
Application Development Guide

~rogramming Family

. ;. ~

Application Development Guide

IBM Personal Cotnputer
XENIXTM Software Developtnent
Systetn Version 2.00

Programming Family

--..- ------ - - ------- -. ---- - - -------------., -
Personal
Computer
Software

XENIX is a trademark of
Microsoft Corporation.

Second Edition (April 1986)

Changes are made periodically to the information herein; these changes will be
incorporated in new editions of this publication. This edition applies to Version
2.00 of the XENIX Operating System, and to all subsequent releases until otherwise
indicated in new editions or technical newsletters.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM program product in this publication is not intended to
state or imply that only IBM's program product may be used. Any functionally
equivalent program may be used instead.

International Business Machines Corporation provides this manual "as is," without
warranty of any kind, either express or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. IBM
may make improvements and/or changes in the product(s) and/or the program(s)
described in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this
product and for technical information about the system should be made to your
authorized IBM Personal Computer dealer.

A reader's comment form is provided at the back of this publication. If the form
has been removed, address comments to IBM Corporation, Department 997, 11400
Burnet Road, Austin, Texas 78758. IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any
obligation to you.

Portions of the code and documentation described in this book were developed at
the Electrical Engineering and Computer Sciences Department at the Berkeley
Campus of the University of California under the auspices of the Regents of the
University of California. Portions of the software and documentation are based on
the Fourth Berkeley Distribution licensed from the Regents of the University of
California.

© Copyright International Business Machines Corporation 1985, 1986
© Portions copyright by Microsoft Corporation 1983, 1984, 1986, all rights reserved
© Portions copyright by AT&T Bell Laboratories 1983, 1984, 1986, all rights

reserved

About This Book

This guide is written for the application development
programmer. It explains how to use the utility programs and
routines available in the PC XENIX Software Development
System.

The programmer using this manual should be experienced with:

• The IBM Personal Computer AT

• The IBM Personal Computer XENIX

• C language or another high-level programming language.

For detailed formatting of command and option syntax, refer to
IBM Personal Computer XENIX Commands Reference.

Each chapter of this guide may be studied independently. After
reading Chapter 1, use the table of contents to select the topic
that interests you. The book is organized as follows:

Chapter 1. Introduction
Provides an overview of the PC XENIX Software
Development System.

Chapter 2. PC XENIX to DOS: A Cross Development System
Provides information on creating programs that run under
DOS. You can create, compile, and link DOS programs on
PC XENIX and transfer them to a DOS system.

Chapter 3. The lint Program: a C Language Program
Checker
Explains how to check C language programs for correct
syntax and semantics.

Chapter 4. A Program Maintainer: make
Explains how to automate the development of a program or
other proj ect.

Chapter 5. SCCS: A Source Code Control System
Explains how to control and maintain all versions of a
proj ect' s source files.

Chapter 6. The adb Program Debugger
Explains how to debug C and assembler language programs
using the PC XENIX debugger adb.

iii

Chapter 7. The lex Program: A Lexical Analyzer
Explains how to create lexical analyzers using the program
generator lex.

Chapter 8. The yacc Program Generator: A
Compiler - Compiler
Explains how to create parsers using the program generator
yacc.

Chapter 9. M4: A Macro Processor
Explains how to create and process macros.

Chapter 10. Writing Device Drivers
Explains how to write device drivers for PC XENIX systems.

Chapter 11. Sample Device Drivers
Shows examples of device drivers with comments.

Other PC XENIX Publications

• IBM Personal Computer XENIX C Library Guide and
Compiler Reference

• IBM Personal Computer XENIX Commands Reference

• IBM Personal Computer XENIX System Reference

• IBM Personal Computer XENIX Macro Assembler Reference

iv Application Development Guide

Contents

Chapter 1. Introduction 1-1
Notational Conventions 1-1
Overview 1-2
Crea ting C Language Programs 1-3
Creating Other Programs 1-4
Creating and Maintaining Libraries 1-5
Maintaining Program Source Files 1-5
Creating Programs with Shell Commands 1-7

Chapter 2. PC XENIX to DOS: A
Cross-Development System 2-1

Introduction 2-1
Creating DOS Source Files 2-2
Compiling a DOS Source File 2-3
U sing Assembler Language Source Files 2-4
Linking DOS Object Files 2-5
Running and Debugging a DOS Program 2-5
Transferring Programs between Systems 2-6
Creating DOS Libraries 2-7

Chapter 3. The lint Program - a C Program
Checker 3-1

Introduction 3-1
Invoking lint 3-2
Checking for Unused Variables and Functions 3-3
Checking Local Variables 3-4
Checking for Unreachable Statements 3-5
Checking Function Return Values 3-6
Checking for Unused Return Values 3-7
Checking Types 3-7
Checking Type Casts 3-9
Checking for Nonportable Characters 3-10
Checking for Assignment of longs to ints 3-11
Checking for Strange Constructions 3-12
Checking Pointer Alignment 3-14

Contents v

Checking for Older C Syntax 3-14
Checking Expression Evaluation Order 3-16
Embedding Directives 3-17
Checking for Library Compatibility 3-18

Chapter 4. A Program Maintainer: make 4-1
Introduction 4-1
Creating a Makefile 4-2
Invoking make 4-4
Using Pseudo-Target Names 4-6
Using Macros 4-7
Using Shell Environment Variables 4-11
Using Built-In Rules 4-13
Changing Built-In Rules 4-15
Using Libraries 4-18
Troubleshooting 4-20
An Example: Using make 4-21

Chapter 5. SCCS: A Source Code Control
System-'. 5-1

Introduction 5-1
Basic Information 5-2
Creating and Using s-files 5-7
Using Identification Keywords 5-18
Using s-file Flags 5-20
Modifying s-file Information 5-23
Printing from an s-file 5-28
Editing by Several Users 5-30
Protecting s-files 5-32
Repairing SCCS Files 5-35
Using other Command Options 5-36

Chapter 6. The adb Program Debugger 6-1
Introduction 6-1

Starting and Stopping adb 6-1
Displaying Instructions and Data 6-6
Debugging Program Execution 6-20
Using the adb Memory Maps 6-34
Validating Addresses 6-37
Miscellaneous Features 6-38
An Example: Directory and Inode Dumps 6-44
Patching Binary Files 6-46

vi Application Development Guide

Chapter 7. The lex Program: A Lexical
Analyzer 7-1

Introduction 7-1
Invoking lex,0.......... 7-4
The lex Source Format 7-5
The lex Regular Expressions 7-7
Using the Operator Characters 7-8
Writing Actions 7-14
Handling Ambiguous Source Rules 7-19
Specifying Left Context Sensitivity 7-23
Specifying Source Definitions 7-26
Using yacc with lex 7-28
Specifying Character Sets 7-29
Source Format .. 7-31
A lex Example 7 -34

Chapter 8. The yacc Program Generator: A
Compiler-Compiler 8-1

Introduction 8-1
Specifications 8-5
Actions 8-9
Lexical Analysis 8-12
How the Parser Works 8-14
Ambiguity and Conflicts 8-21
Precedence 8-27
Error Handling 8-31
The yacc Environment 8-34
Preparing Specifications 8-36
An Example: A Small Desk Calculator 8-44
The yacc Input Syntax 8-48
An Advanced Example 8-52
Out-Dated Features 8-62

Chapter 9. The m4 Macro Processor 9-1
Introduction 9-1
Invoking m4 9-2
Defining Macros 9-3
Quoting 9-5
Using Arguments 9-9
Using Arithmetic Built-Ins 9-11

Contents vii

Using System Commands 9-13
Using Conditionals 9-13
Manipulating Files 9-14
Manipulating Strings 9-16
Cleaning Up Output 9-18
Printing 9-20

Chapter 10. Writing Device Drivers 10-1
Introduction 10-1
Kernel Environment 10-6
Kernel Support Routines 10-12
Parameter Passing to Device Drivers 10-32
Naming Conventions 10-33
Device Drivers for Character Devices 10-33
Device Drivers for Block Devices 10-50
Rules for Writing Installable Device Drivers 10-61
Configuring the System 10-68
Warnings 10-76

Chapter 11. Sample Device Drivers 11-1
Introduction 11-1
Sample Device Driver for Line Printer 11-2
Sample Device Driver for Terminal 11-10
Sample Device Driver for Disk Drive 11-38
Writing Drivers for Memory-Mapped Screens 11-52

Index X-I

viii Application Development Guide

Ordering Additional Copies of This
Book

To order additional copies of this publication (IBM Personal
Computer XENIX Application Development Guide) use either of
the following sources:

• To order from your IBM representative, use Order Number
SV21-B07B.

• To order from your IBM dealer, use Part Number 59x9949.

This publication includes the following:

• IBM Personal Computer XENIX Application Development
Guide

• Binder

• Slipcase.

Chapter 1. Introduction

Notational Conventions

Throughout the IBM Personal Computer PC XENIX library,
different printing styles highlight important information. As you
read this book, be aware of the following conventions.

[]
bold

italics

Brackets indicate an optional command argument.

Boldface indicates commands, options, file names,
programs, and functions. You must enter these
boldface characters exactly as shown.

Italic characters indicate variables for such things as
placeholders, arguments, and filenames. When you
enter a command, replace all variables with the
appropriate file name, number, or option.

bold italics

monospace

Bold italics indicate the first time a glossary term
appears in this book. That term is defined in IBM
Personal Computer XENIX Glossary and Master Index.

Monospace indicates coding examples, names taken
from coding examples, and the exact wording of text on
the screen.

Ellipses after an argument indicate you can repeat
that argument one or more times.

Introduction 1-1

Overview

The IBM Personal Computer PC XENIX Software Development
System provides many utilities to help you design and d,evelop
application programs. These utilities help you create C and
assembler language programs for execution on the PC XENIX
system. They also let you automate program creation, debug
these programs, and maintain different versions of the same
program.

This chapter introduces you to the PC XENIX Software
Development System and some of its utilities. The following
chapters explain how to use these and other routines and
utilities. Some commands mentioned here are part of the IBM
Personal Computer PC XENIX Operating System rather than the
Software Development System. The XENIX Commands Reference
or the XENIX System Reference contains a complete explanation
of these commands.

1-2 Application Development Guide

Creating C Language Programs

You can efficiently create C language source files with text
editors. The most convenient editor for you to use is vi. The vi
editor is a full-screen editor that allows you to see a full screen of
text. You can use many vi commands to insert, replace, move,
and search for text. All commands are invoked from command
keys or from a screen displayed command line. You can also use
a variety of options in the editor that lets you modify its
operation. For more information on vi, see XENIX vi and ed
Editors.

Once you have created your source program, you can compile it
with the C language compiler. The cc command invokes the
compiler. You can also use cc to invoke other utilities such as
the link editor ld and the assembler as.

You can debug an executable C program with the debugger adb.
The adb debugger provides a direct interface to the machine
instructions that make up an executable program.

To check a program before compiling it, you can use lint, the C
program checker. The lint utility program checks for syntactical
and logical errors. It also enforces a strict set of guidelines for
proper C language programming style. The lint utility is
normally used in the early stages of program development.

You can improve a program's format with cb, the C program
beautifier. The beautifier improves the appearance of C language
programs and, therefore, makes them easier to read. A program
that is easy to read improves your ability to find logical errors.

Introduction 1-3

Creating Other Programs

The C language can meet the needs of most programming
projects. In cases where you require greater control, you can
create assembler language programs using the as program. This
program assembles source files and produces object files. You
can then relocate or link the object files to C language programs.

You can use the ld command to invoke the link editor, but you
should use ld only with the PC XENIX compiler. The ld
command links relocatable object files to produce executable
programs.

You can create source files for lexical analyzers and parsers
using the program generators lex and yacc. Lexical analyzers
locate patterns of complex input and convert them into
meaningful values or tokens. The lex utility is a lexical analyzer
generator. It generates lexical analyzers, written in C program
statements, from specifications you provide. Parsers convert
meaningful sequences of tokens and values into actions. The
parser generator, yacc, generates parsers, written in C program
statements, from given specification files. The lex and yacc
program generators are often used together to make complete
programs.

You can preprocess C and assembler language source files, or lex
and yacc source files, by using the m4 macro processor. The m4
utility performs several preprocessing functions. Two examples
of these functions are:

• Converting macros to their defined values

• Calling the contents of one or more files into a source
program.

1-4 Application Development Guide

Creating and Maintaining Libraries

You can create and maintain libraries of functions and programs
by using the ar and ranlib utilities. The archiver, ar, creates
libraries of relocatable object files. The random library
generator, ranlib, converts archive libraries to random libraries.
The ranlib command also places a table of contents at the
beginning of each library.

The lorder command finds the ordering relationship in an object
library and produces a list of dependent pairs. The tsort
command sorts the dependent pairs into an order that shows their
dependencies.

Maintaining Program Source Files

The make utility is a program maintainer. It automates the
steps required to create executable programs and provides a
mechanism for ensuring up-to-date programs. You should
generally use make with large-scale programming projects.

The Source Code Control System (SCCS) is a collection of
commands that create, maintain, and control special files called
SCCS files. The SCCS commands let you maintain different
versions of a single program. They do so by storing the original
program and each set of changes. The commands compress all
versions of a source file into a single file containing a list of
differences. These commands can also restore compressed files to
their original size and content.

Introduction 1-5

Many PC XENIX commands let you carefully examine a
program's source files. The ctags command creates a tags file.
From the tags file, you can find C functions in a set of related C
language source files. The mkstr command creates an error
message file by examining a C language source file.

The following commands let you examine object and executable
binary files:

nm The nm command prints the list of symbol names in a
program.

hd The hd command performs a hexadecimal dump of given
files. Options available with this command allow you to
choose a variety of formats for the printed output.

size The size command reports the size of an object file.

strings The strings command finds and prints readable text
(strings) in an object or other binary file.

strip The strip command removes symbols and relocation bits
from executable files.

sum The sum command computes a checksum value for a
file and a count of its blocks. It searches for bad spots
in a file and verifies transmission of data between
systems.

xstr The xstr command extracts strings from C language
programs to implement shared strings.

1-6 Application Development Guide

Creating Programs with Shell
Commands

In the PC XENIX system, you can write a program with a series
of shell commands. Shell commands provide much of the same
control capability as the C language. They also give direct
access to all the commands and programs normally available to
the PC XENIX user.

The esh command invokes the C-shell, a command interpreter.
The C-shell interprets and executes commands it receives from
the keyboard or from a command file. Since it uses a syntax
similar to the C language, programming with shell commands is
easy. It also has an aliasing facility and a command history
mechanism.

For more information concerning the C-shell, refer to XENIX
Commands Reference.

Introduction 1-7

1-8 Application Development Guide

Chapter 2. PC XENIX to DOS: A
Cross-Development System

Introduction

The PC XENIX Software Development System contains a DOS
cross-development system. The DOS cross-development system
allows you to create, compile, and link DOS programs on the PC
XENIX system. For execution and debugging, you must transfer
these programs to a DOS system.

The complete DOS cross-development system consists of:

• The C program compiler cc

• The 8086 assembler as

• The DOS linker dosld

• The DOS libraries (in /usr/lib/dos)

• The DOS include files (in /usr/include/dos)

• The dos (C) commands.

The heart of the cross-development system is the cc command. A
special -dos option directs the compiler to create code for
execution under DOS. When you use -dos, cc uses special DOS
include files and libraries to create the program.

The cc command invokes the as command when you use 8086
assembler language source files. The cc command uses dosld
commands to carry out the last part of the compiling process.
You can also invoke as and dosld directly when you need to
perform special tasks.

You cannot execute or debug DOS programs on the PC XENIX
system. Therefore, you must copy the programs to a DOS system
before executing them. PC XENIX dos(C) commands allow you
to transfer files from PC XENIX to DOS or from DOS to PC
XENIX.

PC XENIX to DOS 2-1

Creating DOS Source Files

You can create program source files by using either PC XENIX or
DOS text editors. The most convenient way is to use one of the
PC XENIX editors, such as vi, the full-screen editor.

When creating source files to be executed on a DOS system, you
should follow these rules:

• Use the standard C language format for your source files.
DOS source files have the same format as PC XENIX source
files. Many DOS programs, compiled without the -dos option,
can be executed on the PC XENIX system.

• Use the DOS naming conventions when giving file and
directory names within a program. For example, use \ instead
of I for the path name separator. Since the compiler does not
check names, failure to follow DOS conventions will cause
errors when the program is executed.

• Use only the DOS include files and library functions. Most
DOS include files and functions are identical to their PC
XENIX counterparts. Others have only slight differences.
See XENIX C Library Guide and Compiler Reference for:

A complete list of the available DOS include files and
functions

A description of the differences between the DOS and PC
XENIX files and functions.

If you use a function that does not exist, dosld displays an error
message and leaves the linked output file incomplete.

2-2 Application Development Guide

Compiling a DOS Source File

You can compile a DOS source file by using the -dos option of
the PC XENIX cc command. The command line has the form:

cc -dos options filename

where options are cc command options, and filename is the name
of the source file you want to compile. You can specify more
than one source file, if you desire. Each source file name must
end with the .c extension.

The cc command compiles each source file separately and creates
an object file for each. It then links all object files together with
the appropriate C language libraries. The object files created by
the cc command have the same base name as the source file. The
cc command also changes the .c extension to a .0 extension. If
you do not explicitly name the file, cc gives the name a.out to
the resulting program file.

For example, the command:

cc -dos test.c

compiles the source file test. c and creates the object file test. o.
It then calls the dosld command, which links the object file with
functions from the DOS libraries. The resulting program file is
named a.out.

You can use any number of cc options in the command line. For
a complete listing of these options, see cc(CP) in XENIX
Commands Reference.

Default values for an option may be different for a DOS system
than for a PC XENIX system. In particular, the default directory
for library files, given with the -I option, is /usr/lib/dos. Also,
note that you cannot use the -p (for profiling) option.

For more information on the cc command, refer to XENIX C
Library Guide and Compiler Reference.

PC XENIX to DOS 2-3

U sing Assembler Language Source
Files

You can direct the cc command to assemble 8086 assembler
language source files by including the files in the cc command
line. Like C source files, assembler language source files may
contain calls to functions. However, these functions must be in
the DOS libraries. Furthermore, the source files must follow the
C calling conventions described in Appendix A of XENIX C
Library Guide and Compiler Reference. The file name of an
assembler language source file must end with the .s extension.

When you specify an assembler language source file, cc
automatically invokes as, the 8086 assembler. The assembler
creates an object file that you can link with any other object file
created by cc.

You can invoke the assembler directly by using the as command.
This command creates an object file just as the cc command does,
but it does not create an executable file. For a description of the
command and its options, see as(CP) in XENIX Commands
Reference.

2-4 Application Development Guide

Linking DOS Object Files

You can link DOS object files by including the file names in the
cc command line. However, these object files must have been
created using either as or the -dos option of cc. Also, the object
file names must end with the .0 extension.

When you include an object file, cc automatically invokes dosld,
the DOS linker. The dosld command links the given object files
with the appropriate C libraries. If there are no errors, dosld
creates an executable program file named a.out.

You can invoke the linker directly by using the dosld command.
This command creates a DOS program file just as the cc
command does, but dosld does not accept source files. For a
description of the command and its options, see dosld(CP) in
XENIX Commands Reference.

Note: DOS programs created by cc and dosld are designed to be
compatible with PC-DOS systems up to and including version 3.I.
However, you cannot execute DOS programs on the PC XENIX
system.

Running and Debugging a DOS
Program

To debug a DOS program, you must transfer it to a DOS system.
Use the DOS debugger, Debug, to load and execute the program.
The following section explains how to transfer program files
between systems. For a description of the Debug program, see
IBM Personal Computer Disk Operating System (DOS) Reference
3.0.

PC XENIX to DOS 2-5

Transferring Programs between
Systems

You can transfer programs between PC XENIX and DOS systems
by using DOS diskettes and the PC XENIX doscp command. The
doscp command lets you copy files to a DOS diskette. The
command has the form:

doscp -r file-l dev: file-2

where -r is the raw option that is required for load modules,
file-l is the name of the DOS program file you want to transfer,
dev is the full path name of a PC XENIX system diskette drive,
and file-2 is the filename, including the full pathname, of the new
program file on the DOS diskette. The new filename must have
the .EXE extension. The -r option ensures that the program file
is copied byte for byte.

Note: DOS program files that do not end with the .EXE or
.COM extension cannot be loaded for execution under DOS.
When transferring program files from PC XENIX to DOS, make
sure you rename a.out files to an .EXE or .COM file.

2-6 Application Development Guide

Creating DOS Libraries

You can create a library of DOS object files by using the PC
XENIX ar command. The ar command copies object files created
by the compiler to a specified archive file. The command has the
form:

ar archive filename

where archive is the name of an archive file, and filename is the
name of the DOS object file you want to add to the library.

Note: DOS libraries created on the PC XENIX system are not
compatible with libraries created on the DOS system. This means
you cannot copy the libraries to the DOS system and expect them
to work with the DOS Link command.

PC XENIX to DOS 2-7

2-8 Application Development Guide

Chapter 3. The lint Program - a C
Program Checker

In trod uction

This chapter explains how to use the C language program
checker lint. The lint program examines C language source files
and warns of possible compiling or execution problems.

The lint utility program checks for:

• Unused functions and variables

• Unknown values in local variables

• Unreachable statements

• Unused and misused return values

• Inconsistent types and type casts

• Mismatched types in assignments

• Nonportable and old-fashioned syntax

• Strange constructions

• Inconsistent pointer alignment and expression evaluation
order.

The lint program and the C compiler are generally used together.
The C compiler does not perform the sophisticated type and error
checking that many programs require. The lint program provides
thorough checking of source files but cannot compile these files.

The lint Program 3-1

Invoking lint

You can invoke lint at the shell command line by typing:

lint [option] ... filename lib
where option is a command option that defines how the checker
should operate, filename is the name of the C language source file
you want to check, and lib is the name of a library to check. You
can give more than one option, file name, or library name by
separating them with spaces. If you give two or more file names,
lin t checks the files as if they were portions of one complete
program. For example, the command:

lint main.c add.c
treats main.c and add.c as two parts of one program.

If lint discovers errors or inconsistencies in a source file, it
produces messages describing the problem. The messages have
the form:

filename (num): description
where filename is the name of the source file containing the
problem, num is the number of the line in the source containing
the problem, and description is a description of the problem. For
example, the message:

main.c

(3): warning: x unused in function main

shows that the variable x, defined in the third line of the source
file main.c , is not used anywhere in the file.

3-2 Application Development Guide

Checking for Unused Variables and
Functions

The lint utility checks a source file for unused variables and
functions. The program considers every variable or function that
appears in at least one statement. The lint program considers a
variable or function unused if it only appears on the left side of
an assignment. For example, in the following program fragment:

main ()

int x,y,zi

x=l; y=2; Z=X+Yi

the variables x and yare considered used, but the variable Z is
not.

It is common for a programmer to remove a variable or function
but forget to remove its declaration. Unused variables and
functions rarely cause working programs to fail. They do,
however, make programs harder to understand and change.

The lint program does not report external declarations. It
assumes such a variable or function is used in an additional
source file.

You can direct lint to ignore the external declarations in a
source file by using the -x option. Use of this option causes the
checker to skip any line that begins with the extern storage
class. The -x option saves time when checking a program, if
external declarations are known to be valid.

Some programming styles require functions that perform closely
related tasks to have the same number and type of arguments.
This may be true even if these arguments are never used. You
can direct lint to ignore unused arguments by using the -v
option. The -v option causes lint to ignore all unused function
arguments except those declared with register storage class. The
program considers these arguments to be a preventable waste of
register resources.

You can direct lint to ignore all unused external variables and
functions by using the -u (for unused) option. This option
prevents lint from reporting variables and functions it considers
unused. Use the -u option to check source files that contain a
portion of a large program. Such source files usually contain

The lint Program 3-3

declarations of variables and functions intended for use in other
source files.

Checking Local Variables

The lint program ensures that all local variables are set to a
value before they are used. Since local variables have either
automatic or register storage class, their values at the start of the
program or function are not known. Using such a variable before
assigning a value to it is an error.

The lint program searches for the first time a variable receives a
value. It also searches for the first time a variable is used. If the
first assignment appears later than the first use, lint warns of an
error. For example, in the program fragment:

char c;

if (c 1= EOF)

c = getchar();

lint warns that the variable c is used before it is assigned.

If you use a variable when you assign its first value, lint will
displays an error. For example, in the program fragment:

int i,total;

scanf("%d", &i);

total = total + i;

lint warns that the variable total is used before its value is set.
This warning is accurate because the variable is used in the same
statement that assigns its first value.

Static and external variables are always initialized to zero before
program execution begins. If they are used before being set to a
value, lint does not report an error.

3-4 Application Development Guide

Checking for Unreachable
Statements

The lint program checks for unreachable statements.
Unreachable statements are unlabeled statements that
immediately follow a goto, break, continue, or return
statement. During execution of a program, the unreachable
statements never receive execution control and, therefore, are
considered wasteful. For example, in the program fragment:

int x,y;
return (x+y);
exit (1);

the function call exit is unreachable because execution control
is returned before exit is reached.

Unreachable statements are common when developing programs
containing large case constructions or loops containing break
and continue statements. Such statements are wasteful and
should be removed when convenient.

During normal operation, lint reports all unreachable break
statements. Unreachable break statements are common (some
programs created by the yacc and lex programs contain
hundreds), so you may want to suppress these reports. You can
direct lint to suppress the reports by using the -b option.

The -b option assumes that all functions eventually return
control. This option does not report a statement that follows a
function that takes control and never returns it. For example, in
the program fragment:

exit (1);

return;

the call to exit causes the return statement to become an
unreachable statement, but lint does not report it as such.

The lint Program 3-5

Checking Function Return Values

The lint program checks to ensure that a function returns a
meaningful value if a return value is expected. Some functions
return values that are never used; some programs incorrectly use
function values that have never been returned. The lint program
addresses these problems in a number of ways.

Within a function definition, specifying both:

return (expr);

and

return;

may cause an error. In this case, lint displays the following error
message:

function name contains return(e) and return

It is difficult to detect when a function return is implied by the
flow of control reaching the end of the given function. Consider
the following example:

f (a)

{

if (a)
return (3);

9 ();

If the variable a is false, then f calls the function 9 and returns
with no defined return value. This triggers a report from lint. If
9 never returns a value, lint still displays an error message even
though nothing is wrong. This feature can help you discover
potentially serious bugs in your programs. It also accounts for a
substantial number of the undeserved error messages that lint
produces.

3-6 Application Development Guide

Checking for Unused Return Values

The lint program checks for cases where a function returns a
value, but the value is rarely, if ever, used. The lint program
considers functions that return unused values to be inefficient,
and functions that return rarely used values to be a result of bad
programming style.

The lint program also checks for cases where a function does not
return a value, but the value is used anyway. The lint program
considers this a serious error.

Checking Types

C language compilers do not strictly check your use of data types.
The lint program is very useful when you need strict type
checking. Additional checking occurs in four major areas:

• Across certain binary operators and implied assignments
• At the structure selection operators
• Between the definition and uses of functions
• In the use of enumerations.

A number of operators have an implied balancing between types
of operands. The assignment, conditional, and relational
operators have this property. The lint program handles the
argument of a return statement and expressions used in
initialization in a similar way. In these operations, you can
freely mix char, short, int, long, unsigned, float, and double
types. The types of pointers must agree exactly, except that you
can intermix arrays of x's with pointers to x's.

The lint Program 3-7

In structure references, the type-checking rules also require that:

• The left operand of a pointer arrow symbol (- » be a pointer
to a structure

• The left operand of a period (.) be a structure

• The right operand of these operators be a member of the
structure implied by the left operand.

The lint program checks references to unions in a similar
manner.

Strict rules apply to the matching of function arguments to
return values. You can freely match the types float and double.
You can also freely match the types char, short, int, and
unsigned. You can also match pointers with the associated
arrays. All other actual arguments must agree in type with their
declared counterparts.

The lint program checker makes sure that enumeration variables
or members are not mixed with other types or other
enumerations. It also ensures that the only operations applied to
enumerated variables are assignment (=), initialization (=),
equals (= =), and not-equals (! =). Enumerations can also be
function arguments and return values.

3-8 Application Development Guide

Checking Type Casts

The type cast feature of the C language was introduced in PC
XENIX to help you produce portable programs. Consider the
assignment:

p = 1 ;

where p is a character pointer. The lint program reports this as
a possible error. If you change the assignment to:

p = (char *)1 ;

using a cast to convert the integer to a character pointer, lint
accepts the assignment. In the second example, your intentions
are clear. The -c option controls the printing of comments about
casts. When -c is in effect, lint does not check the casts. The-c
option passes all legal casts without comment, no matter how
strange the type mixing seems to be.

The lint Program 3-9

Checking for Nonportable Characters

The lint program flags certain comparisons and assignments as
illegal or nonportable. For example, the fragment:

char Ci

if ((c = getchar()) < 0)

works on some machines, but fails on machines where characters
always take on positive values. In this case, lint issues the
message:

nonportable character comparison

The solution is to declare c an integer, because the getchar
function is actually returning integer values.

A similar issue arises with bit fields. For example, in the code
fragment:

into int2bi't 2 ;

; '>led un2bit 2;

~"int2bit 3 i
.. un2bit 3;

lint issues the following warning on the 2-bit field of int type
int2bit:

warning: precision lost in assignment to (sign-extended?) field

When you assign constant values to bit fields, the field may be
too small to hold the value. This is especially true when bit fields
are considered as signed quantities. Although a 2-bit field with
int type cannot hold the value 3, a 2-bit field with unsigned type
can.

3-10 Application Development Guide

Checking for Assignment of longs to
ints

Assigning long values to int values can cause a loss of accuracy.
You can mistakenly assign a long to an int by changing type
definitions with typedef. Your program may stop working if you
change a typedef variable from int to long:

typedef int long;

This problem may occur because some intermediate results may
be assigned to an integer variable, and the intermediate result is
truncated. There are a number of legitimate reasons for
assigning longs to integers. You may want to suppress detection
of these assignments by using the -a option.

The lint Program 3-11

Checking for Strange Constructions

The lint program encourages better code quality and clearer
style. It warns of constructions that appear strange, even though
they may be legal. For example, in the statement:

*p++ ;

the (*) does nothing, so lint prints:

null effect

The program fragment:

unsigned x ;
if (x < 0)

is also strange because the test will never succeed. The lint
program prints the message:

degenerate unsigned comparison

Similarly, the test:

if (x > 0)

is equivalent to:

if (x !:= 0)

which may not be the intended action. In these cases, lint prints
the message:

unsigned comparison with O?

3-12 Application Development Guide

If you specify:

if (1 ! == 0)

then lint reports:

constant in conditional context

since the comparison of 1 with 0 gives a constant result.

The lint utility also checks variables that you declare in both
inner and outer blocks. If their inner and outer use conflicts,
lint displays an error message. Using variables in this way is
legal, but is usually unnecessary. This kind of usage is poor
style, and may frequently cause a bug in your program.

If you do not want these heuristic checks, you can suppress them
by using the -h option.

The lint Program 3-13

Checking Pointer Alignment

Certain pointer assignments can be legal on some machines, but
illegal on others, due to alignment restrictions. For example, on
some machines double-precision values can begin on any integer
boundary. On other machines, however, double-precision values
must begin on even-word boundaries. The lint program warns of
possible alignment problems with the message:

possible pointer alignment problem

Checking for Older C Syntax

The lint program checks for older C constructions. These
constructions fall into two classes: assignment operators and
initialization.

The older forms of assignment operators (for example, = + ,
) can make expressions unclear. In the example:

a =-1

either of the following may be what you intend:

a =- 1;

or

a -1 ;

This confusion is greater if it results from macro substitution.
The newer, and preferred operators (for example, + =, -=) are
much clearer. To encourage the use of the newer forms, lint
checks for these older operators.

A similar issue arises with initialization. To initialize x to 1, the
older language allowed:

int xl;

This causes syntactic difficulties. For example:

int x (-1) ;

looks somewhat like the beginning of a function declaration:

int x (y) [

3-14 Application Development Guide

The compiler must read past x to determine what the declaration
really is. The problem is more confusing when the initializer
involves a macro. The current C syntax places an equal sign
between the variable and the initializer:

int x -1;

This construction reduces possible confusion.

The lint Program 3-15

Checking Expression Evaluation
Order

In complicated expressions, the best order to evaluate
sub expressions may depend on the machine. For example, on
machines in which the stack runs backwards, function arguments
are probably best evaluated from right to left. On machines with
a stack running forward, evaluation from left to right is probably
best. Function calls embedded as arguments of other functions
mayor may not be treated in the same way as ordinary
arguments. Similar issues arise with other operators that have
side effects. The assignment operators and the increment and
decrement operators are examples.

To ensure efficiency on a particular machine, the C language
leaves the order of evaluation up to the compiler. C compilers
have many differences in the order in which they evaluate
complicated expressions. In particular, if any variable is changed
by a side effect and also used elsewhere in the same expression,
the result is undefined.

The lint program checks for the important special case where a
simple scalar variable is affected. For example, the statement:

a [i 1 = b [i ++ 1 i

will draw the comment:

warning: i evaluation order undefined

3-16 Application Development Guide

Embedding Directives

The lint program is a tool that can, at times, be annoying. You
may have valid reasons for illegal type casts. You may need
functions with a variable number of arguments. Other
constructions that lint finds objectionable may be necessary to
your program. The flow of control information that lint produces
often has blind spots. To reduce these annoyances, lint
recognizes certain key words called directives. The directives,
when embedded as comments in a C source file, control the
output of the lint program. Directives are invisible to the
complier. The directives are listed below:

/* NOTREACHED */

/* ARGSUSED */

/* VARARGS */

Indicates the flow of control cannot reach
this place in the program.

Turns on the -v option for one function.

Turns off comments about a variable
number of arguments in calls to a function.

In some cases, you might want to check the first several
arguments and leave the later arguments unchecked. You can
define the number of arguments to be checked by placing a
number immediately after the V ARARGS keyword. For example:

/* VARARGS2 */

causes only the first two arguments to be checked.

/* LINTLIBRARY * / At the head of a file, identifies this file as a
library declaration file.

The lint Program 3-17

Checking for Library Compatibility

The lint program accepts certain library directives. It tests the
source files for library compatibility with the command option:

-llibraryname

where libraryname is the name of the library you want lint to
check. To perform this test, access the library description files
whose names are constructed from the library directives. These
files all begin with the directive:

/* LINTLIBRARY */

A series of dummy function definitions follow this directive.
These definitions indicate whether a function returns a value and
what type the return value is. They also indicate the number and
types of arguments the function expects to be returned. Use the
V ARARGS and ARGSUSED directives to specify features of the
library functions.

When lint processes a library file, functions that the file defines
but does not use in a source file draw no comments. The lint
program does not simulate a full library search algorithm. It
does, however, check to see if the source files contain
redefinitions of library routines.

By default, lint checks the programs you specify against a
standard library file. This file contains descriptions of the
programs that are normally loaded when a C program is run.
When you use the -p option, lint checks the portable library file.
This library contains descriptions of the standard I/O library
routines that are portable across various machines.

The -n option suppresses all library checking.

3-18 Application Development Guide

Introduction

Chapter 4. A Program
Maintainer: make

The make utility program provides you with an easy way to
automate the creation of large programs. The make utility reads
commands from a user-defined makef ile. The makef ile lists the
files to be created, the commands that create them, and the files
from which they are created. The make utility creates programs
by executing given commands. If a file is not up-to-date, make
updates it before creating the program. The make utility updates
a program by executing explicitly given commands or one of the
many built-in commands.

This chapter explains how to use the make program to:

• Create makef iles for each project

• Invoke make for creating programs and updating files

• Automate large programming projects.

For more details about the utility, see make (CP) in XENIX
Commands Reference.

The make Program 4-1

Creating a Makefile

A makef ile contains one or more lines of text called dependency
lines. A dependency line shows how a given file depends on other
files and what commands make requires to bring a file up-to-date.
A dependency line has the form:

target ... : [dependent ...] [; command ...]

where target is the file name of the file to be updated, dependent
is the file name of the file on which the target depends, and
command is the PC XENIX command needed to create the target
file. Each dependency line must have at least one command
associated with it, even if it is only the null command (;).

You can specify more than one target file name or dependent file
name. At least one space must separate each file name. A colon
(:) must separate target file names from dependent file names.
You must enter all file names exactly as they appear in the PC
XENIX system; although you can use shell metacharacters, such
as the asterisk (*) and the question mark (?).

You can give a sequence of commands on the same line as the
target and dependent file names if you precede each command
with a semicolon (;). You can give additional commands on
following lines by beginning each line with a tab character (\t).
Commands must be given exactly as they would appear on a shell
command line. You can place the at sign (@) in front of a
command to prevent make from displaying the command before
executing it. Shell commands, such as cd (C), must appear on
single lines; they must not contain the backslash (\) and newline
character (\n) combination.

You can add a comment to a makefile by starting the comment
with a number sign (#) and ending it with a newline character.
The make program ignores all characters after the number sign.
If a command contains a number sign, you must enclose the
number sign in double quotation marks ("#").

If a dependency line is too long, you can continue it by typing a
backslash (\) and typing a newline character.

Keep the makef ile in the same directory as the given source files.
For convenience, PC XENIX provides the file names makefile,
Makefile, s.makefile, and s.Makefile as default file names. If
you do not specify a file name for your makef ile, make will use a
default. If a file name begins with the s. prefix, make assumes it

4-2 Application Development Guide

is an SCCS file. It then invokes the appropriate SCCS command
to retrieve the latest version of the file.

To illustrate dependency lines, consider the following example.
Let us assume you have three C language source files: x. c, y. c,
and z. c. Compiling each source file gives you: x. 0, y. 0, and z. o.
Linking these three files together gives you a program that you
name prog. Now, let us assume the x. c and y. c contain the line:

#include "defs"

This means that prog depends on the three object files, the object
files depend on the C source files, and two of the source files
depend on the include file defs. You can represent these
relationships in a makef ile with the following lines.

prog: x.o y.o z.o
cc x.o y.o z.o -0 prog

x.o: x.c defs
cc -c x.c

y o· '.,7 c clefs

cc -c y.c
z.o: z.c

cc -c z.c

In the first dependency line, prog is the target file and x. 0, y. 0

and z. 0 are its dependents. The command sequence:

cc x.o y.o z.o -0 prog

on the next line tells how to create prog if it is out-of-date.

Note: You must precede the cc with a tab r~ther than spaces.
The program is out-of-date if anyone of its dependents has been
modified since prog was last created.

The second, third, and fourth dependency lines have the same
form, with the x. 0, y. 0, and z. 0 files as targets and x. c, y. c, z. c,
and def s files as dependents. Each dependency line has one
command sequence that defines how to update the given target
file.

The make Program 4-3

Invoking make

Once you have a makef ile, you can invoke make by typing:

make [option 1 ••. [macdef 1 ••• [target 1 • • •

where option is a program option you choose to modify program
operation, macdef is a macro definition that gives a macro a value
or meaning, and target is the name of the file to be updated. All
arguments are optional. If you specify more than one argument,
you must separate them with spaces.

PC XENIX provides four default file names for your makef ile.
The default file names are: makefile, Makefile, s.makefile, and
s.Makefile. You can specify the name of the makef ile you want
make to use by using the -f option. The command has the form:

make -f filename

where filename is the name of the makefile you want to use. You
must supply a full path name if the file is not in the current
directory.

You can direct make to read dependency lines from the standard
input by specifying a hyphen (-) as the filename. The make
program reads the standard input until it reaches the end-of-file
character.

You can direct make to update your files. For example, assume
that your current makef ile contains the dependency lines given
in the last section. The make program compares the current
date of prog with each date of each object file and each source
file used to make-up prog. Because prog depends upon current
object files which in turn depend upon current source files, make
recreates all dependencies that need updating. If none of the
source or object files need updating, make announces this fact
and stops.

You can direct make to update the first target file in makef ile,
by typing the program name as your only argument.

make prog

In this case, make searches your current directory for makefile,
Makefile, s.makefile, and s.Makefile and uses the first one it
finds.

4-4 Application Development Guide

You can direct make to update a specific target file by specifying
the file name of the target.

make X.O

In this case, make recompiles x. 0 if x. cor, defs need updating.
Remember, you can repeat the filename argument in the same
command line. For example:

make X.O Z.O

This causes make to recompile both x. 0 and z. 0 if their
corresponding dependents need updating. The make program
processes target names from the command line in a left to right
order.

You can use the program options to modify the operation of the
make program. The following list describes some of the options.

-p Prints the complete set of macro definitions and
dependency lines in a makef ile.

-i Ignores errors returned by PC XENIX commands.

-k Abandons work on the current entry, but continues
work on other branches that do not depend on that
entry.

-8 Executes commands without displaying them.

-r Ignores the built-in rules.

-n Displays commands but does not execute them. The
make program even displays lines beginning with the
at sign (@).

-e Ignores any macro definitions that attempt to assign
new values to the shell's environment variables.

-t Changes the modification date of each target file
without recreating the files.

Note that make executes each command in the rnakef ile by
passing it to a separate invocation of a shell. Because of this,
you must be careful with commands that have meaning only
within a single shell process. Commands of this type are the cd
command and shell control commands. The make program
discards the results of these commands before it executes the next
line of the program. If an error occurs, make normally stops the
command.

The make Program 4-5

Using Pseudo-Target Names

It is often useful to include dependency lines that have
pseudo-target names, that is, names for which no files actually
exist or are produced. Pseudo-target names allow make to
perform tasks not directly connected with the creation of a
program, such as deleting old files or printing copies of source
files. For example, the following dependency line removes old
copies of the specified object files when you invoke make
specifying the pseudo-target name cleanup.

cleanup :
rm X.o y.O z.o

Because no file exists for a pseudo-target name, make always
assumes the target is out-of-date. Thus, the associated command
is always executed.

The make program also has built-in pseudo-target names that
modify its operation. The pseudo-target name .IGNORE causes
make to ignore errors during execution of commands, thus
allowing make to continue after an error. The -i option performs
this same task. The make program also ignores errors for a
given command if the command string begins with a hyphen (-).

The pseudo-target name .DEFAULT defines the commands to be
executed either when no built-in rule or user-defined dependency
line exists for the given target. You can give any number of
commands with this name. If .DEFAULT is not used and an
undefined target is given, make prints a message and stops.

The pseudo-target name .PRECIOUS prevents dependents of the
current target from being deleted when make is terminated by
the Interrupt or Quit key. The pseudo-target name .SILENT has
the same effect as the -s option.

Note: The Interrupt key is the Del (Delete) key on your
keyboard. The Quit key is a combination of the Ctrl key and the
\ key. Press and hold down the Ctrl key and press the \ key.

4-6 Application Development Guide

U sing Macros

An important feature of a makef ile is that it can contain macros.
A macro is a short name that represents a file name or command
option. You can define the macros when you invoke make or
when you build a makef ile.

A macro definition is a line containing a name, an equal sign (=),
and a value. You must not precede the equal sign with a colon or
a tab. The name (string of letters and digits) to the left of the
equal sign (trailing blanks and tabs are stripped) is assigned the
string of characters following the equal sign (leading blanks and
tabs are stripped.) The following are valid macro definitions:

2 = xyz
abc = -11 -ly
LIBES =

The last definition assigns a null string to LIBES. A macro that is
never explicitly defined has a null string as its value.

A macro is invoked by preceding the macro name with a dollar
sign ($); macro names longer than one character must be placed
in parentheses.

The name of the macro is either the single character after the
dollar sign or a name inside parentheses. The following are valid
macro invocations:

$ (CFLAGS)
$2
Sexy)
$Z
$(Z)

The last two invocations have identical results.

Macros are typically used as placeholders for values that may
change from time to time. For example, the following makef ile
uses one macro for the names of object files that are linked and
another macro for the names of the library.

OBJECTS = X.O y.o Z.O

LIBES = -lIn
prog: $ (OBJECTS)

cc $ (OBJECTS) $(LIBES) -0 prog

If you invoke this makef ile, it will load the three object files with
the lex library specified with the -lln option.

The make Program 4-7

You can include a macro definition in a command line. A macro
definition in a command line has the same form as a macro
definition in a makef ile. If you use spaces in the definition, you
must use double quotation marks to enclose the definition.
Macros in a command line override corresponding definitions
found in the makefile. For example, the following command loads
and assigns the library options -lln and -1m to LIBES.

make "LIBES=-lln -1m"

You can modify all or part of the value generated from a macro
invocation without changing the macro itself by using the
substitution sequence. The sequence has the form

name : stl = [st2]

where name is the name of the macro whose value is to be
modified, stl is the character or characters to be modified, and st2
is the character or characters that replace the modified
characters. If st2 is not given, stl is replaced by a null character.

The substitution sequence allows user-defined metacharacters in
a makef ile. For example, suppose that. x is used as a
metacharacter for a prefix and suppose that a makefile contains
the following definition:

FILES = progl.x prog2.x prog3.x

Then, the macro invocation:

$(FILES : .x=.o)

generates the value:

progl.o prog2.o prog3.o

The actual value of FILES remains unchanged.

4-8 Application Development Guide

The make program has five built-in macros that can be used
when writing dependency lines. The following is a list of these
macros.

$* Contains the name of the current target with the suffix
removed. Thus, if the current target is prog . 0, $*
contains prog. This macro can be used in dependency
lines that redefine the built-in rules.

$@ Contains the full path name of the current target. It
can be used in dependency lines with user-defined
target names.

$ < Contains the file name of the dependent that is more
recent than the given target. It can be used in
dependency lines with built-in target names or with
the .DEFAULT pseudo-target name.

$? Contains the file names of the dependents that are
more recent than the given target. It can be used in
dependency lines with user-defined target names.

$% Contains the file name of a library member. It can be
used with target library names (see "Using Libraries"
on page 4-18). In this case, $@ contains the name of
the library, and $% contains the name of the library
member.

You can change the meaning of a built-in macro by appending the
D or F descriptor to its name. A built-in macro with the D
descriptor contains the name of the directory with the given file.

/dir/file

The make Program 4-9

If the file is in the current directory, the macro contains a dot (.),
the current directory designator. A macro with the F descriptor
contains the name of the given file with the directory name
removed. Do not use the D or F descriptor with the $? macro.

For example, if you have a makef ile with the target:

/usr/you/prog: x.o
cc -0 /usr/you/prog x.o
echo "$@"
echo "$(@D)"
echo "$(@F)"

$@ is the full path name of the current target. It has the
value /usr/you/prog.

$@ with a D descriptor produces the directory name for
the current target. $(@D) has the value /usr /you.

$@ with an F descriptor produces the file name for the
current target. $(@F) has the value prog.

4-10 Application Development Guide

U sing Shell Environment Variables

The make program provides access to current values of the
shell's environment variables, such as HOME, PATH, and
LOGIN. The make program automatically assigns the value of
each shell variable in your environment to a macro of the same
name. You can access a variable's value in the same way that
you access the value of explicitly defined macros. For example,
in the following dependency line, $(HOME) has the same value as
the user's HOME variable.

prog :
cc $(HOME)/x.o $(HOME)/y.o /usr/pub/z.o

The make program assigns the shell variable values after it
assigns values to the built-in macros, but before it assigns values
to user-specified macros. Thus, you can override the value of a
shell variable by explicitly assigning a value tv the corresponding
macro. For example, the following macro definition causes make
to ignore the current value of the HOME variable and use
/usr /pub instead:

HOME = /usr/pub

If a makefile contains macro definitions that override the
current values of the shell variables, you can direct make to
ignore these definitions by using the -e option.

The make program has two shell variables, MAKE and
MAKEFLAGS, that correspond to two special-purpose macros.

The MAKE macro provides a way to override the -n option and
execute selected commands in a makefile. When MAKE is used
in a command, make will always execute that command, even if
-n has been given in the invocation. The variable can be set to
any value or command sequence.

The MAKE FLAGS macro contains one or more make options
and can be used in invocations of make from within a makef ile.
You can assign any make options to MAKE FLAGS except -f, -p
and -d. If you do not assign a value to the macro, make
automatically assigns the current options to it, that is, the
options given in the current invocation.

The MAKE and MAKE FLAGS variables, together with the -n
option, are used to debug makef iles that generate entire software
systems. For example, in the following recursive makef ile, using
the default for MAKE (the default being make) and invoking this

The make Program 4-11

file with the -n option, displays all the commands used to
generate the programs progl and prog2 without actually
executing them.

prog I : prog I.e
$(MAKE) -$ (MAKEFLAGS) -f prog2

In this example, prog2 can be any makef ile in your directory.

4-12 Application Development Guide

Using Built-In Rules

The make program provides a set of built-in dependency lines,
called built-in rules, that automatically check the targets and
dependents given in a makef i1e and create up-to-date versions of
these files, if necessary. The built-in rules are identical to
user-defined dependency lines except that the suffix of the file
name is the target or dependent instead of the file name itself.
For example, make automatically assumes that all files with the
suffix .0 have dependent files with the suffixes . c and . s.

When no explicit dependency line for a given file is given in a
makefi1e, make automatically checks the default dependents of
the file. It then forms the name of the dependents by removing
the suffix of the given file and appending the predefined
dependent suffixes. If the given file is out-of-date with respect to
these default dependents, make searches for a built-in rule that
defines how to create an up-to-date version of the file and then
executes it. There are built-in rules for the following files .

• 0 Object file

.c C source file

.r Ratfor source file

.s Assembler source file

.y yacc-C source grammar

.yr yacc-Ratfor source grammar

.1 lex source grammar

For example, if the file x. 0 is needed and there is an x. c in the
description or directory, x. c is compiled. If there is also an x. 1,
that grammar would be run through lex before compiling the
result.

The built-in rules are designed to reduce the size of your
makefi1es. They provide the rules for creating common files from
typical dependents. Reconsider the example given in "Creating a
Makefile" on page 4-2. In that example, the program prog
depended on three object files x. 0, y. 0, and z. 0 • These files in
turn depended on the C language source files x. c, y. c, and z. c.
The files x. c and y. c also depended on the include file defs. In
the original example, each dependency and corresponding
command sequence was explicitly given. Many of these
dependency lines were unnecessary, because the built-in rules

The make Program 4-13

could have been used instead. The following is all that is needed
to show the relationships between these files.

prog: x.o y.o z.o
cc x.o y.o z.o -0 prog

x.o y.o: defs

In this makef ile, prog depends on three object files, and an
explicit command is given showing how to update prog. However,
the last line merely shows that two obj ect files depend on the
include file defs. No explicit command sequence is given to
update these files. Instead, make uses the built-in rules to locate
the desired C source files, compile these files, and create the
necessary object files.

4-14 Application Development Guide

Changing Built-In Rules

You can change the built-in rules by redefining the macros used
in these lines or by redefining the commands associated with the
rules. You can display a complete list of the built-in rules and
the macros used in the rules by typing:

make -fp - 2>/dev/null </dev/null

The rules and macros are displayed at the standard output.

