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PREFACE

The ROS Programmer’s Guide (manual 9050) is a collection of tutorial documents related to

programming languages and language preprocessors.

Except for the PROG section, which explains

programming in general, each section contains the detailed information that is omitted from the page
of the same name in the ROS Reference Manual (manual 9010).

The topics in the Table of Contents are not the only ones related to programming.

The ROS

Reference Manual has many entries that are fully explained within. Typically, the user will see a
program in the ROS Reference Manual, and if one of these tutorials is mentioned under the SEE
ALSO heading, he/she will turn to this Programmer’s Guide for help. After the reader is familiar
with a topic, he/she might refer to the ROS Reference Manual only.
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ROS Programming

This document is based on a paper by Brian W. Kernighan and Dennis M. Ritchie of Bell
Laboratories.

1. INTRODUCTION

This paper describes how to write programs that interface with the ROS operating system in
a non-trivial way. This includes programs that use files by name, that use pipes, that invoke
other commands as they run, or that attempt to catch interrupts and other signals during execu-
tion.

This part of the Programmer’s Guide summaraizes other material in the ROS Programmer’s
Guide and the ROS Reference Manual. The reader should have a basic understanding of C

(see B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc.,
1978.)

2. BASICS

2.1. Program Arguments

When a C program is run like a shell command, the shell arguments are passed to the main
function in an argument count argc and an array argv of pointers to character strings that con®
tain the arguments themselves. Argv[ 0] points to the command name itself.

The following program mai n demonstrates this mechanism. It declares the type of the

count variable and pointer array and echos all arguments to the output. (This is similar to the
code of echo(1)). '

main(arge, argv) /* echo arguments */
int arge;
char *argv|];

int i;

for (i =1; i < arge; i+H
printf("%s %c”, argv[i], (i<arge-1) ? °\0’ : >\n’);

}

Argv is an array of pointers to character arrays. Each of those character arrays are terminated by
the null character \0 so they can be treated as strings.

If you want to maintain copies of argc and argv for use by other routines, copy them to
external variables.

2.2. The ‘‘Standard Input’’ and ‘‘Standard Output’’

The simplest input mechanism is to read the ‘‘standard input,”” which is generally the
user’s terminal. The function get char returns the next input character each time it is called.
A file may be substituted for the terminal by using the < convention: if prog uses getchar,
then the command line

prog <file

causes prog to read file instead of the terminal. prog itself need know nothing about
where its input is coming from. This is also true if the input comes from another program via
the pipe mechanism:

otherprog | prog‘

provides the standard input for prog from the standard output of ot herprog.
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getchar returns the value ECF when it encounters the end of flle (or an error) on what-
ever you are reading. The value of ECF is normally defined to be - 1, but it is unwise to take
any advantage of that knowledge. As will become clear shortly, this value is automatically
defined for you when you compile a program, and need not be of any concern.

Similarly, putchar(¢) puts the character ¢ on the ‘‘standard output,”” which is also by
default the terminal. The output can be captured on a file by using the > character; if prog
uses put char,

prog >outfile

writes the standard output on outfile instead of the terminal. outfile is created if it
doesn’t exist; if it already exists, its previous contents are overwritten. And a pipe can be used:

prog | otherprog

puts the standard output of prog into the standard input of ot herprog.

The function printf, which formats output in various ways, uses the same mechanism as
put char does, so calls to pri ntf and put char may be intermixed in any order; the output
will appear in the order of the calls.

Similarly, the function scanf provides for formatted input conversion; it will read the
standard input and break it up into strings, numbers, etc., as desired. scanf uses the same
Jnechanism as get char, so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs I/O with
getchar, putchar, scanf, and pri ntf may be entirely adequate, and it is almost always
enough to get started. This is particularly true if the pipe facility is used to connect the output
of one program to the input of the next. For example, the following program strips out all ascii
control characters from its input (except for newline and tab).

#A ncl ude <stdio. h>

main() /* ccstrip: strip non-graphic characters */
int c;
vwhile ((c ==getchar()) !=BF)
if ((c S=> "’ &&c <0177) II c ==’\t,’ ll c ==’\n’)
putchar(c);

exit(0);
}
The line
#4 ncl ude <stdio. h>

should appear at the beginning of each source file. It causes the C compiler to read a file
( fusrfincludefstdio.h) of standard routines and symbols that includes the definition of ECF.

If it is necessé.ry to treat multiple files, you can use cat to collect the files for you:

cat filel file2 ... | cestrip >output

and thus avoid learning how to access files from a program. By the way, the call to exi t at the
end is not necessary to make the program work properly, but it assures that any caller of the
program will see a normal termination status (conventionally 0) from the program when it com-
pletes. Part 6 discusses status returns in more detail.

3. THE STANDARD [/O LIBRARY

The ‘‘Standard I/O Library’’ is a collection of routines intended to providé efficient and
portable I/O services for most C programs.

The standard I/O library is documented in detad in section (3S) of the ROS Reference Manual.
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The standard I/O library is available on each system that supports C, so programs that confine
their system interactions to its facilities can be transported from one system to another essen-
tially without change.

This section briefly discusses the basics of the standard I/O library. The appendix contains
a more complete ??? description of its capabilities.

3.1. File Access

The programs written so far have all read the standard input and written the standard out-
put, which we have assumed are magically pre-defined. The next step is to write a program that
accesses a file that is not already connected to the program. One simple example is wc¢, which
counts the lines, words and characters in a set of files. For instance, the command

we X.c y.cC

prints the number of lines, words and characters in x. ¢ and y. ¢ and the totals.

The question is how to arrange for the named files to be read — that is, how to connect the
file system names to the I/O statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the stan-
dard library function fopen(3S). fopen takes an external name (like x. ¢ or y. c¢), does
some housekeeping and negotiation with the operating system, and returns an internal name
which must be used in subsequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains
information about the file, such as the location of a buffer, the current character position in the
buffer, whether the file is being read or written, and the like. Users don’t need to know the
details, because part of the standard 1/O definitions obtained by including stdi o. h is a struc-
ture definition called FI LE. The only declaration needed for a file pointer is exemplified by

FILE =fp, *fopen();
This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE. FILE is a
type name, like i nt, not a structure tag.
The actual call to fopen in a program is
fp =fopen(name, node);
The first argument of fopen is the name of the file, as a character string. The second argu-
ment is the mode, also as a character string, which indicates how you intend to use the file.

See the fopen(3S) page of the ROS reference manual for a listing of the allowable file access
modes, such as read ( ”r ”), write ("w”), or append ("a ™).

If a file that you open for writing or appending does not exist, it is created (if possible).
Opening an existing file for writing causes the old contents to be discarded. Trying to read a
file that does not exist is an error, and there may be other causes of error as well (like trying to
read a file when you don’t have permission). If there is any error, fopen will return the null
pointer value NULL (which is defined as zero in stdi o. h).

The next thing needed is a way to read or write the file once it is open. There are several
possibilities, of which getec and putc are the simplest. getc returns the next character from
a file; it needs the file pointer to tell it what file. Thus

¢ =getc(fp)

places in ¢ the next character from the file referred to by fp; it returns EOF when it reaches
end of file. putc is the inverse of getec:

putc(ec, fp)
puts the character ¢ on the file fp and returns ¢. gete and put ¢ return ECF on error.

When a program is started, three filles are opened automatically, and file pointers are
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provided for them. These files are the standard input, the standard output, and the standard
error output; the corresponding file pointers are called stdin, stdout, and stderr. Nor-
mally these are all connected to the terminal, but may be redirected to files or pipes as
described in Part 2.2. stdin, stdout and stderr are pre-defined in the I/O library as the
standard input, output and error files; they may be used anywhere an object of type FILE *
can be. They are constants, however, not variables, so don’t try to assign to them.

With some of the preliminaries out of the way, we can now write we. The basic design is
one that has been found convenient for many programs: if there are command-line arguments,
they are processed in order. If there are no arguments, the standard input is processed. This
way the program can be used stand-alone or as part of a larger process.

7 ncl ude <stdio. h>

mein(arge, argv) /* wec: count lines, words, chars »*/
int argce;

char *argv|];

int ¢, i, inword;

FILE »*fp, *fopen();

long linect, wordct, charct;

long tlinect =0, twordet =0, tcharct ==0;

i =1;
fp =stdin;
do {
if (argc > 1 &% (fp=fopen(argv[i], »r”)) ==NILL} {
fprintf(stderr, "we: can’t open %s\n”, argv{i]);

conti nue;
}
linect =wordct ==charct =inword =0;
vwhile ((¢ =getc(fp)) !=BF) {
charct 44
if (¢ =="\n")
linect+¥
if (e == " || ¢ =="\¢’ || ¢ =="\n’)
i nword =0;
else if (inword ==0) {
inword =1;
wordct +

}

printf(~%7ld %71d %71d”, linect, wordet, charct);
printf(arge > 1 ? "%s \n” : "\n”, argv]i]);
fclose(fp); '
tlinect -4==linect;
twordct 4==wordct;
tcharct 4—-charct;
} while (+i < arge);
if (arge > 2)
_ printf("%71d %7ld %71d total \n”, tlinect, twordct, tcharct);
exit(0);

The function f printf is identical to pri ntf, save that the first argument is a file pointer that
specifies the file to be written.

The function fcl ose is the inverse of fopen; it breaks the connection between the file
pointer and the external name that was established by fopen, freeing the file pointer for
~another file. Since there is a limit on the number of files that a program may have open simul-
taneously, it’s a good idea to free things when they are no longer needed. There is also another
reason to call fcl ose on an output file — it flushes the buffer in which putc is collecting
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output. (feclose is called automatically for each open file when a program terminates nor-
mally.)

3.2. Error Handling — Stderr and Exit

stderr is assigned to a program in the same way that stdi n and stdout are. Output
written on stderr appears on the user’s terminal even if the standard output is redirected. wc
writes its diagnostics on stderr instead of st dout so that if one of the files can’t be accessed
for some reason, the message finds its way to the user’s terminal instead of disappearing down
a pipeline or into an output file.

The program actually signals errors in another way, using the function exit to terminate
program execution. The argument of exit is available to whatever process called it (see Part
6), so the success or failure of the program can be tested by another program that uses this one
as a sub-process. By convention, a return value of 0 signals that all is well; non-zero values sig-
nal abnormal situations. ’

exi t itself calls fcl ose for each open output file, to flush out any buffered output, then
calls a routine named _exit. The function _exit causes immediate termination without any
buffer flushing; it may be called directly if desired.

3. 3. Miscellaneous 1/O Functions

The standard I/O library provides several other I/O functions besides those we have illus-
trated above.

Normally output with pute, etc., is buffered (except to stderr); to force it out immedi-
ately, use ff1ush(fp).

fscanf is identical to scanf, except that its first argument is a file pointer (as with
fprintf) that specifies the file from which the input comes; it returns ECF at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf, except that
the first argument names a character string instead of a file pointer. The conversion is done
from the string for sscanf and into it for sprintf.

fgets(buf, size, fp) copies the next line from fp, up to and including a newline,
into buf; at most sigzge-1 characters are copied; it returns INULL at end of file.
fputs(buf, fp) writes the string in buf onto file fp.

The function ungetc(c, fp) ‘‘pushes back’ the character ¢ onto the input stream fp; a
subsequent call to getec, fscanf, etc.,, will encounter ¢. Only one character of pushback per
file is permitted.

4. LOW-LEVEL I/O

This section describes the bottom-level of I/O on the Ridge Operating System. The lowest
level of 1/O provides no buffering or any other services; it is a direct entry into the operating
system. You are entirely on your own, but you have the most control over what happens.
Because the calls and usage are simple, this isn’t as bad as it sounds.

4. 1. File Descriptors

All input and output is done by reading or writing files, because all peripheral devices, even
the user’s terminal, are treated as files in the file system. This means that a single, homogene-
ous interface handles all communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform the sys-
tem of your intent to do so, a process called ‘‘opening’’ the file. If you are going to write on a
file, it may also be necessary to create it. The system checks your right to do so (Does the file
exist? Do you have permission to access it?), and if all is well, returns a small positive integer
called a file descriplor. Whenever I/O is to be done on the file, the file descriptor is used instead
of the name to identify the file. (This is roughly analogous to the use of READ(S,...) and
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WRITE(6,...) in Fortran.) All information about an open file is maintained by the system; the
user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file
descriptors are more fundamental. A file pointer is a pointer to a structure that contains,
among other things, the file descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrangements
exist to make this convenient. When the command interpreter (the ‘‘shell’’) runs a program, it
opens three files, with file descriptors 0, 1, and 2, called the standard input, the standard out-
put, and the standard error output. All of these are normally connected to the terminal, so if a
program reads file descriptor 0 and writes file descriptors 1 and 2, it can do terminal I/O
without worrying about opening the files.

If I/0 is redirected to and from files with < and >, as in
prog <infile >outfile

the shell changes the default assignments for file descriptors O and 1 from the terminal to the
named files. Similar observations hold if the input or output is associated with a pipe. Nor-
mally file descriptor 2 remains attached to the terminal, so error messages can go there. In all
cases, the file assignments are changed by the shell, not by the program. The program does not
need to know where its input comes from nor where its output goes, so long as it uses file 0 for
input and 1 and 2 for output.

4.2. Read and Write

All input and output is done by two functions called read and wri te. For both, the first
argument is a file descriptor. The second argument is a buffer in your program where the data

is to come from or go to. The third argument is the number of bytes to be transferred. The
calls are

n_read =read(fd, buf, n);

n_witten =wite(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On reading,
the number of bytes returned may be less than the number asked for, because fewer than n
bytes remained to be read. (When the file is a terminal, read normally reads only up to the
next newline, which is generally less than what was requested.) A return value of zero bytes
implies end of file, and - 1 indicates an error of some sort. For writing, the returned value is

the number of bytes actually written; it is generally an error if this isn’t equal to the number
supposed to be written.

The number of bytes transferred per READ or WRITE operation is arbitrary. It can be 1
(reads and writes are performed one character at a time ‘‘unbuffered’’), 512, 1024, or 4096

(used by Ridge for efficiency) often corresponding to the physical blocksize on peripheral dev-
ices.

With these facts, we can write a program to copy its input to its output file. This program
copies any file device to any other because its input or output files can be redirected in any way.
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#define BUFSIZE 4098 /+ best size for Ridge 32 R(B */
mein() /* copy input to output */

char buf [ BUFSI ZK ;

int n;

vwhile ((n =read(0, buf, BUFSIZE)) > 0)
write(1l, buf, n);
exit(0);

}

If the file size is not a multiple of BUFSI ZE, some read will return a smaller number of bytes
to be written by write; the next call to read after that will return zero.

It is instructive to see how read and wri te can be used to construct higher level routines
like getchar, putchar, etc. For example, here is a version of getchar which does
unbuffered input.

fidefine CMSK 0377 /*» for mking char’s > 0 */
getchar() /* unbuffered single character input */
char c¢;

return((read(0, &, 1) >0) ? ¢ &EOASK: BEXF);

¢ must be declared char, because read accepts a character pointer. The character being
returned must be masked with 0377 to ensure that it is positive; otherwise sign extension on
some machines may make it negative. (The constant 0377 is appropriate for the PDP-11 and
VAX, but not necessarily for other machines.) The Ridge 32 does not need to mask characters
because they are treated as unsigned characters. For portability, however, masking is a good
idea for Ridge programs.

The second version of getchar does input in big chunks, and hands out the characters
one at a time.

fidefine COMASK 0377 /» for mking char’s > 0 */
#define BUFSIZE 4098

getchar() /* buffered version */

static char buf [ BUFSI ZK] ;
static char *buf p =buf;
static int n =0;

if (n ==0) { /» buffer is enpty */
n =read(0, buf, BUFSIZE);
buf p =buf;

return({--n >=0) ? *bufp++ & OVMASK : BECF);

4.3. Open, Creat, Close, Unlink

Other than the default standard input, output and error files, you must explicitly open files
in order to read or write them. There are two system entry points for this, open and creat
[sic].

open is rather like the fopen discussed in the previous section, except that instead of
returning a file pointer, it returns a file descriptor, which is just an i nt.
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int fd;

fd =open{name, rwmwde);

As with fopen, the name argument is a character string corresponding to the external file
name. The access mode argument is different, however: rwanpde is O for read, 1 for write, and
2 for read and write access. open returns - 1 if any error occurs; otherwise it returns a valid
file descriptor. The open call can take an optional parameter that offers more sophisticated
control of the open process; see open(2).

It is an error to try to open a file that does not exist. The entry point creat is provided
to create new files, or to re-write old ones.

fd =creat(nane, pnode);

returns a file descriptor if it was able to create the file called name, and - 1 if not. If the file
already exists, creat will truncate it to zero length; it is not an error to creat a file that
already exists.

If the file is brand new, creat creates it with the protection mode specified by the pnpode
argument. In the ROS file system, there are nine bits of protection information associated with
a file, controlling read, write and execute permission for the owner of the file, for the owner’s
group, and for all others. Thus a three-digit octal number is most convenient for specifying the
permissions. For example, 0755 specifies read, write and execute permission for the owner,
and read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the ¢p(l) command, a program which copies
one file to another. (The main simplification is that our version copies only one file, and does
not permit the second argument to be a directory.)

fdefine NAL 0
#define BUFSIZE 4096
#define PMDE 0644 /» RWfor owner, R for group, others */

min(arge, argv) /* cp: copy f1 to f2 »/
int argc;
char »argv([];

int f1, f2, n;
char buf [ BUFSI ZE] ;

if (arge !1=3)
error(”Usage: cp fromto”, NILL);
if ((f1 =—open(argv[1l], 0)) ===-1)
error( ”cp: can’t open %", argv[1]);
if ((f2 =creat(argv[2], PMIE)) ==-1)

error( "cp: can’t create %", argv[2]);

while ((n =read(f1, buf, BUFSIZE)) > 0)
if (wite(f2, buf, n) !==n)
error(”cp: wite error”, NILL);
exit(0);
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error(sl, s2) /* print error nessage and die */
char *sl1, =*s82;

{
printf(sl, s82);
printf("0);
exit(1);

With ROS, up to 64 files can be open at one time. Any program which intends to process
more than 64 must be prepared to re-use file descriptors. The routine cl ose breaks the con-
nection between a file descriptor and an open file, and frees the file descriptor for use with

some other file. Termination of a program via exit or return from the main program closes
all open files.

The function unl i nk(fil ename) removes the file fil ename from the file system.

4.4. Random Access — Seek and Lseek

File 1/O is normally sequential: each read or write takes place at a position in the file
right after the previous one. If necessary, however, a file can be read or written in any order.
The system call l seek provides a way to move around in a file without reading or writing:

lseek(fd, offset, origin);

forces the current position in the file fd to move to position of fset, which is relative to the
location specified by ori gi n. Subsequent reading or writing will begin at that position.

offset is al ong; fd and ori gin are i nt’s. (Longs and ints are the same size on ROS.)
ori gin can be 0, 1, or 2 to specify that offset is to be measured from the beginning, from
the current position, or from the end of the file respectively. For example, to append to a file,
seek to the end before writing:

1seek(fd, OL, 2);
To move to the beginning of (or ‘‘rewind’’) the file,
lseek(fd, OL, 0);

The OL argument could also be written as (1 ong) 0. With ROS, the file contents are long by
default, but it is needed for portability to 16-bit machines. ???

With 'l seek, it is possible to treat files more or less like large arrays, at the price of slower

access. For example, the following simple function reads any number of bytes from any arbi-
trary place in a file.

get(fd, pos, buf, n) /* read n bytes fromposition pos */
int fd, n;

long pos;
char *buf;

Iseek(fd, pos, 0); /* get to pos */
return(read(fd, buf, n));

}

Older versions of the UNIX System used a called named seek; lseek is so named to avoid
confusion with the other.

4. 5. Error Processing

The routines discussed in this section, and in fact all the routines which are direct entries
into the system can incur errors. Usually they indicate an error by returning a value of — 1.
Sometimes it is nice to know what sort of error occurred; for this purpose all these routines,
when appropriate, leave an error number in the external cell errno. The meanings of the
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various error numbers are listed in the intro(2) pages of the ROS Reference Manual, so your
program can, for example, determine if an attempt to open a file failed because it did not exist
or because the user lacked permission to read it.

Frequently, you may want to print the reason for failure. The routine perror will print a
message associated with the value of errno; more generally, sys _errno is an array of char-
acter strings which can be indexed by errno and printed by your program.

Use of perror or sys_errno requires the program to contain the code: #include error.h. 2??

5. PROCESSES

It is often easier to use a program written by someone else than to invent one’s own. This
section describes how to execute a program from within another.

5.1. The “‘System’’ Function

The easiest way to execute a program from another is to use the standard library routine
system system takes one argument, a command string exactly as typed at the terminal
(except for the newline at the énd) and executes it. For instance, to time-stamp the output of
a program,

min()

systen{ "date”);
/* rest of processing */

}

If the command string has to be built from pieces, the in-memory formatting capabilities of
sprintf may be useful.

Remember than getc and put ¢ normally buffer their input; terminal I/O will not be prop-
erly synchronized unless this buffering is defeated. For output, use ffl ush; for input, see
setbuf in the appendix.

5.2. Low-Level Process Creation — Execl and Execv

If you’re not using the standard library, or if you need finer control over what happens, you
will have to construct calls to other programs using the more primitive routines that the stan-
dard library’s sys t emroutine is based on.

The most basic operation is to execute another program wsthout returning, by using the rou-
tine execl . To print the date as the last action of a running program, use

execl (”/bin/date”, ~"date”, NILL);

The first argument to execl is the file name of the command; you have to know where it is
found in the file system. The second argument is conventionally the program name (that is,
the last component of the file name), but this is seldom used except as a place-holder. If the
command takes arguments, they are strung out after this; the end of the list is marked by a
NULL argument.

The execl call overlays the existing program with the new one, runs that, then exits.
There is no return to the original program.

More realistically, a program might fall into two or more phases that communicate only
through temporary files. Here it is natural to make the second pass simply an execl call from
the first.

The one exception to the rule that the original program never gets control back occurs
when there is an error, for example if the file can’t be found or is not executable. If you don’t
know where date is located, say
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execl (”/bin/date”, “date”, NULL);
execl ( ”/usr/bin/date”, “date”, NILL);
fprintf(stderr, “Someone stole ’date’ \n");

Execv; is a variation of execl that it is used when you don’t know how many arguments
there will be:

execv(filenane, argp);

where argp is an array of pointers to the arguments. The last pointer in the array must be
NULL so execv can tell where the list ends. As with execl, fil enane is the file in which
the program is found, and argp[ 0] is the name of the program. (This arrangement is identi-
cal to the argv array for program arguments.)

For other variations of exec, see exec(2).

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories — you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters like <, >, *, ?, and [] in the argu-
ment list. If you want these, use execl to invoke the shell sh, which then does all the work.
Construct a string cormmndl i ne that contains the complete command as it would have been
typed at the terminal, then say

execl(”/bin/sh”, "sh”, ”-¢”, commandline, NUL);

The shell is assumed to be at a fixed place, /bi n/sh. Its argument - ¢ says to treat the next
argument as a whole command line, so it does just what you want. The only problem is in con-
structing the right information in conmandl i ne.

5. 3. Control of Processes — Fork and Wait

So far what we’ve talked about isn’t really all that useful by itself. Now we will show how
to regain control after running a program with execl or execv. Since these routines simply
overlay the new program on the old one, to save the old one requires that it first be split into
two copies; one of these can be overlaid, while the other waits for the new, overlaying program
to finish. The splitting is done by a routine called fork:

proc_id =fork();

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of proc_id, the ‘“‘process id.”” In one of these processes (the ‘‘child”’),
proc_id is zero. In the other (the ‘‘parent’’), proc_i d is non-zero; it is the process number
of the child. Thus the basic way to call, and return from, another program is

if (fork() =—=0)
execl (”/bin/sh”, ”sh”, "-c¢”, cmd, NILL); /* in child #*/

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the
program. In the child, the value returned by fork is zero, so it calls execl which does the
command and then dies. In the parent, fork returns non-zero so it skips the execl. (If
there is any error, fork returns - 1).

More often, the parent wants to wait for the child to terminate before continuing itself.
This can be done with the function wai t:

int status; -
if (fork() ==0)

execl(...);
_wait(&tatus);

This still doesn’t handle any abnormal conditions, such as a failure of the execl or fork, or
the possibility that there might be more than one child running simultaneously. (The wait
returns the process id of the terminated child, if you want to check it against the value returned

(9050) -11-



Programmer$s Guide ROS Programming

by fork.) Finally, this fragment doesn’t deal with ahy funny behzvior on the part of the child
(which is reported in status). Still, these three lines are the heart of the standard library’s
systemroutine, which we’ll show in a moment.

The status returned by wai t encodes in its low-order eight bits the system’s idea of the
child’s termination status; it is 0 for normal termination and non-zero to indicate various kinds
of problems. The next higher eight bits are taken from the argument of the call to exi t which
caused a normal termination of the child process. 1t is good coding practice for all programs to
return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up point-
ing at the right files, and all other possible file descriptors are available for use. When this pro-
gram calls another one, correct etiquette suggests making sure the same conditions hold. Nei-
ther fork nor the exec calls affects open files in any way. If the parent is buffering output
that must come out before output from the child, the parent must flush its buffers before the
execl . Conversely, if a caller buffers an input stream, the called program will lose any infor-
mation that has been read by the caller.

b. 4. Pipes

A pipe is an I/O channel intended for use between two cooperating processes: one process
writes into the pipe, while the other reads. The system looks after buffering the data and syn-
chronizing the two processes. Most pipes are created by the shell, as in

Is | pr

which connects the standard output of 1 8 to the standard input of pr. Sometimes, however, it
is most convenient for a process to set up its own plumbing; in this section, we will illustrate
how the pipe connection is established and used.

The system call pi pe creates a pipe. Since a pipe is used for both reading and writing, two
file descriptors are returned; the actual usage is like this:

int fd[2];

stat ==pipe(fd);
if (stat ==-1)
/* there was an error ... */

fd is an array of two file descriptors, where fd[ 0] is the read side of the pipe and fd[ 1] is

for writing. These may be used in read, write and cl ose calls just like any other file
descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes
into a pipe which is too full, it will wait until the pipe empties somewhat. If the write side of
the pipe is closed, a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen( crd, rmde) , which creates a process crd (just as systemdoes), and returns a file
descriptor that will either read or write that process, according to mpde. That is, the call

fout =popen(”pr”, WA 'TIE);

creates a process that executes the pr command; subsequent wri te calls using the file descrip-
tor f out will send their data to that process through the pipe.

popen first creates the the pipe with a pi pe system call; it then forks to create two
copies of itself. The child decides whether it is supposed to read or write, closes the other side
of the pipe, then calls the shell (via execl) to run the desired process. The parent likewise
closes the end of the pipe it does not use. These closes are necessary to make end-of-file tests
work properly. For example, if a child that intends to read fails to close the write end of the
pipe, it will never see the end of the pipe file, just because there is one writer potentially active.
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#i ncl ude <stdio. h>

fdefi ne READ 0O

#define W TE 1
#define tst(a, b) (mpde ==READ ? (b) : (a))
static int popen_pid; .

popen(cml, mode)

char *cml;
int rmode;
{

int p[2];

if (pipe(p) <0)
return( NULL) ;

if ((popen_pid =fork()) ==0) {
close(tst(p[ VRITE], p[READ ));
close(tst(0, 1));
dup(tst(p[ READ, p[|WRITH ));

close(tst(p[ READ, p[WITH ));
execl (”/bin/sh”, ”sh”, "-¢”, cml, 0);
_exit(1l); /* disaster has occurred if we get here */

if (popen_pid ==-1)
return( NULL);
close(tst(p[ READ], p[WRITH ));
} return(tst(p[ WVRITE , p[READ ));

The sequence of cl oses in the child is a bit tricky. Suppose that the task is to create a child
process that will read data from the parent. Then the first ¢l ose closes the write side of the
pipe, leaving the read side open. The lines

cl ose(tst(oav 1));

dup(tst(p[READ, p[WRITE ));

are the conventional way to associate the pipe descriptor with the standard input of the child.
The cl ose closes flle descriptor O, that is, the standard input. dup is a system call that returns
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order
and the first available one is returned, so the effect of the dup is to copy the file descriptor for
the pipe (read side) to file descriptor 0; thus the read side of the pipe becomes the standard
input. (Yes, this is a bit tricky, but it’s a standard idiom.) Finally, the old read side of the pipe
is closed.

