
AN APPLE TUTORIAL

MARVIN SCHAEFER

1 SEPTEMBER 1973

TM-5074/100/00

PREPARED UNDER CONTRACT NO. NAS2·7635
FOR AMES RESEARCH CENTER, NATIONAL
AERONAUTICS ANO SPACE ADMINISTRATION.

AN APPLE TUTORIAL

MARVIN SCHAEFER

1 SEPTEMBER 1973

THIS DOCUMENT HAS NOT BEEN CLEARED FOR OPEN PUllL.ICATfON.

TM-5074/100/00

Section

CHAPTER ONE
CHAPTER TWO

TABLE O? CONTENTS

INTRODUCTION . • • • . •
HOW TO USE THIS TUTORIAL •

CHAPTER THREE WHAT IS AN ARRAY? • • • •
3.1 Vectors and Matrices •
3.2 Rank-n Arrays ••••
3.3 Empty Arrays •••••
3.4 Scalars as Rank-0 Arrays •
CHAPTER FOUR NOTATION FOR CONSTANTS AND VARIABLES •
4.1 Notation for Numbers •
4.2
4.3
CHAPTER FIVE
5.1
5.1.1
5.1.2
5.1. 3

Notation for Variables • •
The Equivalence Symbol • • •
BASIC ARITHMETIC OPERATORS • •
The Scalar Monadic Operators •
The Identity Operator. • •••
The Negation Operator .•

1
4
6
8

• 11
• • 12
• • 12
• • 13
• • 13

• • • • • • 15
• • • • • 15

• • 17
• 18

•• 18
• • • • • • 19

19
5.1.4

The Signum Operator •••
The Reciprocal Operator.
The Exponential Operator •

• • • • • • • • • 20
5.1. 5
5 .1. 6
5.1. 7
5.1.8
5.1. 9
5.1.10
5.1.11
5.1.12
5.1.13
5.1.14
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9

The Natural Logarithm Operator •
The Floor Operator • • • • •
The Ceiling Operator • • • . • • • • •
The Absolute Value Operator .••
The Random Integer Operator (Roll) •
The Logical Complementation Operator (NOT)
The Generalized Factorial Operator •
The Multiple of TI Operator . • • • • • • • • •
Summary of Scalar Monadic Operators
The Scalar Dyadic Operators.
The Addition Operator •••••
The Subtraction Operator . • • • • • •
The Multiplication Operator •••••••
The Division Operator. • • • • • •
The Residue Operator • • • •
The Minimum Operator • •
The Maximum Operator •
The Exponentation Operator • • • • •
The Logarithm Operator • • •
The Circular Function Operator •
The Logical Conjunction Operator (AND) •
The Logical Disjunction Operator (OR).
The Exclusive Disjunction Operator (Not Equal)
The Equality Operator.

•• 20
• 20

•• 21
•• 21
•• 21

• 22
• 22

• • • 23
•• 23
•• 23

• • • 24
•• 25

25
•• 26
•• 26

• • • • 26
•• 27

• • • • • 27
28

• 29
•• 29

30
• • 31

• 31
• 32

5.2.10
5.2.11
5.2.12
5.2.13
5.2.14
5.2.15 The NANO Operator. • • • • • • • • • • • • • • • • 32

i

Section

5.2.16
5.2.17
5.2.18
5.2.19
5.2.20
5.2.21
5.2.22
5.2.23
5.3
5.4
5.5
CHAP'rER SIX
6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.4
6.5
6.6
6.7
6.8
6.8.l
6.8.2
6.8.3
6.8.4
6.9
6.10
6.11
6.11.1
6.11. 2
6.12
6.12.1
6.12.2
6.12.3
6.12.4
6.12.5
6.13
6.14
6.15
6.16
6.17
6.18
6.18.1

The NOR Operator ••.•••••
The Less-Than Operator •••••••
The Less-Than-or-Equal Operator • •
The Greater-Than-or-Equal Operator.
The Greater-Than Operator •.••••••
The Generalized Combination Operator ••
The Random-Selection-Without-Replacement Operator
Summary of Scalar Dyadic Operators.
Right and Left Identities ••••••••••••
Right-Associative Operators • • • • • • • • • • •
Bracketing Conventions and Operator Priorities.
ELEMENTARY ARRAY MANIPULATIONS •••
Index Origin. • • •
Indexing of Arrays ••••••••
The Empty Vector •••••
Vector Index Generation • •
Subscripting of Vectors • •
Subscripting of Arrays. •
The Ravel Operator •.••
Array Index Generation. •
The Subscript Generator •
Partial Subscripting •••••••
Reshaping Arrays •••••
Arithmetic Array Manipulations •••
Vector Reduction. •
Array Reduction • •
Vector Accumulation
Array Accumulation. • • • • • • • • •
The Catenation of Vectors •
The Interval Operator . •
The Subarray Function • .
The Whole Array Operator.
The Cross Section Operator.
Compression and Expansion • •
The Logical Compression of a Vector
The Logical Compression of an Array
The Logical Expansion of a Vector • • •
The Logical Expansion of an Array •
The Relation Between Expansion and Compression.

(Deal} . • •

Prefix and Suffix Vectors • • • • • • • •
The Monadic Transpose Operator.
The Take Operator • • •
The Drop Operator • •
The Reversal Operator • • • • •
The Mask and Mesh Operators •
The Mask Operator • • • • • •

ii

32
33
33
33
34
34
35
36
38
39
41
44
45
46
46
46
48
49
53
53
55
56
57
59
59
59
63
63
64
65
65
66
67
68
68
68
70
70
72
72
73
74
76
77
78
78

Section

6.18.2
6.19
6.20
6.21
6.22
CHAPTER SEVEN
7.1
7.2
7.3
7.3cl
7.4
7.4.1
7.4.2
7.5
7.6
7.6.l
7.6.2
7.6.3
7.6.4
7.7

The Mesh Operator • • . • •
The Rotate Operator • • • •
The catenation of Arrays. •
The Lamination of Arrays.
The Dyadic Transposition of
EXPRESSIONS, STATEMENTS AND

Arrays.
PROGRAMS ••

Elementary Definitions. • • • • • • • •
Conformability Conventions for Scalar Dyadic Operators.
Specification Expressions . • • • • •
Select Expressions and Specifications •
Conditional Statements. • • • • ••
One-Line Conditional Statements • •
Multi-Line Conditional Statements •
Conditional Expressions •
Iteration Statements •.••.
The DO Statement.
WHILE Statements.
UNTIL Statements.
Iteration Control Operators • •
The CASE Statement.

7.8 The CASE Expression •
CHAPTER EIGHT ARRAY OPERATIONS •••
8.1 The Index of an Array Within an Array •
8.2 Array Membership •••
8.3 Sorting •.••
8.4 Outer Products ••
8.5
8.5.1
8.5.2
8.6
8.7
8.8
CHAPTER NINE
9.1

Inner Products. • • •••
Inner Product Conformability.
Definition of the General Inner Product •
Change of Base. • • . • •
Matrix Inverse Operator •
Matrix Division . • • • •
SUBROUTINES, FUNCTIONS AND OPERATORS.

79
79
83
85
87
93
93
94
96
98
98
99

• 100
.• 104
.• 105

• 105
107

. 108
109

• 110
. • 111
.• 113
. . 113
. . 115

115
• • 116
• • 117
• • 119

• 119
120

. 123
• 123

.• 124
•• 124

9.2
The Distinction Between Functions and Subroutines •
The Form of a Function or Subroutine Definition . • • • . 126

9.2.1
9.2.2
9.2.3
9.3
9.4
9.5
9.6
9.7
9.8
CHAPTER TEN
APPENDIX I
APPENDIX II

'l'he Heading •
The Body •••
The Footing •
Call by Value •
The Scope of Names.
Recursion • • . • .
The RETURN Operator •
Comments. • • •
Implied Loops • • •
ON THE ORDER OF EVALUATION ••
AN INDEX OF SYMBOLS . . .
A FAST FOURIER TRANSFORM

iii

.

.• 126
• • 128

129
• • 129
• • 129
• • 130
•• 131

. 131
• 132

133

A-1
B~l

1 September 1973 system Development corporation
rM-5074/100/00

CHAPTER ONE

INTRODUCTION

rhis tutorial manual illustrates the programming features of

A.PPLE (~ farallel grogramming Language).* APPLE is based on

K. E. Iverson•s APL (~ f~Qg~~mming ~~ng~2g~, Wiley, 1962), a

language that uses generalized operators to concisely express

mathematical algorithms on multi-dimensional data structures.

The generalized operators of APL and its successor APL\360

permit a programmer to express manipulations of arrays almost as

easily as he can express manipulations of scalars in

conventional programming languages (e.g. FORTRAN, PL/I, etc.).

The advantage of these operators is that when the programmer

writes arithmetic expressions involving arrays, he does not have

to go through the tedious process of writing nested loops to

control the processing of the arrays. Instead, he is able to

express the process as it conceptually occurs: in parallel on

all of the elements of the arrays.

l'hat programmers tend to think in terms of parallel processes on

*--hPPLE-rs-not to be confused with the RADC assembly language
bearing the same name which was produced for an associative
processor.

- 1 -

1 September 1973 System Development corporation
·rM-5074/100/00

arrays is borne out by the APL\360 code produced by its large

number of commercial users, who write their code as if it could

be executed in parallel even though it is executed on a

sequential computer. Many payroll programs, for example, treat

the set ~f base salaries as a vector. Withholding taxes,

voluntary deductions, and so forth, are then computed for the

entire vector, at once, rather than on an employee-by-employee

basis, because the same algorithm is used to process every

employee.

One of the primary benefits of APL has been the elimination of

unnecessary loops and bookkeeping. For example, a programmer

writes loops far less frequently in APL in than in FORTRAN or

PL/I. This tends to reduce the number of situations in which

coding errors can be introduced into a program.

However, because APL\360 is not a complete programming language,

it does not eliminate all such situations. The only control

operator in APL\360 is the GOTO operator. The basic control

operat~rs--e.g., IF and oo--that have been included in FORTRAN

and other languages dating from the 1950 1 s are absent from APL.

Paradoxically, one can write elaborately eloquent arithmetic

expressions in APL but must resort to the techniques of assembly

langua~e programming in order to perform them more than once.

Dijkstra, Mills, Schorre and others have blamed a majority of

programming errors on the unrestricted use of the GOTO

- 2 -

1 September 1973 System Development Corporation
TM-5074/100/00

statement. Since one can control program flow only with GOTO's

in APL, it was clear that there was a need for other control

operators in APPLE if the possibility of coding errors was to be

reduced significantly.

conse1uently, APPLE contains such features as conditional

statements, conditional expressions, operators for writing

loops, an1 case statements. These control operators eliminated

any need for the GOTO operator. rherefore, there is none in

APPLE.

Other unique features of APPLE increase the clarity of

exposition and simplify the coding process. These features

further generalize APL's concepts and conventions for

manipulating arrays and defining functions and operators.

APPLE is sufficiently extensible that all of its operators can

be jef ined in the language itself. A formal specification of

APPLE is contained in the "ILLIAC IV Language Requirements

Study: Final Report," soc document TM-5074/000/00, 31 January

1973.

- 3 -

1 September 1973 System Development corporation
rM-5074/100/00

CHAPTER rwo

HOW TO USE THIS TUTORIAL

In this tutorial, we assume that you have had some programming

experience. we do not assume a sophisticated understanding of

progranming lanquages. The manual is self-contained, so you

shoul1 be able to learn how to use A.PPLE by reading the

descriptions and working out the examples that have been

provi:ied.

Because ~PPLE treats many mathematical concepts differently than

do most other languages--certainly FORTRAN or PL/I--it is

important that you read Chapters 3, 4, 6 and 7 closely, even

though you may be familiar with many of the concepts. It is

especially important that you be aware of the differences in how

to subscript arrays or evaluate arithmetic expressions.

rhe tutorial is organized so that each chapter builds on its

predecessors.

Pay close attention to the discussions on the order of

evaluation in Chapters 4 and 10. The concept is easily learned,

but you must understand it thoroughly in order to program in

- 4 -

1 September 1973

APPLE.

System Development corporation
rM-5074/100/00

~PPLE has not yet been implemented on any computer.

consequently, we have not included any description of

input/output or systems interface procedures. Those

descriptions will be made available along with each APPLE

implementation.

- 5 -

1 September 1973 System Development Corporation
rM-5074/100/00

CHAPTER rHREE

WHAT IS AN ~RRAY?

rhe ILLIAC IV is a powerful computer. It was designej to

simultaneously perform the same QQ~t:S!tiQ!l on a large number of

data operands. For example, if we wanted to double each of a

set of 50 numbers, the ILLIAC could double them all at once.

In a conventional programming language, such as FORTRAN or PL/I,

you woulj have to assign a unique name to each of the 50 numbers

in order to write a program that would double each of them. One

simple way of assigning a unique name to each of the numbers is

to declare an ~~fgy that contains them. rhen, each number woulj

have a unique name consisting of the name of the array and a

subscript (or index) • The subscript would simply be a number in

the cange 1, 2, ••• ,50.

rhere are at least two ways to write a program that would double

each of the 50 numbers. One way is to simply write 50

assignment statements, each of which sets a specific element to

twice its previous value. Another way is to write a loop that

will iterate 50 times and in ~hich each element is replaced by

its double. When coding a program, this latter alternative is

- 6 -

1 September 1973 System Development Corporation
TM-5074/100/00

preferable since it requires less writing. Even more important,

writing the loop reduces the possibility of your rraking

keypunching errors. While neither of the alternatives in this

approach seems very important, consider the problem of doubling

100,000 numbers. In this case, we would have no alternative but

to use an array and a loop since the program would be too long

to write.

While these techniques are perfectly acceptable ways of

programming in FORTRAN or PL/I on a sequential computer like an

IBM/370 or a PDP-10, we may ask: Why write a 1292 to double 50

numbers on the ILLIAC when it only takes a couple of

instructions in ILLIAC Machine Language? The answer is that

these programming languages were not designed for computers like

the ILLIA2, so there is no notation in the language to represent

doublil'lg all of the numbers at once since this is impossible on

ordinary computers.

APPLE is not a conventional programming language. It is

desig!'led for use with computers on which you can double 50

numbers all at once. In fact, APPLE is designed to run on a

"computer" where you can double 100,000 numbers at once. (Since

no such computer exists, the APPLE compiler makes the ILLIAC

simulate this imaginary computer. Thus, all you have to do to

double the 50 numbers in APPLE, is to put them into an array and

- 1 -

1 September 1973 System Development corporation
TM-5074/100/00

Before we can show you how to write an APPLE program for

doubling the array, we must first establish the terminology that

is use1 t:::> describe arrays and their properties. While all

programmers are familiar with arrays, few programming languages

treat them the same way •

.3.1 Vectors and Matrices

A y~~t2£ is a one-dimensional array of numbers. A vector is an

ordere1 set of elements (i.e., a first element, second element,

etc.), an1 we know how many elements there are. It does not

matter how you write them down--horizontally, vertically, or

diag:::>nally; the number of elements in the vector will not change

and there will still be a first element, second element, and so

on. rhe number of elements in a vector is called its

Example. If v is a vector, then we represent its dimensionality

by writing pV· (pis the greek letter "rho. 11) For

example, if v is the vector consisting of the four

numbers (14, 3, 2, 17), then pV is equal to 4.

A ~~tf~~ is a rectangular array of numbers. Each matrix has a

number of ~Q~§ and a number of £Q!YIDD~· Mathematicians can

specify a particular element of a matrix by calling out, for

example, the third element of the fourth row, or the fourth

element of the third column. This is com~letely unambiguous.

- 8 -

1 September 1973 System Development corporation
TM-5074;'100/00

They can also call out either the entire fifth row, or the sixth

column, or one of the diagonals of the matrix.

A matrix has two important dimensions: the number of rows and

the number of columns it contains. The gimg!l§iQn~!itY Qf ~

mst~i~ is defined as the vector whose first element is the

number of rows and whose second element is the number of columns

in the matrix. For a matrix M, the dimensionality of M is

written pM.

Example. If M is the matrix
12 4 6 5

8 10 22 15

then pM is equal to the vector (2, 4).

The g!mgn~iQnelit~ Qf ~ y~tQ• is defined to be the vector whose

only element is the number of elements in the vector. Thus, we

can speak of the g!mgn§i2n ygg~Q~ of a vector or matrix.

suppose A is either a vector or a matrix. If the vector pA

consists of only one element, then A is a vector; if pA

consists of two elements, then A is a matrix. so we need a

precise way of determining the number of elements in pA to

decide whether A is a vector or a matrix.

Since pA is always a vector, it makes sense to talk about the

dimensionality of pA, i.e., to talk about the one-element vector

ppA whose single element is just the number of elements in the

vector pA~ (Here, we write ppA to mean p(pA). The parentheses

- 9 -

1 September 1973 System Development corporation
rM-5074/100/00

are n~t necessary, so we omit them.) It follows that if ppA

equals 1, then pA contains one element, hence A is a vector. If

ppA equals 2, then pA contains two elements, hence A is a two-

dimensional array (i.e., a matrix).

It is cumbersome to talk about the dimension vector of the

dimension vector of an array A. So we define the word X2D~ to

mean the value of the unique element of the dimension vector of

the dimension vector of an array, i.e., the value of ppA. Then,

a vector is a rank-1 array, and a matrix is a rank-2 array.

Mathenaticians speak of row vectors and column vectors. In

APPLE, these are not really vectors, but matrices. This is

because a row vector always has two important dimensions: the

number of elements it contains and the direction in which it is

written. This.is also true of column vectors. In order to be

consistent with the convention of listing the number of rows

first, then the number of columns when we talk about the

dimensionality of a matrix. The dimension vector takes the

following form. For a row vector R the first element of pR is

always 1, the number of rows in the matrix, and the second

elenent is the number of elements in the row vector. Similarly,

the first element in the dimension vector of a column vector is

always the number of elements in the column vector, while the

second element is always 1.

It is possible to determine the number of elements in a matrix

- 10 -

1 September 1973 System Development Corporation
rM-5074/100/00

by l~oking at its dimension vector. The number of elements is

equal to the product of the number of rows in the matrix and the

number of columns in the matrix. That is, the number of

elements in a matrix is equal to the product of the two elements

in its dimension vector.

Example. If Mis a matrix having 5 rows and 7 columns,

then pM equals the vector (5, 7). There are

35 elements in M, and 35 is the product of 5

and 7.

3.2 Rank-n Arrays

In APPLE, the concept of an array is generalized to an arbitrary

number of dimensions. we call this number the ~~!!ls of th~

a~~a~· For example, a rank-3 array is an arrangement of numbers

along the three coordinate axes of Euclidian 3-space. That is,

the elements are arranged to form the lattice points of a

rectangular parallelepiped. If A were such an array, then pA

woul1 be a vector (a, b, c), where a, band c correspond

respectively to the number of planes, rows and columns of A, and

ppA equals 3. Similarly, there are rank-4 arrays, rank-5

arrays, and so forth. It is easy to see that the number of

elements in a rank-n array A is the product of the elements of

pA.

- 11 -

1 September 1973

3.3 Empty Arrays

System Development corporation
'l'M-5 074/100/00

APPLE perllli ts you to work with an array A for which one or more

of tne elements of pA is zero. Since the product of the

elements of pA equals zero, it follows that A contains no

elements.

You will occasionally have use for empty arrays. In fact, an

empty array occurs in the following section.

3.4 Scalars as Rank-0 Arrays

A scalar is a number, as distinguished from a vector, matrix,

quaternion, etc. A scalar corresponds to a geometric point.

In APPLE, a scalar is an array that has no dimensions whatsoever

associated with it. consequently, there can be no elements in

the dimension vector pS associated with the scalar S. This

implies that ppS equals O, the number of elements in the vector

pS. Since ppS is the rank of the arrays, we maintain

consistency by calling a scalar a rank-0 array.

- 12 -

1 September 1973 system Development corporation
TM-5074/100/00

CHAPTER FOUR

NOTATION FOR CONSTANl'S AND VARIABLES

In APPLE, a £Qll§t2D~ is a number the value of which never

chan~es during the execution of a program.

