.1 The Addition Operator

i ——  — —— o - —

The symbol + is used to represent the addition operator.

A+B <> 0 6 5
14 0 O

5.2.2 The Subtraction QOperator

——— S remsesamas =Y

Example:

The symbol - is used to represent the subtraction operator. The
arqument on the right of the operator is subtracted from the

argument on its left.

Example:
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5.2.3 The Multiplication Operator

The symbol x is used to represent the multiplication operator.

Example:

5.2.4 The Division Operator

The symnbol * is used to represent the division operator. The
argument on the left of the operator is divided by the argument
on its right. The operation is defined for nonzero divisors

only.

Example:

5.2.5 The Residue Operator

The symbol | is used to represent the residue operator. If m#0
and n are numbers, there exists an integer q such that n = mq +
r, where 0 < r < {m|. The symbol r represents the residue of n
modulo m. The definition that follows is extended to cover the
case m = 0: the residue of any nonnegative n, modulo 0 is equal

to n, but remains undefined for n < 0.
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when we write 4]/, we mean the residue of 7 modulo 4.

Example:

AlB «>[0 0 5
0O 0 0

clp «» (0.06, 0,48, 1.2, 148.3)

5.2.6 The Minimum Operator

The symbol | is used to select the algebraic minimum of its two

operands.

Example:

Al <72 3 0
7 Ty "1

cLy «» (1.33, ~1.33, 5.8, 0)

5.2.7 The Maximum Operator

The synbol [ is used to select the maximum of its two operands.
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Example:

AlB «>§2 3 5
74 1

cfp «» (2.72, 3.14, 7, 148.3)

5.2.8 The Exponentiation Operator

The symbol * is used to represent the exponentiation operator.

In order to raise 4 to the B power, you write Axp.

Example:

AxB <> 4 _,000000000£0 2.700000000E1 0.000000000Z0C
8.235430000L5 2.560000000£2 1.0000000C0E0C

2.500000000£71 2.700000000£1 1.000000000E0
8.235430000£5 3.,906250000FE 3 1.000000000X0

Bx4d <~

DxC <> (3,784222315, 0.,21831499593, ~220798,4168, 1)

Note that 4+p is not always defined. For example, A4*0.5 is the
square root of 4 , which is defined only for nonnegative A . Of

course, 32*0.2 +» 2 since 0.2 <> :5and ~2%5 <> 32,
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5.2.9 The Logarithm Qperator

The synbol @ is used to represent the logarithm operator. The

logarithm of 4 to the base B is written Be4A . By definition, 4
and B must be strictly positive and we may have 4 <+ 1 if and

only if B «» 1 The common logarithm of A is written 1084,

Example: If
T «<>(10 10 10
10 10 10
Then

T®B +-(0.3010299957 0.4771212547 0.6989700043
0.8450980400 0,6020599913 0.0000000000

5.2.10 The circular Function Operator

The symbol © is used to represent the family of operators for

all of the trigonometric and hyperbolic functions, which are
collectively referred to as the circular functions. This
applies to the trigonometric functions since they are defined in
terms of the unit circle, and to the hyperbolic functions as a
conseguence of the relations sinh iz = i sin z, cosh iz =

i cos z, and tanh iz = i tan z, where i2=-1,

A circular function is invoked by writing AoB, where the value

of 4 is used to identify the particular circular function, as
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follows.

The following trigonometric functions are defined for angles in

radian measure:

10 1is equivalent to sinB .

208 is equivalent to cosB.

308 1is equivalent to tansB .

“10B 1is equal to arcsin B, where 12|B

“20B is equivalent to arccos B, where 12|B
~30B is equivalent to arctan B.

Three functions are useful in trigonometric identities:
4o produces the principal square root of 1+B2,
00B produces the principal square root of 1-B2,
where 1z|B _
“yoB produces the principal square root of 1+B2,
where 1<|B.
(Here, we abused the language somewhat by writing B2 to mean
px2. This was done to avoid confronting you with a complicated
equivalence like “40B «+ ( 1+B*2)*0.5 at this early stage. See
Section 5.5 for a discussion of the priority of operators and

APPLE's bracketing conventions.)

The hyperbolic functions:
50B is equivalent to sinh B
60B is equivalent to cosh B
70B is equivalent to tanh B
“50B is equivalent to arcsinh B

“60B 1is equivalent to arccosh B, where B21
~“70B is equivalent to arctanh B, where 1>I|B,

5.2.11 The Logical conjunction Operator (AND)

The symbol A is used to represent the logical conjunction

operator, AND. This operator is defined only on the set {0,1}
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and is completely defined by its action on the vectors U and V

(see Section 5.1):

UAV <+ (1, 0, 0, 0)

5.2.12 The Logical Disjunction Operator (OR)

The synbdl v is used to represent the logical disjunction
operator, OR. This operator is defined only on the set {0, 1}

and is completely defined by its action on the vectors U and V :

The symbol # is used to represent the exclusive disjunction
operator. This operator's domain is extended to the set of real
numbers; its range is {0, 1}. 4#B «» 1 if and only if 4 and B

are unequal.

Example:

A—;‘f}' Rl 1 0 1
011

YyzV <> (0,1,1,0)
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5.2.14 The Equality Operator

The symbol = is used to represent the equality operator. The
domain of this operator is the set of real numbers, while its

range is {0,1}. A=3 «» 1 1if and only if 4 and B are equal.

Example:

A= «»[0 1 C
10 0

U=V <> (1’030)

e s e e o fe i S e e o o

The symbol * is used to represent the NAND operator. NAND is
defined to be the logical complement of AND. The domain and
range of NAND are {0, 1}. NAND is defined by its action on the

vectors ¢ and V:
Unly <> (0, 1, 1, 1)

The symbol ¥ is used to represent the NOR operator. NOR is

defined to be the logical complement of OR. The domain and
range of NOR is {0, 1}. NOR is defined by its action on the
vectors ( and V:

UV +> (0, 0, 0, 1)
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The symbol < is used to represent the less-than operator. It

maps the reals onto {0, 1}, A<B<> 1 if and only if 4 is less

than /.

Example:

A<p <> [1
0

= O
Ll o
~——

5.2.18 The Less-Than-or-Egual Operator

The synbol < is used to represent the less-than-or-equal

operator. It maps the reals onto {0,1}, A<B <+ 1 if and only if

A is not greater than B.

Example:

A<B «>(1 1 1)
11 1

5.2.19 The Greater-Than-or-Egqual Qperator

The symbol = is used to represent the greater-than-or-equal
operator. It maps the reals onto {0, 1} . 4>B +«»> 1 if and only

if 2 is not less than B
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Example:

The synbol > is used to represent the greater-than operator. It

maps the reals onto (0, 1}, 4>B «»> 1 if and only if 4 is greater

than #4

Example:

A>3 <> [0 0 0
0 0 0

The symbol ! 1is used to represent the generalized combination
operator. 4!is 1is the number of combinations of B objects taken /
at a time. If a and b are nonnegative integers, the number of
combinations of b objects taken a at a time is given by
C(bsa)=birsat (b-a)! The generalized combination operator uses
almost the same formula, but replaces the factorial operator
with the monadic generalized factorial operator. Consequently,
the generalized combination operafor is defined for all
arguments for which the generalized factorial operator is

defined.
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Example: Let
X <> (2, 3, 4, 2,1, 1, 0)

Y <> (5, 3, 2, 6.5, 8, 8)

Then
X' > (10,1,0,0,001295385336,8,1)

5.2.22 The Random-Selection-Without-Replacement Operator (Deal)

E R A 321 - > D2 >

The synbol ? is used to represent the random-selection-without-
replacement operator. The result of writing 4772 (where A<B) is
a vector p such that pk «> 4 and the elements of R are randomly
selected without replacement from the set {1, 2,..., b} or ({0,
14ee., b-1} according as the index origin is 1 or 0,
respectively. (See Section 6.1 for a discussion on index
origin.) The operator ? is defined only for nonnegative scalar
integer arqguments. The operator can be used to simulate the

dealing of bridge hands, for example.

Examples:
6?8 <+ (8,7,3,2,4,5)
678 <> (2,5,2,3,1,4)

13752 <> (25,47,1€,29,15,5,11,34,47,12,L9,16,10)
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5.2.23 gummary of Scalar Dyadic QOperators

The 36 scalar dyadic operators are summarized in Table II (see

next page) .
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TABLE II
SCALAR DYADIC OPERATORS
Symbol  Name Meaning
+ Addition A+B
- Subtraction A-B
x Multiplication 4AxB
3 Division A%B
| Residue A|B <> B(mod A)
L Minimum ALB «» min{ 4, B}
r Maximum AlB «> max{4, B}
* Exponentiation A*B <+ 4B
® Logarithm A®B <+~ logAB
— Circular Domain
“708 arctanh g 1>|B
603 arccosh B B>1
“50B arcsinh p
“y4oB (T1+B*2)*.5 1<|B
“30R arctan p
“20B arccos B 12|B
“10B arcsin p 12|B
00B (1-B*2)%.,5 1=|B
10B sin B
20B cos B
308 tan B
4OB (1+4Bx2)*.5
50B sinh p
60B cosh B
70B tanh pB
A AND AAB
v OR AVEB
” Exclusive OR AzB <> (AvB)AM=xB 1if A, B €{0,1}
Inequality A#B
= Equality A=B
# NAND AXB <+ ~AAB
» NOR AMB <+ ~AVB
< Less Than A<B
< Less Than Or A<B
Equal
> Greater Than A=B
Or Equal
> Greater Than A>B
! Generalized A'B <+ (!'B):('4)x!B-4
Combination
? Deal
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5.3 Right and Left Identities

Suppose that the symbol % is some scalar dyadic opérator. If
there is a number L such thatlLxB <> B for every value of B, L
is called a left identity of x. Similarly, if there is a number
R such that AxR <+ A for every value of 4, then R is called a
right identity of x. If = has both a right identity R and a left

identity L, it follows from elementary algebra that R <+ L.

Table III summarizes the identity elements of the 36 scalar

dyadic operators.
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TABLE III
IDENTITY ELEMENTS OF SCALAR DYADIC OPERATORS

Qperator Left Identity Right Identity
+ 0 0
- none 0
x 1 1
: none 1
* none 1
® none none
| 0 none
o none none
v 0 0
A 1 1
) none none
» none none
! 1 none
I - g
L Lo -]

? IORG LORG
The following identity elements apply only to the domain {0,1}:
> none 0
> none 1
< 0 none
< 1 none
= 1 1
2 0 0

5.4 Right-Associative Operators

An operator x is associative if, for any 4, B, (, we always have

Ax(BxC) <+ (AxB)=(C. For such an operator, there is never any
ambiguity; you can write AxBxC and everybody knows what you

meane.

Howsver, not all operators are associative. For example, the
subtraction operator is not associative since, e.g., (5-4)-3=-2,

while 5-(4-3)=4. (The first interpretation is called a left
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associatign; the second is a right association.) It is ambiguous
to write 5-4-3, since it is reasonable to interpret this

expression with either grouping of terms.

Before we tell you which interpretation APPLE makes, let us look
at a slightly more involved expression involving subtraction,

say a-b-c-d-e-f-g.

First, let us look at the parsing (((((a-b)~-c)-d)-e)-f)-g.

Since —b=(~1)b, we have

(((((a-b)-c)-d)-e)-£f)-g = (((((a+(-1)D)+(-1)c)+(-1)q) +
t(-Ne)+ (- E)+(-1)g
at+(-1) (btctd+e+f+q)

a- (b+c+dte+f+q)

since addition is associative. We see that this parsing is
equivalent to subtracting the sum of all the other terms from

the first term. This parsing is called a left-associative

o —— - S G — —— — — —

parsing.

If we had used the other parsing, we would have
a= (b-(c-(d-(e-(£-9))))) (a-b) +c- (d- (e~ (f-9)))
(a=b) + (c-d) +te- (f-q)
(a-b) + (c-d) + (e-f) +g
(atctetg) - (b+d+f)

wonoun

That is, you take the sum of the first, third, ... terms and
subtract the sum of the second, fourth, ... terms. This is
called a right-associative parsing. In a sense, the right-
associative parsing of a-b-c-d-e-f-g is more interesting than
the left—associative parsing, a-(b+c+d+et+f+qg). Diviéion and

exponentiation are also nonassociative operations. They are
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also more interesting when given the right-associative

interpretation than when given the left-associative
interpretation. For example, with left-association AxBxC*xDxE is
just Ax(BxCxDxE). Under right-association, it is equal to the

more familiar A« (Bx(cx(DxE))) from algebra.

Since right-associative parses are generally more interesting
for nonassociative operators than left-associative parses, all

APPLE operators are treated as right-associative operators.

- 4 e e e e

This applies not only to expressions involving repetitions of
the same operator, but to expressions involving mixtures of

APPLE operators as you will see in the next section.

5.5 Bracketing Conventions and Operator Priorities

Consider the expression 2+3x4. The rules of algebra say that
this expression evaluates to 14, i.e., to 2%12. This is because
algebra assigns a higher priority to the multiplication operator
than to the addition operator. If you had wanﬁed this
expression to evaluate to 20, you would have had to parenthesize
the quantity you wanted evaluated first, hriting‘(2+3)xu
instead. (0Of course, you would have removed any possible
ambiguity by writing 2+(3x4) when you wanted the expression to
evaluate to 14, but this is not necessary when you know the

operator priorities.)

With a few exceptions, most programming languages follow the
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standard operator priorities of algebra. However, there are
some differences in the way some languages treat an expression
like 12:y4x3. In some languages, the result is 12+12, while the

expression evaluates to 3x3 in others.

So far we have covered 49 APPLE operators. It would be
difficult for anyone to remember the relative priorities between
such a large number of operators. Many of the assigned
priorities would appear artificial. There are approximately one
hundred operators in APPLE, hence the problem is non-trivial.

So in order to simplify the problems of learning APPLE, there

are no operator priorities whatever in the language. Instead,

the right-associative parsing convention is extended to
expressions involving a mixture of operators. If you want an
operator to take priority over some other operator, all you have

to do is parenthesize that operator and its operands.