A similar sequence of operations takes place when the child process is supposed to write
To ~fromr the parent instead of reading. You may find it a useful exercise to step through that case.

The jdb is not quite done, for we still need a function pcl ose to close the pipe created by
popen. The main reason for using a separate function rather than ¢l ose is that it is desirable
to wait for the termination of the child process. First, the return value from pcl os e indicates
whether the process succeeded. Equally important when a process creates several children is
that only a bounded number of unwaited-for children can exist, even if some of them have ter-
minated; performing the wai t lays the child to rest. Thus:
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#A ncl ude <signal.h>

pclose(fd) /* close pipe fd */

int fd;

{
register r, (*hstat)(), (*istat)(), (*gstat)();
int status;
extern int popen_pid;

close(fd);
istat =signal (SIANIL, SIGIGN;
gstat ==signal (SIGJIT, SIGIQ;
hstat =signal (SIGHP, SIGIGN;
while ((r =wait(&tatus)) ! =—popen_pid & r !=-1);
if (r ==-1)

status =-1;
signal (SIANI, istat);
signal (SIGJIT, gstat);
signal (SIGXP, hstat);
return(status);

}

The calls to si gnal make sure that no interrupts, etc., interfere with the waiting process; this
is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because
of the single shared variable popen_pi d; it really should be an array indexed by file descrip-
tor. A popen function, with slightly different arguments and return value is available as part
of the standard I/O library discussed below. As currently written, it shares the same limitation.

6. SIGNALS and INTERRUPTS

This section covers the graceful handling of signals from the outside world: snterrupt, which
is sent when the DEL character is typed; gqu:, which is generated by the FS character; hangup,
which is caused by hanging up the phone; and ferminate, which is generated by the kdl com-
mand. When one of these events occurs, the signal is sent to all processes which were started
from the corresponding terminal. Unless other arrangements have been made, the signal ter-
minates the process. In the case of quit, the debugger is then invoked automatically.

The routine which alters the default action is called signal . It has two arguments: the
first specifies the signal, and the second specifies how to treat it. The first argument is just a
number code, but the second is the address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it be given the default action. The
include file si gnal . h gives names for the various arguments, and should always be included
when signals are used. Thus

#i ncl ude <signal.h>

signal (SIANI, SIGIGN;
causes interrupts to be ignored, while
signal (SIG@NI, SIGIFL);

restores the default action of process termination. In all cases, si gnal returns the previous
value of the signal. The second argument to si gnal may instead be the name of a function
(which has to be declared explicitly if the compiler hasn’t seen it already). In this case, the
named routine will be called when the signal occurs. Most commonly this facility is used to
allow the program to clean up unfinished business before terminating, for example to delete a
temporary file:
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44 ncl ude <signal . h>
main()
int onintr();

if (signal (SIGNIL, SIGIGN !=SIGIGN
signal (SIANI, onintr);

/* Process ... */

exit(0);

}

onintr()

unl i nk(tenpfile);
exit(1);

Why the test and the double call to si gnal ? Recall that signals like interrupt are sent to
all processes started from a particular terminal. Accordingly, when a program is to be run non-
interactively (started by &), the shell turns off interrupts for it so it won’t be stopped by inter-
rupts intended for foreground processes. If this program began by announcing that all inter-

rupts were to be sent to the oni ntr routine regardless, that would undo the shell’s effort to
protect it when run in the background.

* The solution, shown above, is to test the state of interrupt handling, and to continue to
ignore interrupts if they are already being ignored. The code as written depends on the fact
that si gnal returns the previous state of a particular signal. If signals were already being
ignored, the process should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a
request to stop what it is doing and return to its own command-processing loop. Think of a
text editor: interrupting a long printout should not cause it to terminate and lose the work
already done. The outline of the code for this case is probably best written like this:

#4 ncl ude <signal.h>
#A ncl ude <setjnp. h>
j np_buf sjbuf;
main()
int (*istat){), onintr();
istat =signal (SIANI, SIGIGQN; /* save original status */
setjop(sjbuf); /* save current stack position */ ‘
if (istat ! =SIGIQ
signal (SIA NI, onintr);

/* main processing loop */

}

onintr()

printf(”\nlnterrupt\n”);
1 ongj np(sjbuf); /* return to saved state */

The include file setj mp. h declares the type j mp_buf an object in which the state can be
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saved. sjbuf is such an object; it is an array of some sort. The setj np routine then saves
the state of things. When an interrupt occurs, a call is forced to the oni ntr routine, which
can print a message, set flags, or whatever. | ongj np takes as argument an object stored into
by setj mp, and restores control to the location after the call to setj p, so control (and the
stack level) will pop back to the place in the main routine where the signal is set up and the
main loop entered. Notice, by the way, that the signal gets set again after an interrupt occurs.
This is necessary; most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can’t be stopped at an arbitrary point, for
example in the middle of updating a linked list. If the routine called on occurrence of a signal
sets a flag and then returns instead of calling exit or 1l ongj np, execution will continue at the
exact point it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the
terminal when the interrupt is sent. The specified routine is duly called; it sets its flag and
returns. If it were really true, as we said above, that ‘‘execution resumes at the exact point it
was interrupted,’’ the program would continue reading the terminal until the user typed another
line. This behavior might well be confusing, since the user might not know that the program is
reading; he presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficulty is to terminate the terminal read when execution resumes after
the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for
‘“errors’’ which are caused by interrupted system calls. (The ones to watch out for are reads
from a terminal, wait, and pause.) A program whose oni ntr program just sets i ntf] ag,

resets the interrupt signal, and returns, should usually include code like the following when it
reads the standard input:

if (getchar() ==BEF)
if (intflag)
/* B(F caused by interrupt */
else

/* true end-of-file */

A final subtlety to keep in mind becomes important when signal-catching is combined with
execution of other programs. Suppose a program catches interrupts, and also includes a method

(like “‘!’’ in the editor) whereby other programs can be executed. Then the code should look
something like this:

if (fork() ==0)

execl (...);
signal (SIANI, SIGIQY; /* ignore interrupts */
wait(&tatus); /* until the child is done */
signal (SIA NI, onintr); /* restore interrupts */

Why is this? Again, it’s not obvious but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram, it will get the signal and return to
its main loop, and probably read your terminal. But the calling program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate, since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is refiected in the standard 1/O library function system
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#4 ncl ude <signal.h>

system{s) /* run commnd string s */
char *s;

{

}

int status, pid, w

register int (*istat)(), (*qstat)();

if ((pid =fork()) ==0) {
execl ("/bin/sh”, "sh”, "-¢”, s, 0);
_exit(127);

istat =signal (SIANI, SIGI);

gstat —signal (SIGIIT, SIGIGN;

while ((w =wait(&tatus)) !=pid & w!=-1)

’
if (w==-1)

status =-1;
signal (SIANIL, istat);
signal (SIGJIT, gstat);
return(status);

As an aside on declarations, the function si gnal obviously has a rather strange second
argument. It is in fact a pointer to a function delivering an integer, and this is also the type of
the signal routine itself. The two values SI G I GNand SI G_DFL have the right type, but are
chosen so they coincide with no possible actual functions. For the enthusiast, here is how they

are defined for ROS on the Ridge 32; the definitions are sufficiently ugly and unportable to
encourage use of the include file.

f#fdefi ne SI G_IFL (int (*)()
#define SIGIGN (int (*)()
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Appendix — The Standard I/O Library

1. General Usage
Each program using the library must have the line

#A ncl ude <stdio. h>

which defines certain macros and variables. The routines are in the normal C library, so no
special library argument is needed for loading. All names in the include file intended only for
internal use begin with an underscore _ to reduce the possibility of collision with a user name.
The names intended to be visible outside the package are

stdin The name of the standard input file
stdout The name of the standard output file
stderr The name of the standard error file

ECF is actually — 1, and is the value returned by the read routines on end-of-file or error.

NULL is a notation for the null pointer, returned by pointer-valued functions to indicate an
error

FILE expands to struct _iob and is a useful shorthand when declaring pointers to
streams.

BUFSIZ is a number (viz. 4096) of the size suitable for an I/O buffer supplied by the user.
See set buf, below.

getc, getchar, putc, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are mentioned here .
to point out that it is not possible to redeclare them and that they are not actually
functions; thus, for example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and out-
put flushing where appropriate. The names stdin, stdout, and stderr are in effect con-
stants and may not be assigned to. :

2. Calls

FILE *fopen(filename, type) char *filename, *type;
opens the file and, if needed, allocates a buffer for it. fil ename is a character string
specifying the name. type is a character string (not a single character). It may be ”r”~

w”, or "a” to indicate intent to read, write, or append. The value returned is a file
pointer. If it is NULL the attempt to open failed.

’

FILE *freopen(filename, type, ioptr) char *filenane, *type; FILE *ioptr;
The stream named by i optr is closed, if necessary, and then reopened as if by fopen. If
the attempt to open fails, NULL is returned, otherwise i optr, which will now refer to the
new file. Often the reopened stream is stdi n or st dout.

int getc(ioptr) FILE *ioptr;
returns the next character from the stream named by i optr, which is a pointer to a file
such as returned by fopen, or the name stdin. The integer ECF is returned on end-of-
file or when an error occurs. The null character \O is a legal character.

int fgetc(ioptr) FILE *ioptr;
acts like getc butis a genuine function, not a macro, so it can be pointed to, passed as an
argument, etc.

putc(c, ioptr) FILE *ioptr;
putc writes the character ¢ on the output stream named by i optr, which is a value

returned from fopen or perhaps st dout or stder:. The character is returned as value,
but ECF is returned on error.
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fputc(c, ioptr) FILE *ioptr;
acts like put ¢ but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptr;
The file corresponding to i optr is closed after any buffers are emptled A buffer allocated
by the 1/O system is freed. fcl ose is automatic on normal termination of the program.
fflush(ioptr) FILE #*ioptr;
Any buffered information on the (output) stream named by i optr is written out. Output
files are normally buffered if and only if they are not directed to the terminal; however,

stderr always starts off unbuffered and remains so unless set buf is used, or unless it is
reopened.

exit(errcode);
terminates the process and returns its argument as status to the parent. This is a special

version of the routine which calls ff1 ush for each output file. To terminate without flush-
ing, use _exit.

feof (ioptr) FILE *ioptr;
returns non-zero when end-of-flle has occurred on the specified input stream.

ferror(ioptr) FILE =*ioptr;
returns non-zero when an error has occurred while reading or writing the named stream.
The error indication lasts until the file has been closed.

getchar();
is identical to getc(stdin).

putchar(c¢);
is identical to putc(c, stdout).

char *fgets(s, n, ioptr) char *s; FILE #*ioptr;
reads up to n- 1 characters from the stream i optr into the character pointer s. The read
terminates with a newline character. The newline character is placed in the buffer followed

by a null character. fgets returns the first argument, or NULL if error or end-of-file
occurred.

fputs(s, ioptr) char *s; FILE *ioptr;
writes the null-terminated string (character array) s on the stream i optr. No newline is
appended. No value is returned.

ungetc(c, ioptr) FILE =*ioptr;
The argument character ¢ is pushed back on the input stream named by i optr. Only one
character may be pushed back.

printf(formmt, al, ...) char *formt;

fprintf(ioptr, formmt, al, ...) FILE *ioptr; char *formmt;

sprintf(s, formmt, al, ...)char *s, *format;
printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifications are
as described in the printf(3S) pages of the ROS Reference Manual.

scanf(format, al, ...) char *formmt;

fscanf(ioptr, format, al, ...) FILE *ioptr; char *forrmt'

sscanf(s, format, al, ...) char *s, *formmt;
scanf reads from the standard input. fscanf reads from the named input stream.
sscanf reads from the character string supplied as s. scanf reads characters, interprets
them according to a format, and stores the results in its arguments. Each routine expects
as arguments a control string format, and a set of arguments, each of which must be a
pointer, indicating where the converted input should be stored.

_ scanf returns as its value the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. On end of file, ECF is
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returned; note that this is different from 0, which means that the next input character does
not match what was called for in the control string.

fread(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;

reads ni tems of data beginning at ptr from file i optr. No advance notification that binary
I/0 is being done is required; when, for portability reasons, it becomes required, it will be done
by adding an additional character to the mode-string on the fopen call.

fwite(ptr, sizeof (*ptr), nitems, ioptr) FILE *ioptr;

Like fread, but in the other direction.

rewi nd(ioptr) FILE *ioptr;

rewinds the stream named by i optr. It is not very useful except on input, since a rewound
output file is still open only for output.

systen{string) char *string;

The string is executed by the shell as if typed at the terminal.

getw ioptr) FILE *ioptr;

returns the next word from the input stream named by i optr. ECF is returned on end-of-file

or error, but since this a perfectly good integer feof and ferror should be used. A ‘‘word”
is 16 bits on the PDP-11.

putww, ioptr) FILE *ioptr;

writes the integer won the named output stream.

setbuf(ioptr, buf) FILE *ioptr; char #*buf;

set buf may be used after a stream has been opened but before I/O has started. If buf is

NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a
character array of sufficient size:

char buf [ BUFSI Z] ;

fileno(ioptr) FILE *ioptr;
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrnanme) FILE *ioptr; long offset;

The location of the next byte in the stream named by i optr is adjusted. offset is a long
integer. If ptrname is O, the offset is measured from the beginning of the file; if ptrnamnme is
1, the offset is measured from the current read or write pointer; if ptrname is 2, the offset is
measured from the end of the file. The routine accounts properly for any buffering. (When
this routine is used on non-UNIX systems, the offset must be a value returned from ftell and

the ptrname must be 0).
long ftell(ioptr) FILE *ioptr;
The byte offset, measured from the beginning of the file, associated with the named stream is

returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this
call is useful only for handing to fseek, so as to position the file to the same place it was when

ftell was called.)
getpw(uid, buf) char =*buf;
The password flle is searched for the given integer user ID. If an appropriate line is found, it is

copied into the character array buf, and 0 is returned. If no line is found corresponding to the
user ID then 1 is returned.

char *malloc(num;

allocates numbytes. The pointer returned is sufficiently well aligned to be usable for any pur-
pose. NULL is returned if no space is available.

char *calloc(num size);
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allocates space for numitems each of size si ze. The space is guaranteed to be set to 0 and the

pointer is sufficiently well aligned to be usable for any purpose. INULL is returned if no space is
available .

cfree(ptr) char #ptr;

Space is returned to the pool used by cal l oc. Disorder can be expected if the pointer was not
obtained from cal l oc.

The following are macros whose definitions may be obtained by including <ct ype. h>.
isal pha(c) returns non-zero if the argument is alphabetic.

isupper( c) returns non-zero if the argument is upper-case alphabetic.

isl ower( c) returns non-zero if the argument is lower-case alphabetic.

isdigit(c) returns non-zero if the argument is a digit.

isspace( c) returns non-zero if the argument is a spacing character: tab, newline, carriage
return, vertical tab, form feed, space.

ispunct(c) returns non-zero if the argument is any punctuation character, i.e., not a space,
letter, digit or control character.

isal nurr( c) returns non-zero if the argument is a letter or a digit.

isprint(c) returns non-zero if the argument is printable — a letter, digit, or punctuation
character.

iscntrl ( c) returns non-zero if the argument is a control character.
isascii(c) returns non-zero if the argument is an ascii character, i.e., less than octal 0200.
toupper ( c) returns the upper-case character corresponding to the lower-case letter c.

tol ower( ¢) returns the lower-case character corresponding to the upper-case letter c.
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Lint, a C Program Checker
This document is based on a paper by S. C. Johnson of Bell Laboratories.

Lint examines C source programs and detects some bugs and obscurities that the C compiler
does not. It enforces the type rules of C more strictly than the C compiler. It may also be
used to enforce a number of portability restrictions involved in moving programs between
different machines and/or operating systems. Another option detects constructions which are
legal but wasteful or error-prone.

Lint accepts multiple input files and library specifications, and checks them for con-
sistency.

Lint is separate from the C compiler for practical reasons. The C compiler works fast and
efficient, partly because it does not do sophisticated type checking, especially between
separately-compiled programs. Lintexamines compatibilities more carefully.

This document discusses the use of lint, gives an overview of the implementation, and
gives some hints on the writing of machine-independent C code.

Introduction and Usage

Suppose there are two C source files, filel.c and ﬁle?.c, which are ordinarily compiled and
loaded together. Then the command

lint filel.c file2.c

produces messages describing inconsistencies and inefficiencies in the programs. The program
enforces the typing rules of C more strictly than the C compilers (for both historical and practi-
cal reasons) enforce them. The command

lint — p filel.c file2.c

will produce, in addition to the above messages, additional messages which relate to the porta-
bility of the programs to other operating systems and machines. Replacing the — p by — h will
produce messages about various error-prone or wasteful constructions which, strictly speaking,
are not bugs. Saying — hp gets the whole works.

The next several sections describe the major messages; the document closes with sections
discussing the implementation and giving suggestions for writing portable C. See lint(l) in the
ROS Reference Manual (9010) for a list of lint options.

Philosophy of Lint

Lint cannot ascertain every fact about a program, so it makes some assumptions. For
example, the input data may determine whether a given function is ever called, or whether a
specific ezt condition will ever be reached.

Therefore, lint algorithms are a compromise. For example, if a function is defined but not

mentioned, lint flags an error, but if it is mentioned, lint assumes the program logic could lead
to it.

Lint reports messages in three categories: unused variables and functions, set/used infor-
mation, and flow of control.

(9050) -1-



Programmers Guide Lint

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to func-
tions may become unused; it is not uncommon for external variables, or even entire functions,
to become unnecessary, and yet not be removed from the source. These ‘‘errors of commis-
sion’’ rarely cause working programs to fail, but they are a source of inefficiency, and make
programs harder to understand and change. Moreover, information about such unused vari-
ables and functions can occasionally serve to discover bugs; if -a function does a necessary job,
and is never called, something is wrong!

Lint complains about variables and functions which are defined but not otherwise men-
tioned. An exception is variables which are declared through explicit extern statements but are
never referenced; thus the statement

extern float sin();

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C
compiler. In some cases, these unused external declarations might be of some interest; they
can be discovered by adding the — x flag to the lint invocation.

Certain styles of programming require many functions to be written with similar inter-
faces; frequently, some of the arguments may be unused in many of the calls. The — v option
is available to suppress the printing of complaints about unused arguments. When — v is in
effect, no messages are produced about unused arguments except for those arguments which
are unused and also declared as register arguments; this can be considered an active (and
preventable) waste of the register resources of the machine.

There is one case where information about unused, or undefined, variables is more dis-
tracting than helpful. This is when lint is applied to some, but not all, files out of a collection
which are to be loaded together. In this case, many of the functions and variables defined may
not be used, and, conversely, many functions and variables defined elsewhere may be used.
The — u flag may be used to suppress the spurious messages which might otherwise appear.

Set/Used Information

Lint attempts to detect variables that are used before set. This is difficult to do well; Lint
detects local variables (automatic and register storage classes) whose first use appears physically
earlier in the input file than the first assignment to the variable. It assumes that taking the
address of a variable constitutes a ‘‘use,’’ since the actual use may occur at any later time, in a
data-dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm sim-
ple because the true flow of control need not be discovered. For this reason, lint may complain
about a program that is legal but in bad style (e.g. might contain at least two goto’s).

Because static and external variables are initialized to 0, no meaningful information can be
discovered about their uses. The algorithm deals correctly, however, with initialized automatic
variables, and variables which are used in the expression which first sets them.

The set/used information also permits recognition of those local variables which are set
and never used; these form a frequent source of inefficiencies, and may also be symptomatic of
bugs. :

Flow of Control

Lint attempts to detect unreachable portions of the programs which it processes. It will
complain about unlabeled statements immediately following goto, break, continue, or return
statements. An attempt is made to detect loops which can never be left at the bottom, detect-
ing the special cases while( 1 ) and for(;;) as infinite loops. .Lint also complains about loops
which cannot be entered at the top; some valid programs may have such loops, but at best they
are bad style, at worst bugs.
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Lint has an important area of blindness in the flow of control algorithm: it has no way of
detecting functions which are called and never return. Thus, a call to er:f may cause unreach-
able code which lint does not detect; the most serious effects of this are in the determination of
returned function values (see the next section).

One form of unreachable statement is not usually complained about by lint; a break state-
ment that cannot be reached causes no message. Programs generated by yacc, and especially
lez, may have literally hundreds of unreachable break statements. The — O flag in the C com-
piler will often eliminate the resulting object code inefficiency. Thus, these unreached state-
ments are of little importance, there is typically nothing the user can do about them, and the
resulting messages would clutter up the linf output. If these messages are desired, lint can be
invoked with the — b option.

Function Values

Sometimes functions return values which are never used; sometimes programs incorrectly
use function ‘‘values’’ which have never been returned. Lint addresses this problem in a
number of ways.

Locally, within a function definition, the appearance of both
return( ezpr );
and
return ;
statements is cause for alarm; lint will give the message
function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f(a){
if (a) return ( 3);
g();
}

Notice that, if ¢ tests false, f will call ¢ and then return with no defined return value; this will
trigger a complaint from lnt. If g, like exdt, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it also
accounts for a substantial fraction of the ‘‘noise’’ messages produced by lint.

On a global scale, lint detects cases where a function returns a value, but this value is
sometimes, or always, unused. When the value is always unused, it may constitute an
inefficiency in the function definition. When the value is sometimes unused, it may represent
bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function does not return one, is also
detected. This is a serious problem. Amazingly, this bug has been observed on a couple of
occasions in ‘‘working’’ programs; the desired function value just happened to have been com-
puted in the function return register! i

Type Checking

Lint enforces the type checking rules of C more strictly than the compilers do. The addi-
tional checking is in four major areas: across certain binary operators and implied assignments,
at the structure selection operators, between the definition and uses of functions, and in the use
of enumerations.
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There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional ( ? : ), and relational operators have this property; the
argument of a return statement, and expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long, unsigned, float, and double types may
be freely intermixed. The types of pointers must agree exactly, except that arrays of z’s can, of
course, be intermixed with pointers to 2’s.

The type checking rules also require that, in structure references, the left operand of the
—> be a pointer to structure, the left operand of the . be a structure, and the right operand of
these operators be a member of the structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value matching. The types float and
double may be freely matched, as may the types char, short, int, and unsigned. Also, pointers
can be matched with the associated arrays. Aside from this, all actual arguments must agree in
type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not

mixed with other types, or other enumerations, and that the only operations applied are =, ini-
tialization, ==, !==, and function arguments and return values.
Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable
programs. Consider the assignment

p=1;
where pis a character pointer. Lnt will quite rightly complain. Now, consider the assignment
p = (char ¥)1 ;

in which a cast has been used to convert the integer to a character pointer. The programmer
obviously had a strong motivation for doing this, and has clearly signaled his intentions. It
seems harsh for lint to continue to complain about this. On the other hand, if this code is
moved to another machine, such code should be looked at carefully. The — ¢ flag controls the
printing of comments about casts. When — c¢ is in effect, casts are treated as though they were
assignments subject to complaint; otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

Nonportable Character Use

On the PDP-11, characters are signed quantities, with a range from — 128 to 127. On
most other C implementations, including that on the Ridge 32, characters take on only positive

values. Thus, lint will flag certain comparisons and assignments as being illegal or nonportable.
For example, the fragment

char c;

if( (¢ =;et,cha.r( ) <0) ...

works on the PDP-11, but will fail on machines where characters always take on positive
values. The real solution is to declare ¢ an integer, since gelchar is actually returning integer
values. In any case, lint will say ‘‘nonportable character comparison’’.

A similar issue arises with bitfields; when assignments of constant values are made to
bitfields, the field may be too small to hold the value. On the Ridge 32, bitfields are unsigned.
On some machines, bitfields are considered as signed quantities. While it may seem unintuitive
to consider that a two-bit field declared of type int cannot hold the value 3, the problem disap-
pears if the bitfield is declared to have type unsigned.
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Assignments of longs to ints

Bugs may arise from the assignment of long t an int, which loses accuracy. (On the
Ridge 32, long and int values are the same size, so this problem does not exist.) This may hap-
pen in programs which have been incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program can stop working because some intermediate
results may be assigned to ints, losing accuracy. Since there are a number of legitimate reasons
for assigning longs to ints, the detection of these assignments is enabled by the — a flag.
Strange Constructions

The — h flag enables checking for some legal but poor constructions. For example, in the
statement

*++

the * does nothing; this provokes the message ‘‘null effect’”” from linf. The program fragment

unsigned x ;
iflx <0) ...

is clearly somewhat strange; the test will never succeed. Similarly, the test
iflx>0) ...

is equivalent to
if( x!=0)

which may not be the intended action. Lint will say ‘‘degenerate unsigned comparison’’ in
these cases. If one says

if(11=0) ...

lint will report ‘‘constant in conditional context’’, since the comparison of 1 with 0 gives a con-
stant result.

Another construction detected by lint involves operator precedence. Bugs which arise
from misunderstandings about the precedence of operators can be accentuated by spacing and
formatting, making such bugs extremely hard to find. For example, the statements

if( x&077 ==0) ...
or
x<<2 + 40

probably do not do what was intended. The best solution is to parenthesize such expressions,
and lint encourages this by an appropriate message.

The -h flag causes lint to complain about variables which are redeclared in inner blocks
different from their use in outer blocks. This is legal, but is bad style.
Ancient History

There are several forms of older syntax which are now considered errors by the C com-
piler. These fall into two classes, assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =— , . . . ) could cause ambiguous
expressions, such as

or
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a = —1;

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro
substitution. The newer, and preferred operators (+ =, — ==, etc. ) have no such ambiguities.
To spur the abandonment of the older forms, lint complains about these old fashioned opera-
tors.

A similar issue arises with initialization. The older language allowed
int x 1; ,
to initialize = to 1. This also caused syntactic difficulties: for example,
int x (-1);
looks somewhat like the beginning of a function declaration:
int x (y){...

and the compiler must read a fair ways past ¢ in order to sure what the declaration really is..
Acgain, the problem is even more perplexing when the initializer involves a macro. The current
syntax places an equals sign between the variable and the initializer:

int x = - 1;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal on others,
due entirely to alignment restrictions. For example, on the PDP-11, it is reasonable to assign
integer pointers to double pointers, since double precision values may begin on any integer
boundary. On the Ridge 32, double precision values must begin on even double-word boun-
daries; thus, not all such assignments make sense. Lint tries to detect cases where pointers are
assigned to other pointers, and such alignment problems might arise. The message ‘‘possible

pointer alignment problem’’ results from this situation whenever either the — p or — h flags are
in effect.