A ~g~l~Ql~ is not a variable in the mathematical sense. Rather,

a variable is the name by which you refer to a value that you

wish to store someplace and access later. The value of a

variable may change during the execution of a program, or it may

remain constant. The significant point is that the value of a

variable can vary according to your needs, but the value of a

constant is always the same.

4.1 Notation for Numbers

APPLE permits the use of integral and rational numeric

quantities. These numbers are called in~~g~~§ and

The precision of the ILLIAC permits the representation of

integers n such that -2•e~n<2•a (i.e. integers smaller in

magnitude than 281,474,976,710,656).

- 13 -

1 September 1973 System Development Corporation
TM-5074/100/00

Floating-point numbers are rational approximations to real

numbers. rhe representation range for a floating-point number f

is 2-163&4Slf 1<2163&3, where the significant part of the

mantissa is correct to 48 binary figures. The floating-point

representation is automatically used for those integers that

cannot be represented in 48 bits.

Inte~ers are written the same way in ~PPLE as they are in normal

mathematics, except that the negation sign is represented by a

raised bar (-) so that it can be distinguished from the

subtraction operator. Commas may ~ be used to separate three

digit fields, because the comma is an operator that has a unique

meaning in APPLE.

Exanple. rhe number 1,234 is written 12:i1+, while -50,762 is

written 50762.

Floating-point numbers are also written according to the normal

arithnetic conventions. Here, too, the negation sign is used to

represent negative numbers.
; .·-"

Example. Pi may be written as 3.141592653583271, while

-14.337 is written 11•.337

You may also represent numbers in scientific notation, i.e., as

the product of a number and some integral power of 10. The

mantissa does not need to be normalized. Here, the number is

represented by writing the number, the letter E, and the

integral power of 10 by which the number is to be multiplied.

- 14 -

1 September 1973 System Development corporation
rM-5074/100/00

Exanple. rhe number -47335 can be written in scientific
notation as either -4.7335x10•, or
-.0047335x10 7 or-47335oooooox10- 6 • In APPLE,
these would be, respectively, 4.7335E40r

.0047335E 7or-47335001JOOOE'-6

4.2 Notation for Variables

Since one or more values is stored in a variable, we must have a

means of referring to variables. we do this by giving the

variable a n~ID~·

A nane consists of an alphabetic character followed by a

(possibly empty) sequence of alphaneric characters. An

~!QQ~Q~t!~ gh2~2£t~~ is either a letter or an underscored

letter. A.n S!!QDS!fil~~.i£ g!:g!~§Qt~~ is either a digit, an

underscored digit, or an alphabetic character. A name may not

contain any imbedded blanks.

Example. The following are names:

,1

d
tl 1
Al
A12.J4'.)Gh~

4.3 rhe Equivalence Symbol

APPLE uses the double-headed arrow (+4 to represent equality.

This symbol is not an APPLE operator, but serves only as a meta­

linguistic device. Thus, when we wish to say that the content

- 15 -

1 September 1973 System Development corporation
TM-5074/100/00

of the variable A is the number 3, we write A +-+ 3.

If we want to be more precise and insist that 11 contains the

scalar 3, as opposed to the vector (3), we would have to specify

two facts: one related to the numeric value contained in A, the

other related to the rank of A. In this case, we would write:

A +-+ 3
p pA +-+ 0

If .4 had been the vector containing only the number 3, then we

could have written either pA+-+1 or ppA +-+ 1

- 16 -

1 September 1973 System Development corporation
rM-5074/100/00

CHAPTER FIVE

BASIC ARITHMETIC OPERATORS

APPLE provides the programmer with a large number of arithmetic

operators. These operators are designed to operate on arrays,

rather than on scalars. some of the operators; e.g., addition,

subtraction, multiplication, division, exponentiation; are

common to standard languages. The remaining operators are of

the type commonly found in the mathematical subroutine libraries

of major programming languages.

The ~perators are applied to entire arrays. The multiplication

operator can be used, for example, to double all of the elements

of an array without your having to write a loop. It can also be

employed to multiply each element of one array by the

corresponding element of another array.

In this chapter, we will introduce you to each of the arithmetic

operators and then explain how it works. We will subsequently

describe how you form expressions involving more than one

operator. In a later chapter, we will show you how to

generalize some of the arithmetic operators.

- 17 -

1 September 1973 System Development corporation
TM-5074/100/00

5.1 The scalar Monadic operators

An operator is called m2os9i~ if it operates on only one

argument (or 2e~•!ng). A §S!l!' m2nsgig Q~*!tQ[is a monadic

operator that is defined in terms of its effect on a scalar

operand.

Since each element of an array is a scalar, a scalar monadic

operator applied to an array operand A produces a resultant

array B such that pA ++ pB. Each element of B equals the appli­
cation of the operator to the corresponding element of A.

A monadic operator is written to the left of its argument.

In the remainder of this chapter, we will use the variables

A, B, C, D,

c ++

where

U, v to represent the following arrays:

C2 3 0) A ++· 7 -4 -1

-(1.33, 1. 3 3.

u +-+ (1, 0,

pA ++ (2, 3)
pU ++ (4)

1,

B ++(; 3 ~) 4

7.0, 0) D ++ (2.72, 3.14,

0) v ++ (1, 1, 0.

pB ++ (2, 3)
pV ++ (4)

pC ++ (4)

5. 8. 148.3)

0)

The synbol + is used to represent the identity operator. For

any array A, +A equals A. In symbols, we have +A +-+ A.

- 18 -

1 September 1973

Example:

system Development corporation
TM-507q/100/00

The symbol - is used to represent the negation operator. (Note

that - is different from the negation sign -, which is only used

for writing negative numbers.) For any array A, every element of

11 is subtracted from o •

Example:

rhe synbol x is used to represent the signum operator. For a

number x, siqnum(x) is the function whose value is: 1 if x>O, -1

if x<O, and 0 if x=O.

Example:

- 19 -

1 September 1973 System Development Corporation
TM•S074/100/00

rhe sy:nbol is used to represent the reciprocal operator. tB

is def inej for all nonzero arguments, its value is 1 divided by

B.

Example:

-l· lJ ++ (0 . 5
o.11+28571429

0.3333333333
0.25

The sy:nbol * is used to represent the exponential operator. For

any array A. *!l equals e (2. 718 2818284 •••) raised to the A

power. 'rha t is, */l is the natural antilogarithm of A.

Example:

*A ++(1.3'.S3352832E.~-. 1
1.09663315BE'.3

2.00B553692E1 1.000000000E~)
1.831563889£-2 3.678794412E 1

The sy:nb:Jl 1a1 is used to represent the natural logarithm

operator. For a strictly positive argument B. ~Bis the

logarithm of n to the base e.

Example:
®B ++(0.6931471806

J .9459101490
1.098612289
1.386294361

- 20 -

1.fi09t+37912)
0.000000000

1 September 1973 System Development corporation
TM-5074/100/00

rhe synbol L is used to represent the floor operator. For a

number x, the floor of x is the algebraically qreatest integer

less than or equal to x.

Example: If C is the vector defined on page 18, then

LC+~ (1, 2, 7, O)

The synbol r is used to represent the ceiling operator. For a

number x, the ceiling of x is the algebraically least integer

greater than or equal to x.

Example:

r c .. -... c ?. • 1 • 7 • o)

The s ynbol is used to represent the absolute value operator.

rhe absolute value of a number x is the algebraic maximum of x

and -x.

- 21 -

1 September 1973

Example:

IA -<··>-(2 '.l o1)
'l 4

System Development Corporation
rM-5074/100/00

rhe synbol ? is used to represent the random integer operator,

which is better known as "roll," as in the rolling of a die.

The operand must be a positive integer array. For each scalar

n, t,he result is a normally random integer selected from the set

{1,2, ••• ,n} or {0,1, ••• ,n-1} according as the index origin is 1

or O, respectively. (See section 6.1 for a discussion of Index

Origin.)

Example:

The synb::>l "' is used to represent the logical complementation

operator. rhe operator is defined only on the set {0,1} and

transforms 1 into O and 0 into 1.

Example:

..... u +-+ (0, 1, o. 1)

- 22 -

1 September 1973 System Development corporation
TM-5074/100/00

rhe symbol is used to represent the generalized factorial

operator. is not defined for negative integers. For all non-

negative integers n, the result of applying this operator is n!

If x is not an integer, the result of applying this operator is

the gamma function applied to x+1. If n is a negative integer,

nl is undefined.

Example:

!C ++ (1.188192811. 4.08546585, 5040, 1)

rhe symbol o is used to represent the operator that multiplies

its operand by 'IT.

Example:

oc ++ (4.178318229. 4.178318229, 21.99114858, 0)

rhe 13 scalar monadic operators are summarized in Table I.

- 23 -

1 September 1973 System Development corporation
TM-5074/100/00

TABLE I

SCALAR MONADIC OPERATORS

+

x

* •
L
r
I

?

0

Identity
Negation

Sign um

Reciprocal
Exponential
Natural

Logarithm
Floor
Ceiling
Absolute

Value
Random Inte­
ger (Roll)

Logical Com­
plementation

Generalized
Factorial

ir Times

+A ++A
-A ++ 0-A

xA ++ {-~
if A>O
if A=O
if A<O

+A ++ 1+A
*A ++ eA
•A++ ln A

Algebraically greatest integer S B
Algebraically least integer ~ B
IA ++ { A if A~o

-,A if A o
Random t'nteger between IQB.Q and A

-A ++ 1-A (for Ae:{0,1}

!A++ { A factorial if A++ ILA
CrA+1) if AFLA

OA·++ irxA

5.2 The scalar Dyadic Operators

An operator is called gx9gi~ if it operates on two operands. A

~g9!~~ g~9gi£ QQ~'stQ' is a dyadic operator that is defined in

terms of its effect on a pair of scalar operands.

If A and B are two arrays such that pA ++ pB , then the elements

of A and B may be paired according to their positions in the two

arrays. ;Je say that an element from A and an element from B are

gg,,g§QQ!lf!ing ~l~~D.t§ if they share exactly the same position

within their respective arrays; that is, the subscript that

identifies the one element also identifies the other. The

- 24 -

1 September 1973 System Development corporation
TM-5074/100/00

application of a scalar dyadic operator to two such arrays A and

B produces a resultant array C where PC +-+ pA +-+ PB and an

element of c corresponds to the result of applying the operator

to the corresponding elements of A and B.

A dyadic operator is written between its arguments. The variables

A,B,C,D,U,V used in the discussion of dyadic operators

are defined on page 18.

The symbol + is used to represent the addition operator.

Example:

The symbol - is used to represent the subtraction operator. The

argument on the right of the operator is subtracted from the

argument on its left.

Example:

- 25 -

1 September 1973 System Development corporation
rM-5074/100/00

rhe symbol x is used to represent the multiplication operator.

Example:

The synbol t is used to represent the division operator. The

argument on the left of the operator is divided by the argument

on its right. The operation is defined for nonzero divisors

only.

Example:

The synbol I is used to represent the residue operator. If m¢0

and n are numbers, there exists an integer q such that n = mq +

r, where OS r < tmt. The symbol r represents the ~~eig~~ of n

modulo m. The definition that follows is extended to cover the

case m = 0: the residue of any nonnegative n, modulo 0 is equal

to n, but remains undefined for n < O.

- 26 -

1 September 1973 System Development corporation
rM-5074/100/00

when we ifir i te 11 I il, we mean the residue of u modulo A.

Example:

AIB +->-(0 0 5)
0 0 0

CIU ++ (O.OG, 0.48, 1.2. 148.3)

rhe symbol L is used to select the algebraic minimum of its two

operands.

Example:

11 L li ~-+ (- 2 _ 3 _ o)
'/ LI 1

CLD +~ (1.33, 1.33, 5.8, 0)

rhe sy:nbol r is used to select the maximum of its two operands.

- 21 -

1 September 1973 System Development corporation
TM-5074/100/00

Example:

AIJ! +4(; ~ ~)
CfD ++ (2.72, 3.14, 7, 148.3)

rhe symb::>l * is used to represent the exponentiation operator.

In or1er to raise A to the B power, you write A*B.

Example:

A *li +-+ 11. OOOOOOOOOEO 2. 700000000E'1
8.235430000£5 2.560000000E2

o.ooooooooogo
1. ooo:JOOOOOEO

P*A ++ 2.500000000E-1 2.700000000E1 1.000000000EO
8.235430000£5 3.906250000E-3 1.000000000EO

D * C ~---)- (3 • 7 8 4 2 2 2 3 1 5 , 0 • 2 1 8 3 1 4 9 9 5 9 , - 2 ? 0 7 9 8 • 4 1. 6 ti , 1)

Note that A*H is not always defined. For example, A*O. 5 is the

square root of A , which is defined only for nonnegative A • Of

course, 3 2 * o. 2 ~-~ - 2 since o. 2 +-+ f 5 and 2 * 5 +-+ 3 2.

- 28 -

1 September 1973 System Development corporation
'fM-5074/100/00

rhe synbol • is used to represent the, logarithm operator. The

logarithm of A to the base B is written B•A • By definition, A

and B must be strictly positive and we may have A ++ 1 if and

only if B ++ 1 The common logarithm of A is written 10•A.

Example: If

rhen

T•B ++(0.3010299957 0.4771212547 0.6989700043)
0.8450980400 0.6020599913 0.0000000000

The synbol o is used to represent the family of operators for

all of the trigonometric and hyperbolic functions, which are

collectively referred to as the circular functions. This

applies to the trigonometric functions since they are defined in

terms of the unit circle, and to the hyperbolic functions as a

consequence of the relations sinh iz = i sin z, cosh iz =
i cos z, and tanh iz = i tan z, where i2=-1.

A circular function is invoked by writing AoB, where the value

of A is used to identify the particular circular function, as

- 29 -

1 September 1973 System Development corporation
TM-5 074/100.100

follows.

The following trigonometric functions are defined for angles in

radian measure:

10B is equivalent to sin B.
20B is equivalent to cos B.
30B is equivalent to tan B •
-10B is equal to arcsin B •. where 1~IB
-20B is equivalent to arccos B, where 10:: IB
- 30B is equivalent to arctan B·

Three functions are useful in trigonometric identities:

40s produces the principal square root of 1+.BZ,
ooB produces the principal square root of 1-BZ,

where 1;a:: I B
-4oB produces the principal square root of -1+s12,

where 1s IB.

(Here, we abused the language somewhat by writing sz to mean

B*2• This was done to avoid confronting you with a complicated

equivalence like -4oB +~ (-1+B*2)*0.S at this early stage. See

section 5.5 for a discussion of the priority of operators and

APPLE'S bracketing conventions.)

The hyperbolic functions:

SOB is equivalent to sinh B
60B is equivalent to co sh B
?OB is equivalent to tanh B
- SOB is equivalent to arcsinh B
- 60B is equivalent to arccosh B, where B<?:1
-?OB is equivalent to arctanh B, where 1> I B.

The symbol . A is used to represent the logical conjunction

operator, AND. This operator is defined only on the set {0,1}

- 30 -

1 September 1973 System Development corporation
TM-5 074/1 00/00

and is completely defined by its action on the vectors U and V

(see section 5.1):

u /\ v +~ (1 • 0 • 0 • 0)

rhe synb~l v is used to represent the logical disjunction

operator, OR. This operator is defined only on the set {O, 1}

and is completely defined by its action on the vectors U and V :

uvv +~ (1, 1, 1, 0)

rhe synbol ~ is used to represent the exclusive disjunction

operator. This operator's domain is extended to the set of real

numbers; its range is {0, 1}. A;tB +~ 1 if and only if A and B

are unequal.

Example:

A ;t 13 +--+ (1 0 1)
0 1 1

U;tV +~ (0,1,1,0)

- 31 -

1 September 1973 System Development corporation
TM-5074/100/00

rhe synbol = is used to represent the equality operator. The

domain of this operator is the set of real numbers, while its

range is [0,1}. A=B ++ 1 if and only if A and Bare equal.

Example:

11 =D +-··)- (IJ 1 0)
1 0 0

u :: v ;:. + (1 , 0 ' 0)

rhe synbol ~ is used to represent the NANO operator. NAND is

defined to be the logical complement of AND. The domain and

range of N~ND are {0, 1). NAND is defined by its action on the

vectors U and V:
u~v ·- co, 1, 1, 1)

The symbol ¥ is used to represent the NOR operator. NOR is

defined to be the logical complement of OR. The domain and

range of NOR is [O, 1). NOR is defined by its action on the

vectors u and v:

U¥ V ++ (0, 0 , 0 , 1)

- 32 -

1 September 1973 System Development corporation
rM-5074/100/00

rhe synbol < is used to represent the less-than operator. It

maps the reals onto {O, 1}, A<B++ 1 if and only if A is less

than ;1.

Example:

The synbol 5 is used to represent the less-than-or-equal

operator. It maps the reals onto {0,1}, A5B ++ 1 if and only if

A is not greater than B.

Example:

rhe sy:nbol :_'. is used to represent the greater-than-or-equal

operator. It maps the reals onto {O, 1). A~B ++ 1 if and only

if A is not less than IJ.

- 33 -

1 sept.ember 1973

Example:

System Development corporation
TM-5074/100/00

rhe synbol > is used to represent the greater-than operator. It

maps the reals onto {O. 1} • A>B +~ 1 if and only if A is greater

than tl.

Example:

rhe symbol is used to represent the generalized combination

operator. 11 ! u is the number of combinations of B objects taken ,1

at a time. If a and b are nonnegative integers. the number of

combinations of b objects taken a at a time is given by

C(b.a)=b!/a! (b-a) ! The generalized combination operator uses

almost the same formula. but replaces the factorial operator

with the monadic generalized factorial operator. consequently,

the generalized combination operator is defined for all

arguments for which the generalized factorial operator is

defined.

- 34 -

1 September 1973 System Development Corporation
TM-5074/100/00

Example: Let
x + ··)- (2 • J ' 4 ' 2 • 1 • 1 • 0)

y -<--)- (5 • 3 • 2 • 6 • 5 , 8 • 8)

Then
X!Y +-+ (10,1,0,0.00129538533G,B,1)

rhe synbol ? is used to represent the random-selection-without-

replacement operator. The result of writing A?;:: (where A :0;B) is

a vector H such that pR +-+ A and the elements of R are randomly

selected without replacement from the set {1, 2, ••• , b} or (0,

1, ••• , b-1} according as the index origin is 1 or 0,

respectively. (See Section 6.1 for a discussion on index

origin.) The operator ? is defined only for nonnegative scalar

integer arguments. The operator can be used to simulate the

dealing of bridge hands, for example.

Examples:

b ? -<- -i-- (H , 7 , 3 , 2 , lf , S)

G ? ll -<-->- (8 , S , 2 , :J , 1 , 4)

13?52 +-+ (25,47,1U,29,15,5,11,34,4~,12,49,15,10)

- 35 -

1 September 1973 System Development Corporation
TM-5074/100/00

rhe 36 scalar dyadic operators are summarized in Table II (see

next page) •

- 36 -

1 September 1973 System Development corporation
TM-50711/100/00

TABLE II
SCALAR DYADIC OPERATORS

+

x . ..
I

~
* •
__ .Q __

A

v
;t:

=

>

?

70B
603
SOB
408
30B
20B
10B

008
108
20B
30B
40B
SOB
60B
708

Addition
Subtraction
Multiplication
Division
Residue
Minimum
Maximum
Exponentiation
Logarithm

Qi.rs:ula-"

arctanh B
arccosh B
arcsinh B
(-1+B*2)*.5
arctan B
arccos B
arcsin B
(1-B*2)•.5
sin B
cos B
tan B
(1+B*2)*.5
sinh B
cosh B
tanh B

AND
OR
Exclusive OR
Inequality
Equality
NANO
NOR
Less Than
Less Than Or

:Equal
Greater Than

Or :Equal
Greater Than
Generalized

combination
peal

A+8
A-B
AxB
AtB
AIB
ALB
Af B
A*B
A•B

AAB
AVE

+-+

+-+
+-+

+-+

+-+

B(mod
min {_A,
max{A,
AB
log AB

A)
B}

B}

Domain

1>IB
B~1

1SIB

1'?!:IB
1'?!:IB
1'?!:IB

Aot:B +-+ (AvB)AA'i'IB if A, B €{0,1}
A;t:B
A=B
A'i'IB +-+ -AAB
A¥B +-+ -A vB
A<B
ASB

A'?!:B

A>B
A!B +-+ (!B)t(!A)x!B-A

- 31 -

1 September 1973

5.3 Right and Left Identities

System Development corporation
rM-5074/100/00

Suppose that the symbol • is some scalar dyadic operator. If

there is a number L such thatL•B +~ B for every value of B, L

is called a !~!t i9~ntitY 2! •. Similarly, if there is a number

R such that A•R +~A for every value of A, then R is called a

~ight !ggn~i~Y 2! •· If • has both a right identity R and a left

identity L, it follows from elementary algebra that R +~ L.

