
RIDGE

9053 #~

•

ROS Utility
Guide

first edition: 9053 (SEP 84)

ROS Utility Guide

RIdge Computers

Santa Clara, CA

© Copyright 1984, Ridge Computers.
All rights reserved.
Printed in the U.S.A.

PUBLICAnON HISTORY

Manual TItle: ROS Utility Guide

first editon: 9053 (SEP 84)

NOTICE

No 1>art of this document may be translated, reproduced, or copied in any form or by any
means without the written permission of Ridge Computers.

The information contained in this document is subject to change without notice. Ridge
Computers shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the use of this material.

ACKNOWLEDGEMENT

This software and documentation is based in part on the fourth Berkeley Software Distribution,
under license from the regents of the University of California. We acknowledge the following
individuals for their part in its development: Ken Arnold, Rick Blau, Earl Cohen, Robert
Corbett, John Foderaro, Mark Horton, Bill Joy, Randy King, Jim Kleckner, Steve Levine,
Colin McMaster, Geoffrey Peck, Rob Pike, Eric Scott, and Eric Shienbrood.

These tutorial guides are based on documents created at Bell Laboratories to describe UNIX
System software, and at the University of California, Berkeley, to describe bsd 4.2. Credits are
given on the first page of each document contained in this volume.

Some text has been changed to more accurately describe Ridge Computers' implementation of
the software. Inappropriate material may have been deleted.

UNIX is a trademark of Bell Laboratories.

-ii- 9053

PREFACE

The ROS Utility Guide (manual 9053) is a collection of tutorial documents related to software
utility programs. Each section contains the detailed information that is omitted from the page of
the same name in the ROS Reference Manual (9010).

The topics in the Table of Contents are not the only ones related to utility programs. The ROS
Reference Manual has many entries that are fully explained within. Typically, the user wi~l see
a program in the ROS Reference Manual, and if one of these tutorials is mentioned under the
SEE ALSO heading, he/she will turn to this Utility Guide for help. After the reader is familiar
with a topic, he/she might refer to the ROS Reference Manual only.

TABLE OF CONTENTS

Tab ROS Reference
Label M an'Ual Page

WINDOWS - Multi-window Display Management windows(3x)
UUCP - UNIX to UNIX System Copy Program uucp(l)
SCCS - Source Code Control System sccs(1)
AWK - Pattern Scanning and Processing awk(1)
DC - Interactive Desk Calculator dC(l)
BC - Arbitrary-Precision Desk Calculator bc(l)
MAIL - message system mail(1)
M4 - M4 Macro Processor m4(1)

9053 -iii-

-iv- 9053

Utility Guide Multi-'Window Management

Ridge Multi-Window Display Management

This document describes the Ridge Operating System (ROS) multi-window display
management software for the Ridge Monochrome Display, and the integration of mouse
software with the bitrmap display hardware.

See the ROS Reference Manual (9010) for related software mentioned in this document: set­
font.{I), settek(I), setx3.64(1), copybits(3X), graf(3X), wgraf(3X), windows(3X). font(4),
mouse(7).

This document assumes the reader is familiar with the contents of the Ridge Mouse Install ..
tion Manual and User's Reference (9042). which describes installation of a Ridge Mouse and
its use with the Ridge Window Manager software.

1. IN1.'RODUCll ON

The Ridge multi-window display management software uses a graphics display screen for
text and graphics output, and the keyboard and mouse pointing device for input, to substantially
increase the efficiency of interaction with the Ridge 32.

The display management software supports client processes via standard ROS system calls
that do not require any special knowledge of the multi-window environment. The typical user
process directs its terminal input and output to the display using standard "read" and "write"
interfaces, and the display management software takes care of multiplexing the input/output to
the associated window for each user process. The window management functions are invoked
through existing standard ROS system calls so that the interface is language- and application­
independent. The window-specific functions allow applications to build their own interactive
environments that can run concurrently with applications executing in other windows on the
same display.

The display management software consists of several system processes that provide the
interactive user interface to the rest of the ROS system. The Display Driver process manages
the keyboard input and the multiple window output for a single Ridge Monochrome Display.
The Display Driver manages multiple windows that may overlap on the screen, with the con­
tents of each window being updated concurrently, thus allowing the user to view the progress of
multiple activities at the same time.

Only one window may be enabled for input at anyone time; switching between windows
is done with the press of a mouse button, thus allowing the user to easily switch from one
activity to another.

The Display Driver maintains a collection of data structures associated with each window.
New windows are created and manipulated by application programs through standard system
calls. By making appropriate input, output, and control requests to the Display Driver, a group
of processes can treat a window as a virtual terminal that has attributes and status independent
from the other windows on the display screen.

The M OUSt Manager process reads the mouse input and sends reports of the current posi­
tion and the button status to the Display Driver. User programs access the mouse input infor­
mation through the Display Driver, which associates both the mouse and keyboard input with
the active input window.

The Window M anagtr is an application program that provides the interactive user interface
to the Display Driver via the mouse device. The Window Manager interprets mouse input to
allow selection of the current input window, and performs other window manipulations such as
creation of new windows or placement of windows on the screen via the menu selection capa­
bility. Each window created by the Window Manager is associated with its own shell command
interpreter process, which can be used to invoke other programs.

9053 - 1-

Utility Guide Multi-Window Management

2. ENVIRONMENT
It is Important to understand the features of the Ridge Monochrome Display, keyboard,

and mouse devices.

2.1. Ridge Monochrome Display

.The Ridge Monochrome Display is a bit-mapped raster video output device. Its hardware
controller board generates a video)mage from an on-board 128K-byte refresh memory. The
memory data is bitmap that controls the color (black or white) of each dot on the screen. The
refresh memory is updated by DMA transfers from the main memory that is accessible to the
CPU.

Individual bits in contiguous refresh memory are mapped directly to the picture elements
(pixelB) on the screen. Both text and graphics are created by software that sets the appropriate
bits in the display memory, thus allowing arbitrary image generation.

The resolution of the screen is 1024 pixels in the X (horizontal) direction, and 800 pixels
in the Y (vertical) direction. Display device coordinates are expressed in terms of the pixel
addresses, with the origin (0, 0) placed at the upper left comer of the screen. The individual
pixels are addressed from 0 to 1023 in the X direction, and 0 to 799 in the Y direction.

The bitmap memory is a dot-matrix representation of the rectangular image. A pixel is
addressable as a bit in the display memory. By default, a bit value zero corresponds to a white
pixel, and a bit value one corresponds to a black pixel. A register in the display controller
hardware may be set to invert this correspondence, so that zero corresponds to black and one
corresponds to a white pixel.

For maximum flexibil1ty and low software overhead, each user process can access the bit­
map in its own address space using standard Ridge LOAD and STORE machine instructions. It
is possible for each process to change the screen image by modifying a bitmap in its own data
space, which, because of the speclflc location in the virtual address space, is mapped to the
display controller refresh memory as backing store by the virtual memory system.

The bitmap occupies 128K contiguous bytes in the virtual address space of each process.
The virtual memory system copies 4096-byte pages of the bitmap in and out of the display con­
troller refresh memory.

Modification of the screen image is achieved by modifying bits in a virtual address space,
and by use of ROS Kernel primitive Flush to send modified pages in main memory to the
display controller refresh memory. Main memory pages that are mapped to the display may be
reclaimed for other use by the virtual memory system if they have not been modified recently.

2.2. Keyboard

The display management software is controlled by keyboard input. Each time a key is
pressed, an 8-bit character is generated. The alphanumeric and punctuation keys generate stan­
dard ASCII codes, while the special function keys and cursor control keys generate single 8-bit
characters that have the most significant bit set. The non-ASCII special key codes are described
in part 6: Ridge Keyboard Codes of this document.

2.3. Mouse

The mouse is a pointing device with three buttons that sUdes on a reflective surface near
the display. It sends a sends a serially-encoded report when its position or buttons change.

Mouse movements are translated into cursor motion on the screen. In this way, the
mouse is a device for pointing at objects on the screen. Normally, mouse movements are
translated into cursor motions at a ratio of 1 :2. A single incremental. movement of the mouse.
however, translates to a single pixel cursor movement for flne positioning control. Thus, the
mouse can move rapidly over a large screen area and maintain the precision to select a particu­
lar spot.

- 2- 9053

Utility Guide Multi-'Window Management

The three mouse buttons have two states ("pressed" and "released"), giving eight possi­
ble combinations. The software, however, treats each button independently. Some mouse­
controlled funcUons are invoked by dragging the mouse; pressing a button and holding it down
while the mouse is moved. Other 'functions are invoked with a click of the button, by pressing
the button and immediately releasing it.

3. DISPLAY DRIVER

Any process m8¥ access a displ8¥ bitmap in its own virtual address space, but it is more
emclent for one bitmap to be manipulated by multiple processes. The DiBplay Dnver process
provides the coordination to allow multi-process access to one bitmap. There exists one
Dlspl8¥ Driver process per display device on the system.

The Display Driver software supports different screen sizes and resolutions to allow for
future display configurations. The resolution of the screen can be determined from a user pro­
cess by making an ioctl(e) system call using a file descriptor that is assoclated with the D ispl8¥
Driver:

#include <termio.h>

struct D isplayInfo {
intwidth;
int height;
unsigned int *bitmap;

};

ioctI (filedesc, command, arg)
struct D isplayInfo *arg;

The command argument using this form is:

BCGETSZ Get the parameters associated with the display and store them. in the D lspl8¥Info
structure referenced by argo

The width and height of the display are measured in bits. The bitmap field will contain the
base address in virtual memory that corresponds to the 128K-byte display bitmap.

3.1. Windows

A window (or viewport in computer literature) is the primary mechanism used to share the
screen. Each window on the screen is a rectangular region that m8¥ overlap other windows.
Each window provides a "task environment" that is separate from the other windows on the
screen.

Text and graphics displayed in a window are clipped to the window's boundaries. When
the Window frame gets smaller, or text scrolls past the window boundaries, the text not
displayed in the window is no longer retrievable. Graphics are automatically scaled relative to
the size of a window, so that no graphical information is lost when the size of a window is
changed.

A window appears as a rectangle with a 2-pixel-wide outline and a title tab above the upper
left corner containing its title string. Windows appear in a shade that distinguishes them from
the background pattern. Windows may overlap each other. Each window maintains its place in
a list that is sorted by the logical depth ordering. The -first window in the list may overlap and
obscure any window that is behind it in the list.

The Displ8¥ Driver maintains a separate set of "retained graphics" or "display list"data
to represent the textual and graphical operations that have been performed within each window.
When a portion of the display must be recreated due to movement of windows, the Display
Driver automatically redraws the affected part of the screen based on information from the data
structures. A user process has no access to these structures.

9053 -3-

Utility Guide Multi-Window Management

The Display Driver also maintains information for each window that allows it to act as a
"virtual terminal" to a set of processes. Each window has a state associated with it to control
features such as echoing of input characters, canonical or raw input mode, interpretation of spe­
cial characters such as the INTR 'or QUIT characters, and control over the in t.erpretation of
sequences of ASCII characters that are output to the window. The state and attributes of each
window can be queried and modified via the ioeti{e) system call independently from other win­
dows.

For instance, a window may be set in a mode to interpret escape sequences for cursor
positioning and line/character editing that are compatible with the ANSI X3.64 standard, thus
allowing the window to emulate terminals such as the DEC VT100. The particular escape
sequences and control codes supported are described later in this document.

Alternatively, a window may be set to interpret output characters in a mode that is compa­
tible with the Tektronix 4014 graphics terminal, thus providing line-drawing graphics output.
Tektronix 4014 and ANSI X3.64 output codes are described in the part 7 of this section.

3.2. Window Creation

Processes normally inherit their association with a window from their parent process (typi­
cally the shell) when they are created. Subsequent terminal input/output for each process is
directed to the appropriate window, with the Display Driver performing the bitmap operations
necessary to actually display text and graphics on the screen.

New windows may be created using either the ereat(e} or open{e} system calls, providing
the name of the window as the last part of a pathname that specifies the display device. The
display device is accessed by the pathname /dev/dispN where the "N" stands for a speCific device
number, as described in disp(7).

The window name is appended to the display device name, separated from it by a slash
.. /". For example, to create a new window whose name is "window2" on display device
number "0", the pathname used with ereat(e} would be "/dev /dispO/window2".

Processes which inherit their control terminal from their parent, which is the normal case,
or processes which explicitly set their control terminal, are associated with a particular window
on a display. The special name /devjtty identifies the window corresponding to the process' con­
trol terminal. This special name is mapped by ROS to the actual pathname of the window.
Thus, processes may easily refer to their control window without having to know the actual
window path nam e .

When the Display Driver process is started, it automatically creates a single window,
whose size is the entire display screen. This window. which is called the prototype window, has a
null window name, so that it is referred to simply by the display device name /dev/dispN, where
the "N" is the specific display number. Whenever input or output is directed to the prototype
window, the Display Driver automatically makes the prototype window the active window. This
handling of the prototype window allows commands like write{l} and wall{l}, to send messages
to the displays without knowing speCific window names.

Once a new window has been created, or an existing window opened, a process directs its
input and output to the window using standard ROS system calls such as read{e) and wn·te(f},
or library routines built on top of these basic system calls. Output causes appropriate changes
to the rectangular area on the screen associated with the window, where the changes depend on
the current mode of the window as described later. Inl>ut requests allow the process to read the
keyboard input associated with the window. Non-blocking reads may be used by setting the
O.-NDELAY flag either with open{e} or with /enti{e). Access to the mouse input is described
part 3.8 of this document.

When all file descriptors associated with a window have been closed in all processes, via
clolJe(f), the Display Driver kills the window and removes it from the screen. A window may
be forcibly destroyed via the unlink{e} system call; any outstanding system calls pertaining to
the deleted window will return errol'S to the caller.

-4- 9053

Utility Guide Multi-'Window Management

3.3. 'Window Control Functions

Various window attributes and operations are accessed by the ioetl(2) system call. For
example, the terminal characteristics described in termio(7) are accessed tor each window
independently trom the other windows on the display.

The windows(9) subroutine package allows access to the various window-specific control
functions by providing a simplifIed interface that performs the appropriate ioetl call for each
function. These functions are described in the following sections; fIle descriptor 2 (stderr) is
used to perform the well request, and the value -1 is returned as an error indicator.

Upon creation, each window is assigned a window ID that identifIes it in all subsequent
control operations.

int GetWindowNumber (fIledesc)
int fIledesc;

returns the window ID ot the window associated with the open fIle descriptor argument. The
"prototype window" Is assigned a window ID with the value O. A value o~ -1 indicates that the
fIle descriptor is not associated with a window on the display.

int GetCurrentWindow ()

returns the window ID of the active input window, which is always at the front of the depth­
sorted window list.

int GetNextWindow (wID)
intwID;

returns the window ID ot the window which is next on the window list behind the given win­
dow. The value -1 is returned if there are no more windows farther back in the list.

Window size and poSition on the screen are described using the Point and Rectangle data
structures, as defIned in the <8ys/graf.h> header file. A Point is a two-dimensional location
specifIed in terms of display device coordinate values.

struct Point {

};

int x;
int y;

A Rectangle is specifled as two Points, where the origin specifIes the upper left corner location,
and the extent specifIes a width and height measured in bits.

struct Rectangle {

};

struct Point origin;
struct Point extent;

GetWindowFrame (wID, frame)
lnt wID;
struct Rectangle *frame;

determines the current location and size of a window's rectangular frame. When a window is
created. its origin is (0,0) and its extent is (0,0).

SetWindowFrame (wID, frame)
int wID;
struct Rectangle *frame;

moves the frame of a window on the screen, and can change its size.

int FindWindow (at)
struct Point *at;

determines the frontmost window that contains a given point on the display.

9053 - 5-

Utility Guide Multi-'Window Management

If a window can be found that contains the point either within its frame or title tab, then
its window ID is returned; otherwise, the value -1 is returned. The location of the point is
specified using displ8¥. device coor~inates.

When a window is created, the window part of the pathname is copied to another string
which is used as the text for displ8¥ing the title tab. The title string may be read, or changed to
another string, by the following functions.

char .GetTitle (wID)
intwID;

SetTitle (wID, name)
intwID;
char .name;

GetTitle returns a pointer to a static area containing a null-terminated string, which should be
copied elsewhere by the caller. Changing the title string does not change the name of the win­
dow. For example, a window that was created with the name •• /dev /dispO/window2" originally
has the title "window2"; changing the title to "box" causes the title tab to change, but the
window is still referred to by the name it was created with. Changing a title to the null string
causes the title tab to disappear.

Each window has a set of fiags, which are represented as bits within a 32-bit wFfag8 word.
The bits control various attributes of the window, including the emulation mode of the window.

int GetWFlags (wID)
intwID;

determines the WFlagB.
SetWFlags (wID, fiags)
intwID;
int fiags;

modifies the wFfagB.

The following bits, or bit fields, are defined in the <BYBjwinctrl.h> header file.

WFMode Bit field that determines how sequences of characters are interpreted for a window.
The following three mutually exclusive modes are currently defined.

WFASCII Mode that performs no interpretation of escape sequences, treating output characters
as standard ASCII characters. Characters are displayed using the font associated
with the window. The only control characters interpreted are Backspace, Linefeed,
Return, and Bell, which produce their normal functions (Bell fiashes the screen
momentarily) .

WFANSIX3_64
Mode that interprets control characters and escape sequences compatible with ANSI
X3.64 standard. This is the default mode, set when a window is created.

WFTek40I4
Mode that interprets control characrers and output sequences compatible with the
Tektronix 4014 graphics terminal.

WFAwake Bit that determines if a window is "awake" ~ The initial value of this bit is 1, allow­
ing input and output. If the bit is cleared to 0, then the current size of the window
and its associated text and graphics is saved, and the window is put to "sleep". The
window is cleared and all input. Output requests are held pending until the window
is awakened. When the bit is then set back to 1, the window attains the previously­
saved size, regardless of size changes since the window was put to sleep, and any
text or graphics are redrawn.

- 8- 9053

Utility Guide Multl-Window Management

WFCursonBit that determines if an inverted-block cursor appears in a window at the current
text cursor location. This bit is initially set to 1, causing the text cursor to appear
whenever an outstanding input request is pending in the active input window. If
this bit is cleared to 0, then no text cursor is displayed in the window.

WFRetain Graf
Bit that determines if graphics operations are retained for a window operating in
Tektronix 4014 mode. This bit is initially set to 1, causing all graphics operations to
be saved in an internal data structure so that the image can be regenerated as
needed. If this bit is cleared to 0, then graphics operations are not retained.

SelectWindow (wID)
int wID;

selects a window as the active Input window, and moves it to the front of the
depth-sorted window list. The selected window is displayed in front of all other win­
dows, and its title tab is highlighted. All keyboard and mouse input events are
directed to the active input window.

UnderWindow (wID)
int wID;

moves the indicated window behind all awake windows in the depth-sorted window
list. This causes the new frontmost window in the list to become the active window.

Certain events such as IN'IR or QUIT keystrokes in a window cause signals to ,be sent to
all processes that have the window as their control terminal. The control window for a process
is inherited from its parent process when it is created.

SetCtrlWindow (wID)
int wID;

changes the window which acts as the control terminal for the calling process.

KillWindow (wID)
int wID;

sends the SIGHUP signal to all processes which have the given window as their control termi­
nal. The SIGHUP signal causes all the processes associated with the window to terminate, pos­
sibly after cleaning up temporary data.

3.4. Text Fcmts
A font is a sequence of pixel patterns correspondIng to the images of individual characters.

These sequences of bit matrices are kept in files normally found in the !fonts directory in the
ROS file system. The various font files contain different patterns corresponding to different
type styles and sizes. The format of these files is described in font{';).

The size of a bit-matrix font corresponds, roughly, to printer's points (72 points to the
inch). By convention, the names of the font files include the point size. For example, fixl0
contains a typeface whose size is approximately 10 points.

The characters in the fix fonts have the same bit-matrix size so that text in a window can
be arranged into rows and columns of the same length, as on a regular terminal, which is essen­
tial for cursor positioning commands. The Display Driver reads the !fonts/sys.font file at initiali­
zation time, and uses this font information as the de-fault font for depicting characters. The
contents of the !fonts/sys.font file should be the same as one of the other fix font files.

The image of characters can also be represented as a sequence of vectors, or line seg­
ments. Then, by appropriate scaling, the same font can be used to generate many different type
sizes. This alternative encoding scheme for fonts is used by the Display Driver to depict text as
line drawings in a window that is in the Tektronix 4014 graphics emulation mode. The Display
Driver reads the ffonts/sys.vfont file at initialization time to obtain this vector font information.

9053 - 7-

Utility Guide Multi-"Window Management

Text Is displayed In a window according to the window's font. Each window has a single
font associated with it, but different windows can each have their own font. The default font is
associated with a newly created window, but may be changed on a per window basis using the
8etfont{1} command. When a wlndow·s· font is changed, all text in the window is redlsplayed
using the new font information.

Int DefineFont (name)
char *name;

makes a font known u> the Display Driver.

The parameter is a the full pathname of a bi~matrlx font file. The Display Driver reads
the contents of the font file into an internal data structure, and returns a font ID that is used in
further operations on that font. The value -1 is returned if the file cannot be read. or if it does
not contain font information.

char *GetFontName (fontID)
int fontID;

returns a pointer u> a null-terminated string that is the pathname that was used U> read a given
font ID. The pointer should be copied to another area by the caller.

int GetFontID (wID)
intwID;

SetFontID (wID, fontID)
IntwID;
lnt fontID;

determines or sets the font ID associated with a window.

GetWCharSize (wID, charSize)
intwID;
skUct Point *charSize;

determines the width and height of a single character in the bi~matrix font currently associated
with the given window.

The size of the character returned is measured in bits. This may be used U> calculate the
number of lines and columns of text that can be shown in a window.

3.5. ANSI XS.84 Compatibility Mode

When a new window is created, it is initialized to the ANSI X3.64 compatible mode. In
this mode, the window can emulate terminals such as the DEC VT-I00 that comply with the
ANSI X3.64 standard. The number of lines and columns of text depends both on the size of
the window and on the size of the bitrmatl'ix font associated with the window.

Printable ASCII characters are displayed using the bit-matrix font associated with the win­
dow. Non-printable characters are shown as a small "lightning bolt" which indicates there is
no corresponding bit pattern for that 8-bit character code. Certain control characters, such as
Return, Linefeed, and Backspace, perform their customary cursor control functions.

Output characters are displayed at the current position of the text cursor for a window.
The text cursor is shown as a video-inverted block the size of one character position whenever
the window has an outstanding input request. The text cursor is advanced to the right one
position as each character is written, and automatically moves U> the first column of the next
line after the last character in a line is written.

Various escape sequences allow cursor positioning, insertion and deletion of characters
and lines. clearing parts of lines and windows, and inverse video on a per-character basis. The
particular escape sequences that are recognized in X3.64 mode are described later in this docu­
ment.

-8- 9053

Utility Guide Multl-Window Management

A user can set the X3.64 mode in a window by executing the 8etx9.64{1} command in that
window. The X3.64 mode can be set from a program by either modifying the wFlag8 word
associated with the window, or by writing a particular escape sequence that is recognized in any
mode, setting X3.64 mode. The four-character escape sequence is ESC %! 1

3.8. Tektronix 4014 Compatibility Mode

A window may be set to the Tektronix 4014 mode. This allows emulation of the Tek­
tronix 401X series of graphics terminals on the Ridge Monochrome Display, except where
hardware differences make it infeasible to do so. Line-drawing graphics are supported through
commands embedded in the output data, which are compatible with the Tektronix 4014
equipped with the Enhanced Graphics Module features.