Multiple Uses and Side Effects

For complicated expressions, the best evaluation order for sub-expressions is machine-
dependent. On the Ridge 32, evaluation is left-to-right. Other machines use right-to-left.
Function calls embedded as arguments of other functions may or may not be treated like ordi-
nary arguments. Similar issues arise with other operators which have side effects, such as the
assignment operators and the increment and decrement operators. if any variable is changed by
a side effect, and also used elsewhere in the same expression, the result is undefined.

Lint specifically checks for the special case where a simple scalar variable is affected. For
example, the statement

a[t] = b+ ;
will draw the complaint:

warning: ¢ evaluation order undefined

Implementation

Lt consists of two programs and a driver. The first program is a version of the Portable
C Compiler which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C com-
pilers. This compiler does lexical and syntax analysis on the input text, constructs and main-
tains symbol tables, and builds trees for expressions. Instead of writing an intermediate file
which is passed to a code generator, as the other compilers do, lint produces an intermediate file
which consists of lines of ascii text. Each line contains an external variable name, an encoding

-6- _ | (9050)



Programmer$s Guide , Lint

of the context in which it was seen (use, definition, declaration, etc.), a type specifier, and a
source file name and line number. The information about variables local to a function or file is
collected by accessing the symbol table, and examining the expression trees.

Comments about local problems are produced as detected. The information about exter-
nal names is collected onto an intermediate flle. After all the source files and library descrip-
tions have been collected, the intermediate file is sorted to bring all information collected about
a given external name together. The second, rather small, program then reads the lines from
the intermediate file and compares all of the definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options available
to both passes of lint

Portability
This section describes some of the differences between various implementations, and
discusses the [t features which encourage portability.

A difficulty arises from the amount of information retained about external names during
the loading process. On the ROS system, externally known names have unlimited characters,
with distinction between upper- and lowercase letters. On other systems, the number of
significant characters in a name may be less, or case distinction may be lost. This leads to
situations where programs run on the one system, but encounter loader problems on others.
Lint — p causes all external symbols to be mapped to one case and truncated to six characters,
providing a worst-case analysis.

Many differences arise in the area of character handling. Characters in most UNIX sys-
tems are eight-bit ascii, but they are eight-bit ebcdic on the IBM, and nine bit ascii on
Honeywell GCOS. Also, character strings go from high to low bit positions (‘‘left-to-right’’) on
many systems (Ridge, IBM, 68000, 3B20) and low to high (‘‘right-to-left’’) on others (VAX,
PDP-11, Z8000, NS16000). This means that code attempting to construct strings out of charac-
ter constants, or attempting to use characters as indexes into arrays, must be looked at with
great suspicion. Lint is of little help here, except to flag multi-character character constants.

Word sizes are different, but this causes less trouble than might be expected when moving
from 16-bit words to 32- or 36-bit words. The main problems are likely to arise in shifting or
masking. C now supports a bit-field facility, which can be used to write much of this code in a
reasonably portable way. Frequently, portability of such code can be enhanced by slight rear-
rangements in coding style. Many of the incompatibilities seem to have the flavor of writing

X &= 0177700 ;

to clear the low order six bits of z. This suffices on a 16-bit machine, but fails on 32- or 36-bit
machines. If the bit field feature cannot be used, the same effect can be obtained by writing

X &= ~ 077 ;
which will work on all these machines.

The right shift operator is arithmetic shift on the VAX 11/780 and PDP-11, and logical
shift on the Ridge 32 and most other machines. To obtain a logical shift on all machines, the
left operand can be typed unsigned. Characters are considered signed integers on the VAX
PDP-11, and unsigned on the other machines. This persistence of the sign bit may be reason-
ably considered a bug in the PDP-11 hardware which has infiltrated itself into the C language.
If there were a good way to discover the programs which would be affected, C could be
changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in
fact is. The issues involved here are rarely subtle or mysterious, at least to the implementor of
the program, although they can involve some work to straighten out. The most serious bar to
the portability of UNIXT system utilities has been the inability to mimic essential UNIX system

tUNIX is a Trademark of Bell Laboratories.
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functions on the other systems. On many systems other than Ridge, the inability to seek to a
random character position in a text file, or to establish a pipe between processes, has involved
more rewriting and debugging than any of the differences in C compilers. On the other hand,
lint has been very helpful in moving the UNIX operating system and associated -utility programs
to other machines.

Shutting Lint Up

There are occasions when the programmer is smarter than ltnf. There may be valid rea-
sons for *‘‘illegal’’ type casts, functions with a variable number of arguments, etc. Moreover, as
specified above, the flow of control information produced by lini often has blind spots, causing
occasional spurious messages about perfectly reasonable programs. Thus, some way of com-
municating with lint, typically to shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords would
require current and old compilers to recognize these keywords, if only to ignore them. This has

both philosophical and practical problems. New preprocessor syntax suffers from similar prob-
lems.

What was finally done was to cause a number of words to be recognized by lint when they
were embedded in comments. This required minimal preprocessor changes; the preprocessor
just had to agree to pass comments through to its output, instead of deleting them as had been
previously done. Thus, lint directives are invisible to the compilers, and the effect on systems
with the older preprocessors is merely that the lint directives don’t work.

The first directive is concerned with flow of control information; if a particular place in

the program cannot be reached, but this is not apparent to linf, this can be asserted by the
directive

/* NOTREACHED x/

at the appropriate spot in the program. Similarly, if it is desired to turn off strict type checking
for the next expression, the directive

/* NOSTRICT */

can be used; the situation reverts to the previous default after the next expression. The — v
flag can be turned on for one function by the directive

/* ARGSUSED x/

Complaints about variable number of arguments in calls to a function can be turned off by the
directive

/* VARARGS */

preceding the function definition. In some cases, it is desirable to check the first several argu-
ments, and leave the later arguments unchecked. This can be done by following the

VARARGS keyword immediately with a digit giving the number of arguments which should be
checked; thus,

/* VARARGS2 %/

will cause the first two arguments to be checked, the others unchecked. Finally, the directive

/* LINTLIBRARY x/

at the head of a file identifies this file as a library declaration file; this topic is worth a section by
itself.
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Librafy Declaration Files
Lint accepts certain library directives, such as

- lm

and tests the source flles for compatibility with these libraries. This is done by accessing library
description files whose names are constructed from the library directives. These files all begin

- with the directive

/% LINTLIBRARY #/

which is followed by a series of dummy function definitions. The critical parts of these
definitions are the declaration of the function return type, whether the dummy function returns
a value, and the number and types of arguments to the function. The VARARGS and
ARGSUSED directives can be used to specify features of the library functions.

Lint library files are processed almost exactly like ordinary source files. The only
difference is that functions which are defined on a library file, but are not used on a source flle,
draw no complaints. Lént does not simulate a full library search algorithm, and complains if the
source files contain a redefinition of a library routine (this is a feature!).

By default, lint checks the programs it is given against a standard library file, which con-
tains descriptions of the programs which are normally loaded when a C program is run. When
the -p flag is in effect, another file is checked containing descriptions of the standard I/O library
routines which are expected to be portable across various machines. The -n flag can be used to
suppress all library checking.

Buggs, etc.

Lint was a difficult program to write, partially because it is closely connected with matters
of programming style, and partially because users usually don’t notice bugs which cause lint to
miss errors which it should have caught. (By contrast, if {int incorrectly compla.lns about some-
thing that is correct, the programmer reports that immediately!)

A number of areas remain to be further developed. The checking of structures and arrays
is rather inadequate; size incompatibilities go unchecked, and no attempt is made to match up
structure and union declarations across files. Some stricter checking of the use of the typedef is
clearly desirable, but what checking is appropriate, and how to carry it out, is still to be deter-
mined.

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for
a special version of the preprocessor to be constructed which checks for things such as unused
macro definitions, macro arguments which have side effects which are not expanded at all, or
are expanded more than once, etc. :

The central problem with lint is the packaging of the information which it collects. There
are many options which serve only to turn off, or slightly modify, certain features. There are
pressures to add even more of these options.

In conclusion, the use of two programs is efficient: the compiler turns the program source
into executable form, and lint concentrates on issues of portability, style, and efficiency.
Incorrectness and over-conservatism are only annoying, not fatal, so Lt can afford to be
wrong. The compiler can be fast since it knows that lint will correct its deficiencies. Finally,
the programmer can concentrate at one stage of the programming process solely on the algo-
rithms, data structures, and correctness of the program, and then later retrofit, with the aid of
lint, the desirable properties of universality and portability.

See the lint(1) page of the ROS Reference Manual (9010) for a summary of the lint
options. .

(9050) -9-



Make — for Maintaining Computer Programs
This document is based on a paper by S.I. Feldman of Bell Laboratories, August, 1978.

Introduction

Make mechanizes many activities of program development and maintenance. It is a
mechanism for maintaining an up-to-date version of all the component files of a small to
medium-size program.

Many flles may exist as parts of a larger program. Some may require a macro procesor, others
may need compiling with special options by different language compilers, and others may
require processing by yacc or lex. The output code from some steps may have to be loaded
with special libraries and tested by certain test scripts. Make records the interdependence of
files, mechanizes the procedure of figuring out which object modules need recompilation, and

memorizes the exact sequence of operations needed to make or exercise a new version of the
program.

Once the appropriate information has been established in a file, the simple command

make
is frequently sufficient to update the involved program flles, regardless of the number that have
been edited since the last ‘“make’’. The description file is easy to write and it changes infre-

quently, making use of the make command easier than issuing one of the component com-
mands by hand. The typical cycle of program development is:

think — edit — make — test ...
Make does not solve the problems of maintaining multiple source versions or of describ-
ing huge programs.

Introductory Examples

make updates a target file by ensuring that all of the files on which it depends exist and
are up to date, then creates the target if it has not been modified since its dependents were.
Make does a depth-first search of the graph of dependences. The date and time of file
modification is the key for make to determine if it needs updating.

To illustrate, let us consider a simple example: A program named prog is made by compil-
ing and loading three C-language files z.¢, y.c, and z.¢ with the Im library. By convention, the
output of the C compilations will be found in filles named r.0, y.0, and z.0. Assume that the

files z.c and y.c¢ share some declarations in a file named defs, but that z.¢ does not. That is, z.c
and y.c have the line

#include “defs”
The following text describes the relationships and operations:

prog: X.0 y.0 Z.0
cC X.0 YO0 z.0 - lm - o prog

X.0 y.o: defs

If this information were stored in a file named makefile, the command
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make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files z.¢, y.c, z.¢, or defs.

Make operates using three sources of information: a user-supplied description file (as
above), file names and ‘‘last-modified’’ times from the file system, and built-in rules to bridge
some of the gaps. In our example, the first line says that prog depends on three ‘‘.0’" files.
Once these object files are current, the second line describes how to load them to create prog.
The third line says that z.0 and y.0 depend on the file defs. From the file system, make discov-

_ers that there are three ‘‘.¢’’ files corresponding to the needed ‘‘.o’’ files, and uses built-in
information on how to generate an object from a source file (t.e., issue a ‘““cc — ¢’’ command).

The following long-winded description file is equivalent to the one above, but takes no
advantage of make’s innate knowledge:

prog: x.0 y.o z.0
¢c¢c X0 y.0 z.0 — 1S — o prog

X.0 : x.c defs

¢cc — ¢ X.C
y.0 : y.c defs

cC — C y.c
Z.0 : Z.C

¢cc — ¢ z.c

If none of the source or object files had changed since the last time prog was made, all of
the files would be current, and the command

make

would just announce this fact and stop. If, however, the defs file had been edited, z.c and y.c
(but not z.¢) would be recompiled, and then prog would be created from the new ‘‘.0’’ files. If
only the file y.¢ had changed, only it would be recompiled, but it would still be necessary to
reload prog.

If no target name is given on the make command line, the first target mentioned in the
description is created; otherwise the specified targets are made. The command

make x.0

would recompile z.0 if z.¢ or defs had changed.

If the file exists after the commands are executed, its time of last modification is used in
further decisions; otherwise the current time is used. It is often quite useful to include rules
with mnemonic names and commands that do not actually produce a file with that name.
These entries can take advantage of make’s ability to generate filles and substitute macros.
Thus, an entry ‘‘save’’ might be included to copy a certain set of files, or an entry ‘‘cleanup”’
might be used to throw away unneeded intermediate files. In other cases one may maintain a
zero-length file purely to keep track of the time at which certain actions were performed. This
technique is useful for maintaining remote archives and listings.

Make has a simple macro mechanism for substituting in dependency lines and command
strings. Macros are defined by command arguments or description file lines with embedded
equal signs. A macro is invoked by preceding the name by a dollar sign; macro names longer
than one character must be parenthesized. The name of the macro is either the single character
after the dollar sign or a name inside parentheses. The following are valid macro invocations:
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$(CFLAGS)
$2

$(xy)

$z

$(2)

The last two invocations are identical. $$ is a dollar sign. All of these macros are assigned
values during input, as shown below. Four special macros change values during the execution
of the command: $*, $@, $?, and $<. They will be discussed later. The following fragment
shows the use:

OBJECTS = x.0 y.0 z.0
LIBES = .
prog: $( OBJECTS)
cc $(OBJECTS) $(LIBES) - o prog

The command
make

loads the three object files with the /¢ library, which is automatically included by the cc(1) com-
mand. The command

make "LIBES= - 1l - Im”

loads them with both the Lex (‘‘~ 1I’’) and the Standard (‘‘— l¢’’) libraries, since macro
definitions on the command line override definitions in the description.

The following sections detail the form of description files and the command line, and dis-
cuss options and built-in rules in more detail.

Description Files and Substitutions

A description file contains three types of information: macro definitions, dependency
information, and executable commands. There is also a comment convention: all characters
after a sharp (#) are ignored, as is the sharp itself. Blank lines and lines beginning with a sharp
are totally ignored. If a non-comment line is too long, it can be continued using a backslash. If
the last character of a line is a backslash, the backslash, newline, and following blanks and tabs
are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab.
The name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (leading blanks and tabs
are stripped.) The following are valid macro definitions:

2 = Xyz
abc=-11-1y-18
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly defined has

the null string as value. Macro deflnitions may also appear on the make command line (see
below).

Other lines give information about target files. The general form of an entry is:

targetl [target2 ... :[:] {dependentl ... [; commands] [# ...]
[(tab) commands] [# ...]

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits,
periods, and slashes. (Shell metacharacters ‘‘*”’ and ‘‘?’’ are expanded.) A command is any
string of characters not including a sharp (except in quotes) or newline. Commands may
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appear either after a semicolon on a dependency line or on lines beginning with a tab immedi-
ately following a dependency line.

A dependency line may have either a single or a double colon. A target name may appear
on more than one dependency line, but all of those lines must be of the same (single or double
colon) type.

1. For the usual single-colon case, at most one of these dependency lines may have a com-
mand sequence associated with it. If the target is out of date with any of the dependents
on any of the lines, and a command sequence is specified (even a null one following a
semicolon or tab), it is executed; otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency
line; if the target is out of date with any of the files on a particular line, the associated
commands are executed. A built-in rule may also be executed. This detailed form is of
particular value in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each com-
mand line is printed and then passed to a separate invocation of the Shell after substituting for
macros. (The printing is suppressed in silent mode or if the command line begins with an @
sign). Make normally stops if any command signals an error by returning a non-zero error
code. (Errors are ignored if the ‘- i”’ flags has been specified on the make command line, if
the fake target name ‘. IGNORE’’ appears in the description file, or if the command string in
the description file begins with a hyphen. Some commands return meaningless status).
Because each command line is passed to a separate invocation of the Shell, care must be taken
with certain commands (e.g., ¢d and Shell control commands) that have meaning only within a
single Shell process; the results are forgotten before the next line is executed.

Before issuing any command, certain macros are set. $@ is set to the name of the file to
be ‘““made’’. $? is set to the string of names that were found to be younger than the targ®. If
the command was generated by an implicit rule (see below), $< is the name of the related file
that caused the action, and $* is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name ‘. DEFAULT"’ are used. If there is no such name, make
prints a message and stops.

Command Usage
See the make(1) pages of the ROS Reference Manual for command syntax and options.

Implicit Rules

The make program uses a table of interesting suffixes and a set of transformation rules to
supply default dependency information and implied commands. (The Appendix describes these
tables and means of overriding them.) The default suffix list is:

Object file
C source file
Efl source file
Ratfor source file
Fortran source file
Assembler source file
Yacc-C source grammar
r Yacc-Ratfor source grammar
.ye Yacc-Efi source grammar
A Lex source grammar

R N N

The following diagram summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is
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named in the description.

N roole J s .y yr ye A d

.yl yr .ye

If the file 2.0 were needed and there were an z.c in the description or directory, it would
be compiled. If there were also an z.l, that grammar would be run through Lex before compil-
ing the result. However, if there were no z.c¢ but there were an 2./, make would discard the
intermediate C-language file and use the direct link in the graph above.

It is possible to change the names of some of the compilers used in the default, or the flag
arguments with which they are invoked by knowing the macro names used. The compiler
names are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The command

make CC=newcc

will cause the ‘“‘newcc’’ command to be used instead of the usual C compiler. The macros
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands
to be issued with optional flags. Thus,

make "CFLAGS=- 0"

causes the optimizing C compiler to be used.

Example

As an example of the use of make, we will present the description file used to maintain
the make command itself. The code for make is spread over a number of C source files and a
Yacc grammar. The description file contains:
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# Description file for the Make command

FILES — Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o

LIBES=
LINT == lint — p
CFLAGS = - 0O

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) — o make
size make

$(OBIECTS): defs

gram.o: lex.c

cleanup:
-Tm %.0 gram.c
-du
install:
@ size make /usr/bin/make
c¢p make /usr/bin/make ; rm make

print: $(FILES) # print recently changed files
pr $? |$P
touch print

test:
make — dp |grep - v TIME >1zap
/usr/bin/make — dp |grep — v TIME >2zap
diff 1zap 2zap )
rm 1zap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
Irm gram.c

arch:
ar uv /sys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it. The following output results from
typing the simple command

make

in a directory containing only the source and description file:

¢cc — c version.c

c¢¢ — ¢ main.c

cc — ¢ doname.c

c¢c — ¢ misc.c

cc — c files.c

cc — ¢ dosys.c

yacc gram.y

mv y.tab.c gram.c

¢c — ¢ gram.c

cc version.o main.o doname.o misc.o files.o dosys.o gram.o — o make
13188+ 3348+ 3044 — 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description file,
make found them using its suffix rules and issued the needed commands. The string of digits
results from the ‘‘size make’’ command; the printing of the command line itself was suppressed
by an @ sign. The @ sign on the size command in the description file suppressed the printing
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of the command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences. The ‘“‘print’’
entry prints only the files that have been changed since the last ‘‘make print’’ command. A
zero-length file print is maintained to keep track of the time of the printing; the $? macro in the
command line then picks up only the names of the files changed since print

Suggestions and Warnings

The most common difficulties arise from make’s specific meaning of dependency. If file
z.¢ has a ‘‘#tinclude ”defs”’ line, then the object file z.0 depends on defs; the source file z.c

does not. (If defs is changed, it is not necessary to do anything to the file z.¢, while it is neces-
sary to recreate z.0.)

To discover what make would do, the ‘“~ n’’ option is very useful. The command

make — n

orders make to print out the commands it would issue without actually taking the time to exe-
cute them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition
to an include file), the ‘““~ t’* (touch) option can save a lot of time: instead of issuing a large

number of superfluous recompilations, make updates the modification times on the affected file.
Thus, the command :

make — ts

(‘“touch silently’’) causes the relevant files to appear up to date. Obvious care is necessary,
since this mode of operation subverts the intention of make and destroys all memory of the
previous relationships.

The debugging flag (‘‘— d’’) causes make to print out a very detailed description of what it

is doing, including the file times. The output is verbose, and recommended only as a last
resort.
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Appendix. Suffixes and Transformation Rules

The make program itself does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with another suffix. This information is stored in an
internal table that has the form of a description file. If the ‘‘— r’’ flag is used, this table is not
used.

The list of suffixes is actually the dependency list for the name ‘‘.SUFFIXES’’; make
looks for a file with any of the suffixes on the list. If such a file exists, and if there is a
transformation rule for that combination, make acts as described earlier. The transformation
rule names are the concatenation of the two suffixes. The name of the rule to transform a “‘.r”’
file to a ‘‘.0’’ file is thus ‘‘.r.0’’. If the rule is present and no explicit command sequence has
been given in the user’s description files, the command sequence for the rule ‘“.r.0o”’ is used. If
a command is generated by using one of these suffixing rules, the macro $* is given the value
of the stem (everything but the suffix) of the name of the file to be made, and the macro $ < is
the name of the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first
name that is formed that has both a file and a rule associated with it is used. If new names are
to be appended, the user can just add an entry for ‘*.SUFFIXES’’ in his own description file;
the dependents will be added to the usual list. A ‘*.SUFFIXES’’ line without any dependents

deletes the current list. (It is necessary to clear the current list if the order of names is to be
changed).

The following is an excerpt from the default rules file:

SUFFIXES: o0 .c.er .f.y.yryels
YACC=yacc
YACCR=yacc - r
YACCE=yacc — e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as —
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.C.O0 :
$(CC) $(CFLAGS) - ¢ $<
.e.0 .r.o .f.o:
$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) — ¢ $<

S.0 -
$(AS) - 0 %@ $<

.y.o
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) - ¢ y.tab.c
rm y.tab.c )
mv y.tab.o $@

y.c

$(YACC) $(YFLAGS) $<
mv y.tab.c $@
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1. Introduction.

Lex is a program generator designed for
lexical processing of character input streams. It
accepts a  high-level, problem oriented
specification for character string matching, and
produces a program in a general purpose
language which recognizes regular expressions.
The regular expressions are specified by the user
in the source specifications given to Lex. The
Lex written code recognizes these expressions in
an input stream and partitions the input stream
into strings matching the expressions. At the
bound~aries between strings program sections
provided by the user are executed. The Lex
source file associates the regular expressions and
the program fragments. As each expression
appears in the input to the program written by
Lex, the corresponding fragment is executed.

The user supplies the additional code
beyond expression matching needed to complete
his tasks, possibly including code written by
other generators. The program that recognizes
the expressions is generated in the general pur-
pose programming language employed for the
user's program fragments. Thus, a high level
expression language is provided to write the
string expressions to be matched while the user’s
freedom t0 write actions is unimpaired. This
avoids forcing the user who wishes to use a
string manipulation language for input analysis to
write processing programs in the same and often
inappropriate string handling language.

Lex is not a complete language, but rather
a generator representing a new language feature
which can be added to different programming
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languages, called ‘*host languages.’”’ Just as gen-
eral purpose languages can produce code to run
on different computer hardware, Lex can write
code in different host languages. The host
language is used for the output code generated
by Lex and also for the program fragments
added by the user. Compatible run-time libraries
for the different host languages are also pro-
vided. This makes Lex adaptable to different
environments and different users. Each applica-
tion may be directed to the combination of
hardware and host language appropriate to the
task, the user’s background, and the properties
of local implementations. At present, the only
supported host language is C.

Lex turns the wuser’s expressions and
actions (called source) into the host general-
purpose language; the generated program is
named yylez. The yylex program recognizes
expressions in a stream (called input) and per-
forms the specified actions for each expression as
it is detected:

Source -> lex -> yylex

Input-> yylez -> output

For a trivial example, consider a program
to delete from the input all blanks or tabs at the
ends of lines.

%%
[\g+$

is all that is required. The program contains a
%% delimiter to mark the beginning of the rules,
and one rule. This rule contains a regular
expression which matches one or more instances
of the characters blank or tab (written \t for visi-
bility, in accordance with the C language conven-
tion) just prior to the end of a line. The brackets
indicate the character class made of blank and
tab; the + indicates ‘‘one or more ...”’; and the $
indicates ‘‘end of line,’’ as in QED. No action is
specified, so the program generated by Lex
(yylex) will ignore these characters. Everything
else will be copied. To change any remaining
string of blanks or tabs to a single blank, add
another rule:

%%
[\g+$%
[ \tI+ printf(” );
The finite automaton generated for this source

will scan for both rules at once, observing at the
termination of the string of blanks or tabs
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whether or not there is a newline character, and
executing the desired rule action. The first rule
matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of
blanks or tabs.

Lex can be used alone for simple transfor-
mations, or for analysis and statistics gathering
on a lexical level. Lex can also be used with a
parser generator to perform the lexical analysis
phase; it is particularly easy to interface Lex and
Yacc [3]. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a
large class of context-free grammars, but require
a lower level analyzer to recognize input tokens.
Thus, a combination of Lex and Yacc is often
appropriate. When used as a preprocessor for a
later parser generator, Lex is used to partition
the input stream, and the parser generator
assigns structure to the resulting pieces. The
flow of control in such a case (which might be
the first half of a compiler, for example) is:

lexical grammar
rules rules
lex Yace

Input-> yylex -> yyparse-> parsed input

Additional programs, written by other generators
or by hand, can be added easily to programs writ-
ten by Lex.

Yacc users will realize that the name yylez
is what Yacc expects its lexical analyzer to be
named, so that the use of this name by Lex
simplifies interfacing.

Lex generates a deterministic finite auto-
maton from the regular expressions in the source
[4]. The automaton is interpreted, rather than
compiled, in order to save space. The result is
still a fast analyzer. In particular, the time taken
by a Lex program to recognize and partition an
input stream is proportional to the length of the
input. The number of Lex rules or the complex-
ity of the rules is not important in determining
speed, unless rules which include forward con-
text require a significant amount of re scanning.
‘What does increase with the number and com-
plexity of rules is the size of the finite automa-
ton, and therefore the size of the program gen-
erated by Lex.

In the program written by Lex, the user’s
fragments (representing the actions to be per-
formed as each regular expression is found) are
gathered as cases of a switch. The automaton
interpreter directs the control flow. Opportunity
is provided for the user to insert either declara-
tions or additional statements in the routine con-
taining the actions, or to add subroutines outside
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this action routine.

Lex is not limited to source which can be
interpreted on the basis of one character
look“ahead. For example, if there are two rules,
one looking for ab and another for abcdefy, and
the input stream is abcdefh, Lex will recognize ab
and leave the input pointer just before cd. . .
Such backup is more costly than the processing
of simpler languages.

2. Lex Source.
The general format of Lex source is:

{definitions}

%%

{rules}

%%

{user subroutines}

where the definitions and the user subroutines
are often omitted. The second %% is optional,
but the first is required to mark the beginning of
the rules. The absolute minimum Lex program
is thus

%%

(no definitions, no rules) which translates into a
program which copies the input to the output
unchanged.

In the outline of Lex programs shown
above, the rules represent the user’s control deci-
sions; they are a table, in which the left column
contains regular ezpressions (see section 3) and
the right column contains actions, program frag-
ments to be executed when the expressions are
recognized. Thus an individual rule might
appear

integer  printf(“found keyword INT”);

to look for the string snfeger in the input stream
and print the message ‘‘found keyword INT”’
whenever it appears. In this example, the host
procedural laniguage is C, and the C library func-
tion printf prints the string. The end of the
expression is indicated by the first blank or tab
character. If the action is merely a single C
expression, it can just be given on the right side
of the line; if it is compound, or takes more than
a line, it should be enclosed in braces. As a
slightly more wuseful example, suppose it is
desired to change a number of words from Brit-
ish to American spelling. Lex rules such as

colour printf("color”);
mechanise  printf(”mechanize”);
petrol printf("gas”);

would be a start. These rules are not quite
enough, since the word petroleym would become
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gaseum; a way of dealing with this will be
described later.

3. Lex Regular Expressions.

The definitions of regular expressions are
very similar to those in QED [5]. A regular
expression specifies a set of strings to be
matched. It contains text characters (which
match the corresponding characters in the strings
being compared) and operator characters {(which
specify repetitions, choices, and other features).
The letters of the alphabet and the digits are
always text characters; thus the regular expres-
sion

integer

matches the string integer wherever it appears
and the expression

a57D
looks for the string a57D.