The macros of the built-in dependency lines define the names and
options of the compilers, program generators, and other programs
invoked by the built-in commands. The make program
automatically assigns a default value to these macros when you
start the program. You can change the values by redefining the
macro in your makef ile. For example, the following built-in rule
contains three macros, CC, CFLAGS, and LDFLAGS .

. c .
$(CC) $ (CFLAGS) $ (LDFLAGS) $< -0 $@

You can redefine any of these macros by placing the appropriate
macro definition at the beginning of the makef ile.

You can redefine the action of a built-in rule by giving a new rule
in your makefile. A built-in rule has the form:

suffix-rule:
command

where suffix-rule is a combination of suffixes showing the
relationship of the implied target and dependent, and command is
the PC XENIX command required to carry out the rule. If more
than one command is needed, specify each on a separate line.

The make Program 4-15

The new rule must begin with an appropriate suffix-rule. The
available suffix-rules are:

.C .C-

.sh .sh-

.C-.O .C-.O

.C-.C .S.O

.S-.O .y.o

.y-.o .1.0

.1-.0 .y.c

.y-.c .1. C

.c-.a .c-.a

.s-.a .h- .h

A tilde (-) indicates an sees file. A single suffix indicates a rule
that makes an executable file from the given file. For example,
the suffix rule .c is for the built-in rule that creates an executable
file from a e source file. A pair of suffixes indicates a rule that
makes one file from the other. For example, .c.o is for the rule
that creates an object file (.0) file from a corresponding e source
file (.c).

Any commands in the rule can use the built-in macros provided
by make. For example, the following dependency line redefines
the action of the .c.o rule .

. C.O :

cc $< -c $*.0

4-16 Application Development Guide

If necessary, you can also create new suffix-rules by adding a list
of new suffixes to a makefile with .SUFFIXES. This
pseudo-target name defines the suffixes to make suffix-rules for
the built-in rules. The line has the form:

.SUFFIXES: .suffix

where suffix is usually a lowercase letter preceded by a dot (.). If
more than one suffix is given, use spaces to separate them.

The order of the suffixes is significant. Each suffix is a
dependent of the suffixes preceding it. For example, the suffix
list:

.SUFFIXES: .0 .C .y .1 .S

causes prog. c to be a dependent of prog. 0 and prog. y to be a
dependent of prog. c.

You can create new suffix rules by combining dependent suffixes
with the suffix of the intended target. The dependent suffix must
appear first.

If a .SUFFIXES list appears more than once in a makef ile, the
suffixes are combined into a single list. If a .SUFFIXES is given
that has no list, all suffixes are ignored.

The make Program 4-17

U sing Libraries

You can direct make to use a file contained in an archive library
as a target or dependent. To do this you must explicitly name the
file you want to access by using a library name. A library name
has the form:

lib(member-name)

where lib is the name of the library containing the file, and
member-name is the name of the file. For example, the library
name:

libtemp.a(print.o)

refers to the object file pr int. 0 in the archive library
libtemp. a.

You can create your own built-in rules for archive libraries by
adding the .a suffix to the suffix list and creating new suffix
combinations. For example, the combination .c.a can be used for
a rule that defines how to create a library member from a C
source file. The dependent suffix in the new combination must be
different from the suffix of the ultimate' file. For example, the
combination .c.a can be used for a rule that creates .0 files, but
not for one that creates .c files.

4-18 Application Development Guide

The most common use of the library naming convention is to
create a makef ile that automatically maintains an archive
library. For example, the following dependency lines define the
commands required to create a library named lib that contains
up-to-date versions of the files filel.o, file2_0, and file3_0.

lib: lib(filel.o) lib(file2.0) lib(file3.0)
@echo lib is now up to date

.c.a:
$(CC) -c $ (CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

The .c.a rule shows how to redefine a built-in rule for a library.
In the following example, the built-in rule is disabled, allowing
the first dependency to create the library.

lib: lib(filel.o) lib(file2.0) lib(file3.0)
$(CC) -c $(CFLAGS) $(?: .o=.c)
ar rv lib $?

rm $?
@echo lib is now up to date

. c. a: i

In this example, a substitution sequence is used to change the
value of the $? macro from the names of the object files f ilel. 0,
file2.0, and file3.0 to filel.c, file2.c, and file3.c,
respectively.

The make Program 4-19

Troubleshooting

Most difficulties in using make arise from the way make uses
dependencies. If the file x. c has the line:

#include "defs"

then the object file x. 0 depends on def s; the source file x. c does
not. (If def s is changed, it is not necessary to do anything to the
file x. c, while it is necessary to recreate x. 0 •)

To determine which commands make will execute, without
actually executing them, use the -n option. For example, the
command:

make -n

prints out the commands make would execute.

The debugging option -d causes make to print out a very detailed
description of what it is doing, including the times the file is
examined. Because this output is verbose, you should use this
option only as a last resort.

If a change to a file is absolutely certain to be benign (for
example, adding a new definition to an include file), the -t (touch)
option can save a lot of time. Instead of issuing a large number
of superfluous recompilations, make updates the modification
times on the affected file. Thus, the command:

make -ts

causes the relevant files to appear up-to-date. The s, following
the t, causes make to touch silently.

4-20 Application Development Guide

An Example: Using make

An example of the use of make is shown at the end of this
chapter. Examine the makef ile used to maintain the make
program itself. The code for make is located in a number of C
source files and a yacc grammar. For more information on yacc,
see Chapter 8, "The yacc Program Generator: A
Compiler-Compiler."

The make program usually prints out each command before
issuing it. The following output results from typing the simple
command:

make

in a directory containing only the source and makef ile:

cc -c vers.c
cc -c main.c
rr -r OODctIne _ r:

cc -c misc.c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc vers.o main.o dosys.o gram.o -0 make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by
name in the makefile, make found them by using its suffix rules
and issued the needed commands. The string of digits results
from the size make command.

The last few targets in the makefile are useful maintenance
sequences. The print target prints only the files that have been
changed since the last make print command. A zero-length file,
print, is maintained to keep track of the time of the printing.
The $? macro in the command line then picks up only the names
of the files changed since print was touched. The printed output
can be sent to a different printer or to a file by changing the
definition of the P macro.

The make Program 4-21

Description file for the make command

Macro definitions below
P = lpr
FILES = Makefile vers.c defs main.c doname.c misc.c\

files.c dosys.c gram.y lex.c
OBJECTS = vers.o main.o dosys.o gram.o
LIBES=
LINT = lint -p
CFLAGS = -0

#targets: dependents
#<TAB>actions

make: $ (OBJECTS)
cc $ (CFLAGS) $ (OBJECTS) $(LIBES) -0 make
size make

$ (OBJECTS) : defs
gram.o: lex.c

cleanup:
-rm *.0 gram. c
-du

@size make /usr/bin/make

cp make /usr/bin/make ; rm make

4-22 Application Development Guide

print: $(FILES) # print recently changed files

test:

lint

arch:

pr $? 1 $P

touch print

make -dp 1 grep -v TIME >lzap

/usr/bin/make -dp 1 grep -v TIME >2zap

diff lzap 2zap

rm lzap 2zap

dosys.c doname.c files.c main.c misc.c vers.c gram.c

$(LINT) dosys.c doname.c files.c main.c misc.c\
vers.c gram.c

rm gram.c

ar uv /sys/source/s2/make.a $(FILES)

The make Program 4-23

4-24 Application Development Guide

Chapter 5. sces: A Source Code
Control System

Introduction

The Source Code Control System (SeeS) is a collection of
commands that create, maintain, and control special files called
sees files. The sees commands enable you to create and store
multiple versions of a program or document in a single file,
instead of one file for each version. With these commands you
can retrieve any version at any time, make changes to this
version, and save the changes as a new version of the file in the
sees file.

The sees is useful wherever you require a compact way to store
multiple versions of the same file. The sees provides an easy
way to update any given version of a file and record the changes
made. The commands are used to control changes to multiple
versions of source programs, but they can also be used to control
multiple versions of manuals, specifications, and other
documentation.

This chapter explains how to make sees files, how to update the
files contained in sees files, and how to maintain the sees files
once they are created. The following sections describe the basic
information you need to start using the sees commands. Later
sections describe the commands in detail.

sees 5-1

Basic Information

This section provides some basic information about the sees. In
particular, it describes:

• Files and directories

• Deltas and SIDs

• sees working files

• sees command arguments

• File administration.

Files and Directories

All sees files (also called s-files) are originally created from text
files containing documents or programs created by a user. The
text files must have been created using a text editor such as vi.
Special characters in the files are allowed only if they are also
allowed by the given editor.

To simplify s-file storage, keep all logically related files (for
example, files belonging to the same project) in the same
directory. Such directories should contain s-files only, and they
should have read (examine) permission for everyone, and write
permission for the user only.

You must not use the link command to create multiple copies of
an s-file.

Deltas and SIDs

Unlike an ordinary text file, an sees file (or s-file for short)
contains nothing more than lists of changes.> Each list includes
the changes needed to precisely construct one version of the file.
By combining the lists, sees can create the desired version from
the original.

Each list of changes is called a delta. Each delta has an
identification string called an SID. The SID is a string of
numbers separated by periods. The string must have at least two
numbers and may have as many as four. The numbers name the
version and define how it is related to other versions. For

5-2 Application Development Guide

example, the first delta is usually numbered 1.1 and the second
1.2.

The first number in any SID is called the release number. The
release number usually indicates a group of versions that are
similar and generally compatible. The second number in the SID
is the level number. It indicates major differences between files
in the same release.

An SID can also have two optional numbers. The branch
number, third in the string, indicates changes at a particular
level, and the sequence number, fourth in the string, indicates
changes at a particular branch. For example, the SIDs 1.1.1.1 and
1.1.1.2 indicate two new versions that contain slight changes to
the original delta 1.1.

An s-file can contain several different releases, levels, branches,
and sequences of the same file. In general, the maximum number
of releases an s-file may contain is 9999; that is, release numbers
can range from 1 to 9999. The same limit applies to level, branch,
and sequence numbers.

When you create a new version, the sees usually creates a new
SID by increasing the level number of the original version. If you
want to create a new release, you must explicitly instruct the
system to do so. A change to a release number indicates a major
new version of the file.

The sees creates a branch and sequence number for the SID of a
new version, if the next higher level number already exists. For
example, if you change version 1.3 to create a version 1.4 and
then change 1.3 again, the sees creates a new version named
1.3.1.1.

Version numbers can become quite complicated. It is wise to
keep the numbers as simple as possible by carefully planning the
creation of each new version.

sees Working Files

The sees uses several different kinds of files to complete its
tasks. These files contain actual text or information about the
commands in progress. For convenience, the sees names these
files by placing a prefix before the name of the original file from
which all versions were made. The following is a list of the
working files.

sees 5-3

s-file A permanent file that contains all versions of the
given text file. The versions are stored as deltas, that
is, lists of changes to be applied to the original file to
create the given version. The name of an s-file is
formed by placing the file prefix s. at the beginning of
the original file name.

x-file A temporary copy of the s-file. It is created by sees
commands which change the s-file. It is used instead of
the s-file to carry out the changes. When all changes
are complete, the sees removes the original s-file and
gives the x-file the name of the original s-file. The
name of the x-file is formed by placing the prefix x. at
the beginning of the original file.

g-file An ordinary text file created by applying specific s-file
deltas to the original file. The g-file represents a
version of the original file, and, as such, receives the
same file name as the original. The sees places the
g-file in the current working directory of the user
requesting the file.

p-file A special file containing information about the
versions of an s-file currently being edited. The p-file
is created when a g-file is retrieved from the s-file. The
p-file exists until all currently retrieved files have been
saved in the s-file; it is then deleted. The p-file
contains one or more entries describing the SID of the
retrieved g-file, the proposed SID of the new, the edited
g-file, and the login name of the user who retrieved the
g-file. The p-file name is formed by placing the prefix
p. at the beginning of the original file name.

z-file A lock file used by sees commands to prevent two
users from updating a single sees file at the same
time. Before a command modifies an sees file, it
creates a z-file and copies its own process ID to it. If a
command tries to access a file while the file's z-file
exists, sees displays an error message. When the
original command finishes its tasks, it deletes the z-file
before stopping. The z-file name is formed by placing
the prefix z. at the beginning of the original file name.

I-file A special file containing a list of the deltas required to
create a given version of a file. The I-file name is
formed by placing the prefix l. at the beginning of the
original file name.

5-4 Application Development Guide

d-file A temporary copy of the g-file used to generate a new
delta.

q-file A temporary file used by the delta command when
updating the p-file. The file is not directly accessible.

A user never directly accesses x-files, z-files, d-files, or q-files. If a
system crash or similar situation abnormally terminates a
command, the user may want to delete these files to ensure
proper operation of subsequent sees commands.

secs Command Arguments

Almost all sees commands accept two types of arguments:
options and file names. These appear in the sees command line
immediately after the command name.

An option indicates a special action taken by the given sees
command. An option is usually a lowercase letter preceded by a
minus sign (-). Some options require an additional name or value.

A file name indicates the file to be acted on. The syntax for
sees file names is like other pe XENIX file name syntax.
Appropriate path names must be given if required. Some
commands also allow directory names. In this case, all files in
the directory are acted on. If the directory contains non-SeeS
and unreadable files, these are ignored. A file name must not
begin with a minus sign (-).

The special symbol (-) causes the given command to read a list of
file names from the standard input. These file names are then
used as names for the files to be processed. The list must
terminate with an end-of-file character.

Any options given with a command apply to all files. The sees
commands process the options before any file names, so the
options can appear anywhere on the command line.

File names are processed left to right. If an error causes the
current process to stop, the command begins processing the next
file.

sees 5-5

File Administrator

Every sees file requires an administrator to maintain and keep
the file in order. The administrator is usually the user who
created the file and therefore owns it. Before other users can
access the file, the administrator must ensure that they have
access permission. Several sees commands let the administrator
define who has access to the versions in a given s-file. These
commands are described later.

5-6 Application Development Guide

Creating and Using s-files

The s-file is the key element in the sees. It provides compact
storage for all versions of a given file and automatic maintenance
of the relationships between the versions.

This section explains how to use the admin, get, and delta
commands to create and use s-files. In particular, it describes
how to create the first version of a file, how to retrieve versions
for reading and editing, and how to save new versions.

Creating an s-file

You can create an s-file from an existing text file by using the -i
(for initialize) option of the admin command. The command has
the form:

admin - ifilename s.{ilename

where -i filename is the name of the text file from which the s-file
is created, and s.filename is the name of the new s-file. The name
must begin with s. and must be unique; no other s-file in the
same directory can have the same name. For example, suppose
the file named demo. c contains the short e language program:

#include <stdio.h>

main ()

printf("This is version 1.1 \n");

To create an s-file, type:

admin -idemo.c s.demo.c

This command creates the s-file s. demo. c and copies the first
delta describing the contents of demo. c to this new file. The first
delta is numbered 1.1.

After creating an s-file, remove the original text file by using the
rm command. This text file is no longer needed. If you want to
view the text file or make changes to it, you can retrieve the file
using the get command described in the next section.

sees 5-7

When you create an s-file with the admin command, sees may
display the warning message:

No id keywords (cm7)

This message can be ignored unless you have specifically
included keywords in your file (for more information concerning
keywords, see "Using Identification Keywords" on page 5-18.

Only a user with write permission in the directory containing the
s-file can use the admin command on that file. This protects the
file from administration by unauthorized users.

Retrieving a File for Reading

You can retrieve a file for reading from a given s-file by using the
get command. The command has the form:

get s.filename. . .

where s.filename is the name of the s-file containing the text file.
The command retrieves the latest version of the text file and
copies it to a regular file. The file has the same name as the s-file
but with the s. removed. It also has read-only file permissions.

For example, suppose the s-file s. demo. c contains the first
version of the short e program shown in the previous section. To
retrieve this program, type:

get s.demo.c

The command retrieves the program and copies it to the file
named demo. c. You can then display the file as you do any other
text file.

The command also displays a message that gives the SID of the
retrieved file and the number of lines the file contains. For
example, after retrieving the short e program from s. demo. c, the
command displays the message:

1.1
6 lines

5-8 Application Development Guide

You can also retrieve more than one file at a time by giving
multiple s-file names in the command line. For example, the
command:

get s.demo.c s.def.h

retrieves the contents of the s-files s. demo. c and s. def . hand
copies them to the text files demo. c and def. h. When giving
multiple s-file names in a command, you must separate each with
at least one space. When the get command displays information
about the files, it places the corresponding file name before the
information.

Retrieving a File for Editing

You can retrieve a file for editing from a given s-file by using the
-e option of the get command. The command has the form:

get -e s.filename . . .

where s.filename is the name of the s-file containing the text file.
You can give more than one file name if you want. If you do, you
must separate each name with a space.

The command retrieves the latest version of the text file and
copies it to an ordinary text file. The file has the same name as
the s-file but with the s. removed. It has read and write file
permissions. For example, suppose the s-file s. demo. c contains
the first version of a C program. To retrieve this program, type:

get -e s.demo.c

The command retrieves the program and copies it to the file
named demo. c. Edit the file just as you do any other text file.

If you give more than one file name, the command creates files
for each corresponding s-file. Because the -e option applies to all
the files, you can edit each one.

sees 5-9

After retrieving a text file, the command displays a message
giving the SID of the file and its size in lines. The message also
displays a proposed SID , that is, the SID for the new version
after editing. For example, after retrieving the six-line C
program in s. demo. c, the command displays the message:

1.1
new delta 1. 2

6 lines

The proposed SID is 1.2. If more than one file is retrieved, the
corresponding file name precedes the relevant information.

Any changes made to the text file are not immediately copied to
the corresponding s-file. To save these changes you must use the
delta command described in the next section. To help keep track
of the current file version, the get command creates another file,
called a p-file, that contains information about the text file. This
file is used by a subsequent delta command when saving the new
version. The p-file has the same name as the s-file but begins
with a p. prefix. The user should not attempt to access the p-file
directly.

5-10 Application Development Guide

Saving a New Version of a File

You can save a new version of a text file by using the delta
command. The command has the form:

de 1 ta s.filename

where s.filename is the name of the s-file from which the modified
text file was retrieved. For example, to save changes made to a C
program in the file demo. c (that was retrieved from the file
s . demo. c), type:

delta s.demo.c

Before saving the new version, the delta command asks for
comments explaining the nature of the changes. It displays the
prompt:

comments?

You can type any text (up to 512 characters) that you think is
appropriate. The comment must end with a newline character. If
necessary, you can start a new line by typing a backslash (\)
followed by a newline character (\n). If you do not want to
include a comment, just type (\n).

After you give a comment, the command uses the information in
the corresponding p-file to compare the original version with the
new version. A list of all the changes is copied to the s-file. This
is the new delta.

After a command copies the new delta to the s-file, it displays a
message showing the new SID and the number of lines inserted,
deleted, or left unchanged in the new version.

sees 5-11

For example, if the C program has been changed to:

#include <stdio.h>

main ()

int i = 2;

printf("This is version 1.%d II i);

the command displays the message:

1.2
3 inserted
1 deleted
5 unchanged

Once a new version is saved, the next get command retrieves the
new version. The command ignores previous versions. If you
want to retrieve a previous version, you must use the -r option of
the get command as described in the next section.

Retrieving a Specific Version

You can retrieve any version from an s-file by using the -r option
of the get command. The command has the form:

get [-e 1 -rSID s.filename . . .

where -e is the edit option, SID gives the SID of the version to be
retrieved, and s.filename is the name of the s-file containing the
file to be retrieved. You can give more than one file name.
Separate the names with spaces.

5-12 Application Development Guide

The command retrieves the given version and copies it to a file
that has the same name as the s-file but with the s. removed.
The file has read-only permission unless you also give the -e
option. If multiple file names are given, one text file of the given
version is retrieved from each. For example, the command:

get -rl.l s.demo.c

retrieves version 1.1 from the s-file s. demo. c, but the command:

get -e -rl.l s.demo.c s.def.h

retrieves for editing a version 1.1 from both s. demo. c and
s . def . h. If you specify a version number that does not exist, the
command displays an error message.

You can omit the level number of a version number and just give
the release number. If you do, the command automatically
retrieves the most recent version having the same release
number. For example, if the most recent version in the file
s . demo. c is numbered 1.4, the command:

get -rl s.demo.c

retrieves the version 1.4.

sees 5-13

Changing the Release Number of a File

You can direct the delta command to change the release number
of a new version of a file by using the -r option of the get
command. In this case, the get command has the form:

get -e -rrelnum s.filename . . .

where -e is the required edit option, -rrelnum gives the new
release number of the file, and s.filename gives the name of the
s-file containing the file to be retrieved. The new release number
must be an entirely new number; that is, no existing version can
have this number. You can give more than one file name.

The command retrieves the most recent version from the s-file,
then copies the new release number to the p-file. On the
subsequent delta command, the new version is saved using the
new release number and level number 1. For example, if the most
recent version in the s-file s. demo. c is 1.4, the command:

get -e -r2 s.demo.c

causes the subsequent delta to save a new version 2.1, not 1.5.
The new release number applies to the new version only; the
release numbers of previous versions are not affected. Therefore,
if you edit version 1.4 (from which 2.1 was derived) and save the
changes, you create a new version 1.5. Similarly, if you edit
version 2.1, you create a new version 2.2.

As before, the get command also displays a message showing the
current version number, the proposed version number, and the
size of the file in lines. Similarly, the subsequent delta command
displays the new version number and the number of lines
inserted, deleted, and unchanged in the new file.

5-14 Application Development Guide

Creating a Branch Version

You can create a branch version of a file by editing a version
that has been previously edited. A branch version is simply a
version whose SID contains a branch and sequence number.

For example, if version 1.4 already exists, the command:

get -e -rI.3 s.demo.c

retrieves version 1.3 for editing and gives 1.3.1.1 as the proposed
SID.

When you edit a version that already has a succeeding version,
the get command uses the first available branch and sequence
numbers for the proposed SID. For example, if you edit version
1.3 a third time, get gives 1.3.2.1 as the proposed SID.

You can save a branch version by using the delta command.

Retrieving a Branch Version

You can retrieve a branch version of a file by using the -r option
of the get command. For example, the command:

get -rI.3.1.1 s.demo.c

retrieves branch version 1.3.1.1.

You can retrieve a branch version for editing by using the -e
option of the get command. When retrieving for editing, get
creates the proposed SID by increasing the sequence number by
one. For example, if you retrieve branch version 1.3.1.1 for
editing, get gives 1.3.1.2 as the proposed SID.

As always, the command displays the version number and file
size. If the given branch version does not exist, the command
displays an error message.

If you omit the sequence number, get retrieves the most recent
branch version with the given branch number. For example, if
the most recent branch version in the s-file s. def. h is 1.3.1.4, the
command:

get -rl.3.1 s.def.h

retrieves version 1.3.1.4.

sees 5-15

Retrieving the Most Recent Version

You can always retrieve the most recent version of a file by using
the -t option with the get command. For example, the command:

get -t s.demo.c

retrieves the most recent version from the file s. demo. c. You can
combine the -r and -t options to retrieve the most recent version
of a given release number. For example, if the most recent
version with release number 3 is 3.5, then the command:

get -r3 -t s.demo.c

retrieves version 3.5. If a branch version exists that is more
recent than version 3.5 (for example, 3.2.1.5), then the above
command retrieves the branch version and ignores version 3.5.

Displaying aVersion

You can display the contents of a version at the standard output
by using the -p option of the get command. For exanlple, the
command:

get -p s.demo.c

displays the most recent version in the s-file s. demo. c. Similarly,
the command:

get -p -r2.1 s.demo.c

displays version 2.1.

The -p option is useful for creating g-files with user-supplied
names. This option also directs all output normally sent to the
standard output, such as the SID of the retrieved file, to the
standard error file. Thus, the resulting file contains only the
contents of the given version. For example, the command:

get -p s.demo.c >version.c

copies the most recent version in the s-file s. demo. c to the file
version. c. The SID of the file and its size are copied to the
standard error file.

5-16 Application Development Guide

Saving a Copy of a New Version

The delta command normally removes the edited file after saving
it in the s-file. You can save a copy of this file by using the -n
option of the delta command. For example, the command:

delta -n s.demo.c

first saves a new version in the s-file s. demo. c, then saves a copy
of this version in the file demo. c. You can display the file, but
you cannot edit the file.

Displaying Helpful Information

An sees command displays an error message whenever it
encounters an error in a file. An error message has the form:

ERROR [filename l: message (code)

where filename is the name of the file being processed, message is
a short description of the error, and code is the error code.

You can use the error code as an argument to the help command
to display additional information about the error. The command
has the form:

help code

where code is the error code given in an error message. The
command displays one or more lines of text that explain the error
and suggest a possible remedy. For example, the command:

help col

displays the message:

col:
"not an sees file"

This message means that a file you think is an sees file does not
begin with the s. prefix. The help command can be used at any
time.

sees 5-17

Using Identification Keywords

The SCCS provides several special symbols, called identification
keywords, that are used in the text of a program or document to
represent a predefined value. Keywords represent a wide range
of values, from the creation date and time of a given file to the
name of the module containing the keyword. When you retrieve
a file for reading, the SCCS automatically replaces any keywords
it finds in a given version of a file with the keyword value.

This section explains how keywords are treated by the various
SCCS commands, and how you can use the keywords in your own
files. Only a few keywords are described in this section. For a
complete list of the keywords, see the get (CP) command in
XENIX Commands Reference. The affect that s-file flags have on
keywords is described in "Using s-file Flags" on page 5-20.

Inserting a Keyword into a File

You can insert a keyword into any text file. A keyword is simply
an uppercase letter enclosed in percent signs (%). No special
characters are required. For example, % I % is the keyword
representing the SID of the current version, and %H% is the
keyword representing the current date.

When you retrieve a program for reading using the get command,
the keywords are replaced by their current values. For example,
if the %M%, %1% and %H% keywords are used in place of the module
name, the SID, and the current date in a program statement:

char header[lOO] = {" %M% %1% %H% "}

then these keywords are expanded in the retrieved version of the
program:

char header[lOO] = {" MODNAME 2.3 07/07/77 "};

The get command does not replace keywords when retrieving a
version for editing. The system assumes that you want to keep
the keywords (and not their values) when you save the new
version of the file.

To indicate that a file has no keywords, the get, delta, and
admin commands display the message:

No id keywords (cm7)

5-18 Application Development Guide

This message is normally treated as a warning, letting you know
that no keywords are present. However, you can change the
operation of the system to make this situation a fatal error. This
procedure is explained in "Forcing Keywords" on page 5-19.

Assigning Values to Keywords

The values of most keywords are predefined by the system, but
some, such as the value for the %M% keyword, are explicitly
defined by the user. To assign a value to a keyword, you must set
the corresponding s-file flag to the desired value. You can do this
by using the -f option of the admin command.

For example, to set the %M% keyword to cdema, you must set the m
flag as in the command:

admin -fmedema s.demo.e

In this example, -f is the option, m is the keyword, and cdema is
the value. This command records edema as the current value of
the %M% keyword. If you do not set the m flag, the SCCS uses the
name of the original text file for %M% by default.

The t and q flags are also associated with keywords. A
description of these flags and a list of the corresponding
keywords are in XENIX Commands Reference. The description is
in the section admin(CP) and the list is under the get(CP)
command.

Forcing Keywords

If a version is found to contain no keywords, you can force a fatal
error by setting the i flag in the given s-file. The flag causes the
delta and admin commands to stop processing the given version
and report an error. The flag is useful for ensuring that
keywords are used properly in a given file.

To set the i. flag, you must use the -f option of the admin
command. For example, the command:

admin -fi s.demo.c

sets the i flag in the s-file s. dema. c. If the given version does not
contain keywords, subsequent delta or admin commands that
access this file print an error message.

sees 5-19

If you attempt to set the i flag at the same time as you create an
s-file, and if the initial text file contains no keywords, the admin
command displays a fatal error message and stops without
creating the s-file.

Using s-file Flags

An s-file flag is a special value that defines how a given SCCS
command operates on the corresponding s-file. The s-file flags are
stored in the s-file and are read by each SCCS command before it
operates on the file. s-file flags affect operations such as keyword
checking, keyword replacement values, and default values for
commands.

This section explains how to set and use s-file flags. It also
describes the action of commonly used flags. For a complete
description of all flags, see the admin (CP) command section in
XENIX Commands Reference.

Setting s-file Flags

You can set the flags in a given s-file by using the -f option of the
admin command. The command has the form:

admin -fflag s.filename

where flag gives the flag to be set, and s.filename gives the name
of the s-file in which the flag is to be set. For example, the
command:

admin -fi s.demo.c

sets the i flag in the s-file s. demo. c.

Some s-file flags accept values when they are set. For example,
the m flag requires a module name. When a value is required, it
must immediately follow the flag name, as in the command:

admin -fmdmod s.demo.c

that sets the m flag to the module name dmod.

5-20 Application Development Guide

U sing the i Flag

If no keywords are found in the given text file, the i flag causes
the admin and delta commands to print an error message and
stop the current process. The flag is used to prevent a version of
a file that contains expanded keywords from being saved as a new
version. (Saving an expanded version destroys the keywords for
all subsequent versions.)

When the i flag is set, each new version of a file must contain at
least one keyword. Otherwise, the version cannot be saved.

U sing the d Flag

The d flag gives the default SID for versions retrieved by the get
command. The flag takes an SID as its value. For example, the
command:

admin -fdl.l s.demo.c

sets the default SID to 1.1. A subsequent get command that does
not use the -r option retrieves version 1.1.

U sing the v Flag

The v flag allows you to include modification requests in an
s-file. Modification requests are names or numbers used as a
shorthand means of indicating the reason for each new version.

When the v flag is set, the delta command asks for the
modification requests just before asking for comments. The v
flag also allows use of the -m option in the delta and admin
commands.

sees 5-21

Removing an s-file Flag

You can remove an s-file flag from an s-file by using the -d option
of the admin command. The command has the form:

admin -dflag s.filename

where -d flag gives the name of the flag to be removed and
s.filename is the name of the s-file from which the flag is to be
removed. For example, the command:

admin -di s.demo.c

removes the i flag from the s-file s. demo. c. When removing a flag
that takes a value, only the flag name is required. For example,
the command:

admin -dm s.demo.c

removes the m flag from the s-file.

The -d and -i options must not be used at the same time.

5-22 Application Development Guide

Modifying s-file Information

Every s-file contains information about the deltas it contains.
Normally, this information is maintained by the sees commands
and is not directly accessible by the user. Some information,
however, is specific to the user who creates the s-file and can be
changed as desired to meet the user's requirements. This
information is kept in two special parts of the s-file called the
delta table and the description field.

The delta table contains information about each delta, such as
the SID and the date and time of creation. It also contains
user-supplied information, such as comments and modification
requests. The description field contains a user-supplied
description of the s-file and its contents. Both parts can be
changed or deleted at any time to reflect changes to the s-file.

Adding Comments

You can add comments to an s-file by using the -y option of the
delta and admin commands. This option causes the given text to
be copied to the s-file as the comment for the new version. The
comment can be any combination of letters, digits, and
punctuation symbols. No embedded newline characters are
allowed. If spaces are used, the comment must be enclosed in
double quotes. The complete command must fit on one line. For
example, the command:

delta -y"Added new routine." s.demo.c

saves the comment,

Added new routine.

in the s-file s. demo. c.

The -y option is used in shell procedures as part of an automated
approach to maintaining files. When the option is used, the delta
command does not print the corresponding comment prompt, so
no interaction is required. If more than one s-file is given in the
command line, the given comment applies to them all.

sees 5-23

Changing Comments

You can change the comments in a given s-file by using the cdc
command. The command has the form:

cdc -rSID s.filename

where SID gives the SID of the version whose comment is to be
changed, and s.filename is the name of the s-file containing the
version. The command asks for a new comment by displaying the
prompt:

comments?

You can type any sequence of characters up to 512 characters
long. The sequence can contain embedded newline characters if
preceded by a backslash (\). The sequence must be terminated
with a newline character. For example, the command:

cdc -r3.4 s.demo.c

prompts for a new comment for version 3.4.

Although the command does not delete the old comment, it is no
longer directly accessible by the user. The new comment
contain~ the login name of the user who invoked the cdc
command and the time the comment was changed.

5-24 Application Development Guide

Adding Modification Requests

You can add modification requests to an s-file, when the v flag is
set, by using the -m option of the delta and admin commands. A
modification request is a shorthand method of describing the
reason for a particular version. Modification requests are
usually names or numbers that the user has chosen to represent a
specific request.

The -m option causes the given command to save the requests
following the option. A request can be any combination of
letters, digits, and punctuation symbols. If you give more than
one request, you must separate them with spaces and enclose the
request in double quotes. For example, the command:

delta -m"error35 optimizelO" s.demo.c

copies the requests error35 and optimizelO to s.demo.c, while
saving the new version.

The -m option, when used with the admin command, must be
combined with the -i option. Furthermore, the v flag must be set
with the -f option. For example, the command:

admin -idef.h -m"errorO" -fv s.def.h

inserts the modification request errorO in the new file s. def . h.

The delta command does not prompt for modification requests if
you use the -m option.

sees 5-25

Changing Modification Requests

You can change modification requests, when the v flag is set, by
using the cdc command. The command asks for a list of
modification requests by displaying the prompt:

MRs?

You can type any number of requests. Each request can have
any combination of letters, digits, or punctuation symbols. No
more than 512 characters are allowed, and the last request must
be terminated with a newline character. To remove a request,
you must precede the request with an exclamation mark (!). For
example, the command:

cdc -rl.4 s.demo.c

asks for changes to the modification requests. The response:

MRs? error36 !error35

adds the request error36 and removes error35.

Adding Descriptive Text

You can add descriptive text to an s-file by using the -t option of
the admin command. Descriptive text is any text that describes
the purpose and reason for the given s-file. Descriptive text is
independent of the contents of the s-file and can only be displayed
using the prs command.

5-26 Application Development Guide

The -t option directs the admin command to copy the contents of
a given file into the description field of the s-file. The command
has the form:

admin -tfilename s.{ilename

where filename gives the name of the file containing the
descriptive text, and s.filename is the name of the s-file to receive
the descriptive text.

The file to be inserted can contain any amount of text. For
example, the command:

admin -tcdemo s.demo.c

inserts the contents of the file cdemo into the description field of
the s-file s. demo. c.

The -t option can also be used to initialize the description field
when creating the s-file. For example, the command:

admin -idemo.c -tcdemo s.demo.c

inserts the contents of the file edema into the new s-file s. demo. c.
If -t is not used, the description field of the new s-file is left
empty.

You can remove the current descriptive text in an s-file by using
the -t option without a file name. For example, the command:

admin -t s.demo.e

removes the descriptive text from the s-file s. demo. c.

sees 5-27

Printing from an s-file

This section explains how to use the prs command to display
information contained in an s-file. The prs command has a
variety of options that control the display format and content.

Using a Data Specification

You can explicitly define the information to be printed from an
s-file by using the -d option of the prs command. The command
copies user-specified information to the standard output. The
command has the form:

prs -dspec s.filename

where spec is the data specification, and s.filename is the name of
the s-file from which the information is to be taken.

The data specification is a string of data keywords and text. A
data keyword is an uppercase letter, enclosed in colons (:). It
represents a value contained in the given s-file. For example, the
keyword : I: represents the SID of a given version; : F :
represents the file name of the given s-file; and : c: represents
the comment line associated with a given version. Data keywords
are replaced by these values when the information is printed.

For example, the command:

prs -dOl version: :1: filename: :F:" s.demo.c

may produce the line:

verslon: 2.1 filename: s.demo.c

A complete list of the data keywords is given in the section
prs (CP) in XENIX Commands Reference.

Printing a Specific Version

You can print information about a specific version in a given
s-file by using the -r option of the prs command. The command
has the form:

prs -rSID s.filename

5-28 Application Development Guide

where SID gives the SID of the desired version, and s.filename is
the name of the s-file containing the version. For example, the
command:

prs -r2.1 s.demo.c

prints information about version 2.1 in the s-file s. demo. c.

If the -r option is not specified, the command prints information
about the most recently created delta.

Printing Later and Earlier Versions

You can print information about a group of versions by using the
-1 and -e options of the prs command. The -1 option causes the
command to print information about all versions immediately
succeeding the given version. The -e option causes the command
to print information about all versions immediately succeeding
the given version. The -e option causes the command to print
information about all versions immediately preceding the given
version. For example, the command:

prs -rl.4 -e s.demo.c

prints all information about versions that precede version 1.4 (for
example, 1.3, 1.2, and 1.1). The command:

prs -rl.4 -1 s.abc

prints information about versions that succeed version 1.4 (for
example, 1.5, 1.6, and 2.1).

If both options are given, information about all versions is
printed.

sees 5-29

Editing by Several Users

The sees system allows any number of users to access and edit
versions of a given s-file. Because users are likely to access
different versions of the s-file at the same time, the system is
designed to allow concurrent editing of different versions.
Normally, the system allows only one user at a time to edit a
given version, but you can allow concurrent editing of the same
version by setting the j flag in the given s-file.

The following sections explain how to perform concurrent editing
and how to save multiple edited versions.

Editing Different Versions

The sees system allows several different versions of a file to be
edited at the same time. This means a user can edit version 2.1
while another user edits version 1.1. There is no limit to the
number of versions that can be edited at any given time.

When several users edit different versions concurrently, each
user must begin work in his own directory. If users attempt to
share a directory and work on versions from the same s-file at the
same time, the get command refuses to retrieve a version.

Editing a Single Version

You can allow multiple users to edit a single version of a file by
setting the j flag in the given s-file. The flag causes the get
command to check the p-file and create a new proposed SID if the
given version is already being edited.

You can set the flag by using the -f option of the admin
command. For example, the command:

admin -fj s.demo.c

sets the j flag for the s-file s. demo. c.

When the flag is set, the get command uses the next available
branch SID for each new proposed SID. For example, suppose a
user retrieves for editing version 1.4 in the file s. demo. c ,and
that the proposed version is 1.5. If another user retrieves version
1.4 for editing before the first user has saved his changes, the
proposed version for the new user will be 1.4.1.1, since version 1.5

5-30 Application Development Guide

is already proposed and likely to be taken. In no case can a
version edited by two separate users result in a single new
verSIon.

Saving a Specific Version

When editing two or more versions of a file, you can direct the
delta command to save a specific version by using the -r option
to give the SID of that version. The command has the form:

delta -rSID s.filename

where SID gives the SID of the version being saved, and
s.filename is the name of the s-file to receive the new version.
The SID can be the SID of the version you have just edited or the
proposed SID for the new version. For example, if you have
retrieved version 1.4 for editing (and no version 1.5 exists), both
commands:

delta -rl.S s.demo.c

and

delta -rl.4 s.demo.c

save version 1.5.

sees 5-31

Protecting s-files

The sees system uses the normal system file permissions to
protect s-files from changes made by unauthorized users. In
addition to the system protections, the sees system provides two
ways to protect the s-files: the user list and the protection flags.
The user list is a list of login names and group IDs of users who
are allowed to access the s-file and create new versions of the file.
The protection flags are three special s-file flags that define
versions currently accessible to otherwise authorized users. The
following sections explain how to set and use the user list and
protection flags.

Adding a User to the User List

You can add a user or a group of users to the user list of a given
s-file by using the -a option of the admin command. The option
causes the given name to be added to the user list. The user list
defines who can access and edit the versions in the s-file. The
command has the form:

tdmin -aname s.filename

where name gives the login name of the user or the group name
of a group of users to be added to the list, and s.filename gives the
name of the s-file to receive the new users. For example, the
command:

admin -ajohnd -asuex -amarketing s.demo.c

adds the users, johnd and suex, and the group, marketing, to the
user list of the s-file s. demo. c.

If you create an s-file without giving the -a option, the user list is
left empty, and all users can access and edit the files. When you
explicitly give a user name or names, only those users can access
the files.

Removing a User from a User List

You can remove a user or a group of users from the user list of a
given s-file by using the -e option of the admin command. The
option is similar to the -a option but performs the opposite
operation. The command has the form:

admin -ename s.filename

5-32 Application Development Guide

where name gives the login name of a user or the group name of a
group of users to be removed from the list, and s.filename is the
name of the s-file from which the names are to be removed. For
example, the command:

admin -ejohnd -emarketing s.demo.c

removes the user, j ohnd, and the group, marketing, from the user
list of the s-file s. demo. c.

Setting the Floor Flag

The floor flag, f, defines the release number of the lowest version
a user can edit in a given s-file. You can set the flag by using the
-f option of the admin command. For example, the command:

admin -££2 s.demo.c

sets the floor to release number 2. If you attempt to retrieve any
versions with a release number less than 2, an error results.

sees 5-33

Setting the Ceiling Flag

The ceiling flag, c, defines the release number of the highest
version a user can edit in a given s-file. You can set the flag by
using the -f option of the admin command. For example, the
command:

admin -f c5 s.demo.c

sets the ceiling to release number 5. If you attempt to retrieve
any versions with a release number greater than 5, an error
results.

Locking a Version

The lock flag, 1, lists by release number all versions in a given
s-file that are locked against further editing. You can set the flag
by using the -f flag of the admin command. The flag must be
followed by one or more release numbers. Multiple release
numbers must be separated by commas (,). For example, the
command:

admin -f13 s.demo.c

locks all versions with release number 3 against further editing.
The command:

admin -f14,5,9 s.def.h

locks all versions with release numbers 4, 5, and 9.

The special symbol a can be used to specify all release numbers.
The command:

admin -f1a s.demo.c

locks all versions in the file s. demo. c.

5-34 Application Development Guide

Repairing sees Files

The sees system carefully maintains all sees files; therefore,
damage to the files very rare. However, damage can result from
hardware malfunctions. This can cause incorrect information to
be copied to the file. The following sections explain how to check
for damage to sees files and how to repair the damage or
regenerate the file.

Checking an s-file

You can check a file for damage by using the -h option of the
admin command. This option causes the checksum of the given
s-file to be computed and compared with the existing sum. An
s-file's checksum is an internal value computed from the sum of
all bytes in the file. If the new and existing checksums are not
equal, the command displays the message:

corrupted file (co6)

indicating damage to the file. For example, the command:

admin -h s.demo.c

checks the s-file s. demo. c for damage by generating a new
checksum for the file and comparing the new sum with the
existing sum.

You can give more than one file name. If you do, the command
checks each file. You can also give the name of a directory; in
that case, the command checks all files in the directory.

Since failure to repair a damaged s-file can destroy the file's
contents or make the file inaccessible, it is a good idea to
regularly check all s-files for damage.

Editing an s-file

When an s-file is damaged, it is a good idea to restore a backup
copy of the file from a backup disk rather than attempting to
repair the file. (Restoring a backup copy of a file is described in
XENIX Common File Tasks.) If this is not possible, the file can be
edited using a text editor.

To repair a damaged s-file, use the description of an s-file given in

sees 5-35

the section sccsfile(F) in XENIX System Reference to locate the
part of the file that is damaged. Use extreme care when making
changes; small errors can cause unwanted results.

Changing the Checksum of an s-file

After repairing a damaged s-file, you must change the file's
checksum by using the -z option of the admin command. For
example, to restore the checksum of the repaired file s. demo. c,
type:

admin -z s.derno.c

The command computes and saves the new checksum and
replaces the old sum.

Regenerating a g-file for Editing

You can create a g-file for editing without affecting the current
contents of the p-file by using the -k option of the get command.
The option has the same affect as the -e option, except that the
current contents of the p-file remain unchanged. The -k option
can regenerate a g-file that was accidentally removed or
destroyed before it was saved.

Restoring a Damaged p-file

The -g option of the get command generates a new copy of a
p-file that was accidentally removed. For example, the command:

get -e -g s.derno.c

creates a new p-file entry for the most recent version in
s. demo. c. If the file demo. c already exists, you must not use this
command to change it.

U sing other Command Options

Many of the sees commands provide options that control their
operation in useful ways. This section describes these options
and explains how you can use them to perform useful work.

5-36 Application Development Guide

Getting Help With SCCS Commands

You can display helpful information about an sees command by
giving the name of the command as an argument to the help
command. The help command displays the command syntax. For
example, the command:

help rmdel

displays the message:

rmdel:
rmdel -rSID file

Creating a File with Standard Input

You can direct admin to use the standard input as the source for
a new s-file by using the -i option without a file name. For
example, the command:

admin -i s.demo.c <demo.c

causes admin to create a new s-file named s. demo. c that uses
the text file demo. c as its first version.

This method of creating a new s-file connects admin to a pipe.
For example, the command:

cat modl.c mod2.c I admin -i s.mod.c

creates a new s-file s. mod. c, that contains the first version of the
concatenated files modI. c and mod2. c.

Starting at a Specific Release

The admin command normally starts numbering versions with
release number 1. You can direct the command to start with any
given release number by using the -r option. The command has
the form:

admin -rrelnum s.filename

where relnum gives the starting release number, and s.filename is
the name of the s-file to be created. For example, the command:

admin -idemo.c -r3 s.demo.c

starts with release number 3. The first version is 3.1.

sees 5-37

Adding a Comment to the First Version

You can add a comment to the first version of file by using the -y
option of the admin command when creating the s-file. For
example, the command:

admin -idemo.c -y"George's Program" s.demo.c

inserts the comment,

George's Program

in the new s-file s. demo. c.

The comment can be any combination of letters, digits, and
punctuation symbols. If spaces are used, the comment must be
enclosed in double quotes. The complete command must fit on
one line.

If the -y option is not used when creating an s-file, a comment of
the form:

date and time created YY/MM/DD HH:MM:SS by logname

is automatically inserted.

Suppressing Normal Output

You can suppress the normal display of messages created by the
get command by using the -8 option. The option prevents
information, such as the SID of the retrieved file, from being
copied to the standard output. The option does not suppress
error messages.

The -8 option is often used with the -p option to pipe the output
of the get command to other commands. For example, the
command:

get -p -s s.demo.c I Ipr

copies the most recent version in the s-file s. demo. c to the line
printer.

You can also suppress the normal output of the delta command
by using the -8 option. This option suppresses all output
normally directed to the standard output, except for the normal
comment prompt.

5~38 Application Development Guide

Including and Excluding Deltas

You can explicitly define the deltas you want to include as well
as the ones you want to exclude when creating a g-file, by using
the -i and -x options of the get command.

The -i option causes the command to apply the given deltas when
constructing a version. The -x option causes the command to
ignore the given deltas when constructing a version. Both
options must be followed by one or more SIDs. If multiple SIDs
are given they must be separated by commas (,). A range of SIDs
can be given by separating two SIDs with a hyphen (-). For
example, the command:

get -il.2,1.3 s.demo.c

causes deltas 1.2 and 1.3 to be used to construct the g-file.

The command:

qet -xl.2-1.4 s.demo.c

causes deltas 1.2 through 1.4 to be ignored when constructing the
file.

The -i option is useful if you want to automatically apply changes
to a version while retrieving it for editing. For example, the
command:

get -e -i4.1 -r3.3 s.demo.c

retrieves version 3.3 for editing. When the file is retrieved, the
changes in delta 4.1 are automatically applied to it. These
changes can be saved immediately by issuing a delta command.

The -x option is useful for removing changes performed on a
given version. For example, the command:

get -e -xl.5 -rl.6 s.demo.c

retrieves version 1.6 for editing. When the file is retrieved, the
changes in delta 1.5 are automatically left out of it, making the
g-file the same as if version 1.4 had been changed according to
delta 1.6 (with no intervening delta 1.5). These changes can be
saved immediately by issuing a delta command. No editing is
required.

When deltas are included or excluded using the -i and -x options,
get compares them with the deltas normally used in constructing
the given version. If two deltas attempt to change the same line
of the retrieved file, the command displays a warning message.

sees 5-39

The message shows the range of lines where the problem exists.
Corrective action, if required, is the responsibility of the user.

Listing the Deltas of a Version

You can create a table showing the deltas required to create a
given version by using the -I option. This option causes the get
command to create an I-file that contains the SIDs of all deltas
used to create the given version.

The option creates a history of a given version's development.
For example, the command:

get -1 s.demo.c

creates a file named 1. demo. c that contains the deltas required
to create the most recent version of demo. c.

You can display the list of deltas required to create a version by
using the -Ip option. The option performs the same function as
the -1 option except that it copies the list to the standard output
file. For example, the command:

get -lp -r2.3 s.demo.c

copies the list of deltas required to create version 2.3 of demo. c
to the standard output.

The -1 option can be combined with the -g option to create a list
of deltas without retrieving the actual version.

5-40 Application Development Guide

Mapping Lines to Deltas

You can map each line in a given version to its corresponding
delta by using the -m option of the get command. This option
causes each line in a g-file to be preceded by the SID of the delta
that caused that line to be inserted. The SID is separated from
the beginning of the line by a tab character. The -m option is
used to review the history of each line in a given version.

Naming Lines

You can name each line in a given version with the current
module name (that is, the value of the %M% keyword) by using the
-n option of the get command. This option causes each line of
the retrieved file to be preceded by the value of the %M% keyword
and a tab character.

The -n option indicates that a given line is from the given file.
When both the -m and -n options are specified, each line begins
with the %M% keyword.

Displaying a List of Differences

You can display a detailed list of the differences between a new
version of a file and the previous version by using the -p option
of the delta command. This option causes the command to
display the differences in a format similar to the output of the
diff command.

sees 5-41

Displaying File Information

You can display information about a given version by using the
-g option of the get command. This option suppresses the actual
retrieval of a version and causes only the information about the
version, such as the SID and size, to be displayed.

The -g option is often used with the -r option to check for the
existence of a given version. For example, the command:

get -g -r4.3 s.demo.c

displays information about version 4.3 in the s-file s. demo. c. If
the version does not exist, the command displays an error
message.

Removing a Delta

You can remove a delta from an s-file by using the rmdel
command. The command has the form:

rmdel -rSID s.filename

where SID gives the SID of the delta to be removed, and
s.filename is the name of the s-file from which the delta is to be
removed. The delta must be the most recently created delta in
the s-file. Furthermore, the user must have write permission in
the directory containing the s-file, and must either own the s-file
or be the user who created the delta.

For example, the command:

rmdel -r2.3 s.demo.c

removes delta 2.3 from the s-file s. demo. c.

The rmdel command will not remove a protected delta, that is, a
delta whose release number is below the current floor value,
above the current ceiling value, or equal to a current locked
value (see "Protecting s-files" on page 5-32). The command
cannot remove a delta that is currently being edited.

Reserve the rmdel command for those cases in which incorrect,
global changes were made to an s-file.

The rmdel command changes the type indicator of the given
delta from D to R. A type indicator defines the type of delta.
Type indicators are described in full in the section delta (CP) in
XENIX Commands Reference.

