

SPECIAL CONSIDERATIONS WITH PROBUG

Special Considerations With PROBUG

This collection of notes offers an assortment of information for the
sophisticated, the curious, and the unlucky.

Stack Usage. Whenever PROBUG is in command mode, it saves all register
contents on the system stack; thus PROBUG itself uses up about 110 bytes
(decimal) of system stack space. During certain NMI presses, up to 100
additional bytes may be used. Be sure to take this into consideration when
you set up your system's stack area.

What Happens When You Set A Breakpoint Or Baltpoint. When you type a break
point command, or start executing your program after setting a haltpoint in
RA!I, PROBUG saves the instructions at the breakpoint/haltpoint location(s) and
temporarily replaces each one with a special instruction. This instruction is
$4AFB for breakpoints and $4AFA for haltpoints (Motorola's standard codes for
illegal instructions).

Your program now begins to execute. When it reaches a breakpoint/haltpoint,
it doesn't recognize the $4AFB or $4AFA as executable code. Control is re
turned to PROBUG, which restores the original instruction and displays regis
ter contents and a message indicating why the program stopped executing.

When a haltpoint with an iteration count is reached, the count is decremented,
and the original instruction is restored and executed. The haltpoint's loca
tion is again replaced with $4AFA, and program execution continues.

Because PROBUG needs to write the breakpoint/haltpoint illegal instruction
code into the location you specify, you can use breakpoints on RAM (writeable
memory) only, and not on ROM.

Exception Processing. Unless you set up routines to handle exceptions, and
vectors pointing to these routines, PROBUG will process all exceptions.
Assuming PROBUG is the error processor, whenever an exception occurs, PROBUG
prints the reason for the exception and prints the contents of the MPU regis
ters. The registers are saved on the stack, and PROBUG returns to command
mode.

Exceptions include interrupts, attempts to divide by zero, traps, etc.

TRAP Exceptions In Trace Hode. The TRAP, TRAPV, CHK, and Zero Divide
exceptions all have lower priority than a TRACE exception. As a result,
PROBUG traces tbe first instruction of the exception processing routine of
these four types of exceptions. Also, PROBUG does not trace the first
instruction after the one that caused the exception.

Suppose a TRAP #0 routine is written and the TRAP #0 exception vector is
pointing to the routine. When the TRAP #0 instruction is encountered it
causes an exception. Because of tbe way TRAP exceptions are bandled, you
could not trace or quiet-trace to the address of the instruction after the
TRAP #0. Also, a haltpoint set at that addretls would not be recognized as a
baltpoint when you traced or quiet-traced through it.

PROBUG - 68000 Software Debugger
(M. ?' �~�~�

Page 59

SPECIAL CONSIDERATIONS WITH PROBUG

To allow these instructions to be traced, you can write your exception
processing routine as follows. At the end of the routine, check to see
whether the 68000' s trace bit was on when the exception was taken. If it was
on, turn the trace bit on before the RTE instruction:

EXIT

TST.B
BPL
OR
RTE

(A7)
EXIT
#$8000,SR

Limitations Of Trace MOde. You cannot trace through an instruction that turns
trace mode off. For example, you should use the instruction OR #$2700,SR
wherever you would use HOVE #$2700, SR.

You can use the N. command on instructions that turn trace mode off.

Timing. PROBUG affects the timing of programs. For non-timing-dependent
programs, there is no difference between executing the program outside of
PROBUG and executing it with PROBUG program execution commands.

When used on timing-dependent programs, however, PROBUG may affect the
program's pathways. For example, tracing through your program takes much
longer than executing it in real time. If you use program execution commands
such as trace and breakpoint for timing-critical code, the results will not
necessarily reflect what would happen in real time.

Page 60 PROBUG - 68000 Software Debugger

,.

(

(

StART PROGRAM ON M68KIO FROM ANOTHER PROCESSOR

Start Program On M68KIO From Another Processor

The M68KlO's dual-ported memory allows another processor on the Multibus to
access PROBUG's RAM. The external processor can use the eight bytes of
PROBUG's memory at locations 100-107 to communicate with PROBUG. Using these
eight bytes, the external processor can cause PROBUG to load a new stack and
program counter and begin execution of a program. These bytes are used as
follows:

When the high-order bit of location 100 is set to 1, PROBUG goes into a loop
monitoring the high-order bit of location 104. As long as the high-order bit
of location 104 is 0, PROBUG remains suspended and any memory location may be
altered (even PROBUG's stack space or its variables).