Graphics and text are clipped to the window boundaries, and are scaled proportionately to
the difference in resolution between a real Tektronix 4014 display and the current window size.
If the window is redrawn (such as when a window is moved or its size is changed), the graphics
are automatically regenerated by the Display Driver.

In alphanumeric mode, printable ASCII characters are displayed using the vector font.
The number of lines and columns of text is determined by the current character size. of which
there are four to choose from. Non-printable characters are not displayed, and do not move
the alphanumeric cursor. The Return, Linefeed, Backspace, and Vertical Tab control characters
perform their customary cursor control functions.

In graphics mode, character sequences define endpoints of lines to be drawn. The end­
points are specified in a coordinate range of 0 to 4095 in both the X and Y directions, which are
mapped to actual display device coordinates using a scaling factor that is proportional to the
current size of the window. A line may be drawn in one of five styles: solid, dotted, dot­
dashed, short-dashed, and long-dashed. Point Plot Mode, Incremental Plot Mode, and Graph­
ics Input Mode are supported. The details of the Tektronix 4014 emulation mode are described­
later in this document.

A set of simple subroutines for line drawing is described in wgraf{9}. In addition to gen­
erating the proper character sequences to specify a line segment or to clear the window, there
are functions to control the width and color of lines. By default, lines are drawn one pixel
Wide, but it is possible to increase the width in one-pixel increments. Also by default, lines are
drawn as black pixels, but either white pixels or the complement of the current background pix­
els may be specified.

A user can set the Tektronix 4014 mode in a window by executing the 8tttek{1} command
in that window. The Tektronix 4014 mode can be set from a program by either modifying the
wFlag8 word associated with the window, or by writing a particular escape sequence that is
recognized in any mode, setting Tektronix 4014 mode. The four-character escape sequence is
ESC%! 0

When a window is placed into Tektronix 4014 mode, alphanumeric mode is selected, the
large character size is set, the line style is set to solid, the window is cleared, and the
alphanumeric cursor is placed at the home position.

3.7. Keyboard Input

Keyboard interrupts are handled by the Display Driver, and queued in the type-ahead
buffer of the active input window. Control over the q\).eueing of characters is described later in
this document. The interpretation of special characters such as INTR and QUIT is controlled
on a per-window basis as described in termio{7}.

A process uses the standard read{f} system call to access the keyboard input for the win­
dow associated with an open file descriptor. Normally, a process blocks when it attempts to
read from a window that has no keystrokes queued for it, or if the window is not the active
input window. A non-blocking read{f} may be used to determine if there are any characters
from the keyboard queued for a particular window. If the O_NDELA Y bit is set either by

9053 - 9-

Utility Guide Multi-'Window Management

open(t) or /cntJ(e) on a file descriptor bound to a window, then a read returns immediately with
a value of 0 when there are no keystrokes queued for the window.

3.8. Mouse Input

The MO'U8e Manager is a process separate from the Display Driver which handles a mouse
or similar pointing device interfaced through an R8-232 serial port. The Mouse Manager is
normally s~d as an asynchronous process during the login procedure, as described later.

The Mouse Manager reads the input device data and converts the data into a canonical
form of X and Y positions and the current button states. This information is sent to the
Display Driver, which places the information coded as a sequence of bytes into the mouse
event queue for the active input window. Control over the queueing of mouse events is
described later in this document.

The Display Driver places 5 bytes in the event queue for each mouse event. The entire
event queue is fiushed first if there is not enough room left for all 5 bytes, thus insuring that
only the most recent events are queued.

The first byte contains the state of the buttons. Bit 0 (least significant) is the right but­
ton, bit 1 is the middle button, and bit 2 (more signUlcant) is the lett button. The other bits
are normally zero, but may contain more button bits if a nonstandard pointing device is being
used. A bit value of 1 indicates the corresponding button is depressed, and a bit value of 0
indicates the button is released.

The second and third bytes contain the X coordinate, in two's complement representation,
high-order byte first. The fourth and fifth bytes contain the Y coordinate in the same format.
The coordinate system used for the X,Y position depends on the mode of the active window
and the event mode bits in the wRag8 word for the window.

If the EMLocCoords bit is set, then display device coordinates are used, and the location
can be anyWhere on the display surface. The X coordinates range from 0 to 1023, and the Y
coordinates range from 0 to 799, with the origin in the upper left corner of the Ridge Mono­
chrome Display disp(7).

If the EMLocCoords bit is not set, only mouse positions within the active window are
queued. The coordinate system used in this case is translated relative to the location of the
window on the display surface, and may be scaled depending on the current mode of the win­
dow.

If the window is emulating a Tektronix 4014 terminal (WFMode is WFTek4014), then
the X coordinates range from 0 to 1024, and the Y coordinates range from 0 to 780, with the
origin in the lower left comer of the window. The display device coordinates of the mouse are
appropriately scaled based on the size of the window.

If the window is not in WFTek4014 mode, then display device coordinates are used, but
are first translated relative to the origin of the window. The X coordinates range from 0 to one
less than the width of the window, and the Y coordinates range from 0 to one less than the
height of the window, with the origin in the upper left corner of the window.

The mouse input for a window is accessed using the open(e) system call, providing the
name ""mouse" appended to the window path name, separated from it by a slash ""I". For
example, to open the mouse input associated with window "window2" on display device
number "0", the pathname would be "/dev/dispO/window2/mouse".

Alternatively, the special name Idevjmo'U8t can be used by a process to specify the mouse
input from the window which corresponds to its control terminal. This special name is mapped
by ROS to the actual pathname of the window plus the string "" Imouse". Thus, processes may
refer to the mouse input from their control window without having to know the actual window
pathname.

A process uses the standard read(e) system call to access the mouse input from the win­
dow associated with an open file descriptor. Each Read returns as many bytes from the event

- 10- 9053

Utility Guide Multi-'Window Management

queue as are requeswd, but to maintain synchronization with the queuing of mouse event
byws, it is recommended that 5 bytes be read at a time.

Normally, a process blocks when it atwmpts to read from a window that has no mouse
input queued for it, or if the window is not the active input window. A non-blocking read(e)
m3¥ be used to determine if there is any mouse input queued for a particular window. If the
OflDELAY bit is set either by open(e) or fcntJ(e) on a file descriptor bound to a window, then
a read returns immediately with a value of 0 when there are no mouse input bytes queued for
the window.

3.9. Input Event Handling

Several of the bits in the wFlags word associated with each window provide control over
the queueing of input events from the keybo8l'd and mouse. The wFlag8 are determined and
modified using the GetWFlags and SetWFlags functions described previously.

The keyboard events for the active input window are controlled by the following bits,
which 8l'e defined in the <sllsjwi'nctrl.h> header file.

EMQueueKB
Bit that determines if any keystrokes 8l'e to be queued for the window. The initial
value of this bit is I, allowing normal interpretation of keyboard inwrrupts, includ­
ing special characters such as INTR and QUIT. If this bit is cleared to 0, then all
keyboard interrupts for the window 8l'e ignored.

EMSigIOKB
Bit that determines if keystrokes cause a SIGIO 8ignal(e) to be sent to the process or
process group waiting for keybo8l'd input from the windo'\Y. The initial value of this
bit is 0, causing no signals to be sent. If this bit is set to I, then each keyboard
inwrrupt for the window generates a signal to the processes associated by fcntJ(e)
with the window.

Mouse input is placed in the mouse event queue for the active input window according to
the following bits, as defined in the <Slls/winctrl.h> header file. If the bits for the active win­
dow do not allow queueing of a mouse event, then the window associated with the Window
Manager process is tested according to its bits. This allows a process in the acti,ve window to
filter some or all mouse events, passing unwanted events to the Window Manager, which m3¥
choose to handle the mouse event or have it discarded.

EMQueueLoc
Bit that determines if mouse input is to be queued for the window. The initial value
of this bit is 0, causing all mouse events for the window to be ignored. If this bit is
set to 1, then mouse events which satisfy the conditions specified by the other con­
trol bits are queued.

EMLocCoords
Bit that determines the allowable coordinates of the mouse which are queued for the
window. The initial value of this bit is 0, allowing only mouse events whose coordi­
nates are inside the window's boundaries to be queued. If this bit is set to 1, then
mouse, events located anywhere on the screen which satisfy the other conditions are
queued.

EMLocMotion
Bit that allows queueing of mouse events resulting from motion or button changes.
The initial value of this bit is 0, allowing only mouse events that indicate a button
change to be queued, thus ignoring events resulting only from motion. If this bit is
set to 1, then mouse events are queued which satisfy the other conditions, regard­
less of button changes.

EMButtonMask
Bit field that determines which button-changes will cause a mouse input event to be
queued for the window. The field is composed of the logical OR of the following

9053 - 11-

Utility Guide Multi-Window Management

four fields, and is initialized to the value o.
EM RightButton

Bit that corresponds to. the right button on the mouse. A bit value of 1 indicates
that a mouse event which has a difl'erent state tor the right button from the previous
event is to be queued. A bit value ot 0 indicates that right button changes are to be
ignored.

EMMiddleButton
Bit that corresponds to the middle button on the mouse. A bit value of 1 indicates
that a mouse event which has a different state for the middle button from the previ­
ous event is to be queued. A bit value of 0 indicates that middle button changes are
to be ignored.

EMLeftButton
Bit that corresponds to the left button on the mouse. A bit value of 1 indicates that
a mouse event which has a difl'erent state for the left button trom the previous
event is to be queued. A bit value of 0 indicates that left button changes are to be
ignored.

EM OtherButtons
Bit that corresponds to all other buttons on a nonstandard mouse or other pointing
device. A bit value of 1 indicates that a mouse event which has a difl'erent state for
at least one of the other buttons from the previous event is to be queued. A bit
value of 0 indicates that all other button changes are to be ignored.

EMSigIOLoc
Bit that determines it mouse input events cause a SIGIO ~ignal(e) to be sent to the
process or process group waiting for mouse input from the window. The initial
value of this bit is 0, causing no signals to be sent. If this bit is set to 1, then each
mouse event (not each byte) for the window generates a signal to the processes
associated by Icntl(e) with the window.

The wF/ag8 bits that control mouse input events may also be accessed by making an
ioctl(e) system call using a file descriptor associated with a window.

#include <termio.h>

ioctl (flledesc, command, arg)
int *arg;

The command argument using this form is

MOUSEGET
Get the flag bits associated with the mouse input into the integer pointed to by argo
All other bits are cleared to zero.

ioct! (flledesc, command, arg)
int arg;

The command argument using this form is

MOUSESET
Set the flag bits associated with the mouse input from argo All other bits are
ignored.

3.10. Cursor

The cur80r is a small block of pixels that is displayed on the screen at the current location
corresponding to the mouse, and thus tracks the movement of the mouse. The cursor location
is normally constrained to remain within the boundaries of the display screen by the Display
D river process.

- 12- 0053

Utility Guide Multi-Window Management

The normal shape of the cursor is an arrow which points upward and to the left. The tip
of the arrow indicates the pixel that corresponds to the current mouse location.

When a window emulating a Tektronix 4014 graphics terminal is placed into Graphics
Input (GIN) mode by a special character sequence, the shape of the cursor changes to a cross­
hair. The intersection of the cross-hair indicates the pixel that corresponds to the current
mouse location. During GIN mode, the cursor may also be moved in single-pixel increments
by the four cursor keys on the keyboard (labelled with left, right, up, and down arrows). Any
other keystroke terminates GIN mode in the active input window.

SetCursorLocation (wID, at)
int wID;
struct Point *at;

sets the current cursor location relative to a given window.

The coordinate system used for the X,Y position depends on the mode of the given win­
dow and the event mode bits in the wFlag8 word for the window.

If the EMLocCoords bit is set, then display device coordinates are used, and the location
can be set to any value. If the EMLocCoords bit is not set, then the coordinate system is
translated relative to the location of the window on the display surface, and may be scaled
depending on the current mode of the window.

It the window is emulating a Tektronix 4014 terminal (WFMode is WFTek4014), then
the X coordinates range from 0 to 1024, and the Y coordinates range from 0 to 780, with the
origin in the lower left corner of the window. The display device coordinates of the cursor are
appropriately scaled based on the size of the window.

It the window is not in WFTek4014 mode, then display device' coordinates are used, but
are first translated relative to the origin of the window. The X coordinates range from 0 to one
less than the width of the window, and the Y coordinates range from 0 to one less than the
height of the window, with the origin in the upper left corner of the window.

3.11. Pop-up Menus

Pop-up menU8 are supported by the Display Driver. A pop-up menu displays a list of com­
mands on the screen and allows the user to point to the desired command, selecting it with a
mouse button. When a mouse button is pressed and held down, a menu appears at the location
of the cursor. The pop-up menu overlays part of the screen image, which is saved before the
menu appears, and is restored when the menu selection is complete.

The user invokes a pop-up menu by pressing a button, holding the button down while
moving the mouse to select the desired line of text in the menu, and then releasing the button.
As the mouse is moved with the button down, the selected menu line is highlighted in inverse
video. If the button is released while the mouse is outside the pop-up menu boundary, no
operation is performed.

By convention, application programs dedicate the middle and right mouse buttons to be
used for selecting commands from one of two menus. The menu associated with the middle
button contains commands that pertain to the application running in the active input window.
This menu may be non-existent for a particular window, depending on the currently executing
application. The menu associated with the right button contains commands relevant to the
Window Manager, that is, commands that apply to the display as a whole, such as opening,
closing, or moving a window.

An application process creates a pop-up menu by sending a string of text and a button
indicator to the Display Driver. The text, consisting of several short lines, is displayed outlined
by a rectangle at the current position of the screen cursor. When one of the lines is selected
using the mouse button, the index of the line is returned to the calling program, which can per­
form the appropriate function.

9053 - 13-

Utility Guide

int PopupMenu (text, button)
char *text;
int button;

Multi-Window Management

The tezt parameter points to a null-terminated' string, with embedded Newline characters
separating each line. The button parameter is a bit mask in the lowest three bits, with the least
significant bit representing the right button, the middle bit the middle button, and the most
significant bit the left button. The menu is shown on the screen, and selection is allowed,
while a button is depressed which has the corresponding bit set to 1. When the button is
released, the selected line's index (counting from one) is returned. If the button is released
outside of the menu, the value zero is returned.

4. WINDOW MANAGER

The Window Manager process provides an interactive user interface to the window func­
tions supported by the Display Driver. It allows the user to create and destroy windows, posi­
tion them on the screen or change their size, modify the depth order of overlapping windows,
and select the active input window. The Window Manager is controlled by the mouse, and pro­
vides its commands in a pop-up menu that may be invoked anywhere on the screen by pressing
a button on the mouse.

The Window Manager is a regular user process that is normally started during the initial
login sequence as part of the user's .profile or .login commands. An empty screen with only the
gray background is presented when the Window Manager first runs. A Window Manager will
kill itselt it its 8tde" is not associated with a display, or if another Window Manager is already
running on that display.

When the Window Manager starts, it changes the size of the ·"prototype window" to a
small rectangle in the center of the screen, then puts it to sleep, making it disappear. If input
or output is directed specifically to the prototype window, the Display Driver awakens it
automatically, causing it to appear in front of other windows, with no title tab. The prototype
window may be hidden again by using either the "sleep" or "close" commands described
below.

The Window Man.ager waits for mouse events and, based on the buttons, either performs
a window operation selected from a pop-up menu, or selects a window to become the active
inpu t window.

A click of the left button selects the frontmost window containing the screen cursor as the
new current window. The selected window is brought to the front of all other windows, and its
title tab is highlighted.

The middle button, which is not used by the Window Manager, is dedicated to
application-specific functions in each different window.

The right button invokes a pop-up menu for window manipulation. To select a command
from the pop-up menu, press the right button and hold it down. A difl'erent menu command is
highlighted as you slide the mouse vertically. Release the right button when the desired menu
command is highlighted. The following Window Manager commands are available from the
pop-up menu:

Open creates a new window, and starts a new shell process in it. An outline of a window
with 24 rows and 80 columns of characters appears on the screen with its upper left
corner tracking the cursor. When the right button is clicked, the window is drawn at
its current location. The newly-created window becomes the selected active input win­
dow, placed in front of all other windows with its title tab highlighted. A shell process
is created and its stdin, stdout, and stde" are bound to the new window. The shell to be
executed is found from the SHELL environment variable if it exists, or from the shell
field in the user's passwd(4) entry if it exists, or finally using ;fJin/8h if the previous
methods fail.

-u- OO~

Utility Guide Multi-'Wincbw Management

Close kllls all the processes associated with the current window, thus causing the window to
disappear. The processes are sent the SIGHUP signal, causing them to terminate their
activities, possibly after cleaning up their working environment.

Move drags the current window's border around on the screen, following the mouse, until
the right button is clicked. The window is redrawn at the new location.

Grow. drags the lower right corner of the current window's border around on the screen fol­
lowing the mouse, while the upper lett corner stays fixed. When the right button is
cUcked, the window is redrawn with the new size.

Under places the current window behind all the other windows (except ones that are asleep),
automatically selecting the next window in front as the new current window.

Sleep shrinks the current window to a small size, and suspends its input and output. Select­
ing a sleeping window twice with the left button causes it to wake up, resuming its pre­
vious size and re-enabling its input and output.

Exit causes the Window Manager to exit, thus returning back to a blank screen and the
login process. This may only be done when there are no more windows open on the
screen.

5. INSTALLING MUL '11-WINDOW SOF'IWARE

Read Ridge Mouse Installation Manual and User's Ref'erence (9042) for installation
basics. This document provides additional technical tips on installation.

The Mouse Manager associated with a display, by default, reads the serial device
/dex/ttyx whose X number corresponds to the /dev/dispX. For example, the Mouse Manager
started on /de'O/dispO reads its input from /devjttyO. If a command line 'parameter is given when
the Mouse Manager is started, the Mouse Manager instead uses the specified pathname as its
input device. Use of the command line parameter is recommended in Ridge Mouse Install.
tioD and User's Guide (9042) because it is more manageable.

The Mouse Manager uses its stdo'llt file descriptor to associate itself with the Display
Driver, The Mouse Manager kills itself if the stdo'llt is not bound to a Display Driver, or if
another Mouse Manager is already associated with that Display Driver. The Mouse Manager
must have exclusive use of its serial device, so the file /tlcfinittab must not cause a User Moni­
tor process or the getty{ 1) process to be started for that /dt'Ojtty device.

Starting the Mouse Manager is accomplished Crom the shell by executing the program
jros/mo'tJ,semgr, optionally passing a device pathname as an argument, and specifying that the
program run as an asynchronous process with an ampersand" 8!." at the end of the command
Hne. As described below, this command is generally placed into the .profile or .login command
file for a user.

The Window Manager is invoked from the shell as a simple command' /usrflJinjwindowmgr,
with no arguments. 'The Window Manager uses its stde" file descriptor to associate itself with
the Display Driver, and will kill itselt if either the stde" is not bound to a Display Driver, or if
another Window Manager is already associated with that Display Driver.

6. RIDGE KEYBOARD CODES
The following 8-bit hexadecimal codes are generated by the non-ASCII-character keys on

the Ridge keyboard. The labels ··SI" through ··S8" refer to the unlabelled ··soft" keys at the
top of the keyboard, ordered from lett to right.

9053 - 15-

Utility Guide Multi-'Window Management

Key label 8-bit code
Fl 80
F2 81
F3 82
F4 80
F5 8E
F6 8F
F7 93
F8 94
F9 95

FlO 99
Fil 9A
FI2 9B
FI3 9F
FI4 AO
FI5 Al
81 83
82 84
83 85
84 86
85 87
86 88
87 89
88 E2

PREY 8A
LINEIN8ERT 8B
CHAR IN8ERT 8C

NEXT 90
LlNEOELETE 91

CHAROELETE 92

\ 96
t 97
/ 98

+- 9C
HOME 90

-+ 9E
/ A2

{ A3
A4

- 16- g053

Utility Guide Multi-Window Management

7. 'lERMINAL EM:ULAnON MODES

The Ridge Monochrome Display operates in either Tektronix 4014tm emulation Diode, or in
ANSI X3.64 mode. Unless otherwise directed, the display operates in X3.64 mode.

If the Ridge Window Manager software is in use, rererences in this manual to the "screen" or
""Display" apply to each individual window.

The mode or operation is controlled by sortware. It can be set by typing a control sequence at
the Display keyboard or by executing a ROS command.

MODE
Tektronix
ANSI X3.64

SEQUENCE
ESC%!O
ESC%!1

COMMAND
settek(1)
setx3.64(1)

9053 - 17-

Utility Guide. Multi-Window Management

7.1. ANSI X3.84 Mode for Monochrome Display

7.1.1. Chnirol Characlers

Control characters are interpreted in X3.64 mode as follows:

NUL and DEL: ignored on output
CR.: moves the cursor to first column in current line
LF and FF: moves the cursor down one line, scrolllng if at last line
BS: moves cursor one column to left unless already at left edge
BEL: causes screen to "flash"

7.1.2. Fscape Sequences

In the tables that follow. "'ESC" stands for the escape key (hexadecimal code IB). and "n"
stands for a decimal numeric parameter in the range 0 to 9. It omitted, "'n" assumes the value
o or 1, depending on the function.

NAME
Position cursor

Cursor up

Cursor down

Cursor right

Cursor left

Index

Reverse index

Next line

Erase to end of line

- 18-

ANSI X3.M escape sequences

ESC [n; n H

ESC [nA

ESC [n B

ESC[nC

ESC[nD

ESCD

ESCM

ESCE

ESC [0 K

Position cursor at the line specified by first
pa.rameter n, and to the column specified by the
sec:and pa.rameter n. Lines and columns are
numbered starting from 1, which is the default
value or n. The terminator "1" is equivalent to
"H" •

Move cursor up n lines (n defaults to 1).

Move cursor down n lines (n defaults to 1) .

Move cursor right n columns (n defaults to 1).

Move cursor left n columns (n defaults to 1).

Move cursor down one line. If cursor was on last
line, scroll screen upward.

Move cursor up one line. If cursor was on first
line, scroll screen downward.

Move cursor to the beginning of the next line. If
cursor was on last Une, scroll the contents of the
screen upw~d.

Erase characters in current line from the cursor to
the end of the line. If no numeric parameter is
given with the UK" terminator, 0 is the default.

9053

Utility Guide Multl-Window Management

ANSI X3.64 escape sequences (continued)

NAME
Erase from beginning ESC [I' K
c:L line

Erase line ESC [2 K

Erase to end of screen ESC [0 J

Erase from beginning ESC [1 J
of screen

Erase screen ESC [2 J

Insert line ESC [n L

Delete line ESC [n M

Delete character ESC [n P

Insert character mode ESC [4 h

Replace character ESC [4 I
mode

Set video attributes ESC [0 m

Select inverse video ESC [7 m

Erase characters in current line from the
beginning up to, but not including, the cursor
position.

Erase all characters in the line with the cursor.

Erase characters In current line from the cursor to
the end of the screen. If no parameter is given
with the .. J" terminator, 0 is the default.

Erase characters from the beginning of the screen
up to, but not including, the cursor position.

Erase entire screen.

Insert n new lines (n defaults to 1). The line
containing the cursor and any following llnes are
scrolled downwards.

