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Abstract 

A technique for predicting error rate in digital recording systems is presented. 
It is based on the following observations and assumptions: 

• Data are recovered in the time domain, and time domain models are ade­
quate to describe and quantify errors, 

• Data recovery involves peak sensing and bit decisions made in a fixed 
timing window, 

• Read head signals can be modeled by the superposition of isolated pulses, 

• Errors (incorrect bit decisions) are caused by two dominant mechanisms, 
both of which produce time-base errors, (1) peak shift due to random 
disturbances (bit jitter), and (2) peak shift due to pulse crowding (inter­
symbol interference). 

• Real world timing error distributions are neither unimodal nor bimodal, 
but are multimodal with a fixed, code-dependent, number of modes. 

The analysis of BER (Bit Error Rate) in terms of calculable or measurable 
noise factors has been adequately documented in the literature, and we will draw 
on previous work throughout this paper. Our contribution is in the quantifica­
tion of peak shift caused by pulse crowding, and the integration of its effects 
with the code dependencies and noise models appropriate to a given system. 

We introduce the concept of an inteT1Jal pair matrix which enables us to 
analyze codes for their influence on peak shift. This matrix is a tool which can 
be used for the enumeration of timing distribution modes within the recovery 
window and for computing the statistical weight to be associated with each 
mode. From this, and noise-induced error distributions derived by other means, 
we will develop a theoretical framework for predicting error rate and performing 
time interval analyses. 



Introduction 

In a practical digital magnetic recording system the maximum bit densities 
will be limited because of intersymbol interference (pulse crowding) and ran­
dom noise. 1 The effect of pulse crowding can be understood by considering an 
isolated flux change or transition on a magnetic tape. Suppose this reference 
transition lies between adjacent neighboring transitions of opposite polarity. If 
the distance from the reference to its neighbors is great, the influence of the 
neighbors on the reference transition is small. A peak sensing readback device 
would see no detectable change in the amplitude or peak position of the head 
signal compared with a completely isolated transition. On the other hand, as 
the neighboring transitions are moved more and more closely to the reference, 
measurable interference will occur. This interference causes distortion which is 
a complicated, non-linear function of the distance from the reference to each of 
its neighbors. 

The distortion will manifest itself as apparent changes in the amplitude and 
location of the reference transition. The closer an interfering signal is to it, the 
more its amplitude is reduced and its apparent position is shifted. The shifting, 
commonly called peak shift, is directed away from the interfering signal and 
ultimately limits the maximum practical recording densities. In peak position 
sensing systems, this shift generally has a greater influence on the error rate 
than does the amplitude loss. 

There are multiple contributors to intersymbol interference. But for the 
recording systems which concern us, the effects can be adequately explained as 
a consequence of the linear superposition of isolated pulses. At higher densities 
there are non-linear effects associated with writing that complicate the picture 
considerably, and we will focus our attention on the simpler case. 

For a given head/media interface, a specific amount of peak shift will be 
associated with fixed distances from the reference peak to each of its neighbors. 
These two intervals, in effect, define the reference peak. That is, for every tran­
sition interval pair, there will be a characteristic shift of the enclosed transition. 
We can associate this peak shift with the particular interval pair that produced 
it and analyze the distribution of intervals to provide estimates of the combined 
effect of peak shift on data recovery. 

A good understanding of the relationship between peak position sensing 
errors and the encoding method used is crucial in the development of high per­
formance recording systems. But the literature is largely silent on quantitative 
techniques for deriving accurate error rate predictions where peak shift is a 
dominant source of error. One reason is that the code studies generally rely 
on communications theory to provide tools for error rate analysis and approach 

1 In some digital systems there may be other factors which dominate, but these are the 
major factors in the magnetic recording systems used today. 
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the subject from the point of view of channel packing, bandwidth, Signal to 
Noise Ratio (SNR), etc. Generally, frequency domain models are employed and 
there is no clear link between the results of the analysis and the problems of 
data recovery in a timing window. Some recording signal studies, on the other 
hand, deal with pulse shapes and approach the subject from the point of view 
of isolated pulses or dipulses (dipoles), magnetic vectors, flux densities, SNR, 
etc. But they stop short of fully relating timing error distributions to the peak 
shift modes associated with the particular encoding scheme in use. 

Both of these approaches yield results which are useful to the system designer 
and analyst, but on balance they leave the question of real world error rate 
performance largely unanswered. Consider the following questions: 

• If the packing density is increased by 5%, how much will the BER change? 

• How much of an improvement in BER will we get by using write pre­
compensation for certain patterns on certain tracks (if any)? 

• If the media resolution is increased by a fixed percentage, what change in 
BER will occur? 

• Will a change from MFM to M2FM code cause the error rate to go up? 
down? - how much? 

• Will enlarging the data recovery window improve or degrade the error 
rate? 

• Is it possible that a slightly shifted window will give better performance 
than a centered one? 

• How can we accelerate a BER test and extrapolate the results correctly? 

These are all legitimate questions which are difficult or impossible to answer 
using frequency domain models, and current time domain analysis techniques 
only provide partial answers to some of them. In order to address these questions 
directly, our approach is to develop models which provide accurate predictions 
of fractional peak shift under typical data recovery conditions, and to analyze 
the actual recording codes used in digital systems in terms of their relation to 
these models. For example, once we have created an acceptable pulse model for a 
given application, we will derive a generating function which produces fractional 
peak shift curves for all combinations of intervals. We will also determine the 
allowable interval pairs for a given encoding method and the probability of 
occurrence of each pair. We can then calculate the actual peak shift values 
(modes) which will be produced by the allowable time intervals and determine 
the correct statistical weighting for each. With these, we can construct accurate 
error distribution curves for the given system and encoding method. These 
curves allow us to compute the expected error rate of the system for any specified 
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recovery window under a variety of conditions, given only a single estimate or 
measure of the timing error due to random noise. 

Having tools of this sort available allows us to predict a number of useful 
quantities. Among them are: 

1. The expected average error rate for a system processing a random data 
stream, 

2. The difference in error rates for different encoding schemes in a given 
system, 

3. The error rate improvement or degradation resulting from changes in the 
PW so of the head signal, 

4. The quantitative effect of write pre-compensation on error rate, 

5. The influence of different pulse models on error rate, 

6. The effect of the recovery window on the error rate, and the changes 
introduced by window sizing or shifting. 

In addition, we will be prepared to determine such things as the optimum 
write pre-compensation for specific systems, and the highest packing densities 
consistent with a pre-determined error rate ceiling. We will also confirm that a 
slightly shifted window may give better overall perfomance than a centered one 
for certain codes. It will be seen that the composite timing error distribution 
permits the system designer, for the first time, to accurately extrapolate error 
rate performance from measurements made using narrow recovery windows. 