Returning to the expression 2+3x4, we see that it is equivalent
to 2+(3x4) , that is, 14. But 4x3+2 is equivalen£ to ux(3+2) or
20. Hence, expressions are not necessarily commutative in
APPLE. If you wanted to have u4x3+2 equal to.1u, you would have

to write either (u4x3)+2 Or 2+3xlu.

Consider 12:4x3. The right-associativity of : and x means that
the expression is equivalent to 12:(u4x3), i.e.1 . The
expression means that 12 is to be divided by whatever is on the

right of the * operator. The quantity on the right of ¢ is ux3,
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i.e. 4 multiplied by whatever is on the right of X, Since that

is just 3, we see that we are dividing 12 byux3 , i.e. by 12.

Note that monadic and dyadic operators can be intermixed in an
expression. For example, u4+-30:5+6>7xe8 is a complicated-
looking expression. Let us add parentheses according to the
right-associativity convention: 4+(-(30:(5+(6>(7x(®8)))))) (We
know that the minus sign is an operator since "minus thirty"
would have been written ~30. You cannot interchange ~ and -
since ~ 30 has an efféct only on the magnitude of "thirty," while
-3:5+6>7x8 changes the sign of everything to its right. We know
that - and ® are monadic operators since each is preceded by

some other operator rather than an operand.)

Now to evaluate the expression. We start with the most nested
subexpression. eg is the natural logarithm of g, i.e.,
2.0794u415417and7x2.0794415417 <> 14,5560907919. Next,
6>14.5560907919 <~ 0. 5+0 <> 5 and 30:5 «»> 6. Next, 76 «» -6

and 44+76 «+> 2. SO we see that 4+-30:5+6>7x@8 <> 2,

Expressions are never evaluated backwards in APPLE, although
they are evaluated from the right. When you write 4-5-6, the

result is 5 since 5-6 «» “1 and y-"1 <> 5e
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CHAPTER SIX

ELEMENTARY ARRAY MANIPULATIONS

In this chapter, you will be introduced to a class of operators
that are useful in manipulating arrays. These manipulations
include the familiar process of extrécting one or more elements
from an array by subscripting. Since those elements that have
been extracted are arrays, recall that scalars are rank-0
arrays, you will be forming a subarray of the original array
each time you subscript into it. The subarray may consist of

more thankone element.

Subscripting is only one means of forming subarrays of an
original array. You will be introduced to techniques for
forming subarrays consisting of elements satisfying some set of
properties, as well as techniques for taking various cross

sections of an array.

We will also describe ways of rotating and transposing arrays,
of combining several arrays to make a bigger array, and of

changing the dimensionality of arrays.
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6.1 Index Origin

Subscripting is the process by which you specify one or more

elements of an array. The subscript of a specific array element

There is some confusion between the way programming languages
refer to the first element in a wvector. In some languages, that
element has an index of 1, while its index is 0 in other
languages. Depending on the programmer!s particular needs, one
of these indexing conventions is often preferable over the

other.

Since only you, the programmer, know which indexing convention
is preferable for your personal application, APPLE leaves the
choice up to you. The index origin is the value of the index of
the first elements of a vector. The index origin is contained
in the rank-0 array I0RG. IORG normally contains the value 1.
If you want to specify its value, you begin your program with

either

or

The value of I[QRG will remain constant throughout the body of
your program. For the time being, the values of IQRG are re-

stricted to 0 or 1. Eventually, the language may be extended

to permit arbitrary integral values of IQRG.

===
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6.2 Indexing of Arrays

In the following subsections, you will be given the necessary

vocabulary and notations for subscripting arrays.

6.2.1 The Empty Vector
Recall that if ¥ is some array and pX «+ 0, then X is an empty
vector (since y contains no elements, and ppx «+> 1, S0 X is a

vector) .

We will be using the empty vector often enough to require giving

it a name for easy reference. The name of the empty vector is

€ o

6.2.2 Vector Index Generation

P-4

Suppose you wanted to generate a vector that consists of all of
the permissible values of indices, in ascending order, for some
vector V. Clearly, such a vector consists of oV elements. If
IORG <+ 0, then this vector is (0,1,..., 1+pV) if IORG «+ 1,

then this vector is (1,2,...,pV).

In APPLE, you need only write 1pV to produce this vector. The
operator 1 produces the desired vector. 1In fact, all you need

to do to get a vector of length n, where n20, is write 1in.

- 46 -



1 September 1973 System Development Corporation
TM-5074/100/00
Example: If IQRG <+ 1, then

15 «> (1,2,3,4,5)
11 <> (1)

while if 1opg «» 0 then

15 «> (0,1,2,3,14)
10 <= (0)

If we write .09, from the definition of i, we should get a vector
of length 0. A vector of length 0 can only be the empty vector

€. Hence, regardless of whether I0RG <> 1 or IQRG ++ 0, we will

always have 10 <> e.

So far, 1N is defined only for nonnegative integers VN, wherelN
is either a scalar or a one-element vector. We will soon extend
the definition of 1 to cover all rank-0 and rank-1 arrays

consisting of nonnegative integers.
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If you want to indicate the k-th element of some vector V, where
1sk<,y, the appropriate index would be k+IQRG-1. For example,
if you want the first element and IQRG «+ 1, you want the index
to be 1+1-1, i.e. 1; while if IQRG <+ 0, then you want the index
to be 1+40-1, i.e. 0. Correspondingly, if you wanted the fifth
element, the index would be either 5 or 4. You should convince

yourself that k¢ JQRG-1 is always an element of 1pV.

Scalar subscripting is exactly like subscripting in other
programming languages. In order to select the k-th element of
Ve YOU write V(K), where K is the appropriate index
corresponding to IQRG and k. For example, suppose L0EG <+ 1 and

V <> (1,5,7,9,3,4,1)s Then V[1] <> 1, V[3] «» 7, VI6] <> 4 If

TORG <+ 0s then V[1] <> 5, V[3] «> 9, and VI[6] <> 2,

When you subscript a vector with a scalar, the result is a

scalar.

You are not restricted to using scalars as subscripts, however.
If you subscript a vector with a vector, the result is a vector
of the same dimensionality as the subscript vector. For
example, if 4 <> [2,1,5,4] and V is the vector we used in the
previous example, if IQRG +«*> 1, V[A] <> (5,1,3,9) and IQEG <> O

then y[A4] <> (7,5,4,3%
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when you subacript a vector with an array, the result haa the

same dimensionality as the subscripting array.

Example:

"~

If ;orG «»> 1 and | is the rank-2 array

V_
~
4
¥
~J
=
[
N G

then

VIiWw] <> 2 7 3 3

= —-8—) ~ 421

The nunber of elements in an array 4 is the product of the
elements of the vector 4. Since 4 has ppd coordinates, any
subscript of 4 must be composed of ppA4A components. These are
separated from one another by the delimiter (;). The first
subscript you list applies to the first coordinate of 4; the
second one applies to the second coordinate, and so forth. If
K +«» JTORG+k-1 and [ the k-th coordinate of 4, it is

regquired that I be in the range [0RG< I < IQORG + (pA)[K]1-1 .
That is, a coordinate subscript must lie in the range 1,...,(p4)L#]
if IORG «>1, OF 0,c0a., (pAlK]-1 if IORG <> 0. This

is always equivalent to saying that a coordinate subscript is an

element of the vector 1pA[K].
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Example:
If I[0KG <> 1 and A is the rank-2 array

A <> 3 4 5 6
g 7 2 1
Then pA <> (2, u)

The subscript for the first coordinate must be either 1 or 2;
the subscript for the second coordinate must be 1, 2, 3 or 4.
When you write A[1;1], you specify the scalar 3. We also have

AL2:3]) <> 2, Al23;u4] «» 6 and AlL2;1] «> 8.

Just as you can subscript a vector with an array, you can also
subscript an array with an array. The result is an array B
whose rank op” is equal to the sum of the ranks of the
coordinate subscripts. The dimensionality of?» ,pB , is the
vector that is composed of the dimension vector for the first
coordinate subscript, followed by the dimension vector for the

second coordinate subscript, and so forth.

For example, we can subscript 4 with the vector (1, 2) for the
first coordinate and the scalar 3 for the second coordinate,
thereby producing the array composed of A[1:3] and A[2;3]. The
result must be a rank-1 array since pp(1,2) «» 1 and pp3 <> 0
and 1 + 0 «» 1. The dimension vector of the result is the
vector (2, ¢) <«» (2) since p(1, 2) <> 2and p3 <> ¢ . Therefore,

we must have A[1 2; 3] <> (5, 2)

APPLE permits you to write vectors in subscript expressions



1 September 1973 System Development Corporation
TM-50747100/00

either with or without parentheses. 0f course, for the sake of

clarity, you could have written 4{ (1, 2);3) if you had wished.

Now, suppose we have a matrix

O
-
r NS

so that p¢ <> (2, 3), When we writeA[(;3 4 ], what should the

result, 5, be?

We know that ,pp «» 3(since (ppE «»> 2 and pp(3,4) «> 1), and
¢/l <> (2,3,2) the catenation ( composition) of ¢ and p(3,4))
For simplicity, call & <> (3,4). We can deduce the elements of
/, as follows. [ 1;1;1] must correspond to the [ 1:1] -th row of 4

and the#i 1] -th column of 4 . Hence,

PDLis131] <> AL1:;3] <~

[

Similarly, we obtain:

Di1s3132]) < AL1;u4] <> 6
Dlis2s1] <> AL133] <> 5
DE1323;2) «» Al1;4] <> 6
l13331] <= A[L23;3] <> 2
DL13332] «» AL254] <> 1
gl2:131]1 <> A[2:3] <> 2
2:;13;2]) <> Al23u4] <> 1
DL2:32:13 <> A[L13;3] <> 5
DE232:2]1 «» Al1;4] <> 6
DL23331] <> A[2;3] <> 2
pL23;33;2] «» A[2;4] <> 1
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We can graphically represent D as

(&2}

6
6
1

N o

D +~

1
6
2 1

wrN

Finally, suppose you want the first plane of /. You could write
pi131 2 33 1 2]« The result would be a rank-2 array of
dimensionality (3,2) (Why?) It would consist of D[1;1:;11],
/l1:1:21 and so forth, as expected. Recalling that 13 «»> (1,2,3)

and 12 «»> (1,2), you could also write D[1;13;512],

By convention, instead of writing 1(p4)[K] as a
subscript for the k-th coordinate of an array 4, you
can elide* the subscript for that coordinate, writing
any required semicolon separators as you normally
would.
Formally, we have the equivalences
Al sd Ky 3Ys 2] < A[l(pA)[%%RlJ:{jK...Y;Z}

ALT33K: e Y32] <> AL (pA

.

N’

ALT3d 3630373 «> ALI3d3Ksee.3Y50(pA)IURGH 1+ppAll

Hencz, instead of writing DPIl1;3;13312], you can write P[1;;], and
the APPLE compiler will deduce the content of the elided

coordinate subscripts.

* L[Elide--to omit.
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6.3 The Ravel Operator

Seman Scdmenen - - - o

wWwhen we constructed the array 2 in Section 6.2.4, the order in

which we listed its elements was significant. We started with
the element whose subscript was Jor¢ in each coordinate.
Subsequently, we allowed the right-most coordinate subscript to
vary most rapidly, then the subscripts in the coordinate field
second from the right, and so on. This ordering is called an
odometer ordering since the indices appear in the order they
would follow had they been placed on the individual wheels of an
automobile odometer. (Wheel X of the odometér is numbered with

the elements of (pD)[KXk], starting with IQRG.)

It is sometimes useful to view an array as a vector. In APPLE,
the comma (,)is used monadically to represent the ravel
operator. The ravel of an array is the vector whose elements
are those of the original array in the odometer order. 1In

particular, the ravel of a scalar is the vector whose only

element is the scalar.

Thus, we see that

,D «> (5,6,5,6,2,1,2,1,5,6,2,1)

6.4 Array Index Generation

Here, we generalize upon the definition of the monadic operator

.- Suppose 4 is some array and ¥ <+ p4, so that N is a vector.
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Then, we define ,4 to be the matrix of dimensionality

p(AIN) <>

((p,A4),(ppa))e That is 1N has as many rows as there

are elements in 4 and as many columns as the rank of 4. Thus,

ipcontains a column for every component of a subscript of 4 and a

row for every element of A4,

The rows of 1/ are in odometer order, so

is the index associated with the element

to the i-th element of ,4 (i.

(,4)LI])).

Examplé:

Let us refer back to the array
Section 6.2.4. pD <> (2,3,2)

We have

ipD <>

|
NMNONMNNONR R B R RPR
WWNRNE R WWRN NP P
NRENVMRNRNRNRENPR

e., (iN)LI]

1 4

that the i-th row of ¥
of A that corresponds

is the index in 4 of

D constructed in
so let us look at ipD.

Now let us look at a few examples of the concordance

between 1pD and D.

First,

N O
= o,

2
5
2
and .,D <> (5,6,5

1

6

1
16,2
and (1pD)[3;] <« (1

- 54 -
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We also have, (,D)[11] «» 2, (apD)[11;] <> (2,3,1)
and D[2;3;1) «» 2.

In this example, we assumed thatIggrg <«-» 1 . If
IORG <+ 0, it follows that

O OO OO0
NNRFR R OO
O, OoCEF,O

lpD >

[ N
NNBR P OO
ROoONRPE R, O

6.5 The Subscript Generator

Suppose A is an array and I is some row of 1ipAd. There is an

element of 1 for each component of 4. But in order to subscript
A by 1, there must be semicolon delimiters preéent between the

elements of I.

The monadic operator ;/ is used to generate scalar subscripts.
Its only action is placing a semicolon between the elements of a

vector.

Thus, if p4 <> (4,7,3,5,8)s the vector J «» (2,3,2,1,6) is
certainly a row of the matrix p4. We have

AL3/I] <> A[23;33;231:67.