Delete n lines (n defaults to 1) starting with the
line containing the cursor. Any following lines are
scrolled upwards.

Delete n characters (n defaults to 1) starting with
the character under the cursor. Any remaining
characters are slid over to the left with blanks
filling on the right end.

Enter insert mode, where each printed character
causes characters from the cursor to be 'slid over to
the right before the character is written.

Exit insert mode; each character is written over
any character at the position of the cursor (default
mode) .

Set default video attributes (reset inverse video).
If no parameter is given with the cern" terminator,
o is the default.

Set inverse video attribute for any following
printing characters, until attributes are turned off.

9053 - 19-

Utility Guide Multi-Window Management

7.2. Tektronix 4014 Emulation Mode for Monocluome Display

All emulation functions are performed in ~oftware. Any program written for the Tektronix
4014'm series terminals will run in this emulation mode.

See the Tektronix 40Ll Oomputer Diaplay Terminal U,er', Manual.

The following Tektronix features are available:

• Enhanced Graphics Module features
(4096 addressibility, Point Plot Mode, Incremental Mode)

• X-Y addressing of 0-4095
mapped into a 1024 x 780 logical display area
(which is then scaled and displ3¥ed in the window)

• Five line types
(SOlid, dotted, dotr-dashed, short-dashed, long-dashed)

• Four character sizes
(scaled to current window dimensions)

Five Tektronix modes are available:

• Alphanumeric Mode (with single margin contrOl),
• Graphics Mode,
• Graphics Input Mode (GIN),
• Point Plot Mode, and
• Incremental Plot Mode.

The Ridge Fl key is equivalent to the Tektronix PAGE key. It selects Alpha mode,
homes the alpha cursor, and erases the screen.

The Ridge F2 key is equivalent to the Tektronix RESET key. It selects Alpha mode, homes
the alpha cursor and resets default characteristics, but does not erase the screen.

The following Tektronix 4014 reatures are not available on the Ridge Monochrome D ispl3¥:
write-thru, hard copy, audible bell, and Intensity reduction.

7.2.1. Alphanumeric Mode Features

The following ASCII control characters move the alphanumeric cursor:

CR moves the cursor to first column In current line

LF moves the cursor down one line, wrapping around to the tap if at last line

VT moves the cursor up one line, wrapping around to the bottam if at first line

BS moves cursor one column to left unless already at left edge

The following escape sequences result in various character sizes:

Escape Olarad.ers Number
sequence per line of lines
ESC 8 35 74
ESC 9 38 81
ESC: 58 121
ESC; 64 133

The Alphanumeric Mode features that are not supported are the Alternate Character Set,
and Margin 2.

- 20-

Utility Guide Multi-Window Management

7.2.2. Graphics Mode Features

Graphics Mode is entered with GS. or ESC GS sequence, and supports the Enhanced Graphics
Module features. The Special Point Plotting feature is not supported. Graphics Mode is ter­
minated when any of the following character sequences are output: ESC FF, ESC US, US, ESC
SUB, RS, ESC RS, FS, or ESC FS.

Five line styles are provided: solid, dotted, dot-dashed, short-dashed, and long-dashed. The
first pixel of a line in any style will always be drawn. Line styles are selected with the following
escape sequences, consisting of an Escape character followed by anyone of the listed charac­
ters:

Eseajle Seqt!enee Line Style
ESC ',e,f,g,h,m,n,o,p,u,v,w Solid
ESC a,i,q Dotted
ESC b,J,r Dot-Dash
ESC c,k,s Short-Dash
ESC d,l,t Long-Dash

Lines are specified as a sequence of characters that define their endpoints, in the following stan­
dard order:

HIY EXTRA (optional) LOY HIX LOX

"Shortened addresses" may be used, where only the bytes which change need to be sent. The
emulation saves the values for HIY, LOY, and HIX, and draws the vector when the LOX byte
is received. The following table describes which bytes must be sent if a specifIc byte is
changed.

<l1anged
Bytes which must be received

HIY EXTRA LOY HIX LOX
HIY * * *
EXTRA * * *
LOY * *
HIX * * *
LOX *

7.2.3. Graphics Input Mode Features

ESC SUB Enters the window into graphics input mode (GIN) and causes a crosshair to be
displayed. The cursor may be positioned by the mouse or the four arrow keys (left,
right, up, and down) located on the right side of the keyboard.

ESC ENQ Received when the window is in Graph Mode causes transmission of the Terminal
Status Byte followed by the 4-byte address of the Graph Mode cursor position.

ESC ENQ Received when the window is in Alpha Mode causes transmission of the Terminal
Status Byte followed by the 4-byte address of the Alpha Mode cursor position.

ESC ENQ Received when the window is in GIN Mode causes transmission of the 4-byte
address of the crosshair cursor. The window returns to Alpha Mode upon comple­
tion of transmission.

Any key other than the cursor keys that is typed when the crosshair is displayed will
result in the transmission of that character, followed by the 4-byte address of the

9053 - 21-

Utility Guide

crosshair positIon.

The Terminal Status By~ is <iefined as follows:

Bit 7: 0 always
Bit 6: 0 always
Bit 5: 1 always
Bit 4: 1 = no hardcopy attached
Bit 3: 0 = vector move, 1 = vector draw
Bit 2: 0 = Graph Mode, 1 = Alpha Mode
Bit 1: 0 = No margin 2
Bit 0: 1 = No auxiliary device attached

7.2.4. Point Plot Mode

Multi-Window Management

Point Plot Mode is entered by sending FS or ESC FS when in Alpha or Graph Modes. The
data for drawing is identical to normal graphics. but the output consists of only the final end­
point of the lines.

7.2.5. Incremental Plot Mode

Incremental plot mode is entered by sending RS or ESC RS when in Alpha or Graph Modes.
After RS is sent, either SP (pen up) or P (pen down) must be sent. One point increments then
are plotted (or moved to) in the direction which is dependent on the ASCII characters as fol­
lows:

Character X-direction Y-direction
D 0 +1
E +1 +1
A +1 0
I +1 -1

H 0 -1
J -1 -1
B -1 0
F -1 +1

- 22- 9053

UNIX-to-UNIX Copy (UUCP) Network

SECTION!
UUCP CONCEP'IS

I NTRODucnON

The uucp network allows information exchange between UNIX systems over the public
telephone system. This section discusses conceptB and explains the use of the user level
interface to the network. Understanding these basic principles helps the user make the best
possible use of the uucp network.

Some majo! uses of the network are:

• distribution of software

• distribution of documentation

• personal communication (mail)

• data transfer between closely sited machines

• transmission of de bugging dumps and data exposing bugs

• production of hard copy output on remote printers.

mE UUCP NETWORK

The uucp(1) network is a network of UNIX systems that allows file transfer and remote execu­
tion of programs. The extent of the network is a function of both the interconnection hardware
and the controlling network software. Membership in the network is tightly controlled by the
software to preserve the integrity of all members of the network. You cannot use the uucp
facility to send files to systems that are not part of the uucp network.

Network Hardware

The uucp was originally designed as a dialup network so that systems in the network could use
the public telephone system to communicate with each other. The three most common
methods of connecting systems are:

l. Connecting two UNIX systems directly by cross-coupling (via a null MODEM) two of the
computers portB. This means of connection is useful for only short distances (up to

several hundred feet can be achieved, although the RS-232 standard specifies a shorter
distance) and is usually run at high speed (9600 or 19200 baud). These connections run
on asynchronous terminal portB.

2. Using a MODEM (a private line or a limited distance MODEM) to directly connect pro­
cessors over a private line.

9053 -1-

Utility Guide UUCP

3. Connecting a processor to another system through a MODEM, an automatic calling unit
(ACU), and the public telephone system. This is the most common interconnection
method, and it makes the largest number of connections available. Modems with integral
automatic dialers eliminate the need for a separate ACU.

The uucp could be extended to use higher speed media (e .g., HYPERchannel*, Ethernett,
etc.), and this possibility is being explored for future UNIX system releases.

Network Topology

Connections between systems are possible via the public telephone system. The topology of
the network is determined by both the hardware connections and the software that control the
network.

Hardware Topology

As discussed earlier, it is possible to build a network using permanent or dial-up connections.
In Figure 1, a group of systems (A, B, C, D, and E) are shown connected by hard-wired lines.
All systems are assumed to have some answer-only data sets so that remote users or systems
can be connected.

®

A)-------{ "'-------{ C

* Trademark of Network Systems Corporation. t Trademark of Xerox Corporation.

-2- 9053

Utility Guide

= automatic calling unit or auto-dial MODEM
= computer system

Figure 1. Uuep Nodes

UUCP

K, D, F, and G have automatic calling units or auto-dial MODEMs and H has no capability for
calling other systems. Users should be aware that the network consists of a series of pointrto­
point connections (A-B, B-C, D--B, E-B) even though it appears in Figure 1 that A and C are
directly connected through B. The following observations are made:

1. System H is isolated. It can be made part of the network by arranging for other systems
to poll it at fixed intervals. This is an important concept to remember because transfers
from systems that are polled do not leave the system until that system is called by a pol­
ling system.

2. System K, F, G, and D easily reach all other systems because they have calling units.

3. If system A (E or G) wishes to send a file to H (K, F, or G), it must first send it to D
(via system B) because D is the only system with a calling unit.

Software Topology

The hardware capability of systems in the network defines the maximum number of connec­
tions in the network. The software at each node restricts the access by other systems and
thereby defines the extent of the network. The systems of Figure 1 can be configured so that
they appear as a network of systems that have equal access to each other or some restrictions
can be applied. As part of the security mechanism used by uuep, the extent of access that
other systems have can be controlled at each node. Figures 2 and 3 show how the network
might appear at one node.

Figure 2. Uucp Network Excluding One Node

9053 -3-

Utility Guide UUCP

Figure 3. Uuep Network with Several Levels of Permissions

Access is available from all systems in Figure 2. In Figure 3, however, some of the systems
have been configured to have more or less access privileges than others (systems C, E, and G
have one set of access privileges, systems F and B have another set, etc.).

The uucp uses the UNIX system password mechanism coupled with a system file
(/usr/lib/uucp/L.sys) and a file system permission file (/usr/lib/uucpjUSERFILE) to control
access between systems. The password file entries for uucp (usually, luucp, nuucp, uucp, etc.)
allow only those remote systems that know the passwords for these IDs to access the local sys­
tem. (Great care should be taken in revealing the password for these uucp 10 gins, because
knowing the password allows a system to JOIn the network.) The system file
(/usr/lib/uuep/L.sys) defines the remote systems that a local host knows about. This file con­
tains all information needed for a local host to contact a remote system (including system
name, password, login sequence, etc.) and as such is protected from viewing by ordinary users.

In summary, while the available hardware on a network of systems determines the connectivity
of the systems, the combination of password file entries and the uucp system files determine
the extent of the network.

Security

A most critical feature of any network is the security that it provides. Users are familiar with
the security that the UNIX system provides in protecting files from access by other users and in
accessing the system via passwords. In building a network of processors, the notion of security
is widened because access by a wider community of users is granted. Access is granted on a
system basis (that is, access is granted to all users on a remote system). This follows from the
fact that the process of exchanging a file with another system is done by daemons that use one
special user ID(s). This user ID(s) is granted (denied) access to the system by the uucp sys­
tem file (/usr/lib/uucp/L.sys) and the areas that the system has access to is controlled by
another file (/usr/lib/uucpjUSERFILE). For example, access can be granted to the entire file
system tree or limited to specific areas.

-4- 9053

Utility Guide UUCP

Software S1ructure

The uucp network is a batch network. When a request is made, it is spooled for later transmis­
sion by a daemon. This is important to users because the success or failure of a command is
only known at some later'time by mail(1) notification. For most transfers, there is little trou­
ble in transmitting files between systems, but transmissions are occasionally delayed or fail
because a remote system cannot be reached.

Transfer Rules

There are several rules by which the network runs. These rules are necessary to provide the
smooth fiow of data between systems and to prevent duplicate transmissions and lost jobs. The
following paragraphs outline these rules and their influence on the network.

Queuing

Jobs submitted to the network are assigned a sequence number for transmission. Jobs are
represented by a file (or files) in a common spool directory (/usr/spool/uucp). When a file
transfer daemon (uucico) is started to transmit a job, it selects a system to contact and then
transmits all jobs to the system. Before breaking off the conversation, any jobs to be received
from that remote system are accepted. Uucp may be sending to or receiving from many sys­
tems simultaneously. The number of incoming requests is only limited by the number of con­
nections on the system, and the number of outgoing transfers is limited by the number of
auto-dial MODEMs, ACUs, or direct connections.

D£aUng and the Public Telephone System

In order to transfer data between processors that are not directly connected, an auto-dialer is
used to contact the remote system. There are several factors that can make contacting a remote
system difficult.

1. All lines to the remote system may be busy. There is a mechanism within uucp that res­
tricts contact with a remote system to certain times of the day (week) to minimize this
problem.

2. The remote system may be down.

3. There may be difficulty in dialing the number (especially if a large sequence of numbers
involving access through PBXs is involved).

Scheduling and Poll£ng

When a job is submitted to the network, an attempt to contact that system is made immedi­
ately. Only one conversation at a time can exist between the same two systems.

Systems that are polled can do nothing to force immediate transmission of data. Jobs will only
be transmitted when the system is polled (hourly, daily, etc.) by a remote system.

9053 -5-

Utility Guide UUCP.

R etransmUJsions and Fixed Delay

The uuep network attempts to contact remote systems to complete a transmission. To prevent
uucp from continually calling systems that are unavailable, there exists a minimum fixed delay
(currently 55 minutes) before another transmission can take place to that system.

Purg'ing and Gleanup

Transfers that cannot be completed after a defined period of time (72 hours is the value that is
set when the system is distributed) are deleted and the user is notified .

. Speei8.I Places: The Public Area

In order to allow the transfer of flIes to a system on which a user does not have a login name,
the public directory (kept in /usr/spool/uucppublic) is available with general access privileges.
When receiving files in the public area, the user should dispose of them quickly as the adminis­
trative portion of uuep purges this area on a regular basis.

Permissions

File Level Protection

In transferring files between systems, users should make sure that the destination area is writr
able by uucp. The uucp daemons preserve execute permission between systems and assign
"read write" permission (0666) to transferred files.

System Level Protection

The system administrator at each site determines the global access permissions for that proces­
sor. Thus, access between systems may be confined by the administrator to only some sections
of the file system.

-6- 9053

Utility Guide UUCP

NE'IWORK USAGE

The following sections discuss the user interface to the network and give examples of command
usage.

Name Space

In order to reference files on remote systems, they must be uniquely identified. The notation
has several defaults to allow the reference to be compact. Some restrictions are placed on path­
names to prevent security violations. For example, pathnames may not include " .. " as a com­
ponent because it is difficult to determine whether the reference is to a restricted area.

Naming Conventions

Uuep uses a special syntax to build references to files on remote systems. The basic syntax is

system-name !pathname

where the system-name is a system that uucp is aware of. The pathname part of the name may
contain any of the following:

1. A fully qualified pathname such as

mh tsa! /usr /you/file

The pathname may also be a directory name as in

mhtsa!/usr/you/directory

2. The login directory on a remote may be specified by use of the - character. The combina­
tion -user references the login directory of a user on the remote system. For example,

mhtsa! -adm/file

expands to

mhtsa!/usr/sys/adm/file

if the login directory for user adm on the remote system is /usr/sys/~

3. The public area is referenced by a similar use of the prefix -/user preceding the pathname.
For example,

mhtsa! -/you/file

expands to

mhtsa!/usr/spooljuucppublic/you/file

if /usr/spool/uucp is used as the spool directory.

9053 -7-

Utility Guide UUCP

4. Pathnames not using any of the combinations or prefixes discussed above are preflxed
with the current directory (or the login directory on the remote). For example,

mhtsa!file

expands to

mhtsa!/usr/you/flle.

The naming convention can be used in reference to either the source or destination file
names.

Forwarding

Although uucp does not allow specification of multiple sites, the uusend(l) command does.

Uusend sends a flle to a given location on a remote system. The system need not be directly
connected to the local system, but a chain of uuep(l) links needs to connect the two systems.
For example:

uusend file hplabs! ucbbach! file

Types of 'Transfers

Uucp has a flexible command syntax for file transmission. The following are examples of
different combinations of transfers.

Transmissions of Files to a Remote

Any number of files can be transferred to a remote system via uucp. The syntax supports the
*, ? and [..] metacharacters. For example,

uucp *.[ch] mhtsa!dir

transfers all files whose name ends in c or h to the directory dir in the users login directory on
mhtsa.

Forwarding may be done by uusend; otherwise the syntax is the same.

Fetching Files From a Remote

Files can be fetched from a remote system in a similar manner. For example,

uucp mhtsa!*.[ch] dir

fetches all files whose name ends in c or h from the users login directory on mhtsa and places
the copies in the subdirectory dir on the local system.

-8- 9053

Utility Guide UUCP

Switching

Transmission of files can be arranged in such a way that the local system effectively acts as a
switch. For example,

uucp mhtsb!files mhtsa!filed

fetchs files from the user's login directory on mhtsb, renames it as filed, and places it in the
login directory on mhtsa.

Broadcasting

Broadcast capability (that is, copying a file to many systems) is not offered by uuep. But it can
be simulated by a shell script:

for i in mhtsa mhtsb mhtsd
do

uucp file $i!broad .
done

Unfortunately, one uuep command is spawned for each transmission so that it is not possible to
track the transfer as a single unit.

Remote Executions

The remote execution facility allows commands to be executed remotely. For example,

uux "!diff mhtsa!/etc/passwd mhtsd!/etc/passwd> !pass.diff"

executes the command diff(1) on the password file on mhtsa and mhtsd and places the result in
pass.diff.

Spooling

Normally uuep copies its source files to the spool area before beginning transmission. This
allows you to continue modifying a file without affecting the transmitted copy. You can specify
to uuep that it should not do this copy by use of the -e option. For example, the following
command will send the file work from the current directory when connection is established
with mhtsa.

uucp -c work mhtsa! -/you/work

9053 -9-

Utility Guide UUCP

Notification

The success or failure of a transmission is reported to users via the mail(1) command. The
choices for notification are:

1. Notification returned to the requesters system (via the -m option). This is useful when
the requesting user is distributing files to other machines. Instead of logging onto the
remote machine to read mail, mail is sent to the requester when the copy is finished.

2. Uux(1) always reports the exit status of the remote execution. Status information is
appended to the /usr/spool/uuep/LOGFILE file.

Job Control

Jobs are controlled in the following ways.

Requeuing a Job

Uuep clears its working area of jobs regularly (usually every 72 hours), to prevent a buildup of
jobs that cannot be delivered. The -r option forces the date of a job to be changed to the
current date, thereby lengthening the time that uuep attempts to transmit the job. The-r
option does not impart immortality to a job; it only postpones deleting the job during house­
keeping functions until the next cleanup.

Network Names

Users may find the names of the systems on the network via the uunam.e(1) command. Only
the names of the systems in the network are printed.

Network Status

Uulog(l) prints information about completed work done for a specific system or a specific user.
Uulog -u user prints all information regarding work done for that user since the last time the
uuep log file (/usr/spool/uucp/LOGFILE) was cleared. Similarly, uulog -s system prints all

. information regarding work done for that system.

Uusnap(1) prints information about pending work. For each system that either has files
spooled or commands ready for remote execution, a line is printed. For example,

hplabs 2cmd 3data 2xqt locked
ucbbach lcmd

-10- 9053

Utility Guide UUCP

UTILITIES THAT USE UUCP

Several utilities rely on uuep(1) or uux(1) to transfer files to other systems.

Mail

The mail(1) command uses uux to forward mail to other systems. For example, when a user
types

mail mhtBa!tom

the mail command invokes uux to execute rmail on the remote system (rmail is a link to the
mail command). Forwarding mail through several systems (e.g., mail a!b!tom) is simulated by
the mail command itself.

Netnews

The netnews(1) command that is locally supported on many systems uses uux in much the
same way that mail does to broadcast network mail to systems subscribing to news categories.
Netnews(1) is not currently supported by Ridge Computers.

9053 -11-

Utility Guide UUCP

SECTION 2
UUCP ADMINISTRAnON

INTRODUCTION

This section describes how a uuep network is set up, the format of control files, and administra­
tive procedures. Administrators should be familiar with the ROS Reference Manual pages
(manual 9010) for each of the uuep related commands.

PLANNING

In setting up a network of UNIX systems, there are several considerations that should be taken
into account before configuring each system on the network. The following parts attempt to
outline the most important considerations.

Extent or the Network

Some basic decisions about access to processors in the network must be made before attempting
to set up the configuration files. If an administrator has control over only one processor and an
existing network is being joined, then the administrator must decide what level of access should
be granted to other systems. The other members of the network must make a similar decision
for the new system. The UNIX system password mechanism is used to grant access to other
systems. The file /usr/lib/uuepjUSERFILE restricts access by other systems to parts of the
file system tree, and the file /usr/lib/uuep/L.sys on the local processor determines how many
other systems on the network can be reached.

When setting up more than one processor, the administrator has control of a larger portion of
the network and can make more decisions about the setup. For example, the network can be
set up as a private network where only those machines under the direct control of the adminis­
trator can access each other. Granting no access to machines outside the network can be done
if security is paramount; however, this is usually impractical. Very limited access can be
granted to outside machines by each of the systems on the private network. Alternatively,
access to/from the outside world can be confined to only one processor. This is frequently
done to minimize the effort in keeping access information (passwords, phone numbers, login
sequences, etc.) updated and to minimize the number of security holes for the private network.

Hardware and Line Speeds

There are two methods of interconnection for uuep(1):

1. Direct connection using a Dull MODEM.

2. Connection over the public telephone system.

In choosing hardware, the equipment used by other processors on the network must be con­
sidered. For example, if some systems on the network have only 103-type (300-baud) data
sets, then communication with them is not possible unless the local system has a 30o-baud data
set connected to a calling unit. (Most data sets available on systems are 1200-baud.) If hard­
wired connections are to be used between systems, then the distance between systems must be
considered since a null MODEM cannot be used when the systems are separated by more than
several hundred feet. The limit for communication at 9600-baud is about 800 to 1000 feet.
However, the RS232 specification only allows for less than 50 feet. Limited distance MODEMs
must be used beyond 50 feet as noise on the lines becomes a problem.

-12- 9053

Utility Guide UUCP

Maintenance and Administration

There is a minimum amount of maintenance that must be provided on each system to keep the
access files updated, to ensure that the network is running properly, and to locate line prob­
lems. When more than one system is involved, the job becomes more dimcult because there
are more files to update and because users are much less patient when failures occur between
machines that are under local control.

9053 -13-

Utility Guide UUCP

UUCP SOFTWARE

Figure 4 illustrates the daemons used by the uuep network to communicate with other systems.
The uuep(1) or uux(1) command queues users requests and spawns the uueieo daemon to call
another system. Figure 5 illustrates the structure of uucieo and the tasks that it performs in
communicating with another system. Uucieo initiates the call to another system and performs
the file transfer. On the receiving side, uucico is invoked to receive the transfer. Remote exe­
cution jobs are actually done by transferring a command file to the remote system and invoking
a daemon (uuxqt) to execute that command file and return the results.