When the high-order bit of location 104 is set to 1, the bytes at both loca
tions 100 and 104 are cleared. The contents of locations 100-103 are loaded
into the system stack pointer, and the contents of locations 104-107 are
loaded into the program counter. Program execution will begin at the address
that was in locations 104-107.

When you first power the system up, PROBUG sets locations 100 and 104 to be
its initial stack and initial program counter, respectively.

Exa.ple. Suppose you wanted to load a 32K-byte program through dual-ported
memory into the M68K10's RAM at location 0, and then execute the program. In
this program, the stack resides at location $800 and the program starts exe
cuting at location $1000.

In order to prevent PROBUG from using the RAM that your program will occupy,
you need to set location 100 to be a number whose high-order bit is on. For
example, you could put $FF at location 100, followed by the 3-byte address at
which the stack will reside. Since the stack will reside at location $800,
locations 100 through 103 should contain $FFOOOSOO.

Set locations 104 through 107 to be the address at which the program should
start executing: in this case, $00001000.

If memory is copied starting at location 0 and the data that w~ll be at
locations 100-107 is set up correctly, the communication with PROBUG and the
copying of program data can be done in the same step. When the program is
copied into RAM at locations 0 through $7FFF, the data at locations 100
through 107 should be:

FF00080000001000

The $FF at location 100 signals PROBUG to wait until the high-order byte of
location 104 changes to a 1. To start the program, you must now set location
104 to be a number whose high-order bit is on. Again, you can use $FF.

The stack is now set to $SOO and the program starts at location $1000.

PROBUG - 68000 Software Debugger Page 61

APPENDIX A: GETTING STARTED - PROBUG & THE M68K10

APPENDIX A: Getting Started - PROBUG And The K68KIO

If you are using PROBUG on SBE's ModulasTen M68K10 single-board computer, read
this section for information on installing the PROBUG PROMs, jumpering the
M68K10, and serial port usage. If you are using an MPU board other than the
M68K10, refer to that MPU's documentation for relevant information. In
addition, the following information on PROM handling may be useful.

PROM Installation. PROBUG is contained in two 2764-type, 28-pin PROMs (8K x
8-bit). You will receive these PROMs in special anti-static treated tubing or
packaging. Keep them in their package until you are ready to install them.

There are two pairs of 28-pin PROM sockets on the M68KIO module: U16 & U17,
and US & U35. The two PROBUG PROMs must be installed in sockets U16 and U17.
One PROM will be labelled "U16" and the other ''U17'', indicating the appro
priate socket for each.

When installing PROMs, which are static-sensitive, have the M68KI0 nearby.
Handle the PROMs one at a time. If possible, use benchtop pads and wrist
straps grounded through a high-resistance resistor. Put on a wrist strap
before unpacking the PROMs from their antistatic packaging.

If benchtop pads and wrist straps are not available, you can reduce the risk
of PROM damage as follows: Touch one finger to the surface on which you are
working before handling the PROM. Keep the finger on that surface while
handling the PROM. Similarly, when you get ready to load the PROM into the
socket, first touch the M68KI0 board with one finger and keep it touching the
board while you load the PROM.

In general, avoid wearing nylon, polyester, or other static-generating
fabrics, and avoid nylon and other carpet, while installing PROMs. Don't
install PROMs in areas that are high in static electricity. Avoid excess
handling of PROMs; handling and movement generates static. Carry PROMs only
in conductive black foam or in the special anti-static treated tubes in which
the PRmls were del iv ered.

Turn the M68KlO board, with the component side toward you, so that the NM!
button is in the upper right-hand corner. Note that U16 and U17 are the
middle two PROM sockets in the group of four on the board. Install each PROM
so that its left edge is aligned with the left edge of the socket, and its
notch ~s on the right, matched with the socket notch.

After installing the PROMs, make sure none of the pins got bent under during
the installation.

