H-81-0021

™

O

COMPUTER GRAPHICS
DISPLAY SYSTEM

FORTRAN SUPPORT
PACKAGE [FSP]

PROGRAMMER’S REFERENCE MANUAL

Information Products Division
Federal Systems Group :

S‘ \NDE' ls DANIEL WEBSTER HIGHWAY, SOUTH—NASHUA, NEW HAMPSHIRE 03061

Copyright 1981, Sanders Associates, Inc.
GRAPHIC 8 is a trademark of Sanders Associates, Inc.

Sanders Associates, Inc. reserves the right to modify the products described in
this manual and to make corrections or alterations to this manual at any time with-
out notice.

First Edition - April 1981

Reprint - August 1981

Reprint - November 1981

TABLE OF CONTENTS

Section Page
1 INTRODUCTION 1-1
1.1 Subroutine Concept 1-1
1.2 Host Computers 1-1
1.3 Structure 1-1
1.4 FSP/GCP Line Control 1-1
1.5 Error Deletion/Receiving 1-2
1.6 Coordinate System 1-2
1.7 Use of Labeled Common 1-2
1.8 Paging Concept 1-2
1.9 Distributed Processing 1-3
1.9.1 FSP Processing 1-3
1.9.2 GCP Processing 1-5
1.10 FSP Features 1-5
2 GRAPHIC 8 FSP SUBROUTINE LIBRARY 2-1
3 ~ SETUP ROUTINES 3-1
3.1 INIT Initialize the Terminal to FSP Mode 3-1
3.2 LAYOUT Define FSP Memory Layout in the GRAPHIC 8 Terminal 3-2
3.3 SCALE Define User Coordinate System 3-5
3.4 ENBBOX Turn Border Display On 3-5
3.5 DSABOX Turn Border Display Off : 3-6
3.6 ENBERR Turn Error Display On 3-6
3.7 DSAERR Turn Error Display Off _ 3-7
3.8 THEEND Terminate FSP Mode 3-7
4 STATUS ROUTINES ' 4-1
4,1 TPARM Set Text Parameters 4-1
4,2 IMARGN Set Left Margin 4=2
4.3 STATUS Set Display Status 4=2
4.4 LAMPON Turn Keyboard Lamp On 4-3
4.5 LAMPOF Turn Keyboard Lamp Off 4=4
4e6 COLORI Define Color Index Table 4=4
4.7 GRAYI Define Gray Level Index Table 4-6
4,8 SCOLOR 4=7
4,9 SGRAY 4-8
5 IMAGE GENERATION ROUTINES 5-1

5.1 MOVE Move Beam to Position Specified » 5-1
5.2 DRAW Draw a Line 5-3
5.3 TEXT Display Text Characters 5-4

Section

10

ii

(I, NV, G, NV, NV, N, |
.
= oot~ &

TABLE OF CONTENTS (Cont)

NEWLIN
CIRCLE Draw a Circle
ELIPSE Draw an Ellipse
XYPLOT Plot a Series of X, Y Points
HTPLOT Horizontal Tabular Plot
VIPLOT Vertical Tabular Plot

0 FILL Fill a Convex Polygon

e e

PAGE MANAGEMENT ROUTINES

ADDREF Open Page for Adding Refresh Data
UPDATE Open Page for Editing Refresh Data
ERASEP Erase from Page Mark to End of Page
PICTUR Graphic Subroutine Call

GETMRK Get Mark Request Information
MOVEIM Move a Block of Graphic Orders
COPYIM Copy a Block of Graphic Orders

[e)3« W e We) Mo W0 We))
.
No Ut B~ LN

EVENT ROUTINE
7.1 EVENT Poll Terminal for Event or Request Response

PERIPHERAL DEVICE ROUTINES

8.1 Keyboard Routines

8.1.1 ENBPAD Enable Alphanumeric Scratch Pad
8.1.2 DSAPAD Disable Alphanumeric Scratch Pad
8.1.3 GETTXT Get Text Event Information

8.1.4 GETKEY Get Function Key Event Information
8.2 Trackball/Forcestick/Data Tablet Routines
8.2.1 ENBPED Enable PED

8.2.2 DSAPED Disable PED o
8.2.3 ENBCUR Enable Cursor

8.2.4 DSACUR Disable Cursor

8.2.5 REQTB Request PED X, Y A

8.2.6 GETTB Get PED Request Information

8.2.7 PED Programming Examples

PACKED VECTOR MODE

9.1 ENBPMD Enable Packed Vector Mode
9.2 PMOVE Packed Vector Move
9.3 PDRAW Packed Vector Draw
9.4 DSAPMD Disable Packed Vector Mode

TWO DIMENSIONAL SCALE, ROTATE AND TRANSLATE ROUTINES

10.1 - CU2DBL Initialize 2D Viewbox and 2D Matrix
10.2 MOVE2D Create 2D Move Graphic Order

oooooooooooocfoooooomoooo
OO UL~ LNDN -

Section

11

12

13

14

15

16

17

THREE DIMENSIONAL SCALE, ROTATE AND TRANSLATE ROUTINES

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

TABLE OF CONTENTS (Cont)

DRAW2D Create 2D Draw Graphic Order

T2D2D Transform 2D to 3D

MTRX2D Compute and Replace Matrix Parameters
V2DBOX Update Viewbox

INIT3D Initialize 3D

SCAL3D Define Z Coordinate System

CCBLK Initialize Viewbox, Viewpoint, and Matrix
MOVE3D Create 3D Move Graphic Order

DRAW3D Create 3D Draw Graphic Order

T3D2D Transform 3D to 2D

MTRX3D Compute and Replace Matrix Parameters
VIEWPT Update View Point in CCBLK

VIEWBX Update Viewbox

IMAGE CONTROL ROUTINES

CLIP Remove Off-Screen Data
SMOOTH Smooth Displayed LInes
SPLIT Define Pixel Memory Mapping Parameters

DATA TRANSFER ROUTINES

" 13.1

13.2
13.3
13.4
13.5
13.6

REFDAT Transfer a Block of Predefined Graphic Orders

REQIM Request Refresh Image
GETIM Get Refresh Image
MOVDAT Move Pixel Data

DATEND Transmit Output Buffer
GETERR Get Error Information

FSP INPUT/OUTPUT

G7INIT Initialize HOST/GRAPHIC 8 I/O Driver
G7TERM Terminate HOST/GRAPHIC 8 I/0 Driver
MSGOUT Output Message to GRAPHIC 8 Terminal
MSGIN Input Message from GRAPHIC 8 Terminal

DELIVERABLE ITEMS

INSTALLATION PROCEDURE

STARTUP PROCEDURE

Page

10-3
10-3
10-4
10-5

11-1

11-1
11-2
11-2
11-5
11-5
11-6
11-6
11-7
11-8

12-1

12-1
12-2
12-3

13-1

13-1
13-2
13-2
13-3
13-5
13-6

14-1
14-1

14-3
14-3

14-5

15-1

16-1

17-1

iii

iv

APPENDICES

ALPHABETICAL SUMMARY OF SUBROUTINES
ASCIT CODES

ERROR CODES

CONVERSION OF OLD FSP PROGRAMS
PROGRAMMING EXAMPLES

PRODUCT PERFORMANCE REPORT

SECTION 1
INTRODUCTION
This Programmers Reference Manual for the Fortran Support Package (FSP) is
provided by Sanders in support of its GRAPHIC 8 interactive display temminal.

1.1 SUBROUTINE CONCEPT

FSP is a collection of Fortran—callable subroutines. The routines require
little knowledge of the GRAPHIC 8 terminal, yet allow the user maximum utilization
of its interactive capabilities. FSP can be tailored to a Fortran system by
excluding specific modules at assembly time.

1.2 HOST COMPUTERS

FSP is designed to run in any host computer which supports Fortran and has a
minimum word length of 16 bits. The actual hardware method by which the GRAPHIC 8
terminal is connected to the host is of no concern to FSP since it is I/0
independent. 1I/0 considerations such as parallel or serial interfaces, half or
full-duplex, selector or multiplexer channels, etc., are incorporated in the
customer—supplied 1/0 driver and hardware interface, leaving FSP computer
independent. Depending on the host computer, Sanders, by special request, will
supply the I1/0 driver (software).

1.3 STRUCTURE

FSP employs the distributed processing approach, because it requires and makes
extensive use of the Graphic Control Program (GCP), which is resident in read-only
memory in the GRAPHIC 8.

Figure 1-1 shows that the application program uses FSP by making calls to the
various subroutines. FSP formats GCP compatible messages and transmits them to the
GRAPHIC 8 terminal via the MSGOUT subroutine (provided by the customer). GCP in the
GRAPHIC 8, processes the message to produce the desired results.

FSP also receives and interprets messages from GCP in response to a POLL
request. These messages may contain keyboard, and PED* information.

l.4 FSP/GCP LINK CONTROL

As mentioned above, GCP sends messages to FSP only when polled. Each message
(input or output) contains a header word to identify the message, then the remainder
of the message. FSP may send a message to the GCP at any time.

* - PED = position entry device

1-1

1.5 ERROR DETECTION/RECEIVING

Errors generated in running FSP are detected and an error code is displayed in
the upper left corner of the display screen. This error display area can be turned
on or off (displayed or not displayed) by user calls to routines ENBERR, to turn
error display on, or DSAERR to turn error display off. See Section 3 for a more
detailed description of these routines.

Error detection is also available under program control. When the user calls
EVENT, the routine which polls the terminal for an event or request response, the
routine sends back an event code indicating an error has been detected. The user
can now call subroutine GETERR to retrieve the error code. See Section 13 for a
detailed description of the GETERR routines.

Error codes are defined in Appendix C.

1.6 COORDINATE SYSTEM

The user can define the limits of the coordinate system he will use by calling
subroutine SCALE with parameters defining the lower left and the upper right
coordinates of the screen. FSP converts these floating point coordinates to integer
display coordinates as the various FSP routines are called. It is the display
coordinates that are passed to the GCP program. Without a call to SCALE, the user
coordinate system is the same resolution as the display coordinate system. The
lower left point is defined as (0., 0.) and the upper right point as
(+1023,,+1023.). See paragraph 3.2 for a detailed description of subroutine SCALE.

1.7 USE OF LABELED COMMON

FSP uses labeled common. The user would be careful not to use these common
block names within his program. These common blocks and their dimensions are as
follows:

Common Block Name Common Block Length (Words)
TERMB 283
COORD , 9
PVMD 9
LAYOT 516
MAST 9
PERIPH 16

LMEM 11

1.8 PAGING CONCEPT

A GRAPHIC 8 may be configured to have up to four 32K banks of memory for a
total of 128K of memory.

GCP and the memory required to support it occupies approximately 9K of space in

memory bank 0 and leaves approximately 23K of space for the user's refresh program.
The entire 32K in memory banks 1, 2, and 3 is available for refresh. The approxi-

mate total useable refresh space in a 128K system therefore is 119K. The following
chart summarizes the amount of user refresh program space available for the various
memory configurations:

1-2

User Refresh Space Total Memory

23K 32K
55K 64K
87K 96K
119K 128K

FSP uses a paging and mark approach wherein the following definitions are used:

"Page

Definition

A page 1s a contiguous block of memory locations.

A page may range in size from 4 memory locations to 32K-4 memory
locations.

A maximum of 255 pages may be defined.
A page is referred to by a numeric value which ranges from 1 to 255.

A page normally contains refresh commands generated by the various calls
to FSP.

Pages are defined by a call to LAYOUT in the host but physically exist in
the memory of the GRAPHIC 8.

A page may not cross a 32K bank boundary.
Pagé 1 exists entirely in memory bank O.

Page 1 is always refreshed and can be thought of as the "mainline"
refresh program.

\ 1.9 DISTRIBUTED PROCESSING

1.9.1

1.

2.

6.

FSP PROCESSING

Floating point conversion.

Scaling: * conversion of user floating point coordlnates to display
coordinates.

Clipping of off screen data.

Smoothing:‘”the removing of unneeded pointé in defining a continuous line.
Formatting and transmitting the message to the GRAPHIC 8 terminal.
Receiving and converting all messages from the GRAPHIC 8 terminal to a
manageable form for Fortran. This includes converting screen coordinates

to floating point user coordinates.

Controls refresh file management, LAYOUT.

1-3

1-1 @an3tg
L00-LZ00-08-H
YIWOLSND Ad GIAINOYd ——————a= 33ARA ww
WaLSAS
ONILYV¥IdO
(SYIANYS A
@INI43a IDNINDIS _ —_— 4
ONITIVD)
¥IWOLSND
A8 QIAIAOYd ——
\
(NI9SW) (1NODSW) (LINISO) (W¥3189)
INILNOY INILOOY INILNOY (GNILNOY
1NdNI 89 1NdLNO 89 3ZIVILINI 89 ILYNIWY3L 89
[Y
i
1OVIOVd (SINILNOYENS dS4
SYIANYS A8 GIAIAOYd INILNOYENS OL STIVD SIaNTONI)
ds4

WYIOOYd NOILYDITddY

1-4

1.9.2 GCP PROCESSING

1.10

5.
6.
7.
8.

9.

Receives messages from the host computer.
Processes messages from the host computer.
Handles PED manipulations and symbol.

Displays alphanumeric keyboard inputs on the screen in a predefined
scratchpad area.

Handles editing of text displayed in the scratchpad.
Formats all messages to the host computer.

Services all display interrupts.

Services all display peripheral devices.

Performs validation test and diagnostics.

FEATURES OF FSP

The standard features of FSP are specified below:

1.

2.

Fortran—callable subroutines.

Distributed processing: Some features are performed in the host computer,
others in the GRAPHIC 8 terminal.

FSP is machine independent.

Refresh paging mechanism for organizing refresh data. This includes
refresh subroutine capability.

The conversion of user coordinates to refresh coordinates and vice versa.
Modifying images presently displayed (selective updating).

Each copy of FSP in the host supports one GRAPHIC 8 controller with four
display monitors, four keyboards, four trackballs or data tablets.

Operator interactions with application program:

a) Alphénumeric keyboard

b) Function keys

c) Trackball, forcestick, or data tablet

Generation of all refresh instructions including image generation commands

i.e., (MOVE, DRAW, CIRCLE, Point Plotting, Ellipse, Polygon Fill,
Color/Gray Level changes).

1-5

10.

11.

12,

13.

14,

1-6

15.

16.

17.

18.

19..

20.

Smoothing of user data to minimize the number of coordinates necessary for
presenting a continuous line.

Local PED operation performed at the terminal:

a. PED symbol locally updated at the terminal.

b. Symbol may be user defined or the default symbol.

Lecoal keyboard manipulations performed at the terminal:

a. Characters typed directly into a refresh scratchpad.

b. Scratchpad area can be edited from the keyboard.

Mass transfer of existing refresh data to the terminal. This allows for
of f 1line generated refresh code to be passed directly to the GRAPHIC 8
terminal and inserted into the refresh memory without any additional
processing.

Mass transfer of pixel data (useful in image data processing).

For inserting refresh code, two modes of operation exist:

a. Initial or additional data.

b. Editing data (selective updating).

Displayed images can be scéled, rotated and translated in two dimensions.
Subroutines exist for manipulating the 2D Coordinate Converter hardware
option.

Displayed images can be scaled, rotated and translated in three
dimensions. Nine subroutines exist for manipulating the 2D/3D Coordinate
Converter hardware option.

A maximum of 3 sections of split screen imaging.

Set of colors may be defined using the Red, Green, Blue or Hue, Lightness,
Saturation, Model.

Defined convex polygons may be filled.

Setup Routines

1.
2.
3.
4.
5.
6.
7.
8.

INIT

LAYOUT
SCALE

ENB BOX
DSABOX
ENBERR
DSAERR
THEEND

Status Routines

1.
2.
3.
4.
5.
6.
7.
8.
9.

TPARM
IMARGN
STATUS
LAMPON
LAMPOF
COLORI
GRAYT
SCOLOR
SGRAY

Image Generation Routines

1.
2.
3.
4,
5.
6.
7.
8.
9.
10.

MOVE
DRAW
TEXT
NEWLIN
CIRCLE
CLIPSE
XYPLOT
HTPLOT
VIPLOT
FILL

Page Management Routines

1.
2.
3.
4.
5.
6.
7.

ADDREF
UPDATE
ERASEP
PICTUR
GE TMRK
MOVEIM
COPYIM

SECTION 2

GRAPHICS FSP SUBROUTINE LIBRARY

Event Routine

1.

EVENT

PERIPHERAL DEVICE ROUTINES

Alphanumeric/Function Keyboard Routines

1.
2.
3.
4,

ENBPAD
DSAPAD
GETTXT
GETKEY

Trackball/Forcestick/Data Tablet Routines

1.
2.

3
4.

ENAPED
DSAPED
ENACUR
DSACUR

Packed Vector Routines

1.
2.
3.
b,

ENBPMD
PDRAW
PMOVE
DSAPMD

Two Dimensional Scale, Rotate & Translate Routines

1.
2.
3.
4.
5.
6.

CC2DBL
MOV 2D
DRAW2D
T2D2D
MTRX 2D
V2DBOX

- Three Dimensional Scale, Rotate & Translate Routines

1.

2.
3.
4.
5.
6.
7.
8.
9.

INIT3D
SCAL3D
CCBLK
MOVE3D
DRAW3D
T3D2D
MTRX3D
VILEWPT
VIEWBX

. Image Control Routines

1.
'2c
3.

CLIP

- SMOOTH

SPLIT

Data Transfer Routines

1.
2.
3‘
4,
5.

REFDAT
REQIM
GETIM
MOVDAT
GETERR

2-3/2-4

SECTION 3

SETUP ROUTINES

The following subroutines are described in this section:
INIT = Initialize the terminal}to FSP mode.
LAYOUT - define FSP memory layout in the GRAPHIC 8 terminal.
SCALE - Define user coordinate system.
ENBBOX - Turn border display on.
DSABOX - Turn border display off:
ENBERR - Turn error display on.

DSAERR — Turn error display off.

THEEND Terminate FSP mode.

The purpose of the routines in this section is to set up and define the general
characteristics of the GRAPHIC 8. The GRAPHIC 8 is notified that it will be
communicating with a host application program that is using the Fortran Support
Package (FSP) and is placed in FSP mode by the user's call to INIT. The GRAPHIC 8
memory is allocated according to the specifications defined by the user in the call
to LAYOUT. The viewable area or boundary (commonly called window) that the user
specifies (by the call to SCALE) maps the user's coordinates to display coordinates.
Only objects with coordinates within this user defined viewing area are displayed.

The status of FSP's error message area and border are controlled by the user's
calls to ENBERR and ENBBOX, which enable them to be displayable, and calls to DSABOX
and DSAERR to turn them off.

When the host applicétion program has completed its task, it must call THEEND
to notify the GRAPHIC 8 that it is no longer communicating with a FSP host
application and to place it in teletypewriter emulation mode.

3.1 INITIALIZE THE TERMINAL TO FSP MODE

NAME: INIT
FUNCTION: Initializes FSP. This must be the first FSP routine called.

CALLING FORMAT: CALL INIT (IUNIT, IOPT, IFACE)

DESCRIPTION OF PARAMETERS:

TUNIT

Integer variable containing the logical unit number assigned to
the GRAPHIC 8 I/0 driver.

IOPT = Integer variable supplied by caller indicating option status.

0 = NO OPTIONS makes option memory space available for user
refresh
1 = OPTIONS reserves option memory space

IFACE

Integer variable containing the type of hardware interface between
the host and the GRAPHIC 8 terminal.

1 = Parallel
2 Serial

DETAILED DESCRIPTION:

In addition to reinitializing internal FSP variables, the following visuals can
be observed: :

® The screen is cleared. The INIT routine causes the customer-supplied
G7INIT routine described in paragraph 14.1 to be called as follows:

CALL G7INIT (IUNIT)
This subroutine is responsible for activating the system mode of GCP.

° A full screen border is placed on the screen to outline the displayable
areae.

® A two digit "error message” is displayed in the upper left corner of the
screen. A successful call results in "00" being displayed.

3.2 DEFINE FSP MEMORY LAYOUT IN THE GRAPHIC 8 TERMINAL

NAME: LAYOUT

FUNCTION: Partitions the memory in the GRAPHIC 8 into pages. This routine
must be the second FSP routine called (INIT is the first).

CALLING FORMAT: CALL LAYOUT (NPAGES, LNGARY)
DESCRIPTION OF PARAMETERS :

Three distinct functions can be performed by LAYOUT depending on the value
of the NPAGES.

NPAGES = 1 to 255 ...User specifies memory layout
=0 «+oFSP automatically performs memory layout
= -1 .+.User requests a description of how FSP would

allocate memory but no allocation is made.

3-2

USER ALLOCATION:

NPAGES

an integer variable supplied by the caller indicating the number
of graphic pages desired. Each element of the length array
(LNGARY) contains the length in words of the corresponding
graphic page.

1 < NPAGES < 255

LNGARY = An integer array supplied by the caller whose length is equal to
NPAGES. Each element of the array must be filled in by the
caller with the length in "words" of the corresponding page,

i.e.,

LNGARY (1)
LNGARY(2)

Length of page 1
Length of page 2

LNGARY (NPAGES) = Length of page NPAGES

The maximum size of page l is words; the maximum size of
all other pages is 32763 words.

AUTOMATIC ALLOCATION:

NPAGES = O Supplied by caller as an integer variable set to zero to
indicate automatic allocation requested. The actual number of
pages created will be returned to the caller in NPAGES.