The first part of this paper deals with the analysis and quantification of 
timing errors due to pulse crowding. Several models are developed and graphs 
are provided to assist in computing fractional peak shift under a variety of con­
ditions. The second part deals with the special analysis of encoding methods. 
The analysis aims at creating a weighted distribution function for use in con­
structing the previously mentioned error distribution curves. Together, these 
provide a consistent set of tools to aid in the development or enhancement of 
high performance digital recording systems. 
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Chapter 1 

Pulse Analysis 

In this chapter we will deal with the construction of realistic models for quan­
tifying the effects of interacting pulses. The models can be refined from simple 
to complex in a series of steps in order to improve the accuracy. This approach 
has the advantage that future enhancements can be easily incorporated in the 
basic modeling process. 

The simplified models used as a starting point do not in any way imply lim­
itations in the methods developed. They are simply convenient approximations 
which can be analyzed easily and upon which more complex models may be 
built. 

1.1 Isolated Pulses and Superposition 

We begin with a classic illustration of the effects of pulse interaction. In Figure 
1.1 we show the combined effect of the superposition of two isolated pulses. 

This figure is an accurate representation of two Gaussian waveforms of op­
posite polarity and their sum. The equations for these pulses are 

P1 

P2 

(t+h) 2 

f3e- a 2 

(t-h) 2 

-f3e- a 2 

(1.1) 

(1.2) 

where h = PW50/2 and o: = 0.3003. For this figure the two isolated pulses, p1 

and p2, represented by dashed lines, have their PW50 and separation equal to 
0.5 in. Note that the isolated pulses, for which f3 = 1.2 in, have been offset from 
the horizontal centerline for clarity, but the sum is properly situated. 

A close look at the figure reveals discernable, but slight, peak shift. In 
fact, the fractional peak shift1 for this case is 0.0166, or 1.66% of PWso· Such 

1In our usage, fractional peak shift is 6.P::: peak shift/PW50. 
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Figure 1.1: Superposition of Gaussian Pulses. 

shifting is a direct consequence of the superposition, and not of any special 
properties of the medium. Peak shift will appear whenever a waveform with 
distinct maxima or mimima is summed with any other signal having non-zero 
slope at the extrema. 

A curve which relates the pulse spacing to peak shift is shown in Figure 
1.2. Here we see that the peak locations read from the media will differ from 
the recorded transitions locations by amounts which vary with pulse spacing 
and shape. We have plotted the curves of dipole peak shift for Lorentzian and 
Gaussian pulse models, both of which will be discussed later. 

One interesting feature of these curves is that the limit case of peak shift 
for zero spacing is finite and nonzero. Of course, the superposition model is 
no longer valid at extremely close spacing, 2 but the limit cases for idealized 
models are important for their analytic value. Some additional discussion on 
those limits can be found in the appendix. 

We will construct the pulse models and develop refinements on the premise 
that superposition produces acceptable composite waveforms from isolated pulses 

2 It is well known that superposition fails to predict actual signal waveforms at very high 
packing densities. But the major modeling deficiencies at typical densities can be attributed 
to problems with the individual pulse models rather than with superposition. 
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Figure 1.2: Curves of Dipole Peak Shift 

for the packing densities which concern us. 

3.0 

An obvious concern in the construction of pulse models involves the pres­
ence or absence of lateral symmetry in the pulse models. The simplest models, 
which occupy much or our attention here, are symmetrical with respect to their 
local maxima or minima. But for typical isolated pulses there is a mild to very 
pronounced asymmetry. This asymmetry, which can be partially or completed 
accounted for by physical phenomena occurring in the media or at the head/disk 
interface, can cause an asymmetrical peak shift. We will deal with the asym­
metrical pulse models after we complete the method for the symmetrical case. 

1.2 A Generalized Symmetric Pulse Model 

A generalized isolated pulse function which includes Lorentzian and Gaussian 
as special cases can be defined: 

( 
n 2k)-l 

'P(t, n) = E tk, (1.3) 
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where the Lorentzian case, 'P(t, 1), expands to 

1 
'P(t,l)=l+t2 

and the Gaussian case, 'P(t,oo), expands to 

(1.4) 

lim 'P(t, n) = lim 1 = e-t2 (1 5) 
n---+oo n---+oo l+t2+t4/2!+t6/3!+···+t2n/n! ' 

This function, which is simply a truncated exponential, can be viewed as a 
generator for a family of impulses which bridge the gap between the far-spacing 
(Lorentzian) and near-spacing (Gaussian) models. The pulses can be used as 
direct models or building blocks in the construction of more complex models. 

A plot of several members of the family is shown in Figure 1.3. Here the 
pulses have been normalized in amplitude and PW 50 so that their shapes can 
be compared. 

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 

Displacement Normalized to PWso 

Figure 1.3: Normalized Pulses. 

Shifted pulses can be expressed by an horizontal offset parameter h. For 
example, one way of defining a Lorentzian dipole is: 

'P(t + h, 1) - 'P(t - h, 1). 
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where the pulses are spaced 2h apart. 
We will make use of a tripole function 

'P(t,n) - 'P(t + h,n) + 'P(t + T,n) 

where 0 ~ h :$ T in the construction of peak shift curves. 
By generating arbitrarily long sequences of pulses it is possible to overcome 

the errors caused by edge effects which limit the usefulness of simple dipole 
models, i.e., we can 'look into' a signal stream and analyze the pulse interactions 
which occur there, i.e. in context. 

Some of the attractive features of the generalized function are, 

• It is a function of time, which is a prerequisite for performing signal anal­
ysis in the time domain, 

• It is mathematically simple, but can be used to construct more complex 
models by shifting, scaling, summation, differentiation, etc., 

• Unlike piecewise models, it generates entire functions, 

• Since it includes commonly accepted models as special cases, it permits 
us to draw on the previous work in developing our methods. 

A minor weakness is that the pulse function, as defined, describes symmetric 
pulses and leaves the pronounced asymmetry of isolated pulses in certain systems 
unaccounted for. However, we will find that asymmetric pulses can be modeled 
by summing scaled derivatives of a pulse with the pulse itself, as has been 
described elsewhere in the study of vector magnetization. A good compromise 
between complexity and accuracy can be achieved by this means. 

Some of the properties of 'P(t, n) can be found in Appendix A. 