Jumpering For Power Supply. The six-pin jumper area called J26 is located
just to the right of area J25, which is just to the right of PROM socket US.
To make sure the M68KIO can provide power to the PROMs, be sure that jumper
area J26 is set as shown here:

PROBUG - 68000 Software Debugger Page 63

APPENDIX A: GETTING STARTED - PROBUG & THE M68KIO

J26 JUlipers

Jumpering For 2764 PROMs. Just to the right of each PROM socket is a 14-pin
jumper area for setting up the socket for the type of PROM you are installing.
The jumper area for U16 is labelled J24; the area for V17 is labelled J22.
Their jumpering is identical. Make sure that J22 and J24 are jumpered as
shown here:

. A B

I ...
2 00
3 DO
4 00
5
~Z 6

7 ...
J22 and J24 Jaapers

Jumpering lor paOK Size. Just below socket U6 on the right-band side of the
module is area J21, which is set according to the size of the PROMs being
installed. Make sure J21 is jumpered as shown here:

123

A.rCC
B_~

.121 Jaapers

Juaperi_, For Access T~e. Just to the right of socket V45 is area J4, which
is set according to the access time of the PROMs being installed. (Note: the
jumper across position 3 corresponds to an access time of 450 nanoseconds, the
speed of the PROBVG PROMs. 250 nanosecond parts should be jumpered across
position 1 instead of position 3.) Note that a jumper is already installed in
position 6; do not move this jumper. J4 should be jumpered as shown here:

Page 64 PROBUG - 68000 Software Debugger

(

A B

I DO
2 00
3 ...
4 00
5 00
6 ...
7 DO

J4 Juapera

Serial Port And Interrupt Processing. PROBUG uses channel "B" of the M68KlO
to perform I/O. If you are using the "B" channel of the MPSC controller to
connect your terminal to the M68KIO, your program's output and the output from
PROBUG will both appear on the screen: your program and PROBUG share the same
serial I/O port.

PROBUG initializes both channels "A" and ''B'' to transmit and receive 8-bit
characters with no parity and 2 stop bits. The standard shipping
configuration of the M68KlO has both channels running at 9600 BAUD.

If your program configures the port to generate interrupts, you should be
aware that PROBUG does not rely on interrupts from the serial port to do I/O.
This can cause problems when control passes from PROBUG to your program: the
interrupts that PROBUG has been ignoring will still be pending. You should
take this into consideration when conetructing your interrupt processing
routine.

PROBUG - 68000 Software Debugger Page 65

APPENDIX A: GETTING STARTED - PROBUG & THE M68KIO

Pover-Up

Whether you are using the M68KIO or another single-board computer to run
PROBUG, several lines of output will appear on the terminal when you first
turn the power on. The current contents of the MPU registers (data, address,
and several other registers) will be displayed. The output will look like
this:

PROBUG 2.0 - SBE SOFTWARE DEBUGGER
COPYRIGHT SBE, INC. 1983

(0)
D) FFFFFFFF
A) FFFFFFFF
PC) FC0028
FC0028 MOVE
>

(1) (2) (3) (4) (5) (6) (7)

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000200

SR) 2700 CCR) ----- Usp) FFFFFFFF .SSP) 00000200
i't$2700,SR

An explanation of this output appears under MPU Registers.

The > indicates that PROBUG is ready for you to type a command. This prompt
appears whenever PROBUG has completed a command, as well as at the beginning
of a debugging session.

Page 66 PROBUG - 68000 Software Debugger

(

APPENDIX B: BOW TO USE PROBUG - SOME DEBUGGING SUGGESTIONS

APPEHDIX B: BoY ~o Vae paOBO; - Some Debugging Suggeationa

This section offers some suggestions on debugging 68000 software. Use this
information as a supplement to the information in the remainder of the manual.
The examples in this section show some typical problems and some of the ways
you might use PROBUG to solve them.

Before using PROBUG, get a listing of the program you want to debug. Turn the
power on, or follow the appropriate procedure for starting PROBUG. If your
program is on tape, use the @ command to select the port through which the
program will be loaded. Now, load your program into RAM using the L command
as documented in the command descriptions.

Debugging your program will require that you isolate each section in which
problems exist, and attack them one at a time. Breakpoints allow you to
execute segments of your program to track down problems. Breakpoints are
perhaps the most frequently used of the program execution commands (see the
section Program Execution Commands early in the manual).

Typically, after loading your program into RAM, you breakpoint or jump to a
location and examine the MPU registers (which are displayed at the end of the
breakpoint or jump). Use the D command to disassemble the group of instruc
tions directly following the breakpoint location.