Table III summarizes the -identity elements of the 36 scalar

dyadic operators.

- 38 -

1 September 1973 System Development corporation
TM-5074/100/00

TABLE III
IDENTITY ELEMENTS OF SCALAR DYADIC OPERATORS

QQ~J;S!t.QJ; I&t!: l!l~n.ti!:Y B!sib.t ig~ntitY

+ 0 0
none 0

x 1 1
. none 1

* none 1

* none none
I 0 none
0 none none
v 0 0
A 1 1
'/'(none none .., none none

1 none
r -co -co

L 00 00

? l.QB.Q
The following identity elements apply only to the domain {0,1}:

> none 0
~ none 1
< 0 none
s; 1 none
= 1 1
;t 0 0

5.4 Right-Associative Operators

An operator Jt is g§§Q£ig:t.iY!ll if, for any A, B, C, we always have

AJt(BJtC) +~ (AJtB)Jt~ For such an operatorr there is never any

ambiguity; you can write A•B~C and everybody knows what you

mean.

However, not all operators are associative. For example, the

subtraction operator is not associative since, e.g., (5-4)-3=-2,

while 5-(4-3)=4. (The first interpretation is called a ltlt

- 39 -

1 September 1973 System Development corporation
·rM-5074/100/00

e§§QS!sti~o: the second is a xigbt s§!Q~ia~i2D·> It is ambiguous

to write 5-4-3, since it is reasonable to interpret this

expression with either grouping of terms.

Before we tell you which interpretation APPLE makes, let us look

at a slightly more involved expression involving subtraction,

say a-b-c~d-e-f-g.

First, let us look at the parsing (((((a-b)-c)-d)-e)-f)-g.

Since -b=(-1)b, we have

(((((a-b) -c)'-d) -e) -f) -g = (((((a+ (-1) b) + (-1) c) + (-1) d) +
+ (-1) e) + (-1) f) + (-1) g

= a+(-1) (b+c+d+e+f+g)
= a- (b+c+d+e+f+g)

since addition is associative. we see that this parsing is

equivalent to subtracting the sum of all the other terms from

the first term. rhis parsing is called a !~!t=a§§Qgieti~

If we had used the other parsing, we would have

a- (b- (c- (d- (e- (f-g))))) = (a-b) +c- (d- (e- (f-g)))
= (a-b) + (c-d) +e- (f-g)
= (a-b) + (c-d) + (e-f) +g
= (a+c+e+g)·-(b+d+f)

That is, you take the sum of the first, third, ••• terms and

subtract the sum of the second, fourth, ••• terms. This is

associative parsing of a-b-c-d-e-f-g is more interesting than

the left-associative parsing, a-(b+c+d+e+f+g). Division and

exponentiation are also nonassociative operations. They are

- 40 -

1 September 1973 System Development corporation
TM-5074/100/00

also more interesting when given the right-associative

interpretation than when given the left-associative

interpretation. For example, with left-association A*B*C*D*E is

just A*(BxCxDxE). Under right-association, it is equal to the

Since right-associative parses are generally more interesting

for nonassociative operators than left-associative parses, all

~PPLE operators i~~ ~~it~g a§ {ight:i§§Q£iatiY~ QQ~~!tQ~§·

This applies not only to expressions involving repetitions of

the same operator, but to expressions involving mixtures of

APPLE operators as you will see in the next section.

s.s Bracketing conventions and Operator Priorities

Consider the expression 2+3x4. The rule·s of algebra say that

this expression evaluates to 14, i.e., to 2+12. This is because

algebra assigns a higher priority to the multiplication operator

than t~ the addition operator. If you had wanted this

expression to evaluate to 20, you would have had to parenthesize

the quantity you wanted evaluated first, writing (2+3)x4

instead. (Of course, you would have removed any possible

ambiguity by writing 2+(3x4) when you wanted the expression to

evaluate to 14, but this is not necessary when you know the

operator priorities.)

With a fe~ exceptions, most programming languages follow the

- 41 •

1 September 1973 System Development corporation
rM-5074/100/00

standard :>perator priorities of algebra. However, there are

some differences in the way some languages treat an expression

like 12+4x3. In some languages, the result is 12+12, while the

expression evaluates to 3x3 in others.

so far we have covered 49 APPLE operators. It would be

difficult for anyone to remember the relative priorities between

such a large number of operators. Many of the assigned

pri:>rities would appear artificial. There are approximately one

hundred operators in APPLE, hence the problem is non-trivial.

so in order to simplify the problems of learning APPLE, there

are no operator priorities whatever in ~he language. Instead,

the right-associative parsing convention is extended to

expressions involving a mixture of operators. If you want an

operator to take priority over some other operator, all you have

to do is parenthesize that operator and its operands.

Returning to the expression 2+3x4, we see that it is equivalent

to 2+(3x4) , that is, 14. But 4x3+2 is equivalent to 4x(3+2) or

20. Hence, expressions are not necessarily commutative in

APPLE. If you wanted to have 4x3+2 equal to 14, you would have

to write either (4x3)+2 or 2+3x4.

consider 12+4x3. The right-associativity of + and x means that

the expression i~ equivalent to 12t(4x3), i.e. 1. The

expression means that 12 is to be divided by whatever is on the

right of the t operator. The quantity on the right of t is 4x 3,

- 42 -

1 September 1973 system Development corporation
TM-5074/100/00

i.e. 4 multiplied by whatever is on the right of x. Since that

is just 3, we see that we are dividing 12 by4x3 , i.e. by 12.

Note that monadic and dyadic operators can be intermixed in an

expression. For example, 4+-30t5+6>7xea is a complicated-

looking expression. Let us add parentheses according to the

right-associativity convention: 4+ (- (3 o t (5+ (6 > (7x (ea))))))• (We

know that the minus sign is ap operator since "minus thirty"

would have been written 30. You cannot interchange and -

since -30 has an effect only on the magnitude of "thirty," while

-3t5+6>7x8 changes the sign of ~Y~~Ything to its right. We know

that - and e are monadic operators since each is preceded by

some other operator rather than an operand.)

Now to evaluate the expression. we start with the most nested

subexpression. es is the natural logarithm of a, i.e.,

2.0794415417and7x2.0794415417 ++ 14.5560907919. Next,

6>14.5560907919 ++ o. 5+0 ++ 5, and 30t5 ++ 6· Next, -6 ++ -6

and 4+-6 ++ 2• so we see that 4+-30t5+6>7xes ++ 2.

Expressions are never evaluated backwards in APPLE, although

they ~~~ evaluated from the right. When you write 4-5-6, the

result is 5 since 5-6 ++ -1 and 4--1 ++ 5.

- 43 -

1 September 1973 System Development corporation
TM-5074/100/00

CHAPTER SIX

ELEMENTARY ARRAY MANIPULATIONS

In this chapter, you will be introduced to a class of operators

that are useful in manipulating arrays. These manipulations

include the familiar process of extracting one or more elements

from an array by subscripting. Since those elements that have

been extracted are arrays, recall that scalars are rank-0

arrays, you will be forming a subarray of the original array

each time you subscript into it. The subarray may consist of

more than one element.

Subscripting is only one means of forming subarrays of an

original array. You will be introduced to techniques for

forming subarrays consisting of elements satisfying some set of

properties, as well as techniques for taking various cross

sections of an array.

We will also describe ways of rotating and transposing arrays,

of combining several arrays to make a bigger array, and of

changing the dimensionality of arrays.

- 44 -

1 September 1973

6.1 Index Origin

System Development corporation
TM-5074/100/00

§Ub2~[iRting is the process by which you specify one or more

elements of an array. The subscript of a specific array element

is known as the !ng~~ of that element.

There is some confusion between the way programming languages

refer to the first element in a vector. In some languages, that

element has an index of 1, while its index is 0 in other

languages. Depending on the programmer's particular needs, one

of these indexing conventions is often preferable over the

other.

Since only you, the programmer, know which indexing convention

is preferable for your personal application, APPLE leaves the

choice up to you. The ing~~ Qr!g!u is the value of the index of

the first elements of a vector. The index origin is contained

in the rank-0 arraylQRQ. IORG normally contains the value 1.

If you want to specify its value, you begin your program with

either
l.QRQ + o

or
l.QRQ + 1

The value of IQRQ will remain constant throughout the body of

your program. For the time being, the values of lQEQ are re­

stricted to o or 1. Eventually, the language may be extended

to permit arbitrary integral values of IQEQ.

- 45 -

1 September 1973

6.2 Indexing of Arrays

System Development corporation
TM-5074/1001'00

In tne following subsections, you will be given the necessary

vocabulary and notations for subscripting arrays.

Recall that if X is some array and pX +-+ o, then X is an empty

vector (since x contains no elements, and ppX +-+ 1, so X is a

vector) •

we will be using the empty vector of ten enough to require giving

it a name for easy reference. The name of the empty vector is

-
£.

suppose you wanted to generate a vector that consists of all of

the permissible values of indices, in ascending order, for some

vector v. Clearly, such a vector consists of pV elements. If

IQRQ +-+ o, then this vector is (0,1, •••• -1+pV) if IQRQ +-+ 1,

then this vector is (1,2, •.• ,pV).

In APPLE, you need only write 1pV to produce this vector. The

operator i produces the desired vector. In fact, all you need

to do to get a vector of length n, where n~O, is write 1n.

- 46 -

1 September 1973

Example: If IQRQ ++ 1, then

15 ++ (1,2,3,4,5)
11 ++ (1)

System Development corporation
TM-5074/100/00

while if IQRQ ++ o then

15 ++ (0,1,2,3,4)
10 ++ (0)

If we write 1 o, from the definition of 1, we should get a vector

of length o. A vector of length o can only be the empty vector

€. Hence, regardless of whether IQRQ ++ 1 or IQRQ ++ o, we will

always have 10 ++ €.

so far, 1N is defined only for nonnegative integers N, whereN

is either a scalar or a one-element·vector. we will soon extend

the definition of 1 to cover all rank-0 and rank-1 arrays

consisting of nonnegative integers.

- 47 -

1 September 1973 System Development corporation
TM-5074/100/00

If you want to indicate the k-th element of some vector V, where

1 SikS P y, the a ppropr ia te index would be k + IQli'.Q:- 1. For example ,

if you want the first element and IQRQ ++ 1, you want the index

to be 1+1-1, i.e. 1; while if IQBQ ++ o, then you want the index

to be 1+0-1, i.e. o. correspondingly, if you wanted the fifth

element, the index would be either 5 or 4. You should convince

yourself that k+IQHG-1 is always an element of tpV.

Scalar subscripting is exactly like subscripting in other

progranming languages. In order to select the k-th element of

v, you write V(K), where K is the appropriate index

corresponding to IQBG. and k. For example, suppose IQRQ ++ 1 and

v ++ (1. 5. 7. 9. 3. 4, 1.)· Then V[1] ++ 1, V[3] ++ 7, V[6] ++ 4. If

IQB.G. ++ or then V[1] ++ 5, V[3] ++ 9, and V[6 J ++ 2.

When you subscript a vector with a scalar, the result is· a

scalar.

You are not restricted to using scalars as subscripts, however.

If you subscript a vector with a vector, the result is a vector

of the same dimensionality as the subscript vector. For

example, if A ++ [2, 1. 5. 4] and Vis the vector we used in the

previous example, if IQ/1.G. ++ 1, V[A J ++ (5, 1. 3, 9) and IQRG ++ o,

then v [A J ++ (7 • 5 , 4 , 3).

- 48 -

1 September 1973 System Development corporation
rM-5074/100/00

wl1t•ll y.>u :1l1l>llcri11t '' vect.ot. w1U1 au .:aLtdy, tlat:~ 1-~sult hc:tt:I Uld

same dimensionality as the subscripting array.

Example:
If IQ!lQ

then

+--lo- 1 and 1-1 is the

i! +-+ 7 3 5 5
2 1 1 2

V[W J +-.._ 2 7 3 3

~i 1 1 5

rank-2 array

The nunber of elements in an array A is the product of the

elements of the vector pA• Since A has ppA coordinates, any

subscript of A must be composed of ppA components. These are

separated from one another by the delimiter(;). rhe first

subscript you list applies to the first coordinate of A; the

second one applies to the second coordinate, and so forth. If

A- •- • l_Qgq+k- 1 and I the J~-th coordinate of A, it is

reguired that I be in the range lQHQs I s IQBQ + (pA)[K]-1 •

rhat is, a coordinate subscript must lie in the range 1, •.• ,(p!l)[XJ

if !.Q!if +-+ 1, or o, ••• , (pA[K]-1 if !.£!!.~ +-+ o. This

is always equivalent to saying that a coordinate subscript is an

element of the vector 1pA[KJ.

- 49 -

1 September 1973

Example:

System Development Corporation
rM-5074/100/00

If IQllQ ++ 1 and A is the rank-2 array

A +-->- 3 ti 5 b
8 7 2 1

rhen pA -<--;- (2, t1)

rhe subscript for the first coordinate must be either 1 or 2;

the subscript for the second coordinate must be 1, 2, 3 or 4.

When you write A[1;1], you specify the scalar 3. We also have

A [L ; :i J -+->- 2, A [L ; lj] -<--+ b and A [2 ; 1] +--+ 8 •

Just as you can subscript a vector with an array, you can also

subscript an array with an array. The result is an array B

whose rank p P r1 is equal to the sum of the ranks of the

coordinate subscripts. The dimensionality ofB ,pB, is the

vector that is composed of the dimension vector for the first

coordinate subscript, followed by the dimension vector for the

second coordinate subscript, and so forth.

For example, we can subscript A with the vector (1, 2) for the

first coordinate and the scalar 3 for the second coordinate,

thereby producing the array composed of A[1;3] and A[2;3]. The

result must be a rank-1 array since pp(1,2) +-+ 1 and pp3 +-+ o

and J + o +->- 1. The dimension vector of the result is the

vect~r (2, €) +-+ (2) since p(l, 2) +--+ 2and p3 +-+ €. Therefore,

we must have A[l 2; 3] +--+ (5, 2)

APPLE permits you to write vectors in subscript expressions

- 50 -

1 September 19 7 3 System Development Corporation
rM-5074/100/00

either with or without parentheses. Of course,. for the sake of

clarity,. you could have written ,1 ! (1, 2); J J if you had wished.

Now,. suppose we have a matrix

c +-+ 1 ~)

2 2

so that riC ++ (2, J). When we writeALC;3 4 J,. what should the

result,. n,. be?

Wt:~ know that ppiJ <-,_ 3(since ppB +-+ 2 and pp(3,!J-) +--+ 1),. and

, , (2, ~3 , 2) the catenation (composition) of 0 c and p (3, tJ)).

For simplicity, call E +-+ (3, IJ). We can deduce t:he elements of

/1, as follows. DI- 1; 1; 1 J must correspond to the Ci~ 1: 1 J -th row of A

and the 1"'11 I -th column of A • Hence,.

iJ[1;1;1J +-+ 11 [J ; 3] +--+ ,-
,)

Similarly, we obtain:

[![1 ; 1 ; 2] +--)>- /l[1;LI] +-+ 6
DL1;:;;1J -<--+ 11[1;3] +-)o- 5
D[1;2;2] -("·-+ /l[l;lf] +--+ 6
I! [:1 ; 3 ; 1 J -(-·-+ ,1[2;3] +-+ 2
/i[1;J;2] +--+ Al2;4] +-+ 1
j} I_ 2 ; 1 ; 1] -(-·+ 11[2;3] +--+ 2
JJ[2;1;2J +-·-·~ A[2;4] +--> 1
Ji[2;2;1] +·- -)>- A [1 ; 3 J +--+ 5
/) [;) ; 2 ; 2 "] +-+ A [1 ; 4 J -(--)o- 6
D[2;3;1] +-->- A[2;3] +-+ 2
D[2;3;2] +-+ A[2;4] +--+ 1

- 51 -

1 September 1973 System Development corporation
rM-5074/100/00

we can graphically represent D as

D +-+

5 6
5 G
2 1

2 1
5 6
2 1

Finally, suppose you want the first plane of n. You could write

iJL 1; 1 2 3; 1 2 J.. The result would be a rank-2 array of

dimensionality (:3,2~ (Why?) It would consist of D[1;1;1J,

fl[1; 1; 21 and so forth, as expected. Recalling that t 3 +-+ (1, 2. ~J)

and 12 +~ (l,~), you could also write D[1;13;12J.

By convention, instead of writing 1(pA)[K] as a

subscript for the k-th coordinate of an array A, you

can elide* the subscript for that coordinat_e, writi..Pg

any required semicolon separators as you normally

would.

Formally, we have the equivalences
A l ; d ; f: ; ••• ; Y ; Z] +·+ JI. [1 (p A) [.[_QJJ.Q] ; J; K • •• Y ; Z]
ALI;;K; ..• Y;Z] +-+ A[I;t(pA)[1+IQli~];K; •.. Y;Z]

A[I;J;K; ••• ;Y;] +-+ A[I;J;K; ... ;Y;1(0A)[lQllG+-l+ppA]]

Hence, instead of writing D L 1; i 3; t 2 J, you can write JJ [1; ; J, and

the ~PPLE compiler will deduce the content of the elided

coordinate subscripts.

* Elide--to omit.

- 52 -

1 September 1973 System Development corporation
TM-5074/100/00

when ~e constructed the array D in section 6. 2. 4, the order in

which we listed its elements was significant. we started with

the element whose subscript was l.QIUi. in each coordinate.

subsequently, we allowed the right-most coordinate subscript to

vary most rapidly, then the subscripts in the coordinate field

secon~ from the right, and so on. This ordering is called an

QgQm~t~' Q{Q~•ing since the indices appear in the order they

would follow had they been placed on the individual wheels of an

automobile odometer. (Wheel K of the odometer is numbered with

the elements of i (pD)[K], starting with IQR!:i·)

It is sometimes useful to view an array as a vector. In APPLE,

the comma (,)is used monadically to represent the ravel

operator. The •sY~l Q~ ~n ~••~X is the vector whose elements

are those of the original array in the odometer order. In

particular, the ravel of a scalar is the vector· whose only

element is the scalar.

Thus, we see that

,D ++ (5,6,5,6,2,1,2,1,5,6,2,1)

6.4 Array Index Generation

Here, we generalize upon the definition of the monadic operator

Supp0se A is some array and N ++ pA, so that N is a vector. l.

- 53 ..

1 September 1973 System Development corporation
TM-5074/100/00

Then, we define iA to be the matrix of dimensionality

p(iN) ++ ((p,A),(ppA))• That is iN has as many rows as there

are elements in A and as many columns as the rank of A. Thus,

i1vcontains a column for every component of a subscript of A and a

row for every element of A.

The rows of iN are in odometer order, so that the i-th row of iN

is the index associated with the element of A that corresponds

to the i-th element of ,A (i.e.1 <iN)[I] is the index in A of

(,A)[I]).

Example: Let us refer back to the array D constructed in
section 6.2.4. pD ++ (2,3,2) , so let us look at ipD.

~e have

1 1 1
1 1 2
1 2 1
1 2 2
1 3 1
1 3 2

ipD ++ 2 1 1
2 1 2
2 2 1
2 2 2
2 3 1
2 3 2

Now let us look at a few examples of the concordance
between lPD and D.

First,

D ++

5 6
5 6
2 1

2 1
5 6
2 1

and , , D ++ (s • 6 , 5 , 6 , 2 , 1 , 2 , 1 , 5 , 6 , 2 , 1) • Now, (, D) [3 J ++ s
and . (i p D) [3 ; J ++ (1 , 2 , 1) • we see that D [1 ; 2 ; 1 J ++ s.