5-42 Application Development Guide

Searching for Strings

You can search for strings in files created from an s-file by using
the what command. This command searches for the symbol # (@)

(the current value of the %Z% keyword) in the given file. It then
prints, on the standard output, a~l text immediately following the
symbol, up to the next double quote ("), greater than (»,
backslash (\), newline, or (non-printing) NULL character. For
example, if the s-file s. demo. c contains the following line:

char id[1 = "%Z%%M%:%I%";

and the command:

get -r3.4 s.prog.c

is executed, then the command:

what prog.c

displays:

prog.c:
prog.c:304

You can also use what to search files that have not been created
by sees commands.

Comparing sces Files

You can compare two versions from a given s-file by using the
sccsdiff command. This command prints on the standard output
the differences between two versions of the s-file. The command
has the form:

sccsdiff -rSID1 -rSID2 s.filename

where SID1 and SID2 give the SIDs of the versions to be
compared, and s.filename is the name of the s-file containing the
versions. The version SIDs must be given in the order they were
created. For example, the command:

sccsdiff -r3.4 -rS.6 s.demo.c

displays the differences between versions 3.4 and 5.6.

sees 5-43

5-44 Application Development Guide

Chapter 6. The adb Program
Debugger

Introduction

The adb program is a debugging tool for C and assembler
language programs. It carefully controls the execution of a
program while letting you examine and modify the program's data
and text areas.

This chapter explains how to use adb. In particular, it explains
how to:

• Start and stop the debugger

• Display program instructions and data

• Run, breakpoint, and single-step a program

• Patch program files and memory

It also illustrates techniques for debugging C programs and
explains how to display information in non-ASCII data files.

Starting and Stopping adb

The adb program debugger provides a powerful set of commands
to let you examine, debug, and repair executable binary files as
well as examine non-ASCII data files. To use these commands,
you must invoke adb from a shell command line and specify the
file or files you want to debug. The following sections explain
how to start adb and describe the types of files available for
debugging.

adb debugger 6-1

Starting with a Program File

You can debug any executable C or assembly language program
file by typing a command line of the form:

adb [filename 1

where filename is the name of the program file to be debugged.
The adb program opens the file and prepares its text
(instructions) and data for subsequent debugging. For example,
the command:

adb sample

prepares the program named sample for examination and
execution.

Once started, adb prompts with an asterisk (*) and waits for you
to type commands. If you have given the name of a file that does
not exist or is in the wrong format, adb displays an error message
first, then waits for commands. For example, if you invoke adb
with the command:

adb sample

and the file sample does not exist, adb displays the message:

adb: cannot open 'sample'

You can also start adb without a file name. In this case, adb
searches for the default file a.out in your current working
directory and prepares it for debugging. Thus, the command:

adb

is the same as typing:

adb a.out

The adb program debugger displays the prompt and waits for a
command if the a.out file does not exist.

6-2 Application Development Guide

Starting with a Core Image File

The adb program debugger also lets you examine the core image
files of programs that caused fatal system errors. Core image
files contain the contents of the CPU registers, stack, and
memory areas of the program at the time of the error. Therefore,
core image files provide a way to determine the cause of an error.

To examine a core image file with its corresponding program, you
must give the name of both the core and the program file. The
command line has the form:

adb programfile corefile

where programfile is the file name of the program that caused the
error, and corefile is the file name of the core image file generated
by the system. The adb program debugger then uses information
from both files to provide responses to your commands.

If you do not give a core image file, adb searches for the default
core file, named core, in your current working directory. If such
a file is found, adb uses it whether or not the file belongs to the
given program. You can prevent adb from opening this file by
using the hyphen (-) in place of the core file name. For example,
the command:

adb sample -

prevents adb from searching your current working directory for a
core file. You can use adb to examine data files by giving the
name of the data file in place of the program or core file. For
example, to examine a data file named outdata, type:

adb outdata

The adb program debugger opens this file and lets you examine
its contents.

adb debugger 6-3

This method of examining files is very useful if the file contains
non-ASCII data. The adb program debugger provides a way to
look at the contents of the file in a variety of formats and
structures. The adb command can display a warning when you
give the name of non-ASCII data file in place of a program file.
This usually happens when the content of the data file is similar
to a program file. Like core files, data files cannot be executed.

Starting with the Write Option

If you open a program or data file with the -w option of the adb
command, you can make changes and corrections to the file. For
example, the command:

adb -w sample

opens the program file sample for writing. You may then use
adb commands to examine and modify this file.

Note that the -w option causes adb to create a given file if it
does not already exist. The option also lets you write directly to
memory after executing the given program. For more information
on the -w option, see "Patching Binary Files" on page 6-46.

6-4 Application Development Guide

Starting with the Prompt Option

The -p option allows you to define the prompt that adb uses. The
option has the form:

-p prompt

where prompt is any combination of characters. If you use
spaces, enclose the prompt in quotation marks. For example, the
command:

adb -p "Mar 10-)" sample

sets the prompt to Mar 10- >. The new prompt takes the place of
the default prompt (*) when adb begins to prompt for commands.

Make sure there is at least one space between the -p and the new
prompt; otherwise, adb displays an error message. The adb
command automatically supplies a space at the end of the new
prompt, so you do not have to supply one.

Leaving adb

You can stop adb and return to the system shell by using the $q
or $Q commands. You can also stop the debugger by typing
Ctrl-D.

You cannot stop adb by pressing the Interrupt (Del) or Quit
(Crtl \) keys. These keys cause adb to to wait for a new
command.

adb debugger 6-5

Displaying Instructions and Data

The adb program debugger provides several commands for
displaying the instructions and data of a given program and the
data of a given data file. The commands have the form:

address [, count format

address [, count ? format

address [, count / format

where address is a value or expression giving the location of the
instruction or data item; count is an expression giving the
number of items to be displayed; and format is an expression
defining how to display the items. The equal sign (=), question
mark (?), and slash (f) tell adb from what source to take the item
to be displayed.

The following sections explain how to form addresses, how to
choose formats, how to use display commands, and how to form
expressions.

Forming Addresses

In adb , every address has the form:

(segment] offset

where segment is an expression giving the address of a specific
segment of 8086/286 memory, and offset is an expression giving an
offset from the beginning of the specified segment to the desired
item. Segments and offsets are formed by combining numbers,
symbols, variables, and operators. The following are some valid
addresses:

0:1

OxObce:772

The segment is optional. If not given, the most recently typed
segment is used.

6-6 Application Development Guide

Choosing Data Formats

A format is a letter or character that defines how data is to be
displayed. The following are the most commonly used formats:

Letter Format

a 1 word in octal
o 2 words in octal
d 1 word in decimal
D 2 words in decimal
x 1 word in hexadecimal
X 2 words in hexadecimal
u 1 word as an unsigned integer
f 2 words in floating point
F 4 words in floating point

c 1 byte as a character
s a null terminated character string

i machine instruction
b 1 byte in octal

a the current symbolic address
A the current absolute address
n a new line
r a blank space
t a horizontal tab

A format can be used by itself or combined with other formats to
present a combination of data in different forms.

adb debugger 6-7

The d, 0, x, and u formats display int type variables; D and X
display long variables or 32-bit values. The f and F formats
display single- and double-precision, floating-point numbers. The
c format displays char variables, and s is for arrays of char
variables that end with a null character (null-terminated strings).

The i format displays machine instructions in 8086/286
mnemonics. The b format displays individual bytes and is useful
for display data associated with instructions or the high or low
bytes of registers.

The a , r, and n formats are usually combined with other formats
to make the display more readable. For example, the format:

ia

causes the current address to be displayed after each instruction.

You can precede each format with a count of the number of times
you want it to be repeated. For example the format:

4c

displays four ASCII characters.

It is possible to combine format requests to provide elaborate
displays. For example, the following command displays four octal
words followed by their ASCII interpretation from the data space
of the core image file.

<b,-1/404/\8Cn

In this example, the display starts at the address < b, the base
address of the program's data. Since the negative count (-1)
causes an indefinite execution of the command, the display
continues until an error condition such as the end-of-the-file
occurs. In the format, 40 displays the next four words (16-bit
values) as octal numbers. The 4/\ then moves the current address
back to the beginning of these four words, and 8C re-displays
them as 8 ASCII characters. Finally, n sends a newline character
to the terminal. The C format causes values to be displayed as
ASCII characters if they are in the range 32 to 126. If the value
is in the range 0 to 31, it is displayed as an @ (at sign) followed by
a lowercase letter. For example, the value 0 is displayed as @a.
The @ itself is displayed as @@ (double at sign).

6-8 Application Development Guide

Display Commands

The = (equal sign), ? (question mark), and / (slash) tell adb from
what source to take the item to be displayed. The following
sections explain how to use these display commands.

U sing the (=) Commmand

The (=) command displays a given address in a given format.
The command is used primarily to display instruction and data
addresses in simpler form or to display the results of arithmetic
expressions. For example, the command:

main=A

displays the absolute address of the symbol main (giving the
segment and offset). The following command displays (in
decimal) the sum of the variable b and the hexadecimal value
Ox2000 ..

<b+Ox2000=D

If a count is given, the same value is repeated that number of
times. For example, the command below displays the value of
main twice.

main,2=x

If no address is given, the current address is used instead. This is
the same as the command:

If no format is given, the previous format given for this command
is used. For example in the following sequence of commands,
both main and start are displayed in hexadecimal:

main=x
start=

adb debugger 6-9

U sing the (?) and (I) Commands

You can display the contents of a text or data segment with the
(?) and (f) commands. The commands have the form:

address 1 [, count ? format

address 1 [, count / format

where address is an address with the given segment; count is the
number of items you want to display; and format is the format of
the items you want to display.

The (?) command displays instructions in a given text segment.
For example, the command:

main,5?ia

displays five instructions starting at the address, main. The
command:

main,5?i

displays the instructions but no addresses other than the starting
address.

The (f) command checks the values of variables in a program,
especially variables for which no name exists in the program's
symbol table. For example, the command:

<bp-4/x

displays the value (in hexadecimal) of a local variable. Local
variables are generally at some offset from the address pointed to
by the bp register.

6-10 Application Development Guide

Forming Expressions

Expressions can contain decimal, octal, and hexadecimal integers,
symbols, adb variables, register names, and a variety of
arithmetic and logical operators.

Decimal, Octal, and Hexadecimal Integers

Decimal integers must begin with a nonzero decimal digit. Octal
numbers must begin with a zero and have octal digits only.
Hexadecimal numbers must begin with the prefix Ox and may
contain decimal digits and the letters a through f (in both
uppercase and lowercase). The following are valid numbers:

Decimal Octal

34

4090
042
07772

Hexadecimal

Ox22
Oxffa

Although decimal numbers are displayed with a trailing decimal
point (.), you must not use the decimal point when typing the
number.

adb debugger 6-11

Symbols

Symbols are the names of global variables and functions defined
within the program being debugged. Symbols are equal to the
address of the given variable or function. They are stored in the
program's symbol table and are available if the symbol table has
not been stripped from the program file (see strip (CP) in XENIX
Commands Reference.)

In expressions, you can spell the symbol exactly as it is in the
source program or as it has been stored in the symbol table.
Symbols in the symbol table are no more than eight characters
long, and those defined in C programs are given a leading
underscore (_). The following are examples of symbols:

main

-ffiain

hex2bin

If the spelling of any two symbols is the same (except for a
leading underscore), adb ignores one of the symbols and allows
references only to the other. For example, if both main and
-ffiain exist in a program, then adb accesses only the first to
appear in the source and ignores the other.

When you use the (?) command, adb uses the symbols found in
the symbol table of the program file to create symbolic addresses.
Thus, the command sometimes gives a function name when
displaying data. This does not happen if the (?) command is used
for text (instructions) and the (I) command for data. Local
variables cannot be addressed.

6-12 Application Development Guide

Variables in adb

The adb program automatically creates a set of its own variables
whenever you start the debugger. These variables are set to the
addresses and sizes of various parts of the program file as defined
below.

b base address of the data segment
d size of data segment
e entry address of the program
m execution type (magic number)
n number of segments
s size of stack segment
t size of text segment

The adb program debugger reads the program file to find the
values for these variables. If the file does not seem to be a
program file, then adb leaves the values undefined.

You can use the current value of an adb variable (b) in an
expression by preceding the variable name with a less than sign
(<). For example, the current value of the base variable b is:

<b

You can create your own variables or change the value of an
existing variable by assigning a value to a variable name with the
greater than sign (». The assignment has the form:

expression > variablename

where expression is the value to be assigned to the variable, and
variablename is the variable to receive the value. The
variablename must be a single letter. For example, the
assignment:

Ox2000>b

assigns to the variable b the hexadecimal value Ox2000.

adb debugger 6-13

You can display the value of all currently defined adb variables
by using the $v command. The command lists the variable names
followed by their values in the current format. The command
displays any variable whose value is not zero. If a variable also
has a nonzero segment value, the variable's value is displayed as
an address; otherwise, it is displayed as a number.

Current Address

The adb program debugger has two special variables that keep
track of the last address used in a command and the last address
typed with a command. The dot (.) variable, also called the
current address, contains the last address to be used in a
command. The double quotation mark (") variable contains the
last address to be typed with a command. The (.) and (")
variables usually contain the same address except when implied
commands, such as the newline and caret (A) characters, are
used. These characters automatically increase and decrease the
(.) variable but leave the (") variable unchanged.

Both the (.) and the (") variables can be used in any expression.
The less than sign (<) is not required. For example, the
command:

displays the value of the current address and:

"=

displays the last address to be typed.

6-14 Application Development Guide

Register Names

The adb program debugger lets you use the current value of the
CPU registers in expressions. You can give the value of the
register by preceding its name with the less than sign «). The
adb program debugger recognizes the following register names:

ax register a
bx register b
cx register c
dx register d
di data index
si stack index
bp base pointer
fl status flag
ip instruction pointer
cs code segment
ds data segment
ss stack segment
es extra segment
sp stack pointer

For example, the value of the ax register can be given as:

<ax

Register names cannot be used unless adb has been started with
a core file, or the program is currently being run under adb
control.

adb debugger 6-15

Operators

You can combine integers, symbols, variables, and register names
with the following operators:

Unary

*
Binary
+

*
%
&
"
1\

Not
Negative
Contents of location

Addition
Subtraction
Multiplication
Integer division
Bitwise AND
Bitwise inclusive OR
Modulo
Round up to the next multiple

U nary operators have higher precedence than binary operators.
All binary operators have the same precedence. Thus, the binary
expression:

2*3+4

is equal to 10, and the binary expression:

4+2*3

is 18.

You can change the precedence of the operations in an
expression by using parentheses. For example, the expression:

4+(2*3)

is equal to 10.

6-16 Application Development Guide

Note that adb uses 32-bit arithmetic. This means that values that
exceed 2,147,483,647 (decimal) are displayed as negative values.

The unary (*) operator treats the given address as a pointer. An
expression using this operator changes to the value pointed to by
that pointer. For example, the expression:

*Ox1234

is equal to the value at the address Ox1234, whereas:

Ox1234

is just equal to Ox1234.

adb debugger 6-17

An Example: Simple Formatting

This example illustrates how to combine formats in the (?) or (j)
commands to display different types of values when stored
together in the same program. The program to be examined has
the following source statements.

char
int
int
long
float
char

main()

strl[]

one
number
Inum
fpt
str2[

one = 2;

"This is a character string";
1 ;

456 i

1234 ;
1. 25 i

"This is the second character string";

The program is compiled and stored in a file named sample.

To start the session, type:

adb sample

You can display the value of each individual variable by giving
its name and corresponding format in a (/) command. For
example, the command:

str1/s

displays the contents of str 1 as a string:

_strl: This a character string:

and the command:

number/d

displays the contents of number as a decimal integer:

-Dumber: 456.

6-18 Application Development Guide

You can choose to view a variable in a variety of formats. For
example, you can display the long variable Inurn as a 4-byte
decimal, octal, and hexadecimal number by using the commands:

Inurn/D

_Inurn: 1234

Inurn/O

_Inurn: 02322

Inurn/X

_Inurn: Ox4d2

You can also examine all variables as a whole. For example, if
you want to see them all in hexadecimal, type:

str1,5/8x

This command displays eight hexadecimal values on a line and
continues for five lines.

Since the data contains a combination of numeric and string
values, it is worthwhile to display each value as both a number
and a character to see where the actual strings are located. You
can do this with one command:

str 1, 5/4x4" 8Cn

In this case, the command displays 4 values in hexadecimal, then
displays the same values as 8 ASCII characters. The caret (") is
used four times just before displaying the characters to set the
current address back to the starting address for that line.

To make the display easier to read, you can insert a tab between
the values and characters and give an address for each line:

strl,5/4x4"8t8Cna

adb debugger 6-19

Debugging Program Execution

The adb program provides a variety of commands to control the
execution of programs being debugged. The following sections
explain how to use these commands as well as how to display the
contents of memory and registers.

C does not generate statement labels for programs. This means it
is not possible to refer to individual C statements when using the
debugger. To use execution commands effectively, you must be
familiar with the instructions generated by the C compiler and
how they relate to individual C statements. One useful technique
is to create an assembler language listing of your C program
before using adb. Then, refer to the listing as you use the
debugger. To create an assembler language listing, use the -8
option of the cc command (see "cc: a C Compiler" in XENIX C
Library Guide and Compiler Reference).

Executing a Program

You can execute a program by using the :r or :R commands. The
commands have the form:

address] [, count : r arguments

address] [, count : R arguments

where address gives the address at which to start execution;
count is the number of breakpoints you want to skip before one is
taken; and arguments are the command line arguments, such as
file names and options, that you want to pass to the program.

If no address is given, then the start of the program is used.
Thus, to execute the program from the beginning type:

:r

If a count is given, adb ignores all breakpoints until the given
number have been encountered. For example, the command:

,5:r

causes adb to skip the first 5 named breakpoints.

If arguments are given, they must be separated by at least one
space each. The arguments are passed to the program in the
same way the system shell passes command line arguments to a
program. You can use the shell redirection symbols if you want.

6-20 Application Development Guide

The :R command passes the command arguments through the
shell before starting program execution. This means you can use
shell metacharacters in the arguments to refer to multiple files or
other input values. The shell expands arguments containing
metacharacters before passing them on to the program.

The command is especially useful if the program expects multiple
file names. For example, the command:

:R [a-z]*.s

passes the argument [a-z] *. s to the shell where it is expanded
to a list of the corresponding file names before being passed to
the program.

The :r and :R commands remove the contents of all registers and
destroy the current stack before starting the program. This kills
any previous copy of the program you may have been running.

adb debugger 6-21

Setting Breakpoints

You can set a breakpoint in a program by using the :br
command. Breakpoints cause execution to stop when the
program reaches the specified address. Control then returns to
adb. The command has the form:

address [, count] : br [command 1

where address must be a valid instruction address; count is a
count of the number of times you want the breakpoint to be
skipped before it causes the program to stop; and command is the
adb command you want to execute when the breakpoint is taken.

Breakpoints are typically set to stop program execution at a
specific place in the program, such as the beginning of a function,
so that the contents of registers and memory can be examined.
For example, the command:

main:br

sets a breakpoint at the start of the function named main. The
breakpoint is taken just as control enters the function and before
the function's stack frame is created.

A breakpoint with a count is used within a function that is called
several times during execution of a program, or within the
instructions that correspond to a for or while statement. Such
a breakpoint allows the program to continue to execute until the
given function or instructions have been executed the specified
number of times. For example, the command:

light,5:br

sets a breakpoint at the fifth invocation of the function light.
The breakpoint does not stop the function until it has been called
at least five times.

No more than 16 breakpoints at a time are allowed.

6-22 Application Development Guide

Displaying Breakpoints

You can display the location and count of each currently defined
breakpoint by using the $b command. The command displays a
list of the breakpoints given by address. If the breakpoint has a
count and/or a command, these are given as well.

Use the $b command if you created several breakpoints in your
program.

Deleting Breakpoints

You can delete a breakpoint from a program by using the :dl
command. The command has the form:

address : dl

where address is the address of the breakpoint you want to
delete.

The :dl command deletes breakpoints you no longer want to use.
The following command deletes the breakpoint that was set at the
start of the function main.

main:dl

Continuing Execution

You can continue the execution of a program after it has been
stopped by a breakpoint by using the :co command. The
command has the form:

[address) [,count) : co [signal)

where address is the address of the instruction at which you want
to continue execution; count is the number of breakpoints you
want to ignore; and signal is the number of the signal to send to
the program (see signal (8) in XENIX System Reference).

If no address is given, the program starts at the next instruction
after the breakpoint. If a count is given, adb ignores the first
count breakpoints.

adb debugger 6-23

Single-Stepping a Program

You can single-step a program, that is, execute it one instruction
at a time, by using the :s command. The command executes an
instruction and returns control to adb. The command has the
form:

[address 1 [, count 1 : s

where address must be the address of the instruction you want to
execute, and count is the number of times you want to repeat the
command.

If no address is given, adb uses the current address. If a count is
given, adb continues to execute each successive instruction until
count instructions have been executed. For example, the
command:

main,5:s

executes the first 5 instructions in the function main.

Stopping a Program with Interrupt and
Quit

You can stop execution of a program at any time by pressing the
Interrupt (Del) or Quit (Ctrl \) keys. These keys stop the current
program and return control to adb; these keys are especially
useful with programs that have infinite loops or other program
errors.

Whenever you press the Interrupt (Del) or Quit (Ctrl \) keys to
stop a program, adb automatically saves the signal. If you start
the program again by using the :co command, adb automatically
passes the signal to the program. This is very useful if you want
to test a program that uses these signals as part of its processing.

If you want to continue execution of the program but do not want
to send the signals, type:

:co 0

The command argument 0 prevents a signal from being sent to
the program.

6-24 Application Development Guide

Killing a Program

You can kill the program you are debugging by using the :k
command. The command kills the process created for the
program and returns control to adb. The command clears the
current contents of the CPU registers and stack and begins the
program again.

Displaying the C Stack Backtrace

You can trace the path of all active functions by using the $c
command. The command lists the names of all functions that
have been called and have not yet returned control. It also lists
the address from which each function was called and the
arguments passed to each function

For example, the command:

$c

displays a backtrace of the C language functions called.

By default, the $c command displays all calls. If you want to
display just a few, you must supply a count of the number of calls
you want to see. For example, the command:

,2S$c

displays up to 25 calls in the current call path.

Function calls and arguments are put on the stack after the
function has been called. If you put breakpoints at the entry
point to a function, the function does not appear in the list
generated by the $c command. You can fix this problem by
placing breakpoints a few instructions into the function.

adb debugger 6-25

Displaying CPU Registers

You can display the contents of all CPU registers by using the $r
command. The command displays the name and contents of each
register in the CPU as well as the current value of the program
counter and the instruction at the current address. The display
has the form:

ax Oxo fl Oxo

bx Oxo ip Oxo

ex Oxo es Oxo

dx Oxo ds Oxo

si Oxo ss Oxo

di Oxo es Oxo

bp Oxo sp Oxo

0: 0: addb al,bl

The value of each register is given in the current default format.

6-26 Application Development Guide

Displaying External Variables

You can display the values of all external variables in the
program by using the $e command. External variables are the
variables in your program that have global scope or have been
defined outside of any function. This can include variables
defined in library routines used by your program.

The $e command is useful whenever you need a list of the names
for all available variables or a summary their values. The
command displays one name on each line with the variable's
value (if any) on the same line.

The display has the form:

fac: O.

_errno: O.

_end: O.

_+_sobuf: O.

_obuf: O.

_+_lastbu: 0406.

_+_sibuf: O.

_+_stkmax: O.

Iscadr: 02.

_+_iob: 01664.

_edata: O.

adb debugger 6-27

An Example: Tracing Multiple Functions

The following example illustrates how to execute a program
under adb control. In particular, it shows how to set
breakpoints, start the program, and examine registers and
memory. The program has the following source statements:

int fcnt,gcnt,hcnt;
h(x,y)
int x,y;

g (p, q)

int p,q;

f(a,b)
int a,b;

main ()

int hi; register int hr;
hi = x+1;
hr = x-y+1;
hcnt++ ;
hj:
f (hr ,hi) ;

int gi; register int gr;
gi = q-p;
gr = q-p+1;
gcnt++ ;
gj:
h(gr I gi) ;

int fi; register int fr;
fi = a+2*b;
fr = a+b;
fcnt++ ;
fj:
g(fr,fi);

f (1,1) ;

6-28 Application Development Guide

The program is compiled and stored in the file named sample. To
start the session, type:

adb sample

This starts adb and opens the corresponding program file. There
is no core image file.

The first step is to set breakpoints at the beginning of each
function. You can do this with the :br command. For example,
to set a breakpoint at the start of the function f, type:

f:br

You can use similar commands for the g and h functions. Once
you have created the breakpoints you can display their locations
by typing:

$b

This command lists the address, optional count, and optional
command associated with each breakpoint. In this case, the
command displays:

breakpoints
count bkpt command
1 _f
1 _g

1 Jl

The next step is to display the first five instructions in the f
function. Type:

f,5?ia

adb debugger 6-29

This command displays five instructions, each preceded by its
symbolic address. The instructions in 8086/286 mnemonics are:

_f: push bp

_f+l. : rnov bp,sp

_f+3. : rnov ax,4.

_f+6. : call near _chkstk

_f+9. : push di

_f+10. :

You can display five instructions in g without their addresses by
typing:

g,5?i

In this case, the display is:

-g: push bp
rnov bp,sp
rnov ax,4.
call near _chkstk
push di

6-30 Application Development Guide

To start program execution, type:

:r

The adb program debugger displays the message:

sample: running

and begins to execute. As soon as adb encounters the first
breakpoint (at the beginning of the f function), it stops execution
and displays the message:

breakpoint _f: push bp

Since execution to this point caused no errors, you can remove
the first breakpoint by typing:

f:dl

and continue the program by typing:

:co

The adb program debugger displays the message:

sample: running

and starts the program at the next instruction. Execution
continues until the next breakpoint where adb displays the
message:

breakpoint -g: push bp

You can now trace the path of execution by typing:

$c

adb debugger 6-31

The command shows that only two functions are active: main and
f.

_f (1.,1.) from -main+13.

-main (1., 7668., 7676.) from __ start+45.

__ start() from startO+5.

Although a breakpoint has been set, function g is not listed in
the backtrace until its first few instructions have been executed.
To execute these instructions, type:

,5: s

The adb program single-steps the first five instructions. Now you
can list the backtrace again. Type:

$e

This time the list shows three active functions:

_g (2.,3.) from _f+34.

_f (1.,1.) from -main+13.

-main (1., 7668., 7676.) from __ start+45.

__ start() from startO+5.

You can display the contents of the integer variable f cnt by
typing:

fent/d

This command displays the value of fent found in memory. The
number 1 should be the value.

You can continue execution of the program and skip the first 10
breakpoints by typing:

,10:eo

The adb program debugger starts the program and displays the
running message again. It does not stop the program until
exactly 10 breakpoints have been encountered. It displays the
message:

breakpoint _g: push bp

6-32 Application Development Guide

To show that these breakpoints have been skipped, you can
display the backtrace again using $c.

_f (2. , 11.) from _h+31:

_h (100 1 90) from _g+33 :

-g (11. , 20.) from _f+34:

_f (2. , 9.) from ~+31:

~ (8. , 7.) from _g+33 :

-g (9. , 16.) from _f+34:

_f (2. , 7.) from _h+31:

~ (6. , 5.) from _g+33:

-g (7. , 12.) from _f+34:

_f (2. , 5.) from ~+31:

_h (4. , 3.) from _g+33:

-g (5. , 8.) from _f+34:

_f (2. , 3.) from _h+31:

~ (2. , 1.) from _g+33:

-g (2. , 3.) from _f+34:

_f (1. , 7668. , 7676) from _start+45.

_start() from startO+5.

adb debugger 6-33

Using the adb Memory Maps

The adb program debugger prepares a set of maps for the text
and data segments in your program and uses these maps to access
items that you request for display. The following sections
describe how to view these maps and how they are used to access
the text and data segments.

Displaying the Memory Maps

You can display the contents of the memory maps by using the
$m command. The command has the form:

$m [segment 1

where segment is the number of a segment used in the program.

The command displays the maps for all segments in the program.
It uses information taken from either the program and core files
or directly from memory.

If you have started adb but have not executed the program, the
$m command display has the form:

Text Segments
Seg # File Pas
63. 32.
71. 2080.

Data Segments
Seg # File Pas
39. 2736.

Phys Size
2048.
656.

Phys Size
242.

'sample' - File

'core' - File

Each entry gives a segment number, file position, and physical
size of a segment. The segment number is the starting address of
the segment. The file position is the offset from the start of the
file to the contents of the segment. The physical size is the
number of bytes the segment occupies in the program or core file.
The file names to the right of the display are the program and
core file names.

6-34 Application Development Guide

If you have executed the program, the command display has the
form:

Text Segments
Seg # File Pos
63. 32.
71. 2080.

Data Segments
Seg # File Pos
39. 2736.

vir Size
2048.
656.

Vir Size
456.

'sample' - Memory

'sample' - Memory

where virtual size is the number of bytes the segment occupies in
memory. This size is sometimes different from the size of the
segment in the file and often changes as you execute the
program. This difference is due to expansion of the stack or
allocation of additional memory during program execution. The
file names to the right always name the program file. The file
position value is ignored.

If you give a segment number with the commanq, adb displays
information only about that segment. For example, the command:

$m 63

displays a map for segment 63 only. The display has the form:

Segment #= 63.
Type= Text
File position= 32.
Physical Size= 2048.

adb debugger 6-35

Changing the Memory Map

You can change the values of a memory map by using the ?m and
1m commands. These commands assign specified values to the
corresponding map entries. The commands have the form:

?m segment-number file-position size

and

jm segment-number file-position size

where segment-number is the number of the segment map you
want to change; file-position is the offset in the file to the
beginning of the given address; and size is the segment size in
bytes. The?m assigns values to a text segment entry; 1m to a
data segment entry.

For example, the following command changes the file position for
segment 63 in the text map to Ox2000:

?m 63 Ox2000

The command:

jm 39 OxO

changes the file position for segment 39 in the data map to O.

6-36 Application Development Guide

Validating Addresses

Whenever you use an address in a command, adb checks the
address to make sure it is valid. The adb program debugger uses
the segment number, file position, and size values in each map
entry to validate the addresses. If an address is correct, adb
carries out the command; otherwise, it displays an error message.

The first step adb takes when validating an address is to check
the segment value to make sure it belongs to the appropriate
map. Segments used with the (?) command must appear in the
text segments map; segments used with the (I) command must
appear in the data segments map. If the value does not belong to
the map, adb displays a bad segment error.

The next step is to check the offset to see if it is in range. The
offset must be within the rane-e:

o <= offset <= segment-size

If it is not in this range, adb displays a bad address error.

If adb is currently accessing memory, the validating segment and
offset are used to access a memory location and no other
processing takes place. If adb is accessing files, it computes an
effective file address:

effective-file-address = offset + file-position

then uses this effective address to read from the corresponding
file.

adb debugger 6-37

Miscellaneous Features

The following sections explain several of the commands and
features of adb.

Combining Commands on a Single Line

You can give more than one command on a line by separating the
commands with a semicolon (;). The commands are performed one
at a time, starting at the left. Changes to the current address and
format carryover to the next command. If an error occurs, the
remaining commands are ignored.

One such combination is to place a (?) command after a I
command. For example, the command:

? 1 'Th'; ?s

searches for and displays a string that begins with the characters
Th.

6-38 Application Development Guide

Creating adb Scripts

You can direct adb to read commands from a text file instead of
the keyboard by redirecting adb's standard input file at
invocation. To redirect the standard input, use the standard
redirection symbol < and supply a file name. For example, to
read commands from the file script, type:

adb sample <script

The file you supply must contain valid adb commands. Such files
are called script files and can be used with any invocation of the
debugger.

Read commands from a script file when you want to use the same
set of commands on several different object files. Scripts display
the contents of core files after a program error. For example, a
file containing the following commands is used to display most of
the relevant information about a program errOL':

l20$w
4095$s
$v
=3"
$m
=3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
=3n"Registers"
$r

O$s
=3"Data Segment"
<b,-1/8xna

adb debugger 6-39

Setting Output Width

You can set the maximum width (in characters) of each line of
output created by adb by using the $w command. The command
has the form:

n$w

where n is an integer giving the width in characters of the
display. You can give any width convenient for your terminal or
display device. The default width when adb is first invoked is 80
characters.

The command is used when redirecting output to a line printer or
special terminal. For example, the command:

120$w

sets the display width to 120 characters, a common maximum
width for line printers.

Setting the Maximum Offset

The adb program debugger normally displays memory and file
addresses as the sum of a symbol and an offset. This helps you
associate the instructions and data you are viewing with a given
function or variable. When first invoked, adb sets the maximum
offset to 255. This means instructions or data no more than 255
bytes from the start of the function or variable are given symbolic
addresses. Instructions or data beyond this point are given
numeric addresses.

6-40 Application Development Guide

In many programs, the size of a function or variable is actually
larger than 255 bytes. For this reason adb lets you change the
maximum offset to accommodate larger programs. You can
change the maximum offset by using the $8 command. The
command has the form:

n$s

where n is an integer giving the new offset. For example, the
command:

4095$s

increases the maximum possible offset to 4095. All instructions
and data that are no more than 4095 bytes away are given
symbolic addresses.

You can disable all symbolic addressing by setting the maximum
offset to zero. All addresses are given numeric values instead.

Setting Default Input Format

You can set the default format for numbers used in commands
with the $d (decimal), $0 (octal), and $x (hexadecimal) commands.
The default format tells adb how to interpret numbers that do not
begin with 0 or Ox and how to display numbers when no specific
format is given.

The commands are useful if you want to work with a combination
of decimal, octal, and hexadecimal numbers. For example, if you
use:

$x

you can give addresses in hexadecimal numbers without
preceding each address with the Ox identifier. Furthermore, adb
displays all numbers in hexadecimal format except those
specifically requested to be in some other format.

When you first start adb, the default format is decimal. You can
change this at any time and restore it as necessary using the $d
command.

adb debugger 6-41

Using PC XENIX Commands

You can execute PC XENIX commands without leaving adb by
using the adb escape command (!). The escape command has the
form:

! command

where command is the PC XENIX command you want to execute.
The command must have any required arguments. The adb
program debugger passes this command to the system shell that
executes it. When finished, the shell returns control to adb.

For example, to display the date type:

! date

The system displays the date at your terminal and restores
control to adb.

Computing Numbers and Displaying Text

You can perform arithmetic calculations while in adb by using
the equal (=) command. The command directs adb to display the
value of an expression in a given format.

The command converts numbers in one base to another,
double-checks the arithmetic performed by a program, and
displays complex addresses in easier form. For example, the
command:

Ox2a=d

displays the hexadecimal number Ox2a as the decimal number 42
but:

Ox2a==c

displays it as the ASCII character (*). Expressions in a command
can have any combination of symbols and operators. For
example, the command:

<dO-12*<dl+<b+5=X

computes a value using the contents of the dO and dl registers
and the adb variable b. You can also compute the value of
external symbols as in the command:

main+5==X

This checks the hexadecimal value of an external symbol address.

6-42 Application Development Guide

The (=) command can also be used to display literal strings at
your terminal. This is especially useful in adb scripts to display
comments about the script as it performs its commands. For
example, the command:

=3n"C Stack Backtrace"

spaces three lines, then prints the message C Stack Backtrace
on the terminal.

adb debugger 6-43

An Example: Directory and Inode
Dumps

This example illustrates how to create adb scripts to display the
contents of a directory file and the in ode map of a PC XENIX file
system. The directory file is assumed to be named dir and
contains a variety of files. The PC XENIX file system is assumed
to be associated with the device file /dev/src and has the
necessary permissions to be read by the user.

To display a directory file, you must create an appropriate script.
A directory file normally contains one or more entries. Each
entry consists of an unsigned inode number (in umber) and a
14-character file name. You can display this information by
including a command in your script file. The following command,
for example, displays the first 20 entries, separating the inode
number and file name with a tab:

0,20?ut14cn

You can change the second number 20 to specify the number of
entries in the directory. If you place the command:

="inurnber"8t"Name"

at the beginning of the script, adb will display the strings as
headings for each column of numbers.

Once you have the script file, redirect it as input when you start
adb with the name of your directory. For example, type:

adb dir - <script

6-44 Application Development Guide

(The hyphen (-) is used to prevent adb from attempting to open a
core file.) The adb program debugger reads the commands from
the script and the resulting display has the form:

inumber name
652
82
5971 cap.c
5323 cap
0 pp

To display the in ode table of a file system, you must create a new
script, then start adb with the file name of the device associated
with the file system (for example, the fixed-disk drive).

The inode table of a file system has a complex structure. Each
entry contains:

• A word value for the file's status flags
• A byte value for the number links
• 2-byte values for the user and group IDs
• A byte and word value for the size
• 8-word values for the location on disk of the file's blocks
• 2-word values for the creation and modification dates.

The inode table starts at the address 02000. You can display the
first entry by typing:

02000,-1?on3bnbrdn8un2Y2na

Several new lines are inserted within the display to make it easier
to read.

To use the script on the inode table of /dev /src, type:

adb /dev/src - <script

(Again, the hyphen (-) is used to prevent an unwanted core file.)
Each entry in the display has the form:

02000: 073145
0163 0164 0141
0162 10356
28770 8236 25956 27766 25455 8236 25956 25206
1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

adb debugger 6-45

Patching Binary Files

You can make corrections or changes to any file, including
executable binary files, by using the wand W commands and
invoking adb with the -w option. The following sections describe
how to locate and change values in a file.

Locating Values in a File

You can locate specific values within a file by using the 1 and L
commands. The commands have the form:

[address 1 ? 1 value

where address is the address at which to start the search, and
value is the value (given as an expression) to be located. The 1
command searches for 2-byte values; L for 4 bytes values.

The ?1 command starts the search at the current address and
continues until the first match or the end of the file. If the value
is found, the current address is set to that value's address. For
example, the command:

?1 'Th'

searches for the first occurrence of the string value Th. If the
value is found at main+210, the current address is set to that
address.

6-46 Application Development Guide

Writing to a File

You can write to a file by using the wand W commands. The
commands have the form:

[address 1 ?w value

where address is the address of the value you want to change,
and value is the new value. The w command writes 2-byte values;
W writes 4-byte values. For example, the following commands
change the word This to The:

?1 'Th'

?W 'The'

The W changed all four characters.

Making Changes to Memory

You can also make changes to memory whenever a program has
been executed. If you have used an :r command with a breakpoint
to start program execution, subsequent w commands cause adb to
write to the program in memory rather than to the file. This
command is useful if you want to make changes to a program's
data as it runs, for example, to temporarily change the value of
program flags or constants.

adb debugger 6-47

6-48 Application Development Guide

Chapter 7. The lex Program: A
Lexical Analyzer

Introduction

The lex program generator is designed to construct programs for
lexical processing of character input streams. It accepts a
high-level, problem-oriented specification for character string
matching, and produces a C program that recognizes regular
expressions in the input stream. The regular expressions are
specified by the user in the source specifications given to lex. The
lex code recognizes these expressions and partitions the input
stream into strings matching the expressions. Program sections
provided by the user are executed at the boundaries between
strings. The lex source file associates the regular expressions
and the program fragments. As each expression appears in the
input to the program written by lex, the corresponding fragment
is executed.

The user can supply the additional code needed to complete the
tasks, including code written by other generators. The program
that recognizes the expressions is generated from the user's C
program fragments. The lex program is not a complete language,
but a generator representing a new language feature added on top
of the C programming language.

The lex program generator turns the user's expressions and
actions (called source in this chapter) into a C program named
yylex. The lex program generator then uses the yylex program to
recognize expressions in a stream (called input in this chapter)
and to perform the specified actions for each expression as it is
detected.

lex 7.;..1

Consider a program to delete (from the input) all blanks or tabs
at the ends of lines. The following lines:

%%

[\tJ+$

are all that is required.

The program contains a double percent sign (%%) delimiter to
mark the beginning of the rules statement in the program. The
rule in this example contains a regular expression that matches
one or more instances of the characters blank or tab (written \t
for visibility, in accordance with the C-Ianguage convention) just
prior to the end of a line. The brackets indicate the character
class made of blank and tab; the plus sign (+) indicates one or
more of the previous item; and the dollar sign ($) indicates the
end of the line. No action is specified, so the program generated
by lex ignores these characters. Everything else is copied. To
change any remaining string of blanks or tabs to a single blank,
add another rule:

%%

[\t]+$
[\tJ+ printf(" ");

The finite automaton generated for this source scans for both
rules at once. It determines whether or not there is a newline
character at the end of the string of blanks or tabs, and then
executes the desired action. The first rule matches all strings of
blanks or tabs at the end of lines, and the second rule matches all
remaining strings of blanks or tabs.

The lex program generator is used alone for simple
transformations, or for analysis and statistics gathering on a
lexical level. The lex program is also used with a parser
generator to perform the lexical analysis phase. It is especially
easy to interface lex and yacc. The lex program recognizes only
regular expressions; yacc writes parsers that accept a large class
of context-free grammars, but that require a lower-level analyzer
to recognize input tokens. Thus, a combination of lex and yacc
is often appropriate. When used as a preprocessor for a later
parser generator, lex partitions the input stream, and the parser
generator assigns structure to the resulting pieces. Additional
programs, written by other generators or by hand, can be added
easily to programs written by lex. The programs lex and yacc are
often used together. Users of yacc will realize that the name
yylex is what yacc expects its lexical analyzer to be named, so
that the use of this name by lex simplifies interfacing.

7-2 Application Development Guide

The lex program generates a deterministic finite automaton from
the regular expressions in the source. To save space, the
automaton is interpreted rather than compiled. The result is still
a fast analyzer. In particular, the time taken by a lex program to
recognize and partition an input stream is proportional to the
length of the input. The number of lex rules or the complexity of
the rules is not important in determining speed, unless rules that
include forward context require a significant amount of
rescanning. What does increase with the number and complexity
of rules is the size of the finite automaton and, therefore, the size
of the program generated by lex.

In the program written by lex, the fragments left for the user
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch. The
automaton interpreter directs the flow of control. Opportunity is
provided for the user to insert either declarations or additional
statements in the routine containing the actions, or to add
subroutines outside this action routine.

The lex program generator is not limited to source that can be
interpreted on the basis of one character lookahead. For
example, if there are two rules, one looking for ab and another
for abcdef g, and the input stream is abcdefh, lex recognizes ab
and leaves the input pointer just before cd. Such backup is more
costly than the processing of simpler languages.

lex 7-3

Invoking lex

There are two steps in compiling a lex source program. First, the
lex source must be turned into a C language program. Then, this
program must be compiled and loaded, usually with a library of
lex subroutines. The generated program is in a file named
lex.yy.c. The I/O library is defined in terms of the C standard
library.

The library is accessed by the loader flag -ll. So an appropriate
set of commands is:

lex source
cc lex.yy.c -11

The resulting program is placed on the usual file a.out for later
execution. To use lex with yacc see "Using yacc with lex" on
page 7-28. Also, refer to Chapter 8, "The yacc Program
Generator: A Compiler-Compiler" on page 8-1. Although the
default lex I/O routines use the C standard library, the lex
automata themselves do not do so. If private versions of
input(),output() and unput() are given, the library can be
avoided.

7-4 Application Development Guide

The lex Source Format

The general format of lex source is:

{definitions}
%%

{rules}
%%

{user subroutines}

where the definitions and the user subroutines are often omitted.
The second % % is optional, but the first is required to mark the
beginning of the rules. The absolute minimum lex program is:

%%

(no definitions, no rules) which translates into a program that
copies the input to the output unchanged.

In the lex program format shown above, the rules represent the
user's control decisions. They make up a table in which the left
column contains regular expressions and the right column
contains actions (program fragments) to be executed when the
expressions are recognized. Thus, the following individual rule
might appear:

integer printf("found keyword INT");

This looks for the string integer in the input stream and prints
the message:

found keyword INT

whenever it appears in the input text. In this example the C
library function printf() prints the string. The end of the lex
regular expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it can be
given on the right side of the line; if it is compound, or takes
more than a line, it should be enclosed in braces. As a slightly
more useful example, suppose it is desired to change a number of
words from British to American spelling. The lex program
generator rules such as:

colour
mechanise
petrol

printf("color");
printf ("mechanize") ;
printf ("gas") ;

would be a start. These rules are not quite enough, since the
word petroleum would become gaseum; a way of dealing with

lex 7-5

such problems is described in "Handling Ambiguous Source
Rules" on page 7-19.

7-6 Application Development Guide

The lex Regular Expressions

A regular expression specifies a set of strings to be matched. It
contains text characters, that match the corresponding
characters in the strings being compared, and operator characters
(these specify repetitions, choices, and other features). The
letters of the alphabet and the digits are always text characters.
Thus, the regular expression:

integer

matches the string integer wherever it appears and the
expression,

aS7D

looks for the string as 7D.

The operator characters are:

""\ [] -? *+: () $/{}%<>

lex 7-7

Using the Operator Characters

The lex program can match any set of strings that you specify
using the operator characters. The following sections describe
ways of specifying the strings you want matched.

Specifying a Literal Use

If any of the operator characters are used literally, they need to
be quoted individually with a backslash (\) or as a group within
quotation marks ("). The quotation mark operator (") indicates
that whatever is contained between a pair of quotation marks is
to be taken as text characters. Thus:

xyz"++"

matches the string xyz++ when it appears. Part of a string can
be quoted. It is harmless but unnecessary to quote an ordinary
text character. The expression:

"xyz++"

is the same as the one above. Thus, to keep from memorizing the
above list of current operator characters, you can quote every
non-alphanumeric character used as a text character.

An operator character can also be turned into a text character if
you precede it with a backslash (\) as in:

xyz\+\+

That is another equivalent of the above expressions, although it
is more difficult to read. The quoting mechanism is also used to
get a blank into an expression. Normally, as explained above,
blanks or tabs end a rule. Any blank character not contained
within brackets must be quoted. Several normal C escapes with
the backs lash (\) are recognized:

\n newline

\t tab

\b backspace

\\ backslash

Since newline is an illegal expression, a (\n) must be used. You
do not need to escape (\) a tab or backspace. Every character

7-8 Application Development Guide

except blank, tab, newline, backspace, and backslash is always a
text character.

Specifying Character Classes

Classes of characters can be specified by enclosing them within a
left bracket and a right bracket. The construction:

[abc]

matches a single character that can be a, b, or c. Within square
brackets, most operator meanings are ignored. Only three
characters are special: the dash (-), the caret C"), and the
backslash (\).

The dash character indicates ranges. For example:

[a-zO-9<>_]

indicates the character class containing all the lowercase letters,
the digits, the angle brackets, and underline. Ranges can be
given in either ascending or descending order. Using the dash
between any pair of characters that are not both uppercase
letters, both lowercase letters, or both digits is implementation
dependent and causes a warning message. If you want to include
the dash in a character class, the dash should be first or last;
thus:

[-+0-9]

matches all the digits and the minus and plus signs.

In character classes, the caret (A) operator must appear as the
first character after the left bracket. The caret indicates that the
resulting string is to be complemented with respect to the
computer character set. Thus:

[Aabc]

matches all characters except a, b, or, c, (including all special or
control characters).

[A a-zA-Z]

In the above example, any character that is not a letter is
matched.

lex 7-9

Specifying an Arbitrary Character

The backs lash (\) provides an escape mechanism within character
class brackets, so that characters can be entered literally by
preceding them with this character.

Escaping into the octal format is possible although nonportable.
For example:

[\40-\176]

matches all printable characters in the ASCII character set, from
octal 40 (blank) to octal 176 (tilde).

To match almost any character, the period (.) designates the
class of all characters except a newline.

Specifying Optional Expressions

The question mark (?) operator indicates an optional element of
an expression. Thus:

ab?c

m.atches either ac or abc, Here the m.eaning of the question mark
differs from its meaning in the shell.

7-10 Application Development Guide

Specifying Repeated Expressions

Repetitions of classes are indicated by the asterisk (*) and plus
(+) operators. For example:

a*

matches any number of consecutive a characters, including zero;
while a+ matches one or more instances of a. For example:

[a-z]+

matches all strings of lowercase letters, and

[A-Za-z] [A-Za-zO-9]*

matches all alphanumeric strings with a leading alphabetic
character. This is a typical expression in computer languages for
recognizing identifiers.

Specifying Alternation and Grouping

The vertical bar (I) operator indicates alternation. For example:

(ab:Cd)

matches either ab or cd. Parentheses are used for grouping,
although they are not necessary at the outside level. For
example:

ab:Cd

would have sufficed in the preceding example. Parentheses are
necessary for more complex expressions, such as:

(ab:Cd+)? (ef) *

to match such strings as abef ef, ef ef ef, cdef, and cddd, but
not abc, abed, or abcdef.

lex 7-11

Specifying Context Sensitivity

The lex program generator recognizes a small amount of
surrounding context. The two simplest operators for this are the
caret (1\) and the dollar sign ($). If the first character of an
expression is a caret, then the expression is only matched at the
beginning of a line (after a newline character, or at the beginning
of the input stream). This use of the caret can never conflict
with the other meaning of the caret (complementation of
character classes) because complementation only applies within
brackets. If the very last character is dollar sign, the expression
is only matched at the end of a line (when immediately followed
by newline). The latter operator is a special case of the slash (/)
operator, and indicates trailing context. The expression:

ab/cd

matches the string ab but only if followed by cd. Thus:

ab$

is the same as:

ab/\n

Left context is handled in lex bv snecifving start conditions as
explained in "Specifying Left C~nt~ext Sen~itivity" on page 7-23.
If a rule is only to be executed when the lex automaton
interpreter is in start condition x, the rule should be enclosed in
angle brackets:

<x>

If the beginning of a line starts condition ONE, then the caret (1\)
operator is equivalent to:

<ONE>

Start conditions are explained more in "Specifying Left Context
Sensitivity" on page 7-23.

7-12 Application Development Guide

Specifying Expression Repetition

The curly braces ({ }) specify either definition expansions, if they
enclose a name, or repetitions, if they enclose numbers. For
example:

{digit}

looks for a predefined string named digit and inserts it at that
point in the expression. The definitions are given before the
rules in the lex input. In contrast,

aD,S}

looks for 1 to 5 occurrences of the character a.

Specifying Separate Segments

An initial percent sign (%) is the separator for lex source
segments.

lex 7-13

Writing Actions

When an expression is matched by a pattern of text in the input,
lex executes the corresponding action. Actions are written in the
rules section of the lex source format. This section of the guide
describes some features of lex that aid in writing actions. There
is a default action that consists of copying the input to the
output; therefore, a rule that merely copies can be omitted. This
is performed on all strings not otherwise matched. Thus to
absorb the entire input without producing any output, provide
rules to match everything. The lex program used with yacc is
the normal situation.