Operators. The operator characters are

N[l -?2.*+1()$/{}%< >

and if they are to be used as text characters, an
escape should be used. The quotation mark
operator (") indicates that whatever is contained
between a pair of quotes is to be taken as text
characters. Thus

Xyz'+ +”

matches the string zyz+ + when it appears.
Note that a part of a string may be quoted. It is
harmiess but unnecessary to quote an ordinary
text character; the expression

"SyZ+ 4+

is the same as the one above. Thus by quoting
every non-alphanumeric character being used as
a text character, the user can avoid remembering
the list above of current operator characters, and
is safe should further extensions to Lex lengthen
the list.

An operator character may also be turned
into a text character by preceding it with \as in

xyz\+ \+

which is another, less readable, equivalent of the
above expressions. Another use of the quoting
mechanism is to get a blank into an expression;
normally, as explained above, blanks or tabs end
a rule. Any blank character not contained within
{] (see below) must be quoted. Several normal
C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use
\\. Since newline is illegal in an expression, \n
must be used; it is not required to escape tab and
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backspace. Every character but blank, tab, new-
line and the list above is always a text character.

Character classes. Classes of characters can
be specified using the operator pair {]. The con-
struction [abc/ matches a single character, which
may be a, b, or ¢. Within square brackets, most
operator meanings are ignored. Only three char-
acters are special: these are \ — and . The -
character indicates ranges. For example,

[a—20-9<>_]

indicates the character class containing all the
lower case letters, the digits, the angle brackets,
and underline. Ranges may be given in either
order. Using — between any pair of characters
which are not both upper case letters, both lower
case letters, or both digits is implementation
dependent and will get a warning message. (E.g.,
[0- z] in ASCII is many more characters than it
is in EBCDIC). If it is desired to include the
character — in a character class, it should be first
or last; thus

[-+0-9]
matches all the digits and the two signs.

In character classes, the operator must
appear as the first character after the left bracket;
it indicates that the resulting string is to be com-
plemented with respect to the computer character
set. Thus

[~abc]

matches all characters except a, b, or ¢, including
all special or control characters; or

[fa—~ zA- Z]
is any character which is not a letter. The \ char-

acter provides the usual escapes within character
class brackets.

Arbitrary character. To match almost any
character, the operator character

is the class of all characters except newline.
Escaping into octal is possible although non-
portable:

[\40- \176]

matches all printable characters in the ASCII
character set, from octal 40 (blank) to octal 176
(tilde).

Optional expressions. The operator ¢ indi-
cates an optional element of an expression.
Thus

“ab?c

matches either acor abe.
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Repeated expressions. Repetitions of classes
are indicated by the operators * and +.

a*

is any number of consecutive a characters,
including zero; while

at+
is one or more instances of a. For example,
[a— 2]+
is all strings of lower case letters. And
[A- Za~ z][A— Za— 20— 9] *

indicates all alphanumeric strings with a leading
alphabetic character. This is a typical expression
for recognizing identifiers in computer languages.

Alternation and Grouping. The operator |
indicates alternation:

(ablcd)

matches either ab or ¢d. Note that parentheses
are used for grouping, although they are not
necessary on the outside level;

ab|cd

would have sufficed. Parentheses can be used
for more complex expressions:

(ab|cd+)?(ef)*

matches such strings as abefef, efefef, cdef, or
cddd; but not abc, abed, or abcedef.

Context sensstivity. Lex will recognize a
small amount of surrounding context. The two
simplest operators for this are ~ and $. If the
first character of an expression is ~, the expres-
sion will only be matched at the beginning of a
line (after a newline character, or at the begin-
ning of the input stream). This can never
conflict with the other meaning of ~, complemen-
tation of character classes, since that only applies
within the {] operators. If the very last character
is $, the expression will only be matched at the
end of a line (when immediately followed by
newline). The latter operator is a special case of
the /operator character, which indicates trailing
context. The expression

ab/cd

matches the string ab, but only if followed by cd.
Thus

ab$
is the same as
ab/\n

Left context is handled in Lex by start conditions
as explained in section 10. If a rule is only to be
executed when the Lex automaton interpreter is

-4- (9050)

Lex

in start condition 2z, the rule should be prefixed
by

<X>

using the angle bracket operator characters. If
we considered ‘‘being at the beginning of a line’’
to be start condition ONE, then the "~ operator
would be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions. The operators
{} specify either repetitions (if they enclose
numbers) or definition expansion (if they
enclose a name). For example

{digit}
looks for a predefined string named digit and
inserts it at that point in the expression. The

definitions are given in the first part of the Lex
input, before the rules. In contrast,

a{1,5}
looks for 1 to 5 occurrences of g.

Finally, initial % is special, being the
separator for Lex source segments.

4. Lex Actions.

When an expression written as above is
matched, Lex executes the corresponding action.
This section describes some features of Lex
which aid in writing actions. Note that there is a
default action, which consists of copying the
input to the output. This is performed on all
strings not otherwise matched. Thus the Lex
user who wishes to absorb the entire input,
without producing any output, must provide
rules to match everything. When LeXx is being
used with Yacc, this is the normal situation.
One may consider that actions are what is done
instead of copying the input to the output;, thus,
in general, a rule which merely copies can be
omitted. Also, a character combination which is
omitted from the rules and which appears as
input ‘is likely to be printed on the output, thus
calling attention to the gap in the rules.

One of the simplest things that can be
done is to ignore the input. Specifying a C nuli
statement, ; as an action causes this result. A
frequent rule is

[\t\n]
which causes the three spacing characters ( blank,

tab, and newline) to be ignored.

Another easy way to avoid writing actions
is the action character | which indicates that the
action for this rule is the action for the next rule.
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The previous example could also have been writ-
ten

»

»\ »
»\n »

with the same result, although in different style.
The quotes around \n and \t are not required.

In more complex actions, the user will
often want to know the actual text that matched
some expression like fa~2z/+. Lex leaves this
text in an external character array named yylezi.
Thus, to print the name found, a rule like

[a— 2]+ printf("%s”, yytext);

will print the string in yylez{. The C function
printf accepts a format argument and data to be
printed; in this case, the format is ‘‘print string’’
(% indicating data conversion, and s indicating
string type), and the data are the characters in
yytezt. So this just places the matched string on
the output. This action is so0 common that it
may be written as ECHO:

[a- z]+ ECHO;

is the same as the above. Since the default
action is just to print the characters found, one
might ask why give a rule, like this one, which
merely specifies the default action? Such rules
are often required to avoid matching some other
rule which is not desired. For example, if there
is a rule which matches read it will normally
match the instances of read contained in bread or
readjust; to avoid this, a rule of the form [fa— z/+
is needed. This is explained further below.

Sometimes it is more convenient to know
the end of what has been found; hence Lex also
provides a count yyleng of the number of charac-
ters matched. To count both the number of
words and the number of characters in words in
the input, the user might write

[a- zA- Z]+  {words+ +; chars + = yyleng;}

which accumulates in chars the number of char-
acters in the words recognized. The last charac-
ter in the string matched can be accessed by

yytext|yyleng- 1]

Occasionally, a Lex action may decide that
a rule has not recognized the correct span of
characters. Two routines are provided to aid
with this situation. First, yymore() can be called
to indicate that the next input expression recog-
nized is to be tacked on to the end of this input.
Normally, the next input string would overwrite
the current entry in yytezt. Second, yyless (n)
may be called to indicate that not all the charac-
ters matched by the currently successful expres-
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sion are wanted right now. The argument n indi-
cates the number of characters in yylezt to be
retained. Further characters previously matched
are returned to the input. This provides the
same sort of look ahead offered by the / opera-
tor, but in a different form.

Ezample: Consider a language which
defines a string as a set of characters between
quotation (”) marks, and provides that to include
a " in a string it must be preceded by a \. The
regular expression which matches that is some-

‘what confusing, so that it might be preferable to

write

R
if (yytextyyleng— 1] =="\Y)
yymore();
else

}

which will, when faced with a string such as
“abc\"def” first match the five characters “abc\;
then the call to yymore() will cause the next part
of the string, "def, to be tacked on the end.
Note that the final quote terminating the string
should be picked up in the code labeled ‘‘normal
processing’’.

... normal user processing

The function yyless() might be used to
reprocess text in various circumstances. Con-
sider the C problem of distinguishing the ambi-

guity of ‘‘=-—a’’. Suppose it is desired to treat
this as ‘“=- a’’ but print a message. A rule
might be

=-a- zA- Z] {

printf( "Operator (=-) ambiguous\n”);

yyless(yyleng— 1);
... action for =- ...

}

which prints a message, returns the letter after
the operator to the input stream, and treats the
operator as ‘‘=-"". Alternatively it might be
desired to treat this as ‘= -a’’. To do this,
just return the minus sign as well as the letter to
the input:

=—[(a- zA- Z] {

printf("Operator (=-) ambiguous\n”);

yyless(yyleng— 2);
... action for = ...

}

will perform the other interpretation. Note that
the expressions for the two cases might more
easily be written

=- /[A- Za- z]
in the first case and

=/- [A- Za- z]
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in the second; no backup would be required in
the rule action. It is not necessary to recognize
the whole identifier to observe the ambiguity.
The possibility of ‘“=-38", however, makes

=- /[~ \t\n]
a still better rule.

In addition to these routines, Lex also per-
mits access to the I/O routines it uses. They are:

1) input() which returns the next input char-
acter;

2) oulput(c) which writes the character ¢ on
the output; and

3) unput(c) pushes the character ¢ back onto
the input stream to be read later by npuf().

By default these routines are provided as macro
definitions, but the user can override them and
supply private versions. These routines define
the relationship between external files and inter-
nal characters, and must all be retained or
modified consistently. They may be redefined, to
cause input or output to be transmitted to or
from strange places, including other programs or
internal memory; but the character set used must
be consistent in all routines; a value of zero
returned by snpuf must mean end of file; and the
relationship between unpuf and snpuf must be
retained or the Lex look™ahead will not work.
Lex does not look ahead at all if it does not have
to, but every rule ending in + * 2 or $ or con-
taining /implies look™ahead. Look™ahead is also
necessary to match an expression that is a prefix
of another expression. See below for a discus-
sion of the character set used by Lex. The stan-
dard Lex library imposes a 100 character limit on
backup.

Another Lex library routine that the user
will sometimes want to redefine is yywrap()
which is called whenever Lex reaches an end-of-
file. If yywrap returns a 1, Lex continues with
the normal wrapup on end of input. Sometimes,
however, it is convenient to arrange for more
input to arrive from a new source. In this case,
the user should provide a yywrap which arranges
for new input and returns 0. This instructs Lex
to continue processing. The default yywrap
always returns 1.

This routine is also a convenient place to
print tables, summaries, etc. at the end of a pro-
gram. Note that it is not possible to write a nor-
mal rule which recognizes end-of-file; the only
access to this condition is through yywrep. In
fact, unless a private version of inpuf() is sup-
plied a file containing nulls cannot be handled,
since a value of O returned by tnput is taken to be
end-of-file. '

Lex

5. Ambiguous Source Rules.

Lex can handle ambiguous specifications.
When more than one expression can match the
current input, Lex chooses as follows:

1) The longest match is preferred.

2) Among rules which matched the same
number of characters, the rule given first
is preferred.

Thus, suppose the rules

integer keyword action ...;
[a— 2]+ identifier action ...;

to be given in that order. If the input is infegers,
it is taken as an identifier, because fa- z/+
matches 8 characters while #nteger matches only
7. If the input is integer, both rules match 7
characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g.
tnt) will not match the expression snfeger and so
the identifier interpretation is used.

The principle of preferring the longest
match makes rules containing expressions like .*
dangerous. For example,

X%

might seem a good way of recognizing a string in
single quotes. But it is an invitation for the pro-
gram to read far ahead, looking for a distant sin-
gle quote. Presented with the input

first’ quoted string here, ‘second’ here
the above expression will match
'first/ quoted string here, ‘second’

which is probably not what was wanted. A better
rule is of the form

l[ "/\n] *

which, on the above input, will stop after ‘first.
The consequences of errors like this are miti-
gated by the fact that the . operator will not
match newline. Thus expressions like .* stop on
the current line. Don’t try to defeat this with
expressions like [\n/+ or equivalents; the Lex
generated program will try to read the entire
input file, causing internal buffer overflows.

Note that Lex is normally partitioning the
input stream, not searching for all possible
matches of each expression. This means that
each character is accounted for once and only
once. For example, suppose it is desired to
count occurrences of both she and he in an input
text. Some Lex rules to do this might be

she s+ +;
he h++;
\n | ‘

’
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where the last two rules ignore everything
besides he and she. Remember that . does not
include newline. Since she includes he,-Lex will
normally not recognize the instances of he
included in she, since once it has passed a she
those characters are gone.

Sometimes the user would like to override
this choice. The action REJECT means ‘‘go do
the next alternative.’” It causes whatever rule
was second choice after the current rule to be
executed. The position of the input pointer is
adjusted accordingly. Suppose the user really
wants to count the included instances of he:

she {s++; REJECT;}

he {h+ +; REJECT;}

\n |
these rules are one way of changing the previous
example to do just that. After counting each
expression, it is rejected; whenever appropriate,
the other expression will then be counted. In
this example, of course, the user could note that
she includes he but not vice versa, and omit the
REJECT action on he; in other cases, however, it
would not be possible a priori to tell which input
characters were in both classes.

Consider the two rules

albej+ {..; REJECT;}
afed]+ {...; REJECT;}

If the input is @b, only the first rule matches, and
on ad only the second matches. The input string
acch matches the first rule for four characters
and then the second rule for three characters. In
contrast, the input accd agrees with the second
rule for four characters and then the first rule for
three.

In general, REJECT is useful whenever
the purpose of Lex is not to partition the input
stream but to detect all examples of some items
in the input, and the instances of these items
may overlap or include each other. Suppose a
digram table of the input is desired; normally the
digrams overlap, that is the word the is con-
sidered to contain both th and he. Assuming a
two-dimensional array named digram to be incre-
mented, the appropriate source is

%%

[a— z]{a~ 2]  {digram[yytext{0]][yytext[1]]+ +;
\n ; ‘
where the REJECT is necessary to pick up a

letter pair beginning at every character, rather
than at every other character.
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8. Lex Source Definitions.

Remember the format of the Lex source:

{definitions}
%%

{rules}

%%

{user routines}

So far only the rules have been described. The
user needs additional options, though, to define
variables for use in his program and for use by
Lex. These can go either in the definitions sec-
tion or in the rules section.

Remember that Lex is turning the rules
into a program. Any source not intercepted by
Lex is copied into the generated program. There
are three classes of such things.

1) Any line which is not part of a Lex rule or
action which begins with a blank or tab is
copied into the Lex generated program.
Such source input prior to the first 9%
delimiter will be external to any function
in the code; if it appears immediately after
the first 9%, it appears in an appropriate
place for declarations in the function writ-
ten by Lex which contains the actions.
This material must look like program frag-
ments, and should precede the first Lex
rule.

As a side effect of the above, lines which
begin with a blank or tab, and which con-
tain a comment, are passed through to the
generated program. This can be used to
include comments in either the Lex source
or the generated code. The comments
should follow the host language conven-
tion.

2) Anything included between lines contain-
ing only Z and %} is copied out as above.
The delimiters are discarded. This format
permits entering text like preprocessor
statements that must begin in column 1, or
copying lines that do not look like pro-
grams.

3) Anything after the third %% delimiter,
regardless of formats, etc., is copied out
after the Lex output.

Definitions intended for Lex are given

REJE®tiyre the first 9% delimiter. Any line in this

section not contained between %{ and %), and
begining in column 1, is assumed t0 define Lex
substitution strings. The format of such lines is

name translation

and it causes the string given as a translation to
be associated with the name. The name and
translation must be separated by at least one
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blank or tab, and the name must begin with a
letter. The translation can then be called out by
the {name} syntax in a rule. Using {D} for the
digits and {E} for an exponent field, for example,
might abbreviate rules to recognize numbers:

D [0- 9]

E [DEde}[- +]?{D}+
%%

{D}+ printf(”integer”);

{D}+ " {DI{EDP? |
D D+ {EN? |
{o}+{E}

Note the first two rules for real numbers; both
require a decimal point and contain an optional
exponent field, but the first requires at least one
digit before the decimal point and the second
requires at least one digit after the decimal point.
To correctly handle the problem posed by a For-
tran expression such as 85.FEQ.I, which does not
contain a real number, a context-sensitive rule
such as

[0- 9]+ /""EQ  printf("integer”);

could be used in addition to the normal rule for
integers.

The definitions section may also contain
other commands, including the selection of a
host language, a character set table, a list of start
conditions, or adjustments to the default size of
arrays within Lex itself for larger source pro-
grams. These possibilities are discussed below
under “‘Summary of Source Format,’’ section 12.

7. Usage.

There are two steps in compiling a Lex
source program. First, the Lex source must be
turned into a generated program in the host gen-
eral purpose language. Then this program must
be compiled and loaded, usually with a library of
Lex subroutines. The generated program is on a
file named lez.yy.c. The I/O library is defined in
terms of the C standard library [6).

The C programs generated by Lex are
slightly different on OS/370, because the OS
compiler is less powerful than the UNIX or
GCOS compilers, and does less at compile time.

C programs generated on GCOS and UNIX are
the same.

UNIX. The library is accessed by the
loader flag - . So an appropriate set of com-
mands is

lex source cc¢ lex.yy.c - 1l )
The resuiting program is placed on the usual file
a.out for later execution. To use Lex with Yacc
see below. Although the default Lex I/O rou-
tines use the C standard library, the Lex auto-
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mata themselves do not do so; if private versions
of snput, output and unput are given, the library
can be avoided. ’

8. Lex and Yacc.k

If you want to use Lex with Yacc, note
that what Lex writes is a program named yylez(),
the name required by Yacc for its analyzer. Nor-
mally, the default main program on the Lex
library calls this routine, but if Yacc is loaded,
and its main program is used, Yacc will call
yylez(). In this case each Lex rule should end
with

return( token);

where the appropriate token value is returned.
An easy way to get access to Yacc’s names for
tokens is to compile the Lex output file as part
of the Yacc output file by placing the line

# include “lex.yy.c”

in the last section of Yacc input. If the grammar
were named ‘‘good’’ and the lexical rules were
named ‘‘better’’, the system command sequence
can be:

yace good
lex better
ccytabec- ly- 11

The Yacc library (- ly) should be loaded before
the Lex library, to obtain a main program which
invokes the Yacc parser. The generations of Lex
and Yacc programs can be done in either order.

9. Examples.

As a trivial problem, consider copying an
input file while adding 3 to every positive
number divisible by 7. Here is a suitable Lex
source program

%%
int k;
[o- 9+ {
k = atoi(yytext);
if (k%7 == 0)
printf("%4”, k+ 3);
else

printf("%d” k);

}

to do just that. The rule [0- 9]+ recognizes
strings of digits; atos converts the digits to binary
and stores the result in k. The operator %
(remainder) checks whether k is divisible by 7; if
it is, it is incremented by 3 as it is written out. It
may be objectionable that this program will alter
such input items as 49.68 or X7. Furthermore, it
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increments the absolute value of all negative
numbers divisible by 7. To avoid this, just add a
few more rules after the active one, as here:

%%

Lex

An additional class recognizes white space:
W[ \g*

The first rule changes ‘‘double precision’ to
‘“‘real””, or “DOUBLE PRECISION” to
“REAL”.

{aH{oHuHp HiHe HW HpHr He HeKiHsHiHo Hn} {

printf( "96d”, k%7 == 0 ? k+ 3 : k)print{( yytext{0] ==='d’? "real” : "REAL");

int k;
- ?[0- 9]+
k = atoi(yytext);
}
- ?[0- 9]+ ECHO;
[A-Za-z][A-Za-20-9]+ ECHO;
Numerical strings containing a ‘‘."’ or preceded

by a letter will be picked up by one of the last
two rules, and not changed. The if- else has
been replaced by a C conditional expression to
save space; the form a?b:c means ‘‘if a then b
else ¢'’.

For an example of statistics gathering, here
is a program which histograms the lengths of
words, where a word is defined as a string of
letters.

int lengs[100];
%%
[a~ z]+

\n
%%
yywrap()
{
int i;
print{("Length No .°words\n”) ;
for(i=0; i<100; i+ +)
if (lengs[i] > 0)

printf("%65d%10d\n",i,lengs|[i});

return(1);

}

This program accumulates the histogram, while
producing no output. At the end of the input it
prints the table. The final statement refurn(1);
indicates that Lex is to perform wrapup. If
yywrap returns zero (false) it implies that further
input is available and the program is to continue
reading and processing. To provide a yywrap that
never returns true causes an infinite loop.

lengs{yyleng]+ + ;

As a larger example, here are some parts
of a program written by N. L. Schryer to convert
double precision Fortran to single precision For-
tran. Because Fortran does not distinguish upper
and lower case letters, this routine begins by
defining a set of classes including both cases of
each letter:

a [aA]
b  [bB]
C [cC)
z [22Z]
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}

Care is taken throughout this program to
preserve the case (upper or lower) of the original
program. The conditional operator is used to
select the proper form of the keyword. The next
rule copies continuation card indications to avoid
confusing them with constants:

~  *[*0] ECHO;

In the regular expression, the quotes surround
the blanks. It is interpreted as ‘‘beginning of
line, then five blanks, then anything but blank or
zero.”” Note the two different meanings of ~.
There follow some rules to change double preci-
sion constants to ordinary floating constants.

[0- o]+ {WHa}{W}[+ - 17 {W}lo- 9]+ |
[0- 9]+ (W} {WHAHW} + - ]7{W}o- o]+ |
"r{WHo- o]+ {WHa{W}+- ]2 {W}o- 9]+ {
/* convert constants */
for(p=yytext; *p != 0; p+ +)
{
if (*p == 'd’ |*p == D’)
*p=+ lol_ Idl;
ECHO;

}

After the floating point constant is recognized, it

is scanned by the for loop to find the letter d or

D. The program than adds '¢- ‘d’, which con-

verts it to the next letter of the alphabet. The

modified constant, now single-precision, is writ-

ten out again. There follow a series of names .
which must be respelled to remove their initial d.

By using the array yylert the same action suffices

for all the names (only a sample of a rather long

list is given here). '

{a}sHiXn}
{a{cHo}s}
{a{s HaHr}{t}
{aH{aHtHa}n}

@YY printi("%e” yytextt 1);

Another list of names must have initial d
changed to initial a:

{aHifoHe} |
{a}i{oHeho |
{affmHi}op |
{dHmHapt  {

yytext[0] =+ ‘a’ — ‘d/;
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ECHO;,

}

And one routine must have initial d changed to
initial r. :

{aj1{mHaHcHn} {ytextio] =+ T - ‘¢;

To avoid such names as dsinz being detected as
instances of dsin, some final rules pick up longer
words as identifiers and copy some surviving
characters:

[A- Za— z][A~ Za— 20- 9]* |
[0- 9]+ |
\n |
. ECHO;
Note that this program is not complete; it does
not deal with the spacing problems in Fortran or
with the use of keywords as identifiers.

10. Left Context Sensitivity.

Sometimes it is desirable to have several
sets of lexical rules to be applied at different
times in the input. For example, a compiler
preprocessor might distinguish preprocessor
statements and analyze them differently from
ordinary statements. This requires sensitivity to
prior context, and there are several ways of han-
dling such problems. The ° operator, for exam-
ple, 'is a prior context operator, recognizing
immediately preceding left context just as $
recognizes immediately following right context.
Adjacent left context could be extended, to pro-
duce a facility similar to that for adjacent right
context, but it is unlikely to be as useful, since
often the relevant left context appeared some
time earlier, such as at the beginning of a line.

This section describes three means of deal-
ing with different environments: a simple use of
flags, when only a few rules change from one
environment to another, the use of start conds-
tions on rules, and the possibility of making mul-
tiple lexical analyzers all run together. In each
case, there are rules which recognize the need to
change the environment in which the following
input text is analyzed, and set some parameter to
reflect the change. This may be a flag explicitly
tested by the user’s action code; such a flag is
the simplest way of dealing with the problem,
since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the
ﬁags*as initial conditions on the rules. Any rule
may be associated with a start condition. It will
only be recognized when Lex is in that start con-
dition. The current start condition may be
changed at any time. Finally, if the sets of rules
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for the different environments are very dissimi-
lar, clarity may be best achieved by writing
several distinct lexical analyzers, and switching
from one to another as desired.

Consider the following problem: copy the
input to the output, changing the word magic to
first on every line which began with the letter g,
changing magic to second on every line which
began with the letter b, and changing magic to
third on every line which began with the letter c.
All other words and all other lines are left
unchanged.

These rules are so simple that the easiest
way to do this job is with a flag:

int fiag;
%%
“a {fiag = 'a’; ECHO;}
“b {fiag = 'v’; ECHO;}
“c {fiag = '¢’; ECHO;}
\n {iag = 0 ; ECHO;}
magic  {

switch (flag)

{

case ‘a’: printf( "first”); break;
case 'b’: printf(”second™); break;
case ‘c’: printf( "third”); break;
default: ECHO, break;

}

}

should be adequate.

To handle the same problem with start
conditions, each start condition must be intro-
duced to Lex in the definitions section with a
line reading

%Start namel name2 ...

where the conditions may be named in any
order. The word Stert may be abbreviated to s or
S. The conditions may be referenced at the head
of a rule with the <> brackets:

<namel>expression

is a rule which is only recognized when Lex is in
the start condition namel. To enter a start con-
dition, execute the action statement

BEGIN namel;

which changes the start condition to namel. To
resume the normal state,

BEGIN o0;

resets the initial condition of the Lex automaton
interpreter. A rule may be active in several start
conditions:

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the
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< > prefix operator is always active.
The same example as before can be writ-

ten:
%START AA BB CC
%%
a {ECHO; BEGIN AA;}
“b {ECHO; BEGIN BB;}
“c {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}
<AA>magic printf( "first”);
<BB>magic print{( "second”);
<CC>magic print{( "third”);

where the logic is exactly the same as in the pre-
vious method of handling the problem, but Lex
does the work rather than the user’s code.

11. Character Set.

The programs generated by Lex handle
character 1/O only through the routines smput,
oulput, and unpuf. Thus the character representa-
tion provided in these routines is accepted by
Lex and employed to return values in yytezt. For
internal use a character is represented as a small
integer which, if the standard library is used, has
a value equal to the integer value of the bit pat-
tern representing the character on the host com-
puter. Normally, the letter ¢ is represented as
the same form as the character constant ‘a’. If
this interpretation is changed, by providing I/0
routines which translate the characters, Lex must
be told about it, by giving a translation table.
This table must be in the definitions section, and
must be bracketed by lines containing only
““9%T"’. The table contains lines of the form

{integer} {character string}

which indicate the wvalue associated with each
character. Thus the next example

%T
1 Aa
2 Bb
26 Zz
27 \n
28  +
20 -
30
31 1
39 9
%T

Sample character table.
maps the lower and upper case letters together
into the integers 1 through 26, newline into 27,
+ and — into 28 and 29, and the digits into 30

Lex

through 39. Note the escape for newline. If a
table is supplied, every character that is to appear
either in the rules or in any valid input must be
included in the table. No character may be
assigned the number 0, and no character may be
assigned a bigger number than the size of the
hardware character set. :

12. Summary of Source Format.

The general form of a Lex source file is:

{definitions}

%%

{rules}

%%

{user subroutines}

The definitions section contains a combination of

1) Definitions, in the form ‘‘name space
transiation”’.

