
®

seo OpenServerTM
Operating System
User's Guide

seQ Qpel1ServerTM

seQ OpenServer TM

Operating System User's Guide

© 1983-1995 The Santa Cruz Operation, Inc. All rights reserved.

© 1980-1989 Microsoft Corporation; © 1988 UNIX Systems Laboratories, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into
any human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without the prior written permission of the copyright owner, The Santa
Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, California, 95060, USA. Copyright infringement is a
serious matter under the United States and foreign Copyright Laws.

Information in this document is subject to change without notice and does not represent a commitment on
the part of The Santa Cruz Operation, Inc.

seo, the seo logo, The Santa Cruz Operation, Open Desktop, ODT, Panner, seo Global Access, seo OK, seo
OpenServer, sea MultiView, seo Visual Tcl, Skunkware, and VP fix are trademarks or registered
trademarks of The Santa Cruz Operation, Inc. in the USA and other countries. UNIX is a registered
trademark in the USA and other countries, licensed exclusively through X/Open Company Limited. All
other brand and product names are or may be trademarks of, and are used to identify products or services
of, their respective owners.

Document Version: 5.0
1 May 1995

The sea software that accompanies this publication is commercial computer software and, together with
any related documentation, is subject to the restrictions on US Government use as set forth below. If this
procurement is for a DOD agency, the following DFAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restrictions
as set forth in subparagraph (c)(I)(ii) of Rights in Technical Data and Computer Software Clause at DFARS

252.227-7013. Contractor/Manufacturer is The Santa Cruz Operation, Inc., 400 Encinal Street, Santa Cruz,
CA 95060.

If this procurement is for a civilian government agency, this FAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: This computer software is submitted with restricted rights under
Government Contract No. (and Subcontract No. , if appropriate). It may not be used,
reproduced, or disclosed by the Government except as provided in paragraph (g)(3)(i) of FAR Clause
52.227-14 alt III or as otherwise expressly stated in the contract. Contractor/Manufacturer is The Santa
Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, CA 95060.

The copyrighted software that accompanies this publication is licensed to the End User only for use in strict
accordance with the End User License Agreement, which should be read carefully before commencing use
of the software. This seo software includes software that is protected by these copyrights:

© 1983-1995 The Santa Cruz Operation, Inc.; © 1989-1994 Acer Incorporated; © 1989-1994 Acer America
Corporation; © 1990-1994 Adaptec, Inc.; © 1993 Advanced Micro Devices, Inc.; © 1990 Altos Computer
Systems; © 1992-1994 American Power Conversion, Inc.; © 1988 Archive Corporation; © 1990 AT!
TechnolOgies, Inc.; © 1976-1992 AT&T; © 1992-1994 AT&T Global Information Solutions Company; © 1993
Berkeley Network Software Consortium; © 1985-1986 Bigelow & Holmes; © 1988-1991 Carnegie Mellon
University; © 1989-1990 Cipher Data Products, Inc.; © 1985-1992 Compaq Computer Corporation; ©
1986-1987 Convergent Technologies, Inc.; © 1990-1993 Cornell University; © 1985-1994 Corollary, Inc.; ©
1988-1993 Digital Equipment Corporation; © 1990-1994 Distributed Processing Technology; © 1991 D.1.S.
Associates; © 1990 Free Software Foundation, Inc.; © 1989-1991 Future Domain Corporation; © 1994
Gradient Technologies, Inc.; © 1991 Hewlett-Packard Company; © 1994 IBM Corporation; © 1990-1993
Intel Corporation; © 1989 Irwin Magnetic Systems, Inc.; © 1988-1994 IXI Limited; © 1988-1991 JSB
Computer Systems Ltd.; © 1989-1994 Dirk Koeppen EDV-Beratungs-GmbH; © 1987-1994 Legent
Corporation; © 1988-1994 Locus Computing Corporation; © 1989-1991 Massachusetts Institute of
Technology; © 1985-1992 Metagraphics Software Corporation; © 1980-1994 Microsoft Corporation; ©
1984-1989 Mouse Systems Corporation; © 1989 Multi-Tech Systems, Inc.; © 1991 National Semiconductor
Corporation; © 1990 NEC Technologies, Inc.; © 1989-1992 Novell, Inc.; © 1989 Ing. C. Olivetti & C. SpA; ©
1989-1992 Open Software Foundation, Inc.; © 1993-1994 Programmed Logic Corporation; © 1989 Racal
InterLan, Inc.; © 1990-1992 RSA Data Security, Inc.; © 1987-1994 Secureware, Inc.; © 1990 Siemens Nixdorf
Informationssysteme AG; © 1991-1992 Silicon Graphics, Inc.; © 1987-1991 SMNP Research, Inc.; ©
1987-1994 Standard Microsystems Corporation; © 1984-1994 Sun Microsystems, Inc.; © 1987 Tandy
Corporation; © 1992-1994 3COM Corporation; © 1987 United States Army; © 1979-1993 Regents of the
University of California; © 1993 Board of Trustees of the University of Illinois; © 1989-1991 University of
Maryland; © 1986 University of Toronto; © 1976-1990 UNIX System Laboratories, Inc.; © 1988 Wyse
Technology; © 1992-1993 Xware; © 1983-1992 Eric P. Allman; © 1987-1989 Jeffery D. Case and Kenneth W.
Key; © 1985 Andrew Cherenson; © 1989 Mark H. Colburn; © 1993 Michael A. Cooper; © 1982 Pavel Curtis;
© 1987 Owen DeLong; © 1989-1993 Frank Kardel; © 1993 Carlos Leandro and Rui Salgueiro; © 1986-1988
Larry McVoy; © 1992 David 1. Mills; © 1992 Ranier Pruy; © 1986-1988 Larry Wall; © 1992 Q. Frank Xia. All
rights reserved. SCO NFS was developed by Legent Corporation based on Lachman System V NFS. SCO
TCP /IP was developed by Legent Corporation and is derived from Lachman System V STREAMS TCP, a
joint development of Lachman Associates, Inc. (predecessor of Legent Corporation) and Convergent
Technologies, Inc.

About this book 1

How this book is organized .. 1
Related documentation ... 3
Typographical conventions ... 6
How can we improve this book? ... 7

Chapter 1

Using seQ Shell 11

Starting seo Shell " 11
What the seQ Shell screen areas do ... 12
Using menus in seQ Shell ... 13
Canceling an operation ... 14
Error messages .. 14
Getting help in seQ Shell ... 14
Using the accelerator keys .. 14
Using a mouse 15
Quitting seQ Shell 16

Managing files with seo Shell .. 16
Files and directories 16
Using subdirectories 17
Pathnames ... 18
The current directory '" '" 18
Naming and organizing files and directories 18

Using the Manager menu .. 19
Selecting files 19

Using the Manager menu options ... 23
Looking at a file .. 23
Changing the appearance of windows 24
Editing a file .. 25
Managing files 28
Managing directories ... 34
Copying files to and from tape or disk ... 35
Using the clipboard from the Manager menu 41
Setting preferences for text editing .. 42
Exiting the Manager menu .. 43

Running utilities and applications .. 43
What utilities are available ... 44
What applications are available ... 47

Table of contents v

Copying items between applications with the clipboard 47
Printing files 48

Displaying or canceling print jobs 48
Selecting a printer 48

Chapter 2

SeQ Shell accessories 49

Using the Calendar .. 49
Starting the Calendar 50
Quitting from the Calendar .. 50
Moving between days ... 51
Scheduling a meeting or event .. 52
Adding "To do" items to the Calendar ... 59
Changing an event .. 60
Deleting an event .. 60
Viewing the Calendar .. 61
Printing the calendar 63
Transferring information from the Calendar to other applications 64
Setting Calendar options ... 65
Adding an alternative calendar to your Application List 71
Resolving problems with Calendar information 72

Using the Calculator ... 72
Starting the Calculator .. 73
Calculator commands ... 73
Using the Calculator's features 74

Chapter 3

Working with files and directories 79

Getting to the command prompt ... 80
Files and directories ... 80

Using files ... 81
Using directories ... 81
File and directory attributes ... 81
How the system manages files and directories 83
Filenaming conventions .. 83

Managing directories .. 84
How directories are organized 84

vi

An example: what the system contains ... 85
Creating a directory 86
Listing the contents of a directory .. 87
Renaming a directory 90
Copying a directory 90
Removing a directory .. 90
Comparing directories 91

Navigating the filesystem ... 92
Finding out where you are in the system ... 92
Changing directory 92
Returning to your home directory .. 93

Creating links to files and directories .. 94
Creating a link to a file 94
Finding out whether a file has hard links 95
Creating a link to a directory ... 96
Navigating symbolic links 97

Mounting a filesystem ... 98
Managing files ... 101

Finding out what type of data a file contains 101
Looking at the contents of a file 102
Finding out how much text is in a file ... 103
Looking at the beginning and end of a file 103
Copying a file 103
Moving or renaming a file .. 104
Removing a file ... 105
Comparing files 107
Sorting the contents of a file 109
Searching for text in a file .. 111
Finding files .. 113
Retrieving deleted files 114

Specifying command input and output .. 118
Forcing a program to read standard input and output 119

Running a sequence of commands .. 120
Entering commands on the same line ... 120
Running commands in a pipeline 120

Access control for files and directories ... 121
Changing file permissions ... 123
Setting the default permissions for a new file 124
Giving a file to someone else 125
Finding out your group 126
Changing your current group 126

Table of contents vii

Changing the group of a file 127
Printing a file ... 127

Printing several copies of a file 128
Selecting a printer ... 128
Displaying a list of current print jobs 129
Canceling a print request 129

Getting help on the command line ... 129
Getting help when you are uncertain of the topic 129

Chapter 4

Editing files 131

A quick tour of vi ... 132
Starting vi 134
Entering text 135
What to do if you get stuck 136
Saving files and quitting vi 136
Moving around a file 137
Deleting and restoring text .. 138
Searching for text 139
Replacing and modifying text .. 140
Substituting text .. 141
Repeating and undoing commands 145
Including the contents of another file 145
Accessing the shell ... 145
Editing more than one file ... 146
Using buffers to cut and paste text 146
Placing markers .. 147

Using keyboard shortcuts ... 147
Running other programs from inside vi 148
Sending text through a filter 148
Defining abbreviations ... 149
Storing a command in a buffer ... 150
Mapping key sequences ... 150

Configuring vi .. 152
Saving frequently used commands .. 154

Using ed ... 154
Starting ed .. 155
Saving files and quitting ed 155
Moving around in ed ... 155

viii

Editing text in ed 156

Chapter 5

Controlling processes 157

What is a process? .. 157
Finding out what processes are running .. 158
Background jobs and job numbers .. 160

Waiting for background jobs to finish before proceeding 161
Finding out what jobs are running 161

Killing a process ... 162
Suspending a job 164
Moving background jobs to the foreground '" 164
Moving foreground jobs to the background 165

Keeping a process running after you log off 165
Using signals under the UNIX system ... 166
Reducing the priority of a process ... 167

Identifying the niceness of a process 168
Scheduling your processes .. 169

Running processes at some time in the future 169
Executing processes at regular intervals 170
Delaying the execution of a process .. 171

Chapter 6

Working with DOS 173

DOS devices under the UNIX system 173
DOS filenames .. 174

Listing DOS files in standard DOS format 175
Listing DOS files in a UNIX system format 175

Copying DOS files between DOS and seo OpenServer systems 175
Displaying a DOS file ... 176
Converting DOS files to and from UNIX system file format 176

Automatic file conversions when using DOS utilities 177
Removing a DOS file .. 177
Creating a DOS directory ... 177
Removing a DOS directory .. 178
Formatting a DOS floppy ... 178
Using mounted DOS filesystems ... 179

Table of contents ix

Points to note when using files on a mounted DOS filesystem 180

Chapter 7

Working with disks, tapes, and CD-ROMs 181

Using UNIX devices 181
Identifying device files 182
Default devices ... 184

Using floppy disk drives ... 184
Formatting floppy disks 184
Determining how many disks you need for a backup 185

Using tapes .. 185
Formatting tapes ... 186
Rewinding, erasing, and retensioning tapes 186

Using CD-ROMs .. 187
Creating a backup with tar .. 187

Listing the files in a tar backup .. 189
Extracting files from a tar backup .. 189

Creating a backup with cpio ... 190
Listing the files in a cpio backup 192
Extracting files from a cpio backup .. 192

Chapter 8

Using UUCP and dialup commands 193

Transferring files between UNIX systems ... 194
Using the uucp command 195

Executing commands on remote UNIX systems 200
Dialing up remote systems ... 201

Connecting to a remote terminal ... 201
Using two computers at the same time .. 202
Transferring text files with take and put ... 204

Chapter 9

Using a secure system 207

How system security works .. 208
Login security .. 208

x

What to do if you cannot log in ... 209
Password security ... 209
Changing your password .. 210

If you are not allowed to change your password 210
If you are allowed to change your password 210

File security 211
Security for files in sticky directories 212

Other security tips ... 212
Using su to access another account .. 213
Using commands on a trusted system 213

Authorizations 213
Listing authorizations and running authorized commands 215

Data encryption ... 216
crypt - encode/decode files 217

Chapter 10

Configuring and working with the shells 221

What is a shell? 221
What the different shells are for 222

Identifying your login shell ... 224
What happens when you log in ... 224

Understanding variables 226
Setting shell variables ... 227
Setting environment variables ... 228
Exporting variables to the environment .. 230
A sample login script ... 231
Resetting the environment .. 232

Some features to make life easier .. 233
Making your prompt tell you where you are 233
Adding a logout script 234
Recalling and editing previous commands 235

Using aliases ... 237
How aliases are executed ... 238

How the shell works .. 241
How the shell executes commands ... 242

Table of contents xi

Chapter 11

Automating frequent tasks 245

Creating a shell script ... 246
Running a script under any shell ... 247
Writing a short shell script: an example ... 248
Passing arguments to a shell script 250
Performing arithmetic and comparing variables 251
Performing arithmetic on variables in the Korn shell 252

Sending a message to a terminal ... 253
The echo command .. 254
The print command (Korn shell only) ... 255
More about redirecting input and output 256

Getting input from a file or a terminal .. 259
Reading a single character from a file or a terminal 260
Attaching a file to a file descriptor 262

What to do if something goes wrong .. 263
Solving problems with the environment ... 263
Solving problems with your script 264
What to do if your shell script fails ... 265

Writing a readability analysis program: an example 266
How to structure a program ... 266
Making a command repeat: the for loop .. 271
Getting options from the command line: getopts 272
Repeating commands zero or more times: the while loop 273
Repeating commands one or more times: the until loop 274
Making choices and testing input .. 275
Choosing one of two options: the if statement 276
Different kinds of test .. 277
Testing exit values .. 278
The && and "operators .. 278
Making multiway choices: the case statement 280
Generating a simple menu: the select statement 283
Expanding the example: counting words 284
Making menus .. 286
Assigning variables default values 290

Tuning script performance .. 291
How programs perform ... 291
How to control program performance .. 292

Number of processes generated ... 294
Number of data bytes accessed .. 296

xii

Shortening data files 296
Shortening directory searches 297
Directory-search order and the PATH variable 297
Recommended ways to set up directories 298

Putting everything together .. 298
Readability analysis .. 305
Extending the example .. 307

Other useful examples .. 307
Mail tools .. 307
File tools ... 310
Useful routines .. 312
Context sensitive scripts ... 314

Chapter 12

Regular expressions 315

Literal characters in regular expressions 315
Metacharacters in regular expressions .. 316
Wildcard characters 316
Editor regular expressions ... 317

Escaping metacharacters 319
Regular expression grouping 320
Precedence in regular expressions .. 320
Regular expression summary 321

Korn shell regular expressions ... 322

Chapter 13

Using awk 323

Basic awk
Fields

324
324

Program structure ... 325
Running awk programs 325
Formatting awk output ... 326

Variables .. 327
Field variables ... 327
Built-in variables 328
User-defined variables .. 329
Number or string? ... 329

Table of contents xiii

A handful of useful one-liners .. 331
Error messages ... 332
Patterns ... 332

Using simple patterns ... 332
BEGIN and END 333
Relational operators .. 334
Regular expressions ... 335
Combining patterns ... 337
Pattern ranges .. 338

Actions ... 338
Performing arithmetic .. 338

Functions ... 340
Using arithmetic functions 340
Using strings and string functions 341

Control flow statements .. 346
if statements 346
while statements ... 347
for statements ... 348
Flow control statements .. 348

Arrays .. 349
User-defined functions .. 351
Some lexical conventions .. 353

awk output ... 353
The print statement 354
Output separators ... 354
The printf statement .. 355
Output into files ... 356
Output into pipes ... 357

Input ... 358
Files and pipes .. 358
Input separators 358
Multiline records 359
Multiline records and the getline function 359
Command-line arguments 361

Using awk with other commands and the shell 362
The system function .. 362
Cooperation with the shell ... 362

Spanning multiple lines .. 364
Example applications .. 367

Generating reports .. 367
Word frequencies .. 369

xiv

Accumulation .. 369
Random choice ... 370
Shell facility ... 370

Chapter 14

Manipulating text with sed 371

What is sed? .. 371
Using sed ... 372

Writing sed commands .. 373
How sed commands are carried out .. 373

Addresses .. 374
Line addresses ... 374
Context addresses .. 374

Functions ... 377
Whole-line oriented functions .. 378
Substitute functions .. 379
The transform function .. 382
Input-output functions 382
Multiple input-line functions 384
Hold and get functions .. 385
Flow-of-control functions ... 388
Comments in sed .. 389
Miscellaneous functions .. 389

Appendix A

An overview of the system 393

Origins of the UNIX system ... 393
The design of the UNIX operating system 394

The applications level .. 395
The system utilities ... 395
System services ... 396
The UNIX system kernel......... 397

How multi-tasking works .. 398
Memory management ... 399
The UNIX system life cycle .. 400

Understanding filesystems and devices .. 403
Files and filesystems ... 404

Table of contents xv

Device files ... 406
How to think about system tools .. 407

Appendix B

vi commands 409

AppendixC

DOS command equivalents 415

Appendix D

Sample shell startup files 419

The Bourne shell .profile ... 419
The Korn shell .profile and .kshrc .. 421
The C-shell .login and .cshrc 424

Appendix E

Further reading 427

Learning awk .. 427
Learning sed ... 427
Learning the shells 428
Learning the C programming language 428
Understanding the UNIX system .. 429

Glossary ... 431

Index .. 441

xvi

About this book

This User's Guide contains an introduction to using the sea Operating Sys­
tem. It explains how to accomplish routine tasks, and provides more detailed
information than the Operating System Tutorial. You will find the information
you need more quickly if you are familiar with:

• "How this book is organized" (this page)

• "Related documentation" (page 3)

• "Typographical conventions" (page 6)

Although we try to present information in the most useful way, you are the
ultimate judge of how well we succeed. Please let us know how we can
improve this book (page 7).

This book is clearly too short to be a full reference to the system. There are in
excess of five hundred commands, and two thousand files in a basic operating
system; however, for most activities you only need to be familiar with a hand­
ful of them.

How this book is organized

This book, which is divided into three sections, is designed to lead you
through the workings of the sea Operating System, from using its office auto­
mation facilities to set up your calendar, to writing simple shell scripts that
perform tasks for you.

1

About this book

2

Office automation
The sea OpenServer™ system contains a number of powerful office automa­
tion tools that allow you to manage your work. Chapter 1, ''''Using sea Shell"
(page 11) contains a guide to using the sea office automation tools. Chapter
2, "sea Shell accessories" (page 49) explains how to use the Calendar and Cal­
culator accessories provided with the sea Shell.

Working at the shell prompt
The shells are powerful programs that you can use to issue commands
directly to the sea OpenServer system. The chapters in this section, begin­
ning with Chapter 3, "Working with files and directories" (page 79), introduce
you to the shells and explain how to use them to run a variety of programs
which are present on your system. This section also explains the basic con­
cepts of file storage and manipulation, and how to manage your work
environment effectively.

Shell programming
The three available shells provide a powerful but simple programming
language that you can use to automate complex tasks, write your own
commands, and connect other programs together to perform a sequence of
operations. This section contains the following chapters:

• Chapter 10, "Configuring and working with the shells" (page 221), - an
explanation of the different shells you may be working in, and their special
features

• Chapter 11, "Automating frequent tasks" (page 245) - examples and
explanations of how to write simple scripts

• Chapter 12, "Regular expressions" (page 315) - the extensive pattern
matching facilities that these tools use to identify data

• Chapter 13, "Using awk" (page 323) - a powerful but complex tool pro­
vided for manipulating and reporting on textual data)

• Chapter 14, "Manipulating text with sed" (page 371) - a stream editor,
used for rapidly making changes to large files

User's Guide

Related documentation

Appendices
The following appendices are provided:

• Appendix A, "An overview of the system" (page 393) contains useful back­
ground material for the main text. It explains the basic history and design
philosophy of the seo OpenServer system; what its components are, what
they do, and how they all work together to provide your work environ­
ment.

• Appendix B, "vi commands" (page 409) provides a concise listing of the
commands recognized by the vi text editor.

• Appendix C, "DOS command equivalents" (page 415) provides a table
showing common MS-DOS® commands and their seo OpenServer system
equivalents.

• Appendix D, "Sample shell startup files" (page 419) contains some sample
listings and explanations of the standard user shell startup files.

• Appendix E, "Further reading" (page 427) contains references to sources of
further information that lie beyond the scope of this book.

Related documentation

seo OpenServer systems include comprehensive documentation. Depending
on which seo OpenServer system you have, the following books are available
in online and/or printed form. Access online books by double-clicking on the
Desktop Help icon. Additional printed versions of the books are also avail­
able. The Desktop and most sea OpenServer programs and utilities are
linked to extensive context-sensitive help, which in tum is linked to relevant
sections in the online versions of the following books. See "Getting help" in
the sea OpenServer Handbook.

NOTE When you upgrade or supplement your seo OpenServer software,
you might also install online documentation that is more current than the
printed books that came with the original system. In particular, the new in­
formation provided online with our regular Advanced Hardware Supple­
ments (AHS) supersedes and frequently obsoletes the material in the printed
version of this book. For the most up-to-date information, check the online
documentation.

3

About this book

4

Release Notes
contain important late-breaking information about installation, hardware
requirements, and known limitations. The Release Notes also highlight the
new features added for this release.

Operating System Tutorial
provides a basic introduction to the sca OpenServer operating system.
This book can also be used as a refresher course or a quick-reference
guide. Each chapter is a self-contained lesson designed to give hands-on
experience using the sca OpenServer operating system.

Graphical Environment Help
describes how to use Calendar, Edit, the Desktop, Help, Mail, Paint, the
sca Panner window manager, and the UNIX command-line window.

Operating System Users Reference
contains the manual pages for user-accessible operating system com­
mands and utilities (section C).

SCQ Open Server Handbook
provides the information needed to get your SCO OpenServer system up
and running, including installation and configuration instructions, and
introductions to the Desktop, online documentation, system administra­
tion, and troubleshooting.

Mail and Messaging Guide
describes how to configure and administer your mail system. Topics
include sendmail, MMDF, SCO Shell Mail, mailx, and the Post Office
Protocol (POP) server.

Guide to Gateways for LAN Servers
describes how to set up SCO® Gateway for NetWare® and LAN Manager
Client software on an SCO OpenServer system to access printers, file­
systems, and other services provided by servers running Novell®
NetWare® and by servers running LAN Manager over DOS, as/2®, or
UNIX® systems.

PC-Interface Guide
describes how to set up PC-Interface™ software on an SCO OpenServer
system to provide print, file, and terminal emulation services to comput­
ers running PC-Interface client software under Das or Microsoft® Win­
dows™.

Graphical Environment Guide
describes how to customize and administer the Graphical Environment,
including the X Window System TM server, the SCO® Panner™ window
manager, the Desktop, and other X clients.

Graphical Environment Reference
contains the manual pages for the X server (section XS), the SCo Panner
window manager, Desktop, and X clients from sca and MIT (section XC).

User's Guide

Related documentation

Networking Guide
provides information on configuring and administering TCP lIP, NFS®,
and IPX/SPXTM software to provide networked and distributed
functionality, including system and network management, applications
support, and file, name, and time services.

Networking Reference
contains the command, file, protocol, and utility manual pages for the
IPX/SPX (section PADM), NFS (sections NADM, NC, and NF), and TCP lIP
(sections ADMN, ADMP, SFF, and TC) networking software.

System Administration Guide
describes configuration and maintenance of the base operating system,
including account, filesystem, printer, backup, security, UUCP, and
virtual disk management.

Operating System Administrator's Reference
contains the manual pages for system administration commands and
utilities (section ADM), system file formats (section F), hardware-specific
information (section HW), miscellaneous commands (section M), and SCO
Visual Tcl™ commands (section TCL).

Performance Guide
describes performance tuning for uniprocessor, multiprocessor, and net­
worked systems, including those with TCP lIP, NFS, and X clients. This
book discusses how the various subsystems function, possible per­
formance constraints due to hardware limitations, and optimizing system
configuration for various uses. Concepts and strategies are illustrated
with case studies.

sea Merge User's Guide
describes how to use and configure an SCO® Merge™ system. Topics
include installing Windows, installing DOS and Windows applications,
using DOS with the SCO OpenServer operating system, configuring hard­
ware and software resources, and using SCO Merge in an international
environment.

sea Wabi User's Guide
describes how to use SCO® Wabi™ software to run Windows 3.1 applica­
tions on the SCo OpenServer operating system. Topics include installing
the Wabi software, setting up drives, configuring ports, managing print­
ing operations, and installing and running applications.

The SCO OpenServer Development System includes extensive documentation
of application development issues and tools.

Many other useful publications about sca systems by independent authors
are available from technical bookstores.

5

About this book

Typographical conventions

6

This publication presents commands, filenames, keystrokes, and other special
elements as shown here:

Example:

Ip or Ip(C)

Inew!client.list

root

filename

(Esc)

Exit program?

yes or yes

"Description"

Cancel

Edit

Copy

File ¢ Find ¢ Text

open or open(S)

$HOME

SIGHUP

"adm3a"

employees

orders

buf

Used for:

commands, device drivers, programs, and utilities (names,
icons, or windows); the letter in parentheses indicates the
reference manual section in which the command, driver, pro­
gram, or utility is documented

files, directories, and desktops (names, icons, or windows)

system, network, or user names

placeholders (replace with appropriate name or value)

keyboard keys

system output (prompts, messages)

user input

field names or column headings (on screen or in database)

button names

menu names

menu items

sequences of menus and menu items

library routines, system calls, kernel functions, C keywords;
the letter in parentheses indicates the reference manual section
in which the file is documented

environment or shell variables

named constants or signals

data values

database names

database tables

C program structures

structure members

User's Guide

How can we improve this book?

How can we improve this book?

What did you find particularly helpful in this book? Are there mistakes in this
book? Could it be organized more usefully? Did we leave out information you
need or include unnecessary material? If so, please tell us.

To help us implement your suggestions, include relevant details, such as book
title, section name, page number, and system component. We would appreci­
ate information on how to contact you in case we need additional explana­
tion.

To contact us, use the card at the back of the sea Open Server Handbook or
write to us at:

Technical Publications
Attn: eFT
The Santa Cruz Operation, Inc.
POBox 1900
Santa Cruz, California 95061-9969
USA

or e-mail us at:

techpubs@sco.com or ... uunetfscoftechpubs

Thank you.

7

About this book

8 User's Guide

Office Autom.ation

Chapter 1

Using sea Shell

sea Shell provides a menu-driven interface to the sea OpenServer system.
Using sea Shell you can select the applications on your system from a single
menu system, manage your files and directories, and run system utilities. sea
Shell is easier to use than the usual interface (or shell).

This chapter describes how you can use sea Shell to manage your files and
directories and run other utilities. It explains how to:

• start sea Shell (this page)

• manage files with sea Shell (page 16)

• use the Manager menu (page 19)

• run utilities and applications (page 43)

• print files (page 48)

sea Shell also comes with two productivity tools: a calendar and a desktop
calculator. These are described in Chapter 2, "sea Shell accessories" (page 49).

Starting seQ Shell

To start sea Shell, type scosh at the command prompt (on a character display
terminal) or in a shell window (on the desktop). After a few moments the
main sea Shell screen appears. If you are unsure how to get to the command
prompt, see "Getting to the command prompt" (page 80).

Your system administrator might have configured sea Shell to start auto­
matically when you log into your computer. In that case, you enter sea Shell
directly without stopping at the operating system first.

11

Using seQ Shell

What the seo Shell screen areas do

12

The following example shows the sea Shell screen:

menu line context indicator

divider line description line

iiili.i4;;G;;;.i4 Manager Print Uti! i ty Options Quit
Select an application

L
Phone
Mail
Calendar
Word
System

•• 1
mailfoldersl
addresses
dead. letter
ld.spec

File window

- Send Messages
- Electronic Mail
- Event Scheduler
- Microsoft Word
- Run A System Shell

m!:llllbox
review

Application window

Dec 1994
S M Tu W Th F S

123
4 5 6 7 8 9 10

11 12 13 14 Di 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

11:00-12:00 Call Geneva
12!OO

1:00- 2:00 Lunch appointment
2:00

* 2:30- 4:00 5ales meeting
3:00
4!OO
5:00

Event window

Calendar window

The components of the screen are as follows:

• The context indicator appears on the status line and provides information
about the sea Shell screen that you are viewing.

• The menu line displays the menu items that are currently available. These
are the actions that you can tell the sea Shell to perform; they vary accord­
ing to where you are in the menu system. In this example, the menu line
displays the main menu for sea Shell. The menu item Application is
highlighted; you can pick a different menu item to be highlighted using the
(Left Arrow) and (Right Arrow) keys, or the space bar.

• The description line gives a brief description of the highlighted menu item.
If you press (Enter) to select the current highlighted item, this is what will
happen. (When you move the highlight to a different menu item, the
description line changes.)

User's Guide

Starting sea Shell

• The divider line is the bar of text in reverse video that separates the menu
and description lines from the display windows. The line shows your
current working directory at the left, and the date and time at the right.

• The display windows for the sea Shell screen include the Application,
Calendar, and File windows, by default. You can change the windows that
are on display; see "Changing the appearance of windows" (page 24).

• The File window contains a list of files (documents containing text, inform­
ation, or programs) and directories stored in the current directory. (A dir­
ectory is a storage area on your computer, like a drawer in a filing cabinet.)

• The Application window displays a list of applications (large programs) that
sea Shell knows about and can run for you.

• The Calendar window contains a one month rolling calendar.

• The Event window contains a list of meetings, appointments, telephone
calls, and so on that you have scheduled for today. The asterisk at the left
hand side indicates the next event. You control the events displayed in this
window using the sea Shell Calendar. See Chapter 2, liSCO Shell acces­
sories" (page 49) for further details.

Using menus in seQ Shell

You interact with sea Shell using the menu line displayed near the top of the
screen. Move between the menu items using the (Left Arrow) and (Right Arrow)
keys or the space bar. If you select a menu item and press (Enter), the
associated action is carried out. Alternatively, you can select a menu item by
pressing the key corresponding to the first letter of its name.

Some menu items change the menu line to ask you for more information. For
example, if you select Options, the menu line changes to display a different set
of options. You can go back to the previous menu by pressing (Esc).

Other menu items present you with a list of options otherwise known as a
point-and-pick list. For example, if you select Application, the cursor moves to a
new window below the menu bar; you can move up and down the list of
available applications using the (Up Arrow) and (Down Arrow) keys. You can
run an application by pressing (Enter).

13

Using sea Shell

Canceling an operation

Pressing (Esc) usually allows you to leave a menu that you have entered by
mistake, or to stop a process or an operation for any other reason. When you
press (Esc), you return to wherever you were before you started the operation.

sea Shell does not allow you to use (Esc) to leave Mail, Calendar, the Applica­
tion or Utility List editors, and certain other menus. You must select Quit from
the menu line or press (F2) to exit these. You are asked to confirm that you
wish to leave, and you may also be given the option of saving or abandoning
any changes you have made.

Error messages

If you ask sea Shell to do something that cannot be done, for example, to
copy a file that does not exist (by mistyping the filename, for instance), an
error message appears at the bottom of the screen. This message should give
you the information you need to correct the problem. After reading the error
message, press (Enter) to continue.

Getting help in seQ Shell

The sea Shell can provide you with screens of help information if you get
lost. You can get help in any situation by pressing (FI). This provides you with
a summary of how to use help. Press (FI) again to enter the help system. A
window appears containing help text. You can select options from the menu
at the top of the screen for additional help, or an index of help topics. To leave
help and return to whatever you were doing, press (Esc) or select Quit from the
menu.

Using the accelerator keys

14

There are a set of accelerator keys available to you. Depending on your termi­
nal type, you may see these keys listed at the bottom of your screen.

Key name Key

Help (FI)

Quit (F2)

List (F3)

Action

Calls up help screens that explain the feature that you
are using.
Quits quickly from any part of sea Shell. From the
main menu, it quits sea Shell.
Displays special point-and-pick lists of reference infor­
mation.

(Continued on next page)

User's Guide

(Continued)

Key name

Spell
Search
Calendar

Enter

Key

(F4)

(F5)

(F6)

(FlO)

Starting sea Shell

Action

Spell checks a single word.
Searches for an entry in any point-and-pick list.
Displays the Calendar window; if the Calendar window
is already displayed, it displays past or future months
in the Calendar window. Use the (Right Arrow) or (Left
Arrow) to move forward or backward a month at a time.
Sends a command or data to the operating system or to
an application.

The task you are performing determines which of these keys are available.

Using a mouse

You can use a mouse with sea Shell if you are working at the console and the
appropriate hardware has been connected to your system.

sea Shell expects you to have a three-button mouse (although you can work
with a two-button mouse as well). Mouse buttons are numbered from left to
right. You can move around the screen area freely; when the mouse cursor is
positioned over an item, you can press one of the buttons to achieve the fol­
lowing effects:

Button 1 Equivalent to pressing (Space); typically moves to the next item in
the current group. For example, if you press button 1 while the
mouse cursor is on the menu, the cursor jumps to the next item; if
you press button 1 while the mouse cursor is on a window con­
taining a list, the window scrolls up or down (depending on
whether the cursor is in the upper half or lower half of the win­
dow).

Button 2 Equivalent to pressing (Enter); typically activates the current item.
For example, if you press button 2 while the mouse cursor is on an
application in the Application list window, that application is
activated.

Button 3 Equivalent to pressing (Esc); typically aborts the current operation
or returns to the previous level of a menu.

If you have a two-button mouse, you lose Button l's functionality; use the
(Space) key instead.

15

Using sea Shell

Quitting seQ Shell

To quit sea Shell, go to the top level menu. Select the Quit option, and press
(Enter). sea Shell asks you whether you want to quit and offers you the option
of saying yes or no (if you say no, sea Shell returns you to the main menu).
Alternatively, press (F2) in any menu.

Managing files with seQ Shell

sea Shell allows you to manage and organize your files without resorting to
complex operating system commands. Using the options on sea Shell's
Manager menu, you can:

• copy, rename, and remove files

• create and remove directories

• change the permissions on your files and directories

• save and retrieve files from disk or tape

• access the clipboard

Files and directories

16

Computers store information in files. When you use an application, it gen­
erally creates a file to hold your work; this is one way files are created.

Every file has a name and some contents. A file usually contains some piece
of information, such as a letter, report, or phone list. The filename is a label
you give the information to keep track of it.

A computer can contain thousands of different files. To manage this huge
group of files, the operating system groups them into directories. Files that
belong to a certain person or files associated with a particular program are
often stored in a directory of their own. To see a particular file, you have to go
to the directory that holds it. Each directory has a name, just like a file. How­
ever, while a file holds information, a directory holds files and other direc­
tories, known as subdirectories.

When you log into your computer, you are in your home directory. This is
where you keep your own files and do your work. The name of your home
directory is probably the same as your login.

User's Guide

Managing files with sea Shell

Using subdirectories

After a while, files start to accumulate in your home directory. To keep things
organized, you can create some subdirectories within your home directory. If
you keep several different types of files in your home directory, you can create
subdirectories for each type and divide your files among them. Then, when
you want to work with a particular group of files, simply go to the subdirec­
tory that holds them.

For example, you might create a letters subdirectory in which to keep your
letters, and separate subdirectories for particular projects you are working on.
You can further divide your new subdirectories. For example, you can make
new subdirectories in your letters directory to organize your letters by person
or subject. There is no limit to the number or kinds of subdirectories you can
create.

Every directory (except one) is a subdirectory of some other directory. The
directories are organized into an inverted tree structure, so called because
directories branch out of other directories like the branches of a tree. This tree
is "inverted" because the branches move down, not up. One directory, at the
top of the tree, is not a subdirectory of any other directory. This is called the
root directory, and its name is a slash character (/). To help clarify this, look
at the following picture of part of a typical directory tree. (Note that direc­
tories have small sub-trees below them; files do not.)

/ (root)

I
I

etc bin u dev

m I-~
I

m
I I

jeffa calvinh perry graceh

m m
I

m
I I

dead.letter review mailfolders mymbox

rli

17

Using seQ Shell

Notice that directories have lines leading to files or other directories. Files do
not have any lines coming out of them because they do not lead to other files
or directories. Remember that this is only a small portion of the entire direc­
tory tree. In reality, most directory trees are much deeper than four levels,
and each level contains many more than four files and directories. Some
directories may also not contain any files or directories.

Path names

Any file or directory on the computer can be identified uniquely by its path­
name. A pathname is like a map with directions for finding a file or directory;
it lists, in order, each directory you must pass through to get from the root
directory to the file or directory in question. When the pathname is written
down, the directories are separated by slashes (/). Remember that the slash
character is also the name of the root directory; the first slash in a pathname
stands for the root directory, while the others are used to separate directories.

For example, the full path of the file called review in the diagram above is
/ulperry/review. The pathname tells you that review is in the directory called
perry, perry is a subdirectory of u, and u is in the root directory.

A pathname that begins at the root directory is called an absolute pathname or
full pathname. Pathnames that begin at some level below the root directory,
called relative pathnames, are also useful. When you work in one directory,
you can specify a file or directory below it by its relative pathname. For exam­
ple, if you are working in the directory called u and you need to specify the
file in perry called mymbox, you can use the relative pathname perry/mymbox.

The current directory

The directory you are working in at the moment is called your current direc­
tory. When you first log into your computer, your home directory is your
current directory. Whenever the Manager menu is displayed on your screen,
the files and subdirectories in your current directory are also listed. You can
change your current directory at any time. (This process is described in
"Changing the current directory" (page 35).)

Naming and organizing files and directories

18

Here are a few important rules to follow when you name files and directories:

• No two files in the same directory can have the same name.

• Do not use blank spaces. (To represent a space in a name, use an under­
score character (_), or period (.), instead.)

User's Guide

Using the Manager menu

• File names may be limited to a maximum of 14 characters on some sys­
tems. (If you are not sure, ask your system administrator.)

• Do not use control characters in filenames. (Control characters are keys
pressed while holding down the (Ctrl) key.)

• Do not use any of the following characters in filenames:

!"";/\$*&<>() I {}[]-

These characters are reserved for operating system commands.

It is a good idea to use filenames that describe the contents of the files and are
easy to type. For example, a file containing a letter to your friend Bob would
be more appropriately called bob.letter than xxx or 5il%ds, although all of these
are acceptable filenames to the system.

It is very easy to let your files pile up in one directory until it is difficult to find
anything. Always create more subdirectories when you need them.

The Manager menu options make it easy to create and remove directories,
remove files, and to move up and down the directory tree. These operations
and others are described later in this chapter.

Using the Manager menu

To get to the Manager menu, select the Manager option from the sca Shell
menu. The Manager menu appears at the top of the screen:

IDmI Edit file Directory Archive Transfer Preferences Quit
Displal..js a file
..zi,a, 'm"'Y-."."'F';14 p@.'-
If you are unfamiliar with the parts of the screen, see "What the sca Shell
screen areas dd' (page 12). For an explanation of how to alter the screen dis­
play, see "Changing the appearance of windows" (page 24).

The tasks that you can perform are described in detail in "Using the Manager
menu options" (page 23). Many of the tasks that the Manager can perform
involve two basic steps: first you specify the action to be done, (by selecting a
menu option), and then you select the file or files you want to be acted upon.

Selecting files

Many of the operations that you can perform with the Manager menu options
require you to select the files to operate on. For example, if you select Copy,
you must tell sea Shell what file to copy.

19

Using seQ Shell

20

Choosing files
There are three ways to pick a file:

• typethefilenarne

• use the arrow keys to move the highlight to the filename in the point-and­
pick list

• if you are looking through a list, you can use the Search key (PS)

When you have found and selected the file by one of these methods, press
(Enter) to execute the selection.

You can also select several files at a time. If you are selecting files via the
point-and-pick list, move the highlight to each file you want and press the
(Space) bar. Each time you do this, an asterisk (*) appears in front of the
filename. When you have finished, press (Enter) to select every file marked
with an asterisk. In this example, the files notes.old and notes. new have been
selected:

letter.new
letter.old

* notes.new

* notes.old
poster.new
poster.old

For more information on point-and-pick lists, see HUsing menus in sea Shell"
(page 13).

If you are typing in names rather than pointing and picking, selecting several
files at a time is performed differently. To select three different files for an
operation, you cannot enter three separate filenames at once; sea Shell
accepts only one at a time. Instead, you can type instructions telling sea Shell
to display all files whose names share certain characters. This technique is
described in "Using wildcard characters" (page 21).

If you want to find a file or a number of files, select:

Manager ¢ File ¢ Find

and specify a filename or part of a filename to search for. The file(s) that
match the name that you specify appear in a list, and you can choose one or
more files from this list for the option you are working with.

User's Guide

Using the Manager menu

Changing directories
If the file you want is in a subdirectory of the current directory, you must first
select that directory in the same way as you select files. Directories are dis­
tinguished from files in the listing on the screen because a directory is always
followed by a slash (/).

After highlighting the directory, select it either by pressing (Enter) or by typing
the" >" character. A list of the directory's files then appears on the screen.
Now select the file(s) you want. When you finish working, your home direc­
tory listings reappear.

If you need to move up to a directory above yours (as from /u/perry to /u), type
the" <" character. You can also select the symbol for the next directory up,
" .. /" (dot dot slash), that appears at the beginning of every list of directories
and files.

To move to a directory that is not in the current directory or in the directory
above it, select:

Manager ¢ Directory ¢ Change

to search for and move to a directory with a specified name. For more infor­
mation on this command, see "Managing directories" (page 34).

Using wildcard characters
sea Shell understands two wildcard characters that make selecting files more
efficient. A wildcard is a character that, when used in a filename, matches
some other character or string of characters.

For example, suppose the current directory contains the files listed below:

chl.start.dcx
ch2.run.dcx
ch3.repairs.dcx
ch3.repairs.psf

21

Using seQ Shell

22

You can refer to the file ch2.run.dcx by selecting it, or by typing in its whole
name. But you can also refer to it using the asterisk wildcard, as ch2.*. An
asterisk is a wildcard that matches any sequence of characters; it could
equally well match .dcx or .ps! or run.dcx, but because there is only one file in
the directory that begins with ch2., that is the file which is matched.

If you try selecting ch3.r*, sea Shell will select two files for you: ch3.repairs.dcx
and ch3.repairs.psJ This is because the two filenames both start with ch3.r, and
the asterisk matches all possible suffixes.

* on its own matches every file in the directory. All the files begin with ch,
therefore ch* also matches all the files.

Matching an unlimited run of characters is not always necessary. Suppose we
want to match the files ending in .dcx and with a middle part beginning with
r*. We could use the pattern *.r*.dcx. However, this is imprecise. (In a direc­
tory containing many files, it might return spurious matches.) The question
mark (?) is a wildcard that substitutes for any single character. For example,
ch?r*.dcx matches the characters ch, followed by a single character, then a pe­
riod, then a run of characters terminated by .dcx. This matches ch2.run.dcx and
ch3.repairs.dcx, but could not match a file called, for example, chlO.routing.dcx
(which contains two characters between ch and r*.

When you have selected a subset of files using a wildcard character, you can
select from the subset using the (Space) bar, and then pressing (Enter) to carry
out the functions you require.

User's Guide

Using the Manager menu options

Using the Manager menu options

The following sections discuss the tasks that you can perform with the
options on the Manager menu.

Looking at a file

You can display the contents of a file on your screen with the View option.
When you select View, a listing of the files and subdirectories in your current
directory appears. Here is an example:

Enter the file{s) to view: /u/perr4/ .. err!-j

Phone - Send Messages
Mail
Calendar
Professional
Word

- Electronic Mail
- Event Scheduler
- Spreadsheet
- Microsoft Word

News - Read or Send News
System - Run A System Shell

APPRAISAL/
ARCHITECTSI
BOOKBUILDI
COVERLETTERSI
DESIGNI
DOCHOMLDESIGNI
DUMPI

Newsl
OBJECTIVESI
ONLINE!
OP _fILESI
PERf_GRAPHICSI
PUBLISHINGI
PUBLISHINGSYSTEMI
QRCI

';"';;.W··;;;""';4_.'.".J
Dec 1994

S M Tu W Th f S
123

4 5 6 7 8 9 10
11 12 13 14 Ii 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

UNIX3 2 51
USERSURVEYI
VDISKI
VDM_GRAPHICSI
VIDEOI
bini
clipdirl
graphicsl v

Now you can select the file(s) that you want to view. If you are not sure how
to do this, see #Selecting files" (page 19).

In the example above, the File window covers roughly half of the screen.
Your main sea Shell screen, however, might be configured for a larger or
smaller File window, that is, one that fills all of the screen or a quarter of it.
See #Changing the appearance of windows" (page 24) for a description of how
to customize the screen layout.

If there are more files than can appear in the window at one time, use the
(Down Arrow) key to scroll the additional listings into the File window. You
can also use the (PgUp) and (PgDn) keys to move up and down through the
listings one #page" at a time. In addition, the (Home) and (End) keys move you
to the beginning and end of the file listings, respectively.

23

Using seQ Shell

After you make your selection, the first screen of text appears. In the follow­
ing example, the file mymbox is being viewed:

Currently viewing lu/perry/mymbox
Arrow kews to scroll window, <esc> when finished

.. 'r;p;;'¥._jSl";'p;a.
From charles Tue Feb 21 9:06:13 1995
To: perry
Subject: interface design spec review
Date: Tue Feb 21 9:09:47 1995

The review is going well, Perry - I'll
definitely be done by the end of the month.

-Charlie

From perry Fri Feb 17 14:31:16 1995
To charles
Sub,tect: interface design spec review
Cc: rogerm perry
Date: Fri Feb 17 14:32 1995

Have you had a chance to look at that review yet?
Do you think the due date of March 1 is reasonable?

-Perry

You can now scroll through the file to read it. These are the keys that you can
use with View:

Key

(Esc)

(Up Arrow)

(Down Arrow) or (Space)

(PgDn) or (Enter)

(PgUp)

(Home)

(End)

Action

exits the file
moves up one line
moves down one line
moves down a page
moves up a page
moves to the top of the document
moves to the bottom of the document

Press (Esc) when you finish viewing the file. If you select more than one file to
view, the first screenful of the next file is displayed. Otherwise, you return to
the sea Shell menu.

Changing the appearance of windows

24

You can change the relative position and size of the information windows on
the sea Shell display. Select Options ¢ Display then either FileWindow,
AppWindow, CalendarWindow, or EventWindow to identify the window you
want to modify.

User's Guide

Using the Manager menu options

All these selections present you with a simple menu; there is some additional
information to fill in for the Applications or File windows. The basic inform­
ation you specify is where you want the window to appear on the display
(there are a number of predefined options), and how large to make it. A win­
dow may occupy a numberered quarter (1 for top left, 2 for top right, 3 for
bottom left, and 4 for bottom right), the top half, or the bottom half of the dis­
play.

In addition, the Applications menu has an option to display either brief or
detailed information about the available programs.

Changing the content of the File window
In addition to the basic information, the File window has options to select the
style of listing, the sort order, and whether to sort the files by date or by name.
If you choose a brief style listing, only filenames are displayed; the system
style listing gives you a full view of filenames with their corresponding owner
and group IDs, permissions, size, and creation time. The following is an exam­
ple of a system style listing:

* blnl drwxr-xr-x 2 erru tech 48 06/18/95 4:50
clipdirl drwxr-xr-x 2 perry tech 32 08/12/95 2:44
mailf'oldersl drwxrwxrwx 4 perry tech 144 06/15/95 2:32
trainingl drwxr-xr-x 2 perry tech 2240 08/10/95 2:10
wastebasketl drwxr-xr-x 2 perry tech 32 08/11/95 3:04
wp61 drwxrwxrwx 3 perry tech 48 06/15/95 2:33
Booklist -rw-r--r-- 1 perry tech 8299 06/28/95 1:27
DCEsched -rw-r--r-- 1 perry tech 22697 07/01/95 9:24 v

Note that the Event window has been turned off and the File window
expanded to the full width of the screen.

Editing a file

You can edit the contents of a text file using the Edit option in the Manager
menu. When you select Edit, a listing of the files in your current directory
appears, as explained in the section, HLooking at a file" (page 23).

Select the file(s) that you want to edit. Once you select a file, the first screen of
text appears.

25

Using sea Shell

26

Editing commands
To edit a text file, use the Edit Mode commands available for editing text in
form fields. The following table gives a brief introduction to the editing com­
mands.

Command

Arrow keys

(PgUp) or (PgDn)

(Home)

(End)

(Esc)

(Ctrl)Gi

(Ctrl)G-t

(Ctrl)N

(Ctrl)P

(Ctrl)W

(Ctrl)Y

(F8)

(Ctrl)O

(Ctrl)V

(Ctrl)Z

(F5)

Description

Moves the cursor up and down through the file, and to
the right or left on each line.
Use (PgUp) to jump back to the previous page, or (PgDn)
to jump forward to the next page. A "page" is one screen
of lines.
Moves the cursor to the beginning of the current line.
Moves the cursor to the end of the current line.
Switches between editing the file and using the Edit
menu.
Moves to the top of the document.
Moves to the bottom of the document.
Moves the cursor to the next word.
Moves the cursor to the previous word.
Deletes the word the cursor is on, if the cursor is on the
first character of the word.
Deletes the current line (the line the cursor is on).
Pastes a deleted line back into the file. The Edit program
stores the last 10 lines you deleted. When you press (F8),
the last line you deleted reappears. If you press (F8)
again, the next to last line you deleted reappears, and so
on.
Inserts a blank line above the current line.
Switches between Insert and Overstrike mode. You are
in Insert mode to start. If you move the cursor to some
existing text and begin typing, the new words are
inserted between the existing words. If you press (Ctrl)V
to change to Overstrike mode, the words you type
replace (overstrike) any existing words on the same line.
Press (Ctrl)V again to return to Insert mode.
Calls up the pop-up list of extra file-editing and format­
ting options. This is the same as pressing (F9).

Prompts you to enter a word, then searches for the next
occurrence of that word in your file.

User's Guide

Using the Manager menu options

Pop-up list of extra edit-mode commands
When you press (F9) in Edit mode, a list of extra editing commands appears
on the screen, like this:

r-----Extra Command&----.
* Format Paragra h

Join Lines
Margin (set)
Delete Line (Ay)
Paste (undelete~ (fS»)

To choose a command from this list, position the highlight bar over the com­
mand that you want and press (Enter). To use the Format Paragraph, Delete
Line, and Join Lines commands, you must position the cursor on the line or
paragraph that you want before pressing (F9).

The following table describes the commands on the Extra Commands list:

Command

Format Paragraph

Join Lines

Margin (set)

Delete Line Cy)

Paste (undelete, (F8»

Description

Reformats the paragraph that the cursor is on. This
command fills each line with text out to the margin,
moving text up from subsequent lines as necessary.

Joins the line the cursor is on with the text of the
next line. If both lines together are too long to fit
within the file margin, only part of the text from the
second line is joined to the first.

Resets the line length for this file. The default line
length appears in a box. Type in the new line length
and press (Enter). If you type in new text now, the
text automatically breaks to a new line after reach­
ing the line length that you set. To reformat existing
paragraphs to the new line length, use the Format
Paragraph command. To reset the default line
length for all editing, use the Preferences command
in the Manager Menu.

Deletes the line that the cursor is on. This option is
the same as pressing (Ctrl)Y.

Pastes deleted lines back into the file. When you
choose Paste, the last line that you deleted reap­
pears. If you choose Paste again, the next to last line
that you deleted reappears, and so on, up to a max­
imum of 10 lines. Choosing Paste is the same as
pressing (F8).

27

Using seQ Shell

From within the editor, other functions are available; to use these other func­
tions, press (Esc) while editing a file. The Edit menu appears, with the follow­
ing options:

GIlD Include Transfer Quit
Edit document

<esc> to resume editing

lui err~ Wednesda~ Februar~ 22. 1995 3:01

The options in the menu are described briefly in the following table:

Option

Edit
Include
Transfer

Quit

Description

invokes the Auto Editor
includes a file in the current document
moves items to and from the Clipboard, and deletes items from
the Clipboard
optionally saves your work, exits the editor, and returns to the
Manager menu

If you choose the Edit option, the text of the file appears, and you can edit it
using the Auto Editor. When you access the editor, you will, by default, use a
built-in editor; however should you wish to use a different editor, you can
configure your system so that you can use your own favorite editor. This is
known as the Auto Editor; you can choose an Auto Editor by selecting: Man­
ager ¢ Preferences.

Select the Include option to include another file in the file that you are
currently editing. When you select Include, a pop-up window appears listing
the files in the current directory. Use the cursor movement commands to
select a file. The file is inserted after the cursor position.

The Transfer option allows you to access the Clipboard while you are editing a
file. You can use the Clipboard to transfer text and other forms of data
between· different applications. See ilUsing the clipboard from the Manager
menu" (page 41) for more information about using the Clipboard.

The Quit option exits the Edit Mode and returns you to the Manager menu.
Quit also saves your latest changes to the current file.

Managing files

28

Use the File option in the Manager menu to organize and manipulate files.
When you select the File option, the following menu appears:

l1li Rename Erase Find Unfind Permissions WasteBasket
Sogies a file
lIB "milA'_m"a,;;; 1'- YUh

User's Guide

Using the Manager menu options

Here are brief descriptions of the options in the File menu:

Option

Copy
Rename

Erase
Find
Unfind
Permissions
WasteBasket

Description

makes a copy of a file or a group of files
changes a file's name, or moves a file or group of files to a
different directory
puts one file or a group of files in the wastebasket
lists files that match specified criteria
lists files in the current directory, rather than the "Find" list
changes the permissions on your files
recovers or removes files from the wastebasket

The following sections discuss the tasks that you can perform with the
options of the File menu.

Copying files
Use the Copy option to make a copy of one or several files at a time. You can
place the copy in any directory for which you have the correct permissions.
For more information on file permissions, see "Changing permissions" (page
32).

After you select the Copy option from the File menu, a list of the files in your
current directory appears, along with a message asking you to select the file
that you want to copy.

Choose the appropriate file. When you make a selection, another message
appears. This one asks you to select the file to copy to. Now you must select
a destination for your file (s).

If you are copying a single file, you can enter any destination filename that
does not already exist. Do not enter the name of a file that already exists;
doing this overwrites the contents of the file, replacing them with the new
data. If you specify a directory only, a copy of your file with its original name
is put in that directory. If you are copying a group of files, you must specify a
directory as a destination.

Examples

This first example creates a backup copy of the file review called review.bak.
First, select the Copy option. The File menu disappears, and you are asked to
enter the name of the file from which you wish to copy. In this case, type
review. The word appears after the pathname /ulperry.

29

Using seQ Shell

30

Now press (Enter) to execute the selection. At this time, you are asked to enter
the name of the file to which you want to copy. In this case, type review.bak
and press (Enter). The File menu appears. There is now a file called review.bak
in the directory /u/perry, containing an exact copy of the file review.

Here is another example. This time, copy the files dead.letter and mymbox into
the directory mailfolders. Again, you must select the Copy option. Now mark
the files to be copied by moving the highlight to each file and pressing (Space).
See "Selecting files" (page 19) if you are not sure how to do this. This is what
the screen looks like after you mark one of the two files:

Enter the file to copy from: lu/perry/mailfoldersl
lui errw/mallfolders Thursdaw August 3, 1995 3:20

Phone - Send Messages
Mail - Electronic Mail
Calendar - Event Scheduler
Professional - Spreadsheet
Word - Microsoft Word
News - Read or Send News
System - Run A System Shell

•• f
mailfoldersl

dead. letter lenore.notes
id. spec .N.,I"'III,II"'I-liiiil ••

Aug 1995
Tu W Th F S S M

1 2 II 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

review
review.bak

Now, press (Enter) to execute the selection. The "copy to" line appears, just as
in the previous example. Type mailfolders or select mailfolders on the screen
to select the mailfolders directory. When you press (Enter) copies of the two
files are placed in the mailfolders directory, and you return to the File menu.
sea Shell gives the copies the same names and permissions as the original
files.

Renaming and moving files
The Rename option is used both for changing the name of a file and for
moving files from one directory to another. It can also be used to rename
directories. Using the Rename option is sinlilar to using the Copy option, but
you do not leave a copy of the file in the original location. After selecting the
Rename option you perform the same steps to rename a file as to copy a file,
and the procedures involved in moving files to a different directory are just
like those used to copy files to a different directory.

When you select the Rename option from the File menu, a message appears,
prompting you to select the file that you want to rename.

User's Guide

Using the Manager menu options

When you have made your selection, a new message appears, prompting you
to enter the new filename. At this point, you select a destination for your
file(s) .

• If you are renaming a single file, you can specify any filename; the file is
then renamed (that is, moved to a new filename). Note that if a file of that
name already exists, it will be replaced by the new file .

• If you specify a directory, your file moves into that directory, keeping its
original name. If you are renaming a group of files, you must specify a
directory as a destination.

Removing files
To remove files, use the Erase option; this option does not remove directories.
(See "Managing directories" (page 34) for information on removing a direc­
tory.) When you select the Erase option, you are prompted to select the file
that you want to erase. Once you select the files and press (Enter), you return
to the File menu. The directory listing is updated to show that the files have
been erased.

When you erase a file, sea Shell places it in your wastebasket directory. The
file remains there until you exit sea Shell. You can recover files from the
wastebasket with the Wastebasket option, see HRecovering erased files" (page
34). When you exit sea Shell, all the files in the wastebasket directory are
permanently deleted, and there is no way to recover them.

Finding files
The Find option lets you search for and list files with specified names. Find
looks for a named file starting in the current directory, then in all sub­
directories. When you select the Find option, a form appears, with a field for
specifying the full or partial filename that you want to search for. The form
looks like this:

,-------- file 5eal"ch -------]---.1
filename Ol" pal"tial name: [_

Use the full filename if you want to find just one file. If you want to find a
number of files with similar names, specify the part of each filename that is
the same, and use wildcard characters for the rest of the filename. For exam­
ple, to list all files with the .dcx extension, enter *.dcx in the HFilename" field.
For more information about using wildcard characters, see HUsing wildcard
characters" (page 21).

31

Using seQ Shell

32

Note that the listing produced might contain files from numerous different
directories at different levels of your directory tree. If you no longer want to
see the listing of files from different directories, and instead you want to dis­
play only the files in your current directory, choose the Unfind option in the
File menu. After choosing Unfind, you can no longer see files in numerous
different directories in your directory tree.

You can use the Find option to carry out a task on several different files in a
list. First use the Find option to display the list of files. Choose a task option
from the File menu. Finally, choose the files to be acted upon.

Managing file permissions
Every file or directory has a set of permissions that control who can read
them, change them, and execute them. With the Permissions option, you can
change permissions on files and directories you own to make them more or
less accessible to other users on your system.

How permissions work

Each file has three different sets of permissions: one for the user, the owner of
the file; one for the group, the other users in your work group; and one for all,
meaning everyone on your system. Each set of permissions can include none,
one, or more than one of the following privileges:

Read For a file, this means you can look at its contents on the screen. For
a directory, this means that you can see a list of the files it holds.
Read permission for the directory does not automatically give you
read permission for every file in the directory.

Write For a file, this means that you can alter its contents or remove it.
For a directory, this means you can create files and subdirectories
within that directory.

Execute For a file, this means you can run a program that the file contains.
For a directory, this means you can change to and use files within
that directory.

When you create a file or directory, it acquires a standard set of permissions
automatically. For example, a typical configuration might give the user (your­
self) read and write permissions. Other users, both your group members and
all other users, might have only read permission.

Changing permissions

The Permissions option lets you change the permissions on one file at a time.
(To change permissions on a directory use the

Manager ¢ Directory ¢ Permissions

menu.) The Permissions option also shows you the current permissions.

User's Guide

Using the Manager menu options

To change permissions on a file, proceed as follows:

1. Select the Permissions option from the File menu. In response, this mes­
sage appears:

'a·,,·4i ;

Enter the file to be changed: /u/perr~/mailfolders/
&;'$;;'_"F'I'A"4 '.;;'#-_.;';'1#';; p@. H

2. Now, select the file you want to change. Remember, you can select only
one at a time on this form. The File Permissions form now pops up on the
screen:

r------ file Permissions ------,

User
Group
All

Reaca
Read[..]
Read[..]

Owner: [perry
Group: [tech

Write["]
Wri tee]
Wri tee]

Execute[
Execute[
Execute[

The form displays the current permissions for the file you selected, and the
owner and owner's group. The asterisks between the brackets show who
has what permissions. In this example, the User (owner) has Read and
Write permissions, while Group and All have only Read permissions. This
means that anyone can read the file, but only the owner can change it. No
one can execute it.

3. To grant additional permissions for User, Group, or All, move the
highlight to the appropriate permission field and press the (Space) bar. An
asterisk shows that you have added this permission. Use the (Up Arrow),
(Down Arrow), and (Enter) keys to move around on this form.

To remove permissions press the (Space) bar in a field that already has an
asterisk: the asterisk disappears.

4. You can change the values in the "Owner" and "Group" fields if you are
the owner of the file.

5. When you have finished, press (Enter) in the last field ("Group") or (FlO), or
simply press (Ctrl)X with the cursor at any point on the screen. This makes
the changes to the file or directory that you requested, and then returns
you to the File menu.

Viewing permissions without changing them

If you just want to see what a file's permissions are, select it through the Per­
missions option but make no changes. Simply press (Esc) when you have
finished looking at the File Permissions form.

33

Using seQ Shell

Your File window can also show you a file's permissions if the window is con­
figured to show system file listings; that is, listings that show detailed techni­
cal information about each file. See "Changing the content of the File window"
(page 25) for details.

Recovering erased files
The wastebasket option lets you manipulate the files in your wastebasket
directory. When you select the Wastebasket option, this menu appears:

IIM •• lliI
~ Delete Clear
Recovers a file from wastebasket
lui errw/mallfolders Wednesdaw Februarw 22, 1995 3:27

Here are brief descriptions of the Wastebasket menu options:

Option

Select
Delete
Clear

Description

recovers file(s) from the wastebasket
permanently erases file(s) from the wastebasket
permanently erases all of the files in the wastebasket

If you choose the Select or Delete option, a list of files in the wastebasket
appears on the screen. You can then select the file(s) that you want to recover
or delete. If you are not sure how to do this, see "Selecting files" (page 19).

I
NOTE Any file that you recover from the wastebasket appears in your
current directory. If you have changed directories since removing the file, it
does not appear in the directory where it was before.

If you choose the Clear option, all the files in the wastebasket are permanently
removed. The wastebasket is cleared automatically each time you exit sea
Shell.

Managing directories

34

The Directory option in the Manager menu lets you take a number of actions
on directories. When you select the Directory option, the following menu
appears:

~ Make Remove Permissions
111;;;;_

Chanj,es current directory to another directory
& •• ;;.;;','I'ml'4 '."'¥Me_GM';';' I@' A

The options on this menu allow you to change to a new current directory,
make new directories, remove empty directories, and change directory per­
missions. These operations are discussed in the following sections.

Users Guide

Using the Manager menu options

Changing the current directory
To change your current directory, select the Change option from the Directory
menu. In response, a message appears, prompting you to select the new
current directory. Also, the File window changes to show only the subdirec­
tories in your current directory; normal files are not displayed.

Now select the directory you want to work in. You can select a subdirectory
from your current directory, or you can specify a different directory by its
pathname. You retum to the Manager menu, and the listing for the new
current directory appears on the screen.

Creating a new directory
To create a new directory, select the Directory option from the Manager menu,
and then select the Make option from the Directory menu. You are now asked
to enter the name of the new directory.

Type the name of the new directory, and press (Enter). You retum to the Man­
ager menu, and the new directory appears in the directory listing displayed
on the screen.

Removing an empty directory
Before you can remove a directory, you must make sure that it does not con­
tain any files or subdirectories. If it is not empty, you must either delete the
files it holds or move them to other directories.

Once the directory is empty, remove it by selecting the Directory option from
the Manager menu. Then select the Remove option from the Directory menu;
you are prompted to select the directory to remove.

When you have selected the directory and pressed (Enter), the directory is
removed from the directory listing displayed on the screen, and you return to
the Manager menu.

Changing directory permissions
If you choose the Permissions option in the Directory menu, you can change
the permissions for the current directory (and subdirectories within the
current directory) using the Directory Permissions form. For more informa­
tion on this form and how to use it, see "Changing permissions" (page 32).

Copying files to and from tape or disk

The Archive option on the Manager menu provides an easy way to copy files
to and from backup media such as disks and tape. These media are removable
so that you can retain a personal archive copy of your work to transfer to
another machine or to keep in a secure place.

35

Using seQ Shell

36

Archive allows you to:

• extract files from a disk or tape and place copies into your current directory
(extracting everything in the archive, or just specific files)

• display the files currently on the disk or tape

• format a disk before archiving files on it

• create an archive, that is, copy files from your current directory onto a disk
or tape

When you choose the Archive option, the following menu appears:

~ List format Create Type Device
Retrieve files from a disk or tape
&g;;'fj,;r;ii'AIi" na,ala-Me";"';'

Here are brief descriptions of the Archive menu options:

Option Description

copies files from disk or tape into your current directory
lists all files on a disk or tape
formats a disk or tape to prepare it for copying files
copies files from your current directory to a disk or tape
selects the archive file format: tar, cpio, or DOS

_,'6$
Me' __

Extract
List
Format
Create
Type
Device specifies the address of the disk or tape drive for archiving

Preparing to use removable media
Before you use the options in the Archive menu, make sure that the disk or
tape that you intend to use is properly inserted. If you wish to write to a disk
or tape, check that the physical mechanism used to enable writing is set on the
disk or tape. For 5X inch disks, you must remove the write protect tab; for 3V2
inch disks and quarter-inch cartridge tapes, move the slider or tum the wheel
to the position that allows writing. If you need more information about using
disks or tapes, ask your system administrator.

You must also make sure you know the device address for the tape or disk
drive you intend to use. (The device address is the name that the system
knows the disk or tape drive by.) For information on device addresses and
how to set yours, see "Specifying the archive device address" (page 40).

User's Guide

Using the Manager menu options

After inserting your disk or tape and specifying the device address, you need
to choose a type of format for archiving. The three available types of format
are tar, cpio, and DOS. Generally, tar is the most useful format. If your sys­
tem does not support the use of tar, use cpio. You can use the DOS format to
copy files to a single disk, but it does not support archiving of whole direc­
tories, nor does it support tape formatting. To carry out your choice of
archive format, see "Specifying the type of format for archiving" (page 39).
Once you have chosen an archive format, use that format for all future archiv­
ing so that your disks or tapes are interchangeable.

The operations that you can perform with the Archive options are discussed in
the following sections.

Formatting a disk or tape
Before archiving files, you might have to format the disk or tape that you
want to archive them on. First make sure you have set your format type, as
described in "Specifying the type of format for archiving" (page 39). If you are
not sure what format type is used on your system, or if you are not sure
whether you need to format your disk or tape, check with your system
administrator. If you do need to format the disk or tape and the type is set
correctly, choose the Format option on the Archive menu. The Media Format­
ting form appears.

Media Formatting ~
[/dev/rfd096ds15]

......... Abort

Device:

Confirm:

To format a disk or tape on an archiving device other than the default one,
change the entry in the "Device" field; press (F3) for a list of available devices.
Otherwise, press (Enter) to accept the default device. For more information on
this choice, see "Specifying the archive device address" (page 40).

To confirm your decision to begin formatting, press (Enter) again. Formatting
takes a few minutes. You are then returned to the Manager menu.

If you decide not format the media, select the Abort option in the "Confirm"
field.

It is important that you make sure that you format enough media to archive
your data. If you are unsure of how much media is required, ask your system
administrator.

37

Using seQ Shell

38

Copying files to disk or tape
The Create option copies files from your current directory to disk or tape.
When you select the Create option, the screen displays a list of the files in your
current directory. Select the file(s) that you want to copy. (If you are making
a DOS archive, each file must be individually selected.) If you are using tar or
cpio and you select a directory, all of its contents, including any subdirec­
tories and their contents, are transferred onto the disk or tape.

Press (Enter) to begin the copying process. If the archive fills more than one
volume (disk or tape), a prompt to insert a second volume is displayed. After
the files that you selected have been copied to the archive, you automatically
return to the Manager menu. (DOS archive does not create multivolume
archives.)

When you make a tar or cpio archive, all existing files on the archive media
are overwritten. When you make a DOS archive, only those files on the
archive that have the same name as the files you are copying are overwritten;
all others remain intact. Remember that you can archive files but not direc­
tories in the DOS format.

Listing files on disk or tape
Before copying files from a disk or tape to your current directory, you might
want to see what files it holds. Select the Archive menu's List option to dis­
playa list of the files on the tape or disk. If the list fills more than one screen,
use the movement keys to scroll through it. If you see a prompt for a second
or subsequent volume, insert the next disk or tape of the archive you are
listing. Make a note of the files that you want to retrieve. When you finish
looking at the list, press (Esc) to clear the screen and return to the Manager
menu.

Extracting files from disk or tape
The Extract option in the Archive menu copies files from disk or tape into your
current directory.

When you choose the Extract option the Media Extraction form appears.

r----- Media Extraction -------,

Device: [/dev/rfd096ds15

Extract: 1dI '§$A Selected files

User's Guide

Using the Manager menu options

To extract files from a disk or tape drive other than the default one, change the
entry in the HDevice" field. Otherwise, press (Enter) to accept the default de­
vice. For more information on this choice, see "Specifying the archive device
address" (page 40).

To copy all files in the archive to the current directory, leave the All Files
option selected for the "Extract" field and press (Enter). Copying begins
immediately. If more than one volume (one tape or disk) is required for the
archive, a prompt to insert a second volume is displayed. When archiving is
finished, you automatically return to the Manager menu.

If you want to copy only certain files, select the Selected Files option of the
"Extract" field. In response, a list of all files on the disk or tape appears on the
screen. The list looks similar to the following example. If you are listing DOS
files, the filenames appear in all uppercase characters.

Select the files to be extracted.
lUi erry/mallfolders Wednesda~ Februar 22. 1995 4:0 7

•• 1 dead. letter lenore.notes review
rnailfoldersl id.spec rnyrnbox review.bak
Outgoing

Media Extraction

Device: [/dev/rfd096ds15]

Extract: All Files M.U·_"
Use the movement keys to scroll through the list. Select the files you want to
extract with the (Space) bar, and press (Enter) to copy the files into your current
directory.

Specifying the type of format for archiving

The Type option in the Archive menu specifies the format you intend to use for
archiving. When you select the Type option, the following form appears:

,-------- Archive Format --------,

Type of Format: II1II cpio DOS

Select the archive file format that is best suited to the archiving you intend to
do. In most cases, tar format is the best choice. See your system administra­
tor if you are not sure which format to select.

39

Using seQ Shell

40

Specifying the archive device address
The Device option in the Archive menu specifies the address of the device
driver for the device you intend to use for archiving. When you select the
Device option, the following form appears:

,----- Default Media Device ----]--,1
Device: [IP'WiligGtlli .

The "Device" field automatically displays the address of the drive that is nor­
mally used for archiving. If you intend to use that drive, just press (Enter) to
accept this entry.

To see a list of all possible drives on your computer system, press (F3). A box
appears on the screen with a list of the devices in the /dev directory on a typi­
cal system; your list might have additional or different entries.

Default Media Device ~

Device: [M._41i1d'Gl$l1i iiiiiiiii!~

* Idev/rfd048ds9
Idev/rfd148ds9
Idev/rfd096ds15
Idev/rfd196ds15
Idev/rfd0135ds9
Idev/rfd1135ds9
Idev/rfd0135ds18
/dev/rfdl135ds18 v

The names of the devices appear in coded form. According to the conven­
tions of the code, the first letter of the filename (r in the sample list) stands for
the access method; you can usually ignore this letter, as it is the same for most
devices.

The next two letters specify the type of media; fd stands for floppy disk and ct
for cartridge tape. The next number (0 for most devices in the sample list) is
the number of the disk or tape drive. The final characters of the code (for
example, 48ds9) are size parameters for floppy disks. They indicate the num­
ber of tracks per inch, the number of sides used (ss=single-sided, ds=double­
sided), and the number of sectors per track.

User's Guide

Using the Manager menu options

The following table indicates the size and type of media associated with each
drive in the sample list.

Device code

rfd048ds9
rfd096ds15
rfd0135ds9
rfd0135ds18
rctO
rctmini

Size and type of disk or tape

5~ inch 360KB floppy disk
5~ inch 1.2MB floppy disk
3~ inch 720KB micro-floppy disk
3~ inch 1.44MB micro-floppy disk
standard tape drive
mini-cartridge tape drive

Choose a drive from this list by highlighting it with the arrow keys and press­
ing (Enter).

The !etc/default/tar file on your system must contain valid archive devices for
your choice to take effect. If you do not know what devices your system sup­
ports, or if you do not know which device to choose, see your system
administrator.

Using the clipboard from the Manager menu

The clipboard is a temporary holding area that you can use to transfer
information between applications. It is used by sea Shell, the electronic mail
application, and the calendar. For example, you can copy your engagements
for the current month from the calendar to the clipboard, and paste the clip­
board file into some mail to a colleague.

The Transfer option on the Manager menu allows you to access the clipboard
from sea Shell. Use clipboard to transfer information between different
applications. Once you have put an item on the clipboard, you can access it
from any application that contains a Transfer menu. The Transfer menu
allows you to copy files to the clipboard that did not come from another
application.

To use the clipboard, select Transfer from the Manager menu. A menu like the
following appears:

I!II Paste Remove Quit
iII~ file(s) to the clipboard

;·Y;liM';"·''',·; 'Di·'M*.d""#'"

I'."g_
W"Wal

41

Using seQ Shell

The four options on the Transfer menu allow you to use the clipboard from
the Manager menu. Below is a summary of these options:

Option

Copy
Paste
Remove
Quit

Description

copies an item to the clipboard
pastes an item from the clipboard to a directory
deletes an item from the clipboard
exits the Transfer menu

Setting preferences for text editing

42

The Preferences option lets you customize how you edit text files. When you
select the Preferences option, the Editor Configuration form appears.

Use the #Line Length" field to set the default right margin for all use of the
built-in sea Shell text editor. The default is set to the maximum for your
screen width; in most cases, this is is 77 spaces. To create a wider right margin
as you edit text files with the sea Shell editor, enter a smaller number in the
#Line Length" field. For example, to create a right margin of 10 spaces where
your default line length is 77, change the number in the "Line Length" field
from 77 to 67.

Use the # Auto Editor" field to specify the pathname of an editing program
other than the built-in sea Shell text editor. For example, enter the path
/usr/bin/word to use Microsoft Word if your system has Word in this location.
If you do not know the location of your chosen editor, see your system
administrator.

In the "File Suffix" field, specify a filename extension used by your chosen
Auto Editor. For example, you can enter dcx if you have specified Microsoft
Word as your Auto Editor. After you have set these preferences, select the
Edit option in the Manager menu, then select any Word file with the .dcx exten­
sion, and you see the text in a Microsoft Word editing window. Files that do
not have the .dcx extension still invoke the sea Shell text editor.

If you specify an Auto Editor but leave the "File Suffix" field blank, sea Shell
invokes your Auto Editor for all files you select after choosing the Edit option
in the Manager menu.

The last field in the form allows you to save your preferences for future sea
Shell sessions.

User's Guide

Running utilities and applications

If you make the changes described above, the form looks like the following:

.----------Edi tor Conf iguration----------,

BUilt-in text editor

Line Length: [Ii]
User selected editor

Auto Editor: [/usr/bin/word
File Suffix: [dcx

Save as default? [Yes] No

Exiting the Manager menu

Select the Quit option to exit the Manager menu. You return to the sea Shell
window.

Running utilities and applications

sea Shell provides two top level menu items to enable you to run other pro­
grams; Utility and Application. In general, a utility is a small program that pro­
vides you with some useful information about the computer or allows you to
do a particular task. For example, a utility might tell you who else is logged
on, or where a file with a given name is stored. Applications are larger pro­
grams (such as word processors, spreadsheets or databases) that you interact
with in depth. sea Shell comes with three applications; the electronic mail
program described in the Mail and Messaging Guide, a calculator (see "Using
the Calculator" (page 72)) , and a calendar (see "Using the Calendar" (page 49)
for details).

For an explanation of how to run a utility or application, see "What utilities
are available" (page 44) and "What applications are available" (page 47)
respectively. (Alternatively, select the Application or Utility main menu items,
select the program you want to run, and press (Enter).)

You can issue commands from sea Shell if you are familiar with this way of
running programs. Type an exclamation mark (!) then enter your command
and press (Enter). When the program has completed, sea Shell will resume.

43

Using sea Shell

When you run an application or utility, you interact with the program instead
of sea Shell. The sea Shell waits until the program you have invoked finishes
before accepting any more commands; consequently, if you run an applica­
tion that does not follow the standard sea Shell keystrokes (such as a word
processor from another company, or the text editor vi), you may find yourself
in unfamiliar territory until you quit the application. A golden rule, that you
should follow before running an unfamiliar application, is to look up how to
leave the program and make a note of it. Otherwise you may have difficulty
returning to the sea Shell.

What utilities are available

44

The utilities that sea Shell recognizes are listed in the Utilities window. To see
the Utilities window, select Utility and press (Enter). The menu bar vanishes,
and a list of utilities appears in a window on the screen. The top item on the
list is highlighted; if you press (Enter) again, that utility will be activated.

It is possible to install many utilities on your system; not all of them will fit in
the window at the same time. You can tell that there are items outside the visi­
ble area if the right hand edge of the window is showing a scroll bar (a slider
control that you can drag up and down or move using the arrow keys).

If you use the up and down arrow keys, the list of available utilities moves up
and down behind the window to reveal the additional items:

* LIst Users - Who IS Logged on
Compare
Find
Search
Usage
Disk Free
Kill
Processes

- Compare Files
- Locate A File
- Text Search
- Disk Usage
- Space Available
- Kill A Program
- List My Processes v

If you do not want to run a utility, you can return to the menu by pressing
(Esc).

User's Guide

Running utilities and applications

A number of utilities come with sea Shell. Here is a brief explanation of what
they do:

List Users

Compare

Find

Search

Usage

Disk Free

Kill

Processes

All procs

OS Version

Lists all the users who are currently logged into the system,
along with their terminal and the date and time at which they
logged in.

Compares two files, visually highlighting the differences
between them. You are prompted for the type of the file
(whether a binary (program-like file), or a text file, or a direc­
tory), then to select two filenames. Compare then presents
you with a visual indication of the lines or characters that
differ in the second file with respect to the first.

Locates a file in the filesystem. You are prompted for the
name of a file to look for. Find then searches for everything
that matches this filename.

Searches for text contained in a given file. You are prompted
for a piece of text to look for, then for a file to search. Search
reports if it locates the text in question.

Reports on how much space is used by the files stored below
the current directory. The output is reported in disk blocks,
and is broken down by directory.

The opposite of Usage; reports how much space remains
available on the filesystems currently accessible to your ma­
chine.

Allows you to terminate a program that you are currently
running. For an explanation of this feature, see Chapter 5,
"Controlling processes" (page 157).

Lists the currently running processes under your control.
(The sea OpenServer system allows you to run several pro­
grams simultaneously; a running program is termed a "pro­
cess".)

Lists all the processes currently running on the computer.
(There will be a large number of these, and you will probably
be unable to kill any that do not belong to you. In general, do
not attempt to destroy processes unless you know what they
are for; if you succeed, you may impair the functioning of the
system.)

Prints a message containing technical information about the
type of system you are running on the computer.

45

Using sea Shell

46

Set colors If you are working on a color terminal or console, this tool
allows you to select the colors in the applications and utilities
that are displayed. You must pick an application from the list
that you are presented with, then select the particular object
within that application to change color; the utility then allows
you to pick new colors for that object. You should save your
settings when you finish using this utility. The next time you
start the changed program, its colors will have changed.

Adding a utility to the list
To add a utility to the list, from the top level menu, select:

Options ¢ Utillist

The Utillist menu allows you to add a command to the list, edit or delete an
item on the list, or undelete an item you have deleted by mistake.

You can also create a folder; that is a menu item containing other items.
(When you select the Create menu option within the Add menu you are asked
whether you want to create a command that can be added to your list, or a
folder.) Folders are displayed on the list with trailing ellipses (...), and from
the Utillist menu you can open a folder and add commands within it. Thus, by
using folders you can define multiple levels of nested utility commands.

When you edit a command or create a command, you are given a form to fill
in that contains fields for the command name, a brief description (displayed
on the line below the menu when the command is highlighted) and the path­
name of the command (the absolute pathname required to execute it):

.----------Creating command-""-----------,
Name:]

Description:
Path Name:

For an explanation of pathnames, see "How directories are organized" (page
84).

Once you have created a new command and added it to the list or to a folder
that is added to the list, you can run it by selecting:

Utility ¢ command_name

User's Guide

Running utilities and applications

What applications are available

Applications are larger programs that usually require you to interact with
them extensively. (Utilities, in contrast, usually do just one thing and require
little interaction.)

The standard applications that are available to sea Shell are the e-mail pro­
gram, the calendar, and the calculator. For details of these programs, see the
Mail and Messaging Guide, "Using the Calendar" (page 49) and "Using the Cal­
culator" (page 72) respectively.

You run an application the same way you run a utility; the only difference is
that you select the application from the Application item rather than the Utility
item on the top level menu.

Adding an application to the list
To add an application to the sea Shell menu, select:

Options ¢ Applist

The procedure is essentially the same as for adding a utility (see "Adding a
utility to the list" (page 46)), except that the application appears on the appli­
cation list instead of the utility list.

Copying items between applications with the clipboard

Different applications treat items stored on the clipboard in different ways; for
example, the electronic mail application may see an item as an "attachment"
(a piece of data appended to a mail message) while the sea Shell sees it as a
file.

To copy an item to the clipboard, select:

Manager ¢ Transfer ¢ Copy

You are prompted for an item to place on the clipboard. sea Shell is able to
place files on the clipboard; applications may be able to place other types of
information on it.

To paste an item on the clipboard into a file, select:

Manager ¢ Transfer ¢ Paste

You are prompted for a named item on the clipboard, and the name of the file
in which to place it. Note that if you give Paste a filename that already exists,
the file will be overwritten with a new one containing only the clipboard item
you are saving.

47

Using sea Shell

Items placed on the clipboard are referred to by name and stay there until you
explicitly remove them. To remove an item from the clipboard, select:

Manager ¢ Transfer ¢ Remove

The sea Shell prompts you for the item to remove.

Printing files

Select the file to be printed from those listed using:

Print ¢ Go

The procedure for printing several files from within sea Shell is the same as
for printing a single file, except that instead of only selecting one file, you use
the spacebar to select several files.

When you select the menu item to print a file, the file is sent to the print
queue. A print queue is a queue of files waiting to be printed on a specific
printer. Because an sea OpenServer system may have many users, any or all
of whom may be printing files, your file may not be printed at once; it is
spooled to the back of the queue. If it is the only file waiting to be printed, it is
processed at once.

Once you have sent a job to the printer you can carry on with another task;
you do not have to wait for the print job to commence or complete.

Displaying or canceling print jobs

You may wish to find out the status of print jobs that you submitted at an
earlier time (you may need this information to cancel a print job). Select:

Print ¢ PrintStatus

to display the list of currently queued print jobs.

You can only cancel print jobs that you requested. Select a print job to be can­
celed from those listed using:

Print ¢ Cancel

Selecting a printer

48

If you know that several printers are connected to your system, and you want
to send a file to a printer that is not busy or that has special printing capabili­
ties, you need to know the destination printer's name.

Select a printer from those listed using:

Print ¢ Select

User's Guide

Chapter 2

sea Shell accessories

Chapter I, "Using sea Shell" (page 11) explains how to use seQ Shell to
manage your files and directories, and run other utilities. This chapter
explains how to use two more applications available to you through sea
Shell:

• Calendar (this page)

• Calculator (page 72)

Using the Calendar

The sea Shell Calendar lets you organize your daily schedule. It also provides
access to the calendars of other users, so you can add events to their calendars
as well as to your own, checking their calendars quickly for free times or
scheduling conflicts. If your computer is on a local network, you may even
have direct access to the calendars of users who work on other computers on
the network.

In addition to your personal calendar, you can create calendars for facilities,
equipment, or any other resource. For example, you can create a calendar for a
conference room so that anyone who wants to schedule the room for a meet­
ing makes an entry on that calendar for the appropriate time. Other people,
checking the room's calendar to schedule their own meetings, can then see if
the room is already booked when they want to use it.

You have control over who can access your personal calendar, and how much
they can change it. You can set up your calendar so that other users can
change and delete the events that are already on it, or you can restrict them to
adding new events.

49

seQ Shell accessories

If you want even more privacy, you can give them view permission, which
only allows them to look at your events, or blind view permission, which
allows them to see the times you have scheduled but no details about your
events.

For complete privacy, you can specify yourself as the only person allowed to
view your calendar. Because you can give different permissions to different
users or groups of users, you can easily strike a balance between security and
convenience.