One of the simplest things that you can do is to ignore input by
specifying a C null statement (;) as an action to a rule. In the
following example, the null action causes the three spacing
characters (blank. tab, and new line) to be ignored.

[\t\n]

Another easy way to avoid writing actions is to use the repeat
action character (I). The (I) tells lex to group this rule with the
next until an action is stated. The lex program then performs the
action on all strings that matched each rule. Therefore. vou can
also write the previous example as follows: ' ~

" "
n\t Jl

"\n Jl

The result is the same although the style is different. The
quotation marks around (\t) and (\n) are not required.

In more complex actions, you often want to know the actual text
that matched an expression like:

[a-z]+

The lex program generator leaves this text in an external
character array named yytext. Thus, to print the name that is
found, a rule like:

[a-z]+ printf(JI%sJl, yytext);

prints the string in yytext. The C function printf accepts a
format argument and data to be printed. In this case, the format
is print string where the percent sign (%) indicates data
conversion, the s indicates string type, and the data are the
characters in yytext. This rule places the matched string on the

7-14 Application Development Guide

output and is so common that it is written as ECHO. For
example:

(a-z]+ ECHOi

has the same result as the preceding example. Since the default
action is to print the characters found, one might ask the reason
for giving a rule that merely specifies the default action. Such a
rule is often required to avoid matching some other rule that is
not desired. For example, if there is a rule that matches read, it
matches the instances of read contained in bread or readjust.
To avoid this, a rule of the following form is needed.

(a-z]+

The lex program also provides a count of the number of
characters matched. This count is kept in the variable yyleng.
To count both the number of words and the number of characters
in words in the input, you might write:

(a-zA-Z]+ {words++i chars += yylengi}

which accumulates in the variable chars the number of
characters in the words recognized. The last character matched
in the string can be accessed with:

yytext[yyleng-l]

Occasionally, lex will detect that a rule has not recognized the
correct span of characters. Two routines are provided to aid with
this situation. First, yymore() can be called to indicate that the
next input expression recognized is to be tacked on to the end of
the input. (Normally, the next input string overwrites the
current entry in yytext.) Second, yyless(n) can be called to
indicate that not all the characters matched by the currently
successful expression are wanted right now. The argument n
indicates the number of characters in yytext to be retained.
Further characters previously matched are returned to the input.
This procedure provides the same sort of lookahead ability
offered by the slash (I) operator, but in a different form.

lex 7-15

For example consider a language that defines a string as a set of
characters between quotation marks ("), and specifies that a
quotation mark in a string must be preceded by a backslash (\).
The regular expression that matches this is somewhat confusing,
so that it might be preferable to write:

\" [/\ "] *
if (yytext[yyleng-l] == '\\')

yymore() ;
else

... normal user processing

When faced with a string such as:

" abc\"def"

the lex program first matches the five characters:

"abc\

and then the call to yymore() causes the next part of the string:

"def

to be tacked on the end. The final quotation mark terminating
the string should be picked up in the code labeled normal
processing.

The function yyless() might be used to re-process text in various
circumstances. Consider the problem in the older C syntax of
distinguishing the ambiguity of =-a. Suppose it is desired to treat
this as =- a and to print a message. A rule might be:

=-[a-zA-z]
printf("Operator (=-) ambiguous\n");
yyless(yyleng-l) ;
... action for =- .. ,

which prints a message, returns the letter after the operator to
the input stream, and treats the operator as =-.

7-16 Application Development Guide

Alternatively it might be desired to treat this as = -a. To do this,
just return the minus sign as well as the letter to the input. The
following performs the interpretation:

=-[a-zA-z]
printf("Operator (=-) ambiguous\n");
yyless(yyleng-2) ;
... action for = ...

The expressions for the two cases might more easily be written:

=-/[A-Za-z]

in the first case and

=/-[A-Za-z]

in the second. No backup is required in the rule action. It is not
necessary to recognize the whole identifier to observe the
ambiguity. The possibility of =-3, however, makes the following a
better rule:

=-/[/\ \t\n]

In addition to these routines, lex also permits access to the I/O
routines it uses. They include:

• input() which returns the next input character
• output (c) which writes the character c on the output
• unput (c) which pushes the character c back onto the input

stream to be read later by input().

By default these routines are provided as macro definitions, but
the user can override them and supply private versions. These
routines define the relationship between external files and
internal characters, and they must all be retained or modified
consistently. They can be redefined to cause input or output to
be transmitted to or from strange places, including other
programs or internal memory_ However, the character set used
must be consistent in all routines; a value of zero returned by
input() must mean end-of-file; and the relationship between
unput() and input() must be retained or the look-ahead does
not work. The lex program generator does not look ahead at all
if it does not have to, but every rule containing a slash (/) or
ending in one of the following characters implies look-ahead:

+ * ? $

lex 7-17

Look-ahead is also necessary to match an expression that is a
prefix of another expression. The standard lex library imposes a
IOO-character limit on backup.

Another lex library routine that you sometimes want to redefine
is yywrap() which is called whenever lex reaches an end-of-file.
If yywrap() returns a 1, lex continues with the normal wrap up
on end-of-input. Sometimes, however, it is convenient to arrange
for more input to arrive from a new source. In this case, the user
should provide a yywrap() that arranges for new input and
returns a o. This instructs lex to continue processing. The
default yywrap() always returns a 1.

This library routine is also a convenient place to print such
things as tables and summaries at the end of a program. You
cannot write a normal rule that recognizes end-of-file; the only
access to this condition is through yywrap(). In fact, unless a
private version of input() is supplied, a file containing nulls
cannot be handled, because a value of 0 returned by input() is
taken to be end-of-file.

7-18 Application Development Guide

Handling Ambiguous Source Rules

The lex program generator can handle ambiguous specifications.
When more than one expression matches the current input, lex
chooses as follows:

• The longest match is preferred.
• Among rules that match the same number of characters, the

first given rule is preferred.

For example, suppose the following rules are given:

integer keyword action ... ;
[a-z]+ identifier action ... ;

If the input is integers, it is taken as an identifier, because:

[a-z]+

matches 8 characters while:

integer

matches only 7. If the input is integer, both rules match 7
characters, and the keyword rule is selected because it was given
first. Anything shorter (for example, int) does not match the
expression integer, so the identifier interpretation is used.

lex 7-19

The principle of preferring the longest match makes certain
constructions dangerous, such as the following:

*
For example, the rule:

, . *'

might seem a good way of recognizing a string in single quotes.
But it is an invitation for the program to read far ahead, looking
for a distant single quote. Presented with the input:

'first' quoted string here, 'second' here

the above expression matches:

'first' quoted string here, 'second'

and that is probably not what was wanted. A better rule is of the
form:

, [A' \n] *

which, on the above input, stops after 'f ir st '. The
consequences of errors like this are mitigated by the fact that the
dot (.) operator does not match a newline. Therefore, no more
than one line is ever mat.ched by such expressions, Don't try to
overcome this fact with expressions like:

[. \n]+

or their equivalents. The lex generated program tries to read the
entire input file, causing internal buffer overflows.

7-20 Application Development Guide

The lex program generator is normally partitioning the input
stream, not searching for all possible matches of each expression.
This means that each character is accounted for only once. For
example, suppose you want to count occurrences of both she and
he in an input text. Some lex rules to do this might be:

she s++;
he h++;

\n

where the last two rules ignore everything besides he and she
Remember that the period (.) does not include the newline
character. Since she includes he, lex does not recognize the
instances of he included in she, since once it has passed a she
those characters are gone.

Sometimes you may want to override this precedent just
mentioned. The action REJECT sends lex to the next rule. The
position of the input pointer is adjusted accordingly. To count
the included instances of he:

she [s++; REJECT;}

he [h++; REJECT;}

\n

This group of rules is one way of changing the previous example
to do just that. After counting each expression, it is rejected;
whenever appropriate, the other expressions are then counted. In
this example, of course, you could note that she includes he, but
not vice versa, and omit the REJECT action on he; in other
cases, however, it would not be possible to tell which input
characters were in both classes.

lex 7-21

Consider the two rules:

a[bc]+ [... ; REJECT;}

a [cd] + [... ; REJECT;}

If the input is ab, only the first rule matches, and on ad only the
second matches. The input string accb matches the first rule for
4 characters and then the second rule for 3 characters. In
contrast, the input aced agrees with the second rule for 4
characters and then the first rule for 3 characters.

REJECT is useful whenever the purpose of lex is not to partition
the input stream but to detect all examples of some items in the
input. The instances of these items may overlap or include each
other. Suppose a digram table of the input is desired; normally
the digrams overlap; that is, the word the is considered to
contain both th and he. Assuming a two-dimensional array
named digr am to be incremented, the appropriate source is:

%%

[a-z] [a-z] {digram[yytext[O]] [yytext[l]]++; REJECT;}

\n

where the REJECT is necessary to pick up a letter pair beginning
at every character, rather than at every other character.

Remember that REJECT does not rescan the input. Instead it
remembers the results of the previous scan. This means that if a
rule with trailing context is found, and REJECT is executed, you
must not have used unput() to change the characters
forthcoming from the input stream. This is the only restriction in
your ability to manipulate the not-yet-processed input.

7-22 Application Development Guide

Specifying Left Context Sensitivity

Sometimes it is desirable to have several sets of lexical rules to
be applied at different times in the input. For example, a
compiler preprocessor might distinguish preprocessor statements
and analyze them differently from ordinary statements. This
requires sensitivity to prior context, and there are several ways of
handling such problems. The caret (") operator, for example, is a
prior context operator that recognizes immediately preceding left
context just as the dollar sign ($) recognizes immediately
following right context. Adjacent left context could be extended
to produce a facility similar to that for adjacent right context,
but it is unlikely to be as useful, since often the relevant left
context appeared some time earlier, such as at the beginning of a
line.

This section describes three means of dealing with different
environments:

• Flags, when only a few rules change from one environment to
another

• Start conditions with rules

• Multiple lexical analyzers running together.

In. each case, there are rules that recognize the need to change
the environment in which the following input text is analyzed.
These rules also set some parameters to reflect the change.
Using a flag explicitly tested by the user's action code is the
simplest way of dealing with the problem, since lex is not
involved at all. It can be more convenient, however, to have lex
remember the flags as initial conditions on the rules. Any rule
can be associated with a start condition. It is only be recognized
when lex is in that start condition. The current start condition
can be changed at any time. Finally, if the sets of rules for the
different environments are very dissimilar, clarity can be best
achieved by writing several distinct lexical analyzers and
switching from one to another as desired.

Consider the following problem:

1. Copy the input to the output.

2. Change the word magic to first on every line that begins
with the letter a.

3. Change magic to second on every line that begins with the
letter b.

lex 7-23

4. Change magic to third on every line that begins with the
letter c.

5. Leave all other words and all other lines unchanged.

These rules are so simple that the easiest way to do this job is
with flags:

%%
Aa
Ab
AC

\n
magic

int flag = 0;

{flag 'a' ; ECHO; }
{flag 'b' ; ECHO; }
{flag 'c' ; ECHO; }
{flag = 0 ; ECHO; }
{

switch (flag) {

case 'a': printf("first"); break;
case I b ': pr intf (II second"); break;
case Ie': printf("third"); break;

default: ECHO; break;
}

To handle the same problem with start conditions, each start
condition must be introduced to lex in the definitions section
with a line reading:

%Start namel name2

The conditions can be named in any order. The word Start can
be abbreviated to s or s. The conditions can be referenced at the
head of a rule with angle brackets. For example:

<namel>expression

is a rule recognized only when lex is in the start condition
namel. To enter a start condition, execute the action statement:

BEGIN namel;

which changes the start condition to namel . To return to the
initial state, use:

BEGIN 0;

This statement resets the initial condition of the lex automaton
interpreter. A rule can be active in several start conditions; for
example:

<namel,name2,name3>

7-24 Application Development Guide

Any rule not beginning with the < > prefix operator is always
active.

The example changing magic can now be written:

%START AA BB CC
%%
I\a {ECHO; BEGIN AA; }
I\b {ECHO; BEGIN BB; }
I\c {ECHO; BEGIN CC; }
\n {ECHO; BEGIN 0; }

<AA>magic printf("first ll
) ;

<BB>magic pr intf (II second") ;
<CC>magic pr intf ("third") ;

w here the logic is exactly the same as in the previous method of
handling the problem, but lex does the work rather than the
user's code.

lex 7-25

Specifying Source Definitions

Remember the format of the lex source:

{definitions}
%%

{rules}
%%

{user routines}

So far only the rules have been described. You need additional
options, however, to define variables for use in your program and
for use by lex. You can write options either in the definitions
section or in the rules section.

Remember that lex is turning the rules into a program. Any
source not intercepted by lex is copied into the generated
program. There are three classes of source lex will not intercept:

1. Any line that is not part of a lex rule or action and that
begins with a blank or tab is copied into the lex-generated
program. Such source input prior to the first % % delimiter is
extern,al to any function in the code; if the input appears
immediately after the first %%, it appears in an appropriate
place for declarations in the function written by lex which
contains the actions. This material must look like program
fragments and should precede the first lex rule.

Lines that begin with a blank or tab, and that contain a
comment, are passed through to the generated program. Such
lines can be used to include comments in either the lex
source or the generated code. The comments should follow
the conventions of the C language.

2. Anything included between lines containing only % { and %}

is copied to the program. The delimiters are discarded. You
can use this format for entering preprocessor statements that
must begin in column 1, or copying lines that do not look like
programs.

3. Anything after the second %% delimiter, regardless of format,
. is copied to the generated program after the lex output.

Definitions intended for lex are given before the first %%

delimiter. Any line in this section not contained between % { and
%} and beginning in column 1 is assumed to define lex
substitution strings. The format of such lines is:

name translation

7-26 Application Development Guide

The definition causes the string given as a translation to be
associated with the name. The name and translation must be
separated by at least one blank or tab, and the name must begin
with a letter. The translation can then be called out by the
{name} syntax in a rule.

Note:

1. The lex program considers blanks and tabs that follow the
translation as part of the translation. This situation may
cause errors.

2. A lex substitution string name may not be used inside of []
(brackets) because the brackets remove the meaning of the
{ } operators. For example, if you define A to be 0-9, [{A}] is
not equivalent to [0-9].

Using {D} for the digits and {E} for an exponent field, for
example, might abbreviate rules to recognize numbers:

D

E

%%

{D}+

{D}+"." {D}* ({E})?

{D}*"."{D}+({E})?

{D}+{E}

[0-9]
[DEde] [-+]?{D}+

pr intf (" integer") ;

printf ("real") ;

The first two rules for real numbers require that the string have a
decimal point and contain an optional exponent field. The first
rule requires at least one digit before the decimal point and the
second requires at least one digit after the decimal point. To
correctly handle the problem posed by a FORTRAN expression
such as 35. EQ. I (that does not contain a real number), a
context-sensitive rule such as the following could be used.

[0-9]+/"."EQ printf (" integer") i

This rule is in addition to the normal rule for integers.

The definitions section can also contain other commands,
including a character set table, a list of start conditions, or
adjustments to the default size of arrays within lex itself for
larger source programs. These possibilities are discussed in
"Source Format" on page 7-31.

lex 7-27

Using yacc with lex

The default output for lex is yylex(). The yacc program requires
the input from lex to have the name yylex(). When you use
yacc with lex, you must end each lex rule with:

return (token) i

where the appropriate token value is returned. An easy way to
get access to the names yacc uses for tokens is to compile the lex
output file as part of the yacc output file by placing the line:

#include "lex.yy.c"

in the last section of yacc input. If the grammar is named good
and the lexical rules to be named better, the PC XENIX
command sequence is:

yacc good
lex better
cc y.tab.c -ly -11

The yacc library (-ly) should be loaded before the lex library (-ll)
in order to obtain a main program that invokes the yacc parser.
The generation of lex and yacc programs can be done in either
order.

7-28 Application Development Guide

Specifying Character Sets

The programs generated by lex handle character I/O only
through the routines input(), output(), and unput(). Thus
the character representation provided in these routines is
accepted by lex and employed to return values in yytext. For
internal use, a character is represented as a small integer which,
if the standard library is used, has a value equal to the integer
value of the bit pattern representing the character on the host
computer. Normally, the letter a is represented as the same form
as the character constant:

'a'

If this interpretation is changed, by providing I/O routines that
translate the characters, lex must be told about it, by being given
a translation table. This table must be in the definitions section,
and must be bracketed by lines containing only %T. The table
contains lines of the form:

{integer} [character string}

that indicate the value associated with each character.

For example, the following table maps the lowercase and
uppercase letters together into the integers 1 through 26, newline
into 27, plus (+) and minus (-) into 28 and 29, and the digits into
30 through 39. Observe the escape for newline. If a table is
supplied, every character that is to appear either in the rules or
in any valid input must be included in the table. No character
can be assigned the number 0, and no character can be assigned a
larger number than the size of the hardware character set.

lex 7-29

%T
1 Aa
2 Bb

26 Zz
27 \n

28 +

29

30 0

31 1

39 9
%T

7-30 Application Development Guide

Source Format

The general form of a lex source file is:

{definitions}
%%

{rules}
%%

{user subroutines}

The definitions section contains a combination of:

• Definitions, in the form:

name translation

• Included code, in the form:

code

Note: code must be preceded by a space.

• Included code, in the form:

% {

code
%}

• Start conditions, given in the form:

%8 namel name2 ...

lex 7-31

• Character set tables, in the form:

%T
number character-string
%T

• Changes to internal array sizes, in the form:

%x nnn

where nnn is a decimal integer representing an array size,
and x selects the parameter as follows:

Letter Parameter

p positions
n states
t tree nodes
a transitions
k packed character classes
o output array size

Lines in the rules section have the form:

expression action

where the action is continued on succeeding lines by using braces
to delimit it.

7-32 Application Development Guide

Regular expressions in lex use the following operators:

x The character x.

"x"

\x

[xy]

[x-z]

[AX]

AX

<y>x

x$

x?

x*

x+

xly

(x)

xjy

{xx}

x{rn,n}

An x, even if x is an operator.

An x, even if x is an operator.

The character x or y.

The characters x, y or z.

Any character but x.

Any character but newline.

An x at the beginning of a line.

An x when lex is in start condition y.

An x at the end of a line.

An optional x.

0,1,2, ... instances of x.

1,2,3, ... instances of x.

An x or a y.

Anx.

An x but only if followed by y.

The translation of xx from the definitions section.

m through n occurrences of x.

lex 7-33

A lex Example

The example to follow is a suitable lex source program that
copies an input file while adding 3 to every positive number
divisible by 7.

%%

int k;
[0-9]+

k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+3);
else

printf("%d",k) ;

The rule [0-9] + recognizes strings of digits; atoi() converts the
digits to binary and stores the result in k. The remainder
operator (%) checks whether k is divisible by 7; if it is, it is
incremented by 3 as it is written out. An objection can be raised
that this program alters such input items as 49.63 or X7.
Furthermore, it increments the absolute value of all negative
numbers divisible by 7. To avoid this, just add a few more rules
after the active one. For exarl1ple:

%%

int k;
-?[0-9]+

-?[0-9.]+
[A-Za-z] [A-Za-zO-9]+

k = atoi(yytext);
printf("%d", k%7 == 0 ? k+3 k);
}

ECHO;
ECHO;

Numerical strings containing a decimal point or preceded by a
letter are picked up by one of the last two rules and not changed.
The if-else has been replaced by a C conditional expression to
save space; the form: a?b: c: means: if a then b else c.

7-34 Application Development Guide

For an example of gathering statistics, here is a program that
makes histograms of word lengths, where a word is defined as a
string of letters.

int lengs[100];
%%

[a-z]+ lengs[yyleng]++;

\n
%%

yywrap ()
[

int i;

printf("Length No. words\n");
for(i = 0; i < 100; i++)

if (lengs[i] > 0)
prin-tf("%5d%11d\n" ,i,lengs[i]);

return(l) i

This program accumulates the histogram, while producing no
output. At the end of the input, it prints the table. The final
statement return (1) ; indicates that lex is to perform wrap up.
If yywrap() returns zero (false), it implies that further input is
available and the program is to continue reading and processing.
A yywrap() that never returns true causes an infinite loop.

lex 7-35

As a larger example, here are some parts of a program written to
convert double-precision FORTRAN to single-precision
FORTRAN. Because FORTRAN does not distinguish between
uppercase and lowercase letters, this routine begins by defining a
set of classes including both cases of each letter:

a [aA]
b [bB]
e [eel

z [zZ]

An additional class recognizes white space:

w [\t]*

The first rule changes double precision to real, or DOUBLE
PRECISION to REAL.

{d} {a} {u} {b} {l} {e} {W} {p} {r} {e} {e} {i} {s} {i} {a} {n} {

printf(yytext[O]=='d'? "real" : "REAL");

Care is taken throughout this program to preserve the case of the
original program. The conditional operator is used to select the
proper form of the keyword. The next rule copies continuation
card indications to avoid confusing them with constants:
A" "[A 0] ECHO;

In the regular expression, the quotation marks surround the
blanks. This expression is interpreted as:

Beginning of line, then

Five blanks, then

Anything but blank or zero.

Two different meanings of the caret (A) are used in this example.
The first to specify beginning of line and the next to specify a
character class.

7-36 Application Development Guide

The example to follow shows some rules to change
double-precision constants to ordinary floating constants.

[0-9]+{W} Cd} {W} [+-]?{W} [0-9]+

[0-9] +{W}"." {W} Cd} {W} [+-]? {W} [0-9] +

" . " {W} [0 - 9] + {W} {d} {W} [+ -] 7 {W} [0 - 9] +

/* convert constants */

char *p;

for(p=yytext; *p != 0; p++)

ECHO;
}

if (*p == 'd' II *p == 'D')

*p+= 'e' - 'd';

After the floating-point constant is recognized, it is scanned by
the for loop to find the letter d or D. The program then adds

'e '-' d'

and then converts the d or D to the next letter of the alphabet.
The modified constant, now single-precision, is written out again.
A series of names follow that must be respelled to remove their
initial d. By using the array yytext the same action suffices for
all the names (only a sample of a rather long list is given here).

{d}{s}{i}{n}

{d}{c}{o}{s}

Cd} {s} {q} {r} {t}

Cd} {a} (t} {a} en}

Cd} {f} {l} Co} {a} {t} printf ("%s" ,yytext+1);

Another list of names must have initial d changed to initial a:

Cd} {l} Co} {g}

Cd} {l} Co} {g} 10

Cd} em} {i} en} 1

Cd} {m} {a} {x} 1

yytext[O] += 'a' - 'd';

ECHO;
}

lex 7-37

And one routine must have initial d changed to initial r:

{d} Hrn} {a} {c} {h}

yytext[O] += 'r' - 'd'i

ECHO;

To avoid such names as dsinx being detected as instances of
dsin, some final rules pick up longer words as identifiers and
copy some surviving characters:

[A-Za-z] [A-Za-zO-9]*
[0-9]+

\n
ECHO

This program is not complete; it does not deal with the spacing
problems in FORTRAN or with the use of keywords as identifiers.

7-38 Application Development Guide

Chapter 8. The yacc Program
Generator: A Compiler-Compiler

Introduction

The yacc program generator provides a general tool for
describing input to a computer program. The name yacc stands
for yet another compiler-compiler. The yacc user specifies the
structures of the input and the code to be invoked when each
structure is recognized. The yacc program generator turns the
specification into a subroutine that handles the input process.

The input subroutine produced by yacc calls a user-supplied
routine to return the next basic input item. Thus, the user can
specify input in terms of individual input characters or in terms
of higher-level constructs such as names and numbers. The
user-supplied routine can also handle idiomatic features such as
comment and continuation conventions, and these defy easy
grammatical specification. The class of specifications yacc
accepts is a general one: LALR grammars with disambiguating
rules. (LALR is a look-ahead-left-to-right type of parsing
mechanism. A disambiguating rule is a rule that describes
what choice to make in a given situation.)

In addition to compilers for C, APL, Pascal, RATFOR, etc., yacc
has also been used for less conventional languages. The yacc
program has been used to write a phototypesetter language,
several desk calculator languages, a document retrieval system,
and a FORTRAN debugging system.

The yacc program generator provides a general tool for imposing
structure on the input to a computer program. The yacc user
prepares a specification of the input process. This specification
includes rules describing the input structure, code to be invoked
when these rules are recognized, and a low-level routine to
process the basic input. The yacc program generator then
generates a function to control the input process. This function,
called a parser, calls the user-supplied, low-level input routine
(called the lexical analyzer) to pick up the basic items (called
tokens) from the input stream. The parser organizes these

yacc 8-1

tokens according to the user-supplied input structure rules, called
grammar rules. When yacc recognizes one of these rules, it
invokes user-supplied code (called an action). Actions have the
ability to return values and use the values of other actions.

The yacc program generator is written in a portable dialect of C.
The actions and output subroutine are also written in this
portable dialect. Moreover, many of the syntactic conventions of
yacc follow C language conventions.

The heart of the input specification is a collection of grammar
rules. Each rule describes an allowable structure and gives it a
name. For example, one grammar rule might be:

date : month-name day , , , year

Here, date, month-name, day, and year represent structures of
interest in the input process; month-name, day, and year must be
previously defined. The comma (,) is enclosed in single quotation
marks; this implies that the comma is to appear literally in the
input. The colon and semicolon serve as punctuation in the rule;
they have no significance in controlling the input. Thus, with
proper definitions, the input:

July 4, 1776

IS matched by the above rule.

The lexical analyzer carries out an important part of the input
process. This routine reads the input stream, recognizing the
lower-level structures, and communicates these structures or
tokens to the parser. A terminal symbol is a structure that is
recognized by the lexical analyzer. A nonterminal symbol is a
structure that is recognized by the parser. To avoid confusion,
this manual refers to terminal symbols as tokens.

There is considerable leeway in deciding whether to recognize
structures using the lexical analyzer or grammar rules. The
following example uses the parser to recognize the structure
month-name.

month_name
month_name

'J' 'a' In'
'F' 'e' 'b'

month_name: 'D' Ie' 'e' ;

Quoting each letter of the month-name causes the analyzer to
recognize only individual letters. Because each letter is

8-2 Application Development Guide

recognized, month_name is considered a nonterminal symbol.
Such low-level rules tend to waste time and space. Such rules
can also complicate the specification beyond yacc's ability to
deal with it. Usually, the lexical analyzer recognizes the month
names and returns an indication that a month-11ame was read. In
this case, month-11ame is considered a token.

Literal characters, such as the comma, must be passed through
the lexical analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add
the following rule to the above example:

date: month 'I' day 'I' year;

Adding this rule allows

7/4/1776

as a synonym for

July 4, 1776

In most cases, you can slip this new rule into a working system
with minimal effort and with little danger of disrupting existing
input.

The analyzer reads input with a left-to-right scan. It quickly
detects input that does not conform to the given specifications.
Because of this early error detection, there is less chance of
processing bad data, and errors are found quickly. Error
handling, provided as part of the input specifications, permits the
reentry of bad data or the continuation of the input process after
skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of
specifications. For example, the specifications can be self
contradictory, or they may require a more powerful recognition
mechanism than is available to yacc. Often, you can correct this
problem by rewriting some of the grammar rules. While yacc
cannot handle all possible specifications, its power compares
favorably with similar systems. The constructions that are
difficult for yacc to handle are also frequently difficult for users
to handle. Some users have reported that the discipline of
formulating valid yacc specifications for their input revealed
errors of conception or design early in the program development.

yacc 8-3

The next several sections describe:

• The preparation of grammar rules

• The preparation of the user-supplied actions associated with
the grammar rules

• The preparation of lexical analyzers

• The operation of the parser

• Some reasons why yacc may be unable to produce a parser
from a specification

• A simple mechanism for handling operator precedences (order
of arithmetic operation) in arithmetic operations

• Error detection and recovery

• The operating environment and special features of the parsers
yacc produces

• Suggestions to improve the style and efficiency of the
specifications.

8-4 Application Development Guide

Specifications

Names refer to either tokens or nonterminal symbols. The yacc
program requires token names to be declared as such. It is often
desirable to include the lexical analyzer as part of the
specification file. Including other programs in the specification
file can also be useful. Thus, every specification file consists of
three sections: the declarations, (grammar) rules, and programs.
The sections are separated by double percent %% marks. The
percent sign (%) is generally used in yacc specifications as an
escape character.

In other words. a full specification file looks like:

declarations
%%

rules
%%

The declaration section may be empty and the programs section
may be omitted. If you omit the programs section, omit the
second %%. The smallest legal yacc specification is:

%%

rules

The yacc program ignores blanks, tabs, and newlines in the
specifications. They must not, however, appear in names or
multicharacter reserved symbols. You may use comments
wherever the use of a name is legal, but you must enclose all
comments within /* and * /.

yacc 8-5

The rules section is made up of one or more grammar rules. A
grammar rule has the form:

A : BODY;

The A represents a nonterminal name, and BOD Y represents a
sequence of zero or more names and literals. The colon and the
semicolon are yacc punctuation.

Names are of any length and may consist of letters, the dot (.),
the underscore (_), and digits; however, names must not begin
with digits. Uppercase and lowercase letters are distinct. The
names in the body of a grammar rule represent tokens or
nonterminal symbols.

A literal consists of a character enclosed in single quotation
marks ('). A list of special literals is provided below. As in the
C language, the backslash (\) is an escape character within
literals, and yacc recognizes all of the C language escapes.

'\n'
'\r'
'\' ,
'\\'
'\t'
'\b'
'\f'
'\xxx'

Newline
Return
Single quotation mark
Backslash
Tab
Backspace
Form feed
" xxx" in octal

Note: Never use the ASCII NUL character (' \0' or 0) in
grammar rules.

8-6 Application Development Guide

If several grammar rules have the same left side, the vertical bar
(I) can be used to avoid rewriting the left side. In addition, the
semicolon at the end of a rule can be dropped before a vertical
bar. Instead of using this form:

A : BCD ;
A E F
A : G

you can specify the same rules as follows:

A : BCD
E F
G

All grammar rules with the same left side do not need to appear
together. However, putting them together makes the input much
easier to read and easier to change.

If you want a nonterminal symbol to match an empty string, you
can specify the match like this:

symbol: ;

You must declare names representing tokens in the declarations
section. For example:

%token name1 name2

yacc 8-7

Every nonterminal symbol must appear on the left side of at least
one rule. Of all the nonterminal symbols, the start symbol is the
most important. The parser is designed to recognize the start
symbol; thus, this symbol represents the largest, most general
structure you can describe by grammar rules. By default, the
start symbol is the left side of the first grammar rule in the rules
section. You can declare the start symbol explicitly in the
declarations section using the %start keyword:

%start symbol

A special token, called an end marker , signals the end of the
input to the parser. If the tokens up to the endmarker form a
structure that matches the start symbol, the parser function
returns to its caller after the endmarker is read and the parser
accepts the input. If the parser reads the endmarker before it
matches the start symbol, the parser displays an error message.

Usually the endmarker represents some reasonably obvious I/O
status, such as the end of the file or end of the record. It is the
job of the user-supplied lexical analyzer to return the endmarker
when appropriate.

8-8 Application Development Guide

Actions

When yacc matches a grammar rule in the input stream, it
performs the actions you specify. These actions can return
values and can obtain the valuep returned by previous actions.
Moreover, the lexical analyzer can return values for tokens, if
desired.

An action is a statement written in C language conventions. As
such, an action can process input and output, call subprograms,
and alter external vectors and variables. An action is identified
by one or more statements, enclosed in { } (curly braces). For
example:

A : I (I B I) I

{

and

xxx . yyy ~?,'7.

hello(1, "abc");

printf("a message\n");
flag == 25;}

are grammar rules with actions.

To aid communication between the actions and the parser, use
the dollar sign ($) as a signal to yacc.

To return a value, the action statement normally sets the
pseudo-variable $$ to some value. For example, an action that
returns the value 1 is:

[$$ == 1; }

To obtain the values returned by previous actions and the lexical
analyzer, the action statement uses the pseudo-variables:

$1, $2,

These pseudo-variables refer to the values returned by the
components of the right side of a rule, reading from left to right.
Thus, if the rule is:

A : BCD ;

then $2 has the value returned by C, and $3 the value returned by
D.

Consider the rule:

e xp r : I (I e xp r I) I

yacc 8-9

The value returned by this rule is usually the value of the expr in
parentheses. You can indicate this as follows:

expr : '(' expr ')' { $ $ = $ 2 ; }

By default, the value of a rule is the value of the first element in
that rule ($1). Thus, grammar rules of the form:

A : B ;

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their
rules. Sometimes, you may want to change the process control
before a rule is fully parsed. The yacc program generator
permits you to write an action in the middle of a rule as well as
at the end. This rule is assumed to return a value, accessible
through the usual $ mechanism, by the actions to the right. In
turn, the action may access the values returned by the symbols to
its left. Thus, in the rule:

A : B /* value referred to by $1 */
{ $$ 1 ; /* value referred to by $2 */
C /* value referred to by $3 */
{ x = $2; y = $ 3 ; }

the effect is to set x to 1, and y to the value returned by C.

The yacc program handles actions that do not terminate a rule
by manufacturing a new nonterminal symbol name and a new
rule matching this name to an empty string. The action triggered
by matching this added rule is an interior action. The yacc
program generator treats the above example as if it had been
written:

$ACT /* empty */
{ $$ 1 ;

A : B $ACT C
x = $2; y = $3;

In many applications, the actions do not directly cause the
output. Instead, a data structure, such as a parse tree, is
constructed in memory, and transformations are applied to it
before output is generated. Parse trees are particularly easy to
construct if you give routines to build and maintain the tree

8-10 Application Development Guide

structure desired. For example, suppose there is a C function,
node, written so that the call:

node(L, n1, n2)

creates a node with label L and descendants nl and n2, and
returns the index of the newly created node. Then you can build
a parse tree by supplying actions such as:

expr : expr '+' expr
$ $ = node (1+', $1, $ 3);

in the specification.

The user can define variables other than $$ to be used by the
actions. Declarations and definitions can appear in the
declarations section, enclosed in the marks % {and %}. These
declarations and definitions have global scope, so the action
statements and the lexical analyzer recognize them. For example,
you can place the declaration:
o,f ~,....,+- -,..,,...~-,hl ____ n" 0,
Ol ...J,....I.J.I- vU~.J...uJ....J....LC -- v, OJ

in the declarations section, making variable accessible to all of
the actions. The yacc parser uses only names beginning in yy;
therefore, you should avoid using names that begin with yy.

yacc 8-11

Lexical Analysis

You must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The
lexical analyzer is an integer-valued function called yylex. This
anaylzer returns an integer, called a token number. The token
number represents the kind of token that the analyzer read. If a
value is associated with that token, that value should be assigned
to the external variable yylval.

In order for the parser and lexical analyzer to communicate with
each other, they must identify the input stream with the same
token numbers. Either you or yacc can choose the numbers. In
either case, the #def ine mechanism of C is used to allow the
lexical analyzer to return these numbers symbolically. For
example, suppose that the token name DIGIT has been defined in
the declarations section of the yacc specification file. The
relevant portion of the lexical analyzer might look like:

yylex(){
extern int yylval;
int c;

c = getchar();

switch(c) {

case '0':
case '1':

case '9':
yylval = c-'O' ;
return(DIGIT);

The intent is to return a token number of DIGIT and a value
equal to the numerical value of the digit. If you place this lexical
analyzer code in the programs section of the specification file, the
identifier DIGIT will be defined as the token number associated
with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers.
However, you should avoid using in the grammar any token
names that are reserved or significant in the C language or the

8-12 Application Development Guide

parser. For example, the use of the token names if or while will
probably cause severe difficulties when the lexical analyzer is
compiled. The token name error is reserved for error handling.

As mentioned above, the token numbers are chosen by yacc or by
the user. In the default situation, the numbers are chosen by
yacc. The default token number for a literal character is the
numerical value of the character in the local character set.
Other names are assigned token numbers starting at 257.

To assign a token number to a token (including literals), follow
the first appearance of the token name or literal in the
declarations section with a nonnegative integer. This integer is
taken to be the token number of the name or literal. Names and
literals not defined by this mechanism retain their default
definition. It is important that all token numbers be distinct.

The token number for the endmarker must be either 0 or a
negative number. This token number cannot be redefined by the
user. Hence, all lexical analyzers should be prepared to return 0
or a negative number as a token upon reaching the end of their
input.

A very useful tool for constructing lexical analyzers is lex,
discussed in a previous section. These lexical analyzers are
designed to work in close harmony with yacc parsers. The
specifications for these lexical analyzers use regular expressions
instead of grammar rules. The lex program can easily be used to
produce some quite complicated lexical analyzers, but there
remain some languages (such as FORTRAN) that do not fit any
theoretical framework and whose lexical analyzers must be
written in C language code.

yacc 8-13

How the Parser Works

The yacc program generator turns the specification file into a C
program that parses the input according to the specification
given. The algorithm used to go from the specification to the
parser is complex, and is not discussed here. The parser itself,
however, is relatively simple, and your understanding how it
works will make the treatment of error recovery and ambiguities
easier to understand.

You can consider the parser produced by yacc to be a finite state
machine with a stack. The parser is capable of reading and
remembering the next input token (called the look ahead token).
The current state is always the one on the top of the stack. The
states of the finite state machine are given small integer labels.
Initially, the machine is in state 0, the stack contains only state
0, and no lookahead token has been read.

The machine has only four actions available to it, called shift,
reduce, accept, and error. A move of the parser is done as
follows:

1. Based on its current state, the parser determines whether it
needs a lookahead token to decide what action should be
done; if it needs one, and does not have one, it calls yylex to
obtain the next token.

2. Using the current state, and the lookahead token if needed,
the parser decides on its next action and carries it out. This
can result in states being pushed onto the stack or popped off
of the stack, and in the lookahead token being processed or
left alone.

8-14 Application Development Guide

The Shift Action

The shift action is the most common action the parser takes.
Whenever a shift action is taken, there is always a lookahead
token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current
state (56) is pushed down on the stack, and state 34 becomes the
current state (on the top of the stack). The lookahead token is
cleared.

The Reduce Action

The reduce action keeps the stack from growing without bounds.
Reduce actions are appropriate when the parser has read the
right side of a grammar rule, and is ready to replace the right
side of the rule with the left side. You may have to consult the
lookahead token to decide whether or not to reduce the stack, but
usually it is not necessary. The default action, represented by a
dot (.), is often a reduce action.

Reduce actions are associated with individual grammar rules.
Grammar rules are also given small integer numbers, leading to
some confusion. The action:

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

yacc 8-15

Suppose the rule being reduced is:

A : X y Z ;

The reduce action depends on the left hand symbol (A in this
case), and the number of symbols on the right side (three in this
case). To reduce, first remove the top three states from the stack
(in general, the number of states removed equals the number of
symbols on the right side of the rule). In effect, these states were
the ones put on the stack when the parser recognized x, y, and z,
These states no longer serve any useful purpose. The state
uncovered is the state the parser was in before it began
processing the rule. Using this uncovered state and the symbol
on the left side of the rule, perform what is in effect a shift of A.
A new state is obtained, pushed onto the stack, and parsing
continues. There are significant differences between the
processing of the left hand symbol and an ordinary shift of a
token. Therefore, this action that seems like a shift is called a
goto action. In particular, the lookahead token is cleared by a
shift, and is not affected by a goto action. In any case, the
uncovered state contains an entry such as:

A goto 20

causing state 20 to be pushed onto the stack and become the
current state.

In effect, the reduce action turns back the clock in the parser,
removing the states off the stack to go back to the state where
the right side of the rule was first seen. The parser then behaves
as if it had seen the left side at that time. If the right side of the
rule is empty, no states are removed from the stack; the
uncovered state is in fact the current state.

The reduce action is also important in the treatment of
user-supplied actions and values. When a rule is reduced, the
code supplied with the rule is executed before the stack is
adjusted. In addition to the stack holding the states, another
stack, running in parallel with it, holds the values returned from
the lexical analyzer and the actions. When a shift takes place,
the external variable yylval is copied onto the value stack. After
the return from the user code, the reduction is carried out. When
the goto action is done, the external variable yyval is copied onto
the value stack. The pseudo-variables $1, $2, etc., refer to the
value stack.

8-16 Application Development Guide

The Accept and Error Actions

The other two parser actions are conceptually much simpler. The
accept action indicates that the entire input has been read and
that it matches the specification. This action appears only when
the lookahead token is the endmarker, and it indicates that the
parser has successfully done its job. The error action, on the
other hand, marks a place where the parser can no longer
continue parsing according to the specification. The input tokens
it has read, together with the lookahead token, cannot be
followed by anything that would result in a legal input. The
parser reports an error and attempts to recover the situation and
resume parsing. Error recovery (as opposed to the detection of
error) is discussed in "Error Handling" on page 8-31.

An Example: yacc Parsing

Consider the following example:

%token DING DONG DELL
%%

rhyme sound place

sound DING DONG

place DELL

When yacc is invoked with the -v option, a file called y.output
is produced, with a human-readable description of the parser.
The y.output file corresponding to the above grammar (with
some statistics removed) is shown on the following pages.

yacc 8-17

state 0

state 1

state 2

state 3

$accept :

DING shift 3
· error

rhyme goto 1
sound goto 2

.-rhyme Send

$accept : rhyme_Send

Send accept
· error

rhyme : sound_place

DELL shift 5
· error

place goto 4

sound : DING-DONG

DONG shift 6
· error

8-18 Application Development Guide

state 4
rhyme: sound place_ (1)

· reduce 1

state 5
place: DELL_ (3)

· reduce 3

state 6
sound: DING DONG_ (2)

· reduce 2

In addition to the actions for each state, there is a description of
the parsing rules being processed in each state. The underscore
character (_) is used to indicate what has been read, and what is
yet to come, in each rule. Suppose the input is:

DING DONG DELL

Initially, the current state is o. The parser needs to refer to the
input in order to decide between the actions available in state 0,
so the first token, DING, is read, becoming the lookahead token.
The action in state 0 on DING is shift 3, so state 3 is pushed
onto the stack, and the lookahead token is cleared. State 3
becomes the current state. The next token, DONG, is read,
becoming the lookahead token. The action in state 3 on the
token DONG is shift 6, so state 6 is pushed onto the stack, and
the lookahead is cleared. The stack now contains 0, 3, and 6. In
state 6, without even consulting the lookahead, the parser
reduces by rule 2 because a match has been made.

sound : DING DONG

yacc 8-19

This rule has two symbols on the right side, so two states, 6 and
3, are removed from the stack, uncovering state 0. Consulting the
description of state 0, and looking for a goto on sound, the
action:

sound gato 2

is obtained; thus state 2 is pushed onto the stack, becoming the
current state.

In state 2, the next token, DELL, must be read. The action is
shift 5, so state 5 is pushed onto the stack (that now has 0, 2,
and 5 on the stack) and the lookahead token is cleared. In state
5, the only action is to reduce by rule 3. This rule has one
symbol on the right side, so one state, 5, is removed, and state 2 is
uncovered. The goto in state 2 on place, the left side of rule 3, is
state 4. Now, the stack contains 0, 2, and 4. In state 4, the only
action is to reduce by rule 1. There are two symbols on the right,
so the top two states are removed, uncovering state ° again. In
state 0, there is a go to on rhyme causing the parser to enter state
1. In state 1, the input is read; the endmarker is obtained,
indicated by Send in the y.output file. The action in state 1
when the endmarker is seen is to accept, successfully ending the
parse.

We urge you to consider how the parser works when confronted
with such incorrect strings as DING DONG DONG, DING DONG, DING

DONG DELL DELL. A few minutes spent with this and other simple
examples will help you when problems arise in more complicated
contexts.

8-20 Application Development Guide

Ambiguity and Conflicts

A set of grammar rules is ambiguous if an input string can be
structured in two or more different ways. For example, the
grammar rule:

expr : expr I_I expr

is. a natural way of expressing the fact that one way of forming an
arithmetic expression is to put two other expressions together
with a minus sign between them. Unfortunately, this grammar
rule does not completely specify the way that all complex inputs
should be structured. For example, if the input is:

expr - expr - expr

the rule allows this input to be structured as either:

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association).

The yacc program generator detects such ambiguities when it is
attempting to build the parser. Consider the problem caused by
the following input:

expr - expr - expr

After the parser reads the second expr, the input:

expr - expr

matches the right side of the grammar rule. The parser could
reduce the input by applying this rule; after applying the rule;
the input is reduced to expr (the left side of the rule). The parser
would then read the final part of the input:

- expr

and again reduce. The effect of this is to take the left-associative
in terpreta tion.

yacc 8-21

Alternatively, after the parser reads:

expr - expr

it could defer the immediate application of the rule, and continue
reading the input until it reads:

expr - expr - expr

It could then apply the rule to the rightmost three symbols,
reducing them to expr and leaving:

expr - expr

Now the rule can be reduced once more; the effect is to take the
right-associative interpretation. Thus, having read:

expr - expr

the parser can do either a shift or a reduction; it has no way of
determining which to do.

This situation, which allows either a shift or a reduce action is
called a shift/reduce conflict. The parser may also be able to
perform two reduce actions. This is called a reduce/reduce
conflict. There are never any shift/shift conflicts.

When there are shift/reduce or reduce/reduce conflicts; yacc still
produces a parser. It does this by selecting one of the valid steps
wherever it has a choice. A rule describing the choice to make in
a given situation is called a disambiguating rule.

The yacc program generator invokes two disambiguating rules by
default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the
earlier grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred, whenever there is a
choice, in favor of shifts. Rule 2 gives you crude control over the
behavior of the parser in this situation, but you should avoid
reduce/reduce conflicts whenever possible.

8-22 Application Development Guide

Conflicts arise because of mistakes in input or logic or because
the grammar rules, while consistent, require a more complex
parser than yacc can construct. The use of actions within rules
can also cause conflicts if the actions must be done before the
parser can be sure of the rule recognized. In these cases, the
application of disambiguating rules is inappropriate and leads to
an incorrect parser. For this reason, yacc always reports the
number of shift/reduce and reduce/reduce conflicts resolved by
Rule 1 and Rule 2.

Whenever it is possible to apply disambiguating rules to produce
a correct parser, it is also possible to rewrite the grammar rules
so that the same inputs are read but without conflicts. For this
reason, most previous parser generators have considered conflicts
to be fatal errors. Our experience has suggested that this
rewriting produces slower parsers; thus, yacc will produce
parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a
fragment from a programming language involving an if-then-else
construction:

stat IF' (' cond ')' stat
: IF '(' cond ')' stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal
symbol describing conditional (logical) expressions, and stat is a
nonterminal symbol describing statements. The first rule will be
called the simple-if rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of
the form:

IF (C1) IF (C2) Sl ELSE S2

can be structured according to these rules in two ways:

IF (C1)
IF (C2) Sl
}

ELSE S2

or

IF (C1)
IF C2) Sl
ELSE S2
}

yacc 8-23

The second interpretation is the one given in most programming
languages having this construct. Each ELSE is associated with
the last IF immediately preceding the ELSE. In this example,
consider the situation where the parser has seen:

IF (C1) IF (C2) Sl

and is looking at the ELSE. It can immediately reduce by the
simple-if rule to get:

IF (C1) stat

and then read the remaining input:

ELSE S2

and reduce:

IF (C1) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings
of the input.

On the other hand, the ELSE can be shifted, S 2 read, and then the
right hand portion of:

IF (C1) IF (C2) Sl ELSE S2

can be reduced by the if-else rule to get:

IF (C1) stat

which can be reduced by the simple-if rule. This leads to the
second of the above groupings of the input, which is usually
desired.

Once again the parser can do two valid things because there is a
shift/reduce conflict. The application of disambiguating rule 1
tells the parser to shift in this case, and this leads to the desired
groupIng.

This shift/reduce conflict arises only when there is a particular
current input symbol, ELSE, and particular inputs already seen,
such as:

IF (C1) IF (C2) Sl

8-24 Application Development Guide

There can be many conflicts, and each one will be associated with
an input symbol and a set of previously read inputs. The
previously read inputs are characterized by the state of the
parser.

The conflict messages of yacc are best understood by examining
the verbose (-v) option output file. For example, the output
corresponding to the above conflict state might be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat
stat

IF
IF

cond
cond

ELSE shift 45
reduce 18

stat_ (18)
stat_ELSE stat

The first line describes the conflict, giving the state and the input
symbol. The ordinary state description follows, giving the
grammar rules active in the state and the parser actions. Recall
that the underline marks the portion of the grammar rules that
have been seen. Thus in the example, in state 23, the parser has
seen input corresponding to:

IF (cond) stat

and the two grammar rules shown are active at this time. The
parser can do two possible things. If the input symbol is ELSE, it
is possible to shift into state 45. State 45 has, as part of its
description, the line:

stat : IF (cond) stat ELSE_~tat

since the ELSE will have been shifted in this state. Back in state
23, the alternative action, described by . (period), is to be done if
the input symbol is not mentioned explicitly in the above actions;
thus, in this case, if the input symbol is not ELSE, the parser
reduces by grammar rule 18:

stat: IF '(' cond ')' stat

Once again, notice that the numbers following shift commands
refer to other states, while the numbers following reduce
commands refer to grammar rule numbers. In the y.output file,
the rule numbers are printed after those rules that can be
reduced. In most states, there will be at most one reduce action
possible for that state. This will be the default command. The

yacc 8-25

user who encounters unexpected shift/reduce conflicts should
look at the verbose output to decide whether the default actions
are appropriate. In difficult cases, the user might need to know
more about the behavior and construction of the parser than can
be covered here.

8-26 Application Development Guide

Precedence

The rules given above are not sufficient for resolving conflicts in
the parsing of arithmetic expressions. Most of the commonly
used constructions for arithmetic expressions can be described by
the precedence levels for operators, together with information
about expressions to the left or right. Ambiguous grammars with
appropriate disambiguating rules can be used to create parsers
that are faster and easier to write than parsers constructed from
unambiguous grammars. The basic notion is to write grammar
rules of the form:

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This form creates a
very ambiguous grammar, with many parsing conflicts. In the
disambiguating rules, the user specifies the precedence, or
binding strength, of all the operators. The user also specifies
how the binary operators are associated with each other. The
information that these rules provide is sufficient to allow yacc to
resolve the parsing conflicts in accordance with these rules, and
to construct a parser that realizes the desired precedences and
associativities.

The precedences and associativities are attached to tokens in the
declarations section. This is done by a series of lines beginning
with a yacc keyword: %left, %right, or %nonassoc, followed by a
list of tokens. All of the tokens on the same line are assumed to
have the same precedence level and associativity; the lines are
listed in order of increasing precedence or binding strength.
Thus:

%left '+' '-'
%left '*' 'I'

describes the precedence and associativity of the four arithmetic
operators. Plus and minus are left associative, and have lower
precedence than the star and slash, that are also left associative.
The keyword %r ight describes right associative operators, and
the keyword %nonassoc describes operators that may not
associate with themselves; like the operator .LT. in FORTRAN.
The following example is illegal in FORTRAN, and in yacc, such
an operator would be described with the keyword %nonassoc.