LNGARY = A four word integer array supplied by the caller and filled in by

LAYOUT. LAYOUT automatically creates 1 to 4 graphic pages,
depending on the installed memory configuration. The mark length
values returned in LNGARY are as follows:

° 32K systems LNGARY(l) = Length of page 1

LNGARY(2) = =1 (no page 2 defined)
LNGARY(3) = -1 (no page 3 defined)
LNGARY(4) = -1 (no page 4 defined)

° 64K systems LNGARY(1l) = Length of page 1
LNGARY(2) = Length of page 2
LNGARY(3) -1 (no page 3)
LNGARY(4) = -1 (no page 4)

) 96K systems LNGARY(1l) = Length of page
: LNGARY(2) = Length of page
LNGARY(3) Length of page 3

LNGARY (4) -1 (no page 4)

N =

e 128K systems LNGARY(l) = Length of page
LNGARY(2) = Length of page
LNGARY(3) = Length of page
LNGARY(4) = Length of page

SN =

ALLOCATION REQUEST:

NPAGES = -1 Supplied by caller as an integer variable set to =1 to
indicate configuration request; no pages allocated. The actual
number of pages allowable will be returned to the caller in
NPAGES.

LNGARY. = A four word integer array supplied by the caller and filled in by

LAYOUT. No pages are allocated and the data returned is the same
as for the automatic allocation.

DETAILED DESCRIPTION:

The memory of the GRAPHIC 8 must be divided into graphic. pages by using the
LAYOUT subroutine before the subroutines described in the remaining sections can be
used. User pages are numbered starting at 1. Page 1 is the "mainline refresh"” page
and all graphic orders in it are displayed. Graphic orders in pages 2 through 255
are displayed only through calling the PICTUR subroutine (see paragraph 6.4). The
mark values for each graphic page created by this call are set to zero. Pages are
allocated starting at the lowest memory allowable location of the first 32K memory
bank and work upwards. A page is not allowed to cross 32K memory banks and LAYOUT
will assign memory accordingly. If the user at some later time wishes to reallocate
his pages, he must reinitialize the graphics package by calling INIT, followed by a
call LAYOQUT.

Example:
C
C ALLOCATE 20,200 WORDS OF THE
c GRAPHIC 8 MEMORY
"C INTO 7 PAGES USING LAYOUT
C WHERE
C PAGE 1 = 10,000 WORDS
C PAGE 2 = .2,000 WORDS
C PAGE 3 200 WORDS
C PAGE 4 1,500 WORDS
C PAGE 5 1,500 WORDS
C PAGE 6 = 3,000 WORDS
C PAGE 7 2,000 WORDS
LNGARY (1) = 10000
LNGARY (2) = - 2000
LNGARY (3) =" 200
LNGARY (4) = 1500
LNGARY (5) = 1500
LNGARY (6) = 3000
LNGARY (7) = 2000
. C ,
C INITIALIZE FSP AND CALL LAYOUT FOR SEVEN PAGES
C

CALL INIT (5,0,2)

CALL LAYOUT (7, LNGARY)

3.3 DEFINE USER COORDINATE SYSTEM

NAME: SCALE

FUNCTION: Allows the caller to define the X, Y coordinates (in floating point)
of the lower left and upper right coordinates of the screen. FSP maps these user
coordinates to display coordinates as the various FSP routines are called.

CALLING FORMAT: CALL SCALE (XL, YL, XU, YU)

DESCRIPTION OF PARAMETERS:

(XL, YL) = Floating point variables containing the X and Y values to be
assigned to the lower left corner of the displayable area.
(XU, YU) = Floating point variables containing the X and Y values to be

assigned to the upper right corner of the displayable area.
DETAILED DESCRIPTION:

All calls to FSP subroutines in which X, Y coordinates are supplied convert the
floating point user coordinate into an interger display coordinate. It is the
display coordinate which is then placed in the currently opened page.

Without a call to SCALE, the user coordinate system is equal to the default
display coordinate system, i.e.,

XL, YL = 0.,0,
XU, YU = +1023.,+1023.

3.4 TURN BORDER DISPLAY ON

NAME: ENBBOX

FUNCTION: Allows the caller to display a rectangular border around the
displayable area on the selected monitor.

CALLING FORMAT: CALL ENBBOX (IDISP)
DESCRIPTION OF PARAMETERS:

IDISP = An integer variable indicating on which monitors the border is to
be presented

0 = none 8 - #1

1 - #4 9 - #1 & 4

2 - #3 10 - #1 & 3

3-#3 &4 11 - #1, 3 & 4

4 - #2 12 - #1 & 2

5-#2 & 4 13 - #1, 2, & 4

6 - #2 & 3 ' 14 - #1, 2, & 3

7 - #2, 3, & 4 15 - #1, 2, 3, & 4 (default)

DETAILED DESCRIPTONS:

This routine allows the caller to selectively display the border on any or all
monitors. The default condition for FSP is to have the borders dislayed on all
monitors.

3.5 TURN BORDER DISPLAY OFF

NAME: DSABOX

FUNCTION: Allows the caller to remove the rectangular border from selected
monitors.

CALLING FORMAT: CALL DSABOX (IDISP)
DESCRIPTION OF PARAMETERS:
IDISP = An integer variable indicating on which monitors the border
indicators are to be removed. See ENBBOX for the associated
monitor values. o
DETAILED DESCRIPTIONS:

Removes outline around the displayable area on selected display monitors.

3.6 TURN ERROR DISPLAY ON

NAME: ENBERR

FUNCTION: Allows the caller to display the error code on the upper left
position of the selected monitors.

CALLING FORMAT: CALL ENBERR (IDISP)
DESCRIPTION OF PARAMETERS:

IDISP = An integer variable indicating on which monitors the error is to
be displayed. See ENBBOX for the associated display monitor
values.

DETAILED DESCRIPTION:

The error display is two digits in the upper left hand corner of the selected
monitors. The initial value displayed is "@P". If an error condition is
detected, the error number is displayed and an error event is created. The error
numbers are listed in Appendix C.

3-6

3.7 TURN ERROR DISPLAY OFF

NAME : DSAERR

FUNCTION: Allows the caller to remove the error display area from the selected
monitors.

CALLING FORMAT: CALL DSAERR (IDISP)
DESCRIPTION OF PARAMETERS:

IDISP = An integer variable indicating on which monitors the error is to
be removed. See ENBBOX for the associated display monitor values.

DETAILED DESCRIPTION:

Removes the error display from the requested monitors. Error events are still
generated regardless of the status of the error display.

3.8 TERMINATE FSP MODE

NAME: THEEND

FUNCTION: Causes the GRAPHIC 8 terminal to return to the teletypewriter
emulation mode of GCP. All screens are cleared before FSP is terminated.

CALLING FORMAT: CALL THEEND
' DETAILED DESCRIPTION:

When the host application program is through with its FSP processing require-
ments, it must issue the THEEND call to notify the GRAPHIC 8 terminal that it is no
longer communicating with FSP and to place it in teletypewriter emulation mode. In
the emulator mode, the display operator could then cause another graphics job to be
run which would issue an INIT call to put the terminal back into the FSP mode of
operation.

3-7/3-8

SECTION 4

STATUS ROUTINES

The following routines described in this section allows the caller to define
various attributes concerning the display data and selectively turn on or off the
lights on the function keys.

TPAR?

IMARGN

STATUS

LAMPON
LAMPOF

COLORI

GRAYI

Set text parameters for character, size, spacing, rotation and
line spacing

Set value for left margin

Set blinking, line style, display monitor selection and
color/gray index

Turn keyboard function key on
Turn keyboard function key off

Define the look—up table with selectable levels of color in
either RGB or HLS format

Define the look—up table with selectable gray levels

4,1 SELECT TEXT PARAMETERS

NAME: TPARM

FUNCTION:

Allows the caller to select text writing parameters: character
size, spacing, orientation and line spacing

CALLING FORMAT: CALL TPARM (ICSIZE, CSPAC, RLSPAC, ICROT)

DESCRIPTION

ICSIZE

CSPAC

OF PARAMETERS: '

Integer variable selecting the character size desired.
"Character sizes are 1, 2, and 3 with the ratio of sizes being
1:2:3.

Real variable containing the horizontal spacing (vertical for
rotated text) between the start positions of two adjacent

 characters. If a value of 0 is entered, then the spacing will

default to the value appropriate for the specified size.

RLSPACE = Real variable supplied by the caller containing the vertical

spacing (horizontal for rotated text) between start positions of
two adjacent lines of text. If a value.of 0 is entered, then
the spacing will default to the value appropriate for the
specified size.

ICROT = integer variable indicating the character orientation

0 = normal (horizontal) (default)
1 rotate 90° CCW

DETATLED DESCRIPTION:

This routine generates the graphic orders containing the caller specified line
spacing, character size, spacing, and orientation, and places them at the mark
position in the currently opened page. Since the GRAPHIC 8 uses a firmware
character generator to display characters, scaling has no impact on these text
parameters.

4,2 SET LEFT (LOWER) MARGIN

NAME: IMARGN

FUNCTION: Allows the user to set the left margin (or lower margin for rotated
text) to the current position. The margin is set to the X position for non-rotated
text and the Y position for rotated text.

CALLING FORMAT: CALL IMARGN

PARAMETER DESCRIPTION: None

DETATILED DESCRIPTION:

The position should be set to that desired for the margin before the call to
IMARGN is made. Internally, IMARGN inserts a character instruction containing an

ASCII STX into refresh at the current mark of the currently opened page.

4,3 SET DISPLAY STATUS

NAME: STATUS

FUNCTION: Allows the caller to control blinking, intenéity, line style, and
monitor selection.

CALLING FORMAT: CALL STATUS (IBL, INDX, IVT, IDISP)

DESCRIPTION OF PARAMETERS:

IBL = Integer variable controlling blinking
0 = stop blinking (default)
1 = start blinking
INDX = Integer variable selecting the color or gray level index

Index values Bits/pixel
O=1 o ¢ o o o o o o o o o s ¢ o o o o 1L +blink
04 « o ¢« o o o o o o o o o s o o o o2
0-8 « o o s o o o o o s s o o o o o o 3+ blink
0=16e¢ o o o o o o o o o o o s o s o o b
0=128 & o o o o o o o o s s o o &« o &« 5+ blink
0256 ¢ o « o o o o ¢ o o s o o o o o 6

IVT = Integer variable selecting line style
0 = solid vectors (default)
1 = dotted vectors
2 = dashed vectors
3 = dot—-dashed vectors
IDISP = Integer variable selecting which monitors are to be used. See

ENBBOX (Section 3.4) for the associated values. In addition, if
set to A-l the monitor is not changed. The monitors specified in
the previous call to STATUS remain in effect.

DETAILED DESCRIPTION:

This routine generates the necessary graphic orders containing the caller
specified display attributes for blinking, color or gray level index, line style,
and monitor selection. These orders are placed in the currently opened page at the
current location. The display will remain in the specified status until changed by
another call to STATUS.

4,4 TURN KEYBOARD LAMP ON

NAME: LAMPON

FUNCTION: Allows the caller to turn on a selected lamp on the selected
keyboard.

CALLING FORMAT: CALL LAMPON (KBD, LAMP)

DESCRIPTION OF PARAMETERS:

KBD = Integer variable specifying on which keyboard lamps are to be lit.
1 - Keyboard 1
2 - Keyboard 2
3 - Keyboard 3
4 - Keyboard 4
LAMP = Integer variable specifying which of the lighted function keys is

to be lighted. NOTE: If LAMP = -1 then all lamps are turned on.

DETAILED DESCRIPTON:

Lamps are numbered 0-31. The top row is numbered 16-31, left to right. The
lamp number is the same as the key number.

16 |17 {1819 | 20| 21 |22 |23 |24 | 25|26 |27 |28|29|30]3l

MATRIX KEYS:

81 9115

5 14

1 12 3|13
10 | O {11 {12

4-3

4,5 TURN KEYBOARD LAMP OFF

NAME: LAMPOF

FUNCTION: Allows the caller to turn off a selected lamp on a selected
keyboard.

CALLING FORMAT: CALL LAMPOF (KBD, LAMP)

DESCRIPTION OF PARAMETERS:

KBD = Integer variable specifying on which keyboard lamps are to be
extinguished.
1 - Keyboard 1
2 - Keyboard 2
3 - Xeyboard 3
4 - Keyboard 4
LAMP = Integer variable specifying which of the lighted function keys is

to be turned off. NOTE: If LAMP = -1, then all lamps are turned
off.

DETATLED DESCRIPTION:

Lamps are numbered 0-31. The top row is numbered 16-31, left to right. The
lamp number is the same as the key number.

FUNCTION KEYS

16 {17} 18| 19|20| 21 |22{23 2425|2627 |28 [29|30{31

MATRIX KEYS:

71 81 9|15

41 5| 6|14

1127} 3|13

10 | O |11 }12

4.6 DEFINE COLOR INDEX TABLE
'NAME: COLORI
FUNCTION: Allows the caller to define the look—up table of selectable colors.

CALLING FORMAT: CALL COLORI (IDISP, INUM, ISNDX, ARRAYl, ARRAY2, ARRAY3,
IMODEL)

b4eb

DESCRIPTION OF PARAMETERS:

IDISP = Integer variable specifying the selected monitors (see ENBBOX
routine (Section 3.4) for associated values).

INUM = Integer variable supplied by the caller defining the number of
color indices to be changed.

ISNDX = Integer variable supplied by the caller specifying the first
index value to be changed.

ARRAY 1 = Real array containing either the desired RED value or HUE. The

' RED value may vary from O to 1 with 1 corresponding to maximum
RED. Hue will vary from 0° to a maximum of 360°.

ARRAY 2 = Real array containing either the desired Green value or

Lightness. All values of the elements may vary from O to 1 with
. 1 corresponding to maximum green or lightness.

ARRAY 3 = Real array containing either the desired Blue value or
Saturation. All values of the elements may vary from 0 to 1
with 1 corresponding to maximum blue or saturation.

IMODEL = Integer variable supplied by the caller defining the color model

desired.
0 = RGB entries in ARRAY (1-3)
1 = HLS entries in ARRAY (1-3)

DETAILED DESCRIPTION:

This routine generates the necessary graphic orders and index table to modify
the look—up table. After the instruction has been completed there will be a jump
inserted to transfer control back to master refresh. This call should not be in the
normal refresh cycle but put off in a page set aside for certain items that should
only be executed once.

The routine uses either RGB model or HLS model. If HLS is specified then the
routine uses the algorithm that was published in the Status Report of the Graphic
Standards Planning committee, Computer Graphics of ACM Vol. 13, No. 3, Aug. 1979.
~If RGB is specified the values will be put ito the corresponding Red, Green, and
Blue Bits in the look-up table.

NOTE

Calls to GRAYI, COLORI, MOVDAT, and SPLIT should
not be inserted inline in a currently open page.
Instead a temporary page should be set aside to
contain nothing but the GRAYI, COLORI, MOVDAT, or
SPLIT call. The effect is to execute the instruc-
tion in this page only once rather than each
refresh cycle. These instructions change values
in the internal look-up table and once they are
changed they do not have to be executed on each
refresh cycle.

4-5

NOTE (Cont)

Following is an example that demonstrates how this
should be implemented. Page 9 has been set aside
as the temporary page. RED, GREEN, and BLUE have
previously been set up as real arrays.

CALL
CALL
CALL
CALL

UPDATE (9,0)

ERASEP

COLORI (15, 1, O, RED, GREEN, BLUE, 0)
ADDREF (1)

At the end a call is made to ADDREF to reopen the
previous open page and continue inserting graphic

orders.

4.7 DEFINE GRAY LEVEL INDEX

TABLE

NAME: GRAYI

FUNCTION: Allows the user to define the look—up table of selectable gray

levels.

CALLING FORMAT: CALL GRAYI (IDISP, INUM, ISNDX, ARRAY)

DESCRIPTION OF PARAMETERS:

IDISP = Integer variéble specifying the monitors to be used (see ENBBOX
routine (Section 3.4) for associated values).

INOM = Interger variable supplied by the caller defining the number of

gray level

ISNDX

]

indices to be changed.

Integer variable supplied by the caller‘specifying the first index

value to be changed.

ARRAY

Real array containing the desired gray level values. The elements

may vary from O to 1 with O corresponding to black and 1 corres-
ponding to white. ‘

DETAILED DESCRIPTION:

This routine generates .

the necessary graphic orders and index table to modify

the look-up table. After'the instruction a jump will be inserted to transfer
control back to master refresh. This call should not be in the normal refresh cycle

but put in a page set aside
routine is call the graphic
the current mark, therefore
routine will refresh itself
refresh cycle will takeover.

4-6

for certain items to be executed only once. When this

orders will be put down at the currently opened page at

a call to ADDREF must be made before this call. The

and when the jump instruction is executed, the normal
(See example under COLORI Section 4.5.)

4,8 SELECT COLOR

NAME: SCOLOR

FUNCTION: Allows the caller to select 1 of 256 colors as defined by the last
COLORI instruction executed.

CALLING FORMAT: CALL SCOLOR (ICOLOR)
DESCRIPTION OF PARAMETERS:

ICOLOR = Integer variable from @} to 256 supplied by the caller defining
the color desired.

DETAILED DESCRIPTION:

This routine generates a graphic order to change the color of all following
images and places it at the mark position of the currently opened page.

4,9 SELECT GRAY LEVEL

NAME: SGRAY

FUNCTION: Allows the caller to select 1 of 256 gray levels as defined by the
last GRAYI instruction executed.

CALLING FORMAT: CALL SGRAY (IGRAY)
DESCRIPTION OF PARAMETERS:

IGRAY = Integer variable supplied by the caller defining the gray level
desired.

DETAILED DESCRIPTION:

This routine generates a graphic order to change the gray level of all
following images and places it at the mark position in the currently opened page.

4-8

SECTION 5

IMAGE GENERATION ROUTINES

The subroutines described in this section permit the application programmer to
describe and draw objects in user coordinates.

MOVE - Move beam to the position specified
DRAW - Draw a line
TEXT - Display text characters
) NEWLIN - Execute a carrlage return, line feed to left margin
CIRCLE - Draw a circle
ELIPSE - Draw an ellipse
XYPLOT - Plot series of X, Y points

HTPLOT - Tabular plot in X direction

VIPLOT - Tabular plot in Y direction

FILL Fill a convex polygon

5.1 MOVE BEAM TO THE POSITION SPECIFIED

o NAME: MOVE

FUNCTION: Generates either an absolute or relative move graphic order and
places it at the mark position of the currently opened page.

CALLING FORMAT: CALL MOVE (X, Y, MODE)
DESCRIPTION OF PARAMETERS:

Absolute mode (MODE - 0 or 2)

(‘
Absolute X, Y -coordinate of the desired position. The
coordinate is in the user coordinate system.
X, ¥ = Relative mode (MODE - 1)
Relative X, Y coordinate (deltas) to be moved from the
current position. These relative values are also in the
. user coordinate system.

MODE =

An integer variable supplied by the caller which identifies the
type of graphic orders to be generated.

0 = X, Y supplied is absolute and absolute graphic orders are to
be generated

1 =X,
be

2 =X,

Y supplied is relative and relative graphic orders are to
generated

Y supplied is absolute but relative graphic orders are to

be generated relative to the last absolute coordinate with

MODE = 0O

DETATILED DESCRIPTION:

Mode = 2 is provided to allow a user whose data base contains only absolute X,
Y coordinates to produce relative graphic orders without calculating the deltas.
The position is changed to the specified X, Y values but nothing will be seen on the

monitor.
Example: C
C
C
C
C
C
C
C
C
C

The following call produces an absolute graphié order
which moves

(3,3).

order

which draws
The deltas computed are (3,4).
CALL DRAW (6.,7.,2)

to (1,1)

CALL MOVE (1.,1.,0) : ,
The following call produces a relative graphic order
which draws
The deltas computed are (2,2).

CALL DRAW (3.,3.,2) ,
The following call produces another relative graphic

from absolute (1,1) to absolute

from absolute (3,3) to absolute (6,7).

The end result of the above example is that absolute coordinates were used to
create a relative entity (entity consisting of an absolute move and two relative
vectors).

Example

a)
b)
c)
d)

e)

CALL MOVE

CALL MOVE

CALL MOVE

CALL MOVE

CALL MOVE

(5.,6.,0)
(-3.,-3.
(2.,2.,3)
(3.,3.,2)

(3.,2.,2)

»1)

!ABS
!REL
'ABS
!REL

!REL

current position

0,6 §“‘~~!|(a)
T o3 o
0,4

Yo,3 a1 @
0,2 !"HEF!

0,1 () (e)

0,0 1,0 2,0 3,0 4,0 5,0

X = He81 0021 -002
e Beam Position After Move
-------- Absolute Move

........ Relative Move

5.2 DRAW A LINE
NAME: DRAW

FUNCTION: Generates either an absolute or relative draw graphic order and
places it at the mark position of the currently opened page.

CALLING FORMAT: CALL DRAW (X, Y, MODE)
DESCRIPTION OF PARAMETERS:

Absolute mode (MODE - 0, 2)

Absolute X, Y coordinate of the end point of a line to
be drawn. The coordinate is in the user coordinate
system.

>
<
]
—

Relative mode (MODE = 1)

Relative X, Y coordinate to be used in drawing a line from
the current position to a new position. These relative
values are also in the user coordinate system.

MODE

An integer variable supplied by the caller which identifies the
type of graphic orders to be generated.

0 =X, Y supplied is absolute and an absolute draw graphic order
is to be generated

1 = X, Y supplied is relative and a relative draw graphic order
is to be generated

2 =X, Y supplied is absolute but a relative draw graphic order
is to be generated

DETATLED DESCRIPTON:

The behavior of this routine is almost identical to the MOVE subroutine except
that DRAW graphic orders are produced rather than MOVE graphic orders.

