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Geoffrey Bate
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Contents

- Origin of magnetism; electrons in motion
- review of atomic structure; quantum numbers, exclusion principle
- diamagnetism, paramagnetism, antiferromagnetism,
ferromagnetism, ferrimagnetism
- origin of the spontaneous magnetic moment: exchange interaction
- B, H, and M; units in magnetism
- intrinsic magnetic properties; magnetization, Curie temperature,
magneto-crystalline anisotropy
- extrinsic magnetic properties; coercivity, remanence-coercivity,
remanence, permeability
- hysteresis loop - domains and domain walls
- single-domain particles
- particles for recording: iron oxide
cobalt-modified iron oxide
chromium dioxide
metal
barium ferrite
- particle interactions - Preisach Diagram
- switching-field distribution
- time dependence of magnetic properties
- particles versus thin films
- future developments.
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*

Magnetism comes from moving electric charges, usually electrons

»

The movement can be - orbital around the nucleus
- "Spinll

* In technologically important materials, spin is more important than orbital motion

*

An atom may be permanently magnetic --> PARAMAGNETIC MATERIALS
" " maynot " " " --> DIAMAGNETIC MATERIALS

(N, olk oKD ole 1&&»4%:\)&7\5_] b Some (thoge ‘Mum\& o Pecrmorek m0()\«d‘7(, momet) Gre BW””A‘NH -
66 WO ead VR PACO rﬁoc\(\e)ﬁih S w100 areck® Ahon dio mogineki€m  and Overghelmy W o
* Paramagnetics are magnetized in the direction of the applied magnetic field

* Diamagnetics " " "o " opposite to " "

* The total magnetization of para- or diamagnetic samples is zero if there is
no applied field

* m s o necessory ok bk aok & S\A){:‘de\)\/
CondFion %BF \’Qdf\f\o\og‘ta\ a\P\)\‘.mﬁm ol Te makerid

G.Bate 6/89
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Momic Orbitals

- (32) e'le'ctrons
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g Ferromagneticz
Paramagnetic atoms| --> . solids

{orDeR) | LFerrimag netic j

* Paramagnetism is a necessary (but not a sufficient) condition
for spontaneous and large magnetic moments

* In addition to atomic paramagnetism there must also be a

strong EXCHANGE INTERACTION between adjacent atoms

POSITIVE ] 1 | 1 1 1\ Mfor FERROMAGNETISM
* Interaction is {

NEGATIVE,T l A l l l 1¢ for FERRIMAGNETISM.

G.Bate 6/89
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\—*/l\f I gFerromagneticZ

Paramagnetic atoms -->

solids

+ Orden tFerrimagnetic J

* . o © 2\ e
Paramagnetism is a necessary (but not a sufficient) condition
for spontaneous and large magnetic moments

*

In addition to atomic paramagnetism there must also be a_

strong EXCHANGE INTERACTION between adjacent atoms

POSITIVE T 1

Interaction is |
NEGATIVE

i

1 1 % Mfor FERROMAGNETISM

l T ¢ M for FERRIMAGNETISM
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Llements of First Transition Series

Fe Co Ni
densily, g/cm’ 7.874 8.78-8.85 8.90
Curie point, "C 770 1131 358
melling point, °C 1539 1495 1455
O 993K, emu/q 217.75 161 5439
O 0K, emu/g  221.89 162.5 57,50
M, ,emu/cm’ 1714 1422 4841
Iron Cobalt
OL————>’Y—————>OL hep > fcc
910°C 14007 C 425°C
c=4.0611 J.5368
bee fec 0=2.5020

2861 A

BATE



ELEMENT CURIE TEMPERATURE

COBALT | 1393
IRON | | 1043
NICKEL | | 691
GADOLINIUN - | 289
TERBIUM | 218
DYSPROS 1UM | 85
THULIUM | 22
HOLMIUM | | 20

ERBIUM 20

BATE



INTRINSIC MAGNETIC PROPERTIES OF FEz0y AND Y-Fep03 .

(B8Fe, Q) | | |
PP e e - l INVERSE SPINEL
N1 T~ g 2+ '
@2~ Fe™ AND Fe 2" OCTAHEDRAL SITES
/ |
\o/ FEo" . TETRAH
— FE . EORAL STTES

SPINEL STRUCTURE

< (O oxveeN

OCTAHEDRAL SITES = [16]. TETRAHEDRAL SITES = (8 x £ ) + (6 x ) + 4 - [8]

Fer, O, =
Magnetite — inverse spinel '
Fe3+ (Fe2t Fed+) 04
A-sites B-sites

(tetrahedral) (octahedral)

v — Ferric Oxide — samé oxygen sublattice
— vacancies arranged on a tetragonal superlattice (c/a = 3)

Feg Fe 1A 2\ Feq2| O32
3 %3

is the formula for %—unit cell.

8
2+ 3+
FeO. Fe, O,

Moment per molecule
0so
os
Density
Is

Curie temperature

Anisotropy constant -

Ky=-1.10 X 105 erg/cc

111D easy
.{100) hard

Fe304 v-Fe03
43 ‘ 2.58
97 emu/g 82 emu/g
87 emu/g 74 emu/g

' 5.197 gl/cc 5.074 g/cc
453 emu/cc | 400 emu/cc
575°C 590°C

= —4.64 x 104 erg/cc
110> easy
100> hard



INIRINSIG-PROPERTIES: v -FEz. FE30y

SATURATION MAGNETIZATION

Fes0, | ASITES | B SITES /

\"INVEQSE LeINe L \ Fg 3t Fe2* Fegdt 0

Sug o " ug S
. o 7]
\*ps NET MOMENT = q;@ PER FORMULA UNIT) FizCL1
o = 28 o ' M= 231.6, .'. o = 97 EMU/G C(EXPT = 94 EMU/G)
Miglee. WY . .0
- ‘o3t 3+ 3+
T -Fe 03 FE8 (FE4/3 A 8/3 ) Fcl2 031
- (8x5)yy - Cayaxs) wy (12x5)

NET MOMENT = (' 16/3 X 5 ) uy per Fe',_()s

~ MOMENT PER FORMULA UNIT = 3/32 X 16/3 X 5y -[ 2.5,
‘ OR 1.25u /TIRON ATOM: EXPT = 1.18
o, 82 EMU/G |

og= 74 EMU/G ; EXPERIMENT
T .
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FERRIMAGNETISM 0. Fe O
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'TECHNOLOGICALLYliMPORTANT MAGNETIC MATERIALS

TWO KEY ATTRIBUTES :(01“a ggggé§\3

1) SPONTANEoui(MAGNETIC MOMENT M
’. ’ M-
2) MAGNETICANISOTROPY§~>h%mmgS "
' - =M
B MAGNETIC HETEROGENETY T

these aie. small  Jor sofic maopekic mokerials
lowog o hovd - maopdic makeriaks

G. BATE



MAGNETO - CRYSTALLING  ANisoTROPY
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MAGNETOCRYSTALLINE ANisoTropy
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Dircctions of Easy, Mcdium, and Hard Magnetization in o Cubic Crystal

‘ (from Bozorth [G.4)
Cub [Ee] T Nl -_A
nwpilc K, n o i - - -
K Torto ——9K|/'|‘.”w - 9K, m“ — s lo YK, | 9K, -
2 — 9K, /4 1o —9K, — ‘)ll\ |/| 9|k, o -+
Lasy Q00y ' (100) Qi <|||> _ ) 10y
Medium 10 LD <1003 <oy QI C100)
Hard Qi (110) L0 <oy oy <|||>
I
UniAx AL E =K, -+ K/ COC'*e + K cos™ e
| 00. ] [ieo
(em e/(m K‘/ + K;. > 0 OX1S ((.’Q. L B ,[. :D
D K, + Kk, <O basal’ plane (eq, Lo+ 01)
Wm\

p M /BO’SOCH‘\ /Ph\§ "Rev, 50 | 1076~ 81 (1936)

~ Rnleo



MAGNETO-CRYSTALLINE ANISOTROPY
‘ Iron And Nickel
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MAeneTo - CRysTALLINE ANISOTR0 Py o CorAuT
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MAGNETOSTRICTION
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M ENETOSTR\CTION
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?AAGNETIC PROPERTIES
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1 OQ)/Z pROBLENS 1N FERROMAGNETISH

1) "A PIECE OF IRON CAN BE COMPLETELY UNMAGNETIZED

2) YET IT CAN BE MAGNETIZED TO SATURATION BY A FIELD OF A FEW OERSTEDS

SOLUTION: Prerre Weiss, 1905

DOMAINS: REGIONS MAGNETIZED TO SATURATION (DEPENDING ON TEMPERATURE)
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PrOperties of Head Materials

Permalloy Sendust Ferrile Ferrite Amorphous Glass

composilion: 4Mo70Ni 17Fe 85Fe10Si5AL (Fe,Mn,Zn)304 (FeNi,Zn)304  CoygFesSii5B1g
Bg, gauss 10,000 10,500 5,000 | 3,300 14,000
nj (1KHz) 10,000 10,000 5,000 5,000 10,000
resistivity, Qcm.  55x10—6 00x10—6 5 109 134x10—6
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MAGNETIZING AND DEMAGNETIZING FIELDS
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SINGLE DOMAIN PARTICLES
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Cobalt — Modified lron Oxides
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COBALT-IMPREGNATED IRON OXIDE
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MATERIALS FOR VERY HIGH
DENSITY RECORDING

VHD PARTICLES

Conventional Gamma-lron Oxide
(Co-impregnated)
Example: HDX particles

“Rice Grain” Gamma-lron Oxide
(Co-impregnated)

Isotropic Gamma-lron Oxlde
(Co-doped)

Barium Ferrite

rough,
porous

smooth,
dense

hexagonal
platelets

RECORDING MODE

Longitudinal

Longitudinal

Longitudinal/Perpendicular

Perpendicular

VHD THIN FILMS

Cobalt - Chrome
(sputtered)

Perpendicular
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Linear Density: Longitudinal Recording
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Particulate Media

e wide variely of magnelic properlies
e magnelic properlies lrom parlicles

e mecchanical properlies from binder
e high coaling speeds (< 130m/min)

e widerolls (= 1.3m)

e uniform, reproducible properlies

e yiclds high — low cosl

Thin Film Media

thin coalings (< 0.25un)

magnelic properlies

“notdiluted by binder

magnelic properlies varied by

changing deposilion condilions.

casler lo coat on melallic than
polymer subslrales.
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Maanetic Materials;

Unanswered Questions and Unsolved Problems

Coercivity in particles -- Fe203 - Fe304

-- cobalt iron oxides
-- versus coercivity in coatings

High coercivity, high Mr/Ms, isotropy in continuous thin films.
Surface effects on particles e.q. Fe203 - Fe304 and phosphate chains.
Role of particle interactions.
Time effects: short term and 1ohg term.
Orientation and disorientation.

Erasure.

Relation between magnetic properties and recording performance.
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Chapter 1

MAGNETIC FORCE

The most fundamental aspect of magnetic
fields is that forces and torques act on mag-
pets and currents. The phenomenon of force
and torque interactions between magnetic poles
was investigated by Coulomb and Cavendish at
the end of the 18th century. Oersted’s discov-
ery of the magnetic effect of electric currents
led Ampere and Faraday to invent the first mo-
tors in the 1820’s. The experimental relations
of forces between currents were determined and
reported by Ampere. The results of those ex-
periments are the basis of the notion of a mag-
netic force field and its effect on magnetic poles
and on electric currents. Magnetic force field,
magnetic pole strength, and magnetic moment
are quantities which are defined in this chapter.

1.1 CURRENT FORCES

Two paralle] wires have a force of attraction
which is proportional to the product of the two
electric currents and inversely proportional to
the separation of the wires. Figure 1.1 depicts
two such currents flowing out of the paper. The
force on the right-hand current, exerted over a
length L, is:

LLL,
22 (1.1)

where K is a constant depending on the unit
system. For currents flowing in opposite direc-
tions the force is repulsion, and when currents
flow perpendicular to one another they exert
no force on each other. Ampere demonstrated
these effects and Maxwell formulated them by
developing the notions of field theory. To deal
with this action at a distance, Maxwell con-
ceived of a force field which would act on a cur-
rent dependent upon the current direction as

F=K

) ’ o4
©——F F—o0
J} (ovt) ‘Z:Z ut)

Figure 1.1: current forces

well as the length of a conductor which carries
the current.

Taking Ampere’s experimental results, con-
cisely stated in equation 1.1, and predicating
a force field which also deals with antiparallel
currents and perpendicular currents was not a
simple task. To do this Maxwell invented vec-
tors. Briefly, to account for Ampere’s observa-
tions, the field from the first current had to be
perpendicular to the second, and the force per
unit length on the second current had to be a
cross-product of the first current’s field and the
second current.

Br is the symbol which is used here to des-
ignate the force field, a vector. The force field
arising from current flowing in a long straight
wire, as I; in figure 1.1, is perpendicular to
both the current and to the radius vector from
the wire to the point where the field is acting.
This field is constant at a particular radius, di-
rected in the right-hand sense around current
I;: Pointing the right-hand thumb in the direc-
tion of the source current (I;), the curled fin-
gers indicate the direction of the resulting field
(counter-clockwise).

In the MKS unit system, the force field acting
on current 2 because of current 1is Bp,;:
(11 y X 1fu)

ol
Br, = Fol (1'2)

T 271y



1. MAGNETIC FORCE

F2i
2

I, 1
®

Ll r i
ovt 12
1, (ot
Figure 1.2: magnetic force field

where 4, ia the permeability of free space, y, =
47 x 10~7, and the boldfaced 1 indicates a unit
vector. The unit vector 1;, is in the direction
of the current I;, and the unit vector 1, , is
the radial direction from current I; toward the
field point. The direction of the force field is
then the vector cross-product of the direction
of the source current and the direction from the
source current to the field point.

The units of the force field is newtons per
amp-meter, so the the constant K of equation
1.1 can be seen to be y,/27 in the MKS unit
system. generalizing from this example, the el-
ement of force on an element of length dl car-
rying a current I in a magnetic force field Br
[Lorentz’s equation] is:

dF = Idl x Bp (1.3)

1.2 MAGNETS

Magnets are attracted to iron products such as
refrigerator doors. Using a pair of magnets,
you can easily demonstrate that they can at-
tract and repel one another. This is explained
by magnetic poles: a magnet has two poles of
opposite polarity, and with a pair of magnets
the poles that are alike repel one another while
unlike poles attract each other.

Directions on the earth’s surface are found
with a compass, which points toward the geo-
graphical north pole, or more accurately toward
the magnetic pole in the north. The compass is
a needle magnet on a pivot. The end of the nee-
dle which points to the north is defined as the
magnet’s north pole. This leads us to conclude
that the earth’s magnetic pole in the north is
actually a south pole, as it attracts the com-
pass’s north pole.

Attraction and repulsion are forces which act
on pairs of magnets: Two north poles repel each
other equally, and two south poles repel each
other equally. The north pole of one magnet
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and the south pole of another attract each other
equally. The north and south poles of the same
magnet exert forces, but they can only cause de-
formation of the magnet, not cause motion. For
a two magnet system, the result is two forces
acting on each pole of each magnet. See fig-
ure 1.3 where the pole forces are shown acting
equally and oppositely on each pair of poles as
single vectors, with summed forces indicated on
each pole. The individual forces are inversely
proportional to the square of the separation.

ﬁlz
f
\,
s, Fea
N/Z = Y /
S ma7«t 1 N

P
Figure 1.3: magnet forces

Suppose two identical magnets have pole
strengths P and lengths I. Placed on a line
with north poles adjacent and and separated by
a distance d as in figure 1.4. Coulomb’s exper-
iments showed that the forces between two like
magetic poles is a repulsion proportional to the
product of the pole strengths and inversely pro-
portional to the separation between the poles.

