
SCO™ TCP/IP 

Derived from 

LACHMAN™ SYSTEM V STREAMS TCP 

Administrator's Reference 

The Santa Cruz Operation™ 



Portions copyright © 1988, 1989 The Santa Cruz Operation, Inc. All rights reserved. 

Portions copyright © 1987, 1988 Lachman Associates, Inc. All rights reserved. 

Portions copyright © 1987 Convergent Technologies, Inc. All Rights Reserved. 

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor 

translated into any human or computer language, in any fonn or by any means, electronic, 

mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written 

permission of the copyright owner, The Santa Cruz Operation, Inc., 400 Encinal, Santa Cruz, 

California, 95061, USA. Copyright infringement is a serious matter under the United States and 

foreign Copyright Laws. 

The copyrighted software that accompanies this manual is licensed to the End User only for use 

in strict accordance with the End User License Agreement, which License should be read 

carefully before commencing use of the software. Information in this document is subject to 

change without notice and does not represent a commitment on the part of The Santa Cruz 

Operation, Inc. 

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES GOVERNMENT IS 

SUBJECT TO RESTRICTIONS AS SET FORTH IS SUBPARAGRAPH (c)(l) OF THE 

COMMERCIAL COMPUTER SOFTWARE -- RESTRICTED RIGHTS CLAUSE AT FAR 

52.227-19 OR SUBPARAGRAPH (c)(1)(ii) OF THE RIGHTS IN TECHNICAL DATE AND 

COMPUTER SOFTWARE CLAUSE AT DFARS 52.227-7013. 

"CONTRACTORIMANUFACTURER" IS THE SANTA CRUZ OPERATION, INC., 400 

ENCINAL STREET, P.O. BOX 1900, SANTA CRUZ, CALIFORNIA 95061, U.S.A. 

seo TCP/lP was developed by Lachman Associates. 

seo TCP/lP is derived from LACHMAN™ SYSTEM V STREAMS TCP, a joint development 

of Lachman Associates and Convergent Technologies. 

This document was typeset with an IMAGEN® 8/300 Laser Printer. 

SCO, The Santa Cruz Operation, and the sca logo are trademarks of The Santa Cruz Operation, Inc. 

UNIX is a registered trademark of AT&T. 

LACHMAN is a trademark of Lachman Associates, Inc. 

Ethernet is a registered trademark of Xerox. 

SCO Document Number: 11-25-89-l.l.0D 

Printed: 12/4/89 



Contents 

Network Commands (ADMN) 

intro 

arp 
drvconf 
fingerd 
ftpd 
hostname 
ifconfig 
inetd 
Idsocket 
Imail 
mailaddr 
mconnect 
mkhosts 
named 
netlogin 
ping 
rdate 
rexecd 
rlogind 
rmail 
route 
routed 
.fshd 
rwhod 
sendmail 
slattach 
sldetach 
slink 
talkd 

introduction to network maintenance and operation 
commands 
address resolution display and control 
configure TCP/lP ethernet drivers 
remote user information server 
DARPA Internet File Transfer Protocol server 
hostname resolution description 
configure network interface parameters 
internet super 
load socket configuration 
handle local mail delivery from sendmail 
mailing address description 
connect to SMTP mail server socket 
make node name commands 
internet domain name server 
network login program 
send ICMP ECHO _REQUEST packets to network hosts 
notify time server that date has changed 
remote execution server 
remote login server 
handle remote mail received via uucp 
manually manipulate the routing tables 
network routing daemon 
remote shell server 
system status server 
send mail over the internet 
attach serial lines as network interfaces 
detach serial lines as network interfaces 
streams linker 
remote user communication server 

-i-



tcp 
telnetd 
tftpd 
timed 
timedc 
trace 
trpt 

TCP start/stop script 
DARPA TELNETprotocol server 
DARPA Trivial File Transfer Protocol server 
time server daemon 
timed control program 
routing tools 
transliterate protocol trace 

- ii-



INTRO (ADMN) INTRO (ADMN) 

intra 
introduction to network maintenance and operation 
commands 

Description 

This section contains information related to network operation and 
maintenance. It describes a variety. of commands: slink, to bring up 
the transport; ifconfig, and slattach, to configure network interfaces; 
ping, to test status of remote hosts; trpt, to display packet-tracing in
formation; to invoke network services; and and other network 
administration functions. 

August 1, 1989 INTR0-1 



ARP (ADMN) ARP (ADMN) 

arp 
address resolution display and control 

Syntax 

arp hostname 
arp -a [ namelist] [core file] 
arp -d hostname . 
arp -s hostname ether_addr [temp] [pub] [trail ] 
arp -f filename 

Description 

The arp program displays and modifies the Internet-to-Ethernet 
address-translation table, which is nonnally maintained by the 
address-resolution protocol (arp(ADMP)). 

When hostname is the only argument, arp displays the current ARP 
entry for hostname. The host may be specified by name or number, 
using Internet dot notation. [See hosts(ADMN) and inet(ADMP).] 

Options are interpreted as follows: 

-a [ name list ] [corefile ] 
Display all of the current ARP entries by reading the table from the 
file core file (default /dev/kmem) based on the kernel file namelist 
(default /unix). 

-d Delete an entry for the host whose name is hostname. (This can be 
performed only by the super user.) 

-s hostname ether addr [temp] [pub] [trail] 
Create an ARP entry for the host whose name is hostname with the 
Ethernet address ether addr. The Ethernet address is given as six 
colon-separated, two-digit hexadecimal numbers. The entry will 
be pennanent unless the argument temp is specified on the com
mand line. If pub is specified, the entry will be published: that is, 
this system will act as an ARP server, responding to requests for 
hostname even though the host address is not an address of the 
local host. If trail is specified, trailer encapsulations are to be used 
with this host. N.B. Trailers are a link-dependent issue. Currently, 
no known LLI-compliant ethernet driver suppports trailers, and it 
is unwise to advertise them, unless it is certain that the link layer 
can handle them. 

July 15, 1989 ARP-1 



ARP (ADMN) ARP (ADMN) 

-ffilename 
Read the file filename and set multiple entries in the ARP tables. 
Entries in the file should be of the fonn: 

hostname ether _addr [temp] [pub] [trail ] 

with argument meanings as given above. 

See Also 

inet(SLIB), arp(ADMP), ifconfig(ADMN). 

July 15, 1989 ARP-2 



DRVCONF (ADMN) DRVCONF (ADMN) 

drvconf 
configure TCP/IP ethernet drivers 

Syntax 

/etc/drvconf 

Description 

lete!drvcon! is used to configure TCP/IP to use a particular ethemet 
driver. It prompts with a list of possible drivers and asks the user to 
select one. The TCP/lP configuration files fete! stre! and lete!tep are 
then modified to use the appropriate driver. The driver must be 
installed on the system when drveonf is run. 

See Also 

strcf(SFF), tcp(ADMN), idmknod(ADMN). 

Bugs 

As distributed, this command only supports drivers for the AT/386. 

July 15, 1989 DRVCONF-1 



FINGERD (ADMN) FINGERD (ADMN) 

fingerd 
remote user information server 

Syntax 

letc/fingerd 

Description 

fingerd is a server that provides a network interface to the finger (TC) 
program (or, on some other systems, the name program). This inter
face allows finger to display information about remote users. 

fingerd listens for TCP connections on the finger port. (See 
services(SFF).) For each connection, fingerd reads a single input line 
(terminated by a <CRLF», passes the line to finger, and copies the 
output ofJinger to the user on the client machine. 

fingerd is started by the super-server inetd, and therefore must have an 
entry in inetd 's configuration file letc/inetd.conf. [See inetd (ADMN) 
and inetd.conf(SFF).] 

For it to work,fingerd needs to have a lusr/local/bin directory created 
and then linked to lusr/bin/finger. 

See Also 

fmger(TC), inetd(ADMN), inetd.conf(SFF), services(SFF), RFC 742. 

Warning 

Connecting to Jingerd using TELNET (see telnet(TC» can have 
unpredictable consequences and is not recommended. 

August 1, 1989 FINGERD-1 



FTPD (ADMN) FTPD (ADMN) 

ftpd 
DARPA Internet File Transfer Protocol server 

Syntax 

/etc/ftpd [ -d ] [ -I ] [ -ttimeout ] 

Description 

ftpd is the DARPA Internet File Transfer Protocol server process. The 
server uses the TCP protocol and listens at the port specified in the ftp 
service specification; see services(SFF). 

ftpd is started by the super-server inetd, and therefore must have an 
entry in inetd 's configuration file /etdinetd.conf. [See inetd(ADMN) 
and inetd.conf(SFF).} 

If the -d option is specified, debugging information is written to the 
syslog. 

If the -I option is specified, each FrP session is logged in the syslog. 

The FfP server will timeout an inactive session after 15 minutes. If 
the -t option is specified, the inactivity timeout period will be set to 
timeout. 

The FfP server currently supports the following FrP requests; case is 
not distinguished. 

Request 
ABOR 
ACCT 
ALLO 
APPE 
CDUP 
CWD 
DELE 
HELP 
LIST 
MKD 
MODE 
NLST 
NOOP 
PASS 
PASV 
PORT 
PWD 
QUIT 

August 1, 1989 

Description 
abort previous command 
specify accouNt (ignored) 
allocate storage (vacuously) 
append to a file 
change to parent of current working directory 
change working directory 
delete a file 
give help information 
give list files in a directory (Is -1) 
make a directory 
specify data transfer mode 
give name list of files in directory (Is) 
do nothing 
specify password 
prepare for server-to-server transfer 
specify data connecti@D port 
print the current working directory 
terminate session 

FTPD-1 



FTPD (ADMN) FTPD (ADMN) 

RETR 
RMD 
RNFR 
RNTO 
STOR 
STOU 
STRU 
TYPE 
USER 
XCUP 
XCWD 
XMKD 
XPWD 
XRMD 

retrieve a file 
remove a directory 
specify rename-from file name 
specify rename-to file name 
store a file 
store a file with a unique name 
specify data transfer structure 
specify data transfer type 
specify user name 
change to parent of current working directory 
change working directory 
make a directory 
print the current working directory 
remove a directory 

The remaining FfP requests specified in Internet RFC 959 are recog
nized, but not implemented. 

The FrP server will abort an active file transfer only when the ABOR 
command is preceded by a Telnet Interrupt Process (IF) signal and a 
Telnet Synch signal in the command Telnet stream, as described in 
Internet RFC 959. 

ftpd interprets file names according to the glob bing conventions used 
by sh(C). This allows users to utilize the metacharacters *?[]{ r. 
ftpd authenticates users according to three rules. 

1) The user name must be in the password data base letc/passwd and 
not have a null password. In this case, a password must be pro
vided by the client before any file operations can be performed. 

2) The user name must not appear in the file letdftpusers. 

3) If the user name is anonymous or ftp, an anonymous ftp account 
must be present in the password file (user ftp). In this case, the 
user is allowed to log in by specifying any password. (By conven
tion, this is given as the client host's name.) 

In the last case, ftpd takes special measures to restrict the client's 
access privileges. The server performs a chroot(2) command to the 
home directory of the ftp user. To make sure system security is not 
breached, it is recommended that the ftp subtree be constructed with 
care; the following rules are recommended. (Note: -ftp means "the 
home directory of user ftp") 

-ftp) 
Make it so the home directory is owned by ftp and unwritable by 
anyone. 

August 1, 1989 FTPD-2 



FTPD (ADMN) FTPD (ADMN) 

-ftp/bin) 
Make it so this directory is owned by the superuser and unwritable 
by anyone. The program Is(C) must be present to support tlue list 
commands. This program should have mode 111. 

-ftp/etc) 
Make it so this directory owned by the superuser and un writable by 
anyone. The files passwd(SFF) and group(SFF) must be present 
for the Is command to work properly. These files should be mode 
444. 

-ftp/pub) 
Make this directory mode 777 and owned by ftp. Users should 
then place files that are to be accessible via the anonymous 
account in this directory. 

See Also 

ftp(TC), syslog(SLIB) 

Notes 

The anonymous account is inherently dangerous and should avoided 
when possible. 

The server must run as the superuser to create sockets with privileged 
port numbers. It maintains an effective user id of the logged in user, 
reverting to the superuser only when binding addresses to sockets. 
The possible security holes have been extensively scrutinized, but are 
possibly incomplete. 

FUes 

/etc/ftpusers - restricted user list 
/etc/passwd - the user database 
/etc/ group - the group database 
/usr/adm/syslog - the system log file 

The following files are needed for anonymous ftp: 

-ftp/etc/passwd - used by -ftp/bin/ls 
-ftp/etc/group - used by -ftp/bin/ls 
-ftp/bin/ls - to support the LIST and NLST commands 

In addition, if your /bin/ls is linked with shared libraries, you will need 
to copy /shlib/libc_s to -ftp/shlib/libc_s. If your implementation is 
using the SIOCSOCKSYS ioctl, you will need to run the 
mdnod(ADMN) command on -ftp/dev/socksys. 

August 1, 1989 FTPD-3 



HOSTNAME (TC) HOSTNAME (TC) 

hostname 
Set or print name of current host system 

Syntax 

hostname [ nameofhost ] 

Description 

The hostname command prints the name of the current host, as given 
before the log-in prompt. The super user can set the hostname by giv
ing an argument; this is usually done at boot time in a startup script. 

See Also 

gethostname(SLIB), sethostname(SLIB), uname(C) 

November 25, 1989 HOSTNAME-1 



IFCONFIG (ADMN) IFCONFIG (ADMN) 

ifconfig 
configure network interface parameters 

Syntax 

/etc/ifconfig interface address_family [ address [descaddress ] ] 
[parameters ] 

/etc/ifconfig interface [protocol_fanlily ] 

OescripUon 

ifconfig is used to assign an address to a network interface and/or con
figure network interface parameters; it defmes the network address of 
each interface present on a machine. ifconfig is run at system start-up 
time via tcp(1M). ifconfig may be run at other times to redefine an 
interface's address or other operating parameters. (For example, 
slattach (ADMN) also runs ifconfig .) 

The interface parameter is a string of the form "name unit", for exam
ple, "enO". 

Since an interface may receive transmissions in differing protocols, 
each of which may require a separate naming scheme, it is necessary 
to specify the address_family, which may change the interpretation of 
the remaining parameters. Currently, only the Internet address family 
is supported: thus, the only valid value for address_family is inet. 

For the DARPA-Internet family, the address is either a host name or a 
DARPA Internet address expressed in the Internet standard "dot nota
tion". (Host name translation is performed either by the name server 
or by an entry in /etdhosts. [See named(ADMN) and hosts(ADMN).] 
Internet "dot notation" is described in hosts (ADMN) and 
inet(ADMP). Other address families may use different notations.) 

The following parameters may be set with ifconfig : 

up 

August 1, 1989 

Mark an interface "up". This may be used to enable 
an interface after an "ifconfig down". It happens 
automatically when setting the first address on an 
interface. If the interface was reset when previ
ously marked down, the hardware will be re
initialized. 

IFCONFIG-1 



IFCONFIG (ADMN) IFCONFIG (ADMN) 

down Mark an interface "down". When an interface is 
marked "down", the system will not attempt to 
transmit messages through that interface. If possi
ble, the interface will be reset to disable reception 
as well. This action does not automatically disable 
routes using the interface. 

detach Remove an interface from the system. This com
mand is applicable to transient interfaces only, such 
as serial line interfaces. 

trailers Request the use of a trailer link level encapsulation 
when sending (default). If a network interface sup
ports trailers, the system will, when possible, 
encapsulate outgoing messages in a manner that 
minimizes the number of memory-to-memory copy 
operations performed by the receiver. On networks 
that support the Address Resolution Protocol (see 
arp(ADMP); currently, only 10 Mb/s Ethernet), this 
flag indicates that the system should request that 
other systems use trailers when sending to this host. 
Similarly, trailer encapSUlations will be sent to 
other hosts that have made such requests. This is 
currently used by Internet protocols only. 

-trailers Disable the use of a trailer-link-level encapsulation. 

arp Enable the use of the Address Resolution Protocol 
in mapping between network level addresses and 
link-level addresses (default). This is currently 
implemented for mapping between DARPA Internet 
addresses and 10Mb/s Ethernet addresses. This 
option is not applicable in the STREAMS environ
ment. Use of arp for an interface is specified in 
/etc/strcf. The arp driver will be opened when the 
STREAMS stack is built. 

-arp Disable the use of the Address Resolution Protocol. 

metric n Set the routing metric of the interface to n, default 
O. The routing metric is used by the routing proto
col. Higher metrics have the effect of making a 
route less favorable; metrics are counted as addition 
hops to the destination network or host. 

debug Enable driver-dependent debugging code; usually, 
this turns on extra console error logging. 

-debug Disable driver-dependent debugging code. 

August 1, 1989 IFCONFIG-2 



IFCONFIG (ADMN) IFCONFIG (ADMN) 

netmask mask (Inet only) Specify how much of the address to 
reserve for subdividing networks into sub-networks. 
The mask includes the network part of the local 
address and the subnet part, which is taken from the 
host field of the address. The mask can be specified 
as a single hexadecimal number with a leading Ox, 
with a dot-notation Internet address, or with a 
pseudo-network name listed in the network table 
networks(SFF). The mask contains 1 's for the bit 
positions in the 32-bit address, which are to be used 
for the network and subnet parts, and O's for the 
host part. The mask should contain at least the 
standard network portion, and the subnet field 
should be contiguous with the network portion. 

dstaddr Specify the address of the correspondent on the 
other end of a point-to-point link. 

broadcast (Inet only) Specify the address to use to represent 
broadcasts to the network. The default broadcast 
address is the address with a host part of aliI's. 

onepacket Enable the one-packet mode of operation (used for 
interfaces that cannot handle back-to-back packets) 
The keyword onepacket must be followed by two 
numeric parameters, giving the small packet size 
and threshold, respectively. If small packet detec
tion is not desired, these values should be zero. See 
tcp{ADMP) for an explanation on one-packet mode. 

-one packet Disable one-packet mode. 

ifconfig displays the current configuration for a network interface 
when no optional parameters are supplied. If a protocol family is 
specified, ifconfig will report only the details specific to that protocol 
family. 

Only the superuser may modify the configuration of a network inter
face. 

Diagnostics 

Messages indicating the specified interface does not exit, the 
requested address is unknown, or the user is not privileged and tried to 
alter an interface's configuration. 

Files 

August 1, 1989 I FCONFIG--3 



IFCONFIG (ADMN) IFCONFIG (ADMN) 

/etc/ slattach 
calls ifconfig to start serial lines 

See Also 

arp(ADMN), tcp(ADMN), nets tat(TC) , hosts(SFF), networks(SFF), 
strcf(ADMN), arp(ADMP), tcp(ADMP). 

