
The SeQ Streams 

Network Programmer's Guide 

The Santa Cruz Operation, Inc. 



Infonnation in this document is subject to change without notice and does not 
represent a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft 
Corporation. The software described in this document is furnished under a license 
agreement or nondisclosure agreement The software may be used or copied only in 
accordance with the tenns of the agreement It is against the law to copy this software 
on magnetic tape, disk, or any other medium for any purpose other than the 
purchaser's personal use. 

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE 
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS 
SET FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN 
COMPUTER SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS 
IN TECHNICAL DATA,BOTH AS SET FORTH IN FAR 52.227-7013. 

Portions© 1987,AT&T. 
All rights reserved. 
Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft 
Corporation 
All rights reserved. 
Portions © 1983, 1984, 1985, 1986, 1987, 1988 The Santa Cruz Operation, Inc. 
All rights reserved. 

Document Number: XG-II-1-88-1.0A 

ProcessedDate: MonNov2116:01:00PSTI988 

XENIX is a registered trademark of Microsoft Corporation. 

UNIX is a registered trademark of AT&T. 



Contents 

1 Introduction 

1.1 Introduction 1-1 
1.2 Background 1-1 
1.3 Document Organization 1-3 
1.4 Terms You Should Know 1-4 

2 Overview of the Transport Layer Interface 

2.1 Introduction 2-1 
2.2 Modes of Service 2-2 
2.3 State Transitions 2-8 

3 Connection-Mode Service 

3.1 Introduction 3-1 
3.2 Local Management 3-1 
3.3 Connection Establishment 3-8 
3.4 Data Transfer 3-15 
3.5 Connection Release 3-20 

4 Connectionless-Mode Service 

4.1 Introduction 4-1 
4.2 Local Management 4-1 
4.3 Data Transfer 4-3 
4.4 Datagram Errors 4-6 

5 A Read/Write Interface 

5.1 Introduction 5-1 
5.2 write 5-2 
5.3 read 5-3 
5.4 Close 5-3 

6 Advanced Topics 

6.1 Introduction 6-1 
6.2 Asynchronous Execution Mode 6-1 
6.3 Advanced Programming Example 6-2 

-i-



A State Transitions 

A.l Introduction A-I 
A.2 Transport Layer Interface States A-I 
A.3 Outgoing Events A-I 
AA Incoming Events A-3 
A.5 Transport User Actions A-3 
A.6 State Tables A-4 

B Protocol Independence 

B.l Guidelines for Protocol Independence B-1 

C Examples 

C.1 Introduction C-l 
C.2 Connection-Mode Client C-I 
C.3 Connection-Mode Server C-2 
CA Connectionless-Mode Transaction Server C-6 
C.5 ReadIWrite Client C-7 
C.6 Event-Driven Server C-9 

D NSL Manpages 

D.I AppendixD: (NSL)Manpages D-l 

-ii-



Chapter 1 

Introduction 

1.1 Introduction 1-1 

1.2 Background 1-1 

1.3 Document Organization 1-3 

1.4 Terms You Should Know 1-4 



Introduction 

1.1 Introduction 

This document provides detailed infonnation on the UNIX System Tran
sport Layer Interface, along with associated examples. This guide is 
intended for programmers who require the services defined by this inter
face. Working knowledge of UNIX System programming and data com
munication concepts is assumed. In particular, working knowledge of the 
Reference Model of Open Systems Interconnection (OSI) is required. 

1.2 Background 

A discussion of the OSI Reference Model is presented here to place the 
Transport Layer Interface in perspective. The Reference Model partitions 
networking functions into seven layers, as depicted in Figure 1-1. 

Layer 7 application 

Layer 6 presentation 

Layer 5 session 

Layer 4 transport 

Layer 3 network 

Layer 2 data link 

Layer 1 physical 

Figure 1-1 OSI Reference Model 

Layer 1 The physical layer is responsible for the transmission of 
raw data over a communication medium. 

Layer 2 The data link layer provides the exchange of data 
between network layer entities. It detects and corrects 
any errors that may occur in the physical layer transmis
sion. 

Layer 3 The network layer manages the operation of the network. 
In particular, it is responsible for the routing and manage
ment of data exchange between transport layer entities 
within the network. 

1-1 



Network Programmer's Guide 

Layer 4 The transport layer provides transparent data transfer ser
vices between session layer entities by relieving them 
from concerns with the mechanisms of data transfer. 

Layer 5 The session layer provides the services needed by presen
tation layer entities to organize and synchronize their 
dialogue and manage their data exchange. 

Layer 6 The presentation layer manages the representation of 
information which application layer entities either com
municate or reference in their communication. 

Layer 7 The application layer serves as the window between 
corresponding application processes that are exchanging 
information. 

A basic principle of the reference model is that each layer provides ser
vices needed by the next higher layer in a way that frees the upper layer 
from concern about how these services are providt:(d. This approach 
simplifies the design of each particular layer. 

Industry standards either have been or are being defined at each layer of 
the reference model. Two standards are defined at each layer: one that 
specifies an interface to the services of the layert and one that defines the 
protocol by which services are provided. A service interface standard at 
any layer frees users of the service from concern with the details of proto
col implementation t or even the identity of the protocol used to provide 
the service. 

The transport layer is important because it is the lowest layer in the refer
ence model that provides the basic service of reliable t end-to-end data 
transfer needed by applications and higher layer protocols. In doing SOt 

this layer hides the topology and characteristics of the underlying net
work from its users. More importantt the transport layer defines a set of 
services common to layers of many contemporary protocol suites t includ
ing the International Standards Organization (ISO) protocols t the 
Transmission Control Protocol and Internet Protocol (TCP/IP) of the 
ARPANETt Xerox Network Systems (XNS), and the Systems Network 
Architecture (SNA). 

A transport service interface enables applications and higher layer proto
cols to be implemented without knowledge of the underlying protocol 
suite. This is a principal goal of the UNIX System Transport Layer Inter
face. The Transport Layer Interface offers both protocol and medium 
independence to networking applications and higher layer protocols. 
because an inherent characteristic of the transport layer is that it hides 

1-2 



Introduction 

details of the physical medium being used. 

The UNIX System Transport Layer Interface was modeled after the indus
try standard ISO Transport Service Definition (ISO 8072). As such, it is 
intended for those applications and protocols that require transport ser
vices. It is not intended to provide a generic networking interface for all 
UNIX System applications, but it is a first step in providing networking 
services with the UNIX System. Because the Transport Layer Interface 
provides reliable data transfer, and because its services are common to 
several protocol suites, many networking applications will find these ser
vices useful. 

The Transport Layer Interface is implemented as a user library using the 
STREAMS input/output (I/O) mechanism. Therefore, many services avail
able to STREAMS applications are also available to users of the Transport 
Layer Interface. These services are highlighted throughout this guide. 
The STREAMS Primer and STREAMS Programmer's Guide contain more 
detailed infonnation on STREAMS for the interested reader. 

1.3 Document Organization 

This guide is organized as follows: 

• Chapter 1, "Introduction," this introduction. 

• Chapter 2, "Overview of the Transport Layer Interface," summar
izes the basic set of services available to Transport Layer Interface 
users and presents the background infonnation needed for the 
remainder of the guide. 

• Chapter 3, "Connection-Mode Service," describes the services 
associated with connection-based (or virtual circuit) communica
tion. 

• Chapter 4, "Connectionless-Mode Service," describes the services 
associated with connectionless (or datagram) communication. 

• Chapter 5, "A Read/Write Interface," describes how users can use 
the services of read(S) and write(S) to communicate over tran
sport connection. 

• Chapter 6, "Advanced Topics," discusses important concepts that 
are not covered in earlier chapters. These include asynchronous 
event handling and processing of multiple, simultaneous connect 
requests. 

1-3 



Network Programmer's Guide 

• Appendix A, "State Transitions," defines the allowable state tran
sitions associated with the Transport Layer Interface. 

• Appendix B, "Guidelines for Protocol Independence," establishes 
necessary guidelines for developing software that can run without 
change over any transport protocol developed for the Transport 
Layer Interface. 

• Appendix C, "Examples," presents the full listing of each pro
gramming example used throughout the guide. 

• Appendix D, "NSL Manual Pages," contains the NSL manual 
pages, a complete description of each Transport Layer Interface 
routine. 

This guide describes the more important and common facilities of the 
Transport Layer Interface and is not meant to be exhaustive. 

Acronyms 

The following acronyms are used throughout this guide: 

CLTS Connectionless Transport Service 

COTS Connection Oriented Transport Service 

ETSDU Expedited Transport Service Data Unit 

TSDU Transport Service Data Unit 

1.4 Terms You Should Know 

The following terms apply to the Transport Layer Interface: 

ABORTIVE RELEASE 

An abrupt termination of a transport connection, which may result in the 
loss of data. 

ASYNCHRONOUS EXECUTION 

The mode of execution in which Transport Layer Interface routines will 
never block while waiting for specific asynchronous events to occur, but 
instead will return immediately if the event is not pending. 

1-4 



Introduction 

CLIENT 

The transport user in connection-mode that initiates the establishment of 
a transport connection. 

CONNECTION ESTABLISHMENT 

The phase in connection-mode that enables two transport users to create a 
transport connection between them. 

CONNECTION-MODE 

A circuit-oriented mode of transfer in which data is passed from one user 
to another over an established connection in a reliable, sequenced 
manner. 

CONNECTIONLESS-MODE 

A mode of transfer in which data is passed from one user to another in 
self-contained units with no logical relationship required among multiple 
units . 

. CONNECTION RELEASE 

The phase in connection-mode that terminates a previously established 
transport connection between two users. 

DATAGRAM 

A unit of data transferred between two users of the connectionless-mode 
service. 

DATA TRANSFER 

The phase in connection-mode or connectionless-mode that supports the 
transfer of data between two transport users. 

EXPEDITED DATA 

Data that is considered urgent. The specific semantics of expedited data 
are defined by the transport protocol that provides the transport service. 

EXPEDITED TRANSPORT SERVICE DATA UNIT 

The amount of expedited user data, the identity of which is preserved 
from one end of a transport connection to the other (that is, an expedited 

1-5 



Network Programmer's Guide 

message). 

LOCAL MANAGEMENT 

The phase in either connection-mode or connectionless-mode in which a 
transport user establishes a transport endpoint and binds a transport 
address to the endpoint. Functions in this phase perfonn local operations 
and require no transport layer traffic over the network. 

ORDERLY RELEASE 

A procedure for gracefully tenninating a transport connection with no 
loss of data. 

The user with whom a given user is communicating above the Transport 
Layer Interface. 

SERVER 

The transport user in connection-mode that offers services to other users 
(clients) and enables these clients to establish a transport connection to it. 

SERVICE INDICATION 

The notification of a pending event generated by the provider to a user of 
a particular service. 

SERVICE PRIMITIVE 

The unit of infonnation passed across a service interface that contains 
either a service request or service indication. 

SERVICE REQUEST 

A request for some action generated by a user to the provider of a particu-
1ar service. 

SYNCHRONOUS EXECUTION 

The mode of execution in which Transport Layer Interface routines may 
block while waiting for specific asynchronous events to occur. 

TRANSPORT ADDRESS 

The identifier used to differentiate and locate specific transport endpoints 
in a network:. 

1-6 



Introduction 

TRANSPORT CONNECTION 

The communication circuit that is established between two transport 
users in connection-mode. 

TRANSPORT ENDPOINT 

The local communication channel between a transport user and a tran
sport provider. 

TRANSPORT INTERFACE 

The library routines and state transition rules that support the services of 
a transport protocol. 

TRANSPORT PROVIDER 

The transport protocol that provides the services of the Transport Layer 
Interface. 

TRANSPORT SERVICE DATA UNIT 

The amount of user data whose identity is preserved from one end of a 
transport connection to the other (that is, a message). 

TRANSPORT USER 

The user-level application or protocol that accesses the services of the 
Transport Layer Interface. 

VIRTUAL CIRCUIT 

A transport connection established in connection-mode. 

1-7 



Chapter 2 

Overview of the 

Transport Layer Interface 

2.1 Introduction 2-1 

2.2 Modes of Service 2-2 
2.2.1 Connection-Mode Service 2-2 
2.2.2 Connectionless-Mode Service 2-8 

2.3 State Transitions 2-8 



Overview of the Transport Layer Interface 

2.1 Introduction 

This chapter presents a high-level overview of the services of the Trans
port Layer Interface, which supports the transfer of data between two user 
processes. Figure 2-1 illustrates the Transport Layer Interface. 

service 
requests 

.............. L...... . ...... T............. Thlnsport Lay.dnted"", 

service events 
and indications 

Figure 2-1 Transport Layer Interface 

The transport provider is the entity that provides the services of the Trans
port Layer Interface, and the transport user is the entity that requires these 
services. An example of a transport provider is the ISO transport proto
col, while a transport user may be a networking application or session 
layer protocol. 

The transport user accesses the services of the transport provider by issu
ing the appropriate service requests. One example is a request to transfer 
data over a connection. Similarly, the transport provider notifies the user 
of various events, such as the arrival of data on a connection. 

The Network Services Library of the UNIX System includes a set of func
tions that support the services of the Transport Layer Interface for user 
processes [see intro(NSL)]. These functions enable a user to initiate 
requests to the provider and process incoming events. Programs using the 
Transport Layer Interface can link the appropriate routines as follows: 

cc prog.c -lnsl_s 

2-1 



Network Programmer's Guide 

2.2 Modes of Service 

Two modes of service, connection-mode and connectionless-mode, are 
provided by the Transport Layer Interface. Connection-mode is circuit
oriented and enables data to be transmitted over an established connec
tion in a reliable, sequenced manner. It also provides an identification 
mechanism that avoids the overhead of address resolution and transmis
sion during the data transfer phase. This service is attractive for applica
tions that require relatively long-lived, datastream-oriented interactions. 

Connectionless-mode, in contrast, is message-oriented and supports data 
transfer in self-contained units with no logical relationship required 
among multiple units. This service requires only a preexisting associa
tion between the peer users involved. This determines the characteristics 
of the data to be transmitted. All the information required to deliver a 
unit of data is presented to the transport provider, together with the data 
to be transmitted, in one service access (which need not relate to any 
other service access). Each unit of data transmitted is entirely self
contained. Connectionless-mode service is attractive for applications 
which: 

• involve short-term request/response interactions 

• exhibit a high level of redundancy 

• are dynamically reconfigurable 

• do not require guaranteed in-sequence delivery of data 

2.2.1 Connection-Mode Service 

The connection-mode transport service is characterized by four phases: 
local management, connection establishment, data transfer, and connec
tion release. 

Local Management 

The local management phase defines local operations between a transport 
user and a transport provider. For example, a user must establish a chan
nel of communication with the transport provider, as illustrated in Figure 
2-2. Each channel between a transport user and transport provider is a 
unique endpoint of communication, called the transport endpoint. The 
t _open routine enables a user to choose a particular transport provider 
that will supply the connection-mode services. This routine also 

2-2 



Overview of the Transport Layer Interface 

establishes the transport endpoint. 

transport endpoint 

. • . • • . • . • . . .• • . . . . . . • . .. ..•.••••..••••.•..••.••• Transport Layer Interface 

Figure 2-2 Channel Between User and Provider 

Another necessary local function for each user is to establish an identity 
with the transport provider. Each user is identified by a transport address. 
More accurately, a transport address is associated with each transport 
endpoint, and one user process can manage several transport endpoints. 
In connection-mode service, one user requests a connection to another 
user by specifying that user's address. The structure of a transport address 
is defined by the address space of the transport provider. An address can 
be as simple as a random character string (for example, "file_server"), or 
as complex as an encoded bit pattern that specifies all information needed 
to route data through a network. Each transport provider defines its own 
mechanism for identifying users. Addresses can be assigned to each trans
~ort endpoint by t _bind. 

In addition to t_open and t_bind, several routines are available to support 
local operations. Figure 2-3 summarizes all local management routines 
of the Transport Layer Interface. 

2-3 



Network Programmer's Guide 

Command Description 

t alloc Allocates Transport Layer Interface data struc-
tures [see t_alloc(NSL)]. 

t bind Binds a transport address to a transport end-
point [see t_bind(NSL)]. 

t_c1ose Closes a transport endpoint [see t_close(NSL)]. 

terror Prints a Transport Layer Interface error mes-
sage [see t_error(NSL)]. 

t free Frees structures allocated using t alloc [see 
tJree(NSL)]. 

t_getinfo Returns a set of parameters associated with a 
particular transport provider [see 
t _getin!o(NSL)]. 

t_getstate Returns the state of a transport endpoint [see 
t _getstate(NSL)]. 

t look Returns the current event on. a transport end-
point [see t_look(NSL)]. 

t_open Establishes a transport endpoint connected to a 
chosen transport provider [see t_open(NSL)]. 

t_optmgmt Negotiates protocol-specific options with the 
transport provider [see t_optmgmt(NSL)]. 

t_sync Synchronizes a transport endpoint with the 
transport provider [see t_sync(NSL)]. 

t unbind Unbinds a transport address from a transport 
endpoint [see t_unbind(NSL)]. 

Figure 2-3 Local Management Routines 

2-4 



Overview of the Transport Layer Interface 

Connection Establishment 

The connection establishment phase enables two users to create a connec
tion (virtual circuit) between them, as demonstrated in Figure 2-4. 

........•.•.........................•....•. ..•.. Transport Layer Interlace 

_---t-- Transport Connection 

transport provider 

Figure 2-4 Transport Connection 

This phase is illustrated by a client/server relationship between two trans
port users. One user, the server, typically advertises some service to a 
group of users and then listens for requests from those users. As each 
client requires the service, it attempts to connect itself to the server using 
the server's advertised transport address. The t_connect routine initiates 
the connect request. One argument to t_connect, the transport address, 
identifies the server the client wishes to access. The server is notified of 
each incoming request using t _listen, and can call t _accept to accept the 
client's request for access to the service. If the request is accepted, the 
transport connection is established. 

Figure 2-5 summarizes all routines available for establishing a transport 
connection. 

2-5 



Network Programmer's Guide 

Command Description 

t_accept Accepts a request for a transport connection 
[see t_accept(NSL)]. 

t_connect Establishes a connection with the transport user 
at a specified destination [see t_connect(NSL)]. 

t_listen Retrieves an indication of a connect request 
from another transport user [see t_listen(NSL)]. 

t rcvconnect Completes connection establishment if 
t_ connect was called in asynchronous mode 
(see Chapter 6) [see t_rcvconnect(NSL)]. 

Figure 2-5 Connection Establishment Routines 

Data Transfer 

The data transfer phase enables users to transfer data in both directions 
over an established connection. Two routines, t snd and t rcv, send and 
receive data over this connection. All data sent by a user is guaranteed to 
be delivered to the user on the other end of the connection in the order in 
which it was sent. Figure 2-6 summarizes the connection-mode data 
transfer routines. 

Command Description 

t rcv Retrieves data that has arrived over a transport 
connection [see t_rcv(NSL)]. 

t_snd Sends data over an established transport con-
nection [see t_snd(NSL)]. 

Figure 2-6 Connection-Mode Data Transfer Routines 

2-6 



Overview of the Transport Layer Interface 

Connection Release 

The connection release phase provides a mechanism for breaking an esta
blished connection. When you decide that the conversation should ter
minate, you can request that the provider release the transport connection. 
Two types of connection release are supported by the Transport Layer 
Interface. The first is an abortive release, which directs the transport pro
vider to release the connection immediately. Any previously sent data 
that has not yet reached the other transport user may be discarded by the 
transport provider. The t_snddis routine initiates this abortive discon
nect, and t_rcvdis processes the incoming indication of an abortive 
disconnect. 

All transport providers must support the abortive release procedure. In 
addition, some transport providers may also support an orderly release 
facility that enables users to terminate communication gracefully with no 
data loss. The functions t _ sndrel and t _ rcvrel support this capability. 
Figure 2-7 summarizes the connection release routines. 

Command Description 

t_rcvdis Returns an indication of an aborted connection, 
including a reason code and user data [see 
t_rcvdis(NSL)]. 

t rcvrel Returns an indication that the remote user has 
requested an orderly release of a connection 
[see t_rcvrel(NSL)]. 

t snddis Aborts a connection or rejects a connect 
request [see t_snddis(NSL)]. 

t sndrel Requests the orderly release of a connection 
[see t_sndrel(NSL)]. 

Figure 2-7 Connection Release Routines 

2-7 



Network Programmer's Guide 

2.2.2 Connectionless-Mode Service 

The connectionless-mode transport service is characterized by two 
phases: local management and data transfer. The local management 
phase defines the same local operations described above for the 
connection-mode service. 

The data transfer phase enables a user to transfer data units (sometimes 
called datagrams) to the specified peer user. Each data unit must be 
accompanied by the transport address of the destination user. Two rou
tines, t _ sndudata and t _ rcvudata, support this message-based data 
transfer facility. Figure 2-8 summarizes all routines associated with 
connectionless-mode data transfer. 

Command Description 

t rcvudata Retrieves a message sent by another transport 
user [see t_rcvudata(NSL)]. 

t_rcvuderr Retrieves error information associated with a 
previously sent message [see 
t_rcvuderr(NSL)]. 

t_sndudata Sends a message to the specified destination 
user [see t_sndudata(NSL)]. 

Figure 2-8 Connectionless-Mode Data Transfer Routines 

2.3 State Transitions 

The Transport Layer Interface has two components: 

• the library routines that provide the transport services to users 

• the state transition rules that define the sequence in which the 
transport routines can be invoked 

2-8 



Overview of the Transport Layer Interface 

The state transition rules are presented in Appendix A of this guide in the 
fonn of state tables. The state tables define the legal sequence of library 
calls based on state infonnation and the handling of events. These events 
include user-generated library calls as well as provider-generated event 
indications. 

Note 

Any user of the Transport Layer Interface must completely under
stand all possible state transitions before writing software using the 
interface. 