S

) S T

—— Fm‘ 4F—'F55
- Flt E-Y]
Figure 1.4

Then, using Coulomb’s Law, the forces indi-
cated are:

Fny = kP3/d?
Fsy=Fns = —kP?/(d+1)?
Fss = kP%/(d+2l)?
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The total force (to the right) on the right-hand
magnet can be calculated from this expression:

F = FNN+Fsn+ Fns+ Fss
P2 P2 P2
= k— -2k k
b TRy Ty

and the force on the left-hand magnet is equal
but to the left. The constant k depends on
the unit system and the definition of the pole
strength P. The notion of force acting at a
distance from the source of the force is called
a field, and in particular a force field. Here
with two magnets we find such a phenomenon.
Each magnet experiences force because of the
other magnet. Then each magnet experiences
the other as a source of a force field. Each pole
can be visualized as having the force acting on
it as the product of the force field at that point
and its own pole strength P. Because this is a
magnetic force, it is of the same nature as the
field caused by an electric current, Br. From
figure 1.4, the north pole of the right hand mag-
net would experience a force field of to the right
of magnitude:

Br = kP/d? — kP/(d + I)?

where the first term on the right-hand side is
due to the left- hand magnet’s north pole, and
the second is due to the left-hand magnet’s
south pole.

Thus the field due to an isolated magnetic
pole is directed from that pole toward the point
where the field is being calculated. The field is
proportional to the pole strength and inversely
proportional to the square of the distance from
the pole to the point. We define the vector from
the source (pole) to the field point as r,; and
its magnitude as r,;. The vector field at the
field point is Bp:

(1.4)

and the unit vector is then seen to be:

1y =ri/lIresl

For a group of poles, the field is calculated
by vectorally adding the effects of each.

The force field due to a magnet acts on other
magnets as well as on electric currents. This
requires pole strength be defined to result in
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correctly calculated forces on current carrying
conductors. Dimensionally the force field Br is
in newtons per amp- meter in eq. 1.2, and must
be in units of newtons per unit pole in equation
1.4. Thus it is necessary that the P be in units
of amp-meter. From eq. 1.4 it is necessary that
the units of kP be henrys x amps to result in
a force field in Teslas or Webers/m2. Then &
must be henries per meter, and so must contain
#o which has the correct units.

1.3 MAGNETS AND CURRENT
LOOPS

The field generated by a long straight wire cat-
rying a current is quite different from that of
a magnet. In order to obtain the correct con-
stants in the expression for the force field due
to a magnetic pole, we must find an equiva-
lency with current. The equivalency is between
the far field of a magnet and that of a loop of
current. The constant k is determined by com-
paring the fields generated by each. We begin
with the field due to a magnet.

1.3.1 FIELD OF A MAGNET

Figure 1.5: magnet field

A bar magnet consists of a north pole +P
(a positive magnetic charge) and a south pole
—P (negative magnetic charge) separated by
a length L. To determine the magnetic field
caused by a bar magnet or "dipole”, we use a
form of Coulomb’s law. The coordinate sys-
tem most convenient for this situation is the
spherical system which uses the radial vector r,
measured from the origin - which will be the
middle of the bar magnet; an azimuthal an-
gle, ¢, which is measured from an arbitrary line
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through the center of the magnet, but perpen-
dicular to the axis joining the two poles; and a
polar angle 6, measured from the half of the
polar axis passing through the north pole of
the magnet. The coordinates for our analysis
is shown in fig. 1.5. the north pole is on the
polar axis at r = L/2, § = 0 and the south pole
is at r = L/2, § = 180°. The application of
Coulomb’s Law, obtains the following expres-
sion for the field at (r,0,¢):

kP1,(r- % cos 6)
(r2+ £ — rLcosf)3/2
kP1.(r+ -g- cos 6)
(r2+ £ + rLcos§)3/2
kPlo(% sin 6)
(r2+ & —rLcos§)3/2
lcPla(% sin 6)
(r2+ L2 + rLcosf)3/2

Br =

The far field approximation is that r >> L.
Then, making the approximation that

(1+4+z)""?x~1=-nz/2
we have the far field expression:

2cosf

Br = kPL{=——1+ sin 8

Tlg} (1.5)

1.3.2 FIELD OF A CURRENT LOOP

The field of a loop of current and the field of a
bar magnet become identical when the distance
from the source becomes large with respect to
the dimensions of the source, i.e. L for the bar
magnet (r >> L) and the radius for the cur-
rent loop. The analysis of the current loop,

Figure 1.6: current loop field

which is centered at the origin of the spheri-
cal coordinate system, with the current on a
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circle around the polar axis circulating in the
right-hand sense, as indicated in figure 1.6, is
most readily solved using the vector magnetic
potential formulation of the Biot-Savart Law,
and then taking the curl to obtain the force
field. This is a common example in many text
books on electromagnetic fields and is beyond
the scope of this course. The results, when the
distance from the source r is much greater than
a, the radius of the current loop, the force field
is found to be:

2cosf sin 6)
47r3 47r3 L} (16)

which again is a far-field expression.

Br = #07"021{ 1 +

1.3.3 MAGNETIC MOMENT

A comparison of equations 1.5 and 1.6 shows
that equivalency is between (1) the product of
the bar magnet’s pole strength and pole sepa-
ration, PL, and (2) the current loops product
of current and area of the loop, 7r2]. These
terms are both called the magnetic moment:

MAGNETIC MOMENTS: 7a’] equivalent to PL

The magnetic moment is a vector, which for
a bar-magnet points in the direction from the
south pole (—P) toward the north pole (+P),
while for the current loop the direction is found
from the right hand rule applied to the current:
curl the fingers of the right hand in the direction
of the current, and the extended thumb points
in the direction of the magnetic moment. This
is equivalent to crossing the radius direction
with the direction of current. The magnetic
moment is symbolized as m, and is defined as:

PL1,, (1.7)
IAlr:] (1-8)
Again comparing equations 1.5 and 1.6, it is
seen that the constant k for magnetic pole

forces and fields in coulomb’s law equations
must be :

BAR MAGNET: m =
CURRENT LOOP: m =

k= % IN THE MKS sYSTEM

Then the magnetic force field due to an isolated
magnetic pole, for the MKS unit system (from
equation 1.4) is:

Br = po (1.9)

41rrf!
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1.4 TORQUE ON A MAGNETIC
MOMENT

Calculation of torque on a magnetic dipole can
be done using either a magnet with Coulomb’s
Law, or a current loop with equation 1.3. In
either case, the torque is found to be:

TORQUE T =m x Bf (1.10)
Exercise 1.1: derive equation 1.10 for a bar
magnet.

Exercise 1.2: Derive equation 1.2 for a square
current loop with an area a? and a current 1.

1.5 ELECTROMAGNETS

The term magnet refers to permanent magnets
that continue the same behavior over a long pe-
riod of time. On the other hand, it is possible
to magnetize materials such as iron and steel so
that they become temporary magnets. An iron
rod can be magnetized by applying an electric
current to a coil of wire wound around it. It
will be strongly magnetic as long as the current
continues, but will lose most of its magnetism
when the current is stopped. Such magnets are
called electromagnets and their strength is pro-
portional to the current. After the current has
stopped they may have a small remnant mag-
petism. These effects can be measured through
forces acting on an electromagnet in the vicinity
of another magnet.

1.6 SUMMARY

The definitions given here for magnetic pole
strength and for magnetic moment have been
made so the force on a pole and the torque on
the magnetic moment are both calculated from
the force field Br. The units for magnetic pole
strength are amp-meters and the units for mag-
netic moment are amp-meters;. The only unit
system employed has been the MKS unit sys-
tem. The units of the force field are directly
determined as from the force equations

The magnetic force field field, Br, has been
defined for the following cases:
1. Where it arises from a current in a long
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straight wire (Ampere’s Law, from eq. 1.2):

Bol.

1
11;!";3
2

Br, = 27r;

2. from an isolated magnetic pole (Coulomb’s
Law, from eq. 1.7:

- Palnf
Br= #°41rrfl

3. Where it is the far-field arising from a mag-
netic dipole (from eq. 1.5 and 1.6):

Br=

“;z {21, co86 + 14sin )}  (1.11)

4
The force on an element of electric current is
part of the Lorentz force equation as given in
eq. 1.3: .
dF = Idl x Bp

The torque on a magnetic dipole moment m
is given in eq. 1.10:

T=m x Bfr



Chapter 2

MAGNETIC INDUCTION

2.1 EXPERIMENTAL BASIS

The statement that like poles of magnets re-
pel each other and unlike poles attract can be
proven from the fact that it is possible to find
three poles which mutually repel each other,
but it is not possible to find three poles which
mutually attract each other.

From the earliest times magnets were known
for their ability to attract (but not repel) cer-
tain metals, most notably iron. This shows that
a magnetic pole induces an unlike pole in the
closest part of nearby iron. As magnetic poles
occur only in pairs (i.e. magnetic monopoles
have not been found), then a magnetic pole will
also induce a like pole in the most remote part
of the nearby iron. As these induced poles are
equal in strength, the result will be an attrac-
tion of the iron to the closer pole of the magnet.

Qersted’s discovery of the magnetic effect of
electric currents eventually led Faraday to in-
vestigate whether magnetic fields could cause
or induce electric current in a conductor. He
found this could be done either by changing
the current that created the field or by mov-
ing a conductor relative to a magnet or other
field source. Henry had independently discov-
ered the effect of the changing current. Fara-
day carefully described his experiments, includ-
ing all the failures. This record keeping proved
invaluable to Maxwell when he set out to un-
derstand electromagnetism.

It was in 1831 that Faraday discovered that
electric current was induced in a wire which
formed a closed circuit when the current in a
nearby wire was changed. Faraday saw the in-
duced current was the response to an electromo-
tive force (abbreviated emf). Ohm’s discovery
of the law of resistance in 1827 provided the key

to understanding the relation between current
and emf.

Faraday attributed the induced emf to a flux
arising from the magnetic field of the current
in the nearby wire. He envisioned the induced
emf being caused by changing this flux. The
induced current was proportional to the emf,
by Ohm’s Law.

The emfis equal to the negative time rate of
change of the magnetic ”flux”:

emf= —-“% (2.1)

The symbol ¢ (phi) indicates the quantity mag-
netic flux. The emf has units of electric po-
tential, volts in the MKS unit system. Thus
the units of the magnetic flux ¢ is volt-seconds,
which is also called webers.

Equation 2.1 is the most fundamental form
of Faraday’s Law of electromagnetic induction
and serves as the definition for magnetic flux.

2.2 MAGNETIC FLUX DENSITY

Magnetic flux is a flow concept which involves
no tangible material. However it is useful to
think of magnetic flux as analogous to the flow
of water, which has a particular direction at a
particular point. At such a point the direction
and speed of the water, combined with the den-
sity of the water, can be used to define a flow
density of the water. This flow density is a vec-
tor, and could also be called the flux density of
the water at that point.

The flow of a stream of water is usually de-
fined as the rate at which water passes through
an imaginary plane or other surface. This is
also the average flow density or flux density
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multiplied by the area of the imaginary surface,
provided that the surface is perpendicular to
the flow density at every point. This can be ex-
pressed as a surface integral, which involves the
scalar product (dot product) of two vectors: the
flux density and the surface element’s normal.

Magnetic flux density is similarly defined in
terms of magnetic flux. Using the symbol B
for the vector magnetic flux density, the flux
through a surface Sis

¢=j/sn-1,,ds

where 1,, is the unit vector normal to the ele-
ment of surface area dS.

The MKS units of magnetic flux density are
seen to be volt-seconds per square meter, or
webers per square meter which are also called
teslas.

Magnetic flux density B is a vector quan-
tity which is defined at a so-called macroscopic
point. A macroscopic point is not the same as
a mathematical point, but should be thought
of as a very small volume or surface area, yet
large enough to accommodate a large number
of atoms.

Faraday’s law of electromagnetic induction
can then be written in terms of the flux den-

sity as:
lij
emf = % //;B-l,,dS

This can further be expressed using the circu-
lation of the electric field intensity E to replace
the emf, i.e. the line integral of the electric
field intensity, E, around the boundary of the
surface S in the counter-clockwise direction is
the emf

(2.2)

(2.3)

emf= E-tﬂ:-—-% //B-l,,dS (2.4)
Cs S '

where the curve Cs is the boundary of the sur-
face S.

2.3 FLUX INTO A VOLUME

In equation 2.4 the circulation of E is the emf
around any closed path, and the surface over
which B is integrated is any surface which is
bounded by the circulation path. This leads
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to an important law, which was formulated by
Gauss together with a more general theorem of
vector calculus.

Consider a square box as shown in fig. 2.1.
We take the boundary of side A as the path for
the circulation of E, which encloses the surface
A. The circulation is —d¢/dt passing through
surface A. Notice also that the path of circula-
tion also is the boundary of a surface composed
of the box excluding side A. The circulation
of E is also —d¢/dt through that complex sur-
face. The conclusion to be drawn here is that
the time rate of change of the flux into a vol-
ume is identical to time rate of change of the
flux out of the volume: there is no net time
rate of change of flux into (or out of) a volume.
Thus, in the absence of magnetic monopoles,
the flux into a volume is equal to the flux out.

figure 2.1

It is useful to shrink the volume until it ap-
proaches the macroscopic point in size. In do-
ing this, it is a straight-forward process to show
that the divergence of the flux density is zero.

divB=0 (2.5)

exercise 2.1: Using cartesian coordinates, and
taking limits as the dimensions of the box in
figure 2.1 shrink to zero, using the definition of
the partial differential and the fact that the net
flux into the box is zero, demonstrate that the
divergence of B is zero.

Equation 2.5 tells us that magnetic flux is
continuous, having no sources or sinks (in the
absence of monopoles). This requires that mag-
netic flux ”closes” on itself, and for that reason
is called solenoidal.
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2.4 MOTIONAL EMF

A conductor moving in a magnetic field is a rel-
ativistic situation, and is equally viewed as a
magnetic field moving with respect to the con-
ductor. The charges within the conductor have
a velocity relative to the magnetic field, which
results in an effective electric field acting on the
charges. If the charges are free to move, as in
certain closed circuits, they will participate in
a current flow. The force per unit charge is, by
definition, the electric field intensity. The en-
tire situation is summed up in the Lorentz force
law:

F=Q(E+vxBp) (2.6)

here Q is the charge, E is the electric field in-
tensity, v is the relative velocity of the charge
with respect to the magnetic force field Bp.

In a situation where there is a segment of
wire moving in a magnetic field, and there is
no provision for current flow, then an equilib-
rium condition will arise according to equation
2.6, where the net force will be zero, so that the
electrostatic field arising from free charge distri-
bution within the wire and the electromagnetic
field due to the relative velocity of the charges
in the magnetic field are balanced. In that case,
the electric field must be:

E=-vxBf (2.7)
The emf generated over a length of conductor
is found by the line integral of the electric field
over the length:

cmf:-—/(vap)~dl (2.8)

Equation 2.8 is fundamental to electrical
power generation, and provides the relation be-
tween emf and motion of a conductor in a mag-
netic force field. In principal such a force field
can be calculated from known current distri-
butions and the resulting emf generated on a
conductor moving in the force field also calcu-
lated. Such a calculation will agree with an
experimental measurement, showing that the
force field is directly involved with the motional
generation of emf.

A loop of conductor can be placed in this
calculated force field and the flux of the force
field passing through the loop determined by
integration. This flux will be a linear function
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of the current. Thus the flux of the force field
can be varied by varying the current. In doing
80, the time rate of change of the flux due to the
force field is found experimentally to be equal
to the measured emfon such a loop. So, for the
case of a gaseous media the magnetic force field
Br and the magnetic flux density B are found
to be equal.

The magnetic force field Br acts on electric
currents and on magnetic poles, but the results
are measurable only in a non-solid environment.
On the other hand, magnetic flux in a solid ma-
terial is measurable as the emfin a conductor
wrapped around the solid can be measured. As
seen in equation 2.5, the divergence of the mag-
netic flux density is zero, which means that the
normal component of magnetic flux is continu-
ous in crossing from one medium to another.

Except for ferrofluids, a non-solid environ-
ment is also non-magnetic. In non-magnetic
environments experiments show that the mag-
petic force field and the magnetic flux den-
sity are identical. Inside solid magnetic envi-
ronments measurements of forces and torques
are impossible. However, one experiment in
a ferrofluid indicates that the magnetic force
field and the magnetic flux density are different
in a magnetic material (environment)!. This
experiment appears to support Maxwell’s un-
derstanding of electromagnetic forces and emf.
Maxwell seems to have espoused the notion that
the magnetic force field depends only on cur-
rents and magnetic poles. Some later workers
have found this an unacceptable idea, and have
insisted that the medium or environment plays
a key role. These dissident workers have suc-
ceeded in establishing their opinion in the most
commonly used version of the MKS unit sys-
tem, which is known as the Sommerfeld Sys-
tem. This will be discussed in some detail at a
later point.