The attributes of the line drawn as a result of this call are determined by
previous user calls to the STATUS routine which sets up (1) the type of line (solid,
dotted, dashed, dot-dashed), (2) blink or no blink (3) intensity level ¢-7. The
gray level may also have been set by a call to GRAYI. If the system has a color
monitor the color will have been set by a call to COLORI.

5-3

Example:
C
C DRAW
C
CALL
CALL
CALL
CALL
C
C DRAW
C
CALL
CALL
CALL
CALL

A TRIANGLE USING ABSOLUTE COORDINATES

(b)
MOVE (1.,1.,0) (a)
DRAW (3.,4.,0) (b)
DRAW (5.,1.,0) (c) (d)
DRAW (1.,1.,0) (d) (a (c)
H=81-0021 -003

THE SAME TRIANGLE USING RELATIVE COORDINATES

MOVE (1l.,1.,0) (a)
DRAW (2.,3.,1) (b)
DRAW (2.,"3’. ,l) (C)
DRAW (-4.,0.,1) (d)

5.3 DISPLAY TEXT CHARACTERS

NAME: TEXT

FUNCTION:

Generates text graphic orders and places them starting at the mark

position of the currently opened page.

CALLING FORMAT: CALL TEXT (N, IARRAY)

DESCRIPTION OF PARAMETERS:

N = An integer variable supplied by the caller indicating the number
of text characters to be displayed. :
1 <N <86
TARRAY = An integer array supplied by the caller in which each element of

the array contains a 7 bit ASCII character code right adjusted in
the element (see Appendix B for character codes).

NOTE
The 8th bit is always set.

DETAILED DESCRIPTION:

When the currently opened page is displayed, the GRAPHIC 8 displays text start—
ing at the current position in either a horizontal or vertical direction with

character size

and spacing determined by a previous user call to TPARM. The text

intensity, blink or no blink, and color (color monitors only) has also been deter-

mined by calls

to other FSP routines. The current position after the text is

displayed is after the last text character drawn (blanks included). If N is odd, a

null character

5—4

is stored as the last text character.

NOTE

The TEXT routine is not normally used directly in
a user program. Instead it is strongly ’
recommended that the user write a routine that
will convert a literal character string into a
form usable by TEXT. The calling sequence should
be:

CALL SETEXT ('ABCDE',ICOUNT)

where 'ABCDE' is the literal character string and
ICOUNT is a count of the number of characters in
the string. Since this routine is necessarily
dependent upon the word size of the host computer,
it must be individually written. This routine has
been written for several host computers and can
thus be supplied by Sanders Associates for these
hosts.

NON-ROTATED TEXT

THIS IS TEXT
CALL TPARM (1,0.,0.,0)

CALL MOVE (1.,1.,0)

CALL SETEXT ('THIS IS TEXT',12)

before aftér

X, Y Position

ROTATED TEXT

—
>
=]
H
n After
CALL TPARM (1,0.,0.,1) -
CALL MOVE (l.,l.,0) g
CALL SETEXT (THIS IS TEXT;12) E
Before H-81-0021-004

X, Y Position

5.4 NEW LINE
NAME: NEWLIN

FUNCTION: NEWLIN performs the analoguous function of typing a carriage return,
line feed at a terminal. The position is changed to that set by the last call to
IMARGN and the line spacing is updated by the amount specified in the last call to
TPARM,

CALLING FORMAT: CALL NEWLIN

PARAMETER DESCRIPTION: NONE

DETAILED DESCRIPTION:

NEWLIN inserts a text instruction containing a carriage return, line feed into
the currently opened page at the current mark. This instruction will change the
position to the left margin (lower margin if characters are rotated). The left

margin should have been set up prior to this call using subroutine LMARGN. The line
spacing is also updated by the amount specified in the last call to TPARM.,

Example:

C DISPLAY THE FOLLOWING TEXT ON THE SCREEN
C GRAPHIC 8

C FSP

C NEW LINE EXAMPLE

c DIMENSION IPGS (2)

DATA IPGS 11000.,1000.,1
CALL INIT (5,0,2)

CALL LAYOUT (2,IPGS) GRAPHIC 8
CALL SCALE (0.0,0.0,1000.,1000.)
CALL MOVE (300, ,550.,0) FSP
CALL LMARGN

CALL TPARM (3,0.,50.,0) NEWLINE EXAMPLE
CALL SETEXT ('GRAPHIC 8',9)

CALL NEWLIN

CALL SETEXT ('FSP',3)

CALL NEWLIN

CALL SETEXT ('NEWLINE EXAMPLE',15)
CALL DATEND

STOP

END

56

_ ~

hmwm

— —— se—

| S—) —

e

5.5 DRAW A CIRCLE

NAME :

FUNCTION:

CALLING FORMAT:

DESCRIPTION

IQUAD

RADIUS

IQUAD

CIRCLE

Allows the caller to display specified quadrants of a circle
centered at the point defined by the current position.

OF PARAMETERS:

CALL CIRCLE (RADIUS, IQUAD)

Radius of the circle in user coordinates.

Which quadrants of the circle are to be displayed.

where:

ooNoO UL pPLWND S

= turn
= turn

nwn

turn
turn
turn
turn
turn
turn

= turn

turn

= turn

L}

turn
turn

= turn
= turn

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

all quadrants

quadrant 4 only
quadrant 3 only
quadrants 3 and 4 only
quadrant 2 only
quadrants 2 and 4 only
quadrants 2 and

quadrants
quadrant 1
quadrants
quadrants
quadrants
quadrants
quadrants
quadrants

4

[/,J

2, 3,
only
1 and
1 and

1, 3, and 4 only

1 and

1, 2, and 4 only
1, 2, and 3 only

3 only

and 4 only

4 only
3 only

2 only

5

(o))

A
N

A
N

4N

-
=

BANZRN

dEnyd
BZ AN

/
Y
/

1

4

AR VAR
Y

:81-0021-005

5-7

DETAILED DESCRIPTION:

This routine places the necessary graphic order at the mark position of the
currently opened page. When the currently opened page is displayed, the GRAPHIC 8
displays a circle or a series of quadrants (see description of IQUAD) at a distance
equal to RADIUS around the current position of the beam. The current position of
the beam remains unchanged.

5.6 DRAW AN ELLIPSE

NAME: ELIPSE

FUNCTION: Allows the caller to display specified quadrants of an ellipse
centered at the point defined by the current X and Y position.

CALLING FORMAT: CALL ELIPSE (XSEMI, YSEMI, IQUAD)
DESCRIPTION OF PARAMETERS: .

XSEMI = Length of horizontal semi-axis of the ellipse in the user
coordinates

YSEMI = Length of vertical semi-axis of the ellipse in the user

coordinates

IQUAD = The quadrants of the ellipse which are to be displayed. (See
CIRCLE for the definition of IQUAD.) .

DETAILED DESCRIPTION:

This routine generates the necessary graphic orders and places them at the mark
position of the currently opened page. The following diagrams show sample ellipses.

} N

Y SEMI-AXIS

Y SEMI-AXIS {

-t

|/

|
X SEMI-AXIS }
|
|
|
|

|
R
X SEMI=-AXIS

H-80-0021-011

__ = 2 . _ N

— - ;

—

Jl—

5.7 PLOT A SERIES OF X, Y POINTS

NAME: XYPLOT
FUNCTION: Allows the caller to plot a series of X, Y point pairs.
CALLING FORMAT: CALL XYPLOT (INUM, XARRAY, YARRAY, IMODE)

DESCRIPTION OF PARAMETERS:

INUM Integer variable supplied by the caller specifying the number of

X, Y pairs to be plotted.

XARRAY = Real array supplied by the caller in which each element contains
either the absolute X coordinate or relative X coordinate
(depending on the value of IMODE).

YARRAY = Real array supplied by the caller in which each element contains
either the absolute Y coordinate or relative Y coordlnate
(depending on the value of IMODE).

IMODE = Integer variable supplied by the caller specifying whether the

XARRAY and YARRAY elements are absolute or relative.

0 = absolute
1 relative

DETAILED DESCRIPTION:

This routine generates the necessary graphic orders to plot a point at each of
the X, Y positions specified. These graphic orders are inserted at the mark
position of the currently opened page. If relative mode is used the initial X, Y
position should be set by the user.

5.8 HORIZONTAL TABULAR PLOT

NAME: HTPLOT

FUNCTION: Allows the caller to plot a series of points at equal intervals
along the X axis.

CALLING FORMATE CALL HTPLOT (TAB, INUM, YARRAY, UMODE)

DESCRIPTION OF PARAMETERS :

TAB = Real variable supplied by the caller containing the X tabular
increment defined in user coordinates.

INUM = Integer variable supplied by the caller specifying the number of
points to be plotted.

YARRAY = Real array supplied by the caller in which each element contains

either the absolute Y coordinate or the relative Y displacement.

IMODE = Integer variable supplied by the caller specifying whether the l

elements of YARRAY are absolute of relative. |

0 = absolute
1 relative

DETAILED DESCRIPTION:

This routine generates the necessary graphic orders to do a tabular plot of the
YARRAY values and places them at the mark position of the currently opened page.
The initial X, Y position should be set by the user.

5.9 VERTICAL TABULAR PLOT

NAME: VTIPLOT l
FUNCTION: Allows the caller to plot a series of points at equal intervals B
along the Y axis.

CALLING FORMAT: CALL VTPLOT (TAB, INUM, XARRAY, IMODE)

DESCRIPTION OF PARAMETERS :

TAB = Real variable supplied by the caller containing the Y tabular
increment defined in user coordinates.

INUM

Integer variable supplied by the caller specifying the number of

points to be plotted. 1

XARRAY = Real array supplied by the caller in which each element contains
either the absolute X coordinate or the relative X displacement. !

IMODE Integer variable supplied by the caller specifying whether the

0 = absolute
1 relative

]

DETATILED DESCRIPTION:

This routine generates the necessary graphic orders to do a tabular plot of the
XARRAY values and places them at the mark position of the currently opened page.
The initial X, Y position should be set by the user.

5.10 FILL A CONVEX POLYGON

NAME: FILL

FUNCTION: Allows the caller to display a solid convex polygonal area.

5-10

elements of XARRAY are absolute or relative. J .

CALLING FORMAT: CALL FILL (INUM, ARRAY, IMODE) ,,

DESCRIPTION OF PARAMETERS:

Integer variable supplied by the caller specifying the number of
vertices for the polygon to be displayed.

INUM

ARRAY = Real array supplied by the caller containing the X and Y values
of or the intervals between ad jacent vertices defined in user
coordinates. The vertices may be specified in either clockwise
or counterclockwise order. ARRAY will have twice as many
elements as the number of vertices as it to be structured as
follows:

ARRAY (1) = X1 or X1 interval

ARRAY (2) = Y1 or Y1 interval
ARRAY (3) = X2 or X2 interval
ARRAY (4) = Y2 or Y2 interval

ARRAY (2*INUM) =Y (INUM) or Y (INUM) interval
NOTE

For fastest fill specify the vertex with the maximum Y value
and proceed clockwise.

IMODE = Integer variable supplied by the caller specifying whether the
elements of ARRAY are absolute points or intervals.

0 - Each vertex is described by an absolute X and Y
position.

1 -= Each vertex is described by a relative X and Y displace-
ment from the current X and Y position.

DETAILED DESCRIPTION:

This routine generates the graphic orders and related vertex table and places
them at the mark position in the currently opened page. The vertex table will
occupy twice as many words as the number of vertices defined and care must be taken
to maintain the integrity of the refresh if it becomes necessary to change the
number of vertices. The current X and Y position remains unchanged after the fill
function has been completed.

5-11/5-12

SECTION 6

PAGE MANAGEMENT ROUTINES

The page management routines are used to select the memory address in the
GRAPHIC 8 that will be used to store the next graphic instruction. The GRAPHIC 8
memory address is calculated internally in FSP based on the current page selected
and the current mark position. Each time the application program calls one of the
image generation routines (MOVE, DRAW, TEXT, Plotting Routines, etc.), FSP generates
the equivalent graphic controller instructions which are sent to the GRAPHIC 8 and
stored in the GRAPHIC 8 memory.

The page management routines consist of the following subroutines:

ADDREF - Open page at end of page mark for adding refresh data
UPDATE - Open page at specified page mark for editing refresh data
ERASEP - Erase from current page mark to end of page

PICTUR - Graphic subroutine call

GETMRK - Get current page mark information

MOVEIM - Move a block or graphic orders

COPYIM - Copy a block of graphic orders

Refresh data refers to the block (or group) of graphic controller instructions
that are used to display the desired image on the monitor.

When the application program calls the LAYOUT subroutine, the GRAPHIC 8 memory

is sectioned into pages. For example, if 3 pages were selected and page 1 length
was 2000, page 2 length was 1000, and page 3 length was 500, then the GRAPHIC 8
memory would look as follows: -

ADDRESS (OCTAL) GRAPHIC 8 MEMORY

0 Memory space used
by GCP

4550% Start of Page 1

14410 Start of Page 2

20330 Start of Page 3

22300 End of memory for
use by FSP

*Approximate start address (actual start address is contained in location 722

(octal)).
**A mark selection of 500 would result in an error code being generated because the

length of page 3 was only 500 and valid marks would be in the range of O‘to 499,

6-1

These addresses were selected for illustrative purposes and may not be the same
memory addresses that would be used by an FSP program. Note that in this example
all addresses above 22300 are unassigned and would be unavailable for storage of
refresh data.

When refresh data is to be added to GRAPHIC 8 memory, the address is selected
by adding the start address of the current page to the current mark. The following
table indicates the GRAPHIC 8 memory address that would be selected, based on the
current page and current mark.

CURRENT
CURRENT MARK . GRAPHIC 8 MEMORY
PAGE (DECIMAL WORDS) ADDRESS (OCTAL)
1 0 4550
1 5 4562
2 0 14410
2 876 17740
3 0 20330
3 499 22276
3

500 22300

To illustrate the principles involved when using the page management routines,
a simple FSP program will be reviewed in the areas related to page management. The
program is given below; the image that would be displayed on a CRT for this program
is shown in figure 6-1.

NOTE
Please read the subroutine descriptions for
ADDREF, UPDATE, ERASEP, PICTUR, and GETMRK before

continuing.

An FSP program which generates the display image in figure 6-1 is given below:

LINE NO.
10 Dimension IPGS (3)
20 Data IPGS /500,500,500/
30 Call INST (3, 0, 2)
40 Call LAYOUT (3, IPGS)
50 Call SCALE (0.0, 0.0, 12.0, 12.0)
60 Call ADDREF (1) :
70 Call MOVE (6.0, 6.0,0)
80 ~ Call DRAW (7.0, 5.5, 0)
90 Call DRAW (8.0, 5.5, 0)
100 Call SETEXT ('TEST ONE', 8)
110 Call ADDREF (2)
120 Call MOVE (-.5, =.5, 1)
130 Call DRAW (1.0, O., 1)
140 Call DRAW (0., 1.0, 1)
150 Call DRAW (-1.0, 0., 1)
160 Call DRAW (0., =1.0, 1)
170 Call ADDREF (3)

0”

lll

l

2”

3!!

4”

X-AXIS ————P»

5”

|

6” 7” 8” 9II

10”

ll”

12”

'12”

+

x TEST ONE

_11!!

___10||

___7”

___6"

___5”

4"

T 3”

___2”

_1”

Oll

Figure 6-1

H=-81-0021-006

NHX P> & —P

LINE NO.

180 Call MOVE (-.5, O., 1)
190 Call DRAW (1.0, 0., 1)
200 Call MOVE -.5, =.5, 1)
210 Call DRAW (0, 1.0, 1)
220 Call ADDREF (1)

230 Call MOVE (1.5, 10.5, 0)
240 Call PICTUR (2)

250 Call MOVE (10.5, 10.5, 0)
260 Call PICTUR (2)

270 Call MOVE (10.5, 1.5, 0)
280 Call PICTUR (2)

290 call MOVE (1.5, 1.5, 0)
300 Call PICTUR (2)

310 Call MOVE (6.0, 8.0, 0)
320 Call PICTUR (3)

330 Call MOVE (6.0, 4.0, 0)
340 Call PICTUR (3)

The call to INIT (line 30) initializes the FSP program and a full screen box
and an error code value of "00" are displayed on the monitor.

The call to LAYOUT (line 40) sections GRAPHIC 8 memory into three pages of 500
words each. The first word of each page (i.e., mark @) is set up to contain an
end of page mark. The end of page mark (EPM) is equivalent to a return statement in
a subroutine. .

The call to SCALE (line 50) sets up FSP to map all values in the range of "0"
to "12" into the equivalent monitor coordinate system. The user coordinate system
defines the lower left corner of the monitor as 0".0" and the upper right hand
corner as 12", 12". For the monitor coordinate system the lower left corner is
always -512,=512 and the upper right corner is always +511, +511. This is always
true regardless of which values are specified in the call to SCALE.

The call to ADDREF (line 60) opens up page 1 in the add mode. In the add mode,
an end of page mark (EPM) is added after each refresh data word is stored in page I.
This call also sets up a GRAPHIC 8 memory address pointer to point to the first word
(mark @) in page l. After the call to ADDREF, page 1 looks as follows:

Page 1 EPM <F:r———————— Mark pointing here

Undefined

After the call to MOVE (line 70), page 1 looks as follows:

Page 1 MOVE |¢ N Mark pointing here

EPM

Undefined

Note that after the call to MOVE, the mark value points to the new address in
which the EPM is stored.

After the two calls to DRAW (lines 80 and 90) and the call to SETEXT (line
100), page 1 looks as follows:

Page 1 MOVE

DRAW

DRAW

TEXT ('TEST./ONE')

EPM |- Mark

At this point the following is displayed on the monitor.

TEST ONE

The call to ADDREF (2) (line 110) opens up page 2 in the add mode. This call
also sets up a GRAPHIC 8 memory address pointer to point to the first word (mark
@) in page 2. It also saves the last mark value associated with page 1.

After the call to MOVE (line 120) and the 4 calls to DRAW (lines 130 to 160),
page 2 looks as follows:

Page 2 ~ MOVE

DRAW

DRAW

DRAW

DRAW

EPM [4— Mark

At this point nothing in page 2 is displayed on the monitor since a call to
PICTUR has not been made. Page 1 is always displayed.

The call to ADDREF (3) (line 170) opens up page 3 in the add mode. This call
also sets up a GRAPHIC 8 memory address pointer to point to the first word (mark
@) in page 3. It also saves the last mark value associated with page 2.

After the calls to MOVE, DRAW, MOVE, DRAW (lines 180 to 210), page 3 looks as
follows:

Page 3 MOVE

DRAW

MOVE

DRAW

EPM ¢ Mark

At this point mnothing in page 3 is displayed on the monitor since a call to
~ PICTUR has not been made.

The call to ADDREF (1) (line 220) re-opens page 1 in the add mode. This call
also sets up a GRAPHIC 8 memory address pointer to point to the last word in page 1
that contains the EPM. It also saves the last mark value associated with page 3.

After the calls to MOVE and PICTUR (2) (lines 230 and 240), page 1 looks as
follows:

Page 1 - MOVE

DRAW

DRAW

TEXT

MOVE

PICTUR(2)

EPM |< Mark

6-6

At this point a box is displayed at the top left side of the monitor. The call
to PICTUR (2) causes a subroutine call to be made to page 2. This causes the
When the EPM is executed in page 2, program

instructions in page 2 to be executed.
control is returned back to page l.

After the remaining statements in the FSP program (lines 250 to 340) are
executed, the GRAPHIC 8 memory looks as follows:

Page 1

MOVE

DRAW

DRAW

TEXT

MOVE

PICTUR(2)

MOVE

PICTUR(2)

MOVE

PICTUR(2)

MOVE

PICTUR(2)

MOVE

PICTUR(3)

MOVE

PICTUR(3)

EPM

These instructions are
executed first

All instructions in page 2
executed

This instruction executed
after page 2

All instructions in page 2
are executed again

All instructions in page 3
executed

Mark

Undefined

Page 2 MOVE B

DRAW

DRAW

DRAW

DRAW

> Undefined
Page 3 MOVE : li
DRAW
MOVE ’ ' lf
DRAW H
EPM
[
Undefined

At this point the image shown in figure 6-1 is displayed on the monitor.

NOTE

The page 1 instructions are the only instructions
that are executed, as they are sent down, without
a CALL PICTUR. All other pages require a CALL
PICTUR in order to be displayed.

The UPDATE and ERASEP subroutines are normally used in response to some

operator action. For example, the function keys on a keyboard could be programmed
to cause certain modifications to a display image. To illustrate the use of UPDATE
and ERASEP, let's say that it is now desired to perform the following actions in
response to function key responses from an operator.

6-8

FUNCTION KEY ACTION

16 Remove box display from 4 cormers.

(Effectively delete or erase the instruc- .

tions stored in page 2.) l
17 Replace the 'TEST ONE' characters with
: '"TEST TWO'. i

EPM]

A1l operator inputs from the GRAPHIC 8 are returned via the EVENT subroutine.
This subroutine is described in Section 7. To avoid confusion, let's say that the
FSP program has been properly set up to detect function key responses.

When a function key 16 response is detected, the following FSP code could be
used to erase page 2:

CALL UPDATE (2,0)
CALL ERASEP

The call to UPDATE sets up the GRAPHIC 8 address pointer to point to the first
instruction in page 2. The call to ERASEP stores an EPM in page 2 which replaces
the first instruction.

Based on the previous example, page 2 would look as follows:

Page 2 EPM [4— Mark
\
DRAW :
DRAW
DRAW > , These instructions wont't
be executed
DRAW
EPM J

}- Undefined

At this point the boxes are no longer displayed at the four corners. In page 1
there are four CALL PICTUR (2) instructions; but every time page 2 is executed now,
the first instruction executed in page 2 is an EPM so program control returns to
page 1. (I.e., the four DRAWS and second EPM in page 2 will never get executed.)