2-9 



Chapter 3 

Connection-Mode 

Service 

3.1 Introduction 3-1 

3.2 Local Management 3-1 
3.2.1 The Client 3-3 
3.2.2 The Server 3-5 

3.3 Connection Establishment 3-8 
3.3.1 The Client 3-9 
3·.3.2 Event Handling 3-10 
3.3.3 The Server 3-11 

3.4 Data Transfer 3-15 
3.4.1 The Client 3-17 
3.4.2 The Server 3-17 

3.5 Connection Release 3-20 
3.5.1 The Server 3-20 
3.5.2 The Client 3-21 



Connection-Mode Service 

3.1 Introduction 

This chapter describes the connection-mode service of the Transport 
Layer Interface. As discussed in the previous chapter, the connection
mode service can be illustrated using a client/server example. The impor
tant concepts of connection-mode service are presented using two pro
gramming examples. The first example illustrates how a client estab
lishes a connection to a server and then communicates with the server. 
The second example shows the server's side of the interaction. All exam
ples discussed in this guide are presented in their entirety in Appendix C. 

In the examples the client establishes a connection with a server process. 
The server then transfers a file to the client. The client receives the data 
from the server and writes it to its standard output file. 

3.2 Local Management 

Before the client and server can establish a transport connection, each 
must first establish a local channel (the transport endpoint) to the tran
sport provider using t_open, and establish its identity (or address) using 
t_bind. 

The set of services supported by the Transport Layer Interface may not be 
implemented by all transport protocols. Each transport provider has a set 
of characteristics associated with it that determine the services it offers 
and the limitations associated with those services. This information is 
returned to the user by t _open, and consists of the following: 

addr 

options 

tsdu 

etsdu 

connect 

maximum size of a transport address 

maximum bytes of protocol-speci fic options that 
can be passed between the transport user and tran
sport provider 

maximum message size that can be transmitted in 
either connection-mode or connectionless-mode 

maximum expedited data message size that can be 
sent over a transport connection 

maximum number of bytes of user data that can be 
passed between users during connection establish
ment 

3-1 



Network Programmer's Guide 

discon 

servtype 

maximum bytes of user data that can be passed 
between users during the abortive release of a con
nection 

the type of service supported by the transport pro
vider 

The three service types defined by the Transport Layer Interface are: 

T_COTS The transport provider supports connection-mode 
service but does not provide the optional orderly 
release facility. 

T_COTS_ORD The transport provider supports connection-mode 
service with the optional orderly release facility. 

T_CLTS The transport provider supports connectionless
mode service. 

Only one such service can be associated with the transport provider 
identified by t _open. 

Note 

t _open returns the default provider characteristics associated with a 
transport endpoint. However, some characteristics can change after 
an endpoint has been opened. This occurs if the characteristics are 
associated with negotiated options (described later in this chapter). 
For example, if the support of expedited data transfer is a negotiated 
option, the value of this characteristic can change. t getinfo can be 
called to retrieve the current characteristics of a tranSPort endpoint. 

Once a user establishes a transport endpoint with the chosen transport 
provider, it must establish its identity. As mentioned earlier, t_hind 
accomplishes this by binding a transport address to the transport endpoint. 
In addition, for servers, this routine informs the transport provider that the 
endpoint will be used to listen for incoming connect requests, also called 
connect indications. 

An optional facility, t_optmgmt [see t_optmgmt(NSL)], is also available 
during the local management phase. It enables a user to negotiate the 
values of protocol options with the transport provider. Each transport 
protocol is expected to define its own set of negotiable protocol options, 

3-2 



Connection-Mode Service 

which can include such infonnation as Quality-of-Service parameters. 
Because of the protocol-specific nature of options, only applications writ
ten for a particular protocol environment are expected to use this facility. 

3.2.1 The Client 

The local management requirements of the example client and server are 
used to discuss details of these facilities. The following are the 
definitions needed by the client program, followed by its necessary local 
management steps. 

#include <stdio.h> 
#include <tiuser.h> 
#include <fcntl.h> 

#define SRV_ADDR 1 /* server's well known address */ 

main ( ) 
{ 

int fd; 
int nbytes; 
int flags = 0; 
char buf[1024]; 
struct t call *sndcall; 
extern in"t t_errno; 

if ((fd = t open ("/dev/tivc", 0 ROWR, NULL» < 0) { 
t error("t open failed"); 
erlt(l); -

if (t bind(fd, NULL, NULL) < 0) 
t-error("t bind failed"); 
erlt(2); -

The first argument to t _open is the path name of a file system node that 
identifies the transport protocol that will supply the transport service. In 
this example, /dev/live is a STREAMS clone device node that identifies a 
generic, connection-based transport protocol [see clone(STR)]. The 
clone device finds an available minor device of the transport provider for 
the user. It is opened for both reading and writing, as specified by the 
O_RDWR open flag. The third argument can be used to return the service 
characteristics of the transport provider to the user. This infonnation is 
useful when writing protocol-independent software (discussed in Appen
dix B). For simplicity, the client and server in this example ignore this 
infonnation and assume that the transport provider has the following 
characteristics: 

3-3 



Network Programmer's Guide 

• The transport address is an integer value which uniquely identifies 
each user. 

• The transport provider supports the T_COTS_ORD service type, 
and the example will use the orderly release facility to release the 
connection. 

• User data cannot be passed between users during either connection 
establishment or abortive release. 

• The transport provider does not support protocol-specific options. 

Because these characteristics are not needed by the user, NULL is 
specified in the third argument to t _open. If the user needs a service 
other than T_COTS_ORD, another transport provider will be opened. An 
example of the T_CLTS service invocation is presented in Chapter 4. 

The return value of t_open is an identifier for the transport endpoint that 
is used by all subsequent Transport Layer Interface function calls. This 
identifier is actually a file descriptor obtained by opening the transport 
protocol file [see open(S)]. The significance of this fact is highlighted in 
Chapter 5. 

After the transport endpoint is created, the client calls t _bind to assign an 
address to the endpoint. The first argument identifies the transport end
point. The second argument describes the address the user would like to 
bind to the endpoint, and the third argument is set on return from t _bind 
to specify the address that the provider bound. 

The address associated with a server's transport endpoint is important 
because that is the address used by all clients to access the server. How
ever, the typical client does not care what its own address is, because no 
other process will try to access it. That is the case in this example, where 
the second and third arguments to t bind are set to NULL. A NULL 
second argument directs the transport-provider to choose an address for 
the user. A NULL third argument indicates that the user does not care 
what address was assigned to the endpoint. 

If either t_open or t_bind fails, the program calls t_error [see 
t_error(NSL)] to print an appropriate error message to stderr. If any 
Transport Layer Interface routine fails, the global integer t_errno is 
assigned an appropriate transport error value. A set of such error values is 
defined in <tiuser .h> for the Transport Layer Interface, and t _error 

3-4 



Connection-Mode Service 

prints an error message corresponding to the value in t _ errno. This rou
tine is analogous to perror(S), which prints an error message based on 
the value of errno. If the error associated with a transport function is a 
system error, t_errno is set to TSYSERR, and errno is set to the appropri
ate value. 

3.2.2 The Server 

The server in this example must take similar local management steps 
before communication can begin. The server must establish a transport 
endpoint through which it listens for connect indications. The necessary 
definitions and local management steps are shown below: 

#include <tiuser.h> 
#include <stropts.h> 
#include <fcntl.h> 
#include <stdio.h> 
#include <signal.h> 

#define DISCONNECT -1 
#define SRV_ADDR 1 /* server's well-known address */ 

int conn_fd; /* connection established here */ 
extern int t_errno; 

main ( ) 
{ 

int listen fd; /* listening transport endpoint */ 
struct t bind *bind; 
struct t:5all *call; 

if ((listen fd = t open (n/dev/tivcn, 0 RDWR, NULL)) < 0) { 
t error(nt open failed for listen fdn); 
eXit (1) ; - -

/* 
* By assuming that the address is an integer value, 
* this program may not run over another protocol. 
*/ 

if ((bind = (struct t bind *)t alloc(listen fd, T BIND, T_ALL)) = NULL) 
terror (nt alloc of t bind-structure faIledn);-
eXit (2) ; - -

3-5 



Network Programmer's Guide 

bind->qlen = 1; 
bind->addr.len = sizeof(int); 
*(int *)bind->addr.buf = SRV_ADDR; 

if (t bind(listen fd, bind, bind) < 0) 
t-error(nt bind failed for listen fdn); 
erlt(3); - -

/* 
* Was the correct address bound? 
*/ 

if (*(int *)bind->addr.buf != SRV ADDR) 
fprintf(stderr, nt bind bound-wrong address\nn); 
exit (4) ; -

As with the client, the first step is to call t_open to establish a transport 
endpoint with the desired transport provider. This endpoint, listenJd, 
will be used to listen for connect indications. Next, the seIVer must bind 
its well-known address to the endpoint. This address is used by each 
client to access the seIVer. The second argument to t_ bind requests that a 
particular address be bound to the transport endpoint. This argument 
points to a t _bind structure with the following format: 

struct t_bind { 
struct netbuf addr; 
unsigned qlen; 

where addr describes the address to be bound, and qlen indicates the max
imum outstanding connect indications that can arrive at this endpoint. 
All Transport Layer Interface structure and constant definitions are found 
in <tiuser .h>. 

The address is specified using a netbuf structure that contains the follow
ing members: 

struct netbuf { 
unsigned int rnaxlen; 
unsigned int len; 
char *buf; 

where buf points to a buffer containing the data, len specifies the bytes of 
data in the buffer, and maxlen indicates the maximum number of bytes 
that the buffer can hold. (This need be set only when data is returned to 

3-6 



Connection-Mode Service 

the user by a Transport Layer Interface routine.) For the t _bind structure, 
the data pointed to by buf identifies a transport address. It is expected 
that the structure of addresses will vary among each protocol implemen
tation under the Transport Layer Interface. The netbuf structure is 
intended to support any such structure. 

If the value of qlen is greater than 0, the transport endpoint can be used to 
listen for connect indications. In such cases, t bind directs the transport 
provider to immediately begin queueing connect indications destined for 
the bound address. Furthermore, the value of qlen indicates the maximum 
outstanding connect indications the server wishes to process. The server 
must respond to each connect indication, either accepting or rejecting the 
request for connection. An outstanding connect indication is one to 
which the server has not yet responded. Often, a server will fully process 
a single connect indication and respond to it before receiving the next 
indication. In this case, a value of 1 is appropriate for qlen. However, 
some servers may wish to retrieve several connect indications before 
responding to any of them. In such cases, qlen indicates the maximum 
number of such outstanding indications the server will process. An exam
ple of a server that manages multiple outstanding connect indications is 
presented in Chapter 6. 

t _ alloc is called to allocate the t _bind structure needed by t _bind. 
t _ alloc takes three arguments. The first is a file descriptor that references 
a transport endpoint. This is used to access the characteristics of the tran
sport provider [see t_open(NSL)]. The second argument identifies the 
appropriate Transport Layer Interface structure to be allocated. The third 
argument specifies which, if any, netbuf buffers should be allocated for 
that structure. T_ALL specifies that all netbuf buffers associated with the 
structure should be allocated; in this example, T _ALL causes the addr 
buffer to be allocated. The size of this buffer is determined from the tran
sport provider characteristic that defines the maximum address size. The 
maxlen field of this netbuf structure is set to the size of the newly allo
cated buffer by t_alloc. The use oft_alloc helps to ensure the compatibil
ity of user programs with future releases of the Transport Layer Interface. 

The server in this example processes connect indications one at a time, 
and so qlen is set to one. The address information is then assigned to the 
newly allocated t_bind structure. This t_bind structure is used to pass 
information to t _bind in the second argument, and it is also used to return 
information to the user in the third argument. 

On return, the t bind structure contains the address that was bound to the 
transport endpoint. If the provider cannot bind the requested address 
(perhaps because it was bound to another transport endpoint), it chooses 
another appropriate address. 

3-7 



Network Programmer's Guide 

Note 

Each transport provider manages its address space differently. 
Some transport providers allow a single transport address to be 
bound to several transport endpoints, while others require a unique 
address per endpoint. The Transport Layer Interlace supports either 
choice. Based on its address management rules, a provider deter
mines if it can bind the requested address. If not, it chooses another 
valid address from its address space and binds it to the transport 
endpoint. 

The server must check the bound address to ensure that it is the one previ
ously advertised to clients. Otherwise, the clients will be unable to reach 
the server. 

If t_bind succeeds, the provider begins queueing connect indications. 
This begins the next phase of communication, connection establishment. 

3.3 Connection Establishment 

The connection establishment procedures highlight the distinction 
between clients and servers. The Transport Layer Interlace imposes a 
different set of procedures in this phase for each type of transport user. 
The client initiates the connection establishment procedure by using 
t _connect to request a connection to a particular server. The server is 
then notified of the client's request by calling t_listen. The server can 
either accept or reject the client's request. It calls t_accept to establish 
the connection or calls t _ snddis to reject the request. The client is 
notified of the server's decision when t _connect completes. 

The Transport Layer Interlace supports two facilities during connection 
establishment that may not be supported by all transport providers. The 
first is the ability to transfer data between the client and server when 
establishing the connection. The client can send data to the server when 
it requests a connection. This data is passed to the server by t _listen. 
Similarly, the server can send data to the client when it accepts or rejects 
the connection. The connect characteristic returned by t_open deter
mines how much data, if any, two users can transfer during connection 
establishment. 

The second optional service supported by the Transport Layer Interface 
during connection establishment is the negotiation of protocol options. 
The client can specify protocol options that it would like the remote user 

3-8 



Connection-Mode Service 

and/or transport provider to use. The Transport Layer Interface supports 
both local and remote option negotiation. As discussed earlier, option 
negotiation is inherently a protocol-specific function. Use of this facility 
is discouraged if protocol-independent software is a goal (see Appendix 
B). 

3.3.1 The Client 

Continuing with the client/server example, the steps needed by the client 
to establish a connection are as follows: 

/* 
* By assuming that the address is an integer value, 
* this program may not run over another protocol. 
*/ 

if ((sndcall = (struct t call *)t alloc(fd, T_CALL, T_ADDR)) = NULL) { 
t error(nt alloc failedn); -
eXit (3) ; -

sndcall->addr.len = sizeof(int); 
*(int *)sndcall->addr.buf = SRV_ADDR; 

if (t connect(fd, sndcall, NULL) < 0) { 
t -error (nt connect failed for fdn); 
eXit (4); -

The t connect call establishes the connection with the server. The first 
argument to t _connect identifies the transport endpoint through which the 
connection is established, and the second argument identifies the destina
tion server. This argument is a pointer to a t _call structure, which has the 
following format: 

struct t call 
struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 
int sequence; 

addr identifies the address of the server, opt can be used to specify 
protocol-specific options that the client would like to associate with the 
connection, and udata identifies user data that can be sent with the con
nect request to the server. The sequence field has no meaning for 
t connect. 

3-9 



Network Programmer's Guide 

t_alloc is called above to allocate the t_call structure dynamically. Once 
allocated, the appropriate values are assigned. In this example, no 
options or user data are associated with the t _connect call, but the 
server's address must be set. The third argument to t_alloc is set to 
T_ADDR to indicate that an appropriate netbuf buffer should be allocated 
for the address. The server's address is then assigned to buf, and len is set 
accordingly. 

The third argument to t _connect can be used to return information about 
the newly established connection to the user, and it can retrieve any user 
data sent by the server in its response to the connect request. It is set to 
NULL by the client here to indicate that this information is not needed. 
The connection is established on successful return of t connect. If the 
server rejects the connect request, t_connect fails and-sets t_errno to 
TLOOK. 

3.3.2 Event Handling 

The TLOOK error has special significance in the Transport Layer Inter
face. Some Transport Layer Interface routines may be interrupted by an 
unexpected asynchronous transport event on the given transport endpoint, 
and TLOOK notifies the user that an event has occurred. As such, TLOOK 
does not indicate an error with a Transport Layer Interface routine. 
Rather, it indicates that the normal processing of that routine will not be 
performed because of the pending event. The events defined by the Tran
sport Layer Interface are listed here: 

3-10 

T _LISTEN A request for a connection, called a connect 
indication, has arrived at the transport endpoint. 

T_CONNECT The confirmation of a previously sent connect 
request, called a connect confirmation, has 
arrived at the transport endpoint. The 
confirmation is generated when a server accepts 
a connect request. 

T_DATA User data has arrived at the transport endpoint. 

T_EXDATA Expedited user data has arrived at the transport 
endpoint. (Expedited data will be discussed 
later in this chapter.) 

T_DISCONNECT A notification that the connection was aborted 
or that the server rejected a connect request, 
called a disconnect indication, has arrived at the 



Connection-Mode Service 

transport endpoint. 

A request for the orderly release of a connec
tion, called an orderly release indication, has 
arrived at the transport endpoint. 

The notification of an error in a previously sent 
datagram, called a unitdata error indication, has 
arrived at the transport endpoint (see Chapter 4). 

As described in the state tables of Appendix A, in some states it is possi
ble to receive one of several asynchronous events. The t_look routine 
[see t look(NSL)] enables a user to determine what event has occurred if 
a TLOOK error is returned. The user can then process that event accord
ingly. In the example, if a connect request is rejected, the event passed to 
the client will be a disconnect indication. The client will exit if its 
request is rejected. 

3.3.3 The Server 

Returning to the example, when the client calls t _connect, a connect 
indication is generated on the server's listening transport endpoint. The 
steps required by the server to process the event are presented below. For 
each client, the server accepts the connect request and spawns a server 
process to manage the connection. 

if ((call = (struct t call *)t alloc(listen fd, T CALL, T_ALL)) = NULL) 
t error (Itt alloe of t call structure failed"); 
exit(5); - -

while (1) { 
if (t listen(listen fd, call) < 0) { 

t_error(ltt listen failed for listen fd"); 
eXl.t(6); - -

if ((conn fd = accept call(listen fd, call)) != DISCONNECT) 
run_server(listen=fd); -

The server loops forever, processing each connect indication. First the 
server calls t listen to retrieve the next connect indication. When one 
arrives, the Server calls accept_call to accept the connect request. 
accept_call accepts the connection on an alternate transport endpoint (as 
discussed below) and returns the value of that endpoint. connJd is a 

3-11 



Network Programmer's Guide 

global variable that identifies the transport endpoint where the connection 
is established. Because the connection is accepted on an alternate end
point, the server can continue listening for connect indications on the 
endpoint that was bound for listening. If the call is accepted without 
error, run _server spawns a process to manage the connection. 

The server allocates a t _call structure to be used by t Jisten. The third 
argument to t_alloc, T_ALL, specifies that all necessary buffers should be 
allocated for retrieving the caller's address, options, and user data. As 
mentioned earlier, the transport provider in this example does not support 
the transfer of user data during connection establishment, and also does 
not support any protocol options. Therefore, t_alloc does not allocate 
buffers for the user data and options. However, it must allocate a buffer 
large enough to store the address of the caller. t alloc determines the 
buffer size from the addr characteristic returned by-t _open. The maxlen 
field of each netbuf structure is set to the size of the newly allocated 
buffer by t_alloc. (maxlen is 0 for the user data and options buffers.) 

Using the t _call structure, the server calls t _listen to retrieve the next 
connect indication. If one is currently available, it is returned to the 
server immediately. Otherwise, t Jisten blocks until a connect indication 
arrives. 

Note 

The Transport Layer Interface supports an asynchronous mode that 
prevents a process from blocking. This feature is discussed in 
Chapter 6. 

When a connect indication arrives, the server calls accept_call to accept 
the client's request, as follows: 

3-12 



Connection-Mode Service 

accept call (listen fd, call) 
int listen fd; -
struct t call *call; 
{ -

int resfd; 

if ((resfd = t open("/dev/tivc", 0 RDWR, NULL)) < 0) 
t error("t-open for responding fd failed"); 
erlt(7); -

if (t bind(resfd, NULL, NULL) < 0) { 
t-error("t bind for responding fd failed"); 
erlt(8); -

if (t accept (listen fd, resfd, call) < 0) { 
if (t errno = TIroK) { /* must be a disconnect */ 

if (t rcvdis (listen fd, NULL) < 0) { 
t -error ("t rcvciIs failed for listen fd"); 
eXlt(9); - -

if (t close(resfd) < 0) { 

} 

t -error ("t close failed for responding fd"); 
erlt(lO); -

/* go back up and listen for other calls */ 
return(DISCONNECT); 

terror ("t accept failed"); 
erlt (11); -

return(resfd); 

accept_call takes two arguments. listen Jd identifies the transport end
point where the connect indication arrived, and call is a pointer to at_call 
structure that contains all information associated with the connect indica
tion. The server first establishes another transport endpoint by opening 
the clone device node of the transport provider and binding an address. 
As with the client, a NULL value is passed to t _bind to specify that the 
user does not care what address is bound by the provider. The newly esta
blished transport endpoint, res/d, is used to accept the client's connect 
request. 

The first two arguments of t_accept specify the listening transport end
point and the endpoint where the connection will be accepted, respec
tively. A connection can be accepted on the listening endpoint. How
ever, this prevents other clients from accessing the server for the duration 
of that connection. 

3-13 



Network Programmer's Guide 

The third argument of t accept points to the t call structure associated 
with the connect indication. This structure should contain the address of 
the calling user and the sequence number returned by t_listen. The value 
of sequence has particular significance if the server manages multiple 
outstanding connect indications. Chapter 6 presents such an example. 
Also, the t _call structure should identify protocol options the user would 
like to specify and user data that can be passed to the client. Because the 
transport provider in this example does not support protocol options or the 
transfer of user data during connection establishment, the t _call structure 
returned by t _listen can be passed without change to t _accept. 

For simplicity in the example, the server exits if either the t _open or 
t_bind call fails. exit(S) closes the transport endpoint associated with 
listen Jd, causing the transport provider to pass a disconnect indication to 
the client that requested the connection. This disconnect indication 
notifies the client that the connection was not established; t connect then 
fails, setting t _ errno to TLOOK. -

t _accept can fail if an asynchronous event has occurred on the listening 
transport endpoint before the connection is accepted. In this case, t _ errno 
is set to TLOOK. The state transition table in Appendix A shows that the 
only event that can occur in this state with only one outstanding connect 
indication is a disconnect indication. This event can occur if the client 
decides to undo the connect request it had previously initiated. If a 
disconnect indication arrives, the server must retrieve the disconnect indi
cation using t_rcvdis. This routine takes a pointer to a t_discon structure 
as an argument which is used to retrieve information associated with a 
disconnect indication. However, in this example the server does not care 
to retrieve this information, and so it sets the argument to NULL. After 
receiving the disconnect indication, accept_call closes the responding 
transport endpoint and returns DISCONNECT, which informs the server 
that the connection was disconnected by the client. The server then 
listens for further connect indications. 