In order to follow Maxwell’s understanding,
we first establish the concept of the magnetic
field intensity, H, which is exactly proportional
to the force field Bp.

1Ezperimental demonstration that the couple on a
bar magnet depends on H, not B, R W.Whitworth and
H.V Stopes-Roe, Nature, v 234, pp31-33, Nov 1971.



2. MAGNETIC INDUCTION

2.5 MAGNETIC FIELD INTEN-
SITY

The magnetic field intensity H is a vector, and,
following Maxwell’s ideas, is calculated from
the combination of current distribution and
magnetic pole distribution. It is proportional to
the vector we have been calling the force field,
with the definition:

Br = pH (2.9)

The general expression for the calculation of H
is obtained by modifying the Ampere Law and
Coulomb Law expressions of chapter 1 (equa-
tions 1.2 and 1.7). The current and its direc-
tion are combined in the form of current density
enclosed in a volume element as indicated in fig-
ure 2.2, which then requires an integration over
all current density. this results in an expres-
sion which is usually called the law of Biot and
Savart:
Ix1,y

=[] i,

where J is the current density (source point),
r,s is the distance from the source point to the
field point (the field point is that where the field
is being calculated), and 1,; is the unit vector
from the source point toward the field point.
Because magnetic materials are typically mag-
netized using electric currents, this part of the
magnetic field Hy, will be called the magnetiz-
ing field.

dVol

(2.10)

J I

dVol
L’r TdH

fig. 2.2 Biot-Savart field source element

Coulomb’s Law is modified to deal with pole
density rather than isolated poles, which also
results in a contribution to the field intensity
requiring integration over all pole density:

Hd=/// Pmlst gyl
Vol 47”'

(2.11)
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where pp, is the magnetic pole density (source
point), 1,; is again the unit vector from the
source point to the field point, and r,; is the
distance from the source point to the field point.
Because inside a magnetic material this part of
the field is in in opposition to the magnetiza-
tion, H; will be called the demagnetizing field.

1
@‘%\ ﬂ‘i&

fig. 2.3 pole density field source element

Then the cbmplete expression for magnetic
field intensity is the sum of the magnetizing field
and the demagnetizing field H,, + Hy:

J[[ ikt ava s
Vol 41"'

Pmln]
[/, ellava @)
2.6 SUMMARY
Faraday’s law of electromagnetic induction is:
emf= —-‘;—iS

In the MKS unit system, magnetic flux is in
webers while magnetic flux density is in teslas.

The divergence of the magnetic flux density
is zero: divB =0

It has been shown that for the case of a
gaseous media the magnetic force field Br and
the magnetic flux density B are equal.

As magnetic forces have been shown to be in-
dependent of the medium (as was envisioned by
Maxwell), the magnetic field intensity is defined
as proportional to the quantity we have called
the force field, as in equation 2.9: BF = p H.



Chapter 3

MAGNETIZATION AND POLE DENSITY

3.1 INTRODUCTION

The magnetic moment of a dipole, arising either
from a bar magnet or a current loop has been
defined in chapter 1, and found to have MKS
units of amp-meters?. All atoms have magnetic
moments which are attributed to the orbiting
electrons and to the spinning of those orbiting
electrons. In most materials the average mag-
netic moment tends to align with an applied
magnetic field. This behavior is called para-
magnetism. In some materials, the magnetic
moments tend to align in opposition to an ap-
plied magnetic field. This behavior is called
diamagnetism. Both paramagnetism and dia-
magnetism are weak effects.

Some materials have strong magnetic effects.
To some degree, all such materials exhibit spon-
taneous magnetization, the property observed
in permanent magnets, in that they behave
magnetically in the absence of an applied mag-
netic field. These materials are broadly classi-
fied as magnetic. Other terms such as ferromag-
netic, ferrimagnetic and anti-ferromagnetic, are
used describe specific materials, but we will use
two different classifications of magnetic materi-
als, one of which is soft, and the other as hard.

The atomic magnetic moments in soft mag-
netic materials tend to align with an applied
magnetic field rather easily. Also, soft mag-
petic materials have little remnant magnetiza-
tion when the field is removed. Such materials
are used in magnetic recording heads.

Hard magnetic materials are more difficult to
magnetize, but retain the alignment of mag-
petic moments after the magnetizing field is re-
moved. Such materials are used in magnetic
recording materials.

10

3.2 FARADAY VOLTAGE AND

FLUX MEASUREMENT

The most common method of measuring mag-
netic flux is via the Faraday Law relation of
equation 2.1:

emf= ——

dt

which involves the measurement of the voltage
generated in a loop of wire. The ends of the
wire are not quite touching, so that the voltage
is the instantaneous value of the time rate of
change of the flux passing through the loop. To
obtain the flux, that voltage is electronically
integrated as indicated in figure 3.1.

figure 3.1

The magnetic flux density is a quantity which
is closely related to the magnetization of a mag-
netic material, and the flux density is approx-
imated by dividing the flux by the area of the
loop (which actually gives the average flux den-
sity):

Bgu, ="“'% /emfdt

In some cases, in order to increase the voltage
available, several turns of wire are formed into

(3.1)
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a coil of N turns. The resulting voltage is then
seen to be:

d¢
dt

Then the average flux density can be calculated
in terms of the voltage from the N-turn coil:

1 cot
Bag = /lﬁ-’dz

3.3 MAGNETIZATION

Veost = —emf = N

(3.2)

(3.3)

Magnetization is defined as the average mag-
netic moment per unil volume al a macroscopic
point. Recall that a macroscopic point is a vec-
tor point, one which can contain a large number
of atoms. The magnetization is a vector quan-
tity, which is symbolized with M in the MKS
unit system:

M= lim =2

im &—! [amps/m]

Vol—0 Vol (34)

where the units of the individual magnetic mo-
ments (m;) are amp-meters?.

The units of magnetization, M, are here de-
fined to be the same as magnetic field intensity
H, namely amps per meter. Within a magnetic
material, as can be demonstrated experimen-
tally using Faraday’s law, the vector sum of the
magnetization and the magnetic field intensity
determine the flux density:

B =#0(M+H)

It is recalled that H consists of two parts, the
magnetizing field due to currents, and the de-
magnetizing field due to magnetic poles: H =
H,. + H;. Then we can write:

B = po(M + H,,, + Hy) [teslas] (3.5)

The demagnetizing field arises from magnetic
moments within the magnetic material. This
can be understood from the properties of the
magnetic flux density, B, which must be con-
tinuous on a macroscopic field basis.

3.4 MAGNETIC POLE DENSITY

A fundamental decision that Maxwell made in
the formulation of electromagnetism was in the
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definition of magnetic flux density. This is ex-
pressed as in eq. 2.5:

divB=0
Applying this to equation 3.5, we obtain that:
div(po(M + Hp + Hy)) =0

where 4, is a constant. In the quasi-static sit-
uation (i.e. no macroscopic eddy currents) the
divergence of the magnetizing field (which has
its sources outside of the magnetic material), is
zero in the magnetic material., thus:

divM +div Hg =0 (3.6)

We can use this result to calculate the demag-
netizing field arising from a known distribution
of magnetization. To develop this ability, we
first integrate equation 3.6 over a volume, sep-
arating the two parts:

// div Hy4 dVaI:—// div M dVol
Vol Vol

The divergence theorem can be applied to the
left side of this equation to obtain:

// div Hy dVoI:/ H;-1,dS5,
Vol sv

where S, is the surface of the volume and 1,
is the outward pointing normal to the surface.
Then, substituting this result into the previous
equation:

/ H; 1,dS, = —// div M dVol
S, Vol

3.7

Which is a form of Gauss’s law. This shows

that the divergence of the magnetization plays
the part of a pole density:

Pm = -divM (38)

where p,, is the magnetic pole density. Then
equation 3.7 can be written:

/ 5 H; - 1,dS, = / / /v o Vel (3.9)

We can further develop this by taking the
case where there is simply a small volume,
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AVol, and we take the surface for integration as
a sphere centered on that small volume. Then
on the surface the flux due to the small vol-
ume is perpendicular to the surface, and of the
same value at any point on the surface. The
surface integral then becomes simply 4xr?Hyg,
with a vector direction from the small volume
to the surface point. Then equation 3.9 can be
re-written to take in all pole density as:

Hd_/// LLXTY RtV
V°,41rr

which matches the demagnetizing field portion
of equation 2.12.

(3.10)

3.5 FIELD MEASUREMENT

A fundamental relation for magnetic materials
is the B-H or M-H chaaracteristic which is typ-
ically a hysteresis loop. Measurements for a
B-H loop typically use the integration scheme
describe with figure 3.1 to determine the flux.
The measurement of the magnetic field in a
magnetic material is impractical, because force
measurements are not generally possible. The
strategy employed is to calculate the magne-
tizing field from the current configuration, and
either calculate the demagnetizing field or else
use a sample configuration where the demag-
petizing field is negligible, the latter practice
being preferred. Here we consider three current
configurations to give known field values. In
each of these systems, a Faraday voltage pickup
coil will have mutual inductive linkage with the
magnetizing field source, so that such a volt-
age will be induced by a varying magnetizing
field even in the absence of a magnetic mate-
rial sample. This effect requires cancellation by
some instumentation means, or correction by
computation.

3.5.1 THE HELMHOLTZ COIL PAIR

A Helmboltz coil pair is a system of two identi-
cal coils, each having N turns and carrying the
same current 1. The coils are on a common axis
separated by the radius, r. This results in an
axial field which is quite uniform on the axis
at the midpoint between the two coils. This is
illustrated in figure 3.2.
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figure 3.2

This system is used for small samples of ma-
terial which require relatively small magnetiz-
ing fields. The field at the center of the system
is:

r2NI

Hort = T

= 0.7155-]-%{ [a/m)]

(3.11)
The region of uniformity is a volume of about
10% of the volume of the system.

3.5.2 THE LONG SOLENOID

A cylindrically wound coil of wire is called a
solenoid. For a long, uniformly wound solenoid
of N turns and length L meters, carrying a
current I amps, the field at the center of the
solenoid is:

NI
Hcolenmd = _ [a'/m]

(3.12)

The solenoid field, excluding the ends, is
quite uniform. The end regions excluded are
lengths of about a diameter. Such systems can
be used with relatively large samples of mag-
netic material which do not require very large
magnetizing fields.

3.5.3 THE ELECTROMAGNET

For materials requiring very large magnetizing
fields, electromagnets are commonly used. The
electromagnet is a structure of (magnetically)
soft iron, constructed so that there is a gap
where a uniform field is produced. The gap has
two cylindrical poles with flat faces separated
by a distance of g meters. The structure is en-
ergized by current I flowing in coils of N total
turns. An electromagnet is sketched in figure
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3.3. At distances of at least the gap-length (g)
from the pole edges, the field is quite uniform:

NI
Hyop = T [a/m]

(3.13)

N
Poles
CoLs A

SOFT IRom YoXE

figure 3.3

3.6 MKS UNITS

The treatment of magnetic moments is differ-
ent in two competing MKS unit system. These
two systems are further described below. The
first has magnetization (M) in the same units
as H, as has been done here. The second uses
a variable called Intensity of magnetization (I)
and its units are the same as B. The defining
equations are:

Sommerfeld: B = p,(H + M) (3.14)

(3.15)

In linear magnetic materials, also called soft
magnetic materials, the magnetization is pro-
portional to H for fields less than some partic-
ular level:

Kennelly: B=pu,H+1

M=xH

for example, and x (greek chi) is called the mag-
netic suceptibility. For such materials, the per-
meability is u:

B = Hobr = po(l +X)

and u, is the relative permeability.

The two competing MKS unit systems also
differ in that the magnetic moment for a cur-
rent loop of current i and area A is defined dif-
ferently for each:

Sommerfeld: m = 141,
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Kennelly: j = poiAl,

The definition of torque on a magnetic mo-
ment is therefore different in the two systems.
Sommerfeld has the torque proportional to the
magnetic flux density B, whereas we have de-
fined it as proportional to the force field u,H
which is in accordance with the Kennelly sys-
tem.

3.7 UNIT SYSTEMS

A variety of unit systems have been developed,
and several survive in use today. The System
International, S.I., which is an MKS system,
was devised by G. Giorgi in 1902. Electrical
Engineering, has long been defined in this unit
system.

Two competing MKS systems are in use for
magnetic units. They both use the same def-
initions and units for magnetic field intensity,
flux density and permeability: Magnetic field
intensity: H [a/m], and Magnetic flux density:
B [tesla). And p, = 47 x 10~7 [henry/m)]

The system most commonly used in text
books on electromagnetic fields was invented by
A. Sommerfeld, and was adopted by one of the
most successful texts in the middle 20th cen-
tury, Electromagnetic Theory by J.A. Stratton.
Later authors tended to follow this text, so that
the Sommerfeld system has become a de facto
standard. The units used in the Sommerfeld
System are:

Magnetic moment: m [ampere-m?)
Magnetization intensity: M [ampere/m)]

The defining equations are:
B= I‘a(H + M)

T=mxB

The competing MKS system is the Giorgi-
Kennelly system, generally following Giorgi’s
original MKS system, but was so strongly sup-
ported by A.E. Kennelly that it is known as the
Kennelly System. The units used in the Ken-
nelly Sysiem are:

Magnetic moment: j [weber-m]
Magnetization intensity: I [weber/m?]
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The defining equations are:
B=puH+I
T=jxH

Unfortunately there is an inconsistency in the
two systems. The symbols j for magnetic mo-
ment and I for magnetic intensity are employed
in the Kennelly system and are used here to
pursue the inconsistency as follows:

As B and H are the same in both units, the
first defining equations give that:

po(H+M)=pH+I

so that I = u,M

The magnetic moment of a volume is defined
in both systems as the volume integral of the
magnetization. Thus, with a particular vol-
ume, assuming uniform magnetization within
the volume, the magnetic moment in each sys-
tem (the same volume, only the unit systems
are different): ‘

(3.16)

M vol
I vol

For Sommerfeld: m =
For Kennelly: j =

In the presence of an applied field, the torque
must be independent of the unit system:

Sommerfeld: T =
Kennelly: T

m x B=(M x B) vol
ixH=(IxH)vol

Then, as B = p,u.H in both systems, we
have that I = y,u.M

This differs from the result from equation
3.16: I = poM. These differ by the relative
permeability of the media, and cannot both be
correct. The problem is to determine where the
error lies.

In the paper, Ezperimental demonstration
that the Couple on a Bar Magnet depends on H,
not B, in Nature, vol 234, November 1971, pp
31-33, R.W. Whitworth and H.V. Stopes-Roe
of the University of Birmingham in England,
reported the results of an experiment, which
apparently proved the error was in the Som-
merfeld system. This error is in the expres-
sion for the torque on the magnetic moment,
so that the magnetization intensity relation is
I = u,M, and the torque must be corrected in
the Sommerfeld system:
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Sommerfeld correction: T = m x u,H

The other surviving metric unit system is a
cgs system called electromagnetic units (emu),
which was one of the incomplete systems in-
troduced by J.C. Maxwell in 1863. Yet another
system which he introduced in 1863 was also an
incomplete cgs system named the electrostatic
snit system (esu) which is no longer used. The
primary use of the emu system is in magnet-
ics and magnetic materials, primarily because
the International Electrotechnical Commission
(IEC) has not yet set S.I. standards magnetic
moment and magnetization. The emu system
has the following magnetic units which are in
common use:

Magnetic field intensity: H [oersteds, oe]
Magnetic flux density: B [gauss, g]
Magnetic moment: m [ergs/oersted, or emu]
Magnetization intensity: M [emu/cm?3 ]
Specific magnetization: o [emu/gram)]

The defining equations are:

B
T =

H+47M
mx H

Thus it can be seen that the permeability of
free space is unity in the emu system: p, = 1.

