
seQ Streams

Toolkit

Release and Installation Notes

Version 1.0

The Santa Cruz Operation

Infonnation in this document is subject to change without notice and does not represent
a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the terms of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser's personal use.

Portions© 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft
Corporation.
All rights reserved.
Portions © 1983,1984,1985,1986, 1987, 1988 The Santa Cruz Operation, Inc.
All rights reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET
FORTH IN SUBDMSION (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER
SOFTWARE AND SUBDMSION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL
DATA, BOTH AS SET FORTH IN FAR 52.227-7013.

This document was typeset with an IMAGEN® 8/300 Laser Printer.

XENIX is a registered trademark of Microsoft Corporation.

SCQ Document Number: XG-II-I-88-1.0A

Printed: Fri Dec 1.14:58:09 PST 1988

Release and Installation Notes

seo Streams Toolkit
Release and Installation Notes
Version 1.0

1. Preface 1

2. Installing the Streams Toolkit 2

3. Removing the Streams Toolkit 3

4. Distribution 3

1. Preface

seQ Streams
Toolkit

Version 1.0
Release and Installation Notes

November 1, 1988

These notes explain how to install the SeQ Streams Toolkit on a
386 computer running SeQ XENIX System V, release 2.3 or
higher. Do not attempt this installation on a computer running an
earlier version of XENIX, or on a 286 computer.

Manual pages for the following commands are included with these
Release and Installation Notes:

close (S)
dup (S)
exec (S)
exit (S)
fend (S)
getmsg (5)
iocd (S)
open (S)
poll (S)
putmsg (S)
read (S)
signal (S)
sigset (S)
write (S)

Four of these commands are new (getmsg, poll, putmsg, and
sigset). The remainder have new features or references related to
STREAMS. You should place these manual pages in section S of
your existing reference manual. If the command is new, add it to
the section; if it is already present, replace the existing manual
pages with the new set.

XG-II-I-88-1.0 -1- The Santa Cruz Operation

Release and Installation Notes

2. Installing the Streams Toolkit

Follow the steps outlined below to install the SeQ Streams Toolkit:

1. As root, activate custom by entering:

custom

2. Select Add a Supported Product

3. You are prompted to insert distribution volume 1. Insert
the streams diskette and press <Retum>.

4. You see a menu. Select Install one or more packages.

5. You see another menu. Enter toolkit and press <Retum>.

6. You are prompted to insert the SeQ Streams Toolkit
volume 1. Press <Retum>. Files are extracted.

7. You see copyright information and are prompted to enter
your serial number. Enter your SeQ Streams Toolkit serial
number and press <Retum>.

8. You are prompted for your activation key. Enter your SeQ
Streams Toolkit activation key and press <Return>.

9. You are returned to a custom menu. Press <q> to return to
the XENIX prompt.

The installation of the Streams Toolkit is complete.

XG-1l-1-88-1.0 -2- The Santa Cruz Operation

seQ Streams Toolkit

3. Removing the Streams Toolkit

Follow the steps outlined below to remove the SeQ Streams
Runtime System from your computer:

1. As root, activate custom by entering the following
command:

custom

2. Select SeQ Streams Toolkit.

3. Select Remove one or more packages.

4. Enter toolkit and press <Return>.

5. You are returned to a custom menu. Press <q> to return to
the XENIX prompt.

4. Distribution

The Streams Toolkit diskette contains the following files:

./tmp/penns/streamstk

./usr/include/poll.h

./usr/include/ stropts.h

./usr/include/tiuser.h

./usr/include/sys/poll.h

./usr/include/ sys/stream.h

./usr/include/sys/strlog.h

./usr/include/sys/stropts.h

./usr/include/ sys/strstat.h

./usr/include/ sys/tihdr.h

./usr/include/sys/timod.h

./usr/include/ sys/tiuser.h

./lib/386/Slibnsl.a
'/tmp/init.streamst

XG-11-1-88-1.0 - 3- The Santa Cruz Operation

CLOSE (S) CLOSE (S)

Name

close - close a file descriptor

Syntax

int close (tildes)
int tildes;

Description

The fildes argument is a file descriptor obtained from a creat, open,
dup, tcntl, or pipe system call. The close system call closes the file
descriptor indicated by fildes. All outstanding record locks owned by
the process (on the me indicated by fildes) are removed.

If a STREAMS [see intro(S)] me is closed, and the calling process had
previously registered to receive a SIGPOLL signal [see signa/(S) and
sigset(S)] for events associated with that me [see CSETSIG in
streamio(STR)], the calling process will be unregistered for events
associated with the file. The last close for a stream causes the stream
associated with fildes to be dismantled. If O_NDELAY is not set and
there have been no signals posted for the stream, close waits up to 15
seconds, for each module and driver, for any output to drain before
dismantling the stream. If the O_NDELAY flag is set or if there are
any pending signals, close does not wait for output to drain and dis
mantles the stream immediately.

The named file is closed unless one or more of the following is true:

[EBADF]

[EINTR]

[ENOLINK]

See Also

The fildes argument is not a valid open file descrip
tor.

A signal was caught during the close system call.

fildes is on a remote machine and the link to that
machine is no longer active.

creat(S), dup(S), exec(S), fcntl(S), intro(S), open(S), pipe(S),
signal(S), sigset(S).
streamio(STR) in Appendix F of the STREAMS Programmer's Guide.

Diagnostics

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned, and ermo is set to indicate the error.

December 6, 1988 Page 1

DUP (S) DUP (S)

Name

dup - duplicate an open file descriptor

Syntax

int dup (tildes)
int tildes;

Description

The fildes argument is a file descriptor obtained from a creat, open,
dup , fcntl , or pipe system call. The dup system call returns a new file
descriptor having the following in common with the original:

Same open file. (or pipe)

Same file pointer (that is, both file descriptors share one file
pointer)

Same access mode (read, write, or read/write)

The new file descriptor is set to remain open across exec system calls
[see fcntl (S)].

The file descriptor returned is the lowest one available.

The dup system call will fail if one or more of the following is true:

[EBADF]

[EINTR]

[EMFILE]

[ENOLINK]

See Also

The fildes argument is not a valid open file descrip
tor.

A signal was caught during the dup system call.

NOFILES file descriptors are currently open.

Fildes is on a remote machine and the link: to that
machine is no longer active.

close(S), createS), exec(S), fcntl(S), open(S), pipe(S), 10ckf(S).

Diagnostics

Upon successful completion a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned, and errno
is set to indicate the error.

December 6, 1988 Page 1

EXEC (S) EXEC (S)

Name

exec: execl, execv, execle, execve, execlp, execvp - execute a file

Syntax

int execl (path, argO, argl, ••• , argn, (char *)0)
char *path, *argO, *argl, •• ., *argn;

int execv (path, argv)
char *path, *argv[];

int execle (path, argO, argl, ••• , argo, (char *)0, envp)
char *path, *argO, *argl, .•• , *argn, *envp[];

int execve (path, argv, envp)
char *path, *argv[], *envp[];

int execlp (file, argO, argl, •.• , argo, (char *)0)
char *file, *argO, *argl, ... , *argn;

int execvp (file, argv)
char *file, *argv(];

DescriptoR

The exec system call in all its fonns transfonns the calling process
into a new process. The new process is constructed from an ordinary,
executable file called the new process file. This file consists of a
header [see a.out(F)], a text segment, and a data segment. The data
segment contains an initialized portion and an uninitialized portion
(bss). There can be no return from a successful exec because the cal
ling process is overlaid by the new process.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count, argv is an array of character
pointers to the arguments themselves, and envp is an array of charac
ter pointers to the environment strings. As indicated, argc is conven
tionally at least one, and the first member of the array points to a
string containing the name of the file.

The path argument points to a path name that identifies the new pro
cess file.