2) Included code, in the form ‘‘space code’’.

3) Inciluded code, in the form

%

code

%}
4) Start conditions, given in the form
%S namel name2 ...

5) Character set tables, in the form

%T

number space character-string

%T
6) Changes to internal array sizes, in the

form
%z nnn

where nan is a decimal integer representing
an array size and z selects the parameter as

follows:

Letter Parameter
P positions
n states
[] tree nodes
a transitions
k packed character classes
[o) output array size

Lines in the rules section have the form
‘‘expression action’’ where the action may be
continued on succeeding lines by using braces to
delimit it.

Regular expressions in Lex use the follow-
ing operators:

X the character "x”

-11-



Programmer’s Guide

"x” an "x”, even if X is an operator.

\x an "X”, even if X is an operator.

[xy] the character x ory.

[x- 2z} the characters X, y or z.

["x] any character but x.

. any character but newline.

“X an X at the beginning of a line.
<y>X an X when Lex is in start condition y.
x$ an x at the end of a line.

x? an optional x.

x* 0,1,2, ... instances of x.

X+ 1,2,3, ... instances of x.

xy anxoray.

(x) " an X.

x/y an x but only if followed by y.

{xx} the translation of xx from the definitions section.

x{m,n} mthrough n occurrences of x

13. Caveats and Bugs.

There are pathological expressions which
produce exponential growth of the tables when
converted to deterministic machines; fortunately,
they are rare.

REJECT does not rescan the input; instead
it remembers the results of the previous scan.
This means that if a rule with trailing context is
found, and REJECT executed, the user must not
have used unpul to change the characters forth-
coming from the input stream. This is the only
restriction on the user’s ability to manipulate the
not-yet-processed input.
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Yacc: Yet Another Compiler- Compiler

This document is based on a paper by Stephen C. Johnson of Bell Laboratories.

0: Introduction

Yacc is a general tool for imposing structure on. the input to a computer program. The
Yacc user prepares a specification of the input process; this includes rules describing the input
structure, code to be invoked when these rules are recognized, and a low-level routine to do
the basic input. Yacc then generates a function to control the input process. This function,
called a parser, calls the user-supplied low-level input routine (the lezical analyzer) to pick up
the basic items (called tokens) from the input stream. These tokens are organized according to
the input structure rules, called grammar rules; when one of these rules has been recognized,
then user code supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in C, and many of its syntax conventions follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structure and gives it a name. For example, one grammar rule might be

date : month_name day °,° year

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. The comma ‘,’’ is enclosed in
single quotes; this implies that the comma is to appear literally in the input. ‘The colon and

semicolon serve as punctuation in the rule, and have no significance in controlling the input.
Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, recognizing the lower level structures, and communicates these
tokens to the parser. For historical reasons, a structure recognized by the lexical analyzer is
called a terminal symbol, while the structure recognized by the parser is called a nonterminal sym-
bol. To avoid confusion, terminal symbols are usually called tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

month_name : J"a"1n” ;
month_name : F e " bd" ;

month_name : D"%e"¢” ;

might be used in the above example. The lexical analyzer would only need to recognize indivi-
dual letters, and month_name would be a nonterminal symbol. Such low-level rules tend to
waste time and space, and may complicate the specification beyond Yacc’s ability to deal with it.
Usually, the lexical analyzer would recognize the month names, and return an indication that a
month_name was seen; in this case, month_name would be a token.

Literal characters such as ‘‘,”” must also be passed through the lexical analyzer, and are
also considered tokens.

(9050) -1-



Programmers Guide Yacc

Specification files are very flexible. It is easy to add to the above example the rule
date : month /" day 7/ year ; ‘
allowing
7/4/1776
as a synonym for
July 4, 1776

In most cases, this new rule could be ‘‘slipped in’’ to a working system with minimal effort,
and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are
detected as early as possible with a left-to-right scan; thus, not only is the chance of reading and
computing with bad input data reduced, but the bad data can be found more quickly. Error
handling, provided as part of the input specifications, permits the reentry of bad data, or the
continuation of the input process after skipping over the bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The former cases represent design errors;
the latter cases can often be corrected by making the lexical analyzer more powerful, or by
rewriting some of the grammar rules. While Yacc cannot handle all possible specifications, its
power compares favorably with similar systems; the constructions which are difficult for Yacc
are often difficult for humans. Some users have reported that the discipline of formulating

valid Yacc specifications for their input revealed errors of conception or design early in the pro-
gram development.

The theory underlying Yacc has been described elsewhere. [Aho Johnson Surveys LR
Parsing] [Aho Johnson Ullman Ambiguous Grammars] [Aho Ullman Principles Compiler
Design] Yacc has been extensively used in numerous practical applications, including lint [ John-
son Lint], the Portable C Compiler [Johnson Portable Compiler Theory] and a system for
typesetting mathematics [Kernighan Cherry typesetting system CACM].

The next several sections describe the basic process of preparing a Yacc specification: Sec-
tion 1 preparation of grammar rules, Section 2 preparation of the user-supplied actions associ-
ated with these rules, and Section 3 preparation of lexical analyzers. Section 4 operation of the
parser. Section 6 reasons why Yacc may be unable to produce a parser from a specification,
and what to do about it. Section 8 a simple mechanism for handling operator precedences in
arithmetic expressions. Section 7 error detection and recovery. Section 8 the operating
environment and special features of the parsers Yacc produces. Section 9 suggestions to
improve the style and efficiency of specifications. Section 10 advanced topics, and Section 11
acknowledgements. Appendix A a brief example, Appendix B a summary of the Yacc input
syntax. Appendix C an example using advanced features of Yacc. Appendix D mechanisms

and syntax no longer actively supported, but provided for historical continuity with older ver-
sions of Yacc. ‘

1: Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be
declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include
the lexical analyzer as part of the specification file; it may be useful to include other programs
as well. Thus, every specification file consists of three sections: the declarations, (grammar)
rules, and programs. The sections are separated by double percent ‘“%%’ marks. (The percent
““0%’ is generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like
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declarations
%%

rules

%%

programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second %% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is legal; they are
enclosed in /* ... */, as in C and PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has the
form:

A : BODY ;

A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are Yacc punctuation.
Names may be of arbitrary length, and may be made up of letters, dot ‘“.”’, underscore

_"’, and non-initial digits. Upper and lower case letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes ‘“”?’. As in C, the backslash \
is an escape character within literals, and all the C escapes are recognized. Thus

An°  newline

Ar’  return

A~ single quote *‘~’
A\~  backslash “\”
At” tab

Ab®  backspace

AL° form feed

Axxx * ‘‘xxx’’ in octal

For a number of technical reasons, the NUL character ( ’\0’01' 0) should never be used in gram-
mar rules.

If there are several grammar rules with the same left hand side, the vertical bar “]” can
be used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

A : BCD ;
A : EF ;
A : G ;

can be given to Yacc as

A :
I
I

’

QB w

It is not necessary that all grammar rules with the same left side appear together in the gram-
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious
way:
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empty . ;

Names representing tokens must be declared; thié is most simply done by writing

%token namel name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for much more di'scussion)., Every name
not defined in the declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance.
The parser is designed to recognize the start symbol; thus, this symbol represents the largest,
most general structure described by the grammar rules. By default, the start symbol is taken to
be the left hand side of the first grammar rule in the rules section. It is possible, and in fact

desirable, to declare the start symbol explicitly in the declarations section using the 9%start key-
word:

%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If
the tokens up to, but not including, the endmarker form a structure which matches the start
symbol, the parser function returns to its caller after the endmarker is seen; it accepts the input.
If the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropri-

ate; see section 3, below. Usually the endmarker represents some reasonably obvious I/O
status, such as ‘‘end-of-file’’ or ‘‘end-of-record’’.

2: Actions

With each grammar rule, the user may associate actions to be performed each time the
rule is recognized in the input process. These actions may return values, and may obtain the

values returned by previous actions. Moreover, the lexical analyzer can return values for
tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subpro-
grams, and alter external vectors and variables. An action is specified by one or more state-
ments, enclosed in curly braces *‘{"’ and **}’. For example,

A : 1°B -
{ hello( 1, "abe”); }
and
XXX YYY ZZZ
{ printf(”a message\n”);

flag = 25; }
are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action state-
ments are altered slightly. The symbol ‘‘dollar sign’’ “‘$*’ is used as & signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable *“$$’’ to some value. For
example, an action that does nothing but return the value 1 is

{$$=1; }
To obtain the values returned by previous actions and the lexical analyzer, the action may

use the pseudo-variables $1, $2, . . ., which refer to the values returned by the components of
the right side of a rule, reading from left to right. Thus, if the rule is

-4- (9050)



Programmer$s Guide Yacc

A : BCD ;

for example, then $2 has the value returned by C, and $3 the value returned by D.
As a more concrete example, consider the rule

expr : 1° expr ) ;

The value returned by this rule is usually the value of the ezpr in parentheses. This can be
indicated by

expr : 1’ expr )~ {$$=$2; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar
rules of the form

A : B

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in the
middle of a rule as well as at the end. This rule is assumed to return a value, accessible
through the usual mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule

A : B
{$$=1; }
C
{ x=%2; y=23; }
the effect is to set z to 1, and y to the value returned by C.
Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new

nonterminal symbol name, and a new rule matching this name to the empty string. The inte-

rior action is the action triggered off by recognizing this added rule. Yacc actually treats the
above example as if it had been written:

$ACT /* empty */
{$$=1; }
A : B $ACT C

{ x=282; y=283; }

>

In many applications, output is not done directly by the actions; rather, a data structure,
such as a parse tree, is constructed in memory, and transformations are applied to it before out-
put is generated. Parse trees are particularly easy to construct, given routines to build and

maintain the tree structure desired. For example, suppose there is a C function node, written
so that the call

node( L, nl1, n2 )

creates a node with label L, and descendants n1 and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:

expr : expr <+ ~ expr

{ $8 = node( + -, $1, $3); }

in the specification.
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The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks ‘%{ and “%}”.
These declarations and definitions have global scope, so they are known to the action state-
ments and the lexical analyzer. For example, -

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in ‘‘yy’’; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be
found in Section 10.

3: Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens
(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called
yylez. The function returns an integer, the token number, representing the kind of token read.
If there is a value associated with that token, it should be assigned to the external variable yyl-
val.

The parser and the lexical analyzer must agree on these token numbers in order for com-
munication between them to take place. The numbers may be chosen by Yacc, or chosen by
the user. In either case, the ‘‘# define’’ mechanism of C is used to allow the lexical analyzer
to return these numbers symbolically. For example, suppose that the token name DIGIT has
been defined in the declarations section of the Yacc specification file. The relevant portion of
the lexical analyzer might look like:

yylex(){
extern int yylval;
int c;

c= getchar();
;v.vi'tch( c){

case 0=
case 1%

case 9%
yylval = c¢- 0%
return( DIGIT );

The intent is to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs section of

the specification file, the identifier DIGIT will be defined as the token number associated with
the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the
need to avoid using any token names in the grammar that are reserved or significant in C or the
parser; for example, the use of token names ¢f or whde will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name error is reserved for error
handling, and should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the
default situation, the numbers are chosen by Yacc. The default token number for a literal char-
acter is the numerical value of the character in the local character set. Other names are

-6- (9050)



Programmers Guide Yacc

assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token
name or literal n the declarations section can be immediately followed by a nonnegative integer.
This integer is taken to be the token number of the name or literal. Names and literals not
defined by this mechanism retain their default definition. It is important that all token numbers
be distinct. .

For historical reasons, the endmarker must have token number 0 or negative. This token
number cannot be redefined by the user; thus, all lexical analyzers should be prepared to return
O or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Ler program developed by
Mike Lesk. Lesk Lex These lexical analyzers are designed to work in close harmony with Yacc
parsers. The specifications for these lexical analyzers use regular expressions instead of gram-
mar rules. Lex can be easily used to produce quite complicated lexical analyzers, but there
remain some languages (such as FORTRAN) which do not fit any theoretical framework, and
whose lexical analyzers must be crafted by hand.

4: How the Parser Works

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself,
however, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The pa.r%er is
also capable of reading and remembering the next input token (called the lookahead token).
The current state is always the one on the top of the stack. The states of the finite state
machine are given small integer labels; initially, the machine is in state 0, the stack contains
only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error. A
move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done; if it needs one, and does not have one, it calls yylex to obtain
the next token.

2. Using the current state, and the lookahead token if needéd, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or
popped off of the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The lookahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right hand side of a grammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessary to consult the lookahead token to decide whether to reduce, but usu-
ally it is not; in fact, the default action (represented by a *.”’) is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are also
given small integer numbers, leading to some confusion. The action

reduce 18
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refers to grammar rule 18, while the action
IF shift 34
refers to stale 34.

Suppose the rule being reduced is
A : XY 2z 3

The reduce action depends on the left hand symbol (A in this case), and the number of sym-
bols on the right hand side (three in this case). To reduce, first pop off the top three states
from the stack (In general, the number of states popped equals the number of symbols on the
right side of the rule). In effect, these states were the ones put on the stack while recognizing
z, ¥, and 2 and no longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perform what is in effect a
shift of A. A new state is obtained, pushed onto the stack, and parsing continues. There are
significant differences between the processing of the left hand symbol and an ordinary shift of a
token, however, so this action is called a goto action. In particular, the lookahead token is

cleared by a shift, and is not affected by a goto. In any case, the uncovered state contains an
entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action ‘‘turns back the clock’’ in the parse, popping the states off the
stack to go back to the state where the right hand side of the rule was first seen. The parser
then behaves as if it had seen the left side at that time. If the right hand side of the rule is
empty, no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values.
‘When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter-
nal variable yylval is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the golo action is done, the external variable yyval is copied
onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates
that the entire input has been seen and that it matches the specification. This action appears
only when the lookahead token is the endmarker, and indicates that the parser has successfully
done its job. The error action, on the other hand, represents a place where the parser can no -
longer continue parsing according to the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything that would result in a legal input.
The parser reports an error, and attempts to recover the situation and resume parsing: the error
recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

%woken DING DONG DELL

%%

rhyme : sound place
sound : DING DONG
place : DELL

»

When Yacc is invoked with the — v option, a file called y.output is produced, with a
human-readable description of the parser. The y.oulput file corresponding to the above
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grammar ( with some statistics stripped off the end) is:
state O
$accept : _rhyme $end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_$end

$end accept
. error

state 2
rhyme : sound_place

DELL shift 5
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
. error

state 4
rhyme : sound place_ (1)

reduce 1

state 5
place : DELL_ (3)

reduce 3

state 6
sound : DING DONG_ (2)

reduce 2

In addition to the actions for each state, there is a description of the parsing rules being pro-
cessed in each state. The _ character indicates what has been seen, and what is yet to come, in
each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input in order to
decide between the actions available in state 0, so the first token, DING, is read, becoming the
lookahead token. The action in state 0 on DING is is ‘‘shift 3’’, so state 3 is pushed onto the
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stack, and the lookahead token is cleared. State 3 becomes the current state. The next token,
DONG, is read, becoming the lookahead token. The action in state 3 on the token DONG is
“‘shift 6°’’, so state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the parser reduces by
rule 2. :

sound : DING .DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is ‘‘shift 5°’, so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In
state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side, so
one state, 5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side
of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so the top two states are popped off,
uncovering state 0 again. In state O, there is a goto on rhyme causing the parser to enter state
1. In state 1, the input is read; the endmarker is obtained, indicated by ‘‘$end’’ in the y.oulput
file. The action in state 1 when the endmarker is seen is to accept, successfully ending the
parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes
spend with this and other simple examples will probably be repaid when problems arise in more

complicated contexts.
5: Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the grammar rule

- -

expr : expr - expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram-

mar rule does not completely specify the way that all complex inputs should be structured. For
example, if the input is

eXpr — expr — expr
the rule allows this input to be structured as either
( expr — expr ) — expr
or as
expr — ( expr — . expr )
(The first is called left association, the second right association).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to
consider the problem that confronts the parser when it is given an input such as

expr — . expr — expr
When the parser has read the second expr, the input that it has seen:
expr - expr

matches the right side of the grammar rﬁlé above. The pa.rser'could ‘reduce the input by
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applying this rule; after applying the rule; the input is reduced to expr(the left side of the rule).
The parser would then read the final part of the input:

— expr "

and again reduce. The effect of this is to take the left associative interpretation.
Alternatively, when the parser has seen

expr — expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

expr - expr - expr
It could then apply the rule to the rightmost three symbols, reducing them to ezpr and leaving
expr — expr

Now the rule can be reduced once more; the effect is to take the right associative interpreta-
tion. Thus, having read ’

expr — expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a sheft / reduce conflict. It may also happen that the parser has a choice of
two legal reductions; this is called a reduce / reduce conflict Note that there are never any
‘‘Shift/shift’’ conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a choice. A rule describing which
choice to make in a given situation is called a ‘“‘disambiguatingrule”’

Yacc invokes two ‘‘disambiguating’’ rules by default:
In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce /reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules,
while consistent, require a more complex parser than Yacc can construct. The use of actions
within rules can also cause conflicts, if the action must be done before the parser can be sure
which rule is being recognized. In these cases, the application of ‘‘disambiguating’’ rules is
inappropriate, and leads to an incorrect parser. For this reason, Yacc always reports the number
of shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply ‘‘disambiguating’’ rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat unna-
tural, and produces slower parsers; thus, Yacc will produce parsers even in the presence of
conflicts.

As an example of the power of ‘‘disambiguating’’ rules, consider a fragment from a pro-
gramming language involving an ‘‘if-then-else’’ construction:

stat : IF {° cond )~ stat
| IF 1 cond )’ stat ELSE stat

’

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional
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(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule will
be called the stmple-if rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of the form
IF ( C1 ) IF ( C2 ) S1 ELSE S2
can be structured according to these rules in two ways:

IF ( C1) {
IF ( C2 ) S1

}

ELSE S2
or
IF ( C1) {
IF ( C2 ) S1
ELSE S2

}

The second interpretation is the one given in most programming languages having this con-
struct. Each ELSE is associated with the last preceding ‘‘un-ELSE’d’’ IF. In this example, con-
sider the situation where the parser has seen

IF(Cl)IF(Cz)Slk
and is looking at the ELSE. It can immediately reduce by the simple-if rule to get
IF ( C1 ) stat '
and then read the remaining input,
ELSE S2
and reduce
IF ( C1 ) stat ELSE S2
by the if-else rule. This leads to the first of the above groupings of the input.
On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of
IF (ClL) IF ( C2) S1 ELSE S2 |
can be reduced by the if-else rule to get
IF ( C1 ) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired.

Once again the parser can do two valid things — there is a shift/reduce conflict. The

application of ‘‘disambiguating’’ rule 1 tells the parser to shift in this case, which leads to the
desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol,
ELSE, and particular inputs already seen, such as

IF (C1)IF ( C2) S1

In general, there may be many conflicts, and each one will be associated with an input symbol

and a set of previously read inputs. The previously read inputs are characterized by the state of
the parser.

The conflict messages of Yacc are best understood by examining the verbose (— v) option
output file. For example, the output corresponding to the above conflict state might be:
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23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat : IFF ( cond ) stat_ (18)
stat : IF ( cond ) stat ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF ( cond ) stat

and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symbol is FLSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF ( cond ) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by ‘‘.”’, is to be done if the input symbol is not mentioned explicitly in the above

actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18:

stat : IF {° cond )~ stat

Once again, notice that the numbers following ‘‘shift’’ commands refer to other states, while
the numbers following ‘‘reduce’’ commands refer to grammar rule numbers. In the y.output
file, the rule numbers are printed after those rules which can be reduced. In most one states,
there will be at most reduce action possible in the state, and this will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really tough cases, the
user might need to know more about the behavior and construction of the parser than can be
covered here. In this case, one of the theoretical references Aho Johnson Surveys Parsing Aho
Johnson Ullman Deterministic Ambiguous Aho Ullman Principles Design might be consulted;
the services of a local guru might also be appropriate.

8: Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used con-
structions for arithmetic expressions can be naturally described by the notion of precedence lev-
els for operators, together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate ‘‘disambiguating’’ rules can be used to create parsers that
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form

expr : expr OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As ‘‘disambiguating’’ rules, the user specifies the precedenceé, or binding
strength, of all the operators, and the associativity of the binary operators. This information is
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sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and con-
struct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section.
This is done by a series of lines beginning with a Yacc keyword: %deft, %right, or %nonassoc,
followed by a list of tokens. All of the tokens on the same line are assumed to have the same
precedence level and associativity; the lines are listed in order of increasing precedence or bind-
ing strength. Thus, i

%deft + - = °
Zdeft *° /°

describes the precedence and associativity of the four arithmetic operators. The ‘+ °, -°, ¥,
and ¢/’ are all left associative, but ‘+ * and ‘-’ have lower precedence than ‘*’ and ‘/’. The key-
word %right describes right associative operators, and the keyword %monassoc describes opera-

tors, like the operator .L'T. in Fortran, that may not associa.te with themselves; thus,

A LT. B LT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations, the description

Zaright ="

Zdeft + ~ = °

Beft *° °/°

%%

expr : expr ==~ expr

expr ~+ ° expr
expr =~ “~ expr
eXpr *‘ expr
expr 7/° expr
NAME

might be used to structure the input
a=b = ¢ - e - f¥g

as follows:
a=(b=/(((c*xd)-€) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a precedence. Some-
times a unary operator and a binary operator have the same symbolic representation, but
different precedences. An example is unary and binary - % unary minus may be given the
same strength as multiplication, or even higher, while binary minus has a lower strength than
multiplication. The keyword, %prec, changes the precedence level associated with a particular
grammar rule. %@prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It causes the pre-
cedence of the grammar rule to become that of the following token name or literal. For exam-
ple, to make unary minus have the same precedence as multiplication the rules might resemble:
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Teft + ~ — °

deft, *° /°

%%

expr : expr ~+ ° expr

- -

| expr -~ ° expr

| expr *” expr

| expr °/° expr

| “ “expr  %prec *°
| NAME

A token declared by %left., %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give
rise to ‘‘disambiguating’’ rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them. :

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construc-
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two

‘““disambiguating’’ rules given at the beginning of the section are used, and the conflicts
are reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce /reduce conflicts reported by Yacc. This means that mistakes in the specification of pre-
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre-
cedences, and use them in an essentially ‘‘cookbook’’ fashion, until some experience has been
gained. The y.oulput file is very useful in deciding whether the parser is actually doing what was
intended.

7: Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete
or alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to
continue scanning the input to find further syntax errors. This leads to the problem of getting
the parser ‘‘restarted’’ after an error. A general class of algorithms to do this involves discard-
ing a number of tokens from the input string, and attempting to adjust the parser so that input
can continue. :

To allow the user some control over this process, Yacc provides a simple, but reasonably
general, feature. The token name ‘‘error’’ is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and recovery
might take place. The parser pops its stack until it enters a state where the token ‘‘error’’ is
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legal. It then behaves as if the token ‘‘error’” were the current lookahead token, and performs
the action encountered. The lookahead token is then reset to the token that caused the error.
If no special error rules have bucn specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an error is
detected when the parser is already in error state, no message is given, and the input token is
quietly deleted.

As an example, a rule of the form
stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state-
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reini-
tialize tables, reclaim symbol table space, etc.

_ Error rules such as the above are very general, but difficult to control. Somewhat easier
are rules such as

stat : error -

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next ;" All tokens after the error and before the next % cannot be shifted, and

are discarded. When the % °is seen, this rule will be reduced, a.nd any ‘‘cleanup’’ action associ-
ated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to
permit a line to be reentered after an error. A possible error rule might be

input  : error \n" { printf( "Reenter last line: ”); } input

$$ = $4; }

There is one potential difficulty with this approach; the parser must correctly process three
input tokens before it admits that it has correctly resynchronized after the error. If the reen-
tered line contains an error in the first two tokens, the parser deletes the offending tokens, and
gives no message; this is clearly unacceptable. For this reason, there is a mechanism that can

be used to force the parser to believe that an error has been fully recovered from. The state-
ment

yyerrok ;

in an action resets the parser to its normal mode. The last example is better written

input  : error \n*
yyerrok;
printf( "Reenter last line: ” ); }
input

{ $8 = $4; }

’

As mentioned above, the token seen immediately after the ‘‘error’’ symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example, an
error recovery action might take upon itself the job of finding the correct place to resume input.
In this case, the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error were to call some
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sophisticated resynchronization routine, supplied by the user, that attempted to advance the
input to the beginning of the nexi valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille-
gal token must be discarded, and the error state reset. This could be done by a rule like

stat : error
{ resynch();
yyerrok ;
yyclearin ;° }

»

These mechanisms are admittedly crude, but do allow for a simple, fairly effective
recovery of the parser from many errors; moreover, the user can get control to deal with the
error actions required by other portions of the program.

8: The Yacc Environment

‘When the user inputs a specification to Yacc, the output is a file of C programs, called
y.tab.c on most systems (due to local file system conventions, the names may differ from instal-
lation to installation). The function produced by Yacc is called yyparse; it is an integer valued
function. When it is called, it in turn repeatedly calls yylez, the lexical analyzer supplied by the
user (see Section 3) to obtain input tokens. Eventually, either an error is detected, in which
case (if no error recovery is possible) yyparse returns the value 1, or the lexical analyzer returns
the endmarker token and the parser accepts. In this case, yyparse returns the value 0.

The user must provide a certain amount of environment for this parser in order to obtain
a working program. For example, as with every C program, a program called maw must be
defined, that eventually calls yyparse. In addition, a routine called yyerror prints a message
when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the ini-
tial effort of using Yacc, a library has been provided with default versions of matn and yyerror.
The name of this library is system dependent; on many systems the library is accessed by a — ly
argument to the loader. To show the triviality of these default programs, the source is given
below:

main() {
return( yyparse() );

}

and

# include <stdio.h>

yyerror(s) char *s; {
fprintf( stderr, "%\n”, s );

The argument to yyerror is a string containing an error message, usually the string ‘‘syntax
error’’. The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the lookahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the matn program is probably supplied by the user (to read arguments, etc.) the Yacc library is
useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value,
the parser will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ-
ment, it may be possible to set this variable by using a debugging system.

(9050) -17-



Programmer3s Guide Yacc

9: Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

Input Style
It is difficult to provide rules with substantial actions and still have a readable specification
file. The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names. This
rule comes under the heading of ‘‘knowing who to blame when things go wrong.’’

b. Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text
of this paper (where space permits). The user must make up his own mind about these stylistic

questions; the central problem, however, is to make the rules visible through the morass of
action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called ‘‘left recursive’’ grammar
rules: rules of the form

name name rest_of_rule ;
These rules frequently arise when writing specifications of sequences and lists:

list : item
| list % item

and
seq : item .
| seq item
In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.
‘With right recursive rules, such as
seq : item
| item seq
the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.

More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so,
consider writing the sequence specification with an empty rule:
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seq : /¥ empty */
i seq item
Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to
decide which empty sequence it has seen, when it hasn’t seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings. Or names might be entered into a
symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declara-
tions, followed by O or more statements. Consider:

%({
%}

.. other declarations ...

int dflag;

%%
prog : decls stats
decls /* empty */
' { dflag = 1; }
| decls declaration
stats  : /* empty */

{ dflag = 0; }
| stats statement

. other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading declarations, ezcept for the
first token in the first statement. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of ‘‘backdoor’’ approach can be elaborated to a noxious degree. Nevertheless,
it represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit the user to use words like ‘‘if’’, which are normally
reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework
of Yacc; it is difficult to pass information to the lexical analyzer telling it ‘‘this instance of ‘if’ is
a keyword, and that instance is a variable’’. The user can make a stab at it, using the mechan-
ism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better
that the keywords be reserved; that is, be forbidden for use as variable names. There are
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powerful stylistic reasons for preferring this, anyway.