August 1, 1989 IFCONFIG-4 



INETD (ADMN) INETD (ADMN) 

inetd 
internet super server 

Syntax 

letc/inetd [ -d ] [ configuration file] 

Description 

inetd listens on multiple ports for incoming connection requests. 
When it receives a request, it spawns the appropriate server. The use 
of a superserver allows other servers to be spawned only when needed 
and to terminate when they have satisfied a particular request. 

The mechanism is as follows: inetd is started by the superuser (usu
ally during init 2, if letc/tcp is linked to letc/rc2.d/Snntcp.). To 
obtain information about the servers it needs to spawn, inetd reads its 
configuration file (by default, /etC/inetd.conj(SFF» and issues a call to 
getservbyname . [See getservent (SLIB).] (Note that letc/services and 
letc/protocols must be properly configured.) inetd then creates a 
socket for each server and binds each socket to the port for that server. 
It does a listen (SSC) on all connection-based sockets (that is, stream 
rather than datagram), and waits, using select (SSC), for a connection 
or datagram. 

• When a connection request is received on a listening (stream) 
socket, inetd does an accept(SSC), thereby creating a new socket. 
(inetd continues to listen on the original socket for new requests). 
inetd forks, dups, and execs the appropriate server, passing it any 
server program arguments specified in inetd's configuration file. 
The invoked server has I/O to stdin, stdont, and stderr done to the 
new socket; this connects the server to the client process. (Some 
built-in, internal services are performed via function calls rather 
than child processes.) 

• When there is data waiting on a datagram socket, inetd forks, dups, 
and execs the appropriate server, passing it any server program 
arguments; unlike a connection-based server, a datagram server 
has I/O to stdin, stdont, and stderr done to the original socket. If 
the datagram socket is marked as wait (which corresponds to an 
entry in inetd 's configuration file), the invoked server must process 
the message before inetd considers the socket available for new 
connections. If the datagram socket is marked as nowait, inetd 
continues to process incoming messages on that port. tftpd is an 
exceptional case: although its entry in inetd's configuration file 
must be wait (to avoid contention for the port), inetd is able to con
tinue processing new messages on the port. 

August 1, 1989 INETD-1 



INETD (ADMN) INETD (ADMN) 

The following servers may be started by inetd: fingerd, ftpd, rexecd, 
rlogind, rshd, telnetd, and tftpd. inet must also start several internal 
services: these are described in inetd.conf(SFF). Do not arrange for 
inetd to start lwhod, or any NFS server. 

inetd rereads its configuration file when it receives a hangup signal, 
SIGHUP. Services may be added, deleted or modified when the con
figuration file is reread. 

The -d option turns on socket-level debugging and prints debugging 
information to stdout. 

Files 

fetc/inetd.conf 
fetc/protocols 
fetc/services 

See Also 

fingerd(ADMN), ftpd(ADMN), rexecd(ADMN), rlogind(ADMN), 
rshd(ADMN), telnetd(ADMN), tftpd(ADMN), inetd.conf(SFF), 
protocols(SFF), services(SFF). 

August 1, 1989 INETD-2 



LDSOCKET (ADMN) LDSOCKET (ADMN) 

Idsocket 
load socket configuration 

Syntax 

Idsocket [-v] [-c file] 

Description 

ldsocket initializes the System V STREAMS TCPjIP Berkeley network
ing compatability interface, which is an alternate stream head support
ing the socket (SSC) system call family. ldsocket loads the kernel with 
associations between the protocol family, type and number triplets 
passed to the socket system call, and the STREAMS devices supporting 
those protocols. ldsocket reads the file letc/sockcf to obtain con
figuration information, and must be run before the Berkeley network
ing interface can be used. 

The following options may be specified on the ldsocket command 
line: 

-cfile Use file instead of letc/sockcf. 

-v Use verbose mode (in which a message is written to stderr 
for each protocol loaded). 

Files 

/etc/sockcf 

See Also 

sockcf(SFF), intro(ADMP), socket(SSC). 

July 15, 1989 LDSOCKET-1 



LMAIL (ADMN) LMAIL (ADMN) 

Imail 
handle local mail delivery from send mail 

Syntax 

Imail user ... 

Description 

lmail interprets incoming mail received from sendmail (ADMN), and 
delivers it to the specified user on the local machine. It locks the 
user's mailbox using the mail (TC) locking mechanism. 

See Also 

mail(TC), sendmail(ADMN). 

August 1, 1989 LMAIL-1 



MAILADDR (ADMN) MAILADDR (ADMN) 

mailaddr 
mail addressing description 

Description 

Mail addresses are based on the ARPANET protocol listed at the end 
of this manual page. These addresses are in the general format 

user@domain 

where a domain is a hierarchical dot separated list of subdomains. For 
example, the address 

stevea@laiter.lachman.com 

is normally interpreted from right to left: the message should go to the 
Lachman gateway, after which it should go to the local host laiter. 
When the message reaches laiter it is delivered to the user "stevea". 

Unlike some other forms of addressing, this does not imply any rout
ing. Thus, although this address is specified as an RFC822 address, it 
might travel by an alternate route if that were more convenient or effi
cient. For example, at Lachman, the associated message would prob
ably go directly to laiter over the Ethernet rather than going via the 
Lachman mail gateway. 

Abbreviation. 

Under certain circumstances it may not be necessary to type the entire 
domain name. In general, anything following the first dot may be 
omitted if it is the same as the domain from which you are sending the 
message. For example, a user on "laisagna.Lachman.COM" could 
send to "stevea@laiter" without adding the "Lachman.COM" since it 
is the same on both sending and receiving hosts. 

Certain other abbreviations may be permitted as special cases. For 
example, at Lachman, Internet hosts may be referenced without add
ing the "Lachman.COM" as long as their names do not conflict with a 
local host name. 

Compatibility. 

Certain old address formats are converted to the new format to provide 
compatibility with the previous mail system. In particular, 

user@host.ARPA 

July 15, 1989 MAILADDR-1 



MAILADDR (ADMN) 

is allowed and 

host:user 

is converted to 

user@host 

to be consistent with the rcp( 1) command. 

Also, the syntax 

host ! user 

is converted to: 

user@host.UUCP 

MAILADDR (ADMN) 

This is normally converted back to the "host!user" form before being 
sent on for compatibility with older UUCP hosts. 

The current implementation is not able to route messages automatical
ly through the UUCP network. Until that time you must explicitly tell 
the mail system which hosts to send your message through to get to 
your fmal destination. 

Case Distinctions. 

Domain names (i.e., anything after the "@" sign) may be given in any 
mixture of upper and lower case with the exception of UUCP host
names. Most hosts accept any combination of case in user names, 
with the notable exception of MULTICS sites. 

Route-addrs. 

Under some circumstances it may be necessary to route a message 
through several hosts to get it to the fmal destination. Normally this 
routing is done automatically, but sometimes it is desirable to route 
the message manually. Addresses which show these relays are termed 
"route-addrs." These use the syntax: 

<@hosta,@hostb:user@hostc> 

This specifies that the message should be sent to hosta, from there to 
hostb, and fmally to hostc. This path is forced even if there is a more 
efficient path to hostc. 

Route-addrs occur frequently on return addresses, since these are gen
erally augmented by the software at each host. It is generally possible 
to ignore all but the "user@domain" part of the address to determine 
the actual sender. 

July 15, 1989 MAILADDR-2 



MAILADDR (ADMN) MAILADDR (ADMN) 

Postmaster. 

Every site is required to have a user or user alias designated "post
master" to which problems with the mail system may be addressed. 

Other Networks. 

Some other networks can be reached by giving the name of the net
work as the last component of the domain. This is not a standardfea
ture and may not be supported at all sites. For example, messages to 
CSNET or BITNET sites can often b.e sent to "user@host.CSNET" or 
"user@host.BITNET" respectively. 

Bugs 

The RFC822 group syntax (" group:userl ,user2,user3;") is not sup
ported except in the special case of "group:;" because of a conflict 
with old berknet-style addresses. 

Route-Address syntax is ugly. 

UUCP- and RFC822-style addresses do not coexist politely. 

See Also 

mailx(TC), sendmail(ADMN). RFC822. 

July 15, 1989 MAILADDR-3 



MCONNECT (ADMN) MCONNECT (ADMN) 

mconnect 
connect to SMTP mail server socket 

Syntax 

mconnect [ -p port] [ -r ] [ hostname ] 

Description 

Mconnect opens a connection to the mail server on a given host, so 
that it can be tested independently of all other mail software. If no 
host is given, the connection is made to the local host. Servers expect 
to speak the Simple Mail Transfer Protocol (SMTP) on this connec
tion. Exit by typing the "quit" command. Typing end-of-file will 
cause an end of file to be sent to the server. An interrupt closes the 
connection immediately and exits. 

Options 

-p Specify the port number instead of the default SMTP port (number 
25) as the next argument. 

-r "Raw" mode: disable the default line buffering and input handling. 
This gives you a similar effect as telnet to port number 25, not 
very useful. 

Files 

/usr/lib/sendmail.hf 

See Also 

sendmail(ADMN). 
RFC821. 

July 15, 1989 

Help file for SMTP commands 

MCONNECT-1 



· MKHOSTS (ADMN) MKHOSTS (ADMN) 

mkhosts 
make node name commands 

Syntax 

/etc/mkhosts 

Description 

mkhosts makes the simplified fonns of the rcmd (TC) and rlogin (TC) 
commands. For each node listed in /etc/hosts, mkhosts creates a link 
to /usr/binlrcmd in /usr/hosts. Each link's name is the same as the 
node's official name in /etc/hosts. 

See Also 

rcmd (TC), rlogin(TC). 

August 1, 1989 MKHOSTS-1 



NAMED (ADMN) NAMED. (ADMN) 

named 
Internet domain name server 

Syntax 

named [ -d debug level ] [ -p port#] [ -b bootfile ] 

Description 

named is the Internet domain name server. (See RFCI035 for more 
details on the Internet name-domain system.) Without any arguments, 
named will read the default boot file /etc/named.boot, read any initial 
data, and listen for queries. 

Options are: 

-d Print debugging information. A number after the d determines the 
level of messages printed. 

-p Use a different port number. The default is the standard port num
ber as listed in letdservices. 

-b Use an alternate boot file. This is optional and allows you to 
specify a file with a leading dash. 

Any additional argument is taken as the name of the boot file. The 
boot file contains information about where the name server is to get its 
initial data. If multiple boot files are specified, only the last is used. 
Lines in the boot file cannot be continued on subsequent lines. The 
following is a small example: 

boot file for name server 

directory lusr/localJlib/named 
; type domain source hosVfile backup file 

cache root.cache 
primary Berkeley.EDU berkeley.edu.zone 
primary 32.128.IN-ADDR.ARPA ucbhosts.rev 
secondary CC.Berkeley.EDU 128.32.137.8128.32.137.3 cc.zone.bak 
secondary 6.32.128.1N-ADDR.ARPA 128.32.137.8 128.32.137.3 cc.rev.bak 
primary 0.0.127.1N-ADDR.ARPA localhost.rev 
forwarders 10.0.0.78 10.2.0.78 
; slave 

August 1, 1989 NAMED-1 



NAMED (ADMN) NAMED (ADMN) 

The "directory" line causes the server to change its working directory 
to the directory specified. This can be important for the correct pro
cessing of $INCLUDE files in primary zone files. 

The "cache" line specifi~s that data in "root.cache" is to be placed in 
the backup cache. Its main use is to specify data such as locations of 
root domain servers. This cache is not used during normal operation, 
but is used as "hints" to find the current root servers. The file 
"root.cache" is in the same format as "berkeley.edu.zone". There can 
be more than one "cache" file specified. The cache files are processed 
in such a way as to preserve the t~e-to-live 's of data dumped out. 
Data for the root nameservers is kept artificially valid if necessary. 

The first "primary" line states that the file "berkeley.edu.zone" con
tains authoritative data for the "Berkeley.EDU" zone. The file 
"berkeley.edu.zone" contains data in the master file format described 
in RFCI035. All domain names are relative to the origin, in this case, 
"Berkeley.EDU" (see below for a more detailed description). The 
second "primary" line states that the file "ucbhosts.rev" contains 
authoritative data for the domain "32.128.IN-ADDR.ARPA," which is 
used to translate addresses in network 128.32 to hostnames. Each 
master file should begin with an SOA record for the zone (see below). 

The first "secondary" line specifies that all authoritative data under 
"CC.Berkeley.EDU" is to be transferred from the name server at 
128.32.137.8. If the transfer fails it will try 128.32.137.3 and continue 
trying the addresses, up to 1 0, listed on this line. The secondary copy 
is also authoritative for the specified domain. The first non-dotted
quad address on this line will be taken as a filename in which to 
backup the transferred zone. The name server will load the zone from 
this backup file if it exists when it boots, providing a complete copy 
even if the master servers are unreachable. Whenever a new copy of 
the domain is received by automatic zone transfer from one of the 
master servers, this file will be updated. The second "secondary" line 
states that the address-to-hostname mapping for the subnet 128.32.136 
should be obtained from the same list of master servers as the previous 
zone. 

The "forwarders" line specifies the addresses of sitewide servers that 
will accept recursive queries from other servers. If the boot file 
specifies one or more forwarders, then the server will send all queries 
for data not in the cache to the forwarders first. Each forwarder will 
be asked in tum until an answer is returned or the list is exhausted. If 
no answer is forthcoming from a forwarder, the server will continue as 
it would have without the forwarders line unless it is in "slave" mode. 
The forwarding facility is useful to cause a large sitewide cache to be 
generated on a master, and to reduce traffic over links to outside 
servers. It can also be used to allow servers to run that do not have 
access directly to the Internet, but wish to act as though they do. 

August 1, 1989 NAMED-2 



NAMED (ADMN) NAMED (AOMN) 

The "slave" line (shown commented out) is used to put the server in 
slave mode. In this mode, the server will only make queries to for
warders. This option is normally used on machine that wish to run a 
server but for physical or administrative reasons cannot be given 
access to the Internet, but have access to a host that does have access. 

The "sortlist" line can be used to indicate networks that are to be pre
ferred over other, unlisted networks. Queries for host addresses from 
hosts on the same network as the server will receive responses with 
local network addresses listed first, then addresses on the sort list, then 
other addresses. This line is only ?cted on at initial startup. When 
reloading the name server with a SIGHUP, this line will be ignored. 

The master file consists of control information and a list of resource 
records for objects in the zone of the forms: 

$INCLUDE <filename> <opCdomain> 
$ORIGIN <domain> 
<domain> <opCttl> <opCclass> <type> <resource_record_data> 

where domain is ". " for root, "@" for the current origin, or a standard 
domain name. If domain is a standard domain name that does not end 
with ".", the current origin is appended to the domain. Domain names 
ending with "." are unmodified. opt domain field is used to define an 
origin for the data in an included file. It is equivalent to placing a 
$ORIGIN statement before the first line of the included file. The field 
is optional. Neither the opt domain· field nor $ORIGIN statements in 
the included file modify the current origin for this file. The opt_ttl 
field is an optional integer number for the time-ta-live field. It 
defaults to zero, meaning the minimum value specified in the SOA 
record for the zone. The opt class field is the object address type; 
currently only one type is supported, IN, for objects connected to the 
DARPA Internet. The type field contains one of the following tokens; 
the data expected in the resource_record _data field is in parentheses. 

A a host address (dotted quad) 

NS an authoritative name server (domain) 

CNAME the canonical name for an alias (domain) 

SOA marks the start of a zone of authority (domain of originating 
host, domain address of maintainer, a serial number and the 
following parameters in seconds: refresh, retry, expire and 
minimum TTL (see RFCI035» 

MB a mailbox domain name (domain) 

MG a mail group member (domain) 

August 1, 1989 NAMED-3 



NAMED (ADMN) NAMED (ADMN) 

MR a mail rename domain name (domain) 

MX a mail exchange record 

NULL a null resource record (no format or data) 

WKS a well-known service description (not implemented yet) 

PTR a domain name pointer (domain) 

IDNFO host information (cpu_tYJX? OS_type) 

MINFO mailbox or mail list information (requesCdomain 
error_domain) 

Resource records normally end at the end of a line, but may be contin
ued across lines between opening and closing parentheses. Comments 
are introduced by semicolons and continue to the end of the line. 

Each master zone file should begin with an SOA record for the zone. 
An example SOA record is as follows: 

@ IN SOA ucbvax.Berkeley.EDU. rwh.ucbvax.Berkeley.EDU. ( 
2.89 ; serial 
10800; refresh 
3600 ; retry 
3600000 ; expire 
86400 ) ; minimum 

The SOA lists a serial number, which should be changed each time the 
master file is changed. Secondary servers check the serial number at 
intervals specified by the refresh time in seconds; if the serial number 
changes, a zone transfer will be done to load the new data. If a master 
server cannot be contacted when a refresh is due, the retry time 
specifies the interval at which refreshes should be attempted until suc
cessful. If a master server cannot be contacted within the interval 
given by the expire time, all data from the zone is discarded by sec
ondary servers. The minimum value is the time-to-live used by 
records in the file with no explicit time-to-live value. 

Notes 

The boot file directives "domain" and "suffixes" have been obsoleted 
by a more useful resolver based implementation of suffixing for par
tially qualified domain names. The prior mechanisms could fail under 
a number of situations, especially when then local nameserver did not 
have complete information. 

The following signals have the specified effect when sent to the server 
process using the kill (C) command. 

August 1, 1989 NAMED-4 



NAMED (ADMN) NAMED (ADMN) 

SIGHUP Causes server to read named. boot and reload database. 

SIGINT Dumps current data base and cache to 
/usr/tmp/named _ dump.db. 

SIGIOT Dumps statistics data into /usr/tmp/named.stats if the 
server is compiled -DSTATS. Statistics data is appended 
to the file. 

SIGSYS Dumps the profiling data in /usr/tmp if the server is com
piled with profiling (serv~r forks, chdirs and exits). 

SIGTERM Dumps the primary and secondary database files. Used to 
save modified data on shutdown if the server is compiled 
with dynamic updating enabled. 

SIGUSRI Turns on debugging; each SIGUSRI increments debug 
level. 

SIGUSR2 Turns off debugging completely. 

Files 

/etc/named.boot 
/etc/named.pid 
/usr/tmp/named.run 
/usr/tmp/named_dump.db 
/usr/tmp/named.stats 

See Also 

name server configuration boot file 
the process id 
debug output 
dump of the name servers database 
name server statistics data 

kill(C) , gethostent(SLffi), signal(S), sigset(S), resolver(SFF), 
resolver(ADMN), hostname(ADMP). 
RFC974, RFCI034, RFCI035, Name Server Operations Guide for 
BIND. 