December 6, 1988 Page 1

EXEC (S) EXEC(S)

The file argument points to the new process flle. The path prefix for
this flle is obtained by a search of the directories passed as the
environment line "PATH =" [see environ (M)]. The environment is
supplied by the shell [see sh(C)].

argO, argJ, ... , argn are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process.
By convention, at least argO must be present and point to a string that
is the same as path (or its last component).

argv is an array of character pointers to null-terminated strings. These
strings constitute the argument list available to the new process. By
convention, argv must have at least one member, and it must point to
a string that is the same as path (or its last component). argv is ter
minated by a null pointer.

envp is an array of character pointers to null-terminated strings.
These strings constitute the environment for the new process. envp is
terminated by a null pointer. For execl and execv, the C run-time
start-off routine places a pointer to the environment of the calling pro
cess in the global cell:

extern char **environ;

and it is used to pass the environment of the calling process to the new
process.

File descriptors open in the calling process remain open in the new
process, except for those whose close-on-exec flag is set; see fcntl (S).
For those flle descriptors that remain open, the me pointer is
unchanged.

Signals set to terminate the calling process will be set to terminate the
new process. Signals set to be ignored by the calling process will be
set to be ignored by the new process. Signals set to be caught by the
calling process will be set to terminate the new process; see signal(S) ..

For signals set by sigset(S), exec will ensure that the new process has
the same system signal action for each signal type whose action is
SIG_DFL, SIG_IGN, or SIG_HOLD as the calling process. However, if
the action is to catch the signal, then the action will be reset to
SIG_DFL, and any pending signal for this type will be held.

If the set-user-ID mode bit of the new process file is set [see
chmod(S)], exec sets the effective user ID of the new process to the
owner ID of the new process flle. Similarly, if the set-group-ID mode
bit of the new process flle is set, the effective group ID of the new pro
cess is set to the group ID of the new process flle. The real user ID and
real group ID of the new process remain the same as those of the cal
ling process.

December 6, 1988 Page 2

EXEC (S) EXEC(S)

The shared memory segments attached to the calling process will not
be attached to the new process [see shmop(S)].

Profiling is disabled for the new process; see profil (S).

The new process also inherits the following attributes from the calling
process:

nice value [see nice (S)]
process ID
parent process ID
process group ID
semadj values [see semop(S)]
tty group ID [see exit(S) and signal(S)]
trace flag [see ptrace(S) request 0]
time left until an alann clock signal [see alarm(S)]
current working directory
root directory
file mode creation mask [see umask(S)]
me size limit [see ulimit(S)]
utime, stime, cutime, and cstime [see times(S)]
me-locks [see jcntl(S) and lockf(S)]

The exec system call will fail and return to the calling process if one
or more of the following is true:

[ENOENT] One or more components of the new process path
name of the file do not exist.

[ENOTDIR] A component of the new process path of the file
prefix is not a directory.

[EACCES] Search permission is denied for a directory listed in
the new process file's path prefix.

[EACCES] The new process file is not an ordinary file.

[EACCES] The new process file mode denies execution per
mission.

[ENOEXEC] The exec is not an execlp or execvp , and the new
process file has the appropriate access permission
but an invalid magic number in its header.

[ETXTBSY] The new process file is a pure procedure (shared
text) file that is currently open for writing by some
process.

[ENOMEM] The new process requires more memory than is
allowed by the system-imposed maximum MAX
MEM.

December 6, 1988 Page 3

EXEC(S) EXEC(S)

[E2BIG] The number of bytes in the new process's argument
list is greater than the system-imposed limit of 5120
bytes.

[EFAULT] Required hardware is not present.

[EFAULT] path, argv, or envp point to an illegal address.

[EAGAIN] Not enough memory.

[ELffiACC] Required shared library does not have execute per
mission.

[ELffiEXEC] Trying to exec(S) a shared library directly.

[EINTR] A signal was caught during the exec system call.

[ENOLINK] path points to a remote machine and the link to that
machine is no longer active.

[EMULTllIOP] Components of path require hopping to multiple
remote machines.

See Also

alann(S) , exit(S), fcnt1(S), fork(S), nice(S), ptrace(S), semop(S),
signal(S), sigset(S), times(S), ulimit(S), umask(S), 10ckf(S).
a.out(F), environ(M), sh(C) in the XENlX Reference.

Diagnostics

If exec returns to the calling process, an error has occurred; the return
value will be -1 and ermo will be set to indicate the error.

December 6, 1988 Page 4

EXIT(S)

Name

exit, _exit - terminate process

Syntax

void exit (status)
int status;
void exit (status)
int stitus;

Description

EXIT (S)

The exit system call terminates the calling process with the following
consequences:

All of the fIle descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is
notified of the calling process's termination and the low order eight
bits (that is, bits 0377) of status are made available to it [see waiteS)].

If the parent process of the calling process is not executing a wait, the
calling process is transformed into a zombie process. A zombie pro
cess is a process that only occupies a slot in the process table. It has
no other space allocated either in user or kernel space. The process
table slot that it occupies is partially overlaid with time accounting
information (see <syslproc.h» to be used by times.

The parent process ID of all of the calling processes' existing child
processes and zombie processes is set to 1. This means the initializa
tion process [see intro(S)] inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm _ nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj
value [see semop(S)], that semadj value is added to the semval of the
specified semaphore.

If the process has a process, text, or data lock, an unlock is performed
[see piock(S)].

An accounting record is written on the accounting fIle if the system's
accounting routine is enabled [see acct (S)].

If the process ID, tty group ID, and process group ID of the calling pro
cess are equal, the SIGHUP signal is sent to each process that has a
process group ID equal to that of the calling process.

December 6, 1988 Page 1

EXIT (S) EXIT(S)

A death of child signal is sent to the parent.

The C function exit may cause cleanup actions before the process
exits. The function _exit circumvents all cleanup.

See Also

acct(S), intro(S), plock(S), semop(S), signal(S), sigset(S), wait(S).

Diagnostics

None. There can be no return from an exit system call.

December 6, 1988 Page 2

FCNTL (S) FCNTL (S)

Name

fcntl - file control

Syntax

#include <fcntl.h>

int fcntl (tildes, cmd, arg)
int tildes, cmd;

Description

The Jentl system call provides for control over open files. The fildes
argument is an open file descriptor obtained from a creat, open, dup,
Jcntl, or pipe system call. The data type and value of arg are specific
to the type of command specified by crnd. The symbolic names for
commands and file status flags are defmed by the <fcntl.h> header
file.

The commands available are:

F _DUPFD Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than
or equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (that is, both file
descriptors share one file pointer).

Same access mode (read, write, or read/write).

Same file status flags (that is, both file descriptors share
the same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across exec(S) system
calls.

F _ GETFD Get the close-on-exec flag associated with the file
descriptor fildes. If the low-order bit is 0, the file will
remain open across exec; otherwise the file will be
closed upon execution of exec.

F _SETFD Set the close-on-exec flag associated with fildes to the
low-order bit of arg (0 or 1 as above).

December 6, 1988 Page 1

FCNTL (S) FCNTL (S)

F _GETFL Getfile status flags [see open(S)].

F _SETFL Set file status flags to arg. Only certain flags can be set
(See the include file <fcntl.h».

The following commands are used for file-locking and record-locking.
Locks may be placed on an entire file or segments of a file.

F_GETLK
Get the first lock that blocks the lock description given by the vari
able of type struct flock pointed to by arg. The information
retrieved overwrites the information passed to Icntl in the flock
structure. If no lock is found that would prevent this lock from
being created, then the structure is passed back unchanged except
for the lock type which will be set to F _ UNLCK.

F SETLK
- Set or clear a file segment lock according to the variable of type

struct flock pointed to by arg (see the include file <fcntl.h». The
cmd F _SETLK is used to establish read (F _RDLCK) and write
(F _ WRLCK) locks, as well as remove either type of lock
(F _UNLCK). If a read or write lock cannot be set,lcntl will return
immediately with an error value of -1.