Appendix A: A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk
calculator has 26 registers, iabeled ‘‘a’’ through “‘z’’, and accepts arithmetic expressions made
up of the operators +, — , ¥, /, % (mod operator), & (bitwise and), | (bitwise or), and assign-
ment. If an expression at the top level is an assignment, the value is not printed; otherwise it
is. As in C, an integer that begins with O (zero) is assumed to be octal; otherwise, it is
assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of show-
ing how precedences and ambiguities are used, and demonstrating simple error recovery. The
major oversimplifications are that the lexical analysis phase is much simpler than for most appli-
cations, and the output is produced immediately, line by line. Note the way that decimal and

octal integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%{
# include <stdio.h>
# include <ctype.h>

int regs[26];
int base;

%}
Ostart list
%token DIGIT LETTER

%eft 1°

Qeft &~

%eft + * = °

%deft *° °/* g’ :

2Zdeft UMINUS /* supplies precedence for unary minus */

%% /* beginning of rules section */

list : /* empty */
| list stat An~
| list error An~

{ yyerrok; }

stat : expr
{ printf( "%d\n”, $1); }
LETTER =" expr
{ regs($1) = $3; }

expr : 1" expr )~
{ $¢ = $2; }
expr ~ ° expr

{ $$ — $1 + $3; )
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| expr — ° expr

{ $$ = $1 - $3; }
| expr *° expr

{ $$ = $1 * $3; }
| expr °/° expr

{ $$ = $1 / $3; }
| expr 95" expr ‘

{ $$ = $1 % $3; }
| expr ‘&  expr

{ $$ = $1 & $3; }
| expr | expr

{ $8 = $1 | $3; }

|  “ expr %prec UMINUS
{ $$ = - $2; }
| LETTER
{ $$ = ress($1}; }
| number
number: DIGIT

{ $$ —$1; base = ($1==0) ? 8 : 10; }
| number DIGIT
{ $$ = base *$1 + $2; }

%% /* start of programs */

yylex() { /* lexical analysis routine */
/* returns LETTER for a lower case letter, yylval = 0 through 25 */
/* return DIGIT for a digit, yylval = 0 through 9 */
/* all other characters are returned immediately */

int c;
while( (c=getchar()) == *°) {/* skip blanks */ }
/* ¢ is now nonblank */
if( islower( ¢ ) ) {
yylval = ¢ - 4%

return ( LETTER );

if( isdigit{ ¢ ) ) {

yylval = ¢ - 0%
return( DIGIT );
}

return( ¢ );

}
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Appendix B: Yace Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Con-
text dependencies, etc., are not considered. Ironically, the Yacc input specification language is
most naturally specified as an LR(2) grammar; the sticky part comes when an identifier is seen
in a rule, immediately following an action. If this identifier is followed by a colon, it is the start
of the next rule; otherwise it is a continuation of the current rule, which just happens to have
an action embedded in it. As implemented, the lexical analyzer looks ahead after seeing an
identifier, and decide whether the next token (skipping blanks, newlines, comments, etc.) is a
colon. If so, it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER.

Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of
C_IDENTIFIERS.

/* grammar for the input to Yacc */

/* basic entities */

%token IDENTIFIER /* includes identifiers and literals */
%token C_IDENTIFIER /* identifier (but not literal) followed by colon */
%token NUMBER /¥ [o-9]+ */

/* reserved words: %%ype ==> TYPE, %eft => LEFT, etc. */
4oken LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION
%oken MARK /* the 9% mark */

%oken LCURL /* the %{ mark */ -
%woken RCURL /* the %} mark */

/* ascii character literals stand for themselves */

%start  spec

%%
spec : defs MARK rules tail
tail : MARK { In this action, eat up the rest of the file }
| /* empty: the second MARK is optional */
defs : /* empty */
| defs def
def : START IDENTIFIER
| UNION { Copy union definition to oulput }
| LCURL { Copy C code to output file } RCURL
| ndefs rword tag nlist
rword : TOKEN
| LEFT
| RIGHT
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tag

nlist

nmno

rules

rule

rbody

act

prec

. m———

NONASSOC
TYPE

/* empty: union tag is optional */
‘< IDENTIFIER >~

nmno

nlist nmno

nlist

..

»

nmno

IDENTIFIER
IDENTIFIER

section */

NUMBER

/* NOTE: literal illegal with %aype */
/* NOTE: illegal with Z&ype */

C_IDENTIFIER rbody prec
rules rule

C_IDENTIFIER rbody prec
’|” rbody prec

/* empty */
rbody IDENTIFIER
rbody act

{" { Copy action, translate $$, etc. } *}°

/* empty */
PREC IDENTIFIER
PREC IDENTIFIER act

prec

s -
K4

(9050)
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Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features dis-
cussed in Section 10. The desk calculator example in Appendix A is modified to provide a desk
calculator that does floating point interval arithmetic. The calculator understands floating point
constants, the arithmetic operations +, — , * /, unary — , and = (assignment), and has 26
floating point variables, ‘“a’’ through ‘‘z’’. Moreover, it also understands intervals, written

(x,v¥)

where z is less than or equal to y. There are 26 interval valued variables ‘A’ through ““Z”’
that may also be used. The usage is similar to that in Appendix A; assignments return no
value, and print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double’s.
This structure is given a type name, INTERVAL, by using typedef. The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari-
able values). Notice that this entire strategy depends strongly on being able to assign structures
and unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an
interval containing 0, and an interval presented in the wrong order. In effect, the error
recovery mechanism of Yacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate
expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval value. This causes a large number of conflicts when the grammar is run

through Yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at
the two input lines: -

25+ (35— 4.)

and .
25+ (385,4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the ‘“,”’ is read; by this time, 2.5 is finished, and the parser cannot
go back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there
were many kinds of expression types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming language environment to keep
the type information as part of the value, and not as part of the grammar. o

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating point constants. The C library routine etof performs the actual conversion from a char-
acter string to a double precision value. If the lexical analyzer detects an error, it responds by

returning a token that is illegal in the grammar, provoking a syntax error in the parser, and
thence error recovery.
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%

# include <stdio.h>
# include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;
INTERVAL vmul(), vdiv();

double atof();

double dreg| 26 ];
INTERVAL vreg[ 26 ];

%}

%start lines

%union
int ival;
double dval;
INTERVAL vval;
%oken <ival> DREG VREG /* indices into dreg, vreg arrays */
%token <dval> CONST /* floating point constant */
%type <dval> dexp /* expression */
%%type <vval> vexp /* interval expression */

/* precedence information about the operators */

%eft  +° =~ °

eftt *° 7/~
%eft UMINUS /* precedence for unary minus ¥/
%%
lines /* empty */
| lines line
line : dexp An’
{ printf( ~%15.8f\n”, $1 ); }
| vexp An’
{ printf( "(%15.8f , %15.8f )\n”, $1.lo, $1.hi ); }

| DREG =" dexp An-’

{ dreg[$1] = $3; }
| VREG =" vexp An~
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{ vreg[$1] = $3; }
error \n~
{ yyerrok; }

dexp CONST
| DREG
{ $$ = dreg($1]; }
| dexp “ ° dexp
{ $8 = $1 + $3; }
| dexp =~ ° dexp
{ $6 = $1 - $3; }
| dexp * dexp :
{ $$ = $1 * $3; }
| dexp 7/ dexp

\ $¢ = $1 / $3; }
I ~ * dexp %prec UMINUS
{ $$ = - $2; }

| 1~ dexp )~
{ $$ = $2; }

vexp dexp
{ $$.hi = $$.10 = $1; }
1° dexp 5° dexp )~

{
$$.10 = $2;
$$.hi = $4;

if( $$1o0 > $8$.hi ){
printf( "interval out of order\n” );
YYERROR;

[S—

| VREG

$$ = vreg[$1); }

| vexp =+ ° vexp

{ $$.hi = $1.hi + $3.hi;
$$10 = $110 + $310; }
| dexp “+ ° vexp
{ $$.hi = $1 + $3.hj;
$$1o = $1 + $31o; }
| vexp ~ ’ vexp
{ $$.ni = $1.hi - $3.10;
$$Jo = $110 - $3.ni; }
| dexp “~ ° vexp
{ $$hi = $1 - $3.Io;
$$Jo = $1 - $3.ni; }

| vexp *° vexp
{ $$ = vmul( $1.0, $1.hi, $3 ); }
| dexp ** vexp
{ $$ = vmul( $1, $1, $3 ); }
| vexp 7/’ vexp
{ if( dcheck( $3 ) ) YYERROR;
$$ = vdiv( $1lo, $1.hi, $3 ); }
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i dexp 7/° vexp

{ if( dcheck( $3 ) ) YYERROR;
$$ = vaiv( $1, $1, $3 ); }
| ~ ‘ vexp %prec UMINUS
{ $$.hi = - $2.0; $%10 = - $2.hi; }
| 1" vexp )°
$¢ = $2; }
%%
# define BSZ 50 /* buffer size for floating point numbers */
/* lexical analysis */
yylex() {
register c;
while( (c=getchar()) == "~ ){ /* skip over blanks */ }

if( isupper( ¢ ) ){
yylvaliival = ¢ - A%
return( VREG );

if( islower( ¢ ) ){
yylvaliival = ¢ — 2%
return( DREG );

}

if( isdigit{ ¢ ) || e==""){
/* gobble up digits, points, exponents */

char buf[BSZ+ 1], *cp = buf;
int dot = 0, exp = O;

for( ; (cp— buf) <BSZ ; + + cp,c=getchar() ){

p = ¢;

if( isdigit{ ¢ ) ) continue;

if( ¢ == 1" ){
if( dot++ || exp ) return( -°); /* will cause syntax error */
continue;
}

if( ¢ == ¢ ){
if( exp++ ) return( e’ ); /* will cause syntax error */
continue;

}

/* end of number */
break;

*p = \o:
if( (cp— buf) >= BSZ ) printf( “constant too long: truncated\n” );
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else ungete( ¢, stdin ); /¥ push back last char read */

yylval.dval = atof( buf );
return( CONST );

}

return{ ¢ );

}

INTERVAL hilo( a, b, ¢, d ) double a, b, ¢, d; {

/* returns the smallest interval containing a, b, ¢, and d */
/* used by *, / routines */ :
INTERVAL v;

ift a>b ) { vhi = a; v.ilo = b; }
b

else { vhi = b; vilo = a; }

if( e>d ) {
if( ¢>v.hi ) v.hi = ¢
if( d<v.lo ) v.do = d;
}

else {
if( d>v.hi ) vihi = q;
if( c<v.lo ) vilo = ¢;
}

return( v );

}

INTERVAL vmul( a, b, v ) double a, b; INTERVAL v; {

return( hilo( a*v.hi, a*v.lo, b*v.hi, b*v.lo ) );

}

dcheck( v ) INTERVAL v; {

if( v.hi >= 0. && vlo <= 0. ){
printf( "divisor interval contains 0.\n” );
return( 1 );

}

return( 0 );

INTERVAL vdiv( a, b, v ) double a, b; INTERVAL v; {

-28-

return( hilo( a/v.hi, a/v.o, b/v.hi, b/v.lo ) );

}

(9050)

Yace



Programmers Guide Yacc

Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical con-

tinuity, but, for various reasons, are not encouraged.

1.
2.

Literals may also be delimited by double quotes *”’.

Literals may be more than one character long. If all the characters are alphabetic,
numeric, or _, the type number of the literal is defined, just as if the literal did not have
the quotes around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

Most places where % is legal, backslash ‘\’* may be used. In particular, \\ is the same as
%%, \left the same as Zdeft, etc.

There are a number of other synonyms:
%< is the same as %left
%> is the same as %right
%binary and 942 are the same as 9monassoc

%20 and %term are the same as %token
%= is the same as %prec

Actions may also have the form

—{...}

and the curly braces can be dropped if the action is a single C statement.

C code between %{ and %} used to be permitted at the head of the rules section, as well
as in the declaration section.
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This document is based on a paper by S.I. Feldman and P.J. Weinberger of Bell Laboratories, and a
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RUNNING THE 77 COMPILER

£77(1) is a general purpose command for compiling and loading FORTRAN and FORTRAN-related
files into an executable module. Based on the suffix of the input files, f77(1) will translate EFL com-
piler or Ratfor preprocessor source files into FORTRAN, or invoke the C compiler to translate C

source files, or the AS(1) assembler to translate assembler source files. Object files will be link-
edited.

USAGE

To run the compiler:
f 77 flags file . ..
The following file name suffixes are understood:

.f FORTRAN source file
.F FORTRAN source file

.e EFL source file

.r Ratfor source file

.C C source file

.8 Assembler source file

.0 Object file
Arguments whose names end with .f are taken to be FORTRAN 77 source programs; they are com-
piled, and each object program is left on the file in the current directory whose name is that of the

source with .o substituted for .f.

Arguments whose names end with .F are also taken to be FORTRAN 77 source programs; these are
first processed by the C preprocessor before being compiled by 177.

Arguments whose names end with .r or .e are taken to be Ratfor or EFL source programs, respec-
tively; these are first transformed by the appropriate preprocessor, then compiled by 77.

Arguments whose names end with .r or .e are taken to be Ratfor or EFL source programs, respec-
tively; these are first transformed by the appropriate preprocessor, then compiled by £77.

In the same way, arguments whose names end with .c or .s are taken to be C or assembly source
programs and are compiled or assembled, producing a .o flle.

(9050) } -1-



Programmers Guide 77

For a description of the f77 compiler options, see the f77(1) page in
the ROS Reference Manual.

LANGUAGE EXTENSIQNS

This compiler has several more features than the FORTRAN 77 American National Standard. Some
enhancements are to the language, and others allow easier communication with C procedures or per-
mit compilation of old (1966 Standard) programs.

Double Camplex Data Type

The new type double complex is added. each datum is represented by a pair of double precision
real variables. A double complex version of every compl ex built-in function is provided.

Internal Files

The FORTRAN 77 American National Standard introduces ‘‘internal files’’ (memory arrays), but res-

tricts their use to formatted sequential 1/O statements. This I/O system also permits internal files to
be used in formatted direct reads and writes.

Implicit Undefined Statement

FORTRAN 66 has a rule that the type of a variable that does not appear in a type statement is
integer if its first letter is 1, j, k, I, mor n, and real otherwise. FORTRAN 77 has an

implicit statement for overriding this rule. An additional type, undefined, is permitted. The
statement

implicit undefined(a-z)
turns off the automatic data typing mechanism, and the compiler will issue a diagnostic for each vari-
able that is used but does not appear in a type statement. Specifying the —u compiler flag is
equivalent to beginning each procedure with this statement.

Recursion

Procedu_res may call themselves, directly or through a chain of other procedures.

Automtic Storage

Two new keywords are static and autamatic. These keywords may appear as ‘‘types’’ in type
statements and in implicit statements. Local variables are static by default; there is exactly one
copy of the datum, and its value is retained between calls. There is one copy of each variable
declared automatic for each invocation of the procedure. Automatic variables may not appear in

equivalence, data, or save statements. Generally, recursive subroutines should use
automatic local variables.

Variable Length Input Lines

The Standard expects input to the compiler to be in 72-column format: except in comment lines, the
first five characters are the statement number,' the next is the continuation character, and the next 66
are the body of the line. (If there are fewer than 72 characters on a line, the compiler pads it with
blanks; characters after the seventy-second are ignored.)

To make it easier to type FORTRAN programs, this compiler also accepts input in variable length
lines. An ampersand ‘‘&’’ in the first position of a line indicates a continuation line; the remaining
characters form the body of the line. A tab character in one of the first six positions of a line signals
the end of the statement number and corntinuation part of the line; the remaining characters form the
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body of the line. A tab elsewhere on the line is treated as another kind of blank by the compiler.

In the Standard, there are only 26 letters — FORTRAN is a one-case language. Consistent with ordi-
nary UNIX system usage, this compiler expects lower case input. By default, the compiler converts all
upper case characters to lower case except those inside character constants. However, if the —U com-
piler flag is specified, upper case letters are not transformed. In this mode, it is possible to specify
external names with upper case letters in them, and to have distinct variables differing only in case.
Regardless of the setting of the flag, keywords will only be recognized in lower case.

Include Statement

The statement

include ’stuff’
is replaced by the contents of the file stuff. include statements may be nested to a reasonable
depth, currently ten.

Binary Initialization Constants

A logical, real or integer variable may be initialized in a data statement by a binary con-
stant, denoted by a letter followed by a quoted string. If the letter is b, the string is binary, and only
zeroes and ones are permitted. If the letter is o, the string is octal, with digits 0- 7. If the letter is
g or x, the string is hexadecimal, with digits 0- 9, a- f. Thus, the statements

integer a(3)

data a / b'1010', o'12', z'a’ /
initialize all three elements of a to ten.

Character Strings

For compatibility with C usage, the following backslash escapes are recognized:

\n newline

\t tab

\b backspace

\f form feed

\oO null

\/ apostrophe (does not terminate a string)

quotation mark (does not terminate a string)

\\ \

\z z, where z is any other character

FORTRAN 77 only has one quoting character, the apostrophe. This compiler and I/O system recog-
nize both the apostrophe ‘“ ! *’ and the double-quote *‘ ” . If a string begins with one variety of
quote mark, the other may be embedded within it without using the repeated quote or backslash
escapes.

Every unequivalenced scalar local character variable and every character string constant is aligned on
an integer word boundary. Each character string constant appearing outside a data statement is
followed by a null character to ease communication with C routines.
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Hollerith

FORTRAN 77 does not have the old Hollerith ‘‘nh’’ notation, though the new Standard recommends
implementing the old Hollerith feature in order to improve compatibility with old programs. In this
compiler, Hollerith data may be used in place of character string constants, and may also be used to
initialize non-character variables in data statements.

Equivalence Statements

This compiler permits single subscripts in equival ence statements, under the interpretation that

all missing subscripts are equal to 1. A warning message is printed for each such incomplete sub-
script.

One-Trip DO Loops

The FORTRAN 77 Standard requires that the range of a do lobp not be performed if the initial value
is already past the limit value, as in

do 10 i =2, 1
The 1966 Standard stated that the effect of such a statement was undefined, but it was common prac-
tice that the range of a do loop would be performed at least once. In order to accommodate old pro-
grams, though they were in violation of the 1966 Standard, the — onetrip compiler flag causes non-
standard loops to be generated. :

Camms in Fornatted Input

The I/O system attempts to be more lenient than the Standard when it seems worthwhile. When
doing a formatted read of non-character variables, commas may be used as value separators in the

input record, overriding the field lengths given in the format statement. Thus, the format
(i10, f20.10, i4) :

will read the record
-345,.05e- 3,12

correctly.

Short Integers

integer*2 is a declaration of a 2-byte (1 halfword) integer. integer*4 (which is the default) is
a declaration of a 4-byte (word) integer. (Ordinary integers follow the FORTRAN rules about occu-
pying the same space as a REAL variable; they are assumed to be of C type “long int” ; half-
word integers are of C type ”“short int” ) An expression involving only objects of type
integer*2 is of that type. Generic functions return short or long integers depending on the actual
types of their arguments. If a procedure is compiled using the — 12 flag, all small integer constants
will be of type integer*2. If the precision of an integer-valued intrinsic function is not deter-
mined by the generic function rules, one will be chosen that returns the prevailing length
(integer*2 when the — 12 command flag is in effect). When the — 12 option is in effect, all quan-
tities of type logical will be short. Note that these short integer and logical quantities do not obey
the standard rules for storage association.
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Additional Intrinsic Functions
This compiler supports all of the intrinsic functions specified in the FORTRAN 77 Standard.

All FORTRAN functions are are documented behind the F77 Functions tab of
this volume..

F77 COMPILER EXCEPTIONS TO THE STANDARD

Double Precision Aligmment

The FORTRAN Standards (both 1966 and 1977) permit common or equivalence statements to

force a double precision quantity onto an odd word boundary, as in the following example:
real a(4)

double precision b,c

equivalence (a(1),b), (a(4),c)
The Ridge 32 requires that double precision quantities be on double word boundaries; other machines
run inefficiently if this alignment rule is not observed. It is possible to tell which equivalenced and
common variables suffer from a forced odd alignment, but every double precision argument would
have to be assumed on a bad boundary. To load such a quantity on the Ridge, it would be necessary
to use separate operations to move the upper and lower halves into the halves of an aligned tem-
porary, then to load that double precision temporary; the reverse would be needed to store a result.
We have chosen to require that all double precision real and complex quantities fall on even word
boundaries, and to issue a diagnostic if the source code demands a violation of the rule. N

Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of that pro-
cedure must be declared in an external statement. A warning is printed if a dummy procedure is
not declared external . Code is correct if there are no character arguments.

T and TL Formats

The implementation of the t (absolute tab) and t1 (leftward tab) format codes is defective. These
codes allow rereading or rewriting part of the record which has already been processed. The imple-
mentation uses seeks, so if the unit is not one which allows seeks, such as a terminal, the program is
in error. A benefit of the implementation chosen is that there is no upper limit on the length of a

record, nor is it necessary to pre-declare any record lengths except where specifically required by
FORTRAN or the operating system.

INTER-PROCEDURE INIERFACE

To be able to write C procedures that call or are called by FORTRAN procedures, it is necessary to

know the conventions for procedure names, data representation, return values, and argument lists
that the compiled code obeys.
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Procedure Names

On this system, the name of a common block or a FORTRAN procedure has an underscore prefix and
suffix added to it by the compiler to distinguish it from a C procedure or external variable with the
same user-assigned name (example: _name_ ). FORTRAN library procedure names have embedded
underscores to avoid clashes with user-assigned subroutine names.

Data Representations

The following is a table of corresponding FORTRAN and C declarations:

FORTRAN C language

integer*2 x : short int x;

integer x long int x;

logical x long int x;

real x float x;

double precision x double x;

complex x struct { float r, i; }x;'
double complex x struct { double dr, di; } x;
character*6 x char x[6];

(By the rules of FORTRAN, integer, logical, and real data occupy the same amount of
memory, except with the — i 2 option which makes integers and logicals into short (2-byte) types.

Return Values

A function of type integer, logical, real, or double precision declared as a C func-
tion returns the corresponding type. A complex or double complex function is equivalent to a
C routine with an additional initial argument that points to the place where the return value is to be
stored. Thus,

complex function f( . . . )
is equivalent to :

f_(temp, . . .)

struct { float r, i; } *temnp;
A character-valued function is equivalent to a C routine with two extra initial arguments: a data
address and a length. Thus,

character*15 function g( . . . )
is equivalent to

g_(result, length, . . .)

char *result;

int length;
and could be invoked in C by

char chars{15];

g_(chars, 15, . . . );
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Alternate Returns and Computed Gotos

The following program illustrates alternate return labels.
call nret(A, *10, *20, *30)

code
10 code
20 code
30 code
stop
end

subroutine nret (A, #, *, )

code

return 1

code

return 2

code

return 3

return

end
In the subroutine, a numbered return is executed. Its number is mapped to the dummy with its
ordinal value in the parameter list, and that parameter is used as a goto label in the calling program.
If return 2 were executed in nret, processing would continue at label 20 in the calling program.

A computed goto causes branching to the label in the ordinal position that is equal to an integer
value:

goto (12, 168, 19), K
goes to 12, 16, or 19 if K equals 1, 2, or 3, respectively.

Actually, subroutines are invoked as if they were integer-valued functions whose valuc specifies
which alternate return to use. Alternate return arguments (statement labels) are not passed to the
function, but are used to do an indexed branch in the calling procedure. (If the subroutine has no
entry points with alternate return arguments, the returned value is undefined.) In other words, the
statement

call nret (A, *10, *20, *30)
is treated exactly as if it were the computed goto

goto (10, 20, 30), nret(A)
(Both statements cause a camputed goto based on the integer value returned by the function.)

Argument Lists

All FORTRAN arguments are passed by address. In addition, for every argument that is of type char-
acter or that is a dummy procedure, an argument giving the length of the value is passed. (The string
lengths are int quantities passed by value.) The order of arguments is then:

Extra argurents for complex and character functions

Address for each datum or function

A long int for each character or procedure argument
Thus, the call in

external f

character s

integer b(3)

call sam(f, b(2), s)
is equivalent to that in

int ();

char s[7];

long int b[3];
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sam_(f, &b[1], s, OL, 7L);
Note that the first element of a C array always has subscript zero, but FORTRAN arrays begin at 1 by
default. FORTRAN arrays are stored in column-major order, C arrays are stored in row-major order.
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F77 RUNTIME ENVIRONMVENT
Code and Data Segments

The separate data and code segments are arranged as follows:

FFFFFFFF |-« ccccccmmama e ccacaaaos | /lib/ert0.0, which is
| | linked at the beginning
FFFFFO000 | argurent page | of every {77 program, gets
Jemommeme e e e et | the arguments and en-
FFFFE00O | environment page | viromment from the user
S | moni tor process, builds
FFFFDOOO |user monitor coam. page | the argument and envi-
P L LT L L T T repipupRpupRppp | ronment pointers,
| 0 | stacks the first three
| = e e e e e o e e e o o program paramcters (env,
+-->| environment pointers | argv, and argc), builds
| T T T pepupep | the initial stack frame,
| | 0 | and initializes R14 and
| | = = e e e e e e e o R15. /lib/crt0.0 also
A= argument pointers ] moves the data initial-
| | |omeemmee e e caeaaa | izers from the code seg-
| +---1 env ment into the data seg-

ment and clears the

Heeen- | argv static unitialized data
e e e e e e mee .. area in the data seg-
argce ment. /[lib/mert0.o is

when profiling.
initial

|
|
|
|
|
R T T N . the version of crt0 used
|
|
stack frame |

|

R15 ODE SEQVENT
[=mmmmmmm e | high|-cccorommmmmeaaan ot |
| |  memory| |
| | | initialized data |
| | | |
| expansion area | [eommeemcmcceeeaa ot |
| | Ri4 | l
| | I |
| | | code |
e — | | |
| user-allocable space | ] |
| (via SBRK and BRK | | |
| system calls) | | |
[ | | |
| static | R L L L L L |
| uninitialized | | |
| data | - code |
R Lt L LT T T ey | | file |
| static | | header |
| initialized | | [see a.out(4)] ]
| data | |
00000000 |- -~ - == - e e e e e eee e | 00000000 |- nnnnmceccancaaaam- |
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Use of General Registers

RO through R5 - scratch registers
R6 through R13 - register variables
R14 - top-of-stack pointer

R15 - current frame pointer

Stack Frames

With each procedure call, the current runtime environment is recorded and pushe’d onto the data
stack in a structure called the stack frame. The stack frame is arranged as follows:

Parameters are aligned on

| |

| e

| parm3 | R15 + 40 8-byte boundaries.
| parm2 | R15 + 32
| parml | R15 + 24
N |

| return structure length | R15 + 20
| return structure address | R15 + 186
|#of parms passed to procdr| R15 + 12 (if -g option is used)
| old register 15 | R15 + 8
| {unused) | R15 + 4
| return address | R15
e |

| R8 | Ri5 - 4
| register R7 |R15 - 8
| save R8 | R15 -12
| area R | R15 -18
| R10 | R15 -20
| R11 | R15 -24
| R12 | R15 -28
l R13 | R15 -32
et |

| varl | R15 -38
| var2 | R15 -40
| vard | R15 -44
| vard | ...

| var5 | ...

| |

l |
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C passes parameters by value, so a C parameter looks like this:

the 8-byte C parm

 EETTTTEPEER + R ETETEPE +
hi | I | I | hi | | I I |
T ST P & LT ST S
| | | |GHAR|low | INTEGER |low
e + T LLTT TP +
T T E + LT h T T +
hi | | I | | | | I I I
LT T T S 4+---DOUBLE ---+
I | | SHCRT |low I I I | |
T EETT + dremmmm e +

FORTRAN always passes parameters by address, so a FORTRAN parameter always looks like:

the 8-byte f77 parm

oo +
hi | | | | |

e S S

| address |1ow

+eonnne- weseeeeseeae- +
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A stack of environments, therefore, has the form:

DATA SEQMENT

FFFFFFFF |- ------ meeeemesmcecmemaaao | (high memory)

| |
FFFFF000 | argument page |

[ |
FFFFE000 | environment page |

[ |
FFFFDOOO | user monitor page

: :

| |

| parameters |

| return structure length |
| return structure address |
| (used for debugger) |
| old register 15 |
| (unused) |
| return address |

locals and temporaries

parameters

| return structure length |
| return structure address |
! (used for debugger) |
| old register 15 |
| (unused) |
| return address |

locals and temporaries

parameters

| return structure length |
| return structure address |
| (used for debugger) |
+-- | old register 15 |
| (unused) |
| return address |

locals and temporaries |
|
n

(1ow menory)

-12- (9050)



Programmers Guide 77

Example of calling C from FORTRAN
and FORTRAN from C

Here is a FORTRAN program (named f.f) that calls a C subroutine. The C subroutine calls a
subroutine in the FORTRAN program. The variable ”i” starts with the value 10, and gets 5 subtracted
from it and 3 added to it.

program FandC
i=10

print *,’FandC: i= ’,i
call csub5(i)

end

subroutine fadd3(i)
¢ Fortran routine to ADD 3

i=i+ 3

print *,’fadd3: i= ’,i
return

end

Here is the C program (named c.c) that calls and is called by the 77 program f.f . Notice that {77

routines must have a ’_’ character appended to them in a C program, and that f77 passes variables by
address.

csub5_(x)

/* C program that SUBtracts 5 */

int *x;

{

*X = ¥X - 5;

printf(” csub5: i= ”);
printf("%d\n”, *x);
fadd3_(x);

Now the programs are compiled with the f77(1) command. By default, the executable output file is
named a.out .
$ 177 f.fc.c
$ a.out
FandC: i= 10

csubb: i= 5
fadd3: i= 8

(9050) -13-



Programmer?s Guide £77

FORTRAN FILE I/O

The 77 I/O Library implements ANSI 77 FORTRAN standard input and output with a few minor
exceptions. Where the standard is vague, we have tried to provide flexibility within the constraints of
the UNIX operating system.