August 1, 1989 NAMED-5 



NETLOGIN (ADMN) NETLOGIN (ADMN) 

netlogin 
network login program 

Syntax 

netJogin [ -p ] [ -r remotehost ] [ name] [ env-var ] 

Description 

Netlogin is a derivative of the login(TC) command. It provides facili
ties that telnetd(ADMN) and rlogind(ADMN) need, such as preserving 
the environment, and support for automatically logging users in. 
Netlogin takes the following options: 

-p Preserve the environment. This is used by telnetd to pass informa
tion obtained via terminal type negotiation. 

-r remote host 
Process automatic login from remotehost. Used by rlogind to 
allow a user with the proper permissions to bypass the password 
prompt when logging in. 

See Also 

10gin(TC), rlogind(ADMN), telnetd(ADMN), rhosts(SFF). 

July 15, 1989 NETLOGIN-1 



PING (ADMN) PING (ADMN) 

ping 
send ICMP ECHO_REQUEST packets to network 
hosts 

Syntax 

fetc/ping [ -r ] [ -v ] host [ packetsize ] [ count] 

Description 

ping is a troubleshooting tool for tracking a single-point hardware or 
software failure in the Internet. It uses the ICMP protocol's manda
tory ECHO _REQUEST datagram to elicit an ICMP 
ECHO_RESPONSE from a host or gateway. ECHO_REQUEST 
datagrams (pings) have an IP and an ICMP header, followed by a 
struct timeval and an arbitrary number of pad bytes used to fill out 
the packet. Default datagram length is 64 bytes, but this may be 
changed using the command-line option. Other options are: 

-r Bypass the normal routing tables and send directly to a host on an 
attached network. If the host is not on a directly-attached network, 
an error is returned. This option can be used to ping a local host 
through an interface that has no route through it. 

-v Verbose output. ICMP packets other than ECHO RESPONSE that 
are received are listed. 

When using ping for fault isolation, it should first be run on the local 
host, to verify that the local network interface is up and running. 
Then, hosts and gateways further and further away should be pinged. 
The ping tool sends one datagram per second, and prints one line of 
output for every ECHO_RESPONSE returned. No output is produced 
if there is no response. If an optional count is given, only that number 
of requests is sent. Round-trip times and packet loss statistics are 
computed. When all responses have been received or the program 
times are out (with a count specified), or if the program is tenninated 
with a SIGINT, then a brief summary is displayed. 

This program is intended for use in network testing, measurement and 
management. It should be used primarily for manual fault isolation. 
Because of the load it could impose on the network, it is unwise to use 
ping during nonnal operations or from automated scripts. 

See Also 

netstat(TC),. ifconfig(ADMN). 

August 1, 1989 PING-1 



RDATE (ADMN) 

rdate 
notify time server that date has changed 

Syntax 

rdate 

Description 

RDATE (ADMN) 

rdate notifies timed(ADMN) that the system date has changed. If the 
local time server is a master, it will notify all of the slaves that the 
time has changed. If it is a slave, it will ask the master to update the 
time. 

rdate should be run whenever the super user sets the date with 
date(C). A shell script such as the following could be used to do both 
automatically. 

: mv /bin/date /bin/sSdate 
: install as /bin/date 

PATH=lbin:/usr/bin 
s5date$* 
rdate 

See Also 

date(C), adjtime(SSC), gettimeofday(SLIB), 
timed(ADMN), timedc(ADMN). 

August 1, 1989 

icmp(ADMP), 

RDATE-1 



REXECD (ADMN) REXECD (ADMN) 

rexecd 
remote execution server 

Syntax 

letc/rexecd 

Description 

rexecd is the server for the rexec(SLIB) routine. The server provides 
remote execution facilities with authentication based on user names 
and passwords. 

rexecd listens for service requests at the port indicated in the exec ser
vice specification; see services (SFF). When a service request is 
received, the following protocol is initiated: 

1) The server reads characters from the socket up to a null ('\0') byte. 
The resultant string is interpreted as an ASCII number, base 10. 

2) If the number received in step 1 is non-zero, it is interpreted as the 
port number of a secondary stream to be used for the stderr. A 
second connection is then created to the specified port on the 
client's machine. 

3) A null-terminated user name of at most 16 characters is retrieved 
on the initial socket. 

4) A null-terminated, unencrypted password of at most 16 characters 
is retrieved on the initial socket. 

5) A null-terminated command to be passed to a shell is retrieved on 
the initial socket. The length of the command is limited by the 
upper bound on the size of the system's argument list. 

6) Then, rexecd validates the user as is done at login time and, if the 
authentication was successful, changes to the user's home direc
tory, and establishes the user and group protections of the user. If 
any of these steps fail, the connection is aborted with a diagnostic 
message returned. 

7) A null byte is returned on the initial socket and the command line 
is passed to the normal login shell of the user. The shell inherits 
the network connections established by rexecd. 

rexecd is started by the super-server inetd, and therefore must have an 
entry in inetd' s configuration file letc/inetd.conf. 

August 1, 1989 REXECD-1 



REXECD (ADMN) REXECD (ADMN) 

Diagnostics 

Except for the last one listed below, all diagnostic messages are 
returned on the initial socket, after which any network connections are 
closed. An error is indicated by a leading byte with a value of 1. (0 is 
returned in step 7, above, upon successful completion of all the steps 
prior to the command execution.) 

"username too long" 
The name is longer than 16 characters. 

"password too long" 
The password is longer than 16 characters. 

"command too long" 
The command line passed exceeds the size of the argu
ment list (as configured into the system). 

"Login incorrect." 
No password file entry for the user name existed. 

"Password incorrect." 
The wrong password was supplied. 

"No remote directory." 
The chdir command to the home directory failed. 

"Thy again." 
A/ork by the server failed. 

"<shellname>: ... " 

See Also 

The user's login shell could not be started. This message 
is returned on the connection associated with the stderr, 
and is not preceded by a flag byte. 

rexec(SLffi), inetd(ADMN), inetd.conf(SFF), services(SFF). 

Notes 

Indicating "Login incorrect" as opposed to "Password incorrect" is a 
security breach which allows people to probe a system for users with 
null passwords. 

A facility to allow all data and password exchanges to be encrypted 
should be present. 

August 1, 1989 REXECD-2 



RLOGIND (ADMN) RLOGIND (ADMN) 

rlogind 
remote login server 

Syntax 

/etc/rlogind 

Description 

rlogind is a network server that supports remote logins by programs 
such as rlogin(TC). It is started by the superserver inetd and, there
fore, must have an entry in inetd's configuration file /etc/inetd.conf. 
[See inetd (ADMN) and inetd.con/(SFF).] 

rlogind enforces an authentication procedure based on equivalence of 
user names (see rhosts(SFF». This procedure assumes all hosts on the 
network are equally secure. 

See Also 

inetd(ADMN), 
services(SFF). 

August 1, 1989 

rlogin(TC), inetd.conf(SFF), rhosts(SFF), 

RLOGIND-1 



RMAIL (ADMN) RMAIL (ADMN) 

rmail 
handle remote mail received via uucp 

Syntax 

rmail user ... 

Description 

rmail interprets incoming mail received via uucp(C), collapsing 
"From" lines in the fonn generated by mail (TC) into a single line of 
the fonn return-path! sender, and passing the processed mail on to 
sendmail (ADMN). 

rmail is explicitly designed for use with uucp and sendmail. 

See Also 

mail(TC), uucp(C), sendmail(ADMN). 

August 1, 1989 RMAIL-1 



ROUTE (ADMN) ROUTE (ADMN) 

route 
manually manipulate the routing tables 

Syntax 

fete/route [ -f] [ -n ] [ command destination gateway [ metric] ] 

Description 

route is a program used to manipulate manually the network routing 
tables. It is normally not needed, since the routing daemon routed 
manages the system routing table and therefore handles this function. 

route accepts two commands: add, to add a route; and delete, to 
delete a route. 

All commands have the following syntax: 

fete/route command destination gateway [ metric] 

where destination is a host or network for which the route is "to", 
gateway is the gateway to which packets should be addressed, and 
metric is an optional count indicating the number of hops to the desti
nation. If no metric is specified, route assumes a value of O. Routes 
to a particular host are distinguished from those to a network by inter
preting the Internet address associated with destination. If the desti
nation has a local address part of INADDR_ANY, the route is 
assumed to be to a network; otherwise, it is presumed to be a route to a 
host. Note: If the route is to a destination connected via a gateway, metric 
should be greater than O. All symbolic names specified for a destina
tion or gateway are looked up first in the host-name database; see 
hosts(SFF). If this lookup fails, the name is then looked for in the net
work name database; see networks(SFF). 

route uses a raw socket and the SIOCADDRT and SIOCDELRT 
ioctl's to do its work. Therefore, only the super user may modify the 
routing tables. 

If the -f option is specified, route will flush the routing tables of all 
gateway entries. If this is used in conjunction with one of the com
mands described above, the tables are flushed prior to the command's 
application. 

The -0 option prevents attempts to print host and network names sym
bolically when reporting actions. 

August 1, 1989 ROUTE-1 



ROUTE (ADMN) 

Diagnostics 

ROUTE (ADMN) 

add [ host I network] 
The specified route is being added to the tables. The values printed 
are from the routing table entry supplied in the ioetl call. 

"delete host: gateway host flags hex-flags" 
As above, but when deleting an entry. 

"host host done" 
When the -f flag is specified, each routing table entry 
deleted is indicated with a message of this form. 

"not in table" 
A delete operation was attempted for an entry which was 
not present in the tables. 

"routing table overflow" 

See Also 

An add operation was attempted, but the system was low 
on resources and unable to allocate memory to create the 
new entry. 

routed(ADMN), intro(ADMN), hosts(SFF), networks(SFF). 

August 1, 1989 ROUTE-2 



ROUTED (ADMN) ROUTED (ADMN) 

routed 
network routing daemon 

Syntax 

letc/routed [ -d] [ -g] [ -s] [ -t] [logfile ] 

Description 

routed manages the Internet routing tables using a variant of the 
Xerox NS Routing Information Protocol. routed is invoked by the 
superuser (usually during init 2). 

In normal operation, routed listens on the udp(ADMP) socket for the 
route service (see serviees(SFF)) for routing information packets. If 
the host is an internetwork router, it periodically supplies copies of its 
routing tables to any directly connected hosts and networks. 

When routed is started, it uses the SIOCGIFCONF ioetl to fmd those 
directly connected interfaces configured into the system and marked 
"up". (The software loopback interface is ignored.) If mUltiple inter
faces are present, it is assumed that the host will forward packets 
between networks. Then, routed transmits a request packet on each 
interface (using a broadcast packet if the interface supports it) and 
enters a loop, listening for request and response packets from other 
hosts. 

When a request packet is received, routed formulates a reply based on 
the information maintained in its internal tables. The response packet 
generated contains a list of known routes, each marked with a hop 
count metric. (A count of 16 or greater is considered infmite.) The 
metric associated with each route returned provides a metric relative 
to the sender. 

Response packets received by routed are used to update the routing 
tables if one of the following conditions is satisfied: 

(1) 

(2) 

No routing table entry exists for the destination network or host, 
and the metric indicates the destination is reachable (that is, the 
hop count is not infinite). 

The source host of the packet is the same as the router in the exist
ing routing table entry. That is, updated information is being 
received from the very internetwork router through which packets 
for the destination are being routed. 

July 15, 1989 ROUTED-1 



ROUTED (ADMN) ROUTED (ADMN) 

(3) 

(4) 

The existing entry in the routing table has not been updated for 
some time (defined to be 90 seconds) and the route is at least as 
cost effective as the current route. 

The new route describes a shorter path to the destination than the 
one currently stored in the routing tables; the metric of the new 
route is compared against the one stored in the table to decide this. 

When an update is applied, routed records the change in its internal 
tables and updates the kernel-routing' table. The change is reflected in 
the next response packet sent. 

In addition to processing incoming packets, routed also periodically 
checks the routing table entries. If an entry has not been updated for 3 
minutes, its metric is set to infinity and marked for deletion. Deletions 
are delayed an additional 60 seconds to ensure that the invalidation is 
propagated throughout the local internet. 

Hosts acting as internetwork routers gratuitously supply their routing 
tables every 30 seconds to all directly-connected hosts and networks. 
The response is sent to the broadcast address on nets capable of the 
broadcast function, to the destination address on point-to-point links, 
and to the router's own address on other networks. The nonnal routing 
tables are bypassed when sending gratuitous responses. The reception 
of responses on each network is used to detennine that the network 
and interface are functioning correctly. If no response is received on 
an interface, another route may be chosen to route around the inter
face, or the route may be dropped if no alternative is available. 

routed supports several options: 

-d Enable additional debugging infonnation to be logged, such as bad 
packets received. 

-g This flag is used on internetwork routers to offer a route to the 
default destination. This is typically used on a gateway to the 
Internet, or on a gateway that uses another routing protocol whose 
routes are not reported to other local routers. 

-s Supplying this option forces routed to supply routing infonnation 
whether it is acting as an internetwork router or not. This is the 
default if multiple network interfaces are present, or if a point-to
point link is in use. 

-q This is the opposite of the -s option. 

-t If the -t option is specified, all packets sent or received are printed 
on the standard output. In addition, routed will not divorce itself 
from the controlling tenninal, and so interrupts from the keyboard 
will kill the process. 

July 15, 1989 ROUTED-2 



ROUTED (ADMN) ROUTED (ADMN) 

Any other argument supplied is interpreted as the name of file in 
which routed's actions should be logged. This log contains informa
tion about any changes to the routing tables and, if the log is not trac
ing all packets, a history of recent messages sent and received that are 
related to the changed route. 

In addition to the facilities described above, routed supports the 
notion of distant passive and active gateways. When routed is started 
up, it reads the file fete/gateways to find gateways that may not be 
located using only information from the SIOCGIFCONF ioctl. Gate
ways specified in this manner should,be marked passive if they are not 
expected to exchange routing information, while gateways marked 
active should be willing to exchange routing infonnation (that is, they 
should have a routed process running on the machine). Passive gate
ways are maintained in the routing tables forever, and information 
regarding their existence is included in any routing information 
transmitted. Active gateways are treated equally with network inter
faces. Routing infonnation is distributed to the gateway and, if no 
routing information is received for a period of time, the associated 
route is deleted. External gateways are also passive, but are not 
placed in the kernel routing table nor are they included in routing 
updates. The function of external entries is to infonn routed that 
another routing process will install such a route, and that alternate 
routes to that destination should not be installed. Such entries are 
only required when both routers may learn of routes to the same desti
nation. 

The fete/gateways is comprised of a series of lines, each in the follow
ing fonnat: 

<net I host> name] gateway name2 metric va!ue<passive I active I external> 

The net or host keyword indicates whether the route is to a network or 
specific host. 

nameJ is the name of the destination network or host. This may be a 
symbolic name located in fete/networks or /etdhosts (or, if started 
after named(ADMN), known to the name server), or an mtemet 
address specified in "dot" notation; see hosts(SFF) and inet(ADMP). 

name2 is the name or address of the gateway to which messages 
should be forwarded. 

value is a metric indicating the hop count to the destination host or 
network. . 

One of the keywords passive, active and external indicates whether 
the gateway should be treated as passive or active (as described 
above), or the gateway is external to the scope of the routed protocol. 

July 15, 1989 ROUTED-3 



ROUTED (ADMN) ROUTED (ADMN) 

Files 

/etc/gateways for distant gateways 

See Also 

udp(ADMP). 

Notes 

The kernel's ICMP routing tables may not correspond to those of 
routed when ICMP redirects change or add routes. 

July 15, 1989 ROUTED-4 



RSHD (ADMN) RSHD (ADMN) 

rshd 
remote shell server 

Syntax 

letc/rshd 

Description 

rshd is the network server for programs such as rcmd (TC) and 
rcp(TC) which need to execute a noninteractive shell on remote ma
chines. rshd is started by the superserver inetd, and therefore must 
have an entry in inetd's configuration file letc/inetd.conf. [See 
inetd(ADMN) and inetd.conf(SFF)]. 

rshd enforces an authentication procedure based on equivalence of 
user names (see rhosts(SFF». This procedure assumes all nodes on 
the network are equally secure. 

See Also 

inetd(ADMN), rcmd(TC), rcp(TC), inetd.conf(SFF), rhosts(SFF). 

August 1, 1989 RSHD-1 



RWHOD (ADMN) RWHOD (ADMN) 

rwhod 
system status server 

Syntax 

letc/rwhod 

Description 

rwhod is the server which maintains the database used by the 
rwho(TC) and ruptime (TC) programs. Its operation is predicated on 
the ability to broadcast messages on a network. 

rwhod operates as both a producer and a consumer of status informa
tion. As a producer of information, it periodically queries the state of 
the system and constructs status messages that are broadcast on a net
work. As a consumer of information, it listens for other rwhod 
servers' status messages, validating them, then recording them in a 
collection of files located in the directory lusrlspooIlrwho. 

The server transmits and receives messages at the port indicated in the 
rwho service specification; see services (SFF). The messages sent and 
received are of the form: 

struct outmp { 

}; 

char ouCline[8];/* tty name */ 
char out_name[8];/* user id */ 
long out_time;/* time on */ 

struct whod { 

}; 

char wd_vers; 
char wd_type; 
char wd_fill[2]; 
int wd_sendtime; 
int wd_recvtime; 
char wd_hostname[32]; 
int wd_loadav[3]; 
int wd_boottime; 
struct whoent { 

struct outmp we_utmp; 
int we_idle; 

} wd_we[1 024 / sizeof (struct whoent)]; 

All fields are converted to network byte order prior to transmission. 
The load averages are as calculated by the uptime(C) program, and 
represent load averages over the 5-, 10-, and 15- minute intervals prior 

August 1, 1989 RWHOD-1 



RWHOD (ADMN) RWHOD (ADMN) 

to a server's transmission; they are multiplied by 100 for representa
tion in an integer. The host name included is that returned by the 
gethostname(SLIB) system call, with any trailing domain name omit
ted. The array at the end of the message contains information about 
the users logged in to the sending machine. This information includes 
the contents of the utmp(M) entry for each non-idle terminal line and 
a value indicating the time in seconds since a character was last 
received on the terminal line. 

Messages received by the rwho server are discarded unless they ori
ginated at an rwho server's port. In addition, if the host's name, as 
specified in the message, contains any unprintable ASCn characters, 
the message is discarded. Valid messages received by rwhod are 
placed in files named whod.hostname in the directory 
lusrlspoolfrwho. These files contain only the most recent message~ in 
the format described above. 

Status messages are generated approximately once every 5 minutes. 
rwhod performs an nlist(S) on lunix every 30 minutes to guard against 
the possibility that this file is not the system image currently operat
ing. 

See Also 

rwho(TC), ruptime(TC). 

Notes 

There should be a way to relay status information between networks. 
Status information should be sent only upon request, rather than con
tinuously. People often interpret the server dying or network commu
nication failures as a machine going down. 

Some mechanism for cleaning dead machine data out of the spool 
directory is needed. 