F_SETLKW
This cmd is the same as F _SETLK except that if a read or write
lock is blocked by other locks, the process will sleep until the seg
ment is free to be locked.

A read lock prevents any process from write locking the protected
area. More than one read lock may exist for a given segment of a file
at a given time. The file descriptor on which a read lock is being
placed must have been opened with read access.

A write lock prevents any process from read-locking or write-locking
the protected area. Only one write lock may exist for a given segment
of a file at a given time. The file descriptor on which a write lock is
being placed must have been opened with write access.

The structure flock defined in the <fcntl.h> header file describes a
lock. It describes the type (I type), starting offset (I whence), relative
offset (I_start), size (I_len), aiid process-ID (lyid): -

short I type;
short r whence;
long r)tart;
long I len;
short lyid;

/* F _RDLCK, F _ WRLCK, F _UNLCK * /
/* flag for starting offset * /
/* relative offset in bytes * /
/* if 0 then until EOF * /
/* returned with F _ GETLK * /

The value of I whence is 0, 1, or 2 to indicate that the relative offset,
I_start bytes, will be measured from the start of the file, current posi
tion, or end of file, respectively. The value of I_len is the number of

December 6, 1988 Page 2

FCNTL (S) FCNTL (S)

consecutive bytes to be locked. The process id is used only with the
F _GETLK cmd to return the values for a blocking lock. Locks may.
start and extend beyond the current end of a file, but may not be nega
tive relative to the beginning of the file. A lock may be set to always
extend to the end of file by setting I len to zero (0). If such a lock also
has I whence and I start set to zero (0), the whole file will be locked.
Changing or unlockIng a segment from the middle of a larger locked
segment leaves two smaller segments for either end. Locking a seg
ment that is already locked by the calling process causes the old lock
type to be removed and the new lock type to take effect. All locks
associated with a file for a given process are removed when a file
descriptor for that file is closed by that process or the process holding
that file descriptor tenninates. Locks are not inherited by a child pro
cess in afork(S) system call.

When mandatory file and record locking is active on a file [see
chmod(S)], read and write system calls issued on the file will be
affected by the record locks in effect. .

The fcntl system call will fail if one or more of the following is true:

[EBADF] The fildes argument is not a valid open file descrip
tor.

[EINV AL] The cmd argument is F _DUPFD. The arg argument
is either negative, or greater than or equal to the
configured value for the maximum number of open
file descriptors allowed each user.

[EINVAL] The cmd argument is F _GETLK. F _SETLK. or
SETLKW and arg or the data it points to is not valid.

[EACCES] The cmd argument is F _SETLK. the type of lock
(I_type) is a read (F _RDLCK) lock, and the segment
of a file to be locked is already write locked by
another process or the type is a write (F _ WRLCK)
lock and the segment of a file to be locked is
already read or write locked by another process.

[ENOLCK] The cmd argument is F _SETLK or F _SETLKW, the
type of lock is a read or write lock, and there are no
more record locks available (too many file segments
locked) because the system maximum has been
exceeded.

[EMFILE] The cmd argument is F _DUPFD and file-descriptors
are currently open in the calling-process.

[EBADF] The cmd argument is F _SETLK or F _SETLKW, the
type of lock (I_type) is a read-lock (F _RDLCK), and
fildes is not a valid file-descriptor open for reading.

December 6, 1988 Page 3

FCNTL (S)

[EBADF]

[EDEADLK]

[EFAULT]

[EINTR]

[ENOLINK]

See Also

FCNTL (S)

The emd argument is F _SETLK or F _SETLKW, the
type of lock (I_type) is a write-lock (F_WRLCK),
andfildes is not a valid file-descriptor open for writ
ing.

The emd argument is F _SETLKW, the lock is
blocked by some lock from another process, and
putting the calling-process to sleep. waiting for that
lock to become free. would cause a deadlock.

The emd argument isF _SETLK, arg points outside
the program address space.

A signal was caught during the lentl system call.

fildes is on a remote machine and the link to that
machine is no longer active.

close(S), createS), dupeS), exec(S), fork(S), open(S), pipe(S).

Diagnostics

Upon successful completion, the value returned depends on emd as
follows:

F _DUPFD A new file descriptor. .
F _GETFD Value of flag (only the low-order bit is defined).
F _SETFD Value other than -1.
F _GETFL Value of file flags.
F _SETFL Value other than -1.
F _GETI..K Value other than-l.
F _SETI..K Value other than -1.
F _SETI..KW Value other than -1.

Otherwise, a value of -1 is returned, and ermo is set to indicate the
error.

Warning

Because in the future the variable ermo will be set to EAGAIN rather
than EACCES when a section of a file is already locked by another
process, portable application programs should expect and test for
either value.

December 6, 1988 Page 4

GETMSG (S)

Name

getmsg - get next message off a stream

Syntax

#include <stropts.h>

int getmsg(fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int *flags;

Description

GETMSG (S)

The getmsg system call retrieves the contents of a message [see
intro(S)] located at the stream head read queue from a STREAMS file,
and places the contents into user-specified buffer(s). The message
must contain either a data part, a control part, or both. The data and
control parts of the message are placed into separate buffers, as
described below. The semantics of each part is defmed by the
STREAMS module that generated the message.

The fd argument specifies a file descriptor referencing an open stream.
ctlptr and dataptr each point to a strbuf structure which contains the
following members:

int maxlen;
int len;
char *buf;

/* maximum buffer length * /
/* length of data * /
/* ptr to buffer * /

where buf points to a buffer in which the data or control information is
to be placed, and maxlen indicates the maximum number of bytes this
buffer can hold. On return, len contains the number of bytes of data or
control information actually received, or is 0 if there is a zero-length
control or data part, or is -1 if no data or control information is present
in the message. flags may be set to the values 0 or RS_HIPRI and is
used as described below.

The ctlptr argument is used to hold the control part from the message
and dataptr is used to hold the data part from the message. If ctlptr
(or dataptr) is NULL or the maxlen field is -1, the control (or data) part
of the message is not processed and is left on the stream head read
queue, and len is set to -1. If the maxlen field is set to 0 and there is a
zero-length control (or data) part, that zero-length part is removed
from the read queue and len is set to O. If the maxlen field is set to 0
and there are more than zero bytes of control (or data) information,
that information is left on the read queue and len is set to o. If the
maxlen field in ctlptr or dataptr is less than, respectively, the control

December 6, 1988 Page 1

GETMSG (S) GETMSG(S)

or data part of the message, maxlen bytes are retrieved. In this case,
the remainder of the message is left on the stream head read queue
and a non-zero return value is provided, as described below under
DIAGNOSTICS. If information is retrieved from a priority message,
flags is set to RS_HIPRI on return.

By default, getmsg processes the fIrst priority or non-priority message
available on the stream head read queue. However, a user may choose
to retrieve only priority messages by setting flags to RS_HIPRI. In this
case, getmsg will only process the next message if it is a priority mes
sage.

If O_NDELAY has not been set, getmsg blocks until a message, of the
type(s) specifIed by flags (priority or either), is available on the
stream head read queue. If O_NDELAY has been set and a message· of
the specifIed type(s) is not present on the read queue, getmsg fails and
sets ermo to EAGAIN.

If a hangup occurs on the stream from which messages are to be
retrieved, getmsg will continue to operate normally, as described
above, until the stream head read queue is empty. Thereafter, it will
return 0 in the len fIelds of ctlptr and dataptr.

The getmsg system call fails if one or more of the following is true:

[EAGAIN]

[EBADF]

[EBADMSG]

[EFAULT]

[EINTR]

[EINVAL]

[ENOSTR]

The O_NDELAY flag is set, and no messages are
available.

fd is not a valid file descriptor open for reading.

Queued message to be read is not valid for getmsg.

ctlptr, dataptr, or flags points to a location outside
the allocated· address space.