- 55 -



1 September 1973 System Development Corporation
T™M-5074/100/00

6.6 Partial Subscripting

Suppose A4 is an array and X is an element of 1pp4, that is, X
is an element of (0,1,..., 1+pp4d) if IQRG «+ 1., Or an element of
(0,1,..., 1ppA) 1if IORG «» 0. Suppose that I is some array in
which each element of I is an element of 1(pA)[X] so that I is a
valid subscript array for component X of A. Then, if the only
component of A that you want to subscript is component X, you

may do so by writing A[[X]I].

K must be an integer scalar, or the integer scalar content of a

variable.

Example: Suppose IQRG <+ 1 and 4 is the rank-3 array.

N ON W
FNR

[colN e BNCOINS, |

W FE B o;

O O
O JwN

Then p4 <+ (2,4,3). Now, [1;;] is the first plane
of A. This could be written [[1]1], which

says the subscript 1 is to be applied to
coordinate [1] of 4 only.

When we write A[[2]2 31,
have pA[[2]2 3] «»> (2,2,3)

213

076
ALL2]2 3] «~»

113

4 0 7

We can also look at A[[3]2 3].
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evre, Al ] o« (0L w, 2) Aand

~3
fop

ALL3]12 3] <>

O O - W
O Wi

6.7 Reshaping Arrays

Any array can be transformed into a vector by use of the ravel

operator. Any array , can also be transformed into an array B
of different dimensionality. To do this you use the reshape
operator r. The reshape operator is dyadic, while the shape
operator p that yields the dimension vector of an array--its

shape--is a monadic operator.

When you want to transform 4 into B so that ppB <> R, where x is

some vector of nonnegative integers, you write B3 <« RFp4

5 must contain a number y of elements equal to the product of
the elements of j since pB <+ R, B receives its elements from 4

according to the formula:
BL3/(1pB)I1] <> AL;/(apA)LIQORG+H | T-I0KCG]]

This formula is another way of saying that a vector y is
constructed from enough repetitions and partial repetitions of
the elements of _, that V contains as many elements as B will

contain. In odometer order, the first element of B will be the
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first element of V, the second element of 5 will be the second

element of VvV, and so forth.

Example: Suppose JQRC «» 1 and A4 is the rank-3 array
1 2 3 &

5 6 7 8
9 10 11 12

A >

13 14 15 16
17 18 19 20
21 22 23 24

Then p4 <> (2,3,4)

Recall that

«> (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)
If 124 were reshaped so that its dimension were (2,3,4),

it would be equivalent to 4. That is,

(2,3,4)pr24 <> A,

The vector 160 has 60 elements. But, when we write
(2,3,4)p160, we are only using the first 2x3x4 <= 24
elements of 160. Therefore,

(2,3,4)p160 <> (2,3,4)p124 «> A,

Verify that

N O
[e2]
~
=y

(2,3,4)p17 <>

w o
RN
(G20
DN

Note also that
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1 2 3 4
5 6 7 8
9 10 11 12

(6,4)pA <~
12 14 15 16
17 18 19 20
21 22 23 24
1 2 3 4 5 6
7 8 9 10 11 12
(4,6)pA +~»
12 14 15 16 17 18
19 20 21 22 23 24

Finally, (10)p3 is the scalar 3. This is true since

p(10)3 +- € and pp(10)p3 <~ pg <> 0
6.8 Arithmetic Array Manipulations

This section introduces the very useful classes of operators

that enable you to perform arithmetic processes on the elements

of an array.

—— e S e i - —

It is often desirable to obtain the sum or product of the
elements of a vector. In APPLE, you write +/V7V in order to
obtain the sum of the elements of V ; you write x/V in order to

obtain the product of the elements ofV .

The sum of the elements of a vector is usually considered to be
a scalar. In APPLE, while V is a vector, +/V is a scalar.
Thus, the rank of +/V is equal to the rank of V reduced by 1.

For this reason, +/V is read as the "plus reduction of V.
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Example:

+/(2,3,4,7,
x/(2,3,4,7,

~5,2) «»> 13

5,2) +> 1680
You can use any of the operators from Table III (see Section
5.3) in conjunction with the slash to form a reduction operator.
The effect of reduction is to place the dyadic scalar operator

between the elements of the vector operand, and then to evaluate

the resulting expression. Consequently, -/(2,3,4,7, 5,2)>2-3-4=7-"

“11,If pV +> 1 for any operator x, x/V <> (10)pV.
If pv «» 0, for any operator =, =/V <> (10)pI, where J is the

identity element associated with =.

It is useful to note that x/p4 is the number of elements in the
array A. When 4 is a scalar,p4d <+ ¢ . Since x/pA is always
equal to the number of elements in any array, regardless of its

rank.

Note that we always have [ /.J «» [QRG for any y, and
[/ <> N-1+I0kG. We will use this notation frequently when we

write subscript expressions that are independent of the value of

LORG-

6.8.2 Array Reduction

Suppose 4 is a rank-n array and suppose ¥ is a scalar dyadic
operator from Table III (see Section 5.3). Then =/[X]A is the

application of = over the elements of coordinate X of A. The
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result is an array of rank #-1, 1Its dimension vector is

obtained from p4 by suppressing (p4d)[K].

I0RG «+ 1 and pA <= (2,4) where

Example: Suppose

A «> 2 5 7 10
4y 3 1 2
Then
‘I"/Ll]zq «-> (6, N ,12)
+/[2]J4 <> (24,10)
-/0114 «> (72,2,6,8)
-/[2]4 <> ( 6,0)

Suppose p5 <+ (3,3,3) where

1 2 3
4 5 6
7 8 9

10 11 12
B «> 13 14 15
16 17 18

19 20 21
22 23 24
25 26 27
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Then

+/011]

+/02]

+/[3]

/7011

rst21

r/csl

L/L1]

L/02]

L/C3]

B

3

B

B

B

B

30

48

12

66

60

19

25

25

21

[N

19

19

33
42
51

15
42
69

15
u2
69

20
12
26

17
26

36
45
54

18
45
72

24
51
78

21
14
27

9
18
27

9
18
27

D w

12
21

16
25
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When X is the last coordinate of A, you may elide the [[/1pp4]

and write =/4.

Hence,

if A is the matrix from the example, we
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have

+/[2]4 <> +/4A

If 4 is any one-element array (i.e., x/p4d «+ 1 , then =/[X]J4 is
a one-element array of rank 0 1+ppd. For example

+/(1,1,1,1,1)p3 +> (1,1,1,1)p3 whilez/(10)p3 <> (10)p3.

6.8.3 Vector Accumulation

The accumulation operator \ is the analogue of the reduction
operator. If = is one of the operators from Table III (see
Section 5.3), %\V is the x-reduction of the elements of yp,
starting with the i-th element of y. 1In other words,x\yv is a

vector of the "partial sums" obtained in the evaluation of x/y.

Example: Suppose
V «> (5,4,3,2,1)
then

x\V <= (120, 24, 6, 2, 1)
and

As in the case of array reduction, x\[XJA is the application of

over the elements of coordinate y of 4 and p=\[k]4 «> A.

Example: If IQRG <+ 1 and ¥ is the rank-2 array
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M +> g 1 10 2
Then

11 0 "3 1
+\[1I¥ «> 9 "1 10 2

13 11 10 3
#\[2IM «> "4 T13 T12 "2

9 1 7 3

M1l «»- 9 1 10 2

7 7 7 3

F\N[2IM <> 9 "2 2 2
6.9 The Catenation of Vectors

If v and Ware any two vectors, then you can construct a new
vector x <-» V,W where pV,W <+ (pV)+pW and x[1pV] «+ V

XL(pW)p (pV)+1pW] <> W

That is, the first v elements of y,6yare the elements of V and

the last p¥ elements of V,¥W are the elements of W.

V,W is called the catenation of v and ¥w. The catenation
operator(,) is a dyadic operator. If either yv or y is a scalar,
it is treated as a vector, so that v, is a vector of dimension

(psV)tp,Wa

Example: If Uis the scalar 1 and Vand W are the vectors

V «> (2,3,4)
W <+ (5,6,7,8)

Then

- 64 -



1 September 1973 System Development Corporation
TM-5074/100/00

Vol <> (2,3,4,5,6,7,8)
Uyl +» (1,5,6,7,0)
Uy Vol «» (1,2,3,4,5,6,7,8)

6.10 The Interval Operator (Optional on First Reading)

The synbol J is used to represent the monadic operator that
produces an interval vector. The argument of Jis a vector
LEN,ORG,S « J LEN,0RG,S is the vector of length LIV whose least
element eguals ORG. S must be either 0 or 1. If S «» 0,

successive elements increase by 1; if otherwise, the elements

decrease by 1 .,

Note that J is independent of the value of [¢n¢ .
J «> 4,5,6
J

’310 (3! ’7)
23,1 > (7,6,5,4,3)

[$3 BN 2]

6.11 The Subarray Function (Optional on First Reading)

It is often desirable to work with a subarray B of an array 4
where ppB <> ppA and the hyperplanes of B are adjacent
hyperplanes of 4. For example, if p4 «» (3,5,7) we might want
to construct an array

B «+ A[1 234 3 233 4 5] «» Ald 2,1,03d 3,2,13d 3,3,3]
The dyadic operator A is useful for this purpose. The right

argument of A is 4 and the left argument is a rank-2 array 7
where pF <+ ((ppd),3). The rows of r are the vectors required
by the interval operator ./ in the expression above. That is,

the elements of 7 satisfy the formula
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B <+ FAA«»ALY FLIORG:13d FLIORG+13)5...3d FIT/1ppAs;]]

Thus, for the example, F would be the matrix

2 1 0
Foesx3 2 1
3 3 3

6.11.1 The Whole Array Operator (Optional)

-

The monadic use of A on an array A4 produces the matrix F such

that a4 <+ A. F satisfies the following_conditions:

plF <> (ppA),3
FL;L/131 <> (p4d)
FL314L/13]1 +> (ppA)plORG
FL31 /131 +> (ppA)p0

Example:
If o4 «» (2,3,5,7) and JQRG <> 1
Then
2 1 0
A «+ 3 1 0
510
7 10

If 4B «» (3,5,6,8,2) and IQRG <> O

Then
300
5 0 0
AB <> 6 0 0
8 00
2 00
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6.11.2 The Cross Section Operator (Optional)

An array cross section is obtained when all of the component

subscripts are either scalars or elided. For example, if 4 is a

rank-4 array, the following are some possible cross sections of 4.

A

AlL1s551]
Al31:33 1]
Al1;521]
Al1;2:331]

The dyadic cross section operator A is primarily used for
formalizing the subscripting of an array by scalars. The right
argument of A is the array to be subscripted. The left argument
of 4 is a rank-2 array G, oG «> (ppAd),2. The elements of the

first column of G are either 0 or 1 as follows:

If coordinate K is to be elided, then CG[K;]1 <> (0,0)
If coordinate K is to be subscripted by the scalar 7,
then

GLK;1 <> (1,8)

Example: If p4d <> (2,3,5,7), IQORG <+ 1, and

PO
O FOoON

Then

GAA <+ Al 2;;u4;6]
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6.12 Ccompression and Expansion

6.12.1 The Logical Compression of a

Suppose U is a vector whose elements belong to the set {0,1}.
Then y is called a logical vector. Then if ¥ is any vector such
that pU += pX, we can form the subvector U/X (read "the U
compression of X"), where pU/X <> +/U., The elements of U/X are

the XlI] such that UlI] <> 1,

Example: If U and V are the vectors

=

V <+ (1,2,3,5,7,11,13)
U +»> (1 0,1,0, 1)

-
= o

then ,
U/vV <+ (1,5,11,13)
since
~y <> (0,1,1,0,1,0,0)
(~U)/V <> (2,3,7)

6.12.2 Ibe Logical compression of an Array

The logical compression operator is extended to arrays, as

follows. Let A be an array, and let U be a logical vector such
that for some component I of 4, pU <> (pA)[(I]. Then, U/[I] A

the U compression along coordinate I of 4 is defined as

U/LTT A <> ALLI] U/ (pA)LI]]
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Suppose I0EG +> 1 and 4 and U are

U <+ (1,1,0)

1
mn
7

10
A <> 13
16

19
22
25

Then

U/L11 4 <>
10
13
16

and

N F

10
u/f2] A4 «» 13
16

19

22

25
and

Ly

U/L31 A «»> 10
13

19
22

oG N

14
17

20
23
26

11
1y
17

20
23
26

11
14

20
23

3
6
9

12
15
18

21
24
27
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If 7 «» [/1ppA then U/[I]1 A may be written as U/4.

6.12.3 The Logical Expansion of a Vector

The logical expansion of a vector is the analogue of the logical
compression of the vector. In this case, if V is any vector and
U is a logical vector, where pV «» +/U, then U/V is the vector

having zeros wherever U has zeros, and whose remaining elements

are taken in order from V.

Example:

(1,1,0,1,0)\(1,2,4) +> (1,2,0,4,0)

6.12.4 The Logical Expansion of an Array

The logical expansion operator is extended to arrays, as

follows. Let 4 be an array and let U be a logical vector such
that for some component I of A4, +/U <> (pA)LI]l . Then U\LIIA,
the U expansion along coordinate I of 4, is defined as the array
whose dimension is given by

p(UNCIJAYLIT <> pU
and for X an element of 1pp4, p(UNLIJA)LK] «» (pA)[K]

where £#] and for every element J of 10},

(UNAYLLTILT] +» ALLI]+/U0WJ1IxULJT]
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The following example clarifies the situation.

Example: Suppose IQ0RG <> 1 and Uand A4 are
U +» (1,0,1,0)

2 4
6 8
1 3

Then

UN[1]4 <~

(el e
o e

and

SO CeN
o T o F

U\[2]4 <

UNL31A <~

[
(@
w
(@]

If 7 «» [/1ppAe then y\[I]4 may be written as U\4.
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6.12.5 The Relatigon Betweep Expansion and Compression

The following relation occurs between the expansion and
compression of any array A by any logical vector U.
U/LITIUNCIIA «» A

6.13 Prefix and Suffix Vectors

A prefix vector is a logical vector P whose first & components
are ones and whose remaining (pP)-R components are zeros. A

- - - — -

ones and whose remaining (p5)-K# components are zeros.