NOTE

When an ERASEP is executed, the page is also
reopened. This has the same effect as executing
another ADDREF(2). For example, if the FSP
program were coded in the following way in
response to a function key 16 response:

CALL UPDATE (2,0)
CALL ERASEP
CALL SETEXT ('PAGE 2',6)

then page 2 would look as follows after the TEXT
instruction is executed:

1

Page 2 ' TEXT (' PAGE 2')
EPM —— Mark
DRAW |)
DRAW > Never executed
DRAW
EPM)
) Undefined

At this point the text will be displayed in place of the 4 small boxes (i.e.,
'PAGE 2' will appear in the 4 corners of the image box).

In the previous example, if we want to replace the text 'TEST ONE' with 'TEST

" TWO', we must know where the SETEXT instruction is located in page 1. The following
code would have to be added to the previous example to determine the location of the

SETEXT instruction in page 1.

LINE NO.,

95 CALL GETMRK (MARK)
The above code would be inserted between lines 90 and 100,

The CALL to GETMRK retrieves the current mark value from the event table.
After the call to GETMRK, the variable MARK contains the mark value of the SETEXT

instruction.

‘Now we are ready to process function key 17 type responses. For a function key
17 response, the following code would be added:

CALL UPDATE (1, MARK)
CALL SETEXT ('TEST TWO', 8)

CALL ADDREF (1)

6-10

The call to UPDATE sets up the address pointer to point to the address where
The call to SETEXT ('TEXT TWO')
replaces the previous SETEXT instruction. At this point the CRT indicator would
display 'TEST TWO'. When UPDATE is executed, edit mode is entered. In this mode,

the SETEXT instruction ('TEST ONE') is located.

no EPM is inserted after the SETEXT instruction is added.

instruction is executed, page 1 looks as follows:

After the SETEXT

Page 1 MOVE

DRAW

DRAW

TEXT ('TEST TWO')

'TEST TWO' replaced
4—'TEST ONE'

MOVE

Mark (after SETEXT
instruction)

PICTUR

(2)

MOVE

PICTUR

(2)

MOVE

PICTUR

(2)

MOVE

PICTUR

(2)

MOVE

PICTUR

(3)

MOVE

PICTUR

(3)

EPM

44— Mark (after ADDREF(1)

instruction)

Undefined

6-11

Note that after the SETEXT instruction is replaced in GRAPHIC 8 memory, the
mark is pointing to the MOVE following the SETEXT instruction. The call to ADDREF
(1) takes us out of edit mode and into add mode. After the call to ADDREF(1l), the
mark is repositioned to the EPM. The call to ADDREF(l) is necessary so that all
future FSP subroutine calls made for page 1 will get added to the end of page 1. If
no call to ADDREF(1) is made, all future FSP subroutine calls made for page 1 would
be added following the SETEXT instructions. In essence we would be destroying the
refresh data in page 1.

When UPDATE is used, care must be used to ensure that the original refresh data
is not destroyed. For example, when the 'TEST ONE' text was replaced, it was
replaced with a TEXT string consisting of exactly 8 characters (i.e., the same
number of characters as the original text string 'TEST ONE'). If a text string of
more than 8 characters were inserted in place of the 'TEST ONE' text string, then
these additional characters would be stored following the TEXT instruction. In this
case the MOVE instruction would be destroyed. If the TEXT string were very large,
the remaining instructions in page 1 could easily be over-written and destroyed. If
the text string were less than 8 characters, then the text string would have to be
space filled to a length of 8 characters. '

The MOVEIM and COPYIM subroutines provide the user with a means of correcting
this problem, but due to the complexity of these two routines it is advised that the
user become familiar with writing FSP Programs before an attempt is made to use
these routines. :

6.1 OPEN PAGE FOR ADDING REFRESH DATA

NAME: ADDREF

FUNCTION: This routine opens the specified page and sets the mark to either
the beginning of the page, if it is empty, or directly following the last data
entered into the page.

CALLING FORMAT: CALL ADDREF (IPAGE)

DESCRIPTION OF PARAMETERS:

IPAGE = An integer variable containing the page number to be opened.
1 < IPAGE £ 255

DETAILED DESCRIPTION:

This subroutine is used to set up a page for initial orders (if empty) or for
addition of graphics orders to the page. This subroutine does not give the caller

the ability to edit previous graphic orders as does the UPDATE subroutine (see next
description).

6.2 OPEN PAGE FOR EDITING REFRESH DATA
NAME: UPDATE

FUNCTION: The requested page is opened for editing with the page mark set to
the value supplied by the caller.

6-12

CALLING FORMAT: CALL UPDATE (IPAGE, MARK)

DESCRIPTION OF PARAMETERS:

IPAGE = An integer variable containing the page number to be opened.
1 < IPAGE £ 255
MARK = An integer variable containing the position in the page where the

mark is to be positioned.
DETAILED DESCRIPTION:

The current page and mark are set to IPAGE and MARK, and mode is changed to
edit. Used to modify existing refresh. Note that in the edit mode it is possible
to inadvertently insert refresh instructions, over and beyond the current page
ending. This will cause an error to occur.

6.3 ERASE FROM PAGE MARK TO END OF PAGE

NAME: ERASEP

FUNCTION: This routine erases the currently open page from the current
position of the mark to the end of the page. It does not change the mark.

CALLING FORMAT: CALL ERASEP
DETAILED DESCRIPTION:
Moves the end of page mark to current mark of the currently opened page.

6.4 GRAPHIC SUBROUTINE CALL

NAME: PICTUR

FUNCTION: Causes the contents of the specified page to be displayed at the
current mark and position. '

CALLING FORMAT: CALL PICTUR (IPAGE)
DESCRIPTION OF PARAMETERS:

IPAGE = An integer variable containing the page number to be displayed
(that is, linked to).

DETAILED DESCRIPTION:
This routine causes the contents of page IPAGE to be called from the current

mark and position. Note that the page calls should not be arranged so that a page
can eventually call itself. '

6-13

6.5 GET MARK REQUEST INFORMATION

NAME: = GETMRK
CALLING FORMAT: CALL GETMRK (M)
DESCRIPTION OF PARAMETERS:

M.= An integer variable returned to the caller containing the present page
mark.

DETAILED DESCRIPTION:

This routine retrieves the current value of the mark and returns it to the
calling program in the variable M.

6.6 MOVE A BLOCK OF GRAPHIC ORDERS

NAME: MOVEIM

FUNCTION: Allows the caller to move all data between a given position and the
end of the current page to another mark position on that page. The current mark
(end of page) will be changed. Current page mark can be obtained by calls to EVENT
and GETMRK.

CALLING FORMAT: CALL MOVEIM (MARKFR, MARKTO)

DESCRIPTION OF PARAMETERS:

MARKFR = Integer variable indicating the mark location that data will be
moved from.
MARKTO = Integer variable indicating the mark location that the data will

be moved . to.
The following condition must exist:
MARKTO <_MARKFR SQEND OF PAGE

DETAILED DESCRIPTION:

This routine moves data between a specified mark location (MARKFR) and the
current end of page to a given mark location (MARKTO). 'The current end of page will
be changed to equal MARKTO plus the length of the data move (0ld end of page minus
MARKFR). '

This routine automatiéally sends the current mark (new end of page) back to the

" host. The user calls GETMRK to get the value. The user may use the value of the
mark for subsequent updates.

6-14

In terms of GRAPHIC 8 memory, the current page is altered as shown below when a
CALL MOVEIM (MARKFR, MARKTO) is executed.

Memory before Memory after
CALL TO MOVEIM CALL TO MOVEIM
Current page Current page

MARKTO %/?// MARKTVO / / |
==

MARKF NEW END
h ///c/ OF PAGE
// MARK
END OF <)
PAGE MARK

H=81-0021-007

The result of the MOVEIM operation is that section B has been deleted from
refresh memory and additional refresh memory has been freed for re—use by the FSP
programmer,

6.7 COPY A BLOCK OF GRAPHIC ORDERS

NAME: COPYIM

FUNCTION: Allows the user to copy the data between two given marks on the
current page to the end of that page. The current mark (end of page) changes.

CALLING FORMAT: CALL COPYIM (MARKA, MARKB)

DESCRIPTION OF PARAMETERS:

MARKA = An integer variable specified by the caller which gives the
starting mark location of the data being copied.
MARKB = An integer variable specified by the caller which gives the last

mark location of the data being copied.
The following condition must exist:
MARKA < MARKB < END OF PAGE

Space must be available at the end of the page.

6-15

DETAILED DESCRIPTION:

This routine copies data between two given marks on the current page to the end
of the current page. The current end of page is modified to equal the end of page
prior to the CALL COPYIM plus the length of the data copied.

This routine determines if room is available at the end of the page for the
data to be copied. If not enough space is available, error 64 is issued and no data
is copied.

This routine allows the user to expand an existing image by copying or
appending the image to the end of the current page where additional FSP functions
may be performed. ’

This routine automatically sends the current mark (new end of page) back to the
host. The user calls GETMRK to ge the new mark value.

In terms of GRAPHIC 8 memory, the current page is altered as shown below when a
CALL COPYIM (MARKA, MARKB) is executed.

Memory before

CALL TO _COPYIM

Current page

Memory after

CALL TO COPYIM -

Current page

A A
MARKA EE:::’/",/’/’
MARKB /?//{/ /
END OF /////jfz;;:zzz OLD END :::::EEL:::EEE
o S
NEW END —W

OF PAGE MARK
H=81 -0021 -008

The result of the COPYIM operation is that a copy of the refresh code in
section B is appended to the end of the current page. After the COPYIM operation,
the mark pointer changes to reflect the new end of page mark. .

6-16

SECTION 7

EVENT ROUTINE

An asynchronous "event"” will occur when one of the following operator actions
takes place:

® One of the 16 function keys on the keyboard is pressed.
° One of the 16 matrix keys on the keyboard is pressed.
° When an alphanumeric key depression causes the "text input” buffer to

become full.

® A CR (carriage return) key is pressed on the keyboard.
° The data tablet pen is pressed and released while in the "automatic"”
mode.

An asynchronous event will also occur with the "error" event which is generated
when any of the error conditions described in Appendix C are detected.

The final asynchronous event is the "illegal response from terminal” event.
This event occurs when FSP in the host receives a message from the GRAPHIC 8 which
is incomprehensible.

A synchronous (predictable) "event" will occur as a result of the following FSP
calls: :

REQTB — Request current coordinate of a PED
REQIM - Request refresh data

The FSP programmer becomes aware that an "event” has occurred only by calling
the EVENT subroutine described in paragraph 7.1. The EVENT subroutine returns an
event code value to the caller which indicates either that no event has occurred or
that one of the above asynchronous or synchronous events has occurred.

7.1 POLL TERMINAL FOR EVENT OR REQUEST RESPONSE

NAME: EVENT

FUNCTION: Wait for one of the previously described sync, or a sync events to
occur. An event code is returned to the caller indicating the type of event (if
any).

CALLING FORMAT: CALL EVENT (IEVNT)

DESCRIPTION OF PARAMETERS:

IEVNT = An integer variable returned to the caller indicating the event

type.

coNOYUL P W

11
12

= No events

= PED motion, call GETTB

A line of text is available, call GETTXT

= A function key was pressed, call GETKEY

I [O |

non

} Used only by Graphic 7

Error (XY overflow, halt, index out of range, etc.), call
GETERR.
Refresh dump available, call GETIM

) Used only by Graphic 7 PED status

Illegal response from the terminal

SECTION 8
PERIPHERAL DEVICE ROUTINES

FSP allows and supports up to four keyboards and four positional entry devices
(PEDs). The keyboards combine a 32 function keyboard and an alphanumeric keyboard
into one physical unit. PEDs which are devices used to enter X and Y coordinate
information include trackballs, joysticks and data tablets.

This section is divided into two groups of subroutines:

1. Keyboard Subroutines

2. PED Subroutines

8.1 KEYBOARD ROUTINES

This section describes the routines available to the user to handle alpha-
numeric and function keyboard data. These routines are named below:

° ENBPAD - Enable alphanumeric scratchpad

'3 DSAPAD - Disable alphanumeric scratchpad

) GETTXT - Retrieve alphanumeric text information

. GETKEY - Retrieve function key information
Each keyboard has an 86 character buffer or pad associated with it which
receives alphanumeric key characters as they are typed. The pad is displayable as a

single line of text at a user specified X, Y coordinate.

When scratchpad is enabled a "text” event is created (event code = 3) when one
of the following operator actions take place:

) An alphanumeric key depression causes the associated pad to become full.
° A "return" key is pressed and at least one character is already in the
pad.

Once a "text" event is created, the pad is cleared (reset to blanks).

A "key" event (event code = 4) is created when the operator presses any of the
16 function keys or any of the 16 matrix keys.

8.1.1 ENABLE ALPHANUMERIC SCRATCHPAD
NAME: ENBPAD

FUNCTION: Specifies parameters for the receipt and display of scratchpad
information.

CALLING FORMAT: CALL ENBPAD (IKEY, IDISP, X, Y, IMAX)
DESCRIPTION OF PARAMETERS :

IKEY = (1 through 4) keyboard number specified by the caller.

IDISP = (0 through 15) monitors on which the caller wishes alphanumeric
information displayed. See ENBBOX routine for associated wvalues.

X = Real variable specified by the caller indicating the X position in
user coordinates of first character,

Y = Real variable specified by the caller indicating the Y position in
user coordinates of first character.

IMAX = (1 through 86) user specified number of characters allowed in pad

(default is 1).

DETAILED DESCRIPTION:

This routine allows the user to establish monitors, location, keyboard, and
maximum number of characters for each scratchpad area. Note that the keyboard is
always enabled. ENBPAD only displays the pad and establishes its parameters. The
user may use the keyboard without enabling the pad. If the user does not call
ENBPAD, the default IMAX of 1 is used, which means that every alphanumeric key
depression causes a text event (event code = 3). (See GETTXT (section 8.1.3) for
further information.)

8.1.2 DISABLE ALPHANUMERIC SCRATCHPAD
NAME: DSAPAD
FUNCTION: Turns off the display of the alphanumeric scratchpad area.
CALLING FORMAT: CALL DSAPAD (IKEY)
DESCRIPTION OF PARAMETERS:

IKEY = The keyboard number 1 through 4, specified by the caller.

DETAILED DESCRIPTION:

Turns off the display only for the selected keyboard. Does not change any
other parameters. The user may still use the keyboard and events are still
generated as explained in GETTXT. DSAPAD simply causes the keyboard information not
to appear on the displays.

8.1.3 GET TEXT EVENT INFORMATION
NAME: GETTXT

FUNCTION: Transfers the text buffer characters obtained by the EVENT
subroutine to the caller.

CALLING FORMAT: CALL GETTXT (IARRAY, ISIZE, NCHAR, KBD)

DESCRIPTION OF PARAMETERS:

i

TARRAY = A user defined integer array into which the currently completed
text input buffer is transferred. Each array element contains
one 7-bit ASCII character in the rightmost 7 bits of the element.

The eighth bit is always set to a 1.

ISIZE An integer variable supplied by the caller containing the maximum
number of characters to be placed in the array, i.e., ISIZE is
the size of the array. If an input buffer string is longer than

the array size, those characters which don't fit are lost.

]

NCHAR An integer variable returned to the caller, containing the number
of characters (elements) placed in the array. The carriage
return character used to terminate the input buffer is not

included in the array or character count.

KBD = An integer variable returned to the caller indicating the
keyboard to which the input buffer is associated.

KBD = 1 = keyboard #1
KBD = 2 = keyboard #2
KBD = 3 = keyboard #3
KBD = 4 = keyboard #4

DETAILED DESCRIPTION:

This subroutine should normally be called only after a call to EVENT has
indicated that a "text" event has occurred.

Associated with each of the four alphanumeric keyboards in the terminal is an
86-character input buffer (there are four such buffers). As a key is pressed on the
keyboard, its corresponding character is added to the next character position in its
corresponding input buffer. If a typing error is made while entering characters
into the scratchpad, the RUBOUT key can be used to make corrections. RUBOUT deletes
the last character typed. Successively pressing RUBOUT can delete the entire line.

The scratchpad characters are sent to the host and the input buffer is cleared
(reset to blanks) when one of the following events occurs:

1. A carriage return key is typed. If the scratchpad is empty and a carriage
return is entered, no event flag is sent back to the host.

2. The buffer is full.
See ENBPAD for further information.
8.1.4 GET FUNCTION KEY EVENT INFORMATION
NAME: GETKEY
FUNCTION: Returns data pertaining to the keyboard and function key pressed.
CALLING FORMAT:. CALL GETKEY (KBD, KEY)

DESCRIPTION OF PARAMETERS:

KBD = An integer variable returned to the caller indicating which of the
four keyboards caused the event.
KEY = An integer variable returned to the caller indicating which of the

32 function keys was pressed.

DETATILED DESCRIPTION:

This routine retrieves the key number after a function key event has been
received. Function keys are always enabled.

FUNCTION KEYS:

16 {17 |18 |19 | 20| 21 {22 |23 |24 |25 26|27 |28 [29| 30 |31

MATRIX KEYS:

71 81 9115

41 5| 6|14

1 21 3]13

10| 0 |11 |12

8.2 TRACKBALL/FORCESTICK/DATA TABLET ROUTINES

This section describes how to program the trackball or forcestick or data
tablet.

The following routines are described in this section:

ENBPED - Attach user symbol to PED

DSAPED — Detach user symbol from PED

ENBCUR - Enable hardware or software cursor
DSACUR - Disable hardware or software cursor
REQTB - Request PED X, Y

GETTB - Get PED requeet information

FSP, when initialized (INIT call), sets the X, Y position of the PED to the
center of the screen.

A PED Event is created when one of the following operator actions or program
actions take place:

° REQTB subroutine is called (synchronoos event)

° The data tablet pen is pressed and released while in the automatic mode
(asynchronous event)

The information available as a result of a PED event is as follows:
° PED causing the event (1, 2, 3, or 4)
° X, Y coordinate of the PED in user coordinates

The subroutine GETTB is used to obtain the above information once the event has
occurred. :

An additional PED feature is provided bj’the ENBPED and ENBCUR subroutines
which lock a visual cursor to the movement of the PED; i.e., as the PED is moved, so
is the visual cursor. :

The following operator and/or program actions are required to use a PED:
1. Enable PED and link PED movement to visual cursor (ENBPED, ENBCUR).

2. Move PED to desired X, Y coordinate (operator action). Visual cursor
follows PED movement. '

3. Request and get PED X, Y position (REQTB EVENT, GETTB) or, if PED is a
data tablet in the automatic mode.

4, Get last PED position (EVENT, GETTB).

8.2.1 ENABLE PED
NAME: ENBPED

FUNCTION: This routine allows the user to attach a user defined symbol to a
specified PED and define the PED as a trackball/forcestick or a data tablet,

CALLING FORMAT: CALL ENBPED (IDVNM, IDVTP, IPAGE, IMARK)

IDVNM = Integer Variable between 1 and 4 corresponding to Device Number.
1 - PEDI 3 - PED3
2 - PED2 4 - PED4

IDVTP = Integer Variable defining the PED device being used.
0 - Trackball/Forcestick
1 - Data Tablet
2 - Data Tablet (Return position on switch release)

IPAGE = Integer variable containing the number of the page that the
refresh instructions for the user defined cursor resides.

IMARK = Integef variable containing the mark value of the refresh

instructions for the user defined cursor.

DETATILED DESCRIPTION:

ENBPED allows the user to attach a PED to previously stored refresh instruction
on a specified page at a specified mark. Any future updating of the PED position
will be directed to this symbol rather than any one of the default symbols.

8.2.2 DISABLE PED

NAME: DSAPED

FUNCTION: DSAPED is used to disable a PED device from a user defined symbol.

CALLING FORMAT: CALL DSAPED (IDUNM)

PARAMETER DESCRIPTION:

IDUNM = Integer Variable containing the device number (1-4) of the PED
device to be disabled.

1 - PEDL - 3 - PED3
2 - PED2 4 - PED4

DETAILED DESCRIPTION:

DSAPED will disable a PED device from a user defined symbol.

"-—qm-_—ﬁ———————-—~mmm

8.2.3 ENABLE CURSOR

NAME: ENBCUR

FUNCTION: This routine will enable either the hardware or software default
cursor, attach the specified PED to the cursor, display the cursor on the specified
monitor (or monitors) and define the PED as a Trackball/Forcestick or Data Tablet.

CALLING FORMAT: CALL ENBCUR (IDVNM, IDISPL, IDVTP, ICUR)

DESCRIPTION OF PARAMETERS:

IDVNM = Integer variable between 1 and 4 corresponding to Device Number

1 - PEDI 3 - PED3
2 - PED2 4 - PED4

IDISPL = Integer variable between 1 and 15 corresponding to the monitor
(or monitors) that the cursor will be displayed and updated on.
This argument is ignored if hardware cursor is being enabled (see
status routine for acceptable values).

IDVTP = Integer variable defining the PED device being used.
0 - Trackball/Forcestick
1 - Data Tablet
2 - Data Tablet (Return position on switch release)

ICUR = Integer variable defining the default cursor to be used.

0 = Default Software cursor
1 - Default Hardware cursor

DETAILED DESCRIPTION:

ENBCUR will enable a cursor to be displayed on the specified monitor (or
monitors) and attach a PED device to the cursor. This routine must be called if the
user wishes to use one of the default cursors. If the hardware cursor is used, a
cross hair display will be placed on the specified monitors. If the software cursor
is used, the symbol will be *n where n is the number of the cursor.