Starting the Calendar

To run the Calendar, select:

Application c:.> Calendar

The opening screen is displayed showing the day's events. It looks something
like:

ImID Back Goto Add Change Delete View Print Transfer Options Quit
Move to the next day 1.",'M,'4;" • '''''''¥i.-jl.,;.,,;;

8:00- 9:00
9:00-10:00

10:00
11:00
12:00- 1:00

1:00
2:00
3:00- 3:30
4:00
5:00

Thursday February 23, 1995
Performance review Alice's office
Staff meeting Boardroom

Lunch Trattoria

Sales meeting Downstairs Conf room

IEI_m

I@- Eil

If you want to see more information on each event, press (F6). The display
then expands to show the details of each event, plus a list of the people who
are scheduled to attend. To make all this extra information disappear from
your screen, press (F6) again.

You can set your calendar display to show this additional information by
default. For details, see HSetting Calendar options" (page 65).

Quitting from the Calendar

50

To exit the Calendar, select Quit from the Calendar menu bar. You can also
bring up the Quit menu item by pressing (F2) from anywhere in the Calendar
program.

User's Guide

Using the Calendar

Moving between days

When you start the Calendar, sea Shell displays the current day's events by
default.

To display the events for the next day, select Next from the Calendar menu
item. With the Next item still highlighted, you can continue pressing (Enter) to
move the calendar forward one day at a time. You can go back by selecting the
Back item.

Scheduling events
The Calendar allows you to schedule events on any date between 1900 and
2099. Select Gata and a three-month calendar appears at the bottom of the
screen with the current month in the middle.

The cursor is positioned over the current date on the three-month calendar.
Use the arrow keys to move the date highlight. The (PgDn) and (PgUp) keys
move the cursor to the same date in the next and previous months, res­
pectively. The (Home) key returns you to the current date.

Instead of using the cursor to select a new date, you can enter a date from the
keyboard. When you enter a date at the prompt, the Calendar automatically
assumes the current year and month unless they are specified. To specify the
30th of this month, type 30 at the prompt and press (Enter). Similarly, 11/4 is
an acceptable way of specifying November 4 of the current year.

You can specify a year either by typing out the whole year (as in 1992) or by
giving only the last two digits (as in 92). You cannot specify a date that is
more than 50 years ago using only two digits for the year. For example, the
Calendar interprets 5/5/33 as May 5,2033, not 1933. You would have to enter
5/5/1933 if you meant the year 1933.

Here are some sample dates and the Calendar's interpretations of them:

Example

6
7/4
12/7/52
10/3/29
Nov 11
1 april
+5
+5w

Interpreted as

sixth day of the current month
July 4 of the current year
December 7, 1952
October 3, 2029
November 11 of the display year
Aprill of the current year
five days past the current date
five weekdays past the current date

51

sea Shell accessories

You can make special uses of the " +" or " -" characters if you are filling the
"Start Date" and "End Date" fields in the Repeat form for a repeating event.
See "Scheduling repeating events" (page 55) for more information.

If you enter an invalid date format, sea Shell gives you an error message
telling you so. Enter a valid date and press (Enter).

After selecting the new date
Once you select a new date, either by entering the date from the keyboard or
by pressing (Enter) on the highlighted date, the screen displays the events for
the new date. The three-month calendar is no longer displayed on the screen.
You can now use the Add, Change, and Delete functions on the currently dis­
played date's events.

Returning to the current date
You can return quickly to the current date from the Calendar menu by select­
ing the Gata option then pressing (Enter).

Scheduling a meeting or event

52

You can schedule events to occur either once, or repeatedly at regular inter­
vals.

Scheduling single events
To schedule an event on the Calendar:

1. Go to the day on which you want the event to happen.

2. Select Add ¢ Event from the Calendar menu.

Select a time or (FlO) to add a timeless event
ea 1 endar: errl1 Wednesda f ebruar~ 22, 1995 2: 26

* 8:00
9:00

10:00
11:00
12:00
1:00
2:00
3:00
4:00
5:00

Thursday february 23, 1995

3. Pick the time at which you want the event to take place using the arrow
keys, and press (Enter).

User's Guide

Using the Calendar

4. If you want to select a time slot which is not displayed, press (FlO). This
allows you to enter a timeless event or specify a start time other than those
displayed. The following is an example of a timeless event form:

Thursday february 23, 1995
,-------------- Event ----------------,

Date [feb 23 1995
Time []

Duration []
What [

Where [
Details [

[

Who [
[

[Public] Private

Created feb 23 1995 10:48 a.m.
Caller perry
]
]

You can now enter information about the event you are creating.

The Time and Duration fields

When you enter times between 8:00 and 11:59 in the "Time" field, the time
defaults to a.m. The times between 12:00 and 7:59 default to p.m. You can
enter am or pm after the time to override the default.

Enter whole numbers (I, 2, 3) in the "Duration" field to signify hours. If the
duration includes increments of less than an hour, enter the time in hours and
minutes, or hours plus a decimal fraction. For example, an event that lasts two
hours and 15 minutes is entered in the "Duration" field as 2:15 or 2.25.

If you enter a number below 10, the duration is interpreted as hours. A dura­
tion of 10 or greater is interpreted as minutes. You can schedule an event for
less than 10 minutes by preceding the number with a colon, for example, :08
minutes.

Here are some sample times and durations and the Calendar's interpretations
of them:

Example

8
7
:11
11:
11
3:15

Interpreted as

a time of 8:00 a.m.
a time of 7:00 p.m.
a duration of 11 minutes
a duration of 11 hours
a duration of 11 minutes
a duration of three hours and 15 minutes

53

seQ Shell accessories

54

The Caller field

The "Caller" field displays one name on your own calendar, or two names if
the current calendar is someone else's. For example, the "Caller" field displays
eric (j im), if jim has logged in and then switched to eric's calendar. This
field is set automatically and cannot be changed. For more information on
switching to another user's calendar, see "Accessing other calendars" (page
65).

When the event is posted, it automatically shows up on eric's calendar. It only
appears on jim's calendar if jim is specified in the "Who" field of the Add form.
By default, users' logins are also their calendar names. To make a calendar
under another name, see "Creating a new calendar" (page 66).

The Who field

You may enter only existing calendar names in the "Who" field of the Add
form. Acceptable calendar names are login names, names created as described
in the "Creating a new calendar" (page 66) section of this chapter, and aliases
(see "Managing aliases" (page 70) for further information about aliases).

To display a point-and-pick list of all current calendar names, press (F3) while
the cursor is in the "Who" field. You can search the list for a login by pressing
(F5) and keying it in.

When you finish entering information in the form, press (Enter) or (Ctrl)X to
update the calendar.

If you enter a calendar name that does not exist in the "Who" field of the Add
form, sca Shell gives you the message:

Wrong name: No such calendar

but it does not delete the name from the list. To correct a name or delete an
outdated name from "Who", see "Changing an event" (page 60).

If there is a scheduling conflict involving any of the invitees for the new event,
a box pops up on the screen with the invitee's name and a description of the
conflicting event. If the conflict is acceptable, select "Yes"; you return to the
Calendar menu. The person with the conflict is invited, and the time slot in
question now contains more than one event in their calendar.

If the conflict is not acceptable, select "No". You then return to the Add form
so that you can reschedule the event.

If you enter the name of a calendar for which you do not have schedule per­
mission, the Calendar displays an error message in the bottom-left comer of
the screen. For more information on permissions, see "Setting permissions on
the current calendar" (page 68).

User's Guide

Using the Calendar

Scheduling repeating events
Use the Repeat function to schedule events in your calendar that occur on a
regular basis. For example, if your weekly staff meeting occurs at 2:30 p.m.
each Monday, use the Repeat function to schedule the meeting as a recurring
event.

Select a time slot by selecting the desired line and pressing (Enter), or by typ­
ing the first number of the selected time. If you want to schedule an event for
a time in between those shown, press (FlO), and the Repeat form appears with
the "Time" field blank for you to enter a time:

.--------------------------- Repeat --------------------------~
[Weekly] Continuous Periodic Biweekly Date Relative Yearly

Monthly Monthly
Sun Mon Tue Wed Thu Fri Sat
[] [] [*] [] [] [] [] Period

Start Date [Apr 25 1995
Time []

Duration []
What [

Where [
Details [

[

Who [
[

[Public] Private

] End date [
Created Apr 25 1995 10:51 a,m.
Caller perry
]
]

Enter the date on which you wish to start the repeating event in the "Start
Date" field. The current date is the default. Entering +3w in the "Start Date"
field advances it by three weekdays. When you use the "w" suffix, the Calen­
dar program counts weekdays only, and adds or subtracts them relative to the
display date. For instance, if the original starting date is Monday, October 18,
and you enter -lw, the new starting date is Friday, October 15,

Enter the last date on which you wish to schedule the repeating event in the
"End Date" field. The Calendar adds or subtracts days relative to the starting
date. For example, if the starting date is Friday, October 15, and you enter +Sw
in the "End Date" field, then the ending date becomes Friday, October 22.

55

sea Shell accessories

56

Selecting the type of repeating event

At the top of the Repeat form are options for how frequently you want the
event to occur.

You can use the (Home) key or (Ctrl)T to move to the top of the form. Then, to
choose the item that you want, either use the (Space) bar or arrow keys to
move the highlight between the options, from Weekly through Yearly, and
press (Enter), or type the first character of the desired option:

Weekly or Biweekly Select the day(s) of the week from the line below on
which you wish to schedule an event. Press (Space) to
toggle the fields on or off. The * character indicates that
a field is toggled on. The day of the week of the starting
date of the event is toggled on by default.

Continuous

Periodic

Relative

Schedules the event to occur every day between the
starting and ending dates.

Schedules the event to occur at intervals of a number of
days (between 2 and 255). When you enter the number
of days in the cycle in the "Period" field, keep in mind
that the Calendar counts weekends and holidays.

Schedules the event on the same day relative to some
repeating unit of time. These include the Date (so the
event recurs on the same date of the month), the Month
(so the event occurs on the same day in the month, for
example, the second Tuesday of every month), and
Yearly (so the event recurs on the day every year).

Selecting Public or Private access
Select Public to allow all users to see the information in the "Who," "'What,"
"'Where," and "Details" fields for the event that you are scheduling. Select
Private to allow only you (as the owner of the event) and invitees (specified in
the "Who" field) to have access to the information in these fields (either
through mail or through their own calendar).

Notifying invitees about an event
If the repeating event that you are adding is a scheduled meeting with other
users, the information for the event is automatically updated on each of the
calendars for which you have schedule permission. Mail is sent to each of the
invitees if they have the "Mail notification" field in their Options ¢ Configure
forms set to "Yes". See "Setting permissions on the current calendar" (page 68)
for more information about this form.

User's Guide

Using the Calendar

If you try to schedule an event with a calendar for which you do not have
schedule permission, a message appears telling you that you do not have
schedule permission and that mail is being sent instead. The mail message
invites the owner of the calendar to the event. This mail notification is sent
only for the first occurrence of the event. It is up to the invitee to remember all
future occurrences.

If the Calendar is not associated with a login, mail is not sent. See "Creating a
new calendar" (page 66) later in this chapter for more information.

If the event is cancelled after its scheduled starting time, mail regarding the
cancellation is not sent to the invitees.

Changing or deleting a repeating event

When changing or deleting a repeating event, you can choose to change all oc­
currences of the event, or just one instance of it. For example, if you have
scheduled a board meeting for every Wednesday at 3:00, you can change the
time to 2:00 for one week's meeting without affecting the times of the other
meetings.

Changing a repeating event

Go to the date on which the event is to take place, and select Change. You can
select Every to change all instances of the repeating event, or Today's to
change only the display date's occurrence of the repeating event. For details
on changing the information about an event, see "Changing an event" (page
60).

Deleting a repeating event

Select Delete to delete one or all occurrences of a repeating event. When you
select a repeating event, a Delete menu appears.

If you do not have permission to change the event, you see "Yes" and "No"
options. Choose "Yes" to delete the event from your own calendar, and choose
"No" to leave it on your calendar.

If you have permission to change the event (either you scheduled it, or you
have full permission on the owner's calendar) you see a menu with three
options: "Nd', "Today's", and "Every". Make your selection and press (Enter).

If you had invited other users to the event, the changes made to the event will
show up on their calendars when they next access them.

For details on removing a non-repeating event, see LLDeleting an event" (page
60).

57

sea Shell accessories

58

Searching for free time
If you are scheduling an event with several invitees and you are unsure of
their free time, select View ¢ Free and specify their names in the "Whd' field
on the form displayed. You can use the information displayed to schedule an
event that all invitees are able to attend. See "Viewing a free-time list" (page
63) for more details.

Alternatively, if you need to search for a free time over a long time period,
select Add ¢ Search to display a Search form.

Change any of the default entries you need to, and specify the logins of those
people who must attend the event in the "Who" field, and those whose atten­
dance is voluntary in the "Optional" field. By pressing (F3) you can access a
point-and-pick list of calendar names. You can search the list for a specified
login by pressing (FS).

When you have entered all the necessary information, press (Enter) from the
last field or (Ctrl)X to begin the search. The Calendar program then searches
the calendars of all the people listed in the "Whd' and "Optional" fields of the
Add form for times when all of those users are free. Note that if a person is
listed in the "Optional" field, they may be invited to attend even if they have
conflicting events.

Choosing a free time
If one or more common free times are found, the free-time list is displayed
over the right half of the screen with the first available date and time combi­
nation highlighted in the "Free Times" window. To schedule the event, move
the highlight to the desired date and time in the "Free Times" window and
press (Enter). This exits you from the list and takes you to the Add form. The
"Date," "Time," and "Duration" fields of the Add form are automatically filled
in with the information from the Search form. Fill in the remaining fields on
the Add form as explained in "Scheduling a meeting or event" (page 52).

You can change the search parameters while you are viewing the list of free
times. To do this, press (Esc) to return to the Search form. Edit the form to
change the parameters of the search. Press (Enter) in the last field (or (Ctrl)X
anywhere on the form) to start the new search for common free times.

Resolving scheduling conflicts
If the event that you are adding conflicts with a previously scheduled event in
either your calendar or the calendar of an invitee, the calendar automatically
displays the conflicts at the bottom of the screen and asks whether they are
acceptable.

User's Guide

Using the Calendar

If the conflicts are unacceptable, either select "Nd' in the last field and press
(Enter), or type n to return to the Add form. Edit the "Date," "Time," and
"Duration" fields to resolve the scheduling conflict. If the conflicts are accept­
able, select "Yes". The scheduling conflicts are ignored, and the current event
is scheduled in the calendars of all the people listed in the "Whd' field in addi­
tion to any event previously scheduled.

Scheduling timeless events
You can use the Calendar to schedule an event that does not occur at a specif­
ic time. For example, you can schedule a task as an event that you need to
complete on a specific day, but not at a specific time. A timeless entry
appears as the first scheduled event for the day, marked with a dash" - " char­
acter.

To schedule a timeless entry, clear the "Time" field in the Add form. Com­
plete the form with the desired date and either press (Ctrl)X or press (Enter) on
the last field to schedule the event.

As a shortcut for entering a timeless event, press (FlO) when selecting a time
slot for the event on the calendar display. The Add form appears with the
"Time" field already blank.

To schedule a repeating event without a specific time, see "Adding "To dd'
items to the Calendar" (this page).

Scheduling durationless events
Sometimes you know when an event will take place, but not how long it will
last. In such cases, you can schedule an event that has no known duration. To
do this, either enter a 0 in the "Duration" field of the Add (or Repeat) form, or
leave it empty. Complete the form according to the instructions in "Schedul­
ing a meeting or event" (page 52).

Adding "To do" items to the Calendar

You can use the Calendar as a "To dd' list by scheduling events that have no
set times but repeat every day. The "To dd' entries appear as the first sched­
uled events for the selected day only and are marked with dash characters.
These entries appear on the current day's calendar every day until you
remove them.

59

seQ Shell accessories

To schedule a "To dd' item, select Add ¢ Event to add a single entry, or
Add ¢ Repeat to add a repeating entry to your calendar. Press (FlO) to select a
timeless event, and fill in the details on the displayed form. (Leave the "Time"
and "Duration" fields on the form blank.) For details on how to fill out a
Repeat form, see "Scheduling repeating events" (page 55).

You can create a "To dd' reminder for a single day by following the procedure
described in "Scheduling timeless events" (page 59).

Changing an event

To change the information about a scheduled event, select Change from the
Calendar menu. If the event is scheduled for another day, first Goto the
correct date.

A scheduled event can be changed by the person who originally created or
scheduled the event, or by anyone with full access permission on the owner's
calendar. Write, view, and full access permissions, and how to set and change
them, are discussed in "Setting permissions on the current calendar" (page
68).

Deleting an event

60

To delete an event from your calendar and the calendars of other users, select
Delete from the Calendar menu. The first scheduled event for the current date
is highlighted.

Select the entry you want to delete by choosing the desired line and pressing
(Enter).

This deletes the event from the calendars of the people you invited, provided
you originally scheduled the event. If a user who was invited for the canceled
event has ~~Invitation" and "Cancellation" set to "Yes" on their Configure form,
you are prompted for up to two lines of text describing the reason for the can­
cellation. This text is then included in the mail message that is sent to them,
notifying them of the change in their calendars. For more information about
the Configure form, see "Setting permissions on the current calendar" (page
68).

An event can be deleted by the the person who scheduled it, or anyone with
full access permission on the owner's calendar. Write, view, and full access
permissions are discussed in "Setting permissions on the current calendar"
(page 68).

User's Guide

Using the Calendar

You can delete an event from your own calendar even if that event is owned
by another person. If you delete a future event, a prompt asks you to state
your reason for the deletion. Your response is mailed to the person who
scheduled the event. When you delete the event it no longer appears on your
calendar; however, if you do not have full access permission on the owner's
calendar, the event still exists on the calendars of the other users who are
scheduled to attend.

Viewing the Calendar

To display the calendar on your screen, select View from the Calendar menu.
You can use View to check a print request before sending it to the printer, or to
display the calendar in a specified format.

Event, Week, Month, Range, and Free let you choose the format for the dis­
played calendar.

Viewing an event
Event displays a list of the events scheduled for the current calendar day. If
more than one event is scheduled for the current day, select the event you
want to view from the list displayed.

Viewing a week
Week displays the events for the week that contains the current day. This dis­
play includes the information from the "What" and "Where" fields of the Add
form.

Movement kews to scroll <Esc> to continue
Calendar: err Wednesda~ februar~ 22, 1995 2:33

IIlIiB!J !I iI!m!iDI •
1:00- 2:18 Author~s meeting 1:00- 2:00 Project meeting

Boardroom

"Eti;;'P-MI III "''''MPEI II
10:00-11:00 Publishing Systems 9:00-12:00 Training

SUite 4

61

seQ Shell accessories

62

Viewing a month
Month displays a box calendar for the month containing the current date.
Only the information from the "What" field of the Add form is included.

By default, Saturdays and Sundays are combined and put into one box for
each week. If you want them to be displayed in separate boxes, follow the
instructions in "Setting calendar preferences" (page 67).

If you want to display a different month, select the Goto option from the
Calendar menu.

Viewing a range of dates
Range displays events that occur within a range of dates. The default range is
30 days, starting with the current date.

You may indicate whether you want a brief or detailed description of each
event. Select Brief to display only the "What" and "Where" fields. Select
Detailed to display the '~What," "Where," and "Details" fields.

In the "Pattern" field, you can specify a pattern of letters or words. If you pre­
viously chose "Brief", the Calendar searches the "What" and "Where" fields of
each event's Add form for the specified pattern. If you selected Detailed, the
"Details" field is searched in addition to the "What" and "Where" fields. The
Calendar then displays the events that contain the specified patterns and are
within the specified date range.

For example, if you want a listing of all board meetings planned for the next
three months, set up the appropriate date range and enter board meeting in
the "Pattern" field.

Note that when sea Shell searches for a pattern, it does not distinguish
between uppercase and lowercase letters, so you can use either type when
filling out the "Pattern" field.

User's Guide

Using the Calendar

Viewing a free-time list
Free graphically displays free times for users specified in the "Who" field.
Shaded areas indicate times when users have events scheduled.

Next Back III Quit
Choose a time and add an event
Calendar: errw Wednesdaw februarw 22. 1995 4:40

Thursda~ februar~ 23, 1995

8 9 10 11 12 1 2 3 4 5
perr~ ,.

charles : :.2 joseph

::I: kate .: sarah
~ all

8 9 10 11 12 1 2 3 4 5

To add a new event to your calendar, select Add from the Free menu to
highlight the first empty slot on the free-time display. Use the (Space) bar to
select desired time, and press (Enter) to make your selection.

Printing the calendar

Select Print from the Calendar menu to print a calendar. The name of the
current printer appears at the top of the screen.

Printing an event
Using the arrow keys, select the event(s) that you want to print and press
(Space) to mark each event with a " *". When you have marked all the desired
events, press (Enter) to print the information.

Note that with all print commands, the information to be printed is not dis­
played on the screen. To view the information on the screen, see "Viewing the
Calendar" (page 61).

Printing calendars for a day, week, or month
You can select Day, Week, or Month to print all the events scheduled for the
current day, week or month. Week omits meeting times, while Month prints a
box calendar with basic information about each meeting from the "What"
field of the Add form.

Selecting an altemative printer
To send the Calendar to a printer other than the configured printer, select
Print ¢ Select and select the desired printer. Press (Enter) to select it as the
current printer for this session. The current printer configuration returns to
the default printer the next time you run the Calendar. Choose Select from
the sea Shell Print menu to change the default seQ Shell printer.

63

seQ Shell accessories

Transferring information from the Calendar to other applications

64

Transfer on the Calendar menu allows you to transfer information from the
Calendar to a text file or to other applications using the clipboard.

Select Transfer from the Calendar menu. The four items on the Transfer menu
allow you to:

• copy an event, a day, a week, a month, or a range of dates from the Calen-
dar to the clipboard

• paste an event from the clipboard to the current Calendar

• remove one or more items from the clipboard

• quit to the Calendar menu

Transferring an event
Select Transfer ¢ Copy ¢ Event to copy an event from the current day to the
clipboard.

To paste an event into a different day on your calendar, use Goto in the Calen­
dar menu to pick the day you want, then choose Transfer ¢ Paste and select
the item you want from the clipboard list that appears.

The Add form appears, with the data for the selected event displayed in the
appropriate fields. Edit the data to reflect changes in plans for the event. You
can even change the "Date" field if you want to paste the event on a different
date from the one displayed. Use (Ctrl)X to close the Add form and paste the
event into the calendar. If there is a conflict, a form appears, asking you if you
want to allow the conflict.

Transferring events for a day, week, or month
Although you can copy the events of a day, week, or month to the clipboard
for use in another application, you cannot paste this clipboard entry back into
a calendar. Only information about single calendar events can be pasted from
the clipboard to a calendar.

You can only transfer events into calendars one at a time, but you can transfer
multiple events to text files or to other applications. To copy the events of a
day, week, or month, use the procedure described in the previous section for
transferring an event, but choose Day, Week, or Month from the Copy menu.

If you transfer the events of a day or a week, the data from the "Time,"
"What," and "Where" fields is copied into the clipboard.

If you transfer the events of a month, only the data from the "What" field is
copied into the clipboard.

User's Guide

Using the Calendar

If you paste any of these clipboard items into an application that displays
graphical characters, the calendar shows not only the format but the graphical
appearance of a printed copy.

Transferring events from a range of dates
Range on the Copy menu transfers events that occur within a range of dates.
You can transfer multiple events from the calendar to a file or to other applica­
tions.

Setting Calendar options

Using the functions from the Options menu, you can:

• access other calendars

• create new calendars

• set calendar-configuration parameters and preferences

• change the blind view, view, schedule, and full-access permissions for the
current calendar

• manage aliases

Accessing other calendars
You can access calendars associated with other individuals, particular pro­
jects, events, or groups of people, provided that you have view, schedule, or
full-access permissions for those calendars. If your computer is on a local net­
work, you may have direct access to the calendars of users who work on other
computers on the network.

By default, you can view anyone else's calendar. The owner of a calendar
must specifically deny view access to prevent viewing. To access another
calendar, select Options ¢ Switch and enter the name of the calendar to which
you wish to switch. You can select from a point-and-pick list of all existing
calendar names by pressing (F3), or you can select from a list of login names
by pressing (F5).

If you schedule an event while you are switched to this calendar, mail is sent
to all the invitees from your login name, not from the calendar to which you
are currently switched. However, the event is owned by the current calendar
not by you. For example, if user jane switches to user diane's calendar and
schedules an event, the invitees receive mail from jane, not diane. However,
the event is owned by diane.

If you do not have schedule permission, the Calendar program tells you so.
You can view the calendar, but you cannot make any changes to it.

65

sea Shell accessories

66

If you do not have at least blind view permission on the calendar that you
want to switch to, you are given the message that you do not have view per­
mission. If this is the case, you are not allowed to switch to the new calendar.
You must press (Enter) to return to the calendar from which you attempted to
switch.

For more information on permissions, see ilSetting permissions on the current
calendar" (page 68).

Creating a new calendar
Make allows you to create new calendars. In addition to calendars associated
with users, you can create calendars associated with a project, task, or group
of users. Calendars can also be associated with shared resources, such as
conference rooms, slide projectors, and other equipment.

When you select Make, you are asked for the name of the new calendar. The
new name must be no more than 15 characters long without any spaces. (If a
calendar by that name already exists, you are given a message to that effect.
You must then press (Enter) to return to the Calendar menu.)

You can now schedule events with this calendar in the same way that you
schedule events with other users. For example, if you need a particular room
and a slide projector for your meeting, put the names of the calendars for the
room and the projector in the ilWhd' field of the Repeat or Search form, just as
you would for any other invitees. The calendar checks the schedules of these
resources to find a common free time. When you select a date and time, the
resources, as well as the invitees, are scheduled to attend your meeting.

The calendars created with Make are not associated with any particular user.
The initial view and schedule permissions are set to allow all users access to a
calendar. By default, only the owner of the Calendar is allowed full access.
To learn how to change the view, schedule, or full-access permissions, see
ilSetting permissions on the current calendar" (page 68).

Because these calendars are not associated with a particular user, mail regard­
ing the scheduling of the event cannot be sent. These calendars cannot receive
mailed copies of schedules for the same reason.

User's Guide

Using the Calendar

Setting calendar preferences
To change the appearance of the Calendar display, select:

Options ¢ Preferences

When you are through choosing Calendar preferences, press (Enter) or (Ctrl)X
to return to the Calendar menu.

'--5t~~~~iiiiii.~ Preferences --------------, I Start time [liP u.]
End time [5:00 p.m.]
Interval [Even] Half

Time format [Standard] 24 Hour

Skip Weekends and Holidays? Yes [No]
Saturday and Sunday separate? Yes [No]
Expanded daily display? Yes [No]
Startup Calendar [perry]

Save as default? [Yes] No

Here is a brief explanation of each of the fields in the Preferences form:

Field

Start time

End time

Interval

Time format

Skip Weekends and
Holidays

Saturday and Sunday
separate

Expanded daily
display

(Continued on next page)

Description

The time of day when you start scheduling events.
The default is 8:00 a.m.

The time of day when you stop scheduling events.
The default is 5:00 p.m.

Display the calendar in one-hour increments
("Even", the default), or in half-hour increments
("Half").

Display the time in a.m. or p.m. format ("Standard",
the default), or in 24-hour international format ("24
Hour").

Skip ("Yes") or include ("No", the default) weekends
and holidays when using the Next and Back options,
and when using the Search command.

Place Saturdays and Sundays in separate boxes
("Yes"), or the same box ("No", the default), on the
monthly calendar.

Include ("Yes"), or does not include ("No", the
default), details about the event and who is invited
to it in the daily calendar display.

67

seQ Shell accessories

68

(Continued)

Field

Startup Calendar

Save as default

Description

The calendar invoked when you start the Calendar
program. The default is the calendar corresponding
to your user name. To switch calendars while run­
ning the Calendar program, select
Options ¢ Switch.

Save the selections made in the Preferences form as
the default (HYes", the default), or return to the
default preferences when you quit the calendar
("No").

Setting permissions on the current calendar
By default, the access permissions allow each user to have blind view, view,
and schedule access to another user's calendar, and only allow the owner of a
calendar full access. You can change the permissions to allow only certain
users or groups of users (aliases) blind view, view, schedule, or full-access
permission on your calendar by selecting:

Options ¢ Configure

The Calendar displays the Configure form:

~------------- Configure ----------------,
Automatic Notification

Invitation and Cancellation Mail? IImII No
Daily and Weekly Schedules? Mail Printout [Off]

Access Permissions
Blind View [everyone

View [everyone
Schedule [everyone

full Access [

User's Guide

Using the Calendar

Here is a brief explanation of each of the fields in the Configure form:

Field

Invitation and
Cancellation Mail

Daily and Weekly
Schedules

Blind View

View

Schedule

Full Access

Description

Set to "Yes" to specify that you want to be notified
when others change your calendar. Also, if you can­
cel an event to which others were invited, a mail
message, explaining the cancellation with up to two
lines of descriptive text, is generated automatically.
If set to "No", no mail is sent.

Set to "Print" or "Mail" if you want to generate
automatically a printed or mailed copy of your daily
and weekly schedules. If you have chosen and
saved the expanded daily calendar display in
"Preferences" as default, then the copy will also be
expanded.

Specify who can see when events are scheduled but
not the details.

Specify who can see the details of events.

Specify who can add events.

Specify who can change and delete events.

While you are editing the "Blind view," "View," "Schedule," and "Full Access"
fields in the Configure form, you can display a point-and-pick listing of all
existing calendar names. To do this, you must first use (Ctrl)Y to delete
"everyone" from the field you want to edit, then press (F3). You can then
search the list for the name of a specific user by pressing (FS). To cancel the
point-and-pick display, press (Esc). If you want to give permission to all users,
enter "everyone" in the appropriate field. You may also enter the name of an
alias in this field.

69

sea Shell accessories

70

Deleting a calendar
Use Erase to clear all events from the calendar you are currently using. You
might want to do this for a meeting room that is no longer available for use.

Once a calendar's events have been erased, they cannot be retrieved. You
should thus be very careful when using Erase.

Before using this option, switch to the calendar you want to erase using
Option ¢ Switch, then choose Options ¢ Erase.

Because you cannot undo this action once it has been confirmed, you are
given two chances to change your mind and not erase the calendar.

If the calendar you deleted was your personal calendar, it remains on the
screen with no events listed. Otherwise, it is removed entirely and you auto­
matically return to your personal calendar.

Renaming a calendar
Rename allows you to rename any calendar made as described in '''Creating a
new calendar" (page 66) and for which you have full-access permission. You
cannot rename your personal calendar.

To rename the current calendar, select Options ¢ Rename.

Erasing or renaming a calendar does not change the contents of the "Who"
fields of any other users' calendars.

Managing aliases
An alias is a name used by the Calendar to refer to a group of users. Use Alias
to create, modify, and delete calendar aliases. To use an alias, type the alias
name in the "Who" field of the forms presented by the Calendar. When you
schedule an event for an alias, mail is automatically sent to all the people on
the alias, notifying them of the event.

There are two types of aliases: private and system. Private aliases are made
and controlled by you, and only you have access to them. Only the system
administrator can set up and edit system aliases.

User's Guide

Using the Calendar

To edit, delete, and create new private aliases, select:

Options ¢ Alias

When you select Alias, a list of your private aliases appears along with a
menu. The items on the Alias menu allow you to:

• edit an alias

• add a new alias

• delete an alias

• view an alias without changing it

• switch to a private or a system alias list

• quit to the Options menu

Adding an alternative calendar to your Application List

The calendar that is first displayed when you enter the Calendar is specified
by the name in the "Startup" field on the Preferences form; this is normally set
to your own calendar. See "Setting calendar preferences" (page 67).

Additionally, you can use the procedure described in this section to specify a
different initial calendar.

To specify another initial calendar, edit the entry for the Calendar program on
the sea Shell's Application list. (For detailed instructions, see" Adding an
application to the list" (page 47) .)

Select Options ¢ Applist ¢ Edit and select Calendar from the list of applica­
tions displayed. Add one of the following options to the entry in the "Path
Name" field:

Option

-i calendar_name

-r calendar_name

Description

Substitute calendar _name for the name of the calen­
dar in the "Startup" field of the
Options ¢ Preferences
menu.

Substitute calendar _name for the name of the calen­
dar in the "Startup" field of the
Options ¢ Preferences
menu, but display as "read only;" you cannot add,
change or delete any information.

71

seQ Shell accessories

For example, to display user alice's calendar when you first enter the Calendar
program, change the #Path Name" entry to:

Path Name: $OALIB/calendar -i alice

To display the calendar for sales as read only when you first enter the Calen­
dar program, change the #Path Name" entry to:

Path Name: $OALIB/calendar -r sales

You can also create an additional entry in the # Application List" to start a
different calendar such as a departmental calendar or one that you are respon­
sible for scheduling. To do this, select:

Options ¢ Applist ¢ Add ¢ Select

To add the option needed to access the additional calendar, select:

Options ¢ Applist ¢ Edit

Resolving problems with Calendar information

If the Calendar program fails to get information from another computer, you
may see a message indicating that there is no response from the calendar
server. This message can indicate several problems: the computer containing
the calendar data may be down, or the calendar server computer may be
down or busy. Contact your sea Shell administrator for assistance.

Using the Calculator

72

The sea Shell Calculator mimics the operation and appearance of a simple
electronic calculator.

The Calculator is available whenever you need to do some arithmetic from
anywhere in sea Shell and from any of the applications in sea Shell.

The Calculator offers these features:

• addition, subtraction, multiplication, floating-point division, and percen­
tage calculation

• up to four numbers can be held in memory

• simulated #paper tape" that records all the calculations you entered in your
current session with the Calculator

• support for negative numbers

Note that you cannot use a mouse with the Calculator.

User's Guide

Using the Calculator

Starting the Calculator

To start the Calculator from the main sea Shell menu, select:

Application ¢ Calculator

You can use your terminal's numeric keypad as well as the number keys in the
keyboard's top row. (If the keypad keys do not seem to work, try pressing
(Num Lock).)

For example, type: 2 + 4 + 6 =

There is no need to press (Space) between numerals. When you finish, the Cal­
culator looks like this:

Tape Display

2 + 12
4 +
5 = --12 --------------------

The display acts just like the one on a pocket calculator. You enter asterisk
II *" to multiply numbers together (this is equivalent to the" x" key on a
pocket calculator). The Calculator keeps a running total of the calculation
until you reach the end. (If you want, you can press (Enter) instead of the" = "
character; they both do the same thing.)

The tape keeps a record of the whole problem, just as you entered it. The
answer does not appear there until you press =, just as on an adding machine
tape. The arrow keys let you rewind the tape to take a look at the calculations
that you did earlier.

Calculator commands

You enter calculations on the Calculator by typing them in. You do not
choose commands or numbers by highlighting parts of the screen, as you
might in other sea Shell applications.

73

seQ Shell accessories

The keys that you see on the screen are reminders or prompts for the Calcula­
tor commands. The actual commands are the first letters of the function key
names. For example, to press the Off key, you type 0; to press the Sto (store)
key, you type s; and so on. The following section details the Calculator's fea­
tures, including the use of the scrolling tape, the memories, and the percen­
tage key.

Using the Calculator's features

74

The following sections explain the Calculator's features in more detail.

Simple arithmetic
Here are some simple problems you can enter on the Calculator.

5*4=
100 + 4 + 6 + 7 - 3 / 2 =
1000 / 5 / 10 / 30 =
1.25 + 3.85/1.7 =

Type the numbers and arithmetic symbols on your keyboard. Remember to
press = or (Enter) to finish each problem. When you begin a new problem, the
total from the last one clears from the display automatically.

Scrolling the tape
Enter several long calculations, until the earliest ones have moved up the tape
and off the top of the calculator. Now press the (Up Arrow) key repeatedly to
"rewind" the tape. The earlier calculations reappear.

Use the (Down Arrow) key for the opposite effect, to advance the tape back to
more recent calculations.

To move through the tape more quickly, use (Ctrl)U and (Ctrl)D to rewind and
advance the tape five lines at a time; (PgUp) and (PgDn) to rewind and advance
the tape ten lines at a time.

If you want to rewind the tape all the way, press (Home) or (Ctrl)T. Pressing
(End) does the opposite: it advances the tape to the last calculation entered.

With the tape still "rewound," enter a new calculation and see what happens:
the tape automatically advances itself to the end of the most recent calcula­
tion, just as if you had pressed (End).

The figures on this tape are kept only while the Calculator is on. When you
turn off the calculator, the figures disappear permanently.

The Calculator only remembers the previous 100 calculations on the tape. You
cannot view any calculations previous to the first on the tape.

User's Guide

Using the Calculator

Storing numbers in memory
You can store up to four numbers in the Calculator's memory for later use. For
example, you may want to use the results of a calculation in several others.
Rather than re-entering the figure for each calculation, store the figure in
memory and recall it as you need it.

Storing a number

The number you want to store must be on the Calculator's display, as either
the answer to the previous calculation or simply a number you typed in. Fol­
low this procedure:

1. Enter the following calculation: 5+6*3-3*4=

The result is 120.

2. Press s (Sto).

The Store box holds four different fields: A, B, C, and D. The first field, A,
is already highlighted. Each field can hold one number. Press (Enter) to
store 120 in field A.

3. After a short delay, the Calculator screen returns to normal.

To store another number in memory, repeat the procedure but use the arrow
keys to highlight a different field in the Store box. If all four fields already hold
figures, just highlight one that holds a figure you no longer need.

Using a stored number

Now that you have stored a number, suppose that you want to use it in a
problem. For example, 104/4 * stored_number. Follow this procedure:

1. Enter 10414* in the calculator. After you enter the" *" symbol, press r
(Rcl).

The Recall box shows the number currently stored in memory. Press
(Enter) to recall it. (If there are several numbers in the recall box, use the
arrow keys to highlight the one you want to recall.)

2. The Recall box disappears at once. The stored number is now in the dis­
play window, just as if you had entered it by hand. Enter = to complete the
calculation. Your answer is 3120.

The number you retrieved is still in memory, and it stays there until you
replace it with another one or turn off the Calculator.

Negative numbers
To enter a negative number, type the number followed by an n. The number
is now preceded by a minus sign on both the display and the tape. It behaves
as a negative number in all calculations. Pressing n also removes a minus sign
if the displayed value already has one.

75

sea Shell accessories

76

For example, type 5 * 5n = to multiply 5 by negative 5. The result is -25.

Percentages
You may sometimes perform calculations whose operands include both a
number and a percentage of that same number. The Calculator's percentage
key lets you do this without calculating the percentage separately.

Suppose that you make a $25.00 purchase and want to calculate the total price
when six percent sales tax is included. You enter 25 + 6 % and the result is
26.5, or $26.50. Note that you do not need to press =.

If you enter the wrong number
If you enter the wrong number in the middle of a problem, type c to clear the
number and enter a new one. For example, if you want to multiply 7 by 7, but
enter 7 times 6, type the following, 7 * 6 c 7 and the mistake is corrected.

The (Bksp) key also helps you to correct mistakes. If you want to change or
erase the number you just typed, press (Bksp) repeatedly to make the number
disappear one digit at a time.

Exiting the Calculator
To tum off the Calculator, press 0, or (Esc). You then return to the program
you called the Calculator from.

All the numbers stored in memory or on the tape now disappear, just as on a
real pocket calculator.

As with all open programs, you must call up and quit the Calculator when
you finish work for the day before logging off your computer.

User's Guide

Working at the
Shell Prom.pt

Chapter 3

Working with files and directories

This chapter discusses files and directories and the basics of working at the
command prompt. It describes how to:

• display the command prompt (page 80)

• use files and directories (page 80)

• manage directories (page 84)

• navigate the filesystem (page 92)

• create links to files and directories (page 94)

• navigate symbolic links (page 97)

• mount a filesystem (page 98)

• manage files (page 101)

• specify command input and output (page 118)

• run a sequence of commands (page 120)

• control access for files and directories (page 121)

• print a file (page 127)

• get help (page 129)

79

Working with files and directories

Getting to the command prompt

The commands described in this book are all intended to be typed at a com­
mand prompt in a text display (or window, if you are using a graphical termi­
nal).

There are several ways of getting to a command prompt, depending on how
your system is configured. In general, you must first log in to the system, then
(if you are using a graphical environment) open a shell window.

If you are using the graphical environment:

1. Log in, as described in HStarting the Desktop" in the sea Open Server Hand­
book.

2. Open a UNIX window by double-clicking on the UNIX icon, located by
default on the Desktop. Otherwise, select UNIX from the Tools menu.

If you are working on a character terminal:

1. Log in, as described in "Logging"in" in the Operating System Tutorial.

2. If your login automatically starts up the sea Shell, type:

!ksh(Enter)

You should now see a 1/$" or "%" symbol with the cursor positioned next to it.
This is the command prompt: you are now ready to start entering commands.

Note that the examples in this chapter assume that you are running the Korn
shell. If you are not sure which shell you are running, see "Identifying your
login shell" (page 224). If you are not running the Korn shell, type:

ksh(Enter)

This starts a temporary Korn shell session.

If you have not used the command prompt before, you may want to refer to
Chapter 1, HGetting started" in the Operating System Tutorial before continuing
with this chapter.

Files and directories

80

The basic unit in which the sea OpenServer system stores information is the
file. A file is a named collection of data that you can move around, copy,
rename, or delete. Files are stored in a filesystem, a storage area on your
computer's hard disk or disks. A filesystem is split into directories, which are
smaller storage areas that make it easier to locate individual files.

User's Guide

Files and directories

Using files

The system is unconcerned with the structure of the information in a file; all it
sees is a stream of characters. Individual programs may impose a structure on
the file, and you may see references to records and fields within a file, but the
file itself is the smallest piece of information that is stored under a name and
recognized by the system.

Using directories

A typical system contains many files, perhaps tens of thousands. To keep
track of them, they are divided into directories. A directory is an area of the
file system that is assigned a name; it can contain files and, optionally,
directories. By using the name of a directory instead of the name of a file as
the parameter of a command, you can make the command operate on all the
files stored in that directory simultaneously. The first, top level, directory on
the system is called the root directory; all the other directories and files in the
system trace their ancestry back to it.

Files belonging to a particular user are usually stored in that user's own
directory; those associated with a single project or application are also often
stored in a single directory. Users can also create directories within their home
directory to store files relating to specific projects. The operating system looks
after the organization of system files, but you are responsible for the organiza­
tion of your own files.

File and directory attributes

The system handles files and directories in the same way; directories are just
specialized files, containing other files and directories rather than program
code or text. Files and directories both have a name, a path, and a set of
attributes. Internally, the system keeps track of files and directories using
inodes, or index nodes. See "How the system manages files and directories"
(page 83).

81

Working with files and directories

82

A simple way of checking some of the attributes of a file or directory is the
long listing, obtained using the -I option to the Is(C) command (or just I):

File type Number of links Group

Permissions Owner

-rwxrwxrwx 1 perry techpubs
-rw-r-wr-x 1 perry unixdoc
drwxr-xr-x 2 perry techpubs

What you see in a long listing

Date of last
modification Filename

Size
in bytes

I

Time of last
modification

648509 Jul 26 08:15 minutes
2256 Jul 25 10:23 agenda

48 Mar 02 18.51 bin

• The first field (file type) indicates the sort of file that is present in the listing.
The following codes are some of those used (for a full list, see Is(C)):

ordinary file

b block special file

c character special file

d directory

I symbolic link

p named pipe

• The second field (permissions) shows who is permitted to read, write, or
execute a file, or change to a directory. Users are split into the file's owner,
people in the same work group as the owner, and other people. A separate
set of permissions is maintained for each category. The notation used here
is explained in detail in HAccess control for files and directories" (page 121).

• The third field (links) shows the number of links that exist for the file (links
are discussed in HCreating links to files and directories" (page 94)).

• The fourth field (owner) shows the login name of the owner of the file.

• The fifth field (group) shows the group to which the file belongs; that is, the
group of users who have Hgroup" access permission to the file. See #Finding
out your group" (page 126) for an explanation of groups.

• The sixth field (size) shows the number of bytes in the file.

• The seventh and eighth fields (date and time of last modification) show the
date and time when the file was last modified.

• The final field (filename) shows the name of the file. See iiFilenaming con­
ventions" (page 83) for more on filenames.

User's Guide

Files and directories

How the system manages files and directories

Internally, the system keeps track of files and directories using inodes. An
inode (or index node) is a representation of a file that stores all the data
belonging to that file, such as owner, type, size, access permissions, access
times and the file's layout on disk. Each inode has a unique number which is
used by the system in file handling operations: the filename is simply a device
to make the filesystem easier to use for humans. In fact, while a file may have
only one inode number, it may have several filenames, these being links to the
one inode. See "Creating links to files and directories" (page 94) for more in­
formation on links to files and directories.

Filenaming conventions

The maximum permitted length of a file or directory name is 255 characters.
In fact, this is controlled by the value of the {NAME_MAX} constant; to check
the value of this, use the getconf(C) command, as follows:

$ getconf NAME_MAX •
255

Pathnames, which are described in i'How directories are organized" (page 84),
have a maximum permitted length of 1024 characters (as controlled by
{PATH_MAX}, which is also controllable using getconf).

An important consideration, where Open Systems are an issue, is filename
portability. Many of the international standards specify a character set that
should be used for the construction of portable filenames. The IEEE POSIX
standard, for example, specifies the following Portable Filename Character
Set:

• the uppercase letters (A-Z)

• the lowercase letters (a-z)

• the decimal digits (0-9)

• the dot (.), the hyphen (-) and the underscore C)

• the slash (I): this is a special case which is discussed below

Portable filenames should not begin with a hyphen, although it may appear in
any other position. Specifically, the following characters should not be used in
file or directory names because they have a special meaning for the UNIX sys­
tem:

!"i1;/$<>() I {}[]-

The slash character (I) signifies both the root directory and the pathname ele­
ment separator, and is valid only in these contexts. See "How directories are
organized" (page 84) for more information on pathnames.

83

Working with files and directories

Filenames may begin with a dot (.), but this has the effect of excluding them
from normal directory listings. See "Listing the contents of a directory" (page
87) for details of how to list these "hidden" files.

Managing directories

Together with files, directories constitute the UNIX filesystem, which has a
characteristic inverted tree structure beginning at the root directory. As with
files (see "Managing files" (page 101», you can create, rename, copy, erase,
and compare directories. You can also set access permissions on directories to
prevent or enable their use by other users. This is explained in "Access control
for files and directories" (page 121).

How directories are organized

84

Directories are organized as an inverted tree structure. Only one directory, at
the top of the tree, is not contained in any other directory. This is called the
root directory, and its name is represented by a slash (j) character. To help
clarify this, look at the following picture of part of a directory tree:

In this picture, directories are depicted by ovals, and ordinary files by
rectangles. Notice that most of the directories have lines coming out of them,
indicating that they lead to files or other directories.

When you work within a UNIX filesystem, you always have a current working
directory. All filenames and commands that you type at the prompt are
evaluated with respect to this position. When you log in, your current work­
ing directory is set to the directory created for your user account. This location
is known as your home directory.

User's Guide

Managing directories

Any file or directory on the system can be specified uniquely by its pathname.
Pathnames are instructions for finding a file or directory; they list, in order,
each directory you must pass through to get to the file or directory in
question. When the pathname is written down, the directories are separated
by slashes (/). For example, the full pathname of the file called review in the
diagram above is lusrlsusannalreview. The first slash character denotes the root
directory: all the others are separators.

A pathname that begins at the root directory is called an absolute or full path­
name. There are also relative pathnames, which give directions to a file relative
to your current working directory. Two dots in a row (..) represent the parent
of the current directory.

For example, if you were working in the directory called /usrlsarah and you
needed to specify the file in lusrlsusanna called mbox, you could use the rela­
tive pathname . ./susannalmbox, or the absolute pathname /usrlsusannalmbox.
(Remember, " .. " refers to the parent directory of the current working direc­
tory; so in this case it refers to lusr, which is the parent of both susanna and
sarah.)

An example: what the system contains

When an sea OpenServer system is installed, many directories are created
automatically. The following figure shows a partial structure of a UNIX root
filesystem. (A full root filesystem would be too large to show here.)

bin

/ (the root directory)

dev
(device files)

tmp
(system

scratch pad)
etc

(system files
and commands)

I

default
(system
default
files)

I
I

auth
(system
security)

bin
(more basic
commands

plus any
application
commands)

usr

I
lib

(application
library files)

teb
(trusted

computer
base or user
security files)

unix
(the kernel)

I
spool

(application
queued files)

85

Working with files and directories

/ The root directory is the root of the filesystem tree. Every
directory is a subdirectory of root.

/bin and /usr/bin These directories contain most of the UNIX system com­
mands. Generally, standard UNIX commands and applica­
tions are held in /bin, whereas group-specific commands
and applications, that is, those used by a particular group of
users, are held in /usr/bin.

/dev This directory contains all the special device files. Special
device files are access points to all the peripherals connected
to the system.

/etc This directory contains many of the system configuration
files and system administration commands.

/unix This file contains the UNIX kernel program. This program is
loaded into memory when the operating system starts up. It
is the heart of the seQ OpenServer system; for more infor­
mation see #The UNIX system kernel" (page 397).

/usr/lib This directory contains many application library files.

/usr/spool This directory is used by many commands for storing tem­
porary files or files in a queue.

/var/opt/ This directory contains storage sections. See #Creating a link
to a directory" (page 96) for information about symbolic
links and storage sections.

Creating a directory

86

To create a new directory, use the mkdir(C) (make directory) command, as
follows:

mkdir directory

The directory argument can be either a simple name, in which case the new
directory is created within the current working directory, or a pathname. For
example, if you want to create a new subdirectory called projects in the direc­
tory called /u/workfiles, you can do the following:

$ mkdir /u/workfiles/projects

You get the same result by entering the following:

$ cd /u/workfiles
$ mkdir projects

The cd command stands for "change directory". See #Navigating the filesys­
tern" (page 92) for more details.

User's Guide

Managing directories

For details of naming conventions for directories, see "Filenaming conven­
tions" (page 83).

You can create a directory within any directory where you have write permis­
sions. See" Access control for files and directories" (page 121) for details of
how to manage access to files and directories.

You can create several directories at the same leveL For example, to create
directories called directoryl through directory3, use the following command:

$ mkdir directoryl directory2 directory3

If you need to create an entire directory path at once, use the mkdir -p (path)
option. The following command creates a directory called user .$Uide, and any
of the other directories in the specified path that do not already exist:

$ mkdir -p projects/myprojects/user_guide

Bear in mind that the efficiency of the filesystem has some impact on overall
system performance. For example, you should not let your directories grow
larger than necessary. Ideally, a directory should contain no more than 640
files (providing that the number of characters in each filename is 14 or less),
otherwise it may take the system longer to search the directory whenever you
access a file stored in it. If you use longer filenames, the limit may be lower.
File size is also significant: large files impose overheads on access. See "Look­
ing at the contents of a file" (page 102) for more information.

Listing the contents of a directory

The names and other information about the files and subdirectories contained
within a directory can be displayed using the Is(C) family of commands. In its
simplest form, Is gives a list of the filenames found in the current working
directory, as follows:

$ ls
cs-save
gav_make
glossary.s
graphics
intro.err
nohup.out
procs.txt

To see a list of the filenames in a multi-column format, use the Ie variant, as
follows:

$ 1c
cs-save
gav_make
glossary.s
graphics

intra. err
nahup.out
pracs.txt

87

Working with files and directories

88

For a full listing, giving file size, permissions, owner and other items of infor­
mation, use the Is -I option, as follows:

$ Is -1
drwx------ 2 chris
drwxr-xr-x 2 chris
-rw-r--r-- 1 chris

techpubs
techpubs
techpubs

64 Ju1 07 17:19 tools
80 Jul 06 16:51 trash

6204 Sep 23 09:34 travel

For a complete breakdown of this information, see "File and directory attri­
butes" (page 81). In fact, this version of the command is used so commonly,
that it can be entered in shorthand, as I(C).

As we saw in "Filenaming conventions" (page 83), filenames may begin with a
dot, in which case, the files are hidden from normal directory listings. The Is
-a (all) option displays hidden files as well as normal files, as follows:

$ Is -a

.history

.kshrc

. mailbox

.profile
cs-save
gav_make
glossary.s
graphics
intro.err
nohup.out
procs.txt

To list the contents of another directory, without first moving to that direc­
tory, use the Is command, specifying the directory to look at as an argument,
as follows:

$ Is /u/workfiles/projects

This command line lists the contents of a directory called lulworkfileslprojects.

You need permission to read a directory before you can view its contents. See
"Access control for files and directories" (page 121) for an explanation of per­
missions.

User's Guide

Managing directories

The tilde-plus sequence C +) is expanded by the shell to point to the current
working directory (actually, the value of the PWD environment variable). A
more useful variant of this notation is the tilde-minus notation C -), which
expands to the value of OLDPWD, that is, the previous working directory.
This allows you to refer back to your earlier work without having to type in
the relevant pathname, as follows:

$ ls -1
drwx------ 2 chris
drwxr-xr-x 2 chris
-rw-r--r-- 1 chris
$ cd •• /project2
$ ls -1
-rw-r--r-- 1 chris
drwxr-xr-x 2 chris
$ ls -1 --
drwx------ 2 chris
drwxr-xr-x 2 chris

techpubs
techpubs
techpubs

techpubs
techpubs

64 Jul 07 17:19 tools
80 Jul 06 16:51 trash

6204 Sep 23 09:34 travel

3137 Oct 24 17:49 agenda
96 Aug 31 13:08 bin

techpubs 64 Jul 07 17:19 tools
techpubs 80 Jul 06 16:51 trash

-rw-r--r-- 1 chris techpubs 6204 Sep 23 09:34 travel

If you list the contents of a directory that contains more files and subdirec­
tories than can be displayed on one screen, the list scrolls continually until all
the files have been displayed. This makes it very difficult to read them. To
view the list one screen at a time, type the following:

$ ls I more

The output from Is is piped to the more(C) command which then displays it;
more prints its input one screen at a time. (See "Running commands in a pipe­
line" (page 120) for more information about pipes.) Press (Enter) to scroll down
by one line, or the (Space) bar to scroll down by one screen. Otherwise, you
can pipe the output from Is into the pg(C) command, which performs a simi­
lar operation. The main difference between the two is that pg allows you to
step backward through a file (by pressing the minus key (-)), as well as for­
ward (by pressing (Enter) or the plus key (+)).

Another way to pause the scrolling is to use the (Ctrl)S and (Ctrl)Q keystrokes.
Press (Ctrl)S to temporarily stop the scrolling, and (Ctrl)Q to continue. If you
want to stop the listing completely, press (Del). These keystrokes depend on
your terminal setup; if they do not seem to work, ask your system administra­
tor to help you.

89

Working with files and directories

Renaming a directory

To rename or move a directory, use the mv(C) (move) command, as follows:

mv oldname newname

oldname is the directory's current name, and newname is the new name you
want to assign it. As with the mkdir command, arguments to mv may be sim­
ple names or pathnames, as follows:

$ mv users_guide uguide
$ mvappendix •• /docset2/admin_guide/app

The first of these commands renames a subdirectory: the second renames a
directory from appendix to app, at the same time moving it to another location.

Copying a directory

To copy all the files in a directory, use the copy(C) command, as follows:

copy old_directory new_directory

old_directory is the name of the directory you want to copy, and
new_directory is the name you want the copy to have. Simple names and
pathnames are acceptable in both cases.

In order to copy a directory and all its files, you must have read and execute
permissions on that directory, read permission on the files in that directory,
and write permission on the directory into which you want to copy. See
1/ Access control for files and directories" (page 121) for details.

Removing a directory

90

To remove an empty directory, use the rmdir(C) command, as follows:

rmdir directory

This will fail if there are any files or subdirectories in the directory. If this is so,
you must either delete the files it contains, or move them to other directories.
The only exceptions are the dot and dot-dot directories, which you cannot
delete, and which are dealt with by the UNIX system itself.

You can remove a directory and any files it contains by using the rm -r option,
as follows:

rm -r directory

Be very careful when doing this because the -r option tells rm to recursively
enter any subdirectories and remove their contents. You may remove more
than you expect. It is often safer to use the rm -i option. See "Removing a file"
(page 105) for information on interactive deletion. You must have write per­
mission on a directory before you can remove it.

User's Guide

Managing directories

Comparing directories

Comparing directories is useful when two people are working on the same set
of files, for example, the chapters of a book. By comparing the directories you
can quickly identify which files are different.

To compare two directories, use the dircmp(C) (directory compare) command,
as follows:

dircmp directoryl directory2

The output is a list of the differences between the directory listings for
directoryl and directory2, for example:

$ dircmp ./dirl ./dir2
Jan 12 10:54 1995 dir1 only and dir2 only Page 1

· It. appx. s
· It .prog. s
· It. scosh. s
· It. shell. s

Jan 12 10:54 1995 Comparison of dir1 dir2 Page 1

directory
same
same
same

./0.ct.s

.IOO.partno.s

.IOO.title.s

The top of the listing consists of those files which are unique to one or other of
the directories; in this example, dir2 contains four files which are not present
in dirl. The listing then contains a detailed comparison of every file which is
named in both directories.

91

Working with files and directories

Navigating the filesystem

The following sections explain how to find out where you are in the directory
tree, how to move from directory to directory, and how to list the contents of
a directory.

Finding out where you are in the system

After a number of cd operations, it is possible to lose track of where you are in
the filesystem. To identify your current directory, use the pwd(C) (print work­
ing directory) command. This command takes no arguments.

The output from pwd shows the absolute pathname of your current directory.
For example, if your login is johnd and you are in your home directory (which
is a subdirectory of lusr), the output would probably look like the following:

$ pwd
/usr/johnd

If you are using the Kom shell (see "Identifying your login shell" (page 224) if
you are unsure about this), you will find it useful to issue the following com­
mand as soon as you log in, or add it to your login script:

alias pwd='pwd -P'

The reason for this is explained in "Navigating symbolic links" (page 97).

Changing directory

92

Once a directory system exists, you need to know how to get from one direc­
tory to another, thereby changing your current working directory. This is
done using the cd(C) (change directory) command. As an argument to the
command, you specify the directory you want to change to, as follows:

cd directory

For example, if your current directory is lu/johnd, you can to change to a direc­
tory called lulworkfileslprojects by specifying its absolute pathname, as follows:

$ cd /u/workfiles/projects

You can also change to the directory by specifying its relative pathname, as
follows:

$ cd •• /workfiles/projects

Note that you must have execute permission on a directory before you can
change to it. See "Access control for files and directories" (page 121). See
"Returning to your home directory" (page 93) for details of a special usage of
cd.

User's Guide

Navigating the filesystem

Returning to your home directory

You can return to your home directory from anywhere in the directory struc­
ture by typing cd on its own.

Your home directory is stored in the HOME environment variable. You can
display this value using the following command line:

$ echo $HOME

Remember to include the dollar sign in the command line: without it, the
echo(C) command will simply return the word "HOME". For an explanation of
environment variables, see "Understanding variables" (page 226). For more
on the echo command, see "Forcing a program to read standard input and
output" (page 119).

A useful tool for filesystem navigation is the tilde character C). The shell
expands a tilde to the absolute pathname of your home directory. This nota­
tion can be included in a pathname, as follows:

$ pwd
/tmp
$ cd -/i486/dev/backup/scripts
$ pwd
/usr/martins/i486/dev/backup/scripts

Because the pathname is absolute, you do not need to know where it is in rela­
tion to your current working directory.

The tilde can also be used in conjunction with other users' login names, acting
as a shorthand way of accessing their files without necessarily knowing
exactly where their home directories are located. For example, the following
command line allows you to check a colleague's directories for any file called
hyacinth:

$ find -john -follow -name hyacinth -print

(See "Finding files" (page 113) for how to use the find command.)

93

Working with files and directories

Creating links to files and directories

You may need to make a file accessible from more than one directory, and by
more than one user, but still keep it as a single file. This is often the case when
you need to share the data in a file with your colleagues. To prevent different
versions of the file from proliferating, only one copy of the file exists, but links
are created that allow you and your colleagues to access the file from your
home directories or another convenient location. (Note that there is the
danger of a file becoming corrupted if more than one person tries to edit it at
the same time.)

Creating a link to a file

94

To create a link to a file, use the In(C) command, as follows:

In filename linkname

For example, suppose you have a file called user -$Uide which is located in
/u/workgrp/tasks/projects. To work on this file you would normally cd to that
directory before opening the file. However, by creating a link to the file, you
can access it from your current directory (without needing to enter the full
path of the file). To do this, type the following:

$ In /u/workgrp/tasks/projects/user_guide my_guide

The mY-$Uide argument identifies the link. Whenever you want to work on the
file, which is now known to the system by two names (user -suide and
mY..$uide), you can access it from the current directory by using mY-$Uide as
the filename.

You must have write permission on a directory before you can create a link
that involves that directory or a file in that directory. You cannot create a hard
link (the kind of link described above) to a directory or a file on a different file­
system. To create a link to a directory or a different filesystem, you must use a
symbolic link. See "Creating a link to a directory" (page 96) for details.

Links can be removed using rm. If a file has several links, it is not physically
deleted until the the final link is removed.

User's Guide

Creating links to files and directories

Finding out whether a file has hard links

To find out how many hard links there are to a file, use the Is -lor 1 (long list­
ing) command, as follows:

$ 1
-rw-r--r-- 1 johnd unixdoc 10586 Feb 25 12:26 1.start
-rw-rw-r-- 2 johnd techpubs 61339 Feb 24 14:45 2.scosh
-rw-rw-r-- 1 johnd techpubs 14741 Feb 25 11: 18 3.dire
-rw-rw-r-- 3 johnd techpubs 40419 Feb 25 15:57 4. files

You need to locate all the links to a file or directory if you want to delete it: as
long as there are links, you cannot delete the file or directory.

In a long listing, the number of links are shown in the second column from the
left (after the sets of permissions). For example, in the above example, the file
4.files has three links to it.

You can find out where the common links to a single file are located, in two
steps. First, you need to identify the inode number of the file (see "How the sys­
tem manages files and directories" (page 83) for information on inodes). To do
this, use the Is -i option, as follows:

$ ls -i
20350 basking_shark

3886 cod
2002 halibut
3526 herring

10182 narwhal

The number before the filename is the file's inode number, for example, 2002
for the file called halibut.

To trace all the links to this file, you must find all the other files in the file­
system with this inode number. You can do this using the find -inurn option,
as follows:

$ find / -inum 2002 -print 2>/dev/nu11
/u/dave/tmp/halibut
/u/charles/fish6
/u/michael/project2/ichthyo14

In this case, there are three files with the same ina de number. In order to
delete this file from the filesystem, it would be necessary to run rm on all the
links.

95

Working with files and directories

Creating a link to a directory

96

It is often useful to change to another directory without typing its full path­
name: symbolic links provide a useful shortcut to do this. A symbolic link
differs from a hard link. It is a small file that contains a reference (by name) to
a directory or file that already exists. Unlike normal links, symbolic links can
cross file systems and link to directories. (They are used extensively by the sys­
tern.) Also unlike normal links, symbolic links are separate files; they cease to
work if the file they point to is deleted or renamed, or if they are moved.

Many of the files found in /bin, /lib, and /usr are actually symbolic links that
point to files (of the same name) stored below /var/opt. The directories these
files are located in are called "storage sections". Storage sections are used
because they make it easier to install system upgrades. Software subsystems
(such as UUCP) consist of many files, which may be installed in several direc­
tories. However, all the files in a subsystem belong to a single storage section.
By overwriting the contents of the (single) storage section directory, all the
files in the subsystem can be updated simultaneously.

Symbolic links are identified in a directory listing by a 1/ -> ", as follows:

$ 1
drw-r--r-- 1 johnd unixdoc
group/tasks/project/01

29 Feb 27 15:56 mydata -> /u/work

You can obtain a directory listing without symbolic links visible in it by speci­
fying the -L (logical) option. This makes Is (or 1, or any related program) list
the directory, replacing the information about each symbolic link with the
details for the file pointed to by the link:

$ 1 -L
drw-r--r-- 1 johnd unixdoc 10297 Feb 27 15:56 mydata

To create a symbolic link, use the In -s option, as follows:

In -s directory symbolic_link

For example, suppose you work in /u/workgrp/tasks/projects and your home
directory is /u/me. Your normal command to work on a file would be the fol­
lowing:

$ cd lu/workgrp/tasks/projects

To reduce the typing required, enter the following command:

$ In -s lu/workgrp/tasks/projects mydata

This command creates a symbolic link called mydata in your current directory.
From now on, mydata and /u/workgrp/tasks/projects refer to the same location,
and you can relocate to /u/workgrp/tasks/projects by typing cd mydata instead
of typing in the full pathname.

User's Guide

Creating links to files and directories

You must have write permission on a directory before you can create a link
that involves that directory or a file in that directory.

See also "Access control for files and directories" (page 121).

If you remove a symbolic link, only the link itself is removed. If you remove
(or move) the directory or file to which the link points, the link will be left
pointing to nothing.

Navigating symbolic links

Because the system uses symbolic links extensively, you may encounter prob­
lems in identifying your current working directory. For example, suppose you
create a symbolic link to a directory, then change directory using the new link,
as follows:

$ In -s /u/workgrp/tasks/projects mydata
$ pwd
/u/people/mike
$ cd mydata
$ pwd
/u/people/mike/mydata
$

In this example, you create a symbolic link called mydata, pointing to
/u/workgrp/tasks/projects. However, if you change directory via the link mydata,
you actually see yourself as being in /ulpeople/mike/mydata. This is the logical
present working directory; that is, the path the user traversed to reach the
directory. The directory also has a physical path, that is, the actual pathname
of the current directory, relative to the top of the filesystem.

Now you are in /u/workgrp/tasks/projects. Suppose you create another symbolic
link and change directory into it:

$ In -s /u/people people
$ pwd
/u/people/mike/mydata
$ cd people
$ pwd
/u/people/mike/mydata/people
$

When you change directory into people, you are following a link to /ulpeople.
This is higher in the directory tree than your original starting point, but
because you are traversing another symbolic link, your logical present work­
ing directory is another level down the tree.

97

Working with files and directories

If you then type cd .. (to go up a directory), where you end up depends on
your shell. If you are running the Korn shell, the cd .. command goes up a
level in your logical directory path: /u/peopZe/mike/mydata becomes your
present working directory. If you are running any other shell, the cd .. com­
mand goes up a level in your physical directory path: /u becomes the present
working directory.

Despite the apparent complexity, it is possible to determine your physical
working directory in a directory tree populated with symbolic links. There are
two techniques, for Korn shell users and for others:

Korn shell users Use the command pwd -P to identify your abso­
lute current working directory. (The command
pwd is built into the Korn shell. It normally
returns the logical present working directory; the
-P option makes pwd return the physical path to
the current directory.

others Use the command pwd(C). The non-Kom shells
do not include a built-in pwd command. The
external pwd command returns the physical path
to the current directory by default.

In general, directory traversal commands built into the Kom shell accept two
options, -P and -L. -P makes the command refer to the physical working direc­
tory, while -L makes the command refer to the logical working directory (that
is, to the path taken through any symbolic links).

The equivalent commands, in any other shell, always apply to the physical
working directory.

Mounting a filesystem

98

In addition to containing loose files, a storage medium may be used to store a
whole filesystem, with its own root directory and subdirectories. A file system
stored in this way can be mounted onto the main file system using the mnt{ C)
command.

User's Guide

Mounting a filesystem

Once a filesystem has been mounted on another filesystem, its root directory
appears as a subdirectory of the parent file system. You can enter the mounted
filesystem by using cd, and it looks just like another subdirectory hierarchy,
even though it resides on another physical device.

I

Imnt

Mounting a filesystem

To mount a CD-ROM filesystem, for example, you must first place the disk in a
CD-ROM drive installed on your computer, then use the mnt command. For
example:

$ mnt /mnt

The /mnt directory is a mount point; when a device is mounted on it that
device's root directory appears in the filesystem instead of /mnt. Any files that
existed in /mnt before the new filesystem was mounted on it are obscured,
although they will be accessible again when the file system is unmounted.

Once the CD-ROM is mounted, it appears on the system as a tree of subdirec­
tories, with the root directory of the CD-ROM located in the mount directory
/mnt.

The mnt command reads a file called /etc/defaultlfilesys (see filesys(F», which
contains a list of mountable filesystems. This file also specifies the name of the
device associated with the filesystem (the bdev keyword) and the absolute
pathname of the filesystem's mount point within the parent file system (the
mountdir keyword).

99

Working with files and directories

100

Your system administrator must have added an entry to this file before you
can use mnt to mount a CD-ROM. You can examine the contents of
letcldefaultlfilesys with the mnt -t option, as follows:

$ mnt -t

Mount Directory:
Block Device:
Character Device:

Password required:
Mount if requested:
Fsck if requested:

Fsck flags:
Mount at system startup:

Fsck at system startup:
Fsck options:

Run command before mounting:

Run command after mounting:

Mount Directory:
Block Device:
Character Device:
Password required:
Mount if requested:
Fsck if requested:

Fsck flags:
Mount at system startup:

Fsck at system startup:
Fsck options:

Run command before mounting:

Run command after mounting:

/apps
/dev/apps
/dev/rapps

No
No
Only if filesystem is dirty
-y

Yes
Only if filesystem is dirty
-y

No
No

/private
/dev/private
/dev/rprivate

No
Yes
Only if filesystem is dirty
-y

Yes
Only if filesystem is dirty
-y

No
No

Otherwise, use cat(C) to show the contents of !etcldefaultlfilesys, as follows:

$ cat /etc/default/filesys

bdev=/dev/apps cdev=/dev/rapps \

mountdir=/apps rcmount=yes
mount=no fsckflags=-y

bdev=/dev/private cdev=/dev/rprivate

mountdir=/private rcmount=yes \
mount=yes fsckflags=-y

For a file system to be mountable by a user other than the root. user, its
letcldefaultlfilesys entry must contain the command mount=yes. In the example,
the filesystem Idevlprivate is mountable by users while Idevlapps is not.

User's Guide

Managing files

To urunount a filesystem, use either the umnt(C) command, as follows, or the
mnt -u option.

$ umnt hnnt

You can also mount a DOS filesystem, allowing the use of DOS files without
first copying them into the UNIX filesystem. For details, see "Using mounted
DOS filesystems" (page 179).

Managing files

The directory handling operations (creating, deleting, administering and navi­
gating) allow you to impose a structure on your area of the filesystem. It is the
files, however, that store information like program code, text, database
records and graphics. The SCO OpenServer system supplies a wide range of
commands for managing files. The foll~wing sections discuss some of these.
Some of the more complex systems are discussed in other chapter; see, for
example, "A quick tour of vi" (page 132) for an explanation of how to use the
vi(C) editor.

Finding out what type of data a file contains

As we saw in "File and directory attributes" (page 81), the system supports
numerous different file types. The contents of text files, for example, can be
displayed on the screen using such commands as cat, more and pg. Doing this
with a binary (or compiled program) file, may cause the screen to lock, as
such files usually contain many control characters. (See "Looking at the con­
tents of a file" (page 102) for more on the display commands and on garbling
your screen.)

To avoid using an unsuitable command to display the contents of a file, first
find out what kind of information a file contains. To do this, use the file(C)
command, as follows:

$ file mbox
mbox: ascii text
$ file tools
tools: directory
$ file Ibin/lc
/bin/lc: iAPX 486 executable

The file command accepts either a simple filename or a pathname as an argu­
ment.

101

Working with files and directories

Looking at the contents of a file

102

The simplest way to look at the contents of a short file is to use the cat(C)
command, as follows:

cat filename

If the file is more than one screen long, it scrolls off the screen, making it
difficult to read its contents. If this happens, press (Ctrl)S to temporarily stop
the scrolling, and (Ctrl)Q to restart the scrolling. If you want to stop the
scrolling completely, press (Del).

If you do not know what is in a file you want to look at, use the cat -v option,
as follows:

cat -v filename

This option causes any unprintable characters infilename to be displayed in a
manner which does not garble your screen. If you do use cat without using
the -v option, and your screen becomes garbled and the machine beeps a lot,
press (Ctrl)(Del), (Break), or (Del) (depending on your terminal). If you cannot
clear it, you may need to ask your system administrator for help.

To look at the contents of a file that is too big to fit on a single screen, use the
more command, as follows:

more filename

You can use the pgcommand in the same way.

You can look at more than one file at a time by using the display commands
with several filenames as arguments, as follows:

$ more file4 fileS file6

In the case of the more command, press (Space) to display a screenful of text.
When you reach the end of the first file, more displays a message at the bot­
tom of the screen (Next file: filename2). Press (Space) again to go to the
next file.

If you want to go directly to the next file before finishing the first, enter :n;
more skips to the next file. See "Listing the contents of a directory" (page 87)
for more information on the more and pg commands.

User's Guide

Managing files

Finding out how much text is in a file

The we(C) command counts the number of lines, words, and characters in a
file, using the options -1, -w, or -e respectively. For example, to print the num­
ber of characters and lines in a file called myfile, execute the following com­
mand:

$ we -cl myfile
32675 684 myfile

The order in which you specify the options determines the order of the out­
put.

You can also give we a list of files to count:

$ we chapl chap3
105 676 3844 chap1
675 3869 24269 chap3
780 4545 28113 total

The total line gives sums for the lines, words and characters in the two files,
chapi and chap2.

Looking at the beginning and end of a file

To look at the first ten lines of a file, use the head(C) command:

head filename

To look at the last ten lines of a file, use the tail (C) command:

tail filename

If you use a numerical option, for example -20, head or tail will print that
number of lines (20) instead of ten, the default, as follows:

$ head -20 file6.txt

Copying a file

To copy one or more files, use the ep(C) command, which takes one of the fol­
lowing formats:

ep filename copyname
ep filename ... pathname

In the first format, filename (with optional path) is the name of the existing file
that you want to be copied; copyname (with optional path) is the name you
want the copy to be created with.

If you are using the second format to copy a group of files, you can only
specify a directory, pathname, as the destination of the specified files.
filename and copyname cannot be the same if they are both in the same direc­
tory.

103

Working with files and directories

When you copy a file you are creating a duplicate of it, which occupies addi­
tional space in the filesystem. Although the contents of the new file are the
same as those of the original file, the new copy has its own inode number; any
operations carried out on it have no impact on the original.

For example, to copy the file projectl from your current directory to the direc­
tory /u/workgrp, type the following command:

$ cp projectl lu/workgrp

The copy will retain the name projectl, but will have a different pathname.

You can copy a file to your current directory by typing a command line like
the following:

$ cp •• I .. /a.out •

In this case, the file called a.out is located two levels above the current work­
ing directory, and is to be copied to the current location (as indicated by the
"." notation).

NOTE When copying a file, be careful not to overwrite an existing file. To
avoid this, do not create a copy with the same name as an existing file, as
this will overwrite (clobber) the contents of the existing file. This can be
avoided by setting the nodobber variable. See "More about redirecting
input and output" (page 256) for details.

When you copy a file, you automatically become its new owner. Accordingly,
you must have read permission on a file before you can copy it. You can place
files in any directory for which you have write permission. If you want to
create a copy of a file without changing its ownership, use the command copy
-0 instead of cp; this preserves the owner and group of the file. For example,
to copy /tmp/johnsfile to your home directory without changing the ownership
of the file, type the following:

$ copy -0 Itmp/johnsfile johnsfile

For information on how you can assign the ownership of a file to someone
else, see "Giving a file to someone else" (page 125) and "Access control for
files and directories" (page 121).

Moving or renaming a file

104

To move one or more files to another directory, use the mv(C) command, as
follows:

mv filename . .. pathname

The one or more filename arguments (with optional path) specify the file or
files you want to move; pathname is the path to the directory where you want
to put the file.

User's Guide

Managing files

For example, to move the file projectl from your current directory to the dir­
ectory /u/workgrp, type the following:

$ mv projectl lu/workgrp

The procedure for moving files is the same as for renaming files. You rename a
file by moving it to a new filename. To move (rename) a file, type the follow­
ing:

mv old_filename new_filename

old_filename is the file's current name and new_filename is the name you
want to change it to.

You can move a file to a different directory and rename it at the same time. For
example, the following command line moves chapter.l to /u/workgrp and
renames it to finished. chapter. one at the same time:

$ mv chapter.l lu/workgrp/finished.chapter.one

You can place files in any directory to which you have write permission. To
move a file, you need read permission unless you own it.

NOTE If you give a file the same name as an existing filename, the contents
of the existing file are overwritten or "clobbered". The existing file is deleted.
(You can make the system refuse to overwrite existing files by setting the
no clobber variable: see "Specifying command input and output" (page 118)
for details.)

Removing a file

To remove (or destroy) a file, use the rm(C) command, as follows:

rmfilename

Once a file is removed from the system, there is no way of getting it back
unless a backup exists on tape or floppy disk, or the filename is a link, or
versioning is available. Links are explained in "Creating links to files and
directories" (page 94); file versioning is explained in "Retrieving deleted files"
(page 114).

You can list several files to be removed, or use wildcards to select files. You
cannot remove directories with this form of the rm command.

NOTE It is potentially dangerous to use wildcards to remove files. Before
doing so, you should confirm that the correct files have been selected: do so
by running the Is command in place of rm. Because the expansion of any
filename notation is handled by the shell and not by the individual com­
mand' the files selected by Is are the same as those that will be selected by
rm.

105

Working with files and directories

106

To remove files interactively, use the -i option, as follows:

rm -i filenamel filename2 ...

rm with the -i option asks for confirmation before removing a file. A question
mark is displayed and you can either type Ny" to remove the file, or lin" to not
remove it. It is a good idea to use rm -i to reduce the risk of accidentally
removing files. For example, to remove several files from the current direc­
tory:

$ rm -i f*
filel: ?y

file2: ?y

file3: ?y

format.doc: ?n

As a further safeguard, it may be useful to create an alias, whereby executing
rm -r * actually executes rm -ir *: the -i option causes rm to delete files interac­
tively; that is, you must confirm the deletion of each file before it is carried out.
See "Using aliases" (page 237) for details of how to create an alias.

Note that using wildcards does not remove hidden files (those whose name
begins with a dot); that is, typing rm * does not necessarily remove all the files
in a directory. To list the hidden files, type Is -a. For example, if you have a file
called .project, you can remove it by typing the following:

$ rm .project

Remember that there are always at least two files that cannot be removed
from a directory; "." (the current directory), and " .. " (the parent directory).

You can remove a file from a directory other than your current one if you have
write permissions on that directory.

Removing files with difficult names
Occasionally, files are created by accident with awkward names. For example,
they might contain a slash (I) or an asterisk (*) character. These files cannot be
removed by normal means without the risk of destroying other files, because
if you try to type their names, the shell will interpret the special characters as
wildcards.

For example, suppose you have a directory that contains a corrupted file
called all * file and a number of files called filel and file2 that you want to
keep. If you type rm all * file, rm will interpret the II * " in the filename as a
wildcard, and attempt to execute the following:

rm all filel file2 file

This command thereby inadvertently deletes filel and file2.

User's Guide

Managing files

To correctly remove files with corrupted names, the easiest solution is to use
the rm -i option. In this case, rm will prompt you for confirmation before
removing each of the specified files in the current directory; type" n " for each
file other than the corrupt one you want to remove, as follows:

$ rm -i a*
all * file: ? y

Alternatively, specify the name of the file, surrounding it with single quotes:

$ rm 'all * file'

The single quotes prevent the shell from expanding the special character" *"
in the file's name.

If you have a file that begins with a hyphen (-), rm will mistake its name for an
option of some kind. For example, if your file is called -myfile, rm -myfile will
be mistaken for an invalid rm command. You can overcome this by invoking
rm with the special option, --, which tells rm that the following argument is
not an option:

$ rm -- -myfile

See Chapter 12, "Regular expressions" (page 315) for an explanation of shell
wildcards. See "Filenaming conventions" (page 83) for an explanation of what
constitutes an illegal filename.

Comparing files

It is often necessary to compare the contents of two files and list any
differences. This may be because you have made some changes to a file and
cannot remember them; if you have a previous version of the file, you can
compare the two. You may have two files with the same name in different
directories; you can compare them to see if they are different files or two ver­
sions of the same file.

To see if two files differ, use the cmp(C) (compare) command which reads filel
and file2 and reports whether or not they are different:

cmp filel file2

If they differ, cmp reports the point at which the two files diverge. This is
reported in terms of the number of characters into filel at which the difference
was detected, and the number of the line containing that character, as follows:

$ cmp chapter4 chapter4.bak
chapter4 chapter4.bak differ: char 28895, line 849

In this case, the two files are the same up to a point on line 849 of chapter4.

107

Working with files and directories

108

To see the precise differences on a line-by-line basis, use the diff(C) command,
as follows:

diff filenamel filename2

For example, consider the following two files, note.l and note.2:

$ cat note.l
Charles
Please send me a report.
I need it for tomorrow's meeting.
Thanks
Bridget
$ cat note.2
Charles
Please send me a report today.
I need it for tomorrow's meeting.
Thank you
Bridget

To compare these files, line by line, use the diff command as follows:

$ diff note.l note.2
2c2

< please send me a report.

> Please send me a report today.
4c4
< Thanks

> Thank you

The I/2e2" means that there is a change (lie") between line 2 in the first file and
line 2 in the second. Likewise, the II 4c4" means that there is a change between
line 4 in the first file and line 4 in the second. The 1/ <" refers to a line in the first
file, and 1/>" refers to a line in the second file. The " ___ " separates the output
from each file.

If you want to compare three files, use the di:ff3(C) command. If you want to
compare two sorted files, use comm(C).

User's Guide

Managing files

Sorting the contents of a file

You can sort a file containing lines of text or numerical data in a variety of
ways using the sort(C) command. For example, suppose you have a file called
names containing the following:

perry
john
sarah
charles

To sort its contents alphabetically, enter the following command:

$ sort names
charles
john
perry
sarah

To direct the sorted output to a file (namesl) rather than the screen (standard
output), you can use either of the following command lines:

$ sort -0 namesl names
$ sort names > namesl

You can cause the original file to be sorted by giving the original filename for
both arguments.

You can make sort merge two files together, in order. To do this, type the fol­
lowing:

sort filenamel filename2 > filename3

This creates filename3, which contains the sorted, merged contents of
filenamel and filename2. (The sort command sorts the files as it merges them.)
You can use the -u option to tell sort to make sure that each line in filename3
is unique; that is, if both filenamel and filename2 contain an identical line,
only one copy of the line will be written to filename3:

$ cat filel
perry
john
sarah
charles
$ cat file2
susanna
charles
bridget
john

109

Working with files and directories

110

Running the sort command on these files merges the contents and places
them in alphabetic order, as follows:

$ sort -u file1 file2 >file3
$ cat file3
bridget
charles
john
perry
sarah
susanna

There are several more options that can be used with sort. For example, -r
sorts in reverse order; -n sorts on numerical order, not text order; -M causes
sort to assume that the first three characters of the field being sorted are
months (like "JAN", "FEB", "MAR", and so on) and sorts them into date order.

You can make sort select any field in a line and have it base its comparisons
on that field, as follows:

$ cat birthdays
charles FEB
bridget DEC
sarah JAN
$ sort -M +1 birthdays
sarah JAN
charles FEB
bridget DEC

The +1 flag tells sort to make comparisons between records on the basis of the
second field of each line. So, the month abbreviation on each line of the file is
used as the basis for the sort operation above, and not the alphabetic order of
the first field.

If you have a file where data records are made up of fields separated by some
special character (called a "separator"), you can tell sort to use that separator
by using the -t option, as follows:

$ cat birthdays
charles:FEB
bridget:DEC
sarah: JAN
$ sort -M +1 -t: birthdays
sarah:JAN
charles:FEB
bridget:DEC

User's Guide

Managing files

Searching for text in a file

To search one or more files for some text, you can use the grep(C) command,
as follows:

grep options text filenames

(" grep" is an acronym for "global regular expression print"; for a full explana­
tion of regular expressions, see Chapter 12, "Regular expressions" (page 315).)

grep searches the contents of filenames for text, and prints any matches. You
might want to do this if you cannot remember the name of a file in which you
left some information, but can remember enough of it for grep to find it for
you.

For example, you might want to locate a memo in the current directory (full of
files called something. memo), when you know that the file you are looking for
contains the string "Subject". The command to use is as follows:

$ grep 'Subject' *.memo
stan.memo:Subject: That's another fine mess you've gotten us into!

grep prints the context of any matches, line by line, with the relevant filename
(where more than one file was specified for the search) followed by the line of
text that contains the specified string.

The single quote (' ') marks are necessary if you want to search for a string
containing spaces, tab characters, or double quote marks. Double quote (" ")
marks are necessary if you want to search for a string containing single quote
marks; you should put a backslash immediately in front of each quote charac­
ter (\' \'), as follows:

$ grep "I\'m right" stan.memo
Thanks for nothing. I'm right in the center of it (or

If you are not sure whether the string is uppercase, capitalized, or all lower­
case letters, use the grep -i (ignore case) option; grep ignores the case of the
text in the files being searched, and report all matches, as follows:

$ grep -i 'PhD' database.memo
yesterday, when he was awarded his PhD in New
not so easy to get a pHD nowadays, what with
is it PHD, phd, phD, etc? He should have stopped

This search has found all lines containing the string "PhD", irrespective of
how it is capitalized.

111

Working with files and directories

112

If you want to see all lines in a file that do not contain the string, use grep -v.

The use of regular expressions and pattern matching in search operations is
explained in Chapter 12, "Regular expressions" (page 315). See also
regexp(M).