The dyadic operator for specifying a prefix vector is o; the one
for specifying suffix vectors is w. In both cases, the left
argument [ is the length of the vector to be constructed, and
the right argument R is the number of ones required in the

vector.

Example:

743 ++ (1,1,1,0,0,0,0)
7w3 «» (0,0,0,0,1,1,1)

Prefix vectors are useful for selecting the first # components
along some coordinate of an array; suffix vectors are useful for
selecting the last ) components along some coordinate of an

array.
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Example: Suppose IQ0RG <> land A is the array

1 2 3 Yy
4 e, 6 7 8 8

11 12 13 14

16 17 18 19
Then

(ua2)/[1]4

(U(u?)/[le

(Sw3)/L214

5
10
15
20

11
15

13
18

12
16

G
14
19

6.14 The Monadic Transpose Operator

w

L

13 14
17 18

10
15
20

(82}

If 4 is any rank-n array, where n22, the monadic transpose of 4,

written g4, is equivalent to 4 with its last two coordinates

interchanged. If /4 is a matrix, then ®4 is the transpose of 4.

Formally, for (ppd)z2,

oQA «> pAl1 2+ppd),

and for any row L of 1p84, we have

AL /L] <~ (RA)L;5/LLM]]

where

M +> (1 2+ppd), ([ /1pp4d),

Example: If

1 2 3 4

5 6 7 8
A4 <«

9 10 11 12

13 14 15 16

(I/1pp4d),

T1+[ /1pp4)

73 -
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Then

W R =
c 3o ux

/A«
9 13
10 14
11 15
12 16

6.15 The Take Operator

The take operator is a generalization of the prefix and suffix
operators. It permits you to form a subarray g of an array 4 by
writing 74/, where 7is a vector of integers such that p7 <+ pp4

and (|7) < pA.

The effect of the take operator is that

pB <> [pA

and coordinate I of B receives the first 7[7] elements from
coordinate I of 4 if 7[I]=20; otherwise p receives the last 7[r]

elements of coordinate I of A4 when 7T[I]<0.

The take operator can be expressed, as follows.
T+4 <> FAA

where

Foe> 8(3,ppA)p (7)), (((pT)pLORG)+(T<0)x(pA)-1T),(pT)p0O

APPLE has a convention that makes it easier to write certain

take vectors. If you only want to subset the last few
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coordinates of 4, you may write T+4 where (pT)<ppA. This is

equivalent to writing (((~(ppAd)ap7)/pAd),T)tA.

Also, if you want to subset a few coordinates of 4 and keep the
rest intact, you may write T+[I]A where I is the vector of
cooriinates in which you are interested. This is equivalent to
writing £+4, where pB <> ppA and B[(I] «» T, while

(I£1ppA)/B <+ (I=z1ppA)/pA.

Examples: Suppose [0ZG ++ 1 and ppA +> 3, where

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

Then
1 2 3
(1,2,3)14 <> 5 6 7
_ 2 3 Y4
(1,2, 3)44 <> b6 7 8
19 20

(T1,72,72)44 «> 23 24
& 7 8

_ 10 11 12
(2, 3)14 <> 18 19 20
22 23 24

since, by convention, (2,7 3)t4 «»> (2,2, 3)44

Finally,

- 7% -



1 September 1973 System Development Corporation
T™™-5074/100/00

(84}

6 7 8
(1, 2)t[1,2]14 <> 9 10 11 12

5 6 7 8
9 410 11 12
T24[274 +~»
17 18 19 20
21 22 23 24

6.16 The Drop Operator

The drop operator , is the analogue of the take operator. When
you write ¢44, the first or last |T[I] components of coordinate [

of A are suppressed according as T[I] is positive or negative.

Formally,

TvA <> GAA
where

G «> Q(3,ppA)p((pA)-1T,(((pT)pIQRG)+OLT),(ppA)pO
The conventions mentioned for the take operator also apply to

the drop operator.

Examples: Suppose IQ0RG «> 1 and A 1is the array defined in
Section 6.15.
Then
(1,2,3)¥4 <> (1,1,1)p3

3 L

7 8

11 12
2vA <>

15 16

19 20

23 24
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6.17 The Reversal Operator

If 4 is any array, then ¢[I]J4 1is the reversal of coordinate

I of 4. Formally,

GLIJA <> HMA

where

H <> 8(3,ppA)p (M) ;IORG],(AA)L;1+I0RG], ((ppA)pI)=1ppA

If T «> [/i1pp4, then I may be elided.

Example: As in Section 6.15, suppose IQRG <> 1 and

A <> (2,3,4)p124

Then
13 14 15 16 g9 10 11 12
17 18 19 20 5 6 7 8
21 22 23 24 1 2 3 4
¢[1]14 <=~ $2]4 <~
1 2 3 4 21 22 23 24
5 6 7 8 17 18 19 20
9 10 11 12 13 14 15 16
4L 3 2 1
8 7 6 5
12 11 10 9
b4 <~

16 15 14 13
20 19 18 17
24 23 22 21
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6.18 The Mask and Mesh Operators

The mask and mesh operators combine the power of the compression

and sxpansion operators in an extremely useful way in that they
permit you to construct a new array from the logically selected

portions of the other arrays.

6.18.1 The Mask Operator

Let U be a logical vector and suppose X and Yare arrays where
pX «> pYe Then, the y mask of coordinate k¥ of X and Y is
written U/[KJ(X;Y). The resultant array is composed of the
elements of coordinate X of Y, corresponding to the ones of U,
and the elements of coordinate K of X, corresponding to the

zeros of U,

Formally,
pU/LKI(X3Y) <> pX <> pY

U/LK] U/CKI(X3Y) <> U/LK1Y
(~U)/LK] U/LKI(X;Y) <> (~U)/L[K]1X

Example: Suppose IQ0EG <> 1 and

1 3 5 7 2 L 6 8
A <> 9 11 13 15 B > 10 12 14 16
17 19 21 23 18 20 22 24
Then
2 3 5 8

(1,0,0,1)/[2](A3B) <«= 10 11 13 16
18 19 21 24
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6.18.2 The Mesh Qperator

Let U be a logical vector and suppose X and Y are arrays where
ppX <> ppYse Suppose that for some component I, we have
(((ppX)pI)zrppX)/pX <> ((ppY)zr1ppY)/0Y. That is, except for
coordinate I, the dimension vectors for X and Y are equal. 1In
addition,

(pX)LI] <> +/~U
(pY) LI1 + +/U

Then we define UN[I]J(X;Y), the U mesh of coordinate I of X and
as the array of dimension
pUNLIIC(X;Y) <> ((I-IORG)+(pX)),(pU),(I+1-I0RG)+(pX)
That is, the resultant array consists of the elements of the
U expansion of coordinate I of Y and the ~U expansion of

coordinate I of X.

Lxample: Suppose IORG <+ 1 and A and B are

1 2 3 u 100 200 300 400
A «> 5 6 7 8 B <> 500 600 700 800
9 10 11 12

1 2 3 i

Then 5 6 7 8
(0,0,1,0,1)\[21]J(A3B) <+ 100 200 300 400

g 10 11 12

500 600 700 800

6.19 The Rotate Operator

Suppose 4 is an array and /¥ is a scalar integer. You can rotate



1 September 1973 System Development Corporation
IM-5074/100/00

the elements of coordinate I of 4 cyclically / positions to the
left if pn20, Or ; positions to the right if ¥ is negative. This
is done by using the dyadic operator ¢, writingné4 . A cyclic,
left rotation means that the left-most elements migrate around
to the right-most position in their coordinate. Since the
coordinate is of length (p4)[I] the rotation moves elements

(pA)LI]|I positions to the left or right.

Formally, NO[I]A <> ALLIT((ppA)pIQRG)+(pA)LIT|I((ppA)pN)+1(pA+[I]

Example: If [0pRG <~ 1 and

@O o w

10 11 12
16 17 18
19 20 21
22 23 24
25 26 27

Then

=
o

]
oK
Vo)

o 13 14 15
700214 «» 1¢[2]JA«> 16 17 18
10 11 12

22 23 24
25 26 27
19 20 21

and
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19 20 21
22 23 24
25 26 27

[
N
w

20[1]4«+»"1¢[1]4 <~

~N £
@ &
[€o]

10 11 12
13 14 15
16 17 18

If 4 is an array such that pp4d <> “1+ppB and
(((ppB)pI)zippB)/pl <> pA(i.e., the dimension vectors of 4 and 7

are in agreement after (pB)[I] is suppressed, A¢[7r]1B is defined

as the rotation of coordinate 7 of B by 4.

Formally, if I, is a row of i1pBR, then

(AGLIIB)L;/L] «» (ALs/((ppBlpI)=zr1ppB)/LI1OFAB)LC]

where (¢ «» (((ppBlpI)=1ppB)/L

F o« Q((((ppB)pI)=1ppB)/(031)),(((ppB)pI)=1ppB)/(03L)
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Example: Suppose [QRG <> 1 and

N
-
N

A >

N
[ENENY
w

e
(ool 62 1 ]
o W

10 11 12
H <> 13 14 15
16 17 18

19 20 21
22 23 24

Then
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16

AGL2 1B «» 10

and

13

22
25
19

19
22
106

1
AGL1]B <> b

AdlL1]B «-» 15

17
11

14

23
26
20

17

10
13
17

21
24
25

12
15

18

27
21
24

12
24
183

6.20 The Catenation of Arrays

System Development Corporation
TM-5074/100/700

In Section 6.9, we defined the catenation of vectors. Two

arrays 4 and B may be catenated along coordinate I provided

either:

or

(1)
(2)

ppAd +> ppB

1 <«

[ (ppAd)-ppB
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or (3) B or A4 is a scalar

and (4) the coordinates along which 4 and B are to be
joined are of the same dimension.

The meaning of condition (4) is the following.

(a) If (ppA) «> (ppB)s then
((ppA)pI)zrppA)/pA «> (((ppB)pI)=zrppB)/pB

That is, p4 and pp are identical for every
coordinate, except possibly coordinate J.

(b) If 1 «» (ppA)-pps, then B is considered as if its
dimension vector is (((ppd)pI)=1ppd)\(1;08). This
dimension vector must satisfy condition (a).

(c) If 1 <> (ppB)-ppd, then A is considered as if its
dimension vector is (((ppB)pI)=1ppB)\(13pA). This
dimension vector must satisfy condition (a).

(d) If 4 or B is a scalar, it is treated as though its
dimension vector is identical to that of the
nonscalar in all components, except for a unit
component.

Then the catenation along coordinate I of B and 4, written
A,LI1B, is the array C such that

CLLITv(pA)LI]]«> A
CLLI1CpA)IIT+(pB)[IT) <> B

Example: If I[Q0RG <+~ 1 and

1 3 5
A <> 9 11 13 15

B++10 12 14 16

Then
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1 3 5 7
A,[1]1B <~ 9 11 13 15
2 4 o 8
10 12 14 16
1 3 5 7 2 4w 6 8

A,[2]1B <~ 9 11 13 15 10 12 14 16

1f
50 51 52 53
54 55 56 57
C «-
58 59 60 61
62 63 064 ©5
Then

A,[11C <> 50 51 52 53
54 55 56 57

58 59 60 o1

1 3 5 7
A,[1]12 > 9 11 13 15
2 2 2 2

T 3 &5 7 2
A,[2]12 <~ 9 11 13 15 2

6.21 The Lamination of Arrays

When two arrays, 4 and 5, are laminated together on coordinate
I, a new coordinate that has indices 12 is formed before
coordinate 7. The arqument4 fills the first index of the new

coordinate; the argument B fills the second index of the new
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coordinate. The notation is #4:[I]B, where either p4 <> pBorA
or pis a scalar and I is an element of 11+((pp4)[(ppB)If A Oor B
is a scalar, it is considered as if it were reshaped to have the

same shape as the nonscalar argument.

Example: Suppose I0RG <+ 1 and A4 and B are the same as in

Section 6.20.

Then

1 3 5 7

3 11 13 15
A:L1]18 <«

2 b 6 8

10 12 14 16

1 3 5 7

2 L 3) 8
A:[2]18B «~»

9 11 13 15

10 12 14 16

1 2

3 L

5 6

7 8
A:[31B <~

9 10

11 12

13 1u

15 16

1 3 5 7

g 11 13 15
A:[115 <>

5 5 5 5

5 5 5 5
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6.22 The Dyadic Transposition of Arrays

The dyadic transposition of an array is a generalization of a

monadic transposition of an array. The V transpose of 4 is
written V&4, where V is a vector containing one element for each

coordinate of A

The values of the elements of V indicate the dimension of the

resulting array. If you want the result £/ to be of rank opeR, V
must contain, in any order, at least one of each of the elements
from 1ppR Further, the elements of V are limited to the values

contained in 1pp/He

If the same value appears more than once inV , which must occur
if (ppR)<pl, then the repeated dimension of 7 is to be formed
from more than one dimension of 4. For example, suppose that
ppAd <> U4, IORG <~ 1,and V <> (2,1,2,2)., The result i <> V&4
must be an rank-2 array since 2 <> [/V, The first dimension of 7
is formed from the second dimension of A. The second dimension
of kR is formed from the first, third and fourth dimensions of 4.
Thus, the elements to be selected from 4 are of the form
AlI;J;I;I], where I and J are scalar integers. This is the
diagonal passing through A4[1;1;1;1] and through the first,
second and fourth dimensions of A. The diagonal contains no
more elements than the shortest of the dimensions from which it

is taken.
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In summary, the vector V of positive integers must satisfy the

conditions:

(1) pV <> ppAd. There must be an element in V for
every component of A.

(2) Every element of V must be an element of 1pp4.

(3) Every element of [ /V must be an element ofV .
(For example, if pp4 <+ 6 and the largest
element in V is 5, V must contain all of the
elements of 15. Since V must have six
components, one of the elements of 15 must be
repeated.)

Then, the transpose of 4 by V is defined as:
(a) pp V@A <> 1+([/V)-I0RG
(b) For each element I ofippV&4 ,
p(VRA)LI] <= L/(V=(pV)pI)/pA
(c) For each row [ of 1pV&4,
(VAL /L < AL;/LLV]IIA
In order to better understand dyadic transposition, study the

following detailed examples.