When using a Trackball/Forcestick the user will always be required to use the
GETXY Routine to obtain the current X-Y location of the symbol. This X-Y location
will correspond to the position of the asterisk and not the numeral.

When using a DATA TABLET the user has a choice between operating mode. If a
device type of 1 is chosen then the operation of the data tablet will be the same as
the Trackball/Forcestick; but, when the device type of 2 is used then the current
X-Y location of the specified symbol will be sent back to the host each time the
switch on the pen is released.

8.2.4 DISABLE CURSOR
NAME: DSACUR

FUNCTION: This routine will disable a PED device from one of the default
CUrsors.

CALLING SEQUENCE: CALL DSACUR (IDVNM)
DESCRIPTION OF PARAMETERS:
IDVNM = Integer variable corresponding to the device numbers.

1 - PEDI 3 - PED3
2 - PED2 4 - PED4

DETAILED DESCRIPTION:
~ DSACUR will be called after an ENBCUR has been called and will disable the PED

symbol that is attached to the specified PED device, by removing the symbol
instructions from the refresh.
8.2.5 REQUEST PED X,Y

NAME: REQTB

FUNCTION: Requests the current X, Y coordinate of the specified PED.

CALLING FORMAT: CALL REQTB (NUMBER)

DESCRIPTION OF PARAMETERS:

NUMBER = Integer variable supplled by the caller indicating the PED

selected.
1 - PED1 ' | 3 - PED3
2 - PED2 4 - PED4

DETAILED DESCRIPTION:

This routine causes a PED event to occur which has an event code of 2. The PED
event contains the current X,Y position of the PED as indicated by the current
cursor position on the screen. This call should not be used if the PED is a data
tablet in the automatic mode.

NOTE

This call only causes a PED event to occur. The
actual X, Y position of the PED is obtained by a
combination of the EVENT and GETTB subroutines.

8.2.6 GET PED REQUEST INFORMATION
NAME: GETTB
FUNCTION: Retrieves the current X, Y coordinate of the PED.

CALLING FORMAT: CALL GETTB (NUMBER, X, Y)

NUMBER = An integer variable returned to the caller identifying the PED
which caused the event.
X, Y = Real variables containing the current location of the PED in user

coordinates.

DETAILED DESCRIPTION:

_ This routine is called after the EVENT subroutine has returned an event code of
2 (PED event).

Example 1: C Read current PED #1 position
CALL REQTB (1)
10 CALL EVENT (IEVNT)
IF (IEVNT .NE. 2) GO TO 10
CALL GETTB (NUMBER, X, Y)
IF (NUMBER .NE. 1) GO TO 10

Example 2: C Read current PED #2 position where PED #2
C 1is a data tablet in the automatic mode
20 CALL EVENT (IEVNT)
IF (IEVNT .NE. 2) TO GO 20
CALL GETTB (NUMBER, X, Y)
IF (NUMBER .NE. 2) GO TO 20

8.2.7 PED PROGRAMMING EXAMPLES

Example l: C Initialize forcestick as PED #1 using
C default software cursor on display #1

CALL INIT
CALL LAYOUT
CALL ENBCUR (1, 8, 0, 0)

C AT this point in the program an "*1" appears

C on display #1 in the center of the screen and
C follows the operators actions on the

C forcestick. No PED events are generated,

C however, until the program issues a REQTB call

8-9

8-10

Example 2:

Example 3:

ao

coocococacaaan

[eNeNe N

noaon

(@]

Initializes data tablet as PED #2, in automatic
mode using default hardware cursor on display #1

" CALL INIT
CALL LAYOUT
CALL ENBCUR (2, 8, 2, 1)

At this point the hardware cursor (cross hair)
will be displayed on monitor #1 and will
be controlled by PED #2 (Data Tablet)

At this point in the program the operator

may move the cross hairs only by moving the Data
Tablet pen with the switch pressed. Once the
switch is released, a PED event is created

which is detected by the EVENT call and

processed by the GETIB call - i.e., no REQTB is
required in this mode. Multiple PED events are
possible in the automatic mode simply by pointing
to a position on the tablet and pressing

and releasing the switch.

Initialize trackball as PED #2 using
a user defined cursor

Create a single page SQ words in length

CALL INIT (1,0,1)
CALL LAYOUT (1,50)

Define the cursor to be the letter "A"

CALL MOVE (512.,512.,0)
CALL SETEXT ('A',1)

Note: The mark associated with the above absolute
MOVE call is = O since nothing
else has been placed in the page.
Also the "A" is displayed at the center

)

of the screen but not under trackball control.

Link trackball to user defined cursor
CALL ENBPED (2,0,1,0)

At this point in the program the "A" is linked
to the trackball and is moveable.

SECTION 9

PACKED VECTOR MODE

The following subroutines are described in this section:
ENBPMD - Enable packed vector mode
PMOVE - Packed vector move
PDRAW - Pécked vector draw
DSAPMD - Disable packed vector mode

Packed vector mode is primarily intended for serial interface users. Using
packed vector mode can result in a 4:1 speed increase when inserting absolute move
and absolute draws into refresh.

The packed vector mode feature is most useful when large amounts of X, Y move
and draw data are being created over the serial interface. Packed vector mode can
also be used on parallel interface systems but it is strongly recommended that
packed vector messages not be used on parallel systems. No FSP internal ASCII code
conversions are required for parallel transmissions and the use of packed vector
messages on parallel systems will result in a decrease in speed due to the FORTRAN
overhead involved in processing packed moves and draws.

Calls to PMOVE and PDRAW data create packed vector data in an output buffer.
When the buffer is filled, the data in the buffer is sent to GCP automatically. An
important function of DSAPMD is to ensure that no residual data is lost by sending
the contents of the output buffer to GCP.

NOTE

Once packed vector mode is enabled by calling
ENBPMD, the only calls allowed to FSP are to
PMOVE, PDRAW, and DSAPMD.

Sample user program segment:

c
C REFRESH CODE FOR DRAWING BARRED BOX
c
X = XCOORD
Y = YCOORD
XRIGHT = XCOORD + 128,
C
C ENABLE PACKED VECTOR MODE
C
CALL ENBPMD
C
DO 40 M =1, 64
Y=Y+ 2
CALL PMOVE (X, Y)
CALL PDRAW (XRIGHT, Y)
40 CONTINUE
C
C DISABLE PACKED VECTOR MODE
C
CALL DSAPMD
C

9.1 ENABLE PACKED VECTOR MODE

NAME: ENBPMD

FUNCTION: This routine enables the packed vector mode.

CALLING FORMAT: CALL ENBPMD

DESCRIPTION OF PARAMETERS: None

DETAILED DESCRIPTION:

This routine enables the packed vector mode, allowing the user to send graphic
absolute move and draw commands in packed mode. ENBPMD must be called before the
PMOVE, PDRAW, and DSAPMD routines may be called. Once packed vector mode is
enabled, any number of calls to PMOVE and PDRAW and one call to DSAPMD are allowed.
No other FSP subroutines may be called while in packed vector mode. A call to

DSAPMD is required to disable packed vector mode.

9.2 PACKED VECTOR MOVE

NAME: PMOVE

FUNCTION: Allows the caller to move to a desired absolute X, Y position in
user coordinates while in packed vector mode.

CALLING SEQUENCE: CALL PMOVE (X, Y)

~

,.,

DESCRIPTION OF PARAMETERS:

X, Y = Real variables specified by the caller indicating the absolute X, Y
user coordinate is to be moved. (Note: X and Y must be in the
range specified in the user's call to SCALE.)

DETAILED DESCRIPTION:

PMOVE operates similarly to the FSP subroutine MOVE in absolute mode 0
(paragraph 5.1). The current position is moved to the X, Y coordinate specified by
the caller. The X, Y coordinate then becomes the current position.

PMOVE converts the absolute X, Y user coordinate into a display coordinate,
formats (packs) the X, Y data for transfer to GCP, and causes an absolute move
graphic order to be inserted at the mark position of the currently opened refresh
page. PMOVE may be called only when packed vector mode is enabled (see ENBPMD).

9.3 PACKED VECTOR DRAW

NAME: PDRAW

FUNCTION: Allows the user to draw a line (vector) from the current position to
the absolute X, Y position in user coordinates while in packed vector mode.

CALLING FORMAT: CALL PDRAW (X, Y)
DESCRIPTION OF PARAMETERS:

X, Y = Real variables specified by the caller indicating the absolute X, Y
position in user coordinates while in packed vector mode.

DETATLED DESCRIPTION:

PDRAW operates similarly to the FSP subroutine DRAW in absolute mode 0
(paragraph 5.2). A line is drawn from the current position to the X, Y coordinate
specified by the caller. The X, Y coordinate then becomes the current position.

PDRAW converts the absolute X, Y user coordinate into a display coordinate,
formats (packs) the X, Y data for transfer to GCP, and causes an absolute draw
graphic order to be inserted at the mark position of the currently opened page.
PDRAW may be called only when packed vector mode is enabled (see ENBPMD).

9.4 DISABLE PACKED VECTOR MODE

NAME: DSAPMD

FUNCTION: Disables packed vector mode by changing the FSP operating mode from
packed vector mode back to standard FSP call mode.

CALLING FORMAT: CALL DSAPMD

DESCRIPTION OF PARAMETERS: None

DETATILED DESCRIPTION:

Once packed vector mode has been enabled by a call to ENBPMD, a call to DSAPMD
must be made before calls to any other non—packed vector mode routines.

This routine also ensures that residual packed vector data will be sent (see
introduction to this section).

h‘ — 3 _A -

SECTION 10

TWO DIMENSIONAL SCALE, ROTATE AND TRANSLATE ROUTINES

This section describes the routines available to the user for applications
involving the 2D Coordinate Converter.

° CC2DBL Create 2D Converter Block

° MOVE2D (X, Y, MODE) Create 2D Move Graphic Order

° DRAW2D (X, Y, MODE) Create 2D Draw Graphic Order

® T2D2D (IGRAPH, IPAG2D) Transform Graphic Page to 2D Page

° MTRX2D (ARRAY) Update 2D Composite Matrix in CC2DBL
o V2DBOX (LV, RV, BV, TV) Update Viewbox in CC2DBL

10.1 INITIALIZE 2D VIEWBOX AND 2D MATRIX
NAME: CC2DBL

FUNCTION: Generates coordinate converter instructions to initialize the
viewbox boundaries and the matrix parameters.

CALLING FORMAT: CALL CC2DBL

DESCRIPTION OF PARAMETERS: NONE

DETATILED DESCRIPTION:

This routine generates two Coordinate Converter instructions and places them at
the beginning of the currently opened page. The first instruction generated (LBOX)
initializes the viewbox boundaries, which are used in clipping. The viewbox

parameters are initialized as follows:

Parameter Value Set to by CC2DBL

Viewbox left -512.
(Minimum X)

Viewbox bottom -512.
(Minimum Y)

Viewbox right 511.
(Maximum X)

Viewbox top 511,
(Maximum Y)

10-1

The second instruction generated (LMTX) initializes the Matrix parameters which
are used in the transformation process. All Matrix elements except the scale
factors are initialized to #. The scale factors, Matrix elements (1,1) and (2,2)
are set to 256. This is equivalent to 1/64 in the fractional two's complement
notation (see section 7.2) and is the default scale factor. The combination of the
LBOX and LMTX instructions at the beginning of a page is referred to as the CCBLK of
the page.

CC2DBL Format

WORD # COMMAND FORMAT DESCRIPTION
0 LBOX LBOX LOAD VIEWBOX PARAMETERS
1 LV LEFT BOUNDARY
2 BV BOTTOM BOUNDARY
3 RV RIGHT BOUNDARY
4 v TOP BOUNDARY
5 LMTX IMTX LOAD MATRIX PARAMETERS
6- M11 MATRIX ELEMENTS
7 M12
8 M21
9 M22
10 : M31
11 M32

10.2 CREATE 2D MOVE GRAPHIC ORDER

NAME: MOVE2D

. FUNCTION: Generates either an absolute or relative 2D move graphic order and
places it at the mark position of the currently opened page.

CALLING FORMAT: CALL MOVE2D (X, Y, MODE)
DESCRIPTION OF PARAMETERS:
X, Y = Real variables supplied by the user which specify the 2D coordinate

of the desired position. The coordinate is specified in the user
coordinate system. '

10-2

MODE = An integer variable supplied by the caller which identifies the
type of graphic instruction to be generated. When MODE=0 an
absolute MOVE is implied and when MODE=l a relative MOVE is
implied. When MODE=0, the coordinate (X, Y) specifies an absolute
2D coordinate. When MODE=l, the coordinate (X, Y) specifies an
offset to be moved from the current position.

DETAILED DESCRIPTON:

This routine converts the coordinate values specified to absolute screen
coordinates and generates either an absolute or relative 2D move graphic order.
This graphic order is placed at the mark position of the currently opened page.
Note that relative moves are restricted to 1/2 of the screen size.

10.3 CREATE 2D DRAW GRAPHIC ORDER

NAME: DRAW2D

FUNCTION: Generates either an absolute or relative 2D draw graphic order and
places it at the mark position of the currently opened page.

CALLING FORMAT: CALL DRAW3D (X, Y MODE)
DESCRIPTION OF PARAMETERS:
X,Y = Real variables supplied by the user which specify the 2D coordinate
of the end point of a line to be drawn. The coordinate is in the

user coordinate system.

MODE

An integer variable supplied by the caller which identifies the
type of graphic instruction to be generated. When MODE=0, an
absolute DRAW is implied and when MODE=1l, a relative DRAW is
implied. When MODE=0, the coordinate (X, Y) specifies the absolute
coordinate of the end point of a line to be drawn. When MODE=1,
the coordinate specifies the offsets to be used in drawing a line
from the current position to a new position.

DETAILED DESCRIPTION:

This routine converts the coordinate values specified to absolute screen
.coordinates and generates either an absolute or relative 2D draw graphic order.
This graphic order is placed at the mark position of the currently opened page.
Note that relative draws are restricted to 1/2 of the screen size.

10.4 TRANSFORM 2D to 2D

NAME: T2D2D

FUNCTION: Transform a page of graphic orders into a page which consists
entirely of 2D graphic orders.

CALLING FORMAT: CALL T2D2D (I GRAPH, IPAG2D)

10-3

DESCRIPTION OF PARAMETERS:

IGRAPH = An integer variable supplied by the user which specifies the
number of the graphic page which is to be transformed. IGRAPH
must be in the range:

1 < IGRAPH < 256, IGRAPH#IPAG2D
IPAG2D = An integer variable supplied by the user which specifies the

number of the 2D page in which the transformed graphic orders are
to be placed. IPAG2D must be in the range:

1 < IPAG2D < 256, IPAG2D#IGRAPH
DETATILED DESCRIPTION:

This routine sets up the Coordinate Converter to perform a graphic page to 2D
transformation on the page of graphic instructions specified by IGRAPH. The
Coordinate Converter is started and a block of ‘transformed graphic instructions is
output to the page specified by IPAG2D. Note that unpredictable results will occur
if the 2D output file is not large enough to accommodate the transformed graphic
instructions. Refer to Appendix D of the Graphic 7 Fortran Support Package (FSP)
User's Manual to determine the necessary output file size.

10.5 COMPUTE AND REPLACE MATRIX PARAMETERS

NAME: MTRX2D

FUNCTION: Compute matrix parameters and generate coordinate converter
instruction to update the matrix parameters.

CALLING FORMAT: CALL MTRX2D (ARRAY)
DESCRIPTION OF PARAMETERS:
ARRAY = A seven element real array supplied by the user which specifies
the scaling, translation, and rotation factors necessary for

computing the matrix parameters. The array parameters and their
valid ranges are specified below: -

ARRAY

Element Definition Range
1 X-Pre Translation ~(XU=XL) < XPRE < + (XU-XL)
2 Y-Pre Translation -(YU-YL) < YPRE < + (YU-YL)
3 X Scale Factor 1/256 < X8C < 128
4 Y Scale Factor 1/256 < YSC < 128
5 Z Rotation (X-Y Plane) any real number (in radians)
6 X-Post Translation -(XU-XL) < XPOST £ + (XU-XL)
7 Y-Post Translation -(YU-YL) < YPOST < + (YU-YL)

10-4

The variables used above are defined in the SCALE subroutine description.
e.g. CALL SCALE (XL, YL, XU, YU)
DETAILED DESCRIPTION:

This routine uses the array parameters passed to compute new matrix parameters.
These parameters are computed as indicated in Appendix D and are entered into the
CC2DBL of the currently opened page, replacing the previous matrix parameters. This
routine must be called each time the user wishes to change translation, scaling, or
rotation factors.

10.6 UPDATE VIEWBOX

NAME: V2DBOX

FUNCTION: Update viewbox boundaries in the currently opened page.
CALLING FORMAT: CALL VIEWBX (LV, RV, BV, TV)

DESCRIPTION OF PARAMETERS:

LV

Real variable supplied by the user which specifies the viewbox left
boundary (minimum X). The valid range for LV is: XL < LV < RV.

RV = Real variable supplied by the user which specifies the viewbox right
boundary (maximum X). The valid range for RV is: LV < RV < XU.

BV = Real variable supplied by the user which specifies the viewbox bottom
boundary (minimum Y). The valid range for BV is: YL < BV < TV,

TV = Real variable supplied by the user which specifies the viewbox top
boundary (maximum Y). The valid range for TV is: BV < TV < YU.

The parameters LV, RV, BV and TV are all specified in the user coordinate
system.

DETAILED DESCRIPTION:
This routine updates the viewbox boundaries in the currently opened page. The

CC2DBL viewbox parameters, generated by a previous call to the CC2DBL routine, are
updated. This routine must be called in order to change the viewbox.

10-5/10-6

,,,,,,,,,,

— pm—

SECTION 11

THREE DIMENSIONAL SCALE, ROTATE AND TRANSLATE ROUTINES

This section describes the routines available to the user for applications

involving the 2D/3D Coordinate Converter.

11.1

. INIT3D - Initialize 3D System
° SCAL3D - Define coordinate system
® CCBLK - Create 3D coordinate converter block

® MOVE3D - Create 3D move graphic order

° DRAW3D - Create 3D draw graphic order

° T3D2D - Transform 3D page into 2D page

® MTRX3D - Update composite matrix in CCBLK

° VIEWPT - Update view point in CCBLK

° VIEWBX - Update viewbox parameters in CCBLK

The remaining pages describe each subroutine in detail.

INITIALIZE 3D

NAME: INIT3D

FUNCTION: 1Initialize FSP variables for 3D Coordinate Converter support.
CALLING FORMAT: CALL INIT3D

DESCRIPTION OF PARAMETERS: None

DETATILED DESCRIPTION:

This routine sets default values for the Z-axis user coordinates. The default

lower boundary is O and the default higher boundary is 32767.

11-1

11.2 DEFINE Z COORDINATE SYSTEM

NAME: SCAL3D

FUNCTION: Set the user coordinate values for the Z-axis user coordinates
(third coordinate).

CALLING FORMAT: CALL SCAL3D (ZL, ZU)

DESCRIPTION OF PARAMETERS:

ZL = Real variable supplied by the user which specifies the value to be
assigned to the lower boundary of the Z-axis in the user coordinate
system. Note that ZL is coincident with the screen surface.

ZU = Real variable supplied by the user which specifies the value to be
assigned to the upper boundary of the Z-axis in the user coordinate
system.

DETAILED DESCRIPTION:

This routine sets the Z—axis user coordinates (third coordinate) to the values
passed (ZL and ZU). This allows the caller to define the Z-axis near and far
coordinates in real numbers. The 3D move and draw subroutines convert a coordinate
in real numbers to an integer display coordinate. This conversion process is based
upon the values of ZL and ZU. Without a call to SCAL3D, the Z-axis of the user
coordinate system is equal to the default Z-axis coordinates, i.e., ZL=0 and
ZU=32767. Note that the Z—axis is defined within a left-handed coordinate system.
ZL is the Z-axis point that corresponds to the screen and ZU is the Z-axis point
that is the furthest from the screen extending into the screen. The value of ZU
must be greater than the value of ZL or unpredictable results will occur.

11.3 INITIALIZE VIEWBOX, VIEWPOINT, AND MATRIX

NAME: CCBLK

FUNCTION: Generate Coordinate Converter instructions to initialize the viewbox
boundaries, the viewpoint and the matrix parameters.

CALLING FORMAT: CALL CCBLK

DESCRIPTION OF PARAMETERS: None

DETAILED DESCRIPTION:

This routine generates two Coordinate Converter instructions and places them at
the beginning of the currently opened page. The first instruction generated (LBOX)
initializes the viewbox boundaries, which are used in clipping, and the viewpoint

which is used in generating perspective. The viewbox and viewpoint parameters are
initialized as follows:

11-2

Parameter Value Set to by CCBLK

Viewbox left -512.
(Minimum X)

Viewbox bottom -512.
(Minimum Y)

Viewbox near 0.
(Minimum Z)

Viewbox right 511.
(Maximum X)
Viewbox top 511.
(Maximum Y)
Viewbox far 32767.
(Maximum 2)
X Viewpoint 0.
Y Viewpoint 0.
Z Viewpoint -32767.

The second instruction generated (LMTX) initializes the matrix parameters which
are used in the coordinate transformation process. All matrix elements except the
scale factors are initialized to 0. The scale factors, matrix elements (1,1),
(2,2), and (3,3) are set to 256. This is equivalent to 1/64 in the fractional two's
complement notation and is the default scale factor. The combination of the LBOX
and LMTX instructions at the beginning of a page is referred to as the CCBLK of the

page.