If you have a file containing columns of data in textual form, you can extract
information from it using a variety of tools. For example, supposing you have
a file called blackbook containing names, extension numbers, login names and
dates, in a format like the following:

Michael Stand:571:mikes:JAN-1-91
Sue Penny:284:suep:FEB-6-89
Joshua Ford:954:joshf:JUL-30-88
Liz Addams:553:liza:AUG-15-91

To see Sue Penny's record, use the following command:

$ grep Sue blackbook
Sue Penny:284:suep:FEB-6-89

This is hard to read. To see only Sue's extension number (the second field),
you can use the cut(C) command, as follows:

$ grep Sue blackbook I cut -£2 -d:
284

The cut command extracts individual fields from a file containing records.
The -f2 option tells cut to extract only the second field of each record; the -d:
option means that fields are delimited with a colon. In this way, input records
may contain spaces and tabs without these characters signaling the start of a
new field.

The pipe (I) tells grep to send its output to another program (in this case, to
cut) instead of the standard output. See "Running commands in a pipeline"
(page 120) for more information on pipes.

To see a list of all the people in your file, followed by their login names, you
do not need to use grep: instead, use the cut command, as follows:

$ cut -£1,3 -d: blackbook

The -f1,3 option tells cut to extract the first and third fields in each record:

Michael Stand:mikes
Sue Penny:suep
Joshua Ford:joshf
Liz Addams:liza

User's Guide

Managing files

If you want to put your list in alphabetic order, you can sort it as follows:

$ cut -f1,3 -d: blackbook I sort -df
Joshua Ford:joshf
Liz Addams:liza
Michael Stand:mikes
Sue Penny:suep

A more powerful and versatile tool for this sort of operation is the awk(C)
command. See Chapter 13, "Using awk" (page 323) for an explanation of its
use.

Permanent executable copies of complex command lines like these search
tools can be stored in shell script files for future use. See Chapter II,
"Automating frequent tasks" (page 245) for details.

Finding files

To search the system for a particular file, use the find(C) command, as follows:

find start-point -follow -name filename -print

The start-point argument tells find where to start searching in the filesystem,
for example, root. find searches its starting directory, and all the subdirec­
tories. If you know your file is in one of your own subdirectories you could
tell find to start searching from $HOME.) The -follow option tells find that if it
encounters a symbolic link, it should follow it to the file the link points to, as
described in "Navigating symbolic links" (page 97). The -name option is fol­
lowed by the name of the file you are looking for. Every time find sees a file
with this name, it carries out the actions specified by the subsequent options.
For example, the -print option tells find that the action it must take when it
finds filename is to print its pathname:

$ find Itmp -name myfile.tmp -print
/tmp/myfile.tmp

find gives lots of error messages when you do not have permission to search a
directory, for example:

$ find I -name chap3 -print
/u/charles/stuff/os/chap3
/u/w/Xenix/OS2.3.2/Intlsupp/Guide/chap3

find: cannot chdir to /etc/conf/pack.d/arp
find: cannot chdir to /etc/conf/pack.d/arpproc

To suppress these error messages, redirect the error output of the find com­
mand to Idev/null (the UNIX system's ~'black hole" directory), as follows:

$ find I -follow -name chap3 -print 2> Idev/null

113

Working with files and directories

For more information on redirecting output, see "Specifying command input
and output" (page 118).

find can be used to apply a command to a collection of files that match some
selection test, for example, files that are older than a specified age. You can
remove all files in your home directory, and all its subdirectories, that have
not been accessed for seven days by typing the following command line:

$ find $HOME -follow -name ,*, -atime +7 -exec rm {} \;

find starts from the directory specified by its first parameter (in this case, the
value of $HOME), follows symbolic links, and selects all the files matching the
designated name (in this case, '*') that were last accessed (-atime) seven or
more days ago. It then executes (-exec) the rm command on the found file
(represented in the expression by 0). The "\;" at the end of the line terminates
the -exec expression. Note that the single quotes around the" *" are required.
Otherwise find searches for files with names matching those matched by " * "
in the current directory.

The -exec option allows the execution of any legal shell command along with
any permitted options and arguments.

find can carry out other tasks when it finds a file. For example, the following
command causes find to execute cp on any file called datafile in the directory
/bin; this file is then copied to your home directory.

$ find Ibin -follow -name datafile -exec cp {} $BOME \;

Retrieving deleted files

114

File versioning is the ability of a system to preserve and access old copies of a
file. Traditionally, the UNIX system does not support file versioning: whenever
the UNIX system updates a file, the preceding image of its contents is lost.
Certain editors make a copy of a file before updating it, but this feature is spe­
cific to the individual utility, and usually restricts itself to the maintenance of
the current file and a single backup version.

Keeping old versions of files
The sea OpenServer system supports file versioning. The root user must con­
figure it for a filesystem at the time of mounting by setting the MINVTIME
and MAXVDEPTH kernel parameters. These respectively set the interval
before a file is versioned and set the maximum number of versions main­
tained (or steps in the evolution of the file's contents). Setting these to 0 dis­
ables versioning. (See System Administration Guide for details.)

User's Guide

Managing files

When file versioning is configured, you must then enable it for a specific
directory using the -8 option of the undelete(C} command, as follows:

$ undelete -s /users/mike/source/user_suide

This command line switches on versioning for all the files in the directory
called user -$Uide and any subsequent child directories.

When file versioning is configured and enabled, it makes the filesystem
preserve a copy of a file's contents whenever it is overwritten or deleted. This
is done silently. The number of versions preserved depends on the setting of
MAXVDEPTH. These copies can be retrieved at a later date using undelete.

You can make versioning visible by setting the SHOWVERSIONS environment
variable to 1, as follows:

$ SHOWVERSIONS=l; export SHOWVERSIONS

Within a directory, you can create versions for a single file, irrespective of
whether general versioning configuration or enabling has been carried out,
using the undelete -v option, as follows:

$ undelete -v chapter3

NOTE File versions created in this way will always be visible, indepen­
dently of the value of SHOWVERSIONS. However, when the filesystem is
mounted with versioning enabled, file versions created using undelete -v
will not be visible.

A versioned filename has the following syntax:

filename;version

The filename element follows the normal UNIX file naming rules, and is
separated from the file version by a semicolon.

To see a list of all the existing versions of a file, use the undelete -1 option, as
follows:

$ undelete -1 magnolia. txt
: no versions
$ undelete -1 begonia. txt
begonia.txtil
begonia.txt;2
begonia.txti3

115

Working with files and directories

116

Specifying a version identifier causes only that version to be used in the com­
mand line; the existing versions are accessible in the same way as separate
normal files:

$ cat homework.txt\;l
Italian Assignment 3

C'era una volta, l'orsetto che viveva nella foresta al ovest

$ cat homework.txt\;2
Italian Assignment 3

Tanti anni fa, l'orsetto che vivo' nella bosca verso ponente

Note that the semicolon is a shell metacharacter, and must be quoted in the
context of versioning, using the backslash. See Chapter 12, "Regular expres­
sions" (page 315) for more information on metacharacters and quoting.

Undeleting files
On traditional UNIX systems, once you have deleted a file, you cannot retrieve
it, other than by searching through any existing backup tapes. The sea Open­
Server system undelete command makes this process much easier on ver­
sioned files. These exist in three combinations:

• An existing file with no previous versions.

• An existing file with one or more previous versions.

• A file that no longer exists but which has one or more previous versions.

To undelete a file that was removed by mistake, make a previous version
current. Although the file itself may have been removed, the versions are still
accessible, as the following sequence shows:

$ 1
-rw-r--r-- 1 sallyp accounts
$ rm begonia. txt
$ 1
total 0
$ undelete begonia. txt
$ 1
-rw-r--r-- 1 sallyp accounts

3768 Oct 31 16:03 begonia. txt

3768 Oct 31 16:04 begonia. txt

User's Guide

Managing files

When you specify a filename without a version identifier, you retrieve the
most recent version of the file. However, it is possible to check how many ver­
sions are available, using the undelete -1 option, as follows:

$ undelete -1
begonia.txt;l
begonia.txt;2
begonia.txt;3
$ undelete -i begonia. txt
begonia.txt;l: ? n
begonia.txt;2: ? n
begonia.txt;3: y

$ 1
-rw-r--r-- 1 sallyp accounts 3768 Oct 31 16:05 begonia. txt

The undelete -i option interactively recovers any available versions of the
specified file. In this case, the most recent version (number 3) of the file is
retrieved but the earlier versions are discarded.

$ undelete -1
: no versions

Cleaning up your filesystem
File versioning is a useful tool, but it can have an adverse effect on the file­
system, as unneeded old versions of files can rapidly accumulate, reducing
free space. It is important to remember that switching on versioning for a
directory causes it to apply to all child directories as well. Therefore, direc­
tories should be regularly cleared of unwanted old file versions.

The undelete -p option "purges" specified files. This permanently deletes the
existing versions (but not the file itself).

$ undelete -1
tulip; 1
tulip; 2
tulip; 3
tulip; 4
$ undelete -p tulip
$ undelete -1
: no versions

Versioning is inherited by child directories, so the following command line is
useful for cleaning out a whole directory system:

$ undelete -prd /users/mike/source/user_guide

The -r option specifies a recursive purge, while -d specifies the directory at
which the operation is to commence.

117

Working with files and directories

Another useful option is -m, which takes a number of days as an argument.

$ undelete -m+2
$ undelete -m-2
$ undelete -m2

These command lines respectively cause undelete to consider only files
deleted more than, less than and exactly, two days ago.

In filesystems where versioning is widespread, the issue of free space may be
crucial. Therefore, it is advisable to set up a crontab(C) job containing a com­
mand line like the following, which executes a forced recursive purge of all
files deleted more than two days ago, starting at the directory fusers:

$ undelete -rpfm+2 -d /users

See "Executing processes at regular intervals" (page 170) for details of the
crontab command.

Specifying command input and output

118

Almost all UNIX commands require an input and an output; that is, some infor­
mation to read and process, and somewhere to store the results. If you do not
tell a command where to find its input and output, it makes assumptions
about where to read and write information. These assumptions are called the
standard input and standard output. These are, respectively, your keyboard and
your screen by default. Alternatively, if you specify the name of a file, most
programs will obtain their standard input by reading the file.

In addition to standard input and standard output, most programs need a
standard error, to which they report any failures or errors. By default, the stan­
dard error is directed to the same place as the standard output, your screen.

You can make commands redirect their standard input and output by using
the symbols" < " and " > " on the command line, followed by the name of a file
to read input from or write output to. For example sort < listl > list.out
makes sort treat list.l as its input, and send its output to list.out.

If you send the output of a program to a file, and the file already exists, the
existing file will be "clobbered" or overwritten. If you are using the Korn
shell, you can prevent this from happening by using the no clobber variable.
You can identify your login shell by entering the following command:

$ grep ${LOGNAME} /etc/passwd
martins:x:13990:1014:Martin Smith:/u/martins:/bin/ksh

User's Guide

Specifying command input and output

The last data field, after the last colon, identifies your login shell, in this case,
the Korn shell (/bin/ksh). If you are using the Kom shell, you can tum on the
noclobber feature, by typing the following:

$ set -0 noclobber

C shell users should type set no clobber: this feature does not exist in the
Bourne shell. To tum off the feature in the Korn shell, type set +0 noclobber. C
shell users should type unset noclobber. To protect yourself from accidentally
clobbering files, Korn shell users should add the appropriate noclobber line to
your .profile file: C shell users should add it to .cshrc.

To append the output of a command onto the end of a file, use the » notation
instead of >. For example, the following command line appends the output
from sort to the end of the existing contents of file2 rather than overwriting
them:

$ sort filel » file2

The C shell will not let you append the standard output to a file if the file does
not exist and noclobber is set. The Bourne or Korn shells simply create the
file.

Typically, your shell will support a wider range of redirection operators than
those discussed here. For details, refer to ksh(C), sh(C) or csh(C) as appropri­
ate. See also "More about redirecting input and output" (page 256).

Forcing a program to read standard input and output

Many programs get their input from the standard input and write their output
to the standard output: others read from or write to named files.

For example, cat can be used to create a file using information typed in at the
keyboard, as follows:

$ cat > fileS

In this case, fileS is a file that does not already exist within the current direc­
tory. You can then proceed to type text into the file. You can press (Bksp) to
correct any mistakes you make on the current line, although you cannot
correct mistakes on previous lines. Press (Ctrl)D when you have finished, to
signal" end of file" to cat.

Alternatively, you can use the echo command to place text in a file, as follows:

$ echo "Hello there!" > testfile

This results in a file (testfile) containing the text "Hello there!".

Note that the quote marks are stripped out by the shell when you use echo to
print to a file.

119

Working with files and directories

The following use of the cat command places the contents of the three named
files into outfile:

$ cat filel file2 file3 >outfile

Suppose you want cat to read filel, then read something from the standard
input (your terminal) instead of from file2, then read file3. There exist some
special device files to make life easier: Idevlstdin, Idevlstdout, and Idevlstderr.
These three special files correspond to the standard input, standard output,
and standard error, respectively. The following command line uses Idevlstdin
in precisely this way:

$ cat filel Idev/stdin file3 >outfile

In this case, filel is copied to outfile; then cat reads the standard input (your
terminal) until you press (Ctrl)D (to signal end of file); then finally appends
fiZe3 to outfile.

Running a sequence of commands

When you type a command line and press (Enter), the entire line is evaluated
as a single unit. It is possible to run several programs from one line; either
sequentially, or simultaneously, or in a "pipeline" where the output from one
command is used as input to the second command. You can also store
frequently-used commands in a file, and tell the shell to execute the contents
of the file as a script.

Entering commands on the same line

To send several commands, one after another, separate each of them with a
semicolon. For example:

$ Is > list ; sort list > listl

This command sequence creates a list of files in a file called list. It then sorts
the contents of the file alphabetically and redirects the output into a file called
listl. The command after the semicolon is not executed until the command
before it has completed; the shell waits for the earlier commands to finish.

Running commands in a pipeline

120

A pipeline is a sequence of commands that operate concurrently on a stream
of data. All the processes are started simultaneously, but instead of reading or
writing to a file or terminal, they read or write to and from a pipe. As the first
process begins to produce some output, that output is fed to the second pro­
cess as input, so that both processes are working at the same time. For exam­
ple:

$ Is I sort > listl

User's Guide

Access control for files and directories

Here, the Is command sends its output straight to sort, which processes it and
sends its own output to the file listl. Unlike the similar command line in
"Entering commands on the same line" (page 120), no intermediate file called
list is created. Writing to a temporary file is a comparatively slow process
because it involves transferring data to disk, and the second process must
then access the file and read it back into memory. Pipes, in contrast, transfer
data directly from one process to another without writing it to the disk.

More than one pipe operation can appear on a single command line, as fol­
lows:

$ sort -u file I grep basilisk I we -1 > words

This pipe sequence creates a file called words, containing a count of all the
nonidentical lines in file that contain the word "basilisk".

Access control for files and directories

Because the sea OpenServer system is a multiuser system, it is important that
strict control is placed on file access. For example, as a user you cannot change
files that belong to someone else without their authorization. Controlling
access to files is achieved by use of permissions.

Every file has three sets of permissions that control who can read it, write it
(that is, change it), and execute it. You can change the permissions on your
own files to make them more or less accessible to other users on the system.
The following is a representation of the permissions information displayed by
the Is -1 command. Remember that the first character position actually gives
the file type, and is not a permissions indicator; see "File and directory attri­
butes" (page 81):