- 54 -

1 September 1973 System Development corporation
rM-5074/100/00

We also have, (,D)[11] ++ 2, (ipD)[11;] ++ (2,3,1)

and D[2;3;1) ++ 2.

In this example, we assumed thatJ::QBQ ++ 1 • If
I.QliJi. ++ QI it follows that

0 0 0
0 0 1
0 1 0
0 1 1
0 2 0
0 2 1

.lPD ++

1 0 0
1 0 1
1 1 1
1 1 2
1 2 0
1 2 1

6.5 rhe Subscript Generator

suppose A is an array and I is some row of lPA. There is an

element of I for each component of A· But in order to subscript

A by r, there must be semicolon delimiters present between the

elements of I.

The monadic operator ;/ is used to generate scalar subscripts.

Its only action is placing a semicolon between the elements of a

vector.

Thus, if pA ++ (4,7,3,5,8), the vector I++ (2,3,2,1,6) is

certainly a row of the matrix ipA. we have

A[;/I] ++ A[2;3;2;1;6].

- 55 -

1 September 1973

6. 6 Partial Subscripting

System Development corporation
TM-5 074/100/00

Suppose A is an array and K is an element of 1ppA, that is, K

is an element of (o.1, ••• ,-1+ppA) if IQRQ ++ 1, or an element of

(0,1, •••• -1ppA) if IQRQ ++ o. Suppose that I is some array in

which each element of I is an element of 1(pA)[KJ so that I is a

vali~ subscript array for component K of A. Then, if the only

component of A that you want to subscript is component K, you

may do so by writing A[[K]I].

K must be an integer scalar, or the integer scalar content of a

variable.

Example: suppose IQRQ +-+ 1 and A is 'the rank-3 array.

3 4 5
2 1 3
0 7 6

-2 4 8

A ++

5 9 2
1 1 3
4 0 7
3 9 8

Then pA ++ (2,4,3). Now, [1;;] is the first plane
of A. This could be written [[1]1], which
says the subscript 1 is to be applied to
coordinate [1] of A only.

When we write A[[2]2 3],
have pA[[2]2 3] +-+ (2,2,3)

A[[2]2 3] +-+

2 1 3
0 7 6

1 1 3
4 0 7

We can also look at A[[3]2 3].

- 56 -

1 September 1973

if ('r,' I ,, 1l [I • ~ l ,, l l

A[[:3]2 3] +-+

6.7 Reshaping Arrays

•

l!

1
7

9
1
0
9

'

'.!
:)
b

2
3
7
8

('

system Development corporation
rM-5074/100/00

11. ,') .1n<l

Any array can be transformed into a vector by use of the ravel

operator. Any array A can also be transformed into an array B

of different dimensionality. To do this you use the reshape

operator P. The reshape operator is dyadic, while the shape

operator P that yields the dimension vector of an array--its

shape--is a monadic operator.

When you want to transform A into B so that pB +-+ R, where H is

some vector of nonnegative integers, you write B + RpA

B must contain a number N of elements equal to the product of

the elements of R since pB ++ R. B receives its elements from A

accoriing to the formula:
B[;/(ipB)[I]] +-+ A[;/(ipA)[lQliG+NII-lQBQ]]

rhis formula is another way of saying that a vector v is

constructed from enough repetitions and partial repetitions of

the elements of ,A that V contains as many elements as B will

contain. In odometer order, the first element of B will be the

- 57 -

1 September 1973 system Development corporation
TM-5074/100/00

first element of V, the second element of 13 will be the second

element of v, and so forth.

Example: Suppose I.QB.Q +--+ 1 and A is the rank-3 array

1 2 3 4
5 6 7 8
9 10 11 12

J1 of--+

13 11+ 15 16
1 7 18 19 20
21 22 23 24

Then pil +-"+ (2,3,4).

Recall that
t24 ++ (1,2.3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,1A,19,20,21,22,23,24)

If 124 were reshaped so that its dimension were(2,3,4),

it would be equivalent to A. That is,

(2,3,4)p124 +--+A.

rhe vector l 60 has 6 0 elements. But, when we write

(2,3,'+)p160, we are only using the first ?xJxt~ +--+ 21+

elements of 160. Therefore,

(2,3,4)pt60 +-+ (2,3,4)pt24 +-+A.

Verify that

1 2 3 L+

5 G 7 1
2 3 4 5

(2,3,4)p17 +--+

6 7 1 2

"' ,; 4 5 6
7 1 2 3

Note also that

- 58 -

1 September 1973

(G,ti)pA +--+

(1+ , 6) pA +--+

Finally, (10)p3

p(t0)3 +-+ (and

1 2
5 6

3
7

System Development Corporation
rM-5074/100/00

4
fJ

9 10 11 1 2

12 14 15 1G
17 18 19 20
21 22 23 24

1 2 3 4 5 6
7 8 9 10 11 12

12 14 15 16 17 18
1CJ 20 21 22 23 24

is the scalar 3. This is true since

pp(10)p3 - ++ 0 +--+ pe:

6.8 ~rithmetic Array Manipulations

This section introduces the very useful classes of operators

that enable you to perform arithmetic processes on the elements

of an array.

It is often desirable to obtain the sum or product of the

elements of a vector. In APPLE, you write +IV in order to

obtain the sum of the elements of V ; you write xiv in order to

obtain the product of the elements of V •

rhe su:n ::>f the elements of a vector is usually considered to be

a scalar. In APPLE, while V is a vector, +IV is a scalar.

Thus, the rank of +IV is equal to the rank of v reduced by 1.

For this reason, +IV is read as the "plus reduction of v."

- 59 -

1 September 1973 system Development corporation
rM-5074/100/00

Example:

+/(2,3,4,7,-5,2) ++ 13
x/(2,3,4,7,-5,2) ~+ 1680

You can use any of the operators from Table III (see section

5.3) in conjunction with the slash to form a reduction operator.

The effect of reduction is to place the dyadic scalar operator

between the elements of the vector operand, and then to evaluate

the resulting expression. consequently, - I (2, 3, 4. 7. - '.i, 2)+-+2- 3- 4- 7 - - :)- 2.,,

-11. If p v -+-+ 1 for any operator ll, ~IV +->- (1 o) p V.

If pV ++ o. for any operator•., ~1v -<-+ (10)pI, where .I is the

identity element associated with •·

It is useful to note that x/pA is the number of elements in the

array A. When A is a scalar,pA -++ c • Since x/pA is always

equal to the number of elements in any array, regardless of its

rank.

Note that we always have L/1N ++ l.QB.Q. for any N, and

r; lN +-l- N-1+IQ!J..Q.• We will use this notation frequently when we

write subscript expressions that are independent of the value of

l.QB.Q.•

suppose A is a rank-n array and suppose • is a scalar dyadic

operator from Table III (see Section 5.3). Then ~/[KJA is the

application of ~ over the elements of coordinate K of A. The

- 60 -

1 September 1973 System Development corporation
TM-5074/100/00

result is an array of rank N-1. Its dimension vector is

obtained from pA by suppressing (pA)[KJ.

Exalllple: Suppose I.QB.Q ++ 1 and pA ++ (2. i1) where

Then

11 ++ 2 5 7 1 0
4 3 1 2

+/[1]A ++ (6,8,8,12)
+/[2]A ++ (24,10)
-/[1]11 ++ (-2. 2. 6. 8)
-/[2]A ++ (-6,0)

Suppose pB ++ (3,3,3) where

1 2 3
4 5 6
7 8 9

10 11 12
B ++ 13 14 15

16 17 18

19 20 21
22 23 24
25 26 27

- 61 -

1 September 1973 System Development corporation
TM-5074/100/00

Then

30 3 3 36
+/[1] B ~--·~ 3 <) l~ 2 45

48 51 54

12 15 18
+/[2] B +-+ 39 42 45

66 69 72

6 15 24
+/[3] B +-+ 33 42 51

60 69 78

19 20 21
[/[1] 13 ++ 22 12 14

25 26 27

7 8 9
r;L2J B ++ 16 17 18

25 26 27

3 6 9
f /[3] [) ·+-+ :l 2 15 18

21 2 i+ 27

1 2 3
L/[1J p

~J ++ 4 5 6
'! 8 9

1 2 3
L/[2] }] ++ 10 11 12

19 20 21

1 4 7
L/[3] B ++ 10 13 16

19 22 25

When K is the last coordinate of A, you may elide the Cr/1ppA]

and ~rite •IA. Hence, if A is the matrix from the example, we

- 62 -

1 September 1973

have

+l[2]A ++ +IA

System Development Corporation
TM-5074/100/00

If A is any one-element array (i.e., xlpA ++ 1 , then •l[K]A is

a one-element array of rank Of-1+ppA. For example

tl(1,1,1,1,1)p3 ++ (1,1,1, 1)p3 whiletl(iO)p3 ++ '(iO)p3.

The accum~lation operator \ is the analogue of the reduction

operator. If • is one of the operators from Table III (see

section 5.3), •\Vis the •-reduction of the elements of v,

starting with the i-th element of v. In other words,•\V is a

vector of the "partial sums" obtained in the evaluation of •IV·

Example: Suppose

v ++ (5 • 4 • 3 • 2 • 1)
then

x\V ++ (120, 24, 6, 2. 1)
and

-\ v ++ (3. 2. 2 • 1. 1)

As in the case of array reduction, •\[K]A is the application of •

over the elements of coordinate K of A and p•\[K]A ++ A.

Example: If IQRQ ++ 1 and M is the rank-2 array

- 63 -

1 September 1973 System Development Corporation
TM-5074/100/00

2 1 77 3
M ++ 9 1 10 2

rhen

11 0 3 1
+\[1]M ++ 9 1 10 2

13 11 10 3 -+\[2]M ++ 4 13 12 2

9 1 7 3
f \[1]M ++ 9 1 10 2

7 7 7 3
f\[2]M ++ 9 2 2 2

6.9 The :atenation of vectors

If v and ware any two vectors, then you can construct a new

vector x ++ v,w where pV,W ++ (pV)+pW and X[1pVJ ++ v

X[(pW)p (pV)+tpW] ++ W

That is, the first pV elements of v,ware the elements of V and

the last pW elements of V,W are the elements of w.

v, w is called the £~!:~!Je!:i2D of v and w. The catenation

operator(,) is a dyadic operator. If either v or w is a scalar,

it is treated as a vector, so that v,w is a vector of dimension

(p,V)+p,W.

Example: If U is the scalar 1 and V and W are the vectors

v ++ (2,3,4)
w ++ (5 ' 6 ' 7 • 8)

rhen

- 64 -

1 September 1973 System Development corporation
rM-5074/100/00

v. h'
lJ , Iv

~ -> (2 , 3 , 11 , '.i , b , '/ , B)

+ .,. (1 ' 5 ' 6 ' '/ ' u)
u. v. // +~ (1,2,3,4,5,6,7,B)

6.10 · ·rhe Interval Operator (Optional on First Reading)

The synbol J is used to represent the monadic operator that

produces an interval vector. The argument of Jis a vector

LJ~'N.ORG,S. J LEN,ORG,S is the vector of length LEtl whose least

element equals ORG. S' must be either o or 1 • If s ++ o ,

successive elements increase by 1; if otherwise, the elements

decrease by 1 •

Note that J is independent of the value of l.Q[]J.d. •

J 5,3,0 ++ (3,4,5,6,7)
J 5,3,1 ++ (7,6,5,4,3)

6.11 rhe subarray Function (Optional on First Reading)

It is often desirable to work with a subarray B of an array A

where ppB +-* ppA and the hyperplanes of B are adjacent

hyperplanes of A. For example, if pA ++ (3,5,7) we might want

to construct an array

B ++ A[1 2;4 3 2;3 4 5] ++ ALJ 2,1,0;J J,2,l;J 3,3,3]
The dyadic operator ~ is useful for this purpose. The right

argument of ~ is A and the left argument is a rank-2 array p

where pP ++ {(ppA),3). The rows of Pare the vectors required

by the interval operator J in the expression above. rhat is,

the elements of P satisfy the formula

- 65 -

1 September 1973 system Development corporation
·rM-5074/100/00

B ++ F/J.A++A[I F[IQB~;J;] F[IQBQ+1;]; •.• ;J F[f/1ppA;JJ

Thus, for the example, F would be the matrix

2 1 0
p ++ 3 2 1

3 3 3

rhe n:::>nadic use of /J. on an array A produces the matrix F such

that p /J.A ++ A. F satisfies the fol lowing conditions:

p P ++ (p p A) , 3
F[;L/13] ++ (pA)

F[;l+L/13] ++ (ppA)p[QEQ
F[;f/t3] ++ (ppA)pO

Example:

If pA ++ (2,3,5,7) and IQllQ ++ 1
rhen

If pB
rhen

2 1 0
llA ++ 3 1 0

5 1 0
7 1 0

++ (3 • 5 • 6 • 8 • 2)

3 0 0
5 0 0

/J.B ++ 6 0 0
8 0 0
2 0 0

and l.QB.Q ++

- 66 -

0

1 September 1973 System Development Corporation
rM-5074/100/00

An array cross section is obtained when all of the component

subscripts are either scalars or elided. For example, if A is a

rank-4 array, the following are some possible cross sections of A.

A
A L 1 ; ; ; J
A[;1;3;]
r1[1;;2]
A[1;2;3;1]

The dyadic cross section operator ~ is primarily used for

formalizing the subscripting of an array by scalars. The right

argument of A is the array to be subscripted. The left argument

of A is a rank-2 array c, pG +-+ (ppA),2. The elements of the

first column of G are either o or 1 as follows:

If coordinate Kisto be elided, then C[K;J +->- (O,O)

If coordinate K is to be subscripted by tl~ scalar s,

then

G[K;] +-+ (1,S)

Example: If pA +-+ (2,3,5,7), [QllQ +-+ 1, and

Then

1 2
G +-+ 0 0

1 4
1 6

G AA +-+ A [2 ; ; 4 ; 6]

- 67 -

1 September 1973 System Development corporation
rM-5074/100/00

6.12 compression and Expansion

supp~se U is a vector whose elements belong to the set {0,1}.

rhen u is called a .!Qgi,gg! y~g:tQ!"· Then if x is any vector such

that p V +-+ p X, we can form the subvector U IX (read "the U

compression of X11), where pUIX +-+ +Ill. The elements of VIX are

the X[I J such that UL I J +-+ 1.

Example: If u and V are the vectors

v +-+ { 1,2,3,5,7 ,:11,13)
u +-+ (1,0,0,1,0, 1 , 1.)

then
UIV -<--+ (1 • 5 • 1 1 • 1 3)

since
-u -<--+ (0,1,1,0,1,0,0)

("'U)IV +-+ (2 • 3 • 7)

The logical compression operator is extended to arrays, as

follows. Let A be an array, and let u be a logical vector such

that for some component I of A, pU +-+ (pA)[IJ. Then, Ul[I] t1

the U compression along coordinate I of A is defined as

Ul[I] A +-+ A[[I] Ull(pA)[I]]

- 68 -

1 September 1973

Example: suppose lQB.Q +-+ 1 and

System Development corporation
rM-5074/100/00

A and U are

u +-+ (1,1,0}

1 2 3
4 5 6
7 8 9

10 11 12
A +-+ 13 14 15

16 17 18

19 20 21
22 23 24
25 26 27

Then
1 2 3
1i 5 6
7 8 9

U([1] A +-+

10 11 12
13 14 15
1G 17 18

and
1 2
4 5
7 8

10 11
U/[2] 11 +-+ 13 14

16 17

19 20
22 23
25 26

and
1 2 3
L~ 5 6

U/[3] A +-+ 10 11 12
13 14 15

19 20 21
22 23 24

- 69 -

1 September 1973 System Development corporation
TM-5074/100/00

If 1 +-->- r / lppA then U/[IJ A may be written as U/li ..

The logical expansion of a vector is the analogue of the logical

compression of the vector.. In this case, if V is any vector and

u is a logica 1 vector, where P V +-+ +I U, then u IV is the vector

having zeros wherever u has zeros, and whose remaining elements

are taken in order from v.

Example:

(1,1,0,1,0)\(1,2,4) +-+ (1,2,0,4,0)

The logical expansion operator is extended to arrays, as

follows. Let A be an array and let U be a logical vector such

that for some component I of A, +IV +-+ (pA)[IJ .. Then U\lIJA,

the U expansion along coordinate I of A, is defined as the array

whose dimension is given by

p(U\[J]A)[J] +-+ pU

and for Kan element of ippA, p(U\[IJA)[KJ +--+ (pA)[KJ

where K;t.J and for every element J of lP u,

(U\A)[[I]J] +-+ A[[I]+/U[1J]]xU[J]

- 70 -

1 September 1973 system Development corporation
TM-5074/100/00

The following example clarifies the situation.

Example: Suppose I.QfiQ. +-+ 1 and u and A are

u +-• (1,0,l,0)

2 4
6 8

A +-•

1 3
5 7

rhen
2 1+

6 8

0 0
0 0

U\[1]A +-+

1 3
5 7

0 0
0 0

and

2 lj

0 0

6 H
0 0

U\[2JA ..:-+
1 3
() 0
,-
:) 7

0 ()

2 0 4 0
G 0 8 0

U\ [3]A ..:--+

1 0 3 0
r-
;) 0 7 0

If I+-+ I /1pp1l1 then U\[I]A may be written as U\A.

- 71 -

1 September 1973 System Development corporation
TM-5074/100/00

The following relation occurs between the expansion and

compression of any array A by any logical vector u.

U/[I]U\[I]A ++ A

6.13 Prefix and suffix vectors

A Qt~fi~ ~~£tQ~ is a logical vector P whose first R components

are ones and whose remaining (pP)-R components are zeros. A

§Yfti~ x~~iQ* is a logical vector s whose last R components are

ones and whose remaining (pS)-R components are zeros.

rhe dyadic operator for specifying a prefix vector is a; the one

for specifying suffix vectors is w. In both cases, the left

argument L is the length of the vector to be constructed, and

the right argument R is the number of ones required in the

vector.

Example:

7a3 ++ (1,1,1,0,0,0,0)
7w3 ++ (0,0,0,0,1,1,1)

Prefix vectors are useful for selecting the first R components

along some coordinate of an array; suffix vectors are useful for

selecting the lastR components along some coordinate of an

array.

- 72 -

1 September 1973 system Development corporation
rM-5074/100/00

Example: suppose lQB.Q. +-+ 1 and A is the array

1 2 3 4 5

A 6 7 8 9 10
+-+

13 14 15 11 1 2
16 1 7 18 19 20

rhen

1 2 3 lj. 5
(tf ;x 2) I [1] A -<--)-

6 7 8 g 10

11 12 13 1 l~
(t~ 1u 2) I [1 J A +-+ 15 16 17 1 8

3 1+ 5
8 ~J 10

(5wJ)/[2]A ++ 13 111 15
18 1:; 20

6.14 The Monadic Transpose Operator

If ~ is any rank-n array, where n~2, the monadic transpose of A,

written QA, is equivalent to A with its last two coordinates

interchanged. If il is a matrix, then QA is the transpose of A.

Formally, for (ppA)~2,

p~A +-+ pA[t-2+ppA), cr/1ppA), -1+r/1ppA)

and for any row L of ipQA, we have

A[;/L] +-+ (~A)[;/L[M]]

where
M +-+ (t-2+ppA), (f/1ppA}, -1+f/1ppA)

Example: If

1 2 3 4
5 6 7 8

A +-+

9 10 11 12
13 14 15 16

- 73 -

1 September 1973 System Development corporation
TM-5 074/1 00/00

Then 1 5
2 G
3 7
!\ 8

~A +--!-

9 13
10 11+
11 15
12 16

6.15 The Take Operator

The take operator is a generalization of the pref ix and suffix

operators. It permits you to form a subarray B of an array A by

writing Tt/l, where '1' is a vector of integers such that p T -+--i- p pA

and (17') <; pl!.

The effect of the take operator is that

pB ~---+ I pA

and coordinate I of B receives the first 2"[IJ elements from

coordinate I of A if T[I]2':0; otherwise B receives the last T[I]

elements of coordinate I of A when T[I]<O.