11-3

11-4

WORD #

0

10

11

12

13

14

15

16

17

18

19

20

21

22

COMMAND

LBOX

IMTX

CCBLK FORMAT

FORMAT

LBOX

LV

BV

NV

RV

TV

FV

Xa

Ya

Za

IMTX

M11

M12

M13

M21

M22

M23

M31

M32

M33

M41

M42

M43

DESCRIPTION

Load viewbox parameters

Left Boundary

Bottom Boundary

Near Boundary

Right Boundary

Top Boundary

Far Boundary

X = Eye Point

Y - Eye Point

Z = Eye Point

Load matrix parameters

Matrix Elements

11,4 CREATE 3D MOVE GRAPHIC ORDER

NAME: MOVE3D

FUNCTION:

Generates either an absolute or relative 3D move graphic order and
places it at the mark position of the currently opened page.

CALLING FORMAT: CALL MOVE3D (X,Y,Z,MODE)

DESCRIPTION OF PARAMETERS:

X,Y,Z

MODE

1]

Real variables supplied by the user which specify the 3D
coordinate of the desired position. The coordinate is specified
in the user coordinate system.

An integer variable supplied by the caller which identifies the
type of graphic instruction to be generated. When MODE=0 an
absolute MOVE is implied and when MODE=1 a relative MOVE is
implied. When MODE=0, the coordinate (X,Y,Z) specifies an
absolute 3D coordinate. When MODE=1l, the coordinate (X,Y,Z)
specifies an offset to be moved from the current position.

DETATILED DESCRIPTION:

This routine converts the coordinate values specified to absolute screen
coordinates and generates either an absolute or relative 3D move graphic order.
This graphic order is placed at the mark position of the currently opened page.
Note that relative moves are restricted to 1/2 of the screen size.

11.5 CREATE 3D DRAW GRAPHIC ORDER

NAME: DRAW3D

FUNCTION:

Generates either an absolute or relative 3D draw graphic order and

places it at the mark position of the currently opened page.

CALLING FORMAT: CALL DRAW3D (X,Y,Z,MODE)

DESCRIPTION OF PARAMETERS:

X,Y,Z

MODE

Real variables supplied by the user which specify the 3D
coordinate of the end point of a line to be drawn. The coordinate
is in the user coordinate system.

An integer variable supplied by the caller which identifies the
type of graphic instruction to be generated. When MODE=0, an
absolute DRAW is implied and when MODE=l1, a relative DRAW is
implied. When MODE=0, the coordinate (X,Y,Z) specifies the
absolute coordinate of the end point of a line to be drawn. When
MODE=1, the coordinate specifies the offsets to be used in drawing
a line from the current position to a new position.

11-5

DETAILED DESCRIPTION:

This routine converts the coordinate values specified to absolute screen
coordinates and generates either an absolute or relative 3D draw graphic order.
This graphic order is placed at the mark position of the currently opened page.
Note that relative draws are restricted to 1/2 of the screen size.

11.6 TRANSFORM 3D to 2D

NAME: T3D2D

FUNCTION: - Transform a page of graphic orders into a page which consists
entirely of 2D graphic orders.

CALLING FORMAT: CALL T3D2D (IPAG3D,IPAG2D)

DESCRIPTION OF PARAMETERS:

IPAG3D = An integer variable supplied by the user which specifies the
number of the 3D page which is to be transformed. IPAG3D must be
in the range:

1 < IPAG3D < 256, IPAGE3D#IPAG2D
IPAG2D = An integer variable supplied by the user which specifies the

number of the 2D page in which the transformed graphic orders are
to be placed. IPAG2D must be in the range:

1< IPAGZD < 256, IPAG2D#IPAG3D
DETAILED DESCRIPTION:

This routine sets up the coordinate converter to perform a 3D to 2D transforma—
tion on the page of graphic instructions specified by IPAG3D. The coordinate
converter is started and a block of transformed graphic instructions is output to
the page specified by IPAG2D. Note that unpredictable results will occur if the 2D
output file is not large enough to accommodate the transformed graphic instructions.
Refer to Appendix D to determine the necessary output file size.

11.7 COMPUTE AND REPLACE MATRIX PARAMETERS

NAME: MTRX3D

FUNCTION: Compute matrix parameters and generate coordinate converter
instruction to update the matrix parameters.

CALLING FORMAT: CALL MTRX3D (ARRAY)
DESCRIPTION OF PARAMETERS:
ARRAY = A 12 element real array supplied by the user which specifies the
scaling, translation, and rotation factors necessary for computing

the matrix parameters. -The array parameters and their valid
ranges are specified below:

11-6

ARRAY
Element Definition Range
1 X-Pre Translation -(XU-XL) < XPRE £ + (XU-XL)
2 Y-Pre Translation -(YU-YL) < YPRE £ + (YU-YL)
3 Z-Pre Translation -(ZU-ZL) < ZPRE < + (ZU-ZL)
4 X Scale Factor 1/256 < XSC < 128
5 Y Scale Factor 1/256 < YSC < 128
6 Z Scale Factor 1/256 < zsC < 128
7 X Rotation (Y-Z Plane) any real number (in radians)
8 Y Rotation (X-Z Plane) any real number (in radians)
9 Z Rotation (X-Y Plane) any real number (in radians)
10 X-Post Translation -(XU-XL) < XPOST £ + (XU-XL)
11 Y-Post Translation -(YU-YL) < YPOST £ + (YU-YL)
12 Z-Post Translation -(ZU-ZL) < ZPOST < + (ZU-ZL)

" The variables used above are defined in the SCALE and SCAL3D subroutine
descriptions.

e.g. CALL SCALE (XL,YL,XU,YU)
CALL SCAL3D (ZL,ZU)
DETAILED DESCRIPTION:
This routine uses the array parameters passed to compute new matrix parameters.
These parameters are computed as indicated in Appendix A and are entered into the
CCBLK of the currently opened page, replacing the previous matrix parameters. This

routine must be called each time the user wishes to change translation, scaling, or
rotation factors.

11.8 UPDATE VIEW POINT IN CCBLK

NAME: VIEWPT

FUNCTION: Updates view point parameters in the CCBLK of the currently opened
3D page.

CALLING FORMAT: CALL VIEWPT (X,Y,Z)

11-7

DESCRIPTION OF PARAMETERS:

(X,Y,Z) = Real variables supplied by the user which specify the viewing
point which is to be used in generating perspective. These
parameters are specified in user coordinates.
for these parameters are:

IxX] <
Yl <

0 <

DETATLED DESCRIPTION:

XU-XL
2

YU-YL
2

z < ZU-ZL

The valid ranges

This routine updates the view point in the currently opened page. The CCBLK
view point parameters, generated by a previous call to the CCBLK routine, are
updated. This routine must be called in order to change the view point. Note that
the view point parameter range limits specified above are constrained by the host

computer word size.

11.9 UPDATE VIEWBOX

NAME: VIEWBX

FUNCTION: Update viewbox boundaries in the currently opened

CALLING FORMAT: CALL VIEWBX (LV,RV,BV,TV,NV,FV)

DESCRIPTION OF PARAMETERS:

v

RV

BV = Real variable supplied
boundary (minimum Y).

TV = Real variable supplied
boundary (maximum Y).

NV = Real variable supplied
boundary (minimum Z).

FV = Real variable suppliéd
boundary (maximum Z).

Real variable supplied
boundary (maximum X).

Real variable supplied by the user which specifies
boundary (minimum X).

The valid range for LV is:

by the user which specifies
The valid range for RV is:

by the user which specifies
The valid range for BV is:

by the user which specifies
The valid range for TV is:

by the user which specifies
The valid range for NV is:

by the user which specifies
The valid range for FV is: -

page.

the viewbox left
XL < LV < RV,

the viewbox right
LV < RV < XU,

the viewbox bottom

YL < BV < TV,

the viewbox top
BV < TV < YU.

the viewbox near
ZL < NV < FV.

the viewbox far
NV < FV £ ZU.

The parameters LV, RV, BV, TV, NV and FV are all specified in the user

coordinate system.

11-8

f

DETATLED DESCRIPTION:
This routine updates the viewbox boundaries in the currently opened page. The

CCBLK viewbox parameters, generated by a previous call to the CCBLK routine, are
updated. This routine must be called in order to change the viewbox.

11-9/11-10

SECTION 12

IMAGE CONTROL ROUTINES

The routines in this section have been designed specifically to control the

presentation of the image displayed.

~Software Control

® CLIP - Remove data outside the viewing window
° SMOOTH - Remove unnecessary points in a curve
) SPLIT - Modify screen sectioning parameters

12,1 REMOVE OFF-SCREEN DATA

NAME: CLIP

FUNCTION: Eliminates lines and graphic data that lie
window. '

outside a user specified

CALLING FORMAT: CALL CLIP (IOP, X1, Yl, X2, Y2, XLC, YLC, XUC, UYC, XPOSB,

YPOSB)

DESCRIPTION OF PARAMETERS: .

If I0P = 1,
then

X1, Y1 = are supplied by the caller to 'CLIP' as

candidates for a

positioning command (MOVE), CLIP checks these values and
determines if they lie within the window described by (XLC, YLC)
and (XUC, YUC). 1IOP is returned as follows:

8 - (X1, Y1) lie outside the window. No action should be taken

by the caller on these coordinates.

9 - (X1, Y1) lie within the window. The caller may call 'MOVE'

to position (X1, Yl).

NOTE

X2, Y2 are not used.

12-1

If IOP

]
N

then

X2, Y2

are supplied by the caller as the end point of a vector to be

drawn having as its start point the current position. CLIP
determines how much, if any, of the vector will be visible within
the specified window. 1IO0P is returned as follows:

7 - the

start point of the vector is within window. Call DRAW

using X2, Y2,

8 - the vector lies entirely outside the window and therefore
should not be drawn. (No action should be taken by the
caller.)

9 - the start point of the vector lies outside the window. The

user should call MOVE using X1, Y1 to move to within the
.window boundaries. A call to DRAW using X2, Y2 will then
display the visible portion of the vector.

(XLC, YLC, XUC, YUC) = window limits in user coordinates.

XILC =X
YIC = ¥
XUC = X
YUC =Y

(XPOSB, YPOSB) =

This is a

lower left corner
lower left corner

upper right corner
upper right corner

current position. These are used to keep track of the
current position, and should be the same two variables on
each call to CLIP. These are neither set nor used by the
user.

NOTE

software function and all point removal

is done prior to hardware windowing functions.

12.2 SMOOTH DISPLAYED LINES

NAME: SMOOTH

FUNCTION: This subroutine straightens lines by removing unnecessary points
thus saving room in the display buffer.

CALLING FORMAT: CALL

12-2

SMOOTH (IOP, X, Y, ISAVE, XSAVE, YSAVE, MSAVE, EPS)

“*-”-~”~

DESCRIPTION OF PARAMETERS:

1. IOP = 1: Line break. This call initializes the subroutine. X and Y are

not used.
2. IOP = 2: New point. X and Y represent a new point in the current line.
3. I0OP = 3: Line end. This call indicates that the last point has been

appended to the current line. X and Y are not used. This call
forces out a point. The next call can be with IOP = 2 to
continue the line or with IOP = 1 to start a new line.

On return, I0P, X and Y are set as follows:

1. IOP = 4: No action required.

2. IOP = 5: (Call MOVE to move to X, Y.

3. IOP = 6: Call DRAW to draw a line from the present position to X, Y.
4, IOP = 7: Parameter error — IOP not 1-3.

The "line break" call always returns IOP = 4 and the "line end"” call never
returns IOP = 5,

The parameter ISAVE is used internally to remember how many points are being
buffered, and should be the same variable on each call to SMOOTH. XSAVE and YSAVE
are real arrays of length MSAVE which are used to buffer data points. Each call to
SMOOTH should pass the same two arrays. EPS is the amount of excursion from a
straight line that will cause the line to be broken. To avoid any change in the
screen image due to smoothing, EPS should be set to the screen resolution, which is
0.0009765625 (1/1024), of full screen width for the GRAPHIC 8. 1In user coordinates,
screen width is the difference between the first and third (or second and fourth)
arguments to SCALE. Smaller values of EPS may use more display buffer at the
expense of making the picture less precise. IF EPS is set to 0.0, SMOOTH produces
output identical to its input with the exception of eliminating adjacent
coincidental points.

12.3 DEFINE PIXEL MEMORY MAPPING PARAMETERS

NAME: SPLIT

FUNCTION: Allows the caller to map pixel memory up to three horizontal
sections on the display monitor.

CALLING FORMAT: CALL SPLIT (IMON, INUM, ARRAY)

12-3

DESCRIPTION OF PARAMETERS:

IMON = Integer variable supplied by the caller specifying which display
monitor to select. ’

-
[]

B~
]

il

INUM

display monitor #1

display mnitor #4

Integer variable supplied by the caller specifying the number of

sections into which the display monitor is to be divided.

ARRAY

Real array supplied by the caller containing the X and Y values,

in user coordinates, for the start positions and the number of
lines for each area of pixel memory that is to be mapped to the

display monitor.

ARRAY will be either three, six, or nine

elements long defined in the following manner:

ARRAY (1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

DETAILED DESCRIPTION:

area #1 start X
area #1 start Y
number of lines
area #2 start X
area #2 start Y
number of lines
area #3 start X
area #3 start Y
number of lines

coordinate
coordinate
to build section #1
coordinate
coordinate
to build section #2
coordinate
coordinate
to build section #3

This routine will generate the necessary graphic orders and place them at the
mark position in the currently open page.

Proper use of this call requires an understanding of the relationships between
the components of the GRAPHIC 8 controller.

to the user of SPLIT.

The following information is important

e Each pair of mapping memories is dedicated to one display monitor.

° The image being displayed will be affected immediately upon execution of

these graphic orders.

Therefore, the user of SPLIT must be carefully

coordinated with calls to image generation routines.

) There is a timing overhead involved in updating the proper control
registers needed for SPLIT. Therefore, it should be called as a graphic
subroutine and executed only once. :

The following diagram is set up to show the relationship between pixel memory

areas and display monitor sections.

12-4

(See example under COLORI section.)

PIXEL MEMORY MONITOR

SX1, SY1
SX1, SY1 T
o * LNT1
LNI1 l
() 5X2, SY2 @ —_————
$X2,.XY2
LN2
LN2
SX3, SY3
SX3, SY3 @ _ —_—
LN3 T
LN3

H-80-0021-012

12-5/12-6

- —— n—— — — —

SECTION 13
DATA TRANSFER ROUTINES
This section describes how to transmit a block of predefined refresh data
request and subsequently receive a block of refresh data, store pixel data in read/
write memory, transfer pixel data from read/write memory to pixel memory, and obtain
error codes currently displayed on enabled display monitors.

The following routines are included in this section.

° REFDAT - Transfer a block of refresh data

. REQIM ~- Request refresh data

. GETIM - Receive refresh data

° MOVDAT - Store/write pixel data

° GETERR =- Recelve error information

13.1 TRANSFER A BLOCK OF PREDEFINED GRAPHIC ORDERS

NAME: REFDAT

FUNCTION: Allows the caller to transfer and display a block of predefined
graphic orders (MOVE, DRAW, TEXT, POINT, CIRCLE)

CALLING FORMAT: CALL REFDAT (IARRAY, N)
DESCRIPTION OF PARAMETERS:

An integer array containing graphic orders right adjusted in the

TARRAY =
right-most 16 bits of each element.
N = An integer variablebcontaining the number of elements in the
array.
1 <N<L20

DETAILED DESCRIPTION:

This routine takes the lower 16 bits (right-most) of the first N elements found
in the array IARRAY and places them at the mark position of the currently opened

page.

The contents of the array IARRAY must be predefined graphic orders. The image
generated by the transferred contents of the array IARRAY are displayed when the
currently opened page is displayed.

13-1

13.2 REQUEST REFRESH IMAGE

NAME: REQIM

FUNCTION: Initiates a request for a block of up to 20 words to be transferred
from an opened page back to the host.

CALLING FORMAT: CALL REQIM (NINST)

DESCRIPTION OF PARAMETERS:

NINST =

Integer variable specifying the number of refresh data to be
transferred starting at present mark.

1 < NINST < 20

DETAILED DESCRIPTION:

This routine

causes an image event to occur which has an event code of 9. The

image event contains up to 20 words of refresh code, starting at the current mark

position supplied.

The page is assumed to be the currently opened page.

13.3 GET REFRESH IMAGE

NAME: GETIM

FUNCTION: Re

trieves from the event tables an array of data which is the

refresh image code.

CALLING FORMAT: CALL GETIM (IARRAY, ISIZE, NINST, IPAGE)

DESCRIPTION OF PARAMETERS:

TARRAY =

ISIZE

NINST

TPAGE

An integer array supplied by the caller into which the refresh
data is transferred.

An integer variable supplied by the caller containing the maximum
number of words of refresh data to be placed in the array; i.e.,
ISIZE is the size of the array. Any data in excess of the limit
is discarded.

An integer variable returned to the caller specifying the number
of words of refresh data transferred.

An integer variable returned to the callef identifying the page
number from which the data was transferred.

DETATILED DESCRIPTION:

The REQIM routine initiates this event; the EVENT subroutine detects the event
and this routine retrieves the data.

13-2

Example: C Read 10 words from page 3 starting at
C mark 5.
DIMENSION TARRAY (10)

CALL UPDATE (3,5)
CALL REQIM (10)
10 CALL EVENT (IEVNT)
IF (IEVNT.NE.9) GO TO 10
CALL GETIM (IARRAY, 10, NINST, IPAGE)

13.4 MOVE PIXEL DATA

NAME: MOVDAT

FUNCTION: This subroutine allows the caller to store the pixel data from a
screen image into read/write memory and to retrieve pixel data in read/write memory
to present it to the display monitor.

CALLING FORMAT: CALL MOVDAT (IPATH, IDATPG, XI, YI, XF, YF, IMODE)

DESCRIPTION OF PARAMETERS:

IPATH = An integer variable supplied by the caller specifying the
direction of data transfer.
2, Read/write memory to pixel memory
1, Pixel memory to read/write memory

IDATPG = An integer variable supplied by the caller containing the page
number where the pixel data resides or will reside.

XI, YI = Absolute or relative initial X, Y coordinates of the lower left

corner of the rectangular pixel array. The coordinate is in the
user coordinate system.

XF, YF = Absolute or relative final X, Y coordinates of the upper right
corner of the rectangular pixel array. The coordinate is in the
user coordinate system.

Integer variable supplied by the caller describing the

rectangular pixel array in pixel memory

1, Horizontal scan with absolute X, Y address

2, Vertical scan with absolute X, Y address ,

3, Horizontal scan with X, Y address relative to the current X, Y
position

4, Vertical scan with the X, Y address relative to the current X,
Y position

IMODE

DETAIL DESCRIPTION:

A Move Pixel Data graphic order is constructed at the current mark of the
currently opened page.

- 13-3

PROGRAMMING CONSIDERATIONS:

When the user wishes to write to pixel memory, the pixel data is first
formatted and written to the designated data page IDATPG. The target display(s) are
selected prior to the CALL MOVDAT using the CALL STATUS.

C open page
CALL ADDREF (page)

C select the display
CALL STATUS (IBL, INDX, IVT, IDISP)

C setup move pixel data graphic order
CALL MOVDAT (1, IDATPG, XI, YI, XF, YF, IMODE)

C send formatted pixel data to data page
CALL ADDREF (IDATPG)
CALL REFDAT (IARRAY, IDATPG)

C link to refresh
CALL PICTUR (1)
CALL PICTUR (page)

Pixel data (value of pixel gray or color level) is formatted by the program
(usually prior to the CALL MOVDAT) as 4 or 8 bit bytes packed right justified into
each entry of the array IARRAY for a total of 16 bits per array entry. The size of
the byte (4 or 8) corresponds to the bits per pixel of the system including blink if

present.

Format of packed Pixel Data Array for 4 bits per pixel system P (Xn, Yn)
represents the gray value for the nth pixel in the rectangular pixel array on the
screen.

o oo P(Xg0 Yg) PXor Y5) P(X;, ;)

P, Yp)

H-80-0021-013

13-4

When the user wishes to retrieve data from pixel memory, only one display
should be selected. Since the data being retrieved is from the pixel memory
currently being written by graphic orders, the page in which the Move Pixel data
graphic order is executed should be the last page called in the sequence of linked
pages in page 1.

Once this page is called and the data is transferred to the data page, the
program can remove the page from linked pages. This will ensure that the data page
is not being updated when the program wishes to operate on the retrieved pixel data.

RECTANGULAR PIXEL ARRAY

WITH VERTICAL SCAN WITH HORIZONTAL SCAN
(XF, YF) (X

e Yp)

/
/
/
¢

H-80-0021-014

13,5 TRANSMIT OUTPUT BUFFER

NAME: DATEND

FUNCTION: This subroutine allows the caller to force the transmission of the
data in the output buffer regardless of the conditions set by blocking mode.

CALLING FORMAT: CALL DATEND
DETAIL DESCRIPTION:

A1l data in the output buffer is transmitted to the GRAPHIC 8 terminal
immediately.

13-5

13,6 GET ERROR INFORMATION

NAME: GETERR

FUNCTION: Retrieves information concerning an error event
CALLING FORMAT: CALL GETERR (IARRAY)

DESCRIPTION OF PARAMETERS:

IARRAY = A 4-word integer array supplied by the caller into which the
4=word error information is placed.

TARRAY(1l) = Error code
IARRAY(2) = 0
TARRAY(3) = 0
IARRAY(4) = 0

DETAILED DESCRIPTION:

Detection of any of the error conditions described in Appendix C causes an
error event (event code 8). An error event is detected by the EVENT routine and
this routine actually retrieves the error data. The error code is returned as two
8-bit ASCII characters right adjusted in IARRAY (1). These same two characters are
displayed in certain cases in the upper left corner of the display.