permissions

owner group other

~~~ 

-rwxrwxrwx 

II '--------execute 
L--_________________ write 

~--------------read 

'------- file type 

121 



Working with files and directories 

122 

The permissions field for a file is made up of nine character positions follow­
ing the file type indicator. They are divided into three sets of three permis­
sions each; a set for the owner of the file, a set for the group of users to which 
the file belongs, and a set for everyone else on the system. These are respec­
tively known as "owner", "group" and "other". 

Note that the superuser (root) can always read or write every file on the sys­
tem. This is a special privilege that is not available to any other user. 

Each set of permissions can include none, one, or more than one of the follow­
ing privileges: 

Read If you have read permission, you can look at the contents of a file. 

Write 

For a directory, this means you can see a list of the files it holds. 
Read permission is represented by an "r" in the first of the three 
character positions for each of the three sets of permissions, as fol­
lows: 

-r--r----- 1 johnd unixdoc 10586 Feb 25 12:26 1.start 

The "r" in the first character position of owner's set and the group 
set means that the owner and members of the owner's group can 
read the file; nobody else is permitted to do so. 

If you have write permission on a file, you can alter its contents. For 
a directory, this means you can create files and subdirectories 
within that directory. It also means you can remove files from that 
directory even if you do not have write permission on the files. 

--w--w--w- 1 johnd unixdoc 8660 Feb 25 13:08 2.start 

The "w" in the owner's set, the group set and the other users' set 
means that all classes of user can alter this file. 

You cannot remove a file unless you have write permission on the 
directory it is stored in. If you try to remove a file from a directory 
for which you do not have write permission, you will see an error 
message like the following: 

$ rm freds.file 
rm: fred/freds.file not removed. 
Permission denied 

Execute For a file, this means that if the file is a program, you can execute it. 
Execute permission on a directory means you can change to it. 

---x--x--x 1 johnd unixdoc Feb 25 13:08 2.start 

In all cases, a hyphen in any of the permissions fields indicates that the per­
mission is not set. 

User's Guide 



Access control for files and directories 

More uncommonly, you may encounter other permissions in a long listing, for 
example "s" or "t". For details, see Is(C). 

To see the permissions on the current directory, use the 1 -d (directory) com­
mand, as follows: 

$ 1 -d 
drwxrwxrwx 21 johnd techpubs 1552 Dec 07 15:40 . 

Changing file permissions 

To change the permissions on a file, use the chmod(C) (change mode) com­
mand, which has two formats, "symbolic" and "absolute", as follows: 

chmod who operator permission filename 
chmod mode filename 

Using the first, symbolic, format, the who field is one or more of the following 
characters: 

a all users; change all three sets of permissions at once 

u user; change the user, or owner, permissions 

g group; change the group members' permissions 

o others; change the other users' permissions 

The operator field is one of the following symbols: 

+ add a new permission 

remove a new permission 

set permissions while clearing (removing) all other permissions 

The following sample usages of chmod show a number of symbolic permis­
sions being set: 

$ chmod g+w memo adds write permission for group members on the file 
memo. 

$ chmod o-wx memo removes write and execute permission for others 
(users other than the owner or those in the file's 
group). 

$ chmod 0= memo clears (removes) all permissions for other (setting a 
NULL permission clears any existing value). 

$ chmod u=rx memo sets read and execute for user, clearing (removing) 
write permission (which is not specified in the "=" 
command.) 

$ chmod a+w memo adds write permission to the existing permissions for 
all categories of user. 

123 



Working with files and directories 

You can also change permissions using their absolute numeric values, by giv­
ing a three-digit octal number to specify the permissions. This method is 
harder to use but less verbose. 

Using octal numbers to set permissions 

Permissions Octal number 

0 
--x 1 
-w- 2 
-wx 3 
r-- 4 
r-x 5 
rw- 6 
rwx 7 

Permission to execute a file is represented by a value of 1. Permission to write 
a file is represented by a value of 2. Permission to read a file is represented by 
a value of 4. These values are added together to produce the combinations in 
the table above. 

Three octal numbers (numbers in the range 0 to 7) are used to represent the 
owner, group and other permissions respectively. Thus, by adding the per­
missions for a given category of user, you produce a digit; and by specifying 
three digits (one for each set of users) you can specify all the permissions on a 
file, as follows: 

$ 1 myfile 
-rw-r--r-- 1 johnd techpubs 
$ chmod 640 myfile 
$ 1 myfile 

5061 Feb 10 15:01 myfile 

-rw-r----- 1 johnd techpubs 5061 Feb 10 15:01 myfile 

myfile originally possessed permissions 644. The "6" gives read and write per­
missions (2 plus 4) to users in the specified group, while the "4" gives read 
permissions only. "0" gives no permissions at all. The effect of executing 
chmod 640 on this file was to deny all permissions to users of group "other". 

Setting the default permissions for a new file 

124 

When new files are created, their initial permissions are determined by their 
file creation mask. The umask(C) command is executed whenever you log in, 
and it automatically sets the mask to restrict the permissions placed on any 
files that you create. You can change the permissions placed on new files by 
running umask again; the new permissions override the old ones. 

User's Guide 



Access control for files and directories 

To change the permissions applied to a newly created file, specify the permis­
sions you want to have removed from the new file. In this way, specifying a file 
creation mask of o=rwx causes read, write and execute permission to be denied 
to other users. 

$ touch test 
$ 1 test 
-rw-rw-r-- 1 charles techpubs 
$ umask U=,g=w,O=rwx 
$ touch test.2 
$ 1 test.2 
-rw-r----- 1 charles techpubs 

o Feb 22 09:29 test 

o Feb 22 09:30 test.2 

The touch(C) command creates an empty file, in this case called test. 

In the command lines above, the umask command specifies that write permis­
sion is to be removed from members of the file's group, and that read, write, 
and execute permissions are to be removed from other users. No change is 
made to the permissions available to the file's owner. 

NOTE Where the = operator is used in umask, it has the opposite effect to 
the = in chmod. With chmod, it sets any specified permissions, and unsets 
the rest, whereas with umask, it unsets the specified permissions while set­
ting all the others. 

Note that you cannot normally create an executable file using umask; you can 
only change a file's permissions to make it executable. For example, if your 
umask is umask u=,g=,o=rwx this gives your default file permissions of 660 
(rw-rw----), not 770 (rwxrwx---), even though execute permissions for user 
and group have not been removed. The only exceptions to this rule are when 
creating a directory or compiling a program to create an executable binary (in 
which case the executable bits are set in accordance with your umask). 

You can set umask using octal permissions. To set the umask, work out what 
permissions you want to give newly created files in octal, then subtract them 
from 777. (Remember, the permissions specified in your umask are removed 
from the file, not added.) Accordingly, umask 022 removes write permission 
from the group and other user classes: a file created with an initial mode of 
777 becomes 755 and a file created with 666 becomes 644. 

Giving a file to someone else 

To give a file to someone else, change the ownership of the file with the 
chown(C) (change owner) command, as follows: 

chown new _owner filename 

The new_owner argument is the login name of the new owner. 

125 



Working with files and directories 

For example, the following command line assigns ownership of Oi.intro to the 
user charles: 

$ chown charles Ol.intro 

You must be the current owner of a file to change its ownership; that is, you 
cannot give the file to someone else unless it is yours to give. When you create 
a file, you automatically become its owner. 

Depending on the permissions on a file, if you give away ownership you may 
give away your right to access the file afterwards. 

Finding out your group 

In order to find out the groups of which you are a member, use the id(C) com­
mand, as follows: 

$ id 
uid=13052 (johnd) gid=1014(techpubs) 

The command displays your numeric user identification (UID) and your 
group identification (GID). Your login and group names are given in 
parentheses. 

Changing your current group 

126 

Group control is carried out using the sg(C) (supplementary group) com­
mand. Type id (see "Finding out your group" (this page») or sg to obtain a list 
of the groups of which you are a member, as follows: 

$ sg 
Current effective supplemental groups: 
1014 (techpubs) 

You can change your current group by using the sg -g option, as follows: 

$ sg -g techpubs 

You must be recognized as a member of the new group before you can switch 
. to it. Group memberships are listed in the file /etc/group; each group has a line 
in the file, followed by the names of those users who are authorized to work 
in it. After successfully changing group, you work within the new group for 
the remainder of the login session (or until you run sg -g again). 

User's Guide 



Printing a file 

Changing the group of a file 

To change the group of a file, use the chgrp(C) (change group) command, as 
follows: 

chgrp new -$roup filename 

For example, to change the group of a file called using_unix to techpubs, use the 
following command: 

$ chgrp techpubs using_unix 

Files and users on the system are identified as members of a group by their 
group name. Groups, together with group permissions, allow people who 
need to use the same files to share those files without sharing them with all 
users. When you create a file, it is automatically given the same group as your 
own. You must be the owner of a file to change its group. 

Printing a file 

When you issue a print command, a copy of the file to be printed is spooled. It 
then waits in the print queue, along with other print jobs, until its tum comes 
to be printed. Because the system spools print jobs, you can go straight on to 
another task. 

To print a file use the Ip(C) (line printer) command. For example: 

$ lp myfile 
request id is laserwriter-635 (1 file) 

This command sends myfile to the print queue. The "request id" line means 
that the file will be printed on the printer named "laserwriter", and is request 
number 635. 

To print several files, add them to the command line, as follows: 

$ lp filel file2 file3 

This command line prints filel, followed by file2, followed by file3. 

Note that it is a bad idea to print executable programs, or other files contain­
ing binary data; in general you should only print files containing text, or con­
taining some form of data intended for printing (such as PostScript® files). 

By default, files are printed in portrait orientation on the paper: to print a file 
in landscape orientation (that is, sideways, so that long lines fit on the page), 
use the following command: 

$ lp -01 filel 

127 



Working with files and directories 

To print a PostScript file on a PostScript printer, you should specify that the 
file contains PostScript, by using the following command: 

$ lp -og 

See Ip(C) for more information about how to send files to the printer. 

If you need to add page numbers to a long file, use the pr( C) command, which 
prints files to its standard output, separated into pages with a header contain­
ing the page number and date and time of printing. You can then pipe the 
paginated output to Ip. 

For example, to print letclprofile in this way, use the following command line: 

$ pr fete/profile I Ip 

Printing several copies of a file 

To print several copies of a file, use the Ip -n option, as follows: 

$ lp -n 3 fUel 

The argument to -n is the number of copies you want, in this case, three. The 
default number is 1. 

Selecting a printer 

128 

If you know that several printers are connected to your system, and you want 
to send a file to a printer that is not busy, you need to know the destination 
printer's name. You can get a list of the printers available to you by using the 
Ipstat( C) (line printer status) command, as follows: 

$ lpstat -s 

To select one of the available printers, use the Ip -d option, as follows: 

$ lp -dlaserwriter2 filel file2 file3 

This command line sends the specified files to the named printer. 

You can assign a default printer for Ip to use, by setting the LPDEST environ­
ment variable. Environment variables are explained in depth in HSetting shell 
variables" (page 227). Add a line setting the value of LPDEST to the name of 
your default printer to the appropriate login script. (Login scripts are 
described in "What happens when you log in" (page 224).) 

For example, if you are using the Kom shell and the printer you want to use 
by default is called postscript-2, you can add the following line to your .profile 
file: 

LPDEST=postseript-2; export LPDEST 

postscript-2 will then become your default printer next time you log in. 

User's Guide 



Getting help on the command line 

Displaying a list of current print jobs 

To display the list of current print jobs, use the following command line: 

$ lpstat -0 

lpstat reports on printer status. 

Canceling a print request 

To cancel a print request, use the cancel( C) command. You need to know the 
print request number that was assigned when the request was first spooled. 
This can be found using Ipstat -0. For example: 

$ cancel laserwriter-635 

You can only cancel your own print requests. 

Getting help on the command line 

Extensive online help is provided by the man (C) system. man is short for 
"manual", and is a tool for retrieving the text of the reference manuals. 

In this book, you will sometimes see reference keywords followed by a letter 
in brackets; for example, ls(C) or regexp(M). The letter in brackets indicates 
the section of the reference manual in which the keyword is discussed. If you 
are working at the shell prompt, you can read the reference entry for the key­
word by entering the following command: 

man [section] keyword 

The section field is optional and is used to select a particular section when a 
keyword is documented in more than one section. For example, type man C 
kill to read the C section entry on the keyword kill (which is documented as a 
command in section C and a callable function in section S). 

The reference manual entries are technical descriptions; they are not tutorials 
and make no concessions to the inexperienced user. 

Getting help when you are uncertain of the topic 

If you know the keyword but do not want to read all the reference text, you 
can use the whatis( C) command to list the description of the item. For exam­
ple, to read the description of man, type the following: 

$ whatis man 
man (C) - prints reference pages in this guide 

129 



Working with files and directories 

130 

If you are not sure of the keyword to use for a topic, you can use the 
apropos(C) command (which is the same as man -k). Each entry in the refer­
ence manual has a description associated with it; apropos searches the 
descriptions for the word you give as a subject. For example, to find reference 
entries concerned with searching, type apropos search. The following entries 
are among those displayed: 

egrep(e) - Search a file for one or more patterns 
fgrep(e) - Search a file for a fixed string 
grep (e) - Search a file for a pattern 

You can then use man C grep, for example, to display the manual page on the 
grep command. 

User's Guide 



Chapter 4 

Editing files 

The sea OpenServer system has several editors, which are useful for different 
purposes: 

vi Visual editor. vi allows you to perform full-screen writing and 
editing of files; this is the editor you will use most. 

view Read-only version of vi. view allows you to examine text files, but 
does not allow you to save changes. See vi(C). 

ed Original UNIX system line editor. ed is line-oriented; it can only 
edit a line at a time. Used within shell scripts, and when it is 
impossible to configure a terminal properly. See "Using ed" (page 
154) for details. 

ex A line editor. Like ed, ex is line-oriented. Like view, ex is imple­
mented as part of vi, and the ex command is a link to vi. See vi(C). 

sed Stream editor. sed reads an input file, carries out a sequence of 
commands, and writes the result to its output file. It cannot be 
used interactively. (See Chapter 14, HManipulating text with sed" 
(page 371) for further details.) 

131 



Editing files 

A quick tour of vi 

132 

vi is the standard UNIX system tool for editing text. There are a few simple 
commands that you need to learn before you can use vi. These commands 
allow you to: 

• start vi 

• insert text 

• search for text 

• move around inside a file 

• delete text 

• save your changes and quit vi 

The following example uses vi to enter and correct the first five lines of the 
poem "Kubla Khan" by Samuel Taylor Coleridge. Commands are shown at 
the left-hand side and described at the right: 

vi kubla_khan 
Start editing a new file called kubla~khan. vi displays a nearly 
empty screen with the cursor in the top left-hand corner. See 
"Starting vi" (page 134) for more details about the options avail­
able when starting vi. 

Switch to insertion mode so that you can start to enter text. See 
"Entering text" (page 135) for more information about commands 
that you can use to enter text. 

Type the following lines of text, pressing (Enter) to go to a new line. 
If you type a wrong letter, either leave it for correction later or 
press (Bksp) to move the cursor over it and enter the correct char­
acter: 

In Xanadu did Kubla Khan 
A stately pleasure-dome decree: 
Where Beta, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

(Esc) Return to command mode. 

IBeta (Enter) 
Search for the word "Beta". The cursor is placed under the" B ". 
See "Searching for text" (page 139) for more information. 

User's Guide 



A quick tour of vi 

xxxx Delete the word "Beta". Each time you press "x ", vi deletes the 
character under the cursor. See "Deleting and restoring text" 
(page 138) for details of other commands that remove text. "Using 
buffers to cut and paste text" (page 146) describes more sophisti­
cated techniques that you can use to move blocks of text in vi. 

iAlph(Esc) Insert the word "Alph" and return to command mode. If you 
make a mistake while entering" Alph", press (Esc) to return to com­
mand mode and press u to undo the change. 
Pressing u again undoes the undo. You should also refer to 
"Replacing and modifying text" (page 140) for information about 
replacing a single text string, and "Substituting text" (page 141) for 
details of how to search for and substitute several instances of a 
text string. 

:w(Enter) Save the changes you have made to the file kubIa_khan. You should 
do this fairly frequently while you are editing to protect your work 
against accidental loss. See "Saving files and quitting vi" (page 
136) for more information about saving to files. 

k Move to the previous line. This is one of the cursor movement 
commands available in command mode. The effect of pressing 
" k" is immediate; you do not need to press (Enter). See "Moving 
around a file" (page 137) for more details. 

The edited file should now look like the following: 

In Xanadu did Kubla Khan 
A stately pleasure-dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

:x(Enter) Save the changes to kubla_khan and quit vi. 

vi provides many more commands, shortcuts, and other features that you can 
use. The following sections cover these aspects of vi in greater detail. 

133 



Editing files 

Starting vi 

134 

To edit a file, type vi filename and if the file already exists, vi will read it in. If 
it does not exist, vi will create it. (See "Filenaming conventions" (page 83) for 
information about naming files.) In this example, the command vi soliloquy 
loads the file soliloquy in the current directory. You may notice that this 
version of Hamlet's soliloquy contains some misquotations; these will be 
removed in later sections: 

To be, or not to be: that is the question: 
Whether 'tis nobler in the mind to suffer 
The slings and arrows of outrageous fortune, 
Or to take arms against a sea of troubles, 
And by opposing end them. To die, to sleep -
No more - and by a sleep to say we end 
The heartache, and the thousand natural shocks 
Which flesh is heir to! 'Tis a consummation 
Devoutly to be wished. To die, to sleep -
To sleep - perchance to dream: ay, there's the rub, 
For in that sleep of death what dreams may come 
When we have shuffled off this mortal coil, 
Must give us pause. There's the respect 
Which makes calamity of so long life: 
For who would bear the whips and scorns of time, 
Th' oppressor's wrong, the proud man's contumely, 
The pangs of despised love, the law's delay, 
The insolence of office, and the spurns 
Which patient merit of th' unworthy takes, 
When he himself might his quietus make 
With a bare needle? Who would needles bear, 
To grunt and sweat under a weary life, 

The fair Ophelia! - Nymph, in thy orisons 
Be all my sins remembered. 
"soliloquy" 35 lines, 1502 characters 

On the bottom line of the screen, vi reports soliloquy as having 1502 characters 
on 35 lines of text: 

"soliloquy" [Read only] 35 lines, 1502 characters 

This line indicates that the file permissions on soliloquy are set so that you may 
not write to it. If you own this file, and you wish to make changes to it, change 
its permissions from within vi and reload it for editing using the following 
commands: 

:!chmod u+w soliloquy 
:rew 

User's Guide 



A quick tour of vi 

When you start vi you are in command mode. vi has two modes; command 
mode and insertion mode. In command mode you can issue commands to vi 
and move around your document. In insertion mode, you can only enter text. 

If you want to start editing a file at a point part of the way through it, rather 
than at the beginning, you can start vi with the following command: 

vi + line filename 

where line is the line number to position the cursor at. To start editing at the 
end of the file (for example, to append information to a list), start vi with the 
following command: 

vi + filename 

Entering text 

You must be in command mode before you can issue a command to enter text; 
while you are entering text, you cannot issue any command except (Esc) to 
return to command mode. If you would like a visible reminder when you are 
in insertion mode, enter the command :set showmode (see "Configuring vi" 
(page 152) for more details). The following commands put you in insertion 
mode to enter text: 

a Add text to the right of the cursor. 

A Add text to the end of a line. 

i Insert text to the left of the cursor. 

I Insert text at the start of a line. 

o Open a new line to put text below the current line. 

Go Go to end of the file and open a new line. 

o Open a new line above the current line. 

IGO Go to the first line in the file and enter new text above the line. 

When you finish entering text, press (Esc) to return to command mode. 

Taking the previous example, entering Go moves you to the end of the file 
and opens a new line. Pressing (Enter) adds a blank line. Typing "by William 
Shakespear" and pressing (Esc) adds new text. The end of the file soliloquy 
now reads as follows: 

The fair Ophelia! - Nymph, in thy orisons 
Be all my sins remembered. 

by William Shakespeare 

135 



Editing files 

What to do if you get stuck 

First press (Esc) twice. If a command is in progress, the (Esc) key cancels it. If 
you are in insertion mode, the (Esc) key puts you back into command mode. If 
your terminal beeps or flashes when you press (Esc), it means you were 
already in command mode. 

If the screen is unreadable, press (Ctrl)L (or (Ctrl)R on some terminals) in com­
mand mode to make vi redraw the screen. 

If you still cannot read the screen, either your terminal is set up incorrectly or 
you are editing a non-text file. Type :q! to exit without saving the current file. 
All the changes you made since the last save operation are discarded. 

Saving files and quitting vi 

136 

When editing a file, you are actually making changes to a copy of it that vi has 
created. After you have made several changes to a file, you can write these to 
the original file to update it. Before quitting vi, you must write all the changes 
to the file to save your work. 

To save a file and/or leave vi you must switch to command mode, if you are 
not already in it. You can always enter command mode by pressing (Esc) until 
the terminal beeps or flashes at you. 

There are several ways to save files and leave vi, each of which begins with 
you typing a colon character (:): 

:w 

:q 

:wq 

Save the current file (write file) but do not exit. This command fails 
if the file is read-only. You can save under a different name by add­
ing a filename: for example, :w newfile saves the current file as 
newfile if that file does not already exist. The command :w writes to 
the file if it already exists but fails if it is read-only. Use :w! to 
overwrite a read-only file. (The exclamation mark tells vi to ignore 
any error conditions.) 

Quit vi. This command fails if you have made changes to a file 
since the last time you saved it. (If you really want to quit without 
saving, type :q!. This causes vi to quit without saving the current 
file.) 

Save the current file and exit vi. The command :x is equivalent to 
this, except that it only saves the current file if you have changed 
it. These commands fail if the current file is read-only, or you are 
editing more than one file. See #Editing more than one file" (page 
146) for details. (For information on read-only files, see "Access 
control for files and directories" (page 121). 

User's Guide 



A quick tour of vi 

Moving around a file 

To move the cursor a single character in any direction, use the arrow keys. 
Alternatively, if you are in command mode, you can use the following keys: 

h 

1 

k 

move left one character 

move right one character 

move up one line 

move down one line 

You can also move around in larger units than a single character. To repeat 
any of the following movement commands (that take an optional parameter 
n) type the number of times you wish the command to occur followed by the 
command. For example, to move right five words, enter 5w: 

[n]b move back one (or n) words 

[n]w move forward one (or n) words 

move to the start of the line 

$ move to the end of the line 

[n]( move back one (or n) sentences 

[n]) move forward one (or n) sentences 

[nH move back one (or n) paragraphs 

[n]} move forward one (or n) paragraphs 

(vi considers a sentence to be a sequence of characters ending with a dot, 
question mark, or exclamation mark, followed by either two spaces or a new­
line. Sentences begin on the first nonwhitespace character following a preced­
ing sentence, and are delimited by paragraph and section delimiters. A para­
graph is any block of text delimited by empty lines or an nroff formatter 
macro.) 

Other commands control the portion of the file that the screen displays: 

(Ctrl)U 

(Ctrl)D 

(Ctrl)B 

(Ctrl)F 

move back half a screen 

move forward half a screen 

move back one screen 

move forward one screen 

You can specify line numbers to set your position within a file. 

137 



Editing files 

To discover the current line number, press (Ctrl)G. A status line appears at the 
bottom of the screen, telling you the name of the file, whether it has been 
modified, your current line number, the number of lines in the file, and your 
position in the file as a percentage of the length of the file. For example: 

"soliloquy" [Modified] line 24 of 35 --68%--

To make line numbers appear at the left-hand side of the screen, enter :set 
number (the numbers are not added to the text of your file). To make vi 
always display line numbers, you can add this command to your .exrc file. See 
"Configuring vi" (page 152) for more information. 

The following commands move you to a specified line number: 

#G go to line number # 

1 G go to the start of a file 

G go to the end of a file (equivalent to $G) 

For details of the many other movement commands available see the vi( C) 
manual page. 

Deleting and restoring text 

138 

To delete text, use the d command followed by the unit of text to delete. To 
delete several units of text at once, enter the number of items to delete (n) fol­
lowed by the deletion command. The deletion commands available are: 

[n]x 

[n]X 

[n]dw 

[n]dd 

[n]dG 

[n]:x,y d 

Delete letter under the cursor. 12x, for example, deletes 12 letters. 

Delete letter to the left of the cursor. 

Delete word from the cursor up to the next word including any 
white space. 4dw, for example, deletes four words. 

Delete the current line. 8dd, for example, deletes eight lines. 

Delete from cursor to the end of the file. 

Delete lines x through y of a file. For example, :100,200 d deletes 
lines 100 through 200, :1,. d deletes from the start of a file to the 
current line, and :.,$ d has the same effect as dG. 

Restoring deleted text 
You can always undo the last deletion by using the u or U (undo) command. 

The command p (paste) inserts the last piece of text that you deleted to the 
right of the cursor. This is useful if you need to transpose two adjacent char­
acters: position the cursor on the first character and enter xp. To swap two 
lines, place your cursor on the first, and enter ddp. 

User's Guide 



A quick tour of vi 

You can restore deleted text before the cursor by using the P command (upper­
case) instead of p (lowercase). You can use this to swap two words that are on 
the same line; place the cursor on the first character of the first word, and 
enter dwwP. 

Using the deletion buffers 
vi remembers the last nine pieces of text that you deleted in deletion buffers 
numbered 1 for the most recent deletion, 2 for the next most recent, and so on. 
To restore the contents of a deletion buffer below the line on which the cursor 
is positioned, use the paste command with the number of the deletion buffer, 
"numberp. For example, typing "2p pastes the second most recently deleted 
piece of text at the cursor. 

If you switch to editing another file (using :n or :r), or reload the original file 
(using :rew!), the contents of the deletion buffers are preserved so that you can 
cut and paste between files. The contents of all buffers are lost, however, 
when you quit vi. 

There are also 26 named text buffers that you can use in vi, these are described 
in "Using buffers to cut and paste text" (page 146). 

Searching for text 

When searching for text, it is worth considering if you will want to return to 
your current position in the file. If so, you should either make a note of the 
current line number reported using (Ctrl)G, or put a marker in the file using 
the m command. See "Placing markers" (page 147) for further details. 

To start a search: 

1. Type a slash (I); this takes the cursor to the bottom of the screen. 

2. Enter the text you want to find and press (Enter). vi searches forward 
through the file looking for a matching text string. The cursor moves to 
the position of the next occurrence of text that matches. 

3. To find the next match, press n. Repeat this until you find the match you 
want. 

Press N to search backward through the file instead of forward. 

Assuming that you are at the top of the example file (you could enter 1G or:1 
to go to the first line), and you want to find all occurrences of the word 
"sleep". You enter Isleep to find the first match: 

And by opposing end them. To die, to sleep -

139 



Editing files 

Pressing I and (Enter) subsequently finds the following lines in tum: 

No more - and by a sleep to say we end 
Devoutly to be wished. To die, to sleep -
To sleep - perchance to dream: ay, there's the rub, 
For in that sleep of death what dreams may come 

This continues until the first occurrence in the file is found again: 

And by opposing end them. To die, to sleep -

vi allows you to look for more general patterns of text using regular expres­
sions. For a discussion of the regular expressions matched by viJ see "Editor 
regular expressionsu (page 317) and the regexp(M) manual page. 

Replacing and moclifying text 

140 

To replace a single letter with another letterJ position the cursor over the letter 
and type the r commandJ followed by the replacement letter. For exampleJ to 
replace the" u U in "rubH by /I i N J move the cursor to the /I u H and enter rio 

To replace an unlimited amount of text with new textJ position the cursor over 
the first letter and type R. You are now in replace mode. This functions like 
insertion modeJ but characters you type will replace the previously existing 
text until you return to command mode by pressing (Esc). For exampleJ to con­
vert "needleH into "noodleH

, move the cursor onto the first JI e H and enter 
Roo(Esc). 

Use the - command to switch letters between uppercase and lowercase text. 
First place the cursor over the character to be switched. 

Join two lines by typing the command J. The line below the cursor is joined to 
the end of the current line. Any leading spaces on the lower line are replaced 
by a single one. For example: 

Once more unto 
the breach 

This produces the line: 

Once more unto the breach 

User's Guide 



A quick tour of vi 

Substituting text 

To substitute one sequence of characters for another on the current line, use 
the :s/oldlnewl command, where old is the sequence to find, and new is the 
sequence to replace it with. For example: 

:s/needlelbodkin 

This changes the first occurrence of "needle" when applied to the following 
line: 

With a bare needle? Who would needles bear, 

After the substitution it reads as follows: 

With a bare bodkin? Who would needles bear, 

Pressing & repeats the substitution on the current line: 

With a bare bodkin? Who would bodkins bear, 

Entering :slbodkinslfardelsl amends the line to give the correct quotation: 

with a bare bodkin? Who would fardels bear, 

If you wish to keep the old string as part of the new, you can refer to it as " & " 
within the new string. For example: 

Tomorrow and tomorrow, 

Applying :s/tomorrow/& and &1 to the above line transforms it into the fol­
lowing: 

Tomorrow and tomorrow and tomorrow, 

Performing global substitutions 
To substitute all occurrences of a sequence of characters within a file, type: 

:g/old/s/oldlnew/g 

The first element of this command, :g/old/ is the address. gl (short for global) 
indicates that the following action will be applied globally (throughout the 
file) to all lines containing the string old. 

The second element of the command, s/old/new/g, is the action. In this case, 
new will be substituted for old, globally, on the selected lines. 

This command can also be written as follows: 

:1,$s/old/new/g 

In this form, the address is the range of lines 1,$, where $ is an abbreviation 
for the last line in the file. 

141 



Editing files 

142 

To restrict the change to a line or range of lines, replace the search command 
lold with the line number or range of line numbers to apply the command to. 
For example, to carry out the command on lines 5 to 20 of the file, type the fol­
lowing: 

:5,20 slold/new/g 

vi remembers the last string it searched for; the empty search command II 
matches all occurrences of the previous search string. For example, in the fol­
lowing command, the change is applied to lines containing old: 

:g/o ldlsllnew/g 

Because the target of the substitution is the empty search field, all occurrences 
of old are replaced (because old was the last item searched for). 

You can search for regular expressions as defined in "Editor regular expres­
sions" (page 317), but should replace them with a string of ordinary text. For 
example, to search for any single word beginning with "cent" (such as center, 
centered, or central) and replace it with "middle": 

:g/cent[a-z].*/sllmiddle/g 

(Note that the ".*", representing a sequences of zero or more characters, is 
necessary to match the rest of the word. Otherwise the string matched by 
"cent[a-z]" may be replaced by "middle" but the suffix of the original word 
will not be removed by the substitution.) 

Using the soliloquy example introduced earlier in this chapter, we can replace 
all instances of "Which" that start a line: 

:gf"Which \>/s/lThatl 

The use of the "\>" notation ensures that the substitution is applied only to 
single words. The final g was left out as there can only be one beginning to a 
line. After performing this command, vi leaves you at the last line on which it 
performed a substitution: 

That patient merit of th' unworthy takes, 

You can apply a global substitution to all lines that do not match the search 
string, by starting the command with :g!1 instead of :g/. 

For example, suppose you have a file containing paragraphs of text separated 
by blank lines, and want to indent each line of text by one tab space. You do 
not want to add tabs to the blank lines. To do this, you can use the command: 

:g!l"$/sl"l (Tab )/g 

User's Guide 



A quick tour of vi 

«Tab) is a tab character). The regular expression "$ matches an empty line; 
that is, a start-of-line metacharacter II"" followed immediately by an end-of­
line metacharacter II $". The :g!/"$! command matches all lines that don't match 
this regular expression (that is, all nonempty lines). vi then executes the sub­
stitution command sl"!(Tab)!g which searches for the beginning of the line and 
inserts a tab character. 

You might also wish to restrict the lines that are substituted. For example, 
applying the command :1,$-1 sl".*$/(Tab)&/g to the file soliloquy indents every 
nonempty line except the last: 

And enterprises of great pitch and moment, 
With this regard their currents turn awry, 
And lose the name of action. - Soft you now, 
The fair Ophelia! - Nymph, in thy orisons 
Be all my sins remembered. 

by William Shakespeare 

When the command finishes, your position in the file is at the last line that 
was changed. 

Specifying addresses 
The following types of address are recognized: 

57 

57,4711 

$ 

1,$ 

±5 

.,+8 

The current line. (This is the default address for most vi com­
mands.) 

The fifty-seventh line in the current file. 

Lines 57 through 471l. 

The last line in the file. 

Every line in the file. 

The fifth line after the current one. (Negative offsets are also per­
mitted; for example, -8 refers to the eighth line before the current 
one.) 

The current line to the eighth line after it. (Negative offsets are not 
permitted in this case.) 

143 



Editing files 

144 

/pattern/ Matches the first line after the current that contains the regular 
expression pattern. See "Editor regular expressions" (page 317) for 
details of the regular expressions vi recognizes. 

To match any single word beginning with some prefix prefix, you 
should search for the regular expression \ <prefix[a-z]*, which 
matches prefix followed by any sequence of lowercase letters. If 
you search for \<prefix.* it will match from prefix to the end of the 
line. This may cause unpredictable results when substituting text. 

'marker Matches the line containing the marker placed using the m com­
mand. See "Placing markers" (page 147) for more details. 

Confirming substitutions 
To make vi prompt you for confirmation before it changes each instance of a 
string, use the gc command. You might want to do this if you only want to 
replace some occurrences of a word in a file, rather than all of them. For 
example, to substitute "hawk" for "handsaw" throughout a text, prompting 
for confirmation before each change, enter: 

:glhawklsllhandsaw/gc 

The command is broken down as follows: 

glhawkl 

sll 

handsaw/gc 

Applies the change to every line containing the string "hawk". 

Makes a substitution; the empty search target II means that vi 
will carry out substitutions on the previous search string 
("hawk"). 

Replaces the search string with "handsaw" everywhere (g), 
subject to confirmation of each change (c). 

In response to this command, vi prompts you at each occurrence of the word 
"hawk", printing the line it occurs on. Enter" y" to make the substitution; 
enter "n" to ignore the occurrence and continue the search. (If you enter 
something which vi does not recognize, it plays it safe and does not carry out 
the substitution.) 

User's Guide 



A quick tour of vi 

Repeating and undoing commands 

To repeat the last insertion or deletion command, type a dot (.); the last action 
will then repeat. For example, to delete three lines, go to command mode and 
type: 

dd .. 

The dd command deletes a line, and each period repeats the command. 

You can tell vi to carry out a command a number of times by first entering the 
number, then the command. For example, to delete five lines starting with the 
line the cursor is on, enter the command 5dd. Type u to undo this command. 
Type u again to undo the undo. 

Including the contents of another file 

To read a file into vi at the current cursor position, switch to command mode 
and press :r, then type the name of the file. If the file is readable, its contents 
will be inserted below the cursor. 

You can use addresses with this command, including 0 to specify a dummy 
line before the first line in the file. For example, if you want to add the file 
preamble at the top of soliloquy, used in a previous example, you would enter 
:Or preamble to produce: 

Hamlet's soliloquy from Act III Scene 1: 

To be, or not to be: that is the question: 
Whether 'tis nobler in the mind to suffer 
The slings and arrows of outrageous fortune, 

The command :r loads another copy of the last-saved version of the present 
file below the current line. 

Accessing the shell 

To include the output from a system command, you would enter the follow­
ing: 

:r!command 

This inserts the output below the current line. Alternatively, to replace the 
current line, type the following: 

!!command 

145 



Editing files 

For instance, :r !date includes the date and time below the current line; :$r 
!date puts the date and time at the end of the file. See also HRunning other 
programs from inside vi" (page 148). 

Editing more than one file 

To edit more than one file in a session, start vi giving it a list of files, as fol­
lows: 

vi filel file2 file3 ... 

vi only edits one file at a time, but you can move forward through the list by 
typing :n (next) in command mode, or go to a specific file by typing :e 
filename (short for :edit filename) in command mode. Note that you cannot 
edit the next file if you have made changes to the current one, unless you save 
the current file with:w or override vi by using the :n! (unconditional next file) 
command. To return to editing the first in the list of files, type :rew (short for 
:rewind). 

Note that if you switch files without saving the contents of the last one you 
edited you will lose any changes you have made: see "Saving files and quit­
ting vi" (page 136) for how to save the current file. 

Using buffers to cut and paste text 

146 

vi has 26 buffers, named" a " through" z ", where it can store text temporarily. 
You can use buffers to: 

• store text for insertion elsewhere in the current file 

• store text to be inserted in a newly loaded file 

• store frequently typed phrases to speed typing 

The contents of buffers disappear altogether when you quit vi. 

To cut (delete) a line of text and store it in a buffer, type "bufferdd. 

To copy (yank) a line of text into a buffer, type the command "bufferyy or 
"bufferY. For example, "iyy copies the current line into buffer" i ". 

To store several lines, precede the cut or copy command with the number of 
lines you wish to copy; for example, to copy fifteen lines into buffer H j ", type 
"j15Y. 

To paste the contents of the last buffer you used into the text on the line 
immediately below the cursor, type the command p. You can insert the con­
tents of any buffer by specifying the buffer name: "bufferp. For example, to 
paste the contents of buffer" g" into your file below the cursor, type "gp. The 
command "gP places the text above the cursor. 

User's Guide 



Using keyboard shortcuts 

Placing markers 

A marker behaves like a bookmark; it saves your place in a file so that you can 
return to it from anywhere in the file. vi allows you to use up to 26 markers, 
named H a" through 1/ z". To place a marker at the current cursor position, 
type m (for mark) followed by the letter that identifies it. To go to the place in 
a file where you have set a marker, enter a single back quote (') followed by 
the marker's letter. 

For example, you could type mh occasionally to keep your place in a very 
long file. If you then search for a piece of text elsewhere in the file, you might 
not be able to remember where you started the search. Enter 'h and you return 
there immediately. 

If you reload the file (using :rew or :rew!), or you load a different file, the 
markers are lost. Similarly, you lose a marker if you delete the line it was set 
on, and restore the line at a different place in the file. 

USing keyboard shortcuts 

vi provides the following powerful mechanisms for speeding up your work: 

Running other commands 
Suspend vi temporarily while you run another command, such as a shell. 
This avoids having to save your file, quit vi, run the command, and then 
restart vi. 

Using a filter 
Send a section of your document through a filter program, and have the 
output from the filter inserted into your document in place of the original 
text. 

Abbreviations 
Define a short abbreviation for a long series of characters in text-entry 
mode. 

Named buffer execution 
Make vi execute the commands stored in a named buffer as though you 
had entered them. 

Keystroke remapping 
Link a sequence of commands to a key; when this is pressed, vi carries out 
the commands. 

147 



Editing files 

Running other programs from inside vi 

The command :!cmd executes the program cmd, then returns to vi. For exam­
ple, :!sh starts a new shell without exiting vi; when you quit the shell (by typ­
ing exit or (Ctrl)D), you return to vi. 

Sending text through a filter 

148 

You can send some or all of the contents of the current file through a program 
that acts as a filter, transforming the contents of the current file. For example, 
to use the tr command to translate the current paragraph into uppercase: 

1. Enter command mode by pressing (Esc), if necessary. 

2. Go to the beginning of the first line of the paragraph. 

3. Type the following characters: 

!} tr '[a-z]' '[A-Z]' 

The command! tells vi to filter all the text from the current cursor position to 
the position indicated by the subsequent movement command (in this case 
" } ", the command to move to the end of the paragraph), through the program 
tr with the arguments '[a-z]' '[A-Z]'. tr translates its input, defined by the first 
wildcard expression, into an output file defined by the second expression. The 
output from tr is then substituted for the input. 

In general, you can use any filter in this way: 

! movement filter (Enter) 

An exclamation point typed in command mode introduces a filter command. 
movement is a vi command to move the cursor to the end of the block of text 
you want to feed through filter. The cursor jumps to the bottom line of the 
screen when you enter the movement command, and a " ! " prompt appears; 
vi waits for you to enter the filter command and press (Enter). Note that the 
cursor movement must refer to a block of text larger than one word; the com­
mands w and e are not acceptable cursor movements. 

Another common usage is to spell-check a sentence using spell, and replace it 
with a list of all the unidentified words it contains: 

1. Enter command mode by pressing (Esc), if necessary. 

2. Move to the start of the sentence by pressing O. 

3. Enter the command: 

!)spell (Enter) 

User's Guide 



Using keyboard shortcuts 

The ) command moves the cursor to the end of the current sentence. The !) 
command selects the text from the current cursor position to the end of the 
sentence and sends it to the standard input of spell. The output from spell (all 
the words in the sentence that it cannot find in its dictionary) replaces the sen­
tence and those below it with each mispelled word that is found. Retrieve the 
original sentence using the u (for Undo) command immediately. For example: 

When looking for occurences of spelling mistakes 

Applying the above procedure replaces this sentence with the following: 

occurences 

The escape filter can be used with any command that reads from the standard 
input. For example, use we to find the number of words in a file; go to the top 
of the document and issue the command !Gwe -w. The document is replaced 
by a word count. Press u to get your document back again. 

Defining abbreviations 

To define a short abbreviation that, when typed, is replaced by a longer word 
or phrase, use the ab command. For example, to define eC as an abbreviation 
for European Community, enter the command: 

:ab eC European Community 

From now on, whenever you type the letters "eC" while inserting text, vi will 
expand them into the phrase "European Community". vi waits until you 
finish inserting text or type (Space) or (Tab) before making the expansion. 

Note that the name of the abbreviation cannot contain any space. 

It is a bad idea to use a single letter as an abbreviation for a word; every time 
that letter is typed, it will be replaced. It is also a bad idea to use common 
two-letter combinations like "ch" or "ee" or "th". 

You can prevent an abbreviation from being expanded by escaping the first 
character following it. For example, the word "eC" will not be replaced by 
"European Community" when you type it, if you follow it immediately with a 
(Ctrl)V (which escapes the next character). (You can insert any control charac­
ter by pressing (Ctrl)V followed by the control character itself. You can also 
embed a (Enter) character inside a command line in this way.) 

To remove an abbreviation, use the unab command. For example, to clear the 
"eC" abbreviation, go to command mode and type: 

:unabeC 

If you subsequently type the letters "eC" they will not be expanded. To exam­
ine the currently defined abbreviations, type :ab with no arguments. 

149 



Editing files 

Storing a command in a buffer 

You can store a frequently executed command sequence in a named buffer, 
and execute it with the command @buffer (buffer is the name of the buffer, 
such as "t "). For example, you might want to create a sequence to place you 
at the end of the file you are editing, and enable you to return to your current 
location. In this case, carry out the following steps: 

1. Open a new line using 0 and enter the following sequence of characters: 

maG 

These correspond to the commands to place marker " a II at the current 
position in the file and to go to the end of the file. 

2. Leave text insertion mode by pressing (Esc). 

3. Copy the line into a buffer using the following: 

""tdd 

The "moves the cursor to the start of the line, and "tdd deletes the line 
and stores it in buffer t. 

When you issue the command @t, vi reads the contents of buffer "t II and 
treats it as a command typed at the keyboard; vi places marker" a" in the 
text, then goes to the end of the file. (All you need to do to return to your 
current location is to type the command 'a, which is too short to be worth 
assigning to a key.) 

Mapping key sequences 

150 

vi can assign sequences of commands to a series of keys or control characters 
so that whenever a mapped key sequence is typed, the command to which it 
is mapped is carried out. There are two commands to do this: :map, which 
works in command mode, and :map!, which works in insertion mode. 

Assigning commands to a key sequence 
To assign a command to a sequence of keystrokes, issue the :map! command 
in command mode. For example, to assign the command "ad$ to the key 
(Ctrl)C, you would enter the following: 

:map "C "ad$ 

"C is a (Ctrl)C character. (To enter the (Ctrl)C without letting vi interpret it, 
type (Ctrl)V(Ctrl)C.) This command cuts all text between the current cursor 
position and the end of the line, and places it in buffer "a". Now, whenever 
you type (Ctrl)C in command mode, it will carry out the defined series of com­
mands. 

User's Guide 



Using keyboard shortcuts 

I NOTE It is a bad idea to assign mappings to key sequences that are already 
in use as commands, because it renders the commands inaccessible. 

Assigning insertions to a key sequence 
To assign a key mapping in insertion mode, go to command mode and issue 
the :map! command. For example, to make the sequence "EC" map to "Euro­
pean Community", enter: 

:map! EC European Community 

To remove a mapping from a key, use the unmap (or :unmap!) command; for 
example: 

:unmap"C 
:unmap!EC 

When you begin to type a letter that may be part of a mapped command, vi 
saves up your typed input and checks whether it matches a mapping before it 
does anything. If the key sequence you type is a mapped command, vi exe­
cutes it as soon as the command is complete; if not, when it becomes clear that 
you are not typing a mapped key sequence, vi acts on the keystrokes. (vi 
waits for a period of time that you can alter by resetting the timeout internal 
variable. See the vi(C) manual page for further details. The ab command 
works in a different manner described by "Defining abbreviations" (page 
149).) 

To stop vi from expanding a mapping, you must escape the first character of 
the command before you begin typing. For example, using the mapping above, 
to enter the acronym "EC" you must escape the mapped word by entering: 

(Ctrl)VEC 

(If you had used an abbreviation for "ma1G" instead of a mapping, you would 
have to type the following to escape it: 

malG(Ctrl)V 

I NOTE Never define a mapping that contains its own name. 

For example, consider the following bad definition: 

:map! n banana 

If you were to try this example, the next time you typed the letter "n" vi 
would expand it to 'iJanana". But it would only get as far as the third charac­
ter in "banana" before it saw another "n" and tried to expand it. The process 
produces output like: 

bababababababababababababababababa 

vi begins to execute the mapping then dies. 

151 



Editing files 

Changing modes within a mapped command 
Sometimes it is useful to create a mapping or command that changes mode 
while it runs. For example, to create a command-mode mapping that inserts a 
piece of text under the cursor without leaving command mode, do this: 

:map h iHello there!"[ 

The" A[" character means "escape". To enter it into a mapping without letting 
vi act on it as if it is a command, press (Ctrl)V(Esc). 

When you press "h" in command mode, vi carries out the actions in the map­
ping. It executes the command i and switches to insert mode, enters the char­
acters "Hello there!", then switches back to command mode on encountering 
the Esc character in the sequence of keys. 

For example, suppose you have stored your name and address in a file called 
.address in your home directory. You can define a mapping that will automati­
cally insert the contents of .address at the beginning of a file you are editing. 
For example, if your login is roberta, the mapping would be: 

:map % malG":Or lulrobertal.address"M'a 

When you type the "%" key in command mode, the first command, rna, marks 
your current position in the file with marker "a". The next commands, IG", go 
to line one of the file, then to the beginning of that line. The following com­
mand reads in the file lulroberta/.address at the current location: 

:r lulrobertal.address"M 

The mapping ends with the command 'a, which returns to marker "a". 

Note that "M is a carriage return character entered into your mapping by 
pressing (Ctrl) V (Enter). 

Now whenever you type the "%" key in command mode, vi executes the com­
mand sequence to insert lulroberta/.address at the top of your file. 

Configuring vi 

152 

vi has a number of internal variables. These can be configured by typing the 
:setvarname command, where varname is the name of the variable to change. 

To examine vi's current settings, go to command mode and type :set all. 

If a variable name starts with "no", it is not set (that is, not switched on). You 
can set it by typing :set varname, with an optional value. If a variable name 
does not start with "no", and is not followed by a number, it is set. You can 
switch it off by issuing a command like :set novarname. For example, to make 
vi ignore wildcards, you must switch off the variable "magic". To do this, type 
:set nomagic. 

User's Guide 



Configuring vi 

To make vi automatically begin a new line before you reach the right-hand 
side of the screen, type :set wrapmargin=15. The first word that is less than 
fifteen characters from the right-hand side of the screen is placed on a new 
line. (If you have used word processors, this feature may be known to you as 
"word wrap".) 

Here are some of the most useful vi settings. Some of them can be abbrevi­
ated; for example, typing :set autowrite and :set aw have the same effect. 

number Displays line numbers at the left-hand edge of the screen. (The 

autoindent 

numbers are not part of the saved file). You can go to any line by 
going to command mode and entering the line number followed 
by G. (This setting can be abbreviated to nu.) 

Indents the left-hand margin of new lines of text by an amount 
determined from the previous line of text. For example, if you 
indent a line by one tab, vi will automatically indent all subse­
quent lines by the same distance until you cancel the previous 
indent by pressing (Ctrl)D. (This setting can be abbreviated to ai.) 

autowrite Saves any changes that have been made to the current file when 
you issue a :n, :rew, or :! command. (This setting can be abbrevi­
ated to aw.) 

ignore case 
Ignores the case of text while searching. (This setting can be 
abbreviated to ie.) 

list Prints end-of-line characters as "$ ", and tab characters as ""I". 

showmode 

tabstop 

These characters are normally invisible. 

Displays a message at the bottom right of the screen when you 
switch to a text input mode. 

Sets the number of spaces between each tab stop on the screen. 
When you press the (Tab) key in insertion mode, you are inserting 
a special tab character into your text. vi interprets this as a com­
mand to replace the tab character with however many spaces are 
needed to bring the cursor into line with the next tab stop position. 
vi normally puts tab stops eight characters apart; by using :set 
tabstop=number you can change the number of characters 
between tabs. This is useful for adjusting the width of columns of 
text or levels of indentation in documents created using tabs 
instead of spaces. (This setting can be abbreviated to ts.) 

153 



Editing files 

A complete list of the internal vi variables and their meanings is included in 
vi(C). 

You can create a list of these variables that are automatically set whenever 
you start vi as described in the following section. 

Saving frequently used commands 

If you have a set of commands that you use frequently, place them in a file 
called .exrc in your home directory. Whenever vi starts up it will look for this 
file and execute any commands or mappings it sees in it. The mappings will 
be available to you in every vi session without the need to retype them each 
time. 

You can place comments in your .exrc file to tell you what your commands do, 
by starting a line with a 11#"; this tells vi to ignore the line. For example, your 
.exrc file might look like this: 

# My .exrc file. Last changed: 20-March-1995 
# 
# Define where new lines are to be inserted automatically 
:set wrapmargin=15 
# Allow special characters in search patterns without using backs lash 
:set nomagic 
# Define an abbreviation 
:ab eC European Community 
# The % key in command mode now reads in the file .address 
# at the top of the current file 
:map % malGA:r /u/roberta/addressAM'a 

Using ed 

154 

ed is a line editor; it edits a single line at a time. Occasions on which you 
might need to use ed include: 

• working on a incorrectly set terminal 

• no other text editor is available 

• executing a script of editing commands automatically 

• processing a script of editing commands output by the file comparison 
command, diff(C) 

User's Guide 



Using ed 

Starting ed 

From the shell prompt, type ed filename, where filename is the file to edit. ed 
starts, then prints the number of characters it has read from filename. You are 
in command mode. 

Saving files and quitting ed 

To save a file, use the commands: 

w saves the current file 

wfilename 
saves the current file as filename 

To quit ed, use the commands: 

q quits ed only if the current file has been saved 

Q quits ed without checking if the current file has been saved 

See the ed(C) manual page for more details of these commands. 

Moving around in ed 

Instead of showing you a screen of text, ed works with line addresses; the line 
or lines in a file to which it applies a command. 

When you start ed, it displays the number of bytes in the file. You begin at line 
1; to move to a different line, enter its line number and press (Enter). ed echoes 
the contents of the line. Press (Enter) to step through the file a line at a time. 
You can also enter relative line numbers; for example, -2 to go back two lines, 
+5 to go forward five. 

The special address" . " refers to the current line, " $ " to the last line of the file. 

To discover the current line number, enter the command D. This also outputs 
the contents of the line. 

To see the contents of your file, use the 1 (short for list) command. Entering 1 
on its own prints the current line. To list several lines, prefix 1 with the start 
and end line numbers separated by a comma (,), For example, to list lines 10 to 
20 of a file, enter: 

10,201 

This command sets your current line number to the last line displayed (20). 

For convenience, a comma " ," represents the address pair "1,$" (that is, the 
entire file), while a semicolon (;) stands for ".,$" (current line to end of file). 
For example, ,1 lists the entire file. 

155 



Editing files 

You can use relative addresses; for example, $-5 means the fifth line before the 
last line of the file, while .+2 means the second line after the current line. 

Editing text in ed 

156 

There are several commands for editing text in ed: 

a Appends text. If the file is new, you can only enter text using this 
command. If the file already exists, specify an address (in the form 
of a line number or search pattern) to select the line to which to 
append text. 

c Changes text. This command requires the address(es) of the line(s) 
to be replaced. When you finish entering new text, press (Ctrl)D or 
" . " on a new line to return to command mode. 

d Deletes text. This command requires the address( es) of the line ( s) 
to be deleted. 

s/old/new 

Inserts text. Whatever you type is inserted before the current line; 
press (Ctrl)D or" ." on a new line to stop inserting text and return 
to command mode. 

Replaces text. ed replaces the first occurrence of old on the line 
with new. The string old can contain regular expressions, as with 
vi. 

If you prefix this command with a range of addresses, each line in 
the range is searched and the first instance of old on each line is 
replaced with new. For example, ,slfoolbar/g replaces every 
instance of "faa" on every line by the string ''bar''. 

u Cancels the effect of the previous command. 

ed supports the same regular expressions as vi; see "Editor regular expres­
sions" (page 317). For full details, see also regexp(M). 

User's Guide 



Chapter 5 

Controlling processes 

The UNIX system is designed to hold many programs in memory. Although 
the computer can only execute one program at a time, by swapping between 
programs frequently it can maintain the illusion that it is rwming them simul­
taneously. 

A program that is being executed by the UNIX system gives rise to a process. 
This chapter contains the following information about processes: 

• what is a process? (this page) 

• finding out what processes are running (page 158) 

• background jobs and job numbers (page 160) 

• killing a process (page 162) 

• keeping a process running after you log off (page 165) 

• using signals under the UNIX system (page 166) 

• reducing the priority of a process (page 167) 

• scheduling your processes (page 169) 

VVhat is a process? 

Processes are not the same as programs; in addition to the machine in­
structions (often called "text"), they have additional components (mainly data 
that is being processed in memory) that are not part of the program itself. 

Several processes being scheduled for "simultaneous" execution by the kernel 
may in fact be instances of a single program. For example, on a multiuser 
system, several users may use the cat utility: this is held as a single program 
in /bin/cat. 

157 



Controlling processes 

For an explanation of how the system manages processes, see Appendix A, 
II An overview of the system" (page 393). See also "Understanding the UNIX 
system" (page 429). 

You may need to destroy runaway processes, or processes that have finished 
running but have not been removed from the system ("zombies"). You may 
also need to find out what processes are running, cause processes to run after 
you log off, and execute groups of processes (piping the output of one to the 
input of another). These tasks are explained below. 

There are two methods for managing processes; process control and job con­
trol. Process control allows you to interact with all the processes on the 
system. Job control allows you to move jobs between the background and 
foreground using the shell. 

Finding out what processes are running 

158 

To find out what processes are running, use the ps command (process status) 
which prints information about the processes associated with your terminal 
(that is, the processes from your current login session). 

To find out all the processes running on the system, type the following: 

$ ps -ef 
UID PID PPID C STIME TTY TIME COMMAND 

root 0 0 0 Sep 24 0:00 sehed 
root 1 0 0 Sep 24 110:56 /ete/init 
root 2 0 0 Sep 24 0:00 vhand 
root 3 0 0 Sep 24 5:52 bdflush 

gavin 8501 1 0 17:59:05 004 0:03 -ksh 
gavin 8972 8501 0 18:52:04 004 0:02 vi tmpfile 
root 423 1 0 Sep 24 02 0:00 jete/getty tty02 m 

susanna 7903 1 o 17:29:01 015 0:04 -esh 
perry 8608 1 o 18:12:27 006 0:06 -ksh 

Note that there may be other processes running on the system that you are 
not authorized to see. (You will probably have to pipe the output of ps -ef 
through more(C) or pg(C), as several hundred processes may be reported on a 
large system.) 

The listing contains the following columns: 

UID the user name of the owner of the process 

PID the process ID 

the parent process ID PPID 

C scheduling information (of interest to administrators investigat­
ing performance problems) 

User's Guide 



STIME 

TTY 

Finding out what processes are running 

the time when the process was started 

the terminal to which a process is attached; for example, user 
perry is working on tty006 

TIME the cumulative time for which the process has been executed 

COMMAND the command that resulted in the creation of the process 

The ps command supports many more output columns, controlled by the 
command line options; for details, see ps(C). 

As soon as it is created, each process is allocated a unique identifier called a 
process ID or PID, a decimal integer in the range 0-65535. Some of these are 
reserved for the system. On system startup, a process called sched is created 
by the kernel; this creates three other processes called /etc/in it, vhand and 
bdflush. These four processes are automatically allocated process ID's 0, 1, 2 
and 3 respectively. It is sched, the "swapper" process, that swaps other pro­
cesses into main memory before the kernel scheduler can allocate CPU time to 
them. 

Under the UNIX system, all processes (except sched) are created by a pro­
cedure known as "forking". The process that does this is known as the 
"parent" of the resulting "child" process. The relationship between a parent 
and a child can be identified by the process' parent process ID (PPID). Each 
process (except sched) has a single parent process, but may have many child 
processes. In the example, the vi process (8972) was created by process 8501, 
which was in turn created by /etc/init. init(M) is the ancestor of all other pro­
cesses active on a UNIX system: among other things, it calls a program called 
getty(M), which is responsible for creating login processes, which in tum calls 
up a user shell such as ksh(C) or sh(C). 

Process creation is known as forking because the calling process splits in two. 
The copy is created by calling the fork function. The child is an almost exact 
copy of its parent, made by assigning a slot in the process table to the new 
process, then copying information from the parent's process table slot to the 
child's slot. The obvious differences between the parent and its child are the 
PID and PPID. See fork(S) for more details. A successful process creation is sig­
naled by the fork function passing a value of zero to the child process and the 
PID of the child to the parent. 

PID allocation in the 0-65535 range is cyclical: once the upper limit has been 
reached, the lower numbers are reused, subject to the proviso that PIDs must 
be unique. 

159 



Controlling processes 

To see what processes a particular user is running, type ps -u login where 
login is the login of the user in question. For example: 

$ ps -u charles 
PID TTY TIME COMMAND 

10170 008 0:07 ksh 
9779 008 0:00 ksh 
9780 008 9:23 pmview.r 
9791 pO 0:12 oadaemon 
9796 pi 7:47 email 
9797 p2 0:03 ksh 
9802 p6 0:02 ksh 

19027 p5 0:02 ksh 
19980 p6 0:20 vi 
21275 p6 0:00 ps 

$ 

Note that this user is running several Korn shell processes, each with a unique 
PID, but derived from the single program /bin/ksh. 

Background jobs and job numbers 

160 

You can run a process in the background, so that while it executes you can get 
. on with something else, by appending an ampersand (&) to the command 
line, as follows: 

$ vi tobermory &: 
[1] 13560 

In this case, 1/1" is the job number and 1/13560" the process ID. Unlike PIDs, job 
numbers are allocated by the currently running shell, not by the operating sys­
tem. While PIDs are assigned to all currently active processes, job numbers 
represent only active background processes, and while PIDs are unique across 
the system, job numbers are not. 

Compound commands (where processes are linked using the semi-colon) 
should be grouped using parentheses, as follows: 

$ (sleep 20; date> /dev/tty06) &: 
[1] 25143 
$ jobs 
[1] + Running (sleep 20; date> Idev/tty06)& 

User's Guide 



Background jobs and job numbers 

Waiting for background jobs to finish before proceeding 

The wait(C) command is useful when you want to wait for the completion of 
background processes before performing a foreground command on them. 
For example: 

$ spell filel > spell_filel & 
[1] 13655 
$ spell file2 > spell_file2 & 
[2] 13657 
$ wait 
$ sort spell_filel spell_file2 > spell_list 

This script file runs the two spell(C) commands simultaneously in the back­
ground, waits for them both to complete, and then sorts the resultant files 
(spelLfilel and spellJile2), putting the output in spell_list. 

See also Chapter 11, /I Automating frequent tasks" (page 245) for details of 
script files. 

Finding out what jobs are running 

To find out what jobs are running under your current shell, use the jobs(C) 
command, as follows: 

$ jobs 
[2] + Running 
[ 1] - Running 
$ 

tar tv3 * & 
find I -name README -print > logfile & 

A /I +" in the second column signifies that the job has higher priority than a 
/I _". The third column contains the state of the job; whether it is running, 
paused, waiting for input, or stopped. Finally, we see the command line that 
created the current job. 

Use the -1 option to jobs to display the PID after the job number. To limit the 
display to PID only, use the -p option. 

$ jobs -1 
[2] + 5236 
[1] - 5195 
$ jobs -p 
5236 
5195 

$ 

Running 
Running 

xrep *.s >bar & 
checkmac *.s >foo& 

161 



Controlling processes 

Killing a process 

162 

It is sometimes necessary to kill an executing process. This may be because it 
is taking up too much process time, causing the system to slow down, or 
perhaps because it is caught in a loop, and will therefore never complete. To 
kill the current process, try pressing: 

• (Ctrl)(Del) 

• (BREAK) 

• (Ctrl)D 

• (Del) 

One of these actions should send an interrupt signal to the process (see "U sing 
signals under the UNIX system" (page 166) for more information on signals). 

Only the root user can kill processes belonging to another user or to the sys­
tem. 

If the process you want to stop is a child of your shell, you can use the kill(C) 
command and the process' job number to stop it, as in kill %jobnumber. 

If neither the interrupt generation keyboard sequences nor the kill command 
stop the process, try the following: 

1. Log in to another terminal. 

2. Use ps -u your _login to find out the process ID of the process you want to 
stop. 

3. Type kill pid to kill the process. 

For example: 

$ ps -u charles 
PID TTY TIME COMMAND 
8367 003 0:03 sh 
6800 005 0:03 sh 
26013 005 0:00 find 
26073 003 0:00 ps 
$ kill 26013 
$ ps -u charles 
PID TTY TIME COMMAND 
8367 003 0:03 sh 
6800 005 0:03 sh 
26073 003 0:00 ps 
$ 

User's Guide 



Killing a process 

The kill command sends a signal to the target process (26013 in the above 
example) that causes it to halt. If you run kill without attaching a signal value 
to it, the signal is given a default value of 15, which is a command to 
"terminate," which will normally stop a process. If it does not, type kill-9 pid. 
This is more effective, but does not give the process a chance to close any files 
it may be working on when it receives the signal. 

In theory, if you stop a parent process, you automatically stop all the child 
processes spawned by it, as follows: 

$ ps -ef I grep charles 
charles 11487 1 o 08:34:15 008 0:07 -ksh 
charles 11514 1 0 08:34:44 009 0:00 -ksh 
charles 11641 11514 1 08:37:41 009 0:05 rm -r * 
charles 11650 11487 11 08:38:32 008 0:00 grep charles 
charles 11651 11487 71 08:38:32 008 0:01 ps -ef 
$ kill -9 11514 
$ ps -ef I grep charles 
charles 11487 1 o 08:34:15 008 0:07 -ksh 
charles 11650 11487 11 08:38:32 008 0:00 grep charles 
charles 11651 11487 71 08:38:32 008 0:01 ps -ef 
$ 

Note, however, that this procedure runs the risk of corrupting data or causing 
some other unwanted effect. As a general rule, always explicitly kill a child 
process before its parent: 

$ ps -ef I grep charles 
charles 11487 1 0 08:34:15 
charles 11514 1 0 08:34:44 
charles 11641 11514 1 08:37:41 
charles 11650 11487 11 08:38:32 
charles 11651 11487 71 08:38:32 
$ kill 11641 
$ kill 11514 
$ ps -ef I grep charles 

008 
009 
009 
008 
008 

0:07 -ksh 
0:00 -ksh 
0:05 rm -r * 
0:00 grep charles 
0:01 ps -ef 

charles 11487 1 0 08:34:15 008 0:07 -ksh 
charles 11650 11487 11 08:38:32 008 0:00 grep charles 
charles 11651 11487 71 08:38:32 008 0:01 ps -ef 

It is also advisable to try killing a process with the lowest severity signal pos­
sible. Only use kill-9 as a last resort. 

163 



Controlling processes 

The status of a killed process is reported as follows: 

[1] + Killed rm -r * 
It is possible to kill all of the currently executing background jobs together, 
using the kill -p option and some of the special shell parameter notation 
described in "Passing arguments to a shell script" (page 250), as follows: 

$ kill "$@" $(jobs -p) 

Suspending a job 

You can only suspend a job that was started in your current shell. To suspend 
a running job, press (Ctrl)Z (or the current defined suspend key). The job will 
stop running, but will remain available (and can be continued). 

For example: 

$ sort bigfile.dat >bigfile.out 
(Ctrl)Z 
[1] + Stopped sort bigfile.dat>bigfile.out 

If (Ctrl)Z does not work, your suspend key may not be set up correctly. To 
identify the suspend key, use the following command: 

$ stty -a I grep susp 
swtch = A@;SUSp = AZ;start = AQ;stop = AS; 

This command line looks for the word susp in the sUy settings. If it is present, 
it will tell you the current suspend key. If it is not present, or if you want to 
change it to another key, you can modify it using the sUy command. For 
example, to make (Ctrl)Q the suspend key, enter the following: 

$ stty susp "Q 

(The ""Q" is entered by typing a caret (") followed by a letter II Q ".) 

Moving background jobs to the foreground 

164 

In order to terminate a background job using a keyboard interrupt sequence, 
you must first move it into the foreground. To do this, use the fg(C) command 
followed by a 1/%" sign, then the PID, the command name, or the job number. 
For example, to move the find background process to the foreground, type the 
following: 

$ jobs 
[2] + Running 
[1] - Running 
$ fg %find 

tar tv3 * & 
find / -name README -print > logfile & 

find / -name README -print > logfile 

User's Guide 



Keeping a process running after you log 0 ff 

Note that the command line is returned, without the trailing ampersand. The 
following command line has the same effect: 

$ fg %2 

find / -name README -print > logfile 

The process now executes in the foreground; that is, it takes control of the ter­
minal, and will accept input typed at the keyboard, including interrupt 
sequences such as (Ctrl)Z. 

fg entered without an argument, where only one background job exists, 
moves that job into the foreground. Where there are two or more background 
jobs, entering fg without an argument moves the job placed in the back­
ground most recently into the foreground. 

Moving foreground jobs to the background 

As we saw in IlKilling a process" (page 162), to move a foreground process to 
the background, press the suspend key. The process is suspended and a mes­
sage is displayed, as follows: 

[1) + Stopped sleep 30 

To move a suspended job to the background, use the bg(C) command fol­
lowed by a 11%" symbol, then the PID, the job number, or the command name. 
For example, to move the suspended sleep process in the above example to 
the background, type the following: 

$ bg %sleep 

The suspended process is then restarted in the background. A message is 
displayed indicating this, as follows: 

[1) sleep 30& 

Keeping a process running after you log off 

It is sometimes useful to let one or more of your processes continue after you 
log out. In the Bourne and Korn shells, you can use the nohup(C) (no hangup) 
command to do this. (nohup is unnecessary in the C shell; background jobs 
started by csh continue even after the parent shell terminates.) 

The format of nohup is as follows: 

nohup command 

Executed in the background using the ampersand, such a process will con­
tinue executing for its normal term, and will not be aborted by finishing the 
session. 

165 



Controlling processes 

For example: 

$ nohup find I -name chapter6.txt -print> files_found & 

The find process runs in the background and does not stop when you log off. 
The output is directed to a file calledfilesJound. If redirection is not specified, 
output from the program is saved in a file called nohup.out in the current 
working directory, or in $HOME/nohup.out if the current directory is unwrit­
able. 

Using signals under the UNIX system 

166 

Signals are sent to processes by the UNIX system in response to certain events. 
Most signals cause the process receiving them to terminate abruptly. How­
ever, if you have set a "trap" for the signal, you can use them to recover from 
the emergency. You can also use signals as a means of allowing shell scripts to 
communicate with other programs running on the system. Note that signal 1 
is not a real signal: it is sent by the shell and trapped within the shell for its 
own purposes. 

The following signals are recognized by the shells (although not all of them 
can be trapped): 

Table 5-1 Shell signal handling 

Value Signal 

0 EXIT 
1 HUP 

2 INT 

3 QUIT 

9 KILL 

11 SEGV 

(Continued on next page) 

Description 

Exit from the shell. 
A pseudosignal used by the shell, indicating 
that the standard output has hung up; send­
ing this signal logs you out. 
Sent by a (Del) keystroke; sends an interrupt 
to the current program. 
Sent by a (Ctrl) \ keystroke; causes the current 
program to abort, leaving behind a core 
dump (for use in program debugging). 
Cannot be trapped or ignored; forces the 
receiving program to die. 
Indicates that a segmentation violation (a 
memory fault within the UNIX system) has 
occurred. This signal cannot be trapped or 
ignored by a shell; it invariably terminates 
the receiving process and causes a core 
dump. 

User's Guide 



Table 5-1 Shell signal handling 
(Continued) 

Value Signal 

15 TERM 

Reducing the priority of a process 

Description 

Terminates the receiving program. (This sig­
nal should be used in preference to Signal 9, 
because the receiving program can catch it 
and carry out some shutdown operation, for 
example closing open files; Signal 9 forces the 
process to die immediately.) 

For a full list of the UNIX signals, see signal(S). 

You can use the trap(M) command to catch any or all of the trappable signals. 
Its format is as follows: 

trap command signals_list 

In other words, command is executed whenever one of the listed signals 
(which are specified using the numbers given in the first column of Table 5-1, 
"Shell signal handling" (page 166)) is received. For example, if you have a 
shell script that uses a temporary file called scratchpad, the file will be left 
behind whenever the script is interrupted, unless you add the following line 
somewhere near the top of the script: 

$ trap "rm scratchpad" 0 1 2 3 15 

This statement deletes the temporary file whenever an EXIT, HUP, INT, QUIT 
or TERM signal is received. 

Reducing the priority of a process 

One of the factors that controls when a process is executed is its "priority", 
which can be manipulated using the nice(C) command. This is useful at the 
start of a big job such as compressing all the files in a directory, particularly 
when the speed at which the job completes is not crucial. nice has the follow­
ingform: 

nice -increment command_line 

To use the nice command, specify a value between 0 and 39, indicating how 
Iowa priority you want the command to have: 39 is the lowest. If you do not 
specify a priority, nice assumes an increment of 10. 

By default, the system processes execute with a nice value of 20. An increment 
value of 15 would cause command_line to execute at a nice value of 35, that is, 
towards the lower end of the priority range, where it would receive propor­
tionately less CPU time. 

167 



Controlling processes 

An increment of -10, specified as follows, would increase the priority of the 
command line to 10: 

$ nice --10 find / -name chapter6.txt -print> out_file 

By using nice --10 to run the command line, you ensure that it takes more pro­
cessor time than the other programs on the system, thereby increasing its exe­
cution speed. Increasing the priority of a job above 20 is available only to the 
root user. 

Note that in the C shell, increasing the nice value of a process works in 
reverse. For example, to run the find command above, you would enter the 
following: 

$ nice +10 find / -name chapter6.txt -print> out_file 

Identifying the niceness of a process 

168 

To obtain a listing of your processes and their nice values, enter ps -1. The 
eighth column of output, headed HNI", shows the nice value. The following 
command line strips out just the command name and the nice value for each 
of the active processes: 

$ ps -1 I awk '( printf("%s\t%s\n",$NF,$8)}' 

(For more information on the awk(C) programming language, see Chapter 13, 
"Using awk" (page 323». Note that when you run a process in the back­
ground under the Korn shell and the bgnice variable is set, the process runs 
with a nice value of 4. (You can examine the Korn shell's internal variables by 
entering the command set -0; you can switch bgnice off by typing set +0 
hgnice or switch it on by typing set -0 bgnice.) 

User's Guide 



Scheduling your processes 

Scheduling your processes 

The UNIX system lets you suspend the execution of a command, execute a 
command at a specific time in the future and execute commands at regular 
times. 

Running processes at some time in the future 

You can run commands at an arbitrary time in the future l by using the ate C) 
and batch(C) commands. at allows you to specify a time when the command 
should be executed, and batch executes the command when the system load 
level permits. The at command uses the format at sometime command where 
sometime is a time and date in the future when command will be executed. at 
is useful for sending yourself reminders, for example: 

$ at 1:00pm Jan 24 
mail -s "Technical Publications meeting at 1:15" jdixon 
(Ctrl)D 

job 782560800.a at Mon Jan 24 13:00:00 EST 1994 
$ 

This command sends a blank mail message entitled Technical Publications 
meeting at 1: 15 to jdixon at 1:00P.M. on January 24. 

at allows times and dates to be specified in a wide variety of ways. See at(C) 
for details. 

To display a list of current at jobs, type at -1. To remove at jobs and their 
identification numbers, type at -r job_id; to delete the at job queued in the last 
example, enter the following: 

$ at -r 782560800.a 

Note that the trailing ".a" must be specified. This distinguishes at jobs from 
batch jobs, which have a trailing" .bl!. 

batch takes no arguments and submits a command for immediate execution 
at lower priority than an ordinary at command. For example: 

$ batch 
compress *.txt 
(Ctrl)D 

$ 

1. The UNIX system's idea of time starts at the "Epoch", January 1, 1970. The largest number representable 
by a 32-bit signed integer is 2147483647: add this number of seconds to the Epoch, and you get a date in 
the year 2037. On systems that implement dates in this way, 2037 is the UNIX system time horizon: 
representing dates as unsigned 32-bit integers, or even as 64-bit integers, would obviously enhance the 
UNIX system's grasp of the future. 

169 



Controlling processes 

This command compresses all the files ending in .txt in the current directory. 
The job will be executed when the load on the system permits. 

The at and batch commands are available only to users whose user names 
appear in the /usr/lib/cron/at.allow file: users who are specifically barred from 
using these facilities appear in /usr/lib/cron/at.deny. These files are editable only 
by the root user. 

Executing processes at regular intervals 

170 

The crontab(C) command lets you execute routine jobs (called "cron" jobs) on 
a regular basis. For example, it could be used to periodically back up your 
files, or to periodically clean up tmp and log files. To submit a cron job, details 
of the job must be added to a cronfile. This is a normal file, but its contents are 
formatted in a special way: 

Minutes Hours Day_of_Month Month Day_of_week Command 

Fields are separated by spaces or tabs. The file cannot have blank lines. The 
cronfile parameters are as follows: 

Field 

Minutes 
Hours 
Day of month 
Month of year 
Day of week 
Command 

Allowable values 

0-59 
0-23 
1-31 
1-12 
0-6 (O=Sunday) 
any non-interactive command 

A field can be a number, a range of numbers (for example 10-20), a list of 
numbers separated by commas, or an asterisk (all values). For example, an 
asterisk in the "Hours" field means H every hour"; an asterisk in the "Month" 
field means H every month". 

Let us assume that you want to write a cronfile to issue reminders and per­
form regular tasks: 

• You need to attend a meeting at lOA.M. every Monday, and you want to 
remind yourself of this at 9:45A.M. on Monday mornings. 

• You want to find and remove any old files beginning with "#" in your home 
directory at 4:30P.M. on the first day of every month. 

• You want to echo the date and time to your terminal at 9:00A.M. Monday to 
Friday. 

User's Guide 



Scheduling your processes 

Create a file that looks like the following: 

45 9 * 1 echo "Weekly status meeting" > Idev/tty06 
30 16 1 * * find $HOME -name '#*' -atime +3 -exec rm -f {} \; 
o 9 * 1-5 echo date> /dev/tty06 

When you have created your file (called cronfile), submit it by typing the fol­
lowing: 

$ crontab 

If you want to edit an existing cron job, the cronfile should be edited and re­
submitted. 

To display the current cron job, type crontab -1. Redirect the output to a file 
and edit it, then re-submit the new file. This replaces the old cron job. 

To remove the current cron job, type crontab -r. If you submit a second 
cronfile before the first one is executed, the first one will be overwritten by the 
second. 

As with at and batch, access to crontab can be turned on and off by the root 
user by adding user names to /usr/lib/cron/cron.allow and /usr/lib/cron/cron.deny 
respectively. 

Delaying the execution of a process 

The sleep(C) command suspends the execution of a command for a number 
of seconds. For example (sleep 20; date> Idev/tty06) & delays the execution 
of the date( C) command by 20 seconds. 

sleep is useful for spacing out commands: 

$ (while true 
> do 
> who » who_report 
> sleep 3600 
> done)&: 
$ 

This sequence repeats the who command every 3600 seconds (1 hour), and 
writes the output to a file called who_report. (This task could also have been 
carried out using the cron command.) 

Using "»" in the sequence causes the output to be appended to the end of 
who_report. If ">" were used instead, the contents of the file would be 
overwritten each time the who command was run. For an explanation of the 
while structure, see Chapter II, "Automating frequent tasks" (page 245». 

171 



Controlling processes 

172 User's Guide 



Chapter 6 

Working with DOS 

DOS utilities let you access and manipulate files on DOS disks and DOS parti­
tions on your hard disk. This chapter explains how to: 

• set up DOS devices under the UNIX system (this page) 

• use DOS filenames (page 174) 

• list DOS files (page 175) 

• copy DOS files between DOS and the seD OpenServer system (page 175) 

• display DOS files (page 176) 

• convert DOS files to and from the UNIX system (page 176) 

• remove DOS files (page 177) 

• create a DOS directory (page 177) 

• remove a DOS directory (page 178) 

• format a DOS floppy (page 178) 

• mount DOS file systems (page 179) 

DOS devices under the UNIX system 

The seD OpenServer system sees every piece of equipment attached to the 
computer as a file; it communicates with devices such as mass storage sys­
tems and printers by reading from and writing to special device files stored in 
/dev. Each device file has a name that corresponds to the physical attributes of 
the device itself. For details of the naming of devices, see illdentifying device 
files" (page 182). 

173 



Working with DOS 

The hard disk can be divided into one or more partitions, each of which is 
accessed in the same way, using a device file. The DOS partition on the hard 
disk is accessed through /dev/hdOd for the first hard disk, and /dev/hdld for a 
second hard disk. 

To eliminate the necessity to remember the various device files, a file exists 
that lets your system administrator define DOS drive names that you can use 
in place of UNIX device files. This file is called /etc/dejault/msdos, and, by 
default, includes the following entries: 

A=/dev/install 
B=/dev/installl 
C=/dev/hdOd 
D=/dev/hdld 

This means that when you are using the DOS utilities, you can use A:, B:, C:, 
and D: instead of /dev/install, /dev/installl, /dev/hdOd, and /dev/hdld respectively. 

In addition to the DOS utilities described in this chapter, you can also use the 
dd(C), diskcp(C), and diskcmp(C) commands to copy and compare DOS 
floppies, and the dtype(C) command to find out what type of floppies you 
have. 

DOS filenames 

174 

DOS filenames are all uppercase when viewed from the SCO OpenServer sys­
tem, and are restricted to eight letters, followed by a period, then a three letter 
extension. However, when you type the name of a DOS file in conjunction 
with a DOS utility, you can use upper- or lowercase letters. Because DOS does 
not provide an equivalent to the # executable" permission bit, the three letter 
extension is used to indicate if a file is executable. Files ending in .EXE, .sYS or 
.COM are programs, and files ending in .BAT are batch (script) files. 

If you create a file on a SCO OpenServer system and transfer it to a DOS sys­
tem, try to avoid giving it one of these extensions. Otherwise, DOS may mis­
take it for an executable program, with unpredictable results. 

When copying files from a DOS disk to a SCO OpenServer system, uppercase 
filenames are automatically converted to lowercase. When copying files from 
a SCO OpenServer disk to a DOS disk, lowercase names are truncated to fit the 
DOS filename convention and converted to uppercase. 

See doscmd(C) for more details of DOS filenaming conventions. 

User's Guide 



Copying DOS files between DOS and sea Open Server systems 

Listing DOS files in standard DOS format 

To list the files on a DOS floppy or partition in DOS format, use the dosdir 
command (see doscmd(C) for details), as follows: 

dosdir directory 

For example, to list the files on a floppy in the A: drive, enter the following 
command line: 

$ dosdir a: 

The files are listed in standard DOS format, as follows: 

CDCONFIG.SYS 1008 10-10-91 7.33p 
PROJECT . TXT 80640 1-18-92 12:00a 
COLORS .SYS 17540 1-18-92 12:10a 
TREE .EPS 23565 4-07-92 7:19p 

4 File(s) 851584 bytes free 

Usting DOS files in a UNIX system format 

To list the DOS files on a floppy or DOS partition in UNIX system format, use 
the dosls command (see doscmd(C) for details), as follows: 

dosls directory 

For example, to list the files on a floppy in the A: drive, type the following: 

$ dosls a: 

The files are listed in a UNIX system format, for example: 

CDCONFIG.SYS 
PROJECT. TXT 
COLORS.SYS 
TREE.EPS 

Copying DOS files between DOS and seo OpenServer 
systems 

To copy a file, use the doscp command (see doscmd(C) for details), as follows: 

doscp filenamel filename2 

The filenamel argument is the source file and filename2 is the target file; both 
arguments may include a drive specification and pathname. For example, to 
copy a DOS file called PROJECT.TXT from the A: drive to the /tmp directory, 
type the following: 

$ doscp a:project.txt /tmp 

175 



Working with DOS 

To copy the file back to the floppy, type: 

$ doscp /tmp/project.txt a: 

N ate that DOS does not recognize links. If you use doscp to copy a link to a 
DOS disk, a complete copy of the file is made. So, if you have two links to the 
same file called filel and file2, and copy them to the same DOS disk, the result 
will be two identical copies of the file, named filel and file2. The doscp com­
mand recognizes the standard UNIX system wildcards, so that you can copy 
groups of files with a single command. 

Displaying a DOS file 

To display a DOS file, use the doscat command (see doscmd(C) for details), as 
follows: 

doscat filename 

For example, to display the AUTOEXEC.BAT file on a floppy in drive A:, type: 

$ doscat a:autoexec.bat 

If you specify more than one file, the files are displayed one after another. If 
the file or files are too long to fit on a single screen, pipe the output through 
more. For example, to display two files on the A: drive called filel and file2, 
type the following: 

$ doscat a:filel file2 I more 

Converting DOS files to and from UNIX system file format 

176 

N ate that DOS text files contain extra formatting characters that will show up 
on your screen. A line of text in a UNIX system file is terminated by a line feed 
character. In DOS files, a line is terminated by a line feed and a carriage return 
("M). Because no attempt is made to change the nature of DOS files, the 
carriage return character is visible when editing a DOS file from the UNIX sys­
tem partition. Thus when a DOS file that contains a series of numbers is 
opened using vi(C), it looks something like this: 

This is a DOS file. AM 
Note that each line ends in a spurious characterAM 
like this. AM 

"TEST. TXT" 3 lines, 100 characters 

User's Guide 



Creating a DOS directory 

You can either ignore these characters, or remove them with the dtox(C) (DOS 
to UNIX) command. If you remove the carriage returns in a DOS file using 
dtox, you must replace them using the xtod( C) (UNIX to DOS) command 
before you use the file under DOS. The following commands convert the DOS 
file test.txt to and from the UNIX format file test.out: 

$ dtox test. txt > test.out 
$ xtod test.out > test.txt 

Automatic file conversions when using DOS utilities 

When you display a DOS file using doscat or copy a DOS file to your SCO 
OpenServer system using doscp, the carriage return characters eM) are auto­
matically stripped out of the file. When text files are transferred to DOS, the 
commands insert a AM before each linefeed character. 

Under some circumstances, however, the automatic newline conversions do 
not occur. doscat and doscp supply the -m option, which ensures that the 
newline conversion is carried out. The -r option overrides the automatic 
conversion and forces the command to perform a true byte copy regardless of 
file type. 

Removing a DOS file 

To remove a file from a DOS floppy or partition, use the dosrm command (see 
doscmd(C) for details), as follows: 

dosrm filename 

For example, to remove a file called TEST.TXT from the A: drive, type the fol­
lowing: 

$ dosrm a:test.txt 

Creating a DOS directory 

To create a DOS directory, use the dosmkdir command (see doscmd(C) for 
details), as follows: 

dosmkdir directory 

For example, to create a directory called PROJECTS on the A: drive, execute the 
following command line: 

$ dosmkdir a:projects 

177 



Working with DOS 

Removing a DOS directory 

To remove an empty DOS directory, use the dosrmdir command (see 
doscmd(C) for details), as follows: 

dosrmdir directory 

For example, to remove a directory called PROJECTS from the A: drive, type 
the following: 

$ dosrmdir a:projects 

Before you remove a directory, you must make sure that it does not contain 
any files or subdirectories. If it is not empty, you must either delete the files it 
contains (using dosrm), or move them to other directories (using doscp to 
copy the files to a different directory, followed by dosrm to remove the files 
from the directory to be removed). 

The following is a short script to remove all the files from a DOS directory: 

#! /bin/ sh 
for target in 'dosls $1' 
do 

dosrm $l/${target} 
done 

For example, if the script is named dosdirempty, and your disk in drive A: con­
tains a directory called work, you would type the following in order to remove 
all the contents of the work directory: 

$ dosdirempty A:WORK 

Formatting a DOS floppy 

178 

DOS partitions on your hard disk cannot be formatted using the procedures 
described in this section. To do this, you must either use the native DOS 
format command, or have root user privilege (see Chapter 7, "Using other 
operating systems with an SCO system" in the SCO Open Server Handbook for 
details). 

Although you cannot format a hard disk, you can format a DOS floppy disk 
using the dosformat command (see doscmd(C) for details), as follows: 

dosformat drive 

For example, to format a floppy in the A: drive, type the following command: 

$ dosfor.mat Idev/fdO 

Note that you cannot specify A: (or a:) with dosformat. This is because A: is 
aliased to /dev/install, which cannot be formatted (see "DOS devices under the 
UNIX system" (page 173)). You should therefore use /dev/fdO, which automati­
cally formats the floppy correctly for the drive type. (You can specify the 

User's Guide 



Using mounted DOS filesystems 

complete device filename if you wish, for example, Idevlfd096ds15 for a 5~ 
inch 1.2MB drive; see "Identifying device files" (page 182).) 

Note that unlike the format(e) command, that only works on raw devices 
(such as IdevlrfdO), dosformat only works on block devices (such as IdevlfdO). 

You can format a floppy in the second drive by typing either of the following 
command lines: 

$ dosformat /dev/fdl 

$ dosformat /dev/fd196ds15 

The latter formats a 5~ inch 1.2MB drive. 

Using mounted DOS filesystems 

In addition to using the DOS utilities, you can mount a DOS file system and 
access its files directly while still operating from the seo OpenServer system. 
A general description of mounting filesystems is given in "Mounting a filesys­
tern" (page 98). 

This means that you can edit DOS files in place, without first copying them 
into the UNIX filesystem. The seo OpenServer system deals with DOS files by 
superimposing certain qualities of UNIX filesystems over the DOS filesystem 
without changing the actual files. UNIX file systems are highly structured and 
operate in a multiuser environment. In order to make DOS files readily acces­
sible, access permissions and file ownership are superimposed on the DOS 
file system when mounted. 

The major restriction with mounting a DOS floppy or a DOS partition is that 
DOS applications (for example, your DOS word processing package) cannot be 
executed under this arrangement. 

If you need to use your DOS applications, you (or your system administrator) 
need to do one of the following: 

• Boot the system as a DOS system (only your system administrator can do 
this). 

• Make the DOS partition the active partition, so that the computer boots DOS 
by default (only your system administrator can do this). 

• Run seo® Merge™ from the UNIX partition. (Ask your system administra­
tor if you have this application on your system.) 

DOS utilities cannot be used on a mounted DOS filesystem. Normally, only 
your system administrator can mount a file system. Access by users is 
governed by the permissions and ownership that your system administrator 
places on the DOS filesystem. The system administrator must either mount the 

179 



Working with DOS 

DOS file system or set up the system so that users can use the mnt(C) com­
mand. The filesystem must also be mountable. Such systems have an entry in 
/etc/dejaultlfilesys that contains the command mount=yes. See "Mounting a 
filesystem" (page 98) for details of /etc/defaultlfilesys and how to check its con­
tents. 

Because of the limitations discussed earlier, DOS does not recognize permis­
sions or ownership. When mounted from the UNIX partition, DOS files behave 
as follows: 

• The permissions and ownership of the filesystem are governed by the 
mount point. For example, if root creates a mount point IX with permissions 
of 777, all users can read or write the contents of the filesystem. If root cre­
ates a mount point with permissions of 700, only root can read or write the 
contents of the filesystem. 

• The ownership of regular files is governed by the mount point. If the 
mount point is owned by root, all files within the DOS filesystem and any 
created by other users are all owned by root. 

• DOS does not distinguish between users, therefore files can be either 
readable/writable for everyone, or read-only for everyone. The permissions 
for regular files are either 0777 for readable/writable files or 0555 for read­
only files. When a file is created, the permissions are based on the umask of 
the creator, but may not be the same as they would be in a normal file­
system. If the umask allows anyone to write to the file, then the permis­
sions are set to 777; if no one can write to the file, the permissions are set to 
555. See umask(C) for details. 

Points to note when using files on a mounted DOS filesystem 

180 

The rules for filenames and their conversion follow the guidelines found in 
doscmd(C). Filenames that exceed the limit for a DOS filename will be trun­
cated when you copy them to a DOS partition. For example, if you attempt to 
create a file named rumpelstiltskin within the DOS file system, it is truncated to 
rumpelst. 

You can use wildcard characters just as you use them with UNIX filesystems. 

When accessed from the UNIX partition, the creation, modification, and access 
times of DOS files are always identical and use GMT, or Greenwich Mean 
Time. (This is because UNIX systems use GMT internally and convert it for 
you.) This means that files created in the DOS filesystem will not have con­
sistent times across the operating systems. 

You cannot use the backup(ADM) utility to make backups of a mounted DOS 
filesystem. However, DOS utilities and other copy programs like tar(C) work 
as expected. 

User's Guide 



Chapter 7 

Working with disks, tapes, 
and CD-ROMs 

Most of the time you work with files, they are stored on your computer's hard 
disk and are accessible using the file and directory handling commands dis­
cussed in Chapter 3, "Working with files and directories" (page 79). However, 
it may be necessary to use other types of storage device. For example, you 
might want to pass a copy to the user of another machine not connected to 
your own, or to store infrequently used material, or to make a backup copy of 
your work. This chapter explains how to use: 

• devices (this page) 

• tapes (page 185) 

• CD-ROMs (page 187) 

• the tar archiving command (page 187) 

• the cpio archiving command (page 190) 

Using UNIX devices 

The sea OpenServer system sees every piece of equipment attached to the 
computer as a file; it communicates with it by reading from and writing to a 
special device file located in the /dev directory. Each type of device has its own 
device file, which in tum points to a piece of software called a device driver, 
which is linked into the kernel. 

181 



Working with disks, tapes, and CD-ROMs 

A huge number of device drivers have been written for UNIX systems. One 
way of controlling the "footprint" of a UNIX implementation (the amount of 
memory taken up by the system) is to limit the number of device drivers in 
the kernel: for example, a normal office system is unlikely to require the driver 
for a barcode reader. There are, however, device drivers that can be loaded 
into the system when needed. The sca OpenServer system supports "boot­
time loadable drivers" (BTLD's): these are described in "Using boot-time load­
able drivers" in the seQ Open Server Handbook. 

Two types of device file are supplied in /dev, those for the character devices 
(also known as "raw" devices), and those for the block devices (also known as 
"buffered"). The former handle input/output operations of arbitrary size 
while the latter operate through fixed size buffers. 

Some devices may supply both types of interface, and thus have two separate 
device files in /dev. Typically, disk devices supply both, and the following 
entries will appear in a long listing: 

$ 1s -1 
brw-rw-rw- 6 bin bin 2, 52 Mar 24 1993 fd096ds15 
crw-rw-rw- 5 bin bin 2, 52 Mar 24 1993 rfd096ds15 

In this case, the one floppy disk drive supplies both a block interface, 
fd096ds15, and a raw interface, rfd096ds15. Note also the first character posi­
tion of the listing: the "b" and "c" indicate ''block'' and "character" respec­
tively. See Is(C) for more details of file types; for more information on devices, 
refer to the seQ OpenServer Handbook. 

Identifying device files 

182 

The device files in /dev have names that correspond to the characteristics of 
the devices themselves. The following steps show how to work out the name 
of the device file to use when specifying a floppy disk drive, for example: 

1. All floppy disk devices are located in /dev and begin with rfd (the "r" is 
short for "raw", because the sea OpenServer system has to access the disk 
directly). The "fd" stands for floppy disk. So start the device filename with 
Idevlrfd. 

2. If your computer has only one floppy disk drive, follow this with a num­
ber "0". If your computer has two or more drives, you can follow it with a 
"0", "1" or higher number (depending on whether you want to format a 
disk in the first, second, or subsequent drive). 

User's Guide 



Using UNIX devices 

3. Follow this digit with the number of tracks per inch on the disk This is 
usually indicated on the disk label. The standard number of tracks per 
inch on different disks are as follows: 

48 Low-density 5% inch disks (360KB) 

72 Double-density 312 inch disks (720KB) 

96 High-density 5% inch disks (1.2MB) 

135 High-density 312 inch disks (1.44MB) 

4. Follow this number with either "ds" if the disk is double-sided, or "ss" if it 
is single-sided. 

5. Finally, finish the device name by adding the number of sectors per track 
on the disk, as follows: 

9 Standard 5% inch or 312 inch floppy disk 

15 High-density 5% inch floppy disk 

18 High-density 312 inch floppy disk 

In this way, a name such as /dev/rjd096ds15 can be constructed to indicate a 
floppy disk drive. Its name literally means "raw floppy disk 0; 96 tracks per 
inch; double-sided; fifteen sectors per track" 

A summary of the most common types of floppy disk is given in the following 
table: 

Device code 

rfd048ds9 

rfd096ds15 

rfd0135ds9 

rfd0135ds18 

Size and type of backup media 

5% inch 360KB floppy disk 

5% inch 1.2MB floppy disk 

312 inch 720KB floppy disk 

312 inch 1.44MB floppy disk 

Note that all of these entries apply to the first drive (drive 0) on the system. If 
you want to use the second drive, change the 0 after "rfd" to 1; if you want to 
use the third drive, change the 0 to 2, and so on. 

183 



Working with disks, tapes, and CD-ROMs 

Default devices 

Many commands, such as format(C) and tar(C), have a default device, which 
is accessed automatically whenever you invoke the command without speci­
fying a device. This default device is listed in the files in the directory 
!etc/default. The file letc/defaultlformat, for example, which specifies the default 
device used by the format command, contains the following: 

# @(#) format135 23.2 91/08/29 

VERIFY=Y 
DEVICE=/dev/rfd096ds15 

Here, the default device is the floppy disk drive Idevlrfd096ds15. The VERIFY 
line indicates that floppy disks are to be verified after they are formatted, to 
ensure that the process was successful. 

Using floppy disk drives 

In addition to using floppy disks to store "loose" files, you can also use them 
to back up an entire system; this may, however, require the availability of 
many disks. In either case, a floppy disk must be formatted before it can be 
used. 

Formatting floppy disks 

184 

Before a new floppy disk can be used it must be formatted. Formatting is a 
one-time process that writes essential information on the surface of the disk. If 
you format a disk that already contains information, you will destroy the 
previous contents of the disk. To format a floppy disk, ensure that it is in the 
appropriate drive, ensure that it is writable, and then use the following com­
mand: 

format [drive] 

The drive argument is an optional device file to use if you want to format a 
device other than the default one named in/etcldefaultlformat. (See "Identifying 
device files" (page 182) for an explanation of how to identify the device file to 
use for a given disk drive.) Note that only raw devices can be formatted. 

User's Guide 



Using tapes 

For example, to format a high-density 3Y2 inch double-sided floppy disk in the 
second disk drive, type the following: 

$ format /dev/rfdl13Sds18 

The formate C) command will print out a brief status message and ask if you 
want to continue. If you have made a mistake, you should type n at this point. 

See also "Formatting a DOS floppy" (page 178). 

Determining how many disks you need for a backup 

You can back up a whole system onto floppy disks: to estimate how many 
floppy disks the backup requires, use the du(C) disk usage command, which 
returns the number of 512-byte blocks contained (recursively) within the 
current directory. Its -s option prints only a grand total: 

$ du -s 
24356 

For example, if 24356 is displayed, this means that you require a total of 24356 
x 512 bytes, or roughly 11.9MB. This would give a total of nine 1.4MB floppy 
disks to create a full backup. You can display the number of blocks for each 
individual file or directory by including the filename on the end of the du 
command, as in the following: 

$ du -s /dev 
46 Idev 

Once you know how many floppy disks are required, you can use the tare C) 
or cpio(C) commands to create the archive. See "Creating a backup with tar" 
(page 187) and "Creating a backup with cpid' (page 190) for details of how to 
use these commands. 

Using tapes 

You can copy files to and from tape devices in the same way as you do with 
floppy disks. However, there are a number of differences between tapes and 
floppy disk systems. Notably, although magnetic tapes can store far more 
data than a floppy disk, they can only provide serial access to the information; 
that is, when reading or writing a tape, you must start at the beginning and 
read through each file until you get to the end: you cannot jump around or 
skip files. 

To copy files to and from a tape device, you should use tar or cpio, with the 
appropriate device file (from the list below). You may also need to use the 
tape command to control the tape drive directly; see "Rewinding, erasing, and 
retensioning tapes" (page 186). 

185 



Working with disks, tapes, and CD-ROMs 

There are several different types of tape that may be available on your 
machine. The following are the most common: 

QIC-02 A full-sized quarter-inch tape cartridge; the first QIC-02 drive 
uses the /dev/retO device file. After accessing the tape, this 
device automatically rewinds the tape. If you store more 
than one archive on the tape, you must use the no-rewind 
device file /dev/nretO to access the second and subsequent 
files. 

QIC-40/QIC-80 Smaller mini-cartridge units related to the QIC-02 format. 
These devices are accessed through the /devlftO device file. 

Mini-cartridge Mini-cartridge tape drives linked to the floppy disk drive 
controller. These differ significantly from the QIC family of 
tape drives. Notably, you must format mini-cartridge tapes 
before using them (see "Formatting tapes" (this page». 
Mini-cartridge drives are accessed via the /dev/ctmini device 
file. 

SCSI SCSI tape drives are controlled by a SCSI controller; they are 
accessed via the devices named /dev/StpO, /dev/Stpl, and so 
on. 

Formatting tapes 

Most tapes do not require formatting as this is done during manufacturing. 
Mini-cartridge tapes do, however, require you to format them, using the 
format option to the mcart( C) command, as follows: 

mcart format [device] 

The default device file is /etc/default/meeonfig: to format a tape in any other 
drive, supply the device argument. 

Rewinding, erasing, and retensioning tapes 

186 

To rewind or erase a tape, you should use the tape(C) command. 

To rewind a tape, the command is as follows: 

tape rewind device 

The device argument is the name of the device file for the tape unit. (See 
"Using tapes" (page 185).) For example, with a quarter-inch QIC-02 tape, enter 
the following command line: 

$ tape rewind Idev/rctO 

By default, if no device is specified, tape reads the file jete/default/tape. This 
contains the device name of a tape drive to use. So if there is only one tape 
device on your system and /etc/default/tape is correctly set up, you should not 
need to specify a device name. 

User's Guide 



Creating a backup with tar 

It is a good idea to rewind the tape to the beginning after every use, or after 
encountering an error. 

To erase a tape, the command is as follows: 

tape erase device 

You should retension any tapes that you use regularly, or that have been in 
storage and that you now wish to read from; this takes up any slack in the 
cartridge and reduces the likelihood of errors. (The drive retensions a tape by 
winding to the end of it, then rewinding it rapidly.) The command to reten­
sion a cartridge is as follows: 

tape reten device 

We recommend that you write-disable your tapes to prevent accidental 
erasure or overwriting. This is done by turning the tab on the cartridge so that 
the arrow points to the SAFE position; tum it the other way when you intend 
to write over or erase the tape. 

USing CD-ROMs 

A CD-ROM is a special kind of compact disk that stores computer data rather 
than digital audio data. CD-ROMs differ from floppy disks or tapes in that they 
are read-only media; you can read data stored on them, but you cannot write 
data onto a CD-ROM. Most CD-ROMs are used as large data repositories, as 
they typically store 300MB or more. For example, the entire SCO OpenServer 
system fits on a single CD-ROM with room to spare, but takes as many as 60 
floppy disks. 