A .LT. B .LT. C

yacc 8-27

As an example of the behavior of these declarations, the
description:

%right '='
%left '+ ' '- ,
%left ' * , , /'

%%

expr expr '=' expr
expr '+' expr
expr '- , expr
expr '* , expr
expr ' /' expr
NAME

might be used to structure the input:

a = b = c*d - e - f*g

as follows:

a = (b = (((c*d) -e) - (f*g)))

When this mechanism is used, unary operators must, in general;
be given a precedence. Sometimes a unary operator and a binary
operator have the same symbolic representation, but different
precedences. An example is unary and binary minus (-); unary
minus can be given the same strength as multiplication, or even
higher, while binary minus has a lower strength than
multiplication. The keyword, %prec, changes the precedence
level associated with a particular grammar rule. The %prec
appears immediately after the body of the grammar rule, before
the action or closing semicolon. It is followed by a token name
or literal. The %prec causes the precedence of the grammar rule
to become that of the following token name or literal.

8-28 Application Development Guide

For example, to make unary minus have the same precedence as
multiplication, the rules might resemble:

%left I + I
I _ I

%left I * I I I'

%%

expr expr '+' expr
expr ' -' expr
expr '*' expr
expr ' I' expr

'-' expr %prec ' * ,
NAME

A token declared by %left, %right, and %nonassoc need not be,
but may be, declared by %token as well.

The precedences and associativities are used by yacc to resolve
parsing conflicts; they give rise to disambiguating rules.
Formally, the rules work as follows:

1. The precedences and associativities are recorded for those
tokens and literals that have them.

2. A precedence and associativity is associated with each
grammar rule; it is the precedence and associativity of the
last token or literal in the body of the rule. If the %prec
construction is used, it overrides this default. Some grammar
rules have no precedence and associativity associated with
them.

3. When there is a reduce/reduce conflict, a shift/reduce conflict
and either the input symbol or the grammar rule has no
precedence and associativity, then the two disambiguating
rules given at the beginning of the section are used, and the
conflicts are reported.

4. If there is a shift/reduce conflict, and both the grammar rule
and the input character have precedence and associativity
associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher
precedence. If the precedences are the same, then the
associativity is used; left associative implies reduce, right
associative implies shift, and nonassociative implies error.

Conflicts resolved by precedence are not counted in the number
of shift/reduce and reduce/reduce conflicts reported by yacc. This

yacc 8-29

means that mistakes in the specification of precedences can
disguise errors in the input grammar; it is a good idea to be
sparing with precedences, and use them in an essentially
cookbook fashion, until some experience is gained. The y.output
file is very useful in deciding whether the parser is actually doing
what is intended.

8-30 Application Development Guide

Error Handling

Error handling is an extremely difficult area because many of the
problems are semantic ones. When an error is found, for
example, it may be necessary to reclaim parse tree storage, delete
or alter symbol table entries, and, typically, set switches to avoid
generating any further output.

It is seldom acceptable to stop all processing when an error is
found. It is more useful to continue scanning the input to find
further syntax errors. However, continuing to scan causes a
problem getting the parser restarted after an error. A general
class of algorithms to restart the parser involves discarding a
number of tokens from the input string, and attempting to adjust
the parser so that input can continue.

To allow control over this restarting process, yacc reserves the
token name error for error handling. You can use this name in
grammar rules. In effect, the name suggests places where errors
are expected and recovery might take place. The parser removes
states from the stack until it enters a state where the token error
is legal. It then behaves as if the token error were the current
lookahead token and performs the action encountered. The
lookahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts
when an error is detected.

To prevent numerous error messages, the parser, after detecting
an error, remains in an error state until three tokens have been
successfully read and shifted. If an error is detected when the
parser is already in an error state, no message is given, and the
input token is deleted.

As an example, a rule of the form:

stat : error

causes the parser to attempt to skip over the statement where the
syntax error was read. The parser scans ahead, looking for three
tokens that legally follow a statement, and it starts processing at
the first of these. If the beginnings of statements are not
sufficiently distinctive, the parser can make a false start in the
middle of a statement, and end up reporting a second error where
there is none.

Actions can be used with these special error rules. These actions
might attempt to reinitialize tables or reclaim symbol table space.

yacc 8-31

Error rules such as the above are very general but difficult to
control. Rules like the one to follow are easier to control:

stat: error';'

Here, the parser skips over the statement by skipping to the next
statement terminator (;). All tokens after the error and before the
(;) cannot be shifted and are discarded. When the (;) is read, this
rule is reduced, and any cleanup action associated with it
performed.

Another form of error rule arises in interactive applications,
where it is desirable to permit a line to be reentered after an
error. A possible error rule might be:

input : error '\n' { pr intf ("Reenter line: ");} input
{ $$ = $4;}

There is one potential difficulty with this approach; the parser
must correctly process three input tokens before it continues
parsing the input stream. If the reentered line contains an error
in the first two tokens, the parser deletes these tokens and gives
no message. To prevent this, you can use a mechanism to force
the parser to continue parsing. The following statement in an
action resets the parser to its normal mode.

yyerrok

8-32 Application Development Guide

An example looks like this:

input: error '\n'
{ yyerrok;

pr intf ("Reenter last line: "); }
input
{ $$ = $4; }

The token read immediately after the error symbol is the input
token where the error was discovered. Sometimes, this action is
inappropriate; for example, an error recovery action might
attempt to find the correct place to resume input. In this case,
the previous look ahead token must be cleared. The following
statement in an action clears the previous lookahead token:

yyclearin ;

For example, suppose the action after error were to call some
sophisticated resynchronization routine, supplied by the user,
that attempted to advance the input to the beginning of the next
valid statement. After this routine was called, the next token
returned by yylex would presumably be the first token in a legal
statement; the old, illegal token must be discarded, and the error
state reset. This could be done by a rule like:

stat : error
resynch() ;
yyerrok ;
yyclearin ;

These mechanisms, although crude, allow for a simple, fairly
effective recovery of the parser from many errors. Moreover, the
user can get control to deal with the error actions required by
other portions of the program.

yacc 8-33

The yacc Environment

When the user inputs a specification to yacc, the output is a file
of C programs, called y.tab.c on most systems. The function
produced by yacc is called yyparse; it is an integer valued
function. When yyparse is called, it, in turn, repeatedly calls
yylex, the lexical analyzer supplied by the user to obtain input
tokens. Eventually, either an error is detected, in which case (if
no error recovery is possible) yyparse returns the value 1, or the
lexical analyzer returns the endmarker token and the parser
accepts. In this case, yyparse returns the value O.

For the parser to obtain a working program, the user must
provide an effective environment. For example, you must define
your main program to call yyparse and yyerror.

To ease the initial effort of using yacc, a library has been
provided with default versions of main and yyerror. The name of
this library is system dependent. On many systems the library is
accessed by a -ly argument to the loader. The source of these
library programs is given below:

main() {
return (yyparse ()).:

and

#include <stdio.h>

yyerror(s)
char *s;

fprintf (stderr, "%s\n", s);

The argument to yyerror is a string containing an error message,
usually the string syntax error. Ordinarily, the program should
keep track of the input line number and print it along with the
message when a syntax error is detected. The external integer
variable yychar contains the lookahead token number at the
time the error is detected; this can give better diagnostics. Since
the main program is probably supplied by the user (to read
arguments, etc.) the yacc library is useful only for small
projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to O. If it
is set to a nonzero value, the parser outputs a verbose description

8-34 Application Development Guide

of its actions, including a list of the input symbols that have been
read and what the parser actions are. Depending on the
operating environment, you can set this variable by using a
debugging system.

yacc 8-35

Preparing Specifications

This section contains miscellaneous hints on preparing efficient,
easy-to-change, and clear specifications.

Input Style

It is difficult to provide rules with substantial actions and still
have a readable specification file.

• Use uppercase letters for token names, lowercase letters for
non terminal names. This rule helps you locate errors.

• Put grammar rules and actions on separate lines. This allows
you to change either the rule or the action without
automatically changing the other.

• Put all rules with the same left side together. Write the left
side only once, and begin the following rules with I (or
symbol).

• Put a statement terminator (;) only after the last rule with a
given left side and put it on a separate line. This allows you
to add new rules easily.

• Indent rule bodies by two tab stops and action bodies by three
tab stops.

The examples in the text of this section follow this style (where
space permits). You must decide about these stylistic questions;
the goal, however, is to make both the rules and actions easily
seen.

8-36 Application Development Guide

Left Recursion

The algorithm used by the yacc parser encourages left recursive
grammar rules. These rules have the form:

These rules frequently arise when writing specifications of
sequences and lists:

list

and

item
list I I ,

seq item
seq item

item

In each of these cases, the first rule is reduced for the first item
only, and the second rule is reduced for the second and all
succeeding items.

With right recursive rules, such as:

seq item
I item seq

the parser is bigger, and the items are read and reduced, from
right to left. However, if right recursive rules are used, an
internal stack in the parser is in danger of overflowing if a very
long sequence were read. Thus, use left recursion wherever
reasonable.

yacc 8-37

Consider whether a sequence with zero elements has any
meaning. If so, consider writing the sequence specification with
an empty rule:

seq /* empty */
I seq item

The first rule is always reduced exactly once, before the first item
is read, and then the second rule is reduced once for each item
read. Permitting empty sequences often leads to increased
generality. However, conflicts might arise if yacc is to determine
which empty sequence it has read, when it has not read enough
to make a determination.

8-38 Application Development Guide

Lexical Tie-ins

Some lexical decisions depend on context. You may want the
analyzer to delete blanks, but not within quoted strings. Or, you
may want to enter names into a symbol table in declarations, but
not in expressions. You can handle these situations by creating a
global flag that is examined by the lexical analyzer and set by
actions. Suppose a program consists of 0 or more declarations,
followed by 0 or more statements.

% {

int dflag;
96 }

%%

prog

decls

stats

other declarations

decls stats

/* empty */
{ dflag

decls declaration

/* empty */
{ dflag

stats statement

other rules

l' ,

0;

The flag dflag is 0 when reading statements, and 1 when reading
declarations, except for the first token in the first statement. The
parser must read this token before it can tell that the declaration
section has ended and the statements have begun. In many cases,
this single token exception does not affect the lexical scan.

yacc 8-39

Handling Reserved Words

Some programming languages permit the user to use words that
are normally reserved for label or variable names. This use is
allowed provided that such use does not conflict with the legal
use of these names in the programming language. This kind of
usage is extremely hard to use in the framework of yacc. It is
difficult to pass information to the lexical analyzer, specifying
"this instance of 'if is a keyword, and that instance is a
variable." The best practice is to avoid a multiple use of
keywords.

Simulating Error and Accept in Actions

The parsing actions of error and accept are simulated in an
action by use of macros YYACCEPT and YYERROR. The macro
YYACCEPT causes yyparse to return the value O. The macro
YYERROR causes the parser to function as if the current input
symbol had been a syntax error; yyerror is called, and error
recovery takes place. These mechanisms are used to simulate
parsers with multiple endmarkers or context-sensitive syntax
r> "h Or> lT~ rr
'-'~.L,"",,",.I.~.1..L.1.6·

8-40 Application Development Guide

Accessing Values in Enclosing Rules

An action can refer to values returned by actions to the left of
the current rule. The mechanism is a dollar sign followed by a
digit, but in this case the digit is 0 or negative. Consider:

sent adj noun verb adj noun
{ look at the sentence

adj THE { $$ = THE; }

YOUNG { $$ = YOUNG;

noun DOG {$$ = DOG; }
CRONE { if($0 == YOUNG){

printf(" what?\n");

$$ CRONE;

In the action following the word CRONE, a check is made that the
preceding token shifted was not YOUNG. This action is only
possible when a great deal is known about the data that precedes
the symbol noun in the input. This mechanism is somewhat
unstructured but, at times, it saves a great deal of trouble. This
savings is especially true when a few combinations are excluded
from an otherwise regular structure.

yacc 8-41

Supporting Arbitrary Value Types

By default, the values returned by actions and the lexical
analyzer are integers. The yacc program generator can also
support values of other types including structures. In addition,
yacc keeps track of the types, and inserts appropriate union
member names so that the resulting parser is strictly type
checked. The yacc value stack is declared to be a union of the
various types of values desired. The user declares the union and
associates union member names to each token and nonterminal
symbol having a value. When the value is referenced through a
$$ or $n construction, yacc automatically inserts the appropriate
union name, so that no unwanted conversions take place. In
addition, type checking commands such as lint (C) will be far
more silent.

Three mechanisms provide for this typing. First, a way of
defining the union must be done by the user since other
programs, notably the lexical analyzer, must be able to identify
the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally,
there is a mechanism for describing the type of those few values
where yacc cannot easily determine the type.

To declare the union, the user includes in the declaration section:

%union {
body of union . . .
}

This declares the yacc value stack, and the external variables
yylval and yyval, to have a type equal to this union. If yacc is
invoked with the -d option, the union declaration is copied onto
the y.tab.h file. Alternatively, the union can be declared in a
header file, and a typedef used to define the variable YYSTYPE
to represent this union. Thus, the header file might also have
said:

typedef union {
body of union .

} YYSTYPEi

8-42 Application Development Guide

The header file must be included, in the declarations section,
using the % { and %} delimiters.

Once YYSTYPE is defined, the union member names must be
associated with the various terminal and non terminal names.
The construction:

<name>

is used to indicate a union member name. If this follows one of
the keywords %token, %left, %right, or %nonassoc, the union
member name is associated with the tokens listed. Thus, saying:

%left <optype> '+' '- ,

causes any reference to values returned by these two tokens to be
tagged with the union member name optype.

Another keyword, %type, associates union member names with
nonterminals. An example of this is:

%type <nodetype) expr stat

A couple of cases remain where these mechanisms are
insufficient. If there is an action within a rule, the value
returned by this action has no predefined type. Similarly,
reference to left context values (such as $0 previously discussed)
leaves yacc with no easy way of knowing the type. In this case,
a type can be imposed on the reference by inserting a union
member name between < and >, immediately after the first $.
An example of this usage is:

rule aaa { $<intval>$ = 3; } bbb
{ fun($<intval>2, $<other>O); }

A sample specification is given in a later section. The facilities
in this subsection are not triggered until used. In particular, the
use of %type triggers these mechanisms. When used, there is a
fairly strict level of checking. For example, use of $n or $$ to
refer to something with no defined type is diagnosed. If these
facilities are not triggered, the yacc value stack is used to hold
int's, as is historically true.

yacc 8-43

An Example: A Small Desk
Calculator

This example gives the complete yacc specification for a small
desk calculator. The desk calculator has 26 registers, labeled a
through z, and accepts arithmetic expressions made up of the
operators +, -, *, /, % (mod operator), & (bitwise and), I (bitwise
or), and assignment.

If an expression at the top level is an assignment, the value is not
printed; otherwise it is. As in C, an integer that begins with 0
(zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of a yacc specification, the desk calculator does a
reasonable job of showing how precedences and ambiguities are
used and demonstrating simple error recovery. The major
oversimplifications are that the lexical analysis phase is much
simpler than for most applications, and the output is produced
immediately, line by line. Note the way that decimal and octal
integers are read in by the grammar rules. This job is probably
better done by the lexical analyzer.

8-44 Application Development Guide

%{
#include
#include

<stdio.h>
<ctype.h>

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

%left 'I'
%left '&'
%left '+' '-'
%left '*' 'I' '%'
%left UMINUS 1* precedence for unary minus *1
%% 1* beginning of rules section *1

list

stat

1* empty *1
list stat '\n'
list error '\n'

{ yyerrok;

expr
printf ("%d\n", $1); }

LETTER '=' expr
{ regs [$1] = $ 3; }

yacc 8-45

expr

number

I (I expr I) I

{ $$ = $2; }

expr 1+1 expr
{ $$ = $1 + $3;

expr I _ I expr
{ $$ = $1 - $3;

expr I * I expr
{ $$ = $1 * $3;

expr I II expr
{ $$ = $1 I $3;

expr I % I expr
{ $$ = $1 % $3;

expr I & I expr
{ $$ = $1 & $3;

expr I I I expr
{ $$ = $1 $3;

I _ I expr %prec UMINUS
{ $$ - $2 ; }

LETTER
{ $$ regs[$l] ;

number

DIGIT
$$ = $1; base = ($1==0) ? 8

number DIGIT
{ $$ = base * $1 + $2; }

8-46 Application Development Guide

10; }

%% /* start of programs */

yylex()
{ /* lexical analysis routine */

/* returns LETTER for a lowercase letter, */
/* yylval = 0 through 25 */
/* return DIGIT for a digit, */
/* yylval = 0 through 9 */
/* all other characters */
/* are returned immediately */

int c;

while ((c=getchar ()) == ' ,)
/* skip blanks */

/* c is now nonblank */

if(islower(c)) {

yylval c - 'a'i
return LETTER) ;

if(isdigit(c) {

yylval c - '0' i
return(DIGIT) ;

return(c);

yacc 8-47

The yacc Input Syntax

This section describes the yacc input syntax, as a yacc
specification. Context dependencies, and the like, are not
considered. Ironically, the yacc input specification language is
most naturally specified as an LR(2) grammar. The difficulty
comes when an identifie.r is seen in a rule immediately following
an action. If this identifier is followed by a colon, it is the start
of the next rule; otherwise, it is a continuation of the current
rule, which contains an embedded action. As implemented, the
lexical analy:z;er looks ahead. After reading an identifier, the
analyzer looks for the next token, skipping blanks, newlines, and
comments. If the next token read is a colon, it returns the token
C_lDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted
strings) are also returned as IDENTIFIER, but never as part of
C_IDENTIFIER.

8-48 Application Development Guide

/* grammar for the input to yacc */

/* basic entities */
%token IDENTIFIER

/* includes identifiers and literals */
%token C_IDENTIFIER

/* identifier followed by colon */
%token NUMBER /* [0-9]+ */

/* reserved words: %type => TYPE, %left => LEFT, etc.*/

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK
%token LCURL
%token RCURL

/* the %% mark */
/* the %{ mark */
/* the %} mark */

/* ascii character literals stand for themselves */

%start spec

%%

spec

tail

defs

def

defs MARK rules tail

MARK Eat up the rest of the file
/* empty: the second MARK is optional */

/* empty */
defs def

START
UNION
LCURL
ndefs

IDENTIFIER
{ Copy union definition to output }
{ Copy C code to output file} RCURL
rword tag nlist

yacc 8-49

rword TOKEN
LEFT
RIGHT
NONASSOC
TYPE

tag /* empty: union tag is optional */
'< ' IDENTIFIER '> '

nlist nmno
nlist nmno
nlist , , nmno ,

nmno IDENTIFIER /* Literal illegal with %type */
IDENTIFIER NUMBER /* Illegal with %type */

8-50 Application Development Guide

rules

rule

rbody

act

prec

/* rules section */

C_IDENTIFIER rbody prec
rules rule

C_IDENTIFIER rbody prec
, I' rbody prec

/* empty */
rbody IDENTIFIER
rbody act

, { , [Copy action, translate $$, etc. } '}'

/* empty */
PREC IDENTIFIER
PREe IDENTIFIER act
prec '. , ,

yacc 8-51

An Advanced Example

This section gives an example of a grammar that uses some of the
advanced features discussed in earlier sections. The desk
calculator example is modified to provide a desk calculator that
does floating-point interval arithmetic. The calculator
understands floating-point constants, the arithmetic operations
+, -, *, /, unary -, and = (assignment), and has 26 floating-point
variables, a through z. Moreover it also understands intervals,
written:

(x , y)

where x is less than or equal to y. There are 26 interval-valued
variables A through z that are also used. Assignments return no
value and print nothing, while expressions print the (floating or
interval) value.

This example explores a number of interesting features of yacc
and C. Intervals are represented by a structure, consisting of the
left and right end point values, stored as a double-precision
values. This structure is given a type name, INTERVAL, by using
typedef. The yacc value stack can also contain floating-point
scalars and integers (used to index into the arrays holding the
variable values). This entire strategy depends strongly on the
ability to assign structures and unions in C. In fact, many of the
actions call functions that return structures as well.

Note also the use of YYERROR to handle error conditions, such as
division by an interval containing 0 and an interval presented in
the wrong order. In effect, the error recovery mechanism of yacc
discards the rest of the offending line.

In addition to the mixing of types on the value stack, this
grammar also demonstrates a use of syntax to keep track of the
type (for example, scalar or interval) of intermediate expressions.
A scalar can be automatically promoted to an interval if the
context demands an interval value. This causes a large number
of conflicts (18 shift/reduce, 26 reduce/reduce) when the grammar
is run through yacc. The problem is seen by looking at the two
input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

8-52 Application Development Guide

The 2.5 is used in an interval-valued expression in the second
example, but this fact is not known until the comma (,) is read; by
this time, 2.5 is finished, and the parser cannot go back and
change the value. More generally, it might be necessary to look
ahead an arbitrary number of tokens to decide whether to convert
a scalar to an interval. This problem is circumvented by having
two rules for each binary interval-valued operator: one when the
left operand is a scalar, and one when the left operand is an
interval. In the second case, the right operand must be an
interval, so the conversion is applied automatically. However,
there are still many cases where the conversion may be applied or
not, leading to the above conflicts. They are resolved by listing
the rules that yield scalars first in the specification file. In this
way, the conflicts are resolved in the direction of keeping scalar­
valued expressions scalar-valued until they are forced to become
intervals.

This way of handling multiple types is very instructive, but not
very general. If there were many kinds of expression types,
instead of just two, the number of rules needed would increase
dramatically, and the conflicts even more dramatically. Thus,
while this example is instructive, it is better practice in a more
normal programming language environment to keep the type
information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual
feature is the treatment of floating-point constants. The C library
routine at of is used to do the actual conversion from a character
string to a double-precision value. If the lexical analyzer detects
an error, it responds by returning a token that is illegal in the
grammar, provoking a syntax error in the parser, and then error
recovery.

Now, consider the desk calculator example, modified to provide
floating-point interval arithmetic.

yacc 8-53

%{

#include
#include

<stdio.h>
<ctype.h>

typedef struct interval

INTERVAL;

INTERVAL

double

double
INTERVAL

%}

%start lines

%union
int
double
INTERVAL

double 10, hi;

vmul(), vdiv();

atof ();

dreg [26];
vreg [26];

ival;
dval;
vval;

8-54 Application Development Guide

%token

%token

%type

%type

1*

%left
%left
%left

%%

lines

line

<ivaI> DREG VREG 1* indices into dreg,

** vreg arrays *1
<dval> CONST 1* floating-point constant *1

<dval> dexp 1* expression *1

<vval> vexp 1* interval expression *1

precedence information about the operators *1

I + I I _ I

I * I I I'
UMINUS 1* precedence for unary minus *1

1* empty *1
lines line

dexp '\n I
{ printf("%15.8f\n", $1); }

vexp '\n I
{ pr intf ("(% 15. 8f, % 15. 8f) \n" ,

$1.10, $l.hi); }
DREG ,=, dexp '\n'

{ dreg[$l] = $3;
VREG ,=, vexp

{ vreg[$l]
error '\n'

{ yyerrok;

'\n'
$3;

yacc 8-55

dexp CONST
DREG

dexp

dexp

dexp

dexp

'-'

, (,

{ $$ = dreg[$l];
'+' dexp

{ $$ = $1 + $3;
'- , dexp

{ $$ = $1 - $3;
'* , dexp

{ $$ = $1 * $3;
, I' dexp

{ $$ = $1 I $3;
dexp %prec UMINUS

{ $$ = - $2; }
dexp ')'

{ $$ = $2; }

}

vexp dexp
{ $$.hi = $$.10

'(' dexp ',' dexp ')'
$1; }

{

VREG

$$.10 $2;
$$.hi $4;
if($$.10 > $$.hi)[

printf("interva1 out of order\n");
YYERROR;

$ $ vreg [$1]; }

8-56 Application Development Guide

vexp '+' vexp
{

$$.hi $l.hi + $3.hi;
$$.10 $1.10 + $3.10;

dexp '+' vexp

$$.hi $1 + $3.hi;
$$.10 $1 + $3.10;

vexp ,_ I vexp

$$.hi $l.hi - $3.10;
$$.10 $1.10 - $3.hi;

dexp ,_ I vexp

$$.hi $1 - $3.10;
$$.10 $1 $3.hi;

vexp I * I vexp
$$ = vrnul($1.10, $1. hi, $3) ; }

dexp '* I vexp
$$ = vrnul($1, $1, $3) ;

vexp , I' vexp
[

if (dcheck($3))
YYERROR;

$$ = vdiv($1.10, $1. hi, $3) ;

yacc 8-57

dexp , I' vexp
(

if (dcheck($3»
YYERROR;

$$ = vdiv($1, $1, $ 3) ;

'- , vexp %prec UMINUS
(

$$.hi = -$2.10. ;
$$.10. = -$2.hi;

'(' vexp ')'
($$ $2;

%%

#define BSZ 50 1* buffer size for fp numbers *1

1* lexical analysis *1

yylex ()
{

register int c;

while «c = getchar(» == ' ')
1* skip over blanks *1

if (isupper (c)) {
yylval.ival = c - 'A';
return (VREG);

if (islower(c»
yylval.ival = c - 'a';
return (DREG);

8-58 Application Development Guide

if (isdigit(c) II c == '.')
/* gobble up digits, points, exponents */

char buf[BSZ+l], *cp = buf;
int dot = 0, exp = 0;

for (; (cp-buf) < BSZ;
++cp, c = getchar(»

*cp = c;
if (isdigit(c»

continue;
if (c == '.')

if (dot++ II exp
return (, . ') ;

/* above causes syntax error */
continue;

if (c == 'e')

if (exp++)
return(' e');

/* above causes syntax error */
continue;

/* end of number */
break;

*cp = '\0';
if «cp - buf) >= BSZ)

printf("constant too long: truncated\n");
else /* push back last character read */

ungetc(c, stdin)i
yylval.dval = atof(buf);
return(CONST) ;

return(c) ;

yacc 8-59

INTERVAL hilo(a, b, c, d)
double a, b, c, di
{

/* returns the smallest interval
** containing a, b, c, and d
*/

INTERVAL Vi

if (a > b)
v.hi = a" ,
v.lo = bi

else {

v.hi bi

v.lo ai

if (c > d)
if (c > v.hi)

v.hi Ci

if (d < v.lo
v.lo d;

else
if (d > v.hi)

v.hi = d;
if (c < v.lo)

v.lo = C;

return(v) ;

8-60 Application Development Guide

INTERVAL vrnul(a, b, v)
double a, bi

INTERVAL Vi

[

INTERVAL hilo() i

return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo)) i

dcheck(v)
INTERVAL
[

Vi

if (v.hi >= O. && v.lo <= O.) {
printf("divisor interval contains O.\n") i

return(l) i

return(O) i

INTERVAL vdiv(a, b, v)
double a, bi

INTERVAL Vi

{

INTERVAL hilo()i

return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo)) i

yacc 8-61

Out-Dated Features

This section mentions synonyms and features supported for
historical continuity, but their use is not encouraged.

• Literals can be delimited by double quotation marks (").

• Literals can be more than one character long. If all the
characters are alphabetic, numeric, or underscore, the type
number of the literal is defined, as if the literal did not have
the quotation marks around it. Otherwise, it is difficult to
find the value for such literals. The use of multicharacter
literals is likely to mislead those unfamiliar with yacc, since
it suggests that yacc is doing a job that must actually be
done by the lexical analyzer.

• Most places where percent (%) is legal, backslash (\) can be
used. In particular, the double backslash (\ \) is the same as
%%, and the \left is the same as %left.

• There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

• Actions also have the form:

={

and the braces can be dropped if the action is a single C
language statement.

• C code between % { and %} used to be permitted at the head of
the rules section, as well as in the declaration section.

8-62 Application Development Guide

Chapter 9. The m4 Macro
Processor

Introduction

The m4 macro processor defines and processes specially defined
strings of characters called macros. By defining a set of macros
to be processed by m4, a programming language can be enhanced
to make it:

• More structured

• More readable

• More appropriate for a particular application.

The #define statement in the C language and the analogous
define statement in Ratfor are examples of the basic facility
provided by any macro processor-replacement of text by other
text.

Besides the straightforward replacement of one string of text by
another, m4 provides:

• Macros with arguments

• Conditional macro expansions

• Arithmetic expressions

• File manipulation facilities

• String processing functions.

The basic operation of m4 is copying its input to its output. As
the input is read, each alphanumeric token (that is, string of
letters and digits) is checked. If the token is the name of a
macro, then the name of the macro is replaced by its defining
text. The resulting string is reread by m4. Macros can also be
called with arguments, in which case the arguments are collected
and substituted in the right places in the defining text before m4
res cans the text.

m4 9-1

The m4 macro provides a collection of about twenty built-in
macros. In addition, the user can define new macros. Built-in
and user-defined macros work in exactly the same way, except
that some of the built-in macros have side effects on the state of
the process.

Invoking m4

The invocation syntax for m4 is:

rn4 [files]

Each file hame argument is processed in order. If there are no
arguments, or if an argument is a dash (-), then the standard
input is read. The processed text is written to the standard
output, and it can be redirected as in the following example:

rn4 filel file2 - >outputfile

The use of the dash in the above example indicates processing of
the standard input, after the files filel and file2 have been
processed by m4.

9-2 Application Development Guide

Defining Macros

The primary built-in function of m4 is define, which is used to
define new macros. The input:

define(name, stuff)

causes the string name to be defined as stuff. All subsequent
occurrences of name will be replaced by stuff. The string name
must be alphanumeric and must begin with a letter (the
underscore (_) counts as a letter). The string stuff is any text,
including text that contains balanced parentheses; it can stretch
over multiple lines.

Thus, as a typical example:

define(N, 100)

if (i > N)

defines N to be 100, and uses this symbolic constant in a later if
statement.

The left parenthesis must immediately follow the word define to
signal that define has arguments. If a macro or built-in name is
not followed immediately by a left parenthesis, it is assumed to
have no arguments. This is the situation for N above; it is
actually a macro with no arguments. Thus, when it is used, no
parentheses are needed following its name.

You should also notice that a macro name is only recognized as
such if it appears surrounded by nonalphanumerics. For
example, in:

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined macro N,
even though it contains three N'S.

rn4 9-3

Macros can be defined in terms of other macros. For example:

Input:

Output:

define(N, 100)

define(M, N)

x = M;
y = N;

x = 100;

Y = 100;

defines both M and N to be 100.

What happens if N is redefined? Or, to say it another way, is M
defined as N or as 100? In m4, the latter is true, M is 100;
therefore, even if N subsequently changes, M does not. M remains
100 because m4 expands macro names into their defining text as
soon as it possibly can. That means that when the string N is
seen as the arguments of define are being collected, it is
immediately replaced by 100. The result is the same as if you had
first specified:

define(M, 100)

If you really \vant H to equal N, even as N changes, you have two
options. The first, which is specific to this situation, is to
interchange the order of the definitions:

define(M, N)

define(N, 100)

Now M is defined to be the string N so when you ask for M later,
you always get the value of N (because the M is replaced by N

which, in turn, is replaced by 100).

The second option is to use quoting.

9-4 Application Development Guide

Quoting

The more general solution of the previous example is to delay the
expansion of the arguments of define by quoting them. Any text
surrounded by single quotation marks (' ') is not expanded
immediately, but rather has the quotation marks removed. If you
specify:

define(N, 100)
define (M, 'N')

the quotation marks around the N are stripped off as the
argument is collected, but they serve their purpose, because M is
defined as the string N, not 100. As a general rule, m4 always
strips off one level of single quotation marks whenever it
evaluates something. This is true even outside of macros. If you
want the word def ine to appear in the output, you have to quote
it in the input, as in:

For another example, consider defining N as 100 and then later
redefining it as 200:

Input:

Output:

define(N, 100)
x = N;
define(N, 200)
x = N;

x = 100;

m4:e:3 bad macro name
define(lOO,200)

In this case, N is evaluated and changed to 100 as soon as it is
seen; therefore, N is replaced with 100. When the second define
statement is reached, N no longer exists because is was changed
to 100. As the message in the example shows, m4 reads the
second define statement as if you had specified:

define(100, 200)

m4 9-5

This statement is ignored by m4, because you can only define
values that look like names. To correctly redefine N, you must
delay the evaluation by quoting:

define(N, 100)

define('N', 200)

In m4, it is often wise to quote the first argument of a macro.

If the grave (') and acute C) quotation marks are not convenient
for some reason, the quotation marks can be changed with the
built-in changequote. For example:

changequote([,])

makes the new quotation marks the left and right brackets. You
can restore the original characters with just:

changequote

9-6 Application Development Guide

Two additional built-ins are related to define. The undefine
built-in and the ifdef built-in.

The undefine built-in removes the definition of a macro or
built-in. The following example removes the definition of N.

Input:

Output:

changequote ([, 1)
define(N,lOO)
define([N], 200)

o = N;
changequote
undef ine ('N')

o = N;

o = LUU;

o = N;

The undefine built-in can also remove built-ins; however, once
removed, these built-ins cannot be restored. The following
example removes the define built-in:

undef ine ('def ine')

The built-in ifdef provides a way to determine if a macro is
currently defined. For instance, suppose that either the word
vanilla or the word chocolate is defined according to a
particular implementation of a program. To perform operations
according to which system you have, you might specify:

ifdef('vanilla', 'define(system,l)')
ifdef('chocolate', 'define(system,2)')

m4 9-7

ifdef actually permits three arguments. If the name is undefined,
the value of ifdef is then the third argument, as in:

ifdef ('vanilla', on system 1, not on system 1)

In this case, the instruction produces the message on system 1 if
vanilla is defined on the system, and the message not on
system 1 if vanilla is not defined. Putting these examples
together produces the following complete example:

Input:

Output:

define(vanilla, anything)
ifdef ('vanilla', 'def ine (system, 1)'
ifdef ('chocolate', 'def ine (system, 2)'
x = system;
undef ine (' system')
ifdef ('vanilla', on system 1, not on system 1)

x = 1;

on system 1

9-8 Application Development Guide

U sing Arguments

So far we have discussed the simplest form of macro processing,
replacing one string by another (fixed) string. User-defined
macros can also have arguments, so different invocations can
have different results. Within the replacement text for a macro
(the second argument of its define), any occurrence of $n is
replaced by its definition when the macro is actually used. Thus,
the macro bump, defined as:

def ine (bump, $1 $1 + 1)

generates code to increment its argument by 1:

bump(x)

IS

A macro can have as many arguments as you want, but only the
first nine are accessible, through $1 to $9. (The macro name itself
is $0.) Arguments not supplied are replaced by null strings, so we
can define a macro cat which simply concatenates its arguments,
like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus:

cat(x, y, z)

is equivalent to:

xyz

The arguments $4 through $9 are null, since no corresponding
arguments were provided.

Leading un quoted blanks, tabs, or newlines that occur during
argument collection are discarded. All other white space is
retained. Thus:

define(a, b c)

defines a to be b c.

Arguments are separated by commas, but parentheses are counted
properly, so a comma protected by parentheses does not terminate
an argument. That is, in:

def ine (d, (e, f))

m4 9-9

there are only two arguments; the second is literally (e, f) . And
of course, a comma or parenthesis can be inserted by quoting it.
The following example shows how define statements can be used:

Input:

Output:

define(bump, $1 = $1 + 1)
define(cat, $1$2$3$4$5$6$7$8$9)
define(a, be)
define(d, (e,f))
bump(x)
cat(x,y,z)
m = a
n = d

x = x + 1

xyz
m = b c
n = (e,f)

9-10 Application Development Guide

Using Arithmetic Built-Ins

The m4 macro provides two built-in functions for doing
arithmetic on integers. The simplest is iner, which increments
its numeric argument by 1. Thus to handle the common
programming situation where you want a variable to be defined
as one more than N, write:

define(N, 100)
define(Nl, 'incr(N)')

Then Nl is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in called
eval, which is capable of arbitrary arithmetic on integers. It
provides the following operators (in decreasing order of
precedence):

unary + and -
** or A (exponentiation)

*
+

/ % (modulus)

!= < <= > >=
(not)

& or && (logical and)
I or II (logical or)

Parentheses can group operations. All the operands of an
expression given to eval must ultimately be numeric. The
numeric value of a true relation (like 1> 0) is 1, and false is o.
The precision in eval is implementation dependent.

As a simple example, suppose we want M to be 2 * *N+ 1. Then:

define(N, 3)
define(M, 'eval(2**N+l}')

As a matter of principle, it is advisable to quote the defining text
for a macro unless it is very simple indeed (for example, a
number). Quoting usually gives the result you want, and is,
therefore, a good habit to get into.

m4 9-11

The following example shows the input and output for the
preceding examples:

Input:

Output:

define(N, 100)

define(N1, 'incr(N)')

a = N

b = N1
define ('N', 3)

define(M, 'eval(2**N+1)')

x = N

Y = M

a = 100
b 101

x = 3
y 9

9-12 Application Development Guide

U sing System Commands

You can run any program in the local operating system with the
syscmd built-in. For example:

syscmd(date)

runs the date command. Normally, syscmd would be used to
create a file for a subsequent include.

Use the built-in maketemp to make unique file names. The
specifications of maketemp are identical to the system function
mktemp. A string of X's (XXXXX) in the argument is replaced by
the process id of the current process.

Using Conditionals

A built-in called ifelse enables you to perform arbitrary
conditional testing. In the simplest form:

ifelse (a, b, c, d)

compares the two strings a and b. If these are identical, ifelse
returns the string c; otherwise, it returns d. Thus, we might
define a macro called compare that compares two strings and
returns yes, if they are the same, or no, if they are different.

Input:

Output:

define(compare, 'ifelse($l, $2, yes, no)')
compare ('abed' , 'efgh')

compare(aaa, aaa)

no
yes

The quotation marks prevent a too-early evaluation of ifelse.

If the fourth argument is missing, it is treated as empty.

The built-in ifelse can actually have any number of arguments,
and thus it provides a limited form of multi-way decision
capability. In the input:

if else (a, b, c, d, e, (, g)

m4 9-13

if the string a matches the string b, the result is c. Otherwise, if d
matches e, the result is f. Otherwise, the result is g. If the final
argument is omitted, the result is null. For example:

ifelse (a, b, c)

if a matches b , the result is c; otherwise, the result is null.

Manipulating Files

You can include a new file in the input at any time by the
built-in function include:

include (filename)

The include statement inserts the contents of filename in place of
the include command. The contents of the file is often a set of
definitions. The value of include (that is, its replacement text) is
the contents of the file; this value can be captured in definitions,
etc.

It is a fatal error if the file named in include cannot be accessed.
To get some control over this situation, the alternate form
sinclude can be used; sinclude (for silent include) continues if it
cannot access the file.

It is also possible to divert the output of m4 to temporary files
during processing, and output the collected material upon
command. The m4 macro maintains nine of these diversions,
numbered 1 through 9. If you specify:

divert(n)

all subsequent output is put at the end of a temporary file
referred to as n. Diverting to this file is stopped by another
divert command; in particular, divert or divert(O) resumes the
normal output process.

Diverted text is normally output all at once, at the end of
processing, with the diversions output in numeric order. It is
possible, however, to bring back diversions at any time by
appending them to the current diversion. Specifying:

undivert

brings back all diversions in numeric order. Specifying undivert
with arguments brings back the selected diversions in the order
specified.

9-14 Application Development Guide

Undiverting discards the diverted data. Diverting data into a
diversion whose specified number is not between 0 and 9 inclusive
also discards the data. The diverted data does not become the
value of undivert. Furthermore, the diverted data is not
rescanned for macros.

The built-in divnum returns the number of the currently active
diversion. During normal processing, this number is O. If output
is redirected, the output of divnum is also redirected.

The following example shows the use of divert and undivert:

Contents of Filel:
define(N, 100)
define(M, 200)
define(O, 300)

Input:

Output:

include(filel)
divert (1)
z = 0;

divert(2)
y = N;
divert(3)
x = Mi

divert
undivert

z = 300;

Y 100;

x = 200;

m4 9-15

Manipulating Strings

The built-in len returns the length of the string that makes up its
argument. Thus:

len(abcdef)

is 6, and:

((,b»)

is 5.

The built-in substr can be used to produce substrings of strings.
For example:

l.lb~)tr (

returns the substring of 8 that starts at position i (origin zero),
and is n characters long. If n is omitted, the rest of the string is
returned, so:

subst:r ('now is the time', 1)

IS

U\V cheLime

The built-in did not return the letter n because the starting
position of the substring was set at 1 rather than O. If i or n are
out of range, various sensible things happen.

The command:

inCley (51,82)

returns the index (position) in 81 where the string 82 occurs, or -1
if it doesn't occur. As with substr, the origin for strings is O.

The built-in translit performs character transliteration. For
example:

C1 o. sit (8, {, t)

modifies 8 by replacing any character found in f by the
corresponding character of t. For example:

lit(s, aeiou, 12345)

replaces the vowels, aeiou, with the corresponding digits, 12345.
If t is shorter than f, characters that do not have an entry in tare
deleted; as a limiting case, if t is not present at all, characters

9-16 Application Development Guide

from f are deleted from s. For example, the following built-in
deletes vowels from s.

translit(s, aeiou)

The following example shows the input and output for operations
similar to the preceding examples:

Input:

Output:

len(abcdef) ;
len((a,b))

substr ('now is the time', 1)

define(sl, 'first string')

def ine (s2 r 'str ing')
def ine (s 3, 'not here')

index (s I, s 2) ;
index(sl,s3) i

def ine (s I 'Thisisastr inqwi thvowels.')
define(s2,s)

translit(s, aeiou, 12345);
translit(s2, aeiou);

6 ;

5

ow is the time

6 ;

-1;

Th3s3s1str3ngw3thv4w21s. ;
Thssstrngwthvwls. ;

m4 9-17

Cleaning Up Output

A built-in called dnl deletes all characters that follow it up to
and including the next newline character. Use it to throwaway
empty lines that otherwise clutter up m4 output. For example, if
you specify:

define(N, 100)
define(M, 200)
define(L, 300)

the new line character at the end of each line is not part of the
definition, so it is copied into the output, where it may not be
wanted. If you add dnl to each of these lines, the newline
characters disappear.

define(N, 100)dnl
define(M, 200)dnl
define(L, 300)dnl

You can also achieve this with the following statement:

divert(-l)
define (...)

divert

9-18 Application Development Guide

The following example shows the use of the previous examples
and the output that they produce:

Input-

Output:

define(N, 100)dn1
define(M, 200)dn1
define(L, 300)dn1

o = N;
P M;
q L;

undef ine ('N' ,'M' , 'L') dn1

divert(-l)

divert

o = 100;
P 200;
q 300;

o = 100;
P 200;
q 300;

define(N, 100)
define(M, 200)
define(L, 300)

o = N;
P M;
q L;

m4 9-19

Printing

The built-in errprint writes its arguments out on the standard
error file. Thus, you can specify:

errpr int ('f atal error')

A debugging aid that dumps the current definitions of defined
terms is dumpdef. If there are no arguments, you get everything;
otherwise, you get the ones you name as arguments. Don't forget
the si:p.gle quotation marks.

9-20 Application Development Guide

Chapter 10. Writing Device
Drivers

Introduction

This chapter, along with Chapter 11, "Sample Device Drivers" on
page 11-1, discusses:

• The role of device drivers in a PC XENIX-based system

• The PC XENIX model of devices in terms of files, tasks, and
interrupts

• Special considerations involved in writing a device driver

• Sample device drivers to be used as a guide.

• How to write and install device drivers in a PC XENIX
environment

The Role of Device Drivers

The kernel communicates with hardware devices through a set of
routines called device drivers. For each peripheral device in the
system, there must be a device driver. A device driver is part of
the kernel. When a process is executing device driver routines
the process 'is executing kernel code.

PC XENIX supports linkable device drivers and install able device
drivers. You can link linkable drivers into the kernel by
remaking the kernel. Installable drivers can be loaded by the
operating system during the system boot. This feature allows you
to use much simpler device installation procedures.

Device drivers control the flow of data and the execution of a
process between user programs and peripheral devices. The
figure below shows the path of an I/O request. The path begins
with a system call from a program and ends at the device driver.

Device Drivers 10-1

User Program I
,r

User Space

It Kernel Space

-- - .. Peripheral - - - Devices
Kernel Device

Drivers

User Program Requesting I/O

Device Models Supported by PC XENIX

The PC XENIX Operating System supports two device models:
character devices and block devices. This chapter describes how
to write device drivers for both device models.

In general, any device that appears to be a randomly addressable
set of fixed-size records is a block device; most other types are
character devices. For example, disk drives and tape drives are
block devices, while terminals and line printers are character
devices. The PC XENIX Operating System presents a uniform
interface to the PC XENIX file system, so character and block
devices look like files to users and user programs.

Character device drivers communicate directly with the user
program. The process begins when a program requests a transfer
of data between memory and a device. The operating system
transfers control to the appropriate device driver and the user
program supplies the parameters for the request.

Block device drivers require more involvement from the operating
system to perform their tasks. Block devices transfer data in
fixed-size blocks, and are usually capable of random access. (The
device need not be capable of random access.) The two
distinguishing factors of block I/O are:

• The size of the data transfer requests from the kernel to the
device is always a multiple of the system block size (BSIZE).

10-2 Application Development Guide

This is true regardless of the size of the user process' original
request. A single user process request can generate many
system requests to the driver. BSIZE is 1024 in PC XENIX.
The device's physical block size may be smaller than BSIZE.
If it is, the device driver initiates multiple physical transfers
to transfer a single logical block.

• Transfers are never done directly into a user process'
memory. The operating system always stages transfers
through a pool of BSIZE buffers. PC XENIX satisfies I/O
requests directly from the buffers. By using these buffers, PC
XENIX performs services such as the blocking, unblocking,
and caching of data.

Special Device Files

Each device used by the operating system must be identified by a
special device file. In the PC XENIX system, a device appears to
function like a file. In this chapter, files that represent devices
are referred to as special device files. The special device files, by
convention, are located in the directory named /dev and are
maintained by the system administrator.

Each special device file has a device number that uniquely
identifies the device. The device number consists of two parts,
the major number and the minor number. The major number
tells the kernel which device driver will handle requests for this
special file. The minor number indicates additional information
about a particular device unit that the driver controls (such as a
unit identification number).

A program that will use a peripheral device must first open the
special device file. You can create a special device file by using
the utility program mknod(C) (For more information about
mknod(C), see XENIX Commands Reference). The special device
file appears in a directory and has owner and permission fields.
The command Is -1 displays the special device files and shows
their major and minor device numbers.

crw--w--w- 1 bin
brw------- 1 sysinfo

5, 1

3, 2

Sep 21 09:49 /dev/ttyOl
Sep 21 09:49 /dev/hd01

In this example, the file/dev/ttyOl has a major device number of
5 and a minor device number of l.

When a user program opens a special device file, PC XENIX
recognizes that it is a special device file rather than a data file.
PC XENIX uses the major device number to index a table of

Device Drivers 10-3

device driver entry points. If the file designates a character
device, PC XENIX uses the cdevsw table. If the special file
designates a block device, PC XENIX uses the bdevsw table. The
definition of these two tables is in the /usr/sys/conf/c.c file.
The make program generates this definition file when it builds
the kernel.

These tables may have their contents dynamically altered during
the bootstrap sequence if any installable device drivers are
loaded. Several blank entries are included in bdevsw and
cdevsw for this purpose. The system configuration file
/lib/sys/config.sys describes the drivers that are installed at
boot time.

PC XENIX then calls the device driver's open entry point
through either the bdevsw or cdevsw table. It passes the minor
device number as an argument to the function. The device driver
must interpret any unique meaning assigned to the value of the
minor device number.

Note: In Version 7 of UNIX, the dey parameter passed to the
open(), close(), read(), write(), and ioctl() driver routines
included the major and minor device numbers. In System 3 and
System 5, only the minor device number is passed in the dey
parameter. This means it is no longer necessary for all device
drivers to mask out the major device number before checking the
minor device number.

The normal convention for special device files uses meaningful
file names and places these files in the /dev directory. For
example:

/dev/ttyOl

The ttyOl indicates the minor device number of the serial device
or the device port. Its minor number (not shown) indicates the
second port. It is important to note that this is just a convention.
The system administrator could assign the same major and minor
numbers yet give the file a different name. For example:

/dev/magtape

or

/dev/mtOO

The system administrator can use either name to identify the
same device; both are meaningful. The file name that you use is
for your convenience. The PC XENIX kernel uses major and
minor numbers to identify devices.

10-4 Application Development Guide

Sample Device Drivers

Chapter 11, "Sample Device Drivers" on page 11-1 discusses
sample device driver source code for a line printer, a terminal, a
hard disk drive, and a memory-mapped screen. You can use these
source code samples as a guide for writing your specific devices
drivers.

Each of these samples conforms to the model required for an
installable device driver. You can also use them in a kernel that
is statically configured to support each of these devices.

Device Drivers 10-5

Kernel Environment

The following paragraphs briefly discuss a few functional aspects
of the PC XENIX operating system:

• Modes of operation

• Context switching

• System-mode stack use

• Task-time processing

• Interrupt-time processing.

It also describes the services the kernel provides to device drivers
and the recommended device driver protocol.

Modes of Operation

When a process is executing instructions in a user program, the
process is in user mode. When the process is executing
instructions in the kernel, it is in the system or kernel mode.
When PC XENIX receives an interrupt from an external device, it
switches to system mode (if it was in user mode). Then it passes
control to the interrupt routine of the appropriate device driver.
When the driver is finished, control returns to the kernel and the
interrupted process resumes. The interrupted processing is
task-time processing, and the processing that took place as a
result of the interrupt is interrupt-time processing.

Although all processes originate as user programs, a given
process can run in either system or user mode. In system mode,
the process executes kernel code and has privileged access to I/O
devices and other services. In user mode, it executes the user's
program code and has no special privileges. PC XENIX provides
a high level of protection around processes in user mode to
prevent a user program from inadvertently damaging the kernel
or other user programs. A process voluntarily enters system
mode when it makes a system call. When a process, executing in
user mode, encounters an interrupt or a trap, the process
switches into system mode to handle the interrupt. At this time,
the process may lose the CPU (central processing unit) and the
kernel may switch control, or context, to a different process.

10-6 Application Development Guide

Context Switching

Context switching occurs when the kernel transfers control of
the CPU from the currently executing process to a different
process.

In user mode, the kernel switches context whenever:

• The time slice of the currently executing process ends.

• A process makes a system call that cannot be completed
immediately; for example, a read from a slow input device.

• It receives an interrupt that allows a blocked process to
proceed. If the priority of the sleeping process is higher than
that of the currently running process, a context switch
occurs. This switch occurs when the interrupt handler calls
wakeup() to a waiting process to indicate the completion of
an I/O request.