It is useful to breakpoint through a few instructions at a time so that if
there's an incorrect value in one of the registers, it's easy to locate the
guilty instruction.

Sometimes, it may be useful to breakpoint through each instruction rather than
through several instructions at a time. In such cases you can single-step
through the instructions in question with a trace. The T (Trace) command
prints the contents of the MPU registers after each instruction is executed.

The T command generates a distractingly large amount of output as compared
with the B command, which prints the MPU registers only after the program
stops executing and control is returned to PROBUG. The Q (Quiet Trace)
command is useful with observation points for locating an instruction that's
changing memory.

Sometimes, all of the registers are correct, but memory is incorrect. If your
program changed memory, use the I, H, or P command to inspect memory.

Forgotten lmmediate Sign (#): Suppose location 1000 of your program contains
a MOVE.L instruction. You had intended for this instruction to copy the value
$20 into register D3. You breakpoint to location 1000 of your program, and
then trace the next instruction using the B command:

PROBUG - 68000 Software Debugger Page 67

APPENDIX B: ROW TO USE PROBUG - SOME DEBUGGING SUGGESTIONS

>1\1000.
BREAKPOINT AT 001000

(0) (1) (2) (3) (4) (S) (6) (7)
D) 00000012 OOOOFEOO 00001000 OOOOEOOO 00000000 00000000 00000000 FFFFFFFF
A) 001234S5 00000000 SSSFF300 999FOOOO 00000000 00000000 OOOOFEOO 00000200
PC) 001000 SR) 0704 ceR) --Z-- .USP) 00000200 SSp) 0000076C
001000 MOVE.L $20,D3
>N.

(0) (1) (2) (3) (4) (S) (6) (7)
D) 00000012 OOOOFEOO 00001000 08FOOFEE 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 SS5FF300 999FOOOO 00000000 00000000 OOOOFEOO 00000200
PC) 001004 SR) 0704 eeR) --Z-- .Usp) 00000200 SSp) 0000076C
001004 MOVE.B D3,$OCOO
>

You notice that register D3 does not contain the immediate value 20, but
rather 08FOOFEE. Looking at the disassembled instruction (MOVE.L $20,D3),
you realize that it has copied the contents of location 20 into register D3,
rather than copying the immediate value $20 into D3. You can verify this by
using the M command to inspect location 20.

You now have several options. If the error you found need not be fixed
immediately, you can make a note on the listing to go back and correct the
source, and continue on to the next bug. If the error must be fixed before
you can continue debugging, yo~ can fix the instruction with the A command
(see below).

The contents of the registers have been set incorrectly because the
instruction was incorrect. To fix this, change the value in register D3 as
follows:

>RD3,20.

(See under the R command f or details.) Note that the "20" is assumed to be
hex in this command.

Make a note on your program listing to correct the source, and type a
breakpoint, jump, or other program execution command to continue.

Now for B slightly more complicated example: suppose the next instruction
also contained B reference to register D3, and that both instructions had been
executed before you noticed that D3 should contain $20.

1000
1004

MOVE.L
MOVE.B

$20,D3
D3,$OCOO

Correct the contents of register D3 as explained above. To correct the damage
resulting from instruction 1004, you must change location oeoo to contain $20.
Use the I command as follows:

>IOCOO.
oooeoo FD 20.
>

Page 68 PROBUG - 68000 Software Debugger

(

APPENDIX B: BOW TO USE PROBUG - SOME DEBUGGING SUGGESTIONS

If you are an experienced user of PROBUG's mini-assembler, you could change
(patcb) tbe program in RAM using tbe A command to replace the instruction:

>AIOOO.
001000
001002
>

HOVE.L 1$20,D3
(carriage return)

Note: In using tbe Assemble command, you will need to compensate for any size
difference between tbe instruction you are replacing and tbe new instruction.
For example, if tbe new instruction is a word shorter tban tbe original
instruction, add a NOP after the new instruction. If tbe new instruction is a
word or more longer tban tbe original one, you will need to insert a BSR and
create a subroutine elsewhere in memory.

After assembling tbe patcbed code, you can start executing the program from
tbe beginning again to reset the registers with proper values, or use the R
command (as described above).