Figure 3-1 illustrates how the server establishes connections. 

3-14 



clien, I I 
responding 
endpoint -

server 

Connection-Mode Service 

listening 
-- endpoint 

.. • • • . . .. . . . .. •....••..•••••..•.•....... .•.•.......• •..••.•. Transport Layer Interface 

transport provider 

transport 
~---+-- connection 

Figure 3-1 Listening and Responding Transport Endpoints 

The transport connection is established on the newly created responding 
endpoint, and the listening endpoint is freed to retrieve further connect 
indications. 

3.4 Data Transfer 

Once the connection has been established, both the client and server can 
begin transferring data over the connection using t _ snd and t _rev. From 
this point on, the Transport Layer Interface does not differentiate the 
client from the server. Either user can send and receive data, or release 
the connection. The Transport Layer Interface guarantees reliable, 
sequenced delivery of data over an existing connection. 

Two classes of data can be transferred over a transport connection: nor
mal and expedited. Expedited data is typically associated with infonna
tion of an urgent nature. The exact semantics of expedited data are sub
ject to the interpretations of the transport provider. Furthennore, not all 
transport protocols support the notion of an expedited data class [see 
t _ open(NSL)]. 

All transport protocols support the transfer of data in byte stream mode, 
where "byte stream" implies no concept of message boundaries on data 
which is transferred over a connection. However, some transport proto
cols support the preservation of message boundaries over a transport con
nection. This service is supported by the Transport Layer Interface, but 
protocol-independent software must not rely on its existence. 

The message interface for data transfer is supported by a special flag of 
t_snd and t_rev called T_MORE. The messages, called Transport Service 

3-15 



Network Programmer's Guide 

Data Units (TSDU), can be transferred between two transport users as dis
tinct units. The maximum size of a TSDU is a characteristic of the under
lying transport protocol. This information is available to the user from 
t _open and t _getinfo. Because the maximum TSDU size can be large 
(possibly unlimited), the Transport Layer Interface enables a user to 
transmit a message in multiple units. 

To send a message in multiple units over a transport connection, the user 
must set the T_MORE flag on every t_snd call except the last. This flag 
indicates that the user will send more data associated with the message in 
a subsequent call to t_snd. The last message unit should be transmitted 
with T_MORE turned off to indicate that this is the end of the TSDU. 

Similarly, a TSDU can be passed to the user on the receiving side in mul
tiple units. Again, if t_rev returns with the T_MORE flag set, the user 
should continue calling t rev to retrieve the remainder of the message. 
The last unit in the message is indicated by a call to t_rev that does not 
setT_MORE. 

Warning 

The T_MORE flag implies nothing about how the data is packaged 
below the Transport Layer Interface. Furthermore, it implies noth
ing about how the data is delivered to the remote user. Each tran
sport protocol, and each implementation of that protocol, can pack
age and deliver the data differently. 

For example, if a user sends a complete message in a single call to 
t _ snd, there is no guarantee that the traiisport provider will deliver 
the data in a single unit to the remote transport user. Similarly, a 
TSDU transmitted in two message units may be delivered in a single 
unit to the remote transport user. The message boundaries can be 
preserved only by noting the value of the T_MORE flag on t_snd and 
t _rev. This guarantees that the receiving user will see a message 
with the same contents and message boundaries as was sent by the 
remote user. 

3-16 



Connection-Mode Service 

3.4.1 The Client 

Continuing with the client/server example, the server now transfers a log 
file to the client over the transport connection. The client receives this 
data and writes it to its standard output file. The client and server use a 
byte stream interface, where message boundaries (that is, the T_MORE 
flag) are ignored. The client receives data using the following instruc
tions: 

while ((nbytes = t rcv(fd, buf, 1024, &flags» != -1) { 
if (fwrite(buf~ 1, nbytes, stdout) < 0) { 

fprintf (stderr, "fwrite failed\n"); 
exit(5); 

The client continuously calls t rcv to process incoming data. If no data 
is currently available, t_rcv blocks until data arrives. t_rcv retrieves the 
available data up to 1024 bytes, which is the size of the client's input 
buffer, and returns the number of bytes that were received. The client 
then writes this data to standard output and continues. The data transfer 
phase completes when t_rcv fails. t_rcv fails if an orderly release indica
tion or disconnect indication arrives, as discussed later in this chapter. If 
the fwrite call [see jread(S)] fails for any reason, the client exits, thereby 
closing the transport endpoint. If the transport endpoint is closed (either 
by exit or t_close) when it is in the data transfer phase, the connection is 
aborted and the remote user receives a disconnect indication. 

3.4.2 The Server 

Looking now at the other side of the connection, the server manages its 
data transfer by spawning a child process to send the data to the client. 
The parent process then loops back to listen for further connect indica
tions. The server calls run_server to spawn this child process as follows: 

3-17 



Network Programmer's Guide 

connrelease ( ) 
{ 

/* conn fd is global because needed here */ 
if (t look(conn fd) == T DISCONNECT) { 

iprintf (stderr, "connection aborted\n"); 
exit (12); 

} 

/* else orderly release indication - normal exit */ 
exit(O); 

run server(listen fd) 
int-listen fd; -
{ -

int nbytes; 
FILE *logfp; 
char buf[1024]; 

/* file pointer to log file */ 

switch (fork ( ) ) 

case -1: 
perror ("fork failed"); 
exit(20); 

default: /* parent */ 

/* close conn fd and then go up and listen again */ 
if (t close(conn fd) < 0) ( 

t-error("t close failed for conn fd"); 
eXit (21); - -

return; 

case 0: /* child */ 

3-18 

/* close listen fd and do service */ 
if (t close(listen fd) < 0) { 

t-error("t close failed for listen_fd"); 
eXit (22); -

if «logfp = fopen("logfile", "r"» == NULL) { 
perror ("cannot open logfile"); 
exit(23); 

signal(SIGPOLL, connrelease); 
if (ioctl(conn fd, I SETSIG, S INPUT) < 0) { 

perror ("ioCtl I SETSIG failed"); 
exit(24); -

if (t look (conn fd) != 0) { /* was disconnect already there? */ 
fPrintf(stderr, "t_look returned unexpected event\n"); 
exit(25); 

while «nbytes = fread(buf, 1, 1024, logfp» > 0) 
if (t snd(conn fd, buf, nbytes, 0) < 0) { 

t -error ("t -snd failed") ; 
eXit (26) ; -



Connection-Mode Service 

After the fork, the parent process returns to the main processing loop and 
listens for further connect indications. Meanwhile, the child process 
manages the newly established transport connection. If the fork call 
fails, exit closes the transport endpoint associated with listen Jd. This 
action causes a disconnect indication to be passed to the client, and the 
client's t connect call fails. 

The server process reads 1024 bytes of the log file at a time and sends that 
data to the client using t_snd. buf poirits to the start of the data buffer, 
and nbytes specifies the number of bytes to be transmitted. The fourth 
argument is used to specify optional flags. Two flags are currently sup
ported: T_EXPEDlTED can be set to indicate that the data is expedited, 
and T_MORE can be set to define message boundaries when transmitting 
messages over a connection. Neither flag is set by the server in this 
example. 

If the user begins to flood the transport provider with data, the provider 
can exert back pressure to provide flow control. In such cases, t _ snd 
blocks until the flow control is relieved and then resumes its operation. 
t_snd will not complete until nbyte bytes have been passed to the tran
sport provider. 

The t snd routine does not look for a disconnect indication before pass
ing data to the provider. Also, because the data traffic is flowing in one 
direction, the user will never look for incoming events. If, for some rea
son, the connection is aborted, the user should be notified because data 
may be lost. One option available to the user is to use t_Iook to check for 
incoming events before each t snd call. A more efficient solution is the 
one presented in the example. -The STREAMS CSETSIG ioctl enables a 
user to request a signal when a given event occurs [see streamio(STR) 
and signal(S)]. The STREAMS event of concern here is S_INPUT, which 
causes a signal to be sent to the user if any input arrives on the Stream 
referenced by conn Jd. If a disconnect indication arrives, the signal 
catching routine (connrelease) prints an appropriate error message and 
then exits. 

If the data traffic flowed in both directions in this example, the user would 
not have to monitor the connection for disconnects. If the client alter
nated t_snd and t_rcv calls, it could rely on t_rcv to recognize an incom
ing disconnect indication. 

3-19 



Network Programmer's Guide 

3.5 Connection Release 

Either user can release the transport connection and end the conversation 
at any point during data transfer. As mentioned earlier, two forms of con
nection release are supported by the Transport Layer Interface. The first, 
abortive release, breaks a connection immediately and can result in the 
loss of any data that has not yet reached the destination user. t_snddis 
can be called by either user to generate an abortive release. Also, the 
transport provider can abort a connection if a problem occurs below the 
Transport Layer Interface. t _ snddis enables a user to send data to the 
remote user when aborting a connection. Although the abortive release is 
supported by all transport providers, the ability to send data when abort
ing a connection is not. 

When the remote user is notified of the aborted connection, t rcvdis must 
be called to retrieve the disconnect indication. This call retUrns a reason 
code that indicates why the connection was aborted, and it returns any 
user data that may have accompanied the disconnect indication (if the 
abortive release was initiated by the remote user). This reason code is 
specific to the underlying transport protocol, and it should not be inter
preted by protocol-independent software. 

The second form of connection release is orderly release, which grace
fully terminates a connection and guarantees that no data is lost. All tran
sport providers must support the abortive release procedure, but orderly 
release is an optional facility that is not supported by all transport proto
cols. 

3.5.1 The Server 

. The client/server example in this chapter assumes that the transport pro
vider supports the orderly release of a connection. When all the data has 
been transferred by the server, the connection can be released as follows: 

if (t sndrel(conn fd) < 0) { 
t-error("t sndrel failed"); 
eXit (27) ; -

pause(); /* until orderly release indication arrives */ 

The orderly release procedure consists of two steps by each user. The 
first user to complete data transfer can initiate a release using t _ sndrel, as 
illustrated in the example. This routine informs the client that no more 

3-20 



Connection-Mode Service 

data will be sent by the server. When the client receives such an indica
tion, it can continue sending data back to the server if desired. When all 
data has been transferred, however, the client must also call t sndrel to 
indicate that it is ready to release the connection. The connection is 
released only after both users have requested an orderly release and 
received the corresponding indication from the other user. 

In this example, data is transferred in one direction from the server to the 
client, and so the server does not expect to receive data from the client 
after it has initiated the release procedure. Thus, the server simply calls 
pause [see pause(S)] after initiating the release. Eventually, the remote 
user responds with its orderly release request, and the indication gen
erates a signal that will be caught by connrelease. Remember that the 
server earlier issued an CSETSIG ioctl call to generate a signal on any 
incoming event. Since the only possible Transport Layer Interface events 
that can occur in this situation are a disconnect indication or an orderly 
release indication, connrelease terminates normally when the orderly 
release indication arrives. The exit call in cunnrelease closes the tran
sport endpoint, thereby freeing the bound address for use by another user. 
If a user process wants to close a transport endpoint without exiting,. it 
can call t _close. 

3.5.2 The Client 

The client's view of connection release is similar to that of the server. As 
mentioned earlier, the client continues to process incoming data until 
t_rcv fails. If the server releases the connection (using either t_snddis or 
t sndrel), t rcv fails and sets t errno to TLOOK. The client then 
processes the connection release as follows: 

if «t ermo = TLCX)K) && (t look(fd) = T_ORDREL» 
if-(t rcvrel(fd) < 0) ( -

} 

t-error("t rcvrel failed"); 
eXit (6); -

if (t sndrel(fd) < O} { 
t-error{"t sndrel failed"}; 
eXit (7) ; -

exit (0) ; 

terror ("t rev failed"); 
eXlt(8}; -

Under normal circumstances, the client terminates the transfer of data by 
calling t _ sndrel to initiate the connection release. When the orderly 

3-21 



Network Programmer's Guide 

release indication arrives at the client's side of the connection, the client 
checks to make sure that the expected orderly release indication has 
arrived. If so, it proceeds with the release procedures by calling t_rcvrel 
to process the indication and t _ sndrel to infonn the server that it is also 
ready to release the connection. At this point the client exits, thereby 
closing its transport endpoint. 

Not all transport providers support the orderly release facility just 
described, and so users may have to use the abortive release facility pro
vided by t_snddis and t_rcvdis. However, steps must be taken by each 
user to prevent any loss of data. For example, a special byte pattern can 
be inserted in the data stream to indicate the end of a conversation. Many 
mechanisms are possible for preventing data loss. Each application and 
high-level protocol must choose an appropriate mechanism given the tar
get protocol environment and requirements. 

3-22 



Chapter 4 

Connectionless-Mode Service 

4.1 Introduction 4-1 

4.2 Local Management 4-1 

4.3 Data Transfer 4-3 

4.4 Datagram Errors 4-6 



Connectionless-Mode Service 

4.1 Introduction 

This chapter describes the connectionless-mode service of the Transport 
Layer Interface. Connectionless-mode service is appropriate for short
term request/response interactions, such as transaction processing appli
cations. Data are transferred in self-contained units with no logical rela
tionship required among multiple units. 

The connectionless-mode services are described using a transaction 
server as an example. This server waits for incoming transaction queries 
and then processes and responds to each query. 

4.2 Local Management 

Like connection-mode service, the transport users must perform appropri
ate local management steps before data can be transferred. A user must 
choose the appropriate connectionless service provider using t _open and 
establish its identity using t _bind. 

t _ optmgmt can be used to negotiate protocol options that may be associ
ated with the transfer of each data unit. As with the connection-mode ser
vice, each transport provider specifies the options, if any, that it supports. 
Option negotiation is therefore a protocol-specific activity. 

In the example, the definitions and local management calls needed by the 
transaction server are as follows: 

4-1 



Network Programmer's Guide 

#include <stdio.h> 
#include <fcntl.h> 
#include <tiuser.h> 

#define SRV_ADDR 2 /* server's well-known address */ 

main() 
{ 

int fd; 
int flags; 

struct t bind *bind; 
struct t - unitdata *ud; 
struct t =: uderr *uderr; 

extern int t _ errno; 

if (fd = t open("/dev/tidg", 0 ROWR, NULL)) < 0) { 
terror ("unable to open /dev /provider") ; 
exit (1) ; 

if (bind = (struct t bind *) t alloc (fd, T BIND, T ADDR)) = NULL) { 
t error("t alloc of t bind-structure failed");-
eld.t(2); - -

bind->addr.len = sizeof(int); 
*(int *)bind->addr.buf = SRV ADDR; 
bind->qlen = 0; -

if (t bind(fd, bind, bind) < 0) 
t -error ("t bind failed"); 
eld.t(3); -

/* 
* is the bound address correct? 
*/ 

if (*(int *)bind->addr.buf != SRV ADDR) { 
fprintf(stderr, "t bind bound-wrong address\nn); 
exit (4); -

The local management steps should look familiar by now. The server 
establishes a transport endpoint with the desired transport provider using 
t _open. Each provider has an associated service type, and so the user can 
choose a particular service by opening the appropriate transport provider 

4-2 



Connectionless-Mode Service 

file. This connectionless-mode server ignores the characteristics of the 
provider returned by t _open in the same way as the users in the 
connection-mode example, setting the third argument to NULL. For sim
plicity, the transaction server assumes the transport provider has the fol
lowing characteristics: 

• The transport address is an integer value that uniquely identifies 
each user. 

• The transport provider supports the T_CLTS service type (connec
tionless transport service, or datagram). 

• The transport provider does not support any protocol-specific 
options. 

The connectionless server also binds a transport address to the endpoint 
so that potential clients can identify and access the server. At_bind 
structure is allocated using t alloc, and the but and len fields of the 
address are set accordingly. -

One important difference between the connection-mode server and this 
connectionless-mode server is that the qlen field of the t _bind structure 
has no meaning for connectionless-mode service. That is because all 
users are capable of receiving datagrams once they have bound an 
address. The Transport Layer futerface defines an inherent client/server 
relationship between two users while establishing a transport connection 
in the connection-mode service. However, no such relationship exists in 
the connectionless-mode service. It is the context of this example, not the 
Transport Layer futerface, that defines one user as a server and another as 
a client. 

Because the address of the server is known by all potential clients, the 
server checks the bound address returned by t _bind to ensure that it is 
correct. 

4.3 Data Transfer 

Once a user has bound an address to the transport endpoint, datagrams 
can be sent or received over that endpoint. Each outgoing message is 
accompanied by the address of the destination user. fu addition, the 
Transport Layer futerface enables a user to specify protocol options that 
should be associated with the transfer of the data unit (for example, tran
sit delay). As discussed earlier, each transport provider defines the set of 
options, if any, that can accompany a datagram. When the datagram is 
passed to the destination user, the associated protocol options can be 

4-3 



Network Programmer's Guide 

returned as well. 

The following sequence of calls illustrates the data transfer phase of the 
connectionless-mode server: 

if «ud = (struct t unitdata *) t alloc (fd, T UNI'IDATA, T ALL)) = NULL) { 
terror ("t alloe of t unitdata structure-failed"); -
eXit (5) ; - -

if «uderr = (struct t uderr *)t alIoc(fd, T UDERROR, T_ALL» = NULL) { 
terror ("t alloc of t uderr structure faIled"); 
eXit(6); - -

while (1) { 

if (t rcvudata(fd, ud, & flags) < 0) { 
if (t _ ermo = TLCDK) 

/* 

/* 
* Error on previously sent datagram 
*/ 

if (t rcvuderr(fd, uderr) < 0) { 
eXit (7); 

fprintf(stderr, "bad datagram, error = %d\n", 
uderr->error) ; 

continue; 

terror ("t rcvudata failed"); 
exit (8) ; -

* Query () processes the request and places the 
* response in ud->udata.buf, setting ud->udata.len 
*/ 

query (ud) ; 

if (t sndudata(fd, ud, 0) < 0) { 
t -error ("t sndudata failed"); 
eXit (9) ; -

query ( ) 
{ 

/* Merely a stub for simplicity */ 

4-4 



Connectionless-Mode Service 

The server must first allocate a t unitdata structure for storing 
datagrams, which has the following foniiat: 

struct t_unitdata { 
struct netbuf addri 
struct netbuf opti 
struct netbuf udatai 

addr holds the source address of incoming datagrams and the destination 
address of outgoing datagrams, opt identifies any protocol options associ
ated with the transfer of the datagram, and udata holds the data itself. 
The addr, opt, and udata fields must all be allocated with buffers that are 
large enough to hold any possible incoming values. As described in the 
previous chapter, the T_ALL argument to t_alloc ensures this and sets the 
maxlen field of each netbuf structure accordingly. Because the provider 
does not support protocol options in this example, no options buffer is 
allocated, and maxlen is set to zero in the netbuf structure for options. A 
t _ uderr structure is also allocated by the server for processing any 
datagram errors, as will be discussed later in this chapter. 

The transaction server loops forever, receiving queries, processing the 
queries, and responding to the clients. It first calls t _ rcvudata to receive 
the next query. t_rcvudata retrieves the next available incoming 
datagram. If none is currently available, t_ rcvudata blocks, waiting for a 
datagram to arrive. The second argument of t_rcvudata identifies the 
t _ unitdata structure where the datagram should be stored. 

The third argument, flags, must point to an integer variable. flags can be 
set to T_MORE on return from t rcvudata to indicate that the user's udata 
buffer was not large enough to store the full datagram. In this case, subse
quent calls to t_rcvudata will retrieve the remainder of the datagram. 
t _ alloc allocates a udata buffer large enough to store the maximum 
datagram size, and so the transaction server does not have to check the 
value offlags. 

If a datagram is received successfully, the transaction server calls the 
query routine to process the request. This routine stores the response in 
the structure pointed to by ud, and sets ud->udata.len to indicate the 
number of bytes in the response. The source address returned by 
t _ rcvudata in ud->addr is used as the destination address by t _ sndudata. 

4-5 



Network Programmer's Guide 

When the response is ready, t _ sndudata is called to return the response to 
the client. The Transport Layer Interface prevents a user from flooding 
the transport provider with datagrams using the same flow control 
mechanism described for the connection-mode service. In such cases, 
t_sndudata blocks until the flow control is relieved, and then resumes its 
operation. 

4.4 Datagram Errors 

If the transport provider cannot process a datagram that was passed to it 
by t_sndudata, it returns a unit data error event, T_UDERR, to the user. 
This event includes the destination address and options associated with 
the datagram, plus a protocol-specific error value that describes what may 
be wrong with the datagram. The reason a datagram could not be pro
cessed is protocol-specific. One reason may be that the transport provider 
could not interpret the destination address or options. Each transport pro
tocol is expected to specify all reasons for which it is unable to process a 
datagram. 

Note 

The unit data error indication is not necessarily intended to indicate 
success or failure in delivering the datagram to the specified desti
nation. The transport protocol decides how the indication will be 
used. Remember, the connectionless service does not guarantee 
reliable delivery of data. 

4-6 



Connectionless-Mode Service 

The transaction server is notified of this error event when it attempts to 
receive another datagram. In this case, t_rcvudata fails, setting t_errno 
to TLOOK. IfTLOOK is set, the only possible event is T_UDERR, and so 
the server calls t rcvuderr to retrieve the event. The second argument to 
t rcvuderr is the t uderr structure which was allocated earlier. This 
structure is filled in by t_rcvuderr and has the following format: 

struct t_uderr { 
struct netbuf addr; 
struct netbuf opt; 
long error; 

where addr and opt identify the destination address and protocol options 
as specified in the bad datagram, and error is a protocol-specific error 
code that indicates why the provider could not process the datagram. The 
transaction server prints the error code and then continues by entering the 
processing loop again. 