In system mode, switching contexts is always voluntary. A
process voluntarily gives up the processor when a task time
handler calls the sleep() routine. Interrupts can still arrive and
control always passes back to the interrupted process.

System Mode Stack

The user area (u_ area) is a special area of memory that the
kernel uses to manage each process. This area is not directly
accessible to the user process (That is, it is not in the process'
normal address space). The u_ area contains process information
for the kernel and space for a system mode stack. When any
process makes a system call, the kernel preserves the process
registers in the u_ area. The kernel also moves the stack pointer
to the beginning of the system mode stack area. When the system
call finishes, the kernel restores the registers from the u_ area,
restores the stack pointer to the process' stack, and returns
control to the process. Because each process has its own
u_ area, a system running n processes has n user stacks and n
system stacks.

Device Drivers 10-7

The operating system and the task-time portions of the device
drivers use a fixed-size system mode stack in the u_ area. The
size of this per-process stack is 1024 bytes. It is critical that
device driver procedures not create local (frame) buffers of any
significant size. For example, consider the following declaration:

open()
{

char buf [512) ;
char buf2 [512];

This declaration can cause problems because the routine requires
1024 bytes of stack space allowing no stack space for the process
to use. Furthermore, interrupt service routines make use of
whatever system stack space is available at the time of the
interrupt. If the interrupt occurs while the currently running
process is in user mode, the interrupt service will use the entire
u_ area. However, if the interrupt takes place while the process
is in system mode, the interrupt routine will be sharing the
u_ area. For this reason, interrupt service routines must
minimize their frame variable declarations, keeping their frame
requirements below 512 bytes.

'l'ask-'l'ime Processing

The operating system manages a number of processes, each
corresponding to a user program. A process can be running in
system mode or user mode at any given time. When a process
makes a system call to request kernel service, the process
switches to system mode and starts running kernel code. When
the kernel is executing code at the request of a user program, it is
doing task-time processing.

If there are 50 processes running, there can be as many as 50
simultaneous processes in system mode, each with its own local
variables. This capability requires that all kernel code be
re-entrant, However, it otherwise greatly simplifies things
because each system process instance has to deal only with
servicing the specific system call that the user program requests.
The active process' u_ area is always mapped into the kernel's
address space, so when kernel code is executing, the kernel has
information about the request and current process.

10-8 Application Development Guide

Often the kernel cannot execute a request immediately. The
request may require I/O activity or a pause while waiting for the
next action. When a process, in system mode blocks, is awaiting
some event, the system scheduler allows some other process to
continue.

The operating system passes I/O requests from the user process to
the task-time portion of the device driver via system calls. The
kernel keeps in the u_ area some parameters of the request, such
as byte count and transfer address. These task-time portions of
the driver can reference and perhaps modify the u_ area cells.
This is true because the u_ area of the currently running process
is always mapped in the kernel address space during task-time
processing.

Interrupt-Time Processing

Interrupt-time processing refers to the functions the kernel
performs when it receives a device interrupt. These functions are
called the interrupt service routines. When the kernel receives
an interrupt, any of the active processes on the system may be
executing. Even if this interrupt signals the completion of a user
process' request, the interrupt service routine can take no direct
action; the interrupted process is probably not the process that
initiated the request. Instead, all interrupt-time portions of
device driver routines must store information for the task-time
portion of the device driver routines in static buffer locations in
order to figure out the result of the interrupt service. Any data
or status that the interrupt service routine wants to return to the
task-time portion of the driver (and perhaps to the requesting
user program) must be passed via static buffers.

The local (frame) variables of the task portion of the device
driver are kept in its system mode stack, which is in the u_ area.
This u_ area is not mapped into the kernel address space at
interrupt time; the u_ area there belongs to some other process.
The correct u_ area might even be out on the swap device.
Therefore, the interrupt service routine must never attempt to
store data in the u_ area or in user memory; and the I/O device
itself, via DMA or some other means, must not attempt to
transfer directly into the user's memory area.

Device Drivers 10-9

Character devices typically make use of character lists (clists),
small buffers that the system supplies. Block devices use BSIZE
buffers from the system buffer pool. The task-time portion of the
driver transfers the data from the buffers into the user's memory.
It may be important that the transfer take place directly into
user's memory. In such cases, it is necessary to lock the user
program into physical memory so that it is not swapped.

Typically, the task-time portion of the device driver issues a
sleep() call when it must wait for the completion of an I/O
request. The interrupt service routines service device responses
to I/O requests. These routines also notify the task-time portions
of the driver, via the wakeup() call, that I/O is completed. The
interrupt routines then return to the operating system to
reschedule the running process and the awakened process. When
the task-time portion of the driver awakens, data and status from
the driver can be accessed from the static buffers. Critical
regions of code that access static variables that can be
compromised at interrupt-time can be protected via the spl5(),
splbuf(), and splcli() routines.

The spl5(), splbuf(), and splcli() routines raise the interrupt
priority of the CPU so that interrupts that might alter the data in
the static buffer are locked out until the splx() routine is called.
This lockout period must be kept as short as possible. Refer to
"Kernel Support Routines" on page 10-12 for a more detailed
description of these routines.

Device drivers that use the standard interfaces to the kernel are
provided with a method for passing information between the
interrupt-time portion of a driver and the task-time portion.
Block type buffered I/O device drivers note the outcome of the
data transfer in the buffer headers associated with the buffer used
in the transfer. The header for the list of transfers the driver is
working on is defined in /usr/sys/h/iobuf.h. The header for the
buffer associated with the current transfer is defined in
/usr/sys/h/buf.h. Standard character I/O device drivers use the
per device tty structure (defined in /usr/sys/h/tty.h) to pass data
and information about the I/O request.

10-10 Application Development Guide

Interrupt Routine Rules

An interrupt routine operates in a more restricted environment
than a task-time routine. This is true because it cannot make
any assumptions about the state of the system or about the
presence of particular user processes or user data in system
memory.

The key things to remember are that the user process is mapped
into memory, and its u_ area is mapped into the kernel's address
space only at task time. Task-time processing occurs whenever
the user program code itself is executing (user mode) or the
operating system is executing and performing services for the
program (system mode).

You cannot assume that the u_ area is mapped into memory
during the execution of an interrupt routine. No interrupt
routine, nor any routine that is called at interrupt time, can
make any reference to user memory, the u_ area, or non-static
memory locations. This means that the task-time portion of the
driver must not try to pass addresses of its frame variables,
buffers to devices, or interrupt-service routines. Those locations
are valid only when that individual user process is executing.

Device Drivers 10-11

Kernel Support Routines

This section describes the routines that the kernel provides for
device drivers to use. All of these routines are entered using far
calls and must be declared as extern int far routine() by the
driver.

Note: The memory model that PC XENIX uses to provide for the
loading of installable device drivers prohibits the calling of any
routines that are not described in this routines section.
Therefore, you must restrict every device driver to call only these
routines.

in(), out(), inb(), and outb()

This section describes the routines you can use to interface to the
registers that access and control a particular dev'ice. These
registers can reside either in main memory (memory mapped) or
in I/O space. There are four routines that provide a portable
interface to the registers. The following text describes these
routines.

in(port) : word

Purpose: This routine returns the value of the word you
specify by the given port or register address.

Parameters: port is an integer value that specifies the address of
the word.

Result: The value of word is returned.

For example, to read the status of a word register at address 20
(hex), you can use the following lines of code:

int val;
val=in (Ox20) j

10-12 Application Development Guide

inb(port) :byte

Purpose: This routine returns the value of the byte you
specify by the given port or register address.

Parameters: port is an integer value that specifies the address of
the given byte.

Result: The value of byte is returned.

out(port, value)

Purpose: This routine sets the word at the specified address to
the specified value.

Parameters: port is an integer value that specifies the address of
the word.

Result:

value is the integer value set to the word.

The word at the specified address is set to the
specified value.

outb(port, value)

Purpose: This routine sets the byte at the specified address to
the specified value.

Parameters: port is an inter value that specifies the address of the
byte.

Result:

value is the byte value set to the byte.

The byte at the specified address is set to the
specified value.

Device Drivers 10-13

splbuf(), splcli(), splx(), spl5(), and
spl7()

This section describes the routines used to enable and disable
interrupts during task-time processing.

splbuf(): level

Purpose: This routine can be called if interrupts should not be
acknowledged during task-time processing. It
disables all interrupts which would otherwise cause
the execution of code that would manipulate data
structures associated with block devices, and returns
the pre-empted interrupted level. This value is used
when restoring interrupts with the splx() routine.

Parameters: None

Result: This routine returns an integer value that specifies
the interrupt level pre-empted by this routine.

splc1i(): level

Purpose: This routine can be called if interrupts should not be
acknowledged during task-tirne processing. It
disables all interrupts that would otherwise cause
the execution of code that would manipulate data
structures associated with character devices, and
returns the pre-empted interrupted level. This value
is used when restoring interrupts with the splx()
routine.

Parameters: None

Result: This routine returns an integer value that specifies
the interrupt level pre-empted by this routine.

10-14 Application Development Guide

splx(oldspl)

Purpose: This routine takes the return value of the splbuf()
or splcli() routines and enables the interrupt levels
that were accepted before the call. Calls to
splbuf() or splcli() and splx() nest correctly.

Parameters: The integer value oldspl specifies the level of
interrupts disabled by splbuf() or splcli().

For example, to restrict interrupts during critical device driver
processing, you can use the following lines of code:

int Xi

X = splbuf() i

/*
** do uninterruptable work
*/
splx(x) i

spl5() : level

Purpose: You can call this routine if interrupts should not be
acknowledged during task time processing. This
routine disables all character and block device
interrupts, and returns the preempted interrupt
level. This routine is used when restoring interrupts
with the splx() routine. Note that this routine is
provided for backward compatibility and you should
use splbuf() and splcli() wherever possible.

Parameters: None.

Result: This routine returns an integer value that specifies
the interrupt level preempted by this routine. The
value is then used in a subsequent call to splx().

Device Drivers 10-15

spl7(): level

Purpose: You can call this routine to disable all interrupts.
You should only use it for extremely short periods,
when updating critical data structures that could be
accessed by a high priority device.

Parameters: None

Result: The routine returns the value of the pre-empted
interrupt level. This is used in a subsequent call to
splx().

sleep() and wakeup()

This section describes the routines used to suspend and reawaken
requests that cannot be performed immediately. For example, a
device driver can receive a write request when the output buffer
is full. In this case, the requesting process can suspend itself by
calling the sleep() routine. When the buffer-full condition ends,
the suspended process is awakened in either of two ways: some
other process or interrupt routine may awaken the suspended
process by calling the wakeup() routine, or it can be awakened
by a signal from the clock interrupt routine.

sleep(chan, pri)

Purpose: This routine suspends a requesting process when one
of the conditions required to execute the process
cannot be met. This routine should never be called
at interrupt time.

Parameters: chan is a unique number that identifies the sleeping
process. The convention for generating this unique
number is to use the address of some data structure
the device driver uses. Because no data structures
have the same address, uniqueness is guaranteed.

10-16 Application Development Guide

pri is an integer value that determines the priority of
the process when it awakens. If a process is
suspended with sleep() at a priority lower than
manifest constant PZERO, the clock interrupt
routine signal will not awaken the process.
Typically, the priority is below PZERO if the
condition is likely to disappear almost immediately;
otherwise, it is above PZERO.

wakeup(chan)

Purpose: This routine wakes up processes that have been
suspended by the sleep() routine. All the processes
that have called sleep() with the chan specified are
awakened. When a process is awakened, the call to
sleep() returns, and the process should check to be
sure that the reason for going to sleep has
disappeared.

Parameters: chan is a unique number that identifies the sleeping
process to be awakened. To generate this number
use the address of a data structure the device driver
uses. Because no data structures have the same
address, uniqueness is guaranteed.

timeout() and delay()

This section describes the routines you can use to schedule a call
to a routine at some later time.

Device Drivers 10-17

timeout(function, arg, tim)

Purpose: This routine allows a function to be called at a
scheduled time in the future.

Parameters: function is an integer value specifying the function
to be called.

arg is the argument to the function being called.

tim is an integer value specifying the number of
clock ticks that should elapse before the call.

For example, this routine can be used, along with sleep() and
wakeup(), to provide busy waiting. The following code sample
illustrates this: '

#define PERIOD
#define BUSYPRI
int stopwait() i

int status;

HZ/10
(PZERO -1)

/* 1/10 second */
/* somewhat arbitrary */

int busywait() /* wait until status is non-zero */

while (status == 0) {

int stopwai t ()

timeout (stopwait , 0, PERIOD) i

sleep(&status, BUSYPRI) i

wakeup (&status) ;

Warning: A driver should never loop while waiting
for a status change unless the delay involved is
shorter than 100 microseconds.

10-18 Application Development Guide

delay(ticks)

Purpose: This routine delays sleep() and wakeup() calls for
a number of clock ticks to allow other system
functions to continue properly.

Parameters: ticks is an integer specifying the number of clock
ticks to delay.

Result: After the specified time, the delayed function will
continue running.

Warning: This routine should not be called at
device initialization (init) time. The delay() routine
uses timeout(), sleep(), and wakeup()
mechanisms that depend on the system being fully
functional.

Device Drivers 10-19

dscralloc(), dscrfree(), dscraddr(), and
mmudescr()

This section describes the routines used to access memory that is
not within kernel data. A descriptor from the Global Descriptor
Table (GDT) can be initialized to map the memory area and then
used to access the memory.

dscralloc(): sel

Purpose: This routine allocates a descriptor from the pool of
GDT descriptors available for drivers. It returns the
selector number of the allocated descriptor.

Parameters: None

Result: This routineJeturns an unsigned short value that
specifies the selector number of the allocated
descriptor. If no more descriptors are available, it
returns 0 and prints the following message on the
system console:

Out of device descriptors, increase gdt size (NGDT) and relink PC
XENIX

Note: It is very important that the driver make sure that the
return value is valid (not 0). An attempt to use descriptor 0 can
cause the kernel to crash.

10-20 Application Development Guide

dscrfree(sel)

Purpose: This routine returns a descriptor that is no longer
needed to the pool of available device descriptors. It
takes as its only argument the selector number that
was returned from a call to dscralloc().

A device that uses a descriptor for most or all of its
transfers should not release it, but should reuse the
same descriptor for each transfer. Only devices that
need a descriptor for a short period of time (during
initialization, for example) should ever free a
descriptor.

Parameters: sel is an unsigned short that specifies the selector
number of the descriptor being freed.

dscraddr(sel): addr

Purpose: This routine returns the physical address of the
memory addressed by the selector provided as the
argument.

Parameters: sel is an unsigned short value that specifies the
selector number provided as the argument.

Result: This routine returns the 32-bit physical addrss of the
memory addressed by the selector.

mmudescr(selector, address, limit, access)

Purpose: This routine initializes a descriptor to map a certain
area of memory.

Parameters: selector is an unsigned short that specifies the
selector number of the descriptor allocated by
dscralloc().

address is a long that specifies the address of the
beginning of the memory area to be mapped.

limit is an unsigned short that specifies the limit of
the memory area (its size in bytes - 1).

access is a byte value that specifies an access
designation.

Device Drivers 10-21

For example, the mmudescr() routine can be used to map a
section of memory 1024 bytes long at address OxbOOOO for reading
and writing as follows:

mmudescr(sel, OxBOOOO, Ox3FF, RW);

RW is a define in the mmu.h file that specifies read/write access
for the driver. RO specifies read-only access to the memory area.

Mapping Memory
The normal sequence of events for a device driver that needs to
use a selector to map memory is:

1. Use the dscralloc() routine in the driver initialization
routine (or on first open for this device) to reserve a
descriptor for this driver's use.

2. For each data transfer, use the mmudescr() routine to set
the descriptor to map the area of memory that the driver
needs to access.

10-22 Application Development Guide

ttinit(), ttiocom(), ttstrt(), and
ttyflush()

This section describes the routines you can use to initialize the
tty structures, start tty output, and empty the tty queue.
ttinit(tp)

Purpose: This routine initializes the tty structure to specific
default values. It should be called immediately after
the first tty device is opened if you want default
settings for your tty device.

Parameters: tp is a struct tty* that points to the tty data
structure associated with the device being used.

ttiocom(tp, cmd, addr, mode)

Purpose: This routine is called for all common tty ioctl()
calls. It is called by the xxioctl() routine after a
device specific ioctl() has been performed.

Parameters: tp is a struct tty* that points to the tty data
structure associated with the device being used.

ttstrt(tp)

Purpose:

cmd is an integer specifying an ioctl() command.

addr specifies the address of the user space where
the parameters reside.

mode specifies whether the command is a read
(FREAD) or write (FWRITE) operation.

This routine restarts tty output after a timeout()
call. It is passed as an argument by the device
driver to timeout() calls.

Parameters: tp is a struct tty* that points to the tty data
structure associated with the device being used.

Device Drivers 10-23

ttyflush(tp, cmd)

Purpose: This routine flushes the tty queue.

Parameters: tp is a struct tty* that points to the tty data
structure associated with the device being used.

cmd specifies whether the input (FREAD) queue or
the output (FWRITE) queue is to be flushed.

10-24 .Application Development Guide

copyio()

This section describes the routine used to copy bytes to and from
specific locations in the kernel.

copyio(addr, faddr, cnt, mapping) : error

Purpose: This routine copies bytes to and from a physical
address (buffer address) in the kernel or to and from
a long address (user data pointer) in the kernel.

Parameters: addr is a long value that specifies the physical
kernel address to or from which the data is to be
transferred.

Result:

faddr is a character value that specifies the segment
and offset of the user address to or from which the
data is to be transferred.

cnt is an integer value that specifies the number of
bytes of data to transfer.

mapping is an integer that designates the direction
of the transfer. The possible mapping values are
defined in user.h and listed below:

U_WUD Transfer from user data to a kernel data
(buffer)

U_RUD Transfer from kernel data (buffer) to user
data

U_WUI Transfer from user text to a kernel data
(buffer)

U_RUI Transfer from kernel data (buffer) to user
text

U_WKD Transfer from kernel data to file (buffer)

U-RKD Transfer from file (buffer) to kernel data

U-READ Copy from addr to faddr

U_WRITE Copy from faddr to addr

If successful, this routine performs the specified data
transfer; otherwise, it returns -1.

Device Drivers 10-25

For the following copyio() example, note that the ioctl()
interface to a driver actually has two calling sequences:

and,

ioctl(fd, cmd, arg)
int fd, cmd, arg;

ioctl(fd, cmd, arg)
int fd, cmd;
int *arg;

In the kernel, the ioctl() interface is translated into the device
specific call shown below:

xxioctl(dev, cmd, arg)
int dev, cmd;
faddr_t arg;

If arg is a pointer to a data structure, you can copy your data in
and out using the following copyio() example:

struct foo dsti

other ioctl code

/* copy from arg to dst */
if (copyio «caddr_t) &dst, arg,

sizeof(foo), U_WUD) == -1)

u.u_error = EFAULTi
return;

10-26 Application Development Guide

Note: The file named /usr/sys/h/param.h defines several
macros that are useful for converting addresses from one type to
another. These macros include:
ftoseg(x)

ftoof(x)

Converts x from an faddr_t to a segment (selector
number)

Converts x from an faddr_t to an offset
sotofar(seg,off)

Converts a segment, offset pair into an faddr_t
ptok(x)

Converts a physical address to a kernel logical address
ktop (x)

Converts a kernel logical address to a physical address

iomove()

Some Version 7 device drivers used a routine called iomove() to
copy to or from user space. The iomove() routine does not exist
in System 3 and System 5; however, adding the following code
will provide similar capability:

#include .. /h/pararn.h
#include .. /h/dir.h
#include .. /h/user.h
/*
** iornove - equivalent to the V7 version
**
**
**
**
**
*/

except we don't provide
any of the standard segflg
machinations for writing
to instruction space

NOTE: u.u-base is an faddr_t

iomove(cp, cnt, flag)
caddr_t CPi

register int cnt;
int flag;

Device Drivers 10-27

register int ret_val;

if (cnt == 0)
return;

if(flag == B_WRITE)

/* Nothing to do */

ret_val = copyio(cp,
u.u-hase, cnt, U_WUD);

else
ret_val = copyio(cp,

u.u_error
return;

u.u-hase += cnt;
u.u_count -= cnt;
u.u_offset += cnt;

u.u-hase, cnt, U-RUD);

EFAULT;

10-28 Application Development Guide

putchar() and printf()

putchar (c)

Purpose: This routine is used for printing error and system­
crash messages when the device driver is used to
handle the console. It puts one character on the
console, doing a busy wait rather than depending on
interrupts.

Parameters: c is the character to be printed on the console.

printf(format, pl, p2, . . .)

Purpose: This routine is a simplified version of the standard C
library printf() routine. It is used to print error
messages and debugging information on the system
console. The only special format characters
recognized by this routine are: %s, %c, %d, %ld, %lx,

%u, %D, %X, %x, and %0. It also recognizes the newline
and carriage return characters.

Note: This routine is not interrupt driven and will
suspend all other system activities while it is
executing.

Parameters: format is the printf() format string.

Result:

pl, p2, ... are the additional parameters to be
printed by the routine.

None.

Device Drivers 10-29

panic(), signal(), and suser()

This section describes routines that perform miscellaneous system
functions.

panic(s)

Purpose: This routine is called whenever an unrecoverable
kernel error is encountered. It prints the string
passed as a parameter on the system console and
reboots the system.

Note: This routine should only be called under
extreme circumstances.

Parameters: s is a char pointer addressing a message explaining
the reason for the system panic.

Result: None. This routine does not return.

signal(pgrp, signum)

Purpose: This routine sends the specified signal signum to all
processes in the process group identified by pgrp.

Parameters: pgrp is an integer giving the process group number.

signum is the signal to be sent.

Result: None.

10-30 Application Development Guide

suser()

Purpose: This routine is used to determine whether the user
associated with the currently executing process is
the superuser. This can be useful, for example, in
determining whether special device operations (such
as disk formatting) are allowed.

Parameters: None

Result The routine returns 0 if the current user is not the
superuser and 1 if the user is the superuser.

Device Drivers 10-31

Parameter Passing to Device Drivers

The task-time portion of the device driver has access to the user's
lL area, because this area is mapped into kernel address space.
The kernel routines that handle I/O requests place information
describing the request into the u_ area of the process. The
parameters passed into the lL area are:
u.u-"base

Address in user data for read/write data transfers
u.u_count

The number of bytes to transfer
u.u_offset

The start address within the special file for transfer
u.u_segflg

Indicates the direction of the transfer

Refer to the /usr/sys/h/user.h file for the values to use for
u.u_segflg. In addition to the parameters passed into the
u_ area, the kernel 1/0 routines pass the minor device number as
a parameter to the driver when it is called. Thus, the driver has
all the information it needs to perform the request: the target
device, the size of the data t.ransfer; t.he st.art.ing address on the
device, and the address in the process' data.

Only device drivers that do not use standard character and block
1/0 interfaces in the kernel need to examine the parameters in
the u_ area. Kernel routines that provide these standard
interfaces convert the values passed in the u_ area into values
that the driver expects. In the case of the standard block 1/0
interface, these parameters are set in the buffer header that
describes the data transfer. Refer to "Device Drivers for Block
Devices" on page 10-50 for more information on using the buffer
header information to set up a block data transfer.

Device drivers using the standard character 1/0 interface use the
clist buffering scheme and the routines that manipulate the clist
to effect the data transfers. Refer to "Device Drivers for
Character Devices" on page 10-33 for more information on using
clists and the character 1/0 interface routines.

10-32 Application Development Guide

Naming Conventions

There is a naming convention for all driver routines called by the
kernel and for some driver variables. Each driver uses a unique
2- to 4-character prefix to identify its routines. For example, a
fixed-disk driver might use the prefix hd. In the following
sections, the prefix xx is used to identify driver routines.

Device Drivers for Character Devices

This section describes PC XENIX character device drivers.
Character devices conform to the PC XENIX file model; their
data consists of a stream of bytes delimited only by the beginning
and end of file. The system provides programs with direct access
to devices through the special device files described in "Special
Device Files" on page 10-3.

Most character device drivers should be designed around the
special requirements of terminal devices. There are facilities
provided for programming functions on input and output
(character erase, line kill, tab functions, etc.), and for setting line
options such as speed. Other character-oriented devices, such as
line printers, use the same program interface as terminals, but
wi th a different driver.

The character device drivers for slow devices use a data buffering
mechanism known as a character list or clist.. Clists are used for
transferring relatively small amounts of data between the driver
and the user program. Clists are described in more detail in
"Character List and Character Block Architecture" on
page 10-44.

Character Device Driver Routines

The task-time portion of the character device driver is called
when a user process requests a data transfer to or from a device
under the control of the driver. The system determines which
device driver to use from the major device number of the device.
The driver's job is to take the requests from the user's process,
check the parameters supplied, and set up the necessary
information for the device interrupt routine to perform the I/O.

Device Drivers 10-33

In the case of a write to a slow device (that is, one using clists),
the driver copies the data from user space into the output clist for
the device. In the case of direct I/O between the device and user
memory (for example, magnetic tapes), the driver simply sets up
the I/O request. The routines that provide the interface between
the kernel and character device drivers are described as follows
(xx is a mnemonic that refers to the device handle).

xxinit()

Purpose: This routine initializes the device when PC XENIX
is first booted. If present, it is called indirectly
through the cinitsw, binitsw, or dinitsw table
defined in the kernel configuration file
(/usr/sys/conf/c.c).

xxopen(dev, flag, id)

Purpose: This routine is called each time the device is opened.
It prepares the device for the I/O transfers and
performs any error or protection checking.

Parameters: dev is an integer that specifies the minor number of
the device.

flag is the oflag argument that was passed to the
open system call.

id is an integer value specifying whether the device
is a character device (0) or a block device (1).

xxclose(dev, flag)

Purpose: This routine is called on the last close on a device.
It is responsible for any cleanup that may be
required, such as disabling interrupts or clearing
device registers.

Parameters: dev is an integer that specifies the minor number of
the device.

xxstart()

Purpose:

flag is the oflag argument passed to the last open
system call.

If the task-time portion of the driver detects that the
device is idle, this routine may be called to start it.
This routine is often called by both task-time and

10-34 Application Development Guide

interrupt-time parts of the driver. It checks whether
the device is ready to accept another transfer
request, and if so, it starts the request, usually by
sending it a control word. The xxstart() routine is
not used by device drivers that control tty devices.

xxintr(vec_num)

Purpose: This routine is called by the kernel when the device
issues an interrupt. Because the interrupt typically
signals completion of a data transfer, the interrupt
routine must determine the appropriate action;
perhaps by taking the received character and placing
it in the input buffer, or by removing the next
character from the output buffer and starting the
transmission.

Parameters: vec_num is an integer that specifies the interrupt
vector number.

Device Drivers 10-35

xxread(dev)

Purpose: This routine is called when a program makes a read
system call. It transfers data to the user's address
space. The epass() function is available to transfer
one character at a time to the user. This subroutine
returns a (-1) when there are no more characters to
be transferred.

Parameters: dev is an integer that specifies the minor number of
the device.

xxwrite(dev)

Purpose: This routine is called when a program makes a write
system call. It transfers data from the user's address
space. A function, passe, is available to transfer
one character at a time from the user. This
subroutine returns a (-1) when there are no more
characters to be transferred.

Parameters: dev is an integer that specifies the minor number of
the device.

xxproe(tp, cmd)

Purpose: This routine is called to effect a desired change in
the output, such as to perform output character
expansion, to perform character output, and to halt
or restart character output.

Parameters: tp specifies the tty structure associated with the
device.

cmd specifies the process to be performed. The
sample tty driver in Chapter 11, "Sample Device
Drivers" on page 11-1 documents the list of cmd
argument values that xxproe() can expect.

10-36 Application Development Guide

xxioctl(dev, cmd, arg, mode)

Purpose: This routine is called by the kernel when a user
process makes an ioct1() system call for the
specified device. It performs hardware-dependent
functions such as setting the data rate on a
character device.

Parameters: dev is an integer that specifies the minor device
number of the device.

cpass(): c

Purpose:

cmd is an integer that specifies the command passed
to the system call.

arg specifies the argument passed to the system call.

mode specifies the flags passed on the open system
call for the device.

This routine is used to return the next character in a
user output request.

Parameters: None.

Result

passc(c)

This routine returns c which can be either a
character or the value -1. A value of -1 indicates
that there are no characters left in the output
request.

Purpose: This routine passes characters to a user read
request.

Parameters: c is the character to be passed to the read request.

Result: The routine returns 0 normally and -1 when the user
read request has been satisfied.

Device Drivers 10-37

Character List Routines

There is a pool of small buffers in the kernel called character
lists (c1ists). A c1ist structure is the head of a linked list queue
of characters. Character blocks (cblocks) are elements in the
linked list. Each cblock can hold a small number of characters.
The primary use of the c1ist buffers is for terminal devices that
must interface with the common terminal interface. Clisls are
also used for buffering low-speed character devices. Refer to
"Character List and Character Block Architecture" on page 10-44
for further information about c1ists.

A driver that uses the clist buffer mechanism must declare a
queue header of type clist. If both input and output are buffered,
the driver needs two headers. The driver can use six routines to
manipulate clist buffers. These routines are described below:

/

getc(cp): c

Purpose: This routine gets one character from a clist buffer.

Parameters: cp specifies the clist buffer from which the character
is moved.

Result: This routine returns c which can be either the next
character in the buffer or the value -1. A value of-1
indicates that there are no characters left in the
buffer.

10-38 Application Development Guide

putc(c, cp)

Purpose: This routine puts one character into a clist buffer.

Parameters: c is an integer that specifies the character to be

Result:

moved.

cp specifies the clist buffer to which the character is
moved.

This routine places the specified character in the
buffer or returns -1 if there is no free space.

getcb(cp): cbp

Purpose: This routine removes one cblock from a clist buffer.

Parameters: cp specifies the clist buffer from which the cblocks
are moved.

Result: This routine returns cbp which can be either a
pointer to the next cblock in the buffer or the value
-1. A value of -1 indicates that the clist is empty.

putcb(cbp, cp)

Purpose: This routine moves one cblock to a clist buffer.

Parameters: cbp is a pointer that specifies the cblock to be
moved.

Result:

cp is a pointer that specifies the clist buffer to which
the cblock is moved.

This routine places the specified cblock in the buffer
or returns -1 if there is no free space.

Device Drivers 10-39

getcf(): cbp

Purpose: This routine takes a cblock from the cfreelist and
returns a pointer to it.

Parameters: None

Result:

putcf(cbp)

Purpose:

This routine returns cbp which can be either a
pointer to the cblock or the value -1. A value of -1
indicates that the clist is empty.

This routine puts the specified cblock onto the
free list.

Parameters: cbp is a pointer to a cblock.

Note: All the cblocks not currently used are kept on a list of
free memory blocks. Because there are a limited number of
cblocks in the system, each driver must be judicious in
determining how many cblocks are used for buffering input and
output.

For output buffering, the driver usually follows a high and low
water mark convention. The driver accepts and queues requests
from the user process until the buffer contents reaches the high
water mark. At that point, the requesting processes are
suspended via the sleep() routine. When the buffer decreases
below the low water mark, the suspended processes are
awakened, and can fill the buffer again.

For input buffering, the driver usually buffers data up to some
limit. When this limit is reached, data is discarded to make room
for more recent data.

10-40 Application Development Guide

getcbp(p, cp, n)

Purpose: This routine copies characters from the specified
clist(p) to the buffer addressed by the cp argument.

Parameters: p is a struct clist *.

Result:

cp is a char * addressing the buffer to which the
characters are to be copied.

n is the number of characters to be copied (which
should denote the maximum size of the available
buffer).

This routine returns the number of characters
actually copied (which is less than or equal to n).

putcbp(p, cp, n)

Purpose: This routine copies characters from a buffer to the
clist given as an argument.

Parameters: p is a struct clist *.

Result:

cp is a char * which addresses the buffer.

n is the number of characters to be copied to the
clist.

None

Device Drivers 10-41

Line Discipline Routines

If you use a serial device as an interactive terminal, it must
support various functions, such as character and line erase,
echoing, and buffered input. The code needed to perform these
functions has been abstracted into a set of routines that roughly
corresponds to the character device function. Each of these sets
is called a line discipline. One standard line discipline is
provided by default. Each of the routines is called through the
linesw table initialized in /usr/sys/conf/c.c. Each entry in this
table represents one line discipline and has entries for eight
functions.

• The Lopen() routine should be called on the first open of a
device.

• The Lclose() routine should be called on the last close of
the device.

• The Lread() and Lwrite() routines are called by the
drivers read and write routines, to pass characters to and
from the calling process.

• The Linput() routine is called to buffer incoming characters
at interrupt time.

• The Loutput() routine is called to get the next block of
characters for output at interrupt time.

• The Lioctl() routine is used to call specific routines related
to the line discipline.

• The Lmdmint() routine is unused.

10-42 Application Development Guide

The default line discipline table provided addresses the following
routines:

I_open () ---+ ttopen()

l_cIose() ---+ ttcIose()

Lxead() ---+ ttread()

I_write () ---+ ttwrite()

I_input () ---+ ttin()

I_output () ---+ ttout()

I_ioctl () ---+ ttioctl (
I-IIldmint() ---+ nuIIdev(

Interrupt Routines for Character Device
Drivers

The device interrupt routine is entered whenever one of its
devices raises an interrupt. Generally one driver controls several
devices, and all interrupts are vectored through a single function
entry point, usually called xxintr(). (Note that xx is a mnemonic
that refers to the device type.) It is the driver's responsibility to
determine which device caused the interrupt.

When a device raises an interrupt, it usually provides status
information to indicate the reason for the interrupt. The driver
interrupt routine decodes this information. If a transfer was
completed, the wakeup() routine alerts any waiting processes.
Then the routine checks to determine if the device is idle, and if
so, it looks for more work to start up. In the case of output to· a
terminal, the interrupt routine looks for more work in the
ccblocks each time a transfer is completed.

Device Drivers 10-43

Character List and Character Block
Architecture

The character lists (clist) provide a general character buffering
mechanism for use by character device drivers. This mechanism is
designed for buffering small amounts of data from relatively slow
devices, particularly terminals.

The kernel has a pool of character blocks (cblocks). Each cblock
contains a link to the next cblock and an array of characters. A
clist is a linked list queue of cblocks.

The kernel provides the getc() and putc() routines (described
in "Character List Routines" on page 10-38) for putting
characters into a clist and removing characters from a clist.
These routines should be used by all drivers using clists. Note
that these routines are not the same as the Standard I/O Library
routines of the same name.

The static buffer header for each clist contains three fields: a
count of the number of characters in the list, a pointer to the first
cblock in the list, and a pointer to the last cblock. The clist
buffers form a single linked list as shown below:

struct {

} clist;

int c_cc;
char *c_cf;
char *c_cl;

.. -
-

next .. next -

chars chars

Character List Buffers

,
.. 0 -

chars ...

There is a protocol defined for use of the clists that prevents a
process or driver from consuming all available resources. Two
constants for the clist high and low water marks are defined in
the file named tty.h. A process is allowed to issue write requests
until the corresponding clist hits the high water mark. The
process is then suspended and I/O performed. When the list
reaches the low water mark, the process is awakened. A similar
protocol is used for read requests.

10-44 Application Development Guide

Character Device Drivers

There are three character device drivers commonly found on PC
XENIX systems: terminal, line printer, and magnetic tape drivers.
Line printer and magnetic tape drivers tend to use existing kernel
facilities, with little special handling.

Terminal Device Drivers

Terminal device drivers use clists extensively. For each terminal
line (each minor device number), the driver declares static clist
headers for three clists and two ccblocks. These clists are the
raw queue, the canonical queue, and the output queue. The
ccblocks are the transmit control block and the receive control
block.

When a process writes data to a terminal device, the task-time
portion of the driver puts the data into the output queue, and
calls a routine to move the outgoing data into the transmit
control block. Then, the interrupt routine transfers the data
from the transmit control block to the device.

When a process requests a read of data from the terminal, the
situation is slightly more complicated. This complication occurs
because PC XENIX gives the requesting process the option of
processing characters on input. For example, in normal input the
Backspace key means to delete the last character input, and the
line kill character means to forget the whole current line. In
reading from the terminal, certain special characters (such as
backspace) have to be treated in context; that is, they depend
upon surrounding characters. To handle this context processing,
PC XENIX drivers use two queues and a ccblock for incoming
data. The two queues are the raw queue and the canonical queue
and the ccblock is the receive control block.

Data received by the interrupt routine is placed in the receive
control block. If the block is full, the interrupt routine calls the
Linput() function from the linesw table to move a ccblock of
data to the raw queue. (The raw queue contains data that has
not been processed.) Then, the interrupt routine returns, having
left the unprocessed data in the raw queue. At task time, the
driver determines how much processing to do. The user process
has the option of requesting raw input. If it does, it receives data
directly from the raw queue. (Cooked input refers to input after
processing for erase, line, kill, delete, and other special line
editing functions.)

Device Drivers 10-45

In this case, a task-time routine, canon(), is used to transfer
data from the raw queue to the canonical queue. This routine
performs backspace and line kill functions, according to the
options set by the process using the ioctl(S) system calL
Canonical data refers to the data after processing for erase, line
kill, delete, and other special treatment.

In PC XENIX, the specific line discipline normally handles the
direct clist processing for tty device drivers. The only processing
that the device driver needs to perform is interrupt-level controL
The device driver provides interrupt-level control by emptying
and filling ccblocks. Each tty structure has a ccblock for
transmitter control (Ltbuf) and a ccblock for receiver control
(tJ'buf). The ccblock structure has the following format:

struct ccblock {

caddr_t c_ptr; /* buffer address */
ushort_t c_count; /* character count */
ushort_t c_size; /* buffer size */

10-46 Application Development Guide

At receiver interrupt time, the driver fills a receiver ccblock with
characters, decrements the character count, and calls the line
discipline routine Linput(). At transmitter interrupt time, the
driver calls xxproc() and the line discipline routine Loutput()
to get a transmitter ccblock and then outputs as many characters
as possible. Refer to Chapter 11, "Sample Device Drivers" on
page 11-1 for code.

The basic flow of data through the system during terminal I/O is
shown in the diagram below:

Task Time I Interrupt Time
I
I

User Initiated read() System Call I • I
xxread()

I I
ttread()

ttin() xxtint()

~a':ue ~~~~~e 14--+-...L-~
canon()

(echo)

ttin()

L--_~ ___ ~ out I----r __ ~ transmit t----.--~
queue block

ttwrite() ttout() xxxint()
I

xxwrite() • User Initiated write() System Call

tty Subsystem.

There are two slight complications to the scheme presented in the
diagram above. They are output character expansion and input
character echo.

Device Drivers 10-47

Output expansion occurs for a few special characters. In
canonical mode, tabs may be expanded into spaces, and the
newline character is mapped into carriage return plus line feed.
There is a facility for producing escape sequences for uppercase
terminals and delay times for certain characters on slow
terminals. Note that these examples are simple expansions, or
mapping single characters, and so they do not require a second
list, as is the case for input. Instead all the expansion is
performed by the xxproc() routine before placing the characters
in the output clist.

Character echo is a user process option required by most
processes. With this option, all input characters are immediately
echoed to the output stream, without waiting for the user process
to be scheduled. Character expansion is performed for echoed
characters, as for regular output. Character echo takes place at
interrupt time, so that a user typing at a terminal gets fast echo,
regardless of whether his program is in memory and running, or
swapped out on disk.

Line Printer Drivers

These are usually relatively slow character-oriented devices. The
dri,rcrs use the clist mechanism for buffering data. HO,\Xlever, a
line printer driver is generally simpler than a terminal driver
because there is less processing of output characters to do and no
input.

10-48 Application Development Guide

Magnetic Tape Drivers

Magnetic tape device drivers differ greatly from terminal and line
printer drivers because of the special way magnetic tape devices
handle data. Magnetic tape devices generally handle data in the
following ways:

• Data is arranged in blocks.

• Data is accessed serially.

• Data is moved in large amounts.

• The device is accessed by only one program at a time.

Therefore, the elaborate kernel buffer management scheme is not
applicable to tape drive devices. Furthermore, the c1ist
mechanism is inappropriate because of the large amounts of data
involved.

Usually tape drivers provide two interfaces, a character and a
block interface. The character interface is used for raw data I/O
directly between the device and the address space of the user's
process. The block interface makes use of the kernel buffer pool
and buffer manipulation routines to store data in transit between
device and process. Refer to "Character Interface to Block
Devices" on page 10-51 for information on providing the facility
for raw I/O.

Device Drivers 10-49

Device Drivers for Block Devices

Block devices are devices that must be addressed in terms of
large blocks of data, rather than individual bytes. Disks and
some magnetic tape systems fall into this category. PC XENIX
file systems always reside on block devices but block devices do
not have to be accessed in large data block fashion.

Unlike the case with character devices, a block I/O transfer
request is not a private transaction between a driver and a user
process. The kernel provides a comprehensive buffer
management scheme which is used by block device drivers.

The kernel maintains a pool of buffers. The kernel also keeps
track of the data in the buffers and whether or not the block has
modified data that needs to be written to disk. When a user
process issues a transfer request to a block device, the kernel
buffer routines check the buffer pool to see if the data is already
in memory. If not, a request is passed to the driver to get the
data. All the driver ever sees are fixed-size requests (BSIZE bytes
long) coming in from one source. This is true regardless of the
size of the I/O request from the user's process. Large requests are
broken down into BSIZE blocks, and handled individually,
because some may be in memory, and some may not.

When a process issues a read request, this request generally
translates into one or more disk blocks. The kernel checks to see
which of these is already in memory and causes the driver to get
the rest. The kernel then copies the data from each filled buffer
into the memory of the process.

In the case of a write request, the kernel copies the data from the
user process' memory into the buffer pool. If there are insufficient
free buffers, the kernel will have the driver write some out to
disk, using a selection algorithm designed to reduce disk traffic.
When all the data is copied out of user space, the kernel can
reschedule the process. Note that all the data may not yet be out
on disk; some may be in memory buffers and marked as needing
to be written out at some later time.

10-50 Application Development Guide

Character Interface to Block Devices

Sometimes block device drivers provide a character I/O interface
as well as an interface for block I/O. When the device provides a
character interface, you can create a separate special device file
to access the device through the character interface. To
construct a character I/O interface to a block device, use the
utility mknod(C) described in XENIX Commands Reference. This
utility creates a character special device file that has the same
major and minor number as the block special device file. To
implement character I/O, the block device driver must provide the
routines xxread() and xxwrite() described below.

When a block device is accessed through a character interface,
data transfer takes place directly between the device and the
memory space of the process. There is no intermediate buffering
in the kernel buffer pool or in the clists. The driver receives the
request exactly as the process sent it, for whatever size was
specified. There is no kernel support to break the job into BSIZE
blocks. This type of data transfer is referred to as physical (or
raw) I/O.

Raw I/O has some advantages for certain types of programs.
Programs that need to read or write an entire device can usually
do this more efficiently through the character interface. This is
true because the device can be accessed sequentially, and large
transfers can be made. There is also less copying of data between
buffers than is done in the block interface. Therefore, disk
backup programs, or utilities that copy entire volumes, typically
operate through character interface.

However, because the driver must be able to locate the data, this
extra efficiency requires that the process be locked in memory
during the transfer. The routine pbysio() called by the
xxread() and xxwrite() driver routines handles the locking of
the process in memory for the duration of the data transfer.

Block Device Driver Routines

A block device appears to the kernel as a randomly addressable
set of records of size BSIZE, where BSIZE is a manifest constant
defined in the param.h file. The kernel inserts a layer of
buffering software between user requests for block devices and
the device driver. This buffering improves system performance by
acting as a cache, allowing read ahead and write behind on block
devices.

Device Drivers 10-51

Each buffer in the cache contains an area for BSIZE bytes of data
and has associated with it a header of type struct buf which
contains information about the data in the buffer. When an I/O
request is passed to the task-time portion of the block device
driver, all of the information needed to handle the data transfer
request has been stored in the buffer header. This information
includes the disk address, and whether a read or a write is to be
done. The file /usr/sys/h/buf.h describes the fields in the buffer
header. The fields most relevant to the device driver are:

b_dev The major and minor numbers of the device
b-hcount The number of bytes to transfer
b_paddr The physical address of the buffer
b-hlkno The block number on the device
b_error Set if an error occurred during the transfer

The driver validates the transfer parameters in the buffer header,
and then queues the buffer on a doubly linked list of pending
requests. In each block device driver, this chain of requests is
pointed to by a header of type struct iobuf named xxtab. The file
/usr/sys/h/iobuf.h describes the fields in the request queue
header. The requests in the list are sorted by the disksort()
routine. The device interrupt routine takes its w@rk from this
list.

When a transfer request is placed in the list, the process making
the request sleeps until the transfer is completed. When the
process is awakened, the driver checks the status information
from the device interrupt routine. If the transfer is completed
successfully, the driver returns a success code to the kernel. The
kernel buffer routines are responsible for correlating the
completion of an individual buffer transfer with the particular
process that requested the transfer.

The interface between the kernel and the block device driver
consists of the routines described in the following paragraphs.

xxinit()

Purpose: This routine is called to initialize the device when
PC XENIX is first booted. If present, it is called
indirectly through the binitsw table defined in the
kernel configuration file (/usr/sys/conf/c.c).

xxopen(dev, flag, id)

Purpose: This routine is called each time the device is opened.
This routine initializes the device and performs any
error or protection checking.

10-52 Application Development Guide

Parameters: dev is an integer that specifies the minor device
number.

flag is the argument that was passed to the open
system call.

id is an integer value specifying whether the device
is a character device (0) or a block device (1).

Device Drivers 10-53

xxclose(dev, flag)

Purpose: This routine is called on the last close on a device.
It is responsible for any cleanup that may be
required, such as disabling interrupts, clearing
device registers, and ejecting media.

Parameters: dev specifies the minor device number of the device
being closed.

flag is the oflag argument that the open system call
passes.

xxstrategy(bp)

Purpose: This routine is called by the kernel to queue an IIO
request. It must make sure the request is for a valid
block before it inserts the request into the queue.
Usually the driver calls disksort() to insert the
request into the queue. The disksort() routine
takes two arguments: a pointer to the head of the
queue, and a pointer to the buffer header to be
inserted.

Parameters: bp is a pointer to a buffer header.

xxstart()

Purpose: If the task-time portion of the driver detects that the
device is idle, this routine may start it. It is often
called by both the task-time and the interrupt-time
portions of the driver. It checks whether the device
is ready to accept another transfer request, and if so,
it starts the device, usually by sending it a control
word.

10-54 Application Development Guide

xxintr(vec_num)

Purpose: This routine is called whenever the device issues an
in terru pt. Depending on the meaning of the
interrupt, it marks the current request as complete,
starts the next request, continues the current
request, or retries a failed operation. The routine
examines the device status information and
determines whether the request was successful. The
block buffer header is updated to reflect this. The
interrupt routine checks to see if the device is idle,
and if so, starts it up before exiting.

Parameters: vec_num is an integer that specifies the interrupt
vector number.

xxread(dev)

Purpose: The only action taken by this routine is to call the
physio() routine with the appropriate arguments.

Parameters: dev specifies the minor device number of the device.

Note: Often a block device driver provides a character device
driver interface so that the device can be accessed without going
through the structuring and buffering imposed by the kernel's
block device interface. For example, a program might want to
read magnetic tape records of arbitrary size or read large portions
of a disk directly. When a block device is referenced through the
character device interface, it is called raw I/O to emphasize the
unstructured nature of the action. Adding the character device
interface to a block device requires the xxread() and xxwrite()
routines.

Device Drivers 10-55

xxwrite(dev)

Purpose: The only action taken by this routine is to call the
physio() routine with appropriate arguments.

Parameters: dev specifies the minor device number of the device.

Note: See Note for xxread() routine.

xxioctl(dev, cmd, arg, mode)

Purpose: This routine is called by the kernel when a user
process makes an ioctl() system call for the
specified device. It performs hardware-dependent
functions, such as parking the heads of a fixed disk,
setting a variable to indicate that the driver is to
format the disk, or telling the driver to eject the
media when the close routine is called.

Parameters: dev specifies the minor number of the device.

cmd specifies the command that was passed to the
ioctl() system call.

arg specifies the argument that was passed to the
ioctl() system call,

mode specifies the flags that were set on the open()
system call for the specified device.

10-56 Application Development Guide

physio(strategy, bp, deu, flag)

Purpose: This routine provides the raw I/O interface for block
device drivers. It validates the request, builds a
buffer header, locks the process in core, and calls the
strategy routine to queue the request.

Parameters: strategy is a pointer to the disk strategy routine for
the block device.

brelse(bp)

Purpose:

bp is a pointer to the buffer header describing the
request to be filled.

deu is an integer specifying the minor device
number.

flag specifies the I/O operation to be performed.

This routine is used to release a block buffer to the
free pool of buffers. It is called by a block device
driver to release a buffer. The contents of the buffer
are lost and the driver is not allowed to make any
further reference to the buffer.

Parameters: bp is a struct buf * which addresses the buffer
header relating to the buffer to be released.

Result: The buffer addressed be bp is returned to the free
buffer pool. No errors are possible.

Device Drivers 10-57

deverr(dp, 01, 02, msg)

Purpose: This routine prints an error message on the system
console together with some device specific
information acquired from the parameters passed to
the routine. The exact format of the output is shown
in the following printf statement:

register struct buf *bPi

bp=dp->b_actfi
printf(flerror on dev %s (%u/%u)",

dn,
major (bp->b_dev),
rninor(bp->b_dev)) i

printf(",block=%D crnd=%x status=%xO,
bp->b-.blkno,
01, 02);

Parameters: dp is a struct iobuf * which is the head of the I/O
request queue for the device.

01 contains driver specific information. It is
normally used to provide the controller command
which relates to the I/O operation which failed.

02 contains driver specific information. It is
normally used to provide the controller status
information at the time of failure.

msg is a pointer to a string identifying the device.

Result: None.

10-58 Application Development Guide

disksort(disktab, bp)

Purpose: This routine is called to add a block device I/O
request to the queue of such requests for a particular
device. It is normally called by the device strategy
routine. The disktab parameter is the head of the
request queue, and the bp parameter addresses the
buf structure containing the request. The queue of
requests is sorted in ascending order by the
disksort() routine, in an attempt to reduce disk
head movement.

Parameters: disktab i~ the address of a struct iobuf which is
declared within the driver to form the head of the
I/O request queue.

Result:

bp is a struct buf * which points to the I/O request
to be added to the queue.

This routine does not return a result.