1.2.1 The Lorentzian Model 

The Lorentzian impulse 'P(t, 1) is one of the most commonly used approxima­
tions to an isolated pulse. It is the simplest of these, and can be related directly 
to a correspondingly simple model of the readback process. It occurs in a con­
text where the magnitude of the flux traversed by a sensor can be approximated 
by an arctangent function, whose derivative 

darctan(t) 
dt 

1 

1 + t 2 

is the sensor output. Because 'P(t, 1) has the widest skirts (slowest decay) of the 
members of the pulse family, it is often referred to as a 'far spacing' model. The 
spreading or smearing is more pronounced as the distance between the sensor 
and the flux source is increased. The Lorentzian pulse is often the model of 
choice for flying head systems. 
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Although the Lorentzian model is simple, it may have limited use when accu­
rate models are required. Nevertheless, it makes an excellent starting point for 
approximation methods, and can be improved by means which will be developed 
later. 

Curves for computing peak shift with this model will be found in the ap­
pendix. 

1.2.2 The Gaussian Model 

The Gaussian Pulse function 'P(t, oo) = e-t•, sometimes referred to as the 'near 
spacing' model, is another often used approximation to the isolated pulse. Like 
its sister functions it has the combined merits of simplicity and reasonable fit 
for many systems. For contact recording systems with lateral symmetry in the 
pulse shape this is often the model of choice. 

'P(t, oo) represents a limit case for the generalized function and has the most 
rapidly decaying skirts. We would expect that the influence of such a pulse on 
distant neighbors will be less than for a 'P(t, 1) pulse, but for close spacing the 
influence may be greater. This phenomena can be observed in the curves for 
dipole peak shift. (See Figure 1.2.) 

Curves for computing peak shift for this model are also included in the 
appendix. 

1.3 The Peak Shift Curves 

At this point, we will explain the process used to derive the curves for determin­
ing peak shift. Our goal is to be able to calculate the fractional peak shift given 
a pulse model, a value for PW 50 , and a pair of transition intervals. Of course, 
for this section we are using a simple Lorentzian pulse model, and this will be 
our initial choice for explaining the method. The values for PW 50 can vary over 
some, as yet unspecified, range and we need to provide for all practical cases. 
Interval pairs will be selected from considerations of the code in use. (See later 
sections in this paper.) We will use typical cases in the examples. 

The waveform shown in Figure 1.4 is the sum of three isolated pulses which 
define an interval pair. We would like to plot the fractional peak shift of the 
enclosed pulse as a continuous function of the distance across the entire interval. 
For this example, the entire interval spans 4 x PW50 and the middle pulse peak 
is at approximately two-thirds of this total distance. We say 'approximately' 
even though the curve was produced with the implied transition at exactly two­
thirds of the distance because peak shift displacement has moved the peak to 
the left slightly. 

For the conditions in the example - 'P(t, 1) pulse with the total interval 
equal to 4 x PW50 - we can construct a curve which plots fractional peak shift 
against fractional interval spacing. This enables us to determine the peak shift 
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Figure 1.4: Superposition of Three Pulses. 

or timing error for any division along this particular interval. A family of curves 
which plots fractional peak shift against interval span for various ratios of PW so 
to total interval appears in Figure 1.5.3 

1.3.1 Computing Peak Shift 

With these curves we can calculate peak shift as follows: 

1. Determine the PW 50 of a single isolated pulse for the system under con­
sideration. 

2. Select the encoding method to be used. 

3. Set the maximum allowable packing density4 or, equivalently, the bit rate, 

4. For each of the interval pairs associated with the code, compute the sum 
of the leading and trailing intervals, 

3 For the example above we desire a curve for PWso/(total interval) = 0.25, so we would 
have to interpolate between the curves labelled 0.2 and 0.3. 

4 For rotating media this is cylinder dependent. 
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Figure 1.5: Curves of 'P( n, 1) Tripole Peak Shift 

5. Locate the curve which corresponds to the ratio of PW50 to the total 
interval, 

6. Move along the horizontal axis to the point which divides the total interval 
in the same ratio as the leading and trailing intervals, 

7. Locate the intersection of this coordinate with the selected curve, 

8. Read the fractional peak shift from the vertical axis scale, 

9. Convert to absolute peak shift, i.e., multiply by PW5o. 

As an example of the use of the graph, consider a high density 5t in. floppy 
disk system using MFM code. We have chosen the P(t, 1) pulse model and the 
PW 50 is measured on a chosen track to be 1.8 µsec. The bit-cell spacing is 2 µsec 
and we would like to determine the peak shift for the 'worst case' situation 
consisting of a 2 µsec interval followed by a 4 µsec interval. (An experienced 
recording technologist would expect a very low peak shift for a system with 
these values.) 
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First we compute the total interval, I = 6 µsec. Then the ratio of PW 50 to 
this interval is PW50/ I = 0.3. This identifies the curve we will use for determin­
ing the peak shift. The ratio of the leading interval to the total interval is 1/3, 
so that we will read the fractional peak shift from Figure 1.5 at the horizontal 
coordinate 0.33. The fractional peak shift is 0.025 which, on multiplication by 
PW 50 converts to 45 nsec. 

Reading high precision values from the accompanying curves in Figure 1.5 
is not possible. These curves, although correct, are provided here as examples 
only. Complete sets of curves for computing peak shift with high accuracy for 
a wide variety of pulse models and spacings are included in the appendix. 

1.4 Asymmetric Pulse Models 

In many digital systems there is a pronounced lateral asymmetry in the ob­
served isolated pulses. This asymmetry generally involves visible differences in 
the leading and trailing edges of the pulse and generally involves a sharpening 
of the leading edge and spreading of the trailing edge. A purely longitudinal 
model does not show this phenomena, but considerations of the actual shape 
of the recorded transition zone provide some explanation. In real media the 
transition zone is tilted or curved in a manner consistent with the penetration 
of a magnetizing field. These curved zones contain a perpendicular element as 
well as horizontal one, and can be approximated with a model which contains 
some portion of the derivative of the horizontal field. 

For example, we can plot a series of models based on the following modified 
Lorentzian pulse 

1 at 
f(t) = 1 + t2 + (1 + t2)2 (1.6) 

with variable parameter 'a'. 
A few of these are shown in Figure 1.6. The case a= O, of course, produces 

the symmetric Lorentzian. 
Graphs of many of the pulse models and information about their equations 

can be found in the appendices. 
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p(t) = 1 + t2 + (1 + t2)2 

Amplitude Normalized and Peak Aligned 

Figure 1.6: Asymmetric Isolated Pulses 
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Chapter 2 

Code Analysis 

The integration of the characteristic peak shift curves with code related peak 
interval distributions is central to the purpose of this paper. Clearly, the mar­
riage of code dependent signal characteristics with shape dependent modeling 
has long been a partially realized objective in accepted test methodology. Wit­
ness the importance of selecting 'worst case' patterns from the repertoire of a 
recording code for simplified window margin analysis or bit error rate testing. 
In a real sense, the methods of this paper extend the simplified worst case con­
cept to encompass 'realistic case' situations, providing the means to quantify all 
cases. 