Examples: Suppose [QR{ <« 1,
pA <+ (5,7,3,8)e
and | «»> (2,1,2,2)e
Then if 7 <> V®As
PPN > 2e

From property (b), we see that
(pR) [1] - L/((2,1,2,2)=(1,1,1,1))/(5,7,3,8) < |/(0,1,0,0)/(5,7,3,8) <> 7
(pit)fel <+ L/((2,1,2,2)=(1,1,1,1))/(5,7,3,8) «> L/(5,3,8) <> ©
Therefore, (pR) <> (7,3)

From property (c), we can determine the
mapping between elements of 4 and &A.
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(VRA)L[131] «» Al3/(1,1)[2
(VRA)L132] «» AL3/(1,2)L2
(VQA)[13;3] «» AL;/(1,3)[2
(veA)[251] «» Al5/(2,1)[2

11 <> Al1515151]
11 <> Al[231;2;2]
1] <+ A03;1:;3;3]
11 <> Al1;23151]

[IRENIIEN
N DN

(VQAY[532] <« AL3/(5,2)[2 1 2 211 <> A[2353232]

(VQA)YL[733] «» Als/(7,3)[2 1 2 211 «» A[33;7;3;3]
Thus, you see that the elements of VR4 <> A[I;J;I1;1],
where J is an element of i17and I is an element of 3.

Suppose we want X <> WQ4 where W <+ (3,1,2,2) Then pp <> 3
and pXx <+ (7,3,5) The mapping between /4 and Yis given
by

X[I3J3;K] <> ALK;I;d;3d]

where 71 is an element of 17, J is an element of 13, and
K is an element of 15,

Finally, suppose

12
B <«
13 14 15
16 17 18
19 20 21
22 23 24

Verify that the following are true:

(see next page)

- 89 -



1 September‘ 1973 System Development Corporation
T™-5074/100/00

(1,1,1)8B <> (1,13)

: 1 2 3
(1,1,2)8B <> 13 14 15

1 4 710
(1,2,1)8F <> 13 16 19 22

1 13
(2,1,1)88 <> 5 17

9 21

1 5 9

(1,2,2)8B <+» 13 17 21

1 14
(2,1,2)QB8 «»> 4 17
7 20
0 22

1 16
(2,2,1)8B «» 2 17
3 18

(1,2,3)8B «»> B
1

2
3

11
12

o F
©O

(1,3,2)8B <>
13 16 19 22
14 17 20 23
15 18 21 24



1 September 1973 System Development Corporation
TM=-5074/100700

[

13
14
15

W N

16
17
18

(2N &2 In =3

(3,1,2)88 <~

~

19
20

jee]

10 22
11 23
12 24

1 13
4 16
7 19
10 22

2 14
5 17
(3,2,1)8B «> 8 20
11 23

3 15
6 18
9 21
12 24
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1 2
13 14 1

o1 W

Yy 5

16 17 18
(2,1,3)8B <~

7 8 9

19 20 21

(2]

10 11 12
22 23 24

1 % 7 10
183 16 19 22

(2,1,1)8B «» 2 5 8 11
14 17 20 23

3 6 9 12
15 18 21 24
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CHAPTER SEVEN

EXPRESSIONS, STATEMENTS AND PROGRAMS

So far, you have seen a number of APPLE's arithmetic and
manipulative operators. You have nearly enough information to
write a program. However, you need to learn about APPLE

statements and expressions before you can write a program.

In this chapter, we will cover everything you need to write a
simple program using APPLE operators. In the following
chapters, you will be introduced to operations on arrays, as

well as how to define your own functions and operators.

7.1 Elementary Definitions

operands. Expressions always have a value.

A statement is an expression whose value is the empty vector.
Statements always perform some action. In FORTRAN, they
include, for example, assignment statements, DO statements, IF

statements, and so forth.
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7.2 Conformability Conventions for Scalar Dyadic Operators

Let us reexamine the simple expressions AxB where* is some
scalar dyadic operator. Until now, we have stated that this
expression is defined only when p4 <> pB., Two such arrays are
said to be copformable. The result is an array (, where

pC +> pA <+ pB and for any subscript L from 1p(C, we have

Cls/L) <> AL /LI%BL;/L]

We will now extend the definition of conformability with respect

to a scalar dyadic operator.

First, suppose only one of the two operands, operand 4, 1is a
one~element array. (4 is a one-element array if and only if

1 «» x/pA- Thus, 4 might be a scalar or a one-element vector.)
We subsequently define 4B to be the array C <> ((pB)odxB , (If
8 was the one-element array, we would have C <> Ax(pA)pB) That
is, the scalar operand is applied to every element of the non-

scalar operand.

Example: If [oxG «-» 1, then

1415 «»>(2,3,4,5,6)

If
- 3 Yy
A <+ 2 77 8
Then
2 "6 8
Ax"2 «»> T4 14 16
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If both operands are one-element arrays, then 4AxB is defined to
be the array ¢ where C <«» ((ppA)lppBlp(,A)%,B8. That is, the
rank of the resultant one-element array equals the maximum of

the ranks of the operands.

If neither of the operands is a one-element array, the arrays
are conformable only when the two arrays satisfy one of the
foliowing two conditions.
(1) Assume that (pp4d)>ppB8 and (-ppB)+pAd <> pB. That is,
the last ppB elements of pdare identical to pB.
(If (ppB)>ppd,everything works when you mentally
interchange their names.) Then, the arrays are

conformable and ¢ <«-» Ax(pA)pB

(2) If (1) is not true, but there are non-negative
scalar integers M and N such thatW<ppd and N<ppB

and

Mypd <> NipB

Then 4 and B are conformable only if MtpAd <= lip1 or
N+pA <> Jlpl « The result is of rank ppC <> (ppA)lppB,
pC <> ($(ppClp(PpAd),Dp1)[¢(ppC)p($pB),Dp1 and

¢ «> ((pClpA)=(pC)pB, where D <> |(ppd)-ppB.

In all other cases, 4 and B are non-conformable arrays.

Examples: If pd <> (2,3,5) and (pB) <> (1,1 5) then 4 and B

’192939
are conformable and p4dxB «-» (1,1,1,2,3,5) If
pE «> (1,4,3,2,8) and pF <«»> (1,1,6,4,3,2,8), then Z and F
are conformable and pExF <«» (1,1,6,4,3,2,8). If
pG -+ (1,2,3,5,6,2,8) and pH <«» (1,1,1,1,1,1,1,1,2,8),
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Then ¢ and /{ are conformable and
oGel <> (1,1,1,1,2,3,5,6,2,8)e

If pV «» (1,2,3,4) and pW <«» (1,3,3,4), V and W are not
conformable. (Why?)

Up until now, we were very careful to write expressions 1like
{(I=~ppA) as ((ppA)pI)=~ppA, so that the conformity requirements
were trivially satisfied. For the remainder of this tutorial, we

can use the conformity conventions just described.

7.3 Specification Expressions

If 4 is a variable and you want to store the value of an
expression E into 4, you use the specification operator <« and
write

A<E

By definition, the shape of 4 will equal the shape of E, i.e.,
pAd <> pE, Since < is a dyadic operator, you may use it anywhere
you would use any other dyadic operator. The value of A<E is

the new value of /.

7.3.1 Select Expressions and Specifications

TS e - - - - - ——— - = —— - ——— o o o—

Let E be any well-formed, array-valued expression. Then, F is a
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consisting of an arbitrary number of the following operators
applied to E.
(1) take
(2) drop
(3) reversal
(4) rotate
(5) subscripting
6)
(7) &
{8) compression
{%) expansion
(10) mesh
(11) mask

(12) transposition

Then, if F is a select expression on the previously specified
array A, when you write (F)<«(E). If (pF)>pE the specification
is eguivalent to A<F<+FE. Another way of looking at this
concept is: the left-hand side of a specification may be any
selection expression on 4 that could have been written as a

subscript expression on A.

Examples: Suppose I0/i(¢ <> 1 and 4 has been specified as
A« (2,3)p16. Then
AL1 2 ;3] « 12
produces

12
A <> L4 5 2

[IN
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This could also have been written as either

((0,0,1)/4) <« 2
or (T144) <« 12

We also can write
(RA) « (3,2)p6+16

producing
7 9 11
A <> 8 10 12

7.4 conditional Statements

APPLE, like many programming languages, contains conditional (or
"IF') statements. A single conditional statement always
contains some test (i.e., an expression that evaluates to a
logical scalar). If the test is satisfied (evaluates to 1),
then the expression associated with the conditional statement is
evaluated. If the test fails (evaluates to 0), then control is
transformed to the statement immediately following the

conditional statement.

A more intricate conditional statement consists of a test with
its associated expression and an ordered sequence of
alternatives. If the test succeeds, its associated expression
is evaluated and control is transferred to the statement
immediately following the entire conditional statement. If the
test fails, each of the alternative tests is executed until
either some one of them is satisfied or they all fail. As soon

as the first alternative test is satisfied, its associated
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expression is evaluated and control is transferred to the

statement immediately following the entire conditional

statement.

7.4.1 One-Line conditional Statements

The sinplest kind of conditional statement fits on one line. It

is of the form

There is

form

IF test TiHL[ expression

also a version with an alternative. This

ir test ryly expression 1 ELSE expression

In the conditional statement, if the test is true,

takes the

then

expression 1 is evaluated and control transfers to the statement

immediately following. If the test is false, expr

ession 2 is

evaluated and control is transferred to the statement

immediately following.

Examples:

IF A>10 THEL X < +/Y

If 1 «» A>1¢then X is redefined as +/7Y.
Otherwise X retains its original value.
IF A >10 THEN X <« +/Y ELSE X « [/Y

This time X will be changed regardless of
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The statement is equivalent to X <« (A4>10)/([/Y;+/Y)

7.4.2 Multi-lipe Conditiopnal Statements

If a conditional statement will not fit on one line, it is
necessary to use a multi-line conditional statement. This form
vis far more powerful than the one-line conditional statement,
which cannot control the conditional execution of a set of

statements.

The simplest type of multi-line conditional statement involves

only one test and has no alternatives. It is of the form

IF test

T statement 1
statement 2
statement n

KYNDIF

Here, if the test is true, statement 1,..., statement n are all
executed in order. If the test is false, control is passed to

the statement immediately following the associated ENDIZ,

There is also a multi-line conditional statement with an

alternative.
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It is of the form

It test
s1
s2
sn

ELSE t1
t2
tm

ENDIF

If the test is true, statements sl,...,Sn are executed and
control transfers to the statement immediately following the

associated gypsir . If the test is false, then statements

The most general type of multi-line conditional statement allows
you to write as many conditional alternatives as you need and an

ELSE alternative if you want one.
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It is of the form

I~
s

! test 1
s1
s2

sn
IF test 2

10
1=

)
=5
I~
ct
®
)}
rr
w

v1

vk

First, if test 1 is true, then statements sl1,...,sSn are
evaluated, and control is passed to the statement immediately
following the associated gpypIf. If test 1 is false, test 2 is
evaluated. If test 2 is true, statements tl,...,tm are
evaluated and control is passed to the statement immediately
following the associated E[JDIF. This process continues until
either a test is true and its associated statements are
executed, or until all of the alternatives have been exhausted.

If the last alternative is an FLSE, its associated statements
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will be executed if all the preceding tests have failed.

You should note that any of the statements associated with a
test or an pgps5r can, itself, be a conditional statement. If
such a conditional statement is executed, it is treated exactly
as if it was a conditional statement occuring elsewhere in a

program: it will either be a one-line conditional statement, or

there will be an pypsr associated with it.

Example:

LF (A<B)V C>D <« Q+R

Xe+/Y
<4
O IF (A>B)AD=0
X <« A:D
IF Q>F
2 « V{R
ELSE 7« (OV)QR
s NDIE
ELSE Z « (pZ)e0
LUDILE

In this example, 7 is specified in the first test.
Regardless of the truth of that test, U will
retain the value @+R until it is respecified
elsewhere. The (Qf I/ alternative, which will be
executed only if the first test fails, contains a
conditional statement of its own. That statement
determines the value of Z. If both tests fail, 7

is respecified as an array of zeros.
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You should indent conditional statements the way we have

done in this example. When you do, it is very easy to
identify the statements associated with each alternative.
This is especially true when a conditional statement

contains other conditional statements nested within it.

7.5 Conditional Expressions

The right-hand side of any specification may be a conditional
expression. A conditional expression looks exactly like a
conditional statement, except that there is now a value

associated with it. This is because every APPLE statement is an

expression the value of which is discarded.

When a conditional statement becomes a conditional expression,
its value is the value of the last expression in the alternative
that is executed. 1If it is possible that none of the
alternatives be executed, you must be sure to include an [.3#
alternative, otherwise the value of the conditional expressibn

will be undefined.

The shape of the value of a conditional expression is determined
by the shape of the last expression in each of its alternatives.
This shape is determined exactly the way it would be determined
if these expressions were to be operated on by some dyadic

scalar operator. That is, these expressions must be pair-wise
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conformable. Therefore, the shape of the result of a

conditional expression is the conformed shape of the last

expression of each alternative of the conditional expression.

Example: You can calculate the value of !V,

where #is a nonnegative scalar integer by writing

FACTORIAL <« [F N=0 THEN 1 ELSE x/\N+1-I0RG

7.6 Iteration Statements

Iteration statements are akin to the DO-loops of FORTRAN. They

provide a convenient means of performing the same set of

calculations repeatedly on some set of elements.