3.8 MAGNETIC UNIT CONVER-
SIONS
Magnetic Field Intensity: H
1 oersted =250/x amperes/m
Magnetic Flux Density: B
10,000 Gauss = 1 tesla

Magnetic Intensity: I (Kennelly)
47 x 10* emu/cm® = 1 tesla

Magnetization: M (Sommerfeld)
47 emu/cm® = (250/7) a/m



Chapter 4
LINEAR MAGNETIC

4.1

Magnetic materials exhibit a hysteresis loop in
a form similar to that shown in figure 4.1. The
usual parameters are the coercive force H,, the
saturation flux density B, and the remnant
magnetization B,. A fourth parameter, the sat-
uration field H, is added for our convenience
here. A so-called soft magnetic material has
B, that is a small fraction of B,. When its
operation is limited to the unsaturated region
(JH| < H,) the characteristic can be modeled
mathematically as a linear device with reason-
able accuracy. In this operating range, ignoring
the hysteresis for the moment, the relation be-
tween the magnetic field intensity, H, and the
magnetic flux density, B, is reasonably approx-
imated by the linear relation: B = pyH. (The
hysteresis results in a power loss, which will be
dealt with at a later point.) Referring to figure
4.1, the permeability u is the slope of the unsat-
urated region and is approximated by B, /H..

LINEAR CHARACTERISTICS

figure 4.1 magnetic characteristic

A more general way to express the relation
of B and H is to include the magnetization M.
Here the Sommerfeld unit system is employed
because it avoids y, in relating M and H: B =

MATERIALS

po(H + M). For a linear material, M = xH,
where x is a constant. Because the divergence
of B is zero, and

B = ﬂo(l+X)H = [lH

the divergence of H is also zero inside of a linear
material. In general

div(H + M) = 0 s0 divH = —divM

4.2

Inside of a linear material the divergence H is
zero and the divergence of M is zero. At the
surface of the material, the interface between
the magnetic material and a non-magnetic re-
gion, there may well be a discontinuity of the
magnetization. This occurs whenever there is a
component of magnetization perpendicular to
the surface. The discontinuity arises because
the normal component of magnetization exists
inside the magnetic material, but not in the ex-
terior nonmagnetic region. In such a case there
will also be a divergence of the magnetic field
H at the surface.

One viewpoint is to consider the continuity of
the magnetic flux density, which cannot change
as it crosses the surface separating the magnetic
material from the nonmagnetic region. Desig-
nating the normal components as H,; and M,
just inside the magnetic material and Hp, just
outside or in the nonmagnetic region, we have
the relation that

B, = I-‘o(Hm' + Mn) = poHpo

so that Hp,o — Hni = M,,.

The normal component of magnetization at
the surface is a source of magnetic field inten-
sity, and is experienced in the form of magnetic

SURFACE POLARITY

15
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poles. The magnetization is a volume density of
magnetic moments, and its normal component
at a surface results in a surface pole density.
This is entirely analogous to a surface electric
charge density on an electric conductor. The
mathematical treatment of Gauss’ Law for elec-
tric charge density is applicable here. For an
element of surface area dS, with a normal com-
ponent of magnetization My, the field element
at a point p will be:

M, dS
dH = llpm

(4.1)
where 1, is a unit vector directed from the sur-
face element toward the point p, and r,, is the
corresponding distance. In order to determine
the total field at the point p it will be neces-
sary to perform an integration over the entire
surface.

As we are first interested in the effects quite
close to the surface, it is reasonable to take the
surface as an infinite plane. In performing such
an integration it is perhaps easiest to set up an
element of surface which is made up of a ring
centered below the point p, from which only
a normal component of field will result, and
which, when integrated over the infinite plane,
will yield a result that H,, = M, /2.

4.3 DEMAGNETIZING FIELD

Recalling that H,, — Hni = M, it is seen
that with H,, = M, /2, it is necessary that
Hg,i = =M, /2, so that the surface poles cause
fields in both the nonmagnetic region and in the
magnetic material. The interior field is in the
opposite direction to the normal component of
magnetization, and for that reason is called a
demagnelizing field, Hy.

HDO
NONMAGNETIC REGION
1 MAGNETIC MATERIAL
d

M

IVL a

1 M

figure 4.2 Demagnetization

The magnetization is magnetic moment per
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unit volume, and as such is a spatial average
over a macroscopic point. Each individual mo-
ment within a macroscopic point is subject to
torque due to the local magnetic field, which
act to align the magnetic moment with the field.
Thus, the demagnetizing field caused by a mag-
netization component normal to a surface tends
to cause the normal component of magnetiza-
tion to decrease. This can be seen in figure
4.2 where the magnetization is shown at an an-
gle a to the surface normal, together with the
normal component and the resulting demagne-
tizing field Hy. The torque on a magnetic mo-
ment is the vectorcross-product, so the torque
per unit volume on the magnetization is simi-
lar: pu,M x H. The cartesian coordinate sys-
tem shown corresponds with: M = 1. M sina+
1,M cosa, and Hy = —=1,(M/2)cos o, so the
torque is:

2

M
poM xHy=-1,—sinacosa

T 2

2
= —lzT sin 2a

It is seen that the torque is maximum at an
angle of 45°, and has minima at zero and 90°.
The minimum torque at a = 0 can be shown to
be an unstable equilibrium point (as any dis-
turbance in that angle will tend to increase the
angle), and the minimum at a = 90° is a stable
equilibrium for the magnetization. Thus, in the
absence of any other torques on the magnetiza-
tion, it would assume an orientation parallel to
the surface.

4.3.1 DEMAGNETIZATION
APPLIED FIELD

WITH AN

For the case where there is an applied field act-
ing on the magnetic material, we can break
that field into a component tangent to the sur-
face and a component normal to the surface:
H, = 1,H; + 1,H,, where H, = H,sinf and
H, = H,cosf where 8 is the angle the applied
field makes with the normal to the surface as
indicated in figure 4.3.

The total interior field is the vector sum of
the applied field and the resulting demagnetiz-
ing field: H = Hy + Hy. The magnetization
will lie in the direction of H and will be propor-
tional: M = xH. As was previously developed,
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g Ha
NONMAGNETIC REGION

‘ MAGNETIC MATERIAL
Hq

a

1t M
1,
figure 4.3 Magnetization Near a Boundary

the demagnetizing field is Hy =

-31.M,.
Then the total field can be written:

H= 1:H:+ ln(Hn - -;-Mn)

As M, = x(Hn — 1 M,),

H=1Hssinf+1,H,(1 - 2_: ) cos b

X

As M lies parallel to H, the angle the magne-
tization makes with the surface normal is found:

+X
2

For a susceptibility of x = 100, which is low for
typical magnetic materials, for an applied field
at 1°, the magnetization would be at an angle
of 89 degrees to the normal.

For the following cases of magnetic circuits
without nonmagnetic gaps, it is a reasonable
approximation to assume the magnetization
near a surface will be parallel to the surface.

tana = tan g

4.3.2 DEMAGNETIZATION AT A GAP

For magnetic circuits with nonmagnetic gaps it
is necessary to reconsider the foregoing mate-
rial. Here we consider a relatively thin nonmag-
netic region sandwiched between two magnetic
regions which have similar magnetic properties.

The surfaces considered have large dimen-
sions compared with thickness of the gap, and
effects due to surface poles near the outer edges
of the gap are considered far enough away to be
negligible. The region being investigated is rep-
resented in figure 4.4. The nonmagnetic region
has a thickness g, and the magnetization within
the two magnetic regions is assumed to be the
same (or at least the components normal to the
surface are both the same).

As the magnetic material and the nonmag-
netic material are both linear, the principle of
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figure 4.4 Magnetization Near a Gap

M, | @ M

superposition is applicable. The surface be-
tween the gap and the lower magnetic material
has a positive surface pole density because the
normal component of magnetization is directed
toward the surface. This will result in normal
field components pointing away from the sur-
face, and having a magnitude of-;—Mm indicated
as Hp,, (pointing upward, extending through
the gap and through the upper magnetic ma-
terial as well) and Hy, (pointing downward in
the lower magnetic material).

The surface between the gap and the upper
magnetic material has a negative surface pole
density because the normal component of mag-
netization is directed away from the surface.
This causes normal field components pointing
toward that surface, and having a magnitude
of {M,, indicated as Hq,, (pointing upward,
but extending downward through the gap and
into the lower magnetic material as well) and
Hg, (pointing downward but extending upward
through the upper magnetic material).

Applying superposition, it is seen that these
normal field components add within the non-
magnetic material, and subtract within the
magnetic materials, so there is no demagnetiz-
ing field associated with the gap.

The foregoing is an approximation, but is rea-
sonably accurate in gap regions at least two
gap-lengths (2g) away from any lateral edges
of the gap.

4.4 SCALAR MAGNETIC PO-
TENTIAL

For linear operation of soft magnetic materials
with negligible hysteresis, the relation between
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the magnetic flux density, B and the magnetic
field intensity, H, is linear, and the divergence
of B is always zero, so that the divergence of H
within a linear magnetic material is also zero.
Any vector whose divergence is zero can be ex-
pressed as the gradient of a scalar potential.
Thus it is useful to express the magnetic field in-
tensity within a linear magnetic material as the
gradient of a magnetic scalar potential which
we shall refer to as ¥, which in the MKS unit
system has the dimension of Amperes. Its gra-
dient then has the dimensions of Amps per me-
ter, and the relation is:

H=-grad ¥ 4.2)

As the divergence of H is zero in the linear mag-
netic material, it is also true that divgrad ¥ =
0, which is Laplace’s Equation. The operation
div grad ¥ is called the Laplacian of ¥, and is
written in shorthand as V2W¥ This result is that
the Laplacian of the magnetic scalar potential
is zero. In cartesian coordinates it is written:

6z2 ' 8y? 622 T

0 (43)

EXAMPLE 4.4.1.

A block of linear magnetic material has a
square cross-sectional area and a length £,
which is along the x-axis so that one end is
at ¢ = 0 and the other at £ = £. Assuming
the scalar magnetic potential is 100z within the
block:

(a) Determine the potentials at the two ends
of the block.

(b) Determine whether Laplace’s Equation is
satisfied within the block, and if so

(c) Determine the magnetic field intensity in-
side the block.

SOLUTION OF EXAMPLE 4.4.1.

(a) With ¥ = 100z, the potential at z =0 is
zero, and at z = £, ¥ = 100¢.

(b) With ¥ = 100z, the first partial deriva-
tive with respect to x is a constant, so the sec-
ond partial derivative with respect to x is zero.
As no other derivatives exist, Laplace’s Equa-
tion is satisfied.

(c) The gradient is:

oy oy v
1;'5; + 1,,5-; + 1,—6—2-
= 1001,

grad ¥

R.B.YARBROUGH

© 27 FEBRUARY 1990 18

Here is is seen that the field within the bar
is H = —grad¥ = —-1001,, which is perpendic-
ular to the equipotential ends of the bar, and
directed from the higher to the lower potential.

END OF EXAMPLE 4.4.1.

Laplace’s Equation in circular cylindrical co-
ordinates is written:
16%2%  6%v
= —_ =0 4.4
8p? + p? B2 + 522 (4.4)

EXAMPLE 4.4.2

A uniform ring of magnetic material is cen-
tered on the z-axis at the origin. It is assumed
that the magnetic field is due to a current along
the z-axis which will result in the field being cir-
cumferential within the ring (and elsewhere as
a matter of fact). Prove that the equipotential
surfaces will be planes radiating from the the
Z-axis.

SOLUTION OF EXAMPLE 4.4.2

The easiest approach is to assume the answer
and demonstrate that the field is circumferen-
tial. To do this, it is necessary to recognize
that a plane radiating from the z-axis will in-
clude a particular radius vector, p1,, at a par-
ticular angle, ¢. It is assumed that the equipo-
tential surfaces are a linear function of ¢ alone:
¥ = Ko+ K, ¢. The Laplacian of this potential
is obviously zero, and we determine the field
from its negative gradient.

In the cylindrical coordinate system the gra-
dient is:

ov 1 ov ov

grad¥ = 1‘°_5;)- + ;14,'5; + 1,-5'2— (4.5)
so the field is calculated:
1 B(Ko + K1¢) K,
H=-14y-—--— — L = —1y—
“p 8¢ “p

and it is seen to be only circumferential, which
agrees with the assumption. Again it is seen
that the equipotentials are perpendicular to the
field vectors, and the field is directed in the di-
rection of decreasing potential.

END OF EXAMPLE 4.4.2

At any point in a linear material the magnetic
field, H and the equipotential surface passing
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through that point are perpendicular, as a re-
sult of the relation H = —grad ¥. This can be
written on a small scale as HAf = —AV¥, with
the understanding that H and A/{ are aligned,
so that this is equivalent to a vector dot prod-
uct. This relation is illustrated in figure 4.5.

at ¥, + AV

¥,

figure 4.5 magnetic element

The magnetic element in figure 4.5 is suffi-
ciently small that there is no significant vari-
ation of H over the area A, and the lateral
boundaries are parallel to H. As B = uH,
the foregoing statements also apply to B. From
there it is a simple step to find that the element
flux, A®, whichis B- A = uHA enters the
element through the surface marked A at po-
tential ¥, and leaves the element through the
other end, which end is indicated by ¥, + AV.
Then the relation between the potential differ-
ence and the flux can be expressed as:

Hae=2lhe - _av
pHA

(4.6)

Then the relation of the flux, which enters
the magnetic element at the higher equipoten-
tial surface and exits at the lower equipotential
surface, is geometrically related to the drop in
equipotential. It is to be noted that the flux
does not pass through the lateral surfaces be-
cause those surfaces are defined as parallel to

the field H.

The relation of the element of flux to the
drop in magnetic scalar potential is geometri-
cal. This relation is often expressed in terms
of the parameter reluctance (R) or its inverse,
permeance (P). For the magnetic element this
can be written as:

(a.7)
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4.5 MAGNETIC CIRCUITS

The concept of the magnetic circuit is useful
in dealing with high permeability linear mag-
netic materials. It is based on Ampere’s Law of
Circuital Magnetism, and upon the concept of
the continuity of magnetic flux. Ampere‘s Law
states that the magnetomotive force, F, around
a closed path is equal to the current enclosed
by the path. This is a definition based on the
circulation integral of H:

Fe= Eienclo:cdbyc = f H.dl (48)
[

which is the counterpart of H = —grad ¥. The
circulation integral can be broken into as many
segments as necessary. For amenable geome-
tries, it is possible to replace the integrations
by a series of products of field and length on
paths where the field is uniform:

f H-dl= HiAl; + H Al + - -+ H Al
c

It is convenient to conceive of each of the
terms H;Al; drops of of magnetomotive force
between two equipotential surfaces, that is,
mathematical surfaces which each have a con-
stant magnetic scalar potential. The length of
path between the equipotential surfaces must
be short enough that the field intensity, H, is
reasonably constant along the path, and the
path must be aligned with the direction of H.
When these conditions are met, we can call the
resulting segment of the magnetic circuit a leg.

The continuity of magnetic flux is another
way of saying the divergence of the magnetic
flux density, B, is zero. This requires that
what-ever flux enters a volume must also leave
the volume: flux,,; = flux;,

Then the properties of a leg are as follows:

o A leg is a length of magnetic material be-
tween two equipotential surfaces.

e The magnetization within a leg is parallel
to the lateral surfaces of the leg.

e The magnetic flux which passes through
one equipotential surface in the leg is the
same as that passing through any other
equipotential surface within the leg. Thus,
the same flux which enters one end of the
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leg exits at the other. That is to say that
there is negligible leakage of flux from the
sides of the leg.

The leg of a magnetic circuit is similar to a
magnetic element with the difference that the
field H need not be uniform over the equipo-
tential surfaces of the leg. When considering a
segment of a magnetic structure as a candidate
for a leg, it is to be remembered that the mag-
netization prefers to align paralle] to a lateral
surface, which is no difficulty when the segment
is straight. However, when a lateral surface is
curved or contains a corner, it is necessary that
the magnetization somehow conform to the sur-
face.

The way that the magnetization and mag-
netic field conform to the lateral surfaces is by
the creation of just enough magnetic surface
pole density to cause the internal field and the
magnetization to nearly conform to the lateral
surfaces. By not quite conforming to the sur-
face, there will be a normal component of mag-
netization, which gives rise to the surface pole
density as discussed in section 4.3. Within the
linear magnetic material M and H are colinear
(i.e. they have identical orientations at any in-
ternal point). For this reason, the assumption
of no leakage flux from a magnetic leg is only an
approximation. There must be sufficient leak-
age flux to cause the magnetization to conform
to the lateral surfaces.

figure 4.6 Toroid Core

The simplest example of a leg is taken from
the toroid having N turns of wire threaded
through the aperture, so the magnetic field
within the toroid is entirely in the circumfer-
ential direction, and can be expressed as the
circumferential component:

_ N:
LY
The toroid core has an inner radius of a and

an outer radius of b, with a thickness of A, as
shown in fig. 4.6.