The take operator can be expressed, as follows.
'l' t A ~--+ Pt.A

where

F +--+ ~(3,ppA)p(IT),(((pT)pIQBQ)+(T<O)x(pA)-jT),(pT)pO

~PPLE has a convention that makes it easier to write certain

take vectors. If you only want to subset the last few

- 74 -

1 September 197 3 System Development corporation
rM-5074/100/00

coordinates of A, you may write T+A where (pT)<ppA. This is

equivalent to writing (((-(ppA)apT)/pA),T)tA.

Also, if you want to subset a few coordinates of A and keep the

rest intact, you may write Tt[I]A where I is the vector of

coorjinates in which you are interested. This is equivalent to

writing BtA, where p/3 +--+ ppA and B[I] +--+ T, while

(I~1ppA)/B +-+ (I~1ppA)/pA.

Examples: suppose [Ql]_(i_ +--+ 1 and ppA +--+ 3, where

1 2 3 4
5 6 7 8
9 10 11 12

A +-··>-

13 14 15 16
17 18 19 20
21 22 23 24

Then

1 2 3
(1,2,3)tA +-+ 5 6 7

2 3 i+

(1 ' 2 • -3)tA +-+ 6 7 8

19 20
(- 1 • - ') - 2)tA 23 24 ,_ . +--+

6 7 8
10 11 12

(2 • 3)tA +--+ 18 19 20
22 23 24

since, by convention, (2'
- 3)tA (2. 2 • -3)tA +-+

Finally,

- 75 -

1 September 1973 System Development corporation
TM-5074/100/00

5 6 7 8
(1, - :?)t[1,2]A ++ 9 10 11 12

5 6 7 8
9 10 11 12 - 2t[2]A +-+

17 18 19 20
21 22 23 24

6.16 rhe Drop Operator

rhe drop operator + is the analogue of the take operator. When

you write T+A, the first or last IT[IJ components of coordinate I

of A are suppressed according as T[I] is positive or negative.

For:nally,

T+A +·+ Cb.A

where
G +-+ ~(3,ppA)p((pA)-IT,(((pT)pIQBQ)+O[T),(ppA)pO

The c3nventions mentioned for the take operator also apply to

the drop operator.

Examples: Suppose lQRQ +-+ 1 and A is the array defined in

section 6.15.

rhen

(1,2,3)+A +-+ (1,1,1.)p3

3 4
7 8

11 12
2+A +-+

15 16
19 20
23 24

- 76 -

1 September 1973

6.17 The Reversal Operator

System Development corporation
TM-5074/100·/00

If A is any array, then ¢[I]A is the reversal of coordinate

I of A. Formally,

¢ [I] A +-+ H t:i.A

where

H +-+ ~(3,ppA)p(f:i.A)[;IQB.QJ,(6A)[;1+l.QBQJ,((ppA)pI)=tppA

If I +-+ f It p pA, then I may be elided.

Example: As in section 6.15, suppose l.QB.Q +-+ 1 and

A+-+ (2,3,4)pt24

rhen
13 14 15 16 9 10 11 12
17 18 19 20 5 6 7 8
21 22 23 24 1 2 3 4

¢[1]A +-+ <j>[2]A ~-+

1 2 3 4 21 22 23 24
5 6 7 8 17 18 19 20
9 10 11 12 13 14 15 16

4 3 2 1
8 7 6 5

12 11 10 9

¢A +-+

16 15 14 13
20 19 18 17
24 23 22 21

- 77 -

1 September 1973 system Development corporation
TM..;.5 074/100/00

6.18 The Mask and Mesh Operators

The mask and mesh operators combine the power of the compression

and ex~ansion operators in an extremely useful way in that they

permit you to construct a new array from the logically selected

portions of the other arrays.

Let U be a logical vector and suppose X and Y are arrays where

pX +-+ pY. Then, the u mask of coordinate K of x and Y is

written U/[K](X;Y). The resultant array is composed of the

elements of coordinate K of Y, corresponding to the ones of u,

and the elements of coordinate K of x, corresponding to the

zeros of u.

Formally,

Example:

pU/[K](X;Y) +-+ pX +-+ pY
U/[K] U/[K](X;Y) +-+ U/[K]Y

(-U)/[K] U/[K](X;Y) +-+ (-U)/[K]X

suppose l.QB.Q. +-+ 1 and

1 3 5 7
A +-+ 9 11 13 15 B ++

17 19 21 23

Then

(1,0,0,1)/[2](A;B) +-+

- 78 -

2 4 6 8
10 12 14 16
18 20 22 24

2 3 5 8
10 11 13 16
18 19 21 24

1 September 1973 system Development corporation
TM-5074/100/00

Let u be a logical vector and suppose X and Y are arrays where

ppX ++ pp.Y. Suppose that for some component I, we have

(((ppX)pI)~tppX)/pX ++ ((ppY)~1ppY)/pY. That is, except for

coordinate I, the dimension vectors for x and Y are equal. In

addition,

(p X)[I] +-,.. + /-U
{pY) LIJ ~ +IV

'l'hen we define U\[I](X;Y). the U mesh of coordinate I of X and Y

as the array of dimension

pU\[I](X;Y) ++ ((I-!~~~)t(pX)),(pU),(J+1-!Q~q)+(pX)

That is, the resultant array consists of the elements of the

u expansion of coordinate I of y and the -u expansion of

coordinate I of x.

Example: Suppose IORG ++ 1 and A and B are

1 2 3 4 100 20 0 300 1rno
A +-+ 5 G 7 8 B ++ 500 600 7·00 800

9 10 11 12

1 2 3 4

rhen 5 6 7 8
(0,0,1,0,1)\[1](A;B) ++ 100 200 300 400

9 10 11 12
500 600 700 800

6.19 rhe Rotate Operator

suppose A is an array and N is a scalar integer. You can rotate

- 19 -

1 September 1973 System Development corporation
rM-5074/100/00

the elements of coordinate I of A cyclically N positions to the

left if N~o, or N positions to the right if N is negative. This

is done by using the dyadic operator ip, writing N<l>A • A cyclic,

left rotation means that the left-most elements migrate around

to the right-most position in their coordinate. Since the

coordinate is of length (pA) [I 1 the rotation moves elements

(pA)LIJIN positions to the left or right.

Formally, N~[I]A +-+ A[[I]((ppA)plQRQ)+(pA)[JJl({ppA)pN)+1(pA+[I]

Example: If l.Qll.Q +--+ 1 and

1 2 3
4 5 6
7 8 9

10 11 12
A -<--+ 13 14 15

16 17 1 fl

19 20 21
22 23 24
25 26 27

rhen

4 5 6
7 8 9
1 2 3

13 14 15
7<1>[2 JA +-+ 1<1>[2]A+-+ 16 17 18

10 11 12

22 23 24
25 26 27
19 20 21

and

- 80 -

1 September 1973 System Development corporation
TM-5074/100/00

1 'j 20 21
22 23 2 It
25 26 27

1 2 3
2<1> [1]A-+--+-- 1<H 1]A +--+- 4

,.
:J G

7 8 9

10 11 12
13 1 It 15
1G 17 18

I f A is an array sue h that p p A +--+- - 1 + p p B and

(((ppli)pI);r1ppD)/pli ~-+ pA(i.e., the dimension vectors of A and E

are in agreement after (pB)[IJ is suppressed, A¢[IJB is defined

as the rotation of coordinate I of B by A·

Formally, if L is a row of irB, then

(A¢[I]B)[;/L] +--+- (A[;/((ppB)pI)~1ppB)/L]¢FAB)[C]

where c ++ (((ppB)pI)=1ppB)/L

F ++ ~((((ppB)pJ)=1ppB)/(O;l)),(((ppB)pl)=1ppB)/(O;L)

- 81 -

1 September 1973

Example: Suppose

2
A +--+ 2

1

1
4
7

1 ()
!! <--+ 13

16

19
2')

25

'l'hen

l.QB.Q.

1 2
2 3
1 2

2 3
5 6
8 9

1 1 12
14 1 5
17 18

20 21
23 24
26 27

-<--+ 1 and

System Development corporation
TM-5074/100/00

- 82 -

1 September 1973 system Development corporation
rM-5074/100/00

'/ r 9 ,J

1 8 3
lt 2 G

16 17 12
A$[2]D +-+ 10 11 15

13 14 18

22 23 2 'I
25 26 21
19 20 24

and

19 11 21
22 23 G
16 17 27

1 20 3
A$[1]B -<--+ It 5 15

25 2G 9

10 2 12
13 14 24

7 8 1U

3 1 2
["
,) (j 4
') 7 8

12 10 11
11$[1]B +-+- 15 13 14

16 17 18

20 21 19
23 2 lt 22
2 '/ 25 26

6.20 The catenation of Arrays

In section 6.9, we defined the catenation of vectors. Two

arrays A and B may be catenated along coordinate I provided

either:
(1) p p A +-+- p p B

or (2) 1 +--+- I (p p A) - p p B

- 83 -

1 September 1973 System Development corporation
TM-5074/100/00

or (3) B or A is a scalar

ang (4) the coordinates along which A and B are to be
joined are of the same dimension.

The meanfng of condition (4) is the following.

(a) If (ppA) +-+ (ppB)• then
((ppA)pI)~1ppA)/pA +-+ (((pp8)pI)~1ppB)/pB
That is, pA and pB are identical for every
coordinate, except possibly coordinate I.

(b) If 1 +-+ (ppA)-ppB, then Bis considered as if its
dimension vector is (((ppA)pI)=1ppA)\(1;pB). This
dimension vector must satisfy condition (a).

(c) If 1 +-+ (ppB)-ppA, then A is considered as if its
dimension vector is (((ppB)pI)=1ppB)\(1;pA). This
dimension vector must satisfy condition (a).

(d) If A or B is a scalar, it is treated as though its
dimension vector is identical to that of the
nonscalar in all components, except for a unit
component.

Then the catenation along coordinate I of B and A, written

A, [I JB, is the array c such that

C[[I]1(pA)[I]]+-+ A
C [[1 J (p A)[I]+ (p B)[I]] -<--+ 13

Example: If IQB.fi. +-+ 1 and

1 3 5 7
A +-+ 9 11 13 1 ,. .::>

2 4 6 8
13 +~10 12 14 16

Then

- 84 -

1 September 1973

A,[1]B +-+

A,[2]D ++

If

c +-+

rhen

A,[1]C +-+

A,[1]2 +-+

A,[2]2 +-+

System

1 3 5 7
9 11 13 15
2 4 G 8

10 12 14 16

1 3 5 7 2
9 11 :l 3 15 10

50 51 S2 53
54 5 5 56 57

58 59 GO 61
62 63 G4 65

1 3 5 7
9 11 13 15

50 51 52 53
54 55 56 57

58 5 CJ so 61
62 63 64 65

1 3 5 7
9 11 13 15
2 2 2 2

1 3 5 7 2
9 11 13 15 2

4
12

6.21 rhe Lamination of Arrays

Development corporation
TM-5074/100/00

G 8
14 16

When two arrays, ll and B, are laminated together on coordinate

I, a new coordinate that has indices t 2 is formed before

coordinate I· The argument A fills the first index of the new

coordinate; the argument B fills the second index of the new

- 85 -

1 September 1973 system Development corp0ration
rM-5074/100/00

coordinate. The notation is A: [I]B, where either pA +-+ pB or A

or 13 is a scalar and I is an element of t1+((ppA)rppB)If A or B

is a scalar, it is considered as if it were reshaped to have the

sane shape as the nonscalar argument.

Example: Suppose IQRQ +-+ 1 and A and Bare the same as in

section 6. 20.

Then

1 3 5 7
9 11 13 15

A:[l]b' ~--+

2 4 6 8
10 12 14 16

1 3 5 7
2 4 6 8

A:[2]iJ +-+

9 11 13 15
10 12 11+ 16

1 2
3 4
5 6
7 8

11:[3]8 ..(_--~

9 10
11 12
13 14
15 16

1 3 5 7
9 11 13 15

A:[1]5 +-+

5 5 5 5
5 5 5 5

- 86 -

1 September 1973 System Development corporation
TM-5074/100/00

6.22 The Dyadic Transposition of Arrays

The dyadic transposition of an array is a generalization of a

monadic transposition of an array. The V transpose of A is

written V~A, where V is a vector containing one element for each

coordinate of A.

The values of the elements of Vindicate the dimension of the

resulting array. If you want the result R to be of rank ppR, V

must contain, in any order, at least one of each of the elements

from 1ppR. Further, the elements of V are limited to the values

contained in 1pp&

If the same value appears more than once in v , which must occur

if (ppR)<pV, then the repeated dimension of R is to be formed

from more than one dimension of A. For example, suppose that

ppA +-+ 4, IQliQ +-+ 1,and V +-+ (2,1,2,2). The result R +-+ V~A

must be an rank-2 array since 2 +-+ r Iv The first dimension of R

is formed from the second dimension of A. The second dimension

of R is formed from the first, third and fourth dimensions of A.

rhus, the elements to be selected from A are of the form

A[I;J;I;I], where I and J are scalar integers. This is the

diagonal passing through A[1;1;1;1] and through the first,

second and fourth dimensions of A. The diagonal contains no

more elements than the shortest of the dimensions from which it

is taken.

- 87 -

1 September 1973 System Development corporation
TM-5074/100/00

In sunnary, the vector V of positive integers must satisfy the

conditions:

(1) pV ~--+ ppA. There must be an element in V for
every component of A.

(2) Every element of V must be an element of 1 p pA.

(3) Every element of l r / v must be an element of v •
(For example, if ppA +-+ 6 and the largest
element in V is 5, V must contain all of the
elements of ls. Since V must have six
components, one of the elements of tS must be
repeated.)

Then, the transpose of 11 by V is defined as:

(a) pp l/~/1 ~--+ 1+(r /V)-l.QB.Q

(b) For each element I oft pp V~A ,
p(V~A)[I] ++ l/(V=(pV)pI)/pA

(c) For each row L of .lP V~A,
(V~A)[;/L ++ AL;/L[V]JA

In order to better understand dyadic transposition, study the

following detailed examples.

Examples: Suppose IQ!l.Q +-··)- 1,
pA ~--.. (5,7,3,8),
and v +·• (2,1,2,2)·
Then if R +-+ V~A,
p pi\' <-+ 2•
From property (b), we see that

(pR) [1 J +.-JI- LI (C 2, 1, 2, 2) = (1, 1, 1, 1)) I (s, 7, 3, 8) +-+ LI Co, 1, o, o) IC s, 7, 3, 8) +-+ 7
(pH) L 2 J +·+ L I ((2 , 1 , 2 , 2) = (1 , 1 , 1 , 1)) I (5 , 7 , 3 , 8) ++ l / (5 • 3 , E) ..:--,,. .•

Therefore, (pR) +->- (7, 3)

From property (c), we can determine the
mapping between elements of A and R.

- 88 -

1 September 1973 System Development Corpora ti on
TM-5074/100/00

(V~A) l 1 ; 1] ++ A[;/(1,1)[2 1 2 21J +-+ A [1 ; 1 ; 1 ; 1]
(V~A) L 1; 2] ++ A[;/(1,2)[2 1 2 2] J ++ A[2;1;2;2]
(V~A)[1; 3] +-+ A[;/(1,3)[2 1 ,,

2JJ +-;.- A[3;1;3;3l ,_

(V~A) [2 ; 1] +--+ ;1[;/(2,1)[2 1 2 2]] +--+ 11[1;2;1;1]

. . .
(V~A) [5; 2 J +--+ A[;/(5,2)[2 1 2 2]] +-+ A [2 ; 5 ; 2 ; 2] . . .
(V~A) [7 ; 3 J +--+ A [; I (7 , 3) [2 1 2 2] J +--+ A [3 ; 7 ; 3 ; 3 J

rhus, you see that the elements of V~A ++ A[I;J;I;IJ,
where J is an element of l7and I is an element of 13.

Suppose we want X +-+~A where W +-+ (3,1,2,2) Then pp +-+ 3
and pX +-+ (7,3,5). The mapping between A and xis given
by

X[I;J;K] +--+ A[K;I;J;J]

where I is an element of 17, J is an element of 13, and
K is an element of 15.

Finally, suppose

1 2 3
4 5 6
7 8 9

10 11 12
B +--+

13 14 15
16 17 18
19 20 21
22 23 24

Verify that the following are true:

(see next page)

- 89 -

1 September 1973

(1. 1 • 1) lsiB +-+

(1 , 1 • 2) ISl B +--+

(1 • 2 • 1) ISl T3 +-+

(2 ' 1 • 1) ISl lJ +--+

(1,2,2)~B +--+

(2,1,2)~B +--+

(2,2,1)1SlB +--+

(1 , 2 , 3) Isl B +--+

(1 , 3 , 2) ~ B +--+

System Development Corporation
TM-5 074/100/00

(1,13)

1 2 3
13 14 15

1 4 7 10
13 16 19 22

1 13
5 17
9 21

1 5 9

13 17 21

1 14
4 17
7 20

10 22

1 16
2 17
3 1B

B

1 4 7 10
2 5 8 11
3 6 9 12

13 16 19 22
14 17 20 23
15 18 21 24

- 90 -

1 September 1973

(3 ' 1 • 2) /st 13 +-~

(3,2,1)/stB +--+

l 13
2 14
3 J 5

t1 1 G
5 17
6 18

7 19
8 20
9 21

10 22
11 23
12 24

1 13
tj. 16
7 19

10 22

2 11+
r 17 .J

8 20
11 23

,.,
15 '·'

G 1tl
'J 2:1

12 24

System Development corporation
rM-5074/100/00

- 91 -

1 September 1973

(2,1,3)tl?B

(2,1,l)tl?B +~

1
13

4
16

+~

7
19

10
22

1 4
:l 3 16

2 5
111 17

3 6
15 18

System Development Co~poration
TM-5074/100/00

2 3
14 15

5 6
17 18

8 9
20 21

11 12
23 24

7 10
19 22

B 11
20 23

9 12
21 24

- 92 -

1 September 1973 System Development Corporation
TM-5074/100/00

CHAPTER SEVEN

EXPRESSIONS, STATEMENTS AND PROGRAMS

so far, y~u have seen a number of APPLE'S arithmetic and

manipulative operators. You have nearly enough information to

write a program. However, you need to learn about APPLE

statements and expressions before you can write a program.

In this chapter, we will cover everything you need to write a

simple program using APPLE operators. In the following

chapters, you will be introduced to operations on arrays, as

well as how to define your own functions and operators.

7.1 Elenentary Definitions

An ~Ket~~~iQn is any well-defined combination of operators and

operands. Expressions always have a value.

A §t~t~ment is an expression whose value is the empty vector.

Statements always perform some action. In FORTRAN, they

include, for example, assignment statements, DO statements, IF

statements, and so forth.

- 93 -

1 September 1973 System Development corporation
TM-5074/100/00

7.2 :=onformability conventions for scalar Dyadic operators

Let us ree"xamine the simple expressions A •B where• is some

scalar dyadic operator. Until now, we have stated that this

expression is defined only when pA +-+ pB. Two such arrays are

said to be ~QDfQ•IDQQl~· The result is an array C, where

pC ++ pA +-+ pB and for any subscript L from .ipC, we have

C [; I L] ++ A [; I L] • B [; IL]

we will now extend the definition of conformability with respect

to a scalar dyadic operator.

First, suppose only one of the two operands, operand A, is a

one-element array. CA is a one-element array if and only if

1 -<-+ x I pA· Thus, A might be a scalar or a one-element vector.)

we subsequently define A•D to be the array C +->- ((pB)pA•B (If

13 was the one-element array, we would have C +-)-. A•(pA)pb) That

is, the scalar operand is applied to every element of the non-

scalar operand.

Example: If IQli.Q <-+ 1, then

1. + l 5 -<-+ (2 • 3 ' 4 • 5 , ())

If

1 3 LI

11 -<---)> 2 7 8
Then

2 6 8 -Ax 2 +-+ 4 14 16

- 94 -

1 September 1973 System Development corporation
TM~5074/100/00

If both operands are one-element arrays, then A•B is defined to

be the array c where c +-+ ((ppAHppB)p(,A)•,U. That is, the

rank of the resultant one-element array equals the maximum of

the ranks of the operands.

If neither of the operands is a one-element array, the arrays

are conformable only when the two arrays satisfy one of the

following two conditions.

(1) Assume that (ppA)>ppB and (-ppB)tpA ++ pB. That is,

the last ppB elements of pAare identical to pB.