We will present the fundamental concepts by way of examples using common 
encoding methods. Comparable analyses for other codes will be forthcoming 
from the author. 

2.1 MFM Code 

MFM1 is one of the most common codes used in digital magnetic recording 
today. It has a higher information-per-transition density than FM and is one of 
the simplest of the self-clocking codes. With appropriate phase locking circuitry, 
an MFM encoded data stream can be recovered from a signal source with high 
accuracy and reliability, even in the presence of frequency drift from the source .. 

2.1.1 Description of MFM Code 

The standard recording application of the code involves the generation of a 
reference clock which defines a bit-cell stream and the encoding of raw data at 
a rate of one bit per cell. The data is contained in the bit cell such that the 
following rules apply, 

1 Sometimes called 'Miller' code. 
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1. Each '1' in the data stream is encoded as a transition in the center of the 
corresponding bit cell, 

2. Each 'O' is encoded as a transition at the beginning (leading edge) of the 
bit cell, unless the previous bit cell contains a 1, 

3. If the current data bit is a 0 and the previous data bit was a 1, no change 
of state occurs in the current bit cell. 

Some of the time domain characteristics of the code are, 

1. The shortest time interval between transitions is one bit cell, 

2. The longest time interval between transitions is two bit cells, 

3. The only other allowable interval is one and a half bit cells. 

4. All combinations of the above intervals are allowed. 2 

Since a finite number of interval lengths are possible, we would expect there 
to be a characteristic distribution of these intervals and interval pairs for any 
random bit stream encoded by the above rules. A method for determining that 
distribution is the subject of the next section. 

2.1.2 Interval Analysis 

It is convenient to catalog all possible interval pairs for the code and identify 
the binary input code sequences which produce them. These pairs are shown 
in Figure 2.1. The interval pairs are divided in three groups according to the 
length of the leading interval. For MFM, this gives a group of combinations 
which start with a one bit cell interval, a one and a half bit cell interval, and a 
two bit cell interval. 

Some explanation is in order concerning the binary codes which produce 
these interval pairs. In the figure, those leading intervals which begin with a 1 
do not depend on previous data in order to occur. Those which begin with a 
O, on the other hand, do depend on the previous data bit. A transition at the 
leading edge of a bit cell can only occur if the previous data was a 0. We have 
indicated the required previous condition by enclosing the necessary leading 0 
in parentheses. 

We would like to determine the relative frequency of occurrence of each 
interval pair. Our assumption that the input data stream (prior to encoding) is 
random simply means that each new bit is a 'coin toss', i.e., a 1 or 0 is equally 
likely. For ASCII text and program code this isn't a bad assumption. 

If the probability that the next bit is a 1equals1/2, then the probability that 
any specific 2-bit pattern will occur next is 1/4. Similarly, each 3-bit pattern 

2This is not true with some codes. 
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111 __ J-~u-:--: 
1100 __ :_.rL_J-
1101 ___ n __ ~_r 

(0)000 __ ru- · · 
(0)001 __ ~-

1000 __ •_ru-
1001 --·-~-· 

(0)011 __ ll_J-: . 
(0)0100 __ r:L]­
(0)0101 __ l:L___0-: 

1011 __ :_ r::1 __ r 
10100 __ :_s::L_r 
10101 __ :_~-: 

Figure 2.1: Allowable MFM Interval Pairs and Associated Codes 

has a probability of 1/8, etc. Using this, we can compute the probabilities and 
relative frequencies of each of the interval pairs above. The result is shown in 
Figure 2.2. 

2.1.3 The Interval Matrix 

1 

Leading 
Interval 1.5 

2 

Trailing Interval 

1 1.5 2 

3/16 1/8 1/16 

1/8 3/32 1/32 

1/16 1/32 1/32 

Figure 2.2: Interval Pair Probability Matrix 

The matrix contains one cell for each allowable interval pair. It is organized as a 
two dimensional array with the row label identifying the present (leading) inter­
val lengths and the column identifying the next (trailing) interval lengths. If, for 
example, the leading interval is two bit cells in length and the trailing interval 
is one and a half bit cells in length, then the probability for this combination is 
1/32. 

Entries in the table are computed by adding up the probabilities of individual 
cases for each combination. For example, to compute the probability that a one 
bit cell interval will be followed by a one bit cell interval, we see that there are 
two ways this can happen. The first way is by the occurrence of a 111 pattern 
and the second is by a 0000 pattern. Note that we must count the leading zero 
in this last case. Now the probability of a 111 pattern is 1/8 and that of a 0000 
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is 1/16. Thus the total probability is 3/8. 
It is important to keep in mind that the matrix shows the probability that 

a particular interval pair will occur following a reference event, and not the 
probability that a particular interval pair will be associated with a randomly 
selected transition. Specifically, the probability that a particular interval pair 
will occur is equal to the probability that a particular transition type will occur. 
The sum of the probabilities for all possible types is the transition rate for the 
code, which is 3/4 for MFM code. 3 The sum of the probabilities that certain 
interval pairs are associated with a given transition is, of course, unity. 

As a quick check on our numbers, we can do as follows. Assume an arbitrarily 
long string of ls and Os. The length of this string is related to the individual 
intervals by £ = £ · 1 ·Pl+£ · 1.5 · Pl.5 + £ · 2 · P2· That is, it equals the sum 
of the products of the total length of the string times the probabilities of each 
interval type times its characteristic length. Then£ = £(3/8 + 3/8 + 1/4), as 
would be expected. 

The matrix contains a lot of implicit information, some of which we will 
mention here. First, the sum of all the probabilities in the matrix should equal 
the transition rate for the code. This is because the interval pairs define tran­
sition types and the sum of all their probabilities is precisely the probability 
that a transition will appear at all. Second, the sums of the probabilities along 
individual rows is the probability that the corresponding leading interval will 
occur. Third, it is an easy matter to determine the probability of occurrence of 
interval pairs associated with 'worst case' peak shifts by adding the probability 
entries in those cells which represent the greatest difference in the leading and 
trailing intervals. 

Some of the probability information required to complete these matrices can 
be obtained by considering the interval sequences as Markov chains. But note 
that the interval matrix is not the same as the customary Markov matrix for 
which the sum of the probabilities along each row would be unity. 