Example: CALL EVENT (IEVNT)
IF (IEVNT.NE.8) GO TO 10
CALL GETERR (IARRAY)
10 CONTINUE

13-6

SECTION 14

FSP INPUT/OUTPUT

Four subroutines are used by FSP for performing I/O to the GRAPHIC 8 terminal:

° G8INIT - Initialize host/GRAPHIC 8 I/0 driver
° G8TERM — Terminate host/GRAPHIC 8 I/0 driver
° MSGOUT — Output message to GRAPHIC 8 terminal

° MSGIN - Input message from GRAPHIC 8 terminal

The calling sequences for these subroutines are defined by Sanders, but the
actual routines themselves are supplied by the customer, i.e., Sanders does not
provide the host software necessary to perform the actual I/0 (see figure 1), unless
special arrangements have been made.

FSP OUTPUT

Most of the FSP subroutines, when called, perform the following functions:

1. Create a message (header plus data) and place it in an output block.

2, Call MSGOUT to transmit the message to the GRAPHIC 8 terminal for
execution.

FSP INPUT
The graphic control program enhanced (GCP) in the GRAPHIC 8 sends data to the
host when polled by the host, i.e., keyboard, and PED events are sent to the host
only on request. A poll request and response sequence works as follows:
CALL MSGOUT - Outputs a POLL request to GRAPHIC 8
- CALL MSGIN - Read POLL response from GRAPHIC 8

FSP then analyzes the POLL response message and updates internal tables
accordingly.,

14,1 INITIALIZE HOST/GRAPHIC 8 I/O DRIVER

NAME: G8INIT
FUNCTION: To initialize the host/GRAPHIC 8 I/0 driver.

CALLING FORMAT: CALL G8INIT (IUNIT)

14-1

DESCRIPTION OF PARAMETERS:

IUNIT = An integer variable containing the device number associated with
the GRAPHIC 8 in the call to the INIT subroutine.

DETATLED DESCRIPTION:

The calling sequence for this routine is defined by Sanders, but the actual
routine itself must be supplied by the customer. This routine is not called
directly by the application program, but rather is called internally by FSP as a
result of the call to INIT subroutine.

For parallel hosts, when the application program makes a call to the FSP

subroutine, several functions are performed to initialize the GRAPHIC 8 terminal to

FSP mode. Omne function is to logically connect the application program with the
GRAPHIC 8 within the architecture of the host operating system. The actual opera-
tions needed to perform the connection are host—dependent. Internal to the INIT
subroutine a call is made to the G8INIT subroutine to provide the customer with a
mechanism for performing the I/0 driver initialization process. In terms of the
‘GRAPHIC 8, the key function performed by G8INIT is to initialize (under program
control) the terminal controller by pulsing the INIT control line to the GRAPHIC 8
parallel interface card. The INIT pulse resets the terminal controller to the
system mode. v '

NOTE
The INIT control line is exposed to the host end.

For serial hosts, the G8INIT subroutine is not needed. To eliminate
compilation errors, the customer should wrlte a dummy G8INIT subroutine that only
has a return statement.

For example: SUBROUTINE G8INIT (IUNIT)

RETURN
END

For parallel hosts, the design of the G8INIT subroutine is influenced by the
following factors:

e Host word length (16, 24, 32, 36, etc.)

° Host I/0 system

° Host operating system

) GRAPHIC 8 I/0 driver (provided by customer)

Any unrecoverable errors detected by this subroutine, I/O driver or operating
system, should cause termination of the Job with appropriate dlagnostic messages.

14-2

[

14,2 TERMINATE HOST/GRAPHIC 8 I1/0 DRIVER

NAME: G8TERM

FUNCTION: To terminate the host/GRAPHIC 8 I/0 driver
CALLING FORMAT: CALL G8TERM (IUNIT)

DESCRIPTION OF PARAMETERS:

IUNIT = An integer variable containing the device number associated with
the GRAPHIC 8 in the call to the INIT subroutine.

DETAILED DESCRIPTION:

The calling sequence for this routine is defined by Sanders, but the actual
routine itself must be supplied by the. customer. This routine is not called
directly by the application program, but rather is called internally by FSP as a
result of the call to the INIT subroutine.

For parallel hosts, when the applications program makes a call to the THEEND
subroutine, several functions are performed to terminate the FSP mode of operation
and to return the GRAPHIC 8 terminal to the TTY emulator mode. One function is to
logically terminate the connection between the application program and the GRAPHIC
8. The actual operations needed to terminate the connection are host—-dependent.
Internal to the THEEND subroutine a call is made to the G8TERM subroutine to provide
the customer with a mechanism for performing the I/0 driver termination process.

For serial hosts, the G8TERM subroutine is not needed. To eliminate compila-
tion errors, the customer should write a dummy G8TERM subroutine that only has a

return statement.

For parallel hosts, the design of the G8TERM subroutine is influenced by the
following factors:

° Host word length (16, 24, 32, 36, etc.)

e . Host I/0 system

° Host operating system

° GRAPHIC 8 I/0 driver (provided by customer)

Any unrecoverable errors detected by this subroutine, I1/0 driver or operating
system, should cause termination of the job with appropriate diagnostic messages.

14,3 OUTPUT MESSAGE TO GRAPHIC 8 TERMINAL

NAME: MSGOUT
FUNCTION: Outputs a message to the GRAPHIC 8 terminal.

CALLING FORMAT: CALL MSGOUT (IUNIT, IBUF, IELEMC)

14-3

14=4

DESCRIPTION OF PARAMETERS:

IUNIT = An integer variable containing the device number associated with
the GRAPHIC 8 in the call to the INIT subroutine.

IBUF = An integer array, each entry of which contains two 8-bit bytes
(one element), right adjusted.

IELEMC = An integer variable containing the number of elements in the

array IBUF to the output. Control is returned to the caller only
after all elements have been successfully transmitted.

" DETAILED DESCRIPTION:

The calling sequence for this routine is defined by Sanders, but the actual
routine itself must be supplied by the customer. This routine is not called
directly by the application program, but rather is called internally as a result of
calls to other FSP routines.

This routine invokes the I/0 driver and requests output via the appropriate
operating system call.

The actual details of this subroutine depend on the customer's design and
implementation. The design is influenced by the following factors:

Host word length (16, 24, 32, 36,‘etc.)

Host I/0 system

Serial or‘parallel interface

Host operating system

GRAPHIC 8 I1/0 driver (provided by customer)
| NOTE |

In the serial mode, a "carriage return” must be
appended to the data provided by the caller, i.e.,
MSGOUT sends to the GRAPHIC 8 each character

- supplied by the caller and then MSGOUT sends a
carriage return. The 8 bit code for a carriage
return may be either of the following:

00001101
or
10001101

Any unrecoverable errors detected by this routine, I/0 driver or operating
‘system should cause termination of the job with appropriate diagnostic messages.

14.4 INPUT MESSAGE FROM GRAPHIC 8 TERMINAL

NAME :

MSGIN

FUNCTION: Inputs a message from the GRAPHIC 8 terminal.

CALLING FORMAT: CALL MSGIN (IUNIT, IBUF, IELEMC)

DESCRIPTION OF PARAMETERS:

IUNIT = An integer variable containing the device number associated with
the GRAPHIC 8 in the call to the INIT subroutine.

IBUF = An integer array into which data received from the GRAPHIC 8 will
be placed. Data will be packed two 8-bit bytes (one element) per
array entry.

IELEMC = An integer variable containing the number of elements in the

array IBUF to be filled. Control is returned to the caller only

after all elements have been successfully received.

DETATLED DESCRIPTION:

The calling sequence for this routine is defined by Sanders, but the actual

routine itself must be supplied by the customer.

This routine is not called

directly by the application program, but rather is called internally as a result of
calls to other FSP routines.

This routine invokes the I/0 driver and requests input via the appropriate
operating system call.

The actual details of this subroutine depend on the customer's design and
implementation. The design is influenced by the following factors:

Host word length (16, 24, 32, 36, etc.)

Host I/0 system |

Serial or parallel interféce

Host opérating'system

GRAPHIC 8 I/0 driver (provided by customer)

NOTE

In the serial mode, the GRAPHIC 8 terminates each
message sent to the host with a carriage return.
This carriage return should be stripped by MSGIN

and not supplied to the caller as part of his
message.

Any unrecoverable errors detected by this subroutine, I/0 driver or operating
system, should cause termlnation of the job with appropriate diagnostic messages.

14-5/14-6

SECTION 15

DELIVERABLE ITEMS

The following FSP items are provided to the customer at installation time:

A.

D.

FSP Source Code

The FSP subroutines are provided as interpretéd source code in card deck
form (029 keypunch).

FSP Programmer's Reference Manual
FSP Sample Program

A sample FSP demonstration program written in FORTRAN is provided as
interpreted source code in card deck form (029 keypunch).

Listings of the FSP Routines and the Sample Program

15-1/15-2

SECTION 16

INSTALLATION PROCEDURE

The following steps must be taken by the customer before the FSP sample program
may be run:

A.

B.

The FSP subroutines (provided by Sanders) must be made part of the
operating system subroutine library.

A GRAPHIC 8 I/O driver must be written and made part of the operating
system.

The MSGOUT, MSGIN, G8INIT, and G8TERM subroutines must be written and made
part of the operating system subroutine library.

A SETEXT subroutine must be written before the sample FSP program can be
used.

The FSP sample program must be compiled and link—-edited to create a load
module.

NOTE

The following installation—dependent source state-—
ments in the sample program must be changed before
compilation.

CALL INIT (IUNIT,®,IFACE)

IUNIT must be set to the logical unit number
assigned to the GRAPHIC 8 device driver.

IFACE must be set to 1 for parallel interface, or
set to 2 for serial interface.

After the FSP sample program has been successfully run, the customer should
consider making the following improvements:

1.

The INSERT, EXTRAC, and SHIFT subroutines should be rewritten in assembly
language to improve overall system speed. For parallel users, when these
routines are rewritten, the customer can expect to see improvements in the
order of 50%. (I.e., if it takes 30 seconds to display an image on the
CRT indicator using the FORTRAN versions of INSERT, EXTRAC, and SHIFT,
then the same image should take about 15 seconds to display when using
assembly language versions of these subroutines.)

16-1

For serial users, the speed improvements will only be reflected at the
higher baud rates. No speed improvement will probably be seen when
operating below 2400 baud. At 9600 baud, a speed improvement in the order
of 15% to 30% can probably be achieved.

2. The CKPOLL subroutine can be modified to minimize the use of system
resources when running FSP programs.

When the CKPOLL subroutine is delivered, it is configured to operate in a
polling mode. The GRAPHIC 8 is also configured to ignore command header
errors. The polling mode configuration (set up by Sanders) works in the
following manner:

" a. FSP user calls EVENT
b. EVENT sends a POLL message to the GRAPHIC 8 via MSGOUT
Ce The GRAPHIC 8 receives the POLL message and does the following:
(1) Sends out the next. message in the O0/P buffer.

(2) 1If the O/P buffer is empty, the GRAPHIC 8 returns a dummy
message to indicate that no message is ready. (Normally
messages get stored in the O/P buffer in response to some
operator inputs.)

For this configuration, the host computer is looping in a constant event loop.
(I.e., for every POLL message sent, the GRAPHIC 8 returns a message.)

To minimize the number of host to GRAPHIC 8 messages, the CKPOLL subroutine can
be modified so that the GRAPHIC 8 only sends a message back to the host computer
when a new message is stored in the 0/P buffer.

For parallel users, this type of poll mode can be selected by changing the
IPOLL variable to 1. For this mode, error detection can also be enabled by setting
IPOLL to 9. (I.e., when IPOLL = 9, error detection is enabled and messages are sent
from the GRAPHIC 8 to the host only when a new message is stored in the O/P buffer.)

For serial users, this type of poll mode can be selected by changing the TPOLL
variable to 1. For this mode, error detection can also be enabled by setting IPOLL
to 9. For half-duplex serial transmissions, no problems should be encountered with
an IPOLL value of 9. "For full-duplex serial transmissions, echoing types of
problems can be encountered. (I.e., when the host computer receives a message from
the GRAPHIC 8, it echos it back to the GRAPHIC 8, which results in an endless loop
of command header errors.) If error detection is enabled for full-duplex, then the
user must write the MSGIN software in a way that ensures that no echoing of messages
back to the GRAPHIC 8 occurs.

16-2

The CKPOLL subroutine can also be configured to operate in a special type of
polling mode. In this mode, the sending of GRAPHIC 8 to host messages is controlled
by a user designated special character. This mode works as follows:

1. FSP user calls EVENT.
2, EVENT sends a POLL message to the GRAPHIC 8 via MSGOUT.

3. EVENT sends a special character to the GRAPHIC 8 to indicate that the host
is set up to read in the next message from the GRAPHIC 8.

4, When the GRAPHIC 8 receives the POLL message, it starts looking for the
special character. When it detects the special character, it sends the
next message back to the host.

The special character type of polling mode is only applicable to serial users.
This mode is used in cases where the host operating system can't get set up in time
to receive incoming messages from the GRAPHIC 8.

If the special character type of polling mode is used, then the ISPCHR variable
should be changed to the customer—-selected value.

NOTE

The CKPOLL subroutine can also be set up to
operate in a non—-polling mode. In this mode the
GRAPHIC 8 sends messages back to the host computer
anytime there is a message in the O/P buffer.
Please refer to the IM initialize I/0 message
formats message for additional information on
running FSP programs in a non-polling enviromment.
The IM message is described in the GRAPHIC 8 GCP
Programmers Reference Manual.

Normally when the THEEND subroutine is called, the
GRAPHIC 8 is returned to the full-duplex
teletypewriter emulator. If half-duplex is being
used, the THEEND subroutine can be modified to
return the user to the half-duplex teletypewriter
emulator as follows:

Change IOUTB(2) = 30884 to IOUTB(2) = 30880

16-3/16-4

SECTION 17

STARTUP PROCEDURE

The following paragraphs assume the following:

All steps of the installation procedure have been performed.

The GRAPHIC 8 terminal is hardware-wise connected to the host.

All power is on and the brightness and contrast knobs on the display
indicator are set properly.

1.

3.

Press LOCAL button on front panel of the GRAPHIC 8 and observe
built-in test pattern. Validate (using this pattern and its
associated built-in diagnostics) that the terminal is in working
order.

Press the "RETURN" key on the keyboard (causes pattern to disappear
and "BO M" to appear.

Press "Y" key followed by "RETURN" key to enter teletypewriter
emulation mode. At this point the GRAPHIC 8 performs as a
teletypewriter emulator until such time that a FORTRAN/FSP program
(e.g., FSP sample program) is executed in the host. The call to
GSS4, when executed, causes GCP to enter the SYSTEM mode. GCP
remains in the SYSTEM mode until a call to THEEND is made, at which
time the teletypewriter emulator is re—entered.

NOTE
Refer to the GRAPHIC 8 GCP Programmer's Reference

Manual (H-80-0444) for more information on LOCAL
mode features.

17-1/17-2

APPENDIX A
ALPHABETICAL SUMMARY OF SUBROUTINES
The following FORTRAN callable FSP subroutines are available to the application
program in the host computer.

FSP SUBROUTINES

PAGE SUBROUTINE DESCRIPTION

6-12 ADDREF (IPAGE) Open page for adding refresh data
10-1 CC2DBL Create 2D Converter Block

11-2 CCBLK Build 3D Parameter Block

5-7 CIRCLE (RADIUS, IQUAD) Draw a circle

12-1 cLIP (IoP, X1, Y1, X2, Remove of f-screen data

Y2, XLC, YLC, XUC, YUC,
XPOSB, YPOSB)

44 COLORI (IDISPL, INUM, Color control using either RGB or HLS
ISNDX, ARRAY1, ARRAY2, model
ARRAY3, IMODEL)
6-15 COPYIM (MARKA, MARKB) Copy a block of graphic orders
13-5 DATEND Send all contents of output buffer to
GRAPHIC 8
5-3 DRAW (X, Y, MODE) Draw a vector
10-3 DRAW2D (X, Y, MODE) Draw a 2 dimensional vector
11-5 ~ DRAW3D (xp, YD, ZD, Draw a 3 dimensional vector
~ MODE)
3-6 DSABOX (IND) Turn border display off
8-8 DSACUR (IDUNM) Turn crosshair cursor off
3-7 DSAERR (IND) Turn error display off
8-2 DSAPAD (IKEY) Disable alphanumeric scratch pad
8-6 DSAPED (IDUNM) Disable a PED Device

5-10

14-1

14-3

13-6

13-2

6-14

8-9

8-3

46

5-9

A-2

FSP SUBROUTINES (Cont)

SUBROUTINE
DS APMD

ELIPSE (XSEMI, YSEMI,
IQUAD)

ENBBOX (IND)

ENBCUR (IDUNM, IDISPL,
IDVTP, ICUR)

ENBERR (IND)

ENBPAD (IKEY, IND, X, Y
IMAX)

ENBPED (IDUNM, IDVTP,
IPAGE, KMARK)

ENBPMD
ERASEP

EVENT (IEVNT)

FILL (INUM, ARRAY, IMODE)
G8INIT (IUNIT)

G8TERM (IUNIT)

GETERR (IARRAY)

GETIM (IARRAY, ISIZE
NINST, IPAGE)

GETKEY (KBD, KEY)
GETMRK (M)
GETTB (NUMBER, X, Y)

GETTXT (IARRAY, ISIZE,
NCHAR, KBD)

GRAYI (IDISP, INUM,

~ ISNDX, ARRAY)

HTPLOT (TAB, INUM,
YARRAY, JMODE)

DESCRIPTION
Disable packed vector mode

Draw an ellipse

Turn border display on

Turn on one of the default cursors

Turn error display on

Enable alphanmumeric scratch pad
Enable a PED device

Enable packed vector

Erase from page mark to end of page

Poll terminal for event or request
Fill a convex polygon

Initialize host/GRAPHIC 8 1/0 driver
Terminate host/GRAPHIC 8 I/0 driver
Get error information

Get refresh image

Get function key event information

Get mark request information

Get red request information

Get text event information

Define the look—up table with selectable

Gray levels

Plot a series of Y coordinates equally

spaced

PAGE

3-1

11-1

10-2

13-3

11-5

6-14

10-4

11-6

14-5

14-3

5-6

13-1

13-2

8-8

11-2

FSP SUBROUTINES (Cont)

SUBROUTINE
INIT (IUN, IOPTN, IFACE)
INIT3D
LAMPOF (KBD, LAMP)
LAMPON (KBD, LAMP)
IAYOUT (NPAGES, LNGARY)
IMARGN
MOVE (X, Y, MODE)
MOVE2D (X, Y, MODE)

MOVDAT (IPATM, IDATPG,
XI, YI, XF, YF, IMODE)

MOVE3D (XD, YD, ZD, MODE)
MOVEIM (MARKFR, MARKTO)
MTRX2D (ARRAY)

MTRX3D (ARRAY)

MSGIN (IUNIT, IBUF, IELEMC)
MSGOUT (IUNIT, IBUF, IELEMC)

NEWLIN

PDRAW (X, Y)

PICTUR (IPAGE)

PMOVE (X,Y)

REFDAT (IARRAY, N)
REQIM (NINST)

REQTB (NUMBER)

SCALE (XL, YL, XU, YU)

SCAL3D (ZL, ZU)

DESCRIPTION
Initialize GRAPHIC 8 to FSP mode
Initialize 3D Coordinate Converter
Turn keyboard lamp off
Turn keyboard lamp on
Define graphic page layout
Set left (or lower) margin
Move to the 3D position specified
Move to the 2D position specified

Store and retrieve Pixel data

Move to the 3D position specified
Move a block of graphic orders
Replace 2D composite matrix

Replace 3D composite matrix

Input message from GRAPHIC 8 Terminal
Output message to GRAPHIC 8 Terminal

Return to left (or lower) margin and
increment one line

Packed vector draw
Graphic.subroutine call

Packed vector move

Transfer a block of graphic orders
Request refresh image

Request PED X, Y

Define 2 dimensional coordinates

Define 3 dimensional coordinates

PAGE

4-7

4-8

12-2

12-3

6-12

10-5

11-8

11-7

5-10

5-9

A~4

FSP SUBROUTINES (Cont)

SUBROUTINE
SCOLOR (ICOLOR)
SGRAY (IGRAY)

SMOOTH (IOP, X, Y, ISAVE,
XSAVE, YSAVE, MSAVE, EPS)

SPLIT (IMONIT, INUM, ARRAY)

STATUS (IBL, INT, IVT, IND)

T2D2D (IGRAPH, IPAG2D)

T3D2D (IPAGE3D, IPAG2D)
TEXT (N, IARRAY)
THEEND

TPARM (ICSIZE, CHSPAC,
RLSPAC, ICROT)

UPDATE (IPAGE, MARK)
V2DBOX (LV, RV, BV, TV)
VIEWBX (VWLEFT, VWRGHT,
VWBOTM, VWIOP, VWNEAR,
VWFAR)

VIEWPT (X, Y, Z)

VIPLOT (TAB, INUM, XARRAY,
IMODE)

XYPLOT (INUM, XARRAY,
YARRAY, IMODE)

DESCRIPTION

Select Color

- Select Gray Level

Smooth displayed lines

Split screen on specified monitor
Set display status

Trans form graphic page to 2D page
Convert 3D page to 2D page
Display text characters

Terminate FSP mode

Set text parameters

Open page for editing refresh data
Updéte 2D viewbox parameters in CCBLK

Update 3D viewbox parameters in CCBLK

Change viewpoint_position

Plot a series of X coordinates equally
spaced

Plot a series of points at the X-Y
positions specified.