(If (ppB)>ppA,everything works when you mentally

interchange their names.) Then, the arrays are

conformable and c ++ A•(pA)pB

(2) If (1) is not true, but there are non-negative

scalar integers M and N such thatM<p pA and N<p pB

and

M+pA ++ N+pB

Then A and B are conformable only if MtpA ++ Np 1 or

NtpA ++ Np1 • The result is of rank ppC ++ (ppA)fppB,

pC ++ (~(ppC)p(~pA),Dp1)f~(ppC)p(~pB),Dp1 and

C +-+ ((pC)pA)•(pC)pB, where D +-+ j(ppA)-ppB.

In all other cases, A and B are non-conformable arrays.

Examples: If pA +-+ (2,3,5) and (pB) ++ (1,1,1,2,3,5) then A and B
are conformable and pA•B ++ (1,1,1,2,3,5). If

pE ++ (1,4,3,2,8) and pF +-+ (1,1,6,4,3,2,8), then E and F
are conformable and pE•F ++ (1,1,6,4,3,2,8). If

pG ++ (1,2,3,5,6,2,8) and pH++ (1,1,1,1,1,1,1,1,2,s).

- 95 -

1 September 1973 System Development corporation
rM-5074/100/00

rhen G and 11 are conformable and
p G' ~ ll +->- (1 , 1 , 1 , 1 , 2 , 3 , 5 , G , 2 , 8) •

If p v +-)- (1. 2, 3, 4) and p W +->- (1, 3, 3, 4), V and W are llQ!:
conformable. (Why?)

Up until now, we were very careful to write expressions like

(1=-ppA) as ((ppA)pl)=-ppA. so that the conformity requireMents

were trivially satisfied. For the remainder of this tutorial, we

can use the conformity conventions just described.

7.3 Specification Expressions

If A is a variable and you want to store the value of an

expression E into A, you use the specification operator + and

write

By definition, the shape of A will equal the shape of E, i.e.,

pA ~-~• pE. Since + is a dyadic operator, you may use it anywhere

you would use any other dyadic operator. The value of A+E is

the new value of A·

Let E be any well-formed, array-valued expression. Then, F is a

~g~~gt ~1Qt~~2!Qn on E if it is a well-formed expression

- 96 -

1 September 1973 System Development Corporation
TM-5074/100/00

consisting of an arbitrary number of the following operators
applied to E.

(1) take

(2) drop

(3) reversal

(4) rotate

(5) subscripting

(6) t:.

(7) ~

(8) compression

(9) expansion

(10) mesh

(11) mask

(12) transposition

rhen, if F is a select expression on the previously specified

array A, when you write (F)+(E). If (PF)>pE the specification

is equivalent to A+F+E. Another way of looking at this

concept is: the left-hand side of a specification may be any

selection expression on A that could have been written as a

subscript expression on A.

Examples: Suppose l..Ql.lJi. -<--+ 1 and A has been specified as

A + (2 , 3) p 1 b. Then

A[1 2 ;3] + i2

produces

1 2 1
A +-+ '+ 5 2

- 97 -

1 September 1973 System Development corporation
TM-5074/100/00

This could also have l>ecm written as either

((0,0,1)/A) + t2
or (-1 +A) + t 2

we also can write
(~A) + (3,2)p6+t6

producing

7 g 11
A +-+ 8 10 12

7.4 conditional Statements

APPLE, like many programming languages, contains conditional (or

"IF") statements. A single conditional statement always

contains some test (i.e., an expression that evaluates to a

logical scalar). If the test is satisfied (evaluates to 1),

then the expression associated with the conditional statement is

evaluated. If the test fails (evaluates to 0) , then control is

transformed to the statement immediately following the

conditional statement.

~ more intricate conditional statement consists of a test with

its associated expression and an ordered sequence of

alternatives. If the test succeeds, its associated expression

is evaluated and control is transferred to the statement

immediately following the entire conditional statement. If the

test fails, each of the alternative tests is executed until

either some one of them is satisfied or they all fail. As soon

as the first alternative test is satisfied, its associated

- 98 -

1 September 1973 System Development corporation
rM-5074/100/00

expression is evaluated and control is transferred to the

statement immediately following the entire conditional

statement.

rhe sinplest kind of conditional statement fits on one line. It

is of the form

IE test Xft&li expression

rhere is also a version with an alternative. This takes the

form

IE test tll~il expression 1 ~La~ expression 2

In the conditional statement, if the test is true, then

expression 1 is evaluated and control transfers to the statement

immediately following. If the test is false, expression 2 is

evaluated and control is transferred to the statement

immediately following.

Examples:

IE A>10 Xll&ll X + +/Y

If 1 +-+ A>1othen Xis redefined as +IY.
Otherwise X retains its original value.

IE A >10 Xll~il X + +/Y ~L£& X + r;y

rhis time X will be changed regardless of the value of A> 1 o •

- 99 -

1 September 1973 system Development corporation
rM-5074/100/00

rhe statement is equivalent to X + (A>10)/(f/Y;+/Y)

If a conditional statement will not fit on one line, it is

necessary to use a multi-line conditional statement. This form

is far more powerful than the one-line conditional statement,

which cannot control the conditional execution of a set of

statements.

The simplest type of multi-line conditional statement involves

only one test and has no alternatives. It is of the form

IE test

Ii.ti. Id. If.

statement 1
statement 2

•

•
statement n

Here, if the test is true, statement 1 •••• , statement n are all

executed in order. If the test is false, control is passed to

the statement immediately following the associated ENQIE..

There is also a multi-line conditional statement with an

alternative.

- 100 -

1 September 1973

It is of the
l..f.

form
test

sl
s2

sn
fl.L.§..!I t 1

t2

tm

System Development Corporation
rM-5074/100/00

If the test is true, statements s1, ••• ,sn are executed and

control transfers to the statement immediately following the

associated gllnit• If the test is false, then statements

t1, ••• ,tm are executed and control is transferred to the

statement immediately following the !INllIE.

The most general type of multi-line conditional statement allows

you to write as many conditional alternatives as you need and an

~~£~ alternative if you want one.

- 101 -

1 September 1973

It is of the form

I.E. test 1
s1
s2

sn
Q!i IE test 2

t1
t2

tm
QB. IE test 3

u1

ul

vk

•

System Development corporation
TM-5074/100/00

First, if test 1 is true, then statements s1, ••• ,sn are

evaluated, and control is passed to the statement immediately

following the associated ~MQIE· If test 1 is false, test 2 is

evaluated. If test 2 is true, statements t1, ••• ,tm are

evaluated and control is passed to the statement immediately

following the associated ~llQIE· This process continues until

either a test is true and its associated statements are

executed, or until all of the alternatives have been exhausted.

If the last alternative is an aLQ~, its associated statements

... 102 -

1 September 1973 system Development corporation
TM-5074/100/00

will be executed if all the preceding tests have failed.

You shoulj note that any of the statements associated with a

test or an ~L~~ can, itself, be a conditional statement. If

such a conditional statement is executed, it is treated exactly

as if it was a conditional statement occuring elsewhere in a

program: it will either be a one-line conditional statement, or

there will be an ~~QIE associated with it.

Example:

IE (A<B)v C>D + Q+R
X++/Y
Z+~A

Q!J. l.f. (A>B)AD;eO
X + /l l-D
l.f. Q>H

Z + Vls:(R
E.L{j_tl_ Z + (4> V) ~R
E.fl.!2£E

f /d/i./i. Z + (p Z) pO
il. !J. QI f.

In this example, D is specified in the first test ..

Regardless of the truth of that test, D will

retain the value Q+R until it is respecified

elsewhere. The QH IE alternative, which will be

executed only if the first test fails, contains a

conditional statement of its own.. That statement

determines the value of z. If both tests fail, z

is respecified as an array of zeros.

- 103 -

1 September 1973 System Development corporation
rM-5074/100/00

You should indent conditional statements the way we have

done in this example. When you do, it is very easy to

identify the statements associated with each alternative.

This is especially true when a conditional statement

contains other conditional statements nested within it.

7.5 conditional Expressions

The right-hand side of any specification may be a conditional

expression. A conditional expression looks exactly like a

conditional statement, §~ggQ~ that there is now a value

associated with it. This is because every APPLE statement is an

expression the value of which is discarded.

when a conditional statement becomes a conditional expression,

its value is the value of the last expression in the alternative

that is executed. If it is possible that none of the

alternatives be executed, you must be sure to include an &L~E

alternative, otherwise the value of the conditional expression

will be undefined.

The shape of the value of a conditional expression is determined

by the shape of the last expression in ~ggh of its alternatives.

This shape is determined exactly the way it would be determined

if these expressions were to be operated on by some dyadic

scalar operator. That is, these expressions must be pair-wise

- 104 -

1 September 1973 System Development corporation
TM-5074/100/00

conformable. Therefore, the shape of the result of a

conditional expression is the conformed shape of the last

expression of each alternative of the conditional expression.

Example: You can calculate the value of !v,

where Nis a nonnegative scalar integer by writing

FACTORIAL + lE N=O XligN 1 EL~~ x/1N+1-lQRQ

7.6 Iteration Statements

Iteration statements are akin to the DO-loops of FORTRAN. They

provide a convenient means of performing the same set of

calculations repeatedly on some set of elements.

rhis statement is of the form

aQ I ~ V
s1
s2

sn
liE~~dX

where I is a variable name, V is an array-valued expression, an~

s1,s2, ••• ,sn are statements. Statements s1, ••• ,sn will be

executed together (pV)[lQHQJ times, each time with I assuming

- 105 -

1 September 1973

one of the values

system Development corporation
rM-5074/100/00

V[[IQBQ]lQBaJ.V[LlQRQ]1+£QBQ], •••• V[[IQllQJr/\(pV)[£QBQJ]

Thus, if IQB.Q. +-+- 1 and you write

QQ Ug. 6ic 15
A[I] + 2xI

B.E.Eli.d'I.

Then, this is equivalent to your having written

A[6] +- 12
A[12] + 24
'1[18] + 36
A[24] + 48
A[30] +- 6 0

Of c::>urse, you could have writtenA[6x1SJ +- 2xI in this case,

but that is because the body of the loop only contained one

statement. Since the body of the loop can contain arbitrarily

many statements of arbitrary complexity, you could write, e.g.,

I2.Q JS. .lPB
F + ~((I=tppB)/(0;1)), (I=tppB)/(O;J)
(PAZ)+ A[;/(I~1ppB)/J]$FAB

B. !i. E. fl.11 'l

In this code, Bis an arbitrary array, and J successively takes

on the value of each row of .lPB. If the dimension of B is

unknown at coding time, this loop could not be written as a

sequence of statements without use of some form of iteration.

- 106 -

1 September 1973 System Development corporation
rM-5074/100/00

rhe ~lllk& statement is of the form
fl. lf. .J.. l.t. t;_ t:e s t

s1
s2

sn

!i Ji f. lf/A. 'l.

The test is any expression that evaluates to a logical scalar,

and the s1, ••• ,sn are statements.

The test is evaluated and, if true, statements s1, ••• ,sn are

evaluated. Then, the test is reevaluated. If it is true,

statements s1, ••• ,sn are evaluated again. This process

continues until the test is false, at which time control is

transferred to the statement immediately following the BEE&d'l..

rhe li.fll..ld.li statement is useful for controlling some process that

must iterate while some condition is satisfied, e.g., a

numerical approximation process. Note that iteration continues

as long as the test is true. Consequently, you must provide a

means for either causing the test to eventually evaluate to

false, or make use of one of the operators described in Section

7.6.4.

Example:

~llIL~ A/EPSILONslX-Y
x + (IX-14>X)f2
y + (IY+(l<l>Y)+W(-1<.j)Y))f3

B.. E. EJl. Ii T.

- 107 -

1 September 1973 System Development corporation
rM-5Q7q/100/00

will be iterated until every component of the absolute

value of X-Y is less than EPSILON.

fJ.!i'l.l.lt. statements are written

UN'PI L test
----- s1

s2

sn

where the test is any expression evaluating to a logical scalar,

and sl, ••• ,sn are statements.

rhe se~uence of statements is iterated until the test is true.

For a given test 1' , the loop Y..ll'l.Ild. T is equivalent to the loop

Ual~E-T. Two kinds of conditional loops are provided to permit

programmers who think in terms of a termination condition,

rather than in terms of a continuation condition, to directly

translate their thought process into APPLE code.

- 108 -

1 September 1973 System Development corporation
TM-5074/100/00

It is often necessary to prematurely terminate one or more

iterations of a loop because some boolean condition is

satisfied. APPLE provides you with three anadic operators,

[i.e., having no operands] with which you can direct the flow of

control within such loops.

The first of these operators is QXQ~~, which

terminates execution of the current iteration and

transfers control to the top of the loop for the

next iteration.

rhe LEAY.E. operator causes control to be

transferred to the statement immediately following

the B~EE.AX associated with the loop. This causes

the loop to definitively stop iterating.

rhe ~KlX operator causes control to be transferred

to the statement immediately following the RE.E&dX

associated with the outermost loop in which the

instruction occurs.

If there are no nested loops, E.J.1.'I. and L.E.AY.!J. are equivalent and

either operator may be used. But, if ~XIX is encountered in a

nested body of loops, then ~!1 of the loops stop iterating

immediately.

- 109 -

1 September 197 3

7.7 The ~~§E Statement

System Development corporation
rM-5074/100/00

rhe Qd~E statement is a simplification of the conditional

statement. It is used when you want to evaaluate one of a set

of expression sequences based on the value of some scalar

expression, usually integer-valued.

The Qtl~lll. statement takes the form

Q!J.3.lf scalar expression
value list 1 + statement sequence 1
value list 2 + statement sequence 2

•
•
•

value list n + statement sequence n
JiL.§..!!l. statement sequence
gl:J..[d.Q

The I:;,[.,_§.lfl. clause is optional. If together, the value lists

exhaust the possible values of the scalar expression, you do not

have to provide an "f:l.Lii'lll. clause.

The value list is a sequence of scalar constants, separated from

each other with semicolons. The statement sequences may contain

any combination of APPLE statements, including conditional or

iteration statements.

Example. This Qtl!ilf statement computes ! N and stores it in Z •

N and z are assumed to be one-element, nonnegative

scalar integers.

- 110 -

1 September 1973 System Development Corporation
TM-5074/100/00

o -+ ;: ~·· x I 1 + t N
1 -+ Z + x/iN
iili fd.{;_

we could also write this code sequence using two Q!l{iE

statements.

0;1-+ z ~- 1

iiL{ifll. Q.!13.l:l. l.Qli.Q.
0 ->- Z + X/1+1N
1 -+ Z + X/1N

lf. li.12. Q

~f course, this could have been more concisely

written as Z ~- x/£QB.Q+1N, but our intent was only

to illustrate the use of the Qd~/ll. statement in an

elementary context.

7.8 rne Q~§E Expression

rhe Qfl.::l.fl. statement is a simplification of the conditional

statement, so any k4{iE statement can be rewritten as a

conditional statement. There is a Qd{i& expression in the APPLE

language. The same conformability conventions apply to Qd3&

expressions as apply to conditional expressions.

- 111 -

1 September 1973 System Development corporation
rM-5074/100/00

Example: we could rewrite the second example of section 7.7 as:

z ~- C.1.W.E. N
O;l-+ 1
r.::.L.§!i r.A§.E.

0 -+

1 -+

lQfl_(}.
x/l+tN
x/iN

E..til2.Q

- 112 -

1 September 1973 System Development Corporation
TM-5074/100/00

CHAPTER EIGHT

ARRAY OPERATIONS

so far, we have investigated scalar operations on conformable

arrays, and manipulative operations that produce subarray and

permutations of the elements of arrays. Your background is now

sufficiently strong in APPLE so that we can consider the class

of operators that perform numerical manipulations on arrays.

8.1 The Index of an Array within an Array

Suppose A is some vector or a one-component array and Bis an

arbitrary array. Then A lZ3, the index in A of B is an array such

that

pA t B +-·+ pB

and for each row Lof .lPB, (AlB)[;/LJ is the least index I such

that (,A)[J] -<--;. lJ[;/L]. If JJ[;IL] is not an element of A, then

(A1fl)[;/L] ++ 1+f/1p,A •

- 113 -

1 September 1973 System Development corporation
rM-5074/100/00

Example: If Lt!.li.il. •·• l, ii"' (.l,-··1.~1 .0.1,11,1) and

1 3 2
7 4 5

n +-+

0 1 4
3 2 1

Then
5 1 3
2 6 8

AtB ~--·)-

I~ 5 G
1 8 .-;:)

Note that A[5] +-+ A[7] +-+ 1, but the index

returned to A1B is always 5 since 5 is the least

index I for ~hich A [I J +-+ 1 • Note also that an

index of 8 was returned for the two elements 5 and

2, which are not contained in 11.

You can tell if every element of B is an element of /1 since, if

that is the case, we must have

1 +->- v I (, ;l t B) ::; r I 1 p A

- 114 -

1 September 1973

8.2 ~rray Membership

System Development corporation
TM-5074/100/00

Let A and B be two arbitrary arrays. Then, AEB is a logical

array ~f the same rank as A and contains a 1 corresponding to

each element of A that is present somewhere in B.

Example: suppose A and H are the arrays from the example in

section 8.1.

rhen

A E:.11 ·+--+ (1 • 1 • 1 • 1 • 1 • 1 • 1)

and

1 1 1
1 1 0

BEA +-+

1 1 1
1 0 1

8.3 Sorting

If 11 is a vector, then ~A is a vector, p~A +-+ pA, such that

(~11) [I]iS the index of t+he I-th smallest element of A. That is,

11 r .t-,1 Jis a vector whose first element is the least element of A

and each ~f whose remaining elements is no less than its

predecessor element.

Just as ~A can be used to sort the elements of A into ascending

order, tA +-+ ~~A can be used to sort A into descending order.

- 115 -

1 September 1973 System Development Corporation
TM-5074/100/00

Examples: If IQ!lQ. ++ 1 and A +-+(6,3,5,3,9,3,1)

Then
!A +-+ (7,2,4,G,3,1,5)

WA+-+ (5,1,3,6,4,2,7)

8.4 ~uter Products

Suppose A and B are any two arrays and 1:1 is any scalar dyadic

operator. rhe 1:1 .QY!:~f Qf.QQQ£!: of A and B, written A 0 • l:!B, is an

array containing the 1:1 product between every element of A and

every element of B.

Formally,pAo.itB +-+ (pA),pD and for each row L of lPA 0 .1:1B,

(Ao.1:1B)[;/L] ++ A[;/(ppA)tL]!:!B[;/(-ppB)tL]

- 116 -

1 September 1973 System Development corporation
TM-5074/100/00

Examples: Suppose A ++ (1,2,3,4,S,G,7)

Then

1 2 3 4 5 6 7
2 4 6 8 10 12 111
3 c 9 12 15 18 21

Ao. xA +·-+ 4 B 12 16 20 24 28

5 10 15 20 25 30 '.3 5

6 12 18 24 30 36 42
'/ 111 21 28 35 ll2 49

l 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

A 0 • =A -<!··+ 0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 0 1 1 l 1 1

A 0 • ~A +--+ 0 0 () 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 () () 0 0 1

0 6 6
0 12 12
0 45 13

((2.3)p(6,12,45,8, - s,2))0.L(0,67,13) +-+
0 8 8
5 5 5
0 2 2

8.5 Inner Products

The ~PPLE inner product is a generalization of the linear

algebra inner product of two matrices. suppose that A and B are

- 117 -

1 September 1973 System Development corporation
rM-5074/100/00

two ;natrices such that 1 t pA -<--... 1 t PB. The following code
produces the inner product c of A and B.

C+((1tpA),-1tpB)pO
12.Q L ~ .lPC

C[;/L]++/A[1tL;]xB[;1+L]
B. Ti. E. ll. A X

(In normal parlance, C[I;J] is the sum of the componentwise

product of the I-th row of A with the J-th column of B.)

The A.PPLE notation for this inner product is A+. xn.