INTERCONNECTION
SYSTE .. A "EDIA

SPOOL
WORKLIST AREA

Figure 4. Uuep Network Daemon

-14- 9053

SYSTE.. B

SPOOL
AREA

Utility Guide UUCP

WORK LIST
I--

SEQUENCE DIALING
AND ODD

INTERLOCK I
INITIAL I FILE

I" TRANSFER . .
• . CONNECTION

I
PROTOCOL

I
1

BYTE I PACKET
STREAM I PROTOCOL

I

UUCICO DAEMON

.~ ROS
T HARDWARE

~ DOD NETWORK

Figure 5. Uucieo Daemon Functional Blocks

9053 -15-

Utility Guide UUCP

INS TALLAn ON

The uuep(1) package is dellvered by Ridge Computers as a stand-alone package. The uucp
package is initially installed by a Ridge Computers Systems Engineer. It Is then the responsibil­
ity of the system administrator to modify the control flIes to reflect the speciflc conflguration.

Executable Modules

The following executable modules are installed as part of the uucp installation procedure.

1. Uuep - flle transfer command.

2. Uulog - command to print logflle summary information.

3. Uux - remote execution command.

4. Uueieo - uuep network daemon.

5. Uusnap - network snapshot command.

6. Uupoll - command to initiate connection to a remote system.

7. Uuelean - cleanup command.

8. Uusend - command for sending aflle across multiple hosts.

9. Uuxqt - remote execution daemon.

10. Uueneode and uudeeode - commands to encode and decode a binary flle for tr~smission
via mail.

11. Uuname -print list of uuep systems.

In addition, several user-written shell scripts exist for maintaining a network. These include
uu.hourIy, uucp.daiIy, uuq, uurate, uutbl, and uuusage.

-16- 9053

Utility Guide UUCP

Password File (/ek/pssswd)

To allow remote systems to call the local system, password entries must be made for any uucp
logins. For example,

nuucp:zaaAA:6:1:UUCP.Admin:/usr/spool/uucppublic:/usr/lib/uucp/uucico

Note that the uueieo daemon is used for the shell, and the spool directory is used as the work­
ing directory.

There must also be an entry in the pssswd file for a uuep administrative login. This login is
the owner of all the uuep object and spooled data files and must be "uucp". For example, the
following is an entry in /ete/pssswd for this administrative login:

uucp:zAvLCKp:5:1:UUCP.Admin:/usr/lib/uucp:

Note that the standard shell is used instead of uueieo.

Lines File (/usr /lib/uuep/L-deviees)

The file /usr/lib/uuep/L-deviees contains the list of all lines that are directly connected to
other systems or are available for calling other systems. The file contains the attributes of the
lines and whether the line is a permanent connection or can call via a dialer. The format of the
file is

type line call-device speed protocol

where each field is

type

line

call-device

speed

protocol

If the line is directly connected to another system, the type is D m. If the line
uses an automatic calling unit or auto-dial MODEM the type is ACU.

The device name for the line (e.g., tty!, tty6, etc.).

If type is ACU, this is the device name of the ACU. Otherwise, the field is
ignored; however, a placeholder must be used in this field so that the protocol
field can be interpreted. Separate ACU units are not currently supported and
this field must contain the word "notused".

The line speed that the connection is to run at.

The type of auto-dial MODEM protocol to use.

9053 -17-

Utility Guide UUCP

Currently supported auto-dial MODEMs are:

hayes

hayesq

vadic

ventel

direct

smartmodem 300 or 1200

similar to the hayes except MODEM is configured not to return result
codes

3450 series

not specified

direct connect

Examples of the file /usr/lib/uucpjL-devices:

DIR tty3 unused 9600 direct
ACU . tty2 unused 1200 hayes

The first entry is for a hard-wired line running at 9600-baud between two systems. Note that
the acu-device field is marked as unused. The second entry is for a line with a 1200-baud auto­
dial MODEM.

System File (/usr/Iib/uucpjL.sys)

Each entry in the L.sys file represents a system that can be called by the local uucp programs.
More than one line may be present for a particular system. In this case, the additional lines
represent alternative communication paths that will be tried in sequential order. The fields are
described below.

system name

time

type

class

-18-

Name of the remote system.

This is a string that indicates the days-of-week and times-of-day when the sys­
tem should be called (e.g., MoTuTh0800-1730).

The day portion may be a list containing Su, Mo, Tu, We, 171., Fr, Sa; or it may
be Wk for any week-day or Any for any day. The time should be a range of
times (e.g., 0800-1230). If no time portion is specified, any time of day is
assumed to be allowed for the call. Note that a time range that spans 0000 is
permitted; 0800-0600 means all times are allowed other than times between 6

and 8 am. An optional subfield is available to specify the minimum time
(minutes) before a retry following a failed attempt. The subfield separator is a
"," (e.g., Any,9 means call any time but wait at least 9 minutes before retrying
the call after a failure has occurred). Several times may be or'ed together. For
example, Any2300-07001 Sal SUOOOO-1700, indicates any day of the week
between 11 p.m. and 7 a.m., all day Saturday, or Sunday between midnight
Saturday and 5 p.m.

Connection type (ACU or Om).

This is the line speed for the call (e.g., 300)

9053

Utility Guide UUCP

phone The phone number is made up of an optional alphabetic abbreviation (dialing
prefix) and a numeric part. The abbreviation should be one that appears in the
L-dialeodes file (e.g., mh1212, boston555-1212). For the hard-wired devices,
this field contains the ACU or the hard-wired device name to be used for the
call (e.g., ttyO).

login The login information is given as a series of fields and subfields in the format

[expect I "end] ...

expect is the string expected to be read and "end is the string to be sent when
the expect string is received.

The expect field may be made up of subfields of the form

expect [-send-expect] ...

where the send is sent if the prior expect is not successfully read and the expect
following the send is the next expected string. (For example, login--Iogin will
expect login; if it gets it, the program will go on to the next field; if it does not
get login, it will send null followed by a new line, then expect login again.) If no
characters are initially expected from the remote machine, the string "" (a null
string) should be used in the first expect field.

There are several special names available to be sent during the login sequence.
The string EOT sends an EOT character (control-d), and the string BREAK
tries to send a BREAK sequence. The string PAUSEN causes the sequence to
wait for 'n' seconds. The string LF sends a linefeed character; the string CR
sends a carriage-return character. The string P-ZERO causes 8-bit characters to
be sent with the parity bit always set to zero; the string P-ONE sets the parity
bit to one; the strings P-EVEN and P-ODD cause even or odd parity generation,
respectively.

There are several character strings that cause specific actions when they are a part of a string
sent during the login sequence.

Send a space character.

Delay one second before sending or reading more characters.

\s
\d
\c
\b

If at the end of a string, suppress the neW-line that is normally sent. Ignored otherwise.

Send a break signal.

\r Send a carriage-return character.

\ddd Send a character whose bit pattern is ddd, where ddd is one to three octal digits.

These character strings are useful for making uucp communicate over direct lines to data
switches.

A typical entry in the L.sys file would be

sys Any ACU 300 mh7654 login uucp ssword: word

The "expect" algorithm matches all or part of the input string as illustrated in the password field
above.

9053 -19-

Utility Guide UUCP

The following sequence illustrates most of the capabilities of expect-send However, this
sequence would better be replaced by specifying vadicauto-dialer protocol in L-devices.

rti-sel Any tty3 300 tty3 "" \05*-\05-*
d NUMBER?-d-NUMBER? 5551212\r\d
LINE \r\d\r ogin: -\b-ogin: -\b-ogin:
Urti ssword: fatchance

means:

quote marks

\05

-\05-

d

NUMBER?-d-NUMBER?

5551212\r\d

LINE

\r\d\r

ogin: -\b~ogin: - \b-ogin:

Urti

ssword

fatchance

Dialing Prefixes (L-dialeodes)

expect nothing

send control-e (activate auto-dialer)

expect *, if not seen, send control-e, expect *

send a d to enter telephone number

look for prompt from auto-dialer, send d again if not seen

send telephone number, carriage return, pause one second,
then send carriage return

wait till MODEM says on-line

send return, pause, return

look for login, if not found send break, look again, if still not
found, send another break

send login ID urti

expect password:

send password fatchance

. The L-dialoodes file contains those antiquated dial-code abbreviations used in the L.sys file
(like AL for TW7-5678. The entry format is:

abb dial-seq

where abb is the abbreviation and dial-seq is the dial sequence to call that location.

The line

py 165-

would be set up so that entry py7777 would send 165-777 to the dial unit.

The L-dialcodes file is seldom used.

Userfile (USERFILE)

The USERFILE file contains user accessibility information. It specifies three types of con­
strainta:

I. Files that can be accessed by a normal user of the local machine.

-20- 9053

Utility Guide

2. Files that can be accessed from a remote computer.

3. Login name used by a particular remote computer.

Each line in the file has the format

login,sys pathname [pathname]

where

login

sys

pathname

The constraints are:

is the login name for a user or the remote computer.

is the system name for a remote computer.

is a pathname prefix that is acceptable for sys.

UUCP

1. When the program is obeying a command stored on the local machine, the pathnames
allowed are those given on the first line in the USERFILE that has the login name of the
user who entered the command. If no such line is found, the first line with a null login
name is used.

2. When the program is responding to a command from a remote machine, the pathnames
allowed are those given on the first line in the file that has the system name that matches
the remote machine. If no such line is found, the first one with a null system name is
used.

3. When a remote computer logs in, the login name that it uses must appear in the USER­
FILE. There may be several lines with the same login name but one of them must either
have the name of the remote system or must contain a null system name.

The line

u,m jusrjxyz

allows machine m to login with name u and request the transfer of files whose names start with
/usr/xyz. The line

you, jusrjyou

allows the ordinary user you to issue commands for files whose name starts with /usr/you.
(This type restriction is seldom used.) The lines

u,m jusrjxyz /usrjspool
u, jusr jspool

9053 -21-

Utility Guide UUCP

allows any remote machine to login with name 'fl. If its system name is not m, it can only ask
to transfer files whose names start with /usr/spool. If it is system m, it can send files from
paths /usr/xyz as well as /usr/spool. The lines

root, I
,/usr

allow any user to transfer files beginning with /usr but the user with login root can transfer any
file. (Note that any file that is to be transferred must be readable by anybody.) The line

,I

allows any user to transfer any files; it is very dangerous, but useful for systems with little need
for security.

L.cm.ds

The file L.cmds specifies which commands the program uuxqt will execute on the local system.
Typically it will restrict remote systems to execution of rmail (restricted mail) and uusend (for

. forwarding files). L.cmds can also allow any command to be executed, but this allows remote
systems to have access to resources that perhaps they shouldn't have. A typical L .cmd follows:

Example L .cmds

This is the list of commands that uuxqt will execute.
Default search path is Ibin, then lusr/bin.
It can be changed by a line starting with PA TIl:
PA TH = /bin: lusr/bin: lusr/ucb
The following commands are the only ones uuxqt will execute if the L.cmds file
is missing:
rmail
rnews
ruusend
The following commands are potential security holes,
lpr
who
uusend
finger

-22- 9053

Utility Guide UUCP

AD:MINISTRATION

The role of the uuep administrator depends heavily on the amount of tramc that enters or
leaves a system and the quality of the connections that can be made to and from that system.
For the average system, only a modest amount of traffic (100 to 200 files per day) pass through
the system and little if any intervention with the uuep automatic cleanup functions is necessary.
Systems that pass large numbers of files (200 to 10,000) may require more attention when
problems occur. The following parts describe the routine administrative tasks that must be per­
formed by the administrator or are automatically performed by the uuep p~kage. The part on
problems describes what are the most frequent problems and how to effectively deal with them.

aeanup

The biggest problem in a dialup network like uuep is dealing with the backlog of jobs that can­
not be transmitted to other systems. The following cleanup ~tivities should be routinely per­
formed by shell scripts started from eron(1).

Oleanup 0/ Undeliverable Jobs

The uuep.daily procedure contains an invocation of the uuclean command to purge any jobs
that are older than some fixed time (usually 72 hours). A similar procedure is usually used to
purge any lock or status files. An example invocation of uuclean(1M) to remove both job files
and old status files every 48 hours is:

jusrjlibjuucpjuuclean -pST -pC. -n48

Oleanup 0/ the Public Area

In order to keep the local file system from overfiowing when files are sent to the public area,
the uuep.daily procedure can be set up with a:find command to remove any files that are older
than 7 days. This interval may need to be shortened if there is not sufficient sp~e to devote to
the public area.

Disposition 0/ Log Files

The files SYSLOG and LOGFILE that contain logging information are saved by uuep.daily
according to the following scheme,

LOGFILEs are dally moved to
LOGFILE.day.month

where
day is Sun, Mon, ... , Sat, and month is the numerical month of the year.

SYSL OG files are kept by

SYSLOG .week (current week totals)
SYSLOG.month (current month totals)
SYSLOG.monthname (historical totals for that month, e.g. SYSLOG.Aug.)

Note that the uuep.daily shell script requires uuusage to generate the SYSLOG totals.

The uuep.daily script removes any LOGFILES older than three days. The script must be
changed if you wish to save LOGFILES longer. SYSLOG files are never automatically
removed, but do not usually represent nearly as much space as do LOGFILES.

9053 -23-

Utility Guide UUCP

Polling Other Systems

Systems that are passive members of the network must be polled by other systems in order for
their flIes to be sent. This can be arranged by using the uupoll command as follows:

uupoll mhtsd

which will call mhtsd when it is invoked.

Problems

The following sections list the most frequent problems that appear on systems that make heavy
use of uuep(1).

Out of Space

The file system used to spool incoming or outgoing jobs can run out of space and prevent jobs
from being spawned or received from remote systems. The inability to receive jobs is the
worse of the two conditions. When file space does become available, the system will be flooded
with the backlog of traffic.

Bad MODEMs

MODEMs occasionally cause problems that make it difficult to contact other systems or to
receive files. These problems are usually readily identifiable since LOGFILE entries will usually
point to the bad line. If a bad line is suspected, it is useful to use the eu(1) command to try
calling another system using the suspected line.

Admi'nistrative Prob/e'ITUJ

Some uuep networks have so many members that it is difficult to keep track of changing pass­
words, changing phone numbers, or changing logins on remote systems. This can ~e a very
costly problem since MODEMs will be tied up calling a system that cannot be reached.

-24- 9053

Utility Guide UUCP

DEBUGGING

In order to verify that a system on the network can be contacted, the uucioo daemon can be
invoked from a user's terminal directly. For example, to verify that mh:tsd can be contacted, a
job would be queued for that system as follows:

uucp -r file mhtsd!-jtom

The -r option forces the job to be queued but does not invoke the daemon to process the job.
The uueioo command can then be invoked directly:

jusrjlibjuucpjuucico -rl -x4 -smhtsd

The -rl indicates that the daemon is to start in master mode (i.e., it is the calling system). The
-x4 specifies the level of debugging that is to be printed. Higher levels of debugging can be
printed (greater than 4) but requires familiarity with the internals of uucioo. If several jobs are
queued for the remote system, it is not possible to force uucico to send one particular job first.
The contents of LOGFILE should also be monitored for any error indications that it posts.
Frequently, problems can be isolated by examining the entries in LOGFILE associated with a
particular system. The file ERRLOG also contains error indications.

9053 -25-

Utility Guide UUCP

-26- 9053

sees - Source Code Control System

This document is based on a paper by Eric Allman of the University of California at
Berkeley.

This document is an introduction to the Source Code Control System (SCCS). It is
geared to programmers who want to accomplish a task, not those who want to know how it
works on the inside. For this reason, some of the examples are not well explained. For details
on the magic options, see the "Further Information" section.

1. Introduction

secs is a source management system. Such a system maintains a record of versions of a
system; a record is kept with each set of changes of what the changes are, why they were made,
and who made them and when. Old versions can be recovered, and different versions can be
maintained simultaneously. In projects with more than one person, SCCS will insure that two
people are not editing the same file at the same time.

All versions of your program, plus the log and other information, is kept in a file called
the "s-file". There are three major operations that can be performed on the s-file:

(1) Get a file for compilation (not for editing). This operation retrieves a version of the file
from the s-file. By default, the latest version is retrieved. This file is intended for compi­
lation, printing, or whatever; it is specifically NOT intended to be edited or changed in
any way; any changes made to a file retrieved in this way will probably be lost.

(2) Get a file for editing. This operation also retrieves a version of the file from the s-file,
but this file is intended to be edited and then incorporated back into the s-file. Only one
person may be editing a file at one time.

(3) Merge a file back into the s-file. This is the companion operation to (2). A new version
number is assigned, and comments are saved explaining why this change was made.

2. Learning the Lingo

There are a number of terms that are worth learning before we go any farther.

2.1. S-file

The s-file is a single file that holds all the different versions of your file. The s-file is
stored in differential format; i.e., only the differences between versions are stored, rather than
the entire text of the new version. This saves disk space and allows selective changes to be
removed later. Also included in the s-file is some header information for each version, includ­
ing the comments given by the person who created the version explaining why the changes
were made.

2.2. Deltas

Each set of changes to the s-file (which is approximately [but not exactly!] equivalent to a
version of the file) is called a delta. Although technically a delta only includes the changes
made. in practice it is usual for each delta to be made with respect to all the deltas that have
occurred before!. However, it is possible to get a version of the file that has selected deltas
removed out of the middle of the list of changes - equivalent to removing your changes later.

IThis matches normal usage, where the previous changes are not saved at all, so all changes are automatically
based on all other changes that have happened through history.

Utility Guide sees

2.3. SID's (or, version numbers)

A SID (SeeS Id) is a number that represents a delta. This is normally a two-part number
consisting of a "release". number and a "level" number. Normally the release number stays
the same, however, it is possible to move into a new release if some major change is being
made.

Since all past deltas are normally applied, the SID of the final delta applied can be used to
represent a version number of the file as a whole.

2.4. Id keywords

When you get a version of a file with intent to compile and install it (i.e., something other
than edit it), some special keywords are expanded inline by sees. These Id Kellword8 can be
used to include the current version number or other information into the file. All id keywords
are of the form %x% where x is an upper case letter. For example, %I%is the SID of the
latest delta applied, ~includes the module name, SID, and a mark that makes itfindable by
a program, and ~cG% is the date of the latest delta applied. There are many others, most of
which are of dubious usefulness.

When you get a file for editing, the id keywords are not expanded; this is so that after you
put them back in to the s-file, they will be expanded automatically on each new version. But
notice: if you were to get them expanded accidently, then your file would appear to be the same
version forever more, which would of course defeat the purpose. Also, if you should install a
version of the program without expanding the Id keywords, it will be impossible to tell what
version it is (since all it will have is "o/OW%" or Whatever).

3. Creating sees Files

To put source files into sees format, run the following shell script from csh:

mkdir sees save
. foreach i (*.[ch])

end

sccs admin - i$i $i
mv $i save/$i

This will put the named files into s-files in the subdirectory "sees" The files will be removed
from the current directory and hidden away in the directory "save", so the next thing you will
probably want to do is to get all the files (described below). When you are convinced that
sees has correctly created the s-files, you should remove the directory "save".

If you want to have id keywords in the files, it is best to put them in before ypu create the
s-files. If you do not, admin will print "No Id Keywords (cm7)", which is a warning message
only.

4. Getting Files for Compilation

To get a copy of the latest version of a file, run

sccs get prog.c

sees will respond:

1.1
87 lines

meaning that version 1.1 was retrieved2 and that it has 87 lines. The file prog.c will be created
in the current directory. The file will be read-only to remind you that you are not supposed to
change it.

2Actually. the SID or the final delta applied was 1.1.

-2- 9053

Utility Guide soes

This copy of the file should not be changed, since sees is unable to merge the changes
back into the s-file. If you do make changes, they will be lost the next time someone does a
get.

5. Changing Files (or, Creating Deltas)

5.1. Getting a copy to edit

To edit a source file, you must first get it, requesting permission to edit its:

sccs edit prog.c

The response will be the same as with get except that it will also say:

New delta 1.2

You then edit it, using a standard text editor:

vi prog.c

5.2. Merging the changes back into the s-file

When the desired changes are made, you can put your changes into the sees file using
the delta command:

sccsdelta prog.c

Delta will prompt you for "comments?" before it merges the changes in. At this prompt
you should type a one-line description of what the changes mean (more lines can be entered by

ending each line except the last with a ba.ckslash4
). Delta will then type:

1.2
5 inserted
3 deleted
84 unchanged

saying that delta 1.2 was created, and it inserted five lines, removed three lines, and left 84

lines unchangeds. The prog.c file will be removed; it can be retrieved using get

5.3 •. 'When to make deltas

It is probably unwise to make a delta before every recompilation or test; otherwise, you
tend to get a lot of deltas with comments like "fixed compilation problem in previous delta" or
"fixed botch in 1.3". However, it is very important to delta everything before installing a
module for general use. A good technique is to edit the files you need, make all necessary
changes and tests, compiling and editing as often as necessary without making deltas. When
you are satisfied that you have a working version, delta everything being edited, re-get them,
and recompile everything.

5.4. 'What's going on: the info command

To find out what files where being edited, you can use:

sccs info

to print out all the files being edited and other information such as the name of the user who
did the edit. Also, the command:

&rhe "edit" command Is equivalent to using the - e nag to get. as:

sccs get - e prog.c

Keep this In mind when reading other documenta.tlon.

4yes. this Is a stupid default.

5Changes to a lIne are counted as a llne deleted and a line Inserted.

9053 -3-

Utility Guide SCXJS

sccs check

is nearly equivalent to the info command, except that it is silent if nothing is being edited, and
returns non-zero exit status if anything is being edited; it can be used in an "install" entry in a
makefile to abort the install if anything has not been properly deltaed.

If you know that everything being edited should be deltaed, you can use:

sccs delta sccs tell'

The tell command is similar to info except that only the names of files being edited are output,
. one per line.

All of these commands take a - b fiag to ignore "branches" (alternate versions, described
later) and the - u fiag to only give files being edited by you. The - u fiag takes an optional
'U8er argument, giving only files being edited by that user. For example,

sccs info - ujohn

gives a listing of files being edited by john.

5.5. ID keywords

Id keywords can be inserted into your file that will be expanded automatically by get. For
example, a line such as:

static char Sccsld[] = "o/OWo/qto/~%";

will be replaced with something like:

static char Sccsld[] ="@ (#) prog.c 1.2 08/29/80";

This tells you the name and version of the source file and the time the delta was created. The
string "@ (#)" is a special string which signals the beginning of an sees Id keyword.

5.5.1. The what command

To find out what version of a program is being run, use:

sccs what prog.c /usr/bin/prog

which will print all strings it finds that begin with "@ (#)". This works on all types of files,
including binaries and libraries. For example, the above command will output something like:

prog.c:
prog.c 1.2

/usr /bin/prog:
prog.c 1.1

08/29/80

02/05/79

From this I can see that the source that I have in prog.c will not compile into the same version
as the binary in /usr/bin/prog.

5.5.2. 'Where to put id keywords

ID keywords can be inserted anywhere, including in comments, but Id Keywords that are
compiled into the object module are especially useful, since it lets you find out what version of
the object is being run, as well as the source. However, there is a cost: data space is used up to
store the keywords, and on small address space machines this may be prohibitive.

When you put id keywords into header files, it is important that you assign them to
different variables. For example, you might use:

static char AccessSid[] = "o/OW% o/cG%";

in the file acce88.h and:

static char OpsysSid[] = "o/OW%o/cG%";

in the file Op8y8.h. Otherwise, you will get compilation errors because "Sccsld" is redefined.
The problem with this is that if the header file is included by many modules that are loaded

-4- 9053

Utility Guide sees

together, the version number of that header file is included in the object module many times;
you may find it more to your taste to put id keywords in header files in comments.