CD-ROMs are preformatted, and the data is stored on them in the form of a 
special type of filesystem (defined by the High Sierra or ISO 9660 standards) 
that can be mounted onto the SCO OpenServer system. For details of mount­
ing a filesystem, see "Mounting a filesystem" (page 98). 

Creating a backup with tar 

A tar( C) backup is a special file that contains other files and their associated 
directory information in linear order. tar was originally created for archiving 
files to tape, hence the name. 

You can specify a list of files to archive by name; and copies of all of the files 
will be stored in the archive. tar creates the archive by reading the files one at 
a time, writing a header (containing information about the files) and then 
writing the contents of the files to the device or tarfile. Consequently, a tarfile 
is always slightly larger than the total size of the files it contains. 

187 



Working with disks, tapes, and CD-ROMs 

188 

You may find tar useful for archiving infrequently-used files in a directory; 
create a tarfile containing copies of all the files, remove the originals, then use 
compress(C) to reduce the size of the tarfile. The result is a convenient, com­
pact package containing the archived material. 

To create a tar file on a floppy disk, use the command tar cvn where the c 
option creates a new backup, overwriting any data already existing on the 
device, v (verbose) displays each file as it is copied, and n is the number of a 
device specified in the "Key" column of the file jete/default/tar. To see the list of 
available device numbers, type tar without arguments, as follows: 

$ tar 
Usage: tar -{txruc} [0-9vfbkelmnpwAFL) [tapefile) [blocksize) 

[tapesize) files ... 
Key Device Block Size(K) Tape 

0 Idev/rfd048ds9 18 360 No 

Idev/rfd148ds9 18 360 No 
Idev/rfd096ds15 10 1200 No 

Idev/rfd196ds15 10 1200 No 

4 Idev/rfd0135ds9 18 720 No 

5 Idev/rfd1l35ds9 18 720 No 

Idev/rfd0135ds18 18 1440 No 
7 Idev/rfd1135ds18 18 1440 No 

8 Idev/rctO 20 Yes 

Idev/rctmini 20 Yes 

Using this list, you can select the size of floppy disk you want to use. For 
example, to create a tarfile on a 720KB floppy disk in the second floppy disk 
drive, containing all files in the directory work, type the following command 
line: 

$ tar cv5 work 

For details of how floppy disk drive names are constructed, see "Identifying 
device files" (page 182). 

To use a device not listed iniete/default/tar, use the tar f option. This causes the 
next argument (device) to be the target drive. For example, the command to 
back up all the files from the current directory and all subdirectories to a 
1.2MB floppy in drive 0 is as follows: 

$ tar cvf Idev/rfd096ds15 • 

In this example, tar uses a relative pathname, (.), standing for the current 
working directory, rather than an absolute pathname. This allows you to 
restore the files to another location. If you give tar absolute pathnames, it will 
restore files to their original location, creating any intervening directories. 

If you want to add files to an archive, rather than overwriting the existing con­
tents, use the r option instead of c; this appends the files to the archive rather 
than creating a new one. Note that this only works for archives held on disk; 
you cannot use the r option with tapes. 

User's Guide 



Creating a backup with tar 

If you do not specify a device, the tar backup will be created on the default 
device defined in jete/default/tar. This default entry is not displayed when you 
type tar on the command line; list the contents of /etc/default/tar to see some­
thing like the following: 

$ cat /etc/default/tar 

# Default device in the absence of a numeric or "-f device" argument 
archive=/dev/rfd0135ds18 18 1440 n 

Note that no "Key" column is displayed. 

If you specify a filename instead of a device name, tar will still create the 
backup. For example, you could store the files from work in a file called 
work.tar in the current directory with the following command: 

$ tar cvf work. tar work 

Usting the files in a tar backup 

To see a list of the contents of a tar backup, use the following command: 

tar tvf device 

The device argument is either the name of the device where the backup is 
stored, or the name of the file containing the backup. The t and v options com­
bine to display a directory listing, the output of which is similar to Is -1. The f 
option tells tar to use the next argument (device) as the backup to read from; 
for example: 

$ tar tv2 
tar: blocksize=20 
rw-r--r--13079/1014 713 Dec 17 11:10 1992 READ.ME 
rw-rw-r--13079/1014 77 Dec 17 09:33 1992 OO.partno.nr.Z 
rw-rw-r--13079/1014 1887 Dec 17 09:33 1992 OO.title.nr.Z 
rw-rw-r--13079/1014 8735 Dec 17 09:36 1992 OO.toc.nr.Z 
rw-rw-r--13079/1014 5961 Dec 17 09:37 1992 01.intro.nr.Z 

Extracting files from a tar backup 

To extract files from a tar backup, the format is as follows: 

tar xvf device files 

tar looks at the backup on device (or the file of that name), extracts all the files 
which matchfiles, and places them relative to the current directory. Note that 
tar does not understand wildcards so files should be a list of explicit 
filenames. 

$ tar xvf Idev/rfd096ds15 

189 



Working with disks, tapes, and CD-ROMS 

This command line restores the contents of the backup as held on 
/dev/rfd096ds15. The x option tells tar to extract files, v displays them, and f 
tells tar to use the next argument (/dev/rjd096ds15) as the name of the backup. 

(If the use of wildcards is especially important, you should use the cpio(C) 
command instead of tar; see "Creating a backup with cpid' (this page) for 
details.) 

If, when you created the backup, you gave tar a full pathname, the files will be 
restored to their original location. If you gave tar a relative pathname, you can 
restore the files to a different location. 

You can tell whether the files in a tar archive have full pathnames by listing 
the files in the archive; if their names begin with a slash (I) they will be 
extracted relative to the root directory. For example, the files in the following 
archive will be placed in the root directory (unlike the files in the previous 
example): 

$ tar tvf /dev/rfd096dslS 
rw-r--r--13079/1014 713 Dec l7 11: 10 1992 I README 
rw-rw-r--13079/1014 77 Dec l7 09:33 1992 100.partno.nr.Z 
rw-rw-r--13079/1014 1887 Dec l7 09:33 1992 100.title.nr.Z 
rw-rw-r--13079/1014 8735 Dec l7 09:36 1992 100.toc.nr.Z 
rw-rw-r--13079/1014 5961 Dec l7 09:37 1992 /01. intro.nr. Z 
rw-rw-r--13079/1014 61179 Dec 17 09:44 1992 102.op.nr.Z 

You can override full pathnames by specifying the A option, which makes tar 
write the files as though your current directory is the root directory. For 
example, the file /README (as above) is normally unpacked and placed in the 
root directory; but if you restore it by using the command tar xv A while your 
current directory is /u/charles the file will be placed in /u/charles/README. 

Creating a backup with cpio 

190 

The cpio(C) command is a more sophisticated backup tool than tar. It is 
harder to use, but is capable of copying special files (such as devices and 
links) consistently, and will accept wildcard characters when listing the files 
to be archived. 

To create a cpio (copy in/out) backup, use the -0 (output) mode. You feed a 
list of files to cpio's standard input; for example, by piping the output from Is 
to cpio. cpio then copies the files into a single cpio backup file on its standard 
output, which should be redirected to the appropriate backup device. 

User's Guide 



Creating a backup with cpio 

For example, to copy all the regular files below your current directory to a 
1.2MB disk in the first floppy drive, type the following command line: 

$ find • -type f -depth -print I cpio -ocv > /dev/rfd096ds15 

This command uses find ( C) to locate all the regular files (-type) in your 
current directory (.) and its subdirectories (-depth), printing their names 
through a pipe ( I ) to cpio. It outputs the names of entries in a directory before 
the directory itself; that is, it searches "depth first," going to the bottom of the 
filesystem. cpio then outputs (-0) those files into an archive on Idevirfd096ds15, 
a high-density 514 inch floppy disk. As it does this, cpio displays their names 
on the terminal (-v). 

The -c option writes the header information in ASCII format. This is a special 
option that allows cpio archives to be read on any other type of machine 
equipped with cpio, even if the target machine's architecture differs radically 
from that of the computer on which the archive was written. (Otherwise, the 
archive might be nonportable, even though both machines could be running 
the sca OpenServer system and cpio.) 

The find command above used a relative pathname (.) rather than an absolute 
pathname. This allows you to restore the files to another location. If you give 
cpio absolute pathnames, files will be restored to their original location, 
overwriting any existing data (as with tar). 

You may need to make a backup that is larger than the capacity of the disk or 
tape being used. If this is the case, cpio will stop when it fills the backup 
medium, and will write a short message prompting you to insert another disk 
(or tape) and type the name of the device to continue using. If you want to 
continue backing up on the same device, replace the media and type the 
device name; if you simply press (Enter), cpio will terminate. 

Pass mode (cpio -p) works like output (cpio -0) mode, except that it copies 
files to another directory in the file system. You can back up files to another 
floppy disk or to a remote filesystem mounted on your system. You can then 
restore these files with cpio. For example, to copy all files from your current 
directory (including all its subdirectories) to a remote filesystem, mounted on 
the /mnt directory on your system, use the following command: 

$ find • -depth -print I cpio -pvd /mnt/backup6 

191 



Working with disks, tapes, and CD-ROMs 

In this example, backup6 is the name of the backup subdirectory on the /mnt 
filesystem. This command starts find in the current directory. Rather than fol­
lowing its normal search order (which is to scan all the files in the current 
directory before entering subdirectories), find with the -depth option dives 
down as deep as possible in the directory tree, then lists all the files it 
encounters as it searches. Because this option lists directory paths before the 
files stored in them, cpio creates the directories before the files. 

Listing the files in a cpio backup 

To list the contents of a cpio backup, use the following command: 

cpio -itv < device 

The device argument is either the name of the device where the backup is 
stored, or the name of the file containing the backup. The -i option defines 
cpio input mode, and t and v combine to display a directory listing, the out­
put of which contains the same information as Is -1 (although the format 
differs slightly): 

$ cpio -itv <archive.epio 
100644 charles 693 Jan 29 
100644 charles 3783 Feb 01 
100644 charles 16457 Jan 26 
100644 charles 1199 Jan 29 
100644 charles 21064 Jan 26 
100644 charles 29954 Jan 26 
100644 charles 422 Jan 28 
143 blocks 

16:20:03 1993 book. order 
13:36:34 1993 checkmac.out 
14:02:59 1993 command.eps 
10:36:04 1993 filesched 
14:03:00 1993 permis.eps 
14:03:01 1993 procTree.eps 
15:17:26 1993 review. log 

Extracting files from a cpio backup 

192 

To extract files from a cpio backup use the -i (input) mode: 

cpio -i options < device files 

cpio reads its input from the backup on device and extracts anything which 
matches the specified files. If, when you created the backup, you gave cpio a 
full pathname, the files will restore to their original location. If you gave cpio 
a relative pathname, you can restore the files to a different location. The fol­
lowing command restores the contents of the backup from device 
/dev/rjd096ds15 to your current directory: 

$ cpio -ivcd < Idev/rfd096dslS 

The -v option displays the files as they are restored, -c tells cpio that there is a 
header, and -d creates subdirectories as needed. 

User's Guide 



Chapter 8 

Using UUCP and dialup commands 

You can exchange files and electronic mail with other systems via UUCP 
(UNIX to UNIX Copy). UUCP is a point-to-point protocol designed for com­
municating over telephone and serial lines, in contrast to newer networking 
systems like TCP lIP, that are optimized for communications over local area 
networks. 

If your computer is connected to a larger network, you are unlikely to need 
UUCP. However, UUCP is still widely used for transporting electronic mail 
between computers that do not have TCP lIP, and is especially useful for 
isolated systems that obtain their e-mail feed via a modem. 

The UUCP programs allow you to transfer files between remote computers 
and to execute commands on remote computers. Since the computers may be 
connected by telephone lines, UUCP transfers can take place over thousands 
of miles. A UUCP site in New York City can transfer a file to, or execute a 
command on, a connected UUCP system site in San Francisco, or anywhere in 
the world. 

Note that the UUCP commands do not allow you to have an interactive ses­
sion with the remote site. If you want to have an interactive session, use the 
commands discussed in HUsing two computers at the same time" (page 202). 

This chapter describes how to: 

• transfer files between UNIX systems (page 194) 

• execute commands on remote UNIX systems (page 200) 

• dial up remote systems (page 201). 

193 



Using UUCP and dialup commands 

Transferring files between UNIX systems 

194 

Transferring copies of binary and text files between remote UUCP systems can 
be achieved using the uucp(C) and uuto(C) commands. There are advantages 
and disadvantages to each. The uucp command gives you great flexibility in 
specifying where on the remote system the transferred file is to be placed, but 
the uucp command line can be complicated. The uuto command, on the other 
hand, is easy to use, but restricts where you can place the file on the remote 
system. In addition, retrieving a file sent with uuto is slightly more compli­
cated than retrieving a file sent with uucp. 

Before you can copy files to remote sites with uucp, you must verify that: 

• Your site knows how to call the remote site. 

• The files that you want to send have read permission set for others. 

• The directory that contains the file that you want to send has read and exe­
cute permissions set for others. This allows the directory to be searched. 

• Your computer has write permission in the directory on the remote site to 
which you want to copy the file. 

You must be sure that your computer Htalks" to the site with which you want 
to communicate. The uuname command gives you this information. Enter­
ing uuname with no options lists the UUCP sites your computer talks to 
directly. For example: 

$uuname 
kate 
rachel 
$ 

Entering uuname with the -1 option causes the name of your computer to be 
displayed. For example: 

$uuname-l 
jane 
$ 

This tells you the name by which your computer is known on the UUCP net­
work. 

Note that you might be able to communicate with a site that does not show 
up in a uuname listing. This is possible because UUCP sites are often H chained 
together". So if you know that a site to which you want to transfer files com­
municates with a site your system communicates with, you can send files to 
the first site through the second. 

User's Guide 



Transferring files between UNIX systems 

For example, say your system (called jane) knows how to communicate with 
two other systems (called kate and rachel, as in the previous example). If kate 
has connection to a fourth system, alice, you can send files to alice via kate by 
typing kate!alice to specify a path. This is equivalent to the mail addressing 
technique described in the Mail and Messaging Guide. 

Finally, you must verify that your computer has write permission on the 
directory on the remote site to which you want to transfer files. Each remote 
UUCP site has a /usr/lib/uucp/permissions file. This file specifies the directories 
on that site from which your computer can read and to which your computer 
can write. You can only send a file to a directory on a remote site if your com­
puter has write permissions on that directory, as specified on the remote site's 
/usr/lib/uucp/permissions file. 

In order to copy a file to a remote UUCP site, the file must have read permis­
sion set for others and the directory that contains the file must have read and 
execute permissions set for others. Use the I command to examine the file's 
permissions and the I -d command to examine the directory's permissions. If 
the permissions are not correct and you own the file, enter the following com­
mands to set the correct permissions: 

chmod o+r filename 
chmod o+rx directory 

(See chmod(C) for details.) By default, most UUCP sites permit calling-in com­
puters to write to their /usr/spool/uucppublic directory, which is available on 
most UUCP systems as a general purpose file transfer directory. Since there is 
no way to find out which directories your computer can write to on the 
remote site, other than contacting somebody at the site, the safest thing to do 
when making a UUCP transfer is to write to /usr/spool/uucppublic. The pro­
cedure for doing this is outlined below. 

Using the uucp command 

The uucp command is equivalent to the ordinary cp command, but it transfers 
files between machines. Thus, in addition to specifying a source filename and a 
destination filename, you need to specify the name of the computer on which 
the source file is located and the name of the destination computer. 

For example, to copy the file testfile from machine kate to machine rachel, if the 
appropriate permissions are set, you can use the command: 

uucp kate!testfile rachel!testfile 

The exclamation point (!) separates the host (computer) name from the 
filename. 

195 



Using uuep and dialup commands 

196 

Note that, as the exclamation point has special meaning to the C shell, if you 
are using the C shell you must "escape" with a backslash (\) any exclamation 
points that appear in a uucp command. For a C-shell user, the command 
above is specified as: 

uucp kate \ !testfile rachel \ !testfile 

The format of the uucp(C) command is: 

uucp [options] src_computer!src_fi1e dest_computer!destJile 

where: 

src_file Is the name of the file that you want to copy. 

src_computer Is the name of the computer on which src_fi1e is located. 

dest_file Is the name of the copied file on the receiving computer. 
Usually, src_fi1e and dest_file are the same. 

dest_computer Is the name of the computer on which dest_file is located. 

options Are the optional arguments to the command. Options 
include: 

-j Prints a job identification number. (The job ID can 
be used to cancel a pendinguucp command.) 

-m Mails the requester when the operation has been 
carried out. 

-nuser Notifies user (a usemame on the destination ma­
chine) that a file was sent. 

There are several ways to specify the location on the remote machine to which 
you want to transfer the file. The simplest is the -Idest-file specification. This 
is also the safest specification, because -Idest_file is expanded to 
/usr/spool/uucppublic/destJile, ensuring that the transfer will succeed. 

For example, to send /usr/andrew/transfile on your machine kate to 
/usr/spool/uucppublic on machine rachel, enter the following command: 

uucp lusr/andrew/transfile rachel!-/transfile 

This command creates the file /usr/spool/uucppublic/transfile on rachel. 

If /usr/andrew is your current directory, you can copy trans file to alice with the 
following command: 

uucp transfile alice!-/transfile 

Another form of the command allows you to specify the full pathname of the 
copied file on the remote computer. However, you must be sure that your 
computer has write permission on this directory, otherwise the transfer will 
fail. 

User's Guide 



Transferring files between UNIX systems 

As an example, suppose that you want to send lusrlandrewltransfile on 
machine jane to the lusrlandrew directory on kate. To do so, enter the following 
command: 

uucp jane!lusr/andrew/transfile kate!lusr/andrew/transfile 

The uucp command can be used to retrieve files from a remote site, in addi­
tion to copying files to a remote site. Using the example above, if you are in 
the lusr /john directory on jane and you want to retrieve a copy of 
lusrlandrewltransfile from kate, enter the following command: 

uucp kate!lusr/andrew/transfile lusr/johnltransfile 

You can also use -user to specify a location on the remote computer. The 
-user argument is expanded to the pathname of user's home directory on the 
remote computer. For example, suppose /usr/john is the home directory of 
account john on machine kate. To copy trans file from lusr/andrew on jane to 
lusr/john on kate, enter the following command: 

uucp lusr/andrew/transfile kate!-johnltransfile 

The receiving computer expands -john to the full pathname of john's home 
directory, creating /usr/johnltransfile. Again, your computer must have write 
permission in john's home directory in order for this transfer to succeed. 

With the uucp command, files are not copied and sent immediately. Instead, 
copies are placed in a spool directory and sent once the uucico daemon awak­
ens. uucico dials remote hosts and transfers the files that it finds queued. 
Depending on how your system is configured, a uucp transfer might take 
place within minutes or within hours. It is common for uucp transfers via 
modem to be saved up for transmission while cheap rate telephone calls are in 
effect; this is done via a system cron(C) job. 

Transferring files to systems that are not connected directly to 
your own 
You might be able to send files to a UUCP site that is not connected directly to 
your own, that is not listed in a uuname listing. For example, your local com­
puter jane is connected to a UUCP site named kate. kate is connected to a UUCP 
site named alice. You can send Itmpltransfile on your local computer through 
jane to lusrlspoolluucppuhlic on alice. To do this, specify the full UUCP address 
relative to your local computer: 

uucp Itmp/transfile jane!alice!-/transfile 

Note that each site name in the command line is followed by an exclamation 
mark. By placing several site names in a uucp command line, you can greatly 
extend the range of systems to which you can copy files with uucp. This is 
also true for the uuto and uux commands discussed below. 

197 



Using UUCP and dialup commands 

198 

Checking the status of pending file transfers 
You can use the uustat(C) command to check on the status of files copied with 
uuep. To check on the status of all your uuep jobs, enter uustat to display the 
following output: 

1234 2/19-10:29 S machine2 mike 9 transfer. file 

The fields are as follows: 

1234 The job number assigned to this uuep transfer. (This number is 
unique to uuep and is used to keep track of the queue of files 
awaiting dispatch). 

2/19-10:29 The date and time the job was queued in the spool directory. 

S The status of the job: "S" indicates the job is a file to be sent; "R" 
indicates the job is a request. 

machine2 The site name of the recipient's computer. 

mike The login of the user who requested the transfer. 

9 The size of the job in kilobytes. 

transfer.file The name of the file. 

If the transfer is completed, uustat displays the message: 

COpy FINISHED, JOB DELETED. 

Several options are available to use with uustat. Refer to uustat(C) for more 
information. 

Transferring files to a public directory using uuto 
The uuto command allows you to copy files to the public directory of a UUCP 
site to which your system is connected. The public directory on most UNIX 
and XENIX® systems is /usr/spool/uucppublic. For example, to send a file from 
the machine jane to the machine kate, use: 

uuto mytextfile kate!john 

john is the login of the user to whom you are sending files; john can retrieve 
mytextfile, as explained in "Retrieving files from the public directory" (page 
199). 

Before you can send a file with uuto, you must verify that: 

• the file has read permission set for others 

• the directory that contains the file has read and execute permissions set for 
others 

User's Guide 



Transferring files between UNIX systems 

If the permissions are not correct, enter the following commands to set the 
correct permissions. For example: 

ehmod o+r mytextfile 
ehmodo+rx . 

(The dot (.) stands for the current directory.) Files sent with uuto are placed in 
the directory: 

lusr Ispool/uucppubliclreceive/login I src _computer 

where login is the login of the user to whom you are sending files and 
src_computer is the site name of your system. In the example above, mytextfile 
is placed in lusr Ispool/uucppublic/receive/john/jane. 

As an example, suppose that you want to send a copy of trans file in Itmp on 
jane to the user sara on the machine kate. To do so, enter the following com­
mand: 

uuto Itmp/transfile kate!sara 

This command copies trans file to the following directory: 

usr Ispoolluucppublic/receivelsara/jane 

When the file transfer is complete, the recipient is notified by mail that the file 
has arrived. If the -m option is used on the uuto command line, the sender is 
notified by mail of the success or failure of the transfer. 

Like uuep, files transferred with uuto are not transferred immediately after 
the command is entered. Instead, they are placed in a spool directory and 
sent when the uudeo daemon awakens. 

Retrieving files from the public directory 
In order to retrieve a file sent by uuto, you must use the uupick command. To 
execute uupiek, enter a command like this: 

uupiek -s system 

For example, sara would enter uupick -s jane and the uupick program 
searches the public directory for any files sent to you from system. If it finds 
any, it responds with the following prompt: 

from system src_computer: file filename ? 

src_computer is the name of the sender's computer and filename is the name 
of the file transferred. In the example above, if the uuto transfer to sara on kate 
is successful, sara sees the following uupick prompt: 

from system jane: file mytextfile ? 

199 



Using UUCP and dialup commands 

Several options are available for responding to the uupick prompt. Two of 
the most useful are m dir and d. The m dir option tells uupick to move the 
file to directory dir. Once in dir, you can manipulate the file as you would any 
other file on your system. In the example above, sara enters the following 
response to the uupick prompt: 

m$HOME 

This causes mytextfile to be moved from the public directory to sara's home 
directory. If no directory is specified after m, the file is moved to the 
recipient's current directory. The file can then be deleted from the public 
directory by entering d at the uupick prompt. You can quit uupick by enter­
ing q. Other uupick options are available; refer to uupick(C) for a complete 
list. 

Executing commands on remote UNIX systems 

200 

Use the uux(C) command to execute commands on remote UUCP systems. 
For security reasons, the commands available for remote execution on a com­
puter are often very limited. A computer's /usr/libjuucp/Permissions file lists 
the commands that can be executed remotely on that computer. If you 
attempt to execute a command not listed in this file, you receive mail indicat­
ing that the command cannot be executed on the computer in question. 

The format of uux is: 

uux [options] command_line 

The command_line argument looks like any other UNIX command line, with 
the exception that commands and filenames might be prefixed with site­
name!. 

The following is an example of how to execute a command on a remote sys­
tem. The command causes /tmp/printfile on rachel to be sent to rachel's default 
printer: 

uux rachel!lp rachel!/tmp/printfile 

The following is an example of how to execute a command on a local system, 
on files gathered by uux from remote systems. Suppose that your local com­
puter is connected to both rachel and kate. Suppose also that you want to com­
pare the contents of /tmp/chptl on rachel with /tmp/chptl on kate. To do so, 
enter the following command: 

uux "diff rachel!/tmp/chptl kate!ltmp/chptl > diff.file" 

This command compares the contents of the files on rachel and kate and places 
the output in difffile in the current directory on the local computer. Since there 
is no site name prefixed to the diff command, the command is executed 
locally. 

User's Guide 



Dialing up remote systems 

Note that, in the example above, the uux command line is placed in quotation 
marks. This is because it contains the redirect symbol (». In general, place 
the uux command line in quotation marks whenever the command line con­
tains special shell characters such as " < ", " > ", and" I ". 

Dialing up remote systems 

The ct( C) command connects your system to a remote terminal with a modem 
attached. The cu(C) command connects your system to a remote system. The 
remote system can be attached via telephone lines or via a simple serial line. 
These commands differ from the UUCP commands discussed earlier in that 
your session with the remote system is interactive. The remote system sees 
you as just another user on the system. 

Connecting to a remote terminal 

The ct command connects a local computer to a remote terminal equipped 
with a modem and allows a user on that terminal to log in to the computer. 
To do this, the command dials the telephone number of the remote modem. 
The remote modem must be able to answer the call automatically. When ct 
detects that the call has been answered, it issues a getty (login) process for the 
remote terminal and allows a user on the terminal to log in on the computer. 

This command is especially useful when issued from the opposite end, that is, 
from the remote terminal itself. If you are using a remote terminal and you 
want to avoid long distance charges, you can use ct to have the computer 
place a call to your terminal. To do so, simply call the computer, log in, and 
issue the ct command. The computer hangs up the line and calls your termi­
nal back. 

If ct cannot find an available dialer, it tells you that all dialers are busy and 
asks if it should wait until one becomes available. If you answer yes, it asks 
how long (in minutes) it should wait. If you answer no, ct quits. 

The format of ct is ct [options] teInD where teInD is the telephone number of 
the remote terminal. 

As an example, suppose that you have a terminal with a modem attached at 
home and that you want to log in to the computer at work from this terminal. 
To avoid long distance charges, first call your work computer and log in. 
Then issue the ct command to make the computer hang up and call your ter­
minal back. If your telephone number is 555-1212, the ct command is: 

ct -s 1200 5551212 

201 



Using UUCP and dialup commands 

The -s (speed) option tells ct to call the modem at 1200 baud. If no dialer de­
vice is available on the computer at work, you see the following message after 
executing ct: 

The one 1200 baud dialer is busy 
Do you want to wait for dialer? (y for yes) : 

If you type n (no), the ct command exits. If you type y (yes), ct prompts you 
to specify how long ct should wait: 

Time, in minutes? 

If a dialer is available when you enter the ct command, you see the following 
message: 

Allocated dialer at 1200 baud 

This means that a dialer has been found. You are then asked if you want the 
line connecting your remote terminal to the computer to be dropped: 

Proceed to hang-up? (y to hang-up, otherwise exit) : 

Since you want to avoid long-distance charges by having the computer call 
you, answer y (yes). You are then logged off and ct calls your remote terminal 
back. 

As another example, suppose that you are logged in on a computer through a 
local terminal and you want to connect a remote terminal to the computer. 
The telephone number of the modem on the remote terminal is 5551000. To 
connect the terminal, enter the following command: 

nohup ct -h -s 1200 5551000 & 

The -h option tells ct not to disconnect the local terminal (the terminal on 
which the command was issued) from the computer. After the command is 
executed, a login prompt is displayed on the remote terminal. The user can 
then log in and work on the computer just as on a local terminal. 

Using two computers at the same time 

202 

The eu (call up) command makes your local computer call a remote computer 
and allows you to be logged in on both systems simultaneously. The remote 
computer does not have to be a UNIX system. 

If the remote computer is a UNIX system, eu allows you to move back and 
forth between the two computers, transferring files and executing commands 
on both. Note that eu only allows you to transfer text files. You cannot 
transfer binary files with eu. To transfer binary files to a remote UNIX system, 
use uuep. 

The format of the eu command is: 

eu [options] target 

User's Guide 



Dialing up remote systems 

The target argument can take one of four forms: 

phone number This is the number of the remote computer to which you 
want to connect. You can embed equal signs, which 
represent secondary dial tones, and dashes, which represent 
four-second delays, in the telephone number. A sample tele­
phone number might be 4085551212--100. This number con­
tains an area code and number, two dashes for an eight 
second delay, and an extension. 

system-name This is the name of a system that is listed in the 
/usr/lib/uucp/Systems file. The ell command obtains the tele­
phone number and the baud rate of system-name from this 
file. The -s, -n, and -1 options should not be used with 
system-name. To see the list of computers in the Systems file, 
enter llllname. 

-lline 

-lline dir 

This is the device name of the serial line connected to the 
remote computer. It has the form ttyXX, where XX is the 
number of a serial line. 

This connects directly with the serial line instead of making a 
telephone connection. 

Once the connection is made, if the remote computer is a UNIX system, you 
are presented with a login prompt. Log in as you would if you were con­
nected locally. When you finish working on the remote computer, log out as 
you would if you were connected locally, then terminate the ell connection by 
entering a tilde followed by a period (-.). (The tilde, when entered at the 
beginning of a line, is an escape character that tells ell to process the next 
piece of text itself, instead of sending it to the remote computer. The period is 
the ell command to terminate the session. Other commands are available.) 

As an example, suppose that you want to log in to a remote UNIX computer 
via the telephone lines. Suppose also that the remote computer's number is 
555-1212. To connect to the remote computer, enter the following command: 

ell -s1200 5551212 

The -s1200 option causes ell to use a 1200 baud dialer. If the -s option is not 
specified, ell uses the first available dialer at the speed specified in the 
/usr/lib/uucp/Devices file. 

When the remote UNIX system answers the call, ell notifies you that the con­
nection has been made by displaying the following message: 

Connected 

Next, you are prompted for your login: 

login: 

203 



Using UUCP and dialup commands 

Enter your login and password. Once you enter this information, you can use 
this computer as if you were logged in locally. When you are finished, log out 
and then enter: 

This terminates the eu session. 

Transferring text files with take and put 

204 

Several command strings are available with eu that allow your local computer 
to communicate with a remote UNIX system. Two of the most useful are take 
and put. 

The take command allows you to take files from the remote computer to the 
local computer. Suppose, for example, that you want to copy a file named 
proposal in the current directory of the remote computer to the Itmp directory 
on the local computer. To do so, enter the following command: 

-%take proposal/tmp/proposal 

Note that you have to prefix a tilde and a percent sign (-%) to the take com­
mand, and that the tilde must be placed at the start of a line. For this reason, it 
is a good idea to press {Enter) before using take. 

The put command does the opposite of take. It puts files from the local com­
puter onto the remote computer. Suppose, for example, that you want to 
copy a file named minutes from the lusr Ispoolluucppuhlic directory on the local 
computer to the Itmp directory of the remote computer. Suppose also that 
you want the file to be called minutes.9-18 on the remote computer. To do so, 
enter the following command: 

-%put lusrlspool/uueppubliclminutes Itmp/minutes.9-18 

As with the take command, you have to prefix a tilde and a percent sign (-%) 
to the put command, with the tilde coming at the beginning of a line. 

put and take rely on other programs existing at either end of the connection; 
put needs stty and eat, while take needs eeho and eat. They may not work if 
you use eu to connect to a computer that does not have these programs (for 
example, a computer running DOS). put and take can only copy text files; if 
you want to send a binary file, uuencode it before transmission. (See the Mail 
and Messaging Guide for an explanation of how to use uueneode and 
uudeeode.) 

The eu command cannot detect or correct transmission errors. After a file 
transfer, you can check for loss of data by running the sum command on both 
the file that was sent and the file that was received. This command reports 
the total number of bytes in each file. If the totals match, your transfer was 
probably successful. See the sum (C) manual page for details. 

User's Guide 



Dialing up remote systems 

For example, here is a sample ell session: 

# uname 
jane 
# cu rachel 

login: andrew 
Password: 
TERM (ansi) 

# cd / 
# 1£ 
.hushlogin 
.lastlogin 
.login 
.mailrc 
.profile 
.rhosts 
.utillist2 
README 

autoexec.bat 
autotest* 
bin! 
boot 
command. com 
config.sys 
core 
country. sys 

# compress README 

date.dat 
dev! 
dos 
etc! 
hj* 
install! 
lib! 
lost+found! 

# uuencode README.Z README.Z>readme.uue 
# -%take readme.uue 

mnt! 
opt! 
sc* 
sco_extra.ps 
server! 
sfmt* 
shlib! 
tcb! 

sh -c "stty -echoitest -r readme.uue&&(echo '->':readme.u 
ueicat readme.uueiecho '->')istty echo" ->:readme.uue 
1234567+ 
# -! 
# uname 
jane 
# ls message. file 
message. file 
# exit 
# uname 
rachel 
# -%put message. file 
sh -c "stty -echoi (cat - >readme.uue) Ilcat - >!dev!nullist 
ty echo" 
12345678901234567+ 
# exit 

# uname 
jane 
# uudecode readme.uue 
# uncompress README.Z 
# 

tmp! 
u! 
unix 
unix. old 
usr! 
var! 
vmstat.dat 

205 



Using UUCP and dialup commands 

206 User's Guide 



Chapter 9 

Using a secure system 

Every computer system needs protection from people accessing the computer, 
disks and system files without permission. The sea OpenServer system pro­
vides built-in security features not present in other UNIX systems. These fea­
tures apply to all users of the system and are maintained by the system 
administrator. 

This chapter explains the following: 

• how system security works (page 208) 

• login security (page 208) 

• what to do if you cannot log in (page 209) 

• password security (page 209) 

• changing passwords (page 210) 

• file security (page 211) 

• general security tips (page 212) 

• using commands on a trusted system (page 213) 

• data encryption (page 216) 

This chapter describes security from the viewpoint of the ordinary user. If 
you find that your system does not use a feature discussed in this chapter, 
your administrator has switched it off in favor of standard non-trusted 
behavior. For full details of the security systems implemented on the sea 
OpenServer system, refer to Chapter 5, "Maintaining system security" in the 
System Administration Guide. 

If you become aware of suspicious activity on the system, you are advised to 
contact your system administrator immediately. 

207 



Using a secure system 

How system security works 

System security is built on two foundations; being able to validate the identity 
of a user, and being able to determine whether a given user has permission to 
carry out a task. When you log in, the system uses your login to check the 
password file; when you type your password, the system encrypts it and com­
pares it with the (encrypted) copy of your password that it already knows. 
This acts as a check on your identity. If you disclose your password to some­
one else, they can log in as you. 

Access to the files on the system is controlled by your permIssIons; see 
/I Access control for files and directories" (page 121). Note that the system 
administrator or root user can read or write any file they want to. Thus, the 
most important password on the system is the root password. 

In addition to controlling file access on the basis of your login name, the sys­
tem controls access to system services. Whenever you run a program, the 
process it gives rise to inherits your authorizations and privileges. Thus, if 
you lack the appropriate privilege, you may not be able to use the ps com­
mand to check on other user's processes, to use chown to change the owner­
ship of files, or to use su to run programs under another login. Again, system 
authorizations are assigned on the basis of your login; the root account is 
allowed to do anything. (Authorizations are assigned on a per-subsystem 
basis, while privileges are assigned for kernel based operations.) 

Login security 

208 

• When you enter your password correctly, the last times you successfully 
and (if applicable) unsuccessfully logged in are displayed: 

Last successful login for login: date and time on ttyxxx 
Last unsuccessful login for login: date and time on ttyxxx 

If these times do not match your actions, consult your administrator 
immediately. Someone might have tried to log into your account. (For 
example, if you come in to work on a Monday and the system indicates a 
failed login attempt on Saturday night, when you were at home, you 
should be suspicious.) 

• Be careful how you type in your password. 

User's Guide 



Password security 

• When you enter your password and the system reports an error, although 
you believe your entry to have been correct, tell your security administra­
tor immediately. Check the reported last login time against the current 
time. If there is a discrepancy it is possible that a spoofing program has 
stolen your password. (A spoofing program is a hacking tool designed to 
collect passwords. It puts a display on a terminal that resembles a login 
prompt. When a user types their password and usemame into it, it sends 
the information to its owner, logs them in, then lies in wait for the next 
user.) 

What to do if you cannot log in 

If you cannot log in, go through the following list of possible reasons: 

• The system administrator has given your password a lifetime, which has 
now expired. Ask the administrator to change your password and reopen 
your account. 

• The system administrator has set a limit to the number of unsuccessful log­
in attempts allowed for your account or your terminal. When you exceed 
this number your account or terminal is locked automatically. Ask the 
administrator to reopen the account or unlock the terminal. If you feel that 
you entered your login details correctly, tell the administrator immediately. 
It is possible that the system has been interfered with. 

• The system administrator has locked your account or terminal. To con­
tinue work, you must ask the administrator to reopen the account. 

• The system administrator has set a date by which your password expires. 
When your password expires, you are prompted to change it. 

• You have forgotten your password. Ask the system administrator to 
change it. 

Password security 

It is your responsibility to protect your password. The careless use and main­
tenance of passwords represents the greatest threat to the security of a com­
puter system. The security administrator can configure the system to be as re­
strictive or open as desired. Password restrictions such as length, complexity, 
and lifetime may be enforced by the system. 

209 



Using a secure system 

Here are some basic guidelines for choosing and maintaining passwords: 

• A password should be at least eight characters in length and include letters, 
digits, and punctuation marks. For example: frAiJ6*. 

• Do not use a password that is easy to guess. A password must not be a 
name, nickname, proper noun, or word found in the dictionary. Do not use 
your birthday or a number in your address. 

• Do not use words spelled backwards. 

• Do not start or end a password with a single number. For example, do not 
use terry9 as your password. 

• Use different passwords on different machines. Do not make the pass­
words reflect the names of the machines. 

• Always keep your password secret. A password should never be written 
down, shared with another person, sent over electronic mail, or spoken. 
Treat your password like the PIN number for your instant teller card. 

• Never reuse a password. This increases the probability of someone guess­
ing it. 

• Never type a password while someone is watching your fingers. 

Changing your password 

The security administrator decides whether you can change your password 
for yourself. The administrator can also set a minimum time period between 
changes of password. 

If you are not allowed to change your password 

If you are not allowed to change password, and you try to use the passwd( C) 
command, the following message appears: 

Password cannot be changed. Reason: Not allowed to 
execute password for the given user. 

In this case, you must ask the administrator to change your password. 

If you are allowed to change your password 

210 

If you are allowed to change your password, the administrator sets up your 
account to allow you to specify the password of your choice or to have the 
system generate one for you. 

User's Guide 



File security 

When you use the passwd(C) command, you are prompted for your current 
password: 

Old password: 

When you type it in correctly, the date and time of your last change of pass­
word are displayed: 

Last successful password change for login: date and time 
Last unsuccessful password change for login: date and time 

Make sure that these messages reflect your last attempts to change password. 
If they do not, tell your administrator immediately. 

Follow the instructions on the screen to pick your own password or have the 
computer generate one for you. 

File security 

Follow the guidelines below when you are creating, copying, and moving 
files. The list also includes security tips related to your startup scripts. 

• When you create a file or directory, your umask determines the permis­
sions given to the file or directory. For information about umask(C) see 
"Setting the default permissions for a new file" (page 124). Newly created 
files and directories should only be accessible by you (the owner) or the 
group. If you wish to share files with other users, change the permissions 
on those files individually. 

• When you use cp(C) to copy an SUID file owned by someone else, the SUID 
bit is reset. (This is a security precaution.) Note that when you execute a 
SUID file, it has access to all your files and directories. 

• When you use cp to copy a file so as to create a new file, the new file takes 
the permissions of the original file. Remember to check the permissions of 
the new file and, if necessary, change them using the chmod(C) command. 

• Remember that temporary directories are world-readable. 

• Use Is(C) to check the permissions on your shell, mailer, startup files, and 
home directory. If the files can be read and modified by other users, change 
the permissions using chmod so that only you have access to them. If the 
directory can be executed by other users, those users can cd to it; if the 
directory can be written to by other users, they can remove files within it. 
Change the permissions on your home directory so that only you have 
write or execute permissions on it. 

• Make certain that sensitive files are not publicly readable. 

211 



Using a secure system 

Security for files in sticky directories 

A directory with the sticky bit set means that only the file owner and the 
superuser can remove files from that directory. Other users are denied the 
right to remove files, irrespective of directory permissions. Only the superuser 
can place the sticky bit on a directory. 

A sticky directory contains a "t" at the end of the permissions field, as in this 
example: 

drwxrwxrwt 2 bin bin 1088 Mar 18 21:10 tmp 

Other security tips 

212 

• Log out before leaving a terminal. 

• Use the lock(C) utility when you leave your terminal, even for a short time. 
The lock command requests a password at the time of use, and then locks 
the terminal until the password is re-entered. 

Note that lock is ineffective if you are using a shell which supports job con­
trol (such as the C shell or the Korn shell), the shl layers system, any 
pseudo-tty system that permits you to switch between virtual terminals, or 
an X-windows terminal. If any of these conditions apply, you should log 
out instead. 

• Keep disks or tapes containing confidential data (program source, database 
backups) under lock and key. 

• If you notice strange files in your directories, or find other evidence that 
your account has been tampered with, tell your system administrator. 

User's Guide 



Using commands on a trusted system 

Using su to access another account 

The su(c) command allows you to become another user without logging off. 
su cannot be used to simply assume the login of another user; instead, su can 
be used under four circumstances: 

• The superuser (root) can I'SU" to any account. 

• A user with the su authorization can "su" to root (for example, to become 
root temporarily after having su'd to a different account). 

• Users can "su" to their own accounts. 

• A system daemon can "su" to an account. 

• Under "traditional" security, any user can "su" to any account with that 
account's password. 

To use su, the appropriate password must be supplied (unless you are already 
root). If the password is correct, su executes a new shell with the real and 
effective user ID's set to that of the specified user. (If the system is running 
under tight security, the login user ID is unchanged; otherwise that, too, is 
changed to the ID of the specified user.) 

Using commands on a trusted system 

The use of commands is restricted on a trusted system. You can issue certain 
commands only if the security administrator has given you the appropriate 
"authorization". This section describes the different types of authorization 
and how they affect your use of commands. (Authorizations are important if 
your system is working at the Improved or High security levels; at low or 
traditional security levels most authorizations are available to users by 
default.) 

To determine the security level your system is working at, type: 

Itcblbinlsecdefs 

This command reports the nearest matching security level. (There are a num­
ber of security systems that your administrator can customize. Consequently, 
your system may fall between two levels in some respects.) For more informa­
tion, see secdefs(ADM). 

Authorizations 

The security mechanism has two types of authorization: kernel and sub­
system. A kernel privilege allows you to run specific processes on the operat­
ing system. A subsystem authorization allows you to use the commands of a 
specific protected subsystem. 

213 



Using a secure system 

214 

The kernel privileges are as follows: 

execsuid allows you to run SUID (set user ID) programs. An SUID pro­
gram gains access to all the files, processes, and resources 
belonging to the person running the program and the owner 
of the program file. 

chmodsugid 

chown 

allows you to change the setuid and setgid attributes of a file 
or directory, using the chmod(C) command. Without this 
permission you cannot create SUID files, which grant the per­
missions of the owner of the file to whoever executes them, 
as described in LI Access control for files and directories" 
(page 121). 

allows you to change the ownership of files using the 
chown(C) command. 

Other kernel privileges include suspendaudit, configaudit, and writeaudit. 

There are two levels of subsystem authorization: primary and secondary. Pri­
mary authorizations are given to administrators and are fully described in the 
System Administration Guide. However, they can be given to ordinary users as 
well. Some primary authorizations are: 

mem allows you to use ps(C) to check the status of other users' 
processes, and ipcs(ADM) to report the status of interprocess 
communication. Without this authorization, you can only 
use these commands to report on processes belonging to 
you. 

terminal allows you to use write ( C) to communicate with other users. 
If you use write without the authorization, any control codes 
and escape sequences in your message are converted to 
printable characters. 

Other primary authorizations include audit, auth, backup, cron, Ip, sysad­
min, and root. (See authorize(F) for information on these authorizations.) 

A secondary subsystem authorization allows you to use a subset of the com­
mands of a subsystem as an ordinary user (that is, you are not given adminis­
trative privilege). Secondary authorizations are described below: 

audittrail allows the use of the audit subsystem to monitor your own 
activities only. This can be useful for debugging of pro­
grams because a detailed record of system calls is generated 
by the audit daemon. For more information, see LlUsing the 
audit subsystem" in the System Administration Guide. 

printqueue allows you to view other users' jobs on the print queue. 

User's Guide 



Using commands on a trusted system 

printers tat allows you to use enable(C) and disable(C) to change the 
status of printers. 

queryspace allows you to use d£(C) to query the amount of space avail­
able on the filesystems. 

su allows you to use su(C) to access another account (including 
root). Without this authorization, users can only access their 
own accounts. 

Other secondary authorizations include passwd, create_backup, 
restore_backup, and shutdown. 

Usting authorizations and running authorized commands 

The auths(C) command allows you to list your kernel privileges, and to start 
up a shell so that you can issue commands with specific authorizations. 

• The auths command without arguments lists your kernel privileges. For 
example: 

$ auths 
kernel privileges: execsuid,chown 

• The auths command with the -a option allows you to specify a restricted 
set of one or more of your authorizations. For example, the user with exec­
suid and chown authorizations can restrict their use to the chown authoriza­
tion: 

$ auths -a chown 
$ auths 
kernel privileges: chown 

To restore your authorizations, leave the shell started by the auths -a 
command. 

• The auths command with the -r option allows you to specify which of your 
authorizations you wish to remove. For example: 

$ auths -r chown 
$ auths 
kernel privileges: execsuid 

Leave the shell started by the auths -r command to restore your authoriza­
tions. 

• The auths command with the -c option allows you to issue a command 
instead of starting an interactive subshell. In the example below, chown 
authorization is removed and then the auths command is issued. The 
result is a line listing the user's authorizations; the chown authorization is 
not included. 

215 



Using a secure system 

$ auths -r chown -c auths 
kernel privileges: execsuid 

When the user executes another list, the chown authorization is restored: 

$ auths 
kernel privileges: execsuid,chown 

Data encryption 

216 

If you have sensitive data that requires greater protection than that provided 
by access permission, you can encrypt the data. The encrypted file cannot be 
read without a password. If somebody tries to read the encrypted file without 
a password, it cannot be understood. 

You will only have data encryption capabilities if the crypt(C) software is 
installed on your system. This software is available only within the United 
States and must be requested from your distributor. 

A brief summary of encryption commands appears in the following table: 

Command 

crypt 

make key 
ed-x 

vi -x 

ex -x 

edit -x 

x 

Description 

Encode and decode files. Reads from the standard input or 
keyboard and writes to the standard output or terminal. 
Generates an encryption key. 
Edits an encrypted file, or creates a new encrypted file using 
the ed editor. 
Edits an encrypted file, or creates a new encrypted file using 
the vi editor. 
Edits an encrypted file, or creates a new encrypted file using 
the ex editor. 
Edits an encrypted file, or creates a new encrypted file using 
the edit editor. 
Encrypts a file while in the editor mode (ed, ex, or edit). 

User's Guide 



Data encryption 

crypt-encode/decode files 

The crypt( C) command encodes and decodes files for security. When using 
crypt, you have to assign a password (key) to encode the file. The same pass­
word is used to decode the file. 

If you do not give a password with the crypt command, the system prompts 
you for one. For security, the screen does not display the password as you 
type it in. 

Password security is the most vulnerable part of the crypt command. The 
best way to ensure your security is to select an uncommon group of charac­
ters. The password should be no more than eight letters or numbers long. 

A file can be encrypted in the shell mode using crypt, or in the edit mode 
using the -x or X option. When you are ready to decrypt the file, you can use 
the crypt command in the shell mode. The following is the command format 
to encrypt a file: 

crypt < oldfile > new file 

The system prompts you for a password. 

Before removing the unencrypted oldfile, make sure the encrypted new file 
can be decrypted using the appropriate password. 

To decrypt a file, redirect the encrypted file to a new file you can read. The 
command to decrypt a file is as follows: 

crypt < encrypted -file> new_filename 

217 



Using a secure system 

218 User's Guide 



Shell ProgralUlUing 





Chapter 10 

Configuring and working 'With the shells 

This chapter describes the different shells you may be working in. It explains 
the special features they provide to make your work easier, how to use vari­
ables to store information used by programs, and how to use aliases to define 
new commands recognized by the shells. It also describes how the shells pro­
cess your instructions. 

This information is contained in the following topics: 

• what is a shell? (this page) 

• what the different shells are for (page 222) 

• understanding variables (page 226) 

• some features to make life easier (page 233) 

• using aliases (page 237) 

• how the shell works (page 241) 

What is a shell? 

Shells are interactive programs that provide a H glue" that fastens other pro­
grams together. They perform the following tasks: 

• Execute the commands typed at the shell prompt. 

• Find and execute other programs on command. 

• Interpret the wildcard characters in filename specifications. 

• Interpret complex regular expressions. 

• Permit redirection of input and output. 

221 



Configuring and working with the shells 

• Construct pipelines containing several programs operating in sequence on 
the same data stream. 

• Process shell scripts (a collection of shell commands that can control execu­
tion of other programs). 

• Perform some basic tests on data and files. 

The shells provide a command line interpreter that responds to typed com­
mands~ and a programming language that allows you to create scripts. 

Your work takes the form of a dialogue with your shell~ which acts as the 
interface between you and the rest of the system. Like all good interfaces~ 
your shell allows you to customize it to make life easier. 

What the different shells are for 

222 

Three different command oriented shells are available for the sea OpenServer 
system. You can choose to work with anyone of them. The shells are as fol­
lows: 

The shells 

Name Filename 

Bourne Shell Ibin/sh 

C Shell Ibin/csh 

(Continued on next page) 

Features 

• First shell to be developed. 

• Wildcards~ basic command language. 

• Available on the sea OpenServer sys­
tem. 

• Different language syntax from Bourne 
and Korn shell family (similar to the C 
programming language). 

• Command history recall (permits reuse 
of recently issued commands without 
retyping them). 

• Aliases (the ability to define alternative 
names for commands). Limited ability 
to redirect input and output. 

User's Guide 



The shells 
(Continued) 

Name 

KornShell 

Filename 

/bin/ksh 

What the different shells are for 

Features 

• Compatible superset of Bourne shell 
facilities. 

• Command history editing (edit and reis­
sue previously typed commands inter­
actively). 

• Aliases (the ability to define alternative 
names for commands). 

• Job control (the ability to run processes 
in the background and manipulate back­
ground processes). 

• Extended language syntax (permits 
more complex scripts to be written). 

• Recommended as the shell of first 
choice. 

The sea shell is a different type of shell: a menu-driven interface that cannot 
execute scripts directly. It is discussed in Chapter 1, "Using sea Shell" (page 
11). 

In this chapter and the next we will be concentrating on the Korn shell: specif­
ically, on those features of the Korn shell that are also available to the Bourne 
shell. Where additional Korn shell facilities are introduced, they are explicitly 
identified as such because they are not available under the Bourne shell. 

Note that we do not recommend the C shell to new users. C shell syntax is 
nonstandard, and there are a number of features present in the Bourne and 
Korn shells that are not present in the C shell. 

223 



Configuring and working with the shells 

Identifying your login shell 

Because the different shells understand different commands, it is important to 
know which shell you are working in. To find out what your login shell is, 
type grep $LOGNAME letc/passwd (LOGNAME is the environment variable 
that stores your login name). You will see something like the following line: 

charles:*:13079:1014:Charles Stross:/u/charles:/bin/ksh 

The last field of this line (after the last colon (:» is the login shell executed for 
the user named in the first field on the line. 

(This line is a record from the /etc/passwd file, a database that identifies the 
home directory, login name, group ID, permissions, and login shell for every 
user on the system. Only the system administrator can change this file.) 

You can run a shell interactively as a subprocess (often called a subshell) by 
typing its name (for example, csh). Your subsequent commands are inter­
preted by the subshell until you type the command exit to quit the shell. The 
system is set up to load one particular shell for you every time you log in. 

If you want to change your login shell, for example to switch to the Korn shell 
on a permanent basis, ask your system administrator. 

What happens when you log in 

224 

When you log in, the system first asks for your user name (to identify your 
home directory and permissions), then your password (to confirm your iden­
tity). Having identified your account, the system then starts a shell for you. 

If you are using the Bourne shell (sh) or the Kom shell (ksh), the shell first 
executes the commands stored in the generic environment file !etclprofile, then 
the commands stored in the personalized environment file called .profile 
located in your home directory, if that file exists. A Kom shell additionally 
looks for a file called .kshrc; if it exists, this is executed after .profile. 

User's Guide 



What the different shells are for 

If you are using the C shell (csh), the shell executes the commands stored in 
the file /etc/cshrc, then any commands present in a file called .cshrc in your 
home directory, if that file exists. The shell then looks for a file called .login; if 
it exists, any commands in it are executed. Note that the default prompt for 
the Korn and Bourne shells is the "$"; the C shell's default prompt is the "%". 

225 



Configuring and working with the shells 

You can find annotated examples of .profile, .kshrc, .login, and .cshrc files in 
Appendix D, "Sample shell startup files" (page 419). 

These files set up your work environment. They contain commands to config­
ure your terminal type and to set up various environment variables (see 
"Understanding variables" (this page) for details). The login files also contain 
any other commands that you want to have executed every time you log in. 

The login procedure displays a lot of information that you may not need or 
want. If you specifically do not want to see system messages (such as your 
last login date, the message of the day, or the system copyright message), 
create an empty file in your home directory called .hushlogin. For example: 

$ touch .hushlogin 
$ 

If you execute this command, you must use the -a option to Is in order to list 
the newly created file: Is on its own does not list "datil files. The touch com­
mand updates the last access time of a file; if you give it a filename which 
does not exist, it creates an empty file of that name. 

Note that the ability to use .hushlogin may be disabled if your system is run­
ning at an enhanced security level. If this is the case, you will see the login 
messages whether there is a .hushlogin file in your home directory or not. 

Understanding variables 

226 

The shells provide facilities for storing useful information and transferring it 
between programs. Among these is the ability to handle variables (named 
pieces of text or numbers, that can be used in a variety of ways). 

Variables have many uses. For example, if you frequently need to cd to 
/u/work/systems/Admin, you could define the variable ADMIN to be 
/u/work/systems/Admin, then type cd $ADMIN to change to that directory. 

Variables consist of a name (or label) and an associated value. In the example 
above, the variable is named ADMIN; its value is /ulwork/systems/Admin. You 
refer to the value of a variable by prefixing its name with a " $ " symbol. When 
the shell reads the "$" symbol it checks the subsequent text to see if it is a 
variable name (such as NAME), and replaces the input text $NAME with the 
value of NAME. 

User's Guide 



Understanding variables 

There are two types of variable available to you: 

Shell variables 
These are created within a shell and are used to temporarily store informa­
tion and to control the execution of shell scripts (see Chapter 11, 
"Automating frequent tasks" (page 245)). Shell variables are not visible to 
any other program, and are lost when the shell terminates. 

Environment variables 
All programs running on the system have a special memory area called an 
environment. When a program is run, it inherits a copy of its parent 
program's environment, complete with any variables stored in it. Environ­
ment variables are used to pass configuration information to child pro­
cesses executed by the shell. They are created by exporting a shell variable 
into the shell's environment, which makes them visible to all programs 
subsequently executed under that shell (see "Exporting variables to the 
environment" (page 230)). However, it is not possible for a child to alter 
its parent shell's environment. 

The sections below explain how to create and refer to shell variables and 
environment variables. 

Setting shell variables 

To set a variable in the shell, use an equal sign to assign it a value. If the 
variable does not already exist, it is created. For example: 

MYV ARIABLE=hello 

It is common practice to use all uppercase letters for the name of variables, to 
distinguish them from UNIX system commands (that are almost always 
lowercase). 

To refer to the value of a variable, prefix the variable's name with a "$" sym­
boL If you omit the " $ ", the shell will assume you are referring to the name of 
the variable, not its current value. For example, in the Bourne and Korn shells: 

$ MYVARIABLE=hello 
$ echo MYVARIABLE 
MYVARIABLE 
$ echo $MYVARIABLE 
hello 
$ 

227 



Configuring and working with the shells 

The C shell equivalent of this is as follows: 

% set MY=hello 
% echo MY 
MY 

% echo $MY 
hello 
% 

You may sometimes see variable names enclosed in braces (0) within a refer­
ence. The braces are used to delimit the name of the variable. For example 
echo ${MYV ARIABLE} could be used instead of echo $MYV ARIABLE. This is 
particularly useful when you want to concatenate the contents of a variable 
with another word. For example: 

$ MYVARIABLE=hello 
$ echo $MYVARIABLE 
hello 
$ echo ${MYVARIABLE}_there 
hello_there 
$ echo $MYVARIABLE_there 

$ 

In the third echo command, because MYVARIABLE is not separated from 
/f _there" the shell tries to substitute a variable called MYVARIABLE_there 
(which does not exist). 

It is a good idea to make a habit of placing variable names in parentheses 
whenever there is any doubt, to reduce the likelihood of this kind of error. 

Setting environment variables 

228 

The shells use some variables to configure their operations. For example, the 
Bourne shell and Korn shell provide a facility to make the shell notify you 
when mail arrives. To use it, set the shell variable MAIL to the name of the file 
in which you keep your mail (usually . mailbox). If the file grows, ksh will 
notify you. The existence of the MAIL variable is used by the shell as a flag to 
indicate that it should notify you whenever new mail arrives. You can set the 
variable within the shell, or set it in one of the profile files executed at login; 
the presence or absence of the variable affects the way the shell behaves. 

The following is a list of the environment variables automatically set by the 
Korn shell (see ksh(C». The other supported shells have a similar list of vari­
ables; for details see sh(C) and csh(C). 

ERRNO 

LINENO 

Set the value of the last error condition returned by a failed 
system call. 

Set to the current line number of the script or function being 
executed. 

User's Guide 



OLDPWD 

OPTARG 

OPTIND 

PPID 

PWD 

RANDOM 

REPLY 

SECONDS 

Understanding variables 

The previous directory set by cd(C). 

The value of the last option argument processed by the 
getopts( C) special command. 

The index of the last option argument processed by the 
getopts special command. 

The process number of the parent of the shell. 

Present working directory. 

A random integer number (in the range a to 32767). 

Set by the select statement (see "Generating a simple menu: 
the select statement" (page 283» and by the read special 
command (see ksh(C» when no arguments are supplied. 

The number of seconds since ksh was invoked. 

The following environment variables are also used by the Korn shell: 

CDPATH The search path for the cd command. 

COLUMNS The width of the edit window for the shell edit modes and 
for printing select lists. 

FCEDIT The default editor name for the fc( C) command. 

FPATH 

IFS 

HISTFILE 

HISTSIZE 

HOME 

LINES 

MAIL 

MAILCHECK 

MAILPATH 

The search path for function definitions. 

Defines the character used as the internal field separator. 

The pathname of the file that will be used to store the com­
mand history. 

The number of previously entered commands that are acces­
sible by the shell; the default is 128. 

The default home directory for the cd command. 

The number of lines on the terminal. Used by ksh and some 
other programs when presenting menus; the default is 24. 

A mailfolder. If it grows, the shell notifies you that mail has 
arrived. 

The time interval in seconds between checks for new mail. 

Tells the shell to inform the user of any modifications to the 
specified files that have occurred within the last MAIL­
CHECK seconds. 

229 



Configuring and working with the shells 

PATH 

PSt ... PS4 

SHELL 

TERM 

TMOUT 

The search path for commands. 

Prompt strings (see ksh(C) for more details). 

The pathname of the shell. 

The terminal type; used by many programs that write to the 
screen. 

The number of seconds of inactivity after which the shell will 
automatically terminate; a value of 0 means that the shell 
will not automatically terminate. 

Many programs other than the shells look for specific variables every time 
they run; such variables are used to control the execution of these programs. 
For example, vi checks for a variable called EXINIT whenever it starts up. If 
any vi options are specified in EXINIT, vi sets them accordingly. Likewise, 
mail checks for a variable called MAILRC which specifies the startup file from 
which mail reads its options. By setting some environment variables, usually 
at login time, you can customize these programs to your requirements. 

Exporting variables to the environment 

230 

Variables stored in the environment are visible to you within the shell; but 
variables you set within your shell session are not accessible to other pro­
grams running in the environment until you make them so by explicitly 
exporting them. 

To export a shell variable to the environment, use the export command. For 
example, in the Bourne and Kom shells: 

$ FOO=bar 
$ export FOO 

In the Korn shell, the following alternative form exists: 

$ export FOO=bar 

In the C shell: 

% setenv FOO bar 

This will cause the variable FOO to be exported to any processes started from 
within the current shell. 

User's Guide 



Understanding variables 

You can export more than one variable at a time with the export command by 
listing a set of variable names to be exported. (There may already be an export 
command in your startup file. In this case, add the name of the additional 
variable to the end of the list of variables for export.) For example: 

# 
PATH=/bin:/usr/bin:/u/bin:/usr/local/bin:/local/bin:${HOME}/bin: 
LOGNAME=charles 
MAIL=${HOME}/.mailbox 

export PATH LOGNAME ... 

A sample login script 

Here is a simplified .profile file: 

# -- aliases; Korn shell only 
alias dir='ls -al' 
alias del='rm' 
alias mail='op email' 
# -- environment; Bourne and Korn shells 
PATH=/bin:/usr/bin:/usr/local/bin:$HOME/bin: 
set -0 emacs # Korn shell history editing 
MAIL=/u/charlie/.mailbox 
PS1='$PWD>' 
PS2=' $PWD»' 
TERM=wy60 
export PATH MAIL PSl PS2 TERM 
echo # prints a blank line 

This file is run automatically when you log in, if your login shell is the Bourne 
or Korn shell. The first line of this file begins with a "#" character; this intro­
duces a "comment", a line of text which the shell ignores. Comments are used 
to make shell scripts easier to understand. 

The first section of this file contains a list of aliases. Aliases define synonyms 
for commands. For example, if you are used to the DOS environment, you will 
be familiar with the command dir to obtain a directory listing. To set up dir as 
an alias for the corresponding command (Is), the following line is executed: 

alias dir='ls -al' 

231 



Configuring and working with the shells 

Once this command has been executed, every time you type dir the login shell 
will replace "dir" with ''''1s -al". Note that this form of alias syntax is recognized 
by the Korn shell: the C shell uses a different syntax, and the Bourne shell does 
not provide aliases. (A Bourne shell startup file will therefore omit these 
lines.) See "How aliases are executed" (page 238) for a detailed explanation of 
aliases. 

After alias expansion, a number of environment variables are set. These are 
then exported with the export command, so that they are available to subpro­
cesses running under the current login shell. In general, variables set in the 
startup files are important to the smooth running of your login session. For 
example, note the reference to the variable PATH. This contains a list of direc­
tories, separated by colons. 

When you type a command without specifying any directory, the shell looks 
for a file of that name among the directories in PATH (unless the command is 
built into the shell, in which case it is executed without a search). If it finds a 
file of that name it tries to execute it; otherwise, the command fails because 
the shell could not find the correct program to run. If you remove the PATH 
variable you will be unable to execute programs without specifying their full 
pathname. For example, you would have to type !bin/vi instead of just vi to 
run the editor. 

Resetting the environment 

232 

From time to time you may want to reset your environment; either because 
you have changed your .profile or .login files, or because you've erased a vari­
able. 

To reset the environment, re-execute your login file. Under the Bourne or Korn 
shells, type the following: 

$ • $HOME/.profile 

Under the Korn shell (but not the Bourne shell) you can also type the follow­
ing: 

$ • -I.profile 

(The dot is a command to execute the following file.) 

Under the C shell, type the following: 

% source $HOME/.login 

User's Guide 



Some features to make life easier 

Some features to make life easier 

This section contains some ways of working with the shell. You can do any of 
the following: 

• Use environment variables or aliases to make your Korn or Bourne shell 
prompt tell you what your current directory is, or to display other useful 
information. 

• Use the Bourne or Korn shell trap command to specify actions to take when 
the shell receives a signal; for example, to execute a logout script. 

• Use the Korn shell or C shell to recall and edit previously issued com­
mands. 

• Define complex aliases or functions to shorten long command lines or 
redefine commands. 

Making your prompt tell you where you are 

One variable in .login or .profile that you might want to adapt is your prompt 
variable. The prompt variable contains the character or characters that the 
shell prompts you to enter a command with. The main prompt string is con­
tained in the Korn shell or Bourne shell variable PSI. If you press (Enter) to 
start a new line without completing a command, the shell will prompt you 
with the PS2 (second level) prompt variable. (If you are using the C shell, your 
prompt string is stored in the variable prompt.) 

For example: 

$ echo " 
> hello, world! 
> This is a test. 
> " 

hello, world! 
This is a test. 

In the Korn shell only, you can make the prompt string display your current 
working directory by editing .profile and setting the variable (as in the .profile 
above) like this: 

PSI='$PWD' 

233 



Configuring and working with the shells 

You must then reset your environment for the change to take effect. See 
"Resetting the environment" (page 232) for details. 

Note that the variable PSt is almost certainly present in one of your startup 
files already; if you insert the example line above and forget to remove the old 
setting, then whichever version of PSt was specified last in the file will be 
used. 

Adding a logout script 

234 

A logout script is a short list of commands that are typically executed when 
you log out; for example, to issue the clear command to clear your screen, and 
record the amount of time you spent working. 

To create a logout script, edit a file called .logout, enter commands into it, then 
make it executable with chmod +x .logout. To have it execute automatically 
when you log out, add the following line to your .profile file (Bourne or Korn 
shells): 

trap '$HOME/.logout' 0 

A typical .logout script might look like the following: 

clear 
banner $LOGNAME "is out" 

When you log out by pressing (Ctrl)D or typing exit, you are sending a signal 
to the shell. A signal notifies the shell that a special event has occurred, and 
the shell should take action. Several different types of signal are available to 
the system, but the one you send by logging out is signal 0, called EXIT. (Actu­
ally, the (Ctrl)D sends a pseudosignal, but this distinction will be dealt with 
later.) 

See "Using signals under the UNIX system" (page 166) for a detailed explana­
tion of signals and how to use them. 

The notation $HOME/.logout is interpreted by the shell; it looks in the variable 
HOME and substitutes its contents. $HOME is your home directory pathname, 
so this enables the shell to execute your logout script wherever you are. 

Note that if your session is being run in a windows environment, logging out 
will kill the window as well as the session; in such a case, a logout script may 
be of no use. 

User's Guide 



Some features to make life easier 

Recalling and editing previous commands 

The Kom and C shells provide facilities for making it easier to enter com­
mands: 

C shell Provides command history recall. The shell maintains a list of 
previously executed commands; you can refer back to entire 
command lines or sections of commands, and re-execute them if 
necessary. 

Kom shell Provides command history editing. In addition to remembering a 
list of previously executed commands, the Kom shell allows you 
to edit previous command lines interactively, using the key­
strokes of the vi or emacs text editors. 

Many people prefer the facilities offered by the Kom shell to those of the C 
shell because of the interactive editing feature. 

Kom shell history editing 
Every time you issue a command to the Kom shell, in addition to executing 
the command, the shell adds it to a list of previously executed commands. 

To view the list of previously executed commands, issue the history com­
mand. This displays a number (up to the number set in $HISTSIZE) of previ­
ously issued commands. $HISTSIZE is set in .profile. 

Before you can recall and edit the history list directly, you must issue the ksh 
command set -0 vi to set the vi editing mode in the shell. Similarly, the fol­
lowing command line sets emacs editing mode in the shell: 

set -0 emacs 

Either of these commands may be issued automatically by your .profile file. set 
-0 on its own displays all the current ksh options; you may want to see what 
options are available. 

To enable history editing permanently, add the following to your .profile file: 

if [ -z "$VISUAI!' -a -z "$EDITOR ] 
then 

set -0 vi 
£i 

(This may also be found in your .kshrc file.) See ksh(C) for details of the 
VISUAL and EDITOR variables; see test(C) for an explanation of the [ ... ] nota­
tion and the options used in the example. 

235 



Configuring and working with the shells 

236 

Once the vi option, for example, is available, you can edit your command his­
tory using the vi editing keys. The shell initially behaves like vi in text inser­
tion mode; if you type a command it inserts text, and when you press (Enter) it 
executes the line you just typed. Here is a quick overview: 

• To switch into vi command mode, press (Esc). You can use the vi cursor 
movement keys "k" (up, towards older commands), or "j" (down, 
towards more recent commands). You can also move left or right along the 
line using the" h" (for left) or "1" (for right) keys. 

• Previously issued commands are displayed on the current line as if you are 
editing them in vi in a window one line high; each time you type (Enter) the 
cursor is effectively repositioned to the bottom of the file. New commands 
are added to the end of the file as you type. 

• When you press (Enter), the currently visible command line is executed by 
the shell, whichever mode you are in. To repeat the previous command, 
type r. 

• Many other vi editing keystrokes also work in history editing mode. You 
can delete words with the dw command, switch to text insertion mode 
with the i command, and search for a command containing a piece of text 
using the Istring command (where string is the text to search for). 

For example, if you want to reissue the last command you typed, simply press 
(Esc) (to switch to command mode), then 1/ k" to move up to the previous 
command, then (Enter) to execute the command. 

A full list of the available vi mode command editing keystrokes is given in the 
ksh(C) manual page. For an introduction to the vi editing keystrokes, see" A 
quick tour of vi" (page 132). 

Note that the contents of the history file are maintained across logouts and 
environment resettings. Accordingly, previously executed command lines are 
still available for editing or re-execution even after something like the follow­
ing: 

. $HOME/.profile 

C shell history editing 
The C shell does not let you edit previous commands interactively. However, 
you can recall entire command lines or portions of commands, and make 
changes to them. 

To repeat the last command you typed, use the following command: 
9.: II o •• 

The exclamation mark (!) tells csh to expect a history command, and the 
second exclamation mark specifically refers to the last command entered. 

User's Guide 



Using aliases 

To display your command history, use the following command: 

% history 

The C shell lists out the last few commands (the precise number being con­
trolled by the history environment variable). Each command is listed with an 
event number. For example: 

9 vi chapter.6 
10 wc -1 chapter.6 
11 1 ch* 
12 diff chapter.6 chapter.6.o1d I more 
13 vi chapter. 7 

To recall a given event, type an exclamation mark followed by the event num­
ber; for example, to edit chapter.6 again, the command would be !9. 

To alter a command, you can follow the event number with a colon (:) and a 
modifier which is applied to the word. 

For example, to edit chapter.8 using the above history, you could issue the 
instruction !9:s/8/6/, which substitutes "8" for "6". 

A full list of modifiers is provided in the csh( C) manual page. 

Using aliases 

In the context of the shells, an alias is a specially defined synonym for a com­
mand or commands. You can define aliases for complex operations, or rename 
commands (for example, to make life easier if you are moving to the SCO 
OpenServer system from DOS). 

Aliases are not available in the Bourne shell. This discussion covers the mech­
anisms provided by the Kom shell: the C shell also provides aliases, but the 
syntax differs. 

Suppose you frequently need to issue the following command: 

grep red I grep -v brown 

This command searches a file or an input pipe for lines containing the word 
"red", then excludes lines that also contain the word ''brown''. From inside the 
Kom shell, you can set up an alias called prism that is an abbreviation for this 
pipe with the following command: 

alias -x prism=' grep red I grep -v brown' 

When you next type the command prism, the shell will check its internal table 
of aliases, and replace the word prism with the value of the alias. So if you 
type the following: 

cat foo I prism 

237 



Configuring and working with the shells 

The command that actually gets run is as follows: 

cat foo I grep red I grep -v brown 

The -x option to alias makes the alias remain in force for all scripts that run 
under the current shell session. Otherwise, the alias will not be exported to 
any shell scripts you run. 

The syntax of alias differs under the C shell. The equivalent command to 
create the alias under csh is: 

alias prism='grep red I grep -v brown' 

If you use aliases a lot, you might want to save them in a file called .aliases, 
executed from your .profile or .login scripts. For example, you could add the 
following line to your .login file: 

. ~ / . aliases 

If you need aliases to be exported to scripts running under the current shell 
session, they should be defined using the -x option to the alias command 
(under the Kom shell). 

How aliases are executed 

238 

When executing a command line, the Kom shell checks each word in tum 
against its table of known aliases. If the word is an alias name, and is not 
quoted in any way, and the shell is not already processing an alias of that 
name, then the alias name is replaced by the value of the alias. The process 
stops after the shell detects and substitutes one alias, unless the alias is fol­
lowed immediately by a space. A similar process occurs under the C shell, 
except that aliases can explicitly refer to the history list (to recall a previously 
issued command). 

It is possible to embed aliases so that an alias definition includes a command 
that is itself an alias. For example: 

$ alias dir='ls -al' 
$ alias count='dir I we -1' 
$ count 
34 
$ 

Here, the aliased command count uses the alias dir to list (in full) the files in 
the current working directory; the output is piped into we to give a line count, 
thus indicating the number of files in the directory. 

The shells provide a quoting mechanism that can be used to prevent com­
mands being evaluated under some circumstances. 

User's Guide 



Using aliases 

The shells keep track of alias expansion; an alias which contains its own name 
will only be expanded once, and aliases are not expanded if they are quoted. 
This prevents the shell from getting trapped in an infinite loop if it expands an 
alias that refers to itself. 

Note that there are some drawbacks to using aliases. It is easy to accidentally 
redefine standard commands so that they act in nonstandard or unexpected 
ways. When you define an alias, it is important to make sure that no program 
with the same name as the alias already exists; otherwise the alias will be sub­
stituted for it. For an example of a dangerous alias (that you should not use) 
alias -x kill='rm' could have unexpected results if you were to subsequently 
try to kill a runaway process. 

Aliases can include references to variables, but note that you should enclose 
the alias definition in single quotes to prevent the variable from being 
expanded as the alias is defined. For example: 

alias random='echo $RANDOM' 

This command evaluates the variable RANDOM. 

alias random="echo $RANDOM" 

In this example, the alias would have been defined with whatever the literal 
value of RANDOM was at the time. This is because the shell expands variable 
references found in double quotes, but not in single quotes. Whenever the 
variable RANDOM is referenced, it returns a different (random) number. So 
we would see something like the following: 

$ alias random='echo $RANDOM' 
$ random 
56302 
$ random 
17094 
$ alias random="echo $ RANDOM II 
$ random 
12916 
$ random 
12916 
$ 

You may encounter problems when referring to positional parameters in 
aliases. Positional parameters are the arguments you specify after a command 
name; for example, when specifying a filename as a parameter to a command. 
They are positional in the sense that you identify them as variables by their 
position along the command line. $0 refers to the name of the program; $1 is 
the first positional parameter, and refers to the first argument, $2 refers to the 
second argument, and so on. See #Creating a shell script" (page 246) for more 
information about positional parameters. 

239 



Configuring and working with the shells 

240 

If you use a positional parameter in an alias, the alias will expand the posi­
tional parameter of the currently running shell. Aliases are not separate pro­
grams and do not have parameters; they are simply replaced with the 
appropriate string on the command line. For example (in the Kom shell): 

$ set -- bill ted mary 
$ alias args='echo $3 $2 $1' 
$ args foo bar quux 
mary ted bill foo bar quux 
$ 

The command set -- sets the positional parameters of the shell. What is hap­
pening is that the alias is expanded to the following: 

echo $3 $2 $1 foo bar guux 

The first three names are positional parameters that refer to the first three 
arguments to the current shell; the additional names are simply tagged on to 
the end of the echo statement. 

If you need to modify the Kom shell positional parameters, use the set -­
command. The arguments to set -- are used to replace the shell positional 
parameters $1, $2 .. , $n. 

If you want to define a command within the shell that accepts a parameter, 
you must define a function. A function is a block of commands that are 
referred to by a name, and that take positional parameters. For example: 

del ( ) 
{ 

When you type del filel file2 the command line calls the function del(). The 
shell executes the instructions defined in del(), then resumes execution where 
it left off: in this case, back at the shell prompt. (You can also use functions in 
shell scripts.) Parameters to del are passed in the shell positional parameters 
$1, $2, and so on. $@ is a special parameter consisting of all the positional pa­
rameters presented as a single string; so referring to this parameter allows us 
to interactively remove a variable number of files with one del command. (See 
"Passing arguments to a shell script" (page 250) for more information on spe­
cial parameters.) 

User's Guide 



How the shell works 

How the shell works 

Your login shell reads its standard input from your terminal, and sends its 
standard output and standard error back to your terminal unless you tell it to 
send them elsewhere. (See "More about redirecting input and output" (page 
256) for more information on these streams.) The shell is line oriented; it does 
not process your commands until you press (Enter) to indicate the end of a 
line. You can correct your typing as you go. Different shells provide different 
facilities for editing your commands, but they generally recognize (Bksp) or 
(Del) as the keystroke to delete the previous character. 

When you press (Enter), the shell interprets the line you have entered before it 
executes the commands on that line. The steps it runs through are as follows: 

1. The shell splits the line into tokens. A token is a command, variable, or 
other symbol recognized by the shell. It continues to build up a sequence 
of tokens until it comes to a reserved word (a shell internal command that 
governs the flow of control of a shell script), function name, or operator (a 
symbol denoting a pipe, a logical condition, a command separator, or 
some other operation that cannot be carried out until the preceding com­
mand is evaluated). 

2. The shell organizes the tokens into three categories: 

I/O redirection; commands that determine where the input or output of 
a program are directed. For example, in the following command line, 
the text ">listfile" is interpreted as an output redirection, which is later 
applied to the preceding command: 

Is -al >listfile 

Variable assignment; the shell can recognize commands that assign a 
value to a variable. 

Miscellaneous commands; other tokens are checked to see if they are 
aliases. The first word is checked. If it is an alias, it is replaced by the 
original meaning of the alias; if it is not an alias, or if it is followed by a 
whitespace character before the next word, the process of alias checking 
is repeated until no more words remain (or until an alias has been 
detected that is not followed by a space). 

3. The commands may then be executed, either as internal shell commands 
(that cause the shell itself to take some action) or, if they are not internal 
commands, as external programs (if the shell can locate an executable file 
of that name). 

241 



Configuring and working with the shells 

How the shell executes commands 

242 

When the shell has processed a command line and is left with a name that is 
not a built-in command, the name of a function, or a second or subsequent 
command in a pipeline, it checks the directories listed in your PATH environ­
ment variable for a file that matches that name and on which the executable 
permission is set for users in your category. 

If such a file exists and is an executable binary file (that is, a program that has 
been compiled into machine code), the shellfarks; that is, it creates a copy of 
itself (a "child" process) in the computer's memory (see fork(S) for a list of the 
characteristics inherited by a child process from its parent). 

The child process then execs the binary file; that is, it loads a copy of the binary 
file's instructions in place of its own, and begins to execute it. When a shell 
process execs another process, the new process completely replaces the shell 
process in the computer's memory. The parent shell remains in memory, and 
waits until the child process terminates before it resumes operation. 

If the file that the shell finds is not a binary file, a different course of events 
occurs. The shell forks a child shell that automatically opens the file and 
begins to interpret it, one line at a time, as if each line is being typed on the 
shell's standard input. This is why such a text file is called a shell script; it is 
literally a script of actions to be carried out by the subshell. 

Note that the output of a script that runs in a subshell is not automatically 
available to the parent shell; while the subshell "inherits" (that is, receives a 
copy of) the environment of its parent, the parent does not experience any 
changes that the subshell makes to its environment. So if you use a script to 
set a variable, the variable will not be present in the parent shell's environ­
ment. 

You can work around this by using the dot (.) command. If you have a script 
called myprog, then you can execute it as follows: 

. myprog 

The script will be opened and interpreted directly by the current shell, 
without forking a sub-shell. Therefore, a script executed by the dot command 
can change your environment; a script executed by typing its name cannot. 

User's Guide 



How the shell works 

For example, suppose you have a script called setvars, which contains the fol­
lowing: 

PATH=/bin:/usr/bin:/usr/local/bin:$HOME/bin: 

You can use it to change your path only if you execute it with the dot com­
mand. For example: 

$ echo $PATH 
/bin:/usr/bin:/usr/local/bin 
$ setvars 
$ echo $PATH 
/bin:/usr/bin:/usr/local/bin 
$ • setvars 
$ echo $PATH 
:/bin:/usr/bin:/usr/local/bin:$HOME/bin: 
$ 

243 



Configuring and working with the shells 

244 User's Guide 



Chapter 11 

Automating frequent tasks 

This chapter explains how to write shell scripts to automate repetitive tasks. It 
describes how to: 

• create a shell script (page 246) 

• send messages to a terminal (page 253) 

• receive input from a file or terminal (page 259) 

• solve problems (page 263) 

At this point an extended sample shell script is supplied: see "Writing a 
readability analysis program: an example" (page 266). This example 
explains how to do the following: 

- structure a program (page 266) 

- use the for loop (page 271) 

- get options from the command line (page 272) 

- use the while loop (page 273) 

- use the until loop (page 274) 

- make choices and test input (page 275) 

- use the if statement (page 276) 

- test files, strings and integers (page 277) 

- test exit values (page 278) 

- use logical operators (page 278) 

- use the case statement (page 280) 

- use the select statement (page 283) 

245 



Automating frequent tasks 

• tune script performance (page 291) 

• control program performance (page 291) 

Shell scripts are useful when there are two or more commands that you fre­
quently run at the same time, or when there is some complex task that you 
want to automate. For example, you can use shell scripts to keep watch on 
your mailfolders and prepare various reports on their contents; or you can use 
shell scripts to automate backup procedures, periodically copying files to 
tape. However, the shells provide such a powerful tool that complex pro­
grams have been written using the scripting language: the uses are limited 
only by your imagination. 

The syntax described in this chapter is common to the Bourne shell and the 
Korn shell; for C shell syntax, refer to csh(C) in the Operating System User's 
Reference. 

Creating a shell script 

246 

A shell script is a text file containing a sequence of shell commands. The com­
mands are normally entered on separate lines, for readability, but can be 
separated by semicolons (;). 

To create a shell script, create a new file with a text editor (for example vi) and 
type sca OpenServer commands into it. Save the file, and use chmod to set 
the executable permission bit on the file so the shell can run it. For example: 

vi is.logged.in 

Enter the following text: 

who I grep fred 

Save the file, and issue the following command: 

chmod +x is.logged.in 

This assigns the owner of is.logged.in permissions to read, write, and execute 
the file. 

If the current working directory is included in your search path ($PATH), you 
can execute the file as follows: 

$ • is.logged.in 
fred console Aug 13 11:28 

If the file is not held in a PATH directory, an alternate notation is required: 

$ ./is.logged.in 
fred console Aug 13 11:28 

The notation #./" has the same effect as typing the directory's absolute path­
name. 

User's Guide 



Creating a shell script 

The program runs the command who, to list currently logged in users on the 
system, then uses grep to search it for the line containing fred, indicating that 
fred is logged in. 

Suppose you want to use the script to see if people other than fred are logged 
in. You can modify the script as follows: 

who I grep $1 

The positional parameter $1 (used in place of fred) refers to the first word on 
the command line after the name of the script. Where $1 is used in the script, it 
is substituted for the first argument entered on the command line. You use it 
like this: 

$ ./is.logged.in fred 
fred console Aug 13 11:28 
$ ./is.logged.in mary 
$ 

fred is logged in; mary is not logged in. This script gives no output if it cannot 
find the name you supply it with in the output from who. 

Running a script under any shell 

You can make a shell script execute under any given shell, even if that shell is 
not currently running or is not the shell the script was written fOf, by placing 
on the first line of the script the special command #!shellpath, where 
shellpath is the absolute pathname of the shell under which the script is to 
execute. 

For example, if your login shell is the C shell, but you want to write scripts for 
the Korn shell, the first line of your script should be as follows: 

#! /bin/ksh 

This is a general mechanism: that is, shellpath does not have to be a shell, but 
can be any binary program. For example, awk(C) is a small programming lan­
guage used for textual analysis tasks (see Chapter 13, "Using awk" (page 323) 
for an introduction to using awk). awk scripts could start with the following: 

#!/usr/bin/awk -f 

If the -£ flag is omitted, awk will exit with an error. See exec(M) for details of 
this mechanism.) 

247 



Automating frequent tasks 

Writing a short shell script: an example 

248 

The sea OpenServer system identifies and manages files and directories 
using the concept of the inode (index node). Each inode has a unique numeri­
cal identifier and stores such information as the file type, its size, where it is 
physically stored on disk, the date and time of the most recent access and 
modification, and so on. The filename is simply an aid for the user, and each 
file can have more than one filename. Each pathname to a file is known as a 
link. (For information on linking files, see "Creating links to files and direc­
tories" (page 94).) 

When a file has several links, you must remove all of them before you can 
delete the file itself. Therefore, it is desirable to be able to trace all the links to 
a given file. You can do this using the inode to search for all the filenames that 
have that inode number. 

To list the inode of a file, use the following command: 

Is -i 

This lists each inode in the current directory, followed by the filename associ­
ated with it: 

$ 1s -i 
1125 O.order.number 
2852 O.parts.index 
5315 O.order.index 

770 OO.partno.err 
4225 OO.partno.out 

$ 

For example, the inode number of O.parts.index is 2852. 

To find the inode of a given file, you could type something like the following: 

Is -i O.parts.index I awk '{print $1}' 

The first part of the pipeline lists the inode of the file called O.parts.index. The 
output from this command is fed into awk, which prints the first field, that is, 
the inode number: 

2852 

However, printing the inode number of a file and using the inode number to 
do something useful are not the same. We need some way to capture the out­
put of a command. 

User's Guide 



Creating a shell script 

This can be done using a variable, using the backquote notation (recognized in 
the Bourne and Kom shells): 

variable= .... command .... 

command is executed, then its output is stored in variable. For example: 

$ myinum='ls -i O.parts.index I awk '{print $1}" 
$ echo $myinum 
2852 
$ 

The C shell recognizes the corresponding notation: 

set variable .... command .... 

Having obtained the inode number and stored it in an environment variable, 
we can then use it in a find command. For example: 

find I -inurn $rnyinurn -print 

The find option -inurn tells find to look for files matching the inode number 
stored in the variable myinum. The option -print tells find to print the names 
of any files it matches. (This command also outputs a list of all the directories 
it cannot access as it reaches them.) 

Now we can write a shell script that, given a filename, searches for all links 
that point to the same file: 

myinum='ls -i $1 I awk I{ print $1 }/' 
find / -inum $myinum -print 2> /dev/null 

In summary, the first line assigns the inode of the specified file (here 
represented by the positional parameter $1) to the variable myinum. Note that 
the second 1/$1" notation in this line is internal to awk, and refers to the first 
field of the output piped from Is -i, and not back to the specified filename. 

The second line of the script invokes find, telling it to start at the root direc­
tory (I) and search through all the mounted filesystems for files matching the 
inode number found in the variable rnyinum, and print their names. 

Note that an inode number is only unique within a given filesystem. It is pos­
sible for two files with the same inode number to exist on different file­
systems, and not be linked together. It is therefore worth checking the output 
to make sure that all the files output by this script reside on the same file­
system. 

find prints a message to the standard error if it cannot look inside a directory. 
We do not want to see these error messages, so the standard error output from 
find (output stream 2) is redirected to the device Idevlnull; an output stream 
sent to this device is silently ignored. Consequently, the error messages are 
discarded and a clear, uncluttered output is produced. (Non-spurious errors 
are also indiscriminately discarded. However, in this example all errors are 
probably spurious, so discarding all messages is acceptable.) 

249 



Automating frequent tasks 

Passing arguments to a shell script 

250 

Any shell script you run has access to (inherits) the environment variables 
accessible to its parent shell. In addition, any arguments you type after the 
script name on the shell command line are passed to the script as a series of 
variables. 

The following parameters are recognized: 

$* Returns a single string ("$1, $2 ... $n") comprising all of the posi­
tional parameters separated by the internal field separator char­
acter (defined by the IFS environment variable). 

$@ Returns a sequence of strings ("$1", "$2", ... "$n") wherein each 
pOSitional parameter remains separate from the others. 

$1, $2 ... $n Refers to a numbered argument to the script, where n is the posi­
tion of the argument on the command line. In the Korn shell you 
can refer directly to arguments where n is greater than 9 using 
braces. For example, to refer to the 57th positional parameter, 
use the notation ${57}. In the other shells, to refer to parameters 
with numbers greater than 9, use the shift command; this shifts 
the parameter list to the left. $1 is lost, while $2 becomes $1, $3 
becomes $2, and so on. The inaccessible tenth parameter 
becomes $9 and can then be referred to. 

$0 Refers to the name of the script itself. 

$# Refers to the number of arguments specified on a command line. 

For example, create the following shell script called my test: 

echo There are $# arguments to $0: $* 
echo first argument: $1 
echo second argument: $2 
echo third argument: $3 
echo here they are again: $@ 

When the file is executed, you will see something like the following: 

$ my test foo bar quux 
There are 3 arguments to my test: foo bar quux 
first argument: foo 
second argument: bar 
third argument: quux 
here they are again: foo bar quux 

User's Guide 



Creating a shell script 

$# is expanded to the number of arguments to the script, while $* and $@ con­
tain the entire argument list. Individual parameters are accessed via $0, which 
contains the name of the script, and variables $1 to $3 which contain the argu­
ments to the script (from left to right along the command line). 

Although the output from $@ and $* appears to be the same, it may be 
handled differently, as $@ lists the positional parameters separately rather 
than concatenating them into a single string. Add the following to the end of 
my test: 

function how_many { 
print "$# arguments were supplied." 

how_many "$ * " 
how_many "$@" 

The following appears when you run my test: 
$ my test foo bar quux 
There are 3 arguments to my test: foo bar quux 
first argument: foo 
second argument: bar 
third argument: quux 
here they are again: foo bar quux 
1 arguments were supplied. 
3 arguments were supplied. 

Performing arithmetic and comparing variables 

It is sometimes useful to perform arithmetic, compare variables or check for 
the existence of files using the shell. There are four ways to do this: 

• Use the test( C) program to test variables for equivalence or existence. 

• Use the expr(C) expression evaluator to calculate on variables (as integer 
numbers) or compare variables (as strings of text). 

• Use the bc(C) binary calculator (or another calculator, such as dc(C) or 
awk) to carry out more complex mathematical operations (on decimals, 
fractions, and unusual bases). 

• Under the Korn shell only, use the « .. )) notation to evaluate simple 
mathematical operations. This notation is equivalent to let " ... ". Note that 
the « .. )) test is built into the shell, and therefore executes faster. 

test allows you to check if a named file exists and possesses some property, or 
to test whether two strings are similar or different. test is explained in detail in 
"Different kinds of test" (page 277). 

251 



Automating frequent tasks 

expr evaluates an expression and prints the result, which can then be cap­
tured with backquotes. For example: 

$ var=65 
$ result='expr $var \* 5' 
$ echo $result 
325 
$ 

Note the backslash in front of the "*" symbol. * is short for multiplication in 
expr (and many other programs), but the shell treats it as a filename wildcard 
character and replaces it with a list of matching files unless it is escaped (see 
Chapter 12, "Regular expressions" (page 315)). 

expr can also be used to manipulate variables containing text (strings). A por­
tion of a text string can be extracted; for example: 

$ expr substr bobsleigh 4 6 
sleigh 
$ 

The substr expression returns a substring of its first parameter (''bobsleigh'') 
starting at the character position indicated by its second parameter (the fourth 
character: the character is "s"), of a length indicated by its third parameter (6 
characters ). 

There are many additional options to expr. In general, you can use expr to 
search a string for a substring, extract substrings, compare strings, and pro­
vide information about a string. It can also perform basic arithmetic on 
integer numbers, but not on real numbers. For calculations that require 
decimals or fractions, you should use a calculator, like be. (See "Putting every­
thing together" (page 298) for an example of using be within a shell script.) 

Performing arithmetic on variables in the Kom shell 

252 

The Korn shell can be told to perform arithmetic using variables. Because this 
facility is built into the shell calculations can be executed faster than by using 
expr, which is a separate program that must be forked and exec'ed (see fork(S) 
and exee(S)). 

Although variables are normally treated as strings of characters, the com­
mand typeset -i can be used to specify that a variable must be treated as an 
integer, for example typeset -i MYVAR specifies that the variable MYVAR is an 
integer rather than a string. Following the typeset command, attempts to 
assign a non integer value to the variable will fail: 

User's Guide 



Sending a message to a terminal 

$ typeset -i MYVAR 
$ MYVAR=56 
$ echo $MYVAR 
56 
$ MYVAR=fred 
ksh: fred: bad number 
$ 

To carry out arithmetic operations on variables or within a shell script, use the 
let command. let evaluates its arguments as simple arithmetic expressions. 
For example: 

$ let ans=$MYVAR+45 
echo $ans 
101 
$ 

The expression above could also be written as follows: 

$ echo $«$MYVAR+45» 
101 
$ 

Anything enclosed within $« and » is interpreted by the Korn shell as being 
an arithmetic expression. It is possible to include variables within such arith­
metic expressions; it is not necessary to prefix them with the usual dollar sign 
although no error condition is caused if the dollar sign is used. 

If you need to carry out calculations on floating point numbers, it is necessary 
to use the binary calculator, bc. 

Sending a message to a terminal 

There are several methods of producing output in a shell script. The first, and 
simplest, is the echo command used in the last example (see "Passing argu­
ments to a shell script" (page 250)). 

Note that the echo command exists in four separate forms. Originally, echo 
was a separate program, !bin/echo: but a version of it is now built into all 
three shells. There are subtle differences between them, and although the core 
functionality is the same (the command echo hello always prints the ",,:ord 
"helld') you should check any special options you use against the relevant 
shell manual pages. Next, the Korn shell provides the print command. print 
is more versatile than echo, but cannot be used under the Bourne shell. 

Finally, a more sophisticated output mechanism is the printf command. This 
is similar to the printf command built into awk and the callable function used 
by the C programming language. See printf(C) for details. 

253 



Automating frequent tasks 

As far as the system is concerned, terminals are just a special type of file. You 
send data to a terminal or read data from it just like any other file. 

The echo command 

254 

The echo command prints its argument list, separating each argument with a 
space, and following the last argument with a newline. For example: 

$ echo Hi there! 
Hi there! 
$ 

Variables and file specifications are expanded by the shell before being passed 
to echo. Consider the following command: 

echo The available files are * 
This prints the specified text string before producing a listing of all the files in 
the current working directory, across the screen. 

echo recognizes a number of escape sequences which it expands internally. An 
escape command is a backslash-escaped character that signifies some other 
character. The ones recognized by echo are common throughout the shell syn­
tax, as follows: 

\a Alert (rings the terminal bell) 

\b Backspace 

\c No newline at end of echo output 

\f Form feed 

\n Newline 

\r Carriage return (no newline) 

\t Tab 

\ v Vertical tab 

\ char Quotes a character with special meaning to the shell. For example, 
#\ \" generates a single backslash: as an escape character, the 
backslash must be escaped or quoted to stop the shell processing it as 
the prefix to a command. 

\nnn nnn is an octal number, exactly three digits long, which represents an 
ASCII character value to insert. 

Note that one of the quoting mechanisms must be employed when using 
escape sequences with the echo command, as follows: 

$ echo The available files are \n * 
The available files are 
aaaa bbbb ecce dddd eeee 

User's Guide 



Sending a message to a terminal 

Here, the escape sequence only is quoted. Otherwise, the whole string can be 
quoted: 

$ foo="a\ty" 
$ echo $foo 
a y 

$ 

For example, see the following echo command: 

$ echo "Mary had a little lamb \n \t Its fleece was white as snow" 
Mary had a little lamb 

Its fleece was white as snow 

The \n escape causes echo to emit a newline, and the \t escape causes echo to 
emit a tab. 

You can redirect the output from echo. For example, the who and w com­
mands list the users on your system and the terminals they are logged in on. 
To send a message to a terminal being used by someone else, you can use a 
command like the following, if /dev/tty015 is the name of the terminal you 
want to print a message on: 

$ echo Hi there! > Idev/tty01S 

(Note that this is not the best way to send messages between terminals; 
write(C) and talk(TC) are commands intended for this purpose, and allow 
two-way conversation.) 

The print command (Kom shell only) 

In the Kom shell, print is preferred to echo. print is built in to the shell and 
behaves just like echo and recognizes the same escape commands. It also 
accepts the following options: 

Anything following the - is processed as an argument, even if it begins 
with a-. 

-R The escape conventions (commands beginning with \) are ignored. 
Anything following the -R (except a -n) is treated as an argument, even 
if it begins with a # - ". 