The £77 I/O library, 1ibI77.a, includes routines to perform all of the standard types of FORTRAN
input and output. Several enhancements and extensions to FORTRAN I/O have been added. The
£77 library routines use the C stdio library routines to provide efficient buffering for file I/O.

FORTRANI/0O

The requirements of the Standard impose significant overhead on programs that do large amounts of
1/0. Formatted I/O can be very ‘‘expensive’’ while direct access binary I/O is usually very efficient.
Because of the complexity of FORTRAN I/0, some general concepts deserve clarification.

Types of I/O

There are three forms of I/O: formatted, unformatted, and list-directed. List-directed is related to
formatted but does not obey all the rules for formatted I/O. There are two modes of access to
external and internal files: direct and sequential. The definition of a logical record depends upon the
combination of I/O form and mode specified by the FORTRAN 1/0 statement.

Direct access

A logical record in a direct access external file is a string of bytes of a length specified when the file is
opened. Read and write statements must not specify logical records longer than the original record
size definition. Shorter logical records are allowed. Unformatted direct writes leave the unfilled part
of the record undefined. Formatted direct writes cause the unfilled record to be padded with blanks.

Sequential access

Logical records in sequentially accessed external files may be of arbitrary and variable length.
Logical record length for unformatted sequential files is determined by the size of items in the iolist.
The requirements of this form of I/O cause the external physical record size to be somewhat larger
than the logical record size. For formatted write statements, logical record length is determined by
the format statement interacting with the iolist at execution time. The ‘‘newline’’ character is the
logical record delimiter. Formatted sequential access causes one or more logical records ending with
‘‘newline’” characters to be read or written.

List-directed I/O
Logical record length for list-directed I/0 is relatively meaningless. On output, the record length is

dependent on the magnitude of the data items. On input, the record length is determined by the data
types and the file contents.
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Internal I/O

The logical record length for an internal read or write is the length of the character variable or array
element. Thus a simple character variable is a single logical record. A character variable array is
similar to a fixed length direct access file, and obeys the same rules. Unformatted I/O is not allowed
on “internal” files.

1/0 execution

Note that each execution of a FORTRAN unformatted 1/O statement causes a single logical record to
be read or written. Each execution of a FORTRAN formatted 1/O statement causes one or more
logical records to be read or written.

A slash, ““/’’, will terminate assignment of values to the input list during list-directed input and the
remainder of the current input line is skipped. The standard is rather vague on this point but seems
to require that a new external logical record be found at the start of any formatted input. Therefore
data following the slash is ignored and may be used to comment the data file.

"Direct access list-directed” I/O is not allowed. "Unformatted internal” 1/0 is not allowed. Both the
above will be caught by the compiler. All other flavors of I/O are allowed, although some are not part
~ of the Standard. '

Any error detected during I/O processing will cause the program to abort unless alternative action has
been provided specifically in the program. Any I/O statement may include an err=— clause (and
iostat— clause) to specify an alternative branch to be taken on errors (and return the specific error
code). Read statements may include end= to branch on end-of-file. File position and the value of
1/0 list items is undefined following an error.

Implementation details

Some details of the current implementation may be useful in understanding constraints on
FORTRAN 1/0. :

Number of logical units

A program may reference logical units in the range 0 — 999, but only 20 may be open at one time.

Standard logical units

By default, logical units 0, 5, and 6 are opened to ‘‘stderr’’, ‘‘stdin’’, and ‘‘stdout’’ respectively.
However they can be re-defined with an open statement. To preserve error reporting, it is an error to
close logical unit 0 although it may be reopened to another file.

If you want to open the default file name for any preconnected logical unit, remember to close the
unit first. Redefining the standard units may impair normal console I/O. An alternative is to use
shell re-direction to externally re-define the above units. To re-define default blank control or format

of the standard input or output files, use the open statement specifying the unit number and no file
name.

The standard units, 0, 5, and 6, are named internally ‘‘stderr’’, ‘‘stdin’’, and ‘‘stdout’’ respectively.
These are not actual file names and cannot be used for opening these units. Inquire will not return
these names and will indicate that the above units are not named unless they have been opened to
real files. The names are meant to make error reporting more meaningful.
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Vertical format control

Simple vertical format control is implemented. The logical unit must be opened for sequential access
with "form = ’print’” . Control codes ‘“0’’ and ‘‘1’’ are replaced in the output file with ‘“\n>’ and
\r respectively. The control character ‘‘+ °’ is not implemented and, like any other character in the
first position of a record written to a ‘‘print’’ file, is dropped. No vertical format control is recognized
for "direct formatted” output or "list-directed” output. .

The open statement

An open statement need not specify a file name. If it refers to a logical unit that is already open, the
blank = and form—=— specifiers may be redefined without affecting the current file position. Otherwise,
if "status = ’scratch’” is specified, a temporary file with a name of the form ‘‘tmp.FXXXXXX’’ will
be opened, and, by default, will be deleted when closed or during termination of program execution.
Any other status== specifier without an associated file name results in opening a file named ‘“fort.N*’
where N is the specified logical unit number. '

It is an error to try to open an existing file with "status = 'mew’” . It is an error to try to open a
nonexistent file with "status = "old’” . By default, "status = 'unknown’” will be assumed, and a file
will be created if necessary.

By default, files are positioned at their beginning upon opening, but see fom:(3f) for alternatives.
Existing files are never truncated on opening. Sequentially accessed external flles are truncated to the
current file position on close , backspace , or rewind only if the last access to the file was a write. An
endfile always causes such files to be truncated to the current file position.

Format interpretation

Formats are parsed at the beginning of each execution of a formatted I/O statement. Upper as well as

lower case characters are recognized in format statements and all the alphabetic arguments to the I/O
library routines.

If the external representation of a datum is too large for the field width specified, the specified field is
filled with asterisks (*). On Ew.dEe output, the exponent field will be filled with asterisks if the
exponent representation is too large. This will only happen if ‘‘e’’ is zero.

On output, a real value that is truly zero will display as ‘‘0.”’ to distinguish it from a very small non-
zero value. This occurs in F and G format conversions. This was not done for E and D since the
embedded blanks in the external datum causes problems for other input systems.

Non-destructive tabbing is implemented for both internal and external formatted 1/O. Tabbing left or
right on output does not affect previously written portions of a record. Tabbing right on output
causes unwritten portions of a record to be filled with blanks. Tabbing right off the end of an input
logical record is an error. Tabbing left beyond the beginning of an input logical record leaves the
input pointer at the beginning of the record. The format specifier T must be followed by a positive
non-zero number. If it is not, it will have a different meaning.

Tabbing left requires seek ability on the logical unit. Therefore it is not allowed in I/O to a terminal

or pipe. Likewise, nondestructive tabbing in either direction is possible only on a unit that can seek.
Otherwise tabbing right or spacing with X will write blanks on the output.
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List-directed output

In formatting list-directed output, the I/O system tries to prevent output lines longer than 80
characters. Each external datum will be separated by two spaces. List-directed output of complex
values includes an appropriate comma. List-directed output distinguishes between real and “double
precision” values and formats them differently. Output of a character string that includes ‘‘\n’’ is
interpreted reasonably by the output system.

1/0 errors

If I/O errors are not trapped by the user’s program an appropriate error message will be written to
‘“stderr’” before aborting. An error number will be printed in [ ] along with a brief error message
showing the logical unit and I/O state. Error numbers < 100 refer to ROS errors, and are described
in the introduction to chapter 2 of the ROS Programmer’s Manual. Error numbers = 100 come from
the I/O library, and are described further in the F77 I/O Error Messages section of this report. For
internal I1/O, part of the string will be printed with ‘|’ at the current position in the string. For

external I/O, part of the current record will be displayed if the error was caused during reading from a
file that can backspace.

Non-‘ANSI Standard’’ extensions

Several extensions have been added to the I/O system to provide for functions omitted or poorly
defilned in the standard. Programmers should be aware that these are non-portable.

Format specifiers

O is a data type specifier for octal numbers. 1205 is the format specification for 12 fields of
5~ character octal numbers.

B is an acceptable edit control specifier. It causes return to the default mode of blank interpretation.
This is consistent with S which returns to default sign control.

P by itself is equivalent to OP . It resets the scale factor to the default value, O.

The form of the Ew.dEe format specifier has been extended to D also. The form Ew.d.e is allowed
but is not standard. The ‘‘e’’ fleld specifies the minimum number of digits or spaces in the exponent
field on output. If the value of the exponent is too large, the exponent notation e or d will be
dropped from the output to allow one more character position. If this is still not adequate, the ‘‘e”’
field will be filled with asterisks (*). The default value for ‘‘e’’ is 2.

An additional form of tab control specification has been added. The Standard forms TRn, TLn, and
Th are supported where n is a positive non-zero number. If T or nT is specified, tabbing will be to

the next (or n-th) 8-column tab stop. Thus columns of alphanumerics can be lined up without
counting.

A format control specifier has been added to suppress the newline at the end of the last record of a
formatted sequential write. The specifier is a dollar sign ($). It is constrained by the same rules as the
colon (:). It is used typically for console prompts. For example:

write (*, "(’enter value for x: *,$)")
read (*,*) x
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Radices other than 10 can be specified for formatted integer 1/O conversion. The specifier is patterned
after P, the scale factor for floating point conversion. It remains in effect until another radix is
specified or format interpretation is complete. The specifier is defined as [n]R where 2 < 2 < 36.If n
is omitted, the default decimal radix is restored.

In conjunction with the above, a sign control specifier has been added to cause integer values to be
interpreted as unsigned during output conversion. The specifier is SU and remains in effect until
another sign control specifier is encountered, or format interpretation is complete. Radix and
‘‘unsigned’’ specifiers could be used to format a hexadecimal dump, as follows:

2000 format ( SU, 16R, 8110.8 )

Note: Unsigned integer values greater than (2**31 - 1), i.e. any signed negative value, cannot be read
by FORTRAN input routines. All internal values will be output correctly.

Print files

The Standard is ambiguous regarding the definition of a ‘‘print’’ file. Since UNIX has no default
‘“print’’ file, an additional form= specifier is now recognized in the open statement. Specifying "form
=='print’” implies formatted and enables vertical format control for that logical unit. Vertical format
control is interpreted only on sequential formatted writes to a ‘‘print’’ file.

The inquire statement will return print in the form== string variable for logical units opened as
“‘print’’ files. It will return -1 for the unit number of an unconnected file.

If a logical unit is already open, an open statement including the form= option or the blank= option
will do nothing but re-define those options. This instance of the open statement need not include the
file name, and must not include a file name if unit= refers to a standard input or output. Therefore,
to re-define the standard output as a “‘print’’ file, use:

open (unit—6, form=""print’)

Scratch files

A close statement with "status = ’keep’” may be specified for temporary files. This is the default for
all other flles. Remember to get the scratch file’s real name, using inquire , if you want to re-open it
later.

List-directed I/O

List-directed read has been modified to allow input of a string not enclosed in quotes. The string must
not start with a digit, and cannot contain a separator (, or /) or blank (space or tab). A newline will

terminate the string unless escaped with \ Any string not meeting the above restrictions must be
enclosed in quotes (” or ).

Internal list-directed I/O has been implemented. During internal list reads, bytes are consumed until
the iolist is satisfied, or the ’end-of-file’ is reached. During internal list writes, records are filled until
the iolist is satisfied. The length of an internal array element should be at least 20 bytes to avoid
logical record overfilow when writing double precision values. Internal list read was implemented to
make command line decoding easier. Internal list write should be avoided.
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Running older programs

Traditional FORTRAN environments usually assume carriage control on all logical units, usually
interpret blank spaces on input as ‘‘0’’s, and often provide attachment of global file names to logical
units at run time. There are several routines in the I/O library to provide these functions.

Traditional unit control parameters

If FORTRAN 66 carriage control features must be maintained, call the ‘o#nil(8F) routine to specify
control parameters separately.

Preattachment of logical units

The wuni routine also can be used to attach logical units to specific files at run time. It will look for
names of a user-specified form in the environment and open the corresponding logical unit for
“sequential formatted” 1/O0. Names must be of the form PREFIXnn where PREFIX is specified in
the call to toinit and nn is the logical unit to be opened. Unit numbers < 10 must include the leading
‘“0’’.

IToinit should prove adequate for most programs as written. However, it is written in FORTRAN 77
specifically so that it may serve as an example for similar user-supplied routines. A copy may be
retrieved by ‘‘ar x /usr/lib/1ibI77.a ioinit.f*’.
Magnetic tape I/0
Because the I/O library uses stdio buffering, reading or writing magnetic tapes should be done with
great caution, or avoided if possible. A set of routines has been provided to read and write arbitrary
sized buffers to or from tape directly. The buffer must be a character object. Internal I/O can be
used to fill or interpret the buffer. These routines do not use normal FORTRAN I/0 processing and
do not obey FORTRAN I/0O rules. See tapeto(3f).

F77 1/O System Exceptions to the Standard

A few exceptions to the Standard remain.

1) Vertical format control

The ‘4 ** carriage control specifier is not implemented. It would be difficult to implement it correctly
and still provide UNIX-like file I/O.

Furthermore, the carriage control implementation is asymmetrical. A file written with carriage control
interpretation cannot be read again with the same characters in column 1.

An alternative to interpreting carriage control internally is to run the output file through a
“FORTRAN output filter’’ before printing [like asa(1) and fpr(1)]. These filters recognize a broader
range of carriage control.

2) Default files

Files created by default use of rewind or endfile statements are opened for "sequential formatted”
access. There is no way to redefine such a file to allow direct or unformatted access.

3) Lower case strings
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It is not clear if the Standard requires internally generated strings to be upper case or not. As
currently written, the inquire statement will return lower case strings for any alphanumeric data.

4) Exponent representation on Ew.dEe output

If the field width for the exponent is too small, the standard allows dropping the exponent character
but only if the exponent is > 99. This system does not enforce that restriction. Further, the standard
implies that the entire field, ‘w’, should be filled with asterisks if the exponent cannot be displayed.
This system fills only the exponent field in the above case since that is more informative.

F77 1/0O System Error Messages

The following error messages are generated by the I/O library. The error numbers are returned in the
iostat— variable if the err=return is taken. Error numbers < 100 are generated by the ROS kernel.
See the introduction to chapter 2 of the ROS Programmers Manual for their description.

/* 100 */ “error in format”
See error message output for the location
of the error in the format. Can be caused
by more than 10 levels of nested (), or
an extremely long format statement.

/* 101 */ "illegal unit number”
It is illegal to close logical unit 0.
Negative unit numbers are not allowed.
The upper limit 999.

/* 102 %/ “formatted io not allowed”
The logical unit was opened for
unformatted I/0.

/* 103 */ "unformatted io not allowed”
The logical unit was opened for
formatted 1/0.

/* 104 x/ “direct io not allowed”
The logical unit was opened for sequential
access, or the logical record length was
specified as 0.

/* 105 */ “sequential io not allowed”
The logical unit was opened for direct
access 1/0.

/* 106 */ "can’t backspace file”

The file associated with the logical unit
can’t seek. May be a device or a pipe.

/* 107 */ “off beginning of record”
The format specified a left tab beyond the

beginning of an internal input record.

/* 108 */ “can’t stat file”
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/*

/*

/*

/*

/*

/*

/*
/*

/%

/*

/*

109

110

111

112

113

114

115

116

117

118

119

*/

*/

*/
*/

*/

*/

*/

The system can’t return status information
about the file. Perhaps the directory is
unreadable.

"no * after repeat count”
Repeat counts in list-directed I/O must be
followed by an * with no blank spaces.

”off end of record”

A formatted write tried to go beyond the
logical end-of-record. An unformatted read
or write will also cause this.

"truncation failed”
The truncation of an external sequential file on

’close’, ’backspace’, ‘rewind’ or ’endfile’ failed.

"incomprehensible list input”
List input has to be just right.

"out of free space”

The library dynamically creates buffers for
internal use. You ran out of memory for this.
Your program is too big!

"unit not connected”
The logical unit was not open.

"read unexpected character”

Certain format conversions can’t tolerate
non-numeric data. Logical data must be
TorF.

”blank logical input field” ‘

”’new’ file exists”
You tried to open an existing file with
"status="new’”.

”can’t find ’old’ file”
You tried to open a non-existent file
with "status="old’”.

"unknown system error”
Shouldn’t happen, but .....

“requires seek ability”

Direct access requires seek ability.
Sequential unformatted 1/0 requires seek
ability on the file due to the special

data structure required. Tabbing left

also requires seek ability.

”illegal argument”
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Certain arguments to ‘open’, etc. will be
checked for legitimacy. Often only non-
default forms are looked for.

/* 122 x/"negative repeat count”
The repeat count for list-directed input
must be a positive integer.

/* 123 */"illegal operation for unit”

An operation was requested for a device
associated with the logical unit which
was not possible. This error is returned
by the tape I/O routines if attempting to
read past end-of-tape, etc.
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APPENDIX. Differences Between Fortran 66 and Fortran 77,

The following is a very brief description of the differences between the 1966 [2] and the
1977 [1] Standard languages. We assume that the reader is familiar with Fortran 66. We do
not pretend to be complete, precise, or unbiased, but plan to describe what we feel are the most
important aspects of the new language. At present the only current information on the 1977
Standard is in publications of the X3J3 Subcommittee of the American National Standards
Institute. The following information is from the ¢‘/92”° document. This draft Standard is writ-
ten in English rather than a meta-language, but it is forbidding and legalistic. No tutorials or
textbooks are available yet.

1. Features Deleted from Fortran 66

1.1. Hollerith

All notions of *“‘Hollerith’> (nh) as data have been officially removed, although our com-
piler, like almost all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is per-
missible to jump out of the range of a do loop, then jump back into it. Extended range
has been removed in the Fortran 77 language. The restrictions are so special, and the
implementation of extended range is so unreliable in many compilers, that this change
really counts as no loss. :

2. Program Form

2.1. Blank Lines : N , »
Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements
A main program may now begin with a statement that gives that program an external
name: ‘ :
progrém work - . )
Block data procedures may also have names.
block data stuff

" There is now a rule that only one unnamed block data procedure may appear in a pro-
gram. (This rule is not enforced by our system.) The Standard does not specify the effect
of the program and block data names, but they are clearly intended to aid conventional
loaders. , ’

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have addi-
tional entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement following the entry line. All variable declarations
must precede all executable statements in the procedure. If the procedure begins with a
subroutine statement, all entry points are subroutine names. If it begins with a function
statement, each entry is a function entry point, with type determined by the type declared
for the entry name. If any entry is a character-valued function, then all entries must be.
In a function, an entry name of the same type as that where control entered must be
assigned a value. Arguments do not retain their values between calls. (The ancient trick
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of calling one entry point with a large number of arguments to cause the procedure to
“remember’’ the locations of those arguments, then invoking an entry with just a few

arguments for later calculation, is still illegal. Furthermore, the trick doesn’ t work in our

implementation, since arguments are not kept in static storage.) ~

DO Loops

~do variables and range parameters may now be of integer, real, or double precision types.

(The use of floating point do variables is very dangerous because of the possibility of
unexpected roundoff, and we strongly recommend against their use). The action of the
do statement is now defined for all values of the do parameters The statement

do10i=1u,d ;
performs max(0, [(u—0)/d]) iterations. The do variable has a predictable value when

exiting a loop: the value at the time a goto or return terminates the loop: otherwise the

_value that failed the limit test.

2.5. Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments may be noted by

. an asterisk, as in

subroutine s(a, *, b, *)

The meaning of the “‘alternate returns”’ is described in section 5.2 of the Appendix.

3. Declal_'ations

3.1. CHARACTER Data Type

3.2.

One of the biggest improvements to the language is the addition of a character-string data
type. Local and common character variables must have a length denoted by a constant
expression:

character*l7 a, b(3,4)
character*(6+3) ¢

If the length is omitted entirely, it is assumed equal to 1. A character string argument
may have a constant length, or the length may be declared to be the same as that of the
corresponding actual argument at run time by a statement like

character*(+) a

(There is an intrinsic function len that returns the actual length of a character string).
Character arrays and common blocks containing character variables must be packed: in an
array of character variables, the first character of one element must follow the last charac-

-ter .of the preceding element, without holes.

IMPLICIT Statement

The traditional implied declaration rules still hold: a varlable whose name begms with i, i
k, I, m, or n is of type integer, other variables are of type real, unless otherwise declared.
This general rule may be overridden with an implicit statement: .

implicit real(a-c,g), complex(w-z), cha:acter*(”) (s)

- declares that variables whose name begins with an a ,b, ¢, or g are real, those beginning

with w, X, y, or z are assumed complex, and so on. It is still poor practice to depend on
implicit typing, but this statement is an industry standard.
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3.3. PARAMETER Statement

It is now possible to give a constant a symbolic name, as in
parameter (x=17, y=x/3, pi=3.14159d0, s="hello’)

The type of each parameter name is governed by the same implicit and explicit rules as
for a variable. The right side of each equal sign must be a constant expression (an
expression made up of constants, operators, and already defined parameters)..

3.4. Array Declarations

Arrays may now have as many as seven dimensions. (Only three were permitted in
1966). The lower bound of each dimension may be declared to be other than 1 by using a
colon. Furthermore, an adjustable array bound may be an integer expression involving
constants, arguments, and variables in common.

real a(—5:3, 7, m:n), b(n+1:2*n)

The upper bound on the last dimension of an array argument may be denoted by an aster-
isk to indicate that the upper bound is not specified:

integer a(5, »), b(s), c(0:1, —2:»)

3.5.» SAVE Statement

A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily
retain their values between invocations of that procedure. At any instant in the execution
of a program, if a common block is declared neither in the currently executing procedure
nor in any of the procedures in the chain of callers, all of the variables in that common
block also become undefined. (The only exceptions are variables that have been defined
in a data statement and never changed). These rules permit overlay and stack implemen-
tations for the affected variables. Fortran 77 permits one to specify that certain variables
and common blocks are to retain their values between invocations. The declaration .

save a, /b/, ¢

" leaves the values of the variables a and ¢ and all of the contents of common block b

unaffected by a return. The simple declaration
save

has this effect on _all variables and common blocks in the procedure. A common block
must be saved in every procedure in which it is declared if the desired effect is to occur.

3.6. INTRINSIC Statement

All of the functions specified in the Standard are in a single category, “‘intrinsic func-
tions”, rather than being divided into ‘‘intrinsic’’ and “‘basic external’’ functions. If an
intrinsic function is to be passed to another procedure, it must be declared intrinsic.
Declaring it external (as in Fortran 66) causes a function other than the built-in one to be
passed. g '

4. Expressions

4.1.

Character Constants A
Character string constants are marked by strings surrounded by apostrophes. If an apos-
trophe is to be included in a constant, it is repeated: ;
' 'abc’ '
‘ain""t’
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There are no null (zero-length) character strings in Fortran 77. Our compiler: has two
different quotation marks, ' *” and * " . (See Section 2.9 in the main text.)

Concatenation ; o ‘
One new operator has been added, character string concatenation, marked by a double

_slash (**//°’). The result of a concatenation is the string containing the characters of the
" left operand followed by the characters of the right operand. The strings

‘ab’ // ‘cd’

‘abed’
are equal. The strings being concatenated must be of constant length in all concatenations
that are not the right sides of assignments. (The only concatenation expressions in which

a character string declared adjustable with a **(»)”’ modifier or a substring denotation
with nonconstant position values may appear are the right sides of assignments).

4.3. Character String Assmnment

The left and right sides of a character assngnment may not share storage. (The assumed
implementation of character assignment is to copy characters from the right to the left

~side.) If the left side is longer than the right, it is padded with blanks. If the left side is

shorter than the nght trailing characters are discarded.

4.4. Substrings

It is possible to extract a substrmg of a character variable or character array element, using
the colon notation:

- a(i,j) (m:n)

is the string of (n—m+1) characters beginning at the m" character of the character array
element a;. Results are undefined unless m<n. Substrings may be used on the left
sides of assignments and as procedure actual arguments.

‘ 4.5. Exponentiation

4.6.

‘It is now permissible to raise real quantities to complex powers, or complex quantities to

real or complex powers. (The principal part of the logarithm is used). Also, multiple
exponentiation is now defined:

asshrsc = g *» (b**c)

Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, it is perm:ssrble to combine
integer and complex quantities in an expression.)

Constant expressions are permitted where a constant is allowed, except in data state-
ments. (A constant expression is made up of explicit constants and parameters and the
Fortran operators, except for exponentiation to a floating-point power). An adjustable
dimension may now be an mteger expression involving constants, arguments and vari-

-ables in B common.. ‘

Subscripts may now be general integer expressions; the old cvc’ rules have been
removed. do loop bounds may- be general integer, real, or double precision expressions.