In general, if A and B are matrices satisfying ltpA ++ ltpB and

~ and ~ are two scalar dyadic operators from Table III (see

section 5.3), then the ~-~inner product of A and Bis written

A~.*B, where pA•.*B ++ (1tpA),-1tpB and for any row L of .ipA•.*B

A•.*H[;/L] ++ ~/A[1tL;]*B[;1+L]

Examples:

1 2 1 2 3 9 12 15
3 '-I +.x 4 5 6 ++ 19 26 33
5 6 29 40 51

1 2 1 2 3 5 7 9
3 4 +.r 4 ,-

;) G ++ 7 8 9
5 6 11 11 11

In the remainder of this section we generalize the inner product

to conformable arrays of arbitrary rank.

- 118 -

1 September 1973 System Development corporation
rM-5074/100/00

If ppA ++ ppli ++ 0 then A~.•B ++ ~IA•B.

Otherwise, 11 ~. *D is defined only if A and B satisfy one of the

following conditions:

(1) ppA ++ 0
(2) ppB ++ 0
(3) ··-1tp11 ++ 1tplJ
(4) ltpB ++ 1
(5) - 1 t p/l +-I> 1

If the cot'l.formability conditions are satisfied, then A and B are

conceptually replaced by arrays d and '12. given by:

(1 ') If ppA ++ o then
cl++ (1tpB)pA
ll.. ++ B

(2 I) If ;) PF ~·-+ 0 then
t1 ++ A
l}. ++ (-1tpA)pB

(3 1) If -1tpA +-+ 1tpB then

d ++ A
'll. +-l- B

(4.) If 1tpB ++ 1 then

d +4 A
ll. ++ ((-1tpA).1+pB)pB

(5 I) If - 1tpA ++ then

- 119 -

1 September 1973 system Development corporation
rM-5074/'1001'00

4 ++ <•1ppA)~((QtpB),.~1+pA)p($tppA)~A
ll. ++ B

Then JI~. 'fl.B +-i. !1 ~ • *ll. ++ c where

and for each row L of J.PC

where

Example:

1 2
3 4

,.
:.> 6
7 8

8.6 change of Base

G[;L/12] ++ ((-1+pp4)p1),o
CC;r/12] ++ ((-1+pp4)tL),O
II [; L I t 2 J ++ o , (- 1 + p p~) p 1
H [; r I t 2] ++ O • (1 - p p~) t L

3 5
7 9

1 2 1 1
3 4 3 5

+.- +-i-
t:
:::i 6 5 3
7 8 1 1

<J 7
,-
;) 3

rhe number 2307 = 2x103+3x102+ox101+1x100. This is a polynomial

representation .of the number 2307 in the radix 10. We also have

2307=3x5•+3x53+2x52+1x51+2x50 as a polynomial representation of

- 120 -

1 September 1973

2307 in the radix 5.

System Development Corporation
TM-5074/100/00

If you have a vector representation V of a number N in the base

B, you can compute the value of N by evaluating the expression

(x\((-1+pV)pB),1)+.xv. For example, if B +-+5 and

V ++ (3,3,2,1,2), the expression evaluates to

(x\(5,5,5,5,1))+.x(3,3,2,1,2) ++ (625,125,25,5,1)+.x(3,3,2,1,~
++ 1875+375+50+7 ++ 2307

The APPLE notation for this conversion is B.LV (read "B decode

V") •

conversely, if you want the vector representation v of N to the

base B, then you can compute V by the Euclidian Algorithm as follows:

v + €
Qli.X.l.L. N = 0

V+(BIN),V
N+LNtB
l1. E. P. E. t1 x.

The APPLE notation for this inverse conversion is BTN (read "B

enco:ie N").

change of base can be generalized to cover mixed bases. If B is

a vector, then BJ.V is defined when B and V are conformable for

inner product:

B.LV +-+ (x\{l+B),1)+.xV

Indee:i, BJ. V is similarly defined for any arrays B and v that are

conformable under inner product. The formal definition is

extremely complicated, so let us look, instead, at a few

illustrative examples.

- 121 -

1 September 1973 system Development corporation
TM-5074/100/00

Exan~les: suppose you want to know the number of seconds
in 1 year, 20 days, 5 hours, 3 minutes and 17
seconds. we will proceed with the assumption that
1 year=365 days, 1 day=24 hours, 1 hour=60
minutes, and 1 minute=60 seconds. Then we would
have to compute

(365X24X6Qx60),(24X60X60),(60X60),60,1)+.x(1,20,5,3,17).
But this is equivalent to

(x\(365,24,60.60,1))+.x(1,20,s,3,17)
++ (1,365,24,60,60)T(1,20,5,3,17) ++ 33282197.

Note that the first element of the vector (1,365,24,60,60) could
have been any arbitrary number, since it is
discarded in the evaluation of i·

Similarly, (1,3,12)i(3,1,6) ++ 126, the number of
inches in 3 yards, 1 foot, 6 inches.

Neither B nor V need be integral.
24 60 60 763 430.47 110 22563

1 3 12 i 208 118.97 30 ++ 327
1 20 12 43 28.07 6 1755

14545.47 3660
179.07 48
995.07 252

The inverse operation BTN is also defined for arrays B and N.

The result is an array v such that BiV ++ N. Hence,

pBTN +-+ (pB),pN and the "base B vectors" run along the first

coordinate of the result.

Examples:

(5p5)T2442 ++ (3,4,2,3,2)

(Sp-2) T 13 ~ (1,1,1,0,1)

(7p2) T 13 ++ (0,0,0,1,1,0,1)

(1780,3,12) T 126 +-+ (3,1,6)

rhis last result is the number of yards, feet and

inches in 126 inches.

- 122 -

1 September 1973 System Development corporation
rM-5074/100/00

0 7 2 0
4 8 3 1

(10,10,10,10) T (456,78g0,2345,123) +-+ 5 9 4 2
6 0 s 3

8.1 Matrix Inverse Operator

Supp~se B is a non-singular matrix and ~/pB +-+ 1 so that B has

at least as many rows as columns. Then, ~B +-+ L such that L+.xB

is the identity matrix. L is the left inverse matrix of B and

p L +-+ cj>p B.

8.8 Matrix Division

When you have a vector or matrix A and a matrix B such that

?./pB +-+ 1, then A~B is defined when 1+pA +-+ 1tpB. By definition

A li:JB +-+ ([iJB) +. xA •

Example:

105 72 4 8 5 2 7
97 56 ~ 3 9 2 +-+ g 3

114 87 7 10 2 5 4

- 123 -

1 September 1973 System Development corporation
TM-5074/100/00

CHAPTER NINE

SUBROUTINES, FUNCTIONS AND OPERATORS

This chapter contains a discu•sion of how to write subroutines

and functions. The difference between the role of functions in

APPLE and those in other programming languages is that there is

little conceptual difference between functions and operators.

consequently, APPLE can be treated as an extensible language.

9.1 The Distinction Between Functions and Subroutines

A ~~Qt~~tin~ is a code sequence that is parametrically self­

contained. It can be invoked from any part of a program. After

the subroutine has completed execution, control is returned to

the first executable statement following the point from which it

was called.

A subroutine may use or manipulate the contents of variables

used by the main program, or it may use or manipulate variables

that are accessible only by the subroutine itself. If a

subroutine is parametrized, then the values for the parameters

are specified at the points of the program at which the

1 September 1973

subroutine is called.

System Development corporation
TM-5 074/100/00

A t~ngtiQD, on the other hand, always has a value associated

with it. Like a subroutine, it may use or manipulate variables

used by the main program, or it may use or manipulate variables

accessible only by the function itself. A variable can be

assigned the value of a function. But, in order for a

subroutine to modify variables external to itself, it must

explicitly assign values to them.

subr~utines and functions may be anadic, monadic, dyadic or n-

adic in that they may take no arguments, one argument, two

arguments, or n-arguments, respectively.

If YORICK is an anadic function or subroutine, you invoke it by

writing YORICK • If POLOlJIUS is a monadic function or

subroutine, you invoke it by writinl} POLONIU8 A, where A is some

expression representing the value of its parameter. If

ROSENCRANTZ is a dyadic function or subroutine, you invoke it by

writing A ROSENCRANTZ. a, where A and B are expressions

representing the values of its two parameters. If GUI LDENS'l'F:IW

is an n-adic function or subroutine, you invoke it by writing

G'UILDENSTE'RIJ c A;B;C;D; ••• ;Z::i, where A,B, ••• ,z are expressions

representing the values of its n parameters.

Note that the monadic and dyadic functions and subroutines are

written in precisely the same way monadic and dyadic operators

are written. Since functions have values, they can be invoked

- 125 -

1 September 1973 System Development corporation
TM-5074/100/00

from within any expression. consequently, there is no

difference between the use of the functions you define and the

APPLE operators. In the remainder of this chapter, we will

discuss how you may define and use your own operators in APPLE.

9.2 The Form of a Function or Subroutine Definition

rhe definition of a function or subroutine consists of a

heading, a body, and a footing.

The heading names the function or subroutine, specifies whether

it is anadic, monadic, dyadic or n-adic, whether it is a

function or a subroutine, and names all of the variables local

to its body. The body consists of the APPLE statements that

perform the computations and manipulations of the function or

subroutine. The footing terminates the definition of the

function or subroutine.

rhe heading begins with the symbol v If you are writing a

function, you subsequently specify the name by which you will

ref er to the result in the body of the function, then the

specification symbol+.

If the function or subroutine is to be dyadic, you next list the

local name of its left argument.

- 126 -

1 September 1973 System Development corporation
TM-5074/100/00

The following entry is the name of the function or subroutine.

Then, if the function or subroutine is monadic or dyadic, you

list the local name of its right argument. If it is n-adic,

then you enclose the local names of the parameters in the

brackets c and :;:) , separating the parameters with semicolons.

Finally, if there are to be any variables local to the body of

the subroutine or function, you list their names, preceding each

one with a semicolon.

Examples: The heading for the anadic subroutine YORICK is

V Y OR.T CR

This subroutine has no local variables. The

heading for the anadic function HORATIO, which has

two local variables Mand N, is
V Z + HORATIO;M;N

Here, the value HORATIO returns is to be explicitly stored

in a local variable called z.

The heading for the monadic function POLONIUS is

V Z + POLONIUD Y

Here, Y is the local name of the right argument of POLONIUS

and the value of POLONIUS will be stored in z.

If y:::>u wanted to define a monadic subroutine OPHI?LIA, you

would write

V OPHELIA Y
- 127 -

1 September 1973 System Development corporation
TM-5074/100/00

OPHE'L.IA was not defined as having any local variables.

A dyadic function ROSENCRANTZ, with local variables

(). N • .</, T would have the following heading
~ Z + X ROSENCRANTZ Y;Q;R;S;T

Here x and Y are the left and right arguments of

ROSENCRANTZ , the value of which will be stored in the local

variable z.

If GUI f,DC:NtiTLrnN is to be a 5-adic function of A ,E, c ,D, E and

has a local variable N, you would write the following

heading:

V Z + CUILDENSTERN cA;B;C;D;E~;N

The body is an APPLE program. If the subroutine is a function,

the result must be stored into the name you specified someplace

in the body of the subroutine and in the heading. It, and any

other variable names from the heading may be used as local

variables within the body.

The body may also use the names of variables existing outside

the body, i.e., they are neither the result, operands,

para~eters, nor declared local names. such variables may be

modified from within the body.

- 128 -

1 September 1973 System Development corporation
TM-5074/100/00

rhe subr~utine of the function definition is terminated with the

symbol v on the line following the last line of the body •.

9.3 Call by Value

The parameters of a function or subroutine are evaluated from

right to left before it is entered. The resulting values are

£QQigg into the local storage area of the routine. Then, the

body is evaluated.

Therefore, it is impossible to modify a variable existing

outside the routine by using the variable as a parameter and

then trying to modify it inside the body of the routine. The

parameters must be considered as local varia.bles that have been

initialized when the routine was called.

9.4 The Scope of Names

Inside a body, you may manipulate global variables defined

inside other routines. If several variables have the same name,

only one of these is accessible. In order to determine which

variables are accessible, you follow the chain of £2ll§

backwards. The first time a specific name is encountered, you

have found the one that is accessible.

- 129 -

1 September 1973 System Development corporation
TM-5074/100/00

Example: suppose that A ,B and Care names of global variables.

rhere are defined routines F1 ,F2 and F3 with the

following headings: 'iJ Z + F1 A; D suppose
'iJ A F2 C
'iJ A + F3 D

that F1 is called first. Then, inside the body of

F1, variables with the names Z,A,B,C and D are

accessible. B and C are global; Z and D are

local, ~s is A since it is the parameter of F1.

Assume that F2 is called from within the body of F1. Then,

the body of F2 may operate upon its own variables A and c,

the local variables z and Din F1, and the global variable

B.

If the body of F2 calls F3, the body of F3 may operate upon

its own local variables A and c from F2; the local variable

z from F1; and the global variable B.

If the calling sequence was different, quite new effects

might appear. For instance, if F3 is called first; it does

not have access to any local variable z. If the body tries

to use z in an expression, an error will result. The

variable A is no longer local to F1, but is the global

variable by the same name.

9.5 Recursion

Functions may call themselves recursively. In such cases, each

- 130 -

1 September 1973 System Development corporation
TM-5074/100/00

incarnation of the function may be considered as a separate

function with its own environment. In particular, the

function's local variables are local to it and are global only

to those routines it calls non-recursively.

9.6 rhe B~IYBH Operator

If you want to exit from a function prior to its completion, you

may use the R~XQRll operator. This operator may be used either

anadically or monadically.

In the anadic case, R~XQBN returns the current value of the

function's return parameter.

In the monadic case, you write REXQBN followed by a

specification expression, which sets the return parameter. For

example, you could write:

IE A ~ o XliEN BEXQBH Z + ?A

9.7 comments

Any line in a routine's body can be made into a comment if you

start it with the symbol A• The comment symbol is called the

"lantern" because it often sheds light on a complicated

program.

- 131 -

1 September 1973

9.8 Implied Loops

System Development corporation
TM-5 074/100/00

suppose you define a monadic functionOSRIC. When you write

OSRIC A , the function is applied to the array A in its entiri ty.

If you would .like to apply OSRIC along coordinate I of A, you

write z + OSRIC [I] A.

Then, OSRIC will operate on the hyperplanes along coordinate I

of A, producing a resulta~+ array such that

pOSRIC [I] A++ ((I-IQRQ)+pA),(pZ),(I+1-lQRQ)6pA

where for rows J of i(pA)[IJ

Z[[lQRQJJJ ++ OSRIC FAA
and

F ++ ~((I=1ppA)/(0;1)),(I=ppA)/(O;J)

- 132 -

1 September 1973 System Development corporation
rM-5074/100/00

CHAPTER TEN

ON THE ORDER OF EV~LUATION

The order of evaluation in APPLE expressions is controlled by

the rules of right association. However, you can easily

construct examples in which it is undesirable to strictly adhere

to this philosophy. For example, if we were to write

X + (1, 0, 1, 0, O) /'l.'ERRIBLYCOMPLICA'l'i,'D1:.,'XPJ?J,'3.':ION

we see that X will receive only 40 percent of the value that was

computed on the right side of the specification symbol. If

there is no specification of any part of the remaining 60

percent of TL'RHiiJJ,'fCOMPLICA'l'io'DEXPRE'SDION , then we have wasted

consijerable computing power in its evaluation.

consequently, there is a slight, but important, modification to

the principle of right association in APPLE:

No portion of a select expression is evaluated unless

it is subsequently stored into a variable.

rhis principle has an interesting consequence. consider the

code:
B +-+ (1 , 0 , 2 , 0)
Y + (B~O)\(B~0)/4~B

- 133 -

1 September 1973 System Development corporation
TM-5074/100/00

Now strict adherance to right association yields disastrous

results since the machine must divide 4 by 0 twice. But

suppose, instead of producing an interrupt, the result of

division by 0 is the undefined scalar []. Then,

4+8++ (4,0,2,0) • continuing the evaluation, we see that

(B~0)/(4,0,2,0) +-+ (4,2). At this point, the unwanted [J has

disappeared. Next, (B~0)\(4,2) ++ (4,0,2,0). Thus, when all

has been computed, we have Y +-+ (4,0,2,0).

This was undoubtedly what the programmer had intended. APPLE'S

modification to the principle of right association tends to

correspond to what programmers find natural.

The APPLE compiler maps all selection expressions into a

standard form (given in Section 1.11 of the APPLE

specification) • The compiler is then able to distinguish the

necessary and unnecessary computations, suppressing the latter.

- 134 -

APPENDIX I

AN INDEX OF SYMBOLS

This appendix is an index of APPLE operators.

It is divided into two parts: arithmetic

operators and array operators.

A-1

ARITHMETIC OPERATORS

MOHAIHC DYADIC

Symbol I.fame Page Syml.Jol Name Page

+ identity 18 + addition 25

negation 19 subtraction 25

x sign um 19 x multipli-
cation 26

~ reciprocal 20 t division 26

* exponen- * exponen-
ti al 20 tiation 28

• natural logarithm 29
logarithm 20

L floor 21 r maximum 27

r ceiling 21 L minimum 27

al.Jsolute residue 26
value· 21

? roll 22 ? deal 35

negation 22 combination 34

factorial 23 0 circular
function 29

0 pi times 23 " AND 30

v OR 31

;I! not equal 31

= equal 32

* ~~A~~D 32

.., NOR 32

< less than 33

~ less than
or equal 33

> greater than 34
;:: greater than

or equal 33

A-?.

ARRAY OPERATORS

MONADIC DYADIC

Symbol Name Page Symbol Name Page

t iota 46 t index of 113

odometer 53 E element of 115

ravel 53 E row of 105 -
p shape 8 laminate 85

[I] partial 56 catenate 64
subscript

p reshape 57
~1 reduction 59

I compression 68
I{\ accumulation 59

\ expansion 65
J interval 65

!::. subarray 65
IS) transpose 73

!::. cross section 67
<!> reversal 77

\ (;) mask 78
/; subscript 55

generator I (;) mesh 79

/). whole array 67 a prefix 72

lil matrix 123 (JJ suffix 72
inverse

IS) transposition 87
IF 98

t take 79
ELSE 101

..y drop 76
DO 105

<P rotate 79
UNTIL 108

+ specif icat.:ii.on 96
WHILE 107

'f grade down 115
LE'AVE 109

Ji grade up 115
CYCLE 109

0 • l:(outer product 116
EXIT 109

!If. JO(inner product 117
RETURN 131 ------ decode .L 120

T encode 121

It] matrix divide 123

A-3

APPENDIX II A Fast Fourier Transfo:an

In this appendix a simple program that perfo:ans a Fast Fourier Tranfo:an is
delineated and described. It is assumed that you are familiar with the way
FFT's work, (If not, we recamnend that you read "A Guided 'Ibur to the Fast
Fourier Transfonn," by G. D. Bergland, IEEE Spectrum, July, 1969, pp. 41-51.
This paper includes a canprehensive bibliography.)

The algorithm we follow is an adaptation of a nethod developed by R.D. Schnidt
and camnunicated to the author by W. Juran, Proprietary Computer Systems, Inc.,
Van Nuys, cal. 91406.

We assurre that the input data is an a rank-2 array B, where pB ++ (L, 2) , with
L an integral p::>wer of 2 not exceeding sane fixed number, say, 256. Each row
of'B consists respectively of the real and imaginary parts of a data value.

First, ·we produce a simple preprocessing function. The algorithms for trans­
fonnations for tine to .frequency and frequency to tirre are essentially the
same. The only difference is that in the time to frequency transfonnation, the
result must be divided by the number of data sample p::>ints.

With this in mirrl, we can write our simple driver fl.mction, FAST. We will
make FAST dyadic: the second parameter is the data, while the first parameter
A detennines that the transfo:an is time to frequency if A ++ 1 and frequency
to tine otherwise.

The code for FAST is slDwn below, where we presume that IORG +-+ 1:

V Z + A FAST B; C

[1J IE - <<c + $pB)[2J)Eo,1a xagN RgxuRH z + (pB)pERR

[2] Z + ~CpFFT((1+2eC[2])p2)p~B

[3] Z[;2] + -Z[;2]

[4] APFT RETURNS CONJUGATE OF RESULT

[5) IE 1=A Xll~ll Z + ZtC[2]

v

Here, we insist in line [1] that the number of rows in B be a power of 2 less
than or equal to 256. If not, FAST returns an array Z containing a predefined
error value contained in ERR.