-n print does not append a newline to its output. 

-p If you have started a co-process running with the I & command (see 
"More about redirecting input and output" (page 256», the -p flag 
makes print send its output to the co-process via a pipe. 

-r print ignores the - escape commands and prints their literal value (that 
is, a backslash followed by the escape command letter). 

255 



Automating frequent tasks 

-s print sends its output to the history file. This enables you to add com­
mands to your history file from a shell script without executing them; 
you can subsequently recall or edit them rapidly, without needing to re­
type them. 

-un print sends its output to file descriptor n. 

The -u option is equivalent to redirecting the standard output, but 
doesn't open or close the destination file. This is particularly useful if 
you have opened some files in ksh and want to write data to them (for 
later reading with the read command); see "More about redirecting 
input and output" (this page).) 

More about redirecting input and output 

256 

A program running under the shell can have several files open to it simul­
taneously for reading and writing. They are identified by their file descriptors, 
numbers used by the system to associate a file with an input or output stream. 
The system treats each open file as a stream of characters that flow sequen­
tially, from start to finish. The streams associated with any program are the 
standard input, represented by file descriptor 0, the standard output (file 
descriptor 1) and the standard error (file descriptor 2). 

Basic shell syntax 

The basic shell syntax for redirecting input and output is as follows: 

<file Use file as a source of standard input. 

<nfile Readfile as a source of input to file descriptor n. 

>file Write standard output to file. 

n>file Write the output from file descriptor n to file. 

In the following example, the file called thing does not exist: 

$ cat thing 
cat: cannot open thing: No such file or directory 
$ cat thing 2> /dev/null 
$ 

User's Guide 



Sending a message to a terminal 

This effect is particularly useful when appended to a command that generates 
copious but unwanted error messages; it sends the output from file descriptor 
2 (the standard error) to /dev/null, the "bit bucket" or "black hole" device. 
(/dev/null is also known as the null device; if you send data to it, it absorbs it 
silently, and if you read from it all you get is a null character.) 

Other useful fragments are: 

>&2 appended to an echo, sends the output to the standard error 

2>&1 merges the standard error with the standard output 

Note that when the ">" symbol is employed, the file it is directing output to 
is either created or, if it already exists, is erased and replaced. This is known as 
"clobbering" a file. (The system knows better than to destroy terminal or tape 
special device files this way: the tape or screen controlled by the device is 
overwritten, but the device file itself in /dev is not affected.) 

To append output to the end of an existing file, use the"»" notation instead. 

If you want to permanently prevent the Korn shell from destroying an exist­
ing file when you use the " > " redirection operator, adjust the shell parameter 
noclobber by issuing the command set -0 noclobber. If the shell finds that a 
file it is writing to already exists, it will issue an error message and refuse to 
overwrite it, as follows: 

$ cat aaa > bbb 
ksh: bbb: file already exists 

Once no clobber is set, you have to redirect using the override command, >! 
(instead of » if you want to overwrite it. 

The « operator has a special meaning: it is used to tell the shell to read its 
standard input from the current script. For example, if you have a shell script 
containing the line: 

«terminating_string 

257 



Automating frequent tasks 

258 

Everything from that line down, until it encounters a line with just 
"terminating_string" on it will be taken as a here document, a file which is 
treated as the standard input. So, to send a multiline message to the screen, 
instead of using print or echo you could embed a help message in your script: 

_help ( ) 
{ 

cat «%% 

Readability Analysis Program 

A shell/awk demo to determine the readability grade of texts 

%% 

Either run rap with no options for full menu-driven 
activity, or use the following flags: 

-[h!H] 

-1 
-f file 
-b 

prints this help 
cause output to be logged to a file 
enter the name of the file to check 
run in batch mode (no menus) 

exit 1 

This defines a function called _help within a shell script. When the script sub­
sequently encounters the command _help it will cat the text between two sets 
of "%%" symbols to the standard output, then exit. 

Scripts running under the shell may have many file descriptors in use simul­
taneously. Some programs may not be able to deal with reading and writing 
lots of redirected file descriptors: other programs expect to read a filename on 
their command line, rather than look for redirected input. 

To get round this, you can use the special files Idevlstdin, Idevlstdout, and 
Idevlstderr; see "Forcing a program to read standard input and output" (page 
119) for an example of this. 

The following example shows an instance of extracting streams of informa­
tion from one file and placing them in two different output files using only 
one pipeline, as follows: 

2>second_field; cat myfile I awk'{ print $2 > "/dev/stderr"; print $1}' I sort 

User's Guide 



Getting input from a file or a terminal 

The first command on this line attaches the standard error to a file (in this 
instance secondJield). The input file myfile is then piped into an awk program. 
The awk program prints the second field of every line to /dev/stderr, the stan­
dard error, and prints the first field of every line to the standard output. 
Because the standard error has been redirected, the second field of each line 
ends up in second_field, while the first fields are sorted and presented on the 
standard output. 

Getting input from a file or a terminal 

In addition to printing information on the screen and redirecting the output 
from commands, you will almost certainly want to let your scripts prompt 
you for information, and make use of that information. The Bourne and Korn 
shells both provide the read command, which is the inverse of print or echo; it 
reads a line from a file (using the standard input as a default) and stores the 
successive words in the line in a series of shell variables which you specify on 
the command line. If you don't specify enough variables to hold all the words 
on the line read by print, all the remaining words will be stored in the last 
variable you name. 

For example, suppose we use the following script to get a line of input from 
the terminal: 

print Hi there! Please type a line of text.\n 
read faa 
print $foo 

When you run the script, it prompts for a line of text, and reads it all into the 
variable foo. The next line then prints the contents of foo. (Remember, to the 
shell, $foo means "the contents associated with the variable named foo", but 
foo on its own is simply a name; so the command print foo will output the 
word "foo", rather than the contents of the variable foo. This is a common pit­
fall when you start programming the shell.) For example, if the script above is 
called getline: 

$ • /getline 
Hi there! Please type a line of text. 
This is a test. 
This is a test. 
$ 

The Korn shell provides a shorthand notation for this, as follows: 

read 'foo?Hi there! Please type a line of text. ' 

This is equivalent to the following: 

print Hi there! Please type a line of text. 
read faa 

Text up to the question mark is interpreted as the name of a variable in which 
the input is stored: text after the question mark is used as a prompt. 

259 



Automating frequent tasks 

To read two words into different variables, you might use a script like the fol­
lowing: 

print Hi there! Type two words then press enter.\n 
read faa bar 
print The first word I read was $foo 
print and the second was $bar 

If you type three words when you run this script, instead of two, the last two 
words will appear in the second variable. For example, if the script is called 
getwords: 

$ ./getwords 
Hi there! Type two words then press enter. 
hello yourself, program! 
The first word I read was hello 
and the second was yourself, program! 
$ 

When you use the Korn shell (but not the Bourne shell) read takes a number 
of options. These are as follows: 

-p Read input from a co-process. The shell disconnects from its pipe to the 
co-process when an error or end-of-file condition is read. 

-s Save the input line as a command in the history file (without executing 
the command). 

-un Read a line from file descriptor n. The default is file descriptor 0, the 
standard input. 

For the other options and the arguments to read, refer to ksh(C). 

Reading a single character from a file or a terminal 

260 

read reads a line of text at a time, but it is often useful to have a script wait for 
a keystroke, then act on that keystroke immediately. For example, when using 
a menu driven program, you may not want the program to wait for you to 
press (Enter) after you select an item. There is no command to obtain a single 
character from a terminal, but we can simulate one. 

Here is a simple function to obtain a keystroke: 

getc () 
{ 

stty raw 
tmp='dd bs=l count=l 2>/dev/null' 
eval $l='$tmp' 
stty cooked 

User's Guide 



Getting input from a file or a terminal 

To use it, insert it at the top of your shell script, then invoke it lower down the 
shell script: 

echo "Enter a character: \c" 
getc char 
echo 
echo "You entered Schar" 

getc puts the terminal into raw mode. Instead of passing your input through 
to the system a line at a time, the terminal now passes each keystroke you 
type straight through, unmodified. 

The dd command reads a single character from the standard input and writes 
it to the standard output, that is captured in the variable tmp. The next line is 
used to assign the literal contents of tmp to the variable named by $1. The 
eval command in front of this line is necessary to force the shell to scan the 
line twice; once to expand $1 into the name of a variable, and again to carry 
out the actual command. The quotes around $tmp are stripped off by eval; if 
you omit them, then if your character is a whitespace character, it will be lost. 

Afterwards, getc puts the terminal back into normal operating mode with the 
command stty cooked (or stty -raw, or stty sane). 

We can write getc more succinctly like this: 

getc () 
{ 

stty raw 
eval $l="dd bs=l count=l 2>/dev/null" 
stty cooked 

Because getc returns a single character in whatever variable you specify, you 
can use it flexibly. For example, the following function can be used to make a 
program pause until you are ready for it to continue: 

press_any _key ( ) 
{ 

echo "Strike any key to continue ... \c" 
getc anychar 

261 



Automating frequent tasks 

Combine the two functions in a script called char _handler, as follows: 

getc () 
{ 

stty raw 
eval $l="dd bs=l count=l 2>/dev/null" 
stty cooked 

press_any_key ( ) 
{ 

echo "Strike any key to continue ... \c" 
getc anychar 

echo "Enter a character: \c" 
getc char 
echo 
echo "You entered Schar" 
press_any_key char 
echo \r 

Execute char _handler as follows: 

$ ./ehar_handler 
Enter a character: x 
You entered x 
Strike any key to continue ... y 

$ 

Attaching a file to a file descriptor 

262 

Most of the time, you will only need to work with three file streams; the stan­
dard input, standard output, and standard error. However, if you need to read 
input from a file into a shell script, or to send output to one or more other 
files, you may want to open some more files and attach them to file descriptor 
numbers. 

To open files for reading, use the exec command. exec causes the commands 
following it on the line to be executed immediately without invoking a sub­
shell. The command to be execed overlays the shell process, and when it ter­
minates control returns to the parent of the process that carried out the exec. 

You can use exec to attach new files to the input and output file descriptors of 
the current shell process. For example, to open a file called newscript as 
standard input to the current shell, use the following command: 

exec <newscript 

newscript should be executable and contain the following line: 

echo "Hello world!" 

User's Guide 



What to do if something goes wrong 

In this case, exec forces newscript to be opened as standard input, then causes 
its contents to be executed. 

To open filel, file2 and file3 for input as file descriptors 1,4 and 5 respectively, 
use the following: 

exec 1< file14< file2 5< file3 

Note that there is an anomaly in the Korn shell when opening file descriptors 
using exec. Although the Bourne and Korn shells allow you to open any 
recognized file descriptor for input or output, the Korn shell closes them 
immediately after executing the command line (with the exception of file 
descriptors 0, 1 and 2: standard input, standard output, and standard error). 
The C shell does not allow you to redirect or attach file descriptors: this is one 
of its major shortcomings. 

What to do if something goes wrong 

If your shell script stubbornly refuses to work, there are two possibilities: 

• You are trying to execute the script in an inappropriate environment. 

• The script contains a bug. 

An inappropriate environment means that the script is unable to run because 
the environment you are trying to run it in is not set up for it. For example, 
you cannot execute a Bourne shell script in the C shell with any expectation of 
success (unless you force the system to run the script under a Bourne shell by 
making the first line of the script #!lbinlsh). Alternatively, you may have for­
gotten to set the execute permission on the script, so that the shell fails to 
recognize it as a command. Or you may have told your script to read and act 
on an environment variable which is not present. 

Solving problems with the environment 

A particularly common error is to fail to include"." (the current working 
directory) in your PATH variable. (Note that PATH recognizes a colon with no 
trailing characters, or a colon followed immediately by another colon and a 
pathname, as synonyms for". ".) When the shell reads a command name it 
only searches for an executable file of that name in the directories listed in 
PATH. If " . " is not included in PATH, the shell will not look for the file in your 
current directory. Including "." in PATH removes the necessity of ever having 
to use the ".j" notation to execute your scripts (see "Creating a shell script" 
(page 246». 

263 



Automating frequent tasks 

Another common error is to give your file the same name as an existing com­
mand. If the current directory (.) precedes the directory in which the 
synonymous command exists in your PATH, your script will be used instead 
of the command whenever you call it; on the other hand, if the directory in 
which the command exists is before" . " in your PATH, the command will be 
executed instead of your script. 

Consider the following search path: 

Ibin:/usrlbin:lulcharleslbin::/usrlscolbin:/ulbin: 

For example, if you create a script called test in the current directory, and you 
attempt to execute it by typing the command test, the shell will search along 
your path and execute /bin/test instead of ./test (pointed to by the fourth, null, 
field in the path). 

Try to avoid giving your scripts a name already used by a sea OpenServer 
utility. A quick way to test a proposed name is to invoke man on it; if man 
provides a manual reference, it is a bad idea to use the name. It is also worth 
checking the relevant manual page for the shell you are using, in case your 
script shares a name with a built in shell command. 

Another common problem is to invoke a script under the wrong shell. To 
ensure that the script is always run by the correct shell, use the hash-bang 
notation (#!) on the first line of the script to specify which shell to use (See 
"Running a script under any shell" (page 247». 

Solving problems with your script 

264 

Even if your environment is set up correctly, any long script that you write 
will almost certainly fail to work correctly under some circumstances. This 
may be due to a failure to consider all the conditions under which the script 
may be run, or due to an oversight or syntax error in the script. The best way 
to get used to creating small to medium sized shell scripts is to do the follow­
ing: 

• Work out what you want the script to do. 

• Decompose the successive stages in the process into separate steps. 

• Test and debug each individual step interactively, at the shell prompt. 

This method, known as bottom-up programming, is especially suited to small 
scripts (those which contain less than about fifty lines of commands). For 
longer programs, you may need to learn more about programming tech­
niques. (See "Learning the shells" (page 428) and "Learning the C program­
ming language" (page 428) for references to more advanced texts.) 

User's Guide 



What to do if something goes wrong 

What to do if your shell script fails 

In the meantime, if your shell scripts fail, a useful technique for finding out 
what is going wrong is to use the -x flag. You can set it when you start ksh by 
running the shell with the command ksh -x; or you can set it from within the 
Korn shell by issuing the following command: 

set -0 xtrace 

The Bourne shell's equivalent is as follows: 

set-x 

The xtrace option causes the Korn shell to list each command after it has been 
expanded, but before it has been executed. This enables you to catch any 
errors due to alias substitution, wildcard expansion, or quote stripping. 

(The set -0 command can be used to reset the Korn shell's startup options 
from within a running shell; type set -0 for a listing of the current option 
states, then use set -0 option to switch option on, or set +0 option to switch 
option off.) The set - command will also tum off the xtrace facility. 

Another useful technique is to use print as frequently as possible, to let you 
know what your script thinks it is meant to be doing. Print the contents of 
variables before and after you change them, along with a message to explain 
what kind of operation you are carrying out. Better still, make print send this 
output to a log file. The file provides you with a permanent record of what 
happened during a test run of the script. 

An important rule to bear in mind if your script fails is not to change more 
than one thing at a time between test runs. Errors are eliminated by making a 
single change to a script, running it, and seeing how it behaves, then trying to 
deduce where the error is coming from. Randomly changing your script will 
make it much harder to pinpoint the source of errors and is unlikely to elim­
inate them. 

265 



Automating frequent tasks 

Here is an extended example that demonstrates these techniques and intro­
duces some new concepts. 

Writing a readability analysis program: an example 

For the rest of this chapter, and at intervals in the following chapters, we will 
refer to a single recurring example: a program to analyze the readability of 
text files. Such a program needs to identify the files it is to work on. It must 
open them, use several other programs to obtain information about the files, 
then print the results. It also serves as a demonstration of several useful tech­
niques: notably, how to built a simple menu driven program, how to build up 
complex regular expressions, and how to integrate awk scripts and other pro­
gramming languages into shell programs. 

The objective of a readability analysis program is to scan a file or files of text, 
and report various statistics about their internal complexity. There is more to 
this than just running we; we want to generate a report on such things as the 
number of sentences in a file, the average length of each sentence, the average 
number of syllables per word, and the readability grade of the file. It would be 
useful to be able to invoke the program from the shell prompt with a variety 
of options: it would also be useful to provide the program with a menu driven 
front end. All these tasks, and more, will be explained as we encounter them 
in building up our example. 

The first step in writing a large program is to analyze what it is intended to 
do: what its inputs are, and what its outputs are expected to be. We can then 
write a "skeleton" for it: a script that does not actually do anything to the data, 
but ensures that all the pieces are in place. (The actual task of analyzing a file 
for readability can be farmed out to a function that we will fill in later.) This is 
described below. 

How to structure a program 

266 

In general, there are two types of program: batch programs, and interactive 
programs. The internal structures of batch and interactive programs differ 
considerably. 

A batch program is a typical sea OpenServer filter. You run it by specifying a 
target file (and optional flags) at the shell prompt: it runs, possibly prints 
messages to the standard output, and exits. 

An interactive program prints a menu. You select options from the menu: the 
program then changes its internal state, and prints another menu, until it has 
assembled all the data it needs to select and execute a routine that carries out 
some task. It does not exit until you select a quit option from some menu. 

User's Guide 



Writing a readability analysis program: an example 

Interactive programs are harder to write, so we will start by looking at a short 
batch program. An explanation of the program follows the code: 

1 #!/bin/ksh 
2 #-----------------------------------------------------
3 # 

4 # rap -- Readability Analysis Program 
5 # 
6 # Purpose: skeleton for readability analysis of texts. 
7 # 
8 #------------- define program constants here ----------
9 # 

10 CLS='tput clear' 
11 HILITE='tput smso 
12 NORMAL='tput rmso' 
13 # 
14 #---------- initialize some local variables -----------
15 # 
16 SCRIPT=$O 
17 
18 
19 

help='no' ; 
log=' , ; 
file=' '; 

20 # 

verbose=' , 
next_log_state=' , 
fname=' , 

record=' , 
batch=' , 

21 #----------------- useful subroutines -----------------
22 
23 do_something ( } 
24 { 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

# This is a stub function; it does not do anything, yet, 
# but shows where a real function should go. 
# It contains a dummy routine to get some input and exit. 
echo 
print "Type something (exit to quit}:" 
read temp 
if [ $temp = "exit" ] 
then 

exit 0 
fi 

38 _help ( ) 
39 { 
40 echo " 

${HILITE}Readability Analysis Program${NORMAL} 
41 
42 
43 
44 
45 
46 
47 

A shell/awk demo to determine the readability grade of texts 

Usage: $SCRIPT -hHlb -f <file> 

267 



Automating frequent tasks 

48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 

268 

Either invoke with no options for full menu-driven 
activity, or use the following flags: 

-h or -H prints this help 
-1 

-f file 
log output to file 
name of file to check 

-b 

} 

# 
# 
TrapSig( ) 
{ 

echo 

run in batch mode (no menus) 

echo "Trapped signal $1 ... 'c" 
} 

# 
#========== START OF MAIN BODY OF PROGRAM ============ 
# 
#------------ define program traps ------------------­
# 
for foo in 1 2 3 15 
do 

trap "TrapSig $foo" $foo 
done 
# 
#---------- parse the command line--------------------­
# 
mainline= $ * 
echo "" 
while getopts 
do 

case 

esac 
done 

$result 
hlH) 
v) 
1) 

b) 
f) 

*) 

"hHvlbf:" result 

in 
help=yes 
verbose=yes 
record=yes 
next_log_state=off 
10g=ON 
batch=yes 
file=yes 
fname=$OPTARG 
help=yes 

shift 'expr ${OPTIND} - l' 
if [ Shelp = 'yes' 1 
then 

_help 
exit 1 

User's Guide 



Writing a readability analysis program: an example 

98: fi 
99: # 
100 #---------- enter the main program ---------------------
101 # 

102 while: 
103 do 
104 do_something 
105 done 

(Line numbers are provided for reference only, and are not part of the pro­
gram.) 

At first sight this appears to be quite a complicated program, but most of it is 
used to set up some facilities which will be useful later. The real start of the 
program is line 10: 

09 #------------- define program constants here ----------
10 CLS='tput clear' 
11 HILITE='tput smso' 
12 NORMAL='tput rmso' 
13 # 
14 #---------- initialize some local variables -----------
15 # 
16 SCRIPT=$O 
17 
18 
19 
20 

help=' no' ; 
log=' , ; 
file=' '; 

verbose=' , 
next_log_state=' , 
fname=' , 

record=' , 
batch=' , 

Text following a "#" is ignored by the shell. This comes in useful when you 
want to leave comments in your program for other users. 

Lines 10 to 20 set a number of variables. These variables are only used while 
the program runs: when the script ends, they will not be made available to its 
parent shell. One set, CLS, HILITE, and NORMAL, are constants; they are not 
changed during the execution of the program. The second set are variables 
that the program may use. We initialize them (to a string containing a single 
(Space) character) in case they have some other meaning within the parent 
shell from which the script is executed. 

It is worth considering lines 10-12 in more detail. Lines of the form 
variable='tput mode' use the command tput(C) to obtain the codes necessary 
to put the terminal into some special mode, for example reverse video mode, 
or to restore it to normal. 

269 



Automating frequent tasks 

270 

All terminals have the capability to carry out some basic actions when they 
receive a corresponding control code: for example, positioning the cursor, 
switching to reverse video, and clearing the screen. Because different termi­
nals use different control codes, the system terminfo database maintains a 
table of the codes to use for a given capability on any specified terminal. 
These capabilities are assigned symbolic names, and the terminfo database 
matches the name to the escape code for each terminal. 

tput takes a terminal "capability" name and returns the escape sequence to 
use for the current terminal. In this program, we capture the output from the 
tput command in a variable for later use. Once you have the control code for a 
given capability, you can echo the code to your terminal and it will enter 
whatever mode you specified. 

We are using three special terminal-dependent capabilities here: 

clear Clear the entire screen. 

smso Put the terminal into reverse video mode. 

rmso Restore the terminal to normal text mode. 

You can enter these modes at any time by using the command tput mode, but 
if you are going to use the command more than once in a shell script it is 
better to store the control code in a variable and echo it: this saves you from 
having to run tput every time. 

Lines 23 to 56 define two functions: a stub (which does nothing useful), and a 
help routine. The stub simply shows where a more complex function will go, 
when we have written it. (At present, it prompts for an input string; if you 
type exit the script terminates.) The help routine is similar to the one we 
looked at in "More about redirecting input and output" (page 256). If it is 
called later in the script it prints a message and exits, terminating the script. 
Note the use of the variable $SCRIPT in the help function. SCRIPT is initialized 
to whatever the name of the function is, when it is executed. (It is used here in 
case someone renames the script, so that the usage message reflects the 
current name of the program.) 

Note that before you can call a function, it must have been defined and the 
shell must have read the definition. Therefore, functions are defined at the top 
of a shell script and the actual program (that calls them) is right at the bottom. 

User's Guide 



Writing a readability analysis program: an example 

Making a command repeat: the for loop 

Lines 70 to 73 allow our script to survive if it receives a signal. Interactive 
scripts frequently do this, but batch scripts rarely do so. First, we provide a 
function to handle signals if any are received. It expects a parameter, $1, that 
tells it the number of the signal. All the example below does at present is to 
echo the number of the signal and exit, but later on we will show how it can 
be used to resume control of the program if something goes wrong. The sig­
nals are caught by the traps set up in lines 56 to 59: 

for foo in 1 2 3 15 
do 

trap "TrapSig Sfoo" Sfoo 
done 

This is an example of a for loop. 

A for loop is a mechanism for repeating an operation for every item in a set. 
The general structure of a for loop is as follows: 

for variable in list 
do 
command 
command 

done 

In the example, variable is set in tum to each value in the list (a collection of 
items from the command in to the end of the line). All the commands between 
do and done are carried out, for each successive value of variable. So in the 
example, the variable foo is set to 1 and the trap command is carried out; then 
foo is set to 2, then 3, and so on. 

You can assign strings such as filenames to variables in a for loop. This 
enables you to use for loops to apply several commands in order to every file 
in a directory, or to iteratively work through a list of words (for example, 
invoking mail to send a personalized message to each of a list of recipients). 

271 



Automating frequent tasks 

The loop in the example script from line 56 to line 59 is equivalent to writing 
the following: 

foo=O 
trap "Error $foo" $foo 
foo=2 
trap "Error $foo" $foo 
foo=3 
trap "Error $foo" $foo 

Each time the body of the loop (the part from do to done) is executed, it sets a 
trap for a signal (the number of which is set by the for statement). 

You can use for loops with wildcards to select files. For example: 

for target in * 
do 

cp $target . . I$target 
echo Copied $target 

done 

When the shell reads the first line, it expands the" * " into a list of all files in 
the current directory. Then, for each named file, the commands in the body of 
the loop are executed. 

Getting options from the command line: getopts 

272 

Lines 77 to 98 of our example script illustrate a very important feature of any 
batch script: how to read parameters from a command line. Both the Bourne 
and Korn shells provide a built in command called getopts to read command 
line parameters. (Note that this should not be confused with the earlier, and 
obsolete, command getopt, which is inferior and should not be used.) 

For example, we might want our program to respond to any of the following: 

prog-h 
prog-H 
prog-v 
prog -f filename 

To handle command line options, we need a means of distinguishing between 
parameters that are filenames, and parameters that are flags. 

User's Guide 



Writing a readability analysis program: an example 

To use getopts, first establish the various flags the program is to understand. 
For example, for the above syntax, the options are hHvf:. The colon after the 
" f /I indicates that the "f /I is to be followed by an additional parameter (such 
as a filename). 

For example: 

79 
80 
81 

while getopts "hHvlbf:" result 
do 

case $result in 

Each time the while loop runs, getopts is invoked, scans the parameters to the 
script, and places the first new option it finds in a special variable called 
result. The index number of the next shell argument to process is placed in 
another special variable called OPTIND, and if the flag has an optional argu­
ment (like the f: option above) the argument is placed in OPTARG. If getopts 
cannot find an option, it exits with a non-zero (or failure) exit value. 

It is up to the shell script to retrieve all the options from a parameter list. So 
optargs is usually used in a structure called a while loop, explained below. 

Repeating commands zero or more times: the while loop 

A while loop differs from a for loop in that a for loop is executed a set number 
of times (for each item in its list), but a while loop is repeated indefinitely, or 
until some condition ceases to be true. The general format of a while loop is 
as follows: 

while condition 
do 

command 

done 

The condition is a command or test of some kind. (For an explanation of tests, 
see "Different kinds of test" (page 277).) If it exits with an exit value of 0, 
implying success, the commands in the body of the do loop are carried out; if 
it failed (has a non-zero exit value) the loop is skipped and the script contin­
ues to the next line. 

273 



Automating frequent tasks 

Note that there is no guarantee that the commands in the body of the loop 
will ever be carried out. For example: 

while [ "yes" = "no" ] 
do 
some_command 

done 

some_command will never be carried out, because the test [ ''yes'' = "nd' ] 
always fails. On the other hand, the opposite effect can occur: 

while ["yes"] 
do 
some_command 

done 

Because the literal string "yes" exists, test returns true all the time, so the loop 
repeats endlessly. 

Repeating commands one or more times: the until loop 

274 

It is sometimes necessary to execute the body of a loop at least once. Although 
the while loop provides the basic looping capability, it does not guarantee 
that the body of the loop will ever be executed because the initial test may fail. 
For example, the body of the loop in the example above will never be exe­
cuted because the test condition is always false. 

We could make sure that the body of the loop was executed at least once by 
duplicating it before the while statement, like this: 

some_command 
while [ "red"="blue' ] 
do 
some_command 

done 

However, this is prone to error when the loop body contains a lot of com­
mands. Luckily the shell gives us a different type of looping construct: the 
until loop. An until loop looks very similar to a while loop; the difference is 
that the loop body is repeated until the test condition becomes false, rather 
than while it remains true. 

User's Guide 



Writing a readability analysis program: an example 

For example, this loop will repeat infinitely, because the test always returns a 
non-zero (false) value: 

until [ "red"="blue" ] 
do 
some_command 

done 

By carefully choosing our test, we can ensure that the body of an until loop 
will be executed at least once: to do so, we must make sure that the test 
parameter is false. For example: 

leave_Ioop="NO" 
until [leave_Ioop="YES" ] 
do 
some_command 

leave_Ioop="YES" 
done 

The body of this loop will be executed at least once. If we change the until on 
the second line to a while, the loop will never be entered. 

Making choices and testing input 

To handle the command line options to our script, lines 79 to 93 run getopts in 
a while loop. As long as getopts continues to return an option, the body of the 
loop is executed: when getopts can no longer detect any options, the while 
loop fails. shift is then used to discard the options. 

Embedded in the loop to get options, we see another kind of statement: a case 
statement. Immediately after it, on lines 81 to 83, we see an if statement. These 
are both mechanisms for choosing between two or more options. if depends 
on the return value of a test condition; case operates by matching patterns. 

When we need to repeat an operation a variable number of times, we must 
check after each repetition to determine whether it has produced the desired 
result. If not, we may need to repeat the task again: otherwise, we may want 
to do something else. The if statement allows us to choose between alterna­
tive courses of actions; the test or [ ... ] command allows us to check whether a 
condition holds true. (The case statement can be used as a generalized form of 
if statement, for choosing between many options. We will deal with it later.) 

275 



Automating frequent tasks 

Choosing one of two options: the if statement 

276 

The simplest form of if statement is illustrated on lines 81 to 84: 

94 if [ Shelp = 'yes' 1 
95 
96 
97 
98 

then 
_help 
exit 1 

fi 

The statement following if is evaluated. If it is true (that is, if it returns a value 
of 0), the body of the if statement (from then to fi) is carried out. If it is 
nonzero, the body of the if statement is skipped. 

if has the following structure: 

if condition 
then 

commands executed if condition succeeds 
fi 

An alternative structure is the following: 

if condition 
then 

else 

fi 

commands executed if condition succeeds 

commands executed if condition does 
not succeed 

The following structure is also valid: 

if conditionl 
then 

commands executed if conditionl succeeds 
elif condition2 
then 

commands executed if condition2 succeeds 
fi 

condition is a command that returns an exit value: zero if successful or some 
other value if it failed. The if command carries out test, then executes the 
series of commands (from then to else or fi) if and only if test returned a 
value of II 0 " or TRUE. (fi is the command denoting the end of an if construct.) 

If the if command contains an else portion, the commands between else and 
fi are only carried out if the test returns a result other than TRUE; that is, if the 
test statement fails. 

User's Guide 



Writing a readability analysis program: an example 

If the if statement is followed by an eli£, the eli£ statement is carried out if the 
condition tested by the previous if statement fails. An eli£ statement is other­
wise identical with an if statement. 

The following two lines of code have the same effect: 

if [ $answer = 'y' ] 

if test $answer = 'y' 

If the test succeeds, indicating that the value of answer is II y ", then the first 
set of commands is carried out. Otherwise, the else ... fi section of the script is 
executed. 

Different kinds of test 

In general, tests are carried out either by enclosing them in square braces (as 
above) or by using the command test(C). The most useful tests are as follows: 

-r file True if a file called file exists and is readable. 

-w file True if a file called file exists and is writable. 

-x file True if a file called file exists and is executable. 

-s file 

-dfile 

-£file 

-z string 

-n string 

stringl = string2 

stringl != string2 

True is a file called file exists and is not empty. 

True if a file called file exists and is a directory. 

True if a file called file exists and is a regular file. 

True if the length of string is zero. 

True if the length of string is non-zero. 

True if stringl equals string2. 

True if stringl is not equal to string2. 

numberl -eq number2 True if the integer numberl equals number2. 

numberl -ne number2 True if the integer numberl is not equal to number2. 

numberl -gt number2 True if the integer numberl is greater than number2. 

numberl -It number2 True if the integer numberl is less than number2. 

numberl -ge number2 True if the integer numberl is greater than or equal to 
number2. 

numberl -Ie number2 True if the integer numberl is less than or equal to 
number2. 

277 



Automating frequent tasks 

In addition to these tests, there are a number of others; see test(C) for details. 
In general, the tests listed here should be sufficient to let you test for the 
existence of files, to check whether your script has permission to manipulate a 
given file, to compare two numbers, and to see if a string matches some value. 
These are the commonest comparisons used to help a script decide on a 
course of action to take. 

Testing exit values 

In addition to the explicit test or [ commands, if can make a choice on the 
basis of any program (or pipeline of programs) that returns a value. It is 
normal for programs to return HO" if they succeed, or another (usually nega­
tive) number if they fail; this value is retained in the variable $?, which is 
implicitly tested by if. It is not uncommon to see a shell script that contains 
commands like the following: 

if who I grep -e "$1" > /dev/null 
then 

print -- $1 is logged in 
fi 

In this example, the output from who is piped to grep. The if statement tests 
the output from the pipe, which is the value returned by grep. grep returns a 
if it finds the target string, or a non-zero value if it fails. 

This example is therefore equivalent to a test that returns TRUE if a string is 
present in a given file. 

The && and II operators 

278 

There are two compact versions of the if test which you may see from time to 
time; these tests operate on a single statement and determine whether a sub­
sequent command is to be executed. They are && (AND IF) and I I (OR IF). 
These operators evaluate $? for the previous command. && executes the 
following command if the previous command succeeded; I I executes the fol­
lowing command if the previous command failed. Note that the execution of 
the second command is entirely dependent on the result of executing the first 
command. Thus, if you write a line with two or more of these operators, each 
command is executed in tum along the line until one of them results in a test 
failing. 

User's Guide 



Writing a readability analysis program: an example 

For example, the test to see if a given user is logged on could be written as fol­
lows: 

who I grep -e "$1" I I echo "$1 is not logged on" 

A who listing is piped to grep, which searches for the subject (whose name is 
the first argument to the script). The OR IF test examines the returned value 
from grep. If grep failed (that is, if the user is not logged on), a message is 
printed. If grep succeeded and returned "0", no message is needed because 
grep printed the line from the who listing. 

In general, you can use I I to execute a command when the previous com­
mand has failed, and you can use && to execute a command if the previous 
command has succeeded. 

For example, take the command: 

compress $1 I I print "Something went wrong compressing $1" 

The program compress is executed. When it finishes, its exit value $? is tested 
by I I. If it is non-zero, the error message is printed. 

This compares with the other command: 

compress $1 && print "Finished compressing $1" 

If the exit value of compress is 0, the message is printed. 

A common problem when using the && and II operators is to assume that 
they are equivalent to the logical operators provided by other programming 
languages. In fact, these operators are conditional constructs that evaluate 
strictly from left to right. Consequently it is hazardous to use them for 
evaluating logically true or false values (like the && or I I operators in C). 
These operators are not strictly equivalent to if ... else ... fi either. For exam­
ple, the following short script determines if someone is logged in: 

if who I grep $1 >/dev/null 
then 

echo $1 is logged in 
else 

echo $1 is not logged in 
fi 

279 



Automating frequent tasks 

Using the && and I I operators, we might be tempted to rewrite this script 
more succinctly as follows: 

who I grep $1 >/dev/null && echo $1 is logged in I I echo $1 is not logged in 

However, this version will execute the second echo incorrectly if the pipe 
(who I grep $1) fails. The if ... else ... fi version, in contrast, does not exhibit 
this behavior (despite looking superficially similar in logical terms). 

Making multiway choices: the case statement 

280 

In explaining the large example program, we have so far ignored lines 82 to 91 
These contain a structure designed to choose between several different 
options: a case statement. 

81 case $result in 
82 hlH) 
83 v) 
84 1) 
85 
86 
87 

88 
89 
90 
91 esac 

b) 
f) 

* ) 

help=yes 
verbose=yes 
record=yes 
log=off 
LOG=ON 
batch=yes 
file=yes 
fname=$OPTARG 
help=yes 

, , 
, , 

, , 
, , 

i i 

, , 

The case command is followed by a variable. This is tested against each of the 
options in tum, until the esac statement (signifying end of case) is reached. 

In addition to setting variables, you can use branches of a case construct to 
call functions or exit. (An exit statement is used to exit from the current 
script.) 

User's Guide 



Writing a readability analysis program: an example 

case statements are not essential to writing scripts that can handle multiway 
choices, but they make things easier. Consider the following alternative: 

if [ ${result} = "h" 1 
then 

help=TRUE 
else 

fi 

if [${result} "H" 1 
then 

help=TRUE 
else 

if [${result} "v" 1 
then 

verbose=TRUE 
else 

fi 
fi 

if [${result} "1" 1 
then 

record=TRUE 
log=off 
LOG=ON 

else 
if [${result} "b" 1 
then 

batch="yes" 
else 

fi 
fi 

if [${result} Of" 1 
then 

file=TRUE 
fname=${OPTARG:-unset} 

else 
help=TRUEi i 

fi 

This compound if statement does exactly the same thing as the earlier case 
statement, but is much harder to read and debug. 

281 



Automating frequent tasks 

282 

The general format of a case construct is as follows: 

case $choice in 
1) # carry out action associated with selection 1 

i i 

2) # carry out action associated with selection 2 

; i 

3) # carry out action associated with selection 3 

4) # carry out action associated with selection 4 

*) # carry out action associated with any other selection 

esac 

The case command evaluates its argument, then selects the matching option 
from the list and executes the commands between the closing parenthesis fol­
lowing the option and the next double semicolon. In this way, only one out of 
several possible courses of action can be taken. case tests the argument 
against its options in order, from top to bottom, and once it has executed the 
commands associated with an option it skips all the subsequent possibilities 
and the script continues running on the line after the esac command. 

To trap any possible selection use an option like: 

*) # match any possible argument to case 

User's Guide 



Writing a readability analysis program: an example 

The * option matches any possible argument to the case construct; if no prior 
option has matched the argument, the commands associated with the * option 
are automatically carried out. For this reason, the *) option should be placed 
at the bottom of the case construct; if you place it at the top of the construct, 
the * option will always be executed before the shell has a chance to check any 
other options. 

There is no effective size limit to a case construct, and unlike an if ... then ... 
elseif cascade the construct is "flat"; that is, it is an indivisible structure, and 
there is consequently no difficulty in working out which construct is being 
evaluated. 

Generating a simple menu: the select statement 

Although not used in the readability analysis sample program, the select 
statement can be used to simply generate menus. It is restricted to the Korn 
shell, and has no equivalent in the Bourne and C shells. It has the following 
syntax: 

select name [in list] 
do 

statements 
done 

# statements use $name 

The in list construct can be omitted, in which case, list defaults to $@ (see 
"Passing arguments to a shell script" (page 250». 

The select statement generates a menu from the entries in list, one per line, 
with each preceded by a number. It also displays a prompt, by default a hash 
sign followed by a question mark (#?). The user's response to the prompt is 
stored in the variable name; on the basis of the value of $name, the appropri­
ate statement is executed. select then prompts for another choice, unless an 
explicit break command causes the loop to terminate. 

The following trivial sample code illustrates select in use: 

print "Choose a dinosaur:" 
select dino in allosaurus tyrannosaurus brontosaurus triceratops 
do 
case $dino in 
allosaurus} print "Jurassic carnosaur" ;; 
tyrannosaurus} print "Cretaceous carnosaur" " 
brontosaurus} print "Jurassic herbivore" ;; 
triceratops} print "Cretaceous carnosaur" ;; 
*} print "invalid choice" ;; 
esac 
break 
done 

283 



Automating frequent tasks 

The following shows the code in use (the program is called dino_db): 

Choose a dinosaur: 
1) allosaurus 
2) tyrannosaurus 
3) brontosaurus 
4) triceratops 
#? 

Expanding the example: counting words 

284 

At present, our readability analyzer program does very little processing. It can 
trap signals (preventing it from terminating if interrupted), it can scan the 
command line for arguments, and it sets up some useful routines for printing 
help and clearing the screen. However, we now want the program to perform 
a useful task. 

Given the size of the skeleton structure we have already created, it might look 
as if it will take a lot of work to make it do anything useful. However, surpris­
ingly little additional programming is needed. 

As a first step towards writing a style analysis program, it would be useful to 
know how many words, characters and lines there are in the target file. We 
can use we to obtain this information for any given file; we can also use 
backquotes to capture the output and process it. 

To add word counting to our program, all we need to do is change the follow­
ing lines: 

23 
24 do_something ( ) 
25 { 
26 wordcount='wc -w ${fname} I awk '{ print $1 }" 
27 lines='wc -1 ${fname} I awk '{ print $1 }" 
28 chars='wc -c ${fname} I awk '{ print $1 }" 
29 echo "File ${fname} contains: 
30 ${wordcount}\t\twords 
31 ${lines}\t\tlines 
32 ${chars}\t\tcharacters " 
33 

User's Guide 



Writing a readability analysis program: an example 

The main task of the program is to call the function do_something. This func­
tion runs wc, pipes the output through a short awk command, and traps the 
result in a variable; then it prints a formatted report. 

For example: 

$ rap -f rap 

File rap contains: 
243 
95 
1768 

$ 

words 
lines 
characters 

The awk program '{ print $1 }' prints the first field on every line awk reads 
from the standard input. This is a typical awk program: short, integrated into 
a shell script, and used to carry out a transformation on a stream of text. For 
more information on using awk, see Chapter 13, "Using awk" (page 323). 

The important point to note here is that by encapsulating the functionality of 
the program in a subroutine (the function do_something) we have made it a 
lot easier to change the program. (Ideally do_something would be written as 
three separate functions, to count words, lines, and characters. However, 
because it is comparatively short it is presented here as a single unit.) 

We can make our program do something else entirely, simply by modifying 
do_something and changing the help text in _help. Most of the program is 
actually a skeleton that we can use to hang useful subroutines off: you can 
reuse it as a starting point for your own batch mode shell scripts. 

285 



Automating frequent tasks 

Making menus 

286 

Starting from our current example, it is not difficult to tum the script into a 
fully interactive program with menus. We have already seen most of the 
structures we need: all that is necessary is to put them together in a different 
order. 

The general structure of a batch mode script is as follows: 

Define constants (variables that will not change) 
Define functions (routines to handle specific jobs) 
Set traps 
get command line options with getopts 

use options to set control variables 
for all in $* 
do 

some_function ( ) 
done 

The only element of repetition is the loop at the end, which repeats for each 
file passed to the script as an argument. 

A menu driven script behaves differently: 

Initialize variables and define functions 
Repeat (until some "exit" state is reached) 
{ 

Display a menu 
Get the user's choice 
Do something with the choice (change state or call function) 

On "exit" close files and quit 

This process, an endless loop, is called a mainloop. The menu is displayed, 
then a function like getc (described in "Reading a single character from a file 
or a terminal" (page 260)) is used to retrieve a· single keystroke. Such a func­
tion may either grab the first key the user presses, or let them correct the entry 
and press (Enter) before accepting input. (There are arguments for and against 
both strategies. In general, you should always give your users an opportunity 
to check their input, and correct any mistakes they may have made.) 

Depending on the value of the key, an option is selected from a case state­
ment. Each option either sets a variable, or calls a function (called a callback) 
which does something in the background, "behind" the menu. Finally, if the 
option to quit is selected, t..~e break statement is executed to quit the loop. 

User's Guide 



Writing a readability analysis program: an example 

Here is part of a menu based script, containing the mainloop: 
282 done 
283 if [ Shelp = "yes" ] 
284 then 
285 _help 
286 exit 1 
287 fi 
288 if [ $batch = "yes" ] 
289 then 
290 analyze 
291 exit 0 
292 fi 
293 
294 #---------- enter the mainloop ------------------------
295 # 

296 while 
297 do 
298 echo $CLS 
299 echo" 
300 
301 ${HILITE}Readability Analysis Program${NORMAL} 
302 
303 Type the letter corresponding to your current task: 
304 
305 f Select files to analyze [now ${HILITE}$fname${NORMAL} 

Perform analyses 306 
307 
308 
309 

P 
1 switch ${next_log_state} report logging [now ${HILITE}$log${NORMAL}] 
q quit program 

310 
311 =======>" 
312 getc char 
313 case Schar in 
314 'f') getloop=1 
315 get_file " 
316 'p') analyze 
317 
318 
319 
320 

strike3ny_key 
'1') toggle_logging , , 
'q') break " 
*) continue i i 

321 esac 
322 done 
323 clear 
324 exit 0 

ii 

287 



Automating frequent tasks 

288 

The first part of this extract, lines 283 to 292, check to see whether help is to be 
printed, or the script is to be run in batch mode: if the answer to the latter 
question is yes, a function called analyze is called and the script exits without 
presenting a menu. Then we see the mainloop, from line 284 to 324. $endloop 
is initially set to NO, so the test at the top of the loop evaluates to true: there­
fore the body of the do loop is executed at least once. 

Within the loop, a menu is printed and then the script waits for the user to 
press a key. The character that is read is used to trigger a case statement (lines 
312 to 321) that either modifies the state of some variables, or calls a function 
(like analyze, which does the analysis work, or getfile, which prompts the 
user for the name of a file to work on, or strike_any _key, which prints a mes­
sage like IiPress any key to continue"). 

Note the use of reverse video in the menu to emphasize important informa­
tion. In general, you should try to make menu driven interfaces guide the user 
through to the next step in an intuitive and natural manner. One way of doing 
this is to highlight the important default information (like the file to be pro­
cessed), in close proximity to the option that changes it (like the option to 
select a file to analyze). 

Also worth noting is the use of litoggle" variables, that switch an additional 
feature on or off. The variables $Iog and $next_Io~state perform this function 
for logging. They are switched within a separate function, toggle_logging: 

83 toggle_logging ( ) 

84 { 

85 log=$next_log_state 
86 case $log in 
87 ON) next_log_state=OFF , , 
88 OFF) next_log_state=ON , , 
89 esac 
90 

log indicates whether output is to be logged to a file; next_log_state is used in 
a message display that tells the user whether they can switch logging on or 
off. (By definition, next_log_state and log must be in opposite states at all 
times.) 

User's Guide 



Writing a readability analysis program: an example 

It is very easy for a mainloop to become too big to read. For this reason, any 
task that has more than one step is farmed out to another function. This 
includes the display of submenus. For example, get_file uses a menu to select 
a file to check: 

145 get_file ( ) 
146 { 
147 while : 
148 do 
149 echo $CLS 
150 echo" 
151 
152 ${HILITE}Select a file$(NORMAL} 
153 
154 Current file is: [${HILITE} $fname ${NORMAL}] 
155 
156 Type the letter corresponding to your current task: 
157 
158 [space] Enter a filename or pattern to use 
159 1 List the current directory 
160 c Change current directory 
161 q quit back to main menu 
162 
163 
164 =======>" 
165 getc char 
166 case Schar in 
167 ") get_fname " 
168 '1') Is I $ {PAGER:-more} ;; 
169 
170 
171 

'c' ) 

'q') 

* ) 
172 esac 

change_dir 
break 

173 strike_any_key 
174 done 
175 

This function contains a couple of features that do not appear in the main­
loop. Notably, it calls a routine for changing directory, a routine for getting a 
filename, and lists the contents of a directory (using the pager indicated by the 
environment variable PAGER, or more if PAGER is not set). 

289 



Automating frequent tasks 

Assigning variables default values 

290 

Line 168 shows an example of providing a default value for a variable. We 
have already seen how to assign a value to a variable. For example: 

value=$newvalue 

This assigns the value of newvalue to $value. But there are times when we 
want to provide a default option, in case $newvalue is bogus (for example, if 
the user accidentally pressed (Enter) instead of entering a name). An assign­
ment of the form variable=${value:-default} assigns value to $variable if it is 
set: otherwise it assigns default to $variable. In the example above, the vari­
able ${PAGER:-more} is expanded to either the value of $PAGER, or if this is 
not set, to more. 

For example, here is geCfname: 

94 get_fname () 
95 { 
96 
97 
98 

echo "Enter a filename: \c" 
read newfname 
fname=${newfname:-${fname}} 

99 

At the beginning of the script (we have not yet looked at this in detail) fname 
is set to " " (a space character). So if the user fails to enter a reasonable value, 
it remains" ". 

There are other uses for this mechanism. For example: 

117: newdir=${newdir:-'pwd'} 

This line sets newdir (the directory to change to) to the newly entered direc­
tory, or (if nothing is specified) to the current working directory. 

Variations exist on the default behavior for a variable assignment. Some of the 
most common variable substitutions you can use are as follows: 

${var:-word} If var is set and not empty, substitute the value of var; other­
wise substitute word. 

${var:=word} 

${var:?word} 

${var:+word} 

If varis not set or is empty, set it to word; then substitute the 
value of var (that is, if $var does not exist, set $var to Sword 
and use that). 

If varis set and not empty, substitute the value of var; other­
wise print word and exit from the shell. 

If varis set and not empty, substitute the value of word; oth­
erwise substitute nothing. 

The Korn shell provides additional substitutions for matching patterns and 
substituting the size of variables: see ksh(C) for details. 

User's Guide 



How programs perform 

Tuning script performance 

The primary reason for choosing a shell procedure to perform a specific 
function is to achieve a desired result at a minimum cost in terms of user time. 
This entails reducing both the effort that the user has to put into achieving 
their goal, and the time taken. 

Good shell programming technique relies on an understanding of the desired 
goal and the ability to write clear, easily debugged scripts, but you can also 
add efficiency through awareness of a few simple rules of thumb. 

An effective redesign of an existing procedure improves its efficiency by 
reducing its size, and often increases its comprehensibility. In any case, you 
should not worry about optimizing shell procedures unless they are intoler­
ably slow or are known to consume an inordinate amount of a system's 
resources. Your time, as the programmer, is almost certainly more expensive 
than the computer's. 

How programs perform 

A general law of programming, proven through long experience, is that in any 
program the computer spends 90% of its time processing about 10% of the 
code. A second general law is that as programs age and are maintained, the 
changes introduced to them tend to add complexity to the original structure 
and reduce their efficiency. In this section, we'll look at program performance 
and means of improving it. 

The flow of control within a program is determined by two types of construct; 
the loop construct and the branch construct. In batch programs such as filters, 
these are used in conjunction so that the program does something like this: 

# generic filter program 
# 
read command line arguments 
using getopts, for each flag 

set a variable 

open input and output files 
while (input != FALSE) { 

read in some data 
do something with it 
write it to the output file 
if an error occurred, exit with a message 

close input and output files 
exit 

291 



Automating frequent tasks 

The first action taken by this generic program is to check its command line for 
flags. Using a loop, it reads through each argument in tum and sets up any 
internal variables it needs. This loop is only used by the program when it 
starts up; for this reason it is called initialization code. 

Having "parsed" its arguments, the program now opens its data files. An 
input and an output file are the lowest common denominator; some programs 
open several files each for input and output, but this is a simple, generic 
example. Again, opening the files is only carried out once. Note that in a real 
program each attempt to open a file will be enclosed in an if construct that 
checks for errors; if the attempt fails, the else part of the if construct usually 
causes the program to exit with an error message. 

The program now enters a loop, reading data from the input file, doing some­
thing to it, and writing it to the output file, while the input is available. (By 
convention, if an operation succeeds it usually returns a value of 0.) This is the 
meat of the program; it is where the activity for which the program was writ­
ten takes place, and it is repeated for a number of times proportional to the 
amount of data in the input files. 

When the program can no longer read any more input, it exits the main loop 
and executes the termination code of the program. Termination code is used 
to tidy up after the main loop; to close open files and write a final message to 
the output. (The command we, which counts words, uses its termination code 
to print out a final sum of all the words it counted in its main loop.) This sec­
tion of the program, like the initialization code, is only executed once. 

This program structure is not universal, but it is sufficiently common to be 
worth using as a model to demonstrate how to tune your programs, and it 
accounts for the vast majority of shell scripts and non-interactive filters. While 
shell scripts rarely open data files and process them directly, they frequently 
invoke other programs which do just that; consequently, the same general 
techniques for improving performance are applicable to them. 

How to control program performance 

292 

As mentioned earlier, in any shell script, 90% of the computational load is 
imposed by about 10% of the script. The bottlenecks to look out for are as fol­
lows: 

• Loops, especially the main program loop. A process which is called repeat­
edly imposes a heavy load on the computer. Most shell script loops are 
extremely heavy users of computer resources because they exec programs 
several times in rapid succession. 

User's Guide 



How to control program performance 

• File access (and reads and writes directed through named pipes). Because 
the computer's hard disk is several orders of magnitude slower than its 
memory, any procedure that involves heavy disk I/O will invariably 
impose a heavy load on the system. 

• Processes. Many commands are built into the shell; but those which are not 
require the system to load and execute a program. This has two 
consequences; a disk access is required, and an additional process is run 
(diverting resources from any other processes which are being executed 
concurrently). 

• Size of data. It should be obvious that as the files that are being processed 
by a filter grow longer, all processes involving the file take longer. How­
ever, the relationship between file size and time is not fixed; big files may 
take much longer to process than several small files containing the same 
total amount of information. 

To improve the performance of a shell script, you need to be constantly aware 
of these considerations. Any activity that takes place in a main loop is likely to 
yield a big performance improvement if you can find a way to reduce the 
amount of disk I/O or number of processes it requires. Activities that require 
a large data file may be speeded up by switching to several smaller files, if 
possible. (A small file is one that is less than eight or ten kilobytes long; for 
technical reasons such files can be opened and scanned more rapidly than 
larger files. ) 

The standard development cycle, which should be applied to shell procedures 
as to other programs, is to write code, get it working, thoroughly test it, meas­
ure it, and optimize the important parts (outlined above), looping back to ear­
lier stages wherever necessary. The time(C) command is a useful tool for 
optimizing shell scripts. time is used to establish how long a command took 
to execute: 

$ time ls 
real OmO.06s 
user OmO.03s 
sys OmO.03s 

The values reported by time are the elapsed time during the command (the 
real time); the time the system took to execute the system calls within the 
command (the "sys" time); and the time spent processing the command itself 
(the user time). In practice, only the first value, the real time, is relevant at this 
level. Note that this is the output from the Korn shell's built-in time com­
mand; the Bourne shell output may vary. (If you have the Development Sys­
tem, the timex(ADM) command offers additional facilities.) 

293 



Automating frequent tasks 

Because the seo OpenServer system is multi-tasking, it is impossible to accu­
rately judge how long a program is taking to run by any other means; a seem­
ingly slow process may be the result of an unusually heavy load being placed 
on the computer by some other user or process. Each timing test should be 
run several times, because the results are easily disturbed by variations in sys­
tem load. 

A useful technique is to encapsulate the body of a loop within a function, so 
that the sole activity within the loop is to call that function; you can then time 
the function, and time the loop as a whole. Alternatively, you can time indi­
vidual steps in the process to see which of them are taking longest. 

Number of processes generated 

294 

When you execute large numbers of short commands, the actual execution 
time of the commands might be dominated by the overhead of creating pro­
cesses. The procedures that incur significant amounts of such overhead are 
those that perform much looping, and those that generate command 
sequences to be interpreted by another shell. 

If you are worried about efficiency, it is important to know which commands 
are currently built into the shell, and which are not. Here is an alphabetical list 
of those that are built in to the Korn shell and Bourne shell (select is Korn 
shell only): 

break case cd continue echo 
eval exec exit export for 
if read readonly return select 
set shift test times trap 
umask until wait while 

{} 

Note that echo and test also exist as external programs. Some other external 
commands have been added to the shells, but they are nonstandard and their 
use will impact the performance of shell scripts on other systems. 

Parentheses, (), are built into the shell, but commands enclosed within them 
are executed as a child process; that is, the shell does a fork, but no exec. Any 
command not in the above list requires both fork and exec. The disadvantage 
of this is that when another process is execed it is necessary to perform a disk 
I/O request to load the new program. Even if the program is already in the 
buffer cache (an area of memory used by the system to store frequently 
accessed parts of the filesystem for rapid retrieval) this will increase the over­
head of the shell script. 

User's Guide 



How to control program performance 

You should always have at least a vague idea of the number of processes gen­
erated by a shell procedure. In the bulk of observed procedures, the number of 
processes created (not necessarily simultaneously) can be described by the fol­
lowing: 

processes = (k*n) + c 

where k and c are constants for any given script, and n can be the number of 
procedure arguments, the number of lines in some input file, the number of 
entries in some directory, or some other obvious quantity. Efficiency improve­
ments are most commonly gained by reducing the value of k, sometimes to 
zero. Any procedure whose complexity measure includes n2 terms or higher 
powers of n is likely to be intolerably expensive. 

As an example, here is an analysis of a procedure named file2lower, whose text 
is as follows: 

#! /bin/ksh 
# 
# file2lower -- renames files in parameter list to 
# all-lowercase names if appropriate 
# 
PATH=/bin:/usr/bin 
for oldname in "$@" 
do 

done 

newname='echo $oldname I tr "[A-Z]" "[a-z]"' 
if [ $newname != $oldname ] 
then 
{ 

fi 

if [ -d "$oldname ] 
then 
{ 

mv "$oldname" "$newname" 
print "Renamed $oldname to $newname" 

else 
print "Error: $oldname is a directory" >&2 

fi 

This shell script checks all the names in its parameter list; if a file of that name 
exists, is writable, and contains uppercase letters in its name, it is renamed to 
a lowercase equivalent. This is useful when copying files from a DOS file­
system, because files imported from DOS have all uppercase names. 

295 



Automating frequent tasks 

For each iteration of the main do loop, there is at least one if statement. In the 
worst case, there are two ifs, an mv and a print. However, only mv is not built 
into the shell. If n is the number of files named by the parameter list, the num­
ber of processes tends towards (4*n)+0. (The c term of the equation given 
above is applicable to commands executed once before and after the loop.) 

Some types of procedures should not be written using the shell. For example, 
if one or more processes are generated for each character in some file, it is a 
good indication that the procedure should be rewritten in C or awk. Shell pro­
cedures should not be used to scan or build files a character at a time. 

Number of data bytes accessed 

It is worth considering any action that reduces the number of bytes read or 
written. This might be important for those procedures whose time is spent 
passing data around among a few processes, rather than in creating large 
numbers of short processes. Some filters shrink their output, others usually 
increase it. It always pays to put the shrinkers first when the order is irrelevant. 
For instance, the second of the following examples is likely to be faster 
because the input to sort will be much smaller: 

sort file I grep pattern 
grep pattern file I sort 

Shortening data files 

296 

There are two good reasons for using short files (less than 10,000 bytes, if pos­
sible; certainly less than a quarter of a megabyte). Firstly, the traditional UNIX 
filesystems access short files faster than long files. Significant overheads are 
incurred in reading or writing to a file that is, in the first instance, more than 
10KB long, and in the second instance, more than 256KB long (or, in an extreme 
case, more than 64MB long). With each successive increase in size, the process 
of reading from or writing to the file becomes slower; therefore short files are 
preferred. 

In addition, the performance of some programs degrades significantly as their 
input files increase in size. Any complex sorting or comparison operation 
(using sort or diff) usually takes significantly longer to perform on a single 
large file than on two smaller files containing the same amount of informa­
tion. This degradation is an unavoidable consequence of the nature of the 
problem these programs are dealing with and can rarely be worked around, 
although it is not significant when working with short files. 

User's Guide 



How to control program performance 

Shortening directory searches 

Directory searching consumes a lot of time, especially in those applications 
that utilize deep directory structures and long pathnames. Judicious use of cd, 
the change directory command, can help shorten long pathnames and thus 
reduce the number of directory searches needed. For example, try the follow­
ing commands: 

time Is -1 lusrlbin/* >/dev/null 
time cd lusrlbin; Is -1 * >/dev/null 

The second command runs faster because of the fewer directory searches. 

Directory-search order and the PATH variable 

The PATH variable is a convenient mechanism for allowing organization and 
sharing of procedures. However, it must be used in a sensible fashion, or the 
result might be a great increase in system overhead. 

The process of finding a command involves reading every directory included 
in every pathname that precedes the needed pathname in the current PATH 
variable. As an example, consider the effect of invoking nroff (that is, 
lusr/bin/nroJf) when the value of PATH is :/bin:/usr/bin. The sequence of direc­
tories read is as follows: 

Ibin 
I 
lusr 
lusr/bin 

A long path list assigned to PATH can increase this number significantly. 

The vast majority of command executions are of commands found in /bin and 
in lusr/bin. Careless PATH setup can lead to unnecessary searching. The fol­
lowing three examples are ordered from worst to best with respect to the 
efficiency of command searches: 

:/usr/john/bin:/usr/local/bin:/bin:/usr/bin 
:/bin:/usr/john/bin:/usr/local/bin:/usr/bin 
:/bin:/usr/bin:/usr/john/bin:/usr/local/bin 

The first one above should be avoided. The others are acceptable and the 
choice among them is dictated by the rate of change in the set of commands 
kept in /bin and lusr /bin. 

A procedure that is expensive because it invokes many short-lived commands 
can often be speeded up by setting the PATH variable inside the procedure so 
that the fewest possible directories are searched in an optimum order. 

297 



Automating frequent tasks 

Recommended ways to set up directories 

It is wise to avoid directories that are larger than necessary, for the same rea­
son that you should avoid large files; directories are a special type of file, and 
when a directory grows too large any process that searches it becomes slower. 

You should be aware of several special sizes. A directory that contains entries 
for up to 62 files (plus the required. and .. ) fits in a single disk block and can 
be searched very efficiently. A directory can have up to 638 entries and still be 
viable, as long as it is used only for data storage; anything larger is usually a 
disaster when used as a working directory. The figures 62 and 638 apply to 
filenames of 14 characters or less. As filename lengths increase, up to a max­
imum of 255 characters, the number of files that fit on a single disk block 
decreases, thus reducing the optimum number of files in a directory. 

It is especially important to keep login directories small, preferably one block 
at most. Note that, as a rule, directories never shrink. This is very important to 
understand, because if your directory ever exceeds either the 62 or 638 thresh­
olds, searches will be inefficient; furthermore, even if you delete files so that 
the number of files is less than either threshold, the system will still continue 
to treat the directory inefficiently. 

Putting everything together 

We have covered most of the shell-specific elements of a style analysis pro­
gram, except for two components: the global constants set up at the top of the 
file, and the function analyze, which reports on the readability indices of a 
file. Here is a complete listing of the program. (See below for a commentary 
on the features that have not yet been covered.) 

1 #-----------------------------------------------------
2 # 
3 # rap -- Readability Analysis Program 
4 # 
5 # Purpose: provide readability analysis of texts to: 
6 # Kincaid formula, ARI, Coleman-Liau Formula, Flesch 
7 # Reading Ease Score. Also word count, sentence length, 
8 # word length. 
9 # 
10 # Note that rap is _not_ as functional as style(CT), 
11 # which is dictionary-driven; this is the outcome of 
12 # a deliberate attempt to keep everything in a single 
13 # shell script. 
14 # 
15 #------------- define program constants here ----------
16 # 
17 DEBUG=${DEBUG:-true} 

298 User's Guide 



Putting everything together 

18 CLS='tput clear' 
19 HILITE='tput smso 
20 NORMAL='tput rmso' 
21 # 
22 #----- define the lexical structure of a sentence -----
23 # 
24 # a 'word' primitive is any sequence of characters. 
25 # 
26 WORD=' [A-Za-zl-90]+' 
27 # 
28 # whitespace is what goes between real words in a sentence; 
29 # it includes carriage returns so sentences can cross line 
30 # boundaries. 
31 # 
32 WHITESPACE=" [[:space:]]" 
33 # 
34 # an initial -- one or two letters followed by a period --
35 # is defined so we call tell that it is not a short sentence. 
36 # (Otherwise ph.D. would be counted as two sentences.) 
37 # 
38 INITIAL=" ($WHITESPACE I . ) ( ( [A-Za-zO-9]I [A-Za-zO-9] [A-Za-zO-9] ) . ) " 
39 # 
40 # syllabic consonants; consonants including letter pairs: 
41 # 
42 CONS=" [bcdfghjklmnpqrstvwxyz]lnlghtlqul ([wstgpc]h) Isch" 
43 # 
44 # syllabic vowels; include the ly suffix 
45 # 
46 VOWL=" [aeiou]+lly" 
47 # 
48 # definition of a syllable (after Webster's Collegiate Dictionary) 
49 # 
5 0 SYL=" ($ {CONS} ) * \ 
51 ( ($ {CONS}) I ( ($ {VOWL} ) +) ) \ 
52 (${CONS}) *" 
53 # 
54 # Finally, a sentence consists of (optionally) repeated 
55 # sequences of one word followed by zero or more 
56 # whitespaces, terminated by a period. 
57 # 
58 SENT=" ($WORD ($WHITESPACE) *) +. " 
59 # 
60 #---------- initialize some local variables -----------
61 # 
62 
63 
64 
65 

SCRIPT=$O 
help='no' verbose=' , 
next_log_state='ON'; 10g='OFF' 
file=' , fname=' , 

66 # 

record=' , 
batch=' , 

LOGFILE=$$.log 

67 #--------------- define program traps here ------------

299 



Automating frequent tasks 

68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 

300 

# 
trap "strike_any_key" 1 2 3 15 
# 
#----------------- useful subroutines ----------------­
# 
getc () 
{ 

} 

# 

stty raw 
tmp='dd bs=l count=l 2>/dev/null' 
eval $l='$tmp' 
stty cooked 

#-----------------------------------------------------
# 
toggle_logging () 
{ 

} 

# 

log=$next_log_state 
case Slog in 

ON) next_log_state=OFF;; 
OFF) next_log_state=ON 

esac 

#-----------------------------------------------------
# 
get_fname () 
{ 

} 

# 

echo "Enter a filename: \c" 
read newfname 
fname=${newfname:-${fname}} 

#------------------------------------------------------
# 
str ike_any _key ( ) 
{ 

# 

echo ' 
strike any key to continue ... \c' 
getc junk 
echo $CLS 

#-----------------------------------------------------
# 
change_dir () 
{ 

echo "Enter a directory: \c" 
read newdir 
newdir=${newdir:-'pwd'} 

User's Guide 



Putting everything together 

118 cd $newdir 
119 echo "Directory set to: $newdir" 
120 } 
121 # 

122 #-----------------------------------------------------
123 # 
124 _help ( ) 
125 { 
126 echo" 
127 
128 Readability Analysis Program 
129 
130 A shell/awk demo to determine the readability grade of texts 
131 
132 Usage: 
133 
134 Either invoke with no options for full menu-driven 
135 activity, or use the following flags: 
136 
137 -[hIH] prints this help 
138 -1 cause output to be logged to a file 
139 -f file enter the name of the file to check 
140 
141 
142 } 
143 # 

-b run in batch mode (no menus) 

144 #---------- define the menu handler functions here ----
145 get_file ( ) 
146 { 
147 while: 
148 do 
149 echo $CLS 
150 echo " 
151 
152 ${HILITE}Select a file${NORMAL} 
153 
154 Current file is: [${HILITE} $fname ${NORMAL}] 
155 
156 Type the letter corresponding to your current task: 
157 
158 [space] Enter a filename or pattern to use 
159 1 List the current directory 
160 
161 
162 
163 

c Change current directorY 
q quit back to main menu 

164 =======>\c" 
165 getc char 
166 case Schar in 
167 , ') 

301 



Automating frequent tasks 

168 
169 
170 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 

302 

} 

# 

'1' ) 
'c' ) 

'q' ) 

ls I ${PAGER:-more} " 
change_dir 
break 

esac 
strike_any_key 

done 

#------------------------------------------------------

# 
analyze ( ) 
{ 

if [$fname "" 1 
then 

fi 

echo " 

You must specify a filename first 

strike_any_key 
return 1 

wordcount='wc -w < $ fname , 
lines='wc -1 < $ fname , 
nonwhitespace='sed -e "/${WHITESPACE}/s///g" < $fname I wc -1' 
sentences='awk -e' BEGIN { sentences = 0 

target 
marker "+X+" 

target target"" $0 
initials = gsub(init, "", target) 

hit = gsub(sent, marker, target) 
sentences += hit 

if (hit != 0) { 
for (i= 0; i < hit; i++) { 

found = index (target , marker) 
target = substr(target, found+3) 

# end for 
} # end if 
hit 0 

END print sentences 
, sent="$SENT" init="$INITIAL" < $fname' 
letters='expr $nonwhitespace - $lines' 
sylcount='awk -e ' BEGIN { sylcount = 0 } 

{ target = $0 
sylcount += gsub(syllable, "*" target) 

END {print sylcount 
, syllable="$SYL" < $fname' 

echo " 

User's Guide 



Putting everything together 

219 
220 Number of words: $wordcount 
221 Number of syllables: $sylcount 
222 Number of sentences: $sentences 
223 
224 
225 export letters wordcount sentences sylcount 
226 ARI='bc « %% 
227 1 = ($letters I $wordcount) 
228 w = ($wordcount I $sentences) 
229 4.71 * 1 +0.5 * w -21.43 
230 %% 
231 
232 Kincaid='bc « %% 
233 w = ($wordcount I $sentences) 
234 s = ($sylcount I $wordcount) 
235 11.8 * s + 0.39 * w - 15.59 
236 %% 
237 
238 CLF='bc « %% 
239 1 = ($letters I $wordcount) 
240 s = ($sentences I ($wordcount I 100)) 
241 5.89 * 1 - 0.3 * s - 15.8 
242 %% 
243 
244 Flesch='bc « %% 
245 w = ($wordcount I $sentences) 
246 s = ($sylcount $wordcount) 
247 206.835 - 84.6 * s - 1.015 * w 
248 %% 
249 
250 if 
251 then 

log 

252 echo " 

"ON" 1 

253 ARI = $ARI 
254 Kincaid= $Kincaid 
255 Coleman-Liau = $CLF 
256 Flesch Reading Ease $Flesch" > $LOGFILE 
257 fi 
258 echo "ARI = $ARI 
259 Kincaid= $Kincaid 
260 Coleman-Liau = $CLF 
261 Flesch Reading Ease $Flesch" > Idev/tty 
262 
263 # 
264 #=========== THIS IS WHERE THE PROGRAM BEGINS ========= 
265 # 
266 # 
267 #---------- parse the command line---------------------
268 # 

303 



Automating frequent tasks 

269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 

304 

while getopts hHvlbf: result 
do 

case $result in 
help="yes" 
verbose="yes" 

hlH) 
v) 
1) record="yes" 

next_log_state=off 
log=ON 

batch="yes" i ; b) 
f) file="yes" 

fname=${OPTARG:-" "} 

esac 
done 

*) help="yes" 

if [$help "yes"] 
then 

_help 
exit 1 

fi 
if [$batch "yes"] 
then 

analyze 
exit 0 

fi 
# 
#---------- enter the mainloop -----------------------­
# 
while 
do 

echo $eLS 
echo " 

${HILITE}Readability Analysis Program${NORMAL} 

Type the letter corresponding to your current task: 

f Select files to analyze [now ${HILITE}$fname${NORMAL} 
p Perform analyses 
1 switch ${next_log_state} report logging [now ${HILITE}$log${NORMAL}] 
q quit program 

=======>\c" 
getc char 
case Schar in 

, f ') getloop=1 
get_file 

, p') analyze 
strike_any_key 

'I') toggle_logging 

User's Guide 



Putting everything together 

319 'q' ) break i i 

320 (** ) continue , , 
321 esac 
322 done 
323 clear 
324 exit 0 

The variable definitions from lines 17 to 65 set up some constants for screen 
clearing and highlighting, initialize variables for use in the script, and define 
some extended regular expressions, as explained in Chapter 12, "Regular 
expressions" (page 315), that are used later to scan the target file for initials, 
sentences, and syllables. The mechanism used to conduct the scan is a pair of 
scripts written in the awk programming language (explained in Chapter 13, 
"Using awk" (page 323» that identify the number of sentences in a file, and 
the number of syllables in the file. These scripts lie between lines 190 and 217; 
they are explained in detail in "Spanning multiple lines" (page 364). 

Readability analysis 

Four different readability statistics are calculated within analyze. Readability 
statistics assess variables including the average number of words per 
sentence, average length of sentences, number of syllables per word, and so 
on, to derive a formulaic estimate of the "readability" of the text. They do not 
take into account less quantifiable elements such as semantic content, gram­
matical correctness, or meaning. Thus, there is no guarantee that a text that a 
readability test identifies as easy to understand actually is readable. However, 
in practice it has been found that real documents that the tests identify as 
"easy to read" are likely to be easier to comprehend at a structural level. 

The four test formulae used in the analyze function are as follows: 

Automated Readability Index 
The Automated Readability Index (ARI) is based on text from grades 0 to 
7, and intended for easy automation. ARI tends to produce scores that are 
higher than Kincaid and Coleman-Liau, but are lower than Flesch. 

Kincaid formula 
The Kincaid formula is based on navy training manuals ranging from 5.5 
to 16.3 in grade level. The score reported by the formula tends to be in the 
mid-range of the four formulae. Because it is based on adult training man­
uals rather than schoolbook text, this formula is most applicable to techni­
cal documents. 

Coleman-Liau Formula 
The Coleman-Liau formula is based on text ranging from .4 to 16.3. This 
formula usually yields the lowest grade when applied to technical docu­
ments. 

305 



Automating frequent tasks 

306 

Flesch Reading Ease Score 
The Flesch formula is based on grade school text covering grades 3 to 12. 
The difficulty score is reported in the range 0 (very difficult) to 100 (very 
easy). 

To calculate these metrics, analyze first counts the number of words, lines and 
sentences in the target file, generating output like the following: 

File rap-bat.wc contains: 
243 words 
95 lines 
1768 characters 

Sentences are counted using a custom awk script, explained in "Spanning 
multiple lines" (page 364). Then the number of letters is established (by sub­
tracting the white space from the file and counting the number of characters), 
and the number of syllables is estimated using another awk script. Finally, 
these values are fed into four calculations that make use of be, the sca Open­
Server binary calculator. 

be is a simple programming language for calculations; it recognizes a syntax 
similar to C or awk, and can use variables and functions. It is fully described 
in be (C), and is used here because unlike the shell's eval command, it can han­
dle floating point arithmetic (that is, numbers with a decimal point are not 
truncated). Because be is interactive and reads commands from its standard 
input, the basic readability variables are substituted into a here-document 
which is fed to be, and the output is captured in another environment vari­
able. For example: 

233 Flesch='bc « %% 
234 w = ($wordcount I $sentences) 
235 s= ($sylcount I $wordcount) 
236 206.835 - 84.6 * s - 1.015 * w 
237 %% 
238 

analyze also prints the output from the tests, as follows: 

ARI = -10.43 
Kincaid= -7.01 
Coleman-Liau = -17.00 
Flesch Reading Ease = 184.505 

Depending on the setting of $LOG (the variable that controls file logging) the 
output is printed to the terminal, or printed to the terminal and a logfile (the 
name of which is set by the variable $LOGFILE.) 

User's Guide 



Other useful examples 

Extending the example 

The readability analysis program presented above is a useful starting plat­
form for writing your own programs. It provides a skeleton that can be used 
for either a batch script or an interactive, menu-driven application. It traps 
unwanted signals and ignores them. It demonstrates how to call short pro­
grams written in other languages (be and awk) from within the shell. Finally, 
it provides a basic mainloop with callback functions that can be added to. 

If you want to customize the script for your own purposes, the place to start is 
in the callback functions. Strip out the existing functions, and replace them 
with your own: then change the here-document that displays the opening 
menu. If you change the keys that trigger the callback functions, remember to 
modify the case statement below the menu. You can add as many extra call­
backs as you like to the menu, but it is a good idea not to provide too many 
options on anyone screen: remember that your users can become confused if 
confronted with too many choices or too much information. 

Other useful examples 

This section gives examples of some other useful procedures for automating 
tasks. All the scripts and sections listed below are intended to run under the 
Korn shell; you may have to modify them if you want to use the Bourne shell. 

Mail tools 

The following tools are used for manipulating mail folders and sending large 
files through mail. 

Count the number of messages in MMDF mail folder 
Consider the following script: 

cnt='grep ,AAAAAAAA' $1 Iwc -1' 
print $( ( cntot = cnt / 2 )) 

MMDF stores messages in a folder as continuous ASCII text, delimited at top 
and bottom by a line containing four (Ctrl)A characters. This script searches 
for the message delimiters and sets ent to the number of lines containing de­
limiters. It then uses the Korn shell arithmetic facility to divide this total by 
two (because there are twice as many delimiters as messages). Thus, this 
script prints the number of messages in a MMDF mail folder. 

It is not appropriate to use this script on a XENIX-format mail folder. 

I NOTE To enter the (Ctrl)A characters in the script using vi, press (Ctrl) V 
then (Ctrl)A for each character. 

307 



Automating frequent tasks 

308 

Print the header lines of every message in a folder 
The following short script searches the files named by its positional para­
meters for lines beginning with the string "Subject:". 

grep ""Subject:" $*Jcut -c9-7 

Mail headers consist of a series of lines beginning with keywords, like this: 

From: 
To: 
Subject: 
Date: 
Organization: 
Sender: 
Reply-To: 
Message-Id: 
X-Mailer: 
Status: 

The subject lines are printed through a pipe to cut, which chops out and prints 
only character positions 9 through 71 on each line (thus removing the string 
"Subject:" and truncating long lines). 

Note that this script makes no allowances for mail messages that contain 
other (quoted) messages without indentation. To do this, it would be neces­
sary to write a longer script. (Hint: The end of a mail message is indicated by 
two lines containing four (Ctrl)A characters each. Valid mail messages can 
have only one "Subject:" line. A better script would search for the first occur­
rence of a "Subject" line following a sequence of "AAAA"A"P{'.) Note also that 
the "Subject:" line is not mandatory, so this script will miss messages that lack 
a subject line altogether. 

Mail a large file, in pieces 
Note that the line numbers in this example are not part of the script, but are 
provided for clarity: script, but are provided for clarity: 

1 #! /bin/ksh 
2 # 

#----- blocksize*80 is the maximum size of each chunk created 
4 # 
5 blocksize=512 
6 # 
7 #----- perform sanity checks on input 
8 # 
9 
10 
11 
12 
13 
14 

case $# in 
2) : break 

*) echo " 

$0 <user> <file> 

User's Guide 



Other useful examples 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

compress, uuencode, split into 1000 line chunks and mail 
<file> to <user>. 

This script is used to send large files (greater than 
32KB) via email. <user> must be a valid mail address; 
On completion, chunk will send a status report to you 
via email. 

25 exit 2 
26 ;; 
27 esac 
28 # 
29 #--------- test for a valid file -----------
30 # 
31 target=$2 
32 user=$l 
33 
34 [ -s "$target" -a -r "$target" 1 II { 
35 print -- Missing, empty or not readable: $target >&2 
36 exit 1 
37 
38 # 
39 # -------- end of sanity checks ------------
40 # 
41 tmpdir=${TMPDIR:-/u/tmp}/$$ 
42 
43 mkdir $tmpdir I I exit 1 
44 compress < $target I uuencode $target I (cd $tmpdir; split -$blocksize) 
45 cd $tmpdir 
46 for chunk in * 
47 do 
48 mail -s "section Schunk of $target" $user < Schunk && 
49 print "Sent section Schunk at"; date 
50 done 2>&1 I mail -s "Result of sending $target" $user 
51 cd 
52 rm -rf $tmpdir 

This script (called chunk) takes two arguments; a valid mail address and a 
filename. Because the consequences of proceeding on the basis of a bad argu­
ment list could be messy, some checks are carried out (from lines 9 to 27). The 
case statement on line 9 tests whether there are too few arguments, and aborts 
with a usage message if this is the case. 

The real work of the script is carried out from lines 41 to 52: target has previ­
ously been assigned the name of the file to transmit. The file is compressed, 
and uuencoded, then piped through split into sequentially named chunks of 
blocksize lines that are stored in $tmpdir. 

309 



Automating frequent tasks 

Some mail gateways will not handle messages which are more than some 
arbitrary size; therefore the exact size of the chunks created by this mailer is 
defined in a single variable which can be adjusted easily. 

A for loop now iterates over each chunk and invokes mail. Because the 
chunks contain no human readable information, it is vital to incorporate the 
name of each chunk in the message header. 

Finally, a record of the transmission is mailed to the recipient, so that they 
know what to do with the pieces. 

To reassemble a file from its component pieces, save the pieces (in order) to a 
file, edit the file to remove mail headers and blank lines, uudecode the file, 
and uncompress it. This method can be used to send large files through size­
restricted mail gateways. 

File tools 

310 

The following scripts are used for manipulating and returning information on 
files. 

Retum the total size of a group of files 
The following is a script called jilesize: 

I "$@" I awk I { s += $5 
f = fll II $NF 

END print s I II bytes in files: II I f} I 

The 1 command (equivalent to Is -1) returns a long listing, the fifth field of 
which contains the size of a file in bytes. This script obtains a long listing of 
each file in its argument list, and pipes it through a short awk script. For each 
line in its standard input, the script adds the fifth field of the line to the vari­
able s and appends the last field (the filename) to the variable f; on reaching 
the end of the standard input, it prints s followed by a brief message and f. 

Compress a batch of files concurrently 
The compress(C) command can compress a batch of files listed as arguments; 
however, if you run compress in this way only one process is created, and it 
compresses each file consecutively. 

User's Guide 



Other useful examples 

The following code is a script called squeeze: 
((jobcount=O)) i rm squish.log 
for target in $* 
do 

if ((jobcount+=1 > 18)) 
then ((niceness = 18 )) 

else 
((niceness = jobcount )) 

fi 
((jobcount % 18 != 0)) I I sleep 60 
nice -${niceness} compress ${target} && print "Finished compressing " 

${target}» squish. log & 
print "Started compressing "${target} "at niceness " \ 

${niceness} » squish. log 
done 
print "finished launching jobs" » squish. log 

A concurrently running squeeze process is started for each file. However, if run 
on a large directory, this could overload the system: therefore, squeeze uses 
nice(C) to decrease the priority of processes as the number increases. 

The first section of this script keeps track of the niceness (decrement in sched­
uling priority) with which each squeeze job is to be started: 

if ((jobcount+=1 > 18)) 
then ((niceness = 18 )) 

else 
((niceness = jobcount )) 

fi 

The value of jobcount is incremented every time a new file compression job is 
started. If it exceeds 18, then the niceness value is pegged to 18; otherwise, the 
niceness is equal to the number of files processed so far. (nice accepts a max­
imum value of 18; this construct places a bounds check on the argument 
passed to it.) 

The following line is a special test: 

((jobcount % 18 != 0)) II sleep 60 

If jobcount is not a multiple of 18 (that is, if there is a nonzero remainder 
when jobcount is divided by 18) then the first statement evaluates to TRUE 
and the second statement (separated by the logical OR) is not executed. Con­
versely, when jobcount is an exact multiple of 18, the first statement is 
evaluated to "0 != 0", which is false. When the first statement fails, the second 
statement (sleep 60) is executed. Thus, on reaching every eighteenth file, the 
script sleeps for one minute to allow the earlier compression processes to 
complete. 

311 



Automating frequent tasks 

The real action of the script is as follows: 

nice -${niceness} compress ${target} && print "Finished compressing" \ 
${target}» squish. log & 

print "Started compressing "${target} "at niceness" \ 
${niceness} » squish. log 

nice is used to start a compress process for each target file with the niceness 
level predetermined by the counter in the if loop at the top of the program. A 
logical AND connective is used to print a message to the file squish.log when 
the compression job terminates; the whole command line is executed as a 
background job. The shell then executes the next line, which prints a start 
message to the logfile, almost certainly executing it before the compression 
process has begun. (This illustrates the asynchronous execution of processes.) 

It is well worth examining the logfile left after running squeeze on the contents 
of a directory. This illustrates how concurrent execution of processes can pro­
vide a significant performance improvement over sequential execution, 
despite the apparent complexity of ensuring that a rapid proliferation of tasks 
does not bring the system to its knees. 

You can adapt squeeze to run just about any simple filter job in parallel; simply 
define a function to do the operation you want, then use it to replace 
compress. 

Useful routines 

312 

The following routines are not entire scripts, but may be useful in context. 

Locking files 
It is sometimes necessary to use a shell script that controls access to a shared 
resource; for example, a file which should only be written by one person at a 
time. The following skeleton code shows an appropriate wrapper for such a 
script: 

User's Guide 



trap "exit 1" 1 2 3 15 
# 
# trap is vital, otherwise we may loop infinitely 
# 
LOCKFILE="/tmp/$$.LCK" 
OMASK=$(umask) 
umask 777 
until > $LOCKFILE 
do 

sleep 1 
done 2> /dev/null 
umask $OMASK 

Other useful examples 

# now we can write critical data safely, unless root 

# finished critical section 
rm -f $LOCKFILE 

The user's old umask value is saved in OMASK, and their umask is reset to 
777; this means that any files the user creates will have no read, write or exe­
cute permissions. 

LOCKFILE is the name (determined elsewhere in the script) of a lock file. 
While a lock file exists, only the owner of the file should be allowed to operate 
on the shared data. This is ensured by the until loop: 

until> ${LOCKFILE} 
do 

sleep 1 
done 2> /dev/null 

The value of until only becomes TRUE when it can create a lockfile; this can 
only happen when no other users of the script have created a lock. (The lock 
has no write permission for anyone other than its creating process.) If this 
condition is true, the script creates the empty ${LOCKFILE} and continues; if 
false, it sleeps for a second and tries again. Having acquired the lockfile, the 
script resets umask to the user's original file creation permissions. 

Having acquired a lock file, it is now certain that anyone else trying to run the 
script at the same time will get as far as the loop but no further; it is therefore 
safe to work on the shared resource, knowing that nobody else is simultane­
ously using it and might accidentally overwrite the user's changes. After 
using the shared resource, it is important to delete the lockfile; if the lock file 
is left behind, nobody will be able to access the shared resource. 

This kind of access locking is typically used to control databases or critical 
applications where it is unsafe to risk a race condition (where two processes 
try to update a shared resource concurrently, overwriting each other's 
changes). 

313 



Automating frequent tasks 

Context sensitive scripts 

314 

Some programs, for example Is, have many options. Rather than require users 
to always specify the commonest options, Is has a number of links (alternative 
names). When you run Is it examines the parameter $0, which contains the 
name under which it was invoked, and uses the appropriate options. For 
example, I is equivalent to Is -I; Ie is equivalent to Is -c, and so on. 

Your scripts can behave the same way. For example: 

# should check number and type of args here 
case 'basename $0' in 
add) expr $1 + $2 

subtract) expr $1 - $2 
i i 

mUltiply) expr $1 \* $2 

divide) 

*) 

esac 
exit 

, , 
expr 
, , 

echo 
exit 

$1 / $2 

"Unknown operation: 
1 

$0" >&2 

This short script has four names; it can be invoked as add, subtract, multiply 
and divide. It takes two arguments, and evaluates them according to the 
name under which it was invoked. basename is used to remove any preced­
ing path (which might prevent the case statement from matching anything). 
For example: 

$ add 5 4 
9 
$ subtract 4 5 
-1 

$ 

The variable $0 contains the name under which the script was invoked. By 
using links to the script (rather than four separate script files) we conserve the 
number of files needed. In addition, if it is necessary to alter the behavior of all 
the programs, you can alter just the core file and the change will be recog­
nized by all the links to it. 

As an alternative, we could write an application that used several command 
line tools to update a database, all of which were links to a single tool that 
behaved differently depending on the context in which it was invoked. 

User's Guide 



Chapter 12 

Regular expressions 

The title of this section may be unfamiliar to you, but if you have used the 
sea OpenServer system, you have almost certainly used regular expressions. 
Regular expressions are used to find files in a directory or text in a file. They 
may be made up of literal characters (like a search string in vi) or of a more 
complex pattern that can match several different possible combinations of 
characters. In essence, regular expressions describe the form rather than the 
content of a text string. 

Rather than being the exact string of characters which are to be matched, a reg­
ular expression describes the character sequence. It is common for a regular 
expression to match more than one possible sequence of characters. 

This chapter explains the following: 

• literal characters (this page) 

• metacharacters (page 316) 

• wildcards (page 316) 

• editor regular expressions (page 317) 

• Kom shell regular expressions (page 322) 

Literal characters in regular expressions 

The simplest regular expression is a series of letters and numbers, possibly 
including white space (tabs or space characters), that have no special mean­
ing. Such a regular expression consists of "literals"; that is, normal letters, 
which match only an identical letter in the data being searched. For example: 

This is a regular expression 

315 



Regular expressions 

When an editor searches for a literal regular expression, it can only score a 
"hit" if it finds exactly that sequence of characters in the data it is searching. 
The example regular expression above will not, for example, match the fol­
lowing string: 

This is a 
regular expression 

because there is a newline in the middle of it which was not specified in the 
regular expression. 

Metacharacters in regular expressions 

Any character that has a special meaning to the shell is a "metacharacter". For 
example, some punctuation marks, such as the period (.) and question mark 
(?), have a special meaning in some contexts that will cause the shell to try 
interpreting them rather than just reading them. One set of metacharacters is 
used to group commands. See, for example, "Entering commands on the same 
line" (page 120) and "Running commands in a pipeline" (page 120). 

In addition, there are two families of regular expression metacharacters, the 
"Wildcard characters" (this page) used for matching filenames, and the more 
complex "Editor regular expressions" (page 317) metacharacters, which are 
used to match text strings within files. The asterisk is a wildcard character 
denoting any string consisting of zero or more characters. 

As we saw in Chapter 11, "Automating frequent tasks" (page 245), these sim­
ple patterns are expanded by the shell, not by the program Is used in this 
example. All the shells recognize the same family of wildcard characters. 

The second family of regular expressions is much more complex, and is used 
by such programs as ed(C), sed(C), awk(C), vi(C), Tc1(TCL), grep(C), and 
egrep(C). The editor regular expressions are used to search for text in files, 
rather than to search for files in directories. They are explained in "Editor reg­
ular expressions" (page 317). 

Wildcard characters 

316 

Wildcards are used to match filenames. In addition to literal filenames, the 
shells recognize the following simple regular expressions: 

* ~/[atches any stri..~g of characters, including the null string (nothing). 
Thus, £00* matches "foot", "football" and "faa". 

For example, Is * will match all the files in the current directory and 
its subdirectories. (The shell expands the "*" pattern; the Is com­
mand displays the results.) 

User's Guide 



Editor regular expressions 

Is g* will match all files beginning with the letter " g". In this case, 
the shell interprets the regular expression as meaning" any string of 
zero or more characters following a letter" g". 

(Note that by convention, "dot" files such as .profile are excluded 
from such listings. In order to display these, it is necessary to use 
the Is command's -a option.) 

? Matches any single character. Thus, foo?s will match "foods" or 
"fools" but not "footballs". To match all files with a name compris­
ing four characters type Is ???? 

[ ... ] Matches one of the characters enclosed in brackets. (This is similar 
to "?", but restricted to the specified set of characters.) For exam­
ple, the pattern [Aa] matches only the letters "X' and "a". Is 
[Aa]ardvark will match files called "aardvark" and" Aardvark". This 
is a useful construction in the light of the system's case-sensitivity. 

A pair of characters separated by a " -" is taken to be a range. For 
example, [A-Z] is equivalent to [ABCDEFGHIJKLM­
NOPQRSTUVWXYZ] and Is [a-m]* will match all the files beginning 
with the letters "a" to "m". If the first character after the opening 
bracket is an exclamation mark (!), then any character not enclosed 
in the brackets is matched. For example, [!O-9] will match any char­
acter except a digit. 

Is [!a-m]* will match all the files that do not begin with letters" a" 
through" m fl. 

Because the hyphen has a special meaning in a set, you can match a 
literal hyphen within a set only by placing it at the beginning or the 
end of the set. For example, Is [abcde-]* will match files beginning 
with a-e or -. 

For more information about wildcard regular expressions, see regexp(M). 

Editor regular expressions 

Wildcard regular expressions are useful for selecting files, but they cannot 
search the text within files. For that, you need to use the editor regular expres­
sions. These are as follows: 

Matches any single character. 

This is equivalent to the wildcard "?". For example, .iddle will 
match "diddle", "middle", or any other word beginning with some 
letter followed by the string /liddle". 

* Matches zero or more repeating instances of the regular expression 
immediately preceding it. (See also" ? " below.) 

317 



Regular expressions 

318 

For example, .*iddle* matches: 

iddle 
middle 
twiddle 

As a single character is taken to be a literal regular expression 
matching only itself, this means that a character followed by an 
asterisk matches zero or more instances of itself. Consequently, ".*" 
matches zero or more repeating instances of any character, and "a*" 
matches zero or more "a"s in a row. 

Note that this behavior is not the same as that of the asterisk wild­
card character. The shell interprets the asterisk wildcard to mean 
"zero or more characters"; in an editor regular expression, the asterisk 
matches zero or more instances of the preceding regular expression. 

? Matches zero or one occurrences of the regular expression immedi­
ately preceding it. 

Note that, like the asterisk, this editor regular expression metachar­
acter does not have the same effect as its wildcard counterpart, 
which matches a single character, not an instance of a preceding reg­
ular expression. 

+ Matches one or more (but not zero) occurrences of the regular 
expression immediately preceding it. (This feature is not available to 
all of the editor programs: see "Regular expression summary" (page 
321).) 

There is a subtle difference between the interpretation of regular 
expressions containing a "*" and a " + ". For example, suppose we 
have the word list: 

fred 
frog 
figment 
fuddled 
ford 

The expression "fr+" will match only "fred" and "frog", because it is 
constrained to match an "f" followed by at least one "t'. However, 
"fr*" will match all of these words, because it matches an "f" fol­
lowed by zero or more instances of the letter "t'. 

[ ... ] Matches anyone of the characters enclosed in the brackets. If the 
first character in the set is a cirCUtJ:'lfl€x ("), it iTLatches anyone char­
acter that is not in the set. A hyphen between two characters in the 
set indicates a range; for example, [a-d] matches the first four letters 
of the alphabet. You can only include a literal closing bracket (]) in a 
class if it is the first character after the opening bracket. 

User's Guide 



Editor regular expressions 

If you are not certain of the spelling of a word that you are searching 
for, this construction comes in handy. For example, rel[ae]v[ae]nt 
matches any of: 

relavant 
relavent 
relevant 
relevent 

Matches the beginning of a line if specified at the beginning of a 
regular expression; otherwise, it matches itself. The following speci­
fication uses A as a metacharacter: 

"This is a nightmare 

In the next specification, the A is a literal: 

The" character is octal ASCII 136 

$ Matches the end of a line if specified at the end of a regular expres­
sion; otherwise, it matches itself. 

In the following, the dollar is used to match a string occurring at the 
end of a line: 

It's the end of the line, folks$ 

In the next example, $ is a literal: 

He stole $50000 

\{n,m\} Matches a range of occurrences of the regular expression immedi­
ately preceding it. n and m are positive decimal integers between 0 
and 256. For example, \{5\} matches exactly five occurrences of the 
preceding expression, \ {5, \} matches five or more occurrences of the 
preceding expression, and \{5,lO\} matches between five and ten 
occurrences. 

Escaping metacharacters 

The special meaning of some metacharacters is dependent on their position in 
the regular expression, for example the start and end of line indicators. 
However, most metacharacters retain their special meaning irrespective of 
location. How then can they used as literal characters? 

In such cases, the backslash (\) is used is used to "escape" the special meaning 
of the character that follows it. For example, \$ matches the "$" symbol 
rather than the end of a line. For example: 

Summer sale now on \. Save $$\$ 

The backslash is used to quote the period and the final dollar sign (the other 
dollar signs are position-sensitive, and have no special meaning). 

319 



Regular expressions 

Because the backslash itself may be required to have only its literal meaning, 
\ \ matches # \ ": the first backslash removes the special meaning from the 
second. 

Regular expression grouping 

Terms in an editor regular expression can be grouped together using \( and 
\). Any regular expression so constructed is treated as an identifiable unit in a 
larger regular expression, and can be referred to later in a search/replace 
expression by the editor. 

This is a particularly useful mechanism. Each regular expression enclosed 
between escaped brackets is treated as a positional parameter. For example, in 
the regular expression \([Tt]he\).*\(£ox\) the first grouped expression 
matches the words #The" or "the". It is followed by an indeterminate string of 
any characters, then a second grouped expression matching only the word 
"fox". 

The first grouped expression may be referred to in the editor expression as \1, 
the second expression as \2, and so on. For an illustration of how this can be 
used to swap the order of regular expressions during a search and replace 
operation, see Chapter 14, "Manipulating text with sed" (page 371). 

Grouping can be used to search for words separated by white space (tabs or 
spaces). For example, suppose you want to search for the expression above, 
where the words are separated by white space. You could construct a pattern 
like this: 

\ ([Tt]he \) \ ([(Tab )(Enter)(Space) ]\{1,100\}\) \(£ox\) 

The middle group, \([(Tab)(Enter)(Space)]\{l,lOO\}\), is a group consisting of 
the set of space, tab and newline characters, matched from one to one hun­
dred times. Thus, it will match from one to one hundred white space charac­
ters as a group separating "The" and #fox". 

When a program that uses regular expressions tries to find a match, it 
searches for a string that matches the first group. If it finds a match, it then 
tries to match up the second group, then the third, and so on. A complete 
match is only confirmed when all the expressions in a group are correctly 
matched to a string of consecutive characters in the target file. 

Precedence in regular expressions 

320 

Occasionally circumstances arise where a regular expression can match two 
or more strings in a target. In general, the leftmost, then the longest, string is 
selected; that is: if two matches overlap, the one starting to the left is selected, 
and if two matches starting at the same character position exist then the long­
est one is selected. 

User's Guide 



Editor regular expressions 

Precedence in the way that regular expressions are resolved can be forced by 
using the ( ) grouping operator. For example, 

John( Dixon)? 

matches the regular expression "John" followed by zero or one instances of 
the regular expression "Dixon". You can use brackets in conjunction with the 
vertical bar to group alternatives. For example, factor(ies I y) matches the 
words "factory" and "factories" slightly more economically than the 
equivalent regular expression factories I factory. In the event that no" I "s are 
present and there is only one "*", 1/+", or "?", the effect is that the longest pos­
sible match is chosen. So "ab*", presented with "xabbbby", will match 
"abbbb". Note that if "ab*" is tried against "xabyabbbz", it will match "ab" just 
after "x", due to the begins-earliest rule. 

The decision on where to start the match is the first choice to be made, hence 
subsequent choices must respect it even if this leads them to less-preferred 
alternatives. 

Regular expression summary 

Not all of the editor regular expression constructions are recognized by all of 
the editor programs. The following table categorizes the most common meta­
characters and the programs that use them. 

Note also that the table covers only the editor regular expression construc­
tions. The wildcard metacharacters are not entirely compatible with the editor 
regular expression set described below. It is therefore important to be clear 
about which program will interpret a regular expression. Programs like awk 
and grep require you to enclose a regular expression on the command line, 
intended as an argument, in quotes. If you do not, the shell will try to inter­
pret it as a wildcard regular expression, passing on any results to the pro­
gram. This can have unexpected results. 

Note that awk and Tel in particular provide powerful programming con­
structs that can be used to manipulate text, but which fall outside the scope of 
regular expressions as such. 

In the following table, a "y" indicates that the command supports the nota­
tion. 

321 



Regular expressions 

Regular expressions syntax recognized by programs 

Command Regular expression supported? 

* [ ... ] \( ... \) \{ ... \} ? + I () $ 

grep y y y y y y y y 
egrep y y y y y y y y y y y 
awk y y y y y y y y y y 
Tel y y y y y y y y y y y 
ed y y y y y y y Y 
vi Y y y Y Y Y Y 
sed y y y y y y y y 

Note that due to subtle differences in the way the metacharacters are used by 
the editor programs, it is advisable to check the documentation that accom­
panies those programs. See, for example, Chapter 13, HUsing awk" (page 323) 
and Chapter 14, HManipulating text with sed" (page 371). 

Korn shell regular expressions 

322 

In addition to the regular expression notations discussed above, the Kom 
Shell provides its own syntax. The metacharacters used by this syntax are 
similar to those used by the generic regular expression handling notations: 

Operator 

* (regexp) 
+ (regexp) 
?(regexp) 
@(regexpll regexp21 . .. ) 
!(regexp) 

Meaning 

matches 0 or more instances of regexp 
matches 1 or more instances of regexp 
matches 0 or 1 instances of regexp 
matches regexpl or regexp2 or ... 
matches any string except regexp 

The OR notation given for the @ metacharacter can be combined with any of 
the other metacharacters. For example, @(apple I pear I kumquat) matches 