A signal was caught during the getmsg system call. ..

An illegal value was specified inflags, or the stream
referenced by fd is linked under a multiplexer.

A stream is not associated with fd.

A getmsg can also fail if a STREAMS error message had been received
at the stream head before the call to getmsg. The error returned is the
value contained in the STREAMS error message.

See Also

intro(S), read(S), poll(S), putmsg(S), write(S).
STREAMS Primer
STREAMS Programmer's Guide

December 6, 1988 Page 2

GETMSG (S) GETMSG (S)

Diagnostics

Upon successful completion, a non-negative value is returned. A
value of 0 indicates that a full message was read successfully. A
return value of MORECTL indicates that more control information is
waiting for retrieval. A return value of MOREDATA indicates that
more data is waiting for retrieval. A return value of
MORECTLIMOREDATA indicates that both types of information
remain. Subsequent getmsg calls will retrieve the remainder of the
message.

December 6, 1988 Page 3

IOCTL (S) IOCTL (S)

Name

ioctl - control device

Syntax

int ioctl (fildes, request, arg)
int fddes, request;

Description

The ioctl system call perfonns a variety of control functions on dev
ices and STREAMS. For non-STREAMS files, the functions perfonned
by this call are device-specific control functions. The arguments
request and arg are passed to the file designated by fildes and are
interpreted by the device driver. This control is infrequently used on
non-STREAMS devices, with the basic input/output functions per
fonned through the read(S) and write(S) system calls.

For STREAMS files, specific functions are perfonned by the ioctl call
as described in streamio(STR).

fildes is an open file descriptor that refers to a device. request selects
the control function to be perfonned and will depend on the device
being addressed. arg represents additional infonnation that is needed
by this specific device to perfonn the requested function. The data
type of arg depends upon the particular control request, but it is either
an integer or a pointer to a device-specific data structure.

In addition to device-specific and STREAMS functions, generic func
tions are provided by more than one device driver, for example, the
general tenninal interface [see termio(M)].

The ioctl system call will fail for any type of file if one or more of the
following is true: .

[EBADF]

[ENOTfY]

[EINTR]

fildes is not a valid open file descriptor.

fildes is not associated with a device driver that
accepts control functions.

A signal was caught during the ioctl system call.

The ioctl system call will also fail if the device driver detects an error.
In this case, the error is passed through ioetl without change to the
caller. A particular driver might not have all of the following error
cases. Other requests to device drivers will fail if one or more of the
following is true:

December 6, 1988 Page 1

IOCTL (S)

[EFAULT]

[EINVAL]

[EIO]

[ENXIO]

[ENOLINK]

IOCTL (S)

request requires a data transfer to or from a buffer
pointed to by arg, but some part of the buffer is out
side the process's allocated space.

request or arg is not valid for this device.

Some physical I/O error has occurred.

The request and arg are valid for this device driver,
but the service requested cannot be perfo1ll1ed on
this particular subdevice.

fildes is on a remote machine and the link to that
machine is no longer active.

STREAMS errors are described in streamio(STR).

See Also

streamio(STR) in Appendix F of the STREAMS Programmer's Guide.
termio(M) in the seD XENIX User's Reference.

Diagnostics

Upon successful completion, the value returned depends upon the dev
ice control function, but must be a non-negative integer. Otherwise, a
value of -1 is returned, and errno is set to indicate the error.

December 6, 1988 Page 2

OPEN (S) OPEN (S)

Name

open - open for reading or writing

Syntax

#include <fcntl.h>
int open (path, oflag [, mode])
char *path;
int oflag, mode;

Description

path points to a path name naming a file. The open system call opens
a file descriptor for the named file and sets the file status flags accord
ing to the value of oflag. For non-STREAMS [see intro(S)] files, oflag
values are constructed by OR-ing flags from the following list (only
one of the fIrst three flags below may be used):

O_RDONLY Open for reading only.

0_ WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes [see
read(S) and write (S)].

December 6, 1988

When opening a FIFO with O_RDONL Y or
0_ WRONLY set:

If O_NDELAY is set:

An open for reading-only will return without
delay. An open for writing-only will return an
error if no process currently has the file open for
reading.

IfO_NDELAY is clear:

An open for reading-only will block until a pro
cess opens the file for writing. An open for
writing-only will block until a process opens the
file for reading.

When opening a file associated with a communica
tion line:

Page 1

OPEN (S)

O_CREAT

OPEN (S)

If O_NDELAY is set:

The open will return without waiting for carrier.

If O_NDELAY is clear:

The open will block until carrier is present.

If set, the file pointer will be set to the end of the file
prior to each write.

When opening a regular file, this flag affects subse
quent writes. If set, each write (S) will wait for both
the file data and file status to be physically updated.

If the file exists, this flag has no effect. Otherwise,
the owner ID of the file is set to the effective user ID
of the process; the group ID of the file is set to the
effective group ID of the process; and the low-order
12 bits of the file mode are set to the value of mode,
modified as follows [see creat(S)]:

All bits set in the file mode creation mask of the
process are cleared [see umask(S)].

The "save text image after execution bit" of the
mode is cleared [see chmod(S)].

If the file exists, its length is truncated to 0 and the
mode and owner are unchanged.

If O_EXCL and O_CREAT are set, open will fail if the
file exists.

When opening a STREAMS file, oflag may be constructed from
O_NDELAY or-ed with either O_RDONLY, 0_ WRONLY or O_RDWR.
Other flag values are not applicable to STREAMS devices and have rio
effect on them. The value of ° _NDELAY affects the operation of
STREAMS drivers and certain system calls [see read(S), getmsg(S),
putmsg(S), and write(S)]. For drivers, the implementation of
O_NDELAY is device-specific. Each STREAMS device driver may
treat this option differently.

Certain flag values can be set following open as described infcntl(S).

The file pointer used to mark the current position within the file is set
to the beginning of the file.

The new file descriptor is set to remain open across exec system calls
[see fcntl (S)].

December 6, 1988 Page 2

OPEN (S) OPEN (S)

The named file is opened unless one or more of the following is true:

[EACCES] A component of the path prefix denies search per
mission.

[EACCES] oflag pennission is denied for the named file.

[EAGAIN] The file exists, mandatory file/record locking is set,
and there are outstanding record locks on the file
[see chmod (S)].

[EEXIST] O_CREAT and O_EXCL are set, and the named file
exists.

[EF AULT] path points outside the allocated address space of
the process.

[EINTR] A signal was caught during the open system call.

[EIO] A hangup or error occurred during a STREAMS
open.

[EISDIR] The named file is a directory and oflag is write or
read/write.

[EMFILE] NOFILES file descriptors are currently open.

[EMULTIHOP] Components of path require hopping to multiple
remote machines.

[ENFILE] The system file table is full.

[ENOENT] O_CREAT is not set and the named file does not
exist.

[ENOLINK] path points to a remote machine,and the link to that
machine is no longer active. .

[ENOl\1EM] The system is unable to allocate a send descriptor.

[ENOSPC] O_CREAT and O_EXCL are set, and the file system
is out of inodes.

[ENOSR] Unable to allocate a stream.

[ENOTDIR] A component of the path prefix is not a directory.

[ENXIO] The named file is a character special or block spe
cial file, and the device associated with this special
file does not exist.

December 6, 1988 Page 3

OPEN (S)

[ENXIO]

[ENXIO]

[EROFS]

[ETXTBSy]

See Also

OPEN(S)

O_NDELAY is set, the named file is a FIFO,
0_ WRONLY is set, and no process has the file open
for reading.

A STREAMS module or driver open routine failed.

The named file resides on a read-only file system
and ojiag is write or read/write.

The file is a pure procedure (shared text) file that is
being executed and ojiag is write or read/write.

chmod(S), close(S), createS), dupeS), fcntl(S), intro(S), Iseek(S),
read(S), getmsg(S), putmsg(S), umask(S), write(S).