B-1

In line [2], the nonadic function FFT is invokerl, returning an array wmse
transp:>sa:J. value is store:l in z. We will look nore closely at line [2 J,
m::rnentarily.

Line [3] produces the canplex conjugate of the result of FFT.

And line [4] divides by the rnmiber of data p:>ints if the transfonn was t:ime
to frequency.

When FFT is invokoo on line [2], its argument is a rank 1+21iC[2] restructurdng
of B such that ,B[[1]1] consists of the pure real data components and
,B[[1]2J consists of the pure imaginary data components. For example, if we
had starte:l with B ++ ~ (2 , 16)(t 16) , - t 16 then the argument X transmi tta:J. to
FFT would have been

X ++ (2,2,2,2,2)p~B

i.e.,
1 2
3 Lf

X[1;1;;;] ++

5 6
7 8

9 10
11 12

X[1;2;;;] ++

13 14
15 16

The imaginary canp:>nents X[2; 2; ; ; J and X[2; 2;;; J are just the respective
negatives of these. The motivation for this restructuring will soon become
apparent.

The FFT must take care of the requira:J. binary sortings on this array. The
first such sorting is the one in which the real and imaginary components
respectively assume the p:>sition dete:rmine:l by reversing the binary encoding
of their index in ,X[[1]1J and ,XL[1[2JJ. This can easily be achieved by
the transp:>sition, since each coordinate of X is indexa:J. by either 1 or 2.
The general desired array Y is given by Y ++ (1,<l>1+tL2~x/HpX)~X.

In terms of our example array X, this is

B-2

Y +-+ (1,5,4,3,2,)~X

Here,

1 9
5 13

YL1;1;;;J +-+

3 11
7 15

2 10
G 1 Lf

Y[1;2;;;] +->·

4 12
8 16

Again, the imaginary canponent is symetric to the real canponent.

Next, we need. the appropriate array of cosines and sines for the real and
irnaginary canponents. These are given by the array T where

T +~ (2,1)0.00(~1M-1)~((M-1)p2)p0,(1-1+llf2)x2fN

and

M +-~ L2®x/1+pX

fl -<-->- x I 1 + p .X

Tha.t is T[[1J1] consists of the cosines of the appropriately transposed
array of multiples of 21f divided by the number of data points; i.e.,
0,(02fN),(o4tN), ... ,(02x-1+N12)1N. T[[1]2] consists of the sines of the
appropriately transposed array of the same multiples of 021N.

Before "We proceed. any further, ·"We list the function FFT.

B-3

V Y + FFT X;J;Q;M;N;T
[1] M+l2611N+-x/1-tpX
[2] Y+(1,¢1+tM)~X
[3] T+(2,1)0.00(¢1M-1)~((M-1)p2)p0,(1 1+Nt2)x2~N

(Lt] J + 2 + p p 'J'
[5 J 1(!.!ll..[dl. 1
[G] Q+-/[J+J-1] Y
[7] Y+(+/[J] Y):[J] (-/[1] TxQ):[l] +/[1] Tx¢[1] Q
LBJ lE Js1tpY XllEI llEXQBll
[9] T+(1,-1¢1+1M-1)~T,[2] T+(1,0)/[2] T
L 1 o J B.i:l.E.1JJ.<l.T.

v

Lines [1] - [3] contain the code for defining the initial sorted. arrays
Y and T.

The loop spanning lines [5] - [10] iterates until the condition on line [8]
is satisfied. The variable J is used to control the processing of the data,
starting with the last coordinate of Y and ooncluding when the second coord­
inate has been processed. Y and Tare restructured in lines [7] and [9]
to conrespond to the sortings required. by the algorithm.

The easiest way for you to understand the way the algorithm vx:>rks is for you
to try following its execution on a small array, say one with eight elements.
You can then use a fonn of mathematical induction to verify that it vx:>rks on
the higher-dimensional cases. ·

B-4

March 22. 1971 13 SP-3590

Individual differences and group interaction. Since each evaluator will

have his own set of values (S.'s), there may be collected diverse values of
J

S. for the group of evaluators. This divergence can come from differences
J

in R values and/or w (weights) values. The Delphi technique or simpler
a

group interaction may be used at this time. The Delphi technique may have

been used earlier for both R and w values, but the evaluators are not likely
a

to come to a complete agreement on one set of values (but eventually there

will be fewer sets than the number of evaluators). Any group interaction may

yield some influence toward agreement. Some studies on group planning seem to

indicate that people may widely disagree on objectives and criteria but may

readily agree to favor certain alternatives.

Let us see how different sets of S. 's for different evaluators can be
J

compared. Let B represent a composite attribute of all ai's that have been

considered. In our park example, B will be "acceptable park design with all

the features properly balanced." Sj values can now be used to produce

R (A) for each evaluator automatically (associating Sj values with numbers
B j

in the interval [O, l]). A display of R6's for all alternatives A1 , A2 , •••

A can be made for each evaluator (see Figure 4). The total display of all
n

such values of all the evaluators may be shown in a scrambled order to maintain

anonymity, if desired. In addition, a statistical group response, such as

quartiles (Q1 , M (median), Q3) of each R6(Aj) value, can be calculated ..

Seeing where his own evaluation stands within the group response may aid him

in understanding the overall evaluation.

~farch 22, 1971 14 SP-3590

.-- - - - - ------1
I

I

I L Evaluator E : RS I I 1

Al A2 A3 A n

r - - - -:- - - - --: - - -.1
I

Evaluator E2: RS I I I Jo
Al A2 A3 A n

•
•

• •
•

•

------ -- - - -.1

Evaluator Ek: RS I I I L
Al A2 A3 A n

Figure 4. Overall Evaluation of Alternatives

March 22. 1971 15 SP-3590

As an evaluator studies 1 the relative merits of alternatives and gains a deeper

understanding of trade-off implications, his total conception of the situation

grows and his fuzzy-set mapping may become more defined. If R8 is his
(t)

preference function operating on the fuzzy-set at time t with respect to the

global criterion imposed by 8, then as t increases, R tends to converge
8 (t)

toward a more precise function; i.e., the evaluator becomes better able to

sort out alternatives.

Fuzziness (or impreciseness) of many decision-making situations is usually

caused by a mixture of ignorance, randomness, and intrinsic fuzziness. This

kind of exercise can help the evaluator to separate out types of fuzziness

involved and learn to identify where more information is needed (case of

ignorance), where probablistic treatment is needed (randomness), and where

increased awareness of other value systems besides his own is needed

(intrinsic fuzziness).

In complex decision situations where many competing factors must be properly

accounted for simultaneously, the interactive system can be made to keep track

of the evaluator's tendencies. For example, suppose the evaluator is

excessively cost oriented and his assignments of grades of membership for the

cost attributes fall consistently outside the interquartile range (Ql, Q3) of

the group response. The system can remind him of other important factors and

trade-off considerations.

March 22, 1971 16 SP-3590

Interacting with other evaluators through the system and seeing where his own

evaluation stands within the group response may influence him to take additional

factors into account or to adjust his preference functions. If he feels

strongly about his preferences, he can try to persuade others by stating the

reason why the value should be lower (or higher) than the values (in the

interquartile range) expressed by the 75 percent majority.

The process of interaction and reevaluation can be repeated until, it is to be

hoped, convergence is attained. Polarization may occur but completely flat

distribution is not likely for most value-laden questions. Individuals seem

more responsive to value-oriented questions than to factual questions; that

is, changes of opinion seem more readily attainable on value-oriented issues

than on the factual ones.

. I1arch 22, 1971 17 SP-3590

SUMMARY STEPS OF MACHINE-AIDED EVALUATION

There are seven evaluation steps to be considered, some of them will be

elaborated on in the following pages. For simplicity, the procedure assumes

a single user (evaluator) and group interaction is not emphasized. Steps are

presented in the "usual" order but can be reordered at the user's direction.

1. List alternatives by name or number assigned to each.

2. List criteria for evaluation in terms of attributes.

3. Rank attributes and assign weights.

4. List values in their "natural" description (numerical or non numeric)

for each alternative's attributes.

5. Determine grades of membership of all values of attributes.

6. Calculate the sunnnary value of each alternative.

7. Repeat any or all the steps above.

The list of alternatives and attributes may be prepared in advance

covering steps 1, 2, and 4 and can be thought of as an attribute-alternative

table (Figure 5). Unlike mathematical tables, this table can contain both

numerical and; nonnumerical descriptions, even lengthy discussions supple­

mented by pictures that can be referenced. Therefore, the physical form of

the information may not look like the table in Figure 5.

March 22, 1971

Attributes

a m

18

Alternatives

Figure 5. An Attribute-Alternative Table

A
n

Following is an expanded description of the seven evaluation steps.

1. List alternatives by name or number assigned to each.

2. List criteria for evaluation in terms of attributes.

SP-3590

Attributes can be given on a nonconunittal trial basis with full recognition

that they are likely to be inadequate or incomplete; or they can be carefully

selected by a group of people (e.g., policy makers, planners, experts,

representatives of the public). Attributes may be separated into two groups,

"desirable attributes" and "undesirable attributes", or they can be all mixed

together. Subsequent instructions will reflect the choice.

March 22, 1971 19 SP-3590

3. Rank attributes and assign weights.

Attributes are rank ordered in terms of their relative importance in

contributing to the objectives. If there are many attributes and ranking

is difficult, machine assistance can be provided by showing only two

attributes at a time to the evaluator. Judging the relative importance

of two attributes is much easier than ranking the whole list.*

If the evaluator's judgment of importance is transitive and total in

ordering, the attributes are listed in the order of importance, possibly

placing two or more in the same rank in case of a tie. The logic

(computer programs) inside the machine can easily check any inconsistency

and ask the evaluator to compare again those attributes whose rankings

are in conflict. If the inconsistency is not removed, it is likely that

at least one attribute should be redefined in terms of two or more other

attributes, or some attributes should be grouped together as one. An

experienced evaluator usually can sense which ones are in need of adjustment.

* Showing two attributes at a time makes comparison easier but the
resulting ordered list should be reexamined as a whole to guard against
any possible context shifts, which may result when only two items are
compared at a time.

"far ch 22, 19 71 20 SP-3590

When ranking is complete, the attributes are displayed in rank order.

The evaluator is now asked to assign weight w. to each attribute, starting
].

at the top-ranked one(s) with the weight of 100. Using this as the point

of reference, the other attributes are also assigned weights. These

weights should reflect the relative "strengths of effects" of attributes

contributing to the objectives.

4. List attribute values in their "natural" description (numeric or non -

numeric) for each alternative's attributes.

If the attribute values are given in verbose descriptions, they can be

condensed to a few key words to be displayed along side the names of

attributes. The original information sheets should also be available

to the evaluator.

5. Determine "grades of membership" of all the attribute values.

Using the fuzzy-set concept, each attribute value is judged in terms of

"grade of membership" -- i.e., a number in the interval [O,l]. Since

comparability is important in value judgement, other values of the same

attribute from different alternatives can be shown one or two at a time

for comparison. In Figure 5, this process corresponds to moving hori-

zontally across the alternative on the same attribute line. When all

the attribute values are judged in this way, a new table of values is

created within the uniform scale. When it is displayed, it will look

exactly like Figure 5 containing a single number (between 0 and 1) in

March 22, 1971 21 SP-3590

each cell of the table. Seeing the total array of numbers may prompt him

to change his earlier choice of values.

6. Calculate the sunnnary value of each alternative.
m

The summation S. =
J

l:
i•l

w. R (A.) is calculated for each alternative
1 Cii J

A. as one of the basic machine aids, but some other forms of getting the
J

summary value may be tried out. The evaluator can specify his own ideas

easily with the man-machine communication language, User Adaptive

Language (UAL) (see Hormann, et al [1970]).

If attributes have been separated into "desirable attributes" and

"undesirable attributes," S.'s are calculated using only those a's
J

in the desirable category, ands: =l: w. (1 - R (A.)) is calculated using
J i 1 Cii J

only those a's in the undesirable category. Weights, attached to attri-

butes, remain the same since they should reflect the "strength of effects"

regardless of desirability or undesirability. The difference, S. - S~
J j

for the alternative A. may be called the "net-benefit value." Comparing
J

these values presumably will indicate a tentative conclusion concerning

which alternatives are best.

7. Repeat any or all the steps above.

The evaluator is encouraged to go back and examine his previous judgments.

it is usually advisable, the first time around, to use first impressions

in making attribute rankings and in making a judgment of grade of

Uarch 22, 1971 22 SP-3590

membership without too much deliberation. Stepping through the whole

sequence rather quickly the first time, rather than dwelling on a single

factor in detail, will give him a better understanding of how certain

factors are accounted for in the total evaluation.

Iterating the evaluation process tends to bring many assumptions into

the open, and the evaluator may become more aware of how the conclusions

are related to the assumptions. For example, assumptions on the objec­

tives will influence the interpretation of objectives and criteria in

terms of attributes and will also influence attribute ranking and weight

assignments. Assumptions on political and technical constraints on the

proposed designs will certainly influence many decisions. Probing into

them with "what if" questions may separate out "real" constraints from

imagined ones or those that can be overcome by negotiation or by.

creative problem solving.

The evaluator may, in the light of new insights and understanding, wish

to redefine objectives and specify relevant attributes more carefully.

Interacting with the other evaluators, or even with the policy makers,

may bring further clarification. Possible use of the Delphi technique

has been discussed, so it will not be dealt with here.

March 22, 1971 23 SP-3590

Complex trade-off implications, which are typically nebulous, can be

made clearer if bar graphs such as those shown in Figure 3 are used.

They can be rearranged to show the R values of different alternatives
ai

horizontally for each a .• The evaluator may be encouraged to ask "what
1

if" questions on possible trade-offs that are not evident in the design

alternatives; the answers may suggest a new or modified design.

POTENTIAL APPLICATIONS

There are a number of areas of potential application for this method.

1. Complex equipment with many performance criteria.

Evaluation of different designs of complex equipment such as aircraft

and underwater exploration vehicles can use machine-aided evaluation.

In these, many attributes must be included in evaluation and they cover

both factual information and subjective value information. This class

of problems is less fuzzy not only because factual information tends to

dominate but because the physical boundary in measuring operational

behavior is relatively clear.

2. Selection of suitable locations for large 'complexes.

The problem of selecting a suitable location for a large complex, such as

a new housing development, often requires careful consideration of many

attributes that are qualitative in nature. Among many possible locations,

one or a few candidates are usually selected in order to proceed with

March 22, 1971 24 sr~3s90

designing, legal and financial negotiations, etc. Other examples of

large undertakings whose location decisions tend to affect various

segments of our society are: manufacturing plants, airports, hospitals,

health-care centers, sanitariums, rehabilitation centers, educational

institutions, trade centers, highways, and transportation networks.

3. Complex combination of things that interact.

Making an appropriate EDP system selection from all possible combinations

of available hardware/software products to meet the user needs is a complex

problem. Guessing at a suitable hardware/software mix is hard enough,

but evaluation of a wide number of configurations when the components

interact usually requires an advanced modeling technique (Sutherland

[1971]). Information on the performance characteristics of hardware and

software components are separately available, but very little information

can be had on the total performance characteristics for specific

configurations--unless the pieces are all of the same manufacture. After

modeling produces the system's performance characteristics, our technique

can be used in total performance evaluation.

A similar situation facing the decision maker is the selection of

alternative designs of hospitals, schools, housing complexes, or research

laboratories.

March 22, 1971 25 SP-3590

Another area of interest is compensation programs to provide employees

many different options. Companies who can provide many options will

have a definite advantage in employee inducement and retention.

4. Long-range large scale programs comprised of many projects that are

interrelated and interdependent.

Many government programs such as health care, welfare, education, and

foreign aid programs are in this category. This is an area of great

importance because of its far-reaching effects, both intended and

unintended. It is also the area of greatest difficulty because of its

complexity, unclear boundary (sphere of effects are not clearly definable)

and future-oriented consideration.

These programs or measures that tend to create many side effects or that

produce long-term effects or irreversible conditions, must receive extra

care in planning. Although the future is always uncertain and, therefore, nc

forecasting techniques can claim total accuracy, a variety of forecasting

techniques combined with modeling can produce some indication of types of

impacts a given program might make in the future.

After possible consequences of alternative courses of action are generated,

the consequences can be arranged within a "decision-event map," indicating

interrelation of actions taken, their intended results and possible side

effects, and intervening events that are likely to happen.

March 22. 1971 26 SP-3590

Concentrating on the consequences in the time-stream (rather than at

one point in time), our technique can still be employed by using attri­

butes that explicitly indicate future impacts. (e.g., "rate of yearly

increase in food production in country X, during 1970-1975, after

introduction of farming equipment" or "number of farm workers in country

X migrating yearly into cities during 1970-1975").

Admittedly, any future-oriented evaluation is very tenuous. However,

evaluating programs to assist underdeveloped countries is a more

amenable problem than evaluating our own future possibilities. We can

use the U.S. and other developed countries as models in planning to

avoid possible undesirable consequences and to promote those attributes

that are desired by the country. Although exact correspondence between

the model and the real consequences in a given country cannot be

expected, hindsight is readily available while foresight is not.

\,

·~ ...

J

March 22. 1971 27 SP-3590

S~Y

The importance of including many criteria of various types and degrees

of imprecision has been discussed. The man-machine fuzzy-set approach

described here is our first attempt to tackle this task. Insight gained

in using these techniques may lead to improvements or to new ideas and

techniques.

Systematic analyses of the situation supplemented by intuitive judgment was

emphasized. The following points may be worth reviewing:

Consistency in treatment of all alternatives with many attributes

describing desirability or undesirability. One aspect of consis­

tency achieved here is the making of everything into a value­

oriented judgment; even though attribute values may be factual,

determining their worth in relations to the objectives requires a

judgmental decision. The fuzzy-set concept allows explicit

treatment of imprecise value judgments.

Comparability. Since absolute judgment is far more difficult than

relative judgment, the man-machine techniques facilitate comparison

by bringing in other relevant factors. In addition, the fuzzy-set

treatment of attribute values make them commensurable, and complex

trade-off possibilities can be explored much more readily than

without such assistance,

• March 22, 1971 28 SP-3590

Systematic use of the knowledge and experience of experts as well as

opinions of people from different backgrounds. Those techniques

(such as the Delphi) for direct involvement of people can fit

naturally into the on-line interactive system.

,,;

March 22, 1971 29 SP-3590

REFERENCES

Dalkey, Norman. "An Experimental Study of Group Opinion: The Delphi Method,"
FUTURES, Vol. 1, No. 5 (1969), pp. 408-426.

Dalkey, Norman. "Analyses from a Group Opinion Study," FUTURES, Vol. 1, No. 6
(1969), pp. 541-551.

Helmer, Olaf. "The Delphi Technique and Educational Innovation," in O. Helmer
et al, Social Technology, New York: Basic Books, Inc., 1966.

Hormann, Aiko M., David Crandell, and Antonio Leal. User Adaptive Language
(UAL): A Step Toward Man-Machine Synergism. SDC document TM-4539. April 1970.

Hormann, Aiko M. "A Man-Machine Synergistic Approach to Planning and Creative
Problem Solving: Part I," International Journal of Man-Machine Studies,
Vol. 3, No. 2 (1971).

Hormann, Aiko M. "A Man-Machine Synergistic Approach to Planning and Creative
Problem Solving: Part II," International Journal of Man-Machine Studies,
Vol. 3, No. 3 (1971).

Kamnitzer, Peter, and Stan Hoffman. "INTUVAL: An Interactive Computer Graphic
Aid for Design and Decision Making in Urban Planning," Proc. Second Annual
_E_n_v_i_r_o_nm_e_n_t_D_e_s_i_gn __ R_e_s_e_a_r_ch_A_s_s_o_c_. _C_o_n_f. , (19 70) pp. 383-390.

Sutherland, John. "The Configurator: Today and Tomorrow," Computer Decisions,
February 1971, pp. 38-43.

Zadeh, L. A. "Fuzzy Sets," Information and Control, Vol. 8 (1965), pp. 338-353.

SYSTEM DEVELOPMENT CORPORATION • 2500 COLORADO AVENUE • SANTA MONICA, CALIFORNIA 90406 • 12131 393-9411