August 1, 1989 RWHOD-2 



SENDMAIL (ADMN) SENDMAIL (ADMN) 

sendmail 
send mail over the internet 

Syntax 

lusr/lib/sendmail [flags] [address ... ] 

newaliases 

mailq [-v] 

Descri'ption 

send mail sends a message to one or more recipients, routing the mes
sage over whatever networks are necessary. sendmail does internet
work forwarding as necessary to deliver the message to the correct 
place. 

sendmail is not intended as a user interface routine; other programs 
provide user-friendly front ends; sendmail is used only to deliver pre
fonnatted messages. 

With no flags, sendmail reads its standard input up to an end-of-file or 
a line consisting only of a single dot and sends a copy of the message 
found there to all of the addresses listed. It detennines the network(s) 
to use, based on the syntax and contents of the addresses. 

Local addresses are looked up in a file and aliased appropriately. 
Aliasing can be prevented by preceding the address with a backslash. 
Nonnally, the sender is not included in any alias expansions; for 
instance, if 'john' sends to 'group', and 'group' includes 'john' in the 
expansion, then the letter will not be delivered to 'john'. 

Flags are: 

-ba 

-bd 

-bi 

August 1, 1989 

Go into ARPANET mode. Every input line must end 
with a CR-LF, and each message will be generated 
with a CR-LF at the end. Also, the "From:" and 
"Sender:" fields are examined for the name of the 
sender. 

Run as a daemon. sendmail will fork and run in back
ground listening on TCP port 25 for incoming SMTP 
connections. This is nonnally run from letc/rc. 

Initialize the alias database. This works only if send
mail was built with a DBM library. Otherwise, this 
option does nothing. 

SENDMAIL-1 



SENDMAIL (ADMN) SENDMAIL (ADMN) 

-bm 

-bp 

-bs 

-bt 

-bY 

-bz 

-Cfile 

-dX 

-Ffullname 

-fname 

-bN 

-n 

-ox value 

August 1, 1989 

Deliver mail in the usual way (default). 

Print a listing of the queue. 

Use the SMTP protocol as described in RFC821 on 
standard input and output. This flag implies all the 
operations of the -ba flag that are compatible with 
SMTP. 

Run in address-test mode. This mode reads addresses 
and shows the steps in parsing; it is used for debug
ging configuration tables. 

Verify names only; do not try to collect or deliver a 
message. Verify mode is normally used for validating 
users or mailing lists. 

Create the configuration freeze file. 

Use alternate configuration file. sendmail refuses to 
run as root if an alternate configuration file is 
specified. The frozen configuration file is bypassed. 

Set debugging value to X. 

Set the full name of the sender. 

Sets the name of the "from" person (that is, the sender 
of the mail). -f can only be used by trusted users (nor
mally root, daemon, and network), or if the person 
you are trying to become is the same as the person 
you are. 

Set the hop count to N. The hop count is incremented 
every time the mail is processed. When it reaches a 
limit, the mail is returned with an error message, the 
victim of an aliasing loop. If not specified, 
"Received:" lines in the message are counted. 

Don't do aliasing. 

Set option x to the specified value. Options are 
described below. 

SENDMAIL-2 



SENDMAIL (ADMN) SENDMAIL (ADMN) 

-q[time] 

-rname 

-t 

-v 

Process saved messages in the queue at given inter
vals. If time is omitted, process the queue once. time 
is given as a tagged number, with's' being seconds, 
'm' being minutes, 'h' being hours, 'd' being days, 
and 'w' being weeks. For example, "-qlh30m" or 
"-q90m" would both set the timeout to one hour and 
thirty minutes. If time is specified, sendmail will run 
in background. This option can be used safely with 
-bd. 

An alternate and obsolete form of the -f flag. 

Read message for recipients. To:, Cc:, and Bcc: lines 
will be scanned for recipient addresses. The Bcc: line 
will be deleted before transmission. Any addresses in 
the argument list will be suppressed, that is, they will 
not receive copies even if listed in the message 
header. 

Go into verbose mode. Alias expansions will be 
announced, and so on. 

There is also a number of processing options that may be set. Nor
mally these will only be used by a system administrator. Options may 
be set either on the command line using the -0 flag or in the configura
tion file. These are described in detail in the TCP//P Administrator's 
Guide. The option$ are: 

Afile 

c 

dx 

D 

August 1, 1989 

Use alternate alias file. 

On mailers that are considered expensive to connect 
to, do not initiate immediate connection. This 
requires queueing. 

Set the delivery mode to x. Delivery modes are 'i' for 
interactive (synchronous) delivery, 'b' for background 
(asynchronous) delivery, and 'q' for queue only - that 
is, actual delivery is done the next time the queue is 
run. 

Try to rebuild the alias database automatically if 
necessary. 

SENDMAIL-3 



SENDMAIL (ADMN) SENDMAIL (ADMN) 

ex 

Fmode 

f 

gN 

Hfile 

m 

o 

Qqueuedir 

rtimeout 

Sfile 

s 

Ttime 

August 1, 1989 

Set error processing to mode x. Valid modes are 'm' to 
mail back the error message, 'w' to "write" back the 
error message (or mail it back if the sender is not 
logged in), 'p' to print the errors on the terminal 
(default), 'q' to throwaway error messages (so that 
only exit status is returned), and 'e' to do special pro
cessing for the BerkNet. If the text of the message is 
not mailed back by mode 'm' or 'w' and if the sender 
is local to this machine, a copy of the message is 
appended to the file dead.letter in the sender's home 
directory. 

The mode to use when creating temporary files. 

Save UNIX-style From lines at the front of messages. 

The default group id to use when calling mailers. 

The SMTP help file. 

Do not take dots on a line by themselves as a message 
terminator. 

Send to "me" (the sender) also if I am in an alias 
expansion. 

If set, this message may have old-style headers. If not 
set, this message is guaranteed to have new style 
headers (that is, commas instead of spaces between 
addresses). If set, an adaptive algorithm is used that 
will correctly determine the header format in most 
cases. 

Select the directory in which to queue messages. 

The timeout on reads; if none is set, sendmail will 
wait forever for a mailer. This option violates the 
word (if not the intent) of the SMTP specification, so 
the timeout should probably be fairly large. 

Save statistics in the named file. 

Always instantiate the queue file, even under cir
cumstances where it is not strictly necessary. This 
provides safety against system crashes during 
delivery. 

Set the timeout on undelivered messages in the queue 
to the specified time. After delivery has failed (for 
instance, because a host is down) for this amount of 
time, failed messages will be returned to the sender. 
The default is three days. 

SENDMAIL-4 



SENDMAIL (ADMN) SENDMAIL (ADMN) 

tstz,dtz Set the name of the time zone. 

uN Set the default user id for mailers. 

In aliases, the first character of a name may be a vertical bar to cause 
interpretation of the rest of the name as a command to which to pipe 
the mail. It may be necessary to quote the name to keep sendmail 
from suppressing the blanks between arguments. For example, a com
mon alias is: 

msgs: "I/usr/ucb/msgs -s" 

Aliases may also have the syntax ":include:filename" to ask sendmail 
to read the named file for a list of recipients. For example, an alias 
such as: 

poets: ":include :/usr/local/lib/ poets.list" 

would read /usr/local/Jibl poets.list for the list of addresses making up 
the group. 

The sendmail command returns an exit status describing what it did. 
The codes are defined in <sysexits.h >: 

EX_OK 
EX NOUSER 
EX=UNA VAILABLE 

EX_NOHOST 
EX_TEMPFAll.-

Successful completion on all addresses. 
User name not recognized. 
Catchall, meaning necessary resources 
were not available. 
Syntax error in address. 
Internal software error, including bad 
arguments. 
Temporary operating-system error, such 
as cannot fork. 
Host name not recognized. 
Message could not be sent immediately, 
but was queued. 

If invoked as newalias.es, sendmail will rebuild the alias database. 
This works only if sendmail was built with a DBM library. Otherwise, 
this option does nothing. If invoked as mailq, sendmail will print the 
contents of the mail queue. 

Files 

Except for /usr/lib/sendmail.cf, these patbnames are all specified in 
/usr/lib/sendmail.cf. Thus, these values are only approximations. 

jusr/lib/ aliases 
/usr/lib/sendmail.cf 
/usr/lib/sendmail.fc 
/usr/lib/ sendmail.hf 

August 1, 1989 

raw data for alias names 
configuration file 
frozen configuration 
help file 

SENDMAIL-5 



SENDMAIL (ADMN) 

/usr/lib/sendmail.st 
/usr/spool/mqueue/* 

See Also 

collected statistics 
temp files 

mail(TC), aliases(SFF), mailaddr(SFF); 
RFC819, RFC821 , RFC822; 

SENDMAIL (ADMN) 

The chapter "Introduction to sendmail" in the TCPIIP Administrator's 
Guide; 
The chapter "Installing and Opera~ing Sendmail" in the TCPIIP 
Administrator's Guide. 

August 1, 1989 SENDMAIL-6 



SLATTACH (ADMN) SLATTACH (ADMf'J) 

slattach, sldetach 
attach and detach serial lines as network interfaces 

Syntax 

letc/slattach devname source destination [baudrate ] 

letc/sldetach interface-name 

Description 

slattach is used to assign a serial (tty) line to a network interface using 
the DARPA Internet Protocol, and to define the source and destination 
network addresses. The devname parameter is the name of the device 
the serial line is attached to, that is, /dev/ttyOOI. The source and desti
nation are either host names present in the host name data base (see 
hosts(SFF)), or DARPA Internet addresses expressed in the Internet 
standard "dot notation." The optional baudrate parameter is used to 
set the speed of the connection; if not specified, the default of 9600 is 
used. 

Only the superuser may attach or detach a network interface. 

There should not be a getty (M) on the line. 

sldetach is used to remove the serial line that is being used for IF from 
the network tables and allow it to be used as a normal terminal again. 
inteiface-name is the name that is shown by netstat (TC). 

Examples 

Files 

/etc/slattach tty001 tom-src genstar 
/etc/slattach /dev/tty001 hugo dahl 4800 
/etc/sldetach sl01 

letc/hosts 
/dev/* 
/usr/spool/locks/slippid. * 

August 1, 1989 SLATTACH-1 



SLATTACH (ADMN) SLATTACH (ADMN) 

Diagnostics 

Various messages indicating: 
- the specified interface does not exist 
- the requested address is unknown 
- the user is not the superuser 

See Also 

hosts(SFF), netstat(TC), ifconfig(ADMN). 

August 1 , 1989 SLATTACH-2 



SLINK (ADMN) SLINK (ADMN) 

slink 
streams linker 

Syntax 

slink [-v] [-f] [ -c file] [func [argl arg2 ... ]] 

Description 

slink is a STREAMS configuration utility that is used to link together 
the various STREAMS modules and drivers required for STREAMS 
TCP/IP. Input to slink is in the form of a script specifying the 
STREAMS operations to be performed. Input is normally taken from 
the file /etc/strcf. 

The following options may be specified on the slink command line: 

-cfite Use file instead of lete/stref. 

-v Verbose mode (that is, each operation is logged to stderr). 

-f Do not fork (that is, slink will remain in foreground). 

The configuration file contains a list of functions, each of which is 
composed of a list of commands. Each command is a call to one of 
the functions defined in the configuration file or to one of a set of 
built-in functions. Among the built-in functions are the basic 
STREAMS operations open, link, and push, along with several 
TCP/IP-specific functions. 

slink processing consists of parsing the input file, then calling the 
user-defined function boot, which is normally used to set up the stan
dard configuration at boot time. If a function is specified on the slink 
command line, that function will be called instead of boot. Following 
the execution of the specified function, slink goes into the background 
and remains idle, holding open whatever file descriptors have been 
opened by the configuration commands. 

A function definition has the following form: 

function-name { 
command1 
command2 

August 1, 1989 SLlNK-1 



SLINK (ADMN) 

The syntax for commands is: 

function arg1 arg2 arg3 ... 

or: 

var = function arg1 arg2 arg3 ... 

SLINK (ADMN) 

The placement of newlines is important: a newline must follow the 
left and right braces and every command. Extra newlines are allowed, 
that is, where one newline is required, more than one may be used. A 
backslash ('\') followed immediately by a newline is considered 
equivalent to a space, so it may be ,used to continue a command on a 
new line. The use of other white space characters (spaces and tabs) is 
at the discretion of the user, except that there must be white space 
separating the function name and the arguments of a command. 

Comments are delimited by '#' and newline, and are considered 
equivalent to a newline. 

Function and variable names may be any string of characters taken 
from A-Z, a-z, 0-9, and '_', except that the first character cannot be a 
digit. Function names and variable names occupy separate name 
spaces. All functions are global and may be forward-referenced. All 
variables are local to the functions in which they occur. 

Variables are defined when they appear to the left of an equal sign 
('=') on a command line, such as: 

tcp = open Idevlinetltcp 

The variable acquires the value returned by the command. In the 
above example, the value of the variable tcp will be the file descriptor 
returned by the open call. 

Arguments to a command may be variables, parameters, or strings. 

A variable that appears as an argument must have been assigned a 
value on a previous command line in that function. 

Parameters take the fonn of a dollar sign ('$') followed by one or two 
decimal digits, and are replaced with the corresponding argument 
from the function call. If a given parameter was not speci fied in the 
function call, an error results (for instance, if a command references 
$3 and only two arguments were passed to the function, an execution 
error will occur). 

Strings are sequences of characters optionally enclosed in double 
quotes (""). Quotes may be used to prevent a string from being inter
preted as a variable name or a parameter, and to allow the inclusion of 
spaces, tabs, and the special characters '{', '}', '=', and '#'. The 
backslash ('\') may also be used to quote the characters '{', '}', '=', 
'#', "", and '\' individually. 

August 1, 1989 SLlNK-2 



SLINK (ADMN) SLINK (ADMN) 

The following built-in functions are provided by slink: 

open path 

linkfd} fd2 

pushfd module 

sifname fd link name 

unitsel fd unit 

dlattach fd unit 

Open the device specified by pathname 
path. Returns a file descriptor referencing 
the open stream. 

Link the stream referenced by fd2 beneath 
the stream referenced by fdI. Returns the 
link identi fier associated with the linle 
Note: The fd2 function cannot be used 
after this pperation. 

Push the module identified by module onto 
the stream referenced by fd . 

Send a SIOCSIFNAME (set interface 
name) ioctl down the stream referenced by 
fd for the link associated with link 
identifier link specifying the name given in 
name. 

Send a IF _UNITSEL (unit select) ioctl 
down the stream referenced by fd specify
ing the unit given in unit. 

Send a DL_ATTACH_REQ message down 
the stream referenced by fd specifying the 
unit given in unit. 

initqp path qname lowat hiwat ... 

strcat str} str2 

August 1, 1989 

Send an INITQP ARMS (initialize queue 
parameters) ioctl to the driver correspond
ing to patbname path. qname specifies the 
queue for which the low and high water 
marks will be set, and must be one of: 

hd stream head 
rq read queue 
wq write queue 
muxrq multiplexor read queue 
muxwq multiplexor write queue 

The lowat and hiwat functions specify the 
new low and high water marks for the 
queue. Both lowat and hiwat must be 
present. To change only one of these 
parameters, the other may be replaced with 
a dash (' - '). Up to five qname lowar hiwat 
triplets may be present. 

Concatenate strings str} and str2 and 
return the resulting string. 

SLlNK-3 



SLINK (ADMN) 

return val 

Files 

letc/strcf 

See Also 

strcf(SFF), intro(ADMP). 

August 1 , 1989 

SLINK (ADMN) 

Set the return value for the current function 
to val. Note: executing a return command 
does not tenninate execution of the current 
function. 

SLlNK-4 



TALKD (ADMN) TALKD (ADMN) 

talkd 
remote user communication server 

Syntax 

letc/talkd 

Description 

Talkd is the server that notifies a user that somebody else wants to ini
tiate a conversation. It acts as a repository of invitations, responding 
to requests by clients wishing to rendezvous to hold a conversation. In 
normal operation, a talk client initiates a rendezvous by sending a 
CTL_MSG to the server of type LOOK_UP (see <protocolsltalkd.h ». 
This causes the server to search its invitation tables to check if an 
invitation currently exists for the client. If the lookup fails, the caller 
then sends an ANNOUNCE message causing the server to broadcast 
an announcement on the callee's login ports requesting contact. When 
the cal lee responds, the local server uses the recorded invitation to 
respond with the appropriate rendezvous address and the caller and 
callee client programs establish a stream connection through which 
the conversation takes place. 

See Also 

ta1k(TC), write(TC) 

July 15, 1989 TALKD-1 



TCP (ADMN) 

letc/tcp 
TCP start/stop script 

Syntax 

letc/tcp start 
letc/tcp stop 

Description 

TCP (ADMN) 

letcltcp is used to start or stop the STREAMS TCP software. TCP will 
start automatically at system startup time if letc/rc.d/6Iname contains. 
a script including the command /etc/tcp start. TCP does not stop au
tomatically at system shutdown time. The command /etc/tcp stop 
will stop TCP. See init(M) for further information. 

letc/tcp must be customized for a particular installation before it can 
be used. The following items must be edited: 

Domain name 

Interface configuration 

The environment variable DOMAIN must 
be set to the name of your domain. 

ifconfig commands must be used to set the 
internet address (and any other desired 
options) for each of your interfaces. The 
ifconfig line for the loopback interface 
should not require modification. See 
ifconfig(AD11N) for further information. 

The following items may need to be edited: 

PATH 

PROCS 

Network initialization 

August 1, 1989 

The supplied path may require 
modification if commands run by letcltcp 
are in other directories. 

The PROCS variable contains a space
separated list of names of processes to kill 
when executing the stop function. If 
additional daemons are used, their names 
can be added to this list. 

Certain network hardware may require the 
execution of an initialization command 
before use. Any such commands should 
be included in this section. 

TCP-1 



Tep (ADMN) 

Daemons 

August 1, 1989 

TCP (ADMN) 

The standard intemetworking daemons 
are started at this point. Any additional 
daemons or other commands m.ay be 
included in this section. Any of the stan
dard daemons that are not desired may be 
removed or commented out. 

TCP-2 



TELNETD (ADMN) TELNETD (ADMN) 

telnetd 
DARPA TELNET protocol server 

Syntax 

/etc/telnetd 

Description 

telnetd is a server that supports the DARPA standard TELNET virtual 
tenninal protocol. telnetd is invoked by the internet server (see 
inetd(ADMN», nonnally for requests to connect to the TELNET port 
as indicated by the /etc/services file (see services (SFF». 

telnetd operates by allocating a pseudo-tenninal device for a client, 
then creating a login process that has the slave side of the pseudo ter
minal as stdin, stdout, and stderr. telnetd manipulates the master 
side of the pseudo-tenninal, implementing the TELNET protocol and 
passing characters between the remote client and the login process. 