Diagnostics

Upon successful completion, the file descriptor is returned. Other
wise. a value of -1 is returned, and ermo is set to indicate the error.

December 6, 1988 Page 4

POLL (S)

Name

poll - STREAMS input/output multiplexing

Syntax

#include <stropts.h>
#include <poll.h>

int pol1(fds, nfds, timeout)
struct pollfd fds[];
unsigned long nfds;
int timeout;

Description

POLL (S)

The poll system call provides users with a mechanism for multiplex
ing input/output over a set of file descriptors that reference open
streams [see intro(S)]. The poll system call identifies those streams
on which a user can send or receive messages, or on which certain
events have occurred. A user can receive messages using.read(S) or
getmsg(S) and can send messages using write(S) and putmsg(S). Cer
tain ioctl(S) calls, such as CRECVFD and CSENDFD [see
streamio(STR)], can also be used to receive and send messages.

Ids specifies the file descriptors to be examined and the events of
interest for each file descriptor. It is a pointer to an array with one
element for each open me descriptor of interest. The array's elements
are pollfd structures which contain the following members:

int fd;
short events;
short revents;

/* file descriptor * /
/* requested events * /
/* returned events * /

where Id specifies an open file descriptor and events and revents are
bitmasks constructed by or-ing any combination of the following
event flags:

POLLIN A non-priority or file descriptor passing message (see
CRECVFD) is present on the stream head read queue.
This flag is set even if the message is of zero length. In
revents, this flag is mutually exclusive with POLLPRI.

POLLPRI A priority message is present on the stream head read
queue. This flag is set even if the message is of zero
length. In revents, this flag is mutually exclusive with
POLLIN.

December 6, 1988 Page 1

POLL(S) POLL(S)

POLLOUT The first downstream write queue in the stream is not
full. Priority control messages can be sent (see putmsg)
at any time.

POLLERR An error message has arrived at the stream head. This
flag is only valid in the revents bitmask; it is not used in
the events field.

POLLHUP A hangup has occurred on the stream. This event and
POLLOUT are mutually exclusive; a stream can never
be writable if a hangup has occurred. However, this
event and POLLIN or POLLPRI are not mutually
exclusive. This flag is only valid in the revents bit
mask; it is not used in the events field.

POLLNV AL The specified Id value does not belong to an open
stream. This flag is only valid in the revents field; it is
not used in the events field.

For each element of the array pointed to by Ids, poll examines the
given file descriptor for the event(s) specified in events. The nwnber
of file descriptors to be examined is specified by nfds. If nfds exceeds
NOFTI..ES, the system limit of open files [see ulimit(S)], poll will fail.

If the value fd is less than zero, events is ignored and revents is set to °
in that entry on return from poll.

The results of the poll query are stored in the revents field in the pol/fd
structure. Bits are set in the revents bitmask to indicate which of the
requested events are true. If none are true, none of the specified bits is
set in revents when the poll call returns. The event flags POLLHUP,
POLLERR, and POLLNVAL are always set in revents if the conditions
they indicate are true; this occurs even though these flags were not
present in events.

If none of the defined events have occurred on any selected file
descriptor, poll waits at least timeout msec for an event to occur on
any of the selected file descriptors. On a computer where millisecond
timing accuracy is not available, timeout is rounded up to the nearest
legal value available on that system. If the value timeout is 0, poll
returns immediately. If the value of timeout is -1, poll blocks until a
requested event occurs or until the call is interrupted. The poll system
call is not affected by the O_NDELAY flag.

The poll system call fails if one or more of the following is true:

[EAGAIN] Allocation of internal data structures failed but
request should be attempted again.

[EFAULT] Some argument points outside the allocated address
space.

December 6, 1988 Page 2

POLL (S)

[EINTR]

[EINVAL]

See Also

POLL (S)

A signal was caught during the poll system call.

The argument nfds is less than zero, or nfds is greater
than NOFll..ES.

getmsg(S), intro(S), putmsg(S), read(S), write(S).
streamio(STR)in Appendix F of the STREAMS Programmer's Guide.
STREAMS Primer.

Diagnostics

Upon successful completion, a non-negative value is returned. A posi
tive value indicates the total number of file descriptors that has been
selected (that is, file descriptors for which the revents field is non
zero). A value of 0 indicates that the call timed out and no file
descriptors have been selected. Upon failure, a value of -1 is returned,
and ermo is set to indicate the error.

December 6, 1988 Page 3

PUTMSG(S)

Name

puttnsg - send a message on a stream

Syntax

#include <stropts.h>

int putmsg (fd, ctlptr, dataptr, flags)
int fd;
struet strbuf *etlptr;
struet strbuf *dataptr;
int flags;

Description

PUTMSG (S)

The putmsg system call creates a message [see inrro(S)] from user
specified buffer(s) and sends the message to a STREAMS file. The
message may contain either a data part, a control part or both. The
data and control parts to be sent are distinguished by placement in
separate buffers, as described below. The semantics of each part is
defmed by the STREAMS module that receives the message.

fd specifies a file descriptor referencing an open stream. ctlptr and
dataptr each point to a strbuf structure which contains the following
members:

int maxlen;
int len;
char *buf;

/* not used * /
/* length of data * /
/* ptr to buffer * /

ctlptr points to the structure describing the control part, if any, to be
included in the message. The buf field in the strbuf structure points to
the buffer where the control infonnation resides, and the len field indi
cates the number of bytes to be sent. The max/en field is not used iii
putmsg [see getmsg(S)]. In a similar manner, dataptr specifies the
data, if any, to be included in the message. flags may be set to the
values 0 or RS_HIPRI and is used as described below.

To send the data part of a message, dataptr must be non-NULL and the
len field of dataptr must have a value of 0 or greater. To send the con
trol part of a message, the corresponding values must be set for ctlptr.
No data (control) part will be sent if either dataptr (ctlptr) is NULL or
the len field of dataptr (ctlptr) is set to-1.

If a control part is specified, and flags is set to RS_HIPRI, a priority
message is sent. If flags is set to 0, a non-priority message is sent. If
no control part is specified, andflags is set to RS_HIPRI, putmsg fails
and sets errno to EINV AL. If no control part and no data part are
specified, andflags is set to 0, no message is sent, and 0 is returned.

December 6, 1988 Page 1

PUTMSG (5) PUTMSG(S)

For non-priority messages, putmsg will block if the stream write queue
is full due to internal flow control conditions. For priority messages,
putmsg does not block on this condition. For non-priority messages,
putmsg does not block when the write queue is full and O_NDELAY is
set. Instead, it fails and sets errno to EAGAIN.

The putmsg system call also blocks, unless prevented by lack of inter
nal resources, waiting for the availability of message blocks in the
stream, regardless of priority or whether O_NDELAY has been speci
fied. No partial message is sent.

The putmsg system call fails if one or more of the following is true:

[EAGAIN]

[EAGAIN]

[EBADF]

[EFAULT]

[EINTR]

[EINVAL]

[EINVAL]

[ENOSTR]

[ENXIO]

[ERANGE]

A non-priority message was specified, the O_NDELAY
flag is set, and the stream write queue is full due to
internal flow control conditions.

Buffers could not be allocated for the message that
was to be created.

fd is not a valid. file descriptor open for writing.

ctlptr or dataptr points outside the allocated address
space.

A signal was caught during the putmsg system call.

An undefined value was specified in flags, or flags is
set to RS_HIPRI and no control part was supplied.

The stream referenced by fd is linked below a multi
plexer.

A stream is not associated with fd.

A hangup condition was generated downstream for the
specified stream. .

The size of the data part of the message does not fall
within the range specified by the maximum and
minimum packet sizes of the topmost stream module.
This value is also returned if the control part of the
message is larger than the maximum configured size
of the control part of a message, or if the data part. of a
message is larger than the maximum configured size
of the data part of a message.