5.6. Keeping SID's consistent &cl"()SS files

With some care, it is possible to keep the SID's consistent in multi-file systems. The trick
here is to always edit all files at once. The changes can then be made to whatever files are
necessary and then all flIes (even those not changed) are redeltaed. This can be done fairly
easily by just specifying the name of the directory that the sees flIes are in:

sccs edit sees
which will edit all files in that directory. To make the delta, use:

sccs delta sees
You will be prompted for comments only once.

5.7. Creating new releases

When you want to create a new release of a program, you can specify the release number
you want to create on the edit command. For example:

sccs edit - r2 prog.c

will cause the next delta to be in release two (that is, it will be numbered 2.1). Future deltas
will automatically be in release two. To change the release number of an entire system, use:

sccs edit - r2 sees

6. Restoring Old Versions

6.1. Reverting to old versions

Suppose that after delta 1.2 was stable you made and released a delta 1.3. But this intro­
duced a bug, so you made a delta 1.4 to correct it. But 1.4 was still buggy, and you decided you
wanted to go back to the old version. You could revert to delta 1.2 by choosing the SID in a
get:

sccs get - rl.2 prog.c

This will produce a version of prog. c that is delta 1.2 that can be reinstalled so that work can
proceed.

In some cases you don't know what the SID of the delta you want is. However, you can
revert to the version of the program that was running as of a certain date by using the - e
(cutoff) fiag. For example,

sccs get - c800722120000 prog.c

will retrieve whatever version was current as of July 22, 1980 at 12:00 noon. Trailing com­
ponents can be stripped off (defaulting to their highest legal value). and punctuation can be
inserted in the obvious places; for example, the above line could be equivalently stated:

sccs get - c"80/07/22 12:00:00" prog.c

6.2. Selectively deleting old deltas

Suppose that you later decided that you liked the changes in delta 1.4, but that delta 1.3
should be removed. You could do this by excluding delta 1.3:

sccs edit - xl.3 prog.c

When delta 1.5 is made, it will include the changes made in delta 1.4, but will exclude the
changes made in delta 1.3. You can exclude a range of deltas using a dash. For example, if
you want to get rid of 1.3 and 1.4 you can use:

9053 -5-

Utility Guide

sccs edit - x1.3- 1.4 prog.c

which will exclude all deltas from 1.3 to 1.4. Alternatively,

sccs edit - x1.3- 1 prog.c

will exclude a range of deltas from 1.3 to the current highest delta in release 1.

sees

In certain cases when using - x (or - i; see below) there will be confiicts between ver­
sions; for example, it may be necessary to both include and delete a particular line. If this hap­
pens, sees always prints olit a message telling the range of lines effected; these lines should
then be examined very carefully to see if the version sees got is ok.

Since each delta (in the sense of "a set of changes") can be excluded at will, that this
makes it most useful to put each semantically distinct change into its own delta.

7. Auditing Changes

7.1. The prt command

When you created a delta, you presumably gave a reason for the delta to the "com­
ments?" prompt. To print out these comments later, use:

sccs prt prog.c

This will produce a report for each delta of the SID, time and date of creation, user who
created the delta, number of lines inserted, deleted, and unchanged, and the comments associ­
ated with the delta. For example, the output of the above command might be:

D 1.2 80/08/29 12:35:31 bill 2 1 00005/00003/00084
removed "-q" option

D 1.1 79/02/05 00:19:31 eric 1 0 00087/00000/00000
date and time created 80/06/10 00:19:31 by eric

7.2. Finding why lines. were inserted

To find out why you inserted lines, you can get a copy of the file with each line preceded
by the SID that created it:

sccs get - m prog.c

You can then find out what this delta did by printing the comments using prt.

To find out what lines are associated with a particular delta (e.g., 1.3), use:

sccs get - m - p prog.cl grep -1.3'

The - p flag causes sees to output the generated source to the standard output rather than to
a file.

7.3. Finding what changes you have made

When you are editing a file, you can find out what changes you have made using:

sees diffs prog.c

Most of the "diff" fiags can be used. To pass the - e fiag, use - C.

To compare two versions that are in deltas, use:

sees sccsdiff -r1.3 -r1.6 prog.c

to see the differences between delta 1.3 and delta 1.6.

8. Shorthand Notations

There are several sequences of commands that get executed frequently. Sccs tries to
make .it easy to do these.

-6- 9053

Utility Guide sees

8.1. Delget

A frequent requirement is to make a delta of some file and then get that file. This can be
done by using:

sccs delget prog.c

which is entirely equivalent to using:

sccs delta prog.c
sccs get prog.c

The "deledit" command is equivalent to "delget" except that the "edit" command is used
instead of the "get" command.

8.2. Fix

Frequently, there are small bugs in deltas, e.g., compilation errors, for which there is no
reason to maintain an audit trail. To replace a delta, use:

sccs fix - rl.4 prog.c

This will get a copy ot delta 1.4 of prog.c tor you to edit and then delete delta 1.4 from the
sees file. When you do a delta of prog.c, it will be delta 1.4 again. The - r fiag must be
specified, and the delta that is specified must be a leaf delta, i.e., no other deltas may have been
made subsequent to the creation of that delta.

8.3. Unedit

If you found you edited a file that you did not want to edit, you can back out by using:

sccs unedit prog.c

8.4. The - d flag

If you are working on a project where the sees code is ina directory somewhere, you
may be able to simplify things by using a shell alias. For example, the alias:

alias syssccs sccs - d/usr /src

will allow you to issue commands such as:

syssccs edit cmd/who.c

which will look for the file "/usr/src/cmd/SeeS/who.c". The file "who.c" will always be
created in your current directory regardless of the value of the - d fiag.

9. Using sees on a Project

Working on a project with several people has its own set of special problems. The main
problem occurs when two people modify a file at the same time. sees prevents this by locking
an s-file while it is being edited.

As a result, files should not be reserved for editing unless they are actually being edited at
the time, since this will prevent other people on the project from making necessary changes.
For example, a good scenario for working might be:

sccs edit a.c g.c t.c
vi a.c g.c t.c
do testing of the (experimental) version
sccs delget a.c g.c t.c
sccs info
should respond "Nothing being edited"
make install

As a general rule, all source flIes should be deltaed before installing the program for gen­
eral use. This will insure that it is possible to restore any version in use at any time.

9053 -7-

Utility Guide sees

10. Saving Yourself

10.1. Recovering a munged edit:file

Sometimes you may find that you have destroyed or trashed a file that you were trying to

edit6
• Unfortunately, you can't just remove it and re-edit it; sees keeps track of the fact that

someone is trying to edit it, so it won't let you do it again. Neither can you just get it using get,
since that would expand the Id keywords. Instead, you can say:

sccs get - k prog.c

This will not expand the Id keywords, so it is safe to do a delta with it.

Alternately, you can unedit and edit the file.

10.2. Restoring the s-file

In particularly bad circumstances, the sees file itself may get munged. The most com­
mon way this happens is that it gets edited. Since sees keeps a checksum, you will get errors
every time you read the file. To fix this checksum, use:

sccs admin - z prog.c

11. Using the Admin Command

The admin command allows you to set parameters. The most interesting of these are fiags.
Flags can be added by using the - f fiag. For example:

sccs admin - fdl prog.c

sets the "d" fiag to the value "1". This fiag can be deleted by using:

sccs admin - dd prog.c

The most useful fiags are:

b Allow branches to be made using the - b fiag to edit.

dSID Default SID to be used on a get or edit. If this is just a release number it constrains the
version to a particular release only.

Give a fatal error if there are no Id Keywords in a file. This is useful to guarantee that
a version of the file does not get merged into the s-file that has the Id Keywords
inserted as constants instead of internal forms.

y The "type" of the module. Actually, the value of this fiag is unused by sees except
that it replaces the ~%keyword.

The - tfile fiag can be used to store descriptive text from file. This descriptive text might
be the documentation or a design and implementation document. Using the - t fiag insures
that if the sees file is sent, the documentation will be sent also. If file is omitted, the descrip­
tive text is deleted. To see the descriptive text, use "prt - t".

The admin command can be used safely any number of times on files. A file need not be
. gotten for admin to work.

12. Maintaining Different Versions {Branches}

Sometimes it is convenient to maintain an experimental version of a program for an
extended period while normal maintenance continues on the version in production. This can
be done using a "branch." Normally deltas continue in a straight line, each depending on the
delta before. Creating a branch "forks off" a version of the program.

The ability to create branches must be enabled in advance using:

60r given up and deelded to start over.

-8- 9053

Utility Guide

sccs admin - fb prog.c

The - to flag can be specified when the sees file is first created.

12.1. Creating a branch

To create a branch, use:

sccs edit - b prog.c

seas

This will create a branch with (for example) SID 1.5.1.1. The deltas for this version will be
numbered 1.5.1.n.

12.2. Getting from a branch

Deltas in a branch are normally not included when you do a get. To get these versions,
you will have to say:

sccs get - rl.5.1 prog.c

12.3. Merging a branch back into the main trunk

At some point you will have finished the experiment, and if it was successful you will
want to incorporate it into the release version. But in the meantime someone may have created
a delta 1.6 that you don't want to lose. The commands:

sccs edit - i1.5.1.1- 1.5.1 prog.c
'. secs delta prog.c

will merge all of your changes into the release system. If some of the changes confiict, get will
print an error; the generated result should be carefully examined before the delta is made.

12.4. A more detailed example

The following technique might be used to maintain a different version of a program.
First, create a directory to contain the new version:

mkdir .. /newxyz
cd .. /newxyz

Edit a copy of the program on a branch:

sccs - d .. /xyz edit prog.c

When using the old version, be sure to use the - b fiag to info, check, tell, and clean to avoid
confusion. For example, use:

sccs info - b

when in the directory "xyz".

If you want to save a copy of the program (still on the branch) back in the s-file, you can
use:

sccs -d .. /xyz deledit prog.c

which will do a delta on the branch and reedit it for you.

When the experiment is complete, merge it back into the s-file using delta:

sccs -d .. /xyz delta prog.c

At this point you must decide whether this version should be merged back into the trunk (i.e.
the default version), which may have undergone changes. If so, it can be merged using the - i
flag to edit as described above.

12.5. A warning

Branches should be kept to a minimum. After the first branch from the trunk, SID's are
assigned rather haphazardly, and the structure gets complex fast.

9053 -9-

Utility Guide sees

13. Using sees with Make

SCCS and make can be made to work together with a little care. A few sample makefiles
for common applications ~e shown.

a.out

There are a few basic entries that every makefile ought to have. These are:

(or whatever the makefile generates.) This entry regenerates whatever this
makefile is supposed to regenerate. If the makefile regenerates many things,
this should be called" all" and should in turn have dependencies on everything
the makefile can generate.

install Moves the objects to the final resting place, doing any special chmod's or
ranlib's as appropriate.

sources Creates all the source files from sces files.

Removes all cruft from the directory.

Prints the contents of the directory.

clean

print

The examples shown below are only partial examples, and may omit some of these entries
when they are deemed to be obvious.

The clean entry should not remove files that can be regenerated from the SCCS files. It is
sufficiently important to have the source files around at all times that the only time they should
be removed is when the directory is being mothballed. To do this, the command:

sees clean

can be used. This will remove all files for which an s-file exists, but which is not being edited.

13.1. To maintain single programs

Frequently there are directories with several largely unrelated programs (such as simple
commands). These can be put into a single make:ftle:

LDFLAGS= - i - s

prog: prog.o
$(CC) $(LDFLAGS) - 0 prog prog.o

prog.o: prog.c prog.h

example: example.o
$(Ce) $(LDFLAGS) - 0 example example.o

example.o: example.c

.DEFAULT:
sees get $<

The trick here is that the .DEFAULT rule is called every time something is needed that does
not exist, and no other rule exists to make it. The explicit dependency of the .0 file on the .c
file is important. Another way of doing the same thing is:

SRCS=prog.c prog.h example.c

LDFLAGS= - i - s

prog: prog.o
$(CC) $(LDFLAGS) - 0 prog prog.o

prog.o: prog.h

example: example.o
$(CC) $(LDFLAGS) - 0 example example.o

sources: $(SRCS)
$(SRCS):

sccs get $@

There are a couple of advantages to this approach: (1) the explicit dependencies of the .0 on

-10- 9053

Utility Guide sees

the .c files are not needed, (2) there is an entry called "sources" so if you want to get all the
sources you can just say "make sources", and (3) the makefile is less likely to do confusing
things since it won't try to get things that do not exist.

13.2. To maintain a library

Libraries that are largely static are best updated using explicit commands, since make
doesn't know about updating them properly. However, libraries that are in the process of being
developed can be handled quite adequately. The problem is that the .0 flIes have to be kept out
of the library as well as in the library.

configuration information
OBJS= a.o b.o c.o d.o
SRCS=a.c b.c c.c d.s x.h y.h z.h
TARG= /usr/lib

programs
GET= sccs get
REL=
AR= - ar
RANLIB= ranlib

lib.a: $(OBJS)
$(AR) rvu lib.a $(OBJS)
$(RANLIB) lib.a

install: lib.a
sccs check
cp lib.a $(TARG)/lib.a
$(RANLIB) $(TARG)/lib.a

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) $@

print: sources
pr *.h *.[cs]

clean:
rm - f *.0
rm - f core a.out $(LIB)

The cC$(REL)" in the get can be used to get old versions easily; for example:

make b.o REL=- r1.3

The m8tall entry includes the line "sccs check" before anything else. This guarantees that
all the s-files are up to date (i e., nothing is being edited), and will abort the make if this condi­
tion is not met.

13.3. To maintain a large program

OBJS= a.o b.o c.o d.o
SRCS=a.c b.c c.y d.s x.h y.h z.h

GET= sccs get
REL=

a.out: $(OBJS)
$(CC) $(LDFLAGS) $(OBJS) $(LIBS)

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) $@

D053 -11-

Utility Guide sees

(The print and clean entries are identical to the previous case.) This makefile requires copies of
the source and object files to be kept during development. It is probably also wise to include
lines of the form:

a.o: x.h y.h
b.o: z.h
c.o: x.h y.h z.h
z.h: x.h

so that modules will be recompiled if header files change.

Since make does not do transitive closure on dependencies, you may find in some
makefiles lines like:

z.h: x.h
touch z.h

This would be used in cases where file z.h has a line:

#include "x.h"

in order to bring the mod date of z.h in line with the mod date of x.h. When you have a
makefile such as above, the touch command can be removed completely; the equivalent effect
will be achieved by doing an automatic get on z.h.

14. Further Information

The SaaSjPWB User's Manual gives a deeper description of how to use sees. Of partic­
ular interest are the numbering of branches, the I-file, which gives a description of what deltas
were used on a get, and certain other sees commands.

The sees manual pages are a good last resort. These should be read by software
managers and by people who want to know everything about everything.

Both of these documents were written without the sccs front end in mind, so most of the
examples are slightly different from those in this document.

-12- 9053

Utility Guide scx::s

Quick Reference

1. Commands

The following commands should all be preceded with "sccs". This list is not exhaustive;
for more options see Further Information.

get Gets files for compilation (not for editing). Id keywords are expanded.

- rSID Version to get.

- p Send to standard output rather than to the actual file.

- k Don't expand id keywords.

- ilist List of deltas to include.

- xlist List of deltas to exclude.

- m Precede each line with SID of creating delta.

cdate Don't apply any deltas created alter date.

edit Gets files for editing. Id keywords are not expanded. Should be matched with a delta
command.

- rSID Same as get. If SID specifies a release that does not yet exist, the highest
numbered delta is retrieved and the new delta is numbered with SID.

- b Create a branch.

- ilist Same as get.

- xlillt Same as get.

delta Merge a file gotten using edit back into the s-file. Collect comments about why this
delta was made.

unedit Remove a file that has been edited previously without merging the changes into the
s-file.

prt Produce a report of changes.

- t Print the descriptive text.

- e Print (nearly) everything.

info Give a list of all files being edited.

- b Ignore branches.

check

tell

clean

what.

admin

- u[u8efj
Ignore files not being edited by U8er.

Same as linfo, except that nothing is printed if nothing is being edited and exit status
is returned.

Same as 'info, except that one line is produced per file being edited containing only
the file name.

Remove all files that can be regenerated from the s-ftle.

Find and print id keywords.

Create or set parameters on s-ftles.

- ifile Create, using file as the initial contents.

- z Rebuild the checksum in case the file has been trashed.

- fflag Turn on the flag.

9053 -13-

Utility Guide SCXJS

- dflag Turn off (delete) the flag.

- tfile Replace the descriptive text in the s-file with the contents of file. If file is
omitte~, the text is deleted. Useful for storing documentation or "design &
implementation" documents to insure they get distributed with the s-file.

Useful flags are:

b

dSID

Allow branches to be made using the - b flag to edit.

Default SID to be used on a get or edit.

Cause "No Id Keywords" error message to be a fatal error rather than a
warning.

t The module "type"; the value of this flag replaces the ~%keyword.

fix Remove a delta and reedit it.

delget Do a delta followed by a get.

deledit Do a delta followed by an edit.

2. Id Keywords

o/oZ%. Expands to "@ (#)" for the what command to find .

. 9t1\1% The current module name, e.g., "prog.c".

%1% The highest SID applied.

%W% A shorthand for "o/oZ%«78M% <tab> ~%".

o/cG% The date of the delta corresponding to the "%l%" keyword.

9bR% The current release number, i.e., the first component of the "~%" keyword.

%Y% Replaced by the value of the t flag (set by adm'tn).

-14- 9053

A wk - A Pattern Scanning and Processing Language

This document is based on a paper by Alfred V. Aho, Brian W. Kernighan, and Peter J. Wein­
berger of Bell Laboratorie's.

1. Inizodue non

Awk is a programming language designed to make many common information retrieval
and text manipulation tasks easy to state and to perform.

Basically, Awk scans a set of input lines in order, searches for lines containing any of a set
of user-defined patterns, and performs a specific action on the matching lines.

Readers familiar with the UNIXt program grep unix program manual will recognize the f
approach, although in awk the patterns may be more general than in grep, ,and the actions
allowed are more involved than merely printing the matching line. For example, the awk pro­
gram

{print $3, $2}

prints the third and second columns of a table in that order. The program

$2 ~ /AIBIC/
prints all input lines with an A, B, or C in the second field. The program

$1 != prey {print; prey = $1 }

prints all lines in which the first field is different from the previous first field.

1.1. Usage

The command

awk program [files]

executes the awk commands in the string program on the set of named files, or on the stan­
dard input if there are no files. The statements can also be placed in a file pfile, and, executed
by the command

awk - r pfile [files]

1.2. Program Sirueture

An awk program is a sequence of statements of the form:

pattern
pattern

{ action}
{ action }

Each line of input is matched against each of the patterns in turn. For each pattern that
matches, the associated action is executed. When all the patterns have been tested, the next
line is fetched and the matching starts over.

Either the pattern or the action may be left out, but not both. If there is no action for a
pattern, the matching line is simply copied to the output. (Thus a line which matches several
patterns can be printed several times.) If there is no pattern for an action, then the action is
performed for every input line. A line which matches no pattern is ignored.

Since patterns and actions are both optional, actions must be enclosed in braces to distin­
guish them from patterns.

tUNIX is a Trademark of Bell Laboratories.

9053 -1-

Utility Guide Awk

1.3. Be cords and Fie Ids

Awk input is divided into "records" terminated by a record separator. The default record
. separator is a newline, so by default awk processes its input a line at a time. The number of
the current record is available in a variable named NR.

Each input record is considered to be divided into "fields." Fields are normally separated
by white space - blanks or tabs - but the input field separator may be changed, as described
below. Fields are referred to as $1, $2, and so forth, where $1 is the first field, and $0 is the
whole input record itself. Fields may be assigned to. The number of fields in the current
record is available in a variable named NF.

The variables FS and RS refer to the input field and record separators; they may be
changed at any time to any single character. The optional command-line argument - Fc may
also be used to set FS to the character c.

If the record separator is empty, an empty input line is taken as the record separator, and
blanks, tabs and newlines are treated as field separators.

The variable F1LENAME contains the name of the current input file.

1.4. Printing

An action may have no pattern, in which case the action is executed for all lines. The
simplest action is to print some or all of a record; this is accomplished by the awk command
print. The awk program

{ print}

prints each record, thus copying the input to the output intact. More useful is to print a field or
fields from each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items separated by a comma in the print statement
will be separated by the current output field separator when output. Items not separated by
commas will be concatenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can be used; for example

{ print NR, NF, $0 }

prints each record preceded by the record number and the number of fields.

Output may be diverted to multiple files; the program

{ print $1 >"fool"; print $2 >"fo02" }

writes the first field, $1, on the file fool, and the second field on file fo02. The > > notation
can also be used:

print $1 > > "foo"

appends the output to the file foo. (In each case, the output files are created if necessary.) The
file name can be a variable or. a field as well as a constant; for example.

print $1 >$2

uses the contents of field 2 as a file name.

-2-

Naturally there is a limit on the number of output files; currently it is 10.

Similarly. output can be piped into another process; for instance.

9053

Utility Guide

print I "mail bwk"

mails the output to bwk.

Awk

The variables OFS and ORB may be used to change the current output field separator and
output record separator. The output record separator is appended to the output of the print
statement.

Awk also provides the prinif' statement for output formatting:

prinif' tonnat, expr, expr, _.

formats the expressions in the list according to the specification in tonnat and prints them. For
example,

prinif' "~.2f ~Old\n", $1, $2

. prints $1 as a fioating point number 8 digits wide, with two after the decimal point, and $2 as a
10-digit long decimal number, followed by a newline. No output separators are produced
automatically; you must add them yourself, as in this example. The version of prinif'is identi­
cal to that used with C. [See G Programming Language, Prentice Hall, 1978]

2. Patte rns

A pattern in front of an action acts as a selector that determines whether the action is to
be executed. A variety of expressions may be used as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions, and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the beginning of the input, before the first record is
read. The pattern END matches the end of the input, after the last record has been processed.
BEGIN and END thus provide a way to gain control before and after processing, for initializa­
tion and wrapup.

As ~nA~-xample, the field separator can be set to a colon by

BEGIN {FS = ":" }
... reat of program ...

Or the input lines may be counted by

END {print NR }

If BEGIN is present, it must be the first pattern; END must be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which will print all lines which contain any occurrence
of the name "smith". If a line contains "smith" as part of a larger word, it will also be
printed, as in

blacksmithing

Awk regular expressions include the regular expression forms found in the text editor ed
and grep (without back-referencing). In addition, awk allows parentheses for grouping, I for
alternatives, + for "one or more", and? for "zero or one", all as in lex. Character classes
may be abbreviated: [a- zA- ZO- 9] is the set of all letters and digits. As an example, the awk
program

9053 -3-

Utility Guide Awk

j[Aa]ho I [Ww]einberger I[Kk]emighan/

will print all lines which contain any of the names ·'Aho," "Weinberger" or • 'Kernighan, "
whether capitalized or not.

Regular expressions' (with the extensions listed above) must be enclosed in slashes, just
as in ed and sed. Within a regular expression, blanks and the regular expression metacharacters
are significant. To turn ~ the magic meaning of one of the regular expression characters, pre­
cede it with a backslash. An example is the pattern

/V·*V/
which matches any string of characters enclosed in slashes.