To continue debugging, disassemble tbe next group of instructions; or use your
program listing to determine tbe next location at wbicb tbere may be a
problem, and breakpoint to that location.

Memory Location Being Changed: Sometimes a memory location is being cbanged
wben you did not intend for it to be cbanged. Tbis can affect your program
instructions, variables, etc., and can be a difficult problem to track down.
However, by setting observation points at locations tbat are being set
incorrectly, you can greatly speed up your searcb.

Suppose a subroutine of your program isn't working properly. You breakpoint
to the beginning of the subroutine, and disassemble some instructions:

>B48000.
BREAKPOINT AT 048000

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00C01500 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO 00800000
PC) 048000-SR) 0704 - CCR) --Z-.... • USp) OOBOOOOOSSP) 0000076C
048000 MOVEQ.L f20,DO
>D.
048000 7014 MOVEQ.L #20,DO
048002 31CO OCOO MOVE.W DO,$OCOO
048006 4241 CLR.W Dl
048008 0000 5378 OR!.B #$78,DO
04800C OCOO 66F8 CMPI.B #-8,DO
048010 4E71 NOP
048012 60EC BRA.S $048000
048014 4E71 NOP
048016 FFFF DC.W $FFFF
>

You notice that this is not tbe original code. Location 48008 was supposed to

PROBUG - 68000 Software Debugger Page 69

APPENDIX B: HOW TO USE PROBUG - SOME DEBUGGING SUGGESTIONS

contain 5440 instead of 0000; the value was changed by mistake during program
execution. You need to restore the original code. either by reloading the
program using the L command. or by using the A command to re-enter the correct
instruction as follows:

>A48008.
048008 ADDQ.W 12.»0
04800A (carriage return)
>

Now set location 48008 as an observation point:

>048008.
>

Supposing your program begins at location 40000, set the program counter to
that location and then begin a quiet trace through the program. The quiet
trace will run merrily along until the observation point changes:

>*40000.
>Q.

INSTRUCTION AT LOCATION 041020 CHANGED DATA AT
LOCATION 048008 FROM 5440 TO 0000

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO 00000200
PC) 041026 SR) 0704 CCR) --Z-- .USp) 00000200 SSp) 0000076C
041020 CLR.W $048008
041026 SUBQ.W 11,DO
>

The output from the quiet trace reveals that the CLR.W at location 041020 is
the guilty instruction.

Conditional Branch Rot Being Taken: You will find it useful to breakpoint to
condi tional branche s to see whether the program takes the branch. If
something is wrong, there's a problem with either the conditions leading up to
the branch, or the branch instruction itself.

Suppose you breakpoint to a BEQ instruction to make sure the program takes the
branch. When the BEQ instruction is reached, the MPU register contents are
printed, followed by the disassembled instruction. The disassembled
instruction includes a (TRUE) or (FALSE) label which indicates whether or not
the branch will be taken.

You expected the branch to be taken, but the label says (FALSE), indicating
that the branch will not be taken. However, the conditions leading up to the
branch have all been set correctly.

The BEQ instruction should really have been a BNE. (This is easy to identify
using the (TRUE) or (FALSE) label as a guide.) Make a note on your listing to
go b,ack and correct tht~ source. Then use the A command to change the
instruction to a BNE; or jump (use the J command) to the address to which it

Page 70 PROBUG - 68000 Software Debugger

(

APPENDIX B: HOW TO USE PROBUG - SOME DEBUGGING SUGGESTIONS

was supposed to go.

Progr •• Control Passing To Wild Address: Another difficult problem to track
down is when program control passes to some wild address outside the program.
This is often caused by careless stack maintenance and usually shows up as an
illegal instruction or unimplemented instruction.

In such cases, it is useful to quiet-trace to the location of the invalid
instruction, to find out how the MPU got to that address. With the Q (quiet
trace) command, PROBUG traces through each instruction without generating any
output. When the specified address is reached, PROBUG disassembles both the
current instruction and the previously executed instruction, allowing you to
follow the flow of program control.

For example, if your program is crashing with an unimplemented instruction at
40020, run the program using a Q to that location:

>q40020.