A putmsg also fails if a STREAMS error message had been processed
by the stream head before the call to putmsg. The error returned is the
value contained in the STREAMS error message.

December 6, 1988 Page 2

PUTMSG (S)

See Also

intro(S), read(S), getmsg(S), poll(S), write(S).
STREAMS Primer.
STREAMS Programmer's Guide.

Diagnostics

PUTMSG(S)

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

December 6, 1988 Page 3

READ (S)

Name

read - read from file

Syntax

int read (fildes, buf, nbyte)
int flJdes;
char *buf;
unsigned nbyte;

Description

READ (S)

fildes is a file descriptor obtained from a createS), open(S), dupeS),
Jcntl (S), or pipe (S) system call.

The read system call attempts to read nbyte bytes from the file associ
ated withfildes into the buffer pointed to by buJ.

On devices capable of seeking, the read starts at a position in the file
given by the file pointer associated with fildes. Upon return from
read, the file pointer is incremented by the number of bytes actually
read.

Devices that are incapable of seeking always read from the current
position. The value of a file pointer associated with such a file is
undefmed.

Upon successful completion, read returns the number of bytes actu
ally read and placed in the buffer, this number may be less than nbyte
if the file is associated with a communication line [see ioctl (S) and
termio(M)], or if the number of bytes left in the file is less than nbyte
bytes. A value of 0 is returned when an end-of-file has been reached.

A read from a STREAMS [see intro(S)] file can operate in three dif
ferent modes: "byte-stream" mode, "message-nondiscard" mode,
and "message-discard" mode. The default is byte-stream mode. This
can be changed using the CSRDOPT ioetl request [see
streamio(STR)], and can be tested with the CGRDOPT ioeti. In byte
stream mode, read will retrieve data from the stream until it has
retrieved nbyte bytes, or until there is no more data to be retrieved.
Byte-stream mode ignores message boundaries.

December 6, 1988 Page 1

READ (S) READ (S)

In STREAMS message-nondiscard mode, read retrieves data until it
has read nbyte bytes, or until it reaches a message boundary. If the
read does not retrieve all the data in a message, the remaining data are
replaced on the stream, and can be retrieved by the next read or
getmsg(S) call. Message-discard mode also retrieves data until it has
retrieved nbyte bytes, or it reaches a message boundary. However,
unread data remaining in a message after the read returns are dis
carded and are not available for a subsequent read or getmsg.

When attempting to read from a regular file with mandatory
file/record locking set [see chmod(S)], and there is a blocking (that is,
owned by another process) write lock on the segment of the file to be
read:

If O_NDELAY is set, the read will return a -1 and set ermo to
EAGAIN.

If O_NDELAY is clear, the read will sleep until the blocking record
lock is removed.

When attempting to read from an empty pipe (or FIFO):

If O_NDELAY is set, the read will return a O.

If O_NDELAY is clear, the read will block until data is written to
the file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data
currently available:

IfO_NDELAY is set, the read will return a O.

If O_NDELAY is clear, the read will block until data becomes
available.

When attempting to read a file associated with a stream that has no.
data currently available:

If O_NDELAY is set, the read will return a -1 and set ermo to
EAGAIN.

If O_NDELAY is clear, the read will block until data becomes
available.

December 6, 1988 Page 2

READ (S) READ (S)

When reading from a STREAMS file, handling of zero-byte messages
is detennined by the current read mode setting. In byte-stream mode,
read accepts data until it has read nbyte bytes, or until there is no
more data to read, or until a zero-byte message block is encountered.
The read system call then returns the number of bytes read, and places
the zero-byte message back on the stream to be retrieved by the next
read or getmsg. In the two other modes, a zero-byte message returns a
value of 0 and the message is removed from the stream. When a
zero-byte message is read as the first message on a stream, a value of
o is returned regardless of the read mode.

A read from a STREAMS file can only process data messages. It can
not process any type of protocol message and will fail if a protocol
message is encountered at the stream head.

The read system call will fail if one or more of the following are true:

[EAGAIN] Mandatory file/record locking was set, O_NDELAY
was set, and there was a blocking record lock.

[EAGAIN] Total amount of system memory available when
reading via raw I/O is temporarily insufficient.

[EAGAIN] No message waiting to be read on a stream and
O_NDELAY flag set.

[EBADF] fildes is not a valid file descriptor open for reading.

[EBADMSG] Message waiting to be read on a stream is not a data
message.

[EDEADLK] The read was going to go to sleep and cause a
deadlock situation to occur.

[EFAULT] but points outside the allocated address space.

[EINTR] A signal was caught during the read system call.

[EIO] A physical I/O error has occurred.

[ENXIO] The device associated with the file-descriptor is a
block-special or character-special file, and the
value of the file-pointer is out of range.

[EINVAL] Attempted to read from a stream linked to a multi
plexer.

[ENOLCK] The system record lock table was full, so the read
could not go to sleep until the blocking record lock
was removed.

December 6, 1988 Page 3

READ (S)

[ENOLINK]

READ (S)

fildes is on a remote machine and the link to that
machine is no longer active.

A read from a STREAMS file will also fail if an error message is
received at the stream head. In this case, errno is set to the value
returned in the error message. If a hangup occurs on the stream being
read, read will continue to operate normally until the stream head
read queue is empty. Thereafter, it will return O.

See Also

creat(S), dup(S), fcntl(S), ioctl(S), intro(2), open(S), pipe(S),
getmsg(S).
streamio(STR), in Appendix F of the STREAMS Programmer's Guide.
termio(M) in the XENIX Reference.

Diagnostics

Upon successful completion a non-negative integer is returned indi
cating the number of bytes actually read. Otherwise, a -1 is returned,
and errno is set to indicate the error.

December 6, 1988 Page 4

SIGNAL (S) SIGNAL (S)

Name

signal - specify what to do upon receipt of a signal

Syntax

#include <signal.h>

void (*signal (sig, func»()
int sig;
void (*func)();

Description

The signal system call allows the calling process to choose one of
three ways in which it is possible to handle the receipt of a specific
signal. sig specifies the signal andJunc specifies the choice.

sig can be assigned anyone of the following except SIGKILL:

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGABRT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGUSRI
SIGUSR2
SIGCLD
SIGPWR
SIGPOLL

01
02
03[lJ
04[lJ
05[1J
06[1]
06
07[lJ
08[lJ
09
IO[1J
l1[1J
12[lJ
13
14
15
16
17
18[2J
19[2]
22[3J

hang up
interrupt
quit
illegal instruction (not reset when caught)
trace trap (not reset when caught)
rOT instruction
used by abort, replaces SIG lOT
EMT instruction
floating point exception
kill (cannot be caught or ignored)
bus error
segmentation violation
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination signal
user-defmed signal 1
user-defmed signal 2
death of a child
power fail
selectable event pending

Junc is assigned one of three values: SIG_DFL, SIG_IGN, or aJunc
tion address. SIG DFL, and SIG IGN, are defined in the include file
<signal.h>. Each Is a macro that-expands to a constant expression of
type pointer to function returning void, and has a unique value that
matches no declarable function.

December 6, 1988 Page 1

SIGNAL (S) SIGNAL (S)

The actions prescribed by the values ofJll/le are as follows:

SIG_DFL -tenninate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to
be tenninated with all of the consequences outlined in
exit (S). See NOTE [1] below.

SIG_IGN -ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

Junction address -catch signal
Upon receipt of the signal sig, the receiving process is to
execute the signal-catching function pointed to by June.
The signal number sig will be passed as the only argu
ment to the signal-catching function. Additional argu
ments are passed to the signal-catching function for
hardware-generated signals. Before entering the signal
catching function, the value of June for the caught signal
will be set to SIG_DFL unless the signal is SIGILL,
SIGTRAP, or SIGPWR.