One can also specify that any field or variable matches a regular expression (or does not
match it) with the operators ,-....., and !,-.....,. The program

$1 ,-....., /[jJ] ohn/

prints all lines where the first field matches "john" or •• John." Notice that this will also match
·'Johnson", ·'St. Johnsbury", and so on. To restrict it to exactly UJlobn, use

$1 ,-....., t[jJ1ohn$/

The caret A refers to the beginning of a line or field; the dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expression involving the usual relational. operators <,
<-, -, !-, >-, and >. An example is

$2 > $1 + 100

which selects lines where the second field is at least 100 greater than the first field. Similarly,

NF %2 =0

prints lines with an even number of fields.

In relational. tests, if neither operand is numeric, a string comparison is made; otherwise it
is numeric. Thus,

$1 >= "s"

selects lines that begin with an s, t, U, etc. In the absence of any other information, fields are
treated as strings, so the program

$1 > $2

will perform a string comparison.

2.4. Combinations ofPattems

A pattern can be any boolean combination of patterns, using the operators II (or), 8d£
(and), and ! (not). For example,

$1 >= "s" && $1 < "1:' &:& $1 != "smith"

selects lines where the first field begins with "s", but is not "smith". &:& and II guarantee that
their operands will be evaluated from left to right; evaluation stops as soon as the truth or
falsehood is' determined.

2.5. Pattern Ranges

The '·pattern" that selects an action may also consist of two patterns separated by a
comma, as in

-4- 9053

Utility Guide Awk

patl., pat2 { - }
In this case, the action is performed for each line between an occurrence of patt. and the next
occurrence of pat2 (inclusive). For example,

Istart/, IstDpl
prints all lines between start and stDp, while

NR = 100, NR = 200 { _ }

does the action for lines 100 through 200 of the input.

3. Actions

An awk action is a sequence of action statements terminated by newlines or semicolons.
These action statements can be used to do a variety of bookkeeping and string manipulating
tasks.

3.1. Builtr-in Functions

Awk provides a "length" function to compute the length of a string of characters .. This
program prints each record, preceded by its length:

{print length, $ O}

length by itself is a "pseudo-variable" which yields the length of the current record;
length(argument) is a function which yields the length of its argument, as in the equivalent

{print length($O), $O}

The argument may be any expression.

Awk also provides the arithmetic functions sqrt, log, exp, and int, for square root, base e
logarithm, exponential, and integer part of their respective arguments.

The name of one of these builtrin functions, without argument or parentheses, stands for
the value of the function on the whole record. The program

length < 10 II length > 20

prints lines whose length is less than 10 or greater than 20.

The function substt{s, m, n) produces the substring of s that begins at position m (origin
1) and is at most n characters long. If n is omitted, the substring goes to the end of s. The
function index(sl, s2) returns the position where the string s2 occurs in sl, or zero if it does
not.

The function sprin1f(r, el, e2, _) produces the value of the expressions el, e2, etc., in
the printf format specifled by r. Thus, for example,

x = sprin1f'("~.2r ~Old", $1, $2)

sets x to the string produced by formatting the values of $1 and $ 2.

3.2. Variables, Expressions, and AssignmeniB

Awk variables take on numeric (floating point) or string values according to context. For
example, in

x=1

x is clearly a number, while in

x = "smith"

it is clearly a string. Strings are converted to numbers and vice versa whenever context
demands it. For instance,

9053 -5-

Utility Guide Awk

x = "3" + "4"

assigns 7 to x. Strings which cannot be interpreted as numbers in a numerical context will gen­
erally have numeric value zero, but it is unwise to count on this behavior.

By default, variables (other than builtrins) are initialized to the null string, which has
numerical value zero; this eliminates the need for most BEGIN sections. For example, the
sums of the first two fields can be computed by

{sl +=$1; s2 +=$2}
END{ print sl, s2 }

Arithmetic is done internally in floating point. The arithmetic operators are +, - , *, I,
and %(mod). The C increment + + and decrement - - operators are also available, and so
are the assignment operators + -, - -, *-, I ,and 0/'6=. These operators may all be used in
expressions.

3.3. Field Variables

Fields in awk share essentially all of the properties of variables - they may be used in
arithmetic or string operations, and may be assigned to. Thus one can replace the first field
with a sequence number like this:

{ $1 = NR; print}

or accumulate two fields into a third, like this:

{ $1 = $ 2 + $ 3; print $ 0 }

or assign a string to a field:

{ it ($3 > 1000)
$ 3 = "too big"

print
}

which replaces the third field by "too big" when it is, and in any case prints the record.

Field references may be numerical expressions, as in

{ print $i, $(i+ 1), $ (i+n) }

Whether a field is deemed numeric or string depends on context; in ambiguous cases like

it ($1 = $2) _

fields are treated as strings.

Each input line is split into fields automatically as necessary. It is also possible to split any
. varIable or string into fields:

n = spfit(s, a1T8Y, sep)

splits the the string s into array[I], ... , a1T8y[n]. The number of elements found is returned.
If the sep argument is provided, it is used as the field separator; otherwise FS is used as the
separator.

3.4. String Conea1enation

Strings may be concatenated. For example

length($1 $2 $3)

returns the length of the first three fields. Or in a print statement,

print $1 " is " $ 2

-6- 9053

Utility Guide Awk

prints the two fields separated by" is ". Variables and numeric expressions may also appear in
concatenations.

3.5. An-ays

Array elements are not declared; they spring into existence by being mentioned. Sub­
scripts may have any non-null value, including non-numeric strings. As an example of a con­
ventional numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NRrth element of the array x. In fact, it is possible in
principle (though perhaps slow) to process the entire input in a random order with the awk pro­
gram

{x[NR] = $0 }
END{ ... program ... }

The first action merely records each input line in the array x.

Array elements may be named by non-numeric values, which gives awk a capability rather
like the associative memory of Snobol tables. Suppose the input contains fields with values like
apple, orange, etc. Then the program

/apple/ {x["apple"]++ }
/orange/ { x["orange"]+ + }
END { print x["apple"], x["orange"] }

increments counts for the named array elements, and prints them at the end of the input.

3.6. Flow-ot-Control Statemen1B

Awk provides the basic flow-of-control statements if-else, while, tor, and statement
grouping with braces, as in C. We showed the if statement in section 3.3 without describing it.
The condition in parentheses is evaluated; if it is true, the statement following the if is done.
The else part is optional.

The while statement is exactly like that of C. For example, to print all input fields one
per line,

i=l
while (i < = NF) {

print $i
++i

}

The tor statement is also exactly that of C:

tor (i = 1; i < = NF; i+ +)
print $i

does the same job as the while statement above.

There is an alternate form of the tor statement which is suited for accessing the elements
of an associative array:

tor (i in alT8.Y)
statement

does statement with i set in turn to each element of alT8.y. The elements are accessed in an
apparently random order. Chaos win ensue if i is altered, or if any new elements are accessed
during the loop.

The expression in the condition part of an it, while or tor can include relational operators

9053 -7-

Utility Guide Awk

like <, <-, >, >-, = ("is equal to"), and != ("not equal to"); regular expression
matches with the match operators ,...... and !,......; the logical operators II, &&, and !; and of course
parentheses for grouping.

The break statemeJ.lt causes an immediate exit from an enclosing while or tor; the con­
tinue statement causes the next iteration to begin.

The statement next causes awk to skip immediately to the next record and begin scanning
the patterns from the top. The statement exit causes the program to behave as if the end of
the input had occurred.

Comments may be placed in awk programs: they begin with the character # and end with
the end of the line, as in

print x, Y # this is a comment

·4. Design

The UNIX system already provides several programs that operate by passing input through
a selection mechanism. Grep, the first and simplest, merely prints all lines which match a single
specified pattern. Egrep provides more general patterns, i.e., regular expressions in full general­
ity; fgrep searches for a set of keywords with a particularly fast algorithm. Sed unix programm
manual provides most of the editing facilities of the editor ed, applied to a stream of input.
None of these programs provides numeric capabilities, logical relations, or variables.

Lex lesk lexical analyzer cstr provides general regular expression recognition capabilities,
and, by serving as a C program generator, is essentially open-ended in its capabilities. The use
of lex, however, requires a knowledge of C programming, and a lex program must be compiled
and loaded before use, which discourages its use for one-shot applications.

Awk is an attempt to fill in another part of the matrix of possibilities. It provides general
regular expression capabilities and an implicit input/output loop. But it also provides con­
venient numeric processing, variables, more general selection, and control fiow in the actions.
It does not require compilation or a knowledge of C. Finally, awk provides a convenient way to
access fields within lines; it is unique in this respect.

Awk also tries to integrate strings and numbers completely, by treating all quantities as
both string and numeric, deciding which representation is appropriate as late as possible. In
most cases the user can simply ignore the differences.

Most of the effort in developing awk went into deciding what awk should or should not do
(for instance, it doesn't do string substitution) and what the syntax: should be (no explicit
operator for concatenation) rather than on writing or debugging the code. We have tried to
make the syntax powerful but easy to use and well adapted to scanning files. For example, the
absence of declarations and implicit initializations, while probably a bad idea for a general­
purpose programming language, is desirable in a language that is meant to be used for tiny pro­
grams that may even be composed on the command line.

In practice, awk usage seems to fall into two broad categories. One is what might be
called ""report generation" - processing an input to extract counts, sums, sub-totals, etc. This
also includes the writing of trivial data validation programs, such as verifying that a field con­
tains only numeric information or that certain delimiters are properly balanced. The combina­
tion of textual and numeric processing is invaluable here.

A second area of use is as a data transformer, converting data from the form produced by
one program into that expected by another. The simplest examples merely select fields,
perhaps with rearrangements.

-8- 9053

Utility Guide Awk

5. Implementation

The actual implementation of awk uses the language development tools available on the
operating system. The grammar is specified with yacc; yacc johnson cstr the lexical analysis is
done by lex; the regular expression recognizers are deterministic finite automata constructed
directly from the expressions. An awk program is translated into a parse tree which is then
directly executed by a simple interpreter.

Awk was designed for ease of use rather than processing speed; the delayed evaluation of
variable types and the necessity to break input into fields makes high speed dimcult to achieve
in any case. Nonetheless, the program has not proven to be unworkably slow.

Table I below shows the execution (user + system) time on a PDP-ll/70 of the system
. programs we, grep, egrep, fgrep, sed, lex, and awk on the following simple tasks:

1. count the number of lines.

2. print all lines containing "doug".

3. print all lines containing "doug", "ken" or "dmr".

4. print the third field of each line.

5. print the third and second fields of each line, in that order.

6. append all lines containing "doug", "ken", and "dmr" to files "jdoug", "jken", and
"jdmr", respectively.

7. print each line prefixed by "line-number: ".

8. sum the fourth column of a table.

The program we merely counts words, lines and characters in its input; we have already men­
tioned the others. In all cases the input was a file containing 10,000 lines as created by the
command Is - I; each line has the form

- rw- rw- rw- 1 ava 123 Oct 15 17:05 :xxx

The total length of this input is 452,960 characters. Times for lex do not include compile or
load.

As might be expected, awk is not as fast as the specialized tools we, sed, or the programs
in the grep family, but is faster than the more general tool lex. In all cases, the tasks were
about as easy to express as awk programs as programs in these other languages; tasks involving
fields were considerably easier to express as awk programs. Some of the test programs are
shown in awk, sed and lex.

Table I. Execution Times of Programs. (Times are in sec.)

Program 1 2 3

we 8.6

grep 11.7 13.1
egrep 6.2 11.5 11.6
fgrep 7.7 13.8 16.1

sed 10.2 11.6 15.8

lex 65.1 150.1 144.2
awk 15.0 25.6 29.9

The programs for some of these jobs
are shown below. The lex programs are gen­
erally too long to show.

Task
4

29.0

67.7
33.3

9053

5

30.5

70.3
38.9

6 7

16.1

104.0 81.7
46.4 71.4

8

92.8
31.1

-9-

Utility Guide Awk

AWK:

1. END{print NR}

2. /doug/

3. /kenldougldmr/

.4. {print $3}

5. {print $ 3, $ 2 }

6. /ken/ {print > "jken"}
/doug/ {print > "jdoug"}
/dmr/ {print >"jdmr"}

7. {print NR ": .. $O}

8. {sum = sum + $4}
END{print sum}

SED:

1. $=

2. /dougjp

3. /dougjp
/doug/d
/kenjp
/ken/d
/dmrjp
/dmr/d

4. /[A]* []*[A]* []*\([A]*\) .*/s/l\ljp

5. /[A]* []*\([A]*\) []*\([A]*\) .*/s/1\2 \ljp

6. /kenjw jken
/dougjw jdoug
/dmrjw jdmr

LEX:

1. ~
int i;

-10-

~
~
\n i++;

;
~
yywrapO {

prin1f("%I\n", i);
}

9053

2. ~
A . *doug. *$ prin1f("%J \n", yytext);

;
\n ;

DC - An Interactive Desk Calculator

This document is based on a paper by Robert Morris and Lorinda Cherry of Bell Labora­
tories.

DC is an arbitrary-precision arithmetic package in the form of an interactive desk calcula­
tor. It is a stack-oriented calculator using reverse Polish notation. DC ordinarily operates on
decimal integers, but one may specify an input base, output base, and a number of fractional
digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the fami­
liar style of higher-level programming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two off the stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

SYNOPllCDESCRIP'nON

Here we describe the DC commands that are intended for use by people. The additional
commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and neW-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string
of the digits 0-9 and the capital letters A- F which are treated as digits with values 10- 15
respectively. The number may be preceded by an underscore to input a negative
number. Numbers may contain decimal points.

+ * %"

sx

Ix

The top two values on the stack are added (+), subtracted (-), multiplied (*), divided
(j)' remaindered (0/4, or exponentiated ("). The two entries are popped off the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun­
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto
it. Any character, even blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the I is
capitalized, register x is treated as a stack and its top value is popped onto the main stack.

, All 'registers start with empty value which is treated as a zero by the command I and is treated
as an error by the command L.

9053 -1-

Utility Guide DC

d

p

r

x

[...]

q

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers· are printed.

treats the top element of the stack as a character string, removes it from the stack, and
executes it as a string of DC commands.

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is capi­
talized, the top value on the stack is popped and the string execution level is popped by
that value.

<x >x =x !<x !>x !~

v

e

i

o

k

-2-

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root. The square root of an integer is
truncated to an integer. For the treatment of numbers with decimal points, see the
detailed description below.

interprets the rest of the line as a system command. Control returns to DC when the sys­
tem command terminates.

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number radix for further input. If i
is capitalized, the value of the input base is pushed onto the stack. No mechanism has
been provided for the input of arbitrary numbers in bases less than 1 or greater than 16.

The top value on the stack is popped and used as the number radix for further output. If
o is capitalized, the value of the output base is pushed onto the stack.

The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and
exponentiation. The scale factor must be greater than or equal to zero and less than 100.
If k is capitalized, the value of the scale factor is pushed onto the stack.

9053

Utility Guide DC

.Z

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRlP'llON

Internal Representation or Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the
form of a string of digits to the base 100 stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic operation on a number, care is taken that all
digits are in the range 0- 99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represented in the 100's complement notation, which is analogous
to two's complement notation for binary numbers. The high order digit of a negative number
is always - 1 and all other digits are in the range 0- 99. The digit preceding the high order - 1
digit is never a 99. The representation of - 157 is 43,98,- 1. We shall call this the canonical
form of a number. The advantage of this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the result is formally correct. The result
need only be modified, if necessary, to put it into canonical. form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addi­
tion can be carried out and the handling of carries done later when that is convenient, as it
sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,9
where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this extra byte is called the scale raetor of the number.

The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and
writing of numbers internally is done through the allocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string, the end of the
string, the next place to write, and the next place to read. Communication between the alloca­
tor and DC is done via pointers to these headers.

The allocator initially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power of 2. When a request for a
string is made, the allocator first checks the free list to see if there is a string of the desired
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until
it has a string of tbe right size. Left-over strings are put on the free list. If there are no larger

_ strings, the allocator tries to coalesce smaller free strings into larger ones. Since all strings are
the result of splitting large strings, each string has a neighbor that is next to it in core and, if
free, can be combined with it to make a string twice as long. This is an implementation of the
'buddy system' of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system
for more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca­
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward­
spacing, and backspacing strings. All string manipulation is done using these routines.

9053 -3-

Utility Guide DC

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a series of read or write calls. The
write pointer is interpreted as the end of the information-containing portion of a string and a
call to read beyond that point returns an end-of-string indication. An attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy the old string
into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the
operation are popped from the main stack and their scale factors stripped off. Zeros are added
or digits removed as necessary to get a properly scaled result from the internal arithmetic rou­
tine. For example, if the scale of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the smaller scale. After performing
the required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is
the bound on the number of decimal places retained in arithmetic computations. seale may be
set to the number on the top of the stack truncated to an integer with the k command. K may
be used to push the value of scale on the stack. seale must be greater than or equal to 0 and
less than 100. The descriptions of the individual arithmetic operations will include the exact
effect of seale on the computations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99,- 1 by the digit - 1. In any case, digits which are not in the range
0- 99 must be brought into that range, propagating any carries or borrows that result.

Multiplication

The scales are removed from the two operands and saved. The operands are both made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied by each digit of the second
number, beginning with its low order digit. The intermediate products are accumulated into a

. partial sum which becomes the final product. The product is put into the canonical form and its
sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register seale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

Division

The scales are removed from the two operands. Zeros are appended or digits removed
from the dividend to make the scale of the result of the integer division equal to the internal
quantity seale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.

-4- 9053

Utility Guide DC

Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, but if it is, the next trial quotient will be larger than 99 and this will be adjusted at the end
of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining divi­
dend is smaller than the divisor. At the end, the digits of the quotient are put into the canoni­
cal form, with propagation of carry as needed. The sign is set from the sign of the operands.

Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division trun­
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale
of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer
result have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton's method with successive approximations
by the rule

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the
result is 1. If the exponent is negative, then it is made positive and the base is divided into
one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the positions
of the one-bits in the binary representation of the exponent. Enough digits of the result are
removed to make the scale of the result the same as if the indicated multiplication had been
performed.

Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a _. The hexadecimal digits A- F correspond to the
numbers 10- 15 regardless of input base. The i command can be used to change the base of
the input numbers. This command pops the stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command I will push the value of the input base on the stack.

Output Commands

The command p causes the top of the stack to be printed. It does not remove the top of
the stack. All of the stack and internal registers can be output by typing the command f. The 0

command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.
It will work correctly for any base. The command 0 pushes the value of the output base on the
stack.

9053 -5-

Utility Guide DC

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output;
they have no effect on arithmetic computations. Large numbers are output with 70 characters
per line; a \ indicates a ~ontinued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal­
hexadecimal conversions.

Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from regis­
ters with the commands s and I. The command sx pops the top of the stack and stores the
result in register x. x can be any character. Ix puts the contents of register x on the top of the
stack. The I command has no effect on the contents of register x. The s command, however,
is destructive.

Stack Commands

The command c clears the stack. The command d pushes a duplicate of the number on
the top of the stack on the stack. The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

Subroutine Definitions and Calls

Enclosing a string in [] pushes the ascii string on the stack. The q command quits or in
executing a string, pops the recursion levels by two.

Internal Registers - Programming DC

The load and store commands together with [] to store strings, x to execute and the test­
ing commands '<', '>', '=', '!<', '!>', '!=' can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com­
mands compare the top two elements on the stack and if the relation holds, execute the register
that follows the relation. For example, to print the numbers 0-9,

[lipl+ si lil0>a]sa
Osi lax

Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on, DC can be
thought of as having individual stacks for each register. These registers are operated on by the
commands S and L. Sx pushes the top value of the main stack onto the stack for the register
x. Lx pops the stack for register x and puts the result on the main stack. The commands s and
I also work on registers but not as push-down stacks. I doesn't effect the top of the register
stack, and s destroys what was there before.

The commands to work on arrays are : and;. :x pops the stack and uses this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the stack is the index into the array x of the
value to be loaded.

-6- 9053

Utility Guide DC

Miscellaneous Commands

The command ! interprets the rest of the line as a system command and passes it to ROS
to execute. One other compiler command is Q. This command uses the top of the stack as the
number of levels of recuI'$ion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose pro­
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some
value for input and for compiling (Le. the bracket [...] commands) where it cannot be known
in advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan­
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in
space, debugging was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addi­
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com­
munication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith­
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in
. no . case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable
to give him the result 5.017 without requiring him to unnecessarily specify his rather obvious
requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more
digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user
asked for them by specifying a value for seale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and there
is simply no way to guess how many places the user wants. In this case only, the user must
specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the
quotient and remainder. This is easy to implement; no digits are thrown away.

References

[1] L. L. Cherry, R. Morris, BG - An Arb'itrary Precu;'ion Desk-Galculator Language.

[2] K. C. Knowlton, A Fast Storage Allocator, Comm. ACM 8, pp. 623-625 (Oct. 1965).

9053 -7-

Utility Guide DC

-8- 9053

BC - An Arbitrary Precision Desk-Calculator Language

This document is based on a paper by Lorinda Cherry and Robert Morris of Bell Labora,­
tories.

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIXt

time-sharing system [1]. The compiler was written to make conveniently available a collection
of routines (called DC [5]) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is
made for input and output in bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language
[2]. Those who are familiar with C will find few surprises in this language.

The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type in the line:

142857 + 285714

the program responds immediately with the line

428571

The operators - , *, /, %, and A can also be used; they indica.te subtraction, multiplication, divi­
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be
negated (the 'unary' minus sign). The expression

7+- 3

is interpreted to mean that - 3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just
as in Fortran, with A having the greatest binding power, then * and % and I, and finally + and
- . Contents of parentheses are evaluated before material outside the parentheses. Exponen­

. tiations are performed from right to left and the other operators from left to right. The two
expressions

are equivalent, as are the two expressions

tUNIX is a Trademark or Bell Laboratories.

9053 -1-

· Utility Guide BC

BC shares with Fortran and C the undesirable convention that

a/b*c is equivalent to (a/b) *C

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression can be assigned to a register in the usual way. The statement

x =x + 3

has the effect of increasing by three the value of the contents of the register named x. When.
as in this case. the outermost operator is an =. the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below) . The lines

x = sqrt(191)
x

produce the printed result

13

There are special internal quantities, called 'ibase' and ·obase'. The contents of 'ibase',
initially set to 10, determines the base used for interpreting numbers read in. For example, the
lines

ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those
who deal in hexadecimal notation, the characters A- F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10- 15 respectively. The
statement

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

lines
The contents of 'obase', initially set to 10, are used as the base for output numbers. The

obase = 16
1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permit­
ted, and they are sometimes useful. For example, large numbers can be output in groups of
five digits by setting 'obase' to 100000. Strange (I.e. 1, 0, or negative) output bases are han­
dled appropriately.

-2- 9053

Utility Guide Be

Very large numbers are split across lines with 70 characters per line. Lines which are con­
tinued end with \. Decimal output conversion is practically instantaneous, but output of very
large numbers (Le., more than 100 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that 'ibase' and 'obase' have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only a1Ject input and output
conversion, respectively.

A third special internal quantity called 'scale' is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtraction, the scale

. of the result is the larger of the scales of the two operands. In this case, there is never any
truncation of the result. For multiplications, the scale of the result is never less than the max­
imum of the two scales of the operands, never more than the sum of the scales of the operands
and, subject to those two restrictions, the scale of the result is set equal to the contents of the
internal quantity 'scale'. The scale of a quotient is the contents of the internal quantity 'scale'.
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of
an exponentiation is scaled as if the implied multiplications were performed. An exponent
must be an integer. The scale of a square root is set to the maximum of the scale of the argu­
ment and the contents of 'scale'.