4-7 



Chapter 5 

. A Read/Write Interface 

5.1 Introduction 5-1 

5.2 write 5-2 

5.3 read 5-3 

5.4 Close 5-3 



A Read/Write Interface 

5.1 Introduction 

Sometimes a user may want to establish a transport connection and then 
exec [see exec(S)] an existing user program such as cat [see cat(C)] to 
process the data as it arrives over the connection. However, existing pro
grams use read and write for their I/O needs. The Transport Layer Inter
face does not directly support a read/write interface to a transport pro
vider, but one is available with the UNIX System. This interface enables 
a user to issue read and write calls over a transport connection that is in 
the data transfer phase. This chapter describes the read/write interface to 
the connection-mode service of the Transport Layer Interface. This inter
face is not available with the connectionless-mode service. 

The read/write interface is presented using the client example of Chapter 
3 with some minor modifications. The clients are identical until the data 
transfer phase is reached. At that point, this client uses the read/write 
interface and cat to process incoming data. cat can be run without 
change over the transport connection. Only the differences between this 
client and that of the example in Chapter 3 are shown below. 

#include <stropts.h> 

1* 
* Same local management and connection 
* establishment steps. 
*1 

if (ioctl(fd, I PUSH, "tirdwr") < 0) { 
perror("I PUSH of tirdwr failed"); 
exit (5); -

close(O); 
dup(fd) ; 
execl (" Ibin/ cat", "/bin/ cat", 0); 
perror ("execl of /bin/cat failed"); 
exit (6); 

The client invokes the read/write interface by pushing the tirdwr 
module [see tirdwr(STR)] onto the Stream associated with the transport 
endpoint where the connection was established [see CPUSH in 
streamio(STR)]. This module converts the Transport Layer Interface 
above the transport provider into a pure read/write interface. With the 
module in place, the client calls close [see close(S)] and dup [see dupeS)] 
to establish the transport endpoint as its standard input file, and uses 
/bin/cat to process the input. Because the transport endpoint identifier is 
a file descriptor, the facility for duping the endpoint is available to users. 

5-1 



Network Programmer's Guide 

Because the Transport Layer futerface has been implemented using 
STREAMS, the facilities of this character I/O mechanism can be used to 
provide enhanced user services. By pushing the tirdwr module above the 
transport provider, the user's interface is effectively changed. The seman
tics of read and write must be followed, and message boundaries are not 
preserved. 

Warning 

The tirdwr module can be pushed onto a Stream only when the 
transport endpoint is in the data transfer phase. Once the module is 
pushed, the user cannot call any Transport Layer futerface routines. 
If a Transport Layer futerface routine is invoked, tirdwr will gen
erate a fatal protocol error, EPROTO, on that Stream, rendering it 
unusable. Furthermore, if the user pops the tirdwr module off the 
Stream [see CPOP in streamio(STR)], the transport connection will 
be aborted. 

The exact sema.."1tics of write, read, and close using tirdwr are described 
below. To summarize, tirdwr enables a user to send and receive data 
over a transport connection using read and write. This module translates 
all Transport Layer futerface indications into the appropriate actions. The 
connection can be released with the close system call. 

S.2 write 

The user can transmit data over the transport connection using write. The 
tirdwr module passes data through to the transport provider. However, if 
a user attempts to send a zero-length data packet, which the STREAMS 
mechanism allows, tirdwr will discard the message. If for some reason 
the transport connection is aborted (for example, if the remote user aborts 
the connection using t_snddis), a STREAMS hangup condition will be 
generated on that Stream, and further write calls will fail and set errno to 
ENXIO. The user can still retrieve any available data after a hangup, 
however. 

5-2 



A Read/Write Interface 

5.3 read 

read can be used to retrieve data that has arrived over the transport con
nection. The tirdwr module passes data through to the user from the 
transport provider. However, any other event or indication passed to the 
user from the provider is processed by tirdwr as follows: 

• read cannot process expedited data because it cannot distinguish 
expedited data from normal data for the user. If an expedited data 
indication is received, tirdwr generates a fatal protocol error, 
EPROTO, on that Stream. This error causes further system calls to 
fail. Thus, you should not communicate with a process that is 
sending expedited data. 

• If an abortive disconnect indication is received, tirdwr discards 
the indication and generates a STREAMS hangup condition on that 
Stream. Subsequent read calls retrieve any remaining data, and 
then read returns zero for all further calls (indicating end-of-file). 

• If an orderly release indication is received, tirdwr discards the 
indication and delivers a zero-length STREAMS message to the 
user. As described in read, this notifies the user of end-of-file by 
returning 0 to the user. 

• If any other Transport Layer Interface indication is received, 
tirdwr generates a fatal protocol error, EPROTO, on that Stream. 
This causes further system calls to fail. If a user pushes tirdwr 
onto a Stream after the connection has been established, such indi
cations are not generated. 

5.4 Close 

With tirdwr on a Stream, the user can send and receive data over a trans
port connection for the duration of that connection. Either user can ter
minate the connection by closing the file descriptor associated with the 
transport endpoint or by popping the tirdwr module off the Stream. In 
either case, tirdwr takes the following actions: 

• If an orderly release indication was previously received by tirdwr, 
an orderly release request is passed to the transport provider to 
complete the orderly release of the connection. The remote user 
who initiated the orderly release procedure receives the expected 
indication when data transfer completes. 

• If a disconnect indication was previously received by tirdwr, no 

5-3 



Network Programmer's Guide 

special action is taken. 

• If neither an orderly release indication nor disconnect indication 
was previously received by tirdwr, a disconnect request is passed 
to the transport provider to abortively release the connection. 

• If an error previously occurred on the Stream and a disconnect 
indication has not been received by tirdwr, a disconnect request is 
passed to the transport provider. 

A process cannot initiate an orderly release after tirdwr is pushed onto a 
Stream, but tirdwr will handle an orderly release properly if it is initiated 
by the user on the other side of a transport connection. If the client in this 
chapter is communicating with the server program in Chapter 3, that 
server tenninates the transfer of data with an orderly release request. The 
server then waits for the corresponding indication from the client. At that 
point, the client exits and the transport endpoint is closed. As explained 
in the first bulleted item above, when the file descriptor is closed, tirdwr 
initiates the orderly release request from the client's side of the connec
tion. This generates the indication that the server is expecting, and the 
connection is properly released. 

5-4 



Chapter 6 

Advanced Topics 

6.1 Introduction 6-1 

6.2 Asynchronous Execution Mode 6-1 

6.3 Advanced Programming Example 6-2 



Advanced Topics 

6.1 Introduction 

This chapter presents important concepts that have not been covered in 
the previous chapters. First, an optional non-blocking (asynchronous) 
mode for some library calls is described. Then an advanced programming 
example is presented. This example defines a server which supports mul
tiple outstanding connect indications and operates in an event-driven 
manner. 

6.2 Asynchronous Execution Mode 

Many Transport Layer Interface library routines can block waiting for an 
incoming event or the relaxation of flow control. However, some time
critical applications should not block for any reason. Similarly, an appli
cation may wish to do local processing while waiting for some asynchro
nous Transport Layer Interface event. 

Support for asynchronous processing of Transport Layer Interface events 
is available to applications using a combination of the STREAMS asyn
chronous features and the non-blocking mode of the Transport Layer 
Interface library routines. Earlier examples in this guide have illustrated 
the use of the STREAMS poll system call and the CSETSIG ioctl com
mand for processing events in an asynchronous manner. 

In addition, each Transport Layer Interface routine that can block waiting 
for some event can be run in a special non-blocking mode. For example, 
t_listen normally blocks, waiting for a connect indication. However, a 
server can periodically poll a transport endpoint for existing connect indi
cations by calling t_listen in the non-blocking (or asynchronous) mode. 
The asynchronous mode is enabled by setting O_NDELAY on the file 
descriptor. This can be set as a flag on t_open or by calling fcntl [see 
jcntl(S)] before calling the Transport Layer Interface routine. fcntl can be 
used to enable or disable this mode at any time. All programming exam
ples illustrated throughout this guide use the default, synchronous mode 
of processing. 

O_NDELAYaffects each Transport Layer Interface routine in a different 
manner. To determine the exact semantics of O_NDELAY for a particular 
routine, see the appropriate pages in Section NSL in Appendix D. 

6-1 



Network Programmer's Guide 

6.3 Advanced Programming Example 

The following example illustrates two important concepts. The first is a 
server's ability to manage multiple outstanding connect indications. The 
second is the ability to write event-driven software using the Transport 
Layer Interface and the STREAMS system call interface. 

The server example in Chapter 3 is capable of supporting only one out
standing connect indication, but the Transport Layer Interface supports 
the ability to manage multiple outstanding connect indications. One rea
son a server might wish to receive several, simultaneous connect indica
tions is to impose a priority scheme on each client. A server can retrieve 
several connect indications, and then accept them in an order based on a 
priority associated with each client. A second reason for handling several 
outstanding connect indications is that the single-threaded scheme has 
some limitations. Depending on the implementation of the transport pro
vider, it is possible that while the server is processing the current connect 
indication, other clients will find it busy. However, if multiple connect 
indications can be processed simultaneously, the server will be found to 
be busy only if the maximum allowed number of clients attempt to call 
the server simultaneously. 

The server example is event-driven: the process polls a transport end
point for incoming Transport Layer Interface events and then takes the 
appropriate actions for the current event. The example demonstrates the 
ability to poll multiple transport endpoints for incoming events. 

The definitions and local management functions needed by this example 
are similar to those of the server example in Chapter 3. 

6-2 



Advanced Topics 

jfmclude <tiuser.h> 
jfmclude <fcntl.h> 
jfmclude <stdio.h> 
jfmclude <pJll.h> 
jfmclude <strcpts.h> 
#jnclude <signal.h> 

#define NU1 IDS 1 
#define WIX - CXl:'IN IND 4 
lklefine SRV=:ADDR- 1 /* servers w:il-known ad::kess */ 

int conn fd; /* server connection here */ 
struct t -call *calls [NCM IDS] [WIX CXl:'IN IND]; /* holds connect irdications * / 
extern iIit t_ermo; - --

nain() 
{ 

struct p:>llfd p:>llfds [NCM IDS] ; 
struct t bin:::l *bin:::l; -
int i; -

/* 
* Cnly q::ening and b:i.ndin;J one transport endf::omt, 
* but rrore could be SUFPOrted 
*/ 

if ((p:>llfds [0] .fd = t c::p:m ("/clev/tivc", 0 RI:::mR, NULL» < 0) { 
terror (''t c::p:m filled"); -
eld.t(l); -

if ((bird = (struct t bin:::l *)t alloc(p:>llfds[O].fd, T_BIND, T_AIL» = NULL) { 
t error (''t alioc of t birrl structure failed"); 
eld.t(2); - -

} 

bin:::l->qlen = WIX CXl:'IN IND; 
bird->actir.len =-sizeOf(int); 
*(mt *)bin:::l->ad::lr.buf = SRV ADDR; 
if (t bird(p:>llfds[O].fd, bird, bird) < 0) ( 

t-error("t bin:::l failed"); 
eld.t(3); -

/* 
* W3.s the correct ad:lress bound? 
*/ 
if (* (int *) bin:::l->ad::lr.buf ! = SRV ADDR) 

fprintf (stclerr, "t bin:::l bound wrong ad:lless\n") ; 
exit (4); -

6-3 



Network Programmer's Guide 

The file descriptor returned by t_open is stored in a pollfd structure [see 
poll(S)] that is used to poll the transport endpoint for incoming data. 
Notice that only one transport endpoint is established in this example. 
However, the remainder of the example is written to manage multiple 
transport endpoints. Several endpoints could be supported with minor 
changes to the above code. 

An important aspect of this server is that it sets qlen to a value greater 
than 1 for t bind. This indicates that the server is willing to handle mul
tiple outstanding connect indications. Remember that the earlier exam
ples single-threaded the connect indications and responses. The server 
would accept the current connect indication before retrieving additional 
connect indications. However, this example can retrieve up to 
MAX_CONN_IND connect indications at one time before responding to 
any of them. The transport provider can negotiate the value of qlen 
downward if it cannot support MAX_CONN_IND outstanding connect 
indications. 

Once the server has bound its address and is ready to process incoming 
connect requests, it does the following: 

::;:ollfds [0 J • eve.1"lts = POT ,T ,ThI; 

while (1) { 
if (I;Oll (p:lllfds, NCM FDS, -1) < 0) 

p:rror (np:lll failectn ); 

exit (5) ; 

for (i = 0; i < NCM_FDS; H+) 

switch (p:lllfds til .revents) 

refault: 
p:rror(''poll returned error event"); 
exit (6) ; 

case 0: 
continue; 

case POLLIN: 
do event (i, I;Ollfds [il .fd) ; 
seivire_conn_ind(i, p:lllfds[il.fd); 

The events field of the pollfd structure is set to POLLIN, which will notify 
the server of any incoming Transport Layer Interface events. The server 
then enters an infinite loop, in which it will poll the transport endpoint(s) 
for events and then process those events as they occur. 

6-4 



Advanced Topics 

The poll call blocks indefinitely, wrutmg for an incoming event. On 
return, each entry (corresponding to each transport endpoint) is checked 
for an existing event. If revents is set to 0, no event has occurred on that 
endpoint. In this case, the server continues to the next transport endpoint. 
If revents is set to POLLIN, an event does exist on the endpoint. In this 
case, do_event is called to process the event. If revents contains any 
other value, an error must have occurred on the transport endpoint, and 
the server exits. 

For each iteration of the loop, if any event is found on the transport end
point, service_conn_ind is called to process any outstanding connect 
indications. However, if another connect indication is pending, 
service conn ind saves the current connect indication and respond to it 
later. This routine will be explained shortly. 

If an incoming event is discovered, the following routine is called to pro
cess it: 

do event (slot, fd) 
{ -

struct t discon *discon; 
int i; -

switch (t_look(fd)) { 

default: 
fprintf (stderr, "t look returned an unexpected event \n") ; 
exit (7) ; -

case TERROR: 
fprintf(stderr,"t look returned TERROR event\n"); 
exit (8); - -

case -1: 
terror ("t look failed"); 
eXit (9); -

case 0: 
1* since POLLIN returned, this should not happen *1 
fprintf(stderr,"t look returned no event\n"); 
exit (10); -

case T LISTEN: 
1* -
* find free element in calls array 
*1 

for (i = 0; i < MAX CONN INO; i++) 
if (calls [slot] [I] ==-NULL) 

break; 

6-5 



Network Programmer's Guide 

if ((calls[slot] [i] = (struct t call *)t alloc(fd, T CALL, TALL)) = NULL) 
terror ("t alioc of t call Structure failed.") ; - -
eXit (11); - -

if (t listen (fd, calls [slot] [i]) < 0) 
t error ("t listen failed."); 
eXit (12); -

break; 

case T DIso::NNECI': 

} 

ct:LsCOn = (struct t_disoon *)t_alioc(fd, T_DIS, T_ALL); 

if (t rcvdis (fd, disoon) < 0) . { 

t error (lit rcvd.is failed."); 
eXit (13); -

/* 
* fjnd call jnd in array and delete it 
*/ 

for (i = 0; i < MAX a:NN IND; i++) { 

} 

if (disoon->seqUence ~ calls [slot] [i]->sequence) 
t free (calls [slot] [i], T CALL); 
calls [slot] [i] = NULL; -

t free (disoon, T DIS); 
bl:eak; -

This routine takes a number, slot, and a file descriptor, fd, as arguments. 
slot is used as an index into the global array calls. This array contains an 
entry for each polled transport endpoint, where each entry consists of an 
array of t _call structures that hold incoming connect indications for that 
transport endpoint. The value of slot is used to identify the transport end
point of interest. 

do _event calls t _look to determine the Transport Layer Interface event 
which has occurred on the transport endpoint referenced by fd. If a con
nect indication (T_LISTEN event) or disconnect indication 
(T_DISCONNECT event) has arrived, the event is processed. Otherwise, 
the server prints an appropriate error message and exits. 

For connect indications, do_event scans the array of outstanding connect 
indications looking for the first free entry. A t _call structure is then allo
cated for that entry, and the connect indication is retrieved using t listen. 
There must always be at least one free entry in the connect indication 
array because the array is large enough· to hold the maximum number of 
outstanding connect indications as negotiated by t _bind. The processing 
of the connect indication is deferred until later. 

6-6 



Advanced Topics 

If a disconnect indication arrives, it must correspond to a previously 
received connect indication. This scenario arises if a client attempts to 
undo a previous connect request. In this case, do_event allocates a 
t discon structure to retrieve the relevant disconnect information. This 
structure has the following members: 

struct t discon 
struct netbuf udata; 
int reason; 
int sequence; 

where udata identifies any user data which might have been sent with the 
disconnect indication, reason contains a protocol-specific disconnect rea
son code, and sequence identifies the outstanding connect indication that 
matches this disconnect indication. 

Next, t rcvdis is called to retrieve the disconnect indication. The array 
of connect indications for slot is then scanned for one which contains a 
sequence number that matches the sequence number in the disconnect 
indication. When the connect indication is found, it is freed and the 
corresponding entry is set to NULL. 

As mentioned earlier, if any event is found on a transport endpoint, 
service_conn Jnd is called to process all currently outstanding connect 
indications associated with that endpoint as follows: 

service conn ind(slot, fd) 
{ --

int i; 

for (i = 0; i < MAX CONN IND; i++) 
if (calls [slot][i] ~ NULL) 

continue; 

if ((conn fd = t open("/dev/tivc", O_RDWR, NULL» < 0) { 
t error ("open failed"); 
eXit (14); 

if (t bind(conn fd, NULL, NULL) < 0) { 
t -error ("t bind failed"); 
exit (15); -

6-7 



Network Programmer's Guide 

if (t accept(fd, conn fd, calls [slot] [ill < 0) { 
if (t ermo = Tr.IDK) { 

} 

t=close(conn_fd); 
return; 

t error (fit accept failed"); 
exit (16) ; -

t free (calls [slotl [i], T CALL); 
calls [slot] [il = NULL; -

run_server (fd) ; 

For the given slot (the transport endpoint), the array of outstanding con
nect indications is scanned. For each indication, the server opens a 
responding transport endpoint, binds an address to the endpoint, and then 
accepts the connection on that endpoint. If another event (connect indica
tion or disconnect indication) arrives before the current indication is 
accepted, t _accept will fail and set t _ err no to nOOK. 

Note 

The user cannot accept an outstanding connect indication if any 
pending connect indication events or disconnect indication events 
exist on that transport endpoint. 

If this error occurs, the responding transport endpoint is closed and 
service_connJnd returns immediately (saving the current connect indi
cation for later processing). This causes the server's main processing 
loop to be entered, and the new event is discovered by the next call to 
poll. In this way, multiple connect indications can be queued by the user. 

Eventually, all events are processed, and service_connJnd is able to 
accept each connect indication in tum. Once the connection is esta
blished' the run_server routine used by the server in Chapter 3 is called 
to manage the data transfer. 

6-8 



Appendix A 

State Transitions 

A.I Introduction A-I 

A.2 Transport Layer Interface States 

A.3 Outgoing Events A-I 

A.4 Incoming Events A-3 

A.5 Transport User Actions A-4 

A.6 State Tables A-4 

A-I 



State Transitions 

A.I Introduction 

The tables in this appendix describe all state transitions associated with 
the Transport Layer Interface. The states and events are described first, 
followed by the state transition tables. 

A.2 Transport Layer Interface States 

Figure A-I defines the states used to describe the Transport Layer Inter
face state transitions. 

State Description Service Type 
T_UNINIT uninitialized - initial and final T_COTS, 

state of interface T_COTS_ORD, T_CLTS 

T_UNBND initialized but not bound T_COTS, 
T_COTS_ORD, T_CLTS 

T_IDLE no connection established T_COTS, 
T_COTS_ORD, T_CLTS 

T_OUTCON outgoing connection pending T_COTS, T_COTS_ORD 

for client 

T_INCON incoming connection pending T_COTS, T_COTS_ORD 

for server 

T_DATAXFER data transfer T_COTS, T_COTS_ORD 

T_OUTREL outgoing orderly release T_COTS_ORD 

(waiting for orderly release 
indication) 

T_INREL incoming orderly release T_COTS_ORD 

(waiting to send orderly 
release request) 

Figure A-I Transport Layer Interface States 

A.3 Outgoing Events 

The outgoing events described in Figure A-2 correspond to the return of 
the specified transport routines, where these routines send a request or 
response to the transport provider. 

In the figure, some events (such as acceptN) are distinguished by the con
text in which they occur. The context is based on the values of the 

A-I 



Network Programmer's Guide 

following variables: 

oent count of outstanding connect indications 

fd file descriptor of the current transport endpoint 

resfd file descriptor of the transport endpoint where a con
nection will be accepted 

Event Description Service Type 
opened successful return of t_ open T_COTS, 

T_COTS_ORD,T_CLTS 

bind successful return of t _bind T_COTS, 
T_COTS_ORD,T_CLTS 

optmgmt successful return of t _ optmgmt T_COTS, 
T_COTS_ORD,T_CLTS 

unbind successful return of t _unbind T_COTS, 
T_COTS_ORD,T_CLTS 

closed successful return of t close T_COTS, 
T_COTS_ORD,T_CLTS 

connectl successful return of t connect in T_COTS, T_COTS_ORD 
synchronous mode 

connect2 TNODATA error on t connect in T_COTS, T_COTS_ORD 
asynchronous mode, -or TLOOK 
error due to a disconnect indica-
tion arriving on the transport end-
point 

acceptl successful return of t _accept with T_COTS, T_COTS_ORD 
oent == l,fd == resfd 

accept2 successful return of t _accept with T_COTS, T_COTS_ORD 
oent == l,fd != resfd 

accept3 successful return of t _accept with T_COTS, T_COTS_ORD 
oent> 1 

snd successful return of t snd T_COTS, T_COTS_ORD 

snddisl successful return of t snddis with T_COTS, T_COTS_ORD 
oent <= 1 

snddis2 successful return of t _ snddis with T_COTS, T_COTS_ORD 
oent> 1 

sndrel successful return of t sndrel T_COTS_ORD 

A-2 



State Transitions 

I sndudata successful return of t sndudata 

Figure A-2 Transport Layer Interface Outgoing Events 

A.4 Incoming Events 

The incoming events correspond to the successful return of the specified 
routines, where these routines retrieve data or event information from the 
transport provider. The only incoming event not associated directly with 
the return of a routine is pass conn, which occurs when a user transfers a 
connection to another transport endpoint. This event occurs on the end
point to which the connection is being passed, despite the fact that no 
Transport Layer Interface routine is issued on that endpoint. pass_conn is 
included in the state tables to describe the behavior when a user accepts a 
connection on another transport endpoint. 