2.1.4 Development of Peak Shift Modes 

The matrix diagonal from upper left to lower right separates the matrix into 
a lower triangular part and an upper triangular part. Along the diagonal the 
leading and trailing intervals are equal. We would not expect any peak shift to 
occur for these cases.4 The lower triangle consists of those interval pairs whose 
leading interval exceeds the trailing interval. Here we would expect the peaks 
of the enclosed transition to occur early. In contrast the interval pairs defined 
by the upper triangular part are associated with peaks which arrive late. 

3 The transition rate is the average number of transitions per bit (or bit cell). For MFM 
this can be determined by computing t.r. = Plc +Poe ·Pop where Plc is the probability that 
the current bit is a 1 (1/2), POc is the probability that the current bit is a 0 (1/2), and POp is 
the probability that the previous bit was a 0 (1/2). Thus t.r. = 1/2 + 1/4 = 3/4. 

4 This remark only applies to symmetric pulse models. 
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The interval pair (or transition type) probabilities shown in Figure 2.2 can 
be used to construct a weighting function for the various modes of peak shift in 
an error distribution curve.5 To pursue this line of investigation it is better to 
normalize the probability matrix so that we are looking at the probabilities that 
a given transition is associated with some interval pair. This matrix is shown 
in Figure 2.3. The relative values of the entries are the same as in Figure 2.2, 
but now the sum of the probabilities is unity. Normalizing is accomplished by 
multiplying each entry by the inverse transition rate ( 4/3) of the code. 

1 

Leading 
Interval l .S 

2 

Trailing Interval 

1 1.5 2 

1/4 1/6 1/12 

1/6 3/24 1/24 

1/12 1/24 1/24 

Figure 2.3: Normalized Interval Pair Probability Matrix for MFM 

From the material presented so far, it is evident that the probabilities (weights) 
of individual peak shift modes are code-dependent and will differ with differing 
encoding methods. Thus, the weighted distributions of peak shift modes in a 
random bit stream encoded by some other method may exhibit higher or lower 
overall error rates than will MFM, independent of the random system noise 
present. 

We will adopt a special notation for referring to individual cells in the kind 
of matrix we are considering here. Each entry is defined by its coordinates 
in the matrix so that, for example, the probability that a given transition has 
a leading interval of 1.5 bit cells and a trailing interval of 2 bit cells will be 
designated by Ml.5,2 = 1/24. The sum of the entries along the diagonal is 
M1,1 + Ml.5,i.5 + M2,2 = 5/12. This is the probability that a given transition 
will exhibit zero peak shift. For the 'worst case' interval pair the probability is 
Mi,2 + M2,1 = 1/6. 

Refer to Figure 2.4 to see how the peak shift modes are equated with the 
interval matrix. We have identified a total of seven peak shift modes includ­
ing the zero shift mode. The modes are labelled from 0 (no peak shift) to ±3 
(maximum peak shift). Actually, we have used a progressive numbering scheme 
based on interval ratios decreasing (increasing) from 50% to minimum (maxi­
mum). Positive numbers identify late-occurring peaks, and negative numbers 

5 We will be concerned with constructing this distribution elsewhere in this paper. 
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identify early-occurring peaks. Hence, each cell in the matrix corresponds with 
a specific amount and direction of peak shift. 

Since our chosen pulse model exhibits lateral symmetry, the peak shift mag­
nitudes can be arranged in mirror image pairs. For example, modes 2 and -2 
represent the same value of shift, but in opposite directions. For asymmetric 
pulse shapes all modes with the possible exception of mode 0 will have unique 
values. 

1 

Leading 
Interval 1.5 

2 

Trailing Interval 

1 1.5 2 

0 2 3 

-2 0 1 

-3 -1 0 

Figure 2.4: Peak Shift Mode Classification Matrix 

Figure 2.5 shows the significance of the matrix in representing peak shift 
modes. For all codes, there will exist a matrix which conforms with this tem­
plate. If, for a given code, the probabflity matrix can be constructed, then the 
problem of predicting BER for the storage and recovery of a stochastic vari­
able is partially solved. What remains is to determine the magnitudes of the 
time displacements corresponding with each mode, and the characteristic noise 
induced time-base error distribution. 

Leading 
Interval 

Trailing Interval 

·. ·::::::Late::: 

Diagonal of Zero 
Peak Shift 

Figure 2.5: Generalized Matrix Template 

Having developed the model related peak shift curves in the first part of this 
paper, and the code related interval matrix in this part, we are now able to 
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combine them to produce the weighted peak shift histograms required for error 
analysis. We will proceed with a number of example problems. 
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Chapter 3 

Combining the Peak Shift 
Curves and Code Matrix 

The example problems in this section will be used to clarify the concepts de­
veloped so far, and to explain the use of the curves. Our intent is to 'walk 
through' the construction of a complete error distribution curve which accu­
rately represents the expected field performance of a digital magnetic recording 
system. 

3.1 An Example of MFM Mode Analysis 

In this example we will compute the peak shift displacements for all modes 
in a given problem environment, and construct a weighted error distribution 
diagram. We will approximate typical conditions for a double density, 5~ in. 
IBM compatible floppy disk. 

Let the model be a 'P(t, oo) (Gaussian) pulse, and the nominal bit cell spacing 
is 4 µsec. On the cylinder of interest, the PW50 is 5 µsec. 

Mode L.I. T.I. I L.I./I PW/I LlP/PW Peak Shift 
1 6 µsec 8 µsec 14 µsec 0.43 0.36 0.015 76 nsec 
2 4 µsec 6 µsec 10 µsec 0.4 0.5 0.061 305 nsec 
3 4 µsec 8 µsec 12 µsec 0.33 0.42 0.081 401 nsec 

Figure 3.1: Tabulation for Example Problem 

We can tabulate the solution steps as shown in Figure 3.1, where Mode is the 
numbered entry from the Classification Matrix, L.I. is the Leading Interval, T.I. 
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is the Trailing Interval, I is the total Interval,L.I./I is the ratio of the leading 
interval to the total interval, PW /I is the ratio of PW5o to the total interval, 
l:!:.P/PWis the fractional peak shift taken from the graphs, and Peak Shift is the 
unnormalized, absolute peak shift. L.I./I is the measure along the horizontal 
axis and PW /!is the curve designator. 