APPENDIX B

ASCIT CODES

CONTROL
OCTAL HEX CHARACTER KEYB. EQUIV. ALTERNATE CODE NAMES
000 00 NUL d NULL, CTRL SHIFT P, TAPE LEADER
001 01 SOH A START OF HEADER, SOM

002 02 STX B START OF TEXT, EOA

003 03 ETX C END OF TEXT, EOM

004 04 EOT D END OF TRANSMISSION, END
005 05 ENQ | E ENQUIRY, WRU, WHO ARE YOU
006 06 ACK F ACKNbWLEDGE, RU, ARE YOU
007 07 BEL G BELL

010 08 BS H BACKSPACE, FEO

011 09 HT I HORIZONTAL TAB; TAB

012 0A LF J LINE FEED, NEW LINE, NL
013 0B VT K | VERTICAL TAB, VTAB

014 0c FF L FORM FEED, FdRM, PAGE

015 () CR M CARRIAGE RETURN, EOL

016 OE S0 N SHIFT OUT, RED SHIFT

017 OF ST 0 SHIFT IN, BLACK SHIFT

020 10 DLE P DATA LINK ESCAPE, DCO

021 11 DCl Q XON, READER ON

022 12 DC2 R TAPE, PUNCH ON

023 13 DC3 S | XOFF, RﬁADER OFF

024 14 DC4 T TAPE, PUNCH OFF

025 15 NAK U NEGATIVE ACKNOWLEDGE, ERR

ASCITI CODES (Cont)

B-2

CONTROL
OCTAL HEX CHARACTER KEYB. EQUIV. ALTERNATE CODE NAMES
026 16 SYN v SYNCHRONOUS IDLE, SYNC
027 17 ETB W END OF TEXT BUFFER, LEM
030 18 CAN X CANCEL, CANCL

031 19 EM Y END OF MEDIUM

032 1A SUB z SUBSTITUTE

033 1B ESC ESCAPE, PREFIX

034 1c FS FILE SEPARATOR

035 1D GS GROUP SEPARATOR

036 IE. RS RECORD SEPARATOR

037 IF Us UNIT SEPARATOR

040 20 SP SPACE, BLANK

041 21 !

042 22 "

043 23 #

044 24 $

045 25 %

046 26 &

047 27 ' APOSTROPHE

050 28 (

051 29)

052 2A *

053 2B +

054 2¢C , COMMA

055 2D - MINUS

056 2E .

ASCII CODES (Cont)

CONTROL
OCTAL HEX CHARACTER KEYB. EQUIV. ALTERNATE CODE NAMES
057 2F /

060 30 0 | NUMBER ZERO
061 31 1 . NUMBER ONE
062 32 2

063 33 3

064 34 4

065 35 5

066 36 6

067 37 7

070 38 8

071 39 9

072 3A

073 3B ;

074 3c < LESS THAN
075 . 3D =

076, 3E > GREATER THAN
077 3F ?

100 40 e ’ SHIFT P

101 41 A

102 42 B

103 43 c

104 44 D

105 45 E

106 46 F

107 47 G

ASCII CODES (Cont)

CONTROL
OCTAL HEX CHARACTER KEYB. EQUIV. ALTERNATE CODE NAMES
110 48 H
111 49 I LETTER I
112 4 J
113 4B K
114 4C L
115 4D M
116 4E. N
117 4F 0 LETTER O
120 50 P
121 51 Q
122 52 R
123 53 s
124 54 T
125 55 U
126 56 v
127 57 W
130 58 X
131 59 Y
132 5A z
133 5B SHIFT K
134. 5C SHIFT L
135 5D SHIFT M
136 5E A\ SHIFT N
137 5F <&— SHIFT 0, UNDERSCORE

ASCII CODES (Cont)

CONTROL
OCTAL HEX CHARACTER KEYB. EQUIV. ALTERNATE CODE NAMES
140 60 ; ACCENT GRAVE
141 61 | a
142 62 b
143 63 c
144 64 d
145 65 e
146 66 f
147 67 g
150 68 h
151 69 i
152 6A j
153 63": k
154 6C 1
155 6D m
156 6F n.
157 6F 0
160 70 p
161 71 g
162 72 r
163 73 s
164 74 t
165 75 u
166 76 v

167 77 W

B-6

ASCII CODES (Cont)

CONTROL
OCTAL HEX CHARACTER KEYB. EQUIV. ALTERNATE CODE NAMES
170 78 X
171 79 v
172 7A z
173 7B (
174 7C | VERTICAL SLASH
175 7D > ALT MODE
176 7E ~ (ALT MODE)
177 7F DEL DELETE, RUBOUT

APPENDIX C

ERROR CODES

When an error occurs in an FSP program, the error code will appear in the upper
left corner of the screen. The code displayed will be "00" until an error is
encountered, at which time the error code will change to reflect the error
condition. The user is then required to correct the error and rerun the user
program. FSP will continue to execute the user program after an error has occurred,
but unpredictable results may be observed. '

The following list of error codes should aid the user in correcting any error
that occurs.

c-1

CODE

02

03

04

05

08

12

19

21

122

30

31
35

37

38
40
41
42
43
44

45
46

47

DESCRIPTION

GCP output buffer full PED
coordinates not sent to the host.

GCP output buffer full - GCP error
message cannot be sent to host.

GCP input buffer full - messages
cannot be sent to GCP.

GCP output buffer full - keyboard
information cannot be sent to host.

GCP output buffer full - return
image cannot be sent to the host.

Current address not on current page.
IFAC Value out of range.

PED is not enabled.

Not in pack vector mode.

Page_number too large.

Mark not on specified page.

Illegal lamp number.

Number of words to be transferred
exceeds max of 20, :

PED number out of range.
Current refresh page is‘full.
Current refreéh page isffﬁll.
Current refreéh page is full.
Current refresh page is full.
Current refresh page is fﬁll.
Current refresh page is £u11.»
Current refresh page is fﬁll.

Current refresh page is full.

ROUTINE CALLED WHEN
ERROR OCCURRED

REQTB

Pressing A/N or Function on
Keyboard

REQIM

ERASEP

Internal routines
REQTB, DTMODE*

PDRAW, PMOVE, DSAPMD
ADDREF, UPDATE, PICTUR
UPDATE, TBALL*

LAMPON, LAMPOF

REQIM

DTINIT*, DTMODE*
MOVE, DRAW

TEXT, NEWLIN

CIRCLE ELIPSE

POINT*, VIPLOT, HTPLOT, XYPLOT
PICTUR

CPARM*

TPARM, IMARGN

STATUS

CODE
49
50
51
52
58
62
63
64
70
71

72

77
81
82
83
91

92

DESCRIPTION
Current refresh page is full.
Current refresh page is full.
Color out of range or refresh page
Mode is out of range.
Device number is out of range.
Start mark is greater than end mark.
End mark exceeds end of page.
Exceeded page boundary.

Current refresh page is full.

~ Current refresh page is full.

Cannot input from and output to
same page.

Illegal monitor number.

Page 1 will not fit.

Number of pages is not within range.
Available refresh exceeded.

Current refresh page.is full.

Current refresh page is full.

*Graphic 7 Only Routines

ROUTINE CALLED WHEN
ERROR OCCURRED

REFDAT
PDRAW, PMOVE

SCOLOR is full.
MOVE, DRAW, XYPLOT

ENBCUR

COPYIM, MOVIN

COPYIM, MOVIM

COPYIM

MOV 3D, DRAW3D

CCBLK

T3D2D

SPLIT

LAYOUT

. LAYOUT

LAYOUT

FILL

COLORI, GRAYI

C-3/C-4

— e s e v e s e e e e e S

APPENDIX D
CONVERSION OF OLD FSP PROGRAMS
Programs which have already been written to run with FSP on a GRAPHIC 7 system
can be made to run with FSP on the GRAPHIC 8 with a minimal number of changes. The

necessary changes are described below.

1. Remove all calls to the following routines:

a. ENBPEN
b. DSAPEN
c. ITEM
d. GETPEN
e. ENBPXY
f. DSAPXY
g. REQPXY
h. GETPXY
i. DPARM
j. HCOPY
k. CCINIT

‘1. CCVAL
m. CCON
n. CCOFF
o. COLOR

2. The following event types will not be returned from the EVENT routine:
5 - photopen detect
6 — photopen X, Y found
10 - hardcopy complete

3. These routines exist only for backwards compatibility with the GRAPHIC 7.

a. GSS4 - INITIALIZE

b. POINT - DRAW A POINT PLOT

C. REQMRK - REQUEST MARK POSITION

d. CPARM - SET UP CHARACTER PARAMETERS

e. COLOR - CHANGE COLOR

f. DTINIT - INITIALIZE PED AS A DATA TABLET
g DTMODE - CHANGE DATA TABLET MODE

h. TBALL - INITTALIZE PED AS A TRACKBALL
i. DISTB - DISABLE PED DEVICE

Je ENBPEN - ENABLE PHOTOPEN

k. DSAPEN - ' DISABLE PHOTOPEN

1. ITEM - ° DEFINE A GRAPHIC ITEM

.M. GETPEN - GET PHOTOPEN EVENT INFORMATION
Ne ENBXY - . ENTER MULTIPLE PHOTOPEN SCAN MODE
O. DSAXY -

LEAVE MULTIPLE PHOTOPEN SCAN MODE

-

FSPT1

C
C
C

[eNeNe]

[eNeoNe]

Pe REQPXY - REQUEST SINGLE PHOTOPEN SCAN

q. GETPXY - GET PHOTOPEN SCAN EVENT DATA

T. HCOPY - INITIATE HARD COPY

Se CCINIT - INITIALIZE COORDINATE CONVERTER

t. CCVAL - ACTIVATE THE COORDINATE CONVERTER WITH SPECIFIC VALUES
U, CCON - TURN ON THE COORDINATE CONVERTER

Ve CCOFF - TURN OFF THE COORDINATE CONVERTER
FORTRAN V,5A(621) /KI 11-FEB-81 13:31 PAGE 1

EXAMPLE 1 FOR FSP8
USING AN ELIPSE AS A PED SYMBOL TEST ELLIPSE AND PED ROUTINES

DIMENSION FPTS(8)
DIMENSION LPCS(4)
DATA FPTS /10.,10.,10.,-10.,-10.,-10.,-10.,10./
DATA ICSIZE,CHSPAC,RLSPAC,ICROT /1,20.,40.,0/
DATA LPGS /256.,100.,100,,100./

INITIALIZE

IPAGES = 4 :

CALL INIT(5,0,2)

CALL LAYOUT(IPAGES,LPGS) :
CALL SCALE(0.0,0.0,1000.0,1000.0)
CALL ENBBOX(15)

CALL ENBERR(15)

DISPLAY TITLE & SET UP CHARACTER PARAMETERS

CALL MOVE(150.0,800.0,0)

CALL IMARGN
CALL TPARM(3,40.0,60. ,ICROT)
CALL SETEXT(" FSP8',11)
CALL NEWLIN

CALL SETEXT('PED & ELLIPSE TEST',10)
SET UP PED SYMBOLS IN PAGE 2

CALL ADDREF(2)

CALL MOVE(500.,500. ,0)
CALL ELIPSE(20.,40.,0)
CALL ELIPSE(40.,20.,0)
CALL FILL(4,FPTS,1) -

NOW DISPLAY IT
CALL ADDREF(1)
CALL PICTUR(2)
CALL ENDPED(1,0,2,0)
LOOK FOR PED OR KEYBOARD EVENTS
CALL EVENT(1)

Go To (10,10,10,30,10,10,10,10,10,10,10,10,10,10,10,10)I
GO TO 90

— -

wooaaon

“HoNoNaI NoNeoNe]

o

o

KEYBOARD PROCESSOR

END

CALL GETKEY (1,IKEY)

IF (IKEY .LE, 15) GO TO 40

IKEY = IKEY 15

Go To (10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,90)IKEY
GO TO 90

TO TO 10
THE PROGRAM
CALL THEEND

STOP
END

D=3 /D-4

A aaocaoaoaan oNoNeNe [eNoNeNe] aaaQ aa

oNe!

APPENDIX E

PROGRAMMING EXAMPLES

EXAMPLE 1
Example 1 illustrates the use of INIT, LAYOUT, SCALE, THEEND.
NOTE
The CALL to INIT expects a parallel interface to
be used.
EXAMPLE PROGRAM 1

DIMENSION LPAGES(5) ‘
DATA LPAGES/1000, 100, 100, 10, 10/

INITIALIZE AND USE LOGICAL UNIT NUMBER 5. TRANSMISSION
WILL BE OVER THE PARALLEL INTERFACE

CALL INIT(3,0,1)

SPECIFY 5 PAGES OF USER DATA, EACH LENGTH BEING AS
DESCRIBED IN THE "LPAGES"™ DATA STATEMENT ABOVE.

CALL LAYOUT(5,LPAGES)

SPECIFY ORIGIN AT THE LOWER-LEFT CORNER AND A LENGTH
AND WIDTH OF 1024.

CALL SCALE(0.0,0.0,1023.0,1023.0)

(THE BODY OF THE DISPLAY PROGRAM GOES HERE)

WE ARE DONE, SHUT DOWN THE DISPLAY.
CALL THEEND
EXIT THE PROGRAM

CALL EXIT
END

EXAMPLE 2

This sample program, when executed, displays figure E-1 on the screen. It
illustrates user calls to the following subroutines.

)
INIT
LAYOUT
SCALE
ADDREF
MOVE
DRAW
XYPLOT
PICTUR
SETEXT
EVENT
GETKEY
TPARM
LMARGN

NEW LIN

In using these routines, it illustrates page linking and also the programming
interaction with peripheral devices.

NOTE

Af ter picture is displayed, to return to the TTY
emulator, hit function key Fl5.

*—0
THIS IS TEXT

Figure E-1

H=81-0021-009

E-3

00100 C k%% EXAMPLE 2 *%%

00200 C THE FOLLOWING EXAMPLE ILLUSTRATES THE USE OF ADDREF,MOVE,DRAW,SETEXT,
00300 C XYPLOT,NEWLIN,LMARGN,PICTUR,EVENT,GETKEY ,TPARM

00400 C NOTE: TEXT IS DISPLAYED VIA A SUBROUTINE(SETEXT) UNIQUE TO THE HOST
00500 C COMPUTER

00600 C DIMENSION LPAGES(5),ITEX(6),XARRAY(10),YARRAY(10)
00700 C DATA LPAGES /1000,100,100,10,10/

00800 C

00900 ¢ INITIALIZE AND USE LOGICAL UNIT NUMBER 5". TRANSMISSION
01000 C WILL BE OVER THE SERIAL INTERFACE

01100 ¢

01200 ¢ CALL INIT(5,0,2)

01300 ¢

01400 C SPECIFY 5 PAGES OF USER DATA, EACH LENGTH

01500 C BEING AS DESCRIBED IN THE 'LPAGES' DATA STATEMENT ABOVE.
01600 C

01700 ¢ CALL LAYOUTS(5,LAPGES)

01800 ¢ ‘

01900 C SPECIFY ORIGIN AT THE LOWER LEFT CORNER AND A LENGTH
02000 C AND WIDTH OF 500

02100 ¢

02200 C CALL SCALE(0,0,0,0,500.,500.)

02300 ¢

02400 ¢ _

02500 C OPEN PAGE 1 FOR DISPLAYING REFRESH

02600 C

02700 C CALL ADDREF(1)

02800 C

02900 C SET CURRENT POSITION TO CENTER SCREEN AND SET CHARACTER PARAMETERS
03000 C CHARSIZE=1,CHAR SPACE=10.,LINE SPACE=15., ,ROTATION=0
03100 C

03200 C CALL MOVE(250.,250.,0)

03300 C CALL CPARM(1,10.,15.,0)

03400 C DRAW A SHALL BOX IN PAGE 2, 10 UNITS BY 10 UNITS.
03500 C NOTE THAT THESE MOVES AND DRAWS ARE ALL RELATIVE

03600 C

03700 C CALL ADDREF(2)

03800

03900

04000

04100 CALL MOVE (5. ,5.,1)

04200

04300

04400

04500 - CALL DRAW(O.,-10.,1)

04600

04700

04800

04900 :

05000 CALL DRAW(-10.,0.,1)

05100

05200

05300 .

05400 CALL DRAW(O.,10.,1)

05500
05600
05700
05800
05900
06000
06100
06200
06300
06400
06500
06600
06700
06800
06900
07000
07100
07200
07300
07400
07500
07600
07700
07800
07900
08000
08100
08200
08300
08400
08500
08600
08700
08800
08900
09000
09100
09200
09300
09400
09500
09600
09700
09800
09900
10000
10100
10200
10300
10400
10500
10600
10700
10800

[eNeoN®] [eNeNe eNeoNeNe] Qa0

aaoan

CALL DRAW(10.,0.,1)
RETURN TO CENTER
CALL MOVE(-=5.,-5.,1)
PUT A POINT IN CENTER OF BOX USING XYPLOT WITH RELATIVE COORDINATES
XARRAY (1)=0
YARRAY (1)=0
CALL XYPLOT(1,XARRAY,YARRAY,1)
NOW GO BACK TO BUILDING PAGE 1
CALL ADDREF(1)

INSERT A SUBROUTINE CALL TO THE 10x10 BOX., THIS WILL
SHOW IT IN THE CENTER OF THE SCREEN.

CALL PICTUR(2)
DRAW A LINE FROM THE CENTER OF THIS BOX TO THE RIGHT 80 UNITS

CALL DRAW(330,250,0)
NOW DRAW ANOTHER 10x10 BOX HERE,

CALL PICTUR(2)

PLACE SOME TEXT JUST BELOW THE BOXES.

CALL MOVE(250,,230.,0)

CALL IMARGN

CALL SETEXT('THIS IS TEXT',12)

CALL NEWLIN

CALL SETEXT('FOR GRAPHIC 8 FSP',17)
PICTURE SHOULD BE FINISHED NOW
USE THE EVENT ROUTINE TO SEARCH FOR FUNCTION KEY F15 STRIKE TO EXIT
IF I IS NOT A4 THEN THE INTERRUPT WAS NOT FROM THE FUNCTION KEYBOARD ...
IGNORE IT.

CALL EVENT(1)

IF(1.NE.4)GO TO 100

10900
11000
11100
11200
11300
11400
11500
11600
11700
11800
11900

CALL GETKEY (KBD,KEY)
IF(KEY.NE.31)GO TO 100
C
C WILL COME HERE IF KEY 31 WAS HIT, SO NOW WE ARE DONE,

C SHUT DOWN THE DISPLAY AND RETURN TO THE TTY EMULATOR,
CALL THEEND
END

APPENDIX F

PRODUCT PERFORMANCE REPORT

Occasionally, problems may be encountered in the use of products delivered to
our customers. These problems or errors should be identified and communicated to
Sanders Associates, Information Products Division by means of a Product Performance
Report (PPR).

_ Product Performance Reports should be submitted to Sanders Associates. An
appropriate specialist will review your PPR and attempt to resolve the problem or
offer a temporary circumvention.

Every PPR is acknowledged upon receipt and answered in writing.

In preparing a PPR, the following guidelines should be followed for accurate
and timely service to your problem.

1. Give as complete a description as possible of the problem encountered.
Often a detail that may seem irrelevant will give a clue to solving the
problem.

2. If possiblé, isolate the problem to a small example or procedure. This
will make it edsier for the specialist to duplicate the problem.

3. Include whatever documentation is possible, i.e., program listings,
computer output or sample input. Annotations in a listing pointing to the
error are very helpful.

Submit To:

CDMO

PRODUCT PERFORMANCE REPORT

INFORMATION PRODUCTS DIVISION
SANDERS ASSOCIATES, INC.
DANTIEL WEBSTER HIGHWAY, SOUTH
NASHUA, NEW HAMPSHIRE 03061

Page of

PPR #:

(assigned by the PPR center)

Product Identification and Version Operating System & Version Date
) (or document)
Report Type Priority
Name: [0 Logic error O Low
Company: O Doéﬁmentation [Standard
[J Suggestion ' (JHigh
[Inquiry
Address:
(J Sof tware (O Fimware [J Hardware
Zip: Is the problem reproducible?
Phone:] Yes O No
CPU: Host—-G8 interface: Attached documents: Distribution media:
Description:

PPR Center use only

Date received:

Date resolved:

To specialist:

—mm-m-—~———~nnmnm

THE INTENT AND PURPOSE OF THIS PUBLICATION IS TO PROVIDE ACCURATE
AND MEANINGFUL INFORMATION TO SUPPORT EQUIPMENT MANUFACTURED
BY SANDERS ASSOCIATES, INC. YOUR COMMENTS AND SUGGESTIONS ARE
REQUESTED.

PLEASE USE THE FORM ON THE REVERSE SIDE TO REPORT ANY PROBLEMS
YOU HAVE HAD WITH THIS PUBLICATION OR THE EQUIPMENT IT DESCRIBES.

| II |I | FIRST CLASS

PERMIT NO. 568
NASHUA, N.H.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by

Sanders Associates, Inc.
Information Products Division
Daniel Webster Highway, South
P.O. Box 868

Nashua, NH 03061

ATTN: DEPARTMENT 1-2894 (NHQ 1-447)

Information Products Division
Federal Systems Group -

EIRSANDERS

Name:

Company:

Address:

Telephone: []

Date:

Description of probiem (or suggestion for improvement):

Related tech manual number

Sanders Equipment

Part Number

Software/Firmware System

Version

Host computer
Host operating system

Host-GRAPHIC 8 interface

Version

firmware [

manual

My problem is: hardware (J software (]

a