In Figure A-3, the rcvdis events are distinguished by the context in which 
they occur. The context is based on the value of ocnt, which is the count 
of outstanding connect indications on the transport endpoint. 

Incoming Description Service Type 
Event 

listen successful return of t listen T COTS, T COTS ORD 
rcvconnect successful return of t rcvconnect T COTS, T COTS ORD 
rcv successful return of t rcv T_COTS, T_COTS_ORD 
rcvdisl successful return of t rcvdis with T_COTS, T_COTS_ORD 

ocnt <= 0 
rcvdis2 successful return of t rcvdis with T_COTS, T_COTS_ORD 

ocnt == 1 
rcvdis3 successful return of t rcvdis with T_COTS, T_COTS_ORD 

oent> 1 
rcvrel successful return of t rcvrel T COTS ORD 
rcvudata successful return of t rcvudata T CLTS 
rcvuderr successful return of t rcvuderr T CLTS 
pass_conn receive a passed connection T_COTS, T_COTS_ORD 

Figure A-3 Transport Layer Interface Incoming Events 

A-3 



Network Programmer's Guide 

A.S Transport User Actions 

In the state tables that follow, some state transitions are accompanied by 
a list of actions the transport user must take. These actions are 
represented by the notation [n], where n is the number of the specific 
action as described below: 

[1] Set the count of outstanding connect indications to zero. 

[2] Increment the count of outstanding connect indications. 

[3] Decrement the count of outstanding connect indications. 

[4] Pass a connection to another transport endpoint as indicated 
in t _accept. 

A.6 State Tables 

The following tables describe the Transport Layer Interface state transi
tions. Given a current state and an event, the transition to the next state is 
shown, as well as any actions that must be taken by the transport user 
(hTldicated by [nJ). The state is t.~at of the tra..TlSport provider as seen by 
the transport user. 

The contents of each box represent the next state, given the current state 
(column) and the current incoming or outgoing event (row). An empty 
box represents a state/event combination that is invalid. Along with the 
next state, each box may include an action list (as specified in the previ
ous section). The transport user must take the specific actions in the order 
specified in the state table. 

The following should be understood when studying the state tables: 

• The t close routine is referenced in the state tables (see closed 
event in Figure A-2), but can be called from any state to close a 
transport endpoint. If t _close is called when a transport address is 
bound to an endpoint, the address will be unbound. Also, if t_close 
is called when the transport connection is still active, the connec
tion will be aborted. 

• If a transport user issues a routine out of sequence, the transport 
provider will recognize this and the routine will fail, setting 
t_errno to TOUTSTATE. The state will not change. 

• If any other transport error occurs, the state will not change unless 

A-4 



State Transitions 

explicitly stated on the manual page for that routine. The excep
tion to this is a TLOOK or TNODATA error on t connect, as 
described in Figure A-2. The state tables assume correct use of the 
Transport Layer Interface. 

• The support routines t_getinfo, t_getstate, t_alloc, t_free, t_sync, 
t look, and t error are excluded from the state tables because 
they do not affect the state. 

A separate table is shown for common local management steps, data 
transfer in connectionless-mode, and connection-establishment/ 
connection-release/ data-transfer in connection-mode. 

~ event 
T_UNINIT T_UNBND T_IDLE 

opened T_UNBND 

bind T_IDLE [1] 

optmgmt T_IDLE 

unbind T_UNBND 

closed T_UNINIT 

Figure A-4 Common Local Management State Table 

~ event 
T_IDLE 

sndudata T_IDLE 

rcvudata T_IDLE 

rcvuderr T_IDLE 

Figure A-5 Connectionless-Mode State Table 

A-5 



Network Programmer's Guide 

~ T_lDLE T_OUTCON T_lNCON T_DATAXFER T_OUTREL T_INREL 
event 

connect! T_DATAXFER 

connect2 T_OUTCON 

rcvconnect T_DATAXFER 

listen T_lNCON[2J T_lNCON(2J 

accept! T _DATAXFER[3J 

accept2 T_lDLE(3)(4J 

accept3 T_lNCON[3)(4J 

snd T_DATAXFER T_INREL 

rcv T_DATAXFER T_OUTREL 

snddis! T_lDLE T_lDLE[3) T_lDLE T_lDLE T_lDLE 

snddis2 T_lNCON[3) 

rcvdis! T_lDLE T_lDLE T_lDLE T_IDLE 

revdis2 T_lDLE[3J 

revdis3 T_lNCON [3) 

sndrel T_OUTREL T_lDLE 

revrel 

Figure A-6 Connection-Mode State Table 

A-6 



AppendixB 

Protocol Independence 

B.l Guidelines for Protocol Independence B-1 



Frotocollndependence 

B.1 Guidelines for Protocol Independence 

The Transport Layer Interface offers protocol independence for user 
software by defining a set of services common to many transport proto
cols. However, not all transport protocols support all the services sup
ported by the Transport Layer Interface. If software must be run in a 
variety of protocol environments, only the common services should be 
accessed. The following guidelines highlight services that may not be 
common to all transport protocols: 

• In the connection-mode service, the concept of a transport service 
data unit (TSDU) may not be supported by all transport providers. 
The user should make no assumptions about the preservation of 
logical data boundaries across a connection. If messages must be 
transferred over a connection, a protocol should be implemented 
above the Transport Layer Interface to support message boun
daries. 

• Protocol- and implementation-speci fic service limits are returned 
by the t_open and t_getinfo routines. These limits are useful when 
allocating buffers to store protocol-speci fic transport addresses and 
options. It is the responsibility of the user to access these limits 
and then adhere to the limits throughout the communication pro
cess. 

• User data should not be transmitted with connect requests or 
disconnect requests [see t connect(NSL) and t snddis(NSL)]. Not 
all transport protocols support this capability. -

• The buffers in the t call structure used for t listen must be large 
enough to hold any-information passed by the client during con
nection establishment. The server should use the T_ALL argument 
to t alloc, which will determine the maximum buffer sizes needed 
to store the address, options, and user data for the current transport 
provider. 

• The user program should not look at or change options that are 
associated with any Transport Layer Interface routine. These 
options are specific to the underlying transport protocol. The user 
should choose not to pass options with t_connect or t_sndudata. 
In such cases, the transport provider will use default values. Also, 
a server should use the options returned by t_listen when accepting 
a connection. 

• Protocol-specific addressing issues should be hidden from the user 
program. A client should not specify any protocol address on 

B-1 



Network Programmer's Guide 

t bind, but instead should allow the transport provider to assign an 
appropriate address to the transport endpoint. Similarly, a server 
should retrieve its address for t bind in such a way that it does not 
require knowledge of the transport provider's address space. Such 
addresses should not be hard-coded into a program. A name server 
mechanism could be useful in this scenario, but the details for pro
viding such a service are outside the scope of the Transport Layer 
Interface. 

• The reason codes associated with t_rcvdis are protocol-dependent. 
The user should not interpret this information if protocol indepen
dence is a concern. 

• The error codes associated with t rcvuderr are protocol
dependent. The user should not interpret this information if proto
col independence is a concern. 

• The names of devices should not be hard-coded into programs, 
because the device node identifies a particular transport provider 
and is not protocol-independent. 

• The optional orderly release facility of the connection-mode ser
vice (provided by i_sndrei and i_rcvrei) should not be used by 
programs targeted for multiple protocol environments. This facil
ity is not supported by all connection-based transport protocols. In 
particular, its use will prevent programs from successfully com
municating with ISO open systems. 

B-2 



Appendix C 

Examples 

C.I Introduction C-I 

C.2 Connection-Mode Client 

C.3 Connection-Mode Server 

C-I 

C-2 

CA Connectionless-Mode Transaction Server 

c.s Read/Write Client C-7 

C.6 Event-Driven Server C-9 

C-6 



Examples 

C.I Introduction 

The examples presented throughout this guide are shown in their entirety 
in this appendix. 

C.2 Connection-Mode Client 

The following code is for the connection-mode client program described 
in Chapter 3. This client establishes a transport connection with a server 
and then receives data from the server and writes it to its standard output. 
The connection is released using the orderly release facility of the Tran
sport Layer Interface. This client will communicate with each of the 
connection-mode servers presented in the guide. 

#include <stdio.h> 
#include <tiuser.h> 
#include <fcntl.h> 

#define SRV ADDR 

main ( ) 
{ 

int fd; 
int nbytes; 
int flags = 0; 
char buf[1024]i 

/* server's well-known address */ 

struct t call *sndcall; 
extern int t _ errno; 

if ((fd = t open("/dev/tivc", 0 RDWR, NULL)) < 0) { 
t error("t open failed"); 
eXit (1); -

if (t bind(fd, NULL, NULL) < 0) 
t -error (nt bind failedn); 
eXit (2); -

/* 
* By assuming that the address is an integer value, 
* this program may not run over another protocol. 
*/ 

if ((sndcall = (struct t call *)t alloc(fd, T_CALL, T_ADDR)) = NULL) { 
terror (nt alloc failed"); -
exit (3) ; -

sndcall->addr.len = sizeof(int); 
*(int *)sndcall->addr.buf = SRV_ADDR; 

C-l 



Network Programmer's Guide 

if (t connect(fd, sndcall, NULL) < 0) { 
t-error("t connect failed for fd"); 
eXit (4); -

while «nbytes = t rev(fd, buf, 1024, &flags)) != -1) { 
if (fwrite(buf~ 1, nbytes, stdout) < 0) { 

fprintf(stderr, "fwrite failed\n"); 
exit(5); 

if «t ermo = TWJK) && (t_look(fd) = T_ORDREL)) 
if-(t rcvrel(fd) < 0) { 

t -error ("t rcvrel failed"); 
eXit (6) ; -

if (t sndrel(fd) < 0) { 
t-error("t sndrel failed"); 
exit (7); -

} 

exit(O); 

t error("t rev failed"); 
eXit (8); -

C.3 Connection-Mode Server 

The following code is for the connection-mode server program described 
in Chapter 3. This server establishes a transport connection with a client 
and then transfers a log file to the client on the other side of the connec
tion. The connection is released using the orderly release facility of the 
Transport Layer Interface. The connection-mode client presented earlier 
will communicate with this server. 

#include <tiuser.h> 
#include <stropts.h> 
#include <fcntl.h> 
#include <stillo. h> 
#include <signal.h> 

#define DISCONNECT -1 
#define SRV_ADDR 1 1* server's well-known address *1 

int conn fd; /* connection established here *1 
extern {fit t_ermo; 

C-2 



main ( ) 
{ 

int listen fd; /* listening transport endpoint */ 
struct t bInd *bind; 
struct t:call *call; 

if ((listen fd = t open("/dev/tivc", 0 RDWR, NULL)) < 0) { 
t error(IIt open failed for listen fd"); 
erlt (1); - -

/* 
* By assuming that the address is an integer value, 
* this program may not run over another protocol. 
*/ 

Examples 

if ((bind = (struct t bind *)t alloc(listen fd, T BIND, T_ALL)) == NULL) { 
terror (lit alloc of t bind-structure faIled");-
erlt(2); - -

} 

bind->qlen = 1; 
bind->addr.len = sizeof(int); 
*(int *)bind->addr.buf = SRV_ADDR; 

if (t bind(listen fd, bind, bind) < 0) { 
t-error("t bi.I1d failed for listen fd"); 
erlt(3); - -

/* 
* Was the correct address bound? 
*/ 

if (*(int *)bind->addr.buf != SRV ADDR) 
fprintf(stderr, lit bind bound-wrong address\n"); 
exit (4); -

if ((call = (struct t call *)t alloc(listen fd, T CALL, T_ALL)) == NULL) { 
terror (lit alloc of t call-structure faIled");-
erlt(5); - -

while (1) { 
if (t listen(listen fd, call) < 0) { 

t-error("t listen failed for listen fd"); 
exit (6) ; - -

if ((conn fd = accept call(listen fd, call)) != DISCONNECT) 
run_server(listen=fd); -

C-3 



Network Programmer's Guide 

accept call(listen fd, call) 
int listen fd; -
struct t call *call; 
{ -

int resfd; 

if «resfd = t open ("/dev/tivc", 0 RDWR, NULL)) < D) { 
t error("t-open for responding fd failed"); 
eX:Lt(7); -

if (t bind (resfd, NULL, NULL) < D) { 
t -error ("t bind for responding fd failed"); 
eX:Lt(S); -

if (t accept (listen fd, resfd, call) < D) { 
if (t errno = TLCOK) { /* must be a disconnect */ 

if (t rcvdis (listen fd, NULL) < D) { 
t-error("t rcvclis failed for listen fd"); 
eX:Lt(9); - -

} 
if (t close(resfd) < D) { 

t-error("t close failed for responding fdn ); 

eX:Lt(lD); -

/ * go back up and listen for other calls * / 
return(DISCONNECT); 

terror ("t accept failed"); 
eX:Lt(ll); -

return (resfd) ; 

connrelease ( ) 
{ 

C-4 

/* conn fd is global because needed here */ 
if (t look (conn fd) = T DISCONNECT) { 

fPrintf (stderr, "connection aborted\nn); 
exit (12); 

/* else orderly release indication - normal exit */ 
exit (D); 



Examples 

run server(listen fd) 
int-listen fd; -
{ -

int nbytes; 
FILE *logfp; 
char buf[1024]; 

switch (fork ( ) ) 

case -1: 

1* file pointer to log file *1 

perror ("fork failed"); 
exit(20); 

default: 1* parent *1 

1* close conn fd and then go up and listen again *1 
if (t close(conn fd) < 0) { 

terror("t close failed for conn_fdll ); 
eXlt(21); -

return; 

case 0: 1* child *1 

1* close listen fd and do service *1 
if (t close(listen fd) < 0) { 

t -error (lit close failed for listen fd"); 
eXit (22); - -

if ((logfp = fopen("logfile", "r"» = NULL) { 
perror ("cannot open logfile"); 
exit (23); 

signal (SIGPOLL, connrelease); 
if (ioctl(conn fd, I SETSIG, S INPUT) < 0) { 

perror (llioctl I SETSIG failed"); 
exit(24); -

if (t look(conn fd) != 0) { 1* was disconnect already there? *1 
fprintf (stderr, lit_look returned unexpected event\n") ; 
exit(25); 

while ((nbytes = fread(buf, 1, 1024, logfp» > 0) 
if (t snd(conn fd, buf, nbytes, 0) < 0) { 

t-error("t-snd failed"); 
eXit (26); -

if (t sndrel(conn fd) < 0) { 
t-error("t sndrel failed"); 
eXit (27) ; -

pause (); 1* until orderly release indication arrives *1 

C-5 



Network Programmer's Guide 

C.4 Connectionless-Mode Transaction Server 

The following code is for the connectionless-mode transaction server pro
gram described in Chapter 4. This server waits for incoming datagram 
queries and then processes each query and sends a response. 

#include <stdio.h> 
#include <fcntl.h> 
#include <tiuser.h> 

#define SRV_ADDR 2 /* server's well-known address */ 

main() 
{ 

C-6 

int fd; 
int flags; 
struct t bind *bind; 
struct t=unitctata *ud; 
struct t uderr *uderr; 
extern int t_ermo; 

if «fd = t open ("/d.ev/tidg", 0 RDWR, NULL» < 0) ( 
t error("unable to open /dev/provider"); 
eXit (1) ; 

if «bind = (struct t bind *) t alloc (fd, T BIND, T ADDR» = NULL) ( 
t error("t alloc of t bind-structure failed");-
eXit (2); - -

bind->addr.len = sizeof(int); 
* (int *) bind->addr .buf = SRV ADDR; 
bind->qlen = 0; -

if (t bind(fd, bind, bind) < 0) 
t-error("t bind failed"); 
eXit(3); -

/* 
* is the bound address correct? 
*/ 

if (*(int *)bind->addr.buf != SRV ADDR) 
fprintf (stderr, lit bind bound-wrong address\n"); 
exit (4) ; -



Examples 

if ((ud = (struct t unitdata *)t alloc(fd, T UNITDATA, TALL)) = NULL) { 
t error(nt alloe of t unitdata structure-failedn); -
exit (5) ; - -

if ((uderr = (struct t uderr *)t alloc(fd, T UDERROR, T_ALL)) = NULL) { 
t error(nt alloc of t uderr structure faIledn); 
eX:Lt(6); - -

while (1) { 

query ( ) 
{ 

if (t rcvudata(fd, ud, &flags) < 0) { 
if (t ermo = TLCOK) { 

/* 

i* 
* Error on previously sent datagram 
*/ 

if (t rcvuderr(fd, uderr) < 0) { 
t -error (nt rcvuderr failedn); 
exit (7); -

fprintf (stderr, "bad datagram, error = %d\n", 
uderr->error); 

continue; 

terror (nt rcvudata failed"); 
exit (8); -

* Query () processes the request and places the 
* response in ud->udata.buf, setting ud->udata.len 
*/ 

query (ud) ; 

if (t sndudata(fd, ud, 0) < 0) { 
t -error ("t sndudata failed"); 
exit (9); -

/* Merely a stub for simplicity */ 

C.s Read/Write Client 

The following code represents the connection-mode read/write client 
program described in Chapter 5. This client establishes a transport con
nection with a server. It then uses cat to retrieve the data sent by the 
server and write it to its standard output. This client will communicate 
with each of the connection-mode servers presented in the guide. 

C-7 



Network Programmer's Guide 

#include <stdio.h> 
#include <tiuser.h> 
#include <fcntl.h> 
#include <stropts.h> 

#define SRV_ADDR 1 /* se:tVer's well-known address */ 

main() 
{ 

C-8 

int fd; 
int nbytes; 
int flags = 0; 
char buf[l024]i 
struct t call *sndcall; 
extern int t _ errno; 

if «fd = t open("/dev/tivc", 0 RDWR, NULL» < 0) { 
t error("t open failed") i 
exit (1) i -

if (t bind(fd, NULL, NULL) < 0) 
t-error("t bind failed") i 
eXit (2); -

/* 
* By assuming that the address is an integer value, 
* this program may not run over another protocol. 
*/ 

if «sndcall = (struct t call *)t alloc(fd, T_CALL, T_ADDR» = NULL) { 
terror ("t alloc failed"); -
eXit (3) ; -

sndcall->addr.len = sizeof(int)i 
*(int *)sndcall->addr.buf = SRV_ADDRi 

if (t connect(fd, sndcall, NULL) < 0) 
t-error("t connect failed for fd") i 
eXit (4) i -

if (ioctl (fd, I PUSH, "tirdwr") < 0) { 
perror ("I PUSH of tirdwr failed"); 
exit (5) ; -

close(O); 
dup(fd); 

execl("/bin/cat", "/bin/cat", 0); 

perror ("execl of /bin/cat failed") i 
exit (6); 



Examples 

C.6 Event-Driven Server 

The following code represents the connection-mode server program 
described in Chapter 6. This server manages multiple connect indications 
in an event-driven manner. Either connection-mode client presented ear
lier will communicate with this server. 