All of the internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed.

The contents of 'scale' must be no greater than 99 and no less than o. It is initially set to

o. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities 'scale', 'ibase', and 'obase' can be used in expressions just like
other variables. The line

scale = scale + 1

increases the value of 'scale' by one, and the line

scale

causes the current value of 'scale' to be printed.

The value of 'scale' retains its meaning as a number of decimal digits to be retained in
internal computation even when 'ibase' or 'obase' are not equal to 10. The internal computa­
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any other kind of digits.

The name of a function is a single lower-case letter. Function names are permitted to col­
lide with simple variable names. Twenty-six different defined functions are permitted in addi­
tion to the twenty-six variable names. The line

define a(x) {

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace }. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

9053 -3-

Utility Guide

return
return(x)

Be

In the flrst case, the value of the function is 0, and in the second, the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one 'auto' statement in a function and it must be the flrst statement in the
deflnition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables

. at each level of call are protected. The parameters named in a function deflnition are treated in
the same way as the automatic variables of that function with the single exception that they are
given a value on entry to the function. An example of a function deflnition is

deflne a.(x,y) {
auto z

}

z =x*y
return(z)

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments
enclosed in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are deflned and called using parentheses with nothing
between them: b().

If the function a above has been deflned, then the line

a.(7,3.14)

would cause the result 21.98 to be printed and the line

x = a(a(3,4) ,5)

would cause the value of x to become 60.

A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return
statements.

An array name may be used as an argument to a function, or may be declared as
automatic in a function deflnition by the use of empty brackets:

f(a[])
deflne f(a[])
auto a[]

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

-4- 9053

Utility Guide Be

The 'if', the 'while', and the 'for' statements may be used to alter the flow within pro­
grams or to cause iteration. The range of each of them is a sta.tement or a compound statement
consisting of a collection of statements enclosed in braces. They are written in the following
way

or

if(relation) statement
while(relation) statement
for(expressionl; relation; expression2) statement

if(relation) {statements}
while (re lation) {state m en ts }
for(expressionl; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the six relational operators <, >, <=, >=,
==, or !=. The relation == stands for 'equal to' and != stands for 'not equal to'. The
meaning of the remaining relational operators is clear.

BEWARE of using = instead of == in a relational. Unfortunately, both of them are
legal, so you will not get a diagnostic message, but = really will not do a comparison.

The 'if' statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

The 'while' statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is false, con­
trol passes to the next statement beyond the range of the while.

The 'for' statement begins by executing 'expressionl'. Then the relation is tested and, if
true, the statements in the range of the 'for' are executed. Then 'expression2' is executed.
The relation is tested, and so on. The typical use of the 'for' statement is for a controlled itera­
tion, as in the statement

for(i=I; i<=10; i=i+ 1) i

which will print the integers from 1 to 10. Here are some examples of the use of the control
statements.

define f(n) {
auto i, x
x=1
for(i=I; i<=n; i=i+ 1) x=x*i
return(x)
}

The line

f(a)

will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m) {
auto x, j
x=1
for(j=I; j<=m; j=j+ 1) x=x*(n- j+ 1)/j
return(x)
}

9053 -5-

Utility Guide BC

The following function computes values of the exponential function by summing the appropri­
ate series without regard for possible truncation errors:

scale = 20
define e(x) {

}

auto a., b, c, d, n
a=1
b=1
c = 1

d=O
n=1
while (1==1) {

}

a= a*X
b = b*n
c=c+ a/b
n =n + 1
if(c==d) return(c)
d=c

There are some language features that every user should know about even if he will not
. use· them.

Normally statements are typed one to a line. It is also permissible to type several state­
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any­
where that an expression can. For example, the line

(x=y+ 17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = a[i=i+ 1]

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manuals [2] for their exact workings.

x=y=z is the same as
x =+ y
x =- y

x =*y
x =/y
x=%y
x =A y

x++
x- -

++x
--x

x=(y=z)
x =x+y
x =x- y
x =x*y
x =x/y
x = xo/mr
x = xAy
(x=x+ 1)- 1
(x=x- 1)+ 1
x =x+l
x =x- 1

Even if you don't intend to use the constructs, if you type one inadvertently, something correct
but unexpected may happen.

-6- 9053

Utility Guide BC

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x=- y and x= - y. The first replaces x by x- y and the second by - y.

1. To exit a BC program, type 'quit'.

2. There is a comment convention identical to that of C and of PLjI. Comments begin
with '/*' and end with '*/'.

3. There is a library of math functions which may be obtained by typing at command level

bc - 1

This command will load a set of library functions which, at the time of writing, consists of sine
(named's'), cosine ('c'), arctangent ('a'), natural logarithm ('1'), exponential ('e') and Bessel
functions of integer order ('j(n,x)'). Doubtless more functions will be added in time. The
library sets the scale to 20. You can reset it to something else if you like. The design of these
mathematical library routines is discussed elsewhere [3].

If you type

bc file ...

BC will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions.

The compiler is written in YACC [4]; its original version was written by S. C. Johnson.

[1] K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories, 1978.

[2] B. W. Kernighan and D. M. Ritchie, The 0 Programm£ng Language, Prentice-Hall, 1978.

[3] R. Morris, A L£brary of Reference Standard Mathemat£cal Subrout'tnes, Bell Laboratories
internal memorandum, 1975.

[4] S. C. Johnson, YAOO - Yet Another Oompiler-Oompiler. Bell Laboratories Computing Sci­
ence Technical Report #32, 1978.

[5] R. Morris and L. L. Cherry, DO - An Interaclz've Desk Oalculator.

9053 -7-

Utility Guide BC

Appendix

1. NOTATION

In the following pages syntactic categories are in italics; literals are in bold; material in
brackets [] is optional.

2. WKENS

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs or comments. Newline characters or semicolons separate state­
ments.

2.1. Q)mments

Comments are introduced by the characters /* and terminated by */.

2.2. Identifiers

There are three kinds of identifiers - ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of identifiers do not confiict; a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexade­
cimal digits A- F are also recognized as digits with values 10- 15, respectively.

3. EXPRESSIONS

The value of an expression is printed unless the main operator is an assignment. Pre­
cedence is the same as the order of presentation here, with highest appearing first. Left or right
associativity, where applicable, is discussed with each operator.

-8- 9053

Utility Guide BC

3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions
are legal on the left side of an assignment. The value of a named expression is the value stored
in the place named.

3.1.1.1. identifiers

Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name [expression]

Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the
number of digits after the decimal point to be retained in arithmetic operations. scale has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

3.1.2. Funmon calls

3.1.2.1. function-name ([expression [, expression . ..]])

A function call consists of a function name followed by parentheses containing a comma­
separated list of expressions, which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu­
ments are passed by value. As a result, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return statement, the value
of the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt(expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3.1.2.3. length (expression)

The result is the total number of significant decimal digits in the expression. The scale of
the result is zero.

3.1.2.4. scale (expression)

The result is the scale of the expression. The scale of the result is zero.

3.1.3. <Jonstants

Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

9053 -9-

Utility Guide Be

3.2. Unary operators

The unary operators bind right to left.

3.2.1. - express'ion

The result is the negative of the expression.

3.2.2. + + named-expression

The named expression is incremented by one. The result is the value of the named
expression alter incrementing.

3.2.3. - - named-expression

The named expression is decremented by one. The result is the value of the named
expression after decrementing.

3.2.4. named-expression + +
The named expression is incremented by one. The result is the value of the named

expression before incrementing .

. 3.2.5; named-expression- - .

The named expression is decremented by one. The result is the value of the named
expression before decrementing.

3.3. Exponentiation operator

The exponentiation operator binds right to left.

3.3.1. expression A expression

The result is the first expression raised to the power of the second expression. The
second expression must be an integer. If a is the scale of the left expression and b is the abso­
lute value of the right expression, then the scale of the result is:

min (a Xb, max (scale, a))

3.4. Multiplicative operators

The operators *, /, % bind left to right.

3.4.1. expression. expression

The result is the product of the two expressions. If a and b are the scales of the two
expressions, then the scale of the result is:

min (a+ b, max (scale, a, b))

3.4.2. expression / expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More pre­
cisely, ao/clJ is a- a/b*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

-10- 9053

Utility Guide Be

3.5. Additive operators

The additive operators bind left to right.

3.5.1. expression + expre~sion
The result is the sum of the two expressions. The scale of the result is the maximum of

the scales of the expressions.

3.5.2. expression - expression

The result is the difference of the two expressions. The scale of the result is the max­
imum of the scales of the expressions.

3.6. Assignment operators

The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named
expression on the left.

3.6.2. named-expression I expression

3.6.3. named-expression =- expression

3.6.4. named-expression~ expression

3.6.5. named-expression I expression

3.6.6. named-expression =% expression

3.6.7. named-expression _A expression

The result of the above expressions is equivalent to "named expression = named expres­
sion OP expression", where OP is the operator after the = sign.

4. RELA'llONS

Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

4.1. expression < expression

4.2. expression> expression

4.3. expression < = expression

4.4. expression > = expression

4.5. expression = expression

4.6. express.·on ! = expression

9053 -11-

Utility Guide BC

5. Storage classes

There are only two storage classes in BC, global and automatic (local). Only identifiers
that are to be local to a function need be declared with the auto command. The arguments to a
function are local to the function. All other identifiers are assumed to be global and available
to all functions. All identifiers, global and local, have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from the fUnction.
They therefore do not retain values between function calls. auto arrays are specified by the
array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PL/I .
. Oneritry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main. operator is an assignment, the value
of the expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by sur­
rounding them with { }.

6.3. Quoted string statements

"any string"

This statement prints the string inside the quotes.

6.4. If statements

if(relation) statement

The substatement is executed if the relation is true.

6.5. While statements

while (relation) statement

The statement is executed while the relation is true. The test occurs before each execu­
tion of the statement.

6.6. For statements

for (express-ion; relat-ion; express£on) statement

The for statement is the same as

-12-

first- express-ion
while (relat-ion) {

}

statement
last-express£on

All three expressions must be present.

9053

Utility Guide

6.7. Break statements

break

break causes termination of a for or while statement.

6.8. Auto statements

auto ide nti/ier [,identifier]

BC

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol­
lowing the array name by empty square brackets. The auto statement must be the first state­
ment in a function definition.

6.9. Define statements

define([parameter[,parameter . ..]]) {
sta tement8 }

The define statement defines a function. The parameters may be ordinary identifiers or
array names. Array names must be followed by empty square brackets.

6.10. Return statements

return

return(expression)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return(O). The result of the
function is the result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when it
is first encountered. Because it is not treated as an executable statement, it cannot be used in a
function definition or in an if, for, or while statement.

9053 -13-

· Utility Guide Be

-14- 9053

Utility Guide Mail

MAIL Message System- Reference Manual

This document is based on a paper by Kurt Shoens of the University of California at Berkeley.

1. INTRODUanON

Mail lets you send and receive mail from other users on the system or network. It pro­
vides a set of ed-like commands for manipulating messages and sending mail.

This document describes Mail for both casual and frequent users of the program. The

reader is assumed to be familiar with the UNIXl Shell, the text editor, and some of the common
UNIX commands. If you are a neophyte Mail user, section two of this document should provide
enough information to allow you to effectively use Mail. The balance of this document
describes more advanced features, which are useful to those commonly barraged with a large
volume of mail.

2. COMMON USAGE

The Mail command has two distinct usages, according to whether one wants to send or
receive mail. Sending mail is simple: to send a message to a user whose login name is, say,
"root," use the Shell command:

% Mail root

then type your message. When you reach the end of the message, type an EOT (control- d) at
the beginning of a line, which will cause Mail to echo "EOT" and return you to the Shell.
When the user you sent mail to next logs in, he will receive the message:

You have mail.

to alert him to the existence of your message. Incidentally, once you have sent m.ail to some­
one, there is no way to undo the act, so be careful. The message your recipient reads will con­
sist of the message you typed, preceded by a line telling who sent the message (your login
name), the teletype from which the message was sent, and the date and time it was sent.

If you want to send the same message to several other people, you can list all of their
login names on the command line. Thus,

% Mail sam bob john
Tuition fees are due next Friday. Don't forget!!
< Control- d>
EOT
%

will send the reminder to sam, bob, and john.

If, when you log in, you see the message,

You have mail.

you can read the mail by typing simply:

% Mail

Mail will respond by typing its version number and date and then listing the messages you have
waiting. Then it will type an underscore and await your command. The messages are assigned
numbers starting with 1 - you can refer to the messages with these numbers.

1 UNIX Is a trademark of Bell Laboraoorles.

9053 -1-

Utility Guide Mail

To look at a specific message, use the type command, which may be abbreviated to simply
t. For example, if you had the following messages:

1 root
2 sam

Wed Sep 21 09:21 "Tuition fees"
Tue Sep 20 22:55

you could examine the first message by giving the command:

type 1

which might cause Mail to respond with, for example:

Message 1:
From root ttyS Wed Sep 21 09:21 :45 1978
Subj: Tuition fees

Tuition fees are due next Wednesday. Don't forget!!

Normally, each message you receive is saved in the file mbox in your login directory at the
time you leave Mail. Often, however, you will not want to save a particular message you have
received because it is only of passing interest. To avoid saving a message in mbox you can
delete it using the delete command. In our example,

delete 1

will prevent Mail from saving message 1 (from root) in mbox. In addition to not saving deleted
messages, Mail will not let you type them, either. The effect is to make the message disappear
altogether, along with its number. The delete command can be abbreviated to simply d

When you have perused all of the messages of interest, you can leave Mail with the quit
command, which saves all of the messages you have typed but not deleted in the file mb ox in
your login directory. Deleted messages are discarded irretrievably, and messages left untouched
are preserved in your system mailbox so that you will see them the next time you type:

% Mail

The quit command can be abbreviated to simply q.

If you wish for some reason to leave Mail quickly without altering either your system
mailbox or mbox, you can type the x command (short for exit), which will immediately return
you to the Shell without changing anything.

If, instead, you want to execute a Shell command without leaving Mail, you can type the
command preceded by an exclamation point, just as in the text editor. Thus, for instance:

!date

will print the current date without leaving Mail.

Finally, the help command is available to print out a brief summary of the Mail com­
mands, using only the single character command abbreviations.

3. TILDE ESCAPES

While typing in a message to be sent to others, it is often useful to be able to invoke the
text editor on the partial message, print the message, execute a shell command, or perform
some other auxiliary function. Mail provides these capabilities through tilde escapes, which con­
sist of a tilde (-) at the beginning of a line, followed bya single character which indicates the
function to be performed. For example, to print the text of the message so far, use:

-p

which will print a line of dashes, the recipients of your message, and the text of the message so
far. If you are dissatisfied with the message as it stands, you can invoke the text editor on it
using the escape

-e

-2- 9053

Utility Guide Mail

which causes the message to be copied into a temporary file and an instance of the editor to be
spawned. After modifying the message to your satisfaction, write it out and quit the editor.
Mail will respond by typing

(continue)

after which you may continue typing text which will be appended to your message, or type
< con trol-d > to end the message.

It is often useful to be able to include the contents of some file in your message; the
escape

-r filename

is provided for this purpose, and causes the named file to be appended to your current message.
Mail complains if the file doesn't exist or can't be read. If the read is successful, the number
of lines and characters appended to your message is printed, after which you may continue
appending text.

As a special case of -r, the escape

-d

reads in the file "dead.letter" in your home directory. This is often useful since Mail copies
the text of your message there when you abort a message with RUBOUT.

In order to save the current text of your message on a file you may use the

-w filename

escape. Mail will print out the number of lines and characters written to the file, after which
you may continue appending text to your message.

If you are sending mail from within Mail's command mode (read about the reply and
mail commands, section six), you can read a message sent to you into the message you are
constructing with the escape:

-m 4

which will read message 4 into the current message. shifted right by one tab stop. You can
name any non-deleted message. or list of messages. This is the usual way to forward a mes­
sage.

If. in the process of composing a message, you decide to add additional people to the list
of message recipients, you can do so with the escape

-t namel name2 ...

You may name as few or many additional recipients as you wish. Note that the users originally
on the recipient list will still receive the message; in fact, you cannot remove someone from the
recipient list with -to

If you wish, you can associate a subject with your message by using the escape

-s Arbitrary string of text

which replaces any previous subject with "Arbitrary string of text." The subject. if given, is
sent near the top of the message prefixed with "Subj:" You can see what the message will look
like by using -po

For political reasons, one occasionally prefers to list certain people as recipients of carbon
copies ofa message rather than direct recipients. The escape

-c namel name2 ...

adds the named people to the "Cc:" list, similar to -to Again, you can execute -p to see what
the message will look like.

The recipients of the message together constitute the "To:" field, the subject the "Subj:"
field, and the carbon copies the "Cc:" field. If you wish to edit these in ways impossible with
the -t, -s, and -c escapes, you can use the escape

9053 -3-

Utility Guide Mail

-h

which prints "To:" followed by the current list of recipients and leaves the cursor (or printr
head) at the end of the line. If you type in ordinary characters, they are appended to the end
of the current list of 'recipients. You can also use your erase character to erase back into the
list of recipients, or your kill character to erase them altogether. Thus, for example, if your
erase and kill characters are the standard #- and @ symbols,

-h

To: root kurt4f#-#-#bill

would change the initial recipients "root kurt" to "root bill." When you type a newline, Mail
advances to the "Subj:" field, where the same rules apply. Another newline brings you to the
"Cc:" field, which may be edited in the same fashion. Another newline leaves you appending
text to the end of your message. You can use -p to print the current text of the header fields
and the body of the message.

To effect a temporary escape to the shell, the escape

-!command

is used, which executes command and returns you to mailing mode without altering the text of
your message. If you wish, instead, to filter the body of your message through a shell com­
mand, then you can use

";~ommand

which pipes your message through the command and uses the output as the new text of your
message. If the command produces no output, Mail assumes that something is amiss and
retains the old version of your message. A frequently-used filter is the command lmt which is
designed to format outgoing mail.

If you wish (for some reason) to send a message which contains a line beginning with a
tilde, you must double it. Thus, for example,

--This line begins with a tilde.

sends the line

-This line begins with a tilde.

Finally, the escape

prints out a brief summary of the available tilde escapes.

4. MESSAGE LISTS

The type and delete commands described in section two take a list of messages as argu­
ment, as do many of the commands described in section six. This section describes the con­
struction of message lists in general.

A message list consists of a list of message numbers, ranges, and names, separated by
spaces or tabs. Message numbers may be either decimal numbers, which directly specify mes­
sages, or one of the special characters "t" "." or "$" to specify the first relevant, current, or
last relevant message, respectively. Relevant here means, for most commands "not deleted"
and "deleted" for the undelete command.

A range of messages consists of two message numbers (of the form described in the pre­
vious paragraph) separated by a dash. Thus, to print the first four messages, use

type 1- 4

and to print all the messages from the current message to the last message, use

type .- $

-4- 9053

Utility Guide Mail

A name is a user name. All of the user names given in the message list are collected
together and each message selected by other means is checked to make sure it was sent by one
of the named users. If the message consists entirely of user names, then every message sent by
one those users which is relevant (in the sense described earlier) is selected. Thus, to print
every message sent to you by "root," do

type root

As a shorthand notation, you can specify simply "*" to get every relevant (same sense)
message. Thus,

type *
prints all undeleted messages,

delete *
deletes all undeleted messages, and

undelete *
undeletes all deleted messages.

5. COMMAND LINE OP'llONS

This section describes the alternate usages of Mail from the shell.

As you continue to receive system mail, you will most likely accumulate a large collection
of messages in the file mbox. In order to help you deal with this, Mail allows you to edit files
of messages by using the -f fiag. Specifically,

Mail - f filename

causes Mail to edit "filename" and

Mail- f

causes Mail to read "mbox" in your home directory. All of the Mail commands except
preserve are available to edit the messages. When you type the quit command, Mail will write
the updated file back.

Since you will usually have a large number of messages stored in mbox, Mail will only
print out the first 18 message headers when editing more than 18 messages. To display the
other message headers, the headers command takes as an optional argument either + or - to
move forward or back to the next or previous 18 message group.

If you send mail over a noisy phone line, you will notice that many of the garbage charac­
ters turn out to be the RUBOUT character, which causes Mail to abort the message. To deal with
this annoyance, you can invoke Mail with the -i option to causes these garbage characters to be
ignored. Unfortunately, as you are typing in a line of text to a program, the little gnome which
gathers up the characters is instructed to throw them all away when a RUBOUT is seen. For this
reason, Mail indicates that a RUBOUT has been received by echoing an @ to tell you that every­
thing you had typed on that line has been thrown away.

6. ADDITIONAL COMMANDS

This section describes additional Mail commands available when receiving mail.

The next command goes to the next message and types it. If given a message list, next
goes to the first such message and types it. Thus,

type root

goes to the next message sent by "root" and types it. The next command can be abbreviated
to simply a newline, which means that one can go to and type a message by simply giving its
message number or one of the magic characters "t" "." or "$". Thus,

9053 -5-

Utility Guide

prints the current message and

4

prints message 4.

Mail

The - command goes to the previous message and prints it. The - command may be
given a decimal number n as an argument, in which case the nth previous message is gone to
and printed.

The save command allows you to save messages received from others on a file other than
mhox. Its syntax varies somewhat from the other commands which accept a message list in that
the final word on the command line is taken to be the file on which to save the messages. The
named messages are appended to the file (which is created if it did not already exist) and are
marked as saved. Saved messages are not automatically saved in mbox at quit time, nor are
they selected by the next command described above, unless explicitly specified. The save com­
mand provides a facility for saving messages pertaining to a particular subject or from a particu­
lar person in a special place.

The undelete command causes a message which had been deleted previously to regain its
initial status. Only messages which are already deleted may be undeleted. This command may
be abbreviated to u.

The preserve command takes a message list and marks each message therein so that it will
be saved in your system mailbox instead of being deleted or saved in mbox when you quit.
This is useful for saving messages of importance that you want to see again, or messages not
intended for you if you are sharing a login name.

Often, one wants to deal with a message by responding to its author right then and there.
The reply command is useful for this purpose: it takes a message list and sends mail to the
authors of those messages. The message is collected in the usual fashion by reading up to an
EOT. All of the tilde escapes described in section three will work in reply. Additionally, if
there are header fields in the message being replied to, this information is copied into the new
message. The reply command can be abbreviated to r.

In order to simply mail to a user inside of Mall, the mail command is provided. This
sends mall in the manner described for the reply command above, except that the user supplies
a list of recipient login names and distribution groups. All of the tilde escapes described in sec­
tion three will work in mail. The mail command may be abbreviated to m.

In order to edit individual messages using the text editor, the edit command is provided.
The edit command takes a list of message as described under the type command and processes
each by writing it into the file Messagex where x is the message number being edited and exe­
cuting the text editor on it. When you have edited the message to your satisfaction, write the
message out and quit, upon which Mail will read the message back and remove the file. Edit
may be abbreviated to e.

It is often useful to be able to invoke one of two editors, based on the type of terminal
one is using. To invoke a display oriented editor, you can use the visual command. The
operation of the visual command is otherwise identical to that of the edit command.