When a TELNET session is started up, telnetd sends TELNET 
options to the client side indicating a willingness to do remote echo of 
characters, to suppress go ahead, and to receive tenninal type infonna
tion from the remote client. If the remote client is willing, the remote 
tenninal type is propagated in the environment of the created login 
process. The pseudo-tenninal allocated to the client is configured to 
operate in ICANON mode, and with TAB3 and ICRNL enabled. (See 
tennio(M).) 

telnetd is willing to do: echo, binary, suppress go ahead, and timing 
mark. telnetd is willing to have the remote client do: binary, termi
nal type, and suppress go ahead. 

See Also 

telnet(TC) 

Notes 

Some TELNET commands are only partially implemented. 

The TELNET protocol allows for the exchange of the number of lines 
and columns on the user's terminal, but telnetd does not make use of 
them. 

August 1,1989 TELNETD-1 



TELNETD (ADMN) TELNETD (ADMN) 

Because of bugs in the original 4.2 BSD te/net, te/netd performs some 
dubious protocol exchanges to try to discover if the remote client is, in 
fact, a 4.2 BSD te/net. 

Binary mode has no common interpretation except between similar 
operating systems (Unix, in this case). 

The terminal type name received from the remote client is converted 
to lowercase. 

The packet interface to the pseudo. terminal should be implemented 
for intelligent flushing of input and output queues. 

telnetd never sends TELNET go ahead commands. 

August 1, 1989 TELNETD-2 



TFTPD (ADMN) TFTPD (ADMN) 

tftpd 
DARPA Trivial File Transfer Protocol server 

Syntax 

letc/tftpd 

Description 

tftpd is a server that supports the DARPA Trivial File Transfer Proto
col. The TFTP server operates at the port indicated in the tftp service 
description; see services (SFF). This port number may be overridden 
(for debugging purposes) by specifying a port number on the com
mand line. 

The use of tftp does not require an account or password on the remote 
system. Due to the lack of authentication infonnation, tftpd will allow 
only publicly readable files to be accessed. Note that this extends the 
concept of public to include all users on all hosts that can be reached 
through the network; this may not be appropriate on all systems, and 
its implications should be considered before enabling tftp service. 

tftpd is spawned by the superserver inetd and, therefore, must have an 
entry in inetd's configuration file, letc/inetd.conf. [See 
inetd (ADMN) and inetd.conj(SFF).] Note that the tftpd entry in this 
file must be "wait": this is to prevent subsequent selects from being 
successful before the first tftpd process does its receive. tftpd takes 
care to prevent multiple tftpd processes from being spawned to service 
the same request. (inetd is able to continue processing new messages 
on the port.) 

See Also 

inetd(ADMN), tftp(TC), inetd.conf(SFF), services(SFF). 

Warnings 

This server is known only to be self-consistent (that is, it operates with 
the user TFTP program tftp (TC». 

The search permissions of the directories leading to the files accessed 
are not checked if tftp runs as root. The default configuration runs 
tftpd as user "sync." 

August 1, 1989 TFTPD-1 



TIMED (ADMN) TIMED (ADMN) 

timed 
time server daemon 

Syntax 

/etc/timed [ -t] [ -M ] [ -n network] [ -i network] 

Description 

timed is the time server daemon and is normally invoked at boot time 
from the STREAMS TCP/IP start-up script. It synchronizes the host's 
time with that of other machines in a local area network mIming 
timed (ADMN). These time servers will slow down the clocks of some 
machines and speed up the clocks of others to bring them to the aver
age network time. The average network time is computed from meas
urements of clock differences using the ICMP timestamp request mes
sage. 

The service provided by timed is based on a master-slave scheme. 
When timed (ADMN) is started on a machine, it asks the master for the 
network time and sets the host's clock to that time. After that, it 
accepts synchronization messages periodically sent by the master and 
calls adjtime(SSC) to perform the needed corrections on the host's 
clock. 

It also communicates with rdate (AD:MN) in order to set the date glo
bally, and with timedc (ADMN), a timed control program. If the ma
chine running the master crashes, then the slaves will elect a new mas
ter from among slaves running with the -M flag. A timed running 
without the -M flag will remain a slave. The -t flag enables timed to 
trace the messages it receives in the file /usr/adm/timed.log. Tracing 
can be turned on or off by the program timedc(ADMN). timed nor
mally checks for a master time server on each network to which it is 
connected, except as modified by the options described below. It will 
request synchronization service from the first master server located. If 
permitted by the -M flag, it will provide synchronization service on 
any attached networks on which no current master server was 
detected. Such a server propagates the time computed by the t.op-Ievel 
master. The -n flag, followed by the name of a network to which the 
host is connected (see networks(SFF)), overrides the default choice of 
the network addresses made by the program. Each time the -n flag 
appears, that network name is added to a list of valid networks. All 
other networks are ignored. The -i flag, followed by the name of a 
network to which the host is connected (see networks(SFF)),·overrides 
the default choice of the network addresses made by the program. 
Each time the -i flag appears, that network name is added to a list of 
networks to ignore. All other networks are used by the time daemon. 
The -n and -i flags are meaningless if used together. 

August 1, 1989 TIMED-1 



TIMED (ADMN) 

Files 

/usr/adm/timed.log 
/usr/adm/timed.masterlog 

See Also 

tracing file for timed 
log file for master timed 

date(C), adjtime(SSC), gettimeofday(SLIB), 
rdate(ADMN), timedc(ADMN). 

August 1. 1989 

TIMED (ADMN) 

icmp(ADMP), 

TIMED-2 



TIMEDC (ADMN) TIMEDC (ADMN) 

timedc 
timed control program 

Syntax 

timedc [ command [ argument ... ] ] 

Description 

timedc is used to control the operation of the timed program. It may 
be used to: 

• measure the differences between machines' clocks, 

• find the location where the master time server is running, 

• enable or disable tracing of messages received by timed, and 

• perfonn various debugging actions. 

Without any arguments, timedc will prompt for commands from the 
standard input. If arguments are supplied, timedc interprets the first 
argument as a command and the remaining arguments as parameters 
to the command. The standard input may be redirected, causing 
timedc to read commands from a file. Commands may be abbreviated; 
recognized commands are: 

? [ command ... ] 

help [ command ... ] 
Print a short description of each command specified in the argu
ment list or, if no arguments are given, a list of the recognized 
commands. 

clockdiff host ... 
Compute the differences between the clock of the host machine 
and the clocks of the machines given as arguments. 

trace { on I off } 
Enable or disable the tracing of incoming messages to timed in the 
file lusr/admltimed.log. 

quit 
Exit from timedc. 

Other commands may be included for use in testing and debugging 
timed; the help command and the program source may be consulted 
for details. 

August 1, 1989 TIMEDC-1 



TIMEDC (ADMN) 

Files 

/usr fadm/timed .log 
/usr/adm/timed.masterlog 

See Also 

TIMEDC (ADMN) 

tracing file for timed 
log file for master timed 

date(C), adjtime(SSC), icmp(ADMP), rdate(ADMN), timed(ADMl\). 

Diagnostics 

? Ambiguous command 
?Invalid command 
?Privileged command 

August 1, 1989 

abbreviation matches more than one command 
no match found 
command can be executed by root only 

TIMEDC-2 



TRACE (ADMN) TRACE (ADMN) 

trace, query 
routing tools 

Syntax 

trace [onloff] machines ... query [-n] hosts ... 

Description 

trace sends a RIP TRACE ON or RIP TRACE OFF command to the 
specified machines. Machfize must be specified ~s an IP address. 

query is used to request routing information from the specified host. 
Any packets received in response to a query will be displayed. 

These commands are useful for debugging routed(ADMN). 

See Also 

routed(ADMN), udp(ADMP). 
RFC1058 

Bugs 

RFC 1058 states that TRACE_ON and TRACE_OFF are not supposed 
to be supported any more. 

August 1, 1989 TRACE-1 



TRPT (ADMN) TRPT (ADMN) 

trpt 
transliterate protocol trace 

Syntax 

trpt [ -a ] [ -s] [-t] [ -f] [ -j ] [ -p hex-address] [ system [ core] ] 

Description 

trpt interrogates the buffer of TCP trace records created when a socket 
is marked for debugging (see getsockopt (SSC», and prints a readable 
description of these records. When no options are supplied, trpt prints 
all the trace records found in the system, grouped according to TCP 
connection protocol control block (PCB). The following options may 
be used to alter this behavior. 

-a In addition to the nonnal output, print the values of the source and 
destination addresses for each packet recorded. 

-s In addition to the nonnal output, print a detailed description of the 
packet sequencing infonnation. 

-t In addition to the nonnal output, print the values for all timers at 
each point in the trace. 

-f Follow the trace as it occurs, waiting a short time for additional 
records each time the end of the log is reached. 

-j Just give a list of the protocol control block addresses for which 
there are trace records. 

-p Show only trace records associated with the protocol control block, 
the address of which follows. 

The recommended use of trpt is as follows. Isolate the problem and 
enable debugging on the socket(s) involved in the connection. Find 
the address of the protocol control blocks associated with the sockets 
using the -A option to netstat(TC). Then run trpt with the -p option, 
supplying the associated protocol control block addresses. The -f 
option can be used to follow the trace log, once the trace is located. If 
there are many sockets using the debugging option, the -j option may 
be useful in checking to see if any trace records are present for the 
socket in question. 

If debugging is being perfonned on a system or core file other than the 
default, the last two arguments may be used to supplant the defaults. 

August 1, 1989 TRPT-1 



TRPT (ADMN) 

Files 

/unix 
/devlkmem 

See Also 

getsockopt(SSC), netstat(TC) 

Diagnostics 

TRPT (ADMN) 

The message "no namelist" when the system image doesn't contain 
the proper symbols to find the trace buffer; other messages which 
should be self explanatory. 

Bugs 

Should also print the data for each input or output, but this is not saved 
in the trace record. 

The output format is inscrutable and should be described here. 

August 1, 1989 TRPT-2 



Contents 

Special Files and Protocols (ADI\1P) 

intro 
arp 
e3A 
e3B 
eli 
icmp 
inet 
ip 
llcloop 
slip 
sock 
tcp 
udp 
vty 

introduction to special files and protocols 
address resolution protocol 
3C50 1 Ethernet driver 
3C503 Ethernet driver 
EMD convergence module 
internet control message protocol 
internet protocol family 
internet protocol 
software loop back network interface 
serial line IP network interface 
socket interface driver 
internet transmission control protocol 
internet user datagram protocol 
pseudo terminal master driver 

-1-



INTRO (ADMP) 

intra 
introduction to special files and protocols 

#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netinet/ip _ str .h> 
#include <netinet/strioc.h> 

Description 

INTRO (ADMP) 

This section describes various special files and protocols that refer to 
specific System V STREAMS TCP/IP networking protocol drivers. 
Features common to a set of protocols are documented as a protocol 
family. 

Protocol Family Entries 

A protocol family provides basic services to the protocol implementa
tion to allow it to function within a specific network environment. 
These services may include packet fragmentation and reassembly, 
routing, addressing, and basic transport. A protocol family may sup
port multiple methods of addressing, though the current protocol 
implementations do not. A protocol family is normally comprised of a 
number of protocols, one per socket (2) type. It is not required that a 
protocol family support all socket types. A protocol family may con
tain multiple protocols supporting the same socket abstraction. 

A protocol supports one of the socket abstractions detailed in 
socket(2). A specific protocol may be accessed by creating a socket 
of the appropriate type and protocol family, by requesting the protocol 
explicitly when creating a socket, by executing the appropriate TLI 
primitives, or by opening the associated STREAMS device. 

Protocol Entries 

The system currently supports the DARPA Internet protocols. Raw 
socket interfaces are provided to the IP protocol layer of the DARPA 
Internet and to the ICMP protocol. Consult the appropriate manual 
pages in this section for more information. 

Routing loctls 

The network facilities provided limited packet routing. A simple set 
of data structures comprise a "routing table" used in selecting the ap
propriate network interface when transmitting packets. This table 
contains a single entry for each route to a specific network or host. A 

July 15, 1989 INTR0-1 



INTRO (ADMP) INTRO (ADMP) 

user process, the routing daemon, maintains this data base with the aid 
of two socket-specific ioetl (2) commands, SIOCADDRT and SIOC
DELRT. The commands allow the addition and deletion of a single 
routing table entry, respectively. Routing table manipulations may 
only be carried out by super-user. 

A routing table entry has the following fonn, as defined in 
<net/route.h>: 

struct rtentry 
u_long rt _hash; 
struct sockaddr rt dst; -
struct sockaddr rt _gateway; 
short rt_flags; 
short rt refcnti -
u_long rt _use; 
struct ifnet *rt_ifp; 

} ; 

with rt Jlags defined as follows: 

#define RTF UP 
#define RTF-GATEWAY 
#define RTF-HOST 
#define RTF=DYNAMIC 

Oxl /* route usable */ 
Ox2 /* destination is a gateway */ 
Ox4 /* host entry (net otherwise) */ 
OxlO /* created dynamically 

(by redirect) * / 

Routing table entries are of three general types: those for a specific 
host, those for all hosts on a specific network, and those for any desti-

. nation not matched by entries of the first two types (a wildcard route). 
When the system is booted and addresses are assigned to the network 
interfaces, each protocol family installs a routing table entry for each 
interface when it is ready for traffic. Normally the protocol specifies 
the route through each interface as a "direct" connection to the desti
nation host or network. If the route is direct, the transport layer of a 
protocol family usually requests the packet be sent to the same host 
specified in the packet. Otherwise, the interface is requested to 
address the packet to the gateway listed in the routing entry (that is, 
the packet is forwarded). 

Routing table entries installed by a user process may not specify the 
hash, reference count, use, or interface fields; these are filled in by the 
routing routines. If a route is in use when it is deleted (rt relent is 
non-zero), the routing entry will be marked down and remOVed from 
the routing table, but the resources associated with it will not be 
reclaimed until all references to it are released. The routing code 
returns EEXIST if requested to duplicate an existing entry, ESRCH if 
requested to delete a non-existent entry, or ENOSR if insufficient 
resources were available to install a new route. User processes read 
the routing tables through the /dev/ kmem device. The rt use field con
tains the number of packets sent along the route. 

July 15, 1989 INTR0-2 



INTRO (ADMP) INTRO (ADMP) 

When routing a packet, the kernel will first attempt to find a route to 
the destination host. Failing that, a search is made for a route to the 
network of the destination. Finally, any route to a default ("wild
card") gateway is chosen. If multiple routes are present in the table, 
the first route found will be used. If no entry is found, the destination 
is declared to be unreachable. 

A wildcard routing entry is specified with a zero destination address 
value. Wildcard routes are used only when the system fails to fmd a 
route to the destination host and network. The combination of wild
card routes and routing redirects can provide an economical mecha-
nism for routing traffic. . 

Socket loctls 

There are a few ioct!s which have significance for the socket layer 
only. The ioct! call has the general fonn: 

ioctl(so, code, arg) 

SIOCPROTO 
Enter a socket type into the kernel protocol switch table. The 
arguments used to create the socket used by this ioct! may be zero. 
The new socket type is downloaded by setting arg to a pointer to a 
specification block with the following structure: 

struct socknewproto { 
int family; /* address family (AF INET, etc.) * / 

/* protocol type -

}; 

int type; 

int 
dev t 

int 

proto; 
dev; 

flags; 

(SOCK STREAM, etc.) */ 
/* per facQly proto number */ 
/* major/~or to use 

(must be a clone) */ 
/* proto~~ flags */ 

The flags currently supported are specified in the <netlprotosw.h> 
header file as: 

/* exchange atomic messages only */ 
#define PR ATOMIC OxOl 

/*-addresses given with messages */ 
#define PR ADDR Ox02 

/*-connection required by protocol */ 
#define PR CONNREQUIRED Ox04 
#define PR-RIGHTS OxlO /* passes capabilities */ 
#define PR-BINDPROTO 0x20 /* pass protocol */ 

SIOCXPROTO 
Purge the protocol switch table. The arguments used to create the 
socket used by this ioct! may be zero. 

July 15, 1989 INTR0-3 



INTRO (ADMP) INTRO (ADMP) 

SIOCSPGRP 
Set the process group for a socket to enable signaling (SIGUSRl) 
of that process group when out-of-band data arrives. The argu
ment, arg, is a pointer to an int and, if positive, is treated as a pro
cess ID; otherwise, (if negative) is treated as a process group ID. 

SIOCGPGRP 
Get the process group ID associated with a particular socket. If the 
value returned to the int location pointed to by arg is negative, it 
should be interpreted as a process group ID; otherwise, it should be 
interpreted as a process ID. 

SIOCCATMARK 
Used to. ascertain whether or not the socket read pointer is 
currently at the point (mark) in the data stream where out-of-band 
data was sent. If a 1 is returned to the int location pointed to by 
arg, the next read will return data after the mark. Otherwise 
(assuming out-of-band data has arrived), the next read will provide 
data sent by the client prior to transmission of the out-of-band sig
nal. 

FIONREAD 
Returns (to the int location pointed to by arg ) the number of bytes 
currently waiting to be read on the socket. 

FIONBIO 
Toggles the socket into blocking/non-blocking mode. If the int 
location pointed to by arg contains a non-zero value, subsequent 
socket operations that would cause the process to block waiting on 
a specific event will return abnonnally with errno set to 
EWOULDBLOCK; otherwise, the process will block. 

Queue loctls 

Each STREAMS device has default queue high and low water marks, 
that can be changed by the super-user with the INITQPARMS specifi
cation in an ioctl(2). The ioctl is done on a driver or module, with the 
argument being an array of structures of type: 

struct iocqp { 
ushort iqp_typei 
ushort iqp_valuei 

iqp _value specifies the value for the queue parameter according to 
iqp_type, which may be one of: IQP _RQ(read queue), 
IQP_WQ(write queue), IQP_MUXRQ(mux read queue), 
IQP _MUXWQ(mux write queue), or IQP _HDRQ(stream head 
queue), each OR'ed with either IQP_LOWAT(value is for low water 
mark of queue), or IQP _HIWAT(value is for high water mark of 
queue). 

July 15, 1989 INTR0-4 



INTRC (ADMP) INTRO (ADMP) 

Interface loctls 

Each network interface in a system corresponds to a path through 
which messages may be sent and received. A network interface usu
ally has a hardware device associated with it, although certain inter
faces such as the loopback interface, 10 (7), do not. 