#include <tiuser.h> 
#include <fcntl.h> 
#include <stdio.h> 
#include <poll.h> 
#include <stropts.h> 
#include <signal.h> 

#define NOM illS 
#define MAX-CONN IND 
#define SRV JillDR-

1 
4 
1 /* server's well-known address * / 

int conn fd; /* server connection here * / 
struct (:call *calls [NOM_illS] [MAX_CONN _ IND] ; /* holds connect indications * / 
extern int t_ ermo; 

rnain() 
{ 

struct pollfd pollfds [NOM illS] ; 
struct t _bind *bind; -
int i; 

/* 
* Only opening and binding one transport endpoint, 
* but more could be supported 
*/ 

if ((pollfds[O].fd = t open("/dev/tivc", O_ROWR, NULL)) < 0) { 
t error (lit open failed"); 
eXlt(l); -

if ((bind = (struct t bind *)t alloc(pollfds[O].fd, T_BIND, T_ALL)) == NULL) { 
t error("t alloc of t bind-structure failed"); 
eXlt(2); - -

} 

bind->qlen = MAX CONN IND; 
bind->addr.len =-sizeof(int); 
*(int *)bind->addr.buf = SRV_ADDR; 

if (t bind(pollfds[O].fd, bind, bind) < 0) { 
t error("t bind failed"); 
eXlt(3); -

C-9 



Network Programmer's Guide 

/* 
* Was the correct address bound? 
*/ 

if (*(int *)bind->addr.buf != SRV ADDR) { 
fprintf (stderr, "t bind bound Wrong address\n"); 
exit (4); -

pollfds[O).events = POLLIN; 

while (1) { 
if (poll (pollfds, NUM FDS, -1) < 0) { 

perror ("poll failed"); 
exit(S); 

for (i = 0; i < NUM_FDS; i++) { 

switch (pollfds[i) .revents) 

default: 
perror ("poll returned error event"); 
exit (6); 

case 0: 
continue; 

case POLLIN: 
do event(i, pollfds[i).fd); 
service_conn_ind(i, pollfds[i].fd); 

do event (slot, fd) 
{-

struct t_discon *discon; 
int i; 

switch (t_look (fd» 

default: 
fprintf (stderr, "t look returned an unexpected event\n"); 
exit (7); -

C-IO 



case TERROR: 
fprintf (stderr, "t look returned TERROR event\n") ; 
exit (8); -

case -1: 
t error("t_look failed"); 
eXit (9); 

case 0: 
/* since POLLIN returned, this should not happen * / 
fprintf(stderr,"t look returned no event\n"); 
exit(10); -

case T LISTEN: 
/* -

* find free element in calls array 
*/ 

for (i = 0; i < MAX CONN IND; i++) 
if (calls [slot] [I] ==-NULL) 

break; 

Examples 

if ((calls[slot] [i]=(struct t_call *)t_alloc(fd, T_CALL, T_ALL))==NULL) 
{ 

t error (tit alloc of t call structure failed"); 
exit (11); - -

if (t listen(fd, calls [slot] [ill < 0) { 
t error (tit listen failed"); 
eXit (12); -

break; 

case T DISCONNECT: 
discon = (struct t_discon *)t alloc (fd, T_DIS, T_ALL); 

if (t rcvdis(fd, discon) < 0) { 
t error (tit rcvdis failed"); 
eXit (13); -

/* 
* find call ind in array and delete it 
*/ 

for (i = 0; i < MAX CONN IND; i++) { 
if (discon->sequence ~ calls [slot] [i]->sequence) 

t free (calls [slot] [i], T CALL); 
calls [slot] [i] = NULL; -

t free(discon, T_DIS); 
break; 

C-ll 



Network Programmer's Guide 

service_conn ind(slot, fd) 

int i; 

for (i = 0; i < MAX CONN INO; i++) 
if (calls [slot] [I] == NULL) 

continue; 

if ((conn fd = t open("/dev/tivc", O-YDWR, NULL)) < 0) { 
terror ( "open-failed") ; 
eX:Lt(14) ; 

) 
if (t bind(conn fd, NULL, NULL) < 0) { 

terror ("t bind failed"); 
eXit (15) ; -

if (t accept(fd, conn fd, calls [slot] [ill < 0) { 
if-(t errno == TLOOK) { 

t_close(conn_fd); 
return; 

terror ("t accept failed"); 
eX:Lt(16); -

t free (calls [slot] [iJ, T_CALL); 
calls [slot] [i] = NULL; 

run_server (fd) ; 

connrelease ( ) 
{ 

/* conn fd is global because needed here */ 
if (t look(conn fd) == T DISCONNECT) { 

fprintf (stderr, "connection aborted\n"); 
exit(12); 

/* else orderly release indication - normal exit */ 
exit (0); 

C-12 



Examples 

run server(listen fd) 
int-listen fd; -
{ -

int nbytes; 
FILE *logfp; /* file pointer to log file */ 
char buf[1024]; 

switch (fork ( ) ) 

case -1: 
perror("fork failed"); 
exit(20); 

default: /* parent */ 

/* close conn fd and then go up and listen again */ 
if (t close(conn fd) < 0) { 

terror ("t close failed for conn _ fd") ; 
eXit (21); -

return; 

case 0: /* child */ 

/* close listen fd and do service */ 
if (t close(listen fd) < 0) { 

t error("t close failed for listen_fd"); 
eXit (22) ; -

if ((logfp = fopen ("logfile", "r")) = NULL) { 
perror("cannot open logfile"); 
exit(23); 

signal(SIGPOLL, connrelease); 
if (ioctl(conn fd, I SETSIG, S INPUT) < 0) { 

perror ("ioctl I SETSIG failed"); 
exit(24); -

if (t look(conn fd) != 0) {/* was disconnect already there? */ 
fprintf (stderr, "t look returned unexpected event\n") ; 
exit(25); -

while ((nbytes = fread(buf, 1, 1024, logfp)) > 0) 
if (t snd(conn fd, buf, nbytes, 0) < 0) { 

terror ("t snd failed"); 
eXit (26) ; -

if (t sndrel(conn fd) < 0) { 
terror ("t sndrel failed"); 
exit (27) ; -

pause ( ); /* until orderly release indication arrives */ 

C-13 



AppendixD 

NSL Manpages 

D.I Appendix D: (NSL) Manpages D-I 



NSL Manpages 

D.I Appendix D: (NSL) Manpages 

This appendix contains the (NSL) manpages. 

D-l 



INTRO (NSL) INTRO (NSL) 

Name 

intro - introduction to the Network Services library. 

Description 

This section contains sets of functions constituting the Network Ser
vices library. These sets provide protocol independent interfaces to 
networking services based on the service defmitions of the OSI (Open 
Systems Interconnection) reference model. Application developers 
access the function sets that provide services at a particular level. 

The function sets contained in the library are: 

TRANSPORT LAYER INTERFACE (TLI)-provide the services of 
the OSI Transport Layer. These services provide reliable end-to
end data transmission using the services of an underlying net
work. Applications written using the TLI functions are indepen
dent of the underlying protocols. Declarations for these functions 
may be obtained from the #include file <tiuser.h>. The link edi
tor Id(M) searches this library under the -Insl_s option. 

Definitions 

netbuf 

In the Network Services library, netbuf is a structure used in various 
Transport Layer Interface (TLI) functions to send and receive data and 
infonnation. It contains the following members: 

unsigned int maxlen; 
unsigned int len; 
char *buf; 

buf points to a user input and/or output buffer. len generally specifies 
the number of bytes contained in the buffer. If the structure is used for 
both input and output, the function will replace the user value of len 
on return. 

maxlen generally has significance only when buf is used to receive 
output from the TLI function. In this case, it specifies the physical 
size of the buffer, the maximum value of len that can be set by the 
function. If maxlen is not large enough to hold the returned infonna
tion, a TBUFOVFLW error will generally result. However, certain 
functions may return part of the data and not generate an error. 

November 22, 1988 Page 1 



T_ACCEPT (NSL) 

Name 

Caccept - accept a connect request 

SYNOPSIS 

#include <1iuser .h> 

int t accept(fd, resfd, call) 
int fd; 
int resfd; 
struct t_call *call; 

Description 

T _ACCEPT (NSL) 

This function is issued by a transport user to accept a connect request. 
fd identifies the local transport endpoint where the connect indication 
arrived, resfd specifies the local transport endpoint where the connec
tion is to be established, and call contains infonnation required by the 
transport provider to complete the connection. call points to a t _call 
structure which contains the following members: 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 
int sequence; 

netbuf is described in intro(NSL). In call, addr is the address of the 
caller, opt indicates any protocol-specific parameters associated with 
the connection, udata points to any user data to be returned to the 
caller, and sequence is the value returned by t _listen that uniquely 
associates the response with a previously received connect indication. 

A transport user may accept a connection on either the same, or on a 
different, local transport endpoint than the one on which the connect 
indication arrived. If the same endpoint is specified (that is, resfd=fd), 
the connection can be accepted unless the following condition is true: 
The user has received other indications on that endpoint but has not 
responded to them (with t_accept or t_snddis). For this condition, 
t _accept will fail and set t _ errno to TBADF. 

If a different transport endpoint is specified (resfd!=fd), the endpoint 
must be bound to a protocol address and must be in the T_IDLE state 
[see t_getstate(NSL)] before the t_accept is issued. 

For both types of endpoints, t _accept will fail and set t _ errno to 
TLOOK if there are indications (for example, a connect or disconnect) 
waiting to be received on that endpoint. 

November 22, 1988 Page 1 



T _ACCEPT (NSL) T _ACCEPT (NSL) 

The values of parameters specified by opt and the syntax of those 
values are protocol specific. The udata argument enables the called 
transport user to send user data to the caller and the amount of user 
data must not exceed the limits supported by the transport provider as 
returned by t_open or t_getinfo. If the len [see netbuf in intro(NSL)] 
field of udata is zero, no data will be sent to the caller. 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TOUTSTATE] 

[TACCES] 

[TBADOPT] 

[TBADDATA] 

[TBADSEQ] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to a 
transport endpoint, or the user is illegally 
accepting a connection on the same transport 
endpoint on which the connect indication 
arrived. 

The function was issued in the wrong sequence 
on the transport endpoint referenced by fd, or 
the transport endpoint referred to by resfd is 
not in the T_IDLE state. 

The user does not have pennission to accept a 
connection on the responding transport end
point or use the specified options. 

The specified options were in an incorrect for
mat or contained illegal infonnation. 

The amount of user data specified was not 
within the bounds allowed by the transport 
provider. 

An invalid sequence number was specified. 

An asynchronous event has occurred on the 
transport endpoint referenced by fd and 
requires immediate attention. 

This function is not supported by the underly
ing transport provider. 

A system error has occurred during execution 
of this function. 

intro(NSL), Cconnect(NSL), Cgetstate(NSL), Clisten(NSL), 
Copen(NSL), crcvconnect(NSL). 
Network Programmer's Guide. 

November 22, 1988 Page 2 



T _ACCEPT (NSL) T _ACCEPT (NSL) 

Diagnostics 

Upon successful completion, a value of 0 is returned. Otherwise, a 
value of -1 is returned and t errno is set to indicate the error. 

November 22, 1988 Page 3 



Name 

Calloc - allocate a library structure 

Syntax 

#include <tiuser.h> 

char *t alloc(fd, struct type, fields) 
int fd; - -
int struct type; 
int fields;-

Description 

The t aUoc function dynamically allocates memory for the various 
transport function argument structures as specified below. This func
tion will allocate memory for the specified structure, and will also 
allocate memory for buffers referenced by the structure. 

The structure to allocate is specified by struct _type, and can be one of 
the following: 

T_BIND struct cbind 

T_CALL struct ccall 

T_OPTMGMT struct coptmgmt 

T_DIS struct Cdiscon 

T_UNITDATA struct cunitdata 

T_UDERROR struct cuderr 

T_INFO struct Cinfo 

where each of these structures may subsequently be used as an argu
ment to one or more transport functions. 

Each of the above structures, except T_INFO, contains at least one 
field of type struct netbuf. netbuf is described in intro(NSL). For 
each field of this type, the user may specify that the buffer for that 
field should be allocated as well. The fields argument specifies this 
option, where the argument is the bitwise-OR of any of the following: 

T_ADDR The addr field of the t bind, t call, t unitdata, or t uderr 
structures. - - - -

November 22. 1988 Page 1 



The opt field of the t optmgmt, t _call, t _ unitdata, or 
t uderr structures. -

T_UDATA The udata field of the t_call, t_discon, or t_unitdata struc
tures. 

All relevant fields of the given structure. 

For each field specified in fields, t _ alloc will allocate memory for the 
buffer associated with the field, and initialize the buf pointer and max
len [see netbuf in intro(NSL) for description of buf and maxlen] field 
accordingly. The length of the buffer allocated will be based on the 
same size information that is returned to the user on t _open and 
tJetinfo. Thus,fd must refer to the transport endpoint through which 
the newly allocated structure will be passed, so that the appropriate 
size information can be accessed. If the size value associated with 
any specified field is -lor -2 (see t _open or t _getinfo), t _ alloc will be 
unable to determine the size of the buffer to allocate and will fail, set
ting t_errno to TSYSERR and errno to EINVAL. For any field not 
specified in fields, buf will be set to NULL and maxlen will be set to 
zero. 

Use of t_alloc to allocate structures will help ensure the compatibility 
of user programs with future releases of the transport interface. 

On failure, t_errno may be set to one of the following: 

[TBADF] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to a tran
sport endpoint. 

A system error has occurred during execution of 
this function. 

intro(NSL), Cfree(NSL), Cgetinfo(NSL), Copen(NSL). 

Network Programmer's Guide. 

Diagnostics 

On successful completion, t _ alloc returns a pointer to the newly allo
cated structure. On failure, NULL is returned. 

November 22, 1988 Page 2 



Name 

Cbind - bind an address to a transport endpoint 

Syntax 

#include <tinser .h> 

int t bind(fd, req, ret) 
int fd; 
struct t bind *req; 
struct (bind *ret; 

Description 

This function associates a protocol address with the transport endpoint 
specified by fd and activates that transport endpoint. In connection 
mode, the transport provider may begin accepting or requesting con
nections on the transport endpoint. In connectionless mode, the trans
port user may send or receive data units through the transport end
point. 

The req and ret arguments point to a t_bind structure containing the 
following members: 

struct netbuf addr; 
unsigned qlen; 

netbuf is described in intro(NSL). The addr field of the t_bind struc
ture specifies a protocol address and the qlen field is used to indicate 
the maximum number of outstanding connect indications. 

req is used to request that an address, represented by the netbuf struc
ture, be bound to the given transport endpoint. len [see netbuf in 
intro(NSL); also for buf and maxlen] specifies the number of bytes in 
the address and buf points to the address buffer. maxlen has no mean
ing for the req argument. On return, ret contains the address that the 
transport provider actually bound to the transport endpoint; this may 
be different from the address specified by the user in req. In ret, the 
user specifies maxlen which is the maximum size of the address buffer 
and buf which points to the buffer where the address is to be placed. 
On return, len specifies the number of bytes in the bound address and 
buf points to the bound address. If maxlen is not large enough to hold 
the returned address, an error will result. 

November 22, 1988 Page 1 



If the requested address is not available, or if no address is specified in 
req (the len field of addr in req is zero) the transport provider will 
assign an appropriate address to be bound, and will return that address 
in the addr field of ret. The user can compare the addresses in req and 
ret to determine whether the transport provider bound the transport 
endpoint to a different address than that requested. 

req may be NULL if the user does not wish to specify an address to be 
bound. Here, the value of qlen is assumed to be zero, and the transport 
provider must assign an address to the transport endpoint. Similarly, 
ret may be NULL if the user does not care what address was bound by 
the provider and is not interested in the negotiated value of qlen. It is 
valid to set req and ret to NULL for the same call, in which case the 
provider chooses the address to bind to the transport endpoint and does 
not return that information to the user. 

The qlen field has meaning only when initializing a connection-mode 
service. It specifies the number of outstanding connect indications the 
transport provider should support for the given transport endpoint. An 
outstanding connect indication is one that has been passed to the 
transport user by the transport provider. A value. of qlen greater than 
zero is only meaningful when issued by a passive transport user that 
expects other users to call it. The value of qlen will be negotiated by 
the transport provider and may be changed if the transport provider 
cannot support the specified number of outstanding connect indica
tions. On return, the qlen field in ret will contain the negotiated 
value. 

This function allows more than one transport endpoint to be bound to 
the same protocol address (however, the transport provider must sup
port this capability also), but it is not allowable to bind more than one 
protocol address to the same transport endpoint. If a user binds more 
than one transport endpoint to the same protocol address, only one 
endpoint can be used to listen for connect indications associated with 
that protocol address. In other words, only one t_hind for a given pro
tocol address may specify a value of qlen greater than zero. In this 
way, the transport provider can identify which transport endpoint 
should be notified of an incoming connect indication. If a user 
attempts to bind a protocol address to a second transport endpoint with 
a value of qlen greater than zero, the transport provider will assign 
another address to be bound to that endpoint. If a user accepts a con
nection on the transport endpoint that is being used as the listening 
endpoint, the bound protocol address will be found to be busy for the 
duration of that connection. No other transport endpoints may be 
bound for listening while that initial listening endpoint is in the data 
transfer phase. This will prevent more than one transport endpoint 
bound to the same protocol address from accepting connect indica
tions. 

November 22, 1988 Page 2 



On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TOUTSTATE] 

[TBADADDR] 

[TNOADDR] 

[TACCES] 

[TBUFOVFL W] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to a 
transport endpoint. 

The function was issued in the wrong 
sequence. 

The specified protocol address was in an 
incorrect fonnat or contained illegal infonna
tion. 

The transport provider could not allocate an 
address. 

The user does not have pennission to use the 
specified address. 

The number of bytes allowed for an incoming 
argument is not sufficient to store the value of 
that argument. The provider's state will 
change to T_IDLE and the infonnation to be 
returned in ret will be discarded. 

A system error has occurred during execution 
of this function. 

intro(NSL), copen(NSL), coptmgmt(NSL), cunbind(NSL). 
Network Programmer's Guide. 

Diagnostics 

The t bind function returns 0 on success and -Ion failure, and t errno 
is set to indicate the error. -

November 22, 1988 Page 3 



T _CLOSE (NSL) 

Name 

Cclose - close a transport endpoint 

Syntax 

#include <tiuser .h> 

int t close(fd) 
int fd; 

Description 

The t _close function informs the transport provider that the user is fm
ished with the transport endpoint specified by jd, and frees any local 
library resources associated with the endpoint. In addition, t _close 
closes the file associated with the transport endpoint. 

The t close function should be called from the T_UNBND state [see 
t_getSiate (NSL)]. However, this function does not check state infor
mation, so it may be called from any state to close a transport end
point. If this occurs, the local library resources associated with the 
endpoint will be freed automatically. In addition, close(S) will be 
issued for that file descriptor; the close will be abortive if no other 
process has that file open, and will break any transport connection that 
may be associated with that endpoint. 

On failure, t _ errno may be set to the following: 

[TBADF] The specified file descriptor does not refer to a tran
sport endpoint. 

See Also 

Cgetstate(NSL), Copen(NSL), cunbind(NSL). 
Network Programmer's Guide. 

Diagnostics 

The t close function returns 0 on success and -Ion failure, and 
t errno is set to indicate the error. 

November 22, 1988 Page 1 



T_CONNECT (NSL) T _CONNECT (NSL) 

Name 

Cconnect - establish a connection with another transport user 

Syntax 

#include diuser .h> 

int t connect(fd, sndcall, rcvcall) 
int fd; 
struct t call *sndcall; 
struct (call *rcvcall; 

Description 

This function enables a transport user to request a connection to the 
specified destination transport user. fd identifies the local transport 
endpoint where communication will be established, while sndcall and 
rcvcall point to a t _call structure which contains the following 
members: 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 
int sequence; 

sndcall specifies information needed by the transport provider to 
establish a connection, and rcvcall specifies information that is asso
ciated with the newly established connection. 

netbuf is described in intro(NSL). In sndcall, addr specifies the proto
col address of the destination transport user, opt presents any 
protocol-specific information that might be needed by the transport 
provider, udata points to optional user data that may be passed to the 
destination transport user during connection establishment, and 
sequence has no meaning for this function. 

On return in rcvcall, addr returns the protocol address associated with 
the responding transport endpoint; opt presents any protocol-specific 
information associated with the connection; udata points to optional 
user data that may be returned by the destination transport user during 
connection establishment; and sequence has no meaning for this func
tion. 

The opt argument implies no structure on the options that may be 
passed to the transport provider. The transport provider is free to 
specify the structure of any options passed to it. These options are 
specific to the underlying protocol of the transport provider. The user 
may choose not to negotiate protocol options by setting the len field of 
opt to zero. In this case, the provider may use default options. 

November 22, 1988 Page 1 



T _ COIVNECT (NSL) 

The udata argument enables the caller to pass user data to the destina
tion transport user and receive user data from the destination user dur
ing connection establishment. However, the amount of user data must 
not exceed the limits supported by the transport provider as returned 
by t_open(NSL) or t_getinfo(NSL). If the len [see netbuf in 
intro(NSL)] field of udata is zero in sndcall, no data will be sent to the 
destination transport user. 

On return, the addr, opt, and udata fields of rcvcal! will be updated to 
reflect values associated with the connection. Thus, the maxlen [see 
netbuf in intro(NSL)] field of each argument must be set before issu
ing this function to indicate the maximum size of the buffer for each. 
However, rcvcal! may be NULL, in which case no information is given 
to the user on return from t connect. 

By default, t connect executes in synchronous mode, and will wait for 
the destination user's response before returning control to the local 
user. A successful return (that is, a return value of zero) indicates that 
the requested connection has been established. However, if 
O_NDELAY is set (via t_open or fcntl), t_connect executes in asyn
chronous mode. In this case, the call will not wait for the remote 
user's response, but will return control immediately to the local user 
and return -1 with t errno set to TNODATA to indicate that the con
nection has not yet been established. In this way, the function simply 
initiates the connection establishment procedure by sending a connect 
request to the destination transport user. 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TOUTSTATE] 

[TNODATA] 

[TBADADDR] 

[TBADOPT] 

[TBADDATA] 

November 22, 1988 

The specified file descriptor does not refer to a 
transport endpoint. 

The function was issued in the wrong 
sequence. 

O_NDELAY was set, so the function success
fully initiated the connection establishment 
procedure, but did not wait for a response from 
the remote user. 

The specified protocol address was in an 
incorrect format or contained illegal informa
tion. 

The specified protocol options were in an 
incorrect format or contained illegal informa
tion. 

The amount of user data specified was not 
within the bounds allowed by the transport 
provider. 

Page 2 



T_CONNECT (NSL) 

[TACCES] 

[TBUFOVFL W] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

T_CONNECT (NSL) 

The user does not have pennission to use the 
specified address or options. 

The number of bytes allocated for an incoming 
argument is not sufficient to store the value of 
that argument. If executed in synchronous 
mode, the provider's state, as seen by the user, 
changes to T_DATAXFER, and the connect 
indication infonnation to be returned in rcvcall 
is discarded. 

An asynchronous event has occurred on this 
transport endpoint and requires immediate 
attention. 

This function is not supported by the underly
ing transport provider. 

A system error has occurred during execution 
of this function. 

intro(NSL), Caccept(NSL), cgetinfo(NSL), clisten(NSL), 
Copen(NSL), coptmgmt(NSL), crcvconnect(NSL). 
Network Programmer's Guide. 

Diagnostics 

The t connect function returns 0 on success and -Ion failure, and 
t errna is set to indicate the error. 

November 22, 1988 Page 3 



Name 

t_error - produce error message 

Syntax 

#include diuser .h> 

void t _ errore errmsg) 
char *errmsg; 
extern int t errno; 
extern char-*t errlist[]; 
extern int t_nerr; 

Description 

t _error produces a message on the standard error output which 
describes the last error encountered during a call to a transport func
tion. The argument string errmsg is a user-supplied error message that 
gives context to the error. 

t _error prints the user-supplied error message followed by a colon and 
the standard transport function error message for the current value 
contained in t ermo. If t ermo is TSYSERR, t error will also print 
the standard error message for the current value contained in ermo 
[see intro(S)]. 

t _ errlist is the array of message strings, to allow user message format
ting. t_errno can be used as an index into this array to retrieve the 
error message string (without a terminating newline). t_nerr is the 
maximum index value for the t _ errlist array. 

t _ ermo is set when an error occurs and is nqt cleared on subsequent 
successful calls. 

Example 

If a t_connect function fails on transport endpoint fd2 because a bad 
address was given, the following call might follow the failure: 

Cerror("Cconnect failed on fd2"); 

The diagnostic message would print as: 

Cconnect failed on fd2: Incorrect transport address format 

where "t connect failed on fd2" tells the user which function failed 
on which-transport endpoint, and "Incorrect transport address format" 
identifies the specific error that occurred. 