(4.9)
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It is assumed that there is a total mmf of
N1 amperes threading the aperture of the core,
8o the total potential drop around the toroid is
also Ni.

An arbitrary section of the toroid can be
taken as a leg, as indicated in figure 4.7. The
equipotential surfaces indicated as ¥; and ¥,
are radial surfaces which would pass through
the axis of symmetry of the toroid if extended
that far. Using the cylindrical coordinate sys-
tem, the potential on an arbitrary equipotential
surface can be written as ¥(¢) = Ko + K1 ¢,
where ¢ is the coordinate angle, not to be con-
fused with the flux &.

¥,

¥, <I>

&an b

figure 4.7 magnetic circuit leg

It can be shown that with potentials as given
above, the magnetic field is perpendicular to the
potentials and thus circumferential in direction,
as is to be expected from Ampere’s Law of Cir-
cuital Magnetism.



Chapter 5

RECORDING HEADS AND FRINGE

FIELDS

5.1 INTRODUCTION

In magnetic recording, a strong, localized field
is needed to change the direction of magneti-
zation in semi-hard (nonlinear) magnetic ma-
terials. A piece of copper wire could provide
enough field when soft materials such as iron
wire were used for recording in the early times,
and as Valdemar Poulson used in his original
invention in 1898.

A current carrying wire produces a field
somewhat less than the long straight wire field
used to explain Ampere’s law. For the long
straight wire carrying a current I, the field is
the current divided by 47 divided by the dis-
tance from the axis of the wire. American Wire
Gage (AWG) copper size #40 has a radius of
0.0508 mm, which means that the maximum
field (at the surface of the wire) is about 3000
A /mfor 1 ampere of current flowing in the wire.
The current capacity of this wire size is about
20 mA, so the maximum practical field it could
provide is about 60 A/m, or about 0.8 oersteds.
AWG #30 copper wire has a radius of .152 mm
and has a current capacity of about 100 mA,
to provide a maximum field of about 100 A/m
or 1.3 oe. at the surface of the wire. These
are strong enough to magnetize iron, but iron
is not a practical recording material, because it
is magnetically soft and can easily be demag-
netized. Practical recording materials require
fields of from 300 to 1500 oe. which cannot be
achieved with a simple copper wire.

A magnetic circuit can be used to amplify the
effective current by the number of turns, and
can concentrate the flux in a very local region.
However, to provide a recording field, the flux
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must be released from the core and directed into
the recording media. The simplest method of
releasing the flux from its conduit is to put a
ponmagnetic gap into the circuit, breaking it
open and allowing the flux to spill out.

Magnetic flux is continuous, and is contained
by magnetic materials which behave as conduits
of flux, bending the flux gently around curves
in the surface. The mechanism for the shaping
of the field to fit the shape of the magnetic ma-
terial is by surface poles, which act as further
sources of magnetic fields. Surface poles are
caused by the abrupt change of magnetization
at the interface between a magnetic material,
which has magnetization, and the nonmagnetic
material which does not. This is most readily
seen by studying the divergence of the magnetic
flux density, which is zero:

B = ,(H + M) (5.1)

As the divergence of B is zero, the divergence
of H + M must also be zero. This means that:
div H = —div M. The divergence of magneti-
zation is therefore a source of magnetic field.

If there is a magnetic pole density pm, then
we can use Gauss’ Law and Gauss’s Theorem to
establish that with div H = p,,, the field due to
such a pole density is related through Gauss’s
Theorem as:

/ AR / / /v (@ BaVal (5.2)

Which is Gauss’s Theorem, which can be ap-
plied to any conservative vector field. This is to
be understood as follows: The normal compo-
nent of the magnetic field intensity is integrated
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over the entire surface of a volume, and the net
result is the same as if the divergence were in-
tegrated over the volume bounded by that sur-
face. Thus Sy, of eq. 5.2 is the surface of vol
on the right side. Using the fact that the di-
vergence of H is p,,, eq. 5.2 can be written

as:
/ H-l,.dS:/// pmdVol  (5.3)
Svol vol

Equation 5.3 can be further manipulated to
give the algorithm for calculating an element of
H at a field point due to an element of charge
density at a source point. This is:

dH, = ”;"1” dVol

wr2

(5.4)

where r is the distance from the source point
to the field point, and 1,; is the unit vector
pointing from the source point toward the field
point. The subscript of p is used on H, to indi-
cate that this is a component of H that is due
to magnetic pole density. This magnetic pole
density is due to the divergence of magnetiza-
tion:

pm = —div M (5.5)

As was previously discussed, a linear magnetic
material has M = xH, so that there is no di-
vergence of M within linear materials, but can
occur at the surfaces. This is the primary rea-
son that magnetic circuits have the ability to
contain flux. When the magnetization would
otherwise have a component perpendicular to a
surface, surface poles are created by the discon-
tinuity of magnetization which are then sources
of H, which create a torque on the magneti-
zation which tends to make the magnetization
parallel to the surface.

The flux containment of magnetic circuits
provides another benefit, as the fields due to
the surface poles will compensate for lack of
symmetry in the current configurations.

5.2 RELUCTANCE OF
NONMAGNETIC GAPS IN
MAGNETIC CIRCUITS

Gaps in magnetic circuits are of great tech-
nological interest, because magnetic circuits are
able to contain and concentrate magnetic flux.
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In electrical machinery very strong fields are ob-
tained in air gaps and are used to provide the
emf for generators and torque for motors.

The analysis of the fringe field around a gap
will be undertaken later, we first must under-
stand the effects of gaps on the magnetic cir-
cuit itself. From extensive experience in the
measurement of reluctance of air gaps in elec-
trical machines, where gaps which are short
when compared with the dimensions of the so-
called pole-faces, the reluctance is found from
the length of the gap, g, and an adjusted area
of the faces. The pole-faces are surfaces so de-
signed that they would have been equipotentials
had the gap not been introduced.

fig. 5.1. Gap pole faces.

For a rectangular cross-sectioned magnetic
circuit as shown in figure 5.1, they have dimen-
sions of width w and throat height A, so the
pole-face area is hw. The gap length (between
the pole faces) is g. The adjustment neces-
sary to reasonably approximate the reluctance
is to increas the effective area by adding the gap
length to both w and h before calculating the
effective area of the pole faces. Thus, following
from equation 4.7 in the previous chapter, the
reluctance of this gap is:

g

P CEr B
In ferrite recording heads, to obtain very flat
pole faces, the head is made in two parts, to
allow the two pole faces can be machined and
polished. These two halves of the head are then
put together to create a magnetic circuit having
two gaps, one called the front gap, and the other
the back gap. A simpified head geometry is
shown in figure 5.2

Rgop =
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front g=f

A

eyt
LS
W

back a“-‘P

fig. 5.2. simplified head geometry.

For this particular example, for purposes of
illustration, the height of the back gap (h;) is
3.25 times the height of the front gap (hy). The
reluctance of the front gap is:

Ry = g
7 powhy(1+g/hy)(1 4 g/w)

and for the back gap:

Ry = g
Howhy(1 +g/h)(1+ g/w)

The total reluctance of the magnetic cir-
cuit including the nonmagnetic gaps (typically
called air-gaps, although the material is not
usually air) is:

Riotal = Reore + Rjg + R«b, (57)

Then it is necessary to determine the reluc-
tance of the magnetic material portion of the
circuit, referred to as the core.

5.2.1 MAGNETIC CORE RELUCTANCE

To deal with the magnetic material in the
magnetic circuit of figure 5.2, we eliminate the
air gap for the moment, to generate a form as
shown in figure 5.3. The gaps are in series with
this part, and so will be added in later.

A non-mathematical technique for the deter-
mination of the relation between the MMF and
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flux is useful in certain geometries where the
thickness is constant. This makes use of the

~ reluctance relation given in eq. 4.7, which is

repeated here for convenience:

For a rectangular leg, the cross-sectional area
is the product of its width and height, A =

cut

fig. 5.3. circuit with gap removed.

The magnetic circuit can be understood to
be composed of tubes of flux, which close upon
themselves in enclosing the MMF. The poten-
tial drop around each flux-tube circuit is equal
to the MMF. The element of figure 5.3 is part
of one tube of flux, indicated as tube A. No flux
leaves a tube, though the tube may change in
cross-sectional area in making the circuit. The
quantity which is the same throughout the cir-
cuit of a tube is the element’s flux A®. The
potential drop from one end of the element to
the other is:

Al

av=-—oo

Ad (5.8)
where the negative sign indicates that the po-
tential is actually dropping in the direction of
the flux.

The magnetic circuit geometry is subdivided
into equipotential surfaces and a number of flux

- EQuiporey;

A Sug;:g,gg-s

l PERPED  cuLag
TO FLUX
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tubes which are perpendicular to the equipo-
tential surfaces. The thickness of the circuit is
uniform at w, and elements of a tube are con-
structed so that the length to width ratio (A
to Ah) is 1.0 on all elements. In doing this, the
reluctance of each element is the same as any
other. Thus the total reluctance of the tube is
simply the number of cells times the reluctance
per element:

Riute = ne —

If the flux tubes are chosen so that they each
contain the same flux, then the total flux will
be the number of tubes (n;) multiplied by the
flux in one tube. As reluctance is mmf divided
by flux, the total reluctance will then be the
reluctance of one tube divided by the number

of tubes:

n. 1
Reore = - =
n: pw

(5.9)

In figure 5.3 the inner and outer surfaces are
circles, and they are the inner and outer sur-
faces of the total flux tube. We can divide
this into smaller tubes by using other circu-
lar shapes as indicated on the right hand side,
where the inner tube was laid down first by
drawing a circle through a point on the top cut
a quarter of the way from the inner to the outer
surface, and a point on the bottom cut a quarter
of the way from the inner to the outer surface.

Next, the cells were drawn in on the inner flux
tube, making them as nearly square as possible,
keeping the rule that flux tubes and equipo-
tential surfaces must be perpendicualr to one-
another.

The next flux tube was constructed by ex-
tending the equipotentials of the first tube, and
then fitting the best circle to cause those ex-
tensions and the circle to make the most nearly
square cells possible. In doing this we assure
that the flux tubes contain the same flux.

The third tube was constructed using the
same technique as the second.

A full fourth tube would not fit in, so the
equipotentials were extended to the outer sur-
face. Then one of the oblong cells was divided
up into the best squares to determine how wide
it was. Because there are four squares by two
squares in this oblong, the width is one half the
length, so the outer tube contains only half the
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flux of the others. This gives a total number of
tubes as n; = 3.5. .

In counting the number of cells in a tube, on
the half drawn there are 15 and a fraction. To
determine that fraction, a convenient shortened
cell is divided into the best squares and we find
it is 4 wide by 2 long, so its length is a half a
cell. Thus there are 15.5 cells in half the tube
circuit for a total of 31 cells in a tube of flux.

The total reluctance of the magnetic material
portion of the circuit is then:

31 1

Reireuit = 75 —

3.5 pw

A representative recording head has hy, ~
w =~ 25g, (with hy, = 3.25h;,). Taking these
values in this example, we have that:

Riot =

1 ( 31 9 ,_9
pow \35p, ' 1.025h;, | 1.025h,

“—L (8.86 + 0.0474)
HoW HBr

where u, is the relative permeability of
the core material. Practical head materials
have relative permeabilies from about 1000 to
10,000. At the low end, we can see fromeq. 5.9,
the core will contribute about 16% of the total
reluctance, and at the high end it would con-
tribute about 2%. With a typical relative per-
meability of 5000, the core contributes about
4% of the total reluctance. The use of more
massive cores can reduce this to 1 or 2% of the
total reluctance.

5.3 HEAD EFFICIENCY

The purpose of the recording head is to pro-
vide a strong local magnetic field. This field is
the fringe field of the front gap, which we would
like to have as large as possible. The potential
drop across the front gap divided by the gap
length will be the field at the geometrical center
of the pole faces, and this will be the same over
most of the gap, beginning to drop off at about
one gap-length distance from the pole edges.

The total potential drop around the magnetic
circuit is the MMF due to currents threading
the aperture. The potential drop of each part
of the circuit will be the flux multiplied by the
reluctance of that part. In order to maximize
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the potential drop of the front gap, we would
like to make the reluctance of the front gap large
compared with the other reluctances in the cir-
cuit. Eq. 5.7 shows the reluctances of the core,
the front gap and the back gap. The relative
permeability and size of the core determines its
reluctance. The throat height of the back gap
is the only factor which makes it different from
the front gap in the simple head of figure 5.3.
To minimize the effect of the back gap, it is nec-
essary to make hy, much larger than hy,. Typi-
cally the ratio of hy,/hy, is more than 10:1, and
as much as 20:1. Thus, to make a very efficient
head, the back gap throad height hy; must be
much greater then hy,, and the core material
must have a very high relative permeability.

The head efficiency 7 is the ratio of the front
gap reluctance to the total reluctance of the
magnetic circuit:

n= 100R;,
- Rjg +Rbg + Rcore

(5.10)

The deep gap field in the front gap is the po-
tential drop across the gap divided by the gap
length: Hy = W,,,/g, and the potential drop
across the front gap is the MMF multiplied by
the fractional head efficiency:

Y, = gH, = == MMF

=z (5.11)

5.4 KARLQVIST’S FRINGE
FIELD

In our example with a relative permeability
of 5000, we found the core had only 4% of the
potential drop. With higher permeabilities the
potential drop around the core becomes even
less. It is a short step to assume infinite per-
meability of the core, and thereby make the
core parts of the magnetic circuit equipoten-
tial volumes. In practice the potential along
the core changes very slowly as compared with
the rate of change across the gaps. In addi-
tion, the length of the gaps is small compared
with the length of the pole tips for ferrite heads.
The model used by O. Karlqvist was infinitely
long pole pieces separated by g, each with infi-
nite width w and infinite throat height hy. The
geometry of his model is shown in figure 5.4.
The left pole is assumed to be at & potential of
9H,/2, and the right pole at -gH,/2, making
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the midplane of the gap to be the zero equipo-
tential, and is taken as the plane z = O(with the
positive direction to the right in figure 5.4). The
outer surface of the core is taken to be the plane
y = 0, ignoring any curvature, and the positive
y-direction is outward from the core (up in fig-
ure 5.4). The other coordinate is z, which has
its positive direction out of the plane of the pa-
per. The plane z = 0 is half-way across the
head width (w). We shall carry out the analy-
sis on the plane z = 0, assuming no variations
in the z- direction. The problem then reduces
to one of 2-dimensional potential theory.

Y
X
und
S—
) i
U=gEg/2 Y=-gE /2
re—gap ~>

fig. 5.4. Karlqvist head geometry.

In 2-dimensional potential theory, the poten-
tial in the y > 0 half-plane can be calculated
if the potential on the y = 0 axis (z-axis) is
known. Except for along the top of the gap,
called the gap region, the potential is known.
Deep within the gap, the potential can be found
to be ¥ = —H,z'. For this analysis we assume
that same potential distribution holds along
¢ = 0, in the gap region, from z/ = —g/2 to
z' = g/2. The potential for y > 0 is computed
from:

¥(z,y) = %/:”

=00

' ydz’
YOy
(5.12)
where (z,y) is the field point, and (z’,0) is
the source point and the integration is over the
source point on z’ from negative infinity to pos-
itive infinity. The integration is performed and
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the result is:

(z- g)arcta.n”—;'i
-(z+ %)arcta.ni%i

(z+4)°+y?
+4 o
(5.13)

The field components, H. and Hy, are found
by taking the negative gradient of ¥, which is
a rather tedious process, but which eventually
results in the following:

KARLQVIST FRINGE FIELD EQUATIONS

H
¥(z,y) =

Hy (=~ )2+ 42
2r (z+4)2+y?
In these equations, lengths are commonly nor-
malized to half the gap length ¢g/2, and upper
case variables are used for normalized lengths:
X =2z/g,and Y = 2y/g.

The field components are normalized to Hy,
and lower case h’s are used: hx = H:/H, and
hy = H,/H,. Then these equations in normal-
1zed form are :

H, = (5.15)

NORMALIZED KARLQVIST EQUATIONS

hx :;lr- (arcta.n X;l - a.rctani;—1
(5.16)
—1)2 2
hy = XD +Y (5.17)

2r (X +1)24Y2
These expressions give components which have
constant values which are circles in the z-plane,
(actually cylinders parallel to the z-axis in three
dimensions).