0.40-.--~~~~-.-~~-..-~-,-~~--,--~~r--~--.-~~-..-~-,.~~~ 

0.35 -k--~--+---+----+---+-__,r---+---+---+---t----i 

~:~~ ::~=~=~=~===========:==:==:==:====== 
0.20 ~ll~H-'<-~~'"""""'--~--+---+--t----+---t---r-----+------; 

~:~~ ::1:~=~=.~=·~:h..:~=~:. ~==0=b..===:==:==:==:=====: 
t:.P 0.05 -0~__..~----1'--~.,,._~~ ...... ~-------+--+---+------< 

PWso O +-~-=::.......-t--=-t-::::r=~o;;:::o~........,j;:::::::-~----l-==~:::::--ll------:"'\rl--=s:~ 

::::~: -==-~:=_ -==~ -==-~:=_ ~:=_ -==~ -==-~=t:::;::=_:::::"l=_~=_t?:= ___ ~=--~=+-~=-.s:=_~:~=-1= ......... 
-0.20 -+----+----t------t--+----+-----+----t---f'ooo-~""'<-~ ......... {.....--:r-t-+-11 
-0.25 --r----i----i------ir-----+---t---1'----r-----t-~'<:"t~:-"<""~-T-~Tt-t 

-0.30 -+---+---!---+-----+---+----+---+---+---+-""i~M-\11 
-0.35-+-~~t--~-+~~+-~--t~~-+-~--1t--~-+-~~+-~--t~~~ 

-0.40--~~ .......... ~...-.~~ ........ ~ ......... ~~ .......... ~ ............ "'"'""'~ ........ ~~...........,~..-.~~~ 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Displacement Normalized to Total Interval 

Figure 3.2: Curves of P(t,oo) Tripole Peak Shift 

Figure 3.2 can be used to visualize the curve set for P(t, oo), but the more 
accurate curves in the appendix were used in finding the values for l:!:.P /PW. 

Since the pulse model is symmetrical we did not have to determine the 
early and late peak shift values separately, as only the sign is different. It 
is understood that the peaks are early ( - ) if the leading interval exceeds the 
trailing interval and late ( +) otherwise. 

We are now ready to construct the weighted peak shift mode diagram. Figure 
3.3 shows a representation of the 2 µsec timing window within which data is 
to be recovered. We have assumed a 'standard' MFM window centrally placed 
within the reconstructed data bit cell. The relative amplitudes of the various 
modes are taken from the interval matrix, and the horizontal position is taken 
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from the tabulation in Figure 3.1. As will be seen, the size and location of the 
window are parameters which can be varied at will. 

.5 

.4 

probability .3 
of 

occurrence .2 

.1 

2000 nsec Window 

0-1-~.,...-,.----r-.--+-_,_..-,oL-f__.,_-r--l'---.._..-.--r-.--.--t 

-1000 -500 0 +500 +1000 

Weighted Peak Shift Mode Histogram 

Figure 3.3: Window Diagram for Example MFM Problem 

Figure 3.3 can be interpreted as the kind of hypothetical display which one 
might expect to see on a time interval analyzer (TIA) for an idealized recording 
system with zero bit jitter. The locations of the peak shift displacements are 
fixed and unvarying. They are purely a function of the isolated pulse shape, 
the packing density, and the encoding scheme used. The amplitudes of the peak 
shift modes are similarly fixed, and are purely a function of the encoding scheme 
used and the choice of a random variable as the signal source. For real world 
systems, the histogram has a similar, straightforward interpretation: it shows 
the mean values and amplitudes of a set of timing error distributions which fully 
describe the error performance of the system. 

The weighted peak shift mode histogram serves as a substructure for the 
development of the complete timing error distribution curve. All that remains 
is to determine what the appropriate timing error distribution for the system 
under consideration looks like, 1 and to construct the composite function as 
shown in the next sections. 

3.1.1 The Noise Induced Timing Error Distribution 

Peak shift displacements are the points at which the mean values of the noise 
induced timing error distributions are located. These are measured from the zero 
peak shift reference point. For each of the modes the characteristic, possibly 
mode dependent, timing error distribution can be determined by controlled tests 
or can be assumed for the purpose of constraining other parameters. 

1 This can be done empirically by measurements on an existing system, or analytically for 
a theoretical system. 
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Such timing error distributions represent the sum of all random noise dis­
turbances associated with the recovery process. These include electronic noise, 
variations in particulate distribution in the media, external fields, etc. Periodic 
or slowly varying disturbances such as the once-around envelope modulation or 
motor speed variations may or may not be problematic depending on the ability 
of the recovery electronics to reposition the timing window. Here we are sepa­
rating out the disturbances which randomly offset the peak locations within a 
fixed timing window. 

If we are permitted to assume that timing error is normally distributed, we 
need only determine the standard deviation, variance or time scaling factor to 
completely specify the composite function. 

We use the following form2 

1 ft (t-m)2 
P(t) = -- e- 2,,. 2 dt 

cr,,/'h -oo (3.1) 

where m is the mean value and cr is the standard deviation of the distribution. 
It is a standard practice to set cr = 1 to simplify the construction of tables, and 
to perform time scaling on t directly before insertion in the formula, as has been 
done in the discussion which follows. 

We now wish to define a related function which represents the error rate for 
data recovery within the timing window. For our application, the probability 
that an event is improperly recovered is simply the probability that it falls 
outside the window, i.e., the sum of the lower tail P(t1) and upper tail Q(t.,) = 
1 - P(t.,), where t1 and t., are the lower and upper window edge locations, 
respectively. See Figure 3.4 for a simplified representation of an idealized, single 
mode distribution for a transition centered in a recovery window. 

The error function of interest to us, g(t, w[k], p[k]), then is 

g(t, w[k],p[k]) = w[k] [jt' e- (t-pJkll' dt +loo e- (t-pJnD' dt] 
sqrt27r -oo tu 

(3.2) 

where w[k] the normalized weight for mode k, and p[k] is the corresponding 
normalized peak shift. 

Equation 3.2 is a generalized function which relates the peak shift displace­
ments and weights to the window edge locations. Recall that cr is normalized 
to unity for this function. 

3.1.2 The Composite Error Function 

A composite error function can now be constructed as in Equation 3.3, 

+maxmode 

Q(t) = 2::: g(t, w[k],p[k]) (3.3) 
k=-maxmode 

2 There are a variety of forms for this function and its relatives. We have adopted the 
conventions in Handbook of Mathematical Functions, by Abramowitz and Stegun. 
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-Tw-

t, 

Figure 3.4: Unimodal Transition Error Density Function 

where k ranges over all modes associated with the code under analysis. This, 
then, represents the error rate for the system. More accurately, it is the tran­
sition error rate and must be multiplied by the average number of bits per 
transition to yield the bit error rate. 

The composite cumulative error distribution defined above, Q(t) is a com­
putable function of the weights, peak shifts, and time scaling factor. Hence, 
given the code, pulse model, and transition timing error distribution, it is pos­
sible to make an accurate determination of the system error rate. Furthermore, 
we can then quantify the impact of any combination of changes to the code, 
model, or intrinsic noise. 