November 22, 1988 Page 1 



T_ERROR (NSL) 

See Also 

Network Programmer's Guide. 

November 22,1988 Page 2 



Name 

efree - free a library structure 

Syntax 

#include diuser .h> 

int t_free(ptr, struct_type) 
char *ptr; 
int struct_ type; 

Description 

The t Jree function frees memory previously allocated by t _ alloe. 
This function will free memory for the specified structure and will 
also free memory for buffers referenced by the structure. 

ptr points to one of the six structure types described for t _ aZIoe, and 
struet _type identifies the type of that structure which can be one of the 
following: 

T_BIND struct ebind 

T_CALL struct ecall 

T_OPTMGMT struct coptmgmt 

T_DIS struct ediscon 

T_UNITDATA struct Cunitdata 

T_UDERROR struct euderr 

T_INFO struct einfo 

where each of these structures is used as an argument to one or more 
transport functions. 

The t Jree function will check the addr, opt, and udata fields of the 
given structure (as appropriate) and free the buffers pointed to by the 
buf field of the netbuf [see intro(NSL)] structure. If buf is NULL, 
t Jree will not attempt to free memory. After all buffers are freed, 
t Jree will free the memory associated with the structure pointed to by 
ptr. 

Undefined results will occur if ptr or any of the bufpointers points to a 
block of memory that was not previously allocated by t _ alloe . 

November 22, 1988 Page 1 



On failure, t _ errno may be set to the following: 

[TSYSERR] A system error has occurred during execution of 
this function. 

See Also 

intro(NSL), calloc(NSL). 

Network Programmer's Guide. 

Diagnostics 

The t Jree function returns 0 on success and -1 on failure, and t _ ermo 
is set to indicate the error. 

November 22,1988 Page 2 



T_GETINFO (NSL) T_GETINFO (NSL) 

Name 

Cgetinfo - get protocol-specific service infonnation 

Syntax 

#include <tiuser .h> 

int t _getinfo(fd, info) 
int fd; 
struct tJnfo *info; 

Description 

This function returns the current characteristics of the underlying tran
sport protocol associated with file descriptor fd. The info structure is 
used to return the same infonnation returned by t open. This function 
enables a transport user to access this infonnation during any phase of 
communication. 

This argument points to at_info structure which contains the follow
ing members: 

long addr; 
long options; 
long tsdu; 
long etsdu; 

long connect; 

long discon; 

long servtype; 

/* max size of the transport protocol address */ 
/* max number of bytes of protocol-specific options * / 
/* max size of a transport service data unit (TSDU) */ 
/* max size of an expedited transport service data 
unit (ETSDU) */ 
/* max amount of data allowed on connection estab
lishment 
functions */ 
/* max amount of data allowed on t snddis and 
t rcvdis -
functions * / 
/* service type supported by the transport provider * / 

The values of the fields have the following meanings: 

addr A value greater than or equal to zero indicates the 
maximum size of a transport protocol address; a 
value of -1 specifies that there is no limit on the 
address size; and a value of -2 specifies that the tran
sport provider does not provide user access to tran
sport protocol addresses. 

November 22, 1988 Page 1 



T_GETINFO(NSL) T_GETINFO(NSL) 

options A value greater than or equal to zero indicates the 
maximum number of bytes of protocol-specific 
options supported by the provider; a value of -1 
specifies that there is no limit on the option size; and 
a value of -2 specifies that the transport provider 
does not support user-settable options. 

tsdu A value greater than zero specifies the maximum 
size of a transport service data unit (TSDU); a value 
of zero specifies that the transport provider does not 
support the concept of TSDU, although it does sup
port the sending of a data stream with no logical 
boundaries preserved across a connection; a value of 
-1 specifies that there is no limit on the size of a 
TSDU; and a value of -2 specifies that the transfer of 
normal data is not supported by the transport pro
vider. 

etsdu A value greater than zero specifies the maximum 
size of an expedited transport service data unit 
(ETSDU); a value of zero specifies that the transport 
provider does not support the concept of ETSDU, 
although it does support the sending of an expedited 
data stream with no logical boundaries preserved 
across a connection; a value of -1 specifies that there 
is no limit on the size of an ETSDU; and a value of-2 
specifies that the transfer of expedited data is not 
supported by the transport provider. 

connect A value greater than or equal to zero specifies the 
maximum amount of data that may be associated 
with connection establishment functions; a value of 
-1 specifies that there is no limit on the amount of 
data sent during connection establishment; and a 
value of -2 specifies that the transport provider does 
not allow data to be sent with connection establish
ment functions. 

discon A value greater than or equal to zero specifies the 
maximum amount of data that may be associated 
with the t snddis and t rcvdis functions; a value of 
-1 specifies that there is no limit on the amount of 
data sent with these abortive release functions; and a 
value of -2 specifies that the transport provider does 
not allow data to be sent with the abortive release 
functions. 

servtype This field specifies the service type supported by the 
transport provider, as described below. 

November 22, 1988 Page 2 



T_GETINFO (NSL) T_GETINFO (NSL) 

If a transport user is concerned with protocol independence, the above 
sizes may be accessed to determine how large the buffers must be to 
hold each piece of information. Alternatively, the t_aUoc function 
may be used to allocate these buffers. An error will result if a tran
sport user exceeds the allowed data size on any function. The value of 
each field may change as a result of option negotiation, and t _getinfo 
enables a user to retrieve the current characteristics. 

The servtype field of info may specify one of the following values on 
return: 

T _COTS The transport provider supports a connection-mode 
service but does not support the optional orderly 
release facility. 

T_COTS_ORD The transport provider supports a connection-mode 
service with the optional orderly release facility. 

T_CLTS The transport provider supports a connectionless
mode service. For this service type, t _open will 
return -2 for etsdu, connect, and discon. 

On failure, t _ ermo may be set to one of the following: 

[TBADF] 

[TSYSERR] 

See Also 

Copen(NSL). 

The specified file descriptor does not refer to a tran
sport endpoint. 

A system error has occurred during execution of 
this function. 

Network Programmer's Guide. 

Diagnostics 

The t _getinfo function returns 0 on success and -Ion failure, and 
t _ errno is set to indicate the error. 

November 22, 1988 Page 3 



T _ GETSTATE (NSL) T _ GETSTATE (NSL) 

Name 

t~etstate - get the current state 

Syntax 

#include <tiuser .h> 

int t _getstate(fd) 
int fd; 

Description 

The t _gets tate function returns the current state of the provider associ
ated with the transport endpoint specified by fd . 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TSTATECHNG] 

[TSYSERR] 

See Also 

Copen(NSL). 

The specified file descriptor does not refer to a 
transport endpoint. 

The transport provider is undergoing a state 
change. 

A system error has occurred during execution of 
this function. 

Network Programmer's Guide. 

Diagnostics 

The t _getstate function returns the current state on successful comple
tion and -Ion failure, and t errno is set to indicate the error. The 
current state may be one of the following: 

T_~~ unbound 

T_OUTCON outgoing connection pending 

T_INCON incoming connection pending 

November 22, 1988 Page 1 



T _ GETSTATE (NSL) T _ GETSTATE (NSL) 

T_DATAXFER data transfer 

T_OUTREL outgoing orderly release (waiting for an orderly 
release indication) 

T_INREL incoming orderly release (waiting for an orderly 
release request) 

If the provider is undergoing a state transition when t _getstate is 
called, the function will fail. 

November 22, 1988 Page 2 



T_LISTEN (NSL) 

Name 

Clisten - listen for a connect request 

Synopsis 

#include <tiuser .h> 

int t listen(fd, call) 
int fd; 
struct t _call *call; 

Description 

T_LISTEN (NSL) 

This function listens for a connect request from a calling transport 
user. fd identifies the local transport endpoint where connect indica
tions arrive, and on return, call contains information describing the 
connect indication. call points to a t _call structure which contains the 
following members: 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 
int sequence; 

netbuf is described in intro(NSL). In call, addr returns the protocol 
address of the calling transport user; opt returns protocol-specific 
parameters associated with the connect request; udata returns any user 
data sent by the caller on the connect request; and sequence is a 
number that uniquely identifies the returned connect indication. The 
value of sequence enables the user to listen for multiple connect indi
cations before responding to any of them. 

Since this function returns values for the addr, opt, and udata fields of 
call, the maxlen [see netbuf in intro(NSL)] field of each must be set 
before issuing the t listen to indicate the maximum size of the buffer 
for each. -

By default, t_listen executes in synchronous mode and waits for a con
nect indication to arrive before returning to the user. However, if 
O_NDELAY is set (via t open or fcnt/), t listen executes asynchro
nously, reducing to a pollfor existing connect indications. If none are 
available, it returns -1 and sets t _ errno to TNODATA. 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

November 22, 1988 

The specified file descriptor does not refer to 
a transport endpoint. 

Page 1 



T _LISTEN (NSL) 

[TBUFOVFL W] 

[1NODATA] 

[TLOOK] 

[1NOTSUPPORT] 

[TSYSERR] 

See Also 

The number of bytes allocated for an incom
ing argument is not sufficient to store the 
value of that argument. The provider's state, 
as seen by the user, changes to T_INCON, and 
the connect indication information to be 
returned in call is discarded. 

O_NDELAY was set, but no connect indica
tions had been queued. 

An asynchronous event has occurred on this 
transport endpoint and requires immediate 
attention. 

This function is not supported by the underly
ing transport provider. 

A system error has occurred during execution 
of this function. 

intro(NSL), t_accept(NSL), Cbind(NSL), cconnect(NSL), 
t_open(NSL), Crcvconnect(NSL). 
Network Programmer's Guide. 

Diagnostics 

The t listen function returns 0 on success and -Ion failure, and 
t errno is set to indicate the error. 

Warning 

If a user issues t _listen in synchronous mode on a transport endpoint 
that was not bound for listening (that is, qlen was zero on t_bind), the 
call will wait forever because no connect indications will arrive on 
that endpoint. 

November 22, 19.88 Page 2 



Name 

Clook - look at the current event on a transport endpoint 

Syntax 

#include <tiuser .h> 

int t look(fd) 
int fd; 

Description 

This function returns the current event on the transport endpoint speci
fied by fd. This function enables a transport provider to notify a tran
sport user of an asynchronous event when the user is issuing functions 
in synchronous mode. Certain events require immediate notification 
of the user and are indicated by a specific error, TLOOK, on the 
current or next function to be executed. 

This function also enables a transport user to poll a transport endpoint 
periodically for asynchronous events. 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TSYSERR] 

See Also 

Copen(NSL). 

The specified file descriptor does not refer to a tran
sport endpoint. 

A system error has occurred during execution of 
this function. 

Network Programmer's Guide. 

Diagnostics 

Upon success, t _look returns a value that indicates which of the allow
able events has occurred, or returns zero if no event exists. One of the 
following events is returned: 

connection indication received 

connect confirmation received 

November 22, 1988 Page 1 



T~ LOOK (NSL) 

T_DATA 

T_EXDATA 

T_DISCONNECT 

T_ERROR 

T_UDERR 

T_ORDREL 

nonnal data received 

expedited data received 

disconnect received 

fatal error indication 

datagram error indication 

orderly release indication 

On failure, -1 is returned, and t _ errno is set to indicate the error. 

November 22,1988 Page 2 



Name 

copen - establish a transport endpoint 

Syntax 

#include diuser .h> 

int t open(path, oflag, info) 
char-*path; 
int oflag; 
struct t Jnfo *info; 

Description 

The t open function must be called as the first step in the initializa
tion of a transport endpoint. This function establishes a transport end
point by opening a UNIX system file that identifies a particular tran
sport provider (that is, transport protocol) and returning a file descrip
tor that identifies that endpoint. For example, opening the file 
Idev/iso cots identifies an OSI connection-oriented transport layer 
protocoCas the transport provider. 

path points to the path name of the flie to open, and oflag identifies 
any open flags [as in open(S)]. t_open returns a file descriptor that 
will be used by all subsequent functions to identify the particular local 
transport endpoint. 

This function also returns various default characteristics of the under
lying transport protocol by setting fields in the t _info structure. This 
argument points to at_info which contains the following members: 

long addr; 
long options; 

long tsdu; 
long etsdu; 

long connect; 

long discon; 

long servtype; 

/* max size of the transport protocol address * / 
/* max number of bytes of protocol-specific 
options */ 
/* max size of a transport service data unit (TSDU) * / 
/* max size of an expedited transport service data 
unit (ETSDU) */ 
/* max amount of data allowed on connection 
establishment functions *1 
/* max amount of data allowed on t snddis and 
t rcvdis functions *1 -
1* service type supported by the transport provider *1 

The values of the fields have the following meanings: 

addr A value greater than or equal to zero indicates the 
maximum size of a transport protocol address; a 
value of -1 specifies that there is no limit on the 
address size; and a value of -2 specifies that the 

November 22, 1988 Page 1 



transport provider does not provide user access to 
transport protocol addresses. 

options A value greater than or equal to zero indicates the 
maximum number of bytes of protocol-specific 
options supported by the provider; a value of -1 
specifies that there is no limit on the option size; and 
a value of -2 specifies that the transport provider 
does not support user-settable options. 

tsdu A value greater than zero specifies the maximum 
size of a transport service data unit (TSDU); a value 
of zero specifies that the transport provider does not 
support the concept of TSDU, although it does sup
port the sending of a data stream with no logical 
boundaries preserved across a connection; a value of 
-1 specifies that there is no limit on the size of a 
TSDU; and a value of -2 specifies that the transfer of 
normal data is not supported by the transport pro
vider. 

etsdu A value greater than zero specifies the maximum 
size of an expedited transport service data unit 
(ETSDU); a value of zero specifies that the transport 
provider does not support the concept of ETSDU, 
although it does support the sending of an expedited 
data stream with no logical boundaries preserved 
across a connection; a value of -1 specifies that there 
is no limit on the size of an ETSDU; and a value of-2 
specifies that the transfer of expedited data is not 
supported by the transport provider. 

connect A value greater than or equal to zero specifies the 
maximum amount of data that may be associated 
with connection establishment functions; a value of 
-1 specifies that there is no limit on the amount of 
data sent during connection establishment; and a 
value of -2 specifies that the transport provider does 
not allow data to be sent with connection establish
ment functions. 

discon A value greater than or equal to zero specifies the 
maximum amount of data that may be associated 
with the t snddis and t rcvdis functions; a value of 
-1 specifies that there 18 no limit on the amount of 
data sent with these abortive release functions; and a 
value of -2 specifies that the transport provider does 
not allow data to be sent with the abortive release 
functions. 

November 22, 1988 Page 2 



servtype This field specifies the service type supported by the 
transport provider, as described below. 

If a transport user is concerned with protocol independence, the above 
sizes may be accessed to detennine how large the buffers must be to 
hold each piece of infonnation. Alternatively, the t_aUoc function 
may be used to allocate these buffers. An error will result if a tran
sport user exceeds the allowed data size on any function. 

The servtype field of info may specify one of the following values on 
return: 

T_COTS The transport provider supports a connection-mode 
service but does not support the optional orderly 
release facility. 

T_COTS_ORD The transport provider supports a connection-mode 
service with the optional orderly release facility. 

T_CLTS The transport provider supports a connectionless
mode service. For this service type, t open will 
return -2 for etsdu, connect, and disc on . -

A single transport endpoint may support only one of the above ser
vices at one time. 

If info is set to NULL by the transport user, no protocol infonnation is 
returned by t_open. 

On failure, t _ errno may be set to the following: 

[TSYSERR] A system error has occurred during execution 
of this function. 

See Also 

open(S) in the XENIX Reference. 

Network Programmer's Guide. 

Diagnostics 

The t _open function returns a valid file descriptor on success and -Ion 
failure, and t _ errno is set to indicate the error. 

December 6, 1988 Page 3 



T_OPTMGMT(NSL) T_OPTMGMT (NSL) 

Name 

Coptmgmt - manage options for a transport endpoint 

Syntax 

#include <tiuser .h> 

int t_optmgmt(fd, req, ret) 
int fd; 
struct t_optmgmt *req; 
struct t _ optmgmt *ret; 

Description 

The t optmgmt function enables a transport user to retrieve, verify, or 
negoilate protocol options with the transport provider. fd identifies a 
bound transport endpoint. 

The req and ret arguments point to a t_optmgmt structure containing 
the following members: 

struct netbuf opt; 
long flags; 

The opt field identifies protocol options, and the flags field is used to 
specify the action to take with those options. 

The options are represented by a netbuf [see intro(NSL); also for len, 
buf, and maxlen] structure in a manner similar to the address in t_bind. 
req is used to request a specific action of the provider and to send 
options to the provider. len specifies the number of bytes in the 
options, buf points to the options buffer, and maxlen has no meaning 
for the req argument. The transport provider may return options and 
flag values to the user through ret. For ret, maxlen specifies the max
imum size of the options buffer and buf points to the buffer where the 
options are to be placed. On return, len specifies the number of bytes 
of options returned. maxlen has no meaning for the req argument, but 
must be set in the ret argument to specify the maximum number of 
bytes the options buffer can hold. The actual structure and content of 
the options is imposed by the transport provider. 

The flags field of req can specify one of the following actions: 

T _NEGOTIATE This action enables the user to negotiate the values 
of the options specified in req with the transport 
provider. The provider will evaluate the requested 
options and negotiate the values, returning the 
negotiated values through ret. 

November 22, 1988 Page 1 



T_OPTMGMT(NSL) T_OPTMGMT(NSL) 

T _CHECK This action enables the user to verify whether the 
options specified in req are supported by the tran
sport provider. On return, the flags field of ret will 
have either T_SUCCESS or T_FAILURE set to indi
cate to the user whether the options are supported. 
These flags are only meaningful for the T_CHECK 
request. 

T_DEFAULT This action enables a user to retrieve the default 
options supported by the transport provider into the 
opt field of ret. In req, the len field of opt must be 
zero, and the buf field may be NULL. 

If issued as part of the connectionless-mode service, t_optmgmt may 
block due to flow control constraints. The function will not complete 
until the transport provider has processed all previously sent data 
units. 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TOUTSTATE] 

[TACCES] 

[TBADOPT] 

[TBADFLAG] 

[TBUFOVFL W] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to 
a transport endpoint. 

The function was issued in the wrong 
sequence. 

The user does not have pennission to nego
tiate the specified options. 

The specified protocol options were in an 
incorrect fonnat or contained illegal infonna
tion. 

An invalid flag was specified. 

The number of bytes allowed for an incoming 
argument is not sufficient to store the value of 
that argument. The infonnation to be 
returned in ret will be discarded. 

A system error has occurred during execution 
of this function. 

intro(NSL), Cgetinfo(NSL), Copen(NSL). 

Network Programmer's Guide. 

November 22, 1988 Page 2 



T _ OPTMGMT (NSL) T_OPTMGMT(NSL) 

Diagnostics 

The t _ optmgmt function returns 0 on success and -Ion failure, and 
t errno is set to indicate the error. 

November 22, 1988 Page 3 



Name 

Crcv - receive data or expedited data sent over a connection 

Syntax 

int t rcv(fd, buf, nbytes, flags) 
int fd; 
char *buf; 
unsigned nbytes; 
int *flags; 

Description 

This function receives either normal or expedited data. fd identifies 
the local transport endpoint through which data will arrive; buf points 
to a receive buffer where user data will be placed; and nbytes specifies 
the size of the receive buffer. flags may be set on return from t_rev 
and specifies optional flags as described below. 

By default, t_rev operates in synchronous mode and will wait for data 
to arrive if none is currently available. However, if O_NDELAY is set 
(via t_open or fentl), t_rev will execute in asynchronous mode and 
will fail if no data is available. (See TNODATA below.) 

On return from the call, if T_MORE is set inflags, this indicates that 
there is more data and the current transport service data unit (TSDU) 
or expedited transport service data unit (ETSDU) must be received in 
multiple t _rev calls. Each t _rev with the T _MORE flag set indicates 
that another t _rev must follow immediately to get more data for the 
current TSDU. The end of the TSDU is identified by the return of a 
t _rev call with the T_MORE flag not set. If the transport provider does 
not support the concept of a TSDU as indicated in the info argument on 
return from t_open or tJJetinfo, the T_MORE flag is not meaningful 
and should be ignored. 

On return, the data returned is expedited data if T _EXPEDITED is set 
in flags. If the number of bytes of expedited data exceeds nbytes, 
t_rev will set T_EXPEDITED and T_MORE on return from the initial 
call. Subsequent calls to retrieve the remaining ETSDU will not have 
T_EXPEDITED set on return. The end of the ETSDU is identified by 
the return of at_rev call with the T_MORE flag not set. 

If expedited data arrives after part of a TSDU has been retrieved, 
receipt of the remainder of the TSDU will be suspended until the 
ETSDU has been processed. Only after the full ETSDU has been 
retrieved (T_MORE not set) will the remainder of the TSDU be avail
able to the user. 

November 22, 1988 Page 1 



T:...RCV(NSL) 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TNODATA] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to a 
transport endpoint. 

O_NDELAY was set, but no data is currently 
available from the transport provider. 

An asynchronous event has occurred on this 
transport endpoint and requires immediate 
attention. 

This function is not supported by the underly
ing transport provider. 

A system error has occurred during execution 
of this function. 

copen(NSL), Csnd(NSL). 

Network Programmer's Guide. 

Diagnostics 

On successful completion, t _rev returns the number of bytes received, 
and it returns -Ion failure, and t _ errno is set to indicate the error. 

November 22, 1988 Page 2 



T_RCVCONNECT(NSL) T_RCVCONNECT(NSL) 

Name 

Crcvconnect - receive the confinnation from a connect request 

Syntax 

#include <tiuser .h> 

int t rcvconnect(fd, call) 
int fd; 
struct t _call *call; 

Description 

This function enables a calling transport user to determine the status 
of a previously sent connect request and is used in conjunction with 
t _connect to establish a connection in asynchronous mode. The con
nection will be established on successful completion of this function. 

fd identifies the local transport endpoint where communication will be 
established, and call contains information associated with the newly 
established connection. call points to a t_ call structure which con
tains the following members: 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 
int sequence; 

netbuf is described in intro(NSL). In call, addr returns the protocol 
address associated with the responding transport endpoint, opt 
presents any protocol-specific information associated with the con
nection, udata points to optional user data that may be returned by the 
destination transport user during connection establishment, and 
sequence has no meaning for this function. 