Happle" or "pear" or Hkumquat", while {(apple I pear I kumquat) matches any 
string except Happle" or "pear" or Hkumquat". 

User's Guide 



Chapter 13 

Usingawk 

The awk(C) programming language is designed for processing and reporting 
on the contents of text files. Using awk, you can tabulate survey results, 
generate form letters, or reformat data files. The name awk is an acronym con­
structed from the initials of its developers (Aho, Weinberger, and Kernighan); 
it denotes the language and also the command you use to run an awk pro­
gram. 

awk does several useful things that you have to program for yourself in other 
languages. As a result, many awk programs are only one or two lines long. 
Because awk programs are usually smaller than equivalent programs in other 
languages, and because they are interpreted, not compiled, awk is also a good 
language for prototyping (that is, for writing quick prototypes of programs 
that will later be converted into a compiled language). 

This chapter explains the following: 

• basic awk (page 324) 

• variables (page 327) 

• error messages (page 332) 

• patterns (page 332) 

• actions (page 338) 

• functions (page 340) 

• control flow statements (page 346) 

• arrays (page 349) 

• output (page 353) 

• input (page 358) 

323 



Usingawk 

• usinga.wk with other commands and the shell (page 362) 

• spanning multiple lines (page 364) 

• example applications (page 367) 

Basic awk 

Fields 

324 

This section provides enough information for you to write and run some of 
your own programs. Each topic presented is discussed in more detail in later 
sections. 

Normally, awk reads its input one line, or record, at a time. A record is, by 
default, a sequence of characters ending with a newline character. awk then 
splits each record into fields; by default, a field is a string of non-blank, non­
tab characters. 

As input for many of the awk programs in this chapter, we use the file 
countries. Each record contains the name of a country, its area in thousands of 
square miles, its population in millions, and the continent on which it is 
found. (Data is from 1978; the CIS (former USSR) has been arbitrarily placed in 
Asia.) The white space between fields is a tab in the original input; a single 
blank space separates both "'North" and "'South" from'" America". The follow­
ing example displays the contents of an input file: 

CIS 8650 262 Asia 
Canada 3852 24 North America 
China 3692 866 Asia 
USA 3 615 219 North America 
Brazil 3286 116 South America 
Australia 2968 14 Australia 
India 1269 637 Asia 
Argentina 1072 26 South America 
Sudan 968 19 Africa 
Algeria 920 18 Africa 

This file is typical of the kind of data awk is good at processing - a mixture 
of words and numbers separated into fields by blanks and tabs. 

The number of fields in a record is determined by the field separator. Fields 
are normally separated by sequences of blanks and/or tabs, so the first record 
of countries has four fields, the second five, and so on. It is possible to set the 
field separator to just tab, so each line has four fields, matching the meaning 
of the data. We explain how to do this shortly. For the time being, let's use the 
default: fields separated by blanks or tabs. The first field within a line is 
called $1, the second $2, and so forth. The entire record is called $0. 

User's Guide 



Basicawk 

Program structure 

awk programs consist of a series of patterns, each of which is associated with 
an action. Each line of input is checked against each of the patterns in turn. For 
each pattern that matches, the associated action (which can involve multiple 
steps) is executed. Then the next line is read, and the matching starts over. 
This process typically continues until all the input has been read. 

Patterns may be regular expressions or other, more complex entities. 

So, the basic structure of an awk program is as follows: 

pattern { action} 
pattern { action} 

For example: 

$1 == "address" {print $2, $3 } 

This program prints the second and third fields of each input line whose first 
field is address. 

Either the pattern or the action in a pattern-action statement can be omitted. If 
there is no action with a pattern, the matching line is printed. For example: 

$1 == "name" 

If there is no pattern with an action, the action is performed for every input 
line. For example: 

{ print $1, $2 } 

Because patterns and actions are both optional, actions are enclosed in braces 
to distinguish them from patterns. Use of fields and field notation is described 
in more detail in "Field variables" (page 327). 

Running awk programs 

There are two ways to run an awk program. First, you can type the command 
line to execute the pattern-action statements on the set of named input files: 

awk 'pattern-action statements' optionaClist_of_input-files 

For example, enter the following: 

awk '{ print $1, $2}' filel file2 

This program prints the first and second fields of every line in filel and file2. 

When printed, items separated by a comma in the print statement are 
separated by the output field separator (by default, a single blank). Each line 
printed is terminated by the output record separator (by default, a newline). 

325 



Using awk 

If no fields are specified with a print command, print prints $0, the current 
record. 

Notice that the pattern-action statements are enclosed in single quotes. This 
protects characters like $ from being interpreted by the shell and also allows 
the program to be longer than one line. 

If no files are mentioned on the command line, awk reads from the standard 
input. You can also specify that input comes from the standard input by using 
the hyphen ( - ) as one of the input files. For example, to read input first from 
filel and then from the standard input, enter the following: 

awk '{ print $3, $4 }' filel -

This arrangement is convenient when the awk program is short. If the pro­
gram is long, it is often more sensible to put it into a separate file and use the 
-f option to fetch it, as follows: 

awk -f programJile optional_list_of_inputJiles 

You create an awk program the same way that you create a shell script; using 
a text editor such as vi. (Because awk programs are not directly executed, 
there is no need to set the executable permission bit on the file.) For example, 
the following command line specifies to fetch and execute the file myprogram 
on input from the filefilel: 

awk -f myprogram filel 

In the remainder of this chapter, we only show awk programs, without the 
command line that invokes them. In an example, if no input is mentioned, the 
input is assumed to be the file countries. 

Formatting awk output 

326 

For more carefully formatted output, awk provides a C-like printf statement: 

printf format, exprl, expr2, ... , exprn 

This statement prints each expr according to the corresponding specification 
in the string format. For example, the following awk program: 

{ printf "%10s %6d\n", $1, $3 } 

prints the first field ($1) as a string of 10 characters (right justified), then a 
space, then the third field ($3) as a decimal number in a six-character field, 
and finally a newline (\n). With input from the file countries, this program 
prints an aligned table: 

User's Guide 



Variables 

CIS 262 
Canada 24 
China 866 
USA 219 
Brazil 116 
Australia 14 
India 637 
Argentina 26 
Sudan 19 
Algeria 18 

With printf, no output separators or new lines are produced automatically; 
you must create them yourself by using \n in the format specification. See 
"The printf statement" (page 355) for a full description of printf. 

Variables 

Unlike variables in C, awk variables do not need to be declared; that is, the 
type of information stored need not be defined beforehand. By default, awk 
variables have both a character string value and a numeric value: the 
appropriate one is derived from the context. Variable names must not contain 
spaces or periods. 

The following sections describe the various variable types supported. 

Field variables 

Given that much of the work you will do with awk will involve the pro­
cessing of records, awk provides a notation for the fast and efficient 
identification of fields. The fields of the current record are referred to by the 
field variables $1, $2, ... , $NF. Field variables share all of the properties of other 
variables: they can be used in arithmetic or string operations, and they can 
have values assigned to them. So, for example, you can divide the second field 
of the file countries by 1000 to convert the area from thousands to millions of 
square miles: 

{ $2 /= 1000; print} 

You can also assign a new string to a field: 

$4 == "Africa" {$4 = "South" } 

Fields can be accessed by expressions. For example, $(NF-l) is the second to 
last field of the current record. For example: 

$4 ~ / Asia/ { print $ (NF-1) } 

This program prints the penultimate field (population) for each record in the 
file countries whose fourth field contains the string "Asia". (Omitting the 
parentheses causes a series of strings reading "-1/1 to be printed.) 

327 



Usingawk 

A field variable referring to a nonexistent field, for example, $(NF+l), has as its 
initial value the empty string. A new field can be created, however, by assign­
ing a value to it. For example, the following program invoked on the file coun­
tries creates a fifth field giving the population density: 

BEGIN {FS = OFS = "\t" } 
{ $5 = 1000 * $3 / $2i print} 

This program adds a fifth column to the output. In the case of Canada, this 
would read #6.23053". 

The number of fields may vary from record to record, but there is a limit of 
100 fields per record. 

Built-in variables 

328 

Besides reading the input and splitting it into fields, awk counts the number 
of records read and the number of fields within the current record; you can 
use these counts in your awk programs. The built-in variable NR is the num­
ber of the current record, and NF is the number of fields in the record. For 
example, the following program prints the number of each line and how 
many fields it has: 

{ print NR, NF } 

This program prints each record preceded by its record number: 

{ print NR, $0 } 

In addition to NR, awk supplies the built-in variables listed in Table 13-1, 
'''awk internal variables" (this page). 

Table 13·1 awk internal variables 

Variable 

ARGC 
ARGV 
FILENAME 
FNR 
FS 
NF 
NR 
OFMT 
OFS 
ORS 
RS 
RSTART 
RLENGTH 
SUBSEP 

Meaning 

number of command-line arguments 
array of command-line arguments 
name of current input file 
record number in current file 
input field separator 
number of fields in current record 
number of records read so far 
output format for numbers 
output field separator 
output record separator 
input record separator 
index of first character matched by match 
length of string matched by match 
subscript separator 

Default 

space or tab 

%.6g 
space 

newline 
newline 

"\034" 

User's Guide 



Variables 

User-defined variables 

awk also allows you to define your own variables, which you can use for 
storing data, doing arithmetic, and the like. To illustrate, consider computing 
the total population and the average population represented by the data in the 
file countries: 

sum = sum + $3 } 
{ print "Total population is", sum, "million" 

print "Average population of", NR, "countries is", sum/NR } 

In general, awk initializes variables with the string value"" and the numeric 
value O. Accordingly, sum is set to zero before it is used. 

As you can see, to refer to a variable in awk you do not need to prefix it with 
II $" unless it is a field variable. 

The first action accumulates the population from the third field; the second 
action prints the sum and average: 

Total population is 262 million 
Average population of 1 countries is 262 

Total population is 2201 million 
Average population of 10 countries is 220.1 

Number or string? 

Variables, fields, and expressions can have a numeric value, a string value, or 
both at any time. They take on numeric or string values according to context. 
For example, in the context of an arithmetic expression like the following: 

pop += $3 

pop and $3 must be treated numerically, so it must be ensured that their 
values are of the numeric type when arithmetic operations are performed on 
them. This is often called type coercion. 

Similarly, in the following string, $1 and $2 must be strings, so they can be 
type coerced if concatenation operations are to be performed. 

print $1 ":" $2 

In an ambiguous context like the following, the type of the comparison 
depends on whether the fields are numeric or string: 

$1 == $2 

329 



Using awk 

330 

This can only be determined when the program runs; it might differ from 
record to record. For example, the above comparison succeeds on any pair of 
the following inputs: 

1 1.0 + 1 0.1e+ 1 10E-1 001 

However, it fails on the following inputs: 

(null) 0 
(null) 0.0 
Oa 0 
1e50 1.0e50 

In comparisons, if both operands are numeric, the comparison is numeric; oth­
erwise, operands are coerced to strings, and the comparison is made on the 
string values. The determination of type is done at run time. 

There are two idioms for coercing an expression of one type to the other: 

number "" 

string + 0 

concatenate a null string to a number to coerce it to type string 

add zero to a string to coerce it to type numeric 

Thus, the following forces a string comparison between two fields: 
$1 II II == $2 II II 

The numeric value of a string is the value of any prefix of the string that looks 
numeric; thus the value of 12.34x is 12.34, while the value of x12.34 is zero. 
The string value of an arithmetic expression is computed by formatting the 
string with the output format conversion OFMT. OFMT specifies a printf-style 
format. By default, OFMT is %.6g (truncate argument to six digits). For 
example: 

{pi=3.1415926535i print pi} 

This prints the following: 

3.14159 

To print pi to 10 significant digits, use the format specifier "%.10f", as follows: 

BEGIN {OFMT=I%.10f"} 
{pi=3.1415926535i print pi} 

This program outputs the following: 

3.1415926535 

See printf(S) for details of the format string syntax. 

Users Guide 



Variables 

A handful of useful one-liners 

Although you can use awk to write large programs of some complexity, many 
programs are not much more complicated than what we have seen so far. 
Here is a collection of other short programs that you might find useful and 
instructive. 

Print last field of each input line: 

{ print $NF } 

Print the tenth input line: 

NR == 10 

Print the last input line: 

{ line = $ O} 
END { print line 

Print input lines that do not have four fields: 

NF != 4 { print $0, "does not have 4 fields" 

Print the input lines with more than four fields: 

NF > 4 

Print the input lines with last field more than 4: 

$NF > 4 

Print the total number of input lines: 

END { print NR } 

Print total number of fields: 

{ nf = nf + NF 
END { print nf } 

Print total number of input characters: 

{ nc = nc + length($O) } 
END { print nc + NR } 

(Adding NR includes in the total the number of newlines.) 

Print the total number of lines that contain the string Asia: 

IAsial {nlines++} 
END { print nlines } 

(The statement nlines++ has the same effect as nlines = nlines + 1.) 

331 



Usingawk 

Error messages 

Generally, if you make an error in your awk program, you get an error 
message. For example: 

$3 < 200 { print ( $1 } 

This program generates the following error messages: 

awk: syntax error at source line 1 
context is 

$3 < 200 { print ( $1 »> } «< 
awk: illegal statement at source line 1 

1 extra ( 

Some errors might be detected while your program is running. For example, if 
you try to divide a number by zero, awk stops processing and reports the 
input record number (NR) and the line number in the program. 

Patterns 

In a pattern-action statement, the pattern is an expression that selects the 
records for which the associated action is executed. This section describes the 
kinds of expressions that can be used as patterns. 

Using simple pattems 

332 

You can select specific records for printing or other processing by using sim­
ple patterns. awk has three kinds of patterns. First, you can use patterns called 
relational operators that make comparisons. As an example, the operator == 
tests for equality. Thus, to print the lines in which the fourth field equals the 
string II Asia", use the program consisting of the following single pattern: 

$4 == "Asia II 

With the file countries as input, this program yields: 

CIS 
China 
India 

8650 
3692 
1269 

262 
866 
637 

Asia 
Asia 
Asia 

The complete set of comparisons are >, >=, <, <=, == (equal to), != (not equal 
to), - (matches), and -! (does not match). These comparisons can be used to 
test both numbers and strings. For example, suppose you want to print only 
countries with a population greater than 100 million. All you need is the fol­
lowing program: 

$3 > 100 

User's Guide 



Patterns 

(Remember that the third field in the file countries is the population in mil­
lions.) This program prints all lines in which the third field exceeds 100. 

Second, you can use regular expressions that search for specified characters to 
select records. The simplest form of a regular expression is a string of charac­
ters enclosed in slashes, as follows: 

IUSI 

This program prints each line that contains the (adjacent) letters us anywhere; 
with the file countries as input, it prints the following: 

USA 3615 219 North America 

Third, you can use two special patterns, BEGIN and END, that match before 
the first record is read and after the last record is processed. The following 
program uses BEGIN to print a title: 

BEGIN {print "Countries of Asia:\n" 
IAsial {print" ", $1 } 

The output from this program is as follows: 

Countries of Asia: 

BEGIN and END 

CIS 
China 
India 

BEGIN and END are two special patterns that give you a way of controlling 
initialization and wrap-up in an awk program. BEGIN matches before the first 
input record is read, so any statements in the action part of a BEGIN are done 
once, before the awk command starts to read its first input record. The END 
pattern matches the end of the input, after the last record has been processed. 

The following awk program uses BEGIN to set the field separator to tab (\t) 
and to put column headings on the output. The field separator is stored in a 
built-in variable called FS. Although FS can be reset at any time, usually the 
only sensible place is in a BEGIN section, before any input has been read. The 
program's second printf statement, which is executed for each input line, for­
mats the output into a table, neatly aligned under the column headings. The 
END action prints the totals. (Notice that a long line can continue after a 
comma.) 

BEGIN { FS = "\t" 
printf "%10s %6s %5s %s\n", 

"COUNTRY", "AREA", "POP", "CONTINENT" 
printf "%10s %6d %5d %s\n", $1, $2, $3, $4 
area = area + $2i pop = pop + $3 } 

END printf "\n%10s %6d %5d\n", "TOTAL", area, pop 

333 



Usingawk 

With the file countries as input, this program produces the following output: 

COUNTRY AREA POP CONTINENT 
CIS 8650 262 Asia 
Canada 3852 24 North America 
China 3692 866 Asia 
USA 3615 219 North America 
Brazil 3286 116 South America 
Australia 2968 14 Australia 
India 1269 637 Asia 
Argentina 1072 26 South America 
Sudan 968 19 Africa 
Algeria 920 18 Africa 

TOTAL 30292 2201 

Relational operators 

334 

An awk pattern can be any expression involving comparisons between strings 
of characters or numbers. To make comparisons, awk includes six relational 
operators and two regular expression matching operators, - (tilde) and !-, 
(discussed in "Regular expressions" (page 335». Table 13-2, "awk comparison 
operators" (this page) shows the relational operators and their meanings. 

Table 13-2 awk comparison operators 

Operator 

< 
<= 

!= 
>= 
> 

Meaning 

less than 
less than or equal to 
equal to 
not equal to 
greater than or equal to 
greater than 

In a comparison, if both operands are numeric, a numeric comparison is 
made; otherwise, the operands are compared as strings. (Every value might be 
either a number or a string; usually awk can determine what is intended. See 
"Number or string?" (page 329) for more information about this.) Thus, the 
following pattern selects lines where the third field exceeds 100: 

$3>100 

This program selects lines that begin with the letters "s" through "z" (that is, 
lines with an ASCII value greater than or equal to "S"): 

$1 >= "S" 

User's Guide 



Patterns 

The output looks like this: 

USA 3615 219 North America 
Sudan 968 19 Africa 
USA 3615 219 North America 
Sudan 968 19 Africa 

In the absence of any other information, awk treats fields as strings. Thus, the 
following program compares the first and fourth fields as strings of charac­
ters: 

$1 == $4 

Using the file countries as input, this program prints the single line for which 
this test succeeds: 

Australia 2968 14 Australia 

If both fields appear to be numbers, awk performs the comparisons numeri­
cally. 

Regular expressions 

awk provides regular expressions for pattern matching; the syntax of UNIX 
system expressions is described in Chapter 12, "Regular expressions" (page 
315). 

The simplest regular expression is a string of characters matching only itself: 
that is, the string is a literal. In awk, a regular expression is typically enclosed 
within slashes in order to label it as a regular expression as opposed to an 
awk command, as follows: 

/Asia/ 

This program points to all input records that contain the substring" Asia"; if a 
record contains" Asia" as part of a larger string like" Asian" or "Pan-Asiatic", it 
is also printed. 

awk provides the full range of UNIX system regular expression metacharac­
ters; see Chapter 12, "Regular expressions" (page 315) for a detailed explana­
tion. (In addition, awk recognizes the escape sequences listed in "The echo 
command" (page 254).) awk also provides the regular expression operators 
shown in Table 13-3, "awk regular expression operators" (this page). 

Table 13-3 awk regular expression operators 

Operator Meaning 

matches 
does not match 

335 



Using awk 

336 

To restrict a match to a specific field, you use the matching operators -
(matches) and!- (does not match). The following program prints the first field 
of all lines in which the fourth field matches "Asia": 

$4 ~ /Asia/ { print $1 } 

This program prints the first field of all lines in which the fourth field does not 
match "Asia": 

$4 !~ /Asia/ { print $1 } 

awk interprets any string or variable on the right side of a - or r as a regular 
expression. For example: 

$2!~ 1"[0-9]+$/ 

This sample program can be rewritten as follows: 

BEGIN { digits = "A[0-9]+$" } 
$2 !~ digits 

Suppose you wanted to search for a string of characters such as "[ 0-9 ] + $. 
When a literal quoted string like "" [ 0-9 ] + $" is used as a regular expression, 
one extra level of backslashes is needed to protect regular expression meta­
characters. This is because one level of backslashes is removed when a string 
is originally parsed. If a backslash is needed in front of a character to tum off 
its special meaning in a regular expression, then that backslash needs a 
preceding backslash to protect it in a string. 

For example, suppose we want to match strings containing ''b'' followed by a 
dollar sign. The regular expression for this pattern is b \$. To create a string to 
represent this regular expression, add one more backslash, as follows: 

"b\\$" 

The two regular expressions on each of the following lines are equivalent: 

x ~ "b\\$" x ~ /b\$/ 
x - "b\$" x ~ /b$/ 
x - nbS" x ~ /b$/ 
x - "\\t" x - /\t/ 

A summary of the regular expressions and the substrings they match is given 
in Table 13-4, "awk regular expressions" (page 337). The unary operators *, +, 
and ? have the highest precedence, with concatenation next, and then 
alternation ( I ). All operators are left-associative. The r stands for any regular 
expression. 

User's Guide 



Patterns 

Table 13-4 awk regular expressions 

Expression Matches 

char any non-metacharacter char 
\char character char literally 

beginning of string 
$ end of string 

any character but newline 
[5] any character in set S 
[AS] any character not in set S 
1'* zero or more rs 
r+ one or more rs 
r? zero or one r 
(r) r 
rl r2 rl then r2 (concatenation) 
rII r2 rl or r2 (alternation) 

Combining patterns 

A compound pattern combines simpler patterns with parentheses and the log­
ical operators I I (OR), && (AND), and ! (NOT). For example, if you want to 
print all countries in Asia with a population of more than 500 million, use the 
following program: 

$4 == "Asia" && $3 > 500 

This program selects all lines in which the fourth field is Asia and the third 
field exceeds 500. 

The following program selects lines with the strings "Asia" or "Africa" as the 
fourth field: 

$4 == "Asia" II $4 == "Africa" 

Another way to write the latter query is to use a regular expression with the 
alternation operator I: 

$4 - /(AsiaIAfrica)/ 

The negation operator! has the highest precedence, then &&, and finally 1 I. 
The operators && and 1 1 evaluate their operands from left to right; evalua­
tion stops as soon as truth or falsehood is determined. 

337 



Usingawk 

Pattern ranges 

A pattern range consists of two patterns separated by a comma: 

patternl, pattern2 { ... } 

In this case, the action is performed for each line between an occurrence of 
patternl and the next occurrence of pattern2 (inclusive). As an example, the 
pattern ICanadal, IBrazill matches lines starting with the first line that con­
tains the string "Canada", up through the next occurrence of the string 
"Brazil": 

Canada 
China 
USA 
Brazil 

3852 
3692 
3615 
3286 

24 
866 
219 
116 

North America 
Asia 
North America 
South America 

Similarly, because FNR is a built-in variable that represents the number of the 
current record in the current input file (and FILENAME is the name of the 
current input file), the following program prints the first five records of each 
input file with the name of the current input file prepended: 

FNR == 1, FNR == 5 { print FILENAME, $0 } 

Actions 

In a pattern-action statement, the action determines what is to be done with 
the input records that the pattern selects. Actions frequently are simple print­
ing or assignment statements, but they can also be a combination of one or 
more statements. This section describes the statements that can make up 
actions. 

Performing arithmetic 

338 

Actions can use conventional arithmetic expressions to compute numeric 
values. As a simple example, suppose we want to print the population den­
sity for each country in the file countries. Because the second field is the area in 
thousands of square miles, and the third field is the population in millions, the 
expression 1000 * $3 I $2 gives the population density in people per square 
mile. Use the following program to print the name of each country and its 
population density: 

{ printf "%10s %6.1f\n", $1, 1000 * $3 / $2 } 

User's Guide 



Actions 

The output looks like this: 

CIS 30.3 
Canada 6.2 
China 234.6 
USA 60.6 
Brazil 35.3 
Australia 4.7 
India 502.0 
Argentina 24.3 
Sudan 19.6 
Algeria 19.6 

Arithmetic is done internally in floating point. The arithmetic operators are +, 
-, *, I, % (remainder), and A (exponentiation; ** is a synonym). Arithmetic 
expressions can be created by applying these operators to constants, variables, 
field names, array elements, functions, and other expressions, all of which are 
discussed later. Note that awk recognizes and produces scientific (expo­
nential) notation: le6, lE6, 10eS, and 1000000 are numerically equal. 

awk has assignment statements like those found in the C programming lan­
guage. The simplest form is the assignment statement: 

v=e 

where v is a variable or field name, and e is an expression. For example, to 
compute the number of Asian countries and their total populations, use this 
program: 

$4 == "Asia" pop = pop + $3; n = n + 1 } 
END print "population of", n, 

"Asian countries in millions is", pop} 

Applied to countries, this program produces the following: 

population of 3 Asian countries in millions is 1765 

The action associated with the pattern $4 == "Asia" contains two assignment 
statements, one to accumulate population and the other to count countries. 
The variables are not explicitly initialized, yet everything works properly 
because awk initializes each variable with the string value"" and the numeric 
value O. 

The assignments in the previous program can be written more concisely using 
the operators += and ++ as follows: 

$4 == "Asia" { pop += $3; ++n } 

339 



Usingawk 

The += operator is borrowed from the C programming language: 

pop += $3 

It has the same effect as the following: 

pop = pop + $3 

The += operator is shorter and runs faster. The same is true of the ++ operator, 
which increments a variable by one. 

The abbreviated assignment operators are +=, -=, *=,1=, %=, and ~=. These are 
shorthand versions of traditional operations: a operator = b has the same 
effect as a = a operator h. 

The increment and decrement operators are ++ and --. As in C, you can use 
them as prefix (++x) or postfix (x++) operators. If x is 1, then i=++x increments 
x, then sets ito 2. On the other hand, i=x++ sets i to 1, then increments x. An 
analogous interpretation applies to prefix -- and postfix --. Assignment, incre­
ment, and decrement operators can all be used in arithmetic expressions. 

We use default initialization to advantage in the following program, which 
finds the country with the largest population: 

maxpop < $3 {maxpop = $3; country = $1 } 
END { print country, maxpop } 

Note that this program is not correct if all values of $3 are negative. 

Functions 

awk supplies a number of built-in arithmetic and string-handling functions. 

Using arithmetic functions 

340 

awk provides the built-in arithmetic functions shown in Table 13-5, "awk 
arithmetic functions" (this page). 

Table 13-5 awk arithmetic functions 

Function 

atan2(y,x) 
cos(x) 
exp(x) 
int(x) 
log (x) 
rand 
sin (x) 
sqrt(x) 
srand(x) 

Value returned 

arctangent of yl"x in the range -1t to 1t 

cosine of x, with x in radians 
exponential function of x 
integer part of x truncated towards 0 
natural logarithm of x 
random number between 0 and 1 
sine of x, with x in radians 
square root of x 
x is new seed for rand 

User's Guide 



Functions 

Both x and yare arbitrary expressions. The function rand returns a pseudo 
random floating point number in the range (0,1), and srand can be used to set 
the seed of the generator. If srand has no argument, the seed is derived from 
the time of day. 

Using strings and string functions 

A string constant is created by enclosing a sequence of characters inside quo­
tation marks, as in Habc" or "hello, everyone". String constants can contain the 
C programming language escape sequences for special characters listed in 
"Regular expressions" (page 335). 

String expressions are created by concatenating constants, variables, field 
names, array elements, functions, and other expressions. The following pro­
gram prints each record preceded by its record number and a colon, with no 
blanks: 

{ print NR ":" $0 } 

This concatenates the three strings representing the record number, the colon, 
and the record, and prints the resulting string. 

awk provides the built-in string functions shown in Table 13-6, "awk string 
functions" (this page). In this table, r represents a regular expression, s and t 
are string expressions, and n and p are integers. 

Table 13-6 awk string functions 

Function 

getline 
gsub(r, s) 

gsub(r, s, t) 

index(s, t) 
length(s) 
match(s, r) 

split(s, a) 

split(s, a, r) 

sprintf(fmt, expr-list) 

(Continued on next page) 

Description 

reads next line of input 
substitutes s for r globally in current record, returns 
number of substitutions 
substitutes s for r globally in string t, returns number 
of substitutions 
returns position of string tins, a if not present 
returns length of s 
returns the position in s where r occurs, a if not 
present; see built-in variables RSTART and RLENGTH 

splits s into array a on FS, returns number of fields 
splits s into array a on r, returns number of fields 
returns expr-list formatted according to format string 
fmt 

341 



Using awk 

342 

Table 13-6 awk string functions 
(Continued) 

Function Description 

sub(r,s) substitutes s for first r in current record, returns 
number of substitutions 

sub(r, s, t) substitutes s for first r in t, returns number of substi­
tutions 
returns suffix of s starting at position p substr(s, p) 

substr(s, p, n) 

tolower(s) 
toupper(s) 

returns substring of s of length n starting at position p 
returns s translated into lowercase 
returns s translated into uppercase 

The getline function is used to read the next input line. Note that it does not 
return a value and that its syntax is like that of a statement: appending 
parentheses to it causes an error. 

print "skipping record for ",$1 
getline 
print "going to record for ",$1 

This code reads a record, prints the specified string, then executes the getline 
function which passes control onto the next record without processing: 

skipping record for CIS 
going to record for Canada 
skipping record for China 

For more information on getline, see "Multiline records and the getline func­
tion" (page 359). 

The functions sub and gsub are patterned after the substitute command in the 
text editor ed(C). The function gsub(r, s, t) replaces successive occurrences of 
substrings matched by the regular expression r with the replacement string s 
in the target string t. (As in ed, the left-most match is used and is made as 
long as possible.) gsub returns the number of substitutions made. The 
function gsub(r, s) is a synonym for gsub(r, s, $0). For example, the following 
program transcribes its input, replacing occurrences of "USA" with "United 
States": 

( gsub(/USA/, "United States"); print} 

Note that replacing the order of the commands in this action has an unex­
pected effect: 

( print gsub(/USA/, "United States",$O) } 

User's Guide 



Functions 

The exit value of the operation as performed on each record is displayed: 

o 
o 
o 
o 
1 
o 
o 

In this case, only the fourth record of countries contains the string "USA": all 
other records return an exit value of O. 

The sub functions are similar to gsub, except that they only replace the first 
matching substring in the target string. 

The function index(s, t) returns the left-most position where the string t 
begins in 5, or zero if t does not occur in s. The first character in a string is at 
position 1. For example, the following command returns 2: 

{ print index("banana", "an") } 

The length function returns the number of characters in its argument string; 
thus, the following prints each record, preceded by its length: 

{ print length($O), $0 } 

($0 includes the input record separator but not the trailing newlines.) The fol­
lowing program prints the longest country name (" Australia"): 

length($l) > max {max = length($l)i name = $1 } 
END { print name } 

The match(s, r) function returns the position in string s where regular expres­
sion r occurs, or 0 if it does not occur. This function also sets two built-in 
variables RSTART and RLENGTH. RSTART is set to the starting position of the 
match in the string; this is the same value as the returned value. RLENGTH is 
set to the length of the matched string. (If a match does not occur, RSTART is 
0, and RLENGTH is -1.) For example, the following program finds the first 
occurrence of the letter "i," followed by at most one character, followed by the 
letter II a" in a record: 

{ if (match($O, Ii. ?a/}) 
print RSTART, RLENGTH, $0 } 

343 



Usingawk 

344 

This program produces the following output from the file countries: 

16 2 CIS 8650 262 Asia 
26 3 Canada 3852 24 North America 
3 3 China 3692 866 Asia 
24 3 USA 3615 219 North America 
27 3 Brazil 3286 116 South America 
8 2 Australia 2968 14 Australia 
4 2 India 1269 637 Asia 
7 Argentina 1072 26 South America 
17 Sudan 968 19 Africa 
6 2 Algeria 920 18 Africa 

Note that the match function matches the left-most longest matching string. 
For example, if you use the string" AsiaaaAsiaaaaan" as an input record, the 
following program matches the first string of a's and sets RSTART to 4 and 
RLENGTH to 3: 

{ if (match($O, /a+/)) print RSTART, RLENGTH, $0 } 

Consider the following function: 

sprintf(format, exprl, expr2, ... ) 

returns (without printing) a string containing the following, formatted accord­
ing to the printf specifications in the string format: 

exprl, expr2, ... , exprn 

For a complete specification of these format conventions, see "The printf 
statement" (page 355). 

The following statement assigns to x the string produced by formatting the 
values of $1 and $2: 

x = sprintf("%10s %6d", $1, $2) 

It is assigned as a IO-character string and a decimal number in a field of width 
at least six; x can be used in any subsequent computation or display opera­
tion. For example: 

{ x=sprintf("%10s%6d",$1,$2); print x } 

User's Guide 



Functions 

This program produces the following output: 

CIS 8650 
Canada 3852 
China 3692 
USA 3615 
Brazil 3286 
Australia 2968 
India 1269 
Argentina 1072 
Sudan 968 
Algeria 920 
CIS 8650 
Canada 3852 
China 3692 
USA 3615 
Brazil 3286 
Australia 2968 
India 1269 
Argentina 1072 
Sudan 968 
Algeria 920 

The function substr(s, p, n) returns the substring of s that begins at position p 
and is at most n characters long. If substr(s, p) is used, the substring goes to 
the end of s; that is, it consists of the suffix of s beginning at position p. For 
example, we could abbreviate the country names in countries to their first 
three characters by invoking the following program: 

{ $1 = substr($I, 1, 3); print} 

This produces the following output: 

CIS 8650 262 Asia 
Can 3852 24 North America 
Chi 3692 866 Asia 
USA 3615 219 North America 
Bra 3286 116 South America 
Aus 2968 14 Australia 
Ind 1269 637 Asia 
Arg 1072 26 South America 
Sud 968 19 Africa 
Alg 920 18 Africa 

Note that setting $1 in the program forces awk to recompute $0 and, 
therefore, the fields are separated by blanks (the default value of OFS), not by 
tabs. Attempting to change the setting of OFS back to a tab character with the 
command { OFS="\ ttl } has the following result (only the first two lines are 
shown): 

CIS 
Can 

8650 
3852 

262 
24 

Asia 
North America 

345 



Usingawk 

Note that this has had the undesirable effect of tab-separating "North" and 
"America" as well as the genuine fields. 

Strings are stuck together (concatenated) by writing them one after another in 
an expression. For example, consider the following program: 

{ s = s substr($l, 1, 3) " " } 
END {print s } 

When invoked on the file countries, the program prints the following by build­
ing s up, one piece at a time, from an initially empty string: 

CISCanChiUSABraAuslndArgSudAlg 

Control flow statements 

awk provides if, if-else, while, do-while, for, and? statements, and state­
ment grouping with braces. The syntax of these constructs is similar to that of 
the C programming language, but their usage is similar to the shell constructs 
covered in Chapter II, IL Automating frequent tasks" (page 245). In particular, 
if, if-else and ? are branching constructs and while, do-while, and for are 
looping constructs. There is no equivalent of the shell case and select state­
ments. 

if statements 

346 

The if statement's generic syntax is as follows: 

if (expression) statementl[ else statement2] 

The expression acting as the conditional has no restrictions; it can include the 
relational operators <, <=, >, >=, ==, and !=; the regular expression matching 
operators - and !- ; the logical operators I I, &&, and !; juxtaposition for 
concatenation; and parentheses for grouping. 

In the if statement, the expression is first evaluated. If it is nonzero and non­
null, statementl is executed; otherwise statement2 is executed. The else part 
is optional. 

A single statement can always be replaced by a statement list enclosed in 
braces. The statements in the statement list are terminated by newlines or 
semicolons. 

User's Guide 



Control flow statements 

The following is a rewrite of the maximum population program from "Per­
forming arithmetic" (page 338), using an if statement: 

BEGIN { minpop=1000; maxpop=O; mincountry=""; maxcountry=" " } 
{ if (maxpop < $3) { 

maxpop = $3 
maxcountry = $1 

else 
if (minpop > $3) 

minpop=$3 
mincountry=$l 

END print maxcountry, maxpop 
print mincountry, minpop 

The following output results: 

China 866 
Australia 14 

while statements 

The while statement is exactly that of the C programming language: 

while (expression) statement 

The expression is evaluated; if it is nonzero and non-null, the statement is exe­
cuted, and the expression is tested again. The cycle repeats as long as the 
expression is nonzero. For example, use the following to print all input fields 
one per line: 

{ i = 1 
while (i <= NF) 

print $i 
i++ 

The do-while statement has the following form: 

do statement while (expression) 

The statement is executed repeatedly until the value of the expression 
becomes zero. Because the test takes place after the execution of the statement 
(at the bottom of the loop), it is always executed at least once. As a result, the 
do statement is used much less often than while or fOf, which test for comple­
tion at the top of the loop. 

347 



Usingawk 

The following example of a do-while statement prints all lines except those 
occurring between the strings Nstart" and Nstop": 

/start/ 
do { 

getline x 
} while (x !~ /stop/) 

print } 

for statements 

The for statement is like that of the C programming language rather than that 
of the shell: 

for (expressionl ; expression2 ; expression3) statement 

This has the same effect as the following: 

expressionl 
while (expression2) { 

statement 
expression3 

} 

Thus, the following statement does the same job as the while example above: 

{for (i = 1; i <= NF; i++) print $i} 

Flow control statements 

348 

The break statement causes an immediate exit from an enclosing while or for, 
thereby preventing further iterations from being performed. The continue 
statement causes the next iteration to begin. The next statement causes awk to 
skip immediately to the next record and begin matching patterns starting 
from the first pattern-action statement. 

The exit statement causes the program to behave as if the end of the·input had 
occurred; no more input is read, and the END action, if any, is executed. 
Within the END action, the following statement causes the program to return 
the value of expr as its exit status: 

exit expr 

If there is no expr, the exit status is zero. 

User's Guide 



Arrays 

Arrays 

awk provides one-dimensional arrays. An array is a list of variables that share 
a common name, and that are distinguished from one another by a subscript 
(that is, a number indicating their position in the list). You do not need to 
declare arrays and array elements; like variables, they spring into existence 
when you use them. An array subscript can be a number or a string. 

As an example of a conventional numeric subscript, the following statement 
assigns the current input line to the NRth element of the array x: 

x[NR] = $0 

In fact, it is possible in principle (though perhaps slow) to read the entire 
input into an array with the awk program like this: 

{ x[NR] = $0 } 
END { . . . processing . .. } 

The first action records each input line in the array x, indexed by line number; 
processing is done in the END statement. 

Array elements can also be named by nonnumeric values. An array like this, 
where the array subscript (that is, position within the array of a given 
member) is a string, is called an associative array. For example, the following 
program accumulates the total population of Asia and Africa into the associa­
tive array pop. The END action prints the total population of these two 
continents. 

IAsial {pop["Asia"] += $3 } 
IAfrical { pop["Africa"] += $3 } 
END { print "Asian population in millions is", pop["Asia"] 

print "African population in millions is", 
pop["Africa"] } 

On the file countries, this program generates the following output: 

Asian population in millions is 1765 
African population in millions is 37 

In this program, if we use pop [Asia] instead of pop ["Asia"] , the expression 
uses the value of the variable Asia as the subscript. Because the variable is 
uninitialized (does not exist), the values would have been accumulated in 
pop[""]. 

Suppose our task is to determine the total area in each continent of the file 
countries. Any expression can be used as a subscript in an array reference. 
Consider the following statement: 

area[$4] += $2 

349 



Usingawk 

350 

This program uses the string in the fourth field of the current input record to 
index the array area and in that entry accumulates the value of the second 
field: 

BEGIN 

END 

FS = "\ t" } 

area[$4] += $2 } 
for (name in area) 
print name, area [name] 

When you invoke this on the countries file, this program produces the 
following output: 

Africa 1888 
North America 7467 
South America 4358 
Asia 13611 
Australia 2968 

Stipulating the FS character is necessary in order to prevent awk from inter­
preting strings containing white space ("South America", for example) as two 
separate fields, in which case the following occurs: 

Africa 1888 
South 4358 
Asia 13611 
North 7467 
Australia 2968 

(Note that the order of the output fields is different from that of the previous 
example. This illustrates an important quality of associative arrays, namely 
that the elements in the array are not stored in any particular order, as is the 
case with conventional arrays. While numeric indices can be used in associa­
tive arrays, they do not necessarily refer to sequentially ordered locations. In 
order to manipulate the elements sequentially, a loop must be established that 
will increment a pointer to the elements.) 

The last example uses a form of the for statement that iterates over all defined 
subscripts of an array: 

for (i in array) statement 

This executes statement with the variable i set in tum to each value of i for 
which array[i] has been defined. The loop is executed once for each defined 
subscript, which are chosen in a random order. Results are unpredictable 
when i or array is altered during the loop. 

User's Guide 



Arrays 

awk does not provide multidimensional arrays, but it does permit a list of 
subscripts. They are combined into a single subscript with the values 
separated by an unlikely string (stored in the variable SUBSEP). For example, 
the following code creates an array that behaves like a two-dimensional array; 
the subscript is the concatenation of if SUBSEP, and j: 

for (i = 1; i <= 10; i++) 
for (j = 1j j <= 10j j++) 

arr [i, j 1 = . . 

You can determine whether a particular subscript i occurs in an array arr by 
testing the condition i in arr: 

if ("Africa" in area) ... 

This condition performs the test without the side effect of creating 
area["Africa"], which would happen if we used the following: 

if (area["Africa"J != II ") ••• 

Note that neither is a test of whether the array area contains an element with 
value "Africa". 

It is also possible to split any string into fields in the elements of an array 
using the built-in function split (see HUsing strings and string functions" 
(page 341)). The function splits the string s1:s2:s3 into three fields (using the 
separator:) and stores s1 in aU], s2 in a[2], and s3 in a[3]. 

split("sl:s2:s3", a, ":") 

The number of fields found, here three, is returned as the value of split. The 
third argument of split is a regular expression to be used as the field separa­
tor. If the third argument is missing, FS is used as the field separator. 

An array element can be deleted with the delete statement: 

delete arrayname [subscript] 

User-defined functions 

awk provides user-defined functions, which are useful tools for extending the 
syntax of the language. For example, the following program defines and tests 
the usual recursive factorial function (using some input other than the file 
countries): 

function fact(n) 
if (n <= 1) 

return 1 
else 

return n * fact(n-1) 

print $1 "! is II fact($l) 

The function is defined at the start of the program, before it is used. 

351 



Usingawk 

352 

In the definition, n is a formal parameter: that is, it is used in the definition of 
the function and within the body of the function. When fact( ) is used, the for­
mal parameter n is replaced with an actual parameter. For example: 

fact (mynum) 

This statement prints the factorial of the actual parameter mynum. Thus, the 
formal parameter list is effectively a template into which you can slot your 
own actual parameters. 

The command return returns the given value, so that the assignment: 

result = fact (mynum) 

causes fact() to return the value to result. If no return command is used, 
fact( ) is effectively valueless, so the assignment above would be meaningless. 

A function is defined as: 

function name (argument-list ){ 
statements 

} 

The definition can occur anywhere a pattern-action statement can. The argu­
ment list is a list of variable names separated by commas; these are called the 
formal parameters of the function. Within the body of the function, these 
variables refer to the actual parameters by which they are replaced when the 
function is called. 

There must be no space between the function name and the left parenthesis of 
the argument list when the function is called; otherwise it looks like a concate­
nation. 

Sometimes you may need to pass a large amount of data to a function; for 
example, an entire line of text. This is best accomplished by using an array as 
an argument, rather than by passing a set of individual variables. Individual 
variables, or scalars, are passed by value; that is, rather than the function hav­
ing access to the variable itself, the function receives a copy of the argument. 
In contrast, array arguments are passed by reference: that is, the function can 
access the elements of the array directly (rather than a copy of the array which 
is local to the function, being deleted after the function terminates). Conse­
quently it is possible for the function to alter array elements or create new 
ones that are accessible outside the function. 

The difference is subtle. When a variable is passed by value, an internal copy 
of it is used within the function, so the function cannot affect the value of the 
argument outside its own scope. Consequently, if you have a variable myvar 
that is a parameter to a function, any changes you make to myvar within the 
function will be lost when the function returns. 

User's Guide 



awkoufpuf 

In contrast, a variable that is passed by reference (like an array) is totally 
accessible both within the function and throughout the rest of the program. 

Functions can access variables that are not passed as parameters. In general, 
variables created in an awk program are global (that is, accessible anywhere) 
unless they are the formal parameters to a function. Formal parameters are 
local, cannot be accessed outside the function, and are lost when the function 
exits. They also override existing variables of the same name when the func­
tion is being executed; if you declare a function with a formal parameter of the 
same name as an existing variable, references to the variable name within the 
function will only refer to the formal parameter. Any changes you make to 
their values are lost as soon as you exit the function. 

You can have any number of extra formal parameters that are used purely as 
local variables; this is particularly useful if you want to perform some sort of 
internal process that you do not want to refer to anywhere else in the 
program. 

Some lexical conventions 

Comments may be placed in awk programs. They begin with the character 
# #" and end at the end of the line. For example: 

print X, Y # this is a comment 

Statements in an awk program normally occupy a single line. Several 
statements can occur on a single line if they are separated by semicolons. You 
can continue a long statement over several lines by terminating each contin­
ued line by a backslash. (It is not possible to continue a quoted string; you 
must close the quotes, add the backslash, then reopen the quotes on the next 
line.) This explicit continuation is rarely necessary, however, because state­
ments continue automatically after the operators && and I I or if the line 
ends with a comma (for example, as might occur in a print or printf state­
ment). 

Several pattern-action statements can appear on a single line if separated by 
semicolons. 

awk output 

The print and printf statements are the two primary constructs that generate 
output. The print statement is used to generate simple output; printf is used 
for more carefully formatted output. Like the shell, awk lets you redirect out­
put so that output from print and printf can be directed to files and pipes. 
This section describes how to use these two statements. 

353 



Usingawk 

The print statement 

The following statement prints the string value of each expression separated 
by the output field separator (DFS) followed by the output record separator 
(DRS): 

print exprl, expr2, ... , exprn 

The statement print is an abbreviation for the following: 

print $0 

To print an empty line, use the following: 

print "" 

Output separators 

354 

The built-in variables DFS and DRS contain the output field separator and 
record separator respectively. Initially, DFS is set to a single blank and DRS to 
a single newline, but you can change these values at any time. For example, 
the following program prints the first and second fields of each record with a 
colon between the fields and two new lines after the second field: 

BEGIN {OFS = ":"; ORS = "\n\n" } 
{ print $1, $2 } 

Run on the countries file, the following output is generated (only the first few 
lines are shown): 

CIS:8650 

Canada: 3852 

China:3692 

Notice that the following program prints the first and second fields with no 
intervening output field separator: 

{ print $1 $2 } 

This is because $1 $2 is a string consisting of the concatenation of the first two 
fields. The output is as follows: 

CIS8650 

Canada3852 

User's Guide 



awk output 

You may want to change the value of OFS or ORS if you are reading or writing 
a file used by an application that does not follow the sca OpenServer conven­
tion of separating fields by tabs and records by newlines.For example, in data 
files created by the language BASIC, fields are surrounded by double quotes 
and separated by commas, while records are separated by newlines. There­
fore, to create a data file in awk that could be used by a BASIC program, you 
would need to set OFS to be a comma, and remember to print all output fields 
surrounded by double quotes. 

The printf statement 

awk's printf statement is the same as that in C, except that the * format 
specifier is not supported. The printf statement has the general form: 

printf format, exprl, expr2, ... , exprn 

where format is a string that contains both information to be printed and 
specifications on what conversions to perform on the expressions in the 
argument list, as in the table below. Each specification begins with a "% ", 
ends with a letter that determines the conversion, and can include any of the 
following: 

left-justify expression in its field 

width pad field to this width as needed; fields that begin with a leading 0 
are padded with zeros 

prec maximum string width or digits to right of decimal point 

Table 13-7 awk printf conversion characters 

Character 

%c 
%d 
%e 
%f 
%g 

%0 
%s 
%x 
%% 

Prints expression as 

single character 
decimal integer 
[-] d.dprecisionE [ +-] dd 
[-] ddd.dprecision 
e or f conversion, whichever is shorter, with nonsignificant zeros 
suppressed 
unsigned octal number 
string 
unsigned hexadecimal number 
print a %; no argument is converted 

355 



Usingawk 

Here are some examples of printf statements with the corresponding output: 

printf "%d", 99/2 
printf "%e", 99/2 
printf "%f", 99/2 
printf "%6.2f", 99/2 
printf "%g", 99/2 
printf "%0", 99/2 
printf "%060", 99/2 
printf "%x", 99/2 
printf" I %8 I If, "January" 
printf" I %108 I If, "January" 
printf" I %-108 I If, "January" 
printf" I %.38 I If, "January" 
printf" I %10.38 I If, "January" 
printf" I %-10.38 I If, "January" 
printf"%%" 

49 
4.950000e+01 
49.500000 
49.50 
49.5 
61 
000061 
31 
January I 

January I 
January 

IJanl 
I 
I Jan 
% 

I 

Jan I 

I 

The default output format of numbers is %.6g; this can be changed by assign­
ing a new value to OFMT. OFMT also controls the conversion of numeric 
values to strings for concatenation and creation of array subscripts. 

Output into files 

356 

You can print output into files, instead of to the standard output, using the 
H >" and H > > " redirection operators. For example, if you invoke the following 
program on the file countries, awk prints all lines where the population (third 
field) is bigger than 100 into a file called bigpop, and all other lines into 
smallpop: 

$3 > 100 {print $1, $3 >"bigpop" } 
$3 <= 100 {print $1, $3 >"smallpop" 

Notice that the filenames must be quoted; without quotes, bigpop and smallpop 
are uninitialized variables. If the output filenames are created by an expres­
sion, they also must be enclosed in parentheses: 

$4 ~ /North America/ { print $1 > ("tmp" FILENAME) } 

This is because the > operator has higher precedence than concatenation; 
without parentheses, the concatenation of tmp and FILENAME does not work. 

Note that files are opened once in an awk program. If> is used to open a file, 
its original contents are overwritten. But if » is used to open a file, its con­
tents are preserved and the output is appended to the file. Once the file has 
been opened, the two operators have the same effect. 

User's Guide 



awk output 

Output into pipes 

You can also direct printing into a pipe with a command on the other end, 
instead of into a file. The following statement causes the output of print to be 
piped into the command-line: 

print I "command-line" 

Although we show the command-line and filenames here as literal strings 
enclosed in quotes, they can also come from variables, and the return values 
from functions. 

Suppose we want to create a list of continent-population pairs, and sort it 
alphabetically by continent. The awk program below accumulates the pop­
ulation values in the third field for each of the distinct continent names in the 
fourth field in an array called pop. Then it prints each continent and its pop­
ulation, and pipes this output into the sort command: 

BEG IN {F S = "\ t" } 

{ pop[$4j += $3 } 
END { for (c in pop) 

print c ":" pop [c 1 I "sort" } 

Invoked on the file countries, this program yields the following: 

Africa:37 
Asia:1765 
Australia: 14 
North America:243 
South America: 142 

In all of these print statements involving redirection of output, the files or 
pipes are identified by their names (that is, the pipe above is literally named 
sort), but they are created and opened only once in the entire run. So, in the 
last example, for all c in pop, only one sort pipe is open. 

In awk, only one pipe may be open at a time. In order to open a second pipe, 
the first must be closed. The statement close (pipe) closes a pipe, where pipe is 
the string used to create it in the first place. For example: 

close ( " sort" ) 

When opening or closing a file, different strings are different commands. 

The special files /dev/stdout and /dev/stderr are particularly useful for printing 
error messages. To print to the standard error without using /dev/stderr, it is 
necessary to create a pipe and catenate its output with the standard error of 
the current shell: 

{ . . . print "error message" I "cat >&2 II i ••• } 

357 



Usingawk 

Input 

However, using the special files, it is possible to direct standard error and 
standard output messages appropriately: 

{ ... print "error message" > "/dev/stderr" i •.• } 

The most common way to give input to an awk program is to name on the 
command line the file that contains the input. This is the method that we have 
been using in this chapter. However, you can use several other methods, each 
of which is described in this section. 

Files and pipes 

You can provide input to an awk program by putting the input data into a file, 
sayawkdata, and then executing it like this: 

awk 'program awkdata 

awk reads its standard input if no filenames are given; thus, a second com­
mon arrangement is to have another program pipe its output into awk. For 
example, grep(C) selects input lines containing a specified regular expression, 
but it can do so faster than awk, because this is the only thing it does. 

grep 'Asia' countries I awk '{ print $1 }' 

In this shell script, grep quickly finds the lines containing Asia and passes 
them on to the awk program for subsequent processing, where the first field is 
printed: 

CIS 
China 
India 

Input separators 

358 

With the default setting of the field separator FS, input fields are separated by 
blanks or tabs, and leading blanks are discarded, so each of these lines has the 
same first field: 

field1 field2 
field1 

fieldl 

When the field separator is a tab, however, leading blanks are not discarded. 

The field separator can be set to any regular expression by assigning a value 
to the built-in variable FS. For example, the following sets it to any or all of 
comma, space and tab: 

BEG IN { F S = "( [, \ \ t 1 )" } 

User's Guide 



Input 

You can also set FS on the command line with the -F argument. For example, 
this behaves the same as the previous example: 

awk -F I ( [, \ \ t 1 ) I 

Regular expressions used as field separators match the leftmost longest 
occurrences (as in the sub function), but they do not match null strings. 

Multiline records 

Records are normally separated by newlines, so that each line is a record; you 
can change this, but only in a limited way. You can set the built-in record sep­
arator variable RS to an empty string as follows: 

BEG IN {RS = II II } 

Input records can be several lines long; a sequence of empty lines separates 
records. A common way to process multiple-line records is to set the record 
separator to an empty line and the field separator to a newline, as in the fol­
lowing example: 

BEGIN {RS = II II i FS = II \n II } 

A record is limited to 3000 characters. See "Multiline records and the getline 
function" (this page) and "Cooperation with the shell" (page 362) for some 
other examples of processing multiline records. 

Multiline records and the getline function 

awk's facility for automatically breaking its input into records that are more 
than one line long is not adequate for all tasks. For example, if records are not 
separated by blank lines, but by something more complicated, setting RS to 
null does not work. In such cases, it is necessary to manage the splitting of 
each record into fields in the program. Here are some suggestions. 

Use the function getline to read input either from the current input or from a 
file or pipe, by using redirection in a manner analogous to printf. By itself, 
getline fetches the next input record and performs the normal field-splitting 
operations on it. It sets NF, NR, and FNR. getline returns 1 if there was a 
record present, 0 if the end-of-file was encountered, and -1 if some error 
occurred (such as failure to open a file). 

To illustrate, suppose we have input data consisting of multiline records, each 
of which begins with a line beginning with START and ends with a line begin­
ning with STOP. The following awk program processes these multiline 
records, a line at a time, putting the lines of the record into consecutive entries 
of an array: 

£[1] £[2] ••. £[n£] 

359 



Using awk 

360 

Once the line containing STOP is encountered, the record can be processed 
from the data in the f array: 

rSTART/ { 
f[nf=l] = $0 
while (getline && $0 !~ /ASTOP/) 

f[++nf] = $0 
# now process the data in f[l] ... f[nf] 

Notice that this code uses the fact that && evaluates its operands left to right 
and stops as soon as one is true. The same job can also be done by the follow­
ing program: 

/ASTART/ && nf==O { f[nf=l] = $0 } 
nf > 1 {f[++nf] = $0 } 
/ASTOP/ { # now process the data in f[l] ... f[nf] 

nf = 0 

The following statement reads the next record into the variable x: 

getline x 

No splitting is done; NF is not set. 

This statement reads from file instead of the current input: 

getline <" file" 

It has no effect on NR or FNR, but field splitting is performed, and NF is set. 

The following statement gets the next record from file into x: 

getline x <"file" 

In this case, no splitting is done, and NF, NR, and FNR are untouched. 

Note that if a filename is an expression, it should be in parentheses for evalua­
tion: 

while ( getline x < (ARGV[l] ARGV[2]) ) { ... } 

(See "Command-line arguments" (page 361) for a discussion of ARGV.) This is 
because the < has precedence over concatenation. Without parentheses, a 
statement such as the following attempts to set x to read a file called 
tmp$FILENAME: 

getline x < "tmp" FILENAME 

Also, if you use this getline statement form, a statement like the following 
loops forever if the file cannot be read: 

while ( get line x < file ) { ... } 

User's Guide 



Input 

This is because getline returns -1, not zero, if an error occurs. A better way to 
write this test is as follows: 

while ( getline x < file > 0) { ... } 

It is also possible to pipe the output of another command directly into getline. 
For example, the following statement executes who and pipes its output into 
getline: 

while ("who" I getline) 
n++ 

Each iteration of the while loop reads one more line and increments the vari­
able n, so after the while loop terminates, n contains a count of the number of 
users. Similarly, the following statement pipes the output of date into the 
variable d, thus setting d to the current date: 

"date" I getline d 

The table below summarizes the getline function. 

Table 13-8 getline function 

Form 

getline 
getline var 
getline <file 
getline var <file 
cmd I getline 
cmd I getline var 

Command-line arguments 

Sets 

$0, NF, NR, FNR 
var, NR, FNR 
$O,NF 
var 
$O,NF 
var 

The command-line arguments are available to an awk program: the array 
ARGV contains the elements ARGV[O], ... , ARGV[ARGC-l]; as in C, ARGC is 
the count. ARGV[O] is the name of the program (generally awk); the remain­
ing arguments are whatever was provided (excluding the program and any 
optional arguments). 

The following command line (typed at the shell prompt) contains an awk pro­
gram that echoes the arguments that appear after the program name: 

awk I 

BEGIN { 
for (i = 1; i < ARGC; i++) 

printf "%8 ", ARGV [il 
printf "\n" 

} I $ * 

361 



Usingawk 

You can modify or add to the arguments; you can also alter ARGC. As each 
input file ends, awk treats the next non-null element of ARGV (up to the 
current value of ARGC-l) as the name of the next input file. 

The one exception to the rule that an argument is a filename is that if it is of 
the following form, then the variable var is set to the value value as if by 
assignment: 

var=value 

If value is a string, no quotes are needed. Such an argument is not treated as a 
filename. 

Using awk with other commands and the shell 

awk gains its greatest power when you use it in conjunction with other 
. programs. Here we describe some of the ways in which awk programs 

cooperate with other commands. 

The system function 

The built-in function system(command-line) executes the command 
command-line, which can be a string computed by, for example, the built-in 
function sprintf. The value returned by system is the return status of the com­
mand executed. The output from command-line is not automatically available 
for use within the awk script. It must be piped into getline, as follows: 

system<command-line I getline) 

The following program calls the shell command cat(C) to print the file named 
in the second field of every input record whose first field is "#include," having 
first stripped any <, >, or " characters that might be present: 

$1 == II # include II { gsUb(/[<>"J/, II ", $2)i system(IIcat II $2) } 

Cooperation with the shell 

362 

In all the examples thus far, the awk program is in a file and is retrieved using 
the -f flag, or it appears on the command line enclosed in single quotes, as in 
the following example: 

awk ' { print $1 }' ... 

Since awk uses many of the same characters as the shell does, such as $ and ", 
surrounding the awk program with single quotes ensures that the shell passes 
the entire program unchanged to the awk interpreter. 

User's Guide 



Using awk with other commands and the shell 

Now, consider writing a command addr that searches a file addresslist for 
name, address, and telephone information. Suppose that addresslist contains 
names and addresses in which a typical entry is a multiline record such as the 
following: 

G. R. Emlin 
600 Mountain Avenue 
Murray Hill, NJ 07974 
201-555-1234 

Records are separated by a single blank line. 

You want to be able to search the address list by issuing commands like the 
following: 

addrEmlin 

To do this, create a program of the following form: 

awk ' 
BEG IN {RS = "" } 
/Emlin/ 
, addresslist 

The problem is how to get a different search pattern into the program each 
time it is run. 

There are several ways to do this. One way is to create a file called addr that 
contains the following lines: 

awk ' 
BEG IN {RS = "" } 
/'$1'/ 
, addresslist 

The quotes are critical here. The awk program is only one argument, even 
though there are two sets of quotes, because quotes do not nest. The $1 is out­
side the quotes, visible to the shell, which then replaces it by the pattern Emlin 
when you invoke the command addr Emlin. 

A second way to implement addr relies on the fact that the shell substitutes 
for $ parameters within double quotes: 

awk " 
BEGIN {RS = \"\" } 
/$1/ 
" addresslist 

Here you must protect the quotes defining RS with backslashes so that the 
shell passes them on to awk, uninterpreted by the shell. $1 is recognized as a 
parameter, however, so the shell replaces it by the pattern when you invoke 
the following command: 

addrpattern 

363 



Usingawk 

A third way to implement addr is to use ARGV to pass the regular expression 
to an awk program that explicitly reads through the address list with getline: 

awk I 

BEGIN {RS = "" 

} I $* 

while (getline < "addresslist") 
if ($0 ~ ARGV[l]) 

print $0 

All processing is done in the BEGIN action. 

Notice that you can pass any regular expression to addr; in particular, you can 
retrieve parts of an address or telephone number, as well as a name. 

Spanning multiple lines 

364 

Multiline records are a suitable solution for handling data that is regular in 
form, but sometimes it is necessary to handle records that have no fixed 
length. Under these circumstances, when the input data is irregular, setting RS 
and FS is not going to be very helpful. 

An illustrative example of this kind of problem occurs in the example "Writ­
ing a readability analysis program: an example" (page 266); one of the tasks is 
to count the number of sentences in a text file. Although the file consists of 
lines of text terminated by a carriage return, there is no guarantee that a sen­
tence occupies a single line. Sentences are started by a word with an initial 
capital letter and are terminated by a period: they may occupy one or more 
lines. 

This kind of problem can be handled by using a variable as a buffer. A line is 
read in and appended to the buffer; the entire buffer is then searched to see if it 
contains a sentence. If no sentence is contained, another line is read, and so 
on. If a sentence is matched, it is counted and all the data in the buffer up to 
the end of the sentence is deleted. 

User's Guide 



For example: 

#!/usr/bin/awk -f 
BEGIN { 

Spanning multiple lines 

init=" (A [A-Za-zl-90] [.] ) I ( [[ : space:]] I [.] ) ( ( [A-Za-zO-9]I [A-Za-zO-9] [a-zO-9] ) [.] ) " 
sent=" ([A-Za-zl-90] + ([ [: space:] ]) *) + [.]" 
sentences = 0 
target = "" 
marker="+X+" 

initials = gsub(init, "", $0) 
target = target " " $0 
hit = gsub(sent, marker, target) 
sentences += hit 
if (hit != 0) { 

for (i=O; i< hit; i++) { 
found = index (target , marker) 
target = substr(target, (found+3)) 

# end for 
# end if 

hit = 0 
} 

END { print sentences " sentences counted" 
} 

The BEGIN section is used to define a sentence (in variable sent). For the 
purpose of this program, a sentence is a regular expression consisting of a 
sequence of words terminated by a period. (A word is one or more letters fol­
lowed by an optional space. Because awk matches the left-most longest pat­
tern, in practice we can expect awk to choose the longest series of letters it can 
find that is terminated by a space.) 

Sentences are not the only entities terminated by a period; initials and elipses 
contain periods, and must therefore be removed before the input is tested to 
determine if it is a sentence. The BEGIN section defines the variable init as a 
regular expression that matches a set of initials. 

Initials consist of a letter or digit followed by a period, or a more complex for­
mat (one or two letters or digits followed by a period, as in Ph.D.). This 
expression is not infallible, but traps most initials. 

Each line in the standard input ($0) is read in and scanned for initials. These 
are replaced by null characters (""). The line is then appended to the variable 
target (line 10 of the program). 

365 



Usingawk 

366 

On line II, target is scanned and every occurrence of a sentence (as defined by 
sent) is replaced by a marker (defined by marker). The total sentence count is 
incremented by the number of sentences found in target. Then, for each hit, 
the target variable is truncated; the text prior to the last marker is discarded. 
(That is, the matched sentences are removed from target, by the substr com­
mand on line 16.) The program then reads the next line. At the end of the 
input, the script displays a total sentence count. 

It is worth comparing this method of crossing line boundaries with the 
method using sed in "Hold and get functions" (page 385). 

Syllables are handled in a similar manner, but it is not necessary to handle 
multiple lines. Instead, a regular expression that matches a generic syllable is 
defined, and a simple loop globally replaces all syllables with a marker char­
acter while incrementing a counter: 

#! /bin/sh 
# 
# First, define syllabic consonants 
# 
CONS=" [bcdfghjklmnpqrstvwxyz] Inlghtlqul ([wstgpc]h) Isch" 
# 
# Next, define syllabic vowels 
# 
VOWL=" [aeiou]+lly" 
# 
# The definition of a syllable (after Webster's Collegiate Dictionary): 
# a syllable is one or more consonants or vowels, optionally preceded by 
# and optionally followed by a consonant. 
# 
SYL=" (${CONS})*\ 
((${CONS}) I ((${VOWL} )+)) \ 
(${CONS})*" 
# 
sylcount='awk -e / BEGIN { sylcount = 0 } 

{ target = $0 

END 
/ syllable="$SYL" < $1' 

incr = gsub(syllable, "*" target) 
sylcount += iner 

print sylcount } 

echo "There were $sylcount syllables in $1" 

Note that for the purposes of matching a syllable, we need to use syllabic con­
sonants and syllabic vowels. These correspond to the written representations 
of parts of speech, rather than to the letters of the alphabet. Therefore, the syll­
able definition given above is so complex that it is better to build it up from 
component expressions stored in environment variables (as above) than to try 
to write it out at length. 

User's Guide 



Example applications 

After processing the specified input file ($1), the script displays a count of all 
the syllables located. 

Example applications 

awk has been used in surprising ways. We have seen awk programs that 
implement database systems and a variety of compilers and assemblers, in 
addition to the more traditional tasks of information retrieval, data manipula­
tion, and report generation. Invariably, the awk programs are significantly 
shorter than equivalent programs written in more conventional programming 
languages, such as Pascal or C. In this section, we present a few more exam­
ples to illustrate some additional awk programs. 

Generating reports 

awk is especially useful for producing reports that summarize and format in­
formation. Suppose you want to produce a report from the file countries, that 
lists the continents alphabetically, and after each continent, its countries in 
decreasing order of population, like this: 

Africa: 
Sudan 19 
Algeria 18 

Asia: 
China 866 
India 637 
CIS 262 

Australia: 
Australia 14 

North America: 
USA 219 
Canada 24 

South America: 
Brazil 116 
Argentina 26 

As with many data processing tasks, it is much easier to produce this report in 
several stages. First, create a list of continent-country-population triples, in 
which each field is separated by a colon. To do this, use the following pro­
gram, triples, which uses an array pop, indexed by subscripts of the form 
'continent:country' to store the population of a given country. 

367 



Usingawk 

368 

The print statement in the END section of the program creates the list of 
continent-country-population triples that are piped to the sort routine: 

BEGIN {FS = "\t" } 
{ pop[$4 ":" $1] += $3 } 

END {for (ee in pop) 
print ee ":" pop[ee] I "sort -t: +0 -1 +2nr" } 

The arguments for sort deserve special mention. The -t: argument tells sort to 
use: as its field separator. The +0 -1 arguments make the first field the pri­
mary sort key. In general, +i -j makes fields i+1, i+2, ... , j the sort key. If -j is 
omitted, the fields from i+1 to the end of the record are used. The +2nr argu­
ment makes the third field, numerically decreasing, the secondary sort key (n 
is for numeric, r for reverse order). Invoked on the file countries, this program 
produces as output: 

Afriea:Sudan:19 
Afriea:Algeria:18 
Asia:China:866 
Asia:India:637 
Asia:CIs:262 
Australia:Australia:14 
North Ameriea:usA:219 
North Ameriea:Canada:24 
South Ameriea:Brazil:116 
South Ameriea:Argentina:26 

This output is in the right order but the wrong format. To transform the out­
put into the desired form, run it through a second awk program, format: 

BEGIN 
{ 

{ FS = ":" } 
if ($1 != prev) { 

print "\n" $1 "." 
prev = $1 

printf "\t\t%-10s %6d\n", $2, $3 

This is a control-break program that prints only the first occurrence of a con­
tinent name and formats the country-population lines associated with that 
continent in the desired manner. The following command line produces the 
report: 

awk -f triples countries I awk -f format 

As this example suggests, complex data transformation and formatting tasks 
can often be reduced to a few simple awk and sort operations. 

User's Guide 



Example applications 

Word frequencies 

Here we show how to use associative arrays for counting. Suppose you want 
to count the number of times each word appears in the input, where a word 
equals any contiguo-q.s sequence of non-blank, non-tab characters. The 
following program prints the word frequencies, sorted in decreasing order: 

{ for (w = 1; w <= NF; w++) count[$wl++ } 
END {for (w in count) print count[wl, w I "sort -nr" } 

The first statement uses the array count to accumulate the number of times 
each word is used. Once the input has been read, the second for loop pipes the 
final count, along with each word, into the sort command. Running this pro­
gram on the first two paragraphs of this chapter produces output that starts 
as follows: 

6 awk 
4 the 
4 programs 
4 for 
4 and 
3 you 

Accumulation 

Suppose you have two files of records, deposits and withdrawals, that contain a 
name field and an amount field separated by tabs. For each name, you want to 
print the net balance determined by subtracting the total withdrawals from 
the total deposits for each name. The net balance can be computed by the fol­
lowing program: 

awk ' 
FILENAME 
FILENAME 
END 

"deposits" 
"withdrawals" 

} , deposits withdrawals 

balance[$ll += $2 } 
balance[$ll -= $2 } 
for (name in balance) 

print name, balance [name] 

The first statement uses the array balance to accumulate the total amount for 
each name in the file deposits. The second statement subtracts associated with­
drawals from each total. If there are only withdrawals associated with a name, 
an entry for that name is created by the second statement. The END action 
prints each name with its net balance. 

369 



Usingawk 

Random choice 

The following function prints (in order) k random elements from the first n 
elements of the array A. In the program, k is the number of entries that still 
need to be printed, and n is the number of elements yet to be examined. The 
decision of whether to print the ith element is determined by the test rand() < 
kin: 

function choose(A, k, n) { 
for (i = 1; n > 0; i++) 

if (rand() < k/n--) 
print A[i] 
k--

Shell facility 

370 

The following awk program simulates (crudely) the history facility of the C 
shell: 

$1 == "=" { if (NF == 1) 

$1 ! = "=" 

system(x[NR] = x[NR-1]) 
else 

for (i = NR-l; i > 0; i--) 

next 

if ( match(x[i],$2) ) { 
system(x[NR] = xli]) 
break 

system(x[NR] = $0) } 

A line containing only = re-executes the last command executed. A line begin­
ning with =(space)cmd re-executes the last command whose invocation 
included the string cmd. Otherwise, the current line is executed. 

User's Guide 



Chapter 14 

Manipulating text with sed 

This chapter describes the stream editor, sed(C). It contains information on 
the following topics: 

• what is sed? (this page) 

• using sed (page 372) 

• addresses (page 374) 

• functions (page 377) 

What is sed? 

sed is a tool which allows you to perform large-scale, noninteractive editing 
tasks. For example, sed can replace all the occurrences of a given word in a file 
with a different word, or delete all lines containing a target string from a file. 
sed is particularly good at working with large files or running complicated 
sequences of editing commands on a file or group of files from within a shell 
script; sed is usually faster than ed at performing global substitutions within a 
file. 

The sed program is derived from ed, although there are considerable 
differences between the two, resulting from the different characteristics of 
interactive and batch operation. sed is best thought of as a relative of the grep 
family of commands: just as grep is primarily a tool for searching for regular 
expressions in files, so sed is a tool for carrying out regular expression based 
search and replace operations on files. 

sed works on only a few lines of input at a time and does not use temporary 
files, so the only limit on the size of the files you can process is that both the 
input and output fit simultaneously on your disk. You can apply multiple 
# global" editing changes to your text in one pass. 

371 



Manipulating text with sed 

Note, however, that sed lacks relative addressing (the ability to specify a line 
number to work on relative to the current line number) because it processes a 
file one line at a time and never backs up. Also, note that sed gives you no 
immediate verification that a command has altered your text in the way you 
actually intended. For this reason, you should check your output carefully. 

Using sed 

sed reads its standard input a line at a time, carries out whatever editing 
changes are specified, then writes the changed lines to its output. It acts as a 
filter on the input file, which streams through it. 

input file output file 

How sed works 

To use sed, you need to specify the name of the command file that contains 
your editing script, then the file or files that you are processing. For example: 

sed -£ editscript <input£ile >output£ile 
sed -e "/Hello/s/Hello/Hi/g" <letter.old >letter.new 

Three optional flags are recognized on the command line: 

-n Directs sed to copy only those lines specified by p functions or p flags 
after s functions. See "Whole-line oriented functions" (page 378) for 
details. 

-e Indicates that the next argument is an editing command. 

-£ Indicates that the next argument is the name of the file which contains 
editing commands, typed one to a line. 

372 User's Guide 



Using sed 

Writing sed commands 

The general format of a sed editing command is: 

[addressl [,address2]] function [arguments] 

An address is a parameter which tells sed which lines to apply the function to. 
Addresses may be line numbers or regular expressions. If two addresses are 
specified, sed applies the function to all the lines in the range from addressl to 
address2. You can omit one or both addresses; in the absence of an address 
sed applies the function to every line that it reads. For example, the following 
script turns every occurrence of "red" into "blue" throughout a file: 

s/redlblue 

The function determines the operation that sed carries out on the matching 
line. A function is always required in a command, but arguments are optional 
for some functions. 

Any number of blanks or tabs can separate the addresses from the function, 
and tab characters and spaces at the beginning of lines are ignored. 

How sed commands are carried out 

sed commands are applied one at a time in the order they appear (unless you 
change this order with one of the "flow-of-control" functions discussed in 
"Functions" (page 377». sed works in two phases, compiling the editing com­
mands in the order they are given, then executing the commands one-by-one 
on each line of the input file. 

When sed begins to read the input file, it copies the first line of the file into its 
"pattern space". The pattern space is an area of memory used by sed to store 
the text which it is currently editing. sed then executes its list of commands, 
applying them to the contents of the pattern space. 

sed only carries out those editing functions which correspond to an address 
matching the current pattern space. For example, if a command is specific to 
lines 50-150 of a file, sed will not carry it out if the pattern space does not con­
tain one of those lines. (sed does not print any warnings when this happens: 
in general sed either silently ignores errors, or terminates abruptly with an 
error message.) 

The first matching command is carried out on the text contained in the pattern 
space; then the second command is carried out on whatever remains in the 
pattern space, and so on. When no more commands remain to be executed, 
sed appends the contents of the pattern space to its output file and reads 
another line, then starts processing again, looping back to the first command. 

373 



Manipulating text with sed 

Even if you change this default order of applying commands with one of the 
two flow-of-control functions, t and b, the input line to any command is still 
the pattern space resulting from the application of any previously executed 
commands. 

You should also note that the range within which pattern matching occurs is 
normally one line of input text. If you need to carry out edits that cross line 
boundaries, you can read more than one line into the pattern space by using 
the N function described in "Multiple input-line functions" (page 384). 

The rest of this section discusses the principles of sed addressing, followed by 
a description of sed functions. 

Addresses 

The following rules apply to addressing in sed. There are two ways to select 
the lines in the input file to which editing commands are to be applied: with 
line numbers or with "context addresses". 

Line addresses 

A line number is a decimal integer. As sed reads lines from its input file, it 
increments a line counter. Each time sed reads a new line it checks whether 
the current line number matches any of the commands in its command list. If 
any of the commands match the current line number, they are carried out. The 
counter runs cumulatively through multiple input files; thus, if sed is reading 
in five files, each 100 lines long, line address 369 actually refers to the 69th line 
of the fourth file. The counter is not reset when new input files are opened. A 
special case is the dollar sign character ($) which matches the last line of the 
last input file. 

Context addresses 

374 

Context addresses are regular expressions enclosed in slashes " / ". If you 
specify a context address for a command, sed only applies the editing func­
tion to those lines which match the regular expression. By using context 
addresses and a print function, you can improvise a grep-like behavior; for 
example, the shell script mygrep: 

sed -n -e "/$l/p" <$2 

This script uses the shell parameter $1 as a context address for sed to use in 
searching the file specified by the parameter $2. Whenever sed finds a line 
matching the address given in $1, it executes the p function (print) and out­
puts that line. 

User's Guide 



Addresses 

Note the -n argument to sed in this script; sed normally echoes every line it 
reads to its standard output. While the -n option is in effect, sed only prints 
when you tell it to with the p or P functions. Note also that if you want to use 
sed within a shell script and pass parameters to it, the sed instructions must 
be in double quotes, not single quotes (see I/How the shell works" (page 241) 
for an explanation of shell quoting and its meaning). 

For example: 

mygrep charlie /etc/passwd 
charlie: :8:5:Charles Stross:/usr/charlie:/usr/bin/ksh 

Context addresses are enclosed in slashes (j). They include all the regular 
expressions common to both ed and sed: 

• An ordinary character is a regular expression and matches itself. 

• A caret (") at the beginning of a regular expression matches the null char­
acter at the beginning of a line. 

• A dollar sign ($) at the end of a regular expression matches the null char­
acter at the end of a line. 

• The characters (\ n) match an embedded newline character, but not the 
newline at the end of a pattern space. 

• A period (.) matches any character except the terminal newline of the pat­
tern space. 

• A regular expression followed by a star (*) matches any number, including 
0, of adjacent strings matching the regular expression. 

• A string of characters in square brackets ([ ]) matches any character in the 
string, and no others. If, however, the first character of the string is a caret 
("), the regular expression matches any character except the characters in 
the string and the terminal newline of the pattern space. 

• A concatenation of regular expressions is one that matches a particular 
concatenation of strings. 

• A regular expression between the sequences 1/\ (" and 1/\)" is grouped, and 
can be referred to as a unit by the s function. (Note the following specifica­
tion.) 

• The expression (\ d) means the same string of characters matched by an 
expression enclosed in 1/ \ ( " and 1/ \ ) " earlier in the same pattern. Here d is 
a single digit; the string specified is that beginning with the dth occurrence 
of 1/ \ (", counting from the left. For example, the expression A\ (.*\)\ 1 
matches a line beginning with two repeated occurrences of the same string. 

• The null regular expression standing alone is equivalent to the last regular 
expression compiled. 

375 



Manipulating text with sed 

376 

For a context address to "match" the input, the whole pattern within the 
address must match some portion of the pattern space. If you want to use one 
of the special characters literally, that is, to match an occurrence of itself in the 
input file, precede the character with a backslash (\) in the command. 

Each sed command can have a, I, or 2 addresses. 

• A command with no addresses specified is applied to every line in the 
input. For example: 

s/redlgreenJ 

This command substitutes the first instance of "green" for "red" on all lines. 

• A command with one address is applied to all lines that match that 
address. For example: 

Imike/s/fredlj ohnJ 

substitutes the first instance of "john" for "fred" only on those lines contain­
ing "mike". 

• A command with two addresses is applied to the first line that matches the 
first address, then to all subsequent lines until a match for the second 
address has been processed. An attempt is made to match the first address 
on subsequent lines, and the process is repeated. 

Two addresses are separated by a comma. For example: 

50 ,100s/fred/j ohnJ 

Substitutes the first instance of "john" for "fred" from line 50 to line 100 
inclusive. (Note that there should be no space between the second address 
and the s command.) 

• If an address is followed by an exclamation mark (!), the command is 
applied only to lines that do not match the address. For example: 

50,100!s/fred/johnJ 

substitutes the first instance of "john" for "fred" everywhere except lines 50 
to 100 inclusive. 

Here are some examples based on the following configuration file (a piece of 
an /etc/passwd file): 

root:x:O:O:Superuser:/: 
remacc:x:: : Remote access:: 
daemon:No login:l:l:Spooler:/usr/spool: 
sys:No login:2:2:System information:: 
bin:x:3:3:System administrator:/usr/src: 
xmail:x:4:4:Secret Mail:/usr/spool/pubkey: 
msgs:No login:7:7:System messages:/usr/msgs: 
charlie:x:8:5:Charles Stross:/usr/charlie:/bin/ksh 

User's Guide 



/00/ 

/0*0/ 

matches lines I, 3,6 in our sample file 

matches lines I, 3,4, 6, 7 

/[Cc]h.* / matches line 8 

/"0/ matches no lines 

/. / matches all lines 

/0$/ matches no lines 

Functions 

You can use a single address to control the application of a group of com­
mands by grouping the commands with curly braces ({ }). For example: 

!redJ { 
s!redJgreenJ 
sIbIue!yellow! 
} 

This short sed script searches for lines containing the regular expression "red" 
and then carries out the grouped commands, which replace the first occur­
rence of "red" with "'green" and the first instance of "blue" with "yellow" on 
each matching line. You might use this script by placing it in a file called 
subst.red and invoking it from a shell as follows: 

$ sed -f subst.red <input_file >output_file 

For more on substitution in sed, including how to apply a change to all 
instances of a matching string, see "'Substitute functions" (page 379). 

Functions 

All sed commands require a function to tell them what to do; the command 
itself is a combination of an address and a function. Functions are named by a 
single character. The following types of function are available: 

• Whole-line oriented functions that add, delete, and change whole text lines. 

• Substitute functions that search and substitute regular expressions within a 
line. 

• Input-output functions that read and write lines and/or files. 

• Multiple input-line functions that match patterns that extend across line 
boundaries. 

• Hold and get functions that save and retrieve input text for later use. 

• Flow-of-control functions that control the order of application of functions. 

• Miscellaneous functions. 

377 



Manipulating text with sed 

Whole-line oriented functions 

378 

These functions are used to manipulate an entire line at a time in the pattern 
space, rather than a string within a line. The following whole-line oriented 
functions are available: 

d Deletes from the file all lines matched by its addresses. No further 
functions are executed on a deleted line. As soon as the d function is exe­
cuted, a new line is read from the input, and the list of editing commands 
is restarted from the beginning on the new line. The maximum number of 
addresses is two. For example, Icharlie/d deletes all lines containing the 
string "charlie". 

n Reads the next line of input into the pattern space. The current line is sent 
to the standard output, if appropriate, and the line counter is incremented 
by one; the execution of editing commands continues following the n 
function rather than looping back up to the top of the command list (as it 
would if sed had naturally exhausted its command list on the current pat­
tern space, and read a new input line). The maximum number of addresses 
is two. 

The following three commands must be specified over multiple lines and the 
text must appear on a new line. Interior newlines must be hidden by a 
backslash character (\) immediately preceding each newline. The text argu­
ment is terminated by the first unhidden newline, which is the first one not 
immediately preceded by backslash. Once a function executes successfully, 
the text is written to the output regardless of what later commands do to the 
line that triggered it, even if the line is subsequently deleted. The text is not 
scanned for address matches, and no editing commands are attempted on it, 
nor does it cause any change in the line number counter. 

a Appends text. The text following the a function is appended when the pat­
tern space is sent to the standard output. For example, the following 
sequence appends the line "(Not to mention blue)" after any line contain­
ing the word "red": 

Ire dla \ 
(Not to mention blue) 

The a command has only one possible address. 

i Inserts text. When followed by a text argument, i functions the same as a, 
except that the text is written to the output before the matched line. It has 
only one possible address. The following sequence inserts the line #(Not to 
mention blue)" before any line containing the word #red": 

Iredli\ 
(Not to mention blue) 

User's Guide 



Functions 

c Changes text. The c function deletes the lines selected by its addresses, and 
replaces them with the lines in the text. (This function is principally used 
for replacing an entire line with a different line, not for routine find and 
replace operations (for which the s, substitute, function is used.) The fol­
lowing example searches for lines containing the word "secret", deletes 
them, and replaces them with the text "[this line has been censored]": 

Isecret/c\ 
[this line has been censored] 

The c function may have two addresses, and therefore select a range of 
lines. If it does, all the lines in the range are deleted, but only one copy of 
the text is written to the output, not one copy per line deleted. Mter a line 
has been deleted by a c function, no further commands are attempted on it. 
If text is appended after a line by an a function, and the line is subse­
quently changed, the text inserted by the c function is placed before the 
text of the a function. 

As with all sed commands, these three multiline commands may be used 
either in scripts or on the shell command line. In the latter case, the first line's 
trailing backslash must be quoted, as follows: 

$ sed -e "/secret! c \ \ 
> [this line has been censored]" input_file 

Substitute functions 

The substitution functions change parts of lines selected by a context search 
within the line, using the syntax: 

[address]s / pattern/replacement / flags 

The s function replaces part of a line selected by the designated pattern with 
the replacement pattern. This is similar to vi (see "A quick tour of vi" (page 
132». The substitution is restricted to only those lines matching the optional 
address. The pattern argument contains a pattern, exactly like the patterns in 
addresses. The only difference between a pattern and a context address is that 
a pattern argument may be delimited by any character other than space or 
newline. By default, only the first string matched by the pattern is replaced, 
except when you use the g flag. 

The replacement argument begins immediately after the second delimiting 
character of the pattern, and must be followed immediately by another 
instance of the delimiting character. 

379 



Manipulating text with sed 

380 

The replacement is not a pattern, and the characters that are special in pat­
terns do not have special meaning in replacement. Instead, the following char­
acters are special: 

& This character is replaced by the string that matches the pattern. For 
example: 

s/fruitlfresh & vegetablesl 

This command substitutes the word Hfruit" with "fresh fruit & veget­
ables". 

\ d d is a single digit that is replaced by the dth substring matched by parts 
of the pattern enclosed in H \(" and "\)". If nested substrings occur in 
the pattern, the dth substring is determined by counting opening delim­
iters. 

1\ (foo \)\(bar\)/\2\1I 

This substitution consists of a regular expression in two groups; "foo" 
and "bar". If applied to a line containing the word "foobar" the regular 
expression matches each of the grouped subexpressions in tum. The 
replacement argument "\2\1" transposes the order of the first two 
grouped expressions that sed matched, producing the following output: 

barfeD 

As in patterns, you can make special characters literal by preceding them with 
a backslash (\). 

A flag argument can contain the following: 

g Global. Substitutes the replacement for all non-overlapping instances 
of the pattern in the line. After a successful substitution, the scan for 
the next instance of the pattern begins just after the end of the inserted 
characters; characters put into the line from the replacement are not 
rescanned. 

The following example replaces all occurrences of the word "pass­
word" with a string of x's: 

s/passwordlxxxxxxxlg 

n Causes the substitution to be performed only on the nth instance of a 
matching string. For example: 

s/CurrentlExpiredl2 

This command substitutes the second instance of "Current" in each 
input line with HExpired". The default value of n is I, which is why a 
substitution operation specified without the global flag affects only 
the first instance of a matching string (see the examples in "Context 
addresses" (page 374)). The maximum value of n is 512. 

User's Guide 



Functions 

p Prints the line if a successful replacement was done. The p flag causes 
the line to be written to the output only if a substitution was actually 
made by the s function. Note that if several s functions, each followed 
by a p flag, successfully substitute in the same input line, multiple 
copies of the line are written to the output (one for each successful 
substitution). For example, s/password/xxxxxlgp globally replaces 
"password" with x's and prints the results. 

w file Writes (appends) the line to a file if a successful replacement was 
done. The w flag causes lines that are actually substituted by the s 
function to be written to the named file. If the filename existed before 
you run sed, it is overwritten; if not, the file is created. A single space 
must separate w and the filename. The possibilities of multiple 
different copies of one input line being written are the same as for the 
p flag. A combined maximum of ten different filenames can be 
specified after w flags and w functions. 

The p and w substitution flags have the same effect as the p and w functions 
(see "Input-output functions" (page 382)), with the exception that they are 
dependent on the specified substitution succeeding. 

Here are some examples of the commands in use. When applied to the 
!etclpasswd file used previously, Icharlie/s/charlie/charles/w changes sends the 
following to standard output: 

root:x:O:O:Superuser:/: 
remacc:x:: : Remote access:: 
daemon:No login:l:l:Spooler:/usr/spool: 
sys:No login:2:2:System information:: 
bin:x:3:3:System administrator:/usr/src: 
xmail:x:4:4:Secret Mail:/usr/spool/pubkey: 
msgs:No login:7:7:System messages:/usr/msgs: 
charles:x:8:5:Charles Stross:/usr/charlie:/bin/ksh 

At the same time, the following is written to the file changes: 

charles:x:8:5:Charles Stross:/usr/charlie:/bin/ksh 

(This might be used, for example, to change the login name of the user "char­
lie" to "charles".) 

The following is a shorthand version of the same command: 

Icharlie/sllcharles/w changes 

In this case, the context address is the same as the string to be substituted. In 
this case, sed assumes that the value of the null field is the same as that of the 
preceding (address) field. 

The command s/:/\(Tab)/gp (where (Tab) is a typed tab character) replaces all 
colons with tabs in a data file, and prints the result (for example, as input to 
an awk program). 

381 



Manipulating text with sed 

Note that where a substitution command involves a literal backslash, it must 
be quoted, as follows: 

$ sed -e "s/(Tab)/\ \ \ \/gp" input_file 

This replaces all the tabs in the input file with a single backslash. Note also the 
following: 

$ sed -e 's/(Tab)/\ \/gp' input_file 

This has the same effect. The difference between the two quoting mechanisms 
is that the double quotes prevent the expansion of all special characters except 
the backslash, the dollar sign and the single quote. 

Note that it is not essential that the character used to separate the fields in the 
substitute command always be a slash. Consider the case where a pathname 
is to be substituted with another pathname. In such a case, the slashes in the 
pathname substitution strings conflict with those used to build up the com­
mand itself. This can be avoided by using another string as the delimiter char­
acter. The following example uses the exclamation mark (!) to specify a substi­
tution command where the affected strings are pathnames: 

s!ldev/null!ldev/stdout!gp 

The transform function 

The transform function (y) takes two strings as arguments. It turns each 
instance of the first character in string 1 into the first character in string 2, then 
the second character in string 1 into the second character in string 2, and so 
on. In the following example, "a" is transformed into" X', irrespective of 
whether it is followed by "b": 

y/abcde/ABCDEI 

The components of the two strings are literals, and the transformation per­
formed depends on position. As with the substitute command, y takes an 
optional address as an argument: 

15y/abcde/ABCDEI 

Input-output functions 

382 

These functions enable sed scripts to read and write files directly: 

p The print function writes the contents of the pattern space (that is, any 
lines matching the desired address) to the standard output file at the 
time sed encounters the p function, regardless of what succeeding 
editing commands do to the lines. The maximum number of possible 
addresses is two. 

User's Guide 



Functions 

wfile The write function appends the addressed lines to file. If the file previ­
ously existed, it is overwritten; if not, it is created. The lines are writ­
ten exactly as they exist when the write function is encountered for 
each line, regardless of what subsequent editing commands do to 
them. Exactly one space must separate the w function and the 
filename. The combined number of write functions and w flags may 
not exceed 10. 

r The read function reads the contents of the named file, and appends 
them after the line matched by the address. The file is read and 
appended regardless of what subsequent editing commands do to the 
line that matched its address. If r and a functions are executed on the 
same line, the text from the a functions and the r functions is written 
to the output in the order that the functions are executed. Exactly one 
space must separate the r and the filename; only one address is possi­
ble. If a file mentioned by an r function cannot be opened, it is con­
sidered a null file rather than an error, and no diagnostic is given. 

The p and w functions perform the same operations as the corresponding sub­
stitution flags (see "Substitute functions" (page 379» with the exception that 
they are not dependent on a successful substitution. 

You may have up to 20 appends in one script, and 10 w files open. These lim­
its are built into sed. 

In the example below, the file support. extensions contains the following list of 
telephone extensions: 

Fred: x5706 
Marge: x5631 
Sally: x5239 

The command /phone list:/r support. extensions can be applied to a file like 
the following: 

Thank you for enquiring about our customer support hotline. 
Please place your calls to our exchange at 346-4573, then 
dial one of the following extensions: 

phone list: 

The command has the following effect: 

Thank you for enquiring about our customer support hotline. 
Please place your calls to our exchange at 346-4573, then 
dial one of the following extensions: 

phone list: 
Fred: x5706 
Marge: x5631 
Sally: x5239 

383 



Manipulating text with sed 

In this way, sed can be used to automatically insert smaller files into the file 
currently being edited. 

Note, however, that the line matching the context address (in the example, the 
line consisting of the string #phone list:") must be terminated with a newline. 

Multiple input-line functions 

384 

UNIX system pattern-matching operations typically use a single line of input. 
grep, for example, cannot handle embedded newlines. sed, however, supplies 
three uppercase functions that deal specially with multiline pattern spaces. 

Within a multiline pattern space, an embedded newline is matched by (\n). 
The usual end-of-line notation ($) matches only the last newline in the pattern 
space; preceding embedded new lines are ignored. The start-of-line notation C) 
matches the beginning of the pattern space. 

N This function appends the next input line to the current line in the pattern 
space; the resulting lines in the pattern space are separated by an embed­
ded newline. A maximum of two addresses is permitted. 

D Deletes from the start of the pattern space all the characters up to and 
including the first newline character it comes to. If the pattern space 
becomes empty (tl)e only newline being the terminal newline), another line 
is read from the input. Following a D function the execution of editing 
commands begins over again from the top of sed's list of commands. D 
takes a maximum of two addresses. 

P Prints from the start of the pattern space up to and including the first new­
line. The maximum number of addresses is two. 

If there are no embedded newlines in the pattern space, the P and D functions 
are equivalent to their lowercase counterparts. 

User's Guide 



Functions 

The multiline functions on their own are not sufficient to match patterns that 
cross a line boundary. The problem is that embedded newlines may appear 
anywhere in the pattern space. There are two ways to deal with this: either 
insert optional newlines between every character in the search string, or strip 
the \n characters out of the pattern space while searching. 

The second method is preferred, but to carry out such a search it is necessary 
to discard scanned lines on a rolling basis: this requires the ability to make a 
temporary copy of the pattern space. Techniques for copying the pattern 
space are described in "Hold and get functions" (this page). 

Hold and get functions 

In addition to the pattern space, sed provides a second buffer called the hold 
space. The contents of the pattern space can be copied to the hold space, then 
back again. No operations are performed directly on the hold space. sed pro­
vides a set of hold and get functions to handle these movements. 

h The h (hold) function copies the contents of the pattern space into a hold­
ing area, destroying any previous contents of the holding area. The max­
imum number of addresses is two. 

H The H function appends the contents of the pattern space to the contents 
of the holding area. The former and new contents are separated by a new­
line. 

g The g function copies the contents of the holding area into the pattern 
space, destroying the previous contents of the pattern space. 

G The G function appends the contents of the holding area to the contents of 
the pattern space. The former and new contents are separated by a new­
line. The maximum number of addresses is two. 

x The exchange function interchanges the contents of the pattern space and 
the holding area. The maximum number of addresses is two. 

385 



Manipulating text with sed 

386 

Suppose you want to search for a phrase in a file, but are not sure whether 
there is a newline between two words in the phrase. The logical procedure to 
search for a phrase straddling two lines is the following: 

while (input file exists) { 
begin: 
search for phrase in pattern space 
if found 

print 
goto begin 

else 
while (input file exists) 

append the next line to the pattern space 
save a copy of the pattern space 
discard the first line from the pattern space 
search for phrase in the pattern space 
if found 

print 
else 

restore the saved pattern space 
strip the newline out of the pattern space 
search for phrase in the pattern space 

fi 

fi 
} 

if found 
print 

fi 
discard the first line in the pattern space 

User's Guide 



Functions 

The two crucial requirements for this procedure are that it should use a multi­
line pattern space, adding and deleting lines from it as the script rolls through 
the file; and that it must save a copy of the pattern space, make destructive 
changes to the original, and then retrieve the original copy. 

The following is a shell script, not a sed script. It begins by invoking sed: all 
following commands are enclosed within single quotes. The script accepts 
two arguments: the string to search for (quoted, if it contains spaces or regular 
expressions) and the file to search. 

sed I 

111$l" l lb 

N 

h 
s/.*\nll 
II II $1" I Ib 
g 

sl *\n/(space)1 
111$1" 11{ 
g 

b 
} 

g 

D' $2 

Note that (Space) denotes a literal space character at this point. The first line of 
sed commands searches for the target phrase; if it is present, sed branches 
(and goes back to the beginning of its script). See "Flow-of-control functions" 
(page 388) for details of the b command. 

If no match was made, the N function appends the next line to the pattern 
space; the current pattern space is then temporarily saved in the hold space 
(with the h function). 

sed now removes the first line from the pattern space, then carries out another 
search for its target string. (If successful, it loops back to the start of the 
script.) If it still has not found the target string, it copies the saved version of 
the pattern space back in again and replaces the newline with a space; it 
searches for the target string again and, if it finds it, prints both lines. 

If sed cannot find the target string in its pattern space, it discards the first line 
in the space and then begins all over again, working from the current line 
downwards. 

387 



Manipulating text with sed 

Flow-of-control functions 

These functions do no editing on the input lines, but control the application of 
functions to the lines selected by the address part. (They were used in the 
example in "Hold and get functions" (page 385).) 

This function causes the next function written on the same line to be 
applied to only those input lines not selected by the address part. 
There are up to two possible addresses. 

This function causes the next set of commands to be applied as a 
block to the input lines selected by the addresses of the grouping 
function. The first of the commands under control of the grouping 
function can appear on the same line as the { or on the next line. The 
group of commands is terminated by a matching} on a line by itself. 
Groups can be nested and can have up to two addresses. 

:label The label function marks a place in the list of editing functions that 
can be referred to by b and t functions. The label can be any sequence 
of eight or fewer characters; if two different colon functions have 
identical labels, an error message is generated, and no execution 
attempted. 

blabel The branch function causes the sequence of editing functions being 
applied to the current input line to be restarted immediately after 
encountering a colon function with the same label. If no colon func­
tion with the same label can be found after all the editing functions 
have been compiled, an error message is produced, and no execution 
is attempted. A b function with no label is interpreted as a branch to 
the end of the list of editing commands. Whatever should be done 
with the current input line is done, and another input line is read; the 
list of editing commands is restarted from the beginning on the new 
line. Two addresses are possible. 

tlabel The t function tests whether any substitutions have been made suc­
cessfully on the current input line. If so, it branches to the label; if not, 
it does nothing. The flag that indicates that a successful substitution 
has been executed is reset either by reading a new input line, or by 
executing a t function. 

388 User's Guide 



Functions 

Comments in sed 

The # function introduces a comment. Text following a comment is ignored, 
up to the first newline. If the last character on the comment line is a backslash, 
the following line is interpreted as a continuation of the comment, up to the 
first newline: 

# This sed script transforms source files written \ 
using the troff rom macro library into troff ms source. 

This sequence has exactly the same effect as the following: 

# This sed script transforms source files written 
# using the troff rom macro library into troff ms source. 

If the character immediately following the # character is an "n", no output will 
be automatically generated by the script. This construction has the same effect 
as the -n command line option (see "Using sed" (page 372». 

Miscellaneous functions 