To complete the previous example, we have only to specify the transition 
error density function. Since we already have the mean locations and weights, 
the horizontal scaling factor is all that is needed.3 

For our example we will assume that Tw is lOa- or 200ns. The formula is 

Q(t) g(t, 0.083, -401) + g(t, 0.167, -305) + g(t, .0417, -76) 

+g(t, 0.417, 0) + g(t, 0.0417, 76) + g(t, 0.167, 305 

+g(t, 0.083, 401) 

(complete the example) 

3.2 M 2FM Code 

(3.4) 

(3.5) 

(3.6) 

Sometimes referred to as Modified-MFM, this code has a number of features to 
recommend it over ordinary MFM. The transition rate is 2/3, as opposed to 3/4 
for MFM, and the relative frequency of the minimum interval is less. 

The interval pair matrix for M2FM is shown in Figure 3.5. The method for 
determining the probability entries is in the appendix. 

3 It is likely that the normal distribution will fail for transitions which are severely crowded 
on one side only, depending on the nature of the noise. 
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3.2.1 Interval Pair Matrix for M 2FM 

1 

1.5 
Leading 
Interval 

2 

2.5 

Thailing Interval 
1 1.5 2 2.5 

3/16 3/32 3/32 0 

1/16 1/8 5/64 3/64 

3/32 5/64 1/16 1/64 

1/32 1/64 1/64 0 

Figure 3.5: Normalized Interval Pair Probability Matrix for M2 MF 

Notice that there are two empty cells in the interval pair matrix. One if these is 
along the zero peak shift diagonal, but the other illustrates a startling asymme­
try in the code. One of the modes which exists for early peaks is missing for late 
peaks. Furthermore, it is a 'worst case' mode, suggesting that the composite 
error distribution may be skewed, i.e., the least error rate may not coincide with 
a centered data recovery window! 

The peak shift classification matrix is shown in Figure 3.6. 

1 

1.5 
Leading 
Interval 

2 

2.5 

Thailing Interval 
1 1.5 2 2.5 

0 3 5 6 

-3 0 2 4 

-5 -2 0 1 

-6 -4 -1 0 

Figure 3.6: Peak Shift Classification Matrix for M2 MF 
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3.2.2 Example Problem for M 2FM 

For this example, let's assume a system with a 500 nsec bit cell and PW so equal 
to 750 nsec. We will use the P( n, oo) model, and choose a conventional 50% 
window of 250 nsec duration for data recovery. The peak shift window diagram 
is shown in Figure 3.7. 

.4 250 nsec Window 

.3 

probability 
of .2 

occurrence 

.1 

0 -t--.-...--!'-",--,--,'....,_~..,......,..._,..-',_.._,_.,.---,-_,..-,--,-...---1 

-125 -62.5 0 +62.5 +125 

Weighted Peak Shift Mode Histogram 

Figure 3.7: Window Diagram for Example M2 FM Problem 

This histogram deserves a close examination. We have drawn our window 
diagrams so that the point of zero peak shift is placed exactly at the window 
center. But, for this case, if the dominant errors are due to peak shifts associated 
with 'worst case' patterns, it is certain that better performance (lower error 
rate) will result from shifting the window slightly to the left, so that it is earlier 
in time than a perfectly centered window. The optimum shift will, of course, 
depend on the shape of the composite timing error distribution curve. 

One question that arises concerns the actual position of the window during 
the processing of a random data stream. If we assume the data are recovered 
with a PLL whose phase detector is linear for small differences between the 
reference frequency and the PLO, which will be true for most phase/frequency 
detectors, we can then compute a 'center of gravity' within the window to­
ward which the PLL clock edge will converge. This centroid is the sum of the 
products of the peak shift mode weights by their corresponding displacements, 
i.e., their moments about the mean position of the PLL reference,4 and does 
not necessarily coincide with the point of zero peak shift or the center of the 
window. 

For example, the computed average reference location for our previous sys­
tem is -0.25 nsec; i.e., to the left of the point of zero peak shift. A small 

4 The reason the PLL reference edge will converge to this point is that the PLL corrections 
are precisely these same weighted sums. 
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amount, to be sure, but at least it is in the right direction! 
For uniform distributions around the modes, and assuming that the system 

is initially calibrated with a fixed frequency (zero peak shift) reference, the 
computed window centroid provides a reference point from which the detection 
window edges can be correctly located. Thus armed with a knowledge of the 
window placement and the peak shift weights and magnitudes we need only 
determine the noise induced timing error distributions to complete the error 
analysis - and this problem has been adequately addressed in the literature. 
(See references.) 

(complete the example) 

3.3 RLL 2, 7 Code 

The interval pair matrix for this code is shown in Figure 3.8.5 This matrix 
has the rows and columns labeled according to the number of zeros between 
transitions, unlike that scheme used previously where the bit-cell length was 
used as the interval unit. Either method leads to the same matrix. Note that it 
is asymmetrical around the zero peak shift diagonal, and has an empty cell in 
one corner. 

2 

3 

4 

5 

6 

7 

2 

.118 

.0904 

.0642 

.0453 

.0172 

0 

Trailing Interval 
3 4 5 6 7 

.0838 .0592 .0419 .0247 .00740 

.0642 .0453 .0321 .0189 .00576 

.0453 .0321 .0226 .0132 .00370 

.0321 .0226 .0160 .00946 .00287 

.0226 .0161 .0113 .00658 .00185 

.00862 .00577 .00431 .00287 .00144 

Figure 3.8: RLL 2,7 Interval Pair Matrix 

The Mode Classification Matrix is shown in Figure 3.9. As before we have 
numbered the modes approximately in order of decreasing interval ratio. For 
this code some pairs have the same ratio, so we subordered by decreasing total 
interval size. This is somewhat arbitrary because the non-linear relation between 

5 The probability entries for the MFM and M 2 FM case were derived analytically and verified 
with a computer simulation. For RLL 2,7 we have computed the probabilities directly from 
the simulation. 
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interval ratios, sizes, and resulting peak shift can cause the modes to 'cross over' 
each other in the recovery window. But the primary reason for enumerating 
modes is for identification purposes, so any consistent scheme will serve. 