7.6.1 The DO Statement

This statement is of the form

I
I
-

sn
where ; is a variable name, V is an array-valued expression, and
S1,52,...,5n are statements. Statements s1,...,sn will be

executed together (pV)LIQRG] times, each time with I assuming
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one of the values

S s e W e e e

Thus, if JQRG +-» 1 and you write

D0 Ug 6%15
ALT] <« 2xI

REPEAT

Then, this is equivalent to your having written

Al6] « 12
AlL12] 24
Al18] 36
AlL2u4] 48
AlL30] 60

A A 44

0f course, you could have written A[6x15] « 2xI in this case,
but that is because the body of the loop only contained one
statement. Since the body of the loop can contain arbitrarily

many statements of arbitrary complexity, you could write, e.g.,

DO Je 1pB
P+« §((I=1ppB)/(051)), (I=1ppB)/(0;d)
(FAZ) « ALs/(I#z1ppB)/JIGFAB

In this code, j; is an arbitrary array, and J successively takes
on the value of each row of 1pA If the dimension of B is
unknown at coding time, this loop could not be written as a

sequence of statements without use of some form of iteration.
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7.6.2 WHILE Statements

T e e i i e e e - -

statement is of the form
ILE test

s1

s2

The wiILL
Wi

sn
REPEAT

The test is any expression that evaluates to a logical scalar,

and the s1,...,5n are statements.

The test is evaluated and, if true, statements sl1,...,Sn are
evaluated. Then, the test is reevaluated. If it is true,
statements sl1,...,Sn are evaluated again. This process

continues until the test is false, at which time control is

The WHILE statement is useful for controlling some process that
must iterate while some condition is satisfied, e.g., a
numerical approximation process. Note that iteration continues
as long as the test is true. Consequently, you must provide a
means for either causing the test to eventually evaluate to
false, or make use of one of the operators described in Section

7.6.“.

Example:

WHILE A/EPSILONS<|X-Y
X « (lx-1¢x):2
Y « (1Y+(|oY)+W( 1¢Y))=3
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will be iterated until every component of the absolute

value of x-Y is less than EPSILON.

e e e e o ——— — ———— -

s1
s2

sn

where the test is any expression evaluating to a logical scalar,

and s1,...,sn are statements.

The seguence of statements is iterated until the test is true.

WIILE~T « Two kinds of conditional loops are provided to permit
programmers who think in terms of a termination condition,
rather than in terms of a continuation condition, to directly

translate their thought process into APPLE code.
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7.6.4 Iteration Ccoptrol QOperators

It is often necessary to prematurely terminate one or more

iterations of a loop because some boolean condition is
satisfied. APPLE provides you with three anadic operators,
(i.e., having no operands] with which you can direct the flow of

control within such loops.

The first of these operators is CYCLE, which
terminates execution of the current iteration and
transfers control to the top of the loop for the

next iteration.

the loop to definitively stop iterating.

The px/7 operator causes control to be transferred
associated with the outermost loop in which the

instruction occurs.

st a2

either operator may be used. But, if EXIT is encountered in a
nested body of loops, then all of the loops stop iterating

immediately.
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7.7 The CASE Statement

The (CASE statement is a simplification of the conditional
statement. It is used when you want to evaaluate one of a set
of expression sequences based on the value of some scalar
expression, usually integer-valued.
The CASE statement takes the form

CASE scalar expression

value list 1 - statement sequence 1
value list 2 - statement sequence 2

value list n -+ statement sequence n
ELSE statement sequence
ENDC
The pLSk clause is optional. If together, the value lists
exhaust the possible values of the scalar expression, you do not

have to provide an ELSLE clause.

The value list is a sequence of scalar constants, separated from
each other with semicolons. The statement sequences may contain
any combination of APPLE statements, including conditional or

iteration statements.

Example. This CASE statement computes ‘¥ and stores it in Z.

N and 7 are assumed to be one-element, nonnegative

scalar integers.
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0 o X /14l
1 - 7 <« x/\N
i v

[N
:‘:/)

We could also write this code sequence using two C

statements.

0 » 72 « X/1+ W
1 > 72 « X/WN
{

Of course, this could have been more concisely
written as 7 <« x/LQRG+1l, but our intent was only
to illustrate the use of the (CASf statement in an

elementary context.
7.8 The CASE Expression

The (CASE statement is a simplification of the conditional
statement, so any (/4SE statement can be rewritten as a
conditional statement. There is a (A4SZ expression in the APPLE
language. The same conformability conventions apply to (4S5

expressions as apply to conditional expressions.
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Example: We could rewrite the second example of Section 7.7 as:

7 « CAsE N
0;1 » 1
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CHAPTER EIGHT

ARRAY OPERATIONS

so far, we have investigated scalar operations on conformable
arrays, and manipulative operations that produce subarray and
permutations of the elements of arrays. Your background is now
sufficiently strong in APPLE so that we can consider the class

of operators that perform numerical manipulations on arrays.

8.1 The Index of an Array Within an Array

Suppose 4 is some vector or a one-component array and Jis an

arbitrary array. Then 418, the index in 4 of 8 is an array such

that

pAlB <> 0B

and for each row Lof 1p28, (A18)[;/L] is the least index / such
that (,4)(7] <> pl;/L). If Bl;/L] is not an element of 4, then

(A WBYL3s /L] <> 1+[ /10,4 .
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Examples: If [QORG

1 3 2
"7 4 5
0 <>

0 1 4
3 72 1

Then
5 1 3
2 6 8

ArB <>
b 5 6
1 8 5

Note that A[5] «» 4A[7] <> 1, but the index
returned to 418 is always 5 since 5 is the least
index I for which A[I]l <> 1, Note also that an
index of 8 was returned for the two elements 5 and

"2, which are not contained in 4.

You can tell if every element of B is an element of 4 since, if

that is the case, we must have

1 <> v/(,AB)s[/1p4
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8.2 Array Membership

Let A and B be two arbitrary arrays. Then, 4€3 is a logical

array of the same rank as 4 and contains a 1 corresponding to

each element of 4 that is present somewhere in B.

Example: Suppose 4 and ;3 are the arrays from the example in

Section 8.1.

Then
AeB <+ (1,1,1,1,1,1,1)
and
11 1
1 1 0
BeA <~
1 1 1
1 0 1

8.3 Sorting

If 4 is a vector, then 44 is a vector, p4Ad <> pA, such that
(AA)[ r]is the index of the 7-th smallest element of A. That is,
Al A1 1is a vector whose first element is the least element of 4
and each of whose remaining elements is no less than its

predecessor element.

Just as 44 can be used to sort the elements of 4 into ascending

order, Y4 «-» ¢44 can be used to sort A4 into descending order.
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Examples: If IQRC +> l1and A «>(6,3,5,3,9,3,1)

Then
M > (7,2,4,6,3,1,5)

V/l “«-r (53133’6'QQ2,7)
8.4 Juter Products

Suppose A4 and B are any two arrays and x1is any scalar dyadic

operator. The x outer product of 4 and B, written Ac°.x%Z, is an

array containing the = product between every element of 4 and

every element of 5.

Formally, pAe.#B «> (pA),pl and for each row L of 1ipde.=®3,

(Ae.%B)[;/L]) <~ Al3/(ppA)+L1xBL;/(-ppB)+L]
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Examples: Suppose 4 «+ (1,2,3,4,5,6,7)

Then
1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
Ao xA «=» 4 B8 12 16 20 2u 28
5 10 15 20 25 30 35
6 12 18 24 30 36 u?2
7 14 21 28 35 u2 49
1 0 0 O 0 O ©
o 1 0 0 0 0 O
o 0 1 0 0 0 O
Ao.=A «+> 0 0O 0 1 0O 0 ©
¢ 0o 0 0 1 0 ©
o ¢ 0 0 0 1 ©
c o 0 ¢ 0o 0 1
11 1 1 1 1 1
o 1 1 1 1 1 1
o o 1 1 1 1 1
Ao.<A <> 0 0 0 1 1 1 1
o o 0o 0o 1 1 1
o o 0o 0o o 1 1
0O 0 0 0 0 0 1
0 6 6
0 12 12
0 45 13
((2,3)p(6,12,45,8, 5,2))0.1(0,67,13) <= .
"5 75 75
0 2 2

8.5 Inner Products

The APPLE inner product is a generalization of the linear

algebra inner product of two matrices. Suppose that 4 and B are
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two matrices such that 14%p4 <> 14pB, The following code
produces the inner product ¢ of 4 and B.

C«((14pA), 14pDB)p0

DO L g 1pC
Cl:/L)«+/A014L; IxBL314L]
REPEAT

(In normal parlance, C[I;J] is the sum of the componentwise

product o2f the I-th row of 4 with the J-th column of B.)
The APPLE notation for this inner product is A4+.xB.

In general, if 4 and B are matrices satisfying 1%p4 <= 14pB and
¥ and X are two scalar dyadic operators from Table III (see
Section 5.3), then the =-% inner product of 4 and B is written

An,%B , where pAx.%xB <> (14p4A), 1tpB and for any row L of 1pAx,x3

’

A B[ /L] <> mw/AL1+L;]%BL;1+L]

Examples:
1 2 12 3 g 12 15
3 4 +.x 4 5 6 «»> 19 26 33
5 6 29 40 51
1 2 12 3 5 7 9
34 +.0 456 «>» 7 8 9
5 6 11 11 11

In the remainder of this section we generalize the inner product

to conformable arrays of arbitrary rank.
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If ppA <+ ppl «» 0 then Ax,%B <> x//A%B.

Otherwise, A% .,x3 1is defined only if4 and B satisfy one of the

following conditions:

(1) ppA «> 0
(2) _ ppB +*> 0
(3) T114pA «> 14p8B
(u) 14pB > 1
(5) T1tpd <> 1

8.5.2 Definition of the General Inner Product

If the conformability conditions are satisfied, then 4 and P are

cohceptually replaced by arrays 4 and B given by:

(1) If ppd <+ 0 then
4 <> (11tpB)pd
L > B
(2')  If sp# <> o then
A «> A
B +» (" 14pA)pb

(3') If “14pA <> 1tpB then

> A
B

I
!
A g

(4') If 14pB <> 1 then

“«=> A

«> (( 14pA),1%pB)pB

1oy I

(5') If "14pA «+ then
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A <+ (d1ppA)R((Q4pB), 0 1vpA)p(drppA)RA

ﬁ+—+ B

Then Ax,xB <> Ax,%3 <> ( where

pC «> (T1+pd),1+4pB

and for each row L of 10(C

Cl; /L] <+ x/(GAA)®HAB

where
GL3L/12] <> ((_1+ppd)p1),0
GLsl /2] «» (( 14ppd)tL),0
als0/v2] < 0,( 14ppB)p1
HL3T/12) <> 0,(1-ppB)4L
Example:
73 75
7 79
12 12 171
3 4 34 3 5
+ o~ <>
5 6 5 6 5 _3
7 8 7 8 101
9 7

8.6 Change of Base

The number 2307 = 2x103+3x102+0x102+7x100, This is a polynomial

representation of the number 2307 in the radix 10. We also have

2307=3x54+3x53+2x52+1x5142x59 as a polynomial representacion of
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2307 in the radix 5.

If you have a vector representation Vof a number ¥ in the base

B, you can compute the value of /N by evaluating the expression

(x\(( " 1+pV)pB),1)+.xV . For example, if B <«>5 and

V «> (3,3,2,1,2), the expression evaluates to
(x\(5,5,5,5,1))+.%x(3,3,2,1,2) «»> (625,125,25,5,1)+.%x(3,3,2,1,%

«+> 1875+375+50+7 <= 2307

The APPLE notation for this conversion is B.V (read " B decode

vy

conversely, if you want the vector representation V of ¥ to the

base 3, then you can compute V by the Euclidian Algorithm as follows:

N=0
V<(B|N),V
N«LN%B

— S S

It vy

V <«
UNTI

The APPLE notation for this inverse conversion is BTN (read "B

encode i").

change of base can be generalized to cover mixed bases. If B is
a vector, then B.V is defined when B and V are conformable for
inner product:

BV <> (x\(1+B),1)+.xV

Indeed, B.LV is similarly defined for any arrays B and Vv that are
conformable under inner product. The formal definition is
extremely complicated, so let us look, instead, at a few

illustrative examples.
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Examples: Suppose you want to know the number of seconds
in 1 year, 20 days, 5 hours, 3 minutes and 17
seconds. We will proceed with the assumption that
1 year=365 days, 1 day=24 hours, 1 hour=60 :
minutes, and 1 minute=60 seconds. Then we would
have to compute
(365%x24x60%x60),(24x60%x60),(60%x60),60,1)+.%x(1,20,5,3,17)«
But this is equivalent to

(x\(365,24,60,60,1))+.%x(1,20,5,3,17)
«+ (1,365,24,60,60)T1(1,20,5,3,17) <> 33282197,

Note that the first element of the wvector (1,365,24,60,60) could
have been any arbitrary number, since it is
discarded in the evaluation of ;.

Similarly, (1,3,12)1(3,1,6) «» 126, the number of
inches in 3 yards, 1 foot, 6 inches.

Neither B nor V need be integral.

24 60 60 763 430,47 110 22563 14545,47 3660
1 3 12 1 208 118.97 30 <« 327 179.07 u8
1 20 12 43 28.07 6 1755 995,07 252

The inverse operation BTV is also defined for arrays B and N.
The result is an array V such that B.V «+ N¥. Hence,
oBTN <+ (pB),pN and the "base B wvectors" run along the first

coordinate of the result.

Examples:
(5p5)T2442 «> (3,4,2,3,2)
(5p°2) T 13 > (1,1,1,0,1)
(7p2) T 13 «> (0,0,0,1,1,0,1)

(1780,3,12) T 126 <> (3,1,6)

This last result is the number of yards, feet and

inches in 126 inches.
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e
N = O

0
y
(10,10,10,10) T (456,7890,2345,123) <+ 5
6

O W o3
3t
w

8.7 Matrix Inverse Operator

Suppose B is a non-singular matrix and >/pB <> 1 So that B has
at least as many rows as columns. Then, E7 «» [ such that [L+.xB
is the identity matrix. [ is the left inverse matrix of £ and

pL <+ $pB,

8.8 Matrix Division

When you have a vector or matrix 4 and a matrix 5 such that
2/pB +> 1, then AkB is defined when 14p4 <> 14pB. By definition

AEB «» (EB)+.x4.

Example:

105 72 4 8

e
~
@
(o]
[a0]
w
0
NN ;g
4
v
[G2NNOIN )
F w3

114 87 7 10
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CHAPTER NINE

SUBROUTINES, FUNCTIONS AND OPERATORS

This chapter contains a discugsion of how to write subroutines
and functions. The difference between the role of functions in
APPLE and those in other programming languages is that there is
little conceptual difference between functions and operators.

consequently, APPLE can be treated as an extensible language.