The following ioetl calls may be used to manipulate network inter
faces. The ioetl is made on a socket (typically of type SOCK_DGRAM 
) in the desired "communications domain" [see protoeols(4)]. Unless 
specified otherwise, the request takes an ifrequest structure as its 
parameter. This structure has the form 

struct ifreq 
char ifr_name:16]; /* name of interface (e.g. ecO) */ 
union 

struct sJckaddr ifru_addr; 
struct sJckaddr ifru dstaddr; 
struct s~ckaddr ifru=broadaddri 
short ~:ru_f~ags; 

int ':"::ru metric; 
struct c~epacket ifru_onepacket; 

} ifr ifru; 
#define ifr addr ':":r if~.ifru addr /* address */ 

- /* other end of p-to-p link */ 
#define ifr dstaddr ':"::r ifru.ifru dstaddr 

- /* broac.:aSt address -; / 
#define ifr broadaddr ':"fr ifru.ifru broadaddr 
#define ifr-flags ':"fr-ifru.ifru-flags /* flags */ 

- /* routi:-.g metric * / 
#define ifr metric ':"fr ifru. ifru metric 

- /* one-packet node params */ 
#define ifr onepacket ~=r ifru.ifru onepacket 
}; - --

SIOCSIFADDR 
Set interface address for protocol family. Following the address 
assignment, the "initialization" routine for the interface is called. 

SIOCGIFADDR 
Get interface address for protocol family. 

SIOCSIFDSTADDR 
Set point to point address for protocol family and interface. 

SIOCGIFDSTADDR 
Get point to point address for protocol family and interface. 

SIOCSIFBRDADDR 
Set broadcast address for protocol family and interface. 

July 15, 1989 INTR0-5 



INTRO (ADMP) INTRO (ADMP) 

SIOCGIFBRDADDR 
Get broadcast address for protocol family and interface. 

SIOCSIFFLAGS 
Set interface flags field. If the interface is marked down, any pro
cesses currently routing packets through the interface are notified; 
some interfaces may be reset so that incoming packets are no 
longer received. When marked up again, the interface is reinitial
ized. 

SIOCGIFFLAGS 
Get interface flags. 

SIOCSIFMETRIC 
Set interface routing metric. The metric is used only by user-level 
routers. 

SIOCGIFMETRIC 
Get interface metric. 

SIOCSIFONEP 
Set one-packet mode parameters. The ifr onepacket field of the 
ifreq structure is used for this request. ThiS structure is defined as 
follows: 

struct onepacket 

} ; 

int 
int 

spsize; 
spthresh; 

/* small packet size */ 
/* small packet threshold */ 

One-packet mode is enabled by setting the IFF _ONEPACKET flag 
(see SIOCSIFFLAGS above). See tcp(7) for an explanation of one
packet mode. 

SIOCGIFONEP 
Get one-packet mode parameters. 

SIOCGIFCONF 
Get interface configuration list. This request takes an ifconf struc
ture (see below) as a value-result parameter. The ifc _len field 
should be initially set to the size of the buffer pointed to by ifc _buf. 
On return it will contain the length, in bytes, of the configuration 
list. 

/* Structure used in SIOCGIFCONF request. 
* Used to retrieve interface configuration 
* for machine (useful for programs which 
* must know all networks accessible). 
*/ 

struct ifconf { 
/* size of associated buffer */ 
int ifc_Ien; 

July 15, 1989 INTR0-6 



INTRO (ADMP) INTRO (ADMP) 

union 
caddr t ifcu_buf; 
struct ifreq *ifcu_req; 

} ifc_ifcu; 
/* buffer address */ 
#define ifc_buf ifc_ifcu.ifcu_buf 
/* array of structures returned */ 
#define ifc_req ifc_ifcu.ifcu_req 
} ; 

Streams loctllnterface 

Socket ioet! calls can also be issued using STREAMS file descriptors. 
The standard strioet! structure is used, with the ie emd field contain
ing the socket ioet! code (from <sys/socket.h» and the ie db field 
pointing to the data structure appropriate for that ioet!, for all socket 
ioet! s except SIOCGIFCONF. For the SIOCGIFCONF ioet! , an ifeonf 
structure is not used. Rather, the ie db field points to the buffer to 
receive the ifreq structures. -

TLI Options Management 

Options may be set and retrieved in a manner similar to getsoekopt (2) 
and setsoekopt (2) using t optmgmt (3N). Options are communicated 
using an options buffer, which contains a list of options. Each option 
consists of an option header and an option value. The opthdr structure 
gives the format of the option header: 

struct opthdr { 
long level; 
long name; 
long len; 

} ; 

/* protocol level affected */ 
/* option to modify */ 
/* length of option value (in bytes) * / 

The option value must be a mUltiple of sizeof(long) bytes in length, 
and must immediately follow the option header. Following the option 
value is the header of the next option, if present. 

To get the values of options, set the flags field of the t _ optmgmt struc
ture to T _CHECK. It is not necessary to set the len fields in the option 
headers to the expected lengths of the option values, nor is it neces
sary to provide space between option headers for the option values to 
be stored (the len fields should be set to zero and the option headers 
should be adjacent). A new options buffer will be formatted and 
returned to the user. Note that T_CHECK may have failed even if 
t _ optmgmt returns zero. The user must check the flags field of the 
returned t_optmgmt structure. If this field contains T_FAILURE, one 
or more of the options were invalid. 

July 15, 1989 INTR0-7 



INTRO (ADMP) INTRO (ADMP) 

To set options, set the flags field of the t _ optmgmt structure to 
T_NEGOTIATE. 

To retrieve the default values of all options, set the flags field of the 
t optmgmt structure to T_DEFAULT. For this operation, no input 
buffer should be specified. 

Note 

System V STREAMS TCP/lP man pages frequently cite appropriate 
RFCs (Requests for Comments). RFCs can be obtained from the DDN 
Network Information Center, SRI International, Menlo Park, CA 
94025. 

See Also 

ioctl(SSC), socket(SSC), coptmgmt(NSL), tcp(ADMP). 

July 15, 1989 INTR0-8 



ARP (ADMP) ARP (ADMP) 

arp 
Address Resolution Protocol 

Description 

ARP is a protocol used to map dynamically between DARPA Internet 
and 10Mb/s Ethernet addresses. It is used by all the 10Mb/s Ethernet 
interface drivers running the Interne~ protocols. 

ARP caches Internet-Ethernet address mappings. When an interface 
requests a mapping for an address not in the cache, ARP queues the 
message which requires the mapping and broadcasts a message on the 
associated network requesting the address mapping. If a response is 
provided, the new mapping is cached and any pending message is 
transmitted. ARP will queue at most one packet while waiting for a 
mapping request to be answered; only the most recently "transmitted" 
packet is kept. The ARP protocol is implemented by a STREAMS 
driver to do the protocol negotiation, and by a separate STREAMS 
module to do the address translation. 

To facilitate communications with systems that do not use ARP, ioetl s 
are provided to enter and delete entries in the Internet-to-Ethernet 
tables. Usage: 

#include <sys/ioctl.h> 
#include <sys/socket.h> 
#include <netlif.h> 
struct arpreq arpreq; 

ioctl(s, SIOCSARP, (caddr_t)&arpreq); 
ioctl(s, SIOCGARP, (caddr_t)&arpreq); 
ioctl(s, SIOCDARP, (caddr_t)&arpreq); 

Each ioetl takes the same structure as an argument. SIOCSARP sets an 
ARP entry, SIOCGARP gets an ARP entry, and SIOCDARP deletes an 
ARP entry. These ioetls may be applied to any socket descriptor s, but 
only by the superuser. The arpreq structure is as follows: 

1* ARP ioctl request * / 
struct arpreq { 

struct sockaddr 
struct sockaddr 
int 

} ; 

arp-pa;1* protocol address *j 

arp_ha;1* hardware address */ 
arp_flags;/* flags */ 

/* arp_flags field values */ 
#defineATF _COM Ox02l* completed entry 

(arp_ha valid) *j 

#defineATF _PERM Ox041* permanent entry *j 

August 1, 1989 ARP-1 



ARP (ADMP) 

#defineATF _PUBL Ox081* publish 
(respond for other host) *j 

#defineATF _USETRAILERSOx10/* send trailer packets 
to host *j 

ARP (ADMP) 

The address family for the arp ya soekaddr , must be AF _INET; for 
the arp _ ha soekaddr it must be AF _ UNSPEC. The only flag bits which 
may be written are ATF _PERM, ATF _PUBL and ATF _USETRAILERS. 
ATF _PERM causes the entry to be permanent if the ioetl call succeeds. 
The peculiar nature of the ARP tables may cause the ioetl to fail if 
more than 8 (permanent) Internet host addresses hash to the same slot. 
ATF _PUBL specifies that the ARP code should respond to ARP 
requests for the indicated host coming from other machines. This 
allows a host to act as an "ARP server," which may be useful in con
vincing an ARP-only machine to talk to a non-ARP machine. 

ARP can also negotiate the use of trailer IP encapsulations; trailers are 
an alternate encapsulation used to allow efficient packet alignment for 
large packets despite variable-sized headers. Hosts that wish to 
receive trailer encapsulations indicate so by sending gratuitous ARP 
translation replies along with replies to IP requests; they are also sent 
in reply to IP translation replies. The negotiation is thus fully sym
metrical, in that either or both hosts may request trailers. The 
ATF _ USETRAILERS flag is used to record the receipt of such a reply, 
and enables the transmission of trailer packets to that host. 

ARP watches passively for hosts impersonating the local host (that is, 
a host that responds to an ARP mapping request for the local host's 
address). 

Diagnostics 

duplicate IP address!! sent from ethernet address: %x:%x:%x:%x:%x:%x. 
ARP has discovered another host on the local network that responds to 
mapping requests for its own Internet address. 

Files 

/dev /inet/ arp 

See Also 

arp(ADMP), ifconfig(ADMN), inet(ADMP). 

August 1, 1989 ARP-2 



e3A (ADMP) e3A (ADMP) 

e3A 
3C501 Ethernet Driver 

Description 

The e3A driver provides an LLI interface to a 3Com 3C50 1 ethernet 
card. As with other network interfaces, e3A interface must have net
work addresses assigned for each adqress family with which it is to be 
used. (Currently, only the Internet address family is supported.) 
These addresses may be set or changed with the SIOCSIFADDR ioctl. 

Files 

/dev/e3A[O-3] 

See Also 

intro(ADMP), inet(ADMP). 

July 15, 1989 e3A-1 



e38 (ADMP) e38 (ADMP) 

e38 
3C503 Ethernet Driver 

Description 

The e3B driver provides an LLI interface to a 3Com 3C503 ethernet 
card. As with other network interfaces, e3B interface must have net
work addresses assigned for each address family with which it is to be 
used. (Currently, only the Internet address family is supported.) 
These addresses may be set or changed with the SIOCSIFADDR ioctl. 

Files 

/dev/e3B[O-3] 

See Also 

intro(ADMP), inet(ADMP). 

July 15, 1989 e38-1 



ELI (ADMP) ELI (ADMP) 

eli 
EMD convergence module 

Description 

Eli acts as a convergence module between the EMD Ethernet Driver, 
and another STREAMS driver or module. Eli provides an LLI compa
tible interface, which is expected by ip(ADMP). Eli must be pushed 
on the STREAM between ip and emd. 

It is expected that since the 10base5 driver is now available as a prod
uct, EMD will no longer be used, and eli will become obsolete. 

See Also 

strcf(SFF), ip(ADMP). 

July 15, 1989 ELI-1 



ICMP (ADMP) ICMP (ADMP) 

icmp 
Internet Control Message Protocol 

Syntax 

#include <sys/socket.h> 
#include <netinet/in.h> 

s = socket{AF _INET, SOCK_RAW, proto); 

Description 

ICMP is the error and control message (or device) protocol used by IP 
and the Internet protocol family. It may be accessed through a "raw 
socket" for network monitoring and diagnostic functions. The proto 
parameter to the socket call to create an ICMP socket is obtained from 
getprotobyname . [See getprotoent(SLIB).] ICMP sockets are connec
tionless, and are normally used with the sendto and recvfrom calls; the 
connect (SSC) call may also be used to fix the destination for future 
packets (in which case the read(S) or recv(SSC) and write(S) or 
send(SSC) system calls may be used). 

Outgoing packets automatically have an IP header prepended to them 
(based on the destination address). Incoming packets are received 
with the IP header and options intact. 

Diagnostics 

A socket operation may fail with one of the following errors returned: 

[EISCONN] 

[ENOTCONN] 

[ENOSR] 

when trying to establish a connection on a socket 
that already has one, or when trying to send a 
datagram with the destination address specified and 
the socket already connected; 

when trying to send a datagram, but no destination 
address is specified, and the socket has not been 
connected; 

when the system runs out of memory for an internal 
data structure; 

[EADDRNOTAV AIL] 

August 1, 1989 

when an attempt is made to create a socket with a 
network address for which no network interface 
exists. 

ICMP-1 



ICMP (ADMP) 

Files 

/dev /inet/icmp 

See Also 

ICMP (ADMP) 

send(SSC), recv(SSC), intro(ADMP), inet(ADMP), ip(ADMP). 

August 1, 1989 ICMP-2 



INET (ADMP) 

inet 
Internet protocol family 

Syntax 

#include <sys/types.h> 
#include <netinet/in.h> 

Description 

INET (ADMP) 

The Internet protocol family is a set of protocols using the Internet 
Protocol (IP) network layer and the Internet address fonnat. The Inter
net family provides protocol support for the SOCK_STREAM, 
SOCK_DGRAM, and SOCK_RAW socket types; the SOCK_RAW inter
face provides access to the IP protocol. 

Addressing 

Internet addresses are four-byte quantities, stored in network standard 
fonnat. The include file < sys/in.h > defmes this address as a discrim
inated union. 

Sockets bound to the Internet protocol family use the following 
addressing structure: 

struct sockaddr _in { 
short sin_family; 
u_short sinJ)ort; 
struct in_addr sin_addr; 
char sin_zero[8]; 

}; 

When using sockets, the sin Jamily is specified in host order, and the 
sin_port and sin _addr fields are specified in network order. 

Sockets may be created with the local address INADDR_ANY to affect 
wildcard matching on incoming messages. The address in a 
connect(SSC) or sendto [see send(SSC)] call may be given as 
INADDR_ANY to mean "this host." The distinguished address 
INADDR_BROADCAST is allowed as a shorthand for the broadcast 
address on the primary network if the first network configured sup
ports broadcast. 

When using the Transport Layer Interface (TLI) , transport providers 
such as tcp(ADMP) support addresses whose lengths vary from eight 
to sixteen bytes. The eight byte fonn is the same as a sockaddr _in 
without the sin_zero field. The sixteen byte fonn is identical to 

August 1, 1989 INET-1 



INET (ADMP) INET (ADMP) 

sockaddr _in. Additionally, when using TLI, the sinJamily field is 
accepted in either host or network order. 

Protocols 

The Internet protocol family is comprised of the IF transport protocol, 
Internet Control Message Protocol (lCMP), Transmission Control Pro
tocol (TCP), and User Datagram Protocol (UDP). TCP is used to sup
port the SOCK_STREAM abstraction; UDP is used to support the 
SOCK_DGRAM abstraction. A raw. interface to IF is available by 
creating an Internet socket of type SOCK_RA W. The ICMP message 
protocol is accessible from a raw socket. 

The 32-bit Internet address contains both network and host parts. It is 
frequency-encoded; the most significant bit is clear in Class A 
addresses, in which the high-order 8 bits are the network number. 
Class B addresses use the high-order 16 bits as the network field, and 
Class C addresses have a 24-bit network part. Sites with a cluster of 
local networks and a connection to the DARPA Internet may choose to 
use a single network number for the cluster; this is done by using sub
net addressing. The local (host) portion of the address is further subdi
vided into subnet and host parts. Within a subnet, each subnet appears 
to be an individual network; externally, the entire cluster appears to be 
a single, uniform network requiring only a single routing entry. Sub
net addressing is enabled and examined by the following ioctl (S) 
commands on a datagram socket in the Internet "communications 
domain"; they have the same form as the SIOCIFADDR command. 
[See intro(ADMP).] 

SIOCSIFNETMASK 
Set interface network mask. The network mask 
defines the network part of the address; if it con
tains more of the address than the address type 
would indicate, then subnets are in use. 

SIOCGIFNETMASK 
Get interface network mask. 

See Also 

ioctl(S), socket(SSC), intro(ADMP), intro(SFF), icmp(ADMP), 
ip(ADMP), tcp(ADMP), udp(ADMP). 

Note 

The Internet protocol support is subject to change as the Internet pro
tocols develop. Users should not depend on details of the current 
implementation, but rather the services exported. 

August 1, 1989 INET-2 



IP (ADMP) 

ip 
Internet Protocol 

Syntax 

#include <sys/socket.h> 
#include <netinet/in.h> 

s = socket(AF _INET, SOCK_RAW, proto); 

Description 

IP (ADMP) 

IP is the network layer protocol used by the Internet protocol family. 
Options may be set at the IP level when using higher-level protocols 
that are based on IP (such as TCP and UDP). It may also be accessed 
through a "raw socket" or device when developing new protocols or 
special purpose applications. 

A single generic option IP _OPTIONS, is supported at the IP level, and 
may be used to provide IP options to be transmitted in the IP header of 
each outgoing packet. Options are set with setsockopt and examined 
with getsockopt . [See getsockopt(SSC).] The format of IP options to 
be sent is that specified by the IP protocol specification, with one 
exception: the list of addresses for Source Route options must include 
the fust-hop gateway at the beginning of the list of gateways. The 
fIrst-hop gateway address will be extracted from the option list and 
the size adjusted accordingly before use. IP options may be used with 
any socket type in the Internet family. 

Raw IP sockets are connectionless, and are normally used with the 
sendto and recvfrom calls; the connect (SSC) call may also be used to 
fIx the destination for future packets (in which case, the read(S) or 
recv(SSC), and write(S) or send(SSC) system calls may be used). 

If proto is 0, the default protocol IPPROTO_RAW is used for outgoing 
packets, and only incoming packets destined for that protocol are 
received. If proto is non-zero, that protocol number will be used on 
outgoing packets and to fIlter incoming packets. Proto must be speci
fIed in sockcf(SFF). 

Outgoing packets automatically have an IP header prepended to them 
(based on the destination address given and the protocol number the 
socket is created with). Incoming packets are received with IP header 
and options intact. 

August 1, 1989 IP-1 



IP (ADMP) IP (ADMP) 

Diagnostics 

A socket operation may fail with one of the following errors returned: 

[EISCONN] 

[ENOTCONN] 

[ENOSR] 

when trying to establish a connection on a socket 
which already has one, or when trying to send a 
datagram with the destination address specified and 
the socket already connected; 

when trying to send a datagram, but no destination 
address is specified, and the socket has not been 
connected; . 

when the system runs out of memory for an internal 
data structure; 

[EADDRNOTAV AIL] 
when an attempt is made to create a socket with a 
network address for which no network interface 
exists. 

The following errors specific to IP may occur when setting or getting 
IP options: 

[EINVAL] 

[EINVAL] 

Files 

/dev /inet/ip 
/dev /inet/rip 

See Also 

An unknown socket option name was given. 