For the perpendicular component hy = con-
stant, the cylinders are centered on the y = 0
plane, and have field directions upward for neg-
ative values of z and downward for positive val-
ues of z as indicated in figure 5.5. Cylinders
with equal radii have the same magnitude of
constant field.

For the perpendicular component hy = con-
stant:
cylinder axis is line: X = —cothwhy, Y =0
cylinder radius of R? = csch?rhy

The z-component is called the longitudinal
component because the relative motion between
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fig. 5.5 Karlqvist cylinders of H,.

the head and medium is in the z-direction. The
cylinders for the longitudinal component hx =
constant are shown in figure 5.6. These cylin-
ders are tangent to the corners of the pole-
pieces.

fig. 5.6. Karlqvist cylinders of H,.

For the longitudinal component hx = constant:
cylinder axis is line: X =0,Y = cot rhyx
cylinder radius of R? = csc? 7hx

We are primarily interested in the longitu-
dinal component because most recording me-
dia is essentially longitudinal, i.e. where the
recorded magnetic moments are essentially in
the x-direction. There may yet be interest in
perpendicular media, where the magnetization
is in the y-direction.

The Karlqvist Head function is an approxi-
mation, but has been found to be quite ade-
quate for many purposes. In some cases a sim-
pler model is useful in understanding the com-
plex process of magnetic recording.

5.5 FAR-FIELD MODEL

When the recording medium is at least one
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gap length away from the gap, the gap-length
can be reasonably ignored in calculating the
field. The Karlqvist’s result is not easily modi-
fied to obtain this result, so one must begin with
eq. 5.12 and set the z-axis potentials to gH,/2
from negative infinity to z = 0, and —gH,/2
from z = 0 to positive infinity. This eliminates
one integration and yields:

H
V=92 arctan ¥
P z

Then, taking negative partial derivatives to
obtain the field components we obtain that:

FAR FIELD EQUATIONS

—_ gH, Yy

H, = 5 77 7 (5.18)
_ _gHg z

H, = 5 77 7 (5.19)

The locus of points where H is constant, from
eq. 5.18 is where

H
24,2 -
-4yt - 0. y=0

As the equation of a circle is (z — z.)? + (y —
yc)? = r?, where the point (z,y.) is the center
of the circle, and r is the radius, equation 5.18
can be put into the same form by adding the
term (gH,/27H.)? to both sides (completing
the square). Thus the locus of points where
H_ is of constant magnitude is a cylinder with
its axis through the point (0,gHg/27H.) and
parallel to the z-axis and having a radius of
(g9|Hgl/27|H:|). This is shown in figure 5.7.

L e

/ ~N

~ Hg /4 \
{ 7 N \l
\ (——-}Hs/z'\ /

\\ ]/
N

9eP

fig. 5.7 Far field H: cylinders.
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Similarly, equation 5.19 can be put into the
circular form for constant H, with a cylin-
drical locus with the axis through the point
(—9H,/27H,,0) and parallel to the z-axis with
a radius of (g|H,|/27|H,]|), as indicated in fig-
ure 5.8.

Yy —
‘;"‘ ~ ~ -
Ve Hg
/ He | ~ —_ /- <Y N\
<7 “/‘I\ \
LBy
.—’-.‘ - ."
polex AP :fok ==
—— Q =2

fig. 5.8. Far field H; cylinders.



Chapter 6

THE RECORDING PROCESS

The recording process is complex, involving
head fields, media characteristics and the de-
magnetizing fields which arise because of the
magnetic record. The demagnetizing effects al-
ter the recorded pattern, complicating the pro-
cess to a point where it is nearly incomprehen-
sible to the student. To simplify the procedure
of learning about recording, the demagnetizing
field effects are postponed to the next chapter.
Thus the development in this chapter results in
an idealization of recording which is to be taken
as the limiting case. Actual recording can only
be worse than what we find in this chapter.

6.1 CHARACTERISTICS OF
RECORDING MEDIA.

The magnetic materials employed for record-
ing are generally classified as semi-hard mag-
petic materials. The linear materials we have
discussed for magnetic circuits are soft mag-
netic materials, in that they are well character-
ized by permeability. Permanent magnets are
hard materials, and are characterized by an en-
ergy product, which will not be covered in this
course.

Recording materials are classified primarily
by their coercive force, H., and a squareness
ratio. Figure 6.1 shows a typical saturation
M — H characteristic of this type of material,
with the coercive force H., saturation magne-
tization M, and saturation remnant magneti-
zation M,, indicated. The squareness ratio is
M,,/M,. For this characteristic can be either
static, where the field is increased an increment
and the magnetization measured at that field in
a vibrating sample magnetometer (VSM), and
then the field incremented and the measure-
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ment repeated, or in a dynamic state, using a
of a B — H looper under the assumption that
M = B/u,.

. M‘ h—
Mes— —
|
THe

Figure 6.1. Saturation hysteresis loop
for a magnetic recording medium.

The saturation M — H characteristic, or M —
H loop as it is usually called, is of some value
for recording, however it only approximates the
information needed to study the recording pro-
cess. In the recording process the recording
medium moves past the head, experiencing a
field while it is near the head, and then passes
beyond the head field to a region of only am-
bient fields. Thus it receives a field and then
relaxes to a gzero field condition with what-
ever remnant magnetization it received from
the recording field. Thus a characteristic for
recording materials in which the remnant state
which occurs after a field has been applied and
then removed is of greater interest.

Data and video recording use a technique
which is called non-return-to-zero (NRZ) or sat-
uration recording. This is largely used in instru-
mentation recording and in digital audio record-
ing as well. In this technique, information is
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stored in the form of reversals of the magneti-
zation from one direction to the other, 1.e. from
the positive longitudinal direction to the nega-
tive longitudinal direction (the z-direction with
respect to the head coordinates in figure 5.4).
These reversals of magnetization are commonly
called flux changes or flux reversals, and infor-
mation is coded using these flux changes. In
this process recording is accomplished by driv-
ing the head winding current first in one direc-
tion and then reversing its direction. For each
direction the current must be sufficient to satu-
rate the local recording medium. So recording
takes place by reversing the direction of a sat-
urating field so as to reverse the direction of
magnetization, so that the recording medium
will experience a full saturating field except
during the short time interval required to re-
verse the current direction. For this reason,
the sort of an M — H characteristic needed is
one where the material begins at one satura-
tion level and is driven with a certain field in
the reversed direction. the characterstic of in-
terest in recording is then a quasi-static one,
which is shown on the following page in figure
6.3, and is called the remnant magnetization
characteristic. This characteristic is not a loop
as would be obtained with the dynamic M — H
characteristic, but is a two branched curve, one
branch at negative remnance curving upward to
the point where the field just gives full remnant
magneitzation. The other begins at positve
remnance and curves downward to the nega-
tive field that just reaches negative remnance.
These two branches do not intersect.

The remnant magnetization characteristic is
obtained by a series of measurements, each be-
ginning by driving the magnetization firmly to
negative saturation. Then a positive field is ap-
plied for a short period of time and then re-
duced to zero, so that the magnetization re-
turns to an intermediate remnant state. The
measurement system required is a vibrating
sample magnetometer (VSM). The applied field
is measured when applied, and the remnant
magnetization is then measured after the field
is reduced to zero. This process is indicated in
figure 6.2 where the dynamic saturation M — H
characteristic of figure 6.1 is shown as a dashed
curve. The remnant magnetization is plotted
against the field for a series of these tests, us-
ing increasing values of field for each succeeding
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test, until the maximum remnant magnetiza-
tion M,, is obtained.

7 —— 1 M

Figure 6.2. Generation of the remnant
magnetization characteristic

The parameters of interest to us from the
remnant magnetization characteristic are the
the saturation remnant magnetization M,,, the
threshold field Hr and the switching or satura-
tion field Hgs, as indicated in figure 6.3. The
threshold field Hr is the amount of field nec-
essary to change magnetization from —M,, to
—.9M,,, and the saturation field H is the field
necessary to change the magnetization from
—-M,, to +.9M,,.

An ideal recording medium would have Hg =
Hr

Figure 6.3. Remnant magnetization
characteristic
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6.2 LONGITUDINAL
RECORDING.

At the present time, most magnetic record-
ing is in-plane, that is the recording medium
is in the form of tape or a disk which has a
thin layer of recording medium coated or de-
posited on the surface, and the recording takes
place essentially with the magnetization lying
in the plane of the medium. For our purposes
the principal component of field which affects
in-plane magnetization is the longitudinal com-
ponent of the head field (z-component in equa-
tions 5.14 and 5.16), so we shall concentrate on
the action there. While there are experimental
systems which use materials which magnetize
only in directions normal to the plane, and as
such utilize the perpendicular (y—direction in
equation 4.15) field, we shall not consider per-
pendicular recording at this time.

Figure 6.4 is a schematic representation of
the head-medium interface, with parameters of
head-medium separation d, media thickness 6
and gap length g. The recording media is at-
tached to the substrate which is moving to the
right past the gap with a velocity v, which a
constant. The head has a width w perpendic-
ular to the paper, and it is assumed there is
no field variation across the width. For most
purposes we shall use normalized values for the
parameters d, § and v, normalized to the half
gap length ¢/2.

Lot S c/

/i // substrate

‘ / -, V

- cylinder /./{._../.’ Ll
Hith = -~ ’s_‘ reeordm
5 Hx-constant’;} —_— medium

head-media
lepant.ion

d

Figure 6.4. Head-medium interface

NORMALIZED PARAMETERS
head-media separation: D = 2d/g

R.B.YARBROUGH

© 25 JuLy 1987 30

medium thickness: A = 26/g
velocity: V = 2v/g

For saturation recording, the applied field
must be sufficient to saturate the medium di-
rectly above the gap. We consider the cylinder
of constant H (as discussed in chapter 5) which
passes through that point, and adjust the gap
field H, so that the constant value of H; on
that locus is Hs. This insures that all points
closer to the gap are saturated, as all points
within that cylinder experience a field greater
than Hg, neglecting the demagnetizing field, as
illustrated in figure 5.6. The highest reach of
a cylinder is at x=0, and the height that the
H.: = Hgs cylinder must reach is d + 6§ . Then
settingz=0,y=d+6,and H, = Hg, we can
solve for the minimum value of H, to insure
saturation recording. In this case we wish to
use regular rather than normalized units, as we
are setting H, the field used for normalization.

‘Applying equation 4.14a, we obtain:

H = xHgs
# ™ 2arctan[g/2(d + 6))

(6.1)

It is seen that the distance parameters in
equation 6.1 become normalized in the process,
so thatnormalized parameters can almost al-
ways be used. In general the field at the back
of the medium (X =0, Y = D + A) should ex-
cede Hg, so that equation 6.1 is the minimum
for saturation recording, and

H > xHs
02 2arctan1/(D+ A)

(6.2)

All the magnetization within the constant H
cylinder of H, = Hg is guaranteed to switch to
the direction of the gap field. That is because
all of the interior of a cylinder of constant H:
has H greater than that on the cylinder. Thus,
when equation 6.2 is satisfied it is known that
all media magnetization within the cylinder is
in the direction of the gap field.

Let us assume that the gap field satisfies
equation 6.2, and that the field has been on for
some time. The medium is moving to the right
with a velocity v, so that for some distance to
the right of the gap the media is safurated in
the direction of H,. In figure 6.5 the situation
is shown where the gap field is in the negative
z-direction an has been in that direction for a
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long enough time so that the the magnetiza-
tion to the right of the cylinder marked —Hsg,
indicating that it is the cylinder of H; = —H,
is switched to the negative direction as indi-
cated. Further to the left we see a cylinder
marked —Hr, indicating it to be the cylinder
for H = —Hr, which is just enough to begin
switching some of the magnetization to the neg-
ative z-direction, if the magnetization at that
cylinder were known to be saturated in the pos-
itive z-direction. The region between these two
cylinders would be capable of being partially
switched to the negative z-direction, however
we know nothing of the previous history there,
and so will leave everything to the left of the
H; = Hg with a question mark.

Sosivate 7 =
- /\/ -Bg
= 23

Figure 6.5. Condition before
head current reversal

With the condition of figure 6.5 stabilized,
the gap field is instantaneously reversed by re-
versing the head current. The new cylinders in
figure 6.6 are seen to overlap the previously sat-
urated region in the medium near the recording
gap. Here the previous condition of the media
to the right of the gap is well known, it was
previously saturated to the left. Thus we can
predict that the region to the right of the gap
between the cylinders marked Hs and Hr are
partially reversed, so that region can be con-
sidered to be a transition region between the
earlier situation and the present condition.

It can be seen that the tranmsition length is
determined by the two material parameters Hg
and Hr, together with the normalized (to the
half gap-length) parameters D and A. The
cylinder radii of the the loci of H; = Hs and
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Figure 6.6. Condition at the time
of head current reversal

H.; = Hr have the ratio (see equation 5.14):

RT sin ﬂ'hs Hs
Rs  sin why HT

(6.3)

The approximation is within 5% when hs is
less than 0.55.

6.2.1 Example

For a particular recording system, the normal-
ized parameters are D = 1 and A = 5. The
recording media has Hr = 280 oe. and Hs =
580 oe. We will set the gap field according to
equation 6.2, and then determine the transi-
tion length at both the top and bottom of the
medium. From equation 6.2 we obtain that H,
must be 5,517 oe., then hs = 0.330 and hr =
0.159 Then from equation 6.3, Rr/Rs = 2.059,
while Hg/Hr = 2.071.

In order to solve for X from equation 4.15a,
note that it can be manipulated to the form:

1 2Y
h, = - a.rcta.n m—— (64)
so that
X?=1-Y?42Y cotxh, (6.5)

Then at Y = D =1, Xg = 2416, and X1 =
3.532, so the normalized transition width at the
bottom of the medium is 1.115, which corre-
sponds to 0.558g.

AtY =D+A =6, Xs =0, and Xy = 6.311,
which is also the transition length at the top of
the medium, 3.165 g.
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6.2.2 Example

Using the same system as example 6.2.1, but
increasing H, by 20% to 6,620 oe. hs becomes
0.275 and hr becomes 0.133. Then at Y = D
we obtain Xs = 2.662 and Xr = 3.866 for a
normalized transition length of 1.204 or 0.602g.
AtY =D+ A =6, Xs = 2744 and X1 =
7.395 for a normalized transition length at the
top of the medium of 4.651 or 2.326g.

end of ezample
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Figure 6.7. Transition regions for
examples: (a) 6.2.1, (b) 6.2.2

The transition regions for these two exam-
ples are shown in figure 6.7 as the shaded ar-
eas. While they are quite similar in shapes,
the second can be argued to be better, in that
it is more concentrated than the first. On the
other hand, it may be argued that first is su-
perior because the transition length nearest the
head is shorter. As other considerations, such
as demagnetization and the reproduction pro-
cess, are of importance, it is not completely ac-
curate to base an optimum on either of these
criteria. However, experiments find an opti-
mum recording current in the range of these
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two values, i.e. between placing the H; = Hg
cylinder so that it reaches beyond the back of
the medium, but with the axis of the cylinder
not beyond the middle of the medium.

From the exercises 6.2.1 and 6.2.2 it can be
seen that the ratio of Hs to Hr is of great im-
portance in determining the transition length.
To illustrate this we shall consider the same ge-
ometry with a different Hr.

6.2.3 Example

The medium has Hg = 580 and Hr = 350 oe.
Here we set the center of the H, = Hs cylinder
axis at Y = D+ A/2, i.e. the middle of the
medium, requiring that H, be 6,547 oe (very
similar to example 6.2.2) and find hs = 0.278
and hr = 0.168. Then at Y = D we have X5 =
2.647 and X7 = 3.434, for a normalized transi-
tion length of 0.789, or 0.395g.

AtY = D+ A wefind Xgs = 2.655 and X1 =
5.980 for a normalized transition length of 3.325
or 1.662g.

end of ezample

Comparing the results of examples 6.2.2 and
6.2.3, we find with a 20% reduction of Hs/Hr
the bottom transition width is decreased 34%
and the top by 29%.