9.1 The Distinction Between Functions and Subroutines

A subroutine is a code sequence that is parametrically self-
contained. It can be invoked from any‘part of a program. After
the subroutine has completed execution, control is returned to
the first executable statement following the point from which it

was called.

A subroutine may use or manipulate the contents of variables
used by the main program, or it may use or manipulate variables
that are accessible only by the subroutine itself. If a
subroutine is parametrized, then the values for the parameters

are specified at the points of the program at which the
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subroutine is called.

A function, on the other hand, always has a value associated
with it. Like a subroutine, it may use or manipulate variables
used by the main program, or it may use or manipulate variables
accessible only by the function itself. A variable can be
assigned the value of a function. But, in order for a
subroutine to modify variables external to itself, it must

explicitly assign values to them.

Subroutines and functions may be anadic, monadic, dyadic or n-
adic in that they may take no arquments, one argument, two

arguments, or n-arguments, respectively.

If yorIck is an anadic function or subroutine, you invoke it by
writing yoprcx « If poroyruvs 1is a monadic function or
subroutine, you invoke it by writing poLorrys A, where A is some
expression representing the value of its parameter. If
ROSENCRANTZ is a dyadic function or subroutine, you invoke it by
writing A ROSENCRANT? Be Where p and B are expressions
representing the values of its two parameters. If CUILDENSTERD
is an n-adic function or subroutine, you invoke it by writing
GUILDENSTERI < A;B3CiDseeesZ> where A,B,...,Z are expressions

representing the values of its n parameters.

Note that the monadic and dyadic functions and subroutines are
written in precisely the same way monadic and dyadic operators

are written. Since functions have values, they can be invoked

- 125 -



1 September 1973 System Development Corporation
TM-5074/7100700

from within any expression. cConsequently, there is no

difference between the use of the functions you define and the
APPLE operators. In the remainder of this chapter, we will

discuss how you may define and use your own operators in APPLE.

9.2 The Form of a Function or Subroutine Definition

The definition of a function or subroutine consists of a

heading, a body, and a footing.

The heading names the function or subroutine, specifies whether
it is anadic, monadic, dyadic or n-adic, whether it is a
function or a subroutine, and names all of the variables local
to its body. The body consists of the APPLE statements that
perform the computations and manipulations of the function or
subroutine. The footing terminates the definition of the

function or subroutine.

The heading begins with the symbol V. If you are writing a
function, you subsequently specify the name by which you will
refer to the result in the body of the function, then the

specification symbol <.

If the function or subroutine is to be dyadic, you next list the

local name of its left argument.
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The following entry is the name of the function or subroutine.

Then, if the function or subroutine is monadic or dyadic, you
list the local name of its right argument. If it is n-adic,
then you enclose the local names of the parameters in the

brackets cand », separating the parameters with semicolons.

Finally, if there are to be any variables local to the body of
the subroutine or function, you list their names, preceding each

one with a semicolon.

Examples: The heading for the anadic subroutine YORICK is

V YORICK

This subroutine has no local variables. The
heading for the anadic function HORATIO, which has

two local variables Mand VNV, is
V 7 <« HORATIO;M;N

Here, the value [ORATIO returns is to be explicitly stored

in a local variable called 2.

The heading for the monadic function pPoLONIUS is

V 7 <« POLONIUS Y

Here, Y is the local name of the right argument of pPoLONIUS

and the value of POLONIUS will be stored in 7.

If you wanted to define a monadic subroutine (OPHEFLIA, you
would write

V OPHILIA Y
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OPHELIA was not defined as having any local variables.

A dyadic function ROSENCRANT?Z, Wwith local variables

a5, T would have the following heading
V Z <« X ROSENCRANTZ Y3;Q3;R3S;T

Here ¥ and Y are the left and right arguments of
ROSENCRANTZ o the value of which will be stored in the local

variable 7.

If GUILDENSTERN 1s to be a S-adic function of A,r,C,n,E and
has a local variable py, you would write the following
heading:

V 7 <« GUILDENSTERN <A3B3CsDyEo3 0

9.2.2 The Body

The body is an APPLE program. If the subroutine is a function,
the result must be stored into the name you specified someplace
in the body of the subroutine and in the heading. It, and any
other variable names from the heading may be used as local

variables within the body.

The body may also use the names of variables existing outside
the body, i.e., they are neither the result, operands,
parameters, nor declared local names. Such variables may be

modified from within the body.
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9.2.3 The Footing

The subroutine of the function definition is terminated with the

symbol y on the line following the last line of the body..

9.3 Call by Value

The parameters of a function or subroutine are evaluated from

right to left before it is entered. The resulting values are
copied into the local storage area of the routine. Then, the

body is evaluated.

Therefore, it is impossible to modify a variable existing
outside the routine by using the variable as a parameter and
then trying to modify it inside the body of the routine. The
parameters must be considered as local variables that have been

initialized when the routine was called.

9.4 The Scope of Names

Inside a body, you may manipulate global variables defined
inside other routines. If several variables have the same name,
only one of these is accessible. In order to determine which
variables are accessible, you follow the chain of calls
backwards. The first time a specific name is encountered, you

have found the one that is accessible.
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Suppose that 4,B and C are names of global variables.

There are defined routines Fi,r2 and F3 with the

following headings: VZ<+«F1A; D Suppose
v A F2 C
VA<« F3D

that F1 is called first. Then, inside the body of
F1, variables with the names 72.,4,B,C and D are
accessible. B and C are global; Z and D are

local, as is 4 since it is the parameter of Fi.

Assume that F2 is called from within the body of F1. Then,
the body of F2 may operate upon its own variables 4 and C,
the local variables Z and Din F1, and the global variable

Be

If the body of F2 calls F3, the body of F3 may operate upon
its own local variables 4 and C from F2; the local variable

Z from F1; and the global variable B.

If the calling sequence was different, quite new effects
might appear. For instance, if F3 is called first, it does
not have access to any local variable 7. If the body tries
to use Z in an expression, an error will result. The
variable 4 is no longer local to Fi, but is the global

variable by the same name.

9.5 Recursion

Functions may call themselves recursively. In such cases,
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incarnation of the function may be considered as a separate

function with its own environment. In particular, the
function's local variables are local to it and are global only

to those routines it calls non-recursively.

9.6 The

120

E

=3
=

=

Operator

If you want to exit from a function prior to its completion, you
may use the Rrpryry operator. This operator may be used either

anadically or monadically.

In the anadic case, pgppryry returns the current value of the

— e e T S

specification expression, which sets the return parameter. For
example, you could write:

IF A = 0 THEN RETURN 7 <« 74

9.7 Comments

Any line in a routine's body can be made into a comment if you
start it with the symbol a. The comment symbol is called the
"lantern" because it often sheds light on a complicated

program.
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9.8 Implied Loops

Suppose you define a monadic functionOSRIC . When you write

OSRIC A + the function is applied to the array 4 in its entirity.

If you would like to apply OSRIC along coordinate 1 of 4, you

write Z <« OSRIC [I] A.

Then, OSRIC will operate on the hyperplanes along coordinate I

of 4, producing a resultar+ array such that

pOSRIC [I]1 A «» ((I-IQRG)4pA),(pZ),(I+1-I0RG)+pA

where for rows J of 1(p4)[I]
ZLLIQRG1J] <= OSRIC FAA

and
F <> Q((I=1ppA)/(031)),(I=ppAd)/(0;J)
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CHAPTER TEN

ON THE ORDER OF EVALUATION

The order of evaluation in APPLE expressions is controlled by
the rules of right association. However, you can easily
construct examples in which it is undesirable to strictly adhere
to this philosophy. For example, if we were to write

X « (1,0,1,0,0)/TERRIBLYCOMPLICATLDEXPRESGSION

we see that X will receive only 40 percent of the value that was
computed on the right side of the specification symbol. If
there is no specification of any part of the remaining 60
percent of TLRRISBLYCOMPLICATZPEXPRESSION , then we have wasted

considerable computing power in its evaluation.

Consequently, there is a slight, but important, modification to

the principle of right association in APPLE:

No portion of a select expression is evaluated unless

it is subsequently stored into a variable.

This principle has an interesting consequence. Consider the
code:

B ¢+ (1,0,2,0)

Y <« (B20)\(B=0)/u4:%B
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Now strict adherance to right association yields disastrous
results since the machinelmust divide 4 by 0 twice. But
suppose, instead of producing an interrupt, the result of
division by 0 is the undefined scalar [. Then,

4+B+«+ (4,00,2,(J) « Continuing the evaluation, we see that
(B%0)/(u,0,2,0) «> (4,2). At this point, the unwanted [] has
disappeared. Next, (B=0)\(4,2) «> (4,0,2,0). Thus, when all

has been computed, we have Y <> (4,0,2,0).

This was undoubtedly what the programmer had intended. APPLE's
modification to the principle of right association tends to

correspond to what programmers find natural.

The APPLE compiler maps all selection expressions into a
standard form (given in Section 1.11 of the APPLE
specification). The compiler is then able to distinguish the

necessary and unnecessary computations, suppressing the latter.
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AN INDEX OF SYMBOLS

This appendix is an index of APPLL operators.
It is divided into two parts: arithmetic

operators and array operators.
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mask
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APPENDIX II A Fast Fourier Transform

In this appendix a simple program that performs a Fast Fourier Tranform is
delineated and described. It is assumed that you are familiar with the way
FFT's work, (If not, we recammend that you read "A Guided Tour to the Fast
Fourier Transform," by G. D. Bergland, IEEE Spectrum, July, 1969, pp. 41-51.
This paper includes a camprehensive bibliography.)

The algorithm we follow is an adaptation of a method developed by R.D. Schmidt
and communicated to the author by W. Juran, Proprietary Computer Systems, Inc.,
Van Nuys, Cal. 91406.

We assume that the input data is an a rank-2 array B, where pB <> (L,2), with
L an integral power of 2 not exceeding same fixed number, say, 256. Each row
of ' B consists respectively of the real and imaginary parts of a data value.

First, we produce a simple preprocessing function. The algorithms for trans-
formations for time to frequency and frequency to time are essentially the
same. The only difference is that in the time to frequency transformation, the
result must be divided by the number of data sample points.

With this in mind, we can write our simple driver function, FAST. We will
make FAST dyadic: the second parameter is the data, while the first parameter
A determines that the transform is time to frequency if 4 <> 1 and frequency
to time otherwise.

The code for FAST is shown below, where we presume that IORG < 1:
V 2 « A FAST B;C
[1] IE ~ ((C « $oB)[2]1)€0,18 THEN RETURN 7Z <« (pB)pERR

[2] 7 <« QCpFFT((1+2@C[21)p2)p&B

[3] 720321 « -2[;21]

Lu] AFFT RETURNS CONJUGATE OF RESULT
L5] IF 1=4 THEN 7 <« Z:Cl2]
v

Here, we insist in line [1] that the number of rows in B be a power of 2 less
than or equal to 256. If not, FAST returns an array Z containing a predefined
error value contained in ERR.



In line (2], the monadic function FFT is invoked, returning an array whose
transposed value is stored in Z. We will look more closely at line [2],
momentarily.

Line [3] produces the camplex conjugate of the result of FFT.

And line [4] divides by the number of data points if the transform was time
to frequency.

When FFT is invoked on line [2], its argument is a rank 1+2eC[2] restructuring
of B such that ,B[[1]1] consists of the pure real data components and

,B[[1]2] consists of the pure imaginary data components. For example, if we
had started with B <> ®(2,16)(116),-116 then the argument X transmitted to

FFT would have been

X <> (2,2,2,2,2)p8B
i.e.,

-
N

X[13153531 <>

9 10

11 12
X[152553] «»

13 14

15 16

The imaginary components X[2;2;;;] and X[2;2;;;] are just the respective
negatives of these. The motivation for this restructuring will soon become

apparent.

The FFT must take care of the required binary sortings on this array. The
first such sorting is the one in which the real and imaginary components
respectively assume the position determined by reversing the binary encoding
of their index in ,X[[1]1] and ,XL[1[2]]. This can easily be achieved by
the transposition, since each coordinate of X is indexed by either 1 or 2.
The general desired array Y is giwen by Y <= (1,91+1L28x/14pX)8X.

In terms of our example array X, this is



-Y‘H (195”4’3929)QX

Here,
1 9
5 13
Yl1351555] <>
3 11
7 15
2 10
6 1k
Yl15;25531 <+
4 12

8 16

Again, the imaginary camponent is symetric to the real component.

Next, we need the appropriate array of cosines and sines for the real and
imaginary components. These are given by the array 7 where

o (2,1)0,00(P1H-1)Q((M-1)p2)p0, (1 1+J:2)x2%H

Mo o+> [ 2@x/1Vp X

<> x/1ipX

That is T[[1]1] consists of the cosines of the appropriately transposed
array of multiples of 2r divided by the number of data points; i.e.,
0,(02:N),(0u4sN),...,(02x 1+N+2):N. T[[1]2] consists of the sines of the
appropriately transposed array of the same multiples of 02:N.

Before we proceed any further, we list the function FFT.



V Y « FPT X3d ;Q3MsN3T

[1] Mel2@ii<x/1vpX
£21] Y«(1,P1+ 1M)8X
[3] T«(2,1)0,00(P1M-1)8((M=-1)p2)p0, (1 1+N+2)x2:N
Lu] J2+ppT
[5] WHILE 1
[6] Qe-/lJd«Jd-11 Y
7] Ye(+/LJ] Y):[J] (-/01] 7x@):[1] +/011 Tx¢[1] @
[8] IF J<14pY THEN RETURK
[9] T«(1, 1¢1+1M-21)Q7,[2] T+«(1,0)/[2]1 T
L10] REPEAT
v

Lines [1] - [3] contain the code for defining the initial sorted arrays
Y and T.