2 

3 

4 

5 

6 

7 

_2_ 

0 

-7 

-11 

-13 

-14 

-15 

_3 

7 

0 

-4 

-8 

-10 

-12 

Trailing Interval 

4 _fi_ _6 .1 
11 13 14 15 

4 8 10 12 

0 3 6 9 

-3 0 2 5 

-6 -2 0 1 

-9 -5 -1 0 

Figure 3.9: Mode Classification Matrix for RLL 2,7 

probability 
of 

occurrence 

.3 200 nsec Window 

.2 

.1 

Q--r,....,..,....,.-,..-,...,..,..,..,..,.,....,_T""T""l..,.,_.,..,..,_,....,.h-T-+r,..,..,rY'r~,..,...,.-rl 

-100 -75 -so -25 o +25 +so +75 +100 

Weighted Peak Shift Mode Histogram 

Figure 3.10: Window Diagram for Example RLL 2,7 Problem 

(complete the example) 
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Appendix A 

Pulse Models 

A.1 Generalized Pulse Function 

The generalized symmetric pulse defined in the text 

( 
n Zk )-l 

P(t, n) = ~ tk! (A.1) 

is the basis for developing dipole and tripole models. For example, P(t, oo) = 
e-t2 so that P(t - h, oo) = e-(t-h)2

, where t is time and h is the time displace­
ment of the pulse peak from t = 0. A Gaussian dipole can be expressed by 
P(t- h, ex:>) -P(t + h, oo ). With the selection of appropriate values for h we can 
express any pulse train in terms of sums and differences of P(t, n) functions. 

We determine the peak locations of dipoles by differentiation, aided by a 
numerical computation. For the Gaussian case, 

f(t, h) 

f(t, h) 

!' (t, h) 

P(t + h, oo) - P(t - h, oo) 
e-(t+h)2 _ e-(t-h)2 

-2(t + h)e-(t+h)2 + 2(t - h)e-(t-h)' 

(A.2) 

(A.3) 

(A.4) 

The zeros of of A.4, of course, correspond to the maxima and minima (peaks) 
of the dipole. Special numerical algorithms were developed for the solution of 
this and similar equations involving multiple pulses of various types. These 
algorithms were used in the construction of the curves used to determine peak 
shift for dipole and multipole signal models. 
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A.2 Limit Cases 

A special case of (A.4) occurs when h approaches zero. In this case, 

0 = (t - h) - (t + h)e-4th (A.5) 

Then, 

[ (4th )2 (4th )3 ] 
t - h (t + h) 1 - (4th)+ ~ -~ + · · · (A.6) 

(4th) 2 (4th) 2 

t-h = t-t(4th)+t~-···+h-h(4th)+h~-··· (A.7) 

which, on transposing and cancelling, reduces to 

- 2h = -4t2 h +···(second and higher order terms in 'h') (A.8) 

And, finally, the limiting case as h approaches zero 

2t2 = 1, or t = /{ (A.9) 

A similar development leads to the equations for other members of the 1'( t, n) 
family. For the Lorentzian dipole, 

f(t) 
1 1 

l+(t-h)2 l+(t+h)2 
(A.10) 

!'(t) 
-2(t - h) 2(t + h) 

(1 + (t - h)2)2 + (1 + (t + h)2)2 
(A.11) 

The limit case as h approaches zero leads to 3t4 + 2t2 - 1 = 0, from which 

(A.12) 

For the Gaussian model 1'(t, oo) the limit is the positive real root of t 2 = 1/2. 
This is 0.707107. For the Lorentzian model 1'(t, 1) the limit is the positive real 
root of 3t4 + 2t2 - 1, which is 0.577350. For the model defined by 1'(t, 2) it is 
the positive real root of 5t10 +19ts + 28t6+16t4 -4t2 -4. This equals 0.651219. 
For 1'(t, 3) it is the positive real root of 7t16 + 48t14 + 169t12 + 366t10 + 510t8 + 
408t6 + 108t4 - 72t2 - 72. This equals 0.6903979. 

A note on 'worst case' patterns - 6DB is NOT the worst case for peak shift! 
Note that 6DB refers to the constant repetition of the three-bit pattern '110'. 
6DB is the hexadecimal pattern which represents the least common multiple of 
3 with 4. A worse pattern is '101011', a six-bit pattern whose hex equivalent 
is CEB. In the 6DB pattern each transition is shifted away from its nearest 
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g(t, h, n), limh-+Ot 
n=O 1 
n=l 0.577 
n=2 0.651 
n=3 0.690 
n= oo 0.707 

Figure A.1: Table of Peak Shift Limits 

neighbor and the neighbor is itself shifted, slightly reducing its influence. With 
the CEB pattern shifted transitions are interlaced with unshifted transitions 
maximizing their effect. By extension, blocks of '111 · · ·'s interlaced with blocks 
of '01010 · · ·'s combinations produce the maximum displacement errors at the 
block boundaries. (Check this out with a simulation program!). 
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Appendix B 

Additional Graphs and 
Curves 
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B.1 Peak Shift Curves for P(t, 1) 
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Figure B.1: Curves of 'P(t, 1) Tripole Peak Shift, Group 1 
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Figure B.2: Curves of 'P(t, 1) Tri pole Peak Shift, Group 2 
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B.2 Peak Shift Curves for P(t, oo) 
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Figure B.3: Curves of P(t, oo) Tripole Peak Shift, Group 1 
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Figure B.4: Curves of 'P(t, oo) Tripole Peak Shift, Group 2 
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B.3 Code and Model Specific Peak Shift Curves 

The curves in this appendix show the values of peak shift for a variety of pulse 
models in standard encoding applications. Since each code has a characteristic 
set of allowable interval pairs there will be a finite set of peak shift modes. The 
values of peak shift for each mode have been plotted for increasing ratio of PW 50 

to the bit cell size. Peak shift magnitude is normalized to bit cell size for these 
curves. 

To use the curves, determine the appropriate pulse model and code first. 
Given the PW 50 of the isolated pulse on a cyllinder of interest, and the packing 
density (or bit rate) under consideration, the peak shift for each mode can be 
found on the corresponding mode curve. Simply find the value of PW50 / Bitcell 
and look up the fractional peak shift for that curve. This can be converted to 
fractional displacement in the data recovery window by doubling the value on 
the graph. 

Alternatively, the curves can be used to find the highest packing density 
consistent with a desired maximum peak shift. For this case simply reverse the 
process and start with the required limit on the vertical scale and look up the 
horizontal value on the mode curve of interest. 

These curves are especially valuable for quantifying the worst case (maxi­
mum mode number) peak shifts, as the other modes are primarily of statistical 
interest. 

Since the curves are computed using fixed interval pair ratios, they are not 
applicable for systems which use write pre-compensation. For those cases other 
curves in this paper are required. 
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B.3.1 Uncompensated Peak Shift Mode Curves for MFM 
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Figure B.5: Curves of 'P(t, 1) Tripole Peak Shift for MFM 
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Figure B.6: Curves of 'P( t, oo) Tri pole Peak Shift for MFM 
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