(0) (1) (2) (3) (4) (5) (6) (7)
D) 00000012 OOOOFEOO 00001000 00000000 00000000 00000000 00000000 FFFFFFFF
A) 00123455 00000000 555FF300 999FOOOO 00000000 00000000 OOOOFEOO OOOOOBOO
PC) 040020 SR) 0704 CCR) --Z-- .USP) OOOOOBOO SSP) 0000076C
001420 RTS
040020 DC.W $FFFF
TRACE STOPPED AT 040020
>

001420 is the address of the instruction that caused the program to jump to
40020.

PROBUG - 68000 Software Debugger Page 71

&, 3
*, 3, 15
* conmand, 46
+ key, 15
- key, 15
@ command, 28, 43-45, 55, 67
ABORT button, 12
Adding your own functions, 53
Address error, 11
Address registers, 4
Ampersand, 3
ASCII characters, 3
Assemble (A command), 15-17,68
Asterisk, 3, 15, 46
Asterisk (* command), 3, 46
At-sign (@ command), 28, 43-45, 55, 67
Bit mask, 40
Brackets, square, 5
Branch labels, 16
Breakpoints (B command), 7-10, 18, 59, 67
Bus error, 11
Command descriptions, 15-46
Command syntax, 2
Condition codes, 37
Conventions used in this document, 5
Copy memory (C command), 19
CTRL-L, 5
Custom I/O, 55-56
Data registers, 4
DC direct ive, 16, 20
Debugging suggestions (Appendix B), 67-71
Disassemble (D command), 20, 67
Enter transparent mode (@ command), 28, 43-45, 55, 67
Error messages, 7, 11
Escape key,S
Exception processing, 59
Exceptions, TRAP, 59
Execute Disk Operating System bootstrap (E command), 21
Exit character, 27, 44-45
Expressions, 2, 3
Fill memory (F conmand), 22
Function calls, 47-54
Haltpoints, 7-10, 23, 59
How to use PROBUG (Appendix B), 67-71
I/O, custom, 55-56
Illegal instructions, 59
Inspect memory word by word (M command), 5, 30, 67
Inspect stack word by word (M conmand), 30
Inspect/alter memory, 5
Inspect/alter memory (I command), 24-25, 67
Installation of PROMs, 63
Instructions, illegal, 59
Interrupt processing, 65
Interrupt, non-maskable, 12, 13, 59
Iteration count with haltpoints, 10, 23
Jump to location (J command), 7-10, 26, 67

PROBUG - 68000 Software Debugger

INDEX

vw f' 7d
Page 73

INDEX

Jumpering the M68K10, 63
Labels, branch, 16
Load program into RAM (L command), 27-29, 67
Memory map, 57
Minus, unary, 3, 4
MPSC controller, 65
MPU registers, 2, 4, 11, 37-39, 59, 66, 67
Next instruction, trace (B command), 7-10, 31
NM! button, 12, 13, 59
Non-maskable interrupt button, 12, 13, 59
Observation points, 7-10, 32-33
Parameters, 3
Port selection, 27, 44-45
Port, serial, 65
Power-up, 2, 66
PROBUG and the M68K10, 63-66
PROM installation, 63
Print memory (p command), 11, 34, 67
Print register contents (R command), 37
Print/alter register contents (R command), 5, 38-39, 69
Program counter, 3, 15, 46
Program execution commands, 1, 7-10, 59, 60, 67
Quiet trace (Q command), 7-10, 35-36
RESET button, 12
Registers, 3
Registers, MPU, 4, 37-39, 59
Relocation factor, 4
ROM, haltpoints in, 8, 9
S-record format, 27-29, 43
SI, S2, S8, & S9 records, 27-29, 43
Search for non-match (-8), 40
Search memory for pattern (8 command), 40
Separators, 3
Serial port, 65
Set haltpoints, 7-10, 23, 59
Set observation points, 7-10, 32-33
Special keys, 5
Square brackets, 5
Stack space, 59
Substitution character, 27, 44-45
Syntax errors, 2
System stack pointer, 3
Terminators, 2, 5, 24
Timing, 12, 60
TRAP 14 instruction, 47, 53
TRAP Exceptions, 59
Trace instructions, 7-10, 41-42, 67
Trace with TRAP exceptions, 59
Transparent mode, 27, 28, 43-45
Unary minus, 3, 4
User registers, 3
User stack pointer, 3
Write program in S-record format (W command), 43

Page 74 PROBUG - 68000 Software Debugger

(