It should be clear that the ideal recording
medium would have Hr very nearly Hs.

s Wr?
W? 5

Figure 6.8. Example 6.2.3

6.3 DYNAMIC SWITCHING

In the previous section we considered tran-
sitions for the case where the head current re-
versed instantaneously. That could also be a
reasonable approximation whenever the media
moves only slightly during the time that it takes
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for the head field to be reversed. In this section
we shall examine the situation where the me-
dia moves appreciably during the time the head
field is reversing.

Here we shall make use of the fact that the
gap field changes from one saturation direc-
tion to the other in some continious way, nec-
essarily because of the energy stored in the
magnetic field, which cannot change instanta-
neously. This can be thought of as the effect of
the inductance of the head winding. Referring
to figure 6.9, we will examine the field reversal
process from the medium’s point of view. The
medium sees the head traveling past to the left,
carrying it’s field with it. We begin our exami-
nation when the head just begins to switch it’s
field from the negative z-direction to positive.
The right-hand circle in figure 6.9(a) indicates
the constant H, = —Hg cylinder at that time.
As time goes on the head moves to the left while
the field is first reduced from its original nega-
tive z- direction magnitude to zero, and then re-
versed until reaching the same magni(Etude but
in the positive z-direction. The center point in
figure 6.9(a) is the point where the field has
reached zero. The left-hand circle indicates the
fully reversed H; = +Hg cylinder.

(a) dynamic switching process

_.\ /._

(b) magnetization pattern recorded
Figure 6.9

Figure 6.9(a) indicates the size of the H, =
Hgs cylinder for a discrete number of time sam-
ples, as to show more than that would further
obscure the point at hand. Figure 6.9(b) shows
the resulting recorded pattern of magnetization
after the head passed out of the picture. Here
again we see the pattern for the discrete sam-
ples of figure 6.9(a). Each portion of the bound-
aries of this discrete pattern is an arc of a circle
corresponding to a segment of the H; = Hg
cylinder for a particular gap field and time in-
stant. However, with the field changing in a
smooth manner, any locus of constant H. is
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also changing continuously. Thus there would
be a continuum of circles in figure 6.9(a), re-
sulting in a smooth curves for the boundaries
of figure 6.9(b).

The medium is moving in the +z-direction
with constant velocity v. Viewed from the
medium reference frame, the head is moving to
the left with that velocity. When the switching
begins, the region of the medium which is ini-
tially in the H; = —Hg cylinder is magnetized
in the original direction, and the region imme-
diately to the left has been partially switched
to to that direction. As the field falls from the
original direction and the head moves to the
left, any point that has been saturated in the
negative z-direction will remain in that state
unless and until it experiences a reversed field
of +Hr. In figure 6.9 we can see that the
middle region of the medium, marked with a
question mark, did not receive a field of Hs in
either direction during this switching process.
The previous recording history is unknown, so
there is no way of determining the magnetiza-
tion in that region, Data recording writes new
data over the old record, so that the presence of
uncontrolled regions such as the center region
of figure 6.9 must be avoided. If they are al-
lowed to occur, they will bring excessive noise
to the play-back signal.

To eliminate noisy regions such as the cen-
ter parts of figure 6.9, we must insure that the
pattern generated by the growing H; = Hs
cylinder overlaps the pattern of the previously
shrunk H, = —Hg pattern. That is to say,
in the process of flux reversal the new direc-
tion of magnetization must overlap and reverse
the direction of part of the magnetization just
previously recorded. (This is sometimes called
over-write, but that term has another mean-
ing which causes some confusion.) During this
field reversal process it is necessary to assure
that each point experience a field of magnitude
Hg at least once. Then those points which
originally had experienced a —H field will be
switched to some extent when they experience
a maximum reversing field greater than +Hr,
and will be fully switched if they experience a
maximum reversing field of + Hs or more. This
will insure uniform transition patterns and sub-
sequently uniform play-back signal waveforms.
A particular point in this active region which
has previously experienced a field of —Hs and
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then experiences a reversing field of at least Hr,
its final remnant state (demagnetization being
ignored) is determed by the remnant magneti-
gation characteristic and the peak of reversed
field experienced.

Here we examine a point which is experienc-
ing its highest reversing field. It will next move
to a lower field and be finished with the re-
versal process. Referring again to figure 6.9,
as the H, = —Hg cylinder shrinks it leaves a
boundary where the magnetization to its right
is saturated in the negative z-direction, and the
magnetization to its left is undefined. Similarly
as the H, = +Hgs cylinder grows it also es-
tablishes a boundary where the magnetization
is saturated to its left and undefined to the
right. We wish to remove the undefined region
by overlapping the H; = +Hs boundary oblit-
erating the H; = —Hg boundary, to establish
a predictable transition region.

The boundary is a sequence of points which
have experienced a field of Hs as their peak re-
versing field. In two dimensions the cylinders
appear as circles, and each point on a bound-
ary obtained from a unique circle. Two nearby
boundary points have come from two circles,
one occurring after the other. If we place these
two points very near to each other, it should be
clear that a line drawn between them will be
tangent to both circles. Figure 6.10 shows the
geometry of an expanding circle moving to the
left (as seen from the medium). In a time dt,
the circle moves a distance vdt to the left. The
boundary will be the loci of all such points as
the switching procedes.

x+ dx _/\’ VA= dx

Figure 6.10. construction for
the dynamics of switching

The parameters used here are the radius r,
the center of the circle at y = ¢, and the velocity
v. The results obtained can be applied to either
the Karlqvist or the far-field head model. From
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similar triangles we can obtain that:

y—c
z
zdz

= vdt-dzor
+ (y-—-c)dy = zvdt

(6.6)

The equation for the circle is: 22+ (y—c)? =
r?, which we differentiate to obtain:

2zdz + 2(y—c)(dy — de)=
zdz+ (y—c)dy =

2rdr or

ydc + rdr — ¢d6.7)

As the left hand members of equations 6.6
and 6.7 are the same, the right-hand sides are
equal, so that:

z—_l. E.{,rﬂ_ci‘f
=v\¥a T Ta T q

As r and c’are not independent, it is worth
while to discuss two cases. The simpler is the
far-field approximation, so it is examined first.

(6.8)

6.4 DYNAMIC SWITCHING FOR
THE FAR FIELD CASE

For this case r = ¢, so that equation 6.8 re-

duces to: 4

yar

zT==—

vdt

Substituting equation 6.8 into the equation
for the circle we obtain that:

2r

T+ (%)

(6.9)

yv= (6.10)

from which we can substitute into equation
6.8 to obtain z. However, this development has
been in the head coordinate system, and we
need the result in the media coordinates which
are moving to the right of the head system with
a velocity v. We use the subscript m to desig-
nate the medium coordinates, so that ym = y
and z,, = z — vi,s0 that:

: 2r

= —r 6.1
=TT QY (6.11)
2 = —vt + 3%‘ (6.12)

From the end of chapter 5 we have that r =
9H,/2%H,, and for this example we look first
at H, = Hs, and secondly at H; = Hr to
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locate the transition region. For H, = Hg, we
find that

_ 9H,
rs = _—27(H5 (613)
drs _ g dH,
dt = 2rHs dt (6.14)
and for H, = Hr, we find
9H,
rr Dy (6.15)
drr g dH,
& = a6

6.4.1 Far Field Example

The simplest case to consider is where the field
changes from its negative saturation value to
positive saturation as a linear function of time:
H, = mut so the loci where a particular value
of H, has been the largest reversing field expe-
rienced has radius varying as r = kvtR and

dr/dt = kvR, where k = mg/2nH,. From
equation 6.12 we obtain that:
¥l
vt= (k+ k) (6.17)
substituting equation 6.17 into 6.12:
1
Zm = ym(k - -E) (6.18)

which is the equation of a straight line in the
medium coordinate system.

We recall that the recording of predictable
transition regions requires that the boundary
locus of the reversed H, = +Hs pattern must
overlap the previous H; = —Hgs pattern. we
examine equation 6.18 for the situation of H, =
—Hs and find that, with ks = mg/27nHs:

Im = D) (ks ks) (6.19)
and that for H, = +Hs:
Ym 1
-l - 20
z 5 (ks ks) (6.20)

so that as the field begins reversal with the
H, = —Hgs pattern a straight line of a par-
ticular slope, and as the field reverses the H; =
+4+Hs pattern is also a straight line with the
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same magnitude of slope, but of the opposite
sign.

The situation where the H = +Hg line
just touches the H; = —Hg line is where the
two slopes are infinite, i.e. when z,, is zero:
ks = 1/ks, or k2 = 1. Which requires that
the field must change with a8 minimum slope of
m = 2xHg/g or that

2rHsv
g
It is of interest to note that, while this de-
velopment has taken place with un-normalized

units, the normalization will yield that the min-
imum slope is given by:

Hy, = t (6.21)

(6.22)

where V = 2v/yg

While a linearly changing field is only an ap-
proximation of practical field switching, this ex-
ample serves as a guideline to the maximum
field switching time for predictable transition
regions.

6.4.2 Dynamic Switching for the
Karlqvist Case

Using the results obtained in equation 6.8:

z—l E-'I~f'-‘-i-'—-—c£S
=v\Ya T e T a

For the Karlqvist fringe field approximation
we found the radius and center of the constant
H. on page 26 in normalized form: R = esch;
and C = cot h,. Then equation 6.8 can be writ-
ten in normalized form:

1 (,dC  _dR _dC
X=q. (Y—dT +R= - Cm-> (6.23)

It can be readily shown that:

dR dC
Rg=Cx

Thus we can use equation 6.9 in this case as
well. Here it is rewritten in normalized form:

Y dR

ARLQUIST: = e —

KARLQUIST: X Vi

Substituting equation 6.24 into the normal-

ized circle equation and using the facts that ¥

(6.24)
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must always be positive and R? = C? + 1, we
obtain the following expression for Y':

C+VR+ (G E)

KARLQUIST: Y = 7
1+ (348)

(6.25)

With C = esc 7h, and R = cot th, we have
dR _*H., ,wH. dHg

@ T ECE, )@

There is presently no known closed form so-
lution for the boundaries of the transition re-
gion for the Karlqvist fringe field case, but nu-
merical solutions have been performed which
show similar behavior to the far-field case, ex-
cept of course in the region very near the gap.
In that region the linearly changing field indi-
cates that a greater slope is needed as the field
passes through zero on its reversal, and less at
the beginning and end of the switching inter-
val. Fortunately these are the usual and natu-
ral properties of magnetic fields in the transient
state.
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Chapter 7

DEMAGNETIZATION

In chapter 6 we saw how a transition region
would oceur in the absence of demagnetizing
fields. The transition is a region of chang-
ing magnetization, which means that there it
is a region of finite divergence of magnetiza-
tion, which in turn means it is a region contain-
ing magnetic pole density. The pole density is
the source of demagnetizing field intensity Hyg,
which acts to spread out the transition as much
as possible.

The hysteresis characteristic of the recording
medium limits this spreading of the transition
region. For any particular level of magnetiza-
tion, a minimum field 1s necessary to change
the magnetization. If the combination of the
applied field (magnetizing field) and the demag-
netizing field exceed that minimum. the magne-
tization will change.

While the demagnetizing field can change the
transition region after recording has been com-
pleted (the applied field no longer present), the
principle effect occurs during the writing pro-
cess where the total field is tiie sum of the ap-
plied field and the demagnetizing field. This
will result in a transition region shape that is
altered from those predicted in chapter 6. The
transition it will be wider (in the z-direction),
and may even be shifted depending on the dis-
tances to adjacent transitions.

Analysis of the recording process, including
the demagnetizing effects of the recorded mag-
netization, is an iterative problem requiring a
large high speed computer to carry out self con-
sistent calculations. This is often done using fi-
nite element mathematics. a process beyond the
scope of this course. Insight is obtained only
by using simplifications to allow the nature or
characteristics of the process to be expressed
in analytic form. The general rule is to sim-

IN RECORDING

plify until only the barest necessary complexity
remains and so obtain approximate relations.
After that, complicate as much as is practical
to gain understanding of secondary effects. In
this way we can also obtain results useful in
system design and analysis.

7.1 THE UNIFORM
TRANSITION AND ITS

DEMAGNETIZING FIELD
The demagnetizing field is due to the diver-
gence of the magnetization, and can be calcu-

lated using equation 3.10, which is written here
in rectangular coordinates:

7 pmlss
H;= dr,dy,d:
o= j | [

(7.1)
where

Iy = 1:(2‘/ -—l‘,)+ ly(y] _y1)+12(:! - z,)

Tsf = \/(I! =)+ (yr = ys)?+ (5r - 25)?

and 1,5y =r,z/ryy.

The demagnetizing field is to be calculated at
the middle of the recorded track, where zy = 0.
This requires integration of equation 7.1 over
all space, which is effectively the space of the
recorded track in the magnetic medium. To
begin with, the magnetization distribution is
not specified, but some specific examples are
considered after some preliminaries where the
y and z effects are taken into account by some
simplifying assumptions.

In the spirit of simplicity the following as-
sumptions are made:
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1. assume the magnetization is entirely in the

z-direction, so the divergence of M is sim-
plified to d\; /dz,.

2. As the z-components are of primary inter-
est, the y and z componentsinr,; are elim-
inated.

3. Assume there is no variations in the z di-
rection and that the track width is much
greater than any other dimensions, and
calculations are made at z; = 0. The inte-
gral limits on the = go to infinity, and with
no : dependency of the magnetization, the
integration® over z is carried out to obtain
equation 7.2, which is the z component of
the demagnetizing field H4:

: y — ry)dz,dy
sz//ﬁﬁ (lf fs)/ sQYs _ 79
‘ 27 (25— z5)? + {yy — ¥s)? (7-2)

7.2 ABRUPT OR STEP
TRANSITION

The simplest imaginable transition is one
which has the magnetization reversing in a zero-
width transition, which can be written as a step
function for the case where the magnetization
is negative to the left of the transition (i.e. the
magnetization points in the minus z-direction)
and reverses to positive to the right of the tran-
sition, as indicated in figure 7.1.

M (z,) = M., [2u(z, — z,) — 1]

where z, is the location of the transition plane
in source space.
The pole density is found from the negative

of dM_/dz,:
p(zy) = =2Mr (25 — z,) (7.3)

where 6(z, — z,) is a mathematical delta func-
tion and is distinguished from the medium
thickness, 8, by the fact that it always has an
argument [i.e. (z, — z,)] whereas the medium
thickness always occurs as an entity {i.e. as §
without decorations].

1see appendix A, equation 1
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Figure 7.1. Abrupt magnetization transition

Then substituting the result of equation 7.3
into equation 7.2 we obtain:

Hza=

_//2.\1,, &z, - z,)dz,dy,

27 (zj - z,)Q + Yy — y:)g

The infinite integral over z, is a special type
of integral involving the delta function, which
is called the sifting function. This is evaluated
by replacing the integration by the value of the
integrand at the point where the delta function
is non-zero?, i.e. where z, = z,. This results
in:

Hza= _/6/2 M, (27 = zo)dy,
—ej2 T (Tp—2o)?+ (yy —¥s)?
(7.4)
The final step is integration over the thick-
ness of the medium, using equation 2 of ap-
pendix A to obtain:
} (7.9)

M
Heg=-—2 {
T

This function has its maximum magnitude at
z;-z,=0:

tan=-1 2w

Ty=ZTo

+ta.n‘1 6/2+!l[

T/-%,

|Haz(maz)| = M,, for (—6/2<y; <&/2)

At the points yy = £6/2 the maximum magni-
tude is only half this value.

2see appendix A section A.2
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The maximum of the function is found at the
ys =0 to be:

x‘!”tan’l 5/2
T Iy =2

H:d =-2 (76)

Aty = £6/2 which includes the near side of the
recording media, where the transitions seen in

chapter 6 were the narrowest. The demagnetiz-
ing field at yy = is:

M, 6
Hyg=——"tan™!
T Iy —Zo

(7.7)
which has its maximum magnitude at z; = z,:

‘Hd:(maz)i = ﬁ'gi at (.’L‘a,—5/2)
These demagnetizing field functions at the mid-
dle and surface of the media are shown in figure
7.2 with two intermediate heights. It can be
seen that the surface of the media is a degen-
erate case, as all other points on the transition
have a demagnetizing field equal to M,,.
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Figure 7.2. Abrupt transition demagnetization
(a) at y =0, (b) at y = £6/4.
(c) at y = £36/8, (d) at y = £6/2.
These results provide upper limits to the de-
magnetizing fields that are possible in a mag-
netic medium with a transition involving
the reversal of magnetization of the level M;,.
The maximum possible demagnetizing field is
equal to the maximum magnetization.