Upon return from the signal-catching function. the receiv
ing process will resume execution· at the point it was
interrupted.

When a signal that is to be caught occurs during a
read(S), a write (S), an open(S), or an ioetl (S) system call
on a slow device (like a tenninal; but not a file), during a
pause(S) system call, or during a waiteS) system call that
does not return immediately due to the existence of a pre
viously stopped or zombie process, the signal catching
function will be executed. Then the interrupted system
call may return a -1 to the calling process with errno set
to EINTR.

The signal system call will not catch an invalid function
argument, June, and results are undefmed when an attempt
is made to execute the function at the bad address.

Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIG
KILL signal.

The signal system call will fail if sig is an illegal signal number,
including SIGKILL. [EINV AL]

December 6, 1988 Page 2

SIGNAL (S) SIGNAL (S)

See Also

intro(S), kill(S), pause(S), ptrace(S), wait(S), setjmp(S), sigset(S).

Diagnostics

Upon successful completion, signal returns the previous value of June
for the specified signal sig. Otherwise, a value of SIG_ERR is
returned and ermo is set to indicate the error. SIG_ERR is defmed in
the include file signal.h.

Notes

[1] If SIG_DFL is assigned for these signals, in addition to the pro
cess being terminated, a "core image" will be constructed in the
current working directory of the process, if the following condi
tions are met:

The effective user ID and the real user ID of the receiv
ing process are equal.

An ordinary file named core exists and is writable or
can be created. If the file must be created, it will have
the following properties:

• a mode of 0666 modified by the file crea-
tion mask [see umask(S)]

• a file owner ID that is the same as the
effective user ID of the receiving process

• a file group ID that is the same as the
effective group ID of the receiving process.

[2] For the signals SIGCLD and SIGPWR, June is assigned one of
three values: SIG_DFL, SIG_IGN, or a Junction address. The
actions prescribed by these values are:

SIG _ DFL -ignore signal
The signal is to be ignored.

SIG _ IGN -ignore signal
The signal is to be ignored. Also, if sig is SIGCLD,
the calling process's child processes will not create
zombie processes when they terminate [see exit(S)].

Junction address -catch signal

December 6, 1988

If the signal is SIGPWR, the action to be taken is the
same as that described above for June equal to Junc
tion address. The same is true if the signal is

Page 3

SIGNAL (S) SIGNAL (S)

SIGCLD with one exception: while the process is
executing the signal-catching function, any received
SIGCLD signals will be ignored. (This is the default
action.)

In addition, SIGCLD affects the wait and exit system calls as fol
lows:

wait If the June value of SIGCLD is set to SIG _ IGN and a
wait is executed, the wait will block until all of the
calling process's child processes terminate; it will
then return a value of -1 with ermo set to ECHILD.

exit If in the exiting process's parent process the June
value of SIGCLD is set to SIG_IGN, the exiting pro
cess will not create a zombie process.

When processing a pipeline, the shell makes the last process in
the pipeline the parent of the preceding processes. A process
that may be piped into in this manner (and thus become the
parent of other processes) should take care not to set SIGCLD
to be caught.

[3] SIGPOLL is issued when a file descriptor corresponding to a
STREAMS [see intro(S)] file has a "selectable" event pending.
A process must specifically request that this signal be sent using
the CSETSIG ioct/ call. Otherwise, the process will never
receive SIGPOLL.

December 6, 1988 Page 4

SIGSET(S) SIGSET(S)

Name

sigset, sighold, sigrelse, sigignore, sigpause - signal management

Syntax

#include <signaI.h>

void (*sigset (sig, func»()
int sig;
void (*func)O;
int sighold (sig)
int sig;
int sigrelse (sig)
int sig;
int sigignore (sig)
int sig;
int sigpause (sig)
int sig;

Description

These functions provide signal management for application processes.
The sigset system call specifies the system signal action to be taken
upon receipt of signal sig. This action is either calling a process
signal-catching handler June or performing a system-defmed action.

Sig can be assigned anyone of the following values except SIGKILL.
Machine- or implementation-dependent signals are not included (see
NOTES below). Each value of sig is a macro, defmed in <signal.h>,
that expands to an integer constant expression.

SIGHUP
SIGINT
SIGQUIT*
SIGILL*
SIGTRAP*
SIGABRT*
SIGFPE*
SIGKILL
SIGSYS*
SIGPIPE
SIGALRM
SIGTERM
SIGUSRI
SIGUSR2
SIGCLD
SIGPWR

December 6, 1988

hangup
interrupt
quit
illegal instruction (not held when caught)
trace trap (not held when caught)
abort
floating point exception
kill (cannot be caught or ignored)
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination signal
user-defined signal 1
user-defined signal 2
death of a child (see WARNING below)
power fail (see WARNING below)

Page 1

SIGSET (S) SIGSET (S)

SIGPOLL selectable event pending (see NOTES below)

See below under SIG_DFL regarding asterisks (*) in the above list.

The following values for the system-defined actions of June are also
defined in <signal.h>. Each is a macro that expands to a constant
expression of type pointer to function returning void and has a unique
value that matches no declarable function.

SIG _ DFL -default system action
Upon receipt of the signal sig, the receiving process is to
be terminated with all of the consequences outlined in
exit (S). In addition a "core image" will be made in the
current working directory of the receiving process if sig is
one for which an asterisk appears in the above list and the
following conditions are met:

The effective user ID and the real user ID of the
receiving process are equal.

An ordinary file named core exists and is writable
or can be created. If the file must be created, it
will have the following properties:

a 'mode of 0666 modified by the file crea
tion mask [see umask(S)]

a file owner ID that is the same as the
effective user ID of the receiving process

a file group ID that is the same as the effec
tive group ID of the receiving process.

SIG_IGN -ignore signal
Any pending signal sig is discarded and the system signal
action is set to ignore future occurrences of this signal type.

SIG_HOLD-hold signal
The signal sig is to be held upon receipt. Any pending sig
nal of this type remains held. Only one signal of each type
is held.

Otherwise, June must be a pointer to a function, the signal-catching
handler, that is to be called when signal sig occurs. In this case, sigset
specifies that the process will call this function upon receipt of signal
sig. Any pending signal of this type is released. This handler address
is retained across calls to the other signal management functions listed
here.

When a signal occurs, the signal number sig will be passed as the only
argument to the signal-catching handler. Before calling the signal
catching handler, the system signal action will be set to SIG_HOLD.

December 6, 1988 Page 2

SIGSET(S) SIGSET (S)

During nonnal return from the signal-catching handler, the system sig
nal action is restored to June and any held signal of this type released.
If a non-local goto (longjmp) is taken, then sigrelse must be called to
restore the system signal action and release any held signal of this
type.

In general, upon return from the signal-catching handler, the receiving
process will resume execution at the point it was interrupted. How
ever, when a signal is caught during a read(S), a write(S), an open(S),
or an ioetl (S) system call during a sigpause system call, or during a
waiteS) system call that does not return immediately due to the
existence of a previously stopped or zombie process, the signal
catching handler will be executed. Then the interrupted system call
may return a -1 to the calling process with ermo set to EINTR.

sighold and sigrelse are used to establish critical regions of code. sig
hold is analogous to raising the priority level and deferring or holding
a signal until the priority is lowered by sigrelse. sigrelse restores the
system signal action to that specified previously by sigset.

sigignore sets the action for signal sig to SIG __ IGN (see above).

sigpause suspends the calling process until it receives a signal, the
same as pause(S). However, if the signal sig had been received and
held, it is released and the system signal action taken. This system
call is useful for testing variables that are changed on the occurrence
of a signal. The correct usage is to use sighold to block the signal
first, then test the variables. If they have not changed, then call sig
pause to wait for the signal. sigset will fail if one or more of the fol
lowing is true:

[EINVAL]

[EINTR]

See Also

sig is an illegal signal number (including SIGKILL)
or the default handling of sig cannot be changed.