There are three other functions of sed not discussed in the sections above. 

= The = function writes the number of the line matched by its address to the 
standard output. One address is possible. 

The length of a file can be found using the following command: 

$= 

This command is not counting the lines, but rather showing the length of 
the file by printing the number of the last line. 

I The list function is used to display the contents of the pattern space. Non­
printable characters such as BEL (\a) are displayed as two digit ASCII 
codes. 

q The q function causes the current line to be written to the output (if it 
should be), any appended or read text to be written, and execution to be 
terminated. One address is possible. This function could be used to shor­
ten processing if, for example, the objective was to truncate a very long file 
at the first occurrence of a given word, by copying the input to the output 
then quitting as soon as the word was encountered. 

389 



Manipulating text with sed 

390 User's Guide 



Appendices 





Appendix A 

An overview of the system 

This appendix introduces the key concepts underlying the sca OpenServer 
system. While this material is not essential, it provides a perspective for 
issues discussed elsewhere in this guide. 

The following topics are discussed: 

• origins of the UNIX system (this page) 

• the design of the UNIX operating system (page 394) 

• filesystems and devices (page 403) 

• system tools (page 407) 

Origins of the UNIX system 

The UNIX system evolved over a twenty-year period, and a distinctive philo­
sophy emerged among the programmers who developed it. Unlike previous 
operating systems, the UNIX system was designed to be consistent; while it 
may initially look complex, once you understand the interrelation between 
the components, and learn to reason along the same lines as the developers, 
you will find the UNIX system straightforward to use. This is because the con­
sistency of design was pursued at all levels, and the same general design phi­
losophy was applied to virtually all the components of the system. 

The UNIX operating system grew through several generations. The very first 
implementation of UNIX, by Ken Thompson of Bell Labs in 1970, ran on a DEC 
PDP-7 minicomputer with only 8K of RAM and a magnetic tape drive. 

393 



An overview of the system 

Today, large UNIX systems run on everything from personal computers to 
mainframes more than a billion times as powerful as the first system. This 
highlights the three most important characteristics of the UNIX philosophy: 

• scalability 

• modularity 

• portability 

This design philosophy is explained below, with examples of how to apply it 
to everyday problems in using and understanding the sea OpenServer sys­
tem. 

The deSign of the UNIX operating system 

394 

The UNIX system is most commonly portrayed as an onion; several layers sur­
round an inner core. 

User 
Application 
Programs 

Shells 

The UNIX operating system 

Timed 
Execution Service 

(cron) 

System Call 
Interface 

UNIX 
Kernel 

Device 
Drivers 

Electronic 
Mail 

Other 
Utility 

Programs 

Database 
Systems 

User's Guide 



The design of the UNIX operating system 

The applications level 

The outermost level of the system is the one with which most users interact. 
This is the applications level. Applications are complex programs designed to 
automate some business task (such as word processing, spreadsheet calcula­
tions or database services). The seQ Shell is an application provided as part of 
the operating system; other applications are available from third party sup­
pliers. Consult the sea Directory for details of products available for the seQ 
OpenServer system. 

Applications do not exist in a vacuum. Although a user may never see any 
other part of the system, the spreadsheet or word processor needs a way of 
storing files, producing a display on the user's terminal, and printing files out 
(to name just a few of its requirements). For example, the seQ Shell e-mail 
application uses the Ip print service to print messages; this saves it from need­
ing a print program of its own. Most applications behave like this, using lower 
level tools to carry out tasks which would otherwise have to be duplicated. 

Applications also use system calls provided by the kernel. The kernel (the core 
of the UNIX system) provides a uniform interface to all the facilities of the sys­
tem; this is described in more detail below. 

The system utilities 

The system utilities lie below the application layer. These are user-accessible 
programs such as the shells, e-mail deliveryagents.andtoolssuchasawk.ls 
or vi; the tools discussed in this book. You can log in and use these programs 
without worrying about the intricacies of the underlying system. The tools 
level provides a set of components which you can use to build special­
purpose programs of your own (see Chapter II, "Automating frequent tasks" 
(page 245) ), or use as simple filters for manipulating files. 

Also accessible at this level are a number of user-oriented systems. For exam­
ple, the (optional) UNIX text processing system appears at this level; so do the 
tools of the development system (used by C programmers to write applica­
tions). 

In general, the main difference between a tool and an application is that the 
application tends to shield you from having to know anything about the UNIX 
system, whereas to make effective use of software tools, it is necessary to have 
at least some understanding of the way components of the system fit together. 

395 



An overview of the system 

System services 

396 

User level programs (applications and tools) make use of a repertoire of facili­
ties: the system services. These are sets of programs that provide a service 
essential to the UNIX system, but which are not intended to interact directly 
with users. For example, the mmdf mail system is a system service; it 
comprises a set of programs designed to deliver e-mail to users automatically. 
When you use the sea Shell e-mail application to create a mail message and 
send it, mmdf takes over and determines where the mail is going, then places 
it in the appropriate spool directory. 

Most services are mediated by a daemon. A daemon is a process that runs 
without human intervention in response to some event. For example, cron 
responds to the system clock and runs processes that are scheduled for a 
given time. 

System services are not part of the kernel, and can be removed or replaced, 
though doing so may damage or alter the usability of the system. The com­
mon UNIX system services include: 

• Electronic mail. This is not just the mail or sea Shell email program used 
to read and send mail (the mail delivery agents or MDAs), but the ''back 
end": the programs that spool outgoing mail, work out which host to send 
it to, dial up the host and transmit the mail to the host's own mail server, 
then route incoming mail to the correct user's mailbox. (A spooler is a set of 
service programs that control a queue of files, adding files to it at one end 
and removing them at the other end for despatch to the destination.) The 
back end is known as the mail transport agent (or MTA) and is one of the 
main UNIX subsystems. 

• Security and auditing. The first UNIX systems were built on academic 
research computers; security was not a major concern at first. Later, as the 
system became a standard for open systems and commercial use, steps 
were taken to provide tools that allow systems to be secured against 
accidental damage or deliberate misuse. These subsystems are actually a 
component of the System Administration tools described below. 

• Print services. On a multiuser system, which may be connected to several 
printers directly or over a network, it is necessary to maintain a queue of 
print jobs (documents waiting to be printed), which are assigned to printers 
as they become available. This service is controlled by a print spooler, a set 
of service programs that maintain the print queue and send files from it to 
the selected printers. 

User's Guide 



The design of the UNIX operating system 

• Terminal services. The UNIX system can be used with almost any serial ter­
minal, and a wide range of other types of terminal. However, before you 
can use a text editor like vi on a terminal, the UNIX system needs to take 
control over various aspects of the terminal; cursor positioning, highlight­
ing, and the input and output of characters must all be handled directly. 
Two services are used by the UNIX system to communicate with character 
terminals (the "termcap" and "terminfd' databases), and one service (the X 
protocol) is used to communicate with bitmapped (graphics) terminals. 

• Timed execution services. A number of facilities exist that allow the UNIX 
system to carry out tasks automatically, at a given time. The cron daemon 
keeps a list of jobs to be started at various times and dispatches them when 
they are due to run. These jobs include not only user programs (like long 
print jobs) but system tasks (such as flushing the buffer cache, calling 
another computer to exchange mail files, and backing up filesystems across 
a network). 

The UNIX system kernel 

At the center of the UNIX onion is a program called the kernel. Although you 
are unlikely to deal with the kernel directly, it is absolutely crucial to the 
operation of the UNIX system. The kernel provides the essential services that 
make up the heart of UNIX systems; it allocates memory, keeps track of the 
physical location of files on the computer's hard disks, loads and executes 
binary programs such as shells, and schedules the task swapping without 
which UNIX systems would be incapable of doing more than one thing at a 
time. The kernel accomplishes all these tasks by providing an interface 
between the other programs running under its control and the physical hard­
ware of the computer; this interface, the system call interface, effectively insu­
lates the other programs on the UNIX system from the complexities of the 
computer. For example, when a running program needs access to a file, it can­
not simply open the file; instead it issues a system call which asks the kernel 
to open the file. The kernel takes over and handles the request, then notifies 
the program whether the request succeeded or failed. To read data in from the 
file takes another system call; the kernel determines whether or not the 
request is valid, and if it is, the kernel reads the required block of data and 
passes it back to the program. Unlike DOS (and some other operating sys­
tems), UNIX system programs do not have access to the physical hardware of 
the computer. All they see are the kernel services, provided by the system call 
interface. 

397 



An overview of the system 

The system call interface is an example of an API, or application programming 
interface. An API is a set of system calls with strictly defined parameters, 
which allow an application (or other program) to request access to a service; it 
literally acts as an interface. (For example, a large database system might pro­
vide an API that allows programmers to write external programs that request 
services from the database.) 

Kernel sub-processes 
Note that the kernel is not indivisible. There are a small number of kernel 
sub-processes which are executed by the kernel; they are visible in the process 
listing when you type the command ps -ef. Nor is the kernel the first program 
that runs when you boot (start up) the UNIX system; see "The UNIX system 
life cycle" (page 400). In addition, the kernel contains device drivers. 
A device driver is a sub-program which is designed to enable the kernel to 
communicate with a peripheral device (such as a hard disk drive, or a local 
area network adapter) not normally supported by the UNIX system. When the 
kernel receives a request from a program to read or write to a device which 
requires a driver, it forwards the request to the device driver to provide the 
service. Device drivers are linked into the kernel. Some third party add-on 
components come with their own device drivers; these can be added to the 
kernel by the administrator. 

In addition to device drivers and special processes, the kernel keeps track of 
the files stored on the system. Files and devices accessed via drivers are refer­
enced through a name space; this is an abstract space in which named objects 
(the files, directories and devices of the UNIX system) have a uniform inter­
face. The kernel translates references to named objects into requests for actual 
data stored by means of a protocol called a filesystem or via a device driver. 
For further details, see "Understanding filesystems and devices" (page 403). 

How multi-tasking works 

398 

Because the sea OpenServer system is designed to be open, it is necessary for 
any application or user-written program running on it to "see" the same 
environment and be able to call upon the same services, regardless of the spe­
cific computer that the UNIX system is running on. To this end, the system 
provides programs with an API that assumes an almost unlimited extent of 
memory (up to 4GB or 4096MB per process), and various other facilities; for 
example, the exclusive use of the computer. 

Because contemporary computer technology does not lend itself to creating 
machines with an unlimited quantity of memory or number of processors, the 
kernel maps the demands of the application or user program to the resources 
available. 

User's Guide 



How multi-tasking works 

Several programs may be executed concurrently by scheduling each process 
to run for a fraction of a second; a round robin arrangement is used so that 
each process appears to be running continuously and the users see no indica­
tion that their instance of vi, for example, is spending most of its time in a 
state of suspension. The kernel keeps track of how much time each process 
spends running, so that no processes are ignored; however, the more pro­
cesses are running concurrently, the less time each process spends being pro­
cessed by the CPU, and the systems appears to run more slowly. 

Memory management 

Memory is also managed by the kernel. A computer capable of running a 
multi-tasking system may have to deal with widely varying demands for 
memory. At some times, no users may be logged on and the only tasks run­
ning are the kernel and possibly a backup process. At other times, ten or more 
users may all be carrying out complex operations which demand lots of mem­
ory. The sca OpenServer system provides "virtual" memory. That is, whiie 
each process "sees" an allocation of 4GB of memory available to it, in fact the 
kernel only doles out memory to a process as and when it requests it: when a 
process is not actually running, the kernel can swap or page the contents of its 
physical memory out to a swap space on disk, freeing it up temporarily for 
another process. The user's process refers to each unit of memory by its 
address (a number indicating where in the address space of the process, that 
is, its available memory, the unit lies), and the kernel maps from the requested 
address to the real memory address, which may be located somewhere else in 
the computer's memory or paged out to disk. Disk accesses are very slow 
compared with memory accesses. Consequently, a process that demands a lot 
of memory may spend much of its time waiting for pages of memory to be 
read in or written out to disk. 

When the system runs low on memory, it may forcibly swap out processes 
that have been running for a while to make room for other processes. When 
memory demands exceed the memory available, it may begin to "thrash;" that 
is, the time it spends swapping processes in and out may vastly exceed the 
amount of time it spends running them. 

The advantage of virtual memory is that, while it is not inexhaustible, it does 
not run out suddenly; the system does not abruptly refuse to start new pro­
cesses because it is running low on memory. Thus, as the load on the system 
increases, its performance tends to degrade gradually. (The system may 
refuse to run more processes if its process table becomes full. This is 
extremely unlikely to happen in normal use.) 

399 



An overview of the system 

Two processes are spawned by the kernel to handle paging and swapping. 
Paging refers to the allocation of virtual memory. "Pages" of memory are 
mapped onto the processes' address space, and the kernel process keeps track 
of whether the page is physically present in the computer's memory or is 
present on the hard disk. Swapping is a mechanism which allows an entire 
process to be dumped out of memory and stored on a swap partition on the 
hard disk. These processes are sched and vhand, processes 0 and 2 respec­
tively. You cannot kill these processes and you will never see executable files 
called sched or vhand on the filesystem because they are parts of the kernel. 

The UNIX system life cycle 

400 

Unlike a small computer operating system, the UNIX system is designed to 
run continuously. Constant operation allows it to schedule tasks a long way 
in advance, and ensures that the services it provides are available on demand, 
whenever they are needed. All systems need to be shut down periodically for 
maintenance, but it is not uncommon for a sea OpenServer system to run for 
several weeks or even months between shutdowns. 

Whenever you start up a UNIX system, it goes through the following complex 
life cycle: 

Startup When you switch a personal computer on, it is not yet ready to run 
the UNIX system. The machine contains a library of programs stored 
in read-only memory (or ROM) which are known collectively as the 
BIOS (or basic input-output system). These programs serve two pur­
poses; they are used by DOS (but not the UNIX system) to access 
peripheral devices, and they carry out a power-on self-test (or POST) 
of the computer's hardware. 

If all is well, the light on the computer's first floppy disk drive 
flashes. If a disk containing a small program called a boot program 
is present in the drive, it will then read the program in and proceed 
to the next stage; if there is a hardware fault and the POST fails, the 
computer will either beep a series of tones at you or display a mes­
sage on its monitor, and refuse to go any further. 

Boot If the power-on self-test was successful, the boot process com­
mences. The term "boot" is a traditional reference to the way in 
which the system must pull itself up by its own bootstraps, loading 
a short program that runs and loads a more elaborate program, and 
so on. The first step in the boot process is for the computer to read in 
a short program stored in the first sector of either a floppy disk or 
the first hard drive on the computer. This is carried out by part of 
the BIOS. The boot sector program then loads another short pro­
gram, which is just intelligent enough to search the disk for a pro­
gram called !boot, and read that program into the computer's main 
memory. 

User's Guide 



How multi-tasking works 

At this stage, the computer is minimally functional. The /boot pro­
gram cannot make use of virtual memory, mount filesystems, or do 
any of the other tasks associated with the system; neither can it run 
under the system when it is operational. What it can do is prompt 
you for the name of a file to execute, then search the root directory of 
the root filesystem for that file and load it. To do this it places a 
prompt on the system console: 

Boot: 

and then it waits for you to type the name of the kernel, or any addi­
tional instructions that it recognizes. If you do not type anything, it 
will time out after a specified period and load the default file listed 
in /etc/dejault/boot. 

Loading the kernel 
The kernel is visible on your system as a file in the root directory, 
usually called /unix. The boot program copies the kernel into the 
computer's memory, then starts it running. 

When the kernel begins to run, it starts by setting up a number of 
internal lists, or tables. These tables are used to keep track of run­
ning processes, memory allocation, open files, and a number of 
other things; they are not directly accessible to you. However, two 
of them which are of interest are the process table (portions of 
which you can list out with the ps command) and the buffer cache, 
which is described in iiUnderstanding file systems and devices" 
(page 403). 

After initializing its tables, the kernel creates three dummy pro­
cesses; sched, vhand and bdflush (with process IDs 0, 2 and 3 
respectively). These processes are sections of kernel code which 
must be called periodically; vhand provides virtual memory paging 
services, sched provides swapping services, and bdflush flushes the 
buffer cache periodically. None of these processes can be killed; they 
are part of the kernel, and are essential to the correct running of the 
UNIX system. 

Finally the kernel creates a third process; init, or process 1. init 
starts up as a dummy process, then achieves independence: it runs 
as the first true process on the system. init runs continuously; it is 
the parent of all other processes on the system. 

401 



An overview of the system 

402 

Run levels 
Run levels define the behavior of init, and by extension those pro­
cesses which run on the system when it is at any given level. The 
system starts at run level 0 (shutdown) and then enters run levell, 
single user mode. At levell, only the root filesystem is mounted and 
only processes connected to the console can run; this means that it is 
safe to check the unmounted filesystems for integrity without risk­
ing any other processes altering them. At other run levels, init starts 
up the daemon processes that provide various services, and enters 
multiuser mode. 

init executes other programs via the fork system call. Each time init 
calls fork, it passes control to the kernel, which creates a new entry 
in the process table, allocates a temporary storage area called a U­
area, and copies the calling processes' local data (including the 
stack) into the U-area. The kernel then returns control to the child 
process, which may make an exec call, overwriting itself with a new 
program. init periodically reads a file called /etc/inittab, which tells it 
which programs to execute at any given run level. 

The init(M) program should not be confused with the init process; 
the former is an executable program which can be used by the 
administrator to change the run level of the system or cause the init 
process to reread the /etc/inittab file. 

Multiuser mode 
When the system reaches a suitable run level (2 or higher), init starts 
a series of processes called gettys. (In /etc/inittab each line specifying 
a getty process includes the option respawn. This means that when­
ever a getty process dies, init spawns a replacement with the same 
parameters immediately. The getty options include a tty serial line, 
which it serves. 

The job of the getty process is to display a login prompt, then wait 
for input. If you try to log in on the terminal, getty works out your 
serial line speed as you type your name, then execs a login process. 
The login process reads your password; if it is incorrect the process 
dies, and init spawns another getty on your terminal. If you enter a 
valid password, login then runs a shell, which inherits your termi­
nal, your identity and your access permissions. 

When your login shell finishes, there are no processes left attached 
to your terminal, so init respawns another getty to wait for a login. 
Thus, while the system is in multiuser mode, each terminal continu­
ally executes a four stage cycle: init-getty-Iogin-shell. 

User's Guide 



Understanding filesystems and devices 

It is not uncommon for a system to remain in multiuser mode for 
days or weeks at a time. However, it is necessary for the system 
administrator to shut it down for maintenance at regular intervals. 
(Performance is likely to suffer if a system is kept running for several 
weeks without a shutdown.) 

Shutdown 
When the administrator shuts down a system, it follows a set pro­
cedure. Because the system may be supporting a number of users, 
warning messages are broadcast to all terminals before a shutdown. 
After a short time, init switches to run level 1, killing all the pro­
cesses linked to terminals and flushing and unmounting all the 
mounted filesystems. The buffer cache is then flushed (by the sync 
program), and the system drops to run level 0, or shutdown. 

It is important to understand that unless you are running on a multiprocessor 
system only one process is actually being executed at any given instant. 
Although the system is multitasking, a single processor can only carry out one 
instruction at a time. 

The kernel effectively mediates the demands of each process, by scheduling 
the processes to run one after another. The signal for the kernel to take over is 
sent by the system clock; every hundredth of a second the kernel wakes up 
and checks to see if the current process has had its time allocation. If so, the 
kernel suspends the process and switches execution to the process on the 
queue with the highest priority. 

The kernel also mediates all requests for memory and requests to load and 
run other processes. The requesting process (be it init or any other process) 
issues a "system call", a request to the kernel to deliver a service; it then 
suspends execution (sleeps) until the kernel can deliver the requested facility. 

Understanding filesystems and devices 

As mentioned above, the UNIX system provides access to information by 
mapping it within a notional name space. A name space is simply an abstract 
space within which all entities are identified by name; items existing in the 
system name space are files of data (including directories), and special files 
(such as devices) which provide access to hardware devices such as tapes, ter­
minals or hard disks. Given the name of an entity, the kernel can retrieve it 
and read its associated data. However, the fact that the entities can all be 
referred to by the same method should not be confused with equivalence; 
devices, although they look like files, are not files. 

403 



An overview of the system 

Files and filesystems 

404 

At the most fundamental level, a file in the UNIX system is a collection of zero 
or more bytes of information, which can be referred to by name. Files are used 
to impose a partitioning strategy on the information stored by the computer; 
in general, the contents of a file relate to a single program, a single database, 
or a single document, which can then be referred to by name. It is possible to 
impose an arbitrary structure on the contents of a file, but the file is essentially 
the main, atomic unit of information in the filesystem. 

Files are themselves partitioned by directories. A directory is simply a file that 
contains a list of other files, and some other information that indicates where 
exactly the files are stored. 

At the physical level, a hard disk drive bears little resemblance to a UNIX 
system file hierarchy. Data is stored as magnetic field patterns on the surfaces 
of a set of spinning platters; read/write heads (similar to those of a tape 
recorder) move across the platters and read the magnetic field patterns, con­
verting them into a stream of bytes which is then fed to the system. The sur­
faces of the disks are divided into concentric tracks and radial sectors within 
each track; the same track on each platter of a multi-platter hard disk is called 
a cylinder. 

(The same terms are applied to floppy disks, although they have only two 
sides. Tapes, on the other hand, are divided up into blocks, running length­
wise along the tape, which correspond to sectors on a disk.) 

The smallest unit of data that a hard disk can read is a single sector of a given 
track. Each sector stores a fixed number of bytes, usually in the range 512 to 
8192. Therefore, at some stage, the UNIX system must be able to work out 
from a given filename on which tracks and sectors the data within a file is 
stored at, and retrieve that data. There is no direct mapping between the 
filename and the physical location of its data on a disk. 

Because files can be stored on a variety of media, it is necessary for the system 
to provide a uniform method for referring to files, and this is the purpose of 
the filesystem. 

The term IIfilesystem" is used in two contexts. In the first it indicates a hierar­
chy of directories and files on a disk, which is "mounted" on (connected to) 
another file system so that it appears as a subdirectory of the first filesystem. 
(The directory where the filesystem is mounted is called the mount point.) In 
the second context, it is a more abstract term; a filesystem is a system for map­
ping from the name of a file to the physical location of its data on a mountable 
medium. 

User's Guide 



Understanding filesystems and devices 

In general, a filesystem consists of three components: a superblock, an inode 
table, and a series of uniquely numbered blocks (corresponding to the sectors 
on the hard disk). The superblock is the first component of a filesystem. It con­
tains information about the type of the filesystem, its structure, and its size, 
including where the inode table is, and how many data blocks there are. 

I nodes 
The inode table starts immediately after the superblock. It contains a fixed 
number of inodes (pronounced "i-node"), which are data records identified 
only by number; each inode contains information about permissions, owner­
ship, type, the number of bytes in the file, and a number of slots which point 
to data blocks in the filesystem. Every file on the system has an inode which 
is associated with it: given an inode number it is possible to retrieve all the 
data blocks associated with that inode, simply by looking at the data block 
entries in the inode's record. If the file the inode defines is very big, the inode 
may contain pointers to an extension block, which contains more slots identi­
fying the components of the file. If the file is huge, the extension block may 
point to further extension blocks that identify its data blocks. 

The first inode in the inode table corresponds to the root directory. A direc­
tory is simply a file that contains a list of filenames and their associated 
inodes. Thus, when you give the system the name of a file you want to access, 
it looks in the directory to identify its corresponding inode, then reads the 
inode to identify the data blocks it needs to retrieve. If the file is large, it looks 
in the extension blocks to find the other blocks it needs. 

To locate a file in another directory, the system looks up each directory in 
turn, identifies the inode of the subdirectory, then looks in that subdirectory 
until it finds the file. If a directory file is so large that some of its data blocks 
are referenced indirectly through an extension block, it may take longer to 
retrieve the inode number of the file; therefore it is desirable to keep the num­
ber of entries in a directory file to less than 640 files (if filenames are less than 
12 characters long). (Note that when you delete a file, all that happens is that 
you erase the inode number associated with its name in the current directory. 
The contents of the inode are not cleared, because the inode may be referred 
to by another name, or link, in another directory. The inode contains a count 
of the number of links to it. When the last link is destroyed, the inode is added 
to a list of free nodes and can be reused.) 

Caching 
To speed access to the filesystem, the kernel maintains a buffer cache in mem­
ory. (The speed with which the computer can read its memory is of the order 
of a million times as fast as the speed at which it can retrieve data from a 
disk.) 

405 



An overview of the system 

The cache contains the contents of the disk blocks that have been read from or 
written to most recently. Whenever a block is read, it is stored in the cache, 
because the most recently read blocks are also those which are most likely to 
be read or written to next. Every few minutes, the system purges the cache, 
writing any recently changed buffers to the disk; alternatively, if a large num­
ber of writes accumulate, filling the cache, it may force a purge. 

In general the buffer cache significantly improves the performance of the 
UNIX system, but there is a cost. Because some of the recent writes to the file­
system are stored in memory rather than written straight out to the disk, a 
power failure or crash can result in the filesystem being corrupted: that is, the 
inodes may not contain the correct data blocks for their files, the list of free 
inodes may be incorrect, and the data stored in the most recently written files 
may also be incorrect. This is why it is vital to follow a careful shutdown pro­
cedure and not simply switch the computer off while it is running the seo 
OpenServer system. 

Because the operating system has evolved over time, it is capable of support­
ing a number of different types of filesystem. The main differences between 
them are their speed, efficiency, size of data blocks, capacity, and history; in 
general it is sufficient to stick to the standard EAFS file system which offers 
long filenames and symbolic links, but the earlier systems are provided to 
maintain compatibility with older software installations. The system can also 
support the DOS filesystem structure, which is less efficient than the standard 
ones. (DOS does not support multiple names for files, long filenames, or a 
buffer cache.) 

It is not uncommon for a UNIX system to have several filesystems mounted on 
it at once. To understand how this works, you need to understand device files. 

Device files 

406 

As mentioned above, within the UNIX system name space, files and devices 
look similar. For example, the commands cat /dev/UyOl and cat myfile both 
produce a stream of output. However, there is a difference between these two 
commands; their apparent equivalence is the result of some intricate work on 
the part of the operating system. 

A device file is a special type of file. Rather than pointing to an inode which 
points to some data blocks, a device file points to an inode that contains some 
associated information: a major device number (which defines the type of de­
vice it is connected to), and a minor device number (which identifies a partic­
ular device of that type). When you carry out a file operation on a device file, 
the system uses the major number to determine which device driver to use to 
read data from or write data to the device. (The minor number is used inter­
nally by the device driver.) 

User's Guide 



How to think about system tools 

Device files are created with mknod and cannot be manipulated like ordinary 
files, although you can rename them or create links to them. 

Device files are typically kept in the directory /dev. They include identifiers 
that can be used to read from and write to kernel memory (/dev!kmem), hard 
disk drives (in "raw" or "block" mode, for example /dev/rhdOO for raw access to 
drive unit 0), and all the terminals, floppy disk drives, tape drives, and other 
components of the computer. Block devices write through the cache, provid­
ing fast, high level access. Raw device files bypass the buffer cache but are 
more flexible. Raw devices are therefore sometimes used by special applica­
tions like databases, which maintain their own high performance cache for the 
hardware they use for data storage. 

This has some useful applications. You can send messages to a terminal by 
redirecting the output of a cat command to that terminal's device file. Alterna­
tively, you can mount a filesystem on a subdirectory of your root filesystem, 
transparently adding another disk drive to the system. All you need do is cre­
ate an empty subdirectory, then issue the mount command with the device 
file that refers to the additional filesystem as one of the parameters. The new 
filesystem is then invisibly attached to the root file system at the mount point 
you created. 

As noted above, links between files are simply filenames that share the same 
inode. Inodes are only unique within a given filesystem. It is therefore impos­
sible for a normal link to cross a filesystem boundary. However, a symbolic 
link can be used instead. A symbolic link is created using the -s flag to In; 
instead of pointing to the inode of the file, the symbolic link points to a short 
file containing a reference to the file system and ina de of the linked file. 

While device files may seem somewhat obscure, they are one of the most 
important features of the operating system because they allow you to extend 
it. Your system administrator can add components to the computer, then cre­
ate a device file through which they can be accessed. This is one of the ways in 
which the UNIX system is uniquely scalable. 

How to think about system tools 

Having toured the operating system at the service level, you can now see 
more clearly how the tools it provides are able to work together. Because all 
files and devices are equivalent, it is possible to provide software tools that 
have a uniform interface. The generic UNIX system tools see any file or device 
as a stream of bytes coming from a standard input. Their function is simple; 
they carry out some transformation on the stream of bytes, and send the 
results to an output stream which may be another file or a device like a 
terminal. 

407 



An overview of the system 

408 

One of the main design goals of the UNIX system was to enforce this 
equivalence. A secondary goal was to promote flexibility. There are no 
obvious limits to the ways in which tools can be connected via pipes and shell 
scripts. It is possible in principle to take the output from any program and 
feed it to the same program as input; it might not be sensible to do so, but it is 
at least practical. (Under some other operating systems which enforce rules 
governing file types, it is impossible to do this.) It is therefore possible to con­
struct self-modifying programs, or arbitrarily complex programs operating 
repeatedly on the same data files, from first principles using the tools pro­
vided with the system. 

In addition to having standardized inputs and outputs, the software tools fol­
Iowa design philosophy. Each tool was originally designed to do one task, 
and to do it as efficiently as possible. This is still visible in the default behavior 
of many of the programs. For example, grep is designed to search for regular 
expressions (patterns) in text. Its behavior can be modified by various flags, 
but in principle it will perform adequately with no arguments other than a 
pattern to search for and a stream to read its input from. Consequently, there 
are a number of lowest common denominator standards that ensure that 
almost all UNIX-like operating systems can be used to run the same shell 
scripts, as long as they are written with the standards in mind and do not use 
the specific value-added features of the operating system tools. 

Some of the tasks carried out by the system tools are quite complex. A lot of 
research into the theory of computer languages went into the early develop­
ment of the UNIX system at the Bell Telephone Laboratories and various 
universities. Consequently, a number of "power tools" are provided which, on 
any other system, would be considered to be programming languages in their 
own right. Other tools are unambiguously recognized as languages. To a 
large extent, these tools share a common core syntax that demonstrates their 
common ancestry. If you learn the C programming language, you will see 
great similarities with the C shell and awk; if you take care to learn the regular 
expression syntax recognized by egrep and the search and replace operations 
of vi you will have little difficulty generalizing them to basic commands in 
sed and pattern matching commands in awk. 

While the body of knowledge you need to master is not small, there are simi­
larities between apparently different tools. After a while, you will be able to 
learn new system utilities by analogy with those which you are already fami­
liar with. This is the basis of a comprehensive understanding of the sea 
OpenServer system. 

User's Guide 



Appendix B 

vi commands 

The following tables contain all the basic vi commands. 

Starting vi 

Command 

vi file 
vi +nfile 
vi + file 
vi + /pattern file 
vi -r file 

Saving files and quitting vi 

Command 

:efile 
:w 
:w file 
:w!file 
:q 
:wq 
:x 
:q! 

Description 

start at line 1 of file 
start at line n of file 
start at last line of file 
start at pattern in file 
recover file after a system crash 

Description 

edit file (save current file with :w first) 
save (write out) the file being edited 
save as file 
save as an existing file 
quit vi 
save the file and quit vi 
save the file if it has changed and quit vi 
quit vi without saving changes 

409 



vi commands 

410 

Moving the cursor 

Keys pressed 

h 
lor (Space) 
k 
j or (Enter) 
b 
w 
( 
) 
{ 
} 
IG 
nG 
G 
(Ctrl)W 
(Ctrl)U 
(Ctrl)D 
(Ctrl)B 
(Ctrl)F 

Inserting text 

Keys pressed 

a 
A 

I 
o 
o 

Changing and replacing text 

Keys pressed 

cw 
3cw 
cc 
Scc 
r 
R 
s 
S 

Effect 

left one character 
right one character 
up one line 
down one line 
left one word 
right one word 
start of sentence 
end of sentence 
start of paragraph 
end of paragraph 
top of file 
linen 
end of file 
first character of insertion 
up Yz screen 
down Yz screen 
up one screen 
down one screen 

Text inserted 

after the cursor 
after last character on the line 
before the cursor 
before first character on the line 
open line below current line 
open line above current line 

Text changed or replaced 

word 
three words 
current line 
five lines 
current character only 
current character and those to its right 
current character 
current line 
switch between lowercase and uppercase 

User's Guide 



Deleting text 

Keys pressed 

x 
12x 
X 
dw 
3dw 
dO 
d$ 
dd 
5dd 
d{ 
d} 
:1,. d 
:.,$d 
:l,$d 

Using markers and buffers 

Command 

mf 
'f 
'f 
"s12yy 
"ty} 

"ly1G 
"kd'f 

"kp 

Text deleted 

character under cursor 
12 characters 
character to left of cursor 
word 
three words 
to beginning of line 
to end of line 
current line 
five lines 
to beginning of paragraph 
to end of paragraph 
to beginning of file 
to end of file 
whole file 

Description 

set marker named N f " 
go to marker N f" 
go to start of line containing marker" f " 
copy 12 lines into buffer N s " 
copy text from cursor to end of paragraph into 
buffer" t" 
copy text from cursor to top of file into buffer" 1 " 
cut text from cursor up to marker" f" into buffer 
"k" 
paste buffer N k " into text 

411 



vi commands 

Searching for text 

Search 

land 

?and 
lAThe 

IAThe\> 

lend$ 
I [bB]ox 
n 

N 

Finds 

next occurrence of Hand", for example, Hand", 
Hstand", "grand" 

previous occurrence of Hand" 
next line that starts with liThe", for example, "The", 
"Then", "There" 
next line that starts with the word "The" 
next line that ends with Hend" 
next occurrence of ~1Jox" or "Box" 
repeat the most recent search, in the same direction 
repeat the most recent search, in the opposite direc­
tion 

Searching for and replacing text 

Command 

:s Ipear Ipeachl g 

:/orange/sillemon/g 

: .,$ I \ <:file I directory I g 

:g/one/slll/g 

412 

Description 

replace all occurrences of "pear" with ~~peach" on 
current line 
change all occurrences of H orange" into "lemon" on 
next line containing" orange" 
replace all words starting with "file" by "directory" 
on every line from current line onward, for exam­
ple, "filename" becomes "directoryname" 
replace every occurrence of "one" with I, for exam­
ple, "oneself" becomes I/lself", H someone" becomes 
Hsomel" 

User's Guide 



Matching patterns of text 

Expression 

* 
.* 
\< 
\> 
\ 
\* 

$ 
[set] 
[XYZ] 

[[ :upper:]] [[ :lower: ]]* 

["set] 
["XYZ[: digit:]] 

Options to the :set command 

Option 

all 
ignorecase 
list 
mesg 
nowrapscan 

number 
report=5 
term=ansi 
terse 
warn 

Matches 

any single character 
zero or more of the previous expression 
zero or more arbitrary characters 
beginning of a word 
endofa word 
quote a special character 
the character" * " 
beginning of a line 
end of a line 
one character from a set of characters 
one of the characters" X ", " Y ", or " Z " 
one uppercase character followed by any number 
of lowercase characters 
one character not from a set of characters 
any character except" X ", "Y ", "Z ", or a numeric 
digit 

Effect 

list settings of all options 
ignore case in searches 
display (Tab) and end-of-line characters 
display messages sent to your terminal 
prevent searches from wrapping round the end or 
beginning of a file 
display line numbers 
warn if five or more lines are changed by command 
set terminal type to "ansi" 
shorten error messages 
display ~/[No write since last change]" on shell 
escape if file has not been saved 

413 



vi commands 

414 User's Guide 



Appendix C 

DOS command equivalents 

This appendix contains a table showing some common MS-DOS commands 
and their sea OpenServer system equivalents. 

For more information about any of the sea OpenServer system commands, 
consult the Operating System User's Reference. 

The commands listed below are for working with SCo OpenServer system 
files. If you have DOS installed on the same machine as your sea OpenServer 
system, you can access your DOS files from within the sea OpenServer sys­
tem. For more information about accessing DOS files, see Chapter 6, "Working 
with DOS" (page 173) and doscmd(C) in the Operating System User's Reference. 

415 



DOS command equivalents 

DOS UNIX system 
command What it does equivalent Notes 

cd change directories cd(C) 

cIs clear the screen cIear(C) 

copy copy files cp(C), Use cp to copy files, copy to 
copy(C), copy directories, and tar to 
tar(C) copy files or directories onto 

floppy disks or tapes. 

date display the sys- date(C), On the UNIX system, date 
tem date and time cal(C) displays the date and the time. 

cal displays the date, the time, 
and a 3-month calendar. 

del delete a file rm(C) Be careful when using rm with 
wildcard characters, like rm *. 

dir list the contents Is(C) There are a variety of options 
of a directory to Is including Is -I to see a 

long listing, Is -c to see a list-
ing in columns, and Is -f to see 
a listing that indicates file 
types. 

diskcomp make a track-by- diskcmp(C) 
track comparison 
of two floppy 
disks 

diskcopy copy a source diskcp(C) 
disk to a target 
disk 

edlin line editor ed(C), vi is a full-screen text editor 
ex(C), with powerful search and 
vi(C) replace functions. ed and ex 

are predecessors of vi. 

fc compare two files diff(C), diff compares two text files. 
diff3(C), diff3 compares three text files. 
cmp(C) Use cmp to compare binary 

files. 

find find text within a grep(C) grep (global regular expres-
file sion parser) finds text within a 

file. The UNIX system's find (C) 
command finds files. 

(Continued on next page) 

416 User's Guide 



(Continued) 

DOS UNIX system 
command What it does equivalent Notes 

format format a disk format(C) See !etc!defaultlformat for the 
default drive to format. The 
format command formats a 
disk for use with UNIX system 
files. Use dosformat (see 
doscmd( C» to format a DOS 
disk. 

mkdir make a directory mkdir(C) 

more display output more(C) 
one screen at a 
time 

print print files in the Ip(C) Use Ip filename & to print in 
background the background. You can run 

any UNIX system command in 
the background by adding & 
(ampersand) to the end of the 
command line. 

ren rename a file mv(C) 

rmdir remove an empty rmdir(C) Use rm -r to remove a direc-
directory tory that is not empty. 

sort sort data sort(C) 

type display a text file cat(C), 
more(C) 

xcopy copy directories copy(C), Use tar if you want to copy 
tar(C) directories onto disk or tape. 

417 



DOS command equivalents 

418 User's Guide 



Appendix D 

Sample shell startup files 

This appendix contains sample listings and line-by-line explanations of the 
following shell startup files: 

Bourne shell (sh) .profile 

Korn shell (ksh) . profile 
.kshrc 

C shell (csh) .login 
.cshrc 

Line numbers have been added to all the file listings for purposes of explana­
tion; numbers do not appear in the actual files. 

The Bourne shell _profile 

The Bourne shell (sh) reads a single file in your home directory, the .profile. A 
typical Bourne shell .profile might look something like this: 

1 
2 # @(#) profile 23.1 91/04/03 
3 # 
4 # .profile 
5 # 

Commands executed by a login Bourne shell 

6 # Copyright (c) 1985-1995 The Santa Cruz Operation, Inc. 
7 # All rights reserved. 
8 # 
9 # This Module contains Proprietary Information of the Santa Cruz 
10 # Operation, Inc., and should be treated as Confidential. 
11 # 

419 



Sample shell startup files 

420 

12 PATH=$PATH:$HOME/bin:. # set command search path 
# mailbox location 13 MAIL=/usr/spool/mail/'logname' 

14 export PATH MAIL 
15 # use default system file creation mask 
16 eval 'tset -mansi:ansi -m :?${TERM:-ansi} -r -s -Q' 

line 1 

lines 2-11 

line 12 

line 13 

line 14 

line 15 

Contains a single colon that says "execute this script as a Bourne 
shell script." This is a convention for scripts written in Bourne 
shell, so C shells know to start a new sh to run the Bourne shell 
scripts. 

(c shells need to start Bourne shells to run Bourne shell scripts 
because they do not understand the Bourne shell language. The 
Korn shell, however, is compatible with the Bourne shell, so you 
can use most Bourne shell scripts in the Korn shell without a 
problem.) 

Contain comments. Each line that starts with a number sign (#) 
is a comment. The shell ignores these lines. In this case, lines 
2-11 contain sca copyright information. 

Sets the path. It says, "set the path equal to the current path, 
plus the bin in the home directory, plus the current directory (.)." 
Setting the path to the existing path presumes there is a system­
wide !etclprofile that sets up a path definition for all users. The 
path definition in !etclprofile would contain the usual command 
directories, such as /bin and /usr/bin. 

Tells the shell where to find mail. The' logname' in backquotes 
tells the shell to substitute the output of the command 
logname(C), which returns a user's login name. Because' log­
name' is used instead of a particular login name, this script works 
for any user. 

Tells the shell to export the PATH and MAIL settings to all its 
subshells. This guarantees that if you type sh to start a new 
Bourne shell, the new Bourne shell has the same path definition 
and mail setup as your login Bourne shell. 

Contains a comment, like lines 2-11. This comment tells us that 
login Bourne shells use the default system file creation mask, 
which is set in /etclprofile. This explains why there is no umask 
setting in this .profile. 

User's Guide 



The Korn shell.profile and .kshrc 

line 16 Sets up the terminal type, using the tset(C) (terminal setup) com­
mand. tset sets your terminal type, as well as the erase and kill 
characters for your terminal. 

This tset command says "check if this serial line is mapped to 
ansi in the /etc/ttytype file; if it is, set the terminal type to ansi. 
Otherwise, prompt the user with TERM: ansi." The -r option 
prints the terminal type on the screen, -s exports the terminal 
type to any subshells, and -Q suppresses the Erase set to ... , 
Kill set to '" messages that tset would otherwise show. 
The tset command is enclosed in backquotes and preceded by 
the shell command eval to guarantee that all necessary substitu­
tions are made within the tset command before it is evaluated by 
the shell. 

The Korn shell .profile and .kshrc 

The Korn shell uses two startup files, the .profile and the .kshrc. The .profile is 
read once, by your login ksh, while the .kshrc is read by each new ksh. 

A typical Korn shell .profile might look something like this: 

1 
2 # @(#) profile 23.1 91/04/03 
3 # 
4 # .profile 
5 # 

commands executed by a login Korn shell 

6 # Copyright (c) 1990-1995 The Santa Cruz Operation, Inc. 
7 # All rights reserved. 
8 # 
9 # This Module contains Proprietary Information of the Santa Cruz 
10 # Operation, Inc., and should be treated as Confidential. 
11 # 
12 PATH=$PATH:$HOME/bin:. 
13 export PATH 
14 if [ -z "$LOGNAME" li then 
15 LOGNAME='logname' 
16 export LOGNAME 
17 fi 

# set command search path 

# name of user who logged in 

421 



Sample shell startup files 

422 

18 MAIL=/usr/spool/mail/$LOGNAME 
19 export MAIL 
20 if [ -z "$PWD" ]; then 
21 PWD=$HOME 
22 export PWD 
23 fi 

# mailbox location 

# assumes initial cwd is HOME 

24 if -f $HOME/ .kshrc -a -r $HOME/.kshrc ]; then 
25 ENV=$HOME/.kshrc # set ENV if there is an rc file 
26 export ENV 
27 fi 
28 # use default system file creation mask (umask) 
29 eval 'tset -m ansi:ansi -rn $TERM:?${TERM:-ansi} -r -s -Q' 
30 # If job control is enabled, set the suspend character to AZ (control-z): 
31 case $- in 
32 *m*) stty susp ,A Z ' 

33 , , 
34 esac 
35 set -0 ignoreeof 
36 case $LOGNAME in 

# don't let control-d logout 
# include command number in prompt 

37 root) PS1="! # " " 
38 *) PS1="!$"" 
39 esac 
40 export PS1 
41 /tcb/bin/prwarn # issue a warning if password due to expire 

line 1 

lines 2-11 

line 12 

line 13 

Contains a single colon that says "this is a Bourne shell script." 
Even though this is a startup script for the Korn shell, the 
authors have chosen to use the more common syntax of the 
Bourne shell programming language. This single colon com­
mand is more portable than the (preferred) newer hash-bang 
syntax. It is equivalent in function to the line: 

#! /bin/sh 

Contain comments. 

Sets the path definition in exactly the same way as the preceding 
Bourne shell .profile: "set the path equal to the current path, the 
bin in the home directory, and the current directory." 

Exports the path to any subshells. This way, you do not have to 
include a path definition in your .kshrc. 

User's Guide 



The Korn shell .pro file and .kshrc 

lines 14-17 Set up a variable called LOGNAME, which is used in the follow­
ing MAIL setting (line 18). Literally, these lines say "if checking 
for the value of LOGNAME returns a zero-length string (that is, if 
LOGNAME is not set), then set LOGNAME to the output of the 
logname command. Then, export the LOGN AME variable to all 
subshells." 

line 18 Tells the shell where to look for mail, using the variable LOG­
NAME. 

line 19 Exports the mail location to all subshells. 

lines 20-23 Check to see if a variable is already set, and if it is not, set the 
variable. These lines are similar to lines 14-17. In this case, PWD 
is being set to the home directory. 

lines 24-27 Check for a .kshrc file in the home directory, and set the ksh vari­
able ENV to this file if it exists. ksh looks in the file pointed to by 
the ENV variable to set up the environment for every new ksh; 
you need to tell it explicitly to look in -/.kshrc for ENV definitions. 
Literally, these lines say "if a file called .kshrc exists in the home 
directory and the file is readable, then set ENV to point to this 
file, and export ENV." 

line 28 Contains a comment. Just as in the preceding Bourne shell 
.profile, umask is not set here. The authors have chosen to use 
the default system umask rather than resetting it on a per-user 
basis. 

line 29 Sets up the terminal type using tset(C), as explained in the 
preceding Bourne shell.profile. 

lines 30-34 Test to see if job control is enabled, and if it is, set the suspend 
character to (Ctrl)Z. Job control is a Korn shell feature that lets 
you move jobs you are processing from the foreground to the 
background and vice versa. You use the suspend character to 
suspend a job temporarily that is running in the background. 

line 35 Tells the shell to ignore single end-of-file (EOF) characters. This 
is what you set to stop (Ctrl)D from logging you out. 

lines 36-40 Set up the prompt based on the value of LOGNAME. For normal 
users, the prompt is the current command number followed by a 
"$"; for root (the superuser), the prompt is the current command 
number followed by a JJ # ". 

line 41 Runs the command prwam(C), which warns you if your pass­
word is due to expire soon. 

423 



Sample shell startup files 

A typical .kshrc might look like this: 

1 
2 it 

3 it .kshrc 
4 it 

-- Commands executed by each Korn shell at startup 

5 it @(it) kshrc 1.1 90/03/13 
6 it 

7 it Copyright (c) 1990-1995 The Santa Cruz Operation, Inc. 
8 it All rights reserved. 
9 it 

10 it This Module contains Proprietary Information of the Santa Cruz 
11 it Operation, Inc., and should be treated as Confidential. 
12 it 

13 it If there is no VISUAL or EDITOR to deduce the desired edit 
14 it mode from, assume vi(C}-style command line editing. 
15 if [ -z "$VISUAL" -a -z "$EDITOR" l; then 
16 set -0 vi 
17 fi 

line 1 Tells the shell that this is a Bourne shell script by starting the 
script with a single colon, as you have seen before. 

lines 2-14 Contain comments. These make up the bulk of this brief .kshrc. 

lines 15-17 Set up vi(C) as the default editor ksh uses when you want to edit 
a command line. Literally, these lines say "If the VISUAL vari­
able is not set, and the EDITOR variable is not set, then tum on 
(set -0) the vi option." 

The C-shell .login and .cshrc 

424 

The C shell, like the Korn shell, uses one file to set up the login environment 
and a different file to set up environments for every subsequent C shell. In C 
shell, .login is the file read only at login, and .cshrc is the file read each time a 
csh is started. 

While both the Bourne shell and the Korn shell use Bourne shell startup 
scripts, the C shell uses C-shell startup scripts, so you will notice that vari­
ables are set and tests are performed slightly differently. C-shell scripts do not 
start with a " : " because they are intended for use with C shells, not Bourne 
shells. 

User's Guide 



The C-shel/ .Iogin and .cshrc 

A typical C-shell.login might look something like this: 

1 # @(#) login 23.1 91/04/03 
2 # 
3 # .login Commands executed only by a login C-shell 
4 # 
5 # Copyright (c) 1985-1995 The Santa Cruz Operation, Inc. 
6 # All rights reserved. 
7 # 
8 # This Module contains Proprietary Information of the Santa Cruz 
9 # Operation, Inc., and should be treated as Confidential. 
10 # 
11 setenv SHELL /bin/csh 
12 set ignoreeof # don't let control-d logout 
13 set path = ($path $home/bin .) 
14 set noglob 

# execution search path 

15 set term = ('tset -m ansi:ansi -m :?ansi -r -S -Q') 
16 if ( $status == 0 ) then 
17 setenv TERM "$term" 
18 endif 
19 unset term noglob 
20 /tcb/bin/prwarn # issue a warning if password due to expire 

lines 1-10 Contain comments. 

line 11 Sets the environment variable SHELL to be /bin/csh. 

line 12 Tells csh to ignore single end-of-file (EOF) characters; in other 
words, do not let (Ctrl)D log out, as the comment says. 

line 13 Sets the path definition in the same way as the preceding Bourne 
shell.profile: "set the path equal to the current path, the bin in the 
home directory, and the current directory." 

line 14 Turns on the noglob setting. The noglob setting, which prevents 
filename expansion, is turned on before a tset( C) command is 
attempted (on line 15). Without noglob, the tset command 
would be read incorrectly. 

lines 15-19 Set up your terminal type using tset. Line 15 is the tset com­
mand you have seen before. Line 16 tests to make sure the tset 
command succeeded and, if it did, line 17 sets the environment 
variable TERM. Line 18 closes the if statement. Line 19 unsets 
the term variable and turns off noglob, so filenames now expand 
as expected when wildcard characters are used. 

line 20 Runs prwarn to warn you if your password is due to expire. 

425 



Sample shell startup files 

A typical .cshrc might look like this: 

1 # 

2 # .cshrc 
3 # 

-- Commands executed by the C-shell each time it runs 

4 # @(#) cshrc 3.1 89/06/02 
5 # 
6 # Copyright (c) 1985-1995 The Santa Cruz Operation, Inc. 
7 # All rights reserved. 
8 # 
9 # This Module contains Proprietary Information of the Santa Cruz 
10 # Operation, Inc., and should be treated as Confidential. 
11 # 

12 set noclobber 
13 set history=20 
14 if ($?prompt) then 
15 set prompt=\!%\ 

# don't allow'>' to overwrite 
# save last 20 commands 

# set prompt string 
16 # some BSD lookalikes that maintain a directory stack 
17 if (! $?_d) set _d = () 
18 alias popd 'cd $_d[l]; echo ${_d[l]}:; shift _d' 
19 alias pushd 'set _d = ('pwd' $_d); cd \!*' 
20 alias swapd 'set _d = ($_d[2] $_d[l] $_d[3-])' 
21 alias flipd 'pushd.; swapd ; popd' 
22 endif 
23 alias print 'pr -n \!:* IIp' # print command alias 

lines 1-11 Contain comments. 

line 12 Turns on noc1obber, which prevents you from unintentionally 
overwriting files using output redirection. 

line 13 Sets the length of the command history to 20 commands. Both 
ksh and csh keep track of old commands and allow you to re-use 
them. 

lines 14-15 Check to see if the prompt string is set, and, if it is not, set it to be 
a 11%". 

lines 16-22 Set up some command aliases to perform directory stack mani­
pulation. These commands are familiar to users of the Berkeley 
(Berkeley Standard Distribution - BSD) UNIX system. 

line 23 Sets up the print alias, which runs files through the pr(C) print 
program before sending them to the printer. 

426 User's Guide 



Appendix E 

Further reading 

This book is too short to do more than provide an introduction to the field of 
UNIX system programming. Many of the tools described here are complex 
enough to warrant one or more books to themselves. Although further infor­
mation is available in the Operating System User's Reference you may wish to 
look elsewhere for advanced tuition on the programming tools covered in this 
book. 

Learning awk 

The first place to look for detailed information about the awk programming 
language is The AWK Programming Language (Alfred V. Aho, Brian W. Ker­
nighan and Peter J. Weinberger; Addison-Wesley, 1988). This is the "canoni­
cal" (definitive) book on awk; the authors are the original developers of the 
language. It contains a tutorial, a detailed definition of the language, and a 
series of applications ranging from the simple to the highly technical. 

A second book on awk is sed & awk (Dale Dougherty; O'Reilly & Associates, 
Inc., 1991). This book contains an overview and tutorial in the use of each of 
these programs. 

Learning sed 

The canonical reference to sed is a technical paper, sed - a Non-interactive Text 
Editor, by L. E. McMahon, reprinted in Volume 2 of the UNIX Research System 
Manual, tenth edition, (Saunders College Publishing, 1992). 

As the preceding paper is rather dry, you may prefer to consult the book sed & 
awk (described above). 

427 



Further reading 

Learning the shells 

As each of the shells has achieved prominence, so a definitive book has been 
published that describes them. These books are not necessarily the most read­
able ones on the subject, but they are the most authoritative (because at the 
very least they were co-written by the developer of the shell). 

For the Bourne shell, the book is The UNIX System V Environment (S. R. 
Bourne; Addison-Wesley, 1987). This book covers the Bourne shell program­
ming language and provides an introduction to the other software tools 
which are used in conjunction with it. 

For the Korn shell, the book is The Korn Shell command and programming lan­
guage (Morris I. Bolsky and David G. Korn; Prentice-Hall, 1989). This is the 
standard reference to the Korn shell, and contains a tutorial and detailed 
description of the programming language supported by the shell. 

Another useful book on the Korn shell is Learning the Korn Shell (Bill Rosen­
blatt; O'Reilly & Associates, Inc., 1993). 

Learning the C programming language 

428 

The C programming language has not been described in this manual. C is pro­
vided as part of the sea OpenServer Development System, and is most useful 
to professional programmers wishing to write high-performance software. 
Nevertheless, C is of vital importance to the programs described in this manu­
al. The UNIX system has traditionally been written in C, and the shells and 
awk embody many of the constructs of the C programming language; awk in 
particular resembles a special-purpose subset of C that has been tuned for the 
purpose of text scanning. The influence of the C programming language is 
pervasive, and a lot of the superficially peculiar features of the UNIX system 
make much more sense when viewed with a working knowledge of this lan­
guage. 

Readers who wish to explore the UNIX architecture thoroughly or become 
programmers may want to learn C. The traditional starting place is the "white 
book," The C Programming Language (Dennis Kernighan and Brian Ritchie; 
Second Edition, Prentice-Hall Software Series, 1988). The first edition of this 
book documents the original LlK&R" dialect of the C programming language; 
the second edition has been updated to include the ANSI extensions to the lan­
guage. The book contains a tutorial in C, followed by a detailed reference, a 
brief discussion of the UNIX system interface, and the standard library. 

There are innumerable other books about C, but this one has the advantage of 
having been written by the author of the language; it is generally regarded as 
the standard text on the subject. 

User's Guide 



Understanding the UNIX system 

While these books explain individual systems in detail, they do not in general 
attempt to provide an understanding of the philosophy of the system, includ­
ing an explanation of how the UNIX system was designed and integrated. 

There are two approaches to understanding UNIX, besides understanding it as 
a user. The first approach is the system level approach, which attempts to 
explain the system in terms of the services it provides to applications, and 
covers the API (Application Program Interface) of the operating system in 
some depth. This is most useful to programmers wishing to develop applica­
tions that can take full advantage of the UNIX environment. 

A useful example of this type of book is Advanced UNIX Programming (Marc 
Rochkind; Prentice-Hall, 1985). This book presupposes a familiarity with the 
C programming language. On that basis, it conducts the reader on a guided 
tour of the intricacy of UNIX system programming, with a chapter by chapter 
overview of the function calls available to user programs. There are many 
other books of this type; this one was one of the first detailed explanations of 
UNIX system programming. 

The second approach to understanding the UNIX system is the internals 
approach, which provides the reader with a detailed explanation of how the 
internal subsystems of the UNIX operating system were designed, and how 
they carry out their functions. This course of study almost certainly requires a 
basic knowledge of operating systems theory and computer science before it 
can be made use of, but provides the suitably equipped reader with a total 
understanding of what the UNIX operating system was designed to achieve, 
and how it succeeds. 

The classic text following this approach is The Design of the UNIX Operating 
System (Maurice J. Bach; Prentice Hall, 1986). Bach provides a detailed exposi­
tion of the design elements of the UNIX system kernel, including information 
on how processes are scheduled, how memory is managed, and how the API 
is presented to the applications run on the system. 

For a more introductory text (but one for which a knowledge of the C pro­
gramming language is still required), see Operating Systems: Principles and 
Practice (Andrew S. Tannenbaum; Prentice-Hall). This book does not cover the 
UNIX system as such, but it provides a first undergraduate course in the 
theory and practice of operating systems from a very UNIX system-like per­
spective. The centerpiece of the book is the kernel of an operating system 
called Minix, which is a small system developed for teaching purposes. The 
principles explained in this book are almost entirely applicable to the world of 
UNIX systems, and it has the advantage (for those who are new to operating 
systems theory) of explaining the central concepts as it goes along. 

429 



Further reading 

430 User's Guide 



Glossary 

absolute mode 
A method of changing file permissions using 3-digit octal numbers. For 
example, to add group write permission on a file called report using absolute 
mode, type chmod 664 report. Note that you must be root or the owner of the 
file to change permissions on that file. You can also change permissions using 
symbolic mode. 

absolute pathname 
A pathname for a file or directory that begins at the root directory. Every 
absolute pathname begins with a slash character (/), which stands for the root 
directory. See also pathname and relative pathname. 

application 
A computer program that performs a particular task. Word processing, 
spreadsheet, and database programs are all applications. See also Applica­
tions list. 

Application folder 
A sublist on the main Applications list, which usually includes a list of related 
application programs. An Application folder can contain applications and 
other application folders. See also Applications list. 

Applications list 
The list of available applications and application folders that is displayed on 
the main sea Shell screen. See also application and Application folder. 

archive 
To place a file or group of files in a form convenient for storage on backup 
media such as floppy disks or tape. Normally, you archive backup files or 
files that are important but not often used. Such files can be copied to and 
from backup media using the Archive option on the File menu. See also 
backup. 

argument 
A word you type on the command line that is separated by a space from the 
command itself. A command can have more than one argument. Arguments 
tell a command how to you want it to work. For example, If -a; the -a option 
tells the 1£ file listing program that you want it to show all files. These types 
of arguments are also known as options or flags. Arguments can also tell a 
command what you want it to work on: for example, 1£ -a Itmp/spell.out tells 
1£ to list the file /tmp/spell.out if it exists. 

431 



Glossary 

432 

ASCII 

The American Standard Code for Information Interchange is a standard way 
of representing characters on many computer systems. The term "ASCII file" 
is often used as a synonym for "plain text file," that is, a file without any 
special formatting, which can be viewed using UNIX system utilities such as 
cat(C), more(C), and vi(C). 

attribute 
Attribute bits are set on a file to control which users have permission to read, 
write, or execute it. See permissions. 

backup 
A copy of one or more files, directories, or filesystems that is stored apart 
from the original to safeguard against unplanned deletion. Used as a verb, it 
means to create a backup copy. The Archive option on the File menu allows 
you to copy files to backup media for safekeeping. See also archive. 

Boumeshell 
A UNIX system shell, named after its author, Steven R. Bourne. To start a 
Bourne shell from the command line, type sh and press (Enter). 

buffer 
An area of computer memory used to store information temporarily before it 
is written out to a more permanent location, like a file. 

e shell 
An alternative UNIX System V shell supplied with the SCO OpenServer sys­
tem. This shell, written by William Joy at the University of California at 
Berkeley, is known for its interactive features, such as the ability to recall and 
modify previous command lines. The C shell shell programming language 
has a syntax like that of the C language, hence the name. C shell is the stan­
dard shell on older versions of the Berkeley UNIX operating system found at 
many universities. To start a C shell from the command line, type csh and 
press (Enter). 

command alias 
An alternative name for a command. When you type the alias, the command 
is substituted for the alias. Aliases are useful when you remember commands 
by names other than their UNIX system names; for example, DOS users may 
think of dir rather than Is when they want to list a directory. Aliases are also 
useful for creating commands that perform several UNIX system commands 
at once. See the Operating System User's Guide for more information. 

command line 
The instructions you type next to the shell prompt. Command lines can 
contain commands, arguments, and filenames. You can enter more than one 
command on a command line by joining commands with a pipe (I), or by 
separating commands using the command separator (;). The shell executes 
your command line when you press (Enter). 

User's Guide 



command separator 
The semicolon (;) serves as a command separator on the UNIX system. If you 
want to issue several commands on one line, separate the commands with 
semicolons before you press (Enter). For example, type Is; pwd and press 
(Enter) to list files and then print the working directory. Commands are 
executed in sequence as separate processes. 

current directory 
See current working directory. 

current working directory 
The directory where you are currently located. Use the pwd(C) command 
(print working directory) to see your current working directory. The current 
working directory is taken as the starting point for all relative pathnames. 
This directory is symbolically referred to as "." in directory listings. 

device 
Peripheral hardware attached to the computer such as a printer, modem, disk 
or tape drive, terminal, and so on. Devices in the SCO OpenServer system are 
controlled by device drivers which are linked into the kernel. 

directory 
Where the UNIX system stores files. Directories in the UNIX system . are 
arranged in an upside-down tree hierarchy, with the root (/) directory at the 
top. All other directories branch out from the root directory. The UNIX sys­
tem implements directories as normal files that store the names of the files 
within them. 

environment 
The various settings that control the way you work on the UNIX system. 
These settings are specific to the shell you use and can be modified from the 
command line or by modifying shell control files. For example, the directories 
the shell searches to find a command you type are set in the variable PATH, 
which is part of your environment. 

environment variable 
Special variables that modify your login shell behavior. Typical examples are 
PATH, which defines the directories in which the shell will search for files or 
commands, and PROMPT which determines the on-screen shell prompt mes­
sage. See also variable. 

error message 
A message informing you that the computer cannot perform the task you 
requested. The error message briefly describes the nature of the problem. 

file 
The basic unit of information on a UNIX filesystem. Regular files are usually 
either text (ASCII) or executable programs. Other types of files exist on the 
UNIX system such as directories, which store information about the files 
within them; device files, which are used by the system to access a particular 
device; and FIFO (First In First Out) pipe files, which are used to transfer data 
between programs. The attributes of each file are stored in the file's inode. 

433 



Glossary 

434 

See also directory. 

file descriptor 
A number associated with an open file; used to refer to the open file in I/O 
redirection operations. 

full pathname 
See also absolute pathname. 

group 
A set of users who are identified with a particular group ID number on the 
UNIX system. Typically, members of a group are coworkers in a department 
or on a project. Each file on the UNIX system also has a group associated with 
it; this group, along with the owner and the permissions controls who can 
access and modify that file. You can see the group of a file by listing the file 
with the I command. To find out your own group, use the id(C) command. 

home directory 
The place in the filesystem where you can keep your personal files and sub­
directories. When you log in, you are automatically placed in your home 
directory. Typically, this will be /u/loginname or /usr/loginname, where log­
inname is your login name. The shell's shorthand for the home directory is 
" -". See tilde expansion. 

inode 
The internal representation of a file, showing disk layout, owner, type (see 
file), permissions, access and modification times, size and the number of links. 
Each inode has a unique decimal identifier. 

kernel 
The central part of the UNIX operating system, which manages how memory 
is used, how tasks are scheduled, how devices are accessed, and how file 
information is stored and updated. 

Kornshell 
Written by David Kom, it is compatible with the Bourne shell, but provides a 
much wider range of programming features. The Korn shell also offers 
improved versions of many of the C shell's interactive features. To start a 
Korn shell from the command line, type ksh and press (Enter). See also 
Bourne shell and C shell. 

link 
A filename that points to another file. Links let you access a single file from 
multiple directories without storing multiple copies of the file. If you make a 
change to the content of a linked file, the change is reflected in each of the 
links. All links point to an inode. See also symbolic link. 

User's Guide 



literal 
A literal character or string is one that represents itself, that is, that can be 
taken literally (as opposed to a pattern, that represents some other characters). 
For a metacharacter to regain its literal value (for example, for * to mean an 
asterisk and not "zero or more characters") it must be "quoted". See quoting 
and wildcard. 

log in 
The way you gain access to a UNIX system. To log in, you enter your login 
name and password and the computer verifies these against its user account 
records before allowing you access. 

log out 
What you do after you have finished working on a UNIX system. You can log 
out by pressing (Ctrl)D, typing exit, or typing logout, depending on your shell. 

login name 
The name through which you gain access to the operating system. When you 
are logging onto the computer, you must enter this login name, followed by a 
password. 

login shell 
The shell that is automatically started for you when you log in. You can start 
to work in other shells, but your login shell will always exist until you log out. 

macro 
A collection of instructions or keystrokes that may be invoked using a single 
name or keystroke combination, used to automate regular and complex tasks. 

mail alias 
A single name used to send mail to several users at once. For example, many 
users have aliases set up for mailing to the entire company, single depart­
ments, or groups of individuals. 

manual page 
An entry in a UNIX reference manuaL These entries can be accessed online 
using the man( C) command. A letter in parentheses following a command or 
filename refers to the reference manual section where the command or file is 
documented. For example, the man(C) command is documented in section C, 
Commands, of the Operating System User's Reference. They are also called 
"man pages." 

mask 
A series of bit settings that "cover up" existing settings, only allowing some 
settings to show through, while masking out others. 

metacharader 
A special character that is replaced by matching character strings when inter­
preted by the shell. Metacharacters, which define the form of a string, and 
literal characters, which match only themselves, make up regular expressions. 

435 



Glossary 

436 

multitasking 
A system that can do several jobs at once. 

multiuser 
A system that can be used by more than one person at the same time. 

named buffer 
A buffer used to copy text between files in the vi(C) editor. vi clears unnamed 
buffers when it switches files, but the contents of named buffers are preserved. 

online 
Accessible from your terminal screen. 

operating system 
A group of programs that provide basic functionality on a computer. These 
programs operate your computer hardware in response to commands like 
copy and print, and form a set of functional building blocks upon which 
other programs depend. An operating system also manages computer 
resources such as peripheral devices like disk drives or printers attached to 
the computer and resolves resource conflicts, as when two programs want to 
use a disk drive at the same time. 

owner 
1. The user who created a file or directory. Only the owner and root can 
change the permissions assigned to the file or directory. 

2. One of the attributes of a file that, along with its group and permissions, 
determine who can access and modify that file. You can see the owner of a file 
by listing it with the I command. Use the chown(C) command to change the 
owner of a file. 

password 
The string of characters you are prompted for after you type your login name 
when you are logging in. Your password is the key that lets you into the UNIX 
system; you should choose it wisely, keep it secret, and change it regularly. 
Use the passwd(C) command to change your password. 

path 
The directory list through which your shell searches to find the commands 
you type. Your path is stored in the shell variable PATH. 

pathname 
The name of a directory or a file, for example, /usr/spool/mail. Each component 
of a pathname, as separated by slashes, is a directory, except for the last com­
ponent of a pathname, which can be either a directory or a file. A single word 
by itself, such as Tutorial, can be a pathname; this is a relative pathname for 
the file or directory Tutorial from the current working directory. A single 
slash, (I), is the pathname for the root directory. See also absolute pathname 
and relative pathname. 

User's Guide 



permissions 
The settings (also called properties or attributes) associated with each file or 
directory that determine who can access or modify the file and directory. Use 
the I command to list a file's permissions; use the chmod(C) (change mode) 
command to change a file's permissions. 

pipe 
A way of joining commands on the command line so that the output of one 
command provides the input for the next. To use a pipe on the command line, 
join commands with the vertical bar symbol, (I). For example, to sort a file, 
eliminate duplicate lines, and print it, you could type sort file I uniq IIp. 

print job 
A request you have made to the printer to print a file. Each print job has an ID 
number that you can see using the Ipstat(C) command. You can cancel a print 
job by typing cancel and its job ID number, then pressing (Enter). 

process ID 
A number that uniquely identifies a running program on the UNIX system. 
This is also known as the PID. 

prompt 
One or more characters or symbols that identify a line on which commands 
can be entered, as in a UNIX or DOS window. "Prompt" also refers to the text 
displayed when the computer displays a request for input or an instruction. 
The default prompt can be replaced by setting the PSI environment variable. 

quoting 
A mechanism that is used to control the substitution of special characters. 
Special characters enclosed in single quotes are not replaced by their meaning, 
but remain embedded in the text when the quotes are stripped off. Double 
quotes are used to prevent the expansion of all special characters except" $ If, 
"\" and "'''. 

regular expression 
A notation for matching any sequence of characters. The notation is used to 
describe the form of a sequence of characters, rather than the characters them­
selves. Regular expressions consist of literal characters, which match only 
themselves, and metacharacters. 

relative pathname 
A pathname that does not start with a slash (/); for example; Tutorial, 
Reports/September, or . ./tmp. A relative pathname is searched for, starting from 
the current working directory and may use the notation " .. " to indicate "one 
directory up from the current working directory." See also absolute pathname 
and pathname. 

437 



Glossary 

438 

root 
The top directory of a UNIX filesystem, represented as a slash (I). Also, the 
login name of the superuser, a user who has the widest form of computer 
privileges. 

shell 
A program that controls how the user interacts with the operating system. 
Using such programs, you can write a shell script to automate work you do 
regularly. The shells available with the sca OpenServer system include the 
Korn shell, the Bourne shell, and the C shell. 

shell escape 
A command you type from within an interactive program to escape to the 
shell. In vi, you can type :!command to escape to the shell and execute 
command. When command has finished executing, you are returned to the 
editor. You can start a new shell this way with :!sh, for example. To exit this 
subshell and return to the editor, press (Ctrl)D or type exit. 

shell programming language 
A programming language that is built into the shell. The Korn shell, the 
Bourne shell, and the C shell all have slightly different programming lan­
guages but all three shells offer basics such as variable creation, loops, and 
conditional tests. 

shell script 
An executable text file written in a shell programming language. Scripts are 
made up of shell programming commands mixed with regular UNIX system 
commands. To run a shell script, you can change its permissions to make it an 
executable file, or you can use it as the argument to a shell command line (for 
example, sh script). The shell running the script will read it one line at a time 
and perform the requested commands. 

shell variable 
A variable associated with a shell script. 

standard error 
The usual place where a program writes its error messages. By default, this is 
the screen. Standard error can be redirected; to a file, for example. Also 
known as stderr. 

standard input 
The usual place from which a program takes its input. By default, this is the 
keyboard. Standard input can be redirected; for example, you can use the 
less-than symbol «) to instruct a program to take input from a file. Also 
known as stdin, the standard input is identified by the file descriptor o. 

User's Guide 



standard output 
The usual place where a program writes its output. By default, this is the 
screen. Standard output can be redirected; for example, you can use a pipe 
symbol (I ) to instruct a program to write its output into a pipe, which will 
then be read as input by the next program in the pipeline. Also known as 
stdout, the standard output is identified by the file descriptor 1. 

subdirectory 
A directory that resides within another directory. Every directory except the 
root directory is a subdirectory. 

superuser 
A user who has powerful special privileges needed to help administer and 
maintain the system. The superuser logs in as root. Someone with the 
superuser or root password can access and modify any file on the system. 

symbolic link 
A new name that refers to a directory or file that already exists. Use this name 
to change to another directory without typing its full pathname. Unlike nor­
mal links, symbolic links can cross filesystems and link to directories. See also 
link. 

symbolic mode 
A method of changing file permissions using keyletters to specify which set of 
permissions to change and how to change them. For example, to add group 
write permission on a file called report using symbolic mode, you could type 
chmod g+w report. Note that you must be the owner of a file or the 
superuser to change permissions on that file. You can also change permis­
sions using absolute mode. 

system administrator 
The person who looks after the day-to-day running of the computer and per­
forms tasks such as setting up user accounts and making system backups. 

terminal 
Video display unit with a keyboard, a monitor, and sometimes a mouse. They 
do not have any independent processing power themselves and they must be 
connected to a computer before they can do any useful work. 

terminal type 
A name for the kind of terminal from which you are working. Typically, the 
terminal type is an abbreviation of the make and model of the terminal, such 
as wy60, which is the terminal type for a Wyse60. Your terminal type is stored 
in the variable TERM. 

tilde expansion 
The ability of the shell to translate instances of the tilde character (-) into the 
pathname of the user's home directory. 

439 



Glossary 

440 

trash directory 
A subdirectory of a user's home directory in which files are temporarily stored 
before being removed from the system permanently. The trash directory is 
represented on screen by the Trash icon. You can remove files by dropping 
them on the Trash icon. 

umask 
A permissions mask that controls the permissions assigned to new files you 
create. You can set your umask from the command line or in one of your shell 
startup files. 

user account 
The records a UNIX system keeps for each user on the system. 

variable 
An object known to your shell that stores a particular value. The value of a 
variable can be changed either from inside a program or from the command 
line. Each shell variable controls a particular aspect of your working environ­
ment on the UNIX system. For example, the variable PSt stores your primary 
prompt string. 

wastebasket 
A directory where deleted files are temporarily stored. Once you delete a file, 
it remains in the wastebasket directory until you exit sea Shell, at which 
point all files in the wastebasket are permanently deleted. You can recover 
files from the wastebasket (provided you have not exited sea Shell) using the 
Wastebasket option on the File menu. See also trash directory. 

wildcard 
A character (such as #?" or /I * ") that is substituted with another character or 
a group of characters in text searches and similar operations. See also meta­
character. 

User's Guide 



Index 

Symbols, numbers 
.,232,242 
$#,250 
$*,250 
$@,250 
$( ... »,253 
$?,278 
*,316 
?,317 
[ ... ],317 
1,89,120 

A 
absolute 

file permissions, 124 
pathnames, 18, 85 

access control, 82 
addresses, in sed, 373 
aliases 

drawbacks, 239 
embedded, 238 
expansion, 231 
exporting, 238 
in Calendar, 70 
in Korn shell, 231-232, 238-240 
in shells, 237 
recursive, 238 

appending command output, 119 
apropos(C), 130 
archives, 35, 38 
arithmetic, in awk, 340 
at jobs 

creating, 169 
displaying, 169 

at(C),169 
authorizations, 213-216 

chmodsugid,214 
execsuid,214 
mem,214 
printerstat,214 
printqueue,214 
queryspace, 215 
su,215 

authorizations (continued) 
terminal, 214 

auths(C),215 
awk, 323-370 

accumulating input, 369 
actions, 338 
arguments, 361 
arithmetic, 338, 339, 340 
arrays, 349 

as arguments, 352 
associative, 349,369 
multiple subscripts, 351 
order of elements, 350 
splitting, 351 

associative arrays, 349 
BEGIN pattern, 333 
break and exit statements, 348 
command-line arguments, 361 
comments, 353 
debugging, 332 
END pattern, 333 
escape sequences, 335 
examples, 331,367,369,370 
fields, 324, 327 

positional parameters, 324 
flow control, 346,348 

break and exit statements, 348 
C-like syntax, 346 
for statements, 348 
if statements, 346 
while statements, 347 

for statements, 348 
functions 

arithmetic, 340 
parameter passing, 352 
string, 341, 342 
user-defined, 351 

further reading, 427 
if statements, 346 
initializing variables, 329 
input, 324, 358, 359 

from multi-line records, 359, 364 
from pipes, 358 
separators, 358 

internal variables, 328 

441 



background 

awk (continued) 
lexical conventions, 353 
multidimensional arrays, 351 
multi-line records, 359 
operators, 334 

assignment, 340 
decrement, 340 
increment, 340 

output, 353, 356, 357, 367 
formatted, 326,327,355,356 
piped to other program, 357 
printing, 354 
printing to stderr, 357 
redirection, 356 
separators, 354 

patterns, 332, 337 
action matching, 325 
as regular expressions, 333, 335 
BEGIN,333 
combining, 337 
END,333 
precedence, 336 
ranges, 338 
relational operators, 334 

precedence, 336 
print, 325, 353, 354 
printf, 326, 353, 355 
program invocation, 325 
program structure, 325 
random choice, 370 
records, 324 
relational operators, 332, 334 
running programs, 325 

from files, 326 
from the command line, 325 

scope of variables, 353 
strings, 341 

built-in functions, 341 
splitting, 351 

system interaction, 362 
type coercion, 329 
user-defined functions, 351 
using with shell, 362 
variables, 325, 327 

442 

assignment, 340 
built-in, 328 
field, 327 
floating point, 339 
initialization, 329, 339 
scope, 353 
type coercion, 329 

awk (continued) 
variables (continued) 

type definition, 329 
user-defined, 329 

while statements, 347 

B 
background processes,160 
backslash, 319 
backup(ADM),180 
backups 

cpio, 190, 192 
cpio 

creating, 191 
listing contents, 192 

tar, 187-190 
creating, 188 
listing contents, 189 
restoring, 189 

using find, 191 
using sca Shell, 35 

basename(C),314 
batch(C), 169 
bc(C),306 
bg(C),165 
binary files, comparing (cmp), 416 
boolean operators, 278 
bottom-up programming, 264 
Boumeshell,222 

built-in commands, 294 
.profile,419 

buffers, in vi, 146 

c 
C shell 

alias, 238 
.cshrc, 419 
history editing, 237 
history recall, 236 
.login, 419 

cal(C),416 
Calculator, 72-76 

commands, 73 
memory, 75 
percentages, 76 
quitting, 76 
simple arithmetic, 74 
starting, 73 



Calculator (continued) 
tape, 73 

scrolling, 74 
using, 73 

Calendar, 49-72 
alias, 70 
choosing a printer, 63 
clipboard, 64 
creating, 54, 66 
dates 

entering, 51 
returning to current, 52 

deleting, 70 
events 

changing, 57, 60 
creating, 52 
deleting, 57,60 
duration, 53 
durationless, 59 
notifying attendees, 56 
printing, 63 
private, 56 
public, 56 
repeating, 55 
timeless, 59 
transferring, 64 
viewing, 61 

free time 
listing, 63 
searching, 58-59 

moving 
between calendars, 65 
between days, 51-52 
between months, 51 

options, 65 
other users, 65 
preferences, 67-69 
printing, 63, 63 
quitting, 50 
renaming, 70 
scheduling conflicts, 54 

resolving, 58 
scheduling events, 52-57 
specifying startup calendar, 72 
starting, 50 
to-do list, 59 
troubleshooting, 72 
viewing, 61-63 

other calendars, 65 
range of dates, 62 

calling remote systems, 201, 202 

cancel(C), 129 
case statement, 275,280,282 
cat(C), 102 
catenating files, 102 
cd(C), 92,416 
CD-ROM, 187, 187 

reading, 187 
changing directory, 21 

cd(C),92 
symbolic links, 97 

changing group, 126, 127 
chgrp(C),127 
chmod(C),123 
chmodsugid authorization, 214 
chown(C), 125,214 
clearing the screen (clear), 416 

cpio(C) 

clipboard, using from sca Shell, Transfer 
menu, 41,42 

clobber, 104 
cls,416 
cmp(C), 107,416 
command 

prompt, 80 
recall,235 

comm(e),108 
comments 

inawk, 353 
inksh,269 

comparing 
binary files (cmp), 416 
directories, 91 
disks (diskcmp), 416 
files (cmp), 107 
files (diff), 108,416 
files (Sea Shell), 45 

concurrency, 157 
conditional program execution, 276 
configuring shells, 228 
configuring vi, 152 
context indicator screens, 12 
copy(e), 90,416 
copying 

disks (diskcp), 416 
to disk or tape (tar), 416 

copying files, 101, 103 
using uucp, 195 

cp(C), 103,416 
cpio(C), 190 

443 



creating 

creating 
directories, 86 
files, 132 
variables, 253 

cron daemon, 397 
cronCe), 170 
crontab(C), 171 
crypt(C), 216,217 
ct(C),201 
cu(C), 201, 202, 203,204 
current directory, 18, 84, 92 
cut and paste, in vi, 146 
cut(C),112 

D 
daemon, 396 
date(C), 416 

today's date, 416 
dd(C),261 
decryption, 217 
default, disk format. See 
/ etc/ default/ format 

deferring program execution, 169 
del, 416 
deleting 

directories, 90 
files, 105 

description line, screens, 12 
device 

driver, 398 
file, 406-407 

null device, 249, 257 
file types, 40, 407 

diff3(C),416 
diff(C), 108,416 
dir,416 
dircmp(C), 91 
directories, 81-86 

--,89 
access permission, 92, 123 
as a tree, 84 
changing, 92 
comparing, 91 
copying, 90 
creating, 35, 86 
current 

logical, 97 
physical, 97 

introduced, 16 

444 

directories (continued) 
links, 96 
listing contents, 87, 88 
listing hidden files, 88 
names, 87 
optimum size, 87, 298 
pathnames, 85 
public, 195 
removing, 35, 90 
renaming, 90 
root, 81, 84 
searching, 297, 298 
spool, 197 
system directories, 86 
working, 84 

diskcmp(C),416 
diskcomp,416 
diskcopy, 416 
disks 

archive media, 40 
comparing (diskcmp), 416 
copying (diskcp), 416 
copying files to (tar), 416 
floppy, 181-185 
formatting for DOS (dosformat), 417 
formatting (format), 417 

display windows, seo Shell, 13 
divider line, screens, 13 
DOS 

backups, 180 
carriage return characters, 176, 177 
copying files, 175-176 
creating directories, 177 
file permissions, 180 
filenames, 174, 180 
filesysterns, mounting, 179 
formatting disks for (dosformat), 417 
formatting DOS disks, 178 
partitions, 174 
removing directories, 178 

documents, 80 
doscat(C), 176 
doscp(C),175 
dosdir(C),175 
dosformat(C), 178,417 
dosls(C), 175 
dosmkdir(C),l77 
dosrm(C), 177 
dosrmdir(C),178 
dtox(C), 177 



E 
echo(C), 93,227,253 

escape commands, 254 
ed 

addresses, 155 
changing lines, 155 
editing commands, 156 
line numbers, 155 
listing files, 155 
quitting, 155 
saving files, 155 
starting, 155 

ed(C), 154-156, 416 
editing text files, 25, 134 
editor, edlin, 416 
edlin, 416 
electronic mail, as a system service, 396 
else statement, 276 
encryption, 217 

comrnands,216 
editing encrypted files, 216 

environment, 226 
inherited by shell script, 250 
resetting, 232 
scripting problems, 263 
variables, 227-231 

erasing 
directories, 90 
files, 105 

error messages, sea Shell, 14 
escape sequences 

in awk,335 
in echo, 254 
in regular expressions, 319 

/etc/default/format,417 
ex(C),416 
exec, 262 
execsuid authorization, 214 
execution, 297 
exit value, 278 
exiting 

menu selections in sea Shell, 43 
vi,136 

export, 230 
exporting variables, 230 
extracting 

fields, 112 
information from a file, 112 

F 
fc(C),416 
fg(C),164 
File menu 

copying files, 29, 30 
file permissions, 32 

changing permissions, 32 
file permissions form, 32 
viewing permissions, 33 

finding files, 31 
introduced,28 
moving files, 30 
recovering erased files, 34 
removing files, 31 
renaming files, 30 
using, 29 

File Permissions form, 33 
file window 

configuring, 23, 34 
example, 23 

file(C), 101 
files, 80-84, 404 

access control, 121 
bad names, 106 
changing group, 127 
changing ownership, 125 
clobbering, 104 
comparing, 107-108 

cmp, 416 
diff,416 

contents, 102 
copying, 101, 103 
creating, 132 
creation permissions mask, 124 
cronfile, 170-171 
.cshrc, 419, 426 
decryption, 217 
descriptors, 256 
determining inodes, 248 
/ dev /null, 113, 257 
/dev /stderr, 119 
/dev /stdin, 119 
/dev /stdout, 119 
DOS filenames, 180 
editing multiple, 146 
encryption, 217 
/etc/default/msdos, 174 
/etc/default/tar,188 
/etc/passwd,224 
examining contents, 103 

files 

445 



filesystems 

files (continued) 
.exrc, 154 
extracting information, 112 
extracting names from pathnames, 314 
file descriptor, 256 
finding,113-114 
first lines, 103 
history, 235 
identifying contents, 101 
inodes,81 
introduced, 16 
.kshrc,419,421 
last lines, 103 
linking, 94 
locking, 312 
.login, 419, 424 
mounting filesystems, 98-101 
moving, 101, 104 
name conflict, 264 
name length, 83 
name portability, 83 
opening, 256 
opening with exec, 262 
organizing, 298 
pathnames, 85 
permissions, 121, 123, 124 
prevent overwriting, 257 
printing, 127-129 
.profile, 231, 419, 421 
reading, 256 
redirecting program output to, 120, 356 
removing, 105,106,114 

hidden, 106 
recursively, 90 

renaming, 105 
saving in vi, 136 
searching for text, 111 
security, 211-212 
sorting, 109-110,417 
structure, 81 
tar, 187 

extracting contents, 189 
listing contents, 189 

transferring 
to non-UNIX systems, 202 
with cU,204 
with uucp or uuto, 194 

undelete utility, 114 
versioning, 114 
viewing, 23, 102 
writing, 256 

446 

filesystems, 80 
components, 405 
information about, 100 
mount point, 99 
mounting, 98 
organization, 84 
storage sections, 86 
types, 406 
unmounting,l01 

filtering text, from vi, 148 
filters, 89 
find(C), 113,249,416 
finding text in files, 111 
floppy disks, 404 

as archive media, 40 
device files, 182-184 
DOS, formatting, 178-179 
UNIX filesystems, 184-185 

fork, 159, 242 
format(C),417 
full pathnames, 18 
functions, 240 

G 
getopts( C), 272 
getty daemon, 402 
getty(M), 159 
gid,126 
giving files away, 125 
global substitution, 371 
grep(C), 111,416 

H 
handling signals, 166 
hard disk, 404 
hash bang (#!) support, 247 
head(C),103 
help 

apropos(C),130 
in SCO Shell, 14 
man(C),129-130 
whatis(C), 129 

here document, 257 
home directory, 16 
.hushlogin, 226 



I 
id(C),126 
identifying 

active processes, 158 
current directory, 233 

infinite loops, 275 
init process, 401 
init(M), 159 
inode, 81, 405 

determining, 248 
introduced,83 
links to a file, 248-250 
lookup, 405 
searching with find(C), 249 
table, 405 

input 
getting from file, 262 
getting from terminal, 259 

interrupt signal, 166 
interrupting a process, 162 

J 
job control, 160 

at, 169 
bg,165 
continuing process after logout, 165 
cron, 170-171 
fg,l64 
identifying running jobs, 161 
killing background jobs, 162 
Korn shell, 165 
listing at jobs, 169 
listing nice value, 168 
nice value, 167 
reducing priority, 167 
sleep, 171 
suspending jobs, 164 

jobs(C), 161 

K 
kernel, 397-400 

buffer cache, 405 
further reading, 429 
memory, 399 
privileges, 214 
scheduling,398,403 
sub-processes,398 

keyboard, remapping in vi, 149 
kill,45,162 

reporting result, 164 
sending signal to process, 163 
signal, 166 

Kornshell 
alias, 237 
built-in commands, 294 
enabling history editing, 235 
further reading, 428 
history, 235 
history editing, 235 
job control, 164 
.kshrc, 419 
print, 255 
regular expressions, 322 

L 
I (long listing), 416 
learning C, 428 
let, 253 
line numbers, in vi, 138 
links, 94-95, 407 

count, 82 
locating, 248-250 
removal, 94 
symbolic, 96 

to directories, 97 
to files, 94 
under DOS, 176 

listing 
files,82 
files, long listing (1), 416 
processes, 158 

In(C),94 
lock(C),212 
locked 

account, 209 
terminal, 209 

logical directory, 97 
login, 209 

files, 226, 238 
process, 224-226 
remote login, 201-205 
script, 231 
security,208-213 
shell,224 
suppressing messages, 226 

logout script, 234 

logout 

447 



loop 

loop construct, 272, 291 
Ip(C),127 
lpstat( C), 128 
Is(C), 82,416 

M 
macro in vi, 150 
mail, notification, 228 
makekey(C), 216 
managing files, 16-19, 41-42 

archiving, 35, 38 
changing directories, 21, 35 
copying, 29, 30 
file and directory introduced, 16, 17, 18 
naming, 18 
organizing, 18 
pathnames,18 
removing, 31 
renaming and moving, 30 
transferring files, clipboard, 41 
using wildcard characters, 21 
viewing, 23, 24 

man(C),129 
manual page, 129 
map, in vi, 150 
memory 

mem authorization, 214 
paging, 400 
swapping, 399 
virtual, 399 

menu line, screens, 12 
mkdir(C), 87, 417 
mnt(C), 98,180 
modems, 201 

calling a remote system, 202 
modes, in vi, 132, 135 
more (C), 89, 102,417 
mounting 

DOS filesystems, 179-180 
filesystems,98-101 

moving a file or directory, 101-105 
MS-DOS commands, 415 
mv(C), 90, 105 

448 

N 
name space, 398,403-404 
naming files, 18 
networking with uucp, 193 
nice value, 167, 168 
nice(C), 167 
noclobber, 119,257 
nohup(C),165 
null device, 257 

o 
octal file permissions, 124 
optimization, 291 
output 

from commands, 118 
redirection, 89 

overwriting files, 104 
ownership of files, changing, 125 

p 
parameters, positional, 240 
passwords 

changing, 210,211 
expiration warning, 422 
security, 209 

$PATH,242 
pathnames, 85 

absolute, 85 
extracting filenames from, 314 
introduced, 18 
relative, 85 

paths 
problems, 263 
searching, 297 

pattern space, 373 
permissions, 82, 121-125 

absolute mode, 124 
applied to directories, 123 
changing, 123 
changing supplemental group, 126 
default setting with umask(C), 124 
gid,126 
introduced, 32 
symbolic mode, 123 
types, 122 
uid,126 

pg(C), 89,102 



physical directory, 97 
pipe, 89, 112,120, 120-121 

awk output, 357, 358 
sequence of commands, 120 

positional parameters 
in aliases, 239 
in regular expressions, 320 

present working directory, 84 
print, 417 
print (Kom shell), 253-256 
printerstat authorization, 214 
printing 

canceling a print job, 129 
files, 48,127-129 
postscript files, 128 
print queue, 48, 127 
selecting printers, 128 
service, 396 
several copies, 128 
several files, 48, 127 
status of printers, 128 

printqueue authorization, 214 
processes 

continuing after hangup, 165 
creating, 159 
delaying execution, 171 
executing from vi, 148 
executing in the future, 169 
ID number, 159 
identifying active, 158 
in background, 160 
init,401 
interrupts, 162 
introduced, 157 
killing active, 162 
Kom shell, 165 
listing nice value, 168 
moving to foreground, 164 
nice value, 167 
overheads, 294 
priority,167 
script performance, 293 
signaling with kill, 163 
signals, 162 
suspending, 165 
table, 159 
under cron control,170 
users, 159 

repeating 

prompt 
PSI,233 
PS2,233 

ps(C),158 
public directory, 195 
pwd(C),92 

Q 
queryspace authorization, 215 
quit signal, 166 
quitting vi, 136 
quoting with uux, 201 

R 
readability analysis, 266, 305 
read(C),259 
reading files, 102 
recalling previous commands, 235 
records, in awk, 359 
recursive file deletion, 90 
redirection, in awk, 356 
reference manuals, 129 
regular expressions, 112,315-322,371 

differences between programs, 322 
escape character, 319 
grouping, 320 
in awk,337 
in editors, 317, 322 
inksh,322 
in sed, 375 
in vi, 140 
matches, zero or more, 318 
searching for, 316 

relative pathnames, 18, 85 
reminders, sending, 169 
remote file transfer, 195 
remote login, 201 
removing 

directories, 90 
files, 105-114 

ren,417 
renaming 

directories, 90 
files, 105 

repeating commands, 273, 274 

449 



repeating 

repeating last command 
in C shell, 236 
in Korn shell, 236 
in vi, 145 

resetting the environment, 232 
rm(C),90, 105,416 
rmdir(C), 90, 417 
root 

directory, 81, 84 
user processes, 162 

run levels, 402 
running jobs 

identifying, 161 
in background, 160 

running programs, 157 
running programs in the future, 169 

s 
saving files, in vi, 136 
scheduling, priority, 167 
script, 246 

boolean operators, 278 
bottom-up, 264 
callback functions, 286 
case statement, 275,280,282 
conditional commands, 273 
conditional variable assignment, 290 
context, 314 
creating, 246-247 
data access overheads, 296 
debugging, 263-265 
directory search overheads, 297 
elapsed time, 293 
else statement, 276 
examples, 298,307 
exit values, 278 
file handling, 256 
file locking, 312 
file size overheads, 296 
for loop, 271 
getopts( C), 275 
handling arguments, 272 
here document, 257 
if ... and exit values, 278 
if statement, 276, 280 
logical-if statement, 278 
logout, 234 
loop construct 

comparison, 275 

450 

script (continued) 
loop construct (continued) 

optimization, 291 
loop performance, 292 
menu-driven interfaces, 288 
necessary permissions, 246 
optimization, 294, 295 
performance, 291, 293 
prevent from overwriting files, 257 
problems with environment, 263 
read(C),259 
reading a character, 260 
running under a foreign shell, 247 
select statement, 283 
short example, 248 
structure, 266 
subroutines, 285 
supporting commands, 293 
terminal control, 269 
test statement, 276 
toggle variables, 288 
tracing execution, 265 
until loop , 274 
while loop, 273 
writing, 264, 291 

searching 
for files, 113, 416 
for inodes, 249 
for text in a file, 45,111 
for text in vi, 139 
for text patterns in a file, 112 

secondary authorizations, 214 
security 

files, 211 
foundations, 208 
passwords, 209 
permissions, 208 
subsystem, 396 
user accounts, 212 

sed,371-389 
{ function, 388 
= function, 389 
: label function, 388 
a function, 378 
addressing, 374-377 

context, 374 
introduced,373 
line number, 374 
rules, 374 

B! function, 388 
blabelfunction, 388 



sed (continued) 
c function, 379 
command grouping, 377 
command structure, 373 
comments, 389 
D function, 384 
d function, 378 
-e,372 
-f,372 
flow-of-control, 373 
flow-of-control functions, 388 
functions, 373, 377-389 
further reading, 427 
G function, 385 
g function, 380, 385 
H function, 385 
h function, 385 
hold and get functions, 385 
i function, 378 
input/ output functions, 382 
I function, 389 
miscellaneous functions, 389 
multiline searching, 386 
multiple input-line functions, 384 
-n,372 
N function, 384 
n function, 378,380 
P function, 384 
p function, 381, 382 
pattern space, 373, 374 

holding more than one line, 374 
q function, 389 
r function, 383 
regular expressions and, 375 
related to grep, 371 
running, 372 
s function, 379 
substitution functions,379 
t label function, 388 
w function, 381, 383 
x function, 385 

sed(C),371-389 
select statement, 283 
selecting 

files, 19 
menu items, 13 

sg(C),126 

shells 
alias 

expansion, 231, 239 
exporting, 238 
introduced, 237 
positional parameters, 239 

arithmetic,252 
boolean operators, 278 
Bourne, 222 
built-in variables, 228 
case statement, 275,280,282 
conditional commands, 273,274 
configuration variables, 228 
else statement, 276 
file descriptors, 256 
for loop, 271 
further reading, 428 
getopts, 272, 275 
handling arguments, 272 
how binary files are executed, 242 
how scripts are executed, 242 
identifying login, 224 
if statement, 276 
input, 256-263 
logical-and (&&) statement, 278 
logical-or (I I) statement, 278 
looping constructs compared, 275 
noclobber, 257 
opening files for reading, 262 
output, 256-263 
processing, commands, 241-243 
programming examples, 307 
purpose, 221-224 
quoting, 238 
read(C),259 
reading a character, 260 
reading standard input, 257 
regular expressions, 316 
script, using awk, 362 
script structure, 266 
select statement, 283 
SCO, 223 
standard input, 241 
standard output, 241 
starting, 80 
startup files, 419 
tracing execution, 265 
until loop , 274 
variable, exporting, 230 
while loop, 273 

shells 

451 



signals 

signals, 162 
handling, 166 
trapping, 167,234 

sleep(C), 171 
sea, directories, tree, 17 
sea Shell 

accelerator keys, 14 
adding utilities, 46 
appearance, 24 
applications, 43,47 
archiving, copying, 38 
archiving files, 35 

archive menu, 35 
device address, 40 
extracting files, 38 
formatting disks or tapes, 37 
listing files on disk or tape, 38 
preparations, 36 

auto editor, 28, 42 
backup devices, 40 
built-in editor, 28 
canceling a print job, 48 
changing current directory, 35 
choosing an editor, 28 
clipboard, 41, 47 

Transfer menu, 42 
compare files, 45 
context indicator, 12 
copying files, 29 
copying files to tape, 35 
copying items between applications, 47 
epio archives, 37 
customizing, 42 
default display, 12 
deleting 

directories, 35 
files, 29 

description line, 12 
device names, 40 
directories 

changing, 35 
creating, 35 
current, 18 
deleting, 35 
home, 16 
introduced, 16 
subdirectory, 17 

display windows, 13 
file window, 23 

divider line, 13 
DOS disks, 37 

452 

sea Shell (continued) 
(Esc) key, 14 
editing files, 26 

auto editor, 28 
extra commands, 27 

error messages, 14 
File menu 

copying files, 29, 30 
file permissions, 32 
finding files, 31 
introduced, 28 
removing files, 31 
renaming and moving files, 30 
using, 29 

file permissions 
changing permissions, 29, 32 
file permissions form, 32 
viewing permissions, 33 

file window, configuring the window, 34 
files 

editing, 26 
introduced, 16 
pathnames, 18 
printing, 48 
undeleting, 34 

finding files, 29 
finding text, 45 
function keys, 14 
golden rule, 44 
help, 14 
list 

all processes, 45 
current print jobs, 48 
users, 45 
users processes, 45 

locate files, 45 
Manager menu 

exiting, 43 
selecting, 19 
using, 16, 19,23 
using directories, 16,21 
viewing files, 23, 24 

managing files, 16 
changing directories, 35 
copying files, 29, 30 
removing files, 31 
renaming and moving files, 30 
using wildcard characters, 21 
viewing, 23, 24 
viewing files, 23 

menu, 13 



sea Shell (continued) 
menu line, 12 
mouse 

buttons, 15 
using, 15 

moving files to tape, 35 
pathnames, 18 
permissions, 32 

changing, 32 
viewing, 33 

preferences, 42 
print jobs 

canceling, 48 
listing, 48 
printing, 48 
queue, 48 
selecting printer,48 

programs available, 47 
quitting sea Shell, 16 
recovering erased files, 34 
recovering from errors,14 
removing files, 31 
renaming files, 29 
report 

disk free space, 45 
disk usage, 45 

running UNIX system commands, 43 
sea Shell screen, display windows, 23, 
34 

search files for text, 45 
selecting a printer, 48 
set colors, 45 
setting editor preferences, 42 
shell escape, 43 
sea Shell menu, 12-13 
status line, 12 
tar archives, 37 
terminate programs, 45 
text editor 

choosing external editor, 42 
filename extensions, 42 
setting right margin, 42 

tools, 44 
Transfer menu, 42 
transferring files, clipboard, 41 
UNIX system commands, 43 
undeleting files, 34 
using directories 

creating new directories, 35 
removing directories, 35 

using menus, 13 

sea Shell (continued) 
utilities, 43, 44-47 

adding, 46 
wildcard characters, 21 
windows 

changing appearance, 24 
changing contents, 25 

sort(C), 109,417 
sorting, 417 

contents of a file, 109-110 
on index field, 110 
record separator, 110 

spelling checker, 148 
spool directory, 197 
standard 

erro~113, 118,262 
error, redirecting to /dev /null, 249 
input, 118, 262 

redirecting, 118 
output, 118, 262 

appending, 119 
redirecting, 118 

starting sea Shell, 11 
starting vi, 134 
sticky directories, 212 
storage sections, 86 
string manipulation, in awk, 341 
stty, terminal mode, 261 
stty(C), 164 
su authorization, 215 
subdirectories, 17 
subshells, 224, 242 
subsystem authorizations, 214 
su(c),213 
suspending jobs, 164,165 
switching user ID, 213 
symboliclinks,96,97 
symbolic permissions, 123 
system calls, 397 
system services, 396 

T 
tail(C),103 
tape, 185-187 

erasing, 187 
formatting, 186 
rewinding, 186 

tape, copying files to (tar), 416 
tar(C), 180, 187,416 

tar(e) 

453 



tarfile 

tarfile, 187 
terminal 

authorization, 214 
capability, 270 
control by terminfo, 269 
cooked mode, 261 
raw mode, 261 
setting type, 421 

test(C),276 
tests 

inside loops, 275 
useful, 277 

text 
editing files, 25, 134 
editing in vi, 134-154 
editing preferences, 42 
searching in vi, 139 

tilde expansion, 89 
time ( C), 293 
tokens, 241 
touch (C), 226 
Transfer menu, 41, 42 
transferring files 

to non-UNIX systems, 202 
with cu,204 

trap, 233,234 
tree of files, 84 
troubleshooting, vi, 136 
tset(C), 421 
type, 417 

u 
UNIX system 

boot sequence, 400 
origins, 393 
philosophy, 408 
shutdown sequence, 403 
startup sequence, 400 

uid, 126 
umask(C),124 
umnt(C),101 
undelete(C),118 
undeleting 

files, 114, 116 
text in vi, 138 

undo command, in vi, 145 
uucico(ADM), 199 

454 

uucp 
file permissions, 195 
listing remote UUCP systems, 194 
quoting, with UUX, 201 
status of transfer, 198 
transferring files, 194 

indirect transfers, 194, 197 
uucico daemon, 199 
uucp, 196, 197 

spooling, 197 
uuname,194 
uupick, 199, 200 
uustat, 198 
uuto,198 
uux,200 

uucp(C),195-197 
uuname(C), 194 
uupick(C), 199 
uustat(C), 198 
uuto(C), 198 
uux(C),200 

v 
variables, 227-231, 253 

arithmetic, 252 
assignment, 227 
bgnice, 168 
conditional assignment, 290 
environment, 226 
exporting, 230 
in awk, 327, 329 
in environment, 227 
in shell, 227 
in vi, 152 
let command, 253 
PATH, 242, 297 

versioning files, 114 
free space, 118 
purging, 117 

vi, 132-154 
ab command, 151 
abbreviations, 151 

defining, 149 
removing, 149 
using, 149-150 

buffers 
executing stored commands, 150 
pasting text from, 146 
storing text, 146 



vi (continued) 
buffers (continued) 

using, 411 
changing 

case, 140 
modes, 132 

command 
macros, 150 
mode,135 
summary, 409 

configuring, 152 
confirming substitutions, 144 
control characters, escaping, 149 
copying to a buffer, 146 
current settings 

changing, 152 
examining, 152 

cut and paste, 146 
cutting text to a buffer, 146 
dd command, 145 
deleting text, 138,411 
deletion buffers, 139 
editing read-only files, 134 
editing several files at once, 146 
encryption, 216 
entering text, 135 
executing another program without 
quitting, 148 

.exrc file, 154 
filtering text, 148 
global substitution, 141 
inserting text, 410 
insertion mode, 132, 135 
joining lines, 140 
leaving, 409 
line numbers, 138 
macros, 150-152 

removing, 151 
mapping 

changing mode in, 152 
:map command, 150 
:map! command, 150, 151 
recursion, 151 
removing, 151 

markers, 147 
using,411 

modifying text, 140 
movement commands, 137 
moving the cursor, 409 
pasting from a buffer, 146 
pattern matching, 412 

vi (continued) 
quit, 409 

saving file, 136 
without saving file, 136 

quit options, 136 
reading in a file, 145 
repeating commands, 137,145 
replacing text, 140,410 
saving files, 136,409 
searching,139-140, 411,412 
shell escape, 148 
spelling checker, 148 
starting, 134,409 

at line number, 135 
substitution command, 141-145 

conditional, 144 
using addresses, 143 
using regular expressions, 142 

swapping 
characters, 138 
lines, 138 
words, 139 

text insertion macros, 151 
troubleshooting, 136 
undo 

commands, 145 
deletions, 138 

wildcards, 140 
word wrap, 153 
yanking to a buffer, 146 

vi (visual editor), 416 
view, file contents, 102 
viewing files, 23 

w 
wait(C),161 
wastebasket, 34 
wc(C),103 
whatis(C), 129 
wildcards 

characters, 21 
in vi, 140 
introduced, 316 

windows 
file window, 23,34 
sca Shell, 13 

words, counting in a file, 103 
working directory, 84 

working 

455 



xcopy 

x 
xcopy,417 
xtod(C), 177 
xtrace,265 

456 





1 May 1995 

AU20003P001 