The IP option field was improperly fonned; an 
option field was shorter than the minimum value or 
longer than the option buffer provided. 

getsockopt(SSC), send(SSC), recv(SSC), sockcf(SFF), intro(ADMP), 
icmp(ADMP), inet(ADMP). 

August 1, 1989 IP-2 



LLCLOOP (ADMP) 

IIcloop 
software loopback network interface 

Syntax 

#include <sys/socket.h> 
#include <netinetlin.h> 
struct sockaddr In sin; 

s = socket(AF _ INET, SOCK_XXX, 0); 

sin.sin_addr.s_addr = htonl (INADDR_ANY); 
bind(s, (char *)&sin, sizeof(sin)); 

Description 

LLCLOOP (ADMP) 

The llcloop interface is a software loopback mechanism which may be 
used for performance analysis, software testing, and/or local commu
nication. As with other network interfaces, the loopback interface 
must have network addresses assigned for each address family with 
which it is to be used. (Currently, only the Internet address family is 
supported.) These addresses may be set or changed with the SIOCSI
FADDR ioetl. The loopback interface should be the fIrst one confIg
ured, otherwise nameserver lookups for hostnames of other interfaces 
may fail. 

Files 

/dev/llcloop 

See Also 

intro(ADMP), inet(ADMP). 

August 1, 1989 LLCLOOP-1 



SLIP (ADMP) SLIP (ADMP) 

slip 
serial line IP network interface 

Description 

The slip interface is a driver that allows IF datagrams to be sent over 
nonnal serial lines. This is useful for connecting machines that do not 
have Ethernet hardware. As with Qther network interfaces, the slip 
interface must have network addresses assigned for each address fam
ily with which it is to be used. (Currently, only the Internet address 
family is supported.) These addresses may be set or changed with the 
SIOCSIFADDR ioct!. 

See Also 

ifconfig(ADMN), slattach(ADMN), sldetach(ADMN), intro(ADMP), 
inet(ADMP). 

July 15, 1989 SLlP-1 



SOCK (ADMP) SOCK (ADMP) 

sock 
Socket Interface Driver 

Description 

The socket driver is used to provide socket emulation to applications. 
Sockets are an alternate entry point into transport providers, such as 
tcp(ADMP). The socket driver is a character device that acts as an 
alternate stream head, augmenting' the functions of the standard 
stream head. It also provides support for miscelleanous functions such 
as select(SSC). 

FILES 

/dev /socksys 

SEE ALSO 

ifconfig(ADMN), intro(SSC), slattach(ADMN), sldetach(ADMN), 
intro(ADMP), inet(ADMP) 

July 15, 1989 SOCK-1 



TCP (ADMP) 

tcp 
Internet Transmission Control Protocol 

Syntax 

#include <sys/socket.h> 
#include <netinet/in.h> 

s = socket(AF _ INET, SOCK_STREAM, 0); 

Description 

TCP (ADMP) 

The TCP protocol provides reliable, flow-controlled, two-way 
transmission of data. It is a byte-stream protocol used to support the 
SOCK_STREAM abstraction. TCP uses the standard mternet address 
fOImat and, in addition, provides a per-host collection of "port 
addresses." Thus, each address is composed of an mternet address 
specifying the host and network, with a specific TCP port on the host 
identifying the peer entity. 

Sockets using the tcp protocol are either "active" or "passive." 
Active sockets initiate connections to passive sockets. By default, 
TCP sockets are created active; to create a passive socket, the 
listen (SSC) system call must be used after binding the socket with the 
bind(SSC) system call. Only passive sockets may use the 
accept(SSC) call to accept incoming connections. Only active sock
ets may use the connect (SSC) call to initiate connections. 

Passive sockets may "underspecify" their location to match incoming 
connection requests from mUltiple networks. This technique, called 
"wildcard addressing," allows a single server to provide service to 
clients on multiple networks. To create a socket that listens on all net
works, the Internet address INADDR_ANY must be bound. The TCP 
port may still be specified at this time; if the port is not specified, the 
system will assign one. Once a connection has been established, the 
socket's address is fixed by the peer entity's location. The address 
assigned the socket is the address associated with the network inter
face through which packets are being transmitted and received. Nor
mally, this address corresponds to the peer entity's network. 

TCP supports one socket option that is set with setsockopt and tested 
with getsockopt . [See getsockopt(SSC).] Under most circumstances, 
TCP sends data when it is presented; when outstanding data has not 
yet been acknowledged, it gathers small amounts of output to be sent 
in a single packet once an acknowledgment is received. For a small 
number of clients, such as window systems that send a stream of 
mouse events that receive no replies, this packetization may cause sig
nificant delays. Therefore, TCP provides a boolean option, 

August 1, 1989 TCP-1 



TCP (ADMP) TCP (ADMP) 

TCP _NODELAY (from <netinet/tcp.h> , to defeat this algorithm. The 
option level for the setsockopt call is the protocol number for TCP, 
available from getprotobyname . [See getprotoent(SLIB).] 

Options at the IP transport level may be used with TCP; see 
ip (ADMP). Incoming connection requests that are source-routed are 
noted, and the reverse source route is used in responding. 

TCP is also available as a TLI connection-oriented protocol via the 
special file Idev/inet/tcp. TCP options are supported via the TLI 
options mechanism. 

TCP provides a facility, one-packet mode, that attempts to improve 
performance over Ethernet interfaces that cannot handle back-to-back 
packets. One-packet mode may be set by ifconfig (lM) for such an 
interface. On a connection that uses an interface for which one-packet 
mode has been set, TCP attempts to prevent the remote machine from 
sending back-to-back packets by setting the window size for the con
nection to the maximum segment size for the interface. 

Certain TCP implementations have an internal limit on packet size 
that is less than or equal to half the advertised maximum segment size. 
When connected to such a machine, setting the window size to the 
maximum segment size would still allow the sender to send two pack
ets at a time. To prevent this, a "small packet size" and a "small 
packet threshold" may be specified when setting one-packet mode. If, 
on a connection over an interface with one-packet mode enabled, TCP 
receives a number of consecutive packets of the small packet size 
equal to the small packet threshold, the window size is set to the small 
packet size. 

Diagnostics 

A socket operation may fail with one of the following errors returned: 

[EISCONN] when trying to establish a connection on a socket 
which already has one; 

[ENOSR] when the system runs out of memory for an internal 
data structure; 

[ETlMEDOUT] when a connection was dropped due to excessive 
retransmissions 

[ECONNRESET] when the remote peer forces the connection to be 
closed; 

[ECONNREFUSED] 

August 1, 1989 

when the remote peer actively refuses connection 
establishment (usually because no process is listen
ing to the port); 

TCP-2 



TCP (ADMP) TCP (ADMP) 

[EADDRINUSE] when an attempt is made to create a socket with a 
port which has already been allocated; 

[EADDRNOTAVAIL] 

Files 

/dev /inet/tcp 

See Also 

when an attempt is made to create a socket with a 
network address for which no network interface 
exists. 

ifconfig(ADMN), getsockopt(SSC), socket(SSC), intro(ADMP), 
inet(ADMP), ip(ADMP). 

August 1, 1989 TCP-3 



UDP (ADMP) UDP (ADMP) 

udp 
Internet User Datagram Protocol 

Syntax 

#include <sys/socket.h> 
#include <netinet/in.h> 

s = socket(AF _INET, SOCK_DGRAM, 0); 

Description 

UDP is a simple, unreliable datagram protocol that is used to support 
the SOCK_DGRAM abstraction for the Internet protocol family. UDP 
sockets are connectionless, and are nonnally used with the sendto and 
recvfrom calls; the connect (SSC) call may also be used to fix the des
tination for future packets (in which case, the recv(SSC), or read(S) 
and send(SSC), or write(S) system/library calls may be used). In 
addition, UDP is available as TLI connectionless transport via the spe
cial file Idev/inet/udp. 

UDP address formats are identical to those used by TCP. In particular, 
UDP provides a port identifier in addition to the normal Internet 
address format. Note that the UDP port space is separate from the TCP 
port space (that is, a UDP port may not be "connected" to a TCP port). 
In addition, broadcast packets may be sent (assuming the underlying 
network supports this) by using a reserved broadcast address; this 
address is network interface-dependent. 

Options at the IP transport level may be used with UDP; see 
ip(ADMP). 

Diagnostics 

A socket operation may fail with one of the following errors returned: 

[EISCONN] 

[ENOTCONN] 

August 1, 1989 

when trying to establish a connection on a socket 
which already has one, or when trying to send a 
datagram with the destination address specified and 
the socket already connected; 

when trying to send a datagram, but no destination 
address is specified, and the socket has not been 
connected; 

UDP-1 



UDP (ADMP) UDP (ADMP) 

[ENOSR] when the system runs out of memory for an internal 
data structure; 

[EADDRINUSE] when an attempt is made to create a socket with a 
port that has already been allocated; 

[EADDRNOTAV AIL] 

Files 

/dev /inet/udp 

See Also 

when an attempt is made to create a socket with a 
network address for which no network interface 
exists. 

getsockopt(SSC), recv(SSC), send(SSC), socket(SSC), intro(ADMP), 
inet(ADMP), ip(ADMP), RFC768. 

August 1, 1989 UDP-2 



VTY (ADMP) VTY (ADMP) 

vty 
pseudo terminal slave driver 

ttyp 
pseudo terminal master driver 

Description 

The ttyp and vty drivers together provide support for a device-pair 
tenned a pseudo terminal. A pseudo tenninal is a pair of character de
vices, a master device and a slave device. The slave device provides 
processes an interface identical to that described in termio (ADMP). 
However, whereas all other devices which provide the interface 
described in termio (ADMP) have a hardware device of some sort 
behind them, the slave device has, instead, another process manipulat
ing it through the master half of the pseudo tenninal. That is, anything 
written on the master device is given to the slave device as input and 
anything written on the slave device is presented as input on the mas
ter device. 

The following ioetl call applies only to pseudo tenninals: 

TIOCPKT 
Enable/disable packet mode. Packet mode is enabled by specify
ing (by reference) a nonzero parameter and disabled by specifying 
(by reference) a zero parameter. When applied to the master side 
of a pseudo tenninal, each subsequent read from the terminal will 
return data written on the slave part of the pseudo terminal pre
ceded by a zero byte (symbolically defined as TIOCPKT_DATA), 
or a single byte reflecting control status infonnation. In the latter 
case, the byte is an inclusive-or of zero or more of the bits: 

TIOCPKT_FLUSHREAD 
whenever the read queue for the tenninal is flushed. 

TIOCPKT_FLUSHWRITE 
whenever the write queue for the tenninal is flushed. 

TIOCPKT_STOP 
whenever output to the tenninal is stopped a la "S. 

TIOCPKT_START 
whenever output to the tenninal is restarted. 

TIOCPKT_DOSTOP 
whenever t_stope is "S and t_starte is "Q. 

July 15, 1989 VTY-1 



VTY (ADMP) VTY (ADMP) 

TIOCPKT _NOSTOP 
whenever the start and stop characters are not "'srQ. 

While this mode is in use, the presence of control status informa
tion to be read from the master side may be detected by a select for 
exceptional conditions. 

This mode is used by rlogin(TC) and rlogind(ADMN) to imple
ment a remote-echoed, locally "SrQ flow-controlled remote login 
with proper back-flushing of output; it can be used by other similar 
programs. 

Files 

/dev/ptyp[O-fj[O-fj 
/dev/ttyp[O-f] [O-fj 

See Also 

termio(ADMP). 

July 15, 1989 

master pseudo terminals 
slave pseudo terminals 

VTY-2 



Contents 

Formats of Files Used by NetY'.;orking Commands (SFF) 

intro 
aliases 
hosts 
hosts.equiv 
inetd 
localhosts 
netrc 
networks 
protocols 
resolver 
rhosts 
sendmail.cf 
services 
sockcf 
strcf 
uucpindomain 

introduction to files 
aliases file for sendmail 
list of hosts on network 
list of trusted hosts 
configuration file for inetd 
configuration file for sendmail 
login file for remote networks 
names and numbers for the Internet 
list of Internet protocols 
resolver configuration file 
remote equivalent users 
configuration file for sendmail 
list of Internet services 
socket configuration file 
STREAMS configuration file for STREAMS TCP/IP 
configuration file for sendmail 

-i-



INTRO (SFF) INTRO (SFF) 

intra 
introduction to formats of files used by networking 
commands 

Description 

This section outlines the fonnats of various files. The C struct 
declarations for the file fonnats are given where applicable. Usually, 
these structures can be found in header files under the directories 
lusr/include, lusr/includel net, lusr/includel netinet, or 
lusr/includel sys. 

References of the type named(ADMN) refer to entries found in Sec
tion ADMN of the TCPIP Network Administrator's Reference. 

August 1, 1989 INTR0-1 



ALIASES ( SFF) ALIASES ( SFF) 

aliases 
aliases file for sendmail 

Syntax 

lusr /lib/ aliases 

Description 

This file describes user id aliases used by lusrlliblsendmail. It is for
matted as a series of lines of the form 

The name is the name to alias, and the name n are the aliases for that 
name. Lines beginning with white space are continuation lines. Lines 
beginning with '#' are comments. 

Aliasing occurs only on local names. Loops can not occur, since no 
message will be sent to any person more than once. 

After aliasing has been done, local and valid recipients who have a 
" . forward " file in their home directory have messages forwarded to 
the list of users defined in that file. 

See Also 

sendmail(ADMN) 

August 1 J 1989 ALiASES-1 



HOSTS (SFF) HOSTS (SFF) 

hosts 
list of hosts on network 

Description 

The file Jete/hosts is a list of hosts that share the network, including 
the local host. It is referred to by programs that need to translate 
between host names and DARPA Internet addresses when the name 
server is not being used [See named(ADMN).] Each line in the file 
describes a single host on the network and consists of three fields 
separated by any number of blanks or tabs: 

address name aliases ... 

where 

address is the DARPA Internet address. Unless another type 
of address is required by some host on the network, 
address should be a Class A address, which takes the 
fonn net .node, where net is the network number from 
/etclnetworks (see networks (4)), that must between 0 
and 127; and node is a value which must be unique 
for each host and be between 0 and 16777215. 

name is the official name of the host. If the host is a com
puter system running UNIX, it must claim this host 
name by executing hostname (TC) when it is initializ
ing itself. 

aliases. . . is a list of alternate names for the host. Aliases can 
be used in network commands in place of the official 
name. 

It is suggested that you specify the hostname and the node name [see 
hostname(TC) and uname(C)] as aliases for one another for each ma
chine listed in the Jete/hosts file. 

The routines which search this file ignore comments (portions of lines 
beginning with #) and blank lines. 

An internet address can actually take one of four fonns: 

A A is a simple 32-bit integer. 

A.B A is an eight-bit quantity occupying the high-order 
byte and B is a 24-bit quantity occupying the remain
ing bytes. This fonn is suitable for a Class A address 
of the form net.node. 

August 1, 1989 HOSTS-1 



HOSTS (SFF) HOSTS (SFF) 

A .B.C A is an eight-bit quantity occupying the high-order 
byte; B is an eight-bit quantity occupying the next 
byte; and C is a 16-bit quantity occupying the remain
ing bytes. This fonn is suitable for a Class B address 
of the fonn 128.11et .node. 

A.B.C D The four parts each occupy a byte in the address. 

Example 

# Engineering network 

192.35.53.1 
192.35.53.2 
192.35.53.85 

Files 

letc/hosts 

See Also 

laizy.Lachman.COM laizy 
laidback.Lachman.COM laidback 
laiter.Lachman.COM laiter# Sun-3/50 [stevea] 

hostname(TC), uname(C), networks(SFF), inet(ADMP). 

August 1, 1989 HOSTS-2 



HOSTS.EQUIV (SFF) HOSTS.EQUIV (SFF) 

hosts.equiv 
list of trusted hosts 

Description 

Hosts.equiv resides in directory fete and contains a list of trusted 
hosts. When an rlogin(1) or rcmd(l) request from such a host is made, 
and the initiator of the request is in letc!passwd, then no further vali
dity checking is done. That is, r/ogin does not prompt for a password, 
and rsh completes successfully. So a remote user is "equivalenced" 
to a local user with the same user ID when the remote user is in 
hosts.equiv. 

The format of hosts.equiv is a list of names, as in this example: 

host! 
host2 

A line consisting of a simple host name means that anyone logging in 
from that host is trusted. The .rhosts file has the same format as 
hosts.equiv. When user XXX executes rlogin or rcmd, the .rhosts file 
from XXX's home directory is conceptually concatenated onto the end 
of hosts.equiv for permission checking. In the special case when the 
user is the super-user then only the f.rhosts file is checked. 

It is also possible to have two entries (separated by a single space) on 
a line of these files. In this case, if the remote host is equivalenced by 
the first entry, then the user named by the second entry is allowed to 
log in as anyone, that is, specify any name to the -1 flag (provided that 
name is in the /ete/passwd file, of course). Thus 

laidbak ez 

allows ez to log in from laidbak as anyone. The usual usage would be 
to put this entry in the .rhosts file in the home directory for derek . 
Then ez may log in as derek when coming from laidbak. 

Files 

I etc! hosts .eq uiv 
$HOMEI.rhost 

See Also 

rlogin(TC), rcmd(TC) 

August 1, 1989 HOSTS.EQUIV-1 



INETD.CONF (SFF) INETD.CONF (SFF) 

inetd.conf 
configuration file for inetd (internet "super-server") 

Description 

inetd.conf is the configuration file for the inetd (SFF) System V 
STREAMS TCP/lP internetworking "super-server". 

The file consists of a series of single-line entries, each entry corre
sponding to a service to be invoked by inetd. These services are 
connection-based, datagram, or "internal". 

Internal services are those supported by the inetd program: these ser
vices are "echo", "discard", "chargen" (character generator), "day
time" (human readable time), and "time" (machine readable time, in 
the form of the number of seconds since midnight, January 1, 1900). 
All of these services are tcp based. 

Each service, including internal services, must have a valid entry in 
letc/services(ADMN). In the case of an internal service, its name 
must correspond to the official name of the service: that is, the first 
entry in /etc/services. 

Each entry has a series of space- or tab-separated fields. (No field, 
except for the last one, may be omitted.) The fields are as follows: 

service name 
Name of a valid service in /etc/services, as described above. 

socket type 
One of "stream", "dgram", or "raw", depending on whether the 
socket type is stream, datagram, or raw [see socket (SSC)]. 

protocol 
Name of a valid protocol (for example, "tcp") specified in 
letc/protocois(ADMN). 

wait/ nowait 
Specifies whether the socket can be made available for new con
nections while there is still data waiting on the socket. The value 
is always "nowait" unless it is a datagram socket. If it is a 
datagram socket, the value is usually "wait", although "nowait" is 
possible in some cases. (Note that tftpd is an exception in that it 
must have "wait" specified, and yet the socket can continue to pro
cess messages on the port.) 

user 
Name of the user as whom the server should run. This allows 
servers to be run with less permission than root. 