A signal was caught during the system call sig
pause.

kill(S), pause(S), signal(S), waiteS), setjmp(S).

Diagnostics

Upon successful completion, sigset returns the previous value of the
system signal action for the specified signal sig. Otherwise, a value of
SIG_ERR is returned and ermo is set to indicate the error. SIG_ERR is
defined in <signaI.h>.

December 6, 1988 Page 3

SiGSET(S) SIGSET (S)

For the other functions, upon successful completion, a value of 0 is
returned. Otherwise, a value of -1 is returned and errno is set to indi
cate the error.

Notes

SIGPOLL is issued when a file descriptor corresponding to a
STREAMS [see intro(S)] file has a "selectable" event pending. A pro
cess must specifically request that this signal be sent using the
CSETSIG ioctl(S) call [see streamio(STR)]. Otherwise, the process
will never receive SIGPOLL.

For portability, applications should use only the symbolic names of
signals rather than their values and use only the set of signals defined
here. The action for the signal SIGKILL cannot be changed from the
default system action.

Specific implementations may have other implementation-de fined sig
nals. Also, additional implementation-de fined arguments may be
passed to the signal-catching handler for hardware-generated signals.
For certain hardware-generated signals, it may not be possible to
resume execution at the point of interruption.

The signal type SIGSEGV is reserved for the condition that occurs on
an invalid access to a data object. If an implementation can detect
this condition, this signal type should be used.

The other signal management functions, signal(S) and pause (S),
should not be used in conjunction with these routines for a particular
signal type.

WARNING

Two signals that behave differently from the signals described above
exist in this release of the system:

SIGCLD
SIGPWR

death of a child (reset when caught)
power fail (not reset when caught)

For these signals, Junc is assigned one of three values: SIG_DFL,
SIG_IGN, or a function address. The actions prescribed by these
values are as follows:

SIG_DFL-ignore signal
The signal is to be ignored.

SIG_IGN-ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the cal
ling process's child processes will not create zombie
processes when they terminate [see exit(S)].

December 6, 1988 Page 4

SIGSET(S) SIGSET (S)

Sjilllctioll address-catch signal
If the signal is SIGPWR, the action to be taken is the same
as that described above for Junc equal to Junction address.
The same is true if the signal is SIGCLD with one exception:
while the process is executing the signal-catching function,
any received SIGCLD signals will be ignored. (This is the
default action.)

The SIGCLD affects two other system calls [waiteS), and exit(S)] in
the following ways:

wait If the June value of SIGCLD is set to SIG_IGN and a wait is
executed, the wait will block until all of the calling
process's child processes terminate; it will then return a
value of -1 with ermo set to ECHILD.

exit If in the exiting process's parent process the June value of
SIGCLD is set to SIG_IGN, the exiting process will not
create a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the preceding processes. A process that may be
piped into in this manner (and thus become the parent of other
processes) should take care not to set SIGCLD to be caught.

December 6, 1988 Page 5

WRITE (S)

Name

write - write on a file

Syntax

int write (tildes, buf, nbyte)
int tildes;
char *buf;
unsigned nbyte;

Description

WRITE (S)

fildes is a file descriptor obtained from a createS), open(S), dupeS),
fcntI(S), or pipe(S) system call.

The write system call attempts to write nbyte bytes from the buffer
pointed to by buf to the file associated with the fildes .

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. Upon return
from write, the file pointer is incremented by the number of bytes
actually written.

On devices incapable of seeking, writing always takes place starting
at the current position. The value of a file pointer associated with
such a device is undefmed.

If the ° _APPEND flag of the file status flags is set, the file pointer will
be set to the end of the file prior to each write.

For regular files, if the O_SYNC flag of the file status flags is set, the
write will not return until both the file data and file status have been
physically updated. This function is for special applications that
require extra reliability at the cost of performance. For block special
files, if O_SYNC is set, the write will not return until the data has been
physically updated.

A write to a regular file will be blocked if mandatory file/record lock
ing is set [see chmod(S)], and there is a record lock owned by another
process on the segment of the file to be written. If O_NDELAY is not
set, the write will sleep until the blocking record lock is removed.

For STREAMS [see intro(S)] files, the operation of write is determined
by the values of the minimum and maximum nbyte range ("packet
size") accepted by the stream. These values are contained in the top
most stream module. Unless the user pushes [see CPUSH in
streamio(STR)] the topmost module, these values cannot be set or
tested from user level. If nbyte falls within the packet size range,
nbyte bytes will be written. If nbyte does not fall within the range and

December 6, 1988 Page 1

TlTn T'T'r. (" \
Hl\.ll £. \J I

UTorrr:o IC'\
YYL\..l.LL.:. \v)

the minimum packet size value is zero, write will break the buffer into
maximum packet size segments prior to sending the data downstream
(the last segment may contain less than the maximum packet size). If
nbyte does not fall within the range and the minimum value is non
zero, write will fail with errno set to ERANGE. Writing a zero-length
buffer (nbyte is zero) sends zero bytes with zero returned.

For STREAMS files, if O_NDELAY is not set and the stream cannot
accept data (the stream write queue is full due to internal flow control
conditions), write will block until data can be accepted. O_NDELAY
will prevent a process from blocking due to flow control conditions. If
O_NDELAY is set and the stream cannot accept data, write will fail. If
O_NDELAY is set and part of the buffer has been written when a con
dition in which the stream cannot accept additional data occurs, write
will tenninate and return the number of bytes written.

The write system call will fail and the file pointer will remain
unchanged if one or more of the following is true:

[EAGAIN] Mandatory file/record locking was set, O_NDELAY
was set, and there was a blocking record lock.

[EAGAIN] Total amount of system memory available when
reading via raw 110 is temporarily insufficient.

[EAGAIN] Attempt to write to a stream that cannot accept data
with the O_NDELAY flag set.

[EBADF] fildes is not a valid file descriptor open for writing.

[EDEADLK] The write was going to go to sleep and cause a
deadlock situation to occur.

[EFAULT] but points outside the process's allocated address
space.

[EFBIG] An attempt was made to write a file that exceeds
the process's file size limit or the maximum file size
[see ulimit(S)].

[EINTR] A signal was caught during the write system call.

[EINVAL] Attempt to write to a stream linked below a multi
plexer.

[ENOLCK] The system record lock table was full, so the write
could not go to sleep until the blocking record lock
was removed.

[ENOLINK] fildes is on a remote machine and the link to that
machine is no longer active.

December 6, 1988 Page 2

WRITE(S)

[ENOSPC]

[ENXIO]

WRITE (S)

During a write to an ordinary file, there is no free
space left on the device.

A hangup occurred on the stream being written to.

[EPIPE and SIGPIPE signal]

[ERANGE]

[EIO]

An attempt is made to write to a pipe that is not
open for reading by any process.

Attempt to write to a stream with nbyte outside
specified minimum and maximum write range, and
the minimum value is non-zero.

A physical I/O error has occurred.

If a write requests that more bytes be written than there is room for
(for example, the ulimit [see ulimit(S)] or the physical end of a
medium), only as many bytes as there is room for will be written. For
example, suppose there is space for 20 bytes more in a file before
reaching a limit. A write of 512-bytes will return 20. The next write
of a non-zero number of bytes will give a failure return (except as
noted below).

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of
the file flag word is set, then write to a full pipe (or FIFO) will return a
count of O. Otherwise (O_NDELAY clear), writes to a full pipe (or
FIFO) will block until space becomes available.

A write to a STREAMS file can fail if an error message has been
received at the stream head. In this case, erma is set to the value
included in the error message.

See Also

createS), dupeS), fcntl(S), intro(S), Iseek(S), open(S), pipe(S),
ulimit(S).

Diagnostics

Upon successful completion the number of bytes actually written is
returned. Otherwise, -1 is returned, and erma is set to indicate the
error.

December 6, 1988 Page 3