For an example, see Chapter 11, "Sample Device Drivers" on
page 11-1.

getablk(): bp

Purpose: This routine is used to acquire a free buffer from the
block buffer pool. The pointer returned by this
routine addresses a buffer which can be used as
required. The buffer can subsequently be returned
to the buffer pool by calling brelse() or iodone().

Parameters: None.

Result: This routine returns bp which is a struct buf * that
addresses the allocated buffer.

Device Drivers 10-59

iodone(bp)

Purpose: This routine will signal completion of an I/O
operation involving the buffer addressed by bp. This
routine is called when the driver wants to signal
either successful or erroneous completion of an I/O
operation. It differs from the brelse() routine in
that the higher levels of the kernel I/O system will
complete the processing of the buffer before
releasing it back to the buffer pool using brelse().

Parameters: bp is a struct buf * which addresses the buffer.

Result:

iowait(bp)

Purpose:

None.

This routine is called by the higher levels of the
kernel I/O system in order to wait for the completion
of an I/O operation specified by the buffer addressed
by the parameter bp. This routine should not be
called within a device driver since it may call the
sleep() routine.

Parameters: bp is a struct buf * w hich addresse~ the buffer
inv()lvpn in t.hp T 10 ()npr~t.i()n ---_. -_. -- --- ---- -, - -r--------·

Result: There is no result returned. The calling process will
be allowed to proceed once the I/O operation has
been completed.

10-60 Application Development Guide

Rules for Writing Installable Device
Drivers

PC XENIX makes provision for installable device drivers. This
facility enables the creation of object code versions of device
drivers which can be loaded during system boot. Once loaded,
the driver is installed into the kernel image in order to provide
access to the device which it is designed to control. The user of
the system perceives no changes other than during the initial
bootstrap phase. To the programmer, the creation of an
install able device driver requires only a small additional effort
over that required for ordinary drivers which are linked into the
kernel image during a configuration process. The format of an
installable driver is such that it can also be configured into the
kernel during a configuration process. There is nothing inherent
to an installable driver which makes it incompatible with this
process.

Note: Due to the memory model to which the kernel conforms,
installable device drivers must call only those kernel
routines which are specified within this section. An attempt
to call any other kernel routine will probably cause the kernel to
crash.

In order to create an installable device driver, the programmer
must add additional data structures to an existing device driver,
or must include these data structures when developing a new
device driver. Examples of these data structures are given in the
example drivers in the following chapter. In summary, the
additional data structures are:

struct iddsw This data structure contains control information
for the program which performs the process of
installing device drivers during the bootstrap.
The fields in this structure are described in detail
below.

Device Drivers 10-61

struct bdevsw This data structure is included if the device
driver is a block device driver. It is an identical
copy of the structure that would be generated by
the configuration program if the kernel were to
be configured statically to include the device
driver. The fields in this structure are described
below.

struct cdevsw This data structure is included if the device
driver is a character device driver. It is an
identical copy of the structure that would be
generated by the configuration program if the
kernel were to be configured statically to include
the device driver. The fields in this structure are
described below.

Note that the precise details of the function and purpose of the
device driver routines and data structures mentioned in the
subsequent description are described elsewhere in the
documentation. This section restricts itself to a description of
the functions unique to the installable device driver.

10-62 Application Development Guide

The iddsw Structure

This structure has the following format (see the kernel header file
idd.h):

struct iddsw{
ushort idd_tag;
ushort idd_vers;
ushort idd_type;
ushort idd-I11ask;
struct bdevsw *idd--bdevsw;
struct cdevsw *idd_cdevsw;
struct linesw *idd_linesw;
int (* idd_ini t) () ;
int (* idd_intr) () ;
int idd--bdev;
int idd_cdeVi
int idd_line;
inc idd_ivec [IDD_NVEC 1 ;
int idd_cmd;
char idd_name[IDD-LNAMEl;

} ;

The one writing the device driver is required to fill in the
following fields: idd_tag, idd_vers, idd_type, idd_mask,
idd_bdevsw, idd_cdevsw, idd_intr, and idd_name. Note that the
idd_name field contains a character string denoting the device's
mnemonic name. This is explained below. Other field8 use this
string in the construction of names for device driver entry points.
These are denoted by xxroutine() below.

These fields are completed as follows:

idd_tag Always contains the value IDDJDD.

idd_vers Always contains the value IDD_ VERSo

Device Drivers 10-63

idd_type This field is composed of an inclusive OR of the
following values: IDDJ3DEV (if the driver is a block
device driver) and IDD_CDEV (if the driver is a
character device driver). Note that drivers that
function as both block and character device drivers
(particularly disk drivers) will OR these two values
together. Other drivers will only use one of these
identifiers.

idd-IUask This field is used to identify which driver entry points
are present within the device driver module. The
field is composed of an inclusive OR of the following
possible values:
IDD_CLEAN

Not presently used.

IDD_INIT Set if the device driver has an initialization
entry point which should be called after
system bootstrap. The name of this entry
point must be xxinit().

IDD_POWER
Not presently used.

IDD_OPEN Set if the device driver has a device open
routine. The name of this entry point must
be xxopen().

IDD_CLOSE
Set if the device driver has a device close
routine. The name of this entry point must
be xxclose().

IDD-READ Set if the device driver has a device read
routine. The name of this entry point must
be xxread().

IDD_WRITE

IDD_IOCTL

Set if the device driver has a device write
routine. The name of this entry point must
be xxwrite().

Set if the device driver has a device control
routine. The name of this entry point must
be xxioct1(). This entry point is only
applicable to character device drivers.

10-64 Application Development Guide

idd~devsw

idd_cdevsw

IDD_TTY Set if the device driver requires a tty
structure.

This field must be initialized with a pointer to the
struct bdevsw included within the driver module or
(char*)O if there is no such structure.

This field must be initialized with a pointer to the
struct cdevsw included within the driver module or
(char*)O if there is no such structure.

idd_ini t This field must be initialized with a pointer to the
device initialization routine xxinit() or (char*)O if
the device has no entry in the dinitsw table.

idd_intr This field must be initialized with a pointer to the
device interrupt handler routine (xxintr() or
(char*)O if the device has no interrupt handler.

idd_name This field is initialized with the character string
denoting the name of the device. This character
string must be that which is used in naming the entry
points (that is, the xx of the above discussion) and
must be the same as the character string used to
denote the device when it is installed on the system
using the config.sys file.

The idd_linesw and idd_line fields are not presently supported
and should be filled with (char*)O and -1, respectively.

The idd_bdev, idd_cdev, idd_ivec, and idd_cmd fields are filled in
by the bootstrap loader when the device driver is installed. These
fields should be initialized to -l.

When declaring this structure, you should be careful to ensure
that all forward references to device driver entry points, for
example, have been correctly declared and that the name chosen
for the struct iddsw is a global name. The names chosen for the
bdevsw and cdevsw structures can be declared as static, since
they are accessed via the pointers in the struct iddsw.

Device Drivers 10-65

The bdevsw Structure

This structure has the following format (see the kernel header file
conf.h):

struct bdevsw
int (*d_open) ()i
int (*d_close)();
int (*d_strategy) ();
struct iobuf *d_tab;

} ;

The fields are initialized as follows:

d_open The address of the device open routine, or
nulldev(), if there is none.

d_close The address of the device close routine, or
nulldev(), if there is none.

d_strategy The address of the device strategy routine.

d_tab The address of the buffer queue anchor.

10-66 Application Development Guide

The cdevsw Structure

This structure has the following format (see the kernel header file
conf.h):

int.

int

inl:

(d_.xeac1) ()

(.. ': (L ... iJJJ: it e) () ;

(;" d. __ io eLL) ();

struct tty *~.ttys;

The fields are initialized as follows:

The address of the device open routine, or
nulldev(), if there is none.

The address of the device close routine, or
nulldev(), if there is none.

The address of the device read routine, or nodev()
if this is an illegal operation for this device.

The address of the device write routine, or nodev(),
if this an illegal operation for this device.

The address of the device control routine, or
nulldev(), if there is none.

The address of the struct tty associated with this
device, or (char*)O, if there is none.

Device Drivers 10-67

Configuring the System

After you write the device driver for your system, you can
configure it into your system in two ways:

• You can remake the kernel and link your device driver with
the new image. This produces a linkable device driver.

• You can prepare the device driver object module to be an
installable image that the boot program can dynamically link
to the kernel at bootstrap time. This produces an installable
device driver.

The following two sections explain the procedure for configuring
your device driver as a linkable device driver or as an install able
device driver.

10-68 Application Development Guide

Building Linkable Device Drivers

To build a linkable device driver follow these steps:

1. Move your device driver source code to the /usr/sys/io
directory.

2. Add the name of the device driver file objects (for example,
driver.o) to the OBJS list in the makefile in the /usr/sys/io
directory.

3. Type make in the /usr/sys/io directory to create the device
driver object files. The makefile passes the -NT flag to the
compiler therefore forcing all objects to be loaded in the same
segment. This allows device drivers to make near calls
instead of far calls to support routines, if necessary. Using
near calls to frequently called routines improves the
performance of the device drivers.

After the device driver object files are compiled, the makefile
adds the object files to the /usr/sys/io/lib_io library. The
make program can handle drivers written in either C or
assembly language.

4. Modify the master file in the /usr/sys/conf directory to
include information about the new drivers. The master file
describes all devices that could ever be present on a system.
To make the changes, refer to the master(F) command in
XENIX System Reference. An example of the possible entries
in the master file for three new device drivers is shown
below:

" The following devices are those that can be specified
* in the system description file. The name specified must
* agree with the name shown.
*
*name vsiz msk typ hndlr na bmaj cmaj # na vec1 vee2 vee3
* 1 2 3 4 5 6 7 8 9 10 11 12 13
hd 1 0027 014 hd 0 3 3 1 0 36 0 0
td 2 0137 004 sa 0 0 5 1 0 3 4 0
Ip 1 0022 004 pa 0 1 6 1 0 5 0 0

Note that no two devices can have the same block major
numbers (bmaj) or the same character major numbers (cmaj).

5. Modify the xenixconf file in the /usr/sys/conf directory to
include information about the new drivers. The xenixconf
file specifies which devices are part of the particular machine
for which the kernel is being built. The format of an entry in
the xenixconf is very straightforward. It consists of the
name of the device, followed by the number of devices present

vec4
14

0
0
0

Device Drivers 10-69

in the configuration. Add one line for each new device
driver. For example, the entries for the device drivers shown
in Step 4 might be:

hd 1
td 2

lp 1

6. Build a version of the kernel containing your new drivers by
typing make in the /usr/sys/conf directory.

7. You can now copy the new version of the kernel to the root
(f) and enter it as the executable image to the boot program.

Building Installable Device Drivers

In order to prepare a device driver for use as an install able
device, you must perform a few steps. This involves:

• Modifying the object code format of the driver module, so
that it is acceptable to the boot loader

• Preparing the necessary system management files.

This section contains a description of how you, a programmer,
should prepare a device driver for use as an installable driver.
The "Installing Device Drivers" section in XENIX System
Administration contains a description of the system management
issues.

10-70 Application Development Guide

Informal conventions are available for installable device drivers:

• The file name suffix .x is used for modules of a certain format
• The files associated with install able device drivers are placed

in the /lib/sys directory.

If you are familiar with a UNIX system, you will quickly see how
to modify the examples given here to meet your own
requirements. If you are not familiar with developing device
drivers for UNIX, please follow the conventions established here.

Compiling a driver requires you to use the PC XENIX C language
compiler and assembler to create an object module. The cc
command line must include the following switches:
-K

Disable stack probes.
-DMJernel

Required for conditional code in standard header files.
-NT io_text

-M2em

N ames the text segment for the driver code as io_text.

Enable 286 instructions, near and far keywords.
Build as a middle model program.
(These are required to conform with the kernel
program model.)

Device Drivers 10-71

The .0 object module the compiler creates is in OMF86 format.
Use the xcvt utility to convert the module to relocatable x.out
format. Then link the driver module with a standard module
KMseg.x. The driver is now ready for use as an install able device
driver. The example below shows how to carry out these steps for
a driver in the fd.c source file.

cc -K -DM_KERNEL -NT io_text -M2em -c fd.c
/etc/xcvt fd.o; mv a.o fd.x
/etc/xld -r -0 /lib/sys/fd.x /lib/sys/KMseg.x fd.x

Note these conventions in the example:

• The.x suffix for relocatable x.out modules
• The storing of the final output module in the /lih/sys

directory
• The use of the /lib/sys/KMseg.x module.

You can use the xld command to link a driver prepared as more
than one source module. To do this, compile each source file.
Then, process each file with the xcvt utility. Finally, link each
object file together into a single install able driver module with
the xld command. The following example shows this for a driver
composed of three source files d1.c, d2.c, and d3.c.

for i in 1 2 3
do

done

cc -K -DM-KERNEL -NT io_text -M2em -0 -c d$i.c
/etc/xcvt d$i.o
mv a.o d$i. x

/etc/xld -r -0 d.x /lib/sys/KMseg.x dl.x d2.x d3.x

You can see a practical example of preparing install able device
drivers by using the makefile /usr/sys/io/idd.mk to prepare
install able drivers from the normal linkable driver modules in the
standard kernel libraries. This makefile compiles and links the
normal drivers with modules containing the data structures
required to describe them as install able device drivers.

10-72 Application Development Guide

Determining Interrupt Vector Numbers

When you modify the /usr/sys/conf/master file to contain
information about the device drivers that you have written, you
need to specify the interrupt vector number each device uses to
interrupt the kernel. The config utility uses the master file to
generate the C language file /usr/sys/conf/c.c. The c.c file will
contain the vecintsw table that has information about the vector
level that each device uses to interrupt the kernel.

The i8259 interrupt controller can have up to eight 8259 interrupt
controllers cascaded on it, providing up to 64 vectored interrupts.

Interrupt levels 0 through 7, on the master 8259 interrupt
controller, map to entries 0 through 7 in the vecintsw table.
Thus, if a device interrupts on the master interrupt controller,
the vector number to specify in the master file for the device is
simply the vector number it uses on the master.

Entries 8 through 72 in the vecintsw table define interrupts from
slave controllers. To determine the proper index for the
vecintsw table for any interrupt coming in on a slave 8259, use
the following formula:

Device Drivers 10-73

If the slave interrupts the master on interrupt vector 2, then:

vector = 24 + slave_interrupt_level

For example, if the diskette controller interrupts on level 6 of a
slave 8259 interrupt controller that interrupts the master on level
2, then its index in the vecintsw table is:

vector = 24 + 6
vector = 30 = 36(octal)

Note: The vector entries in the master file are designated in
octal.

Sharing Interrupt Vectors

I/O devices can only share interrupt vectors if there is a way to
poll each device that is using the shared vector. This poll must
determine which device has posted an interrupt. The
configuration utility config allows for the user to specify that
two devices share an interrupt level. Refer to the master(F)
command in XENIX System Reference and the config(CP)
command in XENIX Commands Reference for further information
on the config utility.

10-74 Application Development Guide

If there are two devices aa and bb that share interrupt level 3, the
code in the c.c file generated by config should be as follows:

vector (level)

int level;

a eLL lI.tc (12\/el) ;.

bbintr(leve1) j'

int (*vecintsw[J) ()

(:loc](

corl.sin-t:c>
novec
\lec·to:c:3 f

eel'

The interrupt routines aaintr() and bbintr() should have the
following format:

xxintr(level)
int level;

IF NOT MY INTERRUPT
return;

NORMAL INTERRUPT PROCESSING

Device Drivers 10-75

Warnings

The following warnings will help you avoid problems when
writing a device driver:

• Do not defer interrupts with sp15() calls any longer than
necessary.

• Do not change the per-process data in the u_ structure at
interrupt time.

• Do not call seterror() or sleep() at interrupt time.

• Do not call spl5() at interrupt time.

• Make interrupt-time processing as short as possible.

• Protect buffer and clist processing with spl5() calls.

• Avoid busy waiting whenever possible.

• Never use floating-point arithmetic operations in device
driver code.

• If any assembler language device driver sets the direction flag
(using std), it must clear the flag (using cld) before returning.

• Keep the local (stack) data requirements for your driver very
small.

10-76 Application Development Guide

Chapter 11. Sample Device
Drivers

Introduction

This chapter provides sample device driver code for line printers,
terminals, and fixed-disk drives. After each segment of code,
some general comments are provided that describe the routines
and explain key lines in the program.

Note: The example device drivers that follow do not implement
interrupt level sharing.

Sample Drivers 11-1

Sample Device Driver for Line
Printer

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
')')
"-...J

24
25
26

/*
** lp- prototype line printer driver
*/
#include " .. /h/param.h"
#include " .. /h/dir.h"
#include " .. /h/a.out.h"
#include " .. /h/user.h"
#include " .. /h/file.h"
#include " .. /h/tty.h"
#include " .. /h/conf.h"

#define LPPRI
#define LOWAT
#define HIWAT

PZERO+5
50

150

/* register definitions */

#define RBASE OxOO /* base addr of rgtrs */
#define RDATA (RBASE + 0) /* put char here */
#define RSTATUS (RBASE + 1) /* nonzero = busy */
#define RCONTRL (RBASE + 2) /* write ctrl here */

/* _~~~~~1 ~~~~~~~~~~~ *1
/ VU~J.\""J..U..J.. \.A.~.J.....L.l.J...J..'-..L.UJ.J..,;::) I

#define CINIT OxOl /* initialize interface */
#define CIENABL Ox02 /* +Interrupt enable */
#define CRESET Ox04

11-2 Application Development Guide

Description of Device Driver for Line Printer

This device driver is for a single parallel interface to a printer.
The program transfers characters one at a time, buffering the
output from the user process through the use of character blocks
(cblocks).

12:

13:

14:

18-21:

LPPRI is the priority at which a process sleeps when it
is stopped. Because the priority is greater than PZERO,
the process can be awakened by a signal.

LOW AT is the minimum number of characters in the
buffer. When there are fewer than LOWAT characters
in the buffer, a sleeping process can be restarted.

HIWAT is the maximum number of characters in the
buffer. If a process fills the buffer to HIWAT, the
sleep() routine suspends the process.

The device registers in this interface occupy a
contiguous block of addresses, starting at RBASE and
running through RBASE + 2. The data to be printed is
placed in the RDAT A register one character at a time.
Printer status can be read from the RSTATUS register,
and the interface can be configured by writing into the
RCONTRL register.

Sample Drivers 11-3

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

11-4

/* flags definitions */
#define FIRST Ox01
#define ASLEEP Ox02
#define ACTIVE Ox04

struct clist lp_queue;
int lp_flags = 0;

int lpopen(), Ipclose(), Ipwrite(), Ipintr();

static struct cdevsw Ipcdev = {
lpopen, Ipclose, nodev, lpwrite, nulldev, NUL

} ;

struct iddsw Ipiddsw = {

} ;

IDD_IDD, IDD_VERS, /* Tag/version number
IDD_CDEV, /* Character device */

/* Entry points */
IDD_OPENIIDD_CLOSEIIDD_WRITE,
NULL, /* bdevsw entry */
&lpcdev, /* cdevsw entry */
NULL,NULL /* linesw entry/init routines
lpintr, /* Interrupt handler */
-1,-1,-1, /* Filled from config.sys */
{ -1 },
-1,
"1 n"

-.I:"" /* Name */

Application Development Guide

29-31:

33:

34:

38-55:

The flags defined in these lines are kept in the variable
lp-flags. The FIRST flag is set if the interface has been
ini tialized. The ASLEEP flag is set if a process is
asleep and waiting for the buffer to decrease below
LOWAT. The ACTIVE flag is set if the printer is
active.

lp_queue is the head of the linked list of cblocks that
forms the output buffer.

lp-flags is the variable in which the flags mentioned
above are kept.

lpcdev is the struct cdevsw which will be copied into
the kernel cdevsw when this device driver is installed.
The entry points are given exactly as if the kernel had
been statically configured. lpiddsw is the struct iddsw
which provides all the necessary information for this
driver to be dynamically installed.

Sample Drivers 11-5

57 lpopen(dev)
58 int dev;
59 {
60 if «lp_flags & FIRST) == 0) {
61 lp_flags 1= FIRST;
62 outb(RCONTRL, CRESET);
63 }
64 outb(RCONTRL, CIENABL);
65
66
67 lpclose(dev)
68 int dev;
69 {
70 }
71 lpwrite(dev)
72 int dev;
73 {
74 register int c;
75 int X;
76
77 while «c = cpass()) >= 0) {
78 X = splcli();
79 while (lp_queue.c_cc > HIWAT) {
80 lpstart();
81 Ip_flags 1= ASLEEP;
82 sleep (&lp_queue, LPPRI)i
83 }
(,")A __ ' __ 1 __ '
O"± ::;.tJ.LX~X) ;

85 putc(c, &lp_queue);
86
87 x splcli();
88 lpstart();
89 splx(x) ;
90
91
92 lpstart ()
93 {
94 if (lp_flags & ACTIVE)
95 return; /* interrupt chain is

** keeping printer goi
96 lp_flags 1= ACTIVE;
97 lpintr(O) ;
98
99

100

11-6 Application Development Guide

lpopen() - lines 57 to 65

The lpopen() routine is called when a process makes an open()
system call on the special file that represents this driver. Its
single argument, dev, represents the minor number of the device.
Because this driver supports only one device, the minor number
is ignored.

60-62:

64:

If this is the first time (since PC XENIX was booted)
that the device has been touched (or contacted), the
interface is initialized by setting the CRESET bit in the
control register.

Interrupts from this device are enabled by setting the
CIENABL bit in the control register.

lpclose() - lines 67 to 70

The lpclose() routine is called on the last close of the device,
that is, when the current close() system call results in zero
processes referencing the device. No action is taken.

lpwrite() - lines 71 to 90

The lpwrite() routine is called to move the data from the user
process to the output buffer. Code is defined as follows:

77:

78-86:

87-88:

While there are still characters to be transferred, do
what follows.

Raise the processor priority so the interrupt routine
cannot change the buffer. If the buffer is full, make
sure the printer is running, note that the process is
waiting, and put it to sleep. When the process wakes
up, check to make sure the buffer has enough space,
then go back to the old priority and put the character
in the buffer.

Make sure the printer is running by locking out
interrupts and calling lpstart().

Sample Drivers 11-7

lpstart() - lines 92 to 98

The lpstart() routine ensures that the printer is running. This
routine is called twice from lpwrite(), and it avoids duplicate
code. Code is defined as follows:

94-97: If the printer is running, return. Otherwise, turn on the
ACTIVE flag, and callipintr() to start the transfer of
characters.

101 lpintr(vec)
102 int vec;
103 [
104 int tmpi
105
106 if ((lp_flags & ACTIVE) == 0)
107 return; /* ignore spurious interrupt */
108
109 /* pass chars until busy */
110 while (inb(RSTATUS) == 0 &&

(tmp = getc(&lp_queue)) >= 0)
111 outb(RDATA, tmp);
112
113 /* wakeup the writer if necessary */
114 if (lp_queue.c_cc < LOWAT &&

lp_flags & ASLEEP) [
115 lp_f1aqs &= ~ASLEEP;
116 wakeup (&lp_queue) ;
117
118
119 /* wakeup writer if waiting for drain */
120 if (lp_queue.c_cc <= 0)
121 lp_flags &= ~ACTIVE;
122

11-8 Application Development Guide

lpintr() - lines 102 to 123

The lpintr() routine is called from two places: Ipstart() and
from the kernel interrupt handling sequence when a device
interrupt occurs. Code is defined as follows:

107-108: If Ipintr() is called unexpectedly or if the driver does
not have anything to do, it returns.

111-112: While the printer indicates it can receive more
characters and the driver has characters to give it,
the characters come from the buffer through getc()
and pass to the interface by writing to the data
register.

115-117: If the buffer contains fewer than LOWAT characters,
and a process is asleep, waiting for room, wake it up.

121-122: If the queue is empty, turn off the ACTIVE flag. Note
that the interrupt that completes the transfer and
empties the buffer is in some sense spurious because
it occurs with the ACTIVE flag reset.

Sample Drivers 11-9

Sample Device Driver for Terminal

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

11-10

/*
** td- terminal device driver
*/
#include " .. /h/param.h"
#include " .. /h/dir.h"
#include " .. /h/user.h"
#include " .. /h/file.h"
#include " .. /h/tty.h"
#include " .. /h/conf.h"
#include " .. /h/idd.h"

/* registers */
#define RRDATA
#define RTDATA
#define RSTATUS
#define RCONTRL
#defihe RlENABL
#define RSPEED
#define RllR

OxOl
Ox02
Ox03
Ox04
Ox05
Ox06
Ox07

/* received data */
/* transmitted data */
/* status */
/* control */
/* interrupt enable */
/* data rate */
/* interrupt id */

/* status register bits */
#define SRRDY OxOl /* received data ready */
#define STRDY Ox02 /* transmitter ready */
#define SOERR Ox04 /* rcvd data overrun */
#define SPERR Ox08 /* rcvd data par err */
#define SFERR Oxl0 /* rcvd data frame err */
#define SDSR Ox20 /* status of dsr (cd)*/
#define SCTS Ox40 /* clear to send status */

/* control register */
#define CBlTS5 OxOO
#define CBlTS6 OxOl
#define CBlTS7 Ox02
#define CBlTS8 Ox03
#define CDTR Ox04
#define CRTS Ox08
#define CSTOP2 Oxl0
#define CPARlTY Ox20
#define CEVEN Ox40
#define CBREAK Ox80

/* five bit chars */
/* six bit chars */
/* seven bit chars */
/* eight bit chars */
/* data terminal ready */
/* request to send */
/* two stop bits */
/* parity on */
/* even parity (not odd) */
/* set xmitter to space */

Application Development Guide

Description of Device Driver for Terminal

This driver supports one serial terminal on a hypothetical UART
type interface.

13-19:

31-40:

The interface for each line consists of seven registers.
The values that would be defined here represent offsets
from the base address, which is defined in line 72. The
base address differs for each line. The data to be
transmitted is placed one character at a time into the
RTDATA register. Likewise, the received data is read
one character at a time from the RRDATA register.
The status of the UART can be determined by
examining the contents of the RSTATUS register. The
UART configuration is adjusted by changing the
contents of the RCONTRL register. Interrupts are
enabled or disabled by setting the bits in the RIENABL
register. The data rate is set by changing the contents
of the RSPEED register. Interrupts are identified by
setting the bits in the RIIR register.

The two low order-bits of the control register control
the length of the character sent. The next two bits
control the data-terminal-ready and request-to-send
lines of the interface. The next bit controls the number
of stop bits, the next controls whether parity is
generated, and the next controls whether generated
parity is even or odd. Finally, the most significant bit
forces the transmitter to continuous spacing if the bit is
set.

Sample Drivers 11-11

42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58

11-12

/* interrupt enable */
#define EXMIT Ox01
#define ERECV Ox02
#define EMS Ox04

/* interrupt ident */
#define IRECV Ox01
#define IXMIT Ox02
#define IMS Ox04

#define NTDEVS 2
#define VECTO 3
#define VECT1 5

/* transmitter ready */
/* receiver ready */
/* modem status change */

int tdopen(), tdclose(), tdread(),
tdwrite(), tdioct1(), tdintr();

/* Cdevsw entry for installable device driver */

Application Development Guide

43-45: The three low-order bits of the interrupt enable register
control whether the device generates interrupts under
certain conditions. If bit 0 is set, an interrupt is
generated every time the transmitter becomes ready for
another character. If bit 1 is set, an interrupt is
generated every time a character is received. If bit 2 is
set, an interrupt is generated every time the
data-set-ready line changes state.

48-50: After an interrupt, the interrupt identification register
will contain a value that indicates the reason for the
interrupt.

Sample Drivers 11-13

59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
nr-
0;,)

86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101

11-14

static struct cdevsw tdcdev = {
tdopen, tdclose, tdread, tdwrite, tdioctl, NU

} ;

/* Descriptor for installable device driver */

struct iddsw tdiddsw = [

} ;

IDD_IDD, IDD_VERS, /* Tag/version number
IDD_CDEV, /* Character device */

/* Entry points */
IDD_OPENIIDD_CLOSEIIDD_READIIDD_WRITE

I IDD_IOCTL,
NULL, /* bdevsw entry */
&tdcdev, /* cdevsw entry */
NULL ,NULL /* linesw entry/init routine
tdintr, /* Interrupt handler */
-1,-1,-1, /* Filled from config.sys */
[-1 },
-1,
"td" /* Name */

/* data rates */
int td_speeds[] [

/* BO */
/* B50 */
/* B75 */
/1* Bl10 * /
/* B134 */
/* B150 */
/* B200 */
/* B300 */
/* B600 */
/* B1200 */
/* B1800 */
/* B2400 */
/* B4800 */
/* B9600 */
/* EXTA */
/* EXTB */
} ;

0,
2304,
1536,
"I"\II~
.LU,-* I ,

857,
768,
0,
384,
192,
96,
64,
48,
24,
12,
6, /* 19.2k bps */
58 /* 2000 bps */

struct tty td_tty[NTDEVS] i
int td_addr[NTDEVS] = [OxOO, Ox10 };

Application Development Guide

59: tdcdev is the struct cdevsw which will be copied into
the kernel cdevsw when this device driver is installed.
The entry points are given exactly as if the kernel had
been statically configured. tdiddsw is the struct iddsw
which provides all the necessary information for this
driver to be dynamically installed. Note that no struct
linesw is needed for this driver since it uses the
standard (i.e., zero) line discipline.

80-98: The values to be loaded into the RSPEED register to get
various data rates are defined here.

100: Each line must have a tty structure allocated for it.

101: Here, the base addresses of the registers are defined for
each line.

Sample Drivers 11-15

102
103
104 tdopen(dev, flag)
105 int dev, flag;
106 {
107 register struct tty *tp;
108 int addr;
109 int tdproc();
110 int X;
111
112 if (UNMODEM(dev) >= NTDEVS) {
113 seterror(ENXIO) ;
114 return;
115 }
116 tp = &td_tty[UNMODEM(dev)];
117 addr = td_addr[UNMODEM(dev)];
118 if«tp->t_lflag & XCLUDE) && !suser(»
119 seterror(EBUSY) ;
120 return;
121 }
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144 }

if «tp->t_state&(ISOPENIWOPEN» 0) {

}

ttinit(tp) ;
tp->t_proc = tdproc;
tp->t_oflag OPOSTIONLCR;
tp->t_iflag = ICRNLIISTRIPIIXON;
tp->t_lflag = ECHOIICANONI

ISIG!ECHOE!ECHOK;
tdpararn (dev) ;

X = splcli();
if (! ISMODEM (dev) II

tp->t_cflag & CLOCAL II
tdrnodern(dev, TURNON»

tp->t_state 1= CARR_ON;
else

tp->t_state &= -CARR_ON;
if (! (flag&FNDELAY»

while «tp->t_state&CARR_ON)= =0) {

}

tp->t_state 1= WOPEN;
sleep«caddr_t)&tp->t_canq, TTIPRI);

(*linesw[tp->t_Iine] . I_open) (tp);
splx(x) ;

11-16 Application Development Guide

tdopen() - lines 104 to 144

The tdopen() routine is called whenever a process makes an
open() system call on the special file corresponding to this
driver. Code is defined as follows:

112-114: If the minor number indicates a device that does not
exist, indicate the error and return.

118-120: If the line is open for exclusive use but the current user
is not the superuser, indicate the error and return.

122-129: If the line is not already open, initialize the tty
structure via a call to ttinit(), set the value of the proc
field in the tty structure, and configure the line by
calling tdparam(). Note that the flag initialization
allows the terminal to perform well if the terminal is
used as the console in single-user mode.

130: Defer interrupts so that interrupt routines cannot
change the state of the process while it is being
examined.

131-136: If the line is not using modem control, or if it is not
turning on the data-terminal-ready and request-to-send
signals (which results in carrier-detect being asserted by
the remote device), indicate that the carrier signal is
present on this line. Otherwise, indicate that there is
no carrier signal.

137-140: If the open() routine is supposed to wait for the
carrier, wait until the carrier is present.

142: Call the Lopen() routine indirectly through the
linesw table. This completes the work required for the
current line discipline to open a line.

143: Allow further interrupts.

Sample Drivers 11-17

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

164

165
166
167
168
169
170

171

172

tdclose(dev)
int dey;
(

register struct tty *tp;

tp = &td_tty[UNMODEM(dev)];
(*linesw[tp->t_line] .l_close) (tp);
if (tp->t_cflag & HUPCL)

tdmodem(dev, TURNOFF);
tp->t_lflag &= -XCLUDE;
/* turn off exclusive use and interrupts */
out(td_addr[UNMODEM(dev)] + RIENABL, 0);

tdread(dev)
int dey;
(

register struct tty *tp;
tp = &td_tty[UNMODEM(dev)];
(*linesw[tp->t_line] .l_read)

(&td_tty[UNMODEM(dev)]) ;

tdwrite(dev)
int dev;
(

reaister strllct ttv *to:
tpJ= &td_tty[UNMODEM(d~~)];
(*linesw[tp->t_line] .l_write)

(&td_tty[UNMODEM(dev)]);

11-18 Application Development Guide

tdclose() - lines 146 to 158

The tdclose() routine is called on the last close on a line.

152: Call the close() routine through the linesw table to do
the work required by the current line discipline.

153-154: If the hang-up-on-Iast-close bit is set, drop the
data-terminal-ready and request-to-send signals.

155: Reset the exclusive use bit.

157: To prevent spurious interrupts, disable all interrupts for
this line.

tdread() and tdwrite() - lines 160 to 172

These routines call the relevant routine via the linesw table; the
called routine performs the action appropriate for the current
line discipline.

Sample Drivers 11-19

173 tdparam(dev)
174 int dev;
175 {
176 register int cflagi
177 register int addri
178 register int temp, speed, Xi
179
180 addr = td_addr[UNMODEM(dev)]i
181 cflag = td_tty[UNMODEM(dev)] .t_cflag;
182
183 /* if speed is BO, turn line off */
184 if «cflag & CBAUD) == BO){
185 outb(addr + RCONTRL, inb(addr+RCONTRL)

~CDTR & ~CRTS);
186 return;
187
188
189 /* set up speed */
190 outb(addr + RSPEED, td_speeds[cflag & CBAUD 1:
191
192 /* set up line control */
193 temp = (cflag & CSIZE) » 4; /* length */
194 if (cflag & CSTOPB)
195 temp 1= CSTOP2i
196 if (cflag & PARENB) {
197 temp 1= CPARITY;
198 if «cflag & PARODD) 0)
199
200
201
202
203
204
205
206
207
208
209 }
210

temp 1= CDTR I CRTSi
out(addr + RCtrl, temp);

/* setup interrupts */
temp = EXMIT;
if (cflag & CREAD)

temp 1= ERECV i
outb(addr + RENABL, inb(RENABL)

11-20 Application Development Guide

temp) ;

tdparam() - lines 173 to 209

The tdparam() routine configures the line to the mode specified
in the appropriate tty structure.

180-181: Get the base address and flags for the referenced line.

184-186: The speed BO means "hang up the line."

190: The remainder of the tdparam() routine loads the
device registers with the correct values.

Sample Drivers 11-21

211 tdmodem(dev, cmd)
212 int dev, cmd;
213 {
214 register int addr;
215
216 addr = td_addr[UNMODEM(dev)];
217 switch(cmd){

/* enable modem interrupts, set DTR & RTS true
218 case TURNON:
219 outb(addr + RENABL, inb(RENABL) I EMS);
220 outb(addr + RCONTRL, inb(RENABL) I

CDTR I CRTS);
221 break;

/* disable modem interrupts, reset DTR, RTS */
222 case TURNOFF:
223 outb(addr + RENABL, inb(RENABL) & ~EMS);
224 outb(addr + RCONTRL, inb(RENABL) *

-(CDTRI CRTS));
225 break;
226 }
227 return (inb(addr + RSTATUS) & SDSR);
228
229

11-22 Application Development Guide

tdmodem() - lines 211 to 228

The tdmodem() routine controls the data-terminal-ready and
request-to-send line signals. Its return value indicates whether
data-set-ready signal (carrier detect) is present for the line.

218-221: If cmd is TURNON, turn on modem interrupts and
assert data-terminal-ready and request-to-send.

222-225: If cmd is TURNOFF, disable modem interrupts and
drop data-terminal-ready and request-to-send.

227: Return a zero value if there is no data-set-ready on this
line; otherwise return a non-zero value.

Sample Drivers 11-23

230 tdintr(vec)
231 int vec;
232 {
233 register int iir, dev, inter;
234
235 switch(vec) {
236 case VECTO:
237 dev = 0;
238 break;
239 case VECTl:
240 dev = 1;
241 break;
242 default:
243 printf(tdint: wrong level interrupt

(%x)\n,vec) i
244 return;
245 }
246 while«iir = inb(td_addr[dev]+RIIR)) != 0) {
247 if ((i i r & I XMI T) ! = 0)
248 tdxint(dev);
249 if«iir & IRECV) != 0)
250 tdrint(dev);
251 if«iir & IMS) != 0)
252 tdmint(dev);
253
254 }
255

11-24 Application Development Guide

tdintr() - lines 230 to 254

The tdintr() routine determines which line caused the interrupt
and the reason for the interrupt. The routine then calls the
appropriate routine to handle the interrupt.

235-244: Different lines result in different interrupt vectors
being passed as the tdintr() routine's argument.
Here, the minor number is determined from the
interrupt vector that is passed to tdintr().

246-252: While the interrupt identification register indicates
that there are more interrupts, call the appropriate
routine. When the condition that caused the
interrupt is resolved, the UART resets the bit in the
register.

Sample Drivers 11-25

256 tdxint(dev)
257 int devi
258 [
259 register struct tty *tPi
260 register int addri
261
262 tp = &td_tty[UNMODEM(dev)]i
263 addr = td_addr[UNMODEM(dev)]i
264 if (inb(addr + RSTATUS) & STRDY)
265 [
266 tp->t_state &= -BUSY;
267 if (tp->t_state & TTXON) [
268 outb(addr + RTDATA, eSTART)i
269 tp->t_state &= -TTXON;
270 else if (tp->t_state & TTXOFF) [
271 outb(addr + RTDATA, eSTOP);
272 tp->t_state &= -TTXOFFi
273 else
274 tdproc(tp, T_OUTPUT)i
275
276 }
277

11-26 Application Development Guide

tdxint() - lines 256 to 276

The tdxint() routine is called when a transmitter-ready
interrupt is received. This routine does one of the following
tasks:

• Issues a CSTOP character to indicate that the device on the
other end must stop sending characters

• Issues a CST ART character to indicate that the device on the
other end may resume sending characters

• Calls tdproc() to send the next character in the queue.

264: If the transmitter is ready, reset the busy indicator.

267-269: If the line is to be restarted, send a CSTART, and reset
the indicator.

270-272: If the line is to be stopped, send a CSTOP, and reset the
character.

273-274: Otherwise, call tdproc() and ask it to send the next
character in the queue.

Sample Drivers 11-27

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

11-28

tdrint(dev)
int dey;
{

register int c, status;
register int addr;
register struct tty *tPi

tp = &td-tty[UNMODEM(dev)];
addr = td_addr[UNMODEM(dev)] i

/* get char and status */
c = inb(addr + RRDATA)i
status = inb(addr + RLSR);

/*
* Were there any errors on input?
*/

if(status & SOERR)
c I = OVERRUN;

if(status & SPERR)
c 1= PERROR;

if(status & SFERR)
c 1= FRERROR;

/* overrun error */

/* parity error */

/* framing error */

if (tp->t_rbuf.c_ptr NULL)
return;

fIg = tp->t_iflag;
if (flg&IXON) {

}

register int ctmpi
ctmp = c & 0177;
if(tp->t_state & TTSTOP) {

else {

}

if (ctmp == CSTART II flg&IXANY)
(*tp->t_proc) (tp, T_RESUME);

if (ctmp == CSTOP)
(*tp->t_proc) (tp, T_SUSPEND);

if (ctmp == CSTART II ctmp == CSTOP)
return;

if (c&PERROR && !(flg&INPCK))
c &= ~PERROR;

if (C&(FRERRORlpERRORIOVERRUN))
if «c&0377) == 0) {

if (flg&IGNBRK)
return;

Application Development Guide

324 if (flg&BRKINT) {
325 (*linesw[tp->t_line] . I_input)
326 (tp, L-BREAK);
327 return;
328 }
329 else {
330 if (flg&IGNPAR)
331 return;
332 }
333 else {
334 if (flg&ISTRIP)
335 c &= 0177;
336 else
337 c &= 0377;
338
339 }
340 *tp->t_rbuf.c_ptr = c;
341 tp->t_rbuf.c_count--;
342 (*linesw[tp->t_line] . I_input) (tp, L_BUF);
343
344

tdrint() - lines 278 to 343

The tdrint() routine is called when a receiver interrupt is
received. It passes the character, along with any errors, to the
appropriate routine via the linesw table.

288-290: Get the character and status.

295-340: If any errors were detected, set the appropriate bit in c.

305-317: This code determines whether the character is X-ON
and if output is stopped, it restarts it. If the character
is X-OFF, output is suspended.

Further error checking is then carried out and
characters in error are discarded. The character is then
placed in the· queue.

342: Pass the character and errors to the Linput() routine
for the current line discipline.

Sample Drivers 11-29

345 tdmint(dev)
346 int dev;
347 {
348 register struct tty *tp;
349 register int addr,c;
350
351 tp = &td_tty[UNMOOEM(dev)];
352 if (tp->t_cflag & CLOCAL) {
353 return;
354 }
355 addr = t~addr[UNMOOEM(dev)];
356
357 if (inb(addr + RSTATUS) & SDSR) {
358 if ((tp->t_state & CARR_ON)= =0)
359 tp->t_state 1= CARR_ON;
360 wakeup (&tp->t_canq) ;
361 }
362 else {
363 if (tp->t_state & CARR_ON) {
364 if (tp->t_state & ISOPEN) {
365 signal (tp->t_pgrp, SIGHUP);
366 tdmodem(dev, TURNOFF);
367 ttyflush(tp, (FREAOIFWRITE));
368 }
369 tp->t_state &= -CARR_ON;
370
371
372
373
374 tdioctl(dev, cmd, arg, mode)
375 int dev;
376 int cmd;
377 faddr_t arg;
378 int mode;
379 {
380 if (ttiocom(&td_tty[UNMOOEM(dev)],

cmd, ar g, mode))
381 tdparam{dev);
382
383

11-30 Application Development Guide

tdmint() - lines 345 to 372

The tdmint() routine is called whenever a modem interrupt
occurs.

352-353: If there is no modem support for this line, just return.

357-360: If a data-set-ready is present for this line but it was not
before, mark the line as having a' carrier. Wake up any
processes that are waiting for the carrier before their
tdopen() call can be completed.

287-296: If no data-set-ready is present for this line but one
existed before, send a hang up signal to all of the
processes associated with this line. Call tdmodem()
to hang up the line and flush the output queue for this
line by calling ttyflush(). Finally, mark the line as
having no carrier.

tdioctl() - lines 374 to 382

The tdioctl() routine is called when a process makes an ioctl()
system call on a device associated with the driver. This routine
calls the ttiocom() routine which returns a non-zero value if the
hardware must be reconfigured.

Sample Drivers 11-31

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

399
400
401
402
403
404
405
406
407

11-32

tdproc(tp, cmd)
register struct tty *tp;
int cmd;
{

register c;
register int addr;

extern ttrstrt();

addr = td_addr[tp - td_tty];
switch (cmd) {

case T_TIME:
tp->t_state &= -TIMEOUT;
outb(addr + RCtrl, inb(addr + RCtrl) &

-CBREAK) ;
goto start;

case T_WFLUSH:
tp->t_tbuf.c_size -= tp->t_tbuf.c_count;
tp->t_tbuf.c_count = 0;

case T-RESUME:
tp->t_state &= -TTSTOP;
goto start;

Application Development Guide

tdproc() - lines 384 to 461

The tdproc() routine is called to make a change to the output,
such as emitting the next character in the queue or halting or
restarting the output.

394: The cmd argument determines the action taken.

386-399: The time delay for outputting a break has finished.
Reset the flag that indicates there is a delay in progress,
and stop sending a continuous space. Then restart
output by jumping to the start() routine. A WFLUSH
command resets the character buffer pointers and the
count.

405-406: Either a line on which output was stopped is restarting,
or someone is waiting for the output queue to decrease.
Reset the flag indicating that output on this line is
stopped, and start the output again by jumping to the
start() routine (line 409).

Sample Drivers 11-33

408 case T_OUTPUT:
409 start:
410 if (tp->t_state&(TIMEOUTITTSTOpIBUSY»
411 break;
412
413 register struct ccblock *tbuf;
414
415 tbuf = &tp->t_tbuf;
416 if (tbuf->c_ptr == NULL II
417 tbuf->c_count == 0) {
418 if (tbuf->c_ptr)
419 tbuf->c_ptr -= tbuf->c_size
420 - tbuf->c_count;
421 if (! (CPRES &
422 (*linesw[tp->t_line] .l_output) (tp»
423 break;
424
425 tp->t_state 1= BUSY;
426 outb(addr + RTHR, *tbuf->c_ptr++);
427 tbuf->c_count--j
428 }
429 break;
430
431 case T_SUSPEND:
432 tp->t_state 1= TTSTOP;
433 break;
434

11-34 Application Development Guide

410-411: Try to put out another character. If some delay is in
progress (TIMEOUT) or the line output has stopped
(TTSTOP) or a character is in the process of being
output (BUSY), just return.

412-427: This code manipulates the character queue in order to
output either a block of characters (by calling the
l_output routine) or perform a single character output
operation (in this example via the outb routine).

431-433:

Note that if the device is capable of outputting more
than one character in a single operation then this
should be done, and the buffer pointer (c_ptr) and the
count (c_count) adjusted appropriately.

To stop the output on this line, since there is no way
to stop the character we have already passed to the
controller, just flag the line stopped, and drop
through.

Sample Drivers 11-35

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461 1

J

case T-BLOCK:
tp->t_state &= -TTXON;
tp->t_state 1= TBLOCK;
if (tp->t_state&BUSY)

tp->t_state 1= TTXOFF;
else

outb(addr + RTDATA, CSTOP);
break;

case T-RFLUSH:
if (! (tp->t_state&TBLOCK))

break;
case T_UNBLOCK:

tp->t_state &= -(TTXOFFITBLOCK);
if (tp->t_state&BUSY)

tp->t_state 1= TTXON;
else

outb(addr + RTDATA, CSTART);
break;

case T-BREAK:
outb(addr + RCtrl, inb(addr + RCtrl) CBRE
tp->t_state 1= TIMEOUT;
timeout (ttrstrt, tp, HZ/4) i
break;

11-36 Application Development Guide

435-442: To tell the device on the other end to stop sending
characters, reset the flag to stop the line and mark the
line stopped. If the line is already busy, set the flag;
otherwise, output a eSTOP character.

444-446: A process is waiting to flush the input queue. If the
device has not been blocked, just return. Otherwise,
drop through and unblock the device.

447-453: To tell the device on the other end to resume sending
characters, adjust the flags. If the controller is sending
a character, set the flag to send a eSTART later;
otherwise, send the eST ART now.

455-459: To send a break, set the transmitter to continuous
space, mark the line as waiting for a delay, and
schedule output to be restarted later.

Sample Drivers 11-37

Sample Device Driver for Disk Drive

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

11-38

/*
** hd- prototype fixed disk driver
*/

#include " .. /h/param.h"
#inc1ude " .. /h/buf.h"
#include " .. /h/iobuf.h"
#include " .. /h/dir.h"
#include " .. /h/conf.h"
#include " .. /h/user.h"
#include " .. /h/idd.h"

/* disk parameters */
#define NHD 4 /* number of drives */
#define NCPD 600 /* # cylinders/disk */
#define NTPC 4 /* # tracks/cylinder */
#define NSPT 10 /* # sectors/track */
#define NBPS 512 /* # bytes/sector */
#define NSPB (BSIZE/NBPS) /* sectors/block */
#define NBPC (NTPC*NSPT*NSPB) /* blocks/cyl */

/* addresses of
#define RBASE
#define RCMD
#define RSTAT
#define RCYL
#define RTRK
#define RSEC
#define RADDRL
#define RADDRH
#define RCNT

controller registers */
OxOO /* base of all registers */
(RBASE+O) /* command register */
(RBASE+1) /* stat-nonzero=err*/
(RBASE+2) /* target cylinder */
(RBASE+3) /* target track */
(RBASE+4) /* target sector */
(RBASE+5) /* t mem addr 10 16 bits*;
(RBASE+6) /* t mem addr hi 8 bits*/
(RBASE+7) /* # sectors to xfer */

/* bits in RCMD register */
#define CREAD Ox01 /* start a read */
#define CWRITE Ox02 /* start a write */
#define CRESET Ox03 /* reset the controller */

Application Development Guide

Description of Device Driver for Disk Drive

The device driver presented here is for an intelligent controller
that is attached to one or more disk drives. The controller can
handle multiple sector transfers that cross track and cylinder
boundaries.

14:

15-20:

22-31:

34-36:

NHD defines the number of drives the controller can be
attached to.

Each disk drive attached to the controller has NCPD
cylinders; each cylinder has NTPC tracks, and each
track has NSPT sectors. The sectors are NBPS bytes
long, and each cylinder has NBPC blocks.

The controller registers occupy a region of contiguous
address space starting at RBASE and running through
RBASE+7.

To make the controller perform your specified action,
the registers that describe the transfer (RCYL, RTRK,
RSEC, RADDRL, RADDRH, RCNT) are set to the
appropriate values, and then the bit representing the
desired action is written into the RCMD register.

Sample Drivers 11-39

38 /*
39 ** minor number layout is OOOOdppp
40 ** where d is the drive number
41 ** and ppp is the partition */
42 #define drive(d) (minor(d»> 3)
43 #define part(d) (minor(d) & Ox07)
44
45 /* partition table */
46 struct partab {
47 daddr_t leni

/* # of blocks in partition */
48 int cyloffi

49 }i
50

/* starting cylinder of partition */

51 int hdread(), hdwrite(), hdintr(), hdstrategY()i
52
53 /* Bdevsw and cdevsw entries
54 ** for installable driver */
55 static struct cdevsw hdcdev = {
56 nulldev, nulldev, hdread, hdwrite, nulldev, Nl
57 }i
58
59 static struct bdevsw hdbdev = {
60 nulldev, nulldev, hdstrategy, &hdtab
61 } i
62
63 /* Installable driver descriptor */
64
65 struct iddsw hdiddsw = {
66 IDD_IDD, IDD_VERS, /* Tag/version number */
67 IDD_CDEVIIDD-BDEV,/* Char/block device */
68 /* Entry points */
69 IDD-READIIDD_WRITE,
70 &hdbdev, /* bdevsw entry */
71 &hdcdev, /* cdevsw entry */
72 NULL,NULL /* linesw entry/in it routine *
73 hdintr, /* Interrupt handler */
74 -1,-1,-1, /* Filled from config.sys */
75 { -1 },
76 -1,
77 "hd" /* Name * /
78 }i
79

11-40 Application Development Guide

42-43: The drive() and part() macros split out the two parts
of the minor number. Bits 0 through 2 represent the
partition on the disk, and the remaining bits specify the
drive number. Thus, the minor number for drive 1,
partition 2 would be 10 decimal.