August 1, 1989 INETD.CONF-1 



INETD.CONF (SFF) INETD.CONF (SFF) 

server program 
Except in the case of internal services, full pathname of the server 
program to be invoked by inetd when a request is waiting on a 
socket. For an internal service, the value is "internal". 

server program arguments 
Arguments to the server program, starting with argv [0], which is 
the name of the program. For an internal service, the value is 
"internal" . 

Comments are denoted by a "#" at the beginning of a line. 

The distribution inetd.conf file contains prototype entries; refer to 
these entries when editing the file. 

Example 

ftp streamtcp nowait root letc/ftpd ftpd 
telnet streamtcp nowait root letc/telnetd telnetd 
login streamtcp nowait root letc/rlogind rlogind 
exec stream tcp nowait root letc/rexecd rexecd 
finger streamtcp nowait sync letc/fingerd fingerd 
echo streamtcp nowait root internal 
discard stream tcp nowait root internal 
chargen stream tcp nowait rootinternal 
daytime stream tcp nowait rootinternal 
time streamtcp nowait root internal 
echo dgram udp wait root internal 
discarddgram udp wait root internal 
chargen dgram udp wait rootinternal 
daytime dgram udp wait rootinternal 
time dgram udp wait root internal 

See Also 

fingerd(ADMN), ftpd(ADMN), inetd(ADMN), rexecd(AD:MN), rlog
in(ADMN), rshd(ADMN), telnetd(ADMN), tftpd(ADMN), 
protocols(SFF), services(SFF). 

August 1, 1989 INETD.CONF-2 



LOCALHOSTS (SFF) LOCAL HOSTS (SFF) 

localhosts 
configuration file for sendmail 

Description 

Localhosts is a file that lists hosts that are to be treated as equivalent 
by sendmail(ADMN). In the distributed configuration files, an 
equivalent host is in class S. Sendmail also looks at letc/hosts.equiv. 

The fonnat of Ioealhosts is very simple. It consists of a list of host
names, one per line. There is no support for comments. 

Example 

Files 

laidbak 
laiter 
laisagna 

/usr/lib/mail/localhosts 

See ALso 

hosts.equiv(SFF), sendmail(ADMN), 
uucpindomain(SFF). 
Sendmail Installation and Operations Guide. 

August 1, 1989 

sendmail(SFF), 

LOCALHOSTS-1 



NETRC (SFF) NETRC (SFF) 

netrc 
login file for remote networks 

Description 

If the .netre file exists, it will be used by Itp (TC) for automatic login 
on the remote host. For each remote host, the file contains a one-line 
entry that describes the login data for the user on that host. 

An entry may consist of up to three blank -separated fields introduced 
by keywords. The keyword is followed by the literal data needed for 
login. The following keywords are available: 

machine 

login 

password 

The hostname of the machine. 

The user login name for that host. 

(Optional) The user's password on that host. 
NOTE: The literal password must be given in clear 
text; it is not encrypted. 

If the .netre file includes the password feature, permissions on the file 
must be set to prohibit reading by group and others; the file will not 
otherwise take effect. 

Example 

The following example entry allows automatic login on the "admin" 
host by a user named "superuser" whose password is "open". 

machine admin login superuser password open 

Files 

$HOME/.netrc 

See Also 

ftp(TC). 

Warning 

For security reasons, use of the password feature is not recommended. 

August 1, 1989 NETRC-1 



NETWORKS (SFF) NETWORKS (SFF) 

networks 
names and numbers for the internet 

Description 

The file fete/networks lists networks on the internet. Each line 
describes a single network and consists of the following blank 
separated fields: 

name number aliases ... 

where 

name is the official name of the network. All hosts on the 
internet should use the same official name for a given 
network. 

number is the network number, which serves as part of the 
DARPA Internet address for each host on the internet. 
All hosts on the internet must use the same number 
for a given network. 

aliases... is a blank-separated list of local aliases for the net
work. 

The routines which search this file ignore comments 
(portions of lines beginning with #) and blank lines. 

Example 

# Building 1 Internet 
Lachman-Net 192.35.52 
LAI-TCP-Net 192.35.53 

See Also 

hosts(SFF). 

Files 

/etc/networks 

August 1, 1989 

#General 
#Tep Development 

NETWORKS-1 



PROTOCOLS (SFF) PROTOCOLS (SFF) 

protocols 
list of Internet protocols 

Description 

The file /etc/protocols lists known DARPA Internet protocols. Each 
line describes a single protocol and consists of the following blank 
separated fields: 

name number aliases .. , 

where 

name is the official name of the protocol. 

number is the protocol number. 

aliases ... is a blank-separated list of local aliases for the proto
col. 

The routines which search this file ignore comments (portions of 
lines beginning with #) and blank lines. 

Protocol names and numbers are specified by the DDN Network In
fonnation Center. Do not change this file. 

Files 

fetc/protocols 

See Also 

socket(SSC), slink(ADMN), Idsocket(ADMN). 

August 1, 1989 PROTOCOLS-1 



RESOLVER (SFF) RESOLVER (SFF) 

resolver 
resolver configuration file 

Syntax 

/etc/resolv.conf 

Description 

The resolver configuration file contains infonnation that is read by the 
resolver routines the first time they are invoked by a process. The file 
is designed to be human readable and contains a list of name-value 
pairs that provide various types of resolver infonnation. 

On a nonnally configured system this file should not be necessary. 
The only name server to be queried will be on the local machine and 
the domain name is retrieved from the system. 

The different configuration options are: 

nameserver 
followed by the Internet address (in dot notation) of a name server 
that the resolver should query. At least one name server should be 
listed. Up to MAXNS (currently 3) name servers may be listed; if 
more than one name server is specified, the resolver library queries 
each one in the order listed. If no nameserver entries are present, 
the default is to use the name server on the local machine. The 
algorithm used is to try a name server, and if the query times out, 
try the next, until out of name servers; then repeat trying all the 
name servers until a maximum number of retries are made. 

domain 
followed by an domain name, that is the default domain to append 
to names that do not have a dot in them. If no domain entries are 
present, the domain returned by gethostname (SLIB) is l.lsed 
(everything after the first '.'). Finally, if the host name does not 
contain a domain part, the root domain is assumed. 

The mune value pair must appear on a single line, and the keyword 
(e.g. nameserver) must start the line. The value follows the keyword, 
separated by white space. 

August 1, 1989 RESOLVER-1 



RESOLVER (SFF) RESOLVER (SFF) 

Example 

domain Lachman.COM 
nameserver 192.35.52.1 
nameserver 192.35.52.2 

Files 

/etc/resolv.conf 

See Also 

named(ADMN), resolver(SFF), hosts(ADMN), byteorder(SLIB), 
rexec(SLIB). 
Name Server Operations Guide/or BIND 

August 1, 1989 RESOLVER-2 



RHOSTS (SFF) RHOSTS (SFF) 

rhosts 
remote equivalent users 

Description 

These files grant pennission for remote users to use local user names 
without knowing the corresponding user passwords. This is known as 
making the remote user "equivalent" to the local user, and is con
venient, for example, when one person owns user names on more than 
one host. 

If a user's home directory contains a file named .rhosts, remote users 
specified in the file are equivalent to the local user. Each user specifi
cation in the file consists of the remote user host name and user name, 
separated by a space. (If an asterisk is substituted for either name, any 
name will match.) For security reasons, .rhosts must belong to the 
user granting the equivalence or to root. 

The file letdhosts.equiv is a list of remote hosts with matching-name 
equivalence. The file lists remote hosts one per line. On each host 
listed in letc/hosts.equiv, a remote user with the same name as a local 
user is equivalent to the local user. In effect, the users are the same if 
the names are the same. 

Files 

$HOMEj.rhosts 
letclhosts.equiv 

See Also 

rcmd(TC), rcp(TC), rlogin(TC). 

Warnings 

When a system is listed in letc/hosts.equiv, its security must be as 
good as local security. One insecure system mentioned in 
letdhosts.equiv can compromise the security of an entire network. 

August 1, 1989 RHOSTS-1 



SENDMAIL (SFF) SENDMAIL (SFF) 

sendmail.cf 
configuration file for sendmail 

Description 

Sendmail.cf is the configuration file for the sendmail mail router. A 
full description of this file can be found in chapter nine of the 
STREAMS TCP User's Guide. 

Files 

lusr/lib/sendmail.cf 

See Also 

sendmail(ADMN), localhosts(SFF), uucpindomain(SFF). 
Sendmaillnstallation and Operations Guide. 

November 25, 1989 SENDMAIL-1 



SERVICES ( SFF) SERVICES (SFF) 

services 
list of Internet services 

Description 

The file /etc/services lists known DARPA Internet services. Each line 
describes a single service and consists of the following blank 
separated fields: 

name number/protocol aliases ... 

where: 

name is the official name of the service. 

number is the service number. 

protocol is the name of the protocol used by the service. (See 
protocols (SFF).) 

aliases ... is a blank-separated list of local aliases for the ser
vice. 

The routines which search this file ignore comments (portions of lines 
beginning with #) and blank lines. 

Service names and numbers are specified by the DDN Network Infor
mation Center: Do not change this file unless you are familiar vrith 
DARPA Internet internals. 

Files 

/etc/services 

See Also 

inetd(ADMN), inetd.conf(SFF). 

August 1, 1989 SERVICES-1 



SOCKCF (SFF) SOCKCF (SFF) 

/ete/soekef 
socket configuration file 

Description 

letc/sockcf contains infonnation about the protocols that are to be 
accessed via the socket interface. This file is read by 
ldsocket (ADMN) at boot time. 

letc/sockcf contains one line per protocol which specifies the address 
family, protocol type, protocol number, flags, and STREAMS device 
for the protocol. The flags describe the behavior of the protocol. 

The fonnat of a protocol line is: 

Family Type Protocol Flags Device 

Family can be an address family name or an integer. The following 
address family names are recognized: 

Name Value Description 

UNSPEC 0 Unspecified 
UNIX 1 Local to host (pipes, portals) 
!NET 2 Internetwork: TCP, UDP, etc. 
IMPLINK 3 Arpanet IMP addresses 
PUP 4 PUP protocols, e.g. BSP 
CHAOS 5 MIT CHAOS protocols 
NS 6 XEROX NS protocols 
NBS 7 NBS protocols 
ECMA 8 European Computer Manufacturers 
DATAKIT 9 Datakit protocols 
CCITT 10 CCITT protocols: X.25, etc. 
SNA 11 IBMSNA 
DECnet 12 DECnet 
DLI 13 Direct Data Link Interface 
LAT 14 LAT 
HYLINK 15 NSC Hyperchannel 
APPLETALK 16 Apple Talk 

Type can be a type name or an integer. The following type names are 
recognized: 

Name 

STREAM 
DGRAM 
RAW 
RDM 
SEQPACKET 

August 1, 1989 

Value 

1 
2 
3 
4 
5 

Description 

Stream socket 
Datagram socket 
Raw protocol interface 
Reliably delivered message 
Sequenced packet stream 

SOCKCF-1 



SOCKCF (SFF) SOCKCF (SFF) 

Protocol is the protocol number associated with the protocol. 

Flags is a string of flag characters describing the protocol. The recog
nized flag characters are: 

M This protocol supports atomic messages only. 

C Connections are required. 

A Messages contain addresses. 

R Rights can be passed with this protocol. 

P The protocol number must be bound to the stream. This is 
required to support raw IP sockets. 

letc/sockcf may contain comments, which are delimited by '#' and 
newline. 

The standard letdsockcf contains the following entries: 

INET STREAM 6 C Idev/ineVtcp 
INET DGRAM 17 AM Idev/ineVudp 
INET RAW 1 AM Idev/ineVicmp 
INET RAW 255 AMP Idev/ineVrip 

Because of the way the kernel builds the protocol switch table, the last 
protocol specified for a type becomes the default. For this reason, it is 
important to ensure that the default protocol is the last one listed. 

Files 

/etc/sockcf 

See Also 

Idsocket(ADMN), intro(ADMP), socket(SSC). 

August 1, 1989 SOCKCF-2 



STRCF (SFF) STRCF (SFF) 

/etc/strcf 
STREAMS Configuration File for STREAMS TCP/IP 

Description 

Jetc/strcf contains the script that is executed by slink(SFF) to perform 
the STREAMS configuration operations required for STREAMS 
TCP/IP. 

The standard /ete/strcf file contains several functions that perform 
various configuration operations, along with a sample boot function. 
Normally, only the boot function must be modified to customize the 
configuration for a given installation. In some cases, however, it may 
be necessary to change existing functions or add new functions. 

The following functions perform basic linking operations: 

Function tp is used to set up the link between a transport provider, 
such as TCP, and IP. 

# 
# tp - configure transport provider (Le. tcp, udp, icmp) 
# usage: tp devname 
# 
tp { 

p = open $1 
ip = open /devlinetlip 
Iinkp ip 

Function linkint links the specified streams and does a sifname opera
tion with the given name. 

# 
# Iinkint - link interface to ip or arp 
# usage: linkint top bottom ifname 
# 
Iinkint { 

x = link $1 $2 
sifname $1 x $3 

Function aplinkint performs the same function as linkint for an inter
face that uses the arpproc module. 

# 
# aplinkint - like linkint, but arpproc is pushed on dev 
# usage: aplinkint top bottom ifname 
# 

August 1, 1989 STRCF-1 



STRCF (SFF) 

aplinkint { 
push $2 arpproc 
linkint $1 $2 $3 

STRCF (SFF) 

The following functions are used to configure different types of Ether
net interfaces: 

Function uenet is used to configure an Ethernet interface for a cloning 
device driver that uses the unit select ioctl to select the desired inter
face. The interface name is constructed by concatenating the supplied 
prefix and the unit number. 

# 
# uenet - configure ethernet-type interface for cloning driver using 
# unit select 
# usage: uenet ip-fd devname ifprefix unit 
# 
uenet { 

ifname = strcat $3 $4 
dev = open $2 
unitsel dev $4 
aplinkint $1 dev ifname 
dev = open $2 
unitsel dev $4 
arp = open Idev/ineVarp 
linkint arp dev ifname 

Function de net performs the same function as uenet, except that 
DL AITACH is used instead of unit select. 

# 
# denet - configure ethernet-type interface for cloning driver using 
# DL_ATTACH 
# usage: denet ip-fd devname ifprefix unit 
# 
denet { 

ifname = strcat $3 $4 
dev = open $2 
dlattach dev $4 
aplinkint $1 dev ifname 
dev = open devname 
dlattach dev $4 
arp = open Idevlinetlarp 
Iinkint arp dev ifname 

Function cenet is used to configure an Ethernet interface for a cloning 
device driver that uses a different major number for each interface. 
The device name is formed by concatenating the supplied device 

August 1, 1989 STRCF-2 



STRCF (SFF) STRCF (SFF) 

name prefix and the unit number. The interface name is formed in a 
similar manner using the interface name prefix. 

# 
# cenet - configure ethernet-type interface for cloning driver with 
# one major per interface 
# usage: cenet ip-fd devprefix ifprefix unit 
# 
cenet{ 

Function 
senet 

devname = strcat $2 $4 
ifname = strcat $3 $4 
dey = open devname 
aplinkint $1 dey ifname 
dey = open devname 
arp = open Idev/inetlarp 
linkint arp dey ifname 

is used to configure an Ethernet interface for a non-cloning device 
driver. Two different device nodes must be specified for IP and ARP. 

# 
# senet - configure ethernet-type interface for non-cloning driver 
# usage: senet ip-fd ipdevname arpdevname ifname 
# 
senet{ 

dey = open $2 
aplinkint $1 dey $4 
dey = open $3 
arp = open Idev/inetlarp 
linkint arp dey $4 

Function senetc is like senet, except that it allows the specification of 
a convergence module to be used with the ethemet driver (e.g. for the 
3B2 emd driver). 

# 
# senetc - configure ethernet-type interface for non-cloning driver 
# using convergence module 
# usage: senetc ip-fd convergence ipdevname arpdevname ifname 
# 
senetc { 

August 1, 1989 

dey = open $3 
push dey $2 
aplinkint $1 dey $5 
dey = open $4 
push dey $2 
arp = open Idev/inetlarp 

STRCF-3 



STRCF (SFF) STRCF (SFF) 

linkint arp dev $5 

Function loop back is used to configure the loopback interface. 

# 
# loopback - configure loopback device 
# usage: loopback ip-fd 
# 
loopback{ 

dev = open Idev/licioop. 
linkint $1 dev 100 

Function slip is used to configure a SLIP interface. This function is 
not normally executed at boot time. Rather, the slattach (ADMN) 
command runs slink specifying slip on the command line. 

# 
# slip - configure slip interface 
# usage: Slip unit 
# 
slip { 

ip = open Idev/inet/ip 
s = open Idev/slip 
ifname = strcat sl $1 
unitsel s $1 
linkint ip s ifname 

Function boot is called by default when slink is executed. Normally, 
only the interfaces section and possibly the queue params section will 
have to be customized for a given installation. Examples are provided 
for the various Ethernet driver types. 

# 
# boot - boot time configuration 
# 
boot { 

August 1, 1989 

# 
# queue params 
# 
initqp Idevlinetludp rq 819240960 
initqp Idev/inetlip muxrq 819240960 rq 8192 40960 
# 
# transport 
# 
tp Idev/inetltcp 
tp Idev/inetludp 
tp Idev/inet/icmp 
# 
# interfaces 

STRCF-4 



STRCF (SFF) 

Files 

# 
ip = open /dev/inet/ip 
senetc ip eli /dev/emdO /dev/emd1 enO 

# uenet ip /dev/abc en 0 
# denet ip /dev/def en 0 
# cenet ip /dev/ghi en 0 
# senet ip /dev/jkIO /dev/jkI1 enO 

loopback ip 

/etc/strcf 

See Also 

slink(ADMN), intro(ADMP). 

August 1, 1989 

STRCF (SFF) 

STRCF-5 



UUCPINDOMAIN (SFF) UUCPINDOMAIN (SFF) 

uucpindomain 
configuration file for send mail 

Description 

Uucpindomain is a file that lists hosts that are connected by UUCP, 
but should be treated as if they were in the local domain by 
sendmail(1M). In the distributed configuration files, this type of host 
is in class L. 

The format of uucpindomain is very simple. It consists of a list of 
hostnames, one per line. There is no support for comments. 

Example 

Files 

huey 
duey 
louie 

/usr/lib/mail/uucpindomain 

See Also 

hosts.equiv(SFF), localhosts(SFF), sendmail(AD:MN), sendmail(SFF). 
Sendmail Installation and Operations Guide. 

July 15, 1989 UUCPINDOMAIN-1 



P/N-528-210-DD2 

p . 0 . if 5 1 0 2 7 
PAT 050 