The maxlen [see netbuf in intro(NSL)] field of each argument must be 
set before issuing this function to indicate the maximum size of the 
buffer for each. However, call may be NULL, in which case no infor
mation is given to the user on return from t _rcvconnect. By default, 
t _rcvconnect executes in synchronous mode and waits for the connec
tion to be established before returning. On return, the addr, opt, and 
udata fields reflect values associated with the connection. 

November 22, 1988 Page 1 



T_RCVCONNECT(NSL) T _ RCVCONNECT (NSL) 

If O_NDELAY is set (via t_open or JentZ), t_rcvconnect executes in 
asynchronous mode and reduces to a poll for existing connect confrr
mations. If none are available, t rcvconnect fails and returns immedi
ately without waiting for the connection to be established. (See TNO
DATA below.) t rcvconnect must be re-issued at a later time to com
plete the connection establishment phase and retrieve the infonnation 
returned in call. 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TBUFOVFL W] 

[TNODATA] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to 
a transport endpoint. 

The number of bytes allocated for an incom
ing argument is not sufficient to store the 
value of that argument and the connect infor
mation to be returned in call will be dis
carded. The provider's state, as seen by the 
user, will be changed to DATAXFER. 

O_NDELAY was set, but a connect 
confinnation has not yet arrived. 

An asynchronous event has occurred on this 
transport connection and requires immediate 
attention. 

This function is not supported by the underly
ing transport provider. 

A system error has occurred during execution 
of this function. 

intro(NSL), caccept(NSL), Cbind(NSL), cconnect(NSL), 
clisten(NSL), copen(NSL). 

Network Programmer's Guide. 

Diagnostics 

t rcvconnect returns 0 on success and -Ion failure, and t errno is set 
to indicate the error. -

November 22, 1988 Page 2 



T _ RCVDIS (NSL) T_RCVDIS (NSL) 

Name 

Crcvdis - ·retrieve information from disconnect 

Syntax 

#include <tiuser .h> 

t rcvdis(fd, discon) 
iilt fd; 
struct t _ discon *discon; 

Description 

This function is used to identify the cause of a disconnect, and to 
retrieve any user data sent with the disconnect. fd identifies the local 
transport endpoint where the connection existed, and discon points to 
a t _ discon structure containing the following members: 

struct netbuf udata; 
int reason; 
int sequence; 

netbuf is described in intro(NSL). reason specifies the reason for the 
disconnect through a protocol-dependent reason code, udata identifies 
any user data that was sent with the disconnect, and sequence may 
identify an outstanding connect indication with which the disconnect 
is associated. sequence is only meaningful when t _rcvdis is issued by 
a passive transport user who has executed one or more t _listen func
tions and is processing the resulting connect indications. If a discon
nect indication occurs, sequence can be used to identify which of the 
outstanding connect indications is associated with the disconnect. 

If a user does not care if there is incoming data and does not need to 
know the value of reason or sequence, discon may be NULL and any 
user data associated with the disconnect will be discarded. However, 
if a user has retrieved more than one outstanding connect indication 
(via t listen) and discon is NULL, the user will be unable to identify 
with which connect indication the disconnect is associated. 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TNODIS] 

November 22, 1988 

The specified file descriptor does not refer to 
a transport endpoint. 

No disconnect indication currently exists on 
the specified transport endpoint. 

Page 1 



T _ RCVDIS (NSL) 

[TBUFOVFL W] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

T_RCVDIS (NSL) 

The number of bytes allocated for incoming 
data is not sufficient to store the data. The 
provider's state, as seen by the user, will 
change to T_IDLE, and the disconnect indica
tion information to be returned in discon will 
be discarded. 

This function is not supported by the underly
ing transport provider. 

A system error has occurred during execution 
of this function. 

intro(NSL), cconnect(NSL), Clisten(NSL), copen(NSL), 
csnddis(NSL). 
Network Programmer's Guide. 

Diagnostics 

The t rcvdis function returns 0 on success and -Ion failure, and 
t errna is set to indicate the error. 

November 22, 1988 Page 2 



T _ RCVREL (NSL) T _ RCVREL (NSL) 

Name 

Crcvrel - acknowledge receipt of an orderly release indication 

Syntax 

#include <tiuser .h> 

t rcvrel(fd) 
int fd; 

Description 

This function is used to acknowledge receipt of an orderly release 
indication. fd identifies the local transport endpoint where the con
nection exists. After receipt of this indication, the user may not 
attempt to receive more data because such an attempt will block for
ever. However, the user may continue to send data over the connec
tion if t _ sndrel has not been issued by the user. 

This function is an optional service of the transport provider, and is 
only supported if the transport provider returned service type 
T_COTS_ORD on t_open or t_getinfo. 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TNOREL] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to 
a transport endpoint. 

No orderly release indication currently exists 
on the specified transport endpoint. 

An asynchronous event has occurred on this 
transport endpoint and requires immediate 
attention. 

This function is not supported by the underly
ing transport provider. 

A system error has occurred during execution 
of this function. 

Copen(NSL), csndrel(NSL). 

Network Programmer's Guide. 

November 22, 1988 Page 1 



T_RCVREL (NSL) T _ RCVREL (NSL) 

Diagnostics 

The t rcvrel function returns 0 on success and -Ion failure, and 
t _ errno is set to indicate the error. 

November 22, 1988 Page 2 



T_RCVUDATA (NSL) 

Name 

t_rcvudata - receive a data unit 

Syntax 

#include <tiuser .h> 

int t rcvudata(fd, unitdata, flags) 
int fd; 
struct t unitdata *unitdata; 
int *flags; 

Description 

T_RCVUDATA (NSL) 

This function is used in connectionless mode to receive a data unit 
from another transport user. fd identifies the local transport endpoint 
through which data will be received, unitdata holds information asso
ciated with the received data unit, andflags is set on return to indicate 
that the complete data unit was not received. unitdata points to a 
t _ unitdata structure containing the following members: 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 

The maxlen [see netbuf in intro(NSL)] field of addr, opt, and udata 
must be set before issuing this function to indicate the maximum size 
of the buffer for each. 

On return from this call, addr specifies the protocol address of the 
sending user, opt identifies protocol-specific options that were associ
ated with this data unit, and udata specifies the user data that was 
received. 

By default, t_revudata operates in synchronous mode and will wait for 
a data unit to arrive if none is currently available. However, if 
O_NDELAY is set (via t open or fentl), t revudata will execute in 
asynchronous mode and will fail if no data units are available. 

If the buffer defmed in the udata field of unitdata is not large enough 
to hold the current data unit, the buffer will be filled and T_MORE will 
be set inflags on return to indicate that another t revudata should be 
issued to retrieve the rest of the data unit. Subsequent t _revudata 
call(s) will return zero for the length of the address and options until 
the full data unit has been received. 

On failure, t _ errno may be set to one of the following: 

November 22, 1988 Page 1 



T,-RCVUDATA (NSL) 

[TBADF] 

[TNODATA] 

[TBUFOVFL W] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

T,-RCVUDAIA (NSL) 

The specified file descriptor does not refer to 
a transport endpoint. 

O_NDELAY was set, but no data units are 
currently available from the transport pro
vider. 

The number of bytes allocated for the incom
ing protocol address or options is not 
sufficient to store the information. The unit 
data information to be returned in unitdata 
will be discarded. 

An asynchronous event has occurred on this 
transport endpoint and requires immediate 
attention. 

This function is not supported by the underly
ing transport provider. 

A system error has occurred during execution 
of this function. 

intro(NSL). Crcvuderr(NSL), Csndudata(NSL). 
Network Programmer's Guide. 

Diagnostics 

The t _rcvudata function returns 0 on successful completion and -Ion 
failure, and t_errno is set to indicate the error. 

November 22. 1988 Page 2 



T_RCVUDERR (NSL) T_RCVUDERR (NSL) 

Name 

Crcvuderr - receive a unit data error indication 

Syntax 

#include <tiuser .h> 

int t rcvuderr(fd, uderr) 
int fd; 
struct t_uderr *uderr; 

Description 

This function is used in connectionless mode to receive information 
concerning an error on a previously sent data unit, and should only be 
issued following a unit data error' indication. It informs the transport 
user that a data unit with a specific destination address and protocol 
options produced an error. fd identifies the local transport endpoint 
through which the error report will be received, and uderr points to a 
t _ uderr structure containing the following members: 

struct netbuf addr; 
struct netbuf opt; 
long error; 

netbuf is described in intro(NSL). The maxlen [see netbuf in 
intro(NSL)] field of addr and opt must be set before issuing this func
tion to indicate the maximum size of the buffer for each. 

On return from this call, the addr structure specifies the destination 
protocol address of the erroneous data unit; the opt structure identifies 
protocol-specific options that were associated with the data unit; and 
error specifies a protocol-dependent error code. 

If the user does not care to identify the data unit that produced an 
error, uderr may be set to NULL and t _rcvuderr will simply clear the 
error indication without reporting any information to the user. 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TNOUDERR] 

[TBUFOVFLW] 

November 28, 1988 

The specified file descriptor does not refer to a 
transport endpoint. 

No unit data error indication currently exists on 
the specified transport endpoint. 

The number of bytes allocated for the incoming 
protocol address or options is not sufficient to 
store the information. The unit data error 

Page 1 



T_RCVUDERR (NSL) 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

T_RCVUDERR (NSL) 

information to be returned in uderr will be dis
carded. 

This function is not supported by the underlying 
transport provider. 

A system error has occurred during execution of 
this function. 

intro(NSL), Crcvudata(NSL), Csndudata(NSL). 

Network Programmer's Guide. 

Diagnostics 

The t _rcvuderr function returns 0 on successful completion and -Ion 
failure, and t _ errno is set to indicate the error. 

November 28, 1988 Page 2 



Name 

Csnd - send data or expedited data over a connection 

Syntax 

#include <tiuser.h> 

int t_snd(fd, buf, nbytes, flags) 
int fd; 
char *buf; 
unsigned nbytes; 
int flags; 

Description 

This function is used to send either nonnal or expedited data. fd iden
tifies the local transport endpoint over which data should be sent, buf 
points to the user data, nbytes specifies the number of bytes of user 
data to be sent, andjlags specifies any optional flags described below. 

By default, t snd operates in synchronous mode and may wait if flow 
control restrictions prevent the data from being accepted by the local 
transport provider at the time the call is made. However, if 
O_NDELAY is set (via t open or fentl), t snd will execute in asyn
chronous mode, and will fail immediately if there are flow control res
trictions. 

Even when there are no flow control restrictions, t snd will wait if 
STREAMS internal resources are not available, regardless of the state 
of O_NDELAY. 

On successful completion, t _snd returns the number of bytes accepted 
by the transport provider. Nonnally this will equal the number of 
bytes specified in nbytes. However, if O_NDELAY is set, it is possible 
that only part of the data will be accepted by the transport provider. In 
this case, t snd will set T_MORE for the data that was sent (see below) 
and will return a value less than nbytes. If nbytes is zero, no data will 
be passed to the provider and t_snd will return zero. 

If T _EXPEDITED is set in jlag s, the data will be sent as expedited 
data, and will be subject to the interpretations of the transport pro
vider. 

If T_MORE is set injlags, or is set as described above, an indication is 
sent to the transport provider that the transport service data unit 
(TSDU) or expedited transport service data unit (ETSDU) is being sent 
through multiple t_snd calls. Each t_snd with the T_MORE flag set 
indicates that another t snd will follow with more data for the current 
TSDU. The end of the TSDU (or ETSDU) is identified by a t_snd call 

November 28,1988 Page 1 



with the T_MORE flag not set. Use of T_MORE enables a user to 
break: up large logical data units without losing the boundaries of 
those units at the other end of the connection. The flag implies noth
ing about how the data is packaged for transfer below the transport 
interface. If the transport provider does not support the concept of a 
TSDU as indicated in the info argument on return from t _open or 
t_getinfo, the T_MORE flag is not meaningful and should be ignored. 

The size of each TSDU or ETSDU must not exceed the limits of the 
transport provider as returned by t _open or t _getinfo. If the size is 
exceeded, a TSYSERR with system error EPROTO will occur. How
ever, the t_snd may not fail because EPROTO errors may not be 
reported immediately. In this case, a subsequent call that accesses the 
transport endpoint will fail with the associated TSYSERR. 

If t_snd is issued from the T_IDLE state, the provider may silently dis
card the data. If t snd is issued from any state other than 
T_DATAXFER, T_INREL or T_IDLE, the provider will generate a 
TSYSERR with system error EPROTO (which may be reported in the 
manner described above). 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TFLOW] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to 
a transport endpoint. 

O_NDELAY was set, but the flow control 
mechanism prevented the transport provider 
from accepting data at this time. 

This function is not supported by the underly
ing transport provider. 

A system error [see intro(S)] has been 
detected during execution of this function. 

copen(NSL), Crcv(NSL). 
Network Programmer's Guide. 

Diagnostics 

On successful completion, t _snd returns the number of bytes accepted 
by the transport provider, and it returns -Ion failure and t _ errno is set 
to indicate the error. 

November 28, 1988 Page 2 



Name 

Csnddis - send user-initiated disconnect request 

Syntax 

#include <tiuser .h> 

int t snddis(fd, call) 
int fd; 
struct t_call *call; 

Description 

This function is used to initiate an abortive release on an already esta
blished connection or to reject a connect request. fd identifies the 
local transport endpoint of the connection, and call specifies infonna
tion associated with the abortive release. call points to a t_call struc
ture which contains the following members: 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 
int sequence; 

netbuf is described in intro(NSL). The values in call have different 
semantics, depending on the context of the call to t _snddis. When 
rejecting a connect request, call must be non-NULL and contain a 
valid value of sequence to uniquely identify the rejected connect indi
cation to the transport provider. The addr and opt fields of call are 
ignored. In all other cases, call need only be used when data is being 
sent with the disconnect request. The addr, opt, and sequence fields 
of the t _call structure are ignored. If the user does not wish to send 
data to the remote user, the value of call may be NULL. 

udata specifies the user data to be sent to the remote user. The 
amount of user data must not exceed the limits supported by the trans
port provider as returned by t _open or t _getinfo. If the len field of 
udata is zero, no data will be sent to the remote user. 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TOUTSTATE] 

November 28, 1988 

The specified file descriptor does not refer to a 
transport endpoint. 

The function was issued in the wrong 
sequence. The transport provider's outgoing 
queue may be flushed, so data may be lost. 

Page 1 



T_SNDDIS (NSL) 

[TBADDATA] 

[TBADSEQ] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

T _ SNDDIS (NSL) 

The amount of user data specified was not 
within the bounds allowed by the transport 
provider. The transport provider's outgoing 
queue will be flushed, so data may be lost. 

An invalid sequence number was specified, or 
a NULL call structure was specified when 
rejecting a connect request. The transport 
provider's outgoing queue will be flushed, so 
data may be lost. 

An asynchronous event has occurred on this 
transport endpoint and requires immediate 
attention. 

This function is not supported by the underly
ing transport provider. 

A system error has occurred during execution 
of this function. 

intro(NSL), Cconnect(NSL), Cgetinfo(NSL), Clisten(NSL), 
copen(NSL). 
Network Programmer's Guide. 

Diagnostics 

The t snddis function returns 0 on success and -Ion failure, and 
t_erma is set to indicate the error. 

November 28, 1988 Page 2 



Name 

Csndrel - initiate an orderly release 

Syntax 

#include <tiuser .h> 

int t sndrel(fd) 
int fd; 

Description 

This function is used to initiate an orderly release of a transport con
nection and indicates to the transport provider that the transport user 
has no more data to send. fd identifies the local transport endpoint 
where the connection exists. After issuing t _sndrel , the user may not 
send any more data over the connection. However, a user may con
tinue to receive data if an orderly release indication has been received. 

This function is an optional service of the transport provider and is 
only supported if the transport provider returned service type 
T_COTS_ORD on t_open or t_getinfo. 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TFLOW] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to 
a transport endpoint. 

O_NDELAY was set, but the flow control 
mechanism prevented the transport provider 
from accepting the function at this time. 

This function is not supported by the underly
ing transport provider. 

A system error has occurred during execution 
of this function. 

t_open(NSL), crcvrel(NSL). 
Network Programmer's Guide. 

Diagnostics 

The t sndrel function returns 0 on success and -Ion failure, and 
t errna is set to indicate the error. 

November 28, 1988 Page 1 



T_SNDUDATA (NSL) 

Name 

csndudata - send a data unit 

Syntax 

#include <tiuser .h> 

int t sndudata(fd, unitdata) 
int fd; 
struct t _ unitdata *unitdata; 

Description 

T_SNDUDATA (NSL) 

This function is used in connectionless mode to send a data unit to 
another transport user. fd identifies the local transport endpoint 
through which data will be sent, and unitdata points to a t _ unitdata 
structure containing the following members: 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 

netbuf is described in intro(NSL). In unitdata, addr specifies the pro
tocol address of the destination user, opt identifies protocol-specific 
options that the user wants associated with this request, and udata 
specifies the user data to be sent. The user may choose not to specify 
what protocol options are associated with the transfer by setting the 
len field of opt to zero. In this case, the provider may use default 
options. 

If the len field of udata is zero, no data unit will be passed to the tran
sport provider; t_sndudata will not send zero-length data units. 

By default, t_sndudata operates in synchronous mode and may wait if 
flow control restrictions prevent the data from being accepted by the 
local transport provider at the time the call is made. However, if 
O_NDELAY is set (via t open or fentl), t sndudata will execute in 
asynchronous mode and will fail under such-conditions. 

If t sndudata is issued from an invalid state, or if the amount of data 
specified in udata exceeds the TSDU size as returned by t open or 
t _getinfo, the provider will generate an EPROTO protocol error. (See 
TSYSERR below.) 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

November 28, 1988 

The specified file descriptor does not refer to a 
transport endpoint. 

Page 1 



T_SNDUDATA (NSL) T_SNDUDATA (NSL) 

[TFLOW] O_NDELAY was set, but the flow control 
mechanism prevented the transport provider 
from accepting data at this time. 

[TNOTSUPPORT] This function is not supported by the underlying 
transport provider. 

[TSYSERR] A system error has occurred during execution of 
this function. 

See Also 

intro(NSL), crcvudata(NSL), crcvuderr(NSL). 
Network Programmer's Guide. 

Diagnostics 

The t _ sndudata function returns 0 on successful completion and -Ion 
failure, and t _ errno is set to indicate the error. 

November 28, 1988 Page 2 



Name 

t_sync - synchronize transport library 

Syntax 

#include <tiuser .h> 

int t _ sync(fd) 
int fd; 

Description 

For the transport endpoint specified by fd, t_sync synchronizes the 
data structures managed by the transport library with information from 
the underlying transport provider. In doing so, it can convert a raw 
file descriptor [obtained via open(S), dup(S), or as a result of afork(S) 
and exec(S)] to an initialized transport endpoint, assuming that file 
descriptor referenced a transport provider. This function also allows 
two cooperating processes to synchronize their interaction with a tran
sport provider. 

For example, if a process forks a new process and issues an exec, the 
new process must issue at_sync to build the private library data struc
ture associated with a transport endpoint and to synchronize the data 
structure with the relevant provider information. 

It is important to remember that the transport provider treats all users 
of a transport endpoint as a single user. If multiple processes are using 
the same endpoint, they should coordinate their activities so as not to 
violate the state of the provider. t _sync returns the current state of the 
provider to the user, thereby enabling the user to verify the state 
before taking further action. This coordination is only valid among 
cooperating processes; it is possible that a process or an incoming 
event could change the provider's state after a t_sync is issued. 

If the provider is undergoing a state transition when t _sync is called, 
the function will fail. 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TSTATECHNG] 

November 28, 1988 

The specified file descriptor is a valid open file 
descriptor but does not refer to a transport end
point. 

The transport provider is undergoing a state 
change. 

Page 1 



[TSYSERR] 

See Also 

A system error has occurred during execution 
of this function. 

dup(S), exec(S), fork(S), open(S) in the XENIX Reference. 

Network Programmer's Guide. 

Diagnostics 

The t_sync function returns the state of the transport provider on suc
cessful completion and -Ion failure, and t errno is set to indicate the 
error. The state returned may be one of the-following: 

T_UNBND 

T_IDLE 

T_OUTCON 

T_INCON 

T_DATAXFER 

T_OUTREL 

November 28, 1988 

unbound 

idle 

outgoing connection pending 

incoming connection pending 

data transfer 

outgoing orderly release (waiting for an ord
erly release indication) 

incoming orderly release (waiting for an ord
erly release request). 

Page 2 



T _UNBIND (NSL) T _UNBIND (NSL) 

Name 

cunbind - disable a transport endpoint 

Syntax 

#include <tiuser .h> 

int t unbind(fd) 
int fd; 

Description 

The t _unbind function disables the transport endpoint specified by fd, 
which was previously bound by t_bind (NSL). On completion of this 
call, no further data or events destined for this transport endpoint will 
be accepted by the transport provider. 

On failure, t _ errno may be set to one of the following: 

[TBADF] 

[TOUTSTATE] 

[TLOOK] 

[TS YS ERR] 

See Also 

cbind(NSL). 

The specified file descriptor does not refer to a tran
sport endpoint. 

The function was issued in the wrong sequence. 

An asynchronous event has occurred on this tran
sport endpoint. 

A system error has occurred during execution of 
this function. 

Network Programmer's Guide. 

Diagnostics 

The t unbind function returns 0 on success and -Ion failure, and 
t errno is set to indicate the error. 

November 28, 1988 Page 1 


	0001
	0002
	001
	002
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-00
	5-01
	5-02
	5-03
	5-04
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-00
	B-01
	B-02
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	D-00
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	D-35
	D-36
	D-37
	D-38
	D-39
	D-40
	D-41
	D-42
	D-43
	D-44
	D-45
	D-46
	D-47
	D-48
	D-49
	D-50
	D-51
	D-52
	D-53
	D-54
	D-55