46-48: Large disks are usually divided into partitions of a
manageable size. The structure that specifies the size of
the partitions specifies the length of the partition in
blocks and the starting cylinder of the partition.

51-77: hdbdev is the struct bdevsw,which will be copied into
the kernel bdevsw when this device driver is installed.
hdcdev is the struct cdevsw which will be copied into
the kernel cdevsw when this device driver is installed.
The entry points are given exactly as if the kernel had
been statically configured. hdiddsw is the struct
iddsw which provides all the necessary information for
this driver to be dynamically installed.

Sample Drivers 11-41

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101

11-42

struct partab hd_sizes[8] = {
NCPD*NBPC, 0, /* whole disk */
ROOTSZ*NBPC, 0, /* root area */
SWAPSZ*NBPC, ROOTSZ, /* swap area */
USERSZ*NBPC, USROFS, /* usr area */
o , 0 , / * spar e * /
0, 0, /* spare * /
0, 0, /* spare * /
0, 0, /* spare * /

} ;

struct
struct
/*

iobuf
buf

hdtab; /* start of request queue
rhdbuf; /* header for raw i/o */

**
**
**
**
**
**
**
*/

Strategy Routine:
Arguments:

Pointer to buffer structure
Function:

Check validity of request
Queue the request
Start up the device if idle

Application Development Guide

81-84:

91:

92:

This driver can divide a disk into as many as eight
partitions. For now, only four partitions are used. The
first partition covers the entire disk. The remaining
three divide the disk three ways, one partition for the
root directory, one for the swap directory, and one for
the usr directory.

The buffer headers representing requests for this driver
are linked into a queue, with hdtab forming the head of
the queue. In addition, information regarding the state
of the driver is kept in hdtab.

Each block driver that wants to allow raw I/O allocates
one buffer header for this purpose.

Sample Drivers 11-43

102 int hdstrategy(bp)
103 register struct buf *bp;
104 {
105 register int dr, pa;

/* drive and partition numbers */
106 daddr_t sz, bn;
107 int X;
108 dr drive (bp->b_dev) ;
109 pa = part (bp->b_dev) ;
110 bn = bp->b-hlkno * NSPBi
111 sz = (sz + BMASK) » BSHIFT;
112 if (dr<NHD && pa<NPARTS && bn>=O &&

bn<hd_sizes[pa] .len &&
113 «bn + sz < hd_sizes [pa] .len) II

(bp->b_flags & B_READ)))
114
115 if (bn + sz > hd_sizes[pa] .len) {
116 sz = (hd_sizes[pa] .len - bn) * NBPS;
117 bp->b_resid = bp->b-hcount -

(unsigned) sz;
118 bp->b-hcount = (unsigned) sz;
119 }
120 } else
121 bp->b_flags 1= B-ERROR;
122 iodone(bp) ;
123 return;
124 }
125

126
127
128
129
130
131 }
132

bp-,>o_cYl..ln = (b-Dl..KnO / NBPC) +
h~sizes[pa] .cyloff;

X = splbuf() i
disksort(&hdtab, bp);
if (dp->b_active == NULL)

hdstart();
splx(x) ;

11-44 Application Development Guide

hdstrategy() - lines 102 to 131

The hdstrategy() routine is called by the kernel to queue a
request for I/O. The single argument is a pointer to the buffer
header which contains all of the data relevant to the request.
This routine validates the request and links it into the queue of
outstanding requests.

108-111: First, compute various useful numbers that will be used
repeatedly during the validation process.

112-124: The B_ERROR bit in the b-flags field of the header is
set to indicate that the request has failed if any of the
following conditions are met:

• If the request is for a non-existent drive or a
non-existent partition

• If the requested target lies completely outside the
specified partition

• If the request is a write request that ends outside
the partition.

The request is then marked as complete by calling
iodone() with the pointer to the header as an
argument. If the request is a read, and ends outside the
partition, it is truncated to lie completely within the
partition.

125: Compute the target cylinder of the request for the
benefit of the disksort() routine.

126: Block interrupts, in order to prevent the interrupt
routine from changing the queue of outstanding
requests.

127: Sort the request into the queue by passing it and the
head of the queue to disksort().

Sample Drivers 11-45

128:

129:

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

161

162
163
164
165
166
167

11-46

/*
*
*
*
*
*
*
*

If the controller is not already active, start it up.

Re-enable interrupts and return to the user process.

Startup Routine:
Arguments:

None
Function:

Compute device-dependent parameters
Start up device
Indicate request to I/O monitor routines

*/
hdstart ()
{

register struct buf *bp; /* BUFFER POINTER */
register unsigned sec;

if ((bp = hdtab.b_actf) == NULL) {
hdtab.b_active = 0;
return;

}
hdtab.b_active = 1;

sec = (unsigned)bp->blkno * NSPB);
out(RCYL, sec / NSPC); /* cylinder */
sec %= NSPC;
out(RTRK, sec / NSPT); /* track */
out(RSEC, sec ~ NSPT); /* sector ./
out(RCNT, bp->b_count / NBPS); /* count */
out (RDRV, drive(bp->b_dev)); /* drive */
out (RADDRL, bp->b_paddr & Oxffff);

/* memory address low */
out (RADDRH, bp->b_paddr » 16);

/* memory address high */
if (bp->b_flags & B_READ)

out (RCMD, CREAD);
else

out (RCMD, CWRITE);

Application Development Guide

hdstart() - lines to 142 to 166

The hdstart() routine performs the calculation of the physical
address on the disk and starts the transfer.

147-149: If there are no active requests, mark the state of the
driver as idle and return.

151: Mark the state of the driver as active.

153-157: Calculate the starting cylinder, track, and sector of the
request. Then, load the controller registers with these
values.

159-161: Load the controller with the drive number and memory
address of the data to be transferred.

162-165: If the request is a read request, issue a read command;
otherwise, issue a write command.

Sample Drivers 11-47

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

/*
*
*
*
*
*

Interrupt routine:
Check completion status
Indicate completion to i/o monitor routines
Log errors
Restart (on error) or start next request

*/
hdintr ()
(

register struct buf *bp;

if (hdtab.b_active == 0)
return;

bp = hdtab.b_actf;

if (in(RSTAT) != 0)
out (RCMD, CRESET);
if (++hdtab.b_errcnt <= ERRLIM) (

hdstart () ;
return;

190 bp->b_flags 1= B-ERROR;
191 deverr(&hdtab, bp, in(RSTAT), 0);
192 }
193 /* Flag current request complete,
194 * start next one
10C:: * /
.J..J..J I
196 hdtab.b_errcnt = 0;
197 hdtab.b_actf = bp->av_forw;
198 bp->b_resid = 0;
199 iodone(bp) ;
200 hdstart();
201
202

11-48 Application Development Guide

hdintr() - lines 175 to 201

The kernel calls the hdintr() routine through the vecintsw
table whenever the controller issues an interrupt.

179-180: If an unexpected call occurs, just return.

182: Get a pointer to the first buffer header in the chain; this
is the request that is currently being serviced.

184-192: If the controller indicates an error and the operation
has not been retried ERRLIM times, try it again. If it
has been retried ERRLIM times, assume it is a hard
error. Mark the request as failed and call deverror()
to print a console message about the failure.

196-201: Mark this request completed, remove it from the request
queue, and call hdstart() to start on the next request.

Sample Drivers 11-49

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

11-50

/*
*
*
*
*
*
*
*
*
*
*
*
*
*

raw read routine:
This routine calls physio which
computes and validates a physical
address from the current logical address.

Arguments
Full device number

Functions:
Call physio to do raw (physical) I/O
The arguments to physio are:

pointer to the strategy routine
buffer for raw I/O
device
read/write flag

*/
hdread(dev)
int devi
{

/*
*
*
*
*
*

physio(hdstrategy, &rhdbuf, dev, B_READ)i

Raw write routine:
Arguments(to hdwrite):

Full device number
Functions:

Call physio to do raw (physical) I/O
*/

hdwrite(dev)
int dev;
{

physio(hdstrategy, &rhdbuf, dev, B_WRITE)i

Application Development Guide

hdread() - lines 218 to 222

The kernel calls the hdread() routine when a process requests a
raw read of the device. This routine calls the physio(), routine
and passes to it the name of the strategy routine, a pointer to the
raw buffer header, the device number, and a flag indicating a
read request. The physio() routine does all the preliminary
work and queues the request by calling the device strategy
routine.

hdwrite() - lines 231 to 235

The hdwrite() routine is called by the kernel when a process
requests a raw write on the device. Its responsibilities and
actions are the same as hdread(), except that the flag it passes
indicates a write request.

Sample Drivers 11-51

Writing Drivers for Memory-Mapped
Screens

This section provides the information you need to write a device
driver for a memory-mapped screen. To produce a tty style driver
for a memory-mapped device, you need to write two pieces of
code.

The first piece of code you will need to write is the device driver.
This part of the code is described in "Sample Device Driver for
Terminal" on page 11-10. It includes the open(), close(),
read(), write(), ioctl(), and interrupt routines. Note that
because the output display is memory mapped, there are no
output interrupts, only input interrupts. In addition, this device
driver should include the supplied xxproc() routine. This
routine pulls the characters off the output queue in blocks and
passes them, one block at a time, to the supplied ANSI support
code.

The second piece of code to be written consists of a set of
routines to manipulate the screen memory. The screen model is a
screen with NROWS rows and NCOLS columns. Addresses in
this memory are specified as a (row, column) pair. The functions
that need to be written are:

v_scroll(i) Scroll the text on the screen i number of lines. This
will move i lines of text off the top of the screen, and
i blank lines onto the bottom of the screen. If i is
negative, the text moves downward off the bottom of
the screen and blank lines appear at the top.

v_copy(sr, se, dr, de, ent)
sr and se specify a source row and column.

dr and de specify a destination row and column.

Count characters (ent) are copied from the source to
the destination, with the copy proceeding from left
to right, and top to bottom. If the source and
destination overlap, the copy is done correctly.

11-52 Application Development Guide

v_clear(r, c, cnt)
Characters starting at row r and column care
cleared to the space character.

cnt is the number of characters cleared.

v_pchar(r, c, ch)
The character ch is placed on the screen at row r ,
column c , using the current graphic rendition. The
return value is the number of character positions the
active position is to be adjusted. Zero means the
character has no graphic representation.

v_scurs(r, c)
The cursor is moved to row r , column c .

v_init() The screen and all data structures are initialized.

v_sgr(i) The current graphic rendition (for example, font and
color) is set to i. See Console(M) for encoding.

v_beep() Causes a beep, bell, or other alarm indication to
sound. Used for the ASCII "bel" character.

You must also provide an initialized declaration for the crtsw
data structure; the ANSI code indirectly calls the routines
through this structure. The data declaration for this data
structure is provided in the /usr/sys/io/crt.h file.

Sample Drivers 11-53

11-54 Application Development Guide

-a option
lint 3-11

accessing registers 10-12
adb

addresses,
validating 6-37

core image 6-3
data files 6-3
debugging program 1-3
displaying
instructions 6-6

input format 6-41
locating values 6-46
memory maps 6-34
pa tching binary
files 6-46

prompt option 6-5
starting 6-1, 6-3
stopping 6-1
wri te option 6-4
wri ting to a file 6-47

adb, program
debugger 6-1

aliasing 1-7
allocating
descriptors 10-20

ar
description 1-5

arguments 9-9
arithmetic built ins 9-11
as, program assembler

assembler program 1-4
assembler

Index

See as, program
assembler

assembler language
source 2-4

awaking processing 10-16

-b option
lint 3-5

block devices
device drivers 10-50

breakpoints 6-23

C compiler
expression

evaluation
order 3-16

lint directives,
effect 3-17

C language
compiler 1-3
usage check 1-3
yacc 8-2

-c option
lint 3-9

C programming
language 1-2

C programs
creating 1-3

Index X-I

string extraction 1-6
C-shell

aliasing 1-7
command history
mechanism 1-7

command language 1-7
character devices

device drivers 10-33
character lists 10-44
clists

See clists
command

execution 1-7
interpretation 1-7

conditionals 9-13
configuring the
system 10-68

controlling
registers 10-12

copyio() 10-25
copyio() routine 10-25
"'", "'''' ,;J"' .. y"'l ~~"'~+-
vol voo-utJ v tJ.lV J:.I.l.loltJ.lollJ

system 2-1
crtsw data
structure 11-53

csh command
description 1-7

data string
crtsw 11-53

debugger
See adb

debugging a DOS
program 2-5

between systems 2-6
transferring
programs 2-6

defining registers 11-11
delta

See SCCS
desk calculator

specifications 8-44
determining interrupt
vector numbers 10-73

device driver
block devices 10-50,
10-51

character
devices 10-33, 10-45

character
interface 10-51

definition 10-1
disk drives 11-38
freeing
descriptors 10-21

GDT descriptors 10-20
guidelines for
writing 11-1

I/O control 11-31
ini tializing
descriptors 10-21

interrupt
routines 10-35, 11-25,
11-27, 11-49

interrupt routines for
character
devices 10-43

line discipline
routines 10-42

line printer 11-2
line printer
routines 11-7

line printers 10-48
magnetic tape 10-49
memory mapped
screens 11-52

modem routines 11-23
naming
conventions 10-33

overview 10-1
routines 10-33

X-2 Application Development Guide

sample code 11-1
scheduling 10-17
terminal 11-10
terminals 10-45
warnings 10-76
writing 10-5
writing installable
drivers 10-61

device drivers 10-1
device models

block devices 10-2
character devices 10-2

disambiguating rule 8-1
disk drive

device drivers 11-38
DOS libraries 2-7
DOS object files 2-5
DOS source file 2-3
dscralloc() routine 10-20

error message
file creation 1-6
printing 10-42

errprint built-in 9-20
executing a program 6-20

file
See also sees
archives 1-5
block counting 1-6
check sum
computation 1-6

error message file
See error message

octal dump 1-6

relocation bits
removal 1-6

removal
See sees

symbol removal 1-6
text search, print 1-6

FORTRAN
conversion
program 7-36

freeing descriptors 10-21

GDT descriptors
device drivers 10-20

getc() routine 10-44
getcb() routine 10-39
getcf() routine 10-40

-h option
lint 3-13

hard disk routines
hdin tr() 11-49
hdread() 11-51
hdstart() 11-47
hdstra tegy() 11-45
hdwrite() 11-51

hdintr
See hard disk routines

hdread
See hard disk routines

hdstart
See hard disk routines

hdstrategy
See hard disk routines

hdwrite

Index X-3

See hard disk routines
hexadecimal dump 1-6

in() routine 10-12
inb() routine 10-12
initializing descriptors

device drivers 10-21
install able device
drivers 10-61, 10-70

interrupt routines
character device 10-33
rules 10-11

interrupt service
routine 10-9

in terru pt-time
processing 10-9

interrupt vectors
determining
numbers 10-73

sharing 10-74
interrupts

acknowledgement 10-14
character device
drivers 10-43

disable
interrupts 10-14

enable interrupts 10-14
no
acknowledgement 10-14

ioctl() interface 10-26
iomove() 10-27

kernel functions 10-6
kernel routines

console display
routine 10-29

data transfer 10-25
miscellaneous
functions 10-30

tty routines 10-23

LALR 8-1
ld

link editor 1-4
lex

action
default '/-14
description 7-5
repetition 7-14
specification 7-14

alternation 7-11
ambiguous source
rules 7-19

angle brackets
operator
character 7-7, 7-33

start condition
referencing 7-24

arbitrary character
match 7-10

array size change 7 -32
asterisk

operator
character 7 -7, 7-33

repeated expression
specification 7-11

automaton interpreter

X-4 Application Development Guide

initial condition
resetting 7-24

backslash
C escapes 7-8
operator
character 7 -7, 7-33

operator character
escape 7-8, 7-10

BEGIN
start condition
entry 7-24

blank character
quoting 7-8
rule ending 7-8

blank, line
beginning 7-26

braces
expreSSIon
repetition 7-13

operator
character 7 -7, 7-33

brackets
character class
specification 7-9

character class
use 7-2

operator
character 7 -7, 7-33

operator character
escape 7-9

buffer overflow 7-20
C escapes 7-8
caret

character class
inclusion 7-9

context
sensitivity 7-12

operator
character 7-7, 7-33

string
complement 7-9

caret opera tor

left context
recognizing 7-23

character
internal use 7-29
set table 7-29, 7-32
translation table See
set table 7-29

character class
notation 7-2
specification 7-9

character set
specification 7-29

context
sensi ti vi ty 7 -12

copy classes 7 -26
dash

character class
inclusion 7-9

operator
character 7-7, 7-33

range indicator 7-9
definition

character set
table 7-29

contents 7-27, 7-31
expansion 7 -13
format 7-26, 7-31
location 7-26
placement 7-13
specification 7-26

delimiter
discard 7-26
rule beginning
marking 7-2

source format 7-5
third delimiter,
copy 7-26

description 1-4
dollar sign

context
sensitivity 7-12

Index X-5

end of line
notation 7-2

operator
character 7-7, 7-33

dollar sign operator
right context
recognizing 7-23

dot operator See
period 7-20

double precision
constant change 7-37

ECHO
format argument,
data printing 7-15

end-of-file
yywrap()
routine 7-18

o handling 7-18
environment

change 7-23
expression

ne\v line illegal 7-8
repetition 7-13

external character
array 7-14

flag
environment
change 7-23

FORTRAN conversion
program 7-36

grouping 7-11
I/O library See
library 7-4

I/O routine
access 7-17
consistency 7 -17

input
description 7-1
end-of-file, zero
notation 7-17

ignoring 7-14
manipulation
restriction 7-22

input routine
character 1/0
handling 7 -29

input() routine 7-17
invocation 7-4
left context 7-12

caret operator 7-23
sensi ti vi ty 7 -23

lex.yy.c file 7-4
lexical analyzer

environment
change 7-23

library
access 7-4
avoidance 7-4
backup
limitation 7-18

loading 7 -28
line beginning
match 7-12

line end match 7 -12
_11 flQCl'

-L-L .L-L b

library access 7-4
loader flag See -II
flag 7-4

lookahead
characteristic 7-15,
7-17

match count 7-15
matching

occurrence
counting 7-21

newline
escape 7-29

octal escape 7-10
operator characters

designated 7 -33
escape 7-8, 7-9, 7-10
listing 7-7
literal meaning 7-8
operand types
balancing 3-7

X-6 Application Development Guide

quoting 7-8
optional expression

specification 7-10
output (c) routine 7-17
output routine

character 1/0
handling 7 -29

parentheses
groupIng 7-11
operator
character 7-7, 7-33

parser generator
analysis phase 7-2

percentage sign
delimiter
notation 7-2

operator
character 7-7

remainder
operator 7-34

source segment
separator 7-13

period
arbitrary character
match 7-10

newline no
match 7-20

operator
character 7-7

period operator
designa ted 7 -33

plus sign
operator
character 7-7, 7-33

repeated expression
specification 7-11

preprocessor statement
entry 7-26

question mark
operator
character 7-7, 7-33

optional expression
specification 7-10

quotation marks, double
operator
character 7 -33

operator character
escape 7-8

real numbers rule 7-27
regular expression

See also lex,
operator characters

description 7-7
end indication 7-5
rule component 7-5

REJECT 7-21, 7-22
repeated expression

specification 7-11
right context

dollar sign
operator 7-23

rules
active 7-25
components 7-5
format 7-32
real number 7-27

semicolon
null statement 7-14

slash
operator
character 7 -7, 7-33

trailing text 7 -12
source

copy into generated
program 7-26

description 7-1
format 7-5, 7-26
interception
failure 7-26

segment
separator 7-13

source definitions
specification 7-26

Index X-7

source file
format 7-31

source program
compilation 7-4

spacing character
ignoring 7-14

start
abbreviation 7-24

start condition 7 -12
start conditions

entry 7-24
environment
change 7-23

format 7-31
location 7-31

statistics
gathering 7-35

string
printing 7-5

substitution string
See lex, definition

tab, line
beginning 7-26

text character
quoting 7-8

trailing text 7 -12
unput

REJECT
noncompatible 7-22

unput (c) routine 7-17
unput routine

character I/O
handling 7 -29

unreachable
statement 3-5

vertical bar
action
repetition 7-14

alternation 7-11
operator
character 7 -7, 7-33

yacc
interface 7-2

library loading 7-28
yacc interface

tokens 7-28
yylex() 7-28

yyleng variable 7-15
yyless

text
reprocessing 7-16

yy less(n) 7-15
yy lex() program

contents 7-1
yacc interface 7-28

yymore() 7-15
yytext

external character
array 7-14

yywrap()
yywrap() routine 7-18,
7-35

0, end of file
notation 7 -18

lex, description 7-1
lex, program
generator 7-1

library
conversion 1-5
maintenance 1-5
ordering relation 1-5
sort 1-5

line discipline routines
device driver 10-42
l_close() 10-42
l_input() 10-42
l_ioctl() 10-42
I-IDdmint() 10-42
l_open() 10-42
l_output() 10-42
l_read() 10-42
l_write() 10-42

line printer
device driver 10-48,
11-2

X-8 Application Development Guide

interrupt routines 11-9
line printer routines

lpclose() 11-7
lpintr() 11-9
lpopen() 11-7
lpstart() 11-8
lpwrite() 11-7

linkable device
drivers 10-69

linking object files 2-5
lint

-a option 3-11
ARGSUSED
directive 3-17, 3-18

argument number
comments
turnoff 3-17

assignment
See also lint, type
check

assignment operator
new form 3-14
of long to int,
check 3-11

old form, check 3-14
operand type
balancing 3-7

-b option 3-5
binary operator, type
check 3-7

break statement
See lint, unreachable
break

C language check 1-3
-c option 3-9
C program check 3-1
C syntax, old form,
check 3-14

cast
See lint, type cast

conditional operator,
operand type
balancing 3-7

constant in conditional
context 3-13

construction
check 3-1, 3-12

degenerate unsigned
comparison 3-12

description 3-1
directive

defined 3-17
embedding 3-17

enumeration, type
check 3-7

error message, function
name 3-6

expression, order 3-16
extern statement 3-3
external declaration,
report suppression 3-3

file
library declaration
file
identification 3-17

function
See also lint, unused
function

error message 3-6
return value
check 3-6

type check 3-7
-h option 3-13
initialization, old style
check 3-14

library
compatibility
check 3-18

compatibility check
suppression 3-18

directive
acceptance 3-18

Index X-9

file processing 3-18
LINTLIBRARY
directive 3-17, 3-18

loop check
-ly directive 3-18
-n option 3-18
nonportable character
check 3-10

nonportable expression
evaluation order
check 3-16

NOTREACHED
directive 3-17

output turnoff 3-17
-p option 3-18
pointer

agreement 3-7
alignment
check 3-14

program flow
control 3-5

relational operator,
operand type
balancing 3-7

scalar variable
check 3-16

source file, library
compatibility
check 3-18

statement, unlabeled
report 3-5

structure selection
operator, type
check 3-7

syntax 3-2
type cast

check 3-9
comment printing
control 3-9

type check
description 3-7
implied
assignment 3-7

turnoff 3-17
-u option 3-4
unreachable break

report
suppression 3-5

unused argument
report
suppression 3-3

unused function
check 3-3

unused variable
check 3-3
report
suppreSSIon 3-3

-v option 3-3
turn on 3-17

VARARGS
directive 3-17, 3-18

variable
See also lint, unused
variable

initialization 3-4
inner/outer block
conflict 3-13

set/used
information 3-4

static variable
initialization 3-4

-x option 3-3
lint, program checker 3-1
loader

See ld
lorder command

descri ption 1-5
lpclose

See line printer
routines

lpintr
See line printer
routines

lpstart

X-tO Application Development Guide

See line printer
routines

lpwrite
See line printer
routines

macros
preprocessing 1-4

magnetic tape
drivers 10-49

maintainer
See make

make
.c suffix 4-13
.DEFAULT 4-6
.f suffix 4-13
.IGNORE 4-6
.1 suffix 4-13
.0 suffix 4-13
.PRECIOUS 4-6
.r suffix 4-13
.s suffix 4-13
.SILENT 4-6
.y suffix 4-13
.yr suffix 4-13
argument quoting 4-8
command

form 4-2
location 4-2
print without
execution 4-20

command argument
macro definition 4-7

command string
hyphen (-) start 4-6

command string
substitution 4-7

-d option 4-20

dependency line
form 4-2

dependency line
substitution 4-7

description file
comment
convention 4-2

macro definition 4-7
description filename

argument 4-4
dollar sign

macro
invocation 4-7

equal sign
macro definition 4-7

file
time, date
printing 4-20

updating 4-20
file generation 4-6
file update 4-1
hyphen

command string
start 4-6

macro
definition 4-7
definition
override 4-8

invocation 4-7
substitution 4-6, 4-7
value
assignment 4-7

macro definItion
analysis 4-8
argumen t 4-4
description 4-7

medium sized
proj ects 4-1

metacharacter 4-2
-n option 4-20
number sign

Index X-I1

description file
comment 4-2

object file
suffix 4-13

option argument
use 4-4

parentheses
macro enclosure 4-7

program
maintainer 1-5

program
maintenance 4-1

semicolon
command
introduction 4-2

source file
suffixes 4-13

source grammar
suffixes 4-13

suffixes
list 4-13

-t option 4-20
target file

pseudo-target
files 4-6

update 4-20
target filename

argument 4-4
target name
omission 4-4

touch option 4-20
transformation rules

table 4-13
troubleshooting 4-20

make command
arguments 4-4
syntax 4-4

make, program
maintainer 4-1

memory mapping
device drivers 11-52

dscralloc() 10-22
mmudescr() 10-22

modem interrupts 11-31
modem routines 11-23
modes of operation 10-6
m4

description 1-4
m4, macro processor 9-1

-n option
lint 3-18

naming conventions
device driver
routines 10-33

notational
conventions 1-2

object files 2-5
operation modes

system mode 10-6
user mode 10-6

out() routine 10-12
outb() routine 10-12

-p option
lint 3-18

panic() routine 10-30
PC XENIX operating
system 1-2

PC XENIX to DOS 2-1

X-12 Application Development Guide

assembler language
files 2-4

compiling DOS file 2-3
creating libraries 2-7
creating source
files 2-2

debugging DOS
program 2-5

linking 2-5
transferring
programs 2-6

physio() routine 10-57
piping

See sees
precedence 8-27
printf() routine 10-29
printing error
messages 10-42

processes
system 10-6
u_ area 10-7
user 10-6

program development 1-2
program file 6-2
program maintainer

See make
putc() routine 10-44
putcb() routine 10-39
putchar() routine 10-29

quoting arguments 9-5

ranlib
description 1-5

registers
accessing 10-12
controlling 10-12
defining 11-11

rm command
See sees

sample device
drivers 11-1

lpopen() 11-7
sees

See also sees, z-file
%M%) keyword> g-file
line precedence 5-41

@(#) string
file information,
search 5-43

-a option
login name addition
use 5-32

admin command
file
administration 5-35

file checking
use 5-35

file creation 5-7
use
authorization 5-8

administra tor
description 5-6

argument
minus sign use 5-5
types designated 5-5

Index X-13

branch delta
retrieval 5-15

branch number
description 5-3

cdc command
commentary
change 5-24

ceiling flag
protection 5-33, 5-34

checksum
file corruption
determination 5-35

command
See also sees,
argument

execution
control 5-5

explanation 5-37
comments

change
procedure 5-24

(Yt'Yl; (;1(;1;nn offOf't h_~A
"'&....,u..&.""&., '-''&'.L''''',-,'' ~ tJ'-..I

corrupted file
determination 5-35
processing
restrictions 5-35

restoration 5-36
d-file

temporary g-file 5-5
-d flag

default
specification 5-21

flags deletion 5-22
-d option

data specification
provision 5-28

flag removal 5-22
data keyword

data specification
component 5-28

replacement 5-28
data specification

description 5-28

delta
branch delta 5-15
defined 5-1, 5-2
excl usion 5-39
incl usion 5-39
interference 5-39
latest release
retrieval 5-16

level number 5-2
name 5-2
printing 5-29, 5-41
range printing 5-29
release number 5-2
removal 5-42

delta command
comments
prompt 5-11

file change
procedure 5-11

g-file removal 5-17
p-file reading 5-11

delta table
delta removal,
effect 5-42

description 5-23
description 1-5
descriptive text

adding 5-26
modification 5-26
removal 5-27

diagnostic output
-p option effect 5-16

diagnostics
code as help
argument 5-17

form 5-17
directory

file argument
application 5-5

x-file location 5-4
directory use 5-2
-e option

X-14 Application Development Guide

delta range
printing 5-29

file editing use 5-9
login name
removal 5-33

error message
code use 5-17
form 5-17

exclamation point
MR deletion
use 5-26

-f option
flag setting 5-20
flag, value
setting 5-21

file
See also sees,
descriptive text

See also sees, g-file
See also sees, p-file
See also sees, x-file
administration 5-35
change
identification 5-41

change
procedure 5-11

change, major 5-14
changes 5-2
checking
procedure 5-35

comparison 5-43
composition 5-2,
5-23

corrupted file 5-35
crea tion 5-7
data keyword 5-28
descriptive text
description 5-23

editing, -e option
use 5-9

grouping 5-2

identifying
information 5-43

link 5-2
lock file 5-4
modification 5-26
multiple concurrent
edits 5-30

name 5-2
name arbitrary 5-16
name, s use 5-7
prin ting 5-28
protection
methods 5-32

removal 5-7
retrieval 5-8
versions 5-2

file argument
description 5-5
processing 5-5

file creation
comment line
generation 5-38

commentary 5-38
comments omission,
effect 5-38

level number 5-37
release number 5-37

file protection 5-32
flags

deletion 5-22
modification 5-21
setting 5-20
setting, value
setting 5-21

use 5-22
floor flag

protection 5-33
g-file

creation 5-4
creation date, time
recording 5-18

description 5-4

Index X-15

line
identification 5-41

line, %M% keyword
value 5-41

ownership 5-4
regeneration 5-36
removal, delta
command use 5-17

temporary 5-5
-g option

output
suppression 5-42

p-file
regeneration 5-36

get command
concurrent editing,
directory use 5-30

delta inclusion,
exclusion
check 5-39

-e option use 5-9
l'~ 1" ~,,4-~~ "'TT'" 1 r::: Q
J..L.Lv .L vlJJ..Lv v U.L v-v

filename
creation 5-8

g-file creation 5-4
message 5-8
release number
change 5-14

-h option
file audit use 5-35

help command
argument 5-17
code use 5-17
use 5-37

i flag
file creation,
effect 5-20

keyword message,
error
treatment 5-21

-i option
del ta inclusion list
use 5-39

ID keyword 5-18
identification
string 5-2

j flag
multiple concurrent
edits
specification 5-30

-k option
g-file
regeneration 5-36

keyword
data 5-28
format 5-18
missing 5-21
use 5-18

I-file
creation 5-40

-1 option
delta range
printing 5-29

I-file creation 5-40
level number

delta component 5-2
new file 5-37
omission, file
retrieval,
effect 5-13

link
number
restriction 5-2

lock flag
edit protection 5-34

-m option
effective when 5-25
file change
identification 5-41

new file
creation 5-38

minus sign
argument use 5-5
option argument
use 5-5

X-I6 Application Development Guide

mode
g-file 5-4

MR
commentary
supply 5-23

deletion 5-26
new file
creation 5-38

multiple users 5-6
-n option

%M% keyword
value use 5-41

g-file
preservation 5-17

pipeline use 5-41
option argument

description 5-5
processing order 5-5

output
data
specification 5-28

suppreSSIon, -g
option 5-42

suppreSSIon, -s
option 5-38

wri te to standard
output 5-16

p-file
contents 5-4, 5-11
creation 5-4
delta command
reading 5-11

naming 5-4
ownership 5-4
permissions 5-4
regeneration 5-36
update 5-4
updating 5-5

-p option
delta printing 5-41
output effect 5-16

percen tage sign

keyword
enclosure 5-18

piping 5-38
-n option use 5-41

prs command
file printing 5-28

purpose 5-1
q-file

use 5-5
R

delta removal
check 5-42

-r option
delta creation
use 5-31

delta printing
use 5-29

file retrieval 5-12
release number
specification 5-37

release
protection 5-33

release number
change 5-3
change
procedure 5-14

delta component 5-2
new file 5-37
-r option,
specification 5-37

rm command
file removal 5-7

rmdel command
delta removal 5-42

-s option
output
suppression 5-38

sccsdiff command
file comparison 5-43

sequence number
description 5-3

SIDs

Index X-17

components 5-2
delta printing
use 5-29

-t option
delta retrieval 5-16
file
initialization 5-27

file
modification 5-27

tab character
-n option,
designation 5-41

user list
empty by
defa ult 5-32

login name
addi tion 5-32

login name
removal 5-33

protection
feature 5-32

user nam.e
list 5-32

v flag
new file use 5-21

what command
file
information 5-43

write permission
delta removal 5-42

x-file
directory,
loca tion 5-4

naming
procedure 5-4

permissions 5-4
temporary file
copy 5-4

use 5-4
-x option

delta exclusion list
use 5-39

XENIX command

use precaution 5-36
-yoption

comments prompt
response 5-23

new file
creation 5-38

z-file
lock file use 5-4
ownership 5-4
permissions 5-4

-z key
file audit use 5-36

SCCS,Source Code Control
System 5-1

sharing interrupt
vectors 10-74

signal 6-23
signal() routine 10-30
sleep() routine 10-16
software development

described 1-2
Source Code Control
System

See SCCS
source files 2-2

creating 1-3
DOS source files 2-3

spl routines 10-14
stack

u_ area 10-7
strings 9-16
strip

description 1-6
sum

description 1-6
suser() routine 10-30
suspending
processing 10-16

symbol
name list 1-6
removal 1-6

sync

X-18 Application Development Guide

description 1-6
syscmd 9-13
system calls

ioctl() routine 10-26
system
configuration 10-68

system mode stack 10-7
system processes 10-6

tags file
creation 1-6

task-time processing 10-8
tdclose

See terminal device
routines

tdintr
See terminal device
routines

tdioctl
See terminal device
routines

tdmint
See terminal device
routines

tdmodem
See terminal device
routines

tdopen
See terminal device
routines

tdparam
See terminal device
routines

tdproc
See terminal device
routines

tdread
See terminal device
routines

tdrint
See terminal device
routines

tdwrite
See terminal device
routines

tdxint
See terminal device
routines

terminal
device driver
sample 11-10

terminal device routines
tdclose() 11-19
tdintr() 11-25
tdioctl() 11-31
tdmint() 11-31
tdmodem() 11-23
tdopen() 11-17
tdparam() 11-17, 11-21
tdproc() 11-33
tdread() 11-19
tdrint() 11-29
tdwrite() 11-19
tdxint() 11-27

text editor
creating programs 1-3

timeout() routine 10-17
token, input

See yacc, token
touch option 4-20
tsort

description 1-5
ttinit() routine 11-17
tty routines 10-23

Index X-I9

-u option
lint 3-4

u_ area 10-7
user processes 10-6

-v option
lint 3-3, 3-17

vi, the screen-oriented text
editor 1-3

wakeup() routine 10-16
wrap up

See lex, yywrap()

-x option
lint 3-3

XENIX file
identifying
information 5-43

yacc
See also yacc, desk
calculator

See also yacc, parser
%prec keyword 8-28
accept simulation 8-40
action

See also yacc, parser
conflict source 8-23
defined 8-9
error rules 8-31
form 8-62
global flag
setting 8-39

input sty Ie 8-36
invocation 8-2
location 8-10
nonterminating 8-10
return value 8-42
statement 8-9, 8-11
value in enclosing
rules, access 8-41

0, negative
number 8-41

ampersand
and operator 8-44

ari thmetic expression
See also yacc,
precedence

desk calculator 8-44
parsing 8-27

associa ti vi ty
arithmetic
expreSSIon
parsing 8-27

grammar rule
association 8-29

recordation 8-29

X-20 Application Development Guide

token
attachment 8-27

asterisk
multiplication
operator 8-44

backslash
escape
character 8-6

percentage sign
substitution 8-62

binary operator
precedence 8-28

blank character
restrictions 8-5

braces
action 8-11
action statement
enclosure 8-9

action,
dropping 8-62

header file
enclosure 8-43

colon
identifier,
effect 8-48

punctuation 8-6
comments

location 8-5
conflict

See also yacc,
associa ti vi ty

See also yacc,
precedence

disambiguating
rules 8-22, 8-23

message 8-25
reduce conflict 8-29
reduce reduce
conflict 8-29

reduce/reduce
conflict 8-22

resolution, not
counted 8-29

shift reduce
conflict 8-29

shift/reduce
conflict 8-22, 8-24

source 8-23
declaration

specification file
component 8-5

declaration section
header file 8-43

description 1-4
desk calculator

advanced
features 8-52

error recovery 8-52
floating-point
interval 8-52

scalar
conversion 8-53

desk calculator
specifications 8-44

dflag 8-39
disambigua ting
rule 8-22

disambigua ting
rules 8-23

dollar sign
action
significance 8-9

empty rule 8-38
enclosing rules,
access 8-41

endmarker
lookahead
token 8-17

parser input end 8-8
representation 8-8
token number 8-13

environment 8-34
error

Index X-21

handling 8-31
nonassociating
implication 8-29

parser restart 8-31
simulation 8-40
yyerrok
statement 8-32

error token
parser restart 8-31

escape characters 8-6
external integer
variable 8-34

flag
global flag 8-39

global flag
lexical analysis 8-39

grammar rules 8-2
advanced
features 8-52

ambiguity 8-21
associa ti vi ty
association 8-29

C code
location 8-62

empty rule 8-38
error token 8-31
format 8-6
input style 8-36
left recursion 8-37
left side
repetition 8-7

names 8-6
numbers 8-25
precedence
association 8-29

reduce action 8-15
reduction 8-16
rewrite 8-23
right recursion 8-37
specification file
component 8-5

value 8-10

zero character
avoidance 8-6

header file, union
declaration 8-43

historical features 8-62
identifier

input syntax 8-48
if-else rule 8-23
if-then-else
construction 8-23

input
style 8-36
syntax 8-48

input error
detection 8-3

key endmarker token
marker 8-13

keyword 8-27
reservation 8-40
union member name
association 8-43

left association 8-21
left associative

reduce
implication 8-29

left keyword 8-27
union member name
association 8-43

left recursion 8-37
value type 8-43

left token
synonym 8-62

lex
interface 7-2
lexical analyzer
construction 8-13

lexical analyzer
context
dependency 8-39

defined 8-1, 8-12
endmarker
return 8-8

X-22 Application Development Guide

floating-point
constants 8-53

function 8-2
global flag
examination 8-39

identifier
analysis 8-48

lex 8-13
return value 8-42
scope 8-11
specification file
component 8-5

terminal symbol 8-2
token number
agreement 8-12

lexical tie-in 8-39
library 8-34
literal

defined 8-6
delimiting 8-62
length 8-62

look ahead token 8-14
clearing 8-33
error rules 8-31

LR grammar 8-48
ly argument, library
access 8-34

main program 8-34
minus sign

minus operator 8-44
names

composi tion 8-6
length 8-6
reference 8-5
token name 8-7

newline character
restrictions 8-5

nonassoc keyword 8-27
union member name
association 8-43

nonassoc token
synonyms 8-62

nonassocia ting
error
implication 8-29

nonterminal
union member name
association 8-43

nonterminal name
input sty Ie 8-36
representation 8-6

nonterminal
symbol 8-2

empty string
match 8-7

location 8-8
name 8-5
start symbol 8-8

octal interger
beginning 8-44

option
output file 8-17

parser
See also yacc,
conflict

See also yacc, error
accept action 8-1 7
accept
simulation 8-40

actions 8-14
arithmetic
expression 8-27

creation 8-27
defined 8-1
description 8-14
error action 8-17
goto action 8-16
initial state 8-19
input end 8-8
look ahead
token 8-15

movement 8-14
names, yy
prefix 8-11

Index X-23

nonterminal
symbol 8-2

production
failure 8-3

reduce action 8-15
restart 8-31
shift action 8-15
start symbol
recognition 8-8

token number
agreement 8-12

percentage sign
action 8-11
header file
enclosure 8-43

mod operator 8-44
precedence
keyword 8-27

specification file
section
separa tor 8-5

ct" hcd-~~"f.~,.,...... Q_t=:,)
O\A.UO""~\.IUlJ.l.V.1..1. V-VkJ.

plus sign
+ opera tor 8-44

prec
synonym 8-62

precedence
binary
operator 8-28

change 8-28
grammar rule
association 8-29

keyword 8-27
parsIng
function 8-27

recordation 8-29
token
attachment 8-27

unary operator 8-28
program

specification file
component 8-5

punctuation 8-6
quotation marks, double

literal
delimiting 8-62

quotation marks, single
literal enclosure 8-6

reduce command
number
reference 8-25

reduce conflict 8-29
reduce reduce
conflict 8-29

reduce/reduce
conflict 8-22

reduction conflict 8-22
reserved words 8-40
right association 8-21
right associative

shift
implication 8-29

right keyword 8-27
union :member naIne
association 8-43

right recursion 8-37
right token

synonym 8-62
semicolon

input style 8-36
punctuation 8-6

shift command
number
reference 8-25

shift reduce
conflict 8-29

shift/reduce
conflict 8-22, 8-24

simple-if rule 8-23
slash

division
operator 8-44

specification file
contents 8-5

X-24 Application Development Guide

lexical analyzer
inclusion 8-5

sections
separator 8-5

specification files 8-3
start symbol

description 8-8
location 8-8

symbol synonyms 8-62
tab character

restrictions 8-5
terminal symbol 8-2
token

See also yacc, error
token

associativity 8-27
defined 8-1
names 8-5
organization 8-2
precedence 8-27
synonym 8-62

token keyword
union member name
association 8-43

token name
declaration 8-7
input style 8-36

token names 8-13
token number 8-12

agreement 8-12
assignment 8-13
endmarker 8-13

type keyword 8-43
unary operator

precedence 8-28
underscore sign

parser 8-19
unIon

copy 8-42

declaration 8-42
header file 8-42
name
associa tion 8-43

unreachable
statement 3-5

value
typing 8-42
union 8-42

value stack 8-42
declaration 8-42
floating-point
scalars,
integers 8-52

vertical bar
grammar rule
repetition 8-7

input style 8-36
or operator 8-44

y.output file 8-17
y.tab.c file 8-34
y. tab.h file 8-42
YYACCEPT 8-40
yychar 8-34
yyclearin
statement 8-33

yydebug 8-34
yyerrok statement 8-32
yyerror 8-34, 8-52
yylex 8-34
yyparse 8-34

YYACCEPT
effect 8-40

YYSTYPE 8-43
o character

grammar rules,
avoidance 8-6

yacc, program
generator 8-1

Index X-25

X-26

Notes:

Notes:

--------- -------- - ---- - - ----------_.-

Reader's Comment Form

XENIX Operating
System
Application
Development
Guide

The Personal
Computer

Programming
Family

SV21-8078

Your comments assist us in improving our
publication; they are an important part of the
input used for revisions.

IBM may use and distribute any of the
information you supply in any way it believes
appropriate without incurring any obligation
whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for questions
regarding setup, operation, or program
support or for requests for additional
publications. Instead, contact your
authorized IBM Personal Computer dealer in
your area.

Comments:

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
DEPARTMENT 997
11400 BURNET ROAD
AUSTIN, TEXAS 78758

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

I ••
8J84 Plo::!

1 81delS lOU 00 ade.l

~ . IBM Corporation 1986
All rights reserved

International BUSiness
Machines Corporation
PO. Box 1328-W
Boca Raton.
Florida 33429-1328

Printed in the
United States of America

59X8634

--------- ------ ---- - ------------_ . -

Software required:

IBM Personal Computer
XENIXTM Operating System
Version 2.00

Software included:

Three 1.2MB diskettes

System requirements:

IBM Monochrome, Color,
Enhanced Graphics, or
Professional Graphics
Display or equivalent
(with appropriate adapter)

IBM Personal Computer AT®

512KB RAM memory

IBM 20MB or 30MB fixed disk

IBM 1.2MB diskette drive

Note:
XENIX is a trademark of Microsoft
Corporation

© IBM Corporation 1986
All rights reserved .

International Business
Machines Corporation
P.O. Box 1328-W
Boca Raton ,
Florida 33429-1328

Printed in the
United States of America

59X9939

International Business Machines Corporation
IBM Program license Agreement

Armonk, New York 10504

You should carefully read the foJ/owing terms and conditions before openmg this package. Openmg this package mdl­
cares your acceptance of these terms and conditions. If you do not agree with them, you should promptly return the
package unopened and your money will be refunded.

IBM provides thiS program and licenses its use in the United States and Puerto RIco. Title to the media on which this
copy of the program IS recorded and to the enclosed copy of the documentation is transferred to you, but title to the
copy of the program is retained by IBM or Its supplier, as applicable. You assume responsibility for the selection of the
program to achieve your Intended results, and for the installation, use and results obtained from the program.
License

You may :
a. use the program on only one machine at anyone time except as otherwise specified by IBM in the enclosed Program

Specifications (available for your inspection prior to your acceptance of this Agreement);
b. copy the program into machine-readable or printed form for backup or modification purposes only in support of such

use. (Certain programs. however, may Include mechanisms to limit or Inhibit copying. They are marked "copy
protected"):

c, modify the program and/or merge It Into another program for your use on the single machine. (Any portion of this pro­
gram merged Into another program will continue to be subject to the terms and conditions of this Agreement.); and,

d. transfer the program With a copy of this Agreement to another party only if the other party agrees to accept f rom IBM
the terms and conditions of thiS Agreement. If you transfer the program. you must at the same time either transfer a(1
copies whether In printed or machine-readable form to the same party or destroy any copies not transferred; thiS
includes all modifications and portions of the program contained or merged into other programs. IBM Will grant a
license to such other party under this Agreement and the other party will accept such license by Its Initial use of the
program. If you transfer possession of any copy, modification or merged portion of the program, In whole or in part, to
another party, your license IS automatically terminated.
You must reproduce and Include the copyright notice on any copy; modification, or portion merged Into another

program.
You may not reverse assemble or reverse compile the program Without 18M's prior written consent.
You may not use, copy, modIfy, or transfer the program, or any copy, modifIcation or merged portion, In whole or In

part, except as expressly proVided for in thiS Agreement.
You may not sublicense, assign, rent or lease thiS program.

Term
The license is effective until terminated. You may terminate it at any other time by destroying the program together

with all copies, modifications and merged portions in any form. It will also terminate upon conditions set forth else­
where In thiS Agreement or If you fail to comply with any term or condition of this Agreement. You agree upon such ter­
mination to destroy the program together With all copies, modifications and merged portions in any form.
Limited Warranty and Disclaimer of Warranty

IBM warrants the media on which the program is furnished to be free from defects in materials and
workmanship under normal use for a period of 90 days from the date of IBM's delivery to you as evidenced
by a copy of your receipt.

IBM warrants that each program which is designated by IBM as warranted in its Program Specifications,
supplied with the program, will conform to such specifications provided that the program is properly used
on the IBM machine for which it was designed. If you believe that there is a defect in a warranted program
such that it does not meet its specifications, you must notify IBM within the warranty period set forth in
the Program Specifications.

All other programs are provided " as is" without warranty of any kind, either express or implied. The
entire risk as to the quality and performance of the program is with you. Should the program prove defec­
tive, you (and not IBM or an IBM authorized representative) assume the entire cost of all necessary servic­
ing, repair or correction.

IBM does not warrant that the functions contained in any program will meet your requirements or that
the operation of the program will be uninterruped or error free or that all program defects will be
corrected,

The foregoing warranties are in lieu of all other warranties, express or implied, including, but not lim­
ited to, the implied warranties of merchantability and fitness for a particular purpose.

Some states do not allow the exclusion of implied warranties, so the above exclusion may not apply to
you. This warranty gives you specific legal rights and you may also have other rights which vary from
state to state.
Limitations of Remedies

IBM's entire liability and your exclusive remedy shall be as follows:
1. With respect to defective media during the warranty period :

a. IBM will replace media not meeting IBM's "Limited Warranty" which IS returned to IBM or an IBM authorized
representative with a copy of your receipt.

b. In the alternative. If IBM or such IBM authOrized representative IS unable to deliver replacement media which IS
free of defects In materials and workmanship, you may terminate this Agreement by returning the program and
your money will be refunded.

2. With respect to warranted programs. in all situations InvolVing performance or nonperformance dUring the warranty
period. your remedy IS (a) the correctIOn by IBM of program defects. or (b) if. after repeated efforts. IBM is unable to
make the program operate as warranted, you shall be entitled to a refund of the money paid or to recover actual dam­
ages to the limits set forth In thiS section.

For any other claim concernmg performance or nonperformance by IBM pursuant to, or In any other way related
to, the warranted programs under thiS Agreement. you shall be entitled to recover actual damages to the limits set
forth In this section ,
IBM's liability to you for actual damages for any cause whatsoever, and regardless of the form of action, shall be lim­

Ited to the greater of $5.000 or the money paid for the program that caused the damages or that IS the subject matter
of. or IS directly related to, the cause of action.

In no event Will IBM be liable to you for any lose profits, lost savings or other Incidental or consequential damages aT/S­
mg out of ehe use of or mabillty to use such program even If IBM or an IBM aurhonzed representative has been advised
of the posslblltty of such damages, or for any claim by any other party

Some states do not allow the limitation or exclUSIon of ftabtllty for mCldental or consequential damages so the above
limitation or exclUSion may not apply to you,
Service

Service from IBM, If any, Will be deSCribed In Program SpeCifications or In the statement of service, supplied with the
program, If there are no Program SpeCifications.

IBM may also offer separate services under separate agreement for a fee
General

Any attempt to sublicense, assign, rent or lease, or, except as expressly proVided for In thiS Agreement, to transfer
any of the rights, duties or obligations hereunder IS VOid .

ThiS Agreement will be construed under the Uniform Commercial Code of the State of New York.

Application Development Guide

IBM Personal Computer XENIX""
Software Development System
Version 2 .00

~ Programming Family , '~" ",: .<' -.
'" 0:: - -- I.' " - ., ,. ". • - - I "" ~ _ _ ..

Software development tools, including language
translators, source code management tools,
a C compiler, Macro Assembler, a debug facility,
and a linker for combining modules into finished
programs. The C compiler generates code for
DOS or the IBM Personal Computer XENIXTM
Operating System.