7.3 ARCTANGENT TRANSITION

The most useful magnetization distribution
for an isolated transition has been an arctan-
gent. This model of the transition is written
as:

2M,,

i Ly — T
M. (z,) = —-‘-r-—tan'l —’—-1——0
: (

(7.8)
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where a is called the a-parameter. Here z, is
again the arbitrary center for the transition in
the medium coordinate system, the point where
M. = 0. At the point where z, — z, = =*a
we find that M; = £0.5M,,. At extreme dis-
tances from z, the magnetization approaches
the appropriate saturated value. The deriva-
tive is taken:

dM. _ 2M,, a _
dz, 7 (zs = 2,)° + a? = pm

(7.9)

which can now be inserted into equation 7.2
for integration, where the range of z, becomes
-0 Lz, Loc.

U Y /°° 2M,, a
24 27 -§/2)-0 T (z, —z,)? +a?

(z; - z,)dz,
(27— zs)2 +(ys = ¥s)

5dYs (7.10)

This is the form of the convolution integral,
as explained in Appendix A3. The method of
evaluating such an infinite integral uses the
Fourier Transform as outlined in Appendix A,
section 4. Following that procedure, the follow-
ing steps are made:

a
(2, —2,)* +a?

filzs) =

Using identity 14 in table Al, and transform T6
in table A2, it is found that:

Fi(k) = me~ITok gak
Next is identified:

frlu=2) = falzy-z,)

(zy —z,)
falzy =2 (27— z.)% + (s - %)?
so that
falz,) = €D)

2.'? + (yl - y:)2

Because of the nature of the integral (equa-
tion 7.10) it is not clear whether the term y; —y,
or the term y, — y; should be used. Keeping in
mind that the y-variable of integration is actu-
ally y,, equation 7.10 can be written in either

3Appendix A, section 3
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of two ways, which ordinarily makes no differ-
ence. However in this procedure it does make a
difference:

5/2
H.a = M”/ /
§/2 =) (2, _zo)2 t 02

(1'/ - z,)dz,d(y, - y!)
(zy=zs)? + (ys — y1)?

So that using transform T5 from table A2, we
obtain

(7.11)

Fo(k) = —ymelWe=v2¥ for d(y, —y;) (7.12)

7.10 can be written as:

M,, oz
= X
/6/2/&(15_30)27'&2

(x/ —z,)dz,d(y; — ys)
(If - 2:,)2 + (yj - ys)2

which results in a transform using T5 again:

Alternatively equation

(7.13)

Fo(k) = jmel¥s=v0% for diy: —y,)  (7.14)

When the entire evaluation procedure is com-
pleted, it is necessary that the resulting demag-
netizing field be symmetrical with respect to y.
As neither equation 7.12 nor equation 7.14 re-
sult in such symmetry, it is necessary to use
both to achieve that symmetry. Therefore the
transformed relation becomes:

y §/2

M .

57 - me~ITok ek x
T J-¢)2

re(Vs=v)d(y; —y,)
jme Yy —Ys -
[ —jmee=volkd(y, — y,) ] (7.15)

H:a=

This can be manipulated to obtain:

M., [*?
H:d = “'—/
62

(a4ys-vi)d(y, —
me (yr =)
[ —ymeetve=vntd(y, — y,) ] 7-16)

‘J-To

Using transform T3 of Table A2 and iden-
tity 14 from table Al, the inverse transform is
obtained yielding:

1\/1',, 6/2 (z!'zo)d(a+ yf-yl)

H:a = 5 7
zd 27 Jog)a (2-70)% + (@ 4+ yy-us)?

_ M, ]6/- (I]'Io\)d(a+yl’yl)
27 J_gpa (2g-20)7 = (a4 ys-ys )?
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This is evaluated using equation 2 of ap-
pendix A:

g o M [ et el
@ = 97 | —tan-? ¢+g(+6/
L Ly=Zo J
M,, [ tan=?2tilow ]
- S =% (7.17)
27 | —tan-! -—‘";7.2: |

which can be regrouped to obtain:

-

1\/‘[,_, tan™ 1 a_-_6/2_+!il

Ty=Z,

27‘, -1 6=6/2-y
+tan __-Ltj-ta ]

Haqy =

r
~1 a+é/2-y,
M, [ tan-iefilou

7.18)
-1 6+6/2+
o7 | +tan 1._=I__t:!iL }

Equation 7.18 has the proper symmetry with
respect to both-zr; and yy, and in the case of
a — 0 the demagnetizing field also approaches
that of the abrupt transition (equation 7.3).
The highest field occurs on the plane y = 0,
where the field is:

5 —§/2
M-y tan-t £29%/2 /
-

L A/9
Hig= -t 'a"_'l o'/-}

I/—Io

This function has its maxima at (z7 —z,)? =
(a—6/2)(a =+ 6/2), which has the value of:

-1 a=38/2

M., | tan a+6/2

Hd:(ma. = _‘T . 6/2
7 -— -4

tan =573

But this can be simplified using the identity:

tan A = tanB

+ B ——
tan(4 = B) 1 ¥ tan AtanB
to obtain

)
T (7.19)

The demagnetization field is shown in figure
7.3 for an a parameterof 1.5 6.

For a situation where the demagnetizing field
alone set the transition, the a parameter would
be adjusted'so that the maximum field would be
approximately equal to the coercive force H..
This is calculated from equation 7.19:

0 6/2
~ sin(zH./M,,)
This can be seen to be a lower limit on the a
parameter, although effects due to the high per-

meability of the head could reduce this length
somewhat.

N
Hd:(mn:) = "'7:_,t'an

(7.20)
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(@ AHad
2N\
(d/

a:LSS

Figure 7.3. Arctangent transition demagnetization
(a) at yy =0, (b) at y = £6/4.
(c) at y = £36/8, (d) at y = £6/4.

7.4 MATERIAL
CHARACTERISTICS

The arctangent transition is described by the
a parameter, for which a minimum value can be
estimated by setting the maximum demagnetiz-
ing field Hzgimez) to He as in eq. 7.20. This
may be optimistic, because the actual magne-
tization distribution is determined by applied
head field H., and the magnetization charac-
teristic in conjunction with the demagnetizing
field.

An accurate solution to the magnetization
distribution is an iterative process which re-
quires numerical techniques and a computer.
However, useful information on the a parame-
ter can be obtained by some simplifications and
intuitive application of known relations.

For convenience, it is assumed that the arc-
tangent transition being written is in the op-
posite direction from what was discussed previ-
ously, so the transition is being recorded with
a positive gap field (in the positive z-direction)
over a previously saturated region of at negative
remanance. Then the resulting transition will
be the negative of equation 7.8, with a value of
FM,, /2 at (z, — z,) = *a.

When the recorded transition is established
and the transition has moved far away from the
head, the middle of the transition will have no
demagnetizing field. However, during the re-
versal process, the field at that point will have
exceeded the coercive force (H.) and at that
time the magnetization and field will be at the
point indicated in figure 7.4 as point I on the
dynamic hysteresis curve. When the applied
field decreases because of movement away from
the head, the applied field relaxes to zero along
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the path indicated by x,.

In the dynamic process of writing the tran-
sition, the slope of the M-H characteristic, re-
ferring to figure 7.4, is:

Qy_ - Mr: - Mr:
6H ~ H.—H,  H.,(l-5)

so that §* = H,/H. < 1.

MA
Mys ” Xy

1 e
;{1 ~ H, H
<1

Figure 7.4 Magnetization characteristic

Again referring to figure 7.4, the middle of
the transition (z, = z,) will occur at the point
where the net field has been H; during the
recording process. The relaxation path in fig-
ure 7.4 is from point I to the origin, which has
the equation: M = x.H

The dynamic characteristic in this condition
can be described as a straight line:

M = x4(H — H.) where:

a.’\’f an
== — -21
Xé= 35 T F0=5) (7.21)
From these relations we obtain that:
gy = XefHe 7.22)
Xd — Xr

7.5 FIELD GRADIENT

During the recording process the characteris-
tic of the material and the total magnetic field
interacts so that a particular magnetization dis-
tribution results in a demagnetizing field which
alters the total magnetic field, resulting in a
changed distribution. This can be treated by a
series of calculations of the magnetization dis-
tribution, which then gives rise to a demagne-
tizing field which adds to the field, so that a new
distribution must be calculated. This is an it-
erative process which is call the self-consistent
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calculation method, and consumes much com-
puter time. Here we simplify by recognizing
that the derivative of the magnetization must
follow the following condition:

dM, _ 6M,££
dr = OH dz
but H = H:o+ Hzg
where H4 is the negative of equation 7.18, and:
tan"1 T+9/2 _
— tan™! £og/2 } (7.24)
v

From the negative of equation 7.9 at the mid-
dle of the transition (z, = z,) gives a slope of:

(7.23)

dM _ 2M,,

dr Ta

At z, = z, the demagnetizing field is zero, so
the applied field must be set to H;. However
it is desirable to make the slope of the applied
field, dH.4/dr as large as possible so as to ob-
tain as small an a paramelfer as possible.

Equation 7.24 is first differentiated, and then
the second derivative obtained and set to zero
to find the point of the maximum slope, which
is the maximum of dH;,/dz:

dH:, — & (z+9/2)7+y" (7.23)
dz L T e=g/2)3+y?

Taking the second derivative with respect to z
and setting the result to zero, the following ex-
pression is obtained:

z+g/2 _ z-g/2
(z+9/2)°+y* (z-9/2)%+ ¥

solving this for the position of maximum ap-
plied field slope:

2] - 2 )

1 y ? 1
3V Lg/2
which will become the center of the transition,
Lo
At the center of the transition the field is also

to be set to H; as given in equation 7.22. From
this the value of the gap field can be determined

(7.26)
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depending on which point in the media is se-
lected to receive Hj. )

The calculations are to be done at the mid-
dle of the recording media, which in the media
coordinates is at y; = y, = 0, and in the head
coordinates is at y = d 4 §/2. Then taking
the negative of equation 7.9 at z, = z, for the
left side of equation 7.23, using equation 7.21 to
obtain OM/OH, dH;,/dz from equation 7.25 at
z = z, and y = d + 6/2, and finally obtaining
OHq4/0z from the derivative of equation 7.18
with y, = 0 and z, = z, to obtain the following
relation:

2M., M., o
ra  H/(1-S")

d+6/2

° 2)34+(d+é/2)?

%" _Cr +9/ 21:6(/2 /2)

(zo=g/2)* +(d+6/2)? (7.27)
M 1 1
il ey i a-a/'z]

where H, is adjusted according to equations
7.22 and 7.24 to give:

H
Hy = X% _
Xd — Xr
-1 Zo+g/2
H, | 7 55 -
— —tan-! To-9/2 (128)
T d+6/2

Equation 7.27 can be evaluated for any specific
geometry. The reader is encouraged to evaluate
several examples.
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A INTEGRALS AND
TRANSFORMS

A.1 STANDARD INTEGRALS

The integrals here can be found in most ta-
bles of integrals. They can be verified by differ-
entiation.

du 1 u
/(u2+v2)3/3-7-’u2+v2 (1)
du 1 u
m = ; arctan -t-) ( 2)
udu 1 "
/ ol 2 In(u® + v?) - (3)

A.2 THE SIFTING FUNCTION

The delta function, é(u — b), is also known as
the sifting function because it has the property
of selecting out the value of a function at the
point u = b whenever it multiplies the function
and they are integrated over any interval that
includes the point b.

/bé(u-b)f(u)du=f(b) fora<b<c (4)

A.3 THE CONVOLUTION INTEGRAL

The form of the convolution integral is as fol-
lows:

fl*f2=/°o fi(z)fala=1z)dz  (5)

This form of integral occurs in the analysis of
demagnetizing fields and of play-back voltages
in magnetic recording systems. Two interesting
forms of the convolution integral are:

I P ACSTACTEEATS

o) = /_°° f1(2) falot = 2)d

In principle these are readily evaluated us-
ing Fourier Transforms. However, these partic-
ular functions (and others of possible interest
in magnetic recording) are not usually found in
most tables of transformations. For that rea-
son, a special table of such transforms are de-
veloped in the following.
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A.4 FOURIER TRANSFORMS

Transform pairs for various functions are de-
rived using the fundamental definition of the
transform and inverse transform. The term
1/27 must appear either on the transform or
inverse transform, or be split between them
as 1/y/2x, and the placement is not consistent
from one table of transforms to the next, so
it is important to note its placement when us-
ing a particular table of transform pairs. Here
we place it in the definition of the transform of
F(k) to f(z), which is usually called the Inverse

Transform:

oo
f(z) = 1 F(k)e'**dk (6)
27 k=~co
where f(z) is a function of z, F (k) is its Fourier
transformation into k-space, and j = v/=1, so
that we are dealing with complex variables in
k-space.
The transformation from z-space to k-space
is usually called the Transform:

oc
F(k) =/ f@)e-i¥dz ()
T=~-00

The derivations and proofs of the properties of
Fourier transform pairs is bevond the scope of
this work. Here some of those properties are
provided as a set of fundamental transformation
identities, which are given in the table Al.

TABLE A1 TRANSFORM IDENTITIES
I fz) & F(¥)
12 Af(z) & AF(k)
13 h(GE)+ A() & Fuk)
14 fz+c) & ci-r"};zgg
Is 4) & jkF(k)
16 [l fw)ds & XF(k)
T[S h(2)fa(u-z)dz & Fi(k)Fa(k)

The procedure in evaluating convolution in-
tegrals is to begin with identity I7 which has
the convolution integral on the left side. We
must next find the transformations of fi(z) and
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fa(z): Fi(k) and Fy(k) respectively using table
A2, the table of transform pairs.

The form fa(u — z) is essential, i.e. the func-
tion must be written so that the integration
variable occurs in a subtractive relation to the
independent variable of the function being eval-
uated. Thus f; must be a function of vt — z or
z; — z,. However, when finding F3, it is to be
found from fa(z) or f2(z,).

The next step is to manipulate the product
Fi(k)F2(k) to the form of some function of k
on the right hand side of table A2, which then
allows the evaluation of the function of vt or

Zl.
TABLE A2 FOURIER TRANSFORM PAIRS
f:) & F()

T1. §(z+a) & ek

T2. u(z+a) « -J—.‘;ej“"

T3. sin3: & jm[6(k+2)
~8(k - 9]

T4. cosfz & w[é(k+p)
+6(k = )]

T3, i e ek

T6. ;7_1:_'7_; < wej“k

T7. arctan & ﬁcv"“"

T8. iln(z?+4?) & fevt

T9. % & 276(k —a)
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Advantaages

e Large signal gutput
e Velocity independent signal amplitude

e (Gooc linear resolution with shielded
MR senscr

Basic lssues %
e Suppressicn cf BEzarkausen noise
o Jirezrizatics cf MR response



Operating Magnetic Environments
Impesed by requirements of:.

e |ine=r Eesalution:
— Fresence of sgft-magnetc shielgs

o Write Czrzbilites:
— Preszrce ofinducdve write glement
im the wcimity

o Traciwic— Rescluticn:
— Cer=in gizas arc gecrmetries of MR
senscr micht be more preferrable

r N
o~ Ciliva

J

-TS"« a

| 1

N



" W IAL
D )

Y '
W' 2 oS oV

(a)

MR Element (Edge View)

L.

(c)

T

=+—Shield

—[-MR

Flux Guide

lL=—_t++ =—— |Medium

Signal [
Flux_ (]
[J — "o I — Medlum
Transition
g.._,.
(b) F—_ﬁn Elemant (d)
MR—
<1{— Shield Flux __':
Quide

\

\

4

)T

— Right-Shield

l

— = » 4+ + —— JMedium

[—=+ ¢+ t—— " JMedium

Sihieunive-  METHoDS Forp. Hio H

LINear PesoLu TioN



~. @

D ———
-
-
-
-
-
-
-
-

The ZARKHAUSEN NOISE_Problem

* Ralatzr Setween domain activities ¢ _naise in MR respcnss

* QOrigin of domains
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Two Possible Causes for Domain Farmation:
e Dispersion of the Anisotropy Easy-Axis ne wmy nebic
¢ Longitudinal Demagnetization Effect chage ot these
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