The loop spanning lines [5] - [10] iterates until the condition on line [8]
is satisfied. The variable J is used to control the processing of the data,
starting with the last coordinate of Y and concluding when the second coord-
inate has been processed. Y and T are restructured in lines [7] and [9]

to correspond to the sortings required by the algorithm.

The easiest way for you to understand the way the algorithm works is for you
to try following its execution on a small array, say one with eight elements.
You can then use a form of mathematical induction to verify that it works on
the higher-dimensional cases. '
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Individual differences and group interaction. Since each evaluator will

have his own set of values (Sj's), there may be collected diverse values of
'Sj for the group of evaluators. This divergence can come from differences

in Ra values and/or w (weights) values. The Delphi technique or simpler

group interaction may be used at this time. The Delphi technique may have
been used earlier for both Ra and w values, but the evaluators are not likely
to come to a complete agreement on one set of values (but eventually there
will be fewer sets than the number of evaluators). Any group interaction may
yield some influence toward agreement. Some studies on group planning seem to.
indicate that people may widely disagree on objectives and criteria but may

readily agree to favor certain alternatives.

Let us see how different sets of Sj's for different evaluators can be

compared. Let B represent a composite attribute of all ai's that have been
-considered. In our park example, B will be '"acceptable park design with all
the features properly balanced." Sj values can now be used to produce

RB(Aj) for each evaluator automatically (associating Sj values with numbers

in the interval [0, 1]). A display of RB's for all alternatives Al, A2, “ee

A.n can be made for each evaluator (see Figure 4). The total display of all
such values of all the evaluators may be shown in a scrambled order to maintain
anonymity, if desired. In addition, a statistical group response, such as
quartiles (Ql, M (median), Q3) of each'RB(Aj) value, can be calculated.

Seeing where his own evaluation stands within the group response may aid him

in understanding the overall evaluation.
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Figure 4. Overall Evaluation of Alternatives
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As an evaluator studies the relative merits of alternatives and gains a deeper
understanding of trade-off implications, his total conception of the situation

grows and his fuzzy-set mapping may become more defined. I is his

fR
)
preference function operating on the fuzzy-set at time t with respect to the

global criterion imposed by B, then as t increases, tends to converge

R
Bt
toward a more precise function; i.e., the evaluator becomes better able to

sort out alternatives.

Fuzziness (or impreciseness) of many decision-making situations is usually
caused by a mixture of ignorance, randomness, and intrinsic fuzziness. This
kind of exercise can help the evaluator to separate out types of fuzziness
involved and learn to identify where more information is needed (case of
ignorance), where probablistic treatment is needed (randomness), and where
increased awareness of other value systems besides his own is needed

(intrinsic fuzziness).

In complex decision situations where many competing factors must be properly
accounted for simultaneously, the interactive system can be made to keep track
of the evaluator's tendencies. For example, suppose the evaluator is
excessively cost oriented and his assignments of grades of membership for the
cost attributes fall consistently outside the interquartile range (Ql,vQ3) of
the group response. The system can remind him of other important factors and

trade-off considerations.
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Interacting with other evaluators through the system and seeing where his own
evaluation stands within the group response may influence him to.take additional
factors into account or to adjust his preference functions. If he feels
strongly about his preferences, he can try to persuade others by stating the
reason why the value should be lower (or higher) than the values (in the

interquartile range) expressed by the 75 percent majority.

The process of interaction and reevaluation can be repeated until, it is to be
hoped, convergence is attained. Polarization may occur but completely flat
distribution is not likely for most value-laden questions. Individuals seem
more responsive to value-oriented questions than to factual questions; that
is, changes of opinion seem more readily attainable on value-oriented issues

than on the factual ones.
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SUMMARY STEPS OF MACHINE-AIDED EVALUATION

There are seven evaluation steps to be considered, some of them will be
elaborated on in the following pages. For simplicity, the procedure assumes
a single user (evaluator) and group interaction is not emphasized. Steps are

presented in the 'usual" order but can be reordered at the user's direction.

1. List alternatives by name or number assigned to each.

2. List criteria for evaluation in terms of attributes.

3. Rank attributes and assign weights.

4, ‘List values in their ''matural' description (numerical or non numeric)
for each alternative's attributes.

5. Determine grades of membership of all values of attributes.

6. Calculate the summary value of each alternative.

7. Repeat any or all the steps above.

The 1list of alternatives and attributes may be prepared in advance

covering steps 1, 2, and 4 and can be thought of as an attribute-alternative
table (Figure 5). Unlike mathematical tables, this table can contain both
numerical and nonnumerical descriptions, even lengthy discussions supple-
mented by pictures that can be referenced. Therefore, the physical form of

the information may not look like the table in Figure 5.
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Alternatives -
Al A2 A3 . . . An
4
%
Attributes

%3
o

m

Figure 5. An Attribute-Alternative Table

Following is an expanded description of the seven evaluation steps.

1. List alternatives by name or number assigned to each.

2. List criteria for evaluation in terms of attributes.

Attributes can be given on a noncommittal trial basis with full recognition
that they are likely to be inadequate or incomplete; or they can be carefully
selected by a group of people (e.g., policy makers, planners, experts,
representatives of the public). Attributes may be separated into two groups,
"desirable attributes' and 'undesirable attributes", or they can be all mixed

together. Subsequent instructions will reflect the choice.
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Rank attributes and assign weights.

Attributes are rank ordered in terms of their relative importance in
contributing to the objectives. If there are many attributes and ranking
is difficult, machine assistance can be provided by showing only two
attributes at a time to the evaluator. Judging the relative importance

of two attributes is much easier than ranking the whole list.*

If the evaluator's judgment of importance is transitive and total in
ordering, the attributes are listed in the order of importance, possibly
placing two or more in the same rank in case of a tie. The logic
(computer programs) inside the machine can easily check any inconsistency
and ask the evaluator to compare again those attributes whose rankings
are in conflict. If the inconsistency is not removed, it is likely that
at least one attribute should be redefined in terms of two or more other
attributes, or some attributes should be grouped together as one. An

experienced evaluator usually can sense which ones are in need of adjustment.

*

Showing two attributes at a time makes comparison easier but the

resulting ordered list should be reexamined as a whole to guard against
any possible context shifts, which may result when only two items are
compared at a time.
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When ranking is complete, the attributes are displayed in rank order.

The evaluator is now asked to assign Weight‘wi to each attribute, starting
at the top-ranked one(s) with the weight of 100. Using this as the point
of reference, the other attributes are also assigned weights. These
weights should reflect the relative '"strengths of effecté" of attributes

contributing to the objectives.

List attribute values in their '"natural' description (numeric or non -

numeric) for each alternative's attributes.

If the attribute values are given in verbose descriptions, they can be
condensed to a few key words to be displayed along side the names of
attributes. The original information sheets should also be available

to the evaluator.

Determine ''grades of membership" of all the attribute values.

Using the fuzzy-set concept, each attribute value is judged in terms of
"grade of membership" -- i.e., a number in the interval [0,1]. Since
comparability is important in value jﬁdgement, other values of the same
attribute from different alternatives can be shown one or two at a time
for comparison. In Figure 5, this process corresponds to moving hori-
zontally across the alternative on the séme attribute line. When all
the attribute values are judged in this way, a new table of values is
created within the uniform scale. When it is displayed, it will look

exactly like Figure 5 containing a single number (between 0 and 1) in
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each cell of the table. Seeing the total array of numbers may prompt him

to change his earlier choice of values.

Calculate the summary value of each alternative.
m
The summation Sj = I W, Ra (Aj) is calculated for each alternative
i=]1 i
Aj as one of the basic machine aids, but some other forms of getting the

summary value may be tried out. The evaluator can specify his own ideas
easily with the man-machine communication language, User Adaptive

Language (UAL) (see Hormann, et al [1970]).

If attributes have been separated into "desirable attributes' and

"undesirable attributes," Sj's are calculated using only those a's

in the desirable category, and Sj =7 wi(l - Ra (Aj)) is calculated using
1 )

i
only those o's in the undesirable category. Weights, attached to attri- -

butes, remain the same since they should reflect the "strength of effects"
regardless of desirability or undesirability. The difference, Sj - Si
for the alternative A.j may be called the "met-benefit value." Comparing

these values presumably will indicate a tentative conclusion concerning

which alternatives are best.

Repeat any or all the steps above.

The evaluator is encouraged to go back and examine his previous judgments.
it is usually advisable, the first time around, to use first impressions

in making attribute rankings and in making a judgment of grade of
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membership without too much deliberation. Stepping through the whole
sequence rather quickly the first time, rather than dwelling on a single
factor in detail, will give him a better understanding of how certain

factors are accounted for in the total evaluation.

Iterating the evaluation process tends to bring many assumptions into
the open, and the evaluator may become more aware of how the conclusions
are related to the assumptions. For example, assumptions on the objec-
tives will influence the interpretation of objectives and criteria in
terms of attributes and will also influence attribute ranking and weight
assignments. Assumptions on political and technical constraints on the
proposed designs will certainly influence many decisions. Probing into
them with "what if" questions may separate out ''real" constraints from
imagined ones or those that can be overcome by negotiation or by

creative problem solving.

The evaluator may, in the light of new insights and understanding, wish
to redefine objectives and specify relevant attributes more carefully.
Interacting with the other evaluators, or even with the policy makers,
may bring further clarification. Possible use of the Delphi technique

has been discussed, so it will not be dealt with here.
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Complex trade-off implications, which are typically nebulous, can be
made clearer if bar graphs such as those shown in Figure 3 are used.
They can be rearranged to show the Ra. values of different alternatives
horizontally for each oy . The evaluator may be encouraged to ask ''what

if" questions on possible trade-offs that are not evident in the design

alternatives; the answers may suggest a new or modified design.

POTENTIAL APPLICATIONS

There are a number of areas of potential application for this method.

1. Complex equipment with many performance criteria.

Evaluation of different designs of complex equipment such as aircraft
and underwater exploration vehicles can use machine-aided evaluation.
In these, many attributes must be included in evaluation and they cover
both factual information and subjective value information. This class
of problems is less fuzzy not only because factual information tends to
dominate but because the physical boundary in measuring operational

behavior is relatively clear.

2. Selection of suitable locations for large complexes.

The problem of selecting a suitable location for a large complex, such as
a new housing development, often requires careful consideration of many
attributes that are qualitative in nature. Among many possible locations,

one or a few candidates are usually selected in order to proceed with
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designing, legal and financial negotiations, etc. Other examples of
large undertakings whose location decisions tend to affect various
segments of our society are: manufacturing plants, airports, hospitals,
health-care centefs, sanitoriums, rehabilitation centers, educational

institutions, trade centers, highways, and transportation networks.

3. Complex combination of things that interact.

Making an appropriate EDP system selection from all possible combinations
of available hardware/software products to meet the user needs is a complex
prablem. Guessing at a suitable hardware/software mix is hard enough,

but evaluation of a wide number of configurations when the components
interact usually requires an advanced modeling technique (Sutherland
[1971]). Information on the performance charécteristics of hardware and
software components are separately available, but very little information
can be had on the total performance characteristics for specific
configurations--unless the pieces are all of the same manufacture. After
modeling produces the system's performance characteristics, our technique

can be used in total performance evaluation.

A similar situation facing the decision maker is the selection of
alternative designs of hospitals, schools, housing complexes, or research

laboratories.
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Another area of interest is compensation programs to provide employees
many different options. Companies who can provide many options will

have a definite advantage in employee inducement and retention.

4, Long-range large scale programs comprised of many projects that are

interrelated and interdependent.

Many government programs such as health care, welfare, education, and
foreign aid programs are in this category. This is an area of great
importance because of its far-reaching effects, both intended and
unintended. It is also the area of greatest difficulty because of its
complexity, unclear boundary (sphere of effects are not clearly definable)

and future-oriented consideration.

These programs or measures that tend to create many side effects or that
produce long-term effects or irreversible conditions, must receive extra
care in planning. Although the future is always uncertain and, therefore, nc
forecasting techniques can claim total accuracy, a variety of forecasting
techniques combined with modeling can produce some indication of types of

impacts a given program might make in the future.

After possible consequences of alternative courses of action are generated,
the consequences can be arranged within a "decision-event map,' indicating
interrelation of actions taken, their intended results and possible side

effects, and intervening events that are likely to happen.



March 22, 1971 26 SP-3590

Concentrating on the consequences in the time-stream (rather than at

one point in time), our technique can still be employed by using attri-
butes that explicitly indicate future impacts. (e.g., ''rate of yearly
increase in food production in country X, during 1970-1975, after
introduction of farming equipment" or "number of farm workers in country

X migrating yearly into cities during 1970-1975").

‘Admittedly, any future-oriented evaluation is very tenuous. However,
evaluating programs to assist underdeveloped countries is a more
amenable problem than evaluating our own future possibilities. We can
use the U.S. and other developed countries as models in planning to
avoid possible undesirable consequences and to promote those attributes
that are desired by the country. Although exact correspondence between
the model and the real consequences in a given country cannot be

expected, hindsight is readily available while foresight is not.
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SUMMARY

The importance of including many criteria of various types and degrees
of imprecision has been discussed. The man-machine fuzzy-set approach
described here is our first attempt to tackle this task. Insight gained
in using these techniques may lead to improvements or to new ideas and

techniques.

Systematic analyses of the situation supplemented by intuitive judgment was

emphasized. The following points may be worth reviewing:

. Consistency in treatment of all alternatives with many attributes
describing desirability or undesirability. One aspect of consis-
tency achieved here is the making of everything into a value-
oriented judgment; even though attribute values may be factual,
determining their worth in relations to the objectives requires a
judgmental decision. The fuzzy-set concept allows explicit

treatment of imprecise value judgments.

. Comparability. Since absolute judgment is far more difficult than
relative judgment, the man-machine techniques facilitate comparison
by bringing in other relevant factors. In addition, the fuzzy-set
treatment of attribute values make them commensurable, and complex
trade—off possibilities can be explored much more readily than

without such assistance.



. March 22, 1971 28 SP-3590

Systematic use of the knowledge and experience of experts as well as
opinions of people from different backgrounds. Those techniques
(such as the Delphi) for direct involvement of people can fit

naturally into the on-line interactive system.
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