When Mail is invoked to receive mail, it prints out the message header for each message.
In order to reprint the headers for remaining messages (those which haven't been deleted), you
may type the headers command. Deleted messages do not appear in the listing, saved mes­
sages are fiagged with a "*" and preserved messages are flagged with a "P."

The from command takes a list of messages and prints out the header lines for each one;
hence

from joe

is the easy way to display all the message headers from "joe."

The top command takes a message list and prints the first five lines of each addressed
.message. It may be abbreviated to in.

-6- 9053

Utility Guide Mail

The dt command deletes the current message and prinu> the next message. It is useful for
quickly reading and disposing of mail.

7. SUMMARY OF COMMANDS, ESCAPES, AND 0P'I10NS

This sections describes tersely all of the Mail commands, escapes, and options. For each
command, iu> most abbreviated form (in brackets) and a short description of the command is
given below.

First, message lisu> are computed by determining the set M which consisu> of all message
referenced explicitly or through ranges. Then, the set U is computed, which consisu> of all
messages sent by any of the user names specified. Finally, the message list is calculated by
finding the intersection of seu> M and U.

Each Mail command is typed on a line by iu>elf, and may take argumenu> following the
command word. The command need not be typed in iu> entirety - the first command which
matches the typed prefix is used. If the argument begins with a digit or special character, then
no space is required following the command letter, but otherwise the space is required. If a
Mail command does not take argumenu>, they may be specified, even though they are ignored.
For the commands which take message lisu> as arguments, if no message list is given, then the
next message forward which satisfies the command's requirements is used. If there are no
messages forward of the current message, the search proceeds backwards, and if there are no
good messages at all, Mail types "No applicable messages" and aboru> the command.

?

alias

chdir

delete

dp

dt

edit

exit

from

headers

[-] Goes to the previous message and prinu> it out. If given a numeric argument
n, goes to the nth previous message and prinu> it. If there is no previous message,
it prints' 'Nonzero address required."

[=] Prints out the current message number. Takes no argumenu>.

[?] Prinu> out the file /usr/lib/Mail.help, which contains a brief summary of the
commands. Takes no argumenU>.

[!] Executes the UNIX Shell command which follows. Unlike other commands,
there does not need to be a space after the exclamation point.

[a] With no argumenu>, prinu> out all currently-defined aliases. With one argu­
ment, prinu> out that alias. With more than one argument, adds the users named
in the second and later argumenu> to the alias named in the first argument.

[c] Changes the user's working directory to that specified, if given. If no directory
is given, then changes to the user's login directory.

[d] Takes a list of messages as argument and marks them all as deleted. Deleted
messages will not be saved in mbox, nor will they be available for most other com­
mands. Default messages may not be deleted already.

[dp] Deletes the current message and prinu> the next message. If there is no next
message, types out "At EOF."

[dt] Same as dp.

[e] Takes a list of messages and points the text editor at each one in turn. On
return from the editor, the message is read back in. The default message for edit
may not be saved or deleted.

[ex] Effects an immediate return to the Shell without modifying the user's system
mailbox, his mbox file, or his edit file in - f.

[f] Takes a list of messages and prinu> their message headers. The default mes­
sage is neither saved nor deleted.

[h] Lists the current range of headers, which is an 18 message group. If the "+ "
argument is given, then the next 18 message group is printed, and if the "
argument is given, the previous 18 message group is printed.

9053 -7-

Utility Guide Mail

help

hold

list

mail

next

preserve

print

quit

reply

respond

save

set

shell

size

top

type

un alias

undelete

unset

visual

write

xit

[hell A synonym for?

[ho] Takes a message list and marks each message therein to be saved in the
user's s~stem mailbox instead of in mboz. Does not override the delete com­
mand. The default message must not be deleted.

[I] The list command lists all of the available user commands in the order that the
command processor sees them. It takes no arguments.

[m] Takes as argument login names and distribution group names and sends mail
to those people. Tilde escapes work in mail.

[n] Goes to the next message in sequence and types it. If a message list is given,
then next goes to the first message in the message list.

[pre] A synonym for hold.

[p] Takes a message list and types out each message on the user's terminal. The
default message must not be deleted.

[q] Terminates the Mail session, saving all undeleted, unsaved messages in the
user's mboz file in his login directory, preserving all messages marked with hold or
preserve in his system mailbox, and removing all other messages from his system
mailbox. If mail has arrived during the Mail session, the message "You have new
mail" is typed. If executing while editing a mailbox file with the - f fiag, then the
edit file is rewritten. A return to the Shell is effected, unless the rewrite of edit
file fails, in which case the user can escape with the exit command.

[r] Takes a message list and sends mail to each message author just like the mail
command. The default message must not be deleted.

[r] A synonym for reply.

[s] Takes a message list and a filename and appends each message in turn to the
end of the file. The filename in quotes, followed by the line count and character
count is echoed on the user's terminal. The default message for save may not be
saved or deleted.

[se] With no arguments, prints all variable values. Otherwise, sets option. Argu­
ments are of the form "option=value" or "option."

[sh] Invokes an interactive version of the shell.

[si] Takes a message list and prints out the size in characters of each message.
The default message for size must not be deleted.

[to] Takes a message list and prints the top so many lines. The number of lines
printed is controlled by the variable "toplines" and defaults to five.

[t] A synonym for print.

[una] Takes a list of names defined by alias commands and discards the remem­
bered groups of users. The group names no longer have any significance.

[u] Takes a message list and marks each one as not being deleted. Each message
in the list must already be deleted. The default message must be deleted.

[uns] Takes a list of option names and discards their remembered values; opposite
of set.

[v] Takes a message list and invokes the display editor on each one.

[w] A synonym for save.

[x] A synonym for exit.

Recall that tilde escapes are used when composing messages to perform special functions.
Tilde escapes are only recognized at the beginning of lines. The name "tilde escape" is some­
what of a misnomer since the actual escape character can be set by the option "escape."

-8- 9053

Utility Guide Mail

Here is a summary of the tilde escapes:

-!command Execute the indicated shell command, then return to the message.

-c name ...

-m messages

-r filename

-s string

-t name ...

-w filename

--string

Add· the given names to the list of carbon copy recipients.

Read the file "dead.letter" from your home directory into the message.

Invoke the text editor on the message collected so far. After the editing ses­
sion is finished, you may continue appending text to the message.

Edit the message header fields by typing each one in turn and allowing the
user to append text to the end or modify the field by using the current termi­
nal erase and kill characters.

Read the named messages into the message being sent, shifted right one tab.
If no messages are specified, read the current message.

Print out the message collected so far, prefaced by the message header fields.

Abort the message being sent, copying the message to "dead.letter" in your
home directory if "save" is set.

Read the named file into the message.

Cause the named string to become the current subject field.

Add the given names to the direct recipient list.

Invoke an alternate editor (defined by the VISUAL option) on the message
collected so far. Usually, the alternate editor will be a visual editor. After
you quit the editor, you may resume appending text to the end of your mes­
sage.

Write the message onto the named file.

Pipe the message through the command as a filter. If the command gives no
output or terminates abnormally, retain the original text of the message.

Insert the string of text in the message prefaced by a single -. If you have
changed the escape character, then you should double that character in order
to send it.

Options are controlled via the set and unset commands. Options may be either binary, in
which case it is only significant to see whether they are set or not, or string, in which case it's
actual value is of interest.

The binary options include the following:

append

ask

askcc

autoprint

ignore

metoo

quiet

save

Causes messages saved in mbox to be appended to the end rather than
prepended.

Causes Mail to prompt you for the subject of each message you send. If you
respond with simply a newline. no subject field will be sent.

Causes you to be prompted for additional carbon copy recipients at the end of
each message. Responding with a newline indicates your satisfaction with the
current list.

Causes the delete command to behave like dp - thus, after deleting a mes­
sage, the next one will be typed automatically.

Causes interrupt signals from your terminal to be ignored and echoed as @ 's.

Usually, when a group is expanded that contains the sender, the sender is
removed from the expansion. Setting this option causes the sender to be
included in the group.

Suppresses the printing of the version when Mail is first invoked.

Causes the message collected prior to a RUBOUT to be saved on the file
··dead.letter" in your home directory on receipt of the RUBOUT. Also causes

9OS3 -9-

Utility Guide Mail

the message to be so saved in the same fashion for -q.

The following options have string values:

EDITOR

SHELL

VISUAL

escape

record

toplines

Pathname of the text editor to use in the edit command and -e escape. If not
defined, then a default editor is used.

Pathname of the shell to use in the! command and the -, escape. A default
shell is used if this option is not defined.

Pathname of the text editor to use in the visual command and -v escape.

If defined, the first character of this option gives the characwr to use in the
place of - to denow escapes.

If defined, gives the pathname of the file used to record all outgoing mail. If
not defined, then outgoing mail is not so saved.

If defined, gives the number of lines of a message to be prinwd out with the
top command; normally, the first five lines are printed.

8. CONCLUSION

I would like to acknowledge the help of Eric Allman, Ken Arnold, Bob Fabry, Richard
Fateman, Bob Kridle, Doug Merritt, David Mosher, Eric Schmidt, Polly Siegel, Michael UbeU,
and Bill Joy.

-10- 9053

M4 - a Macro Processor
This document is based on a paper by Brian W. Kernighan and Dennis M. Ritchie of Bell

Laboratories.

Introduction

A macro processor is a useful way to enhance a programming language, to make it more
palatable or more readable, or to tailor it to a particular application. The #define statement in
C and the analogous define in Ratfor are examples of the basic facility provided by any macro
processor - replacement of text by other text.

The M4 macro processor is an extension of a macro processor called M3 which was writ­
ten by D. M. Ritchie for the AP-3 minicomputer; M3 was in turn based on a macro processor
implemented for [1]. Readers unfamiliar with the basic ideas of macro processing may wish to
read some of the discussion there.

M4 is a suitable front end for Ratfor and C, and has also been used successfully with
Cobol. Besides the straightforward replacement of one string of text by another, it provides
macros with arguments, conditional macro expansion, arithmetic, file manipulation, and some
specialized string processing functions.

The basic operation of M4 is to copy its input to its output. As the input is read, how­
ever, each alphanumeric "token" (that is, string of letters and digits) is checked. If it is the
name of a macro, then the name of the macro is replaced by its defining text, and the resulting
string is pushed back onto the input to be rescanned. Macros may be called with arguments, in
which case the arguments are collected and substituted into the right places in the defining text
before it is rescanned.

M4 provides a collection of about twenty built-in macros which perform various useful
operations; in addition, the user can define new macros. Built-ins and user-defined macros
work exactly the same way, except that some of the built-in macros have side effects on the
state of the process.

Usage

On UNIX, use

.m4 [files]

Each argument file is processed in order; if there are no arguments, or if an argument is '- "
the standard input is read. at that point. The processed text is written on the standard output,
which may be captured for subsequent processing with

m4 [files] >outputflle

On GCOS, usage is identical, but the program is called ./m4.

Defining Macros

The primary built-in function of M4 is define, which is used to define new macros. The
input

define(name, stuff)

causes the string name to be defined as stuff. All subsequent occurrences of name will be
replaced by stuff. name must be alphanumeric and must begin with a letter (the underscore _
counts as a letter). stuff is any text that contains balanced parentheses; it may stretch over
multiple lines.

Thus, as a typical example,

9053 -1-

Utility Guide

define(N, 100)

it(i> N)

M4 Macro Processor

defines N to be 100, and llses this '''symbolic constant" in a later it statement.

The left parenthesis must immediately follow the word define, to signal that define has
arguments. If a macro or built-in name is not followed immediately by '(', it is assumed to
have no arguments. This is the situation for N above; it is actually a macro with no arguments,
and thus when it is used there need be no (...) following it.

You should also notice that a macro name is only recognized as such if it appears sur­
rounded by non-alphanumerics. For example, in

define(N, 100)

it(NNN) 100)

the variable NNN is absolutely unrelated to the defined macro N, even though it 'contains a lot
of N's.

Things may be defined in terms of other things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or, to say it another way, is M defined as N or as 100?
In M4, the latter is true - M is 100, so even if N subsequently changes, M does not.

This behavior arises because M4 expands macro names into their defining text as soon as
it possibly can. Here, that means that when the string N is seen as the arguments of define are
being collected, it is immediately replaced by 100; it's just as if you had. said

define(M, 100)

in the first place.

If this isn't what you really want, there are two ways out of it. The first, which is specific
to this situation, is to interchange the order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so when you ask for M later, you'll always get the value
of N at that time (because the M will be replaced by N which will be replaced by 100).

Quoting

The more. general solution is to delay the expansion of the arguments of define by quoting
them. Any text surrounded by the single quotes' and # is not expanded immediately, but has
the quotes stripped off. If you say

define(N, 100)
define(M, 'N ~

the quotes around the N are stripped off as the argument is being collected, but they have
served their purpose, and M is defined as the string N, not 100. The general rule is that M4
always strips off one level of single quotes whenever it evaluates something. This is true even
outside of macros. If you want the word define to appear in the output, you have to quote it in
the input, as in

'define # = 1;

-2- 9053

. Utility Guide M4 Macro Processor

As another instance of the same thing, which is a bit more surprising, consider redefining
N:

define(N, 1(0)

define(N, 200)

Perhaps regrettably, the N in the second definition is evaluated as soon as it's seen; that is, it is
replaced by 100, so it's as if you had written

define(100, 2(0)

This statement is ignored by M4, since you can only define things that look like names, but it
obviously doesn't have the effect you wanted. To really redefine N, you must delay the evalu3r­
tion by quoting:

define(N, 1(0)

define('N", 200)

In M4, it is often wise to quote the first argument of a macro.

If ' and .. are not convenient for some reason, the quote characters can be changed with
the built-in ehangequote:

ehangequote([,])

makes the new quote characters the left and right brackets. You can restore the original charac­
ters with just

ehangequote

There are two additional built-ins related to define. undefine removes the definition of
some macro or built-in:

undefine{ 'N ~

removes the definition of N. (Why are the quotes absolutely necessary?) Built-ins can be
removed with undefine, as in

undefine{ 'define ~

but once you remove one, you can never get it back.

The built-in ifdef provides a way to determine if a macro is currently defined. In particu­
lar, M4 has pre-defined the names unix and gees on the corresponding systems, so you can tell
which one you're using:

ifdef('unix", 'define(wordsize, 16) ..)
ifdef('gees", 'define(wordsize,36) ..)

. makes a definition appropriate for the particular machine. Don't forget the quotes!

ifdef actually permits three arguments; if the name is undefined, the value of ifdef is then
the third argument, as in

ifdef('unix", on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest form of macro processing - replacing one string by
another (fixed) string. User-defined macros may also have arguments, so different invocations
can have different results. Within the replacement text for a macro (the second argument of its
define) any occurrence of $n will be replaced by the nth argument when the macro is actually
used. Thus, the macro bump, defined as

9053 -3-

Utility Guide M4 Macro Processor

define(bump, $1 = $1 + 1)

generates code to increment its argument by 1:

bump(x)

is

x=x+ 1

A macro can have as many arguments as you want, but only the first nine are accessible,
through $1 to $9. (The macro name itself is $0, although that is less commonly used.) Argu­
ments that are not supplied are replaced by null strings, so we can define a macro cat which
simply concatenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no corresponding arguments were provided.

Leading unquoted blanks, tabs, or newlines that occur during argument collection are dis­
carded. All other white space is retained. Thus

define(a, b c)

defines a to be b c.

Arguments are separated by commas, but parentheses are counted properly, so a comma
'protected" by parentheses does not terminate an argument. That is, in

define(a, (b,c»

there are only two arguments; the second is literally (b,c). And of course a bare comma or
parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two builtrin functions for doing arithmetic on integers (onlY). The simplest
is iner, which increments its numeric argument by 1. Thus to handle the common program­
ming situation where you want a variable to be defined as one more than N", write

define(N, 1(0)
define(Nl, 'iner(N) }

Then Nl is defined as one more than the current value of N.

The more general mechanism for arithmetic is a builtrin called eval, which is capable of
arbitrary arithmetic on integers. It provides the operators (in decreasing order of precedence)

unary + and-
** or A (exponentiation)
* / % (modulus)
+ -
== !=

& or&&

lor II

< <= > >=
(not)
(logical and)
(logical or)

Parentheses may be used to group operations where needed. All the operands of an expression

-4- 9053

Utility Guide M4 Macro Processor

given to eval must ultimately be numeric. The numeric value of a true relation (like 1 >0) is
1, and false is O. The precision in eval is 32 bits on UNIX and 36 bits on GCOS.

As a simple example, suppose we want M to be 2**N+1. Then

define(N, 3)
define(M, eval(2**N+ 1) 1

As a matter of principle, it is advisable to quote the defining text for a macro unless it is very
simple indeed (say just a number); it usually gives the result you want, and is a good habit to
get into .

. File Manipulation

You can include a new file in the input at any time by the built-in function include:

include(filenaIDe)

inserts the contents of filenaIDe in place of the include command. The contents of the file is
often a set of definitions. The value of include (that is, its replacement text) is the contents of
the file; this can be captured in definitions, etc.

It is a fatal error if the file named in include cannot be accessed. To get some control
over this situation, the alternate form sinclude can be used; sinclude ("silent include") says
nothing and continues if it can't access the file.

It is also possible to divert the output of M4 to temporary files during processing, and out­
put the collected material upon command. M4 maintains nine of these diversions, numbered 1
through 9. If you say

divert(n)

all subsequent output is put onto the end of a temporary file referred to as n. Diverting to this
file is stopped by another divert command; in particular, divert or divert(O) resumes the nor­
mal output process.

Diverted text is normally output all at once at the end of processing, with the diversions
output in numeric order. It is possible, however, to bring back diversions at any time, that is,
to append them to the current diversion.

undivert

brings back all diversions in numeric order, and undivert with arguments brings back the
selected diversions in the order given. The act of undiverting discards the diverted ,stuff, as
does diverting into a diversion whose number is not between 0 and 9 inclusive.

The value of undivert is not the diverted stuff. Furthermore, the diverted material is not
rescanned for macros.

The built-in divnum returns the number of the currently active diversion. This is zero
during normal processing.

System Command

You can run any program in the local operating system with the sysemd built-in. For
example,

sysemd(date)

on UNIX runs the date command. Normally sysemd would be used to create a file for a subse­
quent include.

To facilitate making unique file names, the built-in maketemp is provided, with
specifications identical to the system function mktemp: a string of XXXXX in the argument is
replaced by the process id of the current process.

9053 -5-

Utility Guide M4 Macro Processor

Conditionals

There is a built-in called if else which enables you to perform arbitrary conditional testing.
In the simplest form,

ifelse(a, b, e, d)

compares the two strings a and b. If these are identical, ifelse returns the string e; otherwise it
returns d Thus we might define a macro called compare which compares two strings and
returns 'yes" or 'no" if they are the same or different.

define(compare, 'ifelse($I, $2, yes, no)}

Note the quotes, which prevent too-early evaluation of ifelse.

If the fourth argument is missing, it is treated as empty.

ifelse can actually have any number of arguments, and thus provides a limited form of
multi-way decision capability. In the input

ifelse(a, b, e, d, e, f, g)

if the string a matches the string b, the result is e. Otherwise, if d is the same as e, the result is
f. Otherwise the result is g. If the final argument is omitted, the result is null, so

ifelse(a, b, e)

is e if a matches b, and null otherwise.

String Manipulation

The built-in len returns the length of the string that makes up its argument. Thus

len(ahedef)

is 6, and len((a,b» is 5.

The built-in sulstr can be used to produce substrings of strings. sulstr(s, i, n) returns
the substring of s that starts at the ith position (origin zero), and is n characters . long. If n is
omitted, the rest of the string is returned, so

sulstr(now is the time", 1)

is

ow is the time

If i or n are out of range, various sensible things happen.

index(sl, s2) returns the index (position) in sl where the string 82 occurs, or - 1 if it
doesn't occur. As with sulBtr, the origin for strings is O.

The built-in translit performs character transliteration.

trans lit{ s, f, t)

modifies s by replacing any character found in f by the corresponding character of t. That is,

trans lit{ s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than f, characters which don't
have an entry in t are deleted; as a limiting case, if t is not present at all, characters from fare
deleted from s. So

trans lit{ s, aeiou)

deletes vowels from s.

There is also a built-in called dnl which deletes all characters that follow it up to and
including the next newline; it is useful mainly for throwing away empty lines that otherwise

-6- 9053

Utility Guide

tend to clutter up M4 output. For example, if you say

define(N, 1(0)
define(M, 2(0)
define(L, 300)

M4 Macro Processor

the newline at the end of each line is not part of the definition, so it is copied into the output,
where it may not be wanted. If you add dnl to each of these lines, the newlines will disappear.

Another way to achieve this, due to J. E. Weythman, is

divert(-1)
define(•••)

divert

Printing

The builtrin errprint writes its arguments out on the standard error file. Thus you can say

errprint('fatal error)

dumpdet is a debugging aid which dumps the current definitions of defined terms. If
there are no arguments, you get everything; otherwise you get the ones you name as argu­
ments. Don't forget to quote the names!

Summary of Built-ins

Each entry is preceded by the page number where it is described.

3 changequote(L, R)
1 define(name, replacement)
4 divert(number)
4 divnum
5 dnl
5 dumpdef(name ~ name', ...)
5 errprint(s, s, ...)
4 eval(numeric expression)
3 ifdef(name", this if true, this if false)
5 ifelse(a, b, c, d)
4 include(file)
3 incr(number)
5 index(sl, S2)
5 len(string)
4 maketemp(... XXXXX ...)
4 sinclude(file)
5 substr(string, pOSition, number)
4 syscmd(s)
5 translit(str, from, to)
3 undefine('name 1
4 undivert(number,number, ...)

Acknowledgements

Thanks to Rick Becker, John Chambers, Doug McIlroy, and .TIm Weythman.

9053 -7-

Utility Guide M4 Macro Processor

References

[1] B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, Inc., 1976.

-8- 9053

•

Ridge Computers
Corporate Headquarters

2451 Mission College Blvd.
Santa Clara , California 95054
Phone: (408) 986-8500
Telex: 176956

	000
	001
	002
	003
	004
	01_01_Window
	01_02
	01_03
	01_04
	01_05
	01_06
	01_07
	01_08
	01_09
	01_10
	01_11
	01_12
	01_13
	01_14
	01_15
	01_16
	01_17
	01_18
	01_19
	01_20
	01_21
	01_22
	02_01_uucp
	02_02
	02_03
	02_04
	02_05
	02_06
	02_07
	02_08
	02_09
	02_10
	02_11
	02_12
	02_13
	02_14
	02_15
	02_16
	02_17
	02_18
	02_19
	02_20
	02_21
	02_22
	02_23
	02_24
	02_25
	02_26
	03_01_sccs
	03_02
	03_03
	03_04
	03_05
	03_06
	03_07
	03_08
	03_09
	03_10
	03_11
	03_12
	03_13
	03_14
	04_01_awk
	04_02
	04_03
	04_04
	04_05
	04_06
	04_07
	04_08
	04_09
	04_10
	05_01_dc
	05_02
	05_03
	05_04
	05_05
	05_06
	05_07
	05_08
	06_01_bc
	06_02
	06_03
	06_04
	06_05
	06_06
	06_07
	06_08
	06_09
	06_10
	06_11
	06_12
	06_13
	06_14
	07_01_mail
	07_02
	07_03
	07_04
	07_05
	07_06
	07_07
	07_08
	07_09
	07_10
	08_01_m4
	08_02
	08_03
	08_04
	08_05
	08_06
	08_07
	08_08
	xBack