. Computed goto expressions and I/0 unit numbers may be general integer expressions.
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’ 5. Executable Statements

5.1. IF-THEN-ELSE

5.2

At last, the if-then-else branching structure has been added to Fortran It is called a
“Block If”’. A Block If begins with a statement of the form

if (...) then
and ends with an
end if
statement. Two other new statements may appear in a Block If. There may be several
else if(. . .) then
statements, followed by at most one
else

statement. If the logical expression in the Block If statement is true, the statements fol-
lowing it up to the next elseif, else, or endif are executed. Otherwise, the next elseif
statement in the group is executed. If none of the elseif conditions are true, control
passes to the statements following the else statement, if any. (The else must follow all
elseifs in a Block If. Of course, there may be Block Ifs embedded inside of other Block If
structures). A case construct may be rendered .

if (s .eq. 'ab’) then
eolse. if (s .eq. ‘cd) then
else
end if

Alternate Returns

Some of the arguments of a subroutine cail may be statement labels preceded by an aster-
isk, as in

~ call joe(j, '10, m, *2)
A return statement may have an integer expression, such as
~return k

If the entry point has n alternate return (asterisk) arguments and if 1<k < n, the return
is followed by a branch to the corresponding statement label; otherwise the usual return to
the statement following the call is executed.

6. Input/Output

6.1.

Format Variables

A format may be the value of a character expressnon (constant or otherwnse) or be stored

in a character array, as in
write(6, '(i5)") x
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6.2. END=, ERR=, and IOSTAT= Clauses
A read or write statement may contain end=, err=, and iostat= clauses, as in
write(6, 101, err=20, iostat=a(4))
read(5, 101, err=20, end=30, iostat=x)

Here 5 and 6 are the units on which the 170 is done, 101 is the statement number of the
associated format, 20 and 30 are statement numbers, and a and x are integers. If an error
occurs during I/0, control returns to the program at statement 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable
referred to in the iostat= clause is given a value when the I/0 statement finishes. (Yes,
the value is assigned to the name on the right side of the equal sign.) This value is zero if

-all went well, negative for end of file, and some positive value for errors. ‘

6.3. Formatted 1/0

6.3.1. Character Constants

Character constants in formats are copied literally to the output. Character constants can-
-not be read into.

write(6,'(i2,"” isn""t ",i1)) 7, 4

produces :
7 isn't 4

Here the format is the character constant
(12, isn"t ',i1)

and tht;, character constant

, isn't

is copied into the output.

6.3.2. Positional Editing Codes

t, tl, tr, and x codes control where the next character is in the record. trn or nx specifies
that the next character is » to the right of the current position. tln specifies that the next
character is n to the left of the current position, allowing parts of the record to be recon-
sidered. tn says that the next character is to be character number » in the record. (See
section 3.4 in the main text.) : : :

6.3.3. Colon

A colon in the format terminétés the 1/0 operation if there are no more data items in the
170 list, otherwise it has no effect. In the fragment

x='("hello", :, " there", i4)’

write(6, x) 12

write(6, x)

the first write statement prints hello there 12, while the second iny,prints hello.

6.3.4. Optional Plus Signs

- According to the Standard, each implementation has the option of putting plus signs in
front of non-negative numeric output. The sp format code may be used to make the
optional plus signs actually appear for all subsequent items while the format is active. The
ss format code guarantees that the I/0 system will not insert the optional plus signs, and
the s format code restores the default behavior of the I/0 system. (Since we never put
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out optional plus signs, ss and s codes have the same effect in our imple_mentation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks will be ignored following a bn
code in a format statement, and will be treated as zeros following a bz code in a format
statement. The default for a unit may be changed by using the open statement. (Blanks
are ignored by default.)

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required
by a format code, the output field must be filled with asterisks. (We think this should
have been an option.)

6.3.7. Iw.m

There is a new integer output code, iw.m. It is the same as iw, except that there will be at
least m digits in the output field, including, if necessary, leading zeros. The case iw.0 is
special, in that if the value bemg printed is 0, the output field is entxrely blank. iw.l is
the same as iw. ;

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning.
On output we always use e. The e and d format codes also have identical meanings. A
leading zero before the decimal point in e output without a scale factor is optional with
the implementation. (We do not print it.) There is a gw.d format code which is the same
as ew.d and fw.d on input, but which chooses f or e formats for output depending. on the
size of the number and of 4. :

6.3.9. ‘““A’” Format Code

A codes are used for character values. aw use a field width of w, while a plain a uses the
length of the character item. :

6.4. Standard Units
There are default formatted input and output units. The statement
read 10, a, b

reads from the standard unit using format statement 10. The default unit may be expli-
citly specified by an asterisk, as in

read(», 10) a,b
Similarly, the standard output units is speciﬁed by a print statement or an asterisk unit:

print 10
write(», 10)

6.5. List-Directed Formatting

List-directed I/0 is a kind of free form input for sequential 1/0. It is invoked by using an
asterisk as the format identifier, as in

read(6, *) a,b,c
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On input, values are separated by strings of blanks and possibly a comma. Values, except
for character strings, cannot contain blanks. End of record counts as a blank, except in
character strings, where it is ignored. Complex constants are given as two real constants
separated by a comma and enclosed in parentheses. A null input field, such as between
two consecutive commas, means the corresponding variable in the 1/0 list is not changed.
Values may be preceded by repetition counts,.as in

4+(3.,2.) 2+, 4+'hello’

which stands for 4 complex constants, 2 null values, and 4 string constants.

- For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes, so they cannot be read back using list-directed
input.

6.6. Direct 1/0

A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access 1/0 statements.

Direct access read and write statements have an extra argument, rec=, which gives. the
record number to be read or written.

read(2, rec=13, err=20) (a(i), i=1, 203)

reads the thirteenth record into the array a.

The size of the records must be given by an open statement (see below) Direct access
files may be connected for either formatted or unformatted 1/0.

6.7. Internal Files

Internal files are character string objects, such as variables or substrings, or arrays of type
character. In the former cases there is only a single record in the file, in the latter case
each array element is a record. The Standard includes only sequential formatted 1/0 on
internal files. (I/O is not a very precise term to use here, but internal files are dealt with
using read and write). There is no list-directed I/0 on internal files. Internal files are
used by giving the name of the character object in place of the unit number, as in

character+*80 x
read(5,"(a)") x
read(x,"(i3,i4)") nl,n2

* which reads a card image into x and then reads two integers from the front of it. A
sequential read or write always starts at the beginning of an internal file.

(We also support a compatible extension, direct I/O on internal files. This is like direct
"1/0 on external files, except that the number of records in the file cannot be changed.)

6.8. OPEN, CLOSE and INQUIRE Statements

" These statements are used to connect and dxsconnect units and ﬁles, and to gather infor-
mation about units and files.

6.8.1. OPEN

The open statement is used to connect a file with a unit, or to alter some properties of the
connection. The following is a minimal example.

‘open(1, file="'fort.junk’)
‘open takes a variety of arguments with meanings described below.
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unit= a small non-negative integer which is the unit to which the file is to be connected.
We allow, at the time of this writing, O through 9. If this parameter is the first one
in the open statement, the unit= can be omitted.

jostat= is the same as in read or write.

err= is the same as in read or write.

file= a character expression, which when stripped of trailing blanks, is the name of the
file to be connected to the unit. The filename should not be given if the
status=scratch.

status= one of old, new, scratch, or unknown. If this parameter is not given, unknown
is assumed. If scratch is given, a temporary file will be created. Temporary files are
destroyed at the end of execution. If mew is given, the file will be created if it
doesn’t exist, or truncated if it does. The meaning of unknown is processor depen-
dent; our system treats it as synonymous with old.

access= sequential or direct, depending on whether the file is to be opened for sequen-
tial or direct 170.

form= formatted or unformatted.
recl= a positive integer specifying the record length of the direct access file being opened.

We measure all record lengths in bytes. On UNIX systems a record length of 1 has
the special meaning explained in section 5.1 of the text.

blank= null or zero. This parameter has meaning only for formatted 1/0. The default
~value is null. zero means that blanks, other than leading blanks, in numeric input
fields are to be treated as zeros. ‘

Opening a new file on a unit which is already connected has the effect of first closing the
old file.

6.8.2, CLOSE

close severs the connection between a unit and a file. The unit number must be given.
The optional parameters are iostat= and err= with their usual meanings, and status=
either keep or delete. Scratch files cannot be kept, otherwnse keep is the default. delete
means the file wxll be removed. A simple example is '

close(3, err=17)

6.8.3. INQUIRE
The inquire statement gives information about a unit (“inquire by unit’”) or a file
(““inquire by file’’). Simple examples are:

inquire(unit=3, namexx)
inquire(file='junk’, number=n, -exist=1)

file= a character variable specifies the file the inquire is about. Trailing blanks in the file
name are ignored.

unit= an integer variable specifies the unit the inquu'e is about. Exactly one of ﬁle== or
unit= must be used.

iostat=, err= are as before.

exist= a logical variable. The logical variable is set to .true. if the file or unit extsts and
is set to .false. otherwise.

‘opened= a logical variable. The logical variable is set to .true. if the file is connected to
a unit or if the unit is connected to a file, and it is set to .false. otherwise.
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‘number= an integer vanable to which is: assngned the number of ‘the unit. connected to
the file, if any.

named= a logical variable to which is assngned .true. if the file has a name, or false.
otherwise.

name== a character variable to which is assigned the name of the"file (mquxre by file) or
the name of the file connected to the unit (inquire by unit). The name will be the
full name of the file.

access= a character variable to which will be assigned the value ‘sequential’ if the con-
_nection is for sequential I/0, 'direct’ if the connection is for direct I/Q. The value
becomes undefined if there is no connection.

: sequentlal—- a character variable to whxch is assigned the value ‘yes’ if the file could be
connected for sequential 1/0, 'no’ if the file could not be connected for sequential
1/0, and 'unknown’ if we can’t tell.

direct= a character variable to which is assigned the value 'yes' if 'the ﬁle could be con-
nected for direct 1/0, 'no’ if the file could not be connected for direct I/0, and "unk-
nown’ if we can’t tell.

form= a character variable to which is assigned the value 'formatted’ if the file is con-
nected for formatted 1/0, or ‘unformatted’ if the file is connected for unformatted
1/0. '

formatted= a character variable to which is assigned the value 'yes' if the file could be
connected for formatted I/0, 'no’ if the file could not be connected for formatted
1/0, and 'unknown’ if we can’t tell. .

unformatted= a character variable to whxch is assigned the value 'yes' if the file could be
connected for unformatted 1/0, 'no’ if the file could not be connected for unformat-
ted I/0, and ‘'unknown’ if we can ’t tell.

recl= an integer variable to which is assigned the record length of the records in the file
if the file is connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the
last record read from a file connected for direct access.

blank= a character variable to which is assigned the value ‘null’ kif null blank control is in
effect for the file connected for formatted 1/0, 'zero’ if blanks are bemg converted to
zeros and the file is connected for formatted 1/0.

The gentle reader will remember that the people who wrote the standard probably weren’t
thinking of his needs. Here is an example. The declarations are omitted. :

open(1, file="/dev/console")

'On a UNIX system this statement opens the console for formatted sequential I/0. "An inquire
statement for either unit 1 or file "/dev/console” would reveal that the file exists, is connected
to unit 1, has a name, namely "/dev/console", is opened for sequential 1/0, could be connected
for sequential 170, could not be connected for direct I/0 (can’t seek), is connected for format-
ted 170, could be connected for formatted 1/0, could not be connected for unformatted 1/0
(can’t seek), has neither a record length nor a next record number, and is 1gnor1ng blanks in
numeric fields.

In the UNIX system environment, the only way to discover what permissions you have for
a file is to open it and try to read and write it. The err= parameter will return system error
numbers. The inquire statement does not give a way of determining permissions.
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ABORT( 3F) (UNIX 5.0) ABORT( 3F)

NAME
abort — terminate Fortran program

SYNTAX
call abort ( )

DESCRIPTION

Abort terminates the program which calls it, closing all open files truncated to the current posi-
tion of the file pointer.

DIAGNOSTICS
When invoked, abort prints ‘‘Fortran abort routine called’’ on the standard error output.

SEE ALSO
abort(3C).

Page 1 (9050)



ABS(3F) { UNIX 5.0) ABS( 3F)

NAME
abs, iabs, dabs, cabs, zabs — Fortran absolute value

SYNTAX
integer il, i2
real rl, r2
double precision dpl, dp2
complex cx1, cx2
double complex dx1, dx2

r2 = abs(rl)

i2 = iabs(il)

i2 = abs(il)

dp2 = dabs(dp1)
dp2 — abs(dp1)

cx2 = cabs(cx1)
ex2 = abs(ex1)

dx2 = zabs(dx1)
dx2 = abs(dx1)

" DESCRIPTION
Abs returns the absolute value of its argument in the same type as its argument.

labs returns the integer absolute value of its integer argument.

Dabs returns the double-precision absolute value of its double-precision argument.
Clabs returns the complex absolute value of its complex argument.

Zabs returns the double-complex absolute value of its double-complex argument.

Abs works for any data type, but the various forms are for programming clarity.

SEE ALSO
floor(3M).
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ACCESS( 3F) (bsd 4.2) ACCESS( 3F)

NAME

access — determine accessability of a file
SYNTAX

integer function access (name, mode)

character*(*) name, mode
DESCRIPTION

Access checks the given file, name, for accessability with respect to the caller according to mode.
Mode may include in any order and in any combination one or more of:

r test for read permission
w test for write permission
X test for execute permission

(blank) test for existence

An error code is returned if either argument is illegal, or if the file can not be accessed in all of
the specified modes. O is returned if the specified access would be successful.

FILES

/usr/lib/1ibU77.a
SEE ALSO

access(2), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.
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ACOS( 3F) (UNIX 5.0) ACOS( 3F)

NAME
acos, dacos — Fortran arccosine intrinsic function
SYNTAX
real rl, r2
double precision dpl, dp2
r2 = acos(rl)
dp2 = dacos(dpl)
dp2 = acos(dpl)
DESCRIPTION
Acos returns the arccosine of its argument, in real or double-precision that matches its argu-
ment.

Dacos returns the double-precision arccosine of its double-precision argument.

Although Acos works for either data type, dacos is for clarity in programming.

SEE ALSO
trig(3M).
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AIMAG(3F) (UNIX 5.0) AIMAG( 3F)

NAME
aimag, dimag — Fortran imaginary part of complex argument

SYNTAX
real r
complex exr
double precision dp
double complex cxd

r = aimag( cxr)
dp = dimag( exd)
DESCRIPTION
Atmag returns the imaginary part of its single-precision complex argument.

Dimag returns the double-precision imaginary part of its double-complex argument.
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AINT( 3F) (UNIX 5.0) AINT( 3F)

NAME
aint, dint — Fortran integer part intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2

r2 = aint(rl)

dp2 = dint(dp1)
dp2 = aint(dpl1)

DESCRIPTION
Aint returns the truncated value of its argument, in real or double-precision that matches the
argument.

Dint returns the double-precision truncated value of its double precision argument.

Although At works for either data type, dintis for clarity in programming.
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ALARM( 3F) (bsd 4.2) ALARM( 3F)

NAME

alarm — execute a subroutine after a specified time
SYNTAX

integer function alarm (time, proc)

integer time

external proc
DESCRIPTION

This routine arranges for subroutine proc to be called after time seconds. If fime is ‘“0’’, the

alarm is turned off and no routine will be called. The returned value will be the time remaining
on the last alarm.

FILES

/usr/lib/1ibU77.a
SEE ALSO

alarm(3C), sleep(3F), signal( 3F)
BUGS

Alarm and sleep interact. If sleep is called after alarm, the alarm process will never be called.
SIGALRM will occur at the lesser of the remaining elarm time or the sleep time.
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ASIN( 3F) (UNIX 5.0) ASIN( 3F)

NAME
asin, dasin — Fortran arcsine intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2
r2 = asin(rl)
dp2 = dasin(dpl)
dp2 = asin(dpl)
DESCRIPTION
Aswn returns the arcsine of its argument, in the real or double type that matches its argument.

Dasin returns the double-precision arcsine of its double-precision argument.

Astn works with real or double types, but Dasin is for programming clarity.

SEE ALSO
trig(3M).
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ATAN( 3F) (UNIX 5.0)

NAME
atan, datan — Fortran arctangent intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2
r2 = atan(rl)
dp2 = datan(dpl)
dp2 = atan(dpl)
DESCRIPTION

ATAN(3F)

Atan returns the arctangent of its argument, in real or double-precision type that matches the

argument.

Datan returns the double-precision arctangent of its double-precsion argument.

Although Atan works for either data type, datan is for clarity in programming.

SEE ALSO
trig(3M).
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ATANZ( 3F) (UNIX 5.0) ‘ ' ATANZ( 3F)

NAME
atan2, datan2 — Fortran arctangent intrinsic function

SYNTAX
real rl, r2, r3
double precision dp1, dp2, dp3
r3 = atan2(rl, r2)
dp3 = datan2(dpl, dp2)
dp3 = atan2(dpl, dp2)
DESCRIPTION

Atan?2 returns the arctangent of argl/arg2, in real or double-precision type that matches the
arguments.

Datan2 returns the double-precision arctangent of the double-precsion arguments argl/arg2.

Although Aten?2 works for either data type, datan is for clarity in programming.

SEE ALSO
trig(3M).
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BIT( 3F) (bsd 4.2) BIT( 3F)

NAME

bit — and, or, xor, not, rshift, lshift bitwise functions

SYNTAX

(intrinsic) function and (wordl, word2)
(intrinsic) function or (wordl, word2)
(intrinsic) function xor (wordl, word2)
(intrinsic) function not (word)
(intrinsic) function rshift (word, nbits)

(intrinsic) function Ishift (word, nbits)

DESCRIPTION

FILES

Page 1

These bitwise functions are built into the compiler and return the data type of their
argument(s). It is recommended that their arguments be integer values; inappropriate manipu-
lation of real objects may cause unexpected results.

The bitwise combinatorial functions return the bitwise ‘‘and’’ (and), ‘‘or’’ (or), or ‘‘exclusive
or’’ (xor) of two operands. Not returns the bitwise complement of its operand.

Lshift, or rshift with a negative nbifs, is a logical left shift with no end around carry. Rshift, or
Ishift with a negative nbils, is an arithmatic right shift with sign extension. No test is made for a
reasonable value of nbits.

These functions are generated in-line by the 77 compiler.
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CHDIR(3F) (bsd 4.2) | CHDIR( 3F)

NAME
chdir — change default directory

SYNTAX
integer function chdir (dirname)
character*(*) dirname
DESCRIPTION

The default directory for creating and locating files will be changed to dirname. Zero is returned
if successful; an error code otherwise. )

FILES
/usr/lib/1ibU77.a

SEE ALSO
chdir(2), cd(1), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Use of this function may cause inquire by unit to fail.
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CHMOD( 3F) (bsd 12) ~ CHMOD(3F)

NAME
chmod — change mode of a file

SYNOPSIS
integer function chmod (name, mode)
character*(*) name, mode

DESCRIPTION

This function changes the filesystem mode of file name. Mode can be any specification recog-

nized by chmod(1). Name must be a single pathname.

The normal returned value is 0. Any other value will be a system error number.

FILES
/usr/lib/1ibU77.a
/bin/chmod exec’ed to change the mode.

SEE ALSO
chmod(1)

BUGS

Page 1

Pathnames can be no longer than MAXPATHLEN as defined in <sysfparam.h>.
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CONJG( 3F) (UNIX 5.0) : CONJG(3F)

NAME
conjg, dconjg —~ Fortran complex conjugate intrinsic function

SYNTAX
complex cx1, cx2
double complex dx1, dx2

cx2 = conjg(cx1)
dx2 = deonjg(dx1)
DESCRIPTION

Conjg returns the complex conjugate of its complex argument.

Dconjg returns the double-complex conjugate of its double-complex argument.
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COS(3F) { UNIX 5.0) COS(3F)

NAME
cos, dcos, ccos — Fortran cosine intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2
complex cx1, cx2

r2 = cos(rl)
dp2 — deos(dp1)
ap2 — cos(dp1)

cx2 = ccos(cx1)
ex2 = cos(ex1)

DESCRIPTION
Cos returns the cosine of its argument, in the real, complex, or double-precision type of its
argument.
Dcos returns the double-precision cosine of its double-precision argument.

Cecos returns the complex cosine of its complex argument.

Although Cos works with any type, the other forms are used for clarity in programming.

SEE ALSO
trig(3M).
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COSH(3F) (UNIX 5.0) COSH(3F)

NAME
cosh, dcosh — Fortran hyperbolic cosine intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2

r2 = cosh(rl)

dp2 = dcosh(dp1)
dp2 = cosh(dpl)

DESCRIPTION
Cosh returns the hyperbolic cosine of its argument, in the real or double-precsion type of its
argument.

Dcosh returns the double-precision hyperbolic cosine of its double-precision argument.

Although Cosh works for either data type, Dcosh is for clarity in programming.

SEE ALSO
sinh(3M).
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ETIME( 3F) (bsd 4.2) ETIME( 3F)

NAME
etime, dtime — return elapsed execution time

SYNTAX
function etime (tarray)
real tarray(2)

function dtime (tarray)
real tarray(2)

DESCRIPTION

Etime returns in tarray(1) the elapsed user time for the calling process since start of execution,
and in tarray(2) the elapsed system time for the calling process since start of execution.

Dtime returns in tarray(1) the delta time for the calling process since the last call to dtime, and
in tarray(2) the delta system time for the calling process since the last call to dtime.

The return value of dtime and etime is the sum of the two tarray times they report.
The resolution of all timing is 1 /60 of one millisecond.

FILES
/usr/lib/1ibU77.a

SEE ALSO
times(2)

BUGS
The 77 compiler fails to convert the returned value to single precision from double precision,
so the return value must be read as a double.

Doug, do you mean the values in the array, or the return value of the function?
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ED(P(3F) - (UNIX 5.0) ED(P(3PU

NAME

exp, dexp, cexp — Fortran exponential intrinsic function

SYNTAX

real rl, r2
double precision dpl, dp2
complex cx1, cx2

r2 = exp(rl)
dp2 — dexp(dp1)
dp2 = exp(dp1)

cx2 = clog(cx1)
cx2 = exp(cx1)

DESCRIPTION

Exp returns the real exponential function e*#*arg for its argument, in the real, double-precision,
or complex type of the argument.

Dczp returns the double-precision exponential function of its double-precision argument.
Cezp returns the complex exponential function of its complex argument.

Although ezp works with reals, doubles, and complexes, the other forms are for clarity in pro-
gramming.

SEE ALSO

Page 1

exp(3M).
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FDATE(3F) (bsd 4.2) | FDATE(3F)

NAME
fdate — return date and time in an ASCII string

SYNOPSIS
subroutine fdate (string)
character*(*) string

character*(*) function fdate()

DESCRIPTION
Fdate returns the current date and time as a 24 character string in the format described under
ctime(3). Neither ‘newline’ nor NULL will be included.

Fdate can be called either as a function or as a subroutine. If called as a function, the calling
routine must define its type and length. For example:

characterx24 fdate
external fdate

write(*,*) fdate()

FILES
/usr/1ib/1ibU77.a

SEE ALSO
ctime(3), time(3F), itime(3F), idate(3F), ltime(3F)
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FORK( 3F) ‘ (bsd 4.2) FORK( 3F)

NAME
fork — create a copy of this process )

SYNTAX
integer function fork ()

DESCRIPTION
Fork creates a copy of the calling process. The only distinction between the 2 processes is that
the value returned to one of them (referred to as the ’parent’ process) will be the process id if
the copy. The copy is usually referred to as the ’child’ process. The value returned to the
*child’ process will be zero.

All logical units open for writing are flushed before the fork to avoid duplication of the con-
tents of the I/O buffers in the external file(s).

If the returned value is negative, it indicates an error and will be the negation of the system
error code. See perror(3F).

A corresponding ezec routine has not been provided because there is no satisfactory way to
retain open logical units across the exec. However, the usual function of fork/zec can be per-
formed using system{ 3F).

FILES
Jusr/lib/libU77.a

SEE ALSO
fork(2), wait{ 3F), kill(3F), perror(3F)
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NAME
fseek, ftell — reposition a file on a logical unit
SYNTAX

integer function fseek (lunit, offset, from)
integer offset, from

integer function ftell (lunit)
DESCRIPTION

lunit must refer to an open logical unit. offset is an offset in bytes relative to the position
specified by from. Valid values for from are:

0 meaning ’beginning of the file’
1 meaning *the current position’
2 meaning ’the end of the file’

The value returned by fseek will be 0 if successful, a system error code otherwise. (See
perror(3F))

Ftell returns the current position of the file associated with the specified logical unit. The value
is an offset, in bytes, from the beginning of the file. If the value returned is negative, it indi-
cates an error and will be the negation of the system error code. (See perror(3F))

FILES
/usr/lib/1ibU77.a

SEE ALSO
fseek(3S), perror(3F)
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NAME

int, ifix, idint, real, float, sngl, dble, ¢cmplx, demplx, ichar, char — explicit Fortran type conver-
sion

SYNTAX

integer i, j

realr, s

double precision dp, dq
complex cx

double complex dex
character*1 ch

i =int(r)

i = int(dp)

i =int{cx)

i = int(dex)

i =ifix(r)

i = idint(dp)
r = real(i)

r = real(dp)
r == real(cx)

r = real(dex)
r = float(i)

r = sngl(dp)
dp = dble(i)
dp = dble(r)
dp = dble(cx)
dp = dble(dex)

cx = cmplx(i)

ex == emplx(i, j)

cx = cmplx(r)

cx = cmplx(r, s)
cx == cmplx(dp)

ex = cmplx(dp, dq)
ex = cmplx(dex)

dex == demplx(i)

dex = demplx(i, j)
dex = demplx(r)

dex = demplx(r, s)
dex = demplx(dp)
dex = demplx(dp, dq)
dex = demplx(ex)

i — ichar(ch)
ch = char(i)

DESCRIPTION
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These functions perform conversion from one data type to another.

int converts to integer form its real, double precision, complex, or double complez argument. If
the argument is real or double precision, int returns the integer whose magnitude is the largest
integer that does not exceed the magnitude of the argument and whose sign is the same as the
sign of the argument (i.e. truncation). For complex types, the above rule is applied to the real
part. ifix and idint convert only real and double precision arguments respectively.
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real converts to real form an iteger, double precision, complex, or double complex argument. If
the argument is double precision or double complex, as much precision is kept as is possible. If
the argument is one of the complex types, the real part is returned. float and sngl convert
only nteger and double precision arguments respectively.

dble converts any integer, real, complex, or double complex argument to double precision form. If
the argument is of a complex type, the real part is returned.

cmplx converts its integer, real, double precision, or double complex argument(s) to complex form.

demplx converts to double complex form its integer, real, double precision, or complex
argument(s).

Either one or two arguments may be supplied to emplx and demplx . If there is only one argu-
ment, it is taken as the real part of the complex type and a imaginary part of zero is supplied. If
two arguments are supplied, the first is taken as the real part and the second as the imaginary
part.

ichar converts from a character to an integer depending on the character’s position in the col-
lating sequence.

char returns the character in the #h position in the processor collating sequence where ¢ is the
supplied argument.

For a processor capable of representing n characters,
ichar(char(i)) = ifor0 <=1i < n, and

char(ichar(ch)) = ch for any representable character ch.
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NAME
getarg — return Fortran command-line argument

SYNTAX
character*N ¢

integer i
getarg(i, c)

DESCRIPTION
Getarg returns the -th command-line argument of the current process. Thus, if a program were

invoked via
foo argl arg2 arg3
getarg(2, ¢) would return the string ‘‘arg2’’ in the character variable c.

SEE ALSO
getopt(3C).
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NAME

getc, fgetc — get a character from a logical unit
SYNTAX

integer function getc (char)

character char

integer function fgetc (lunit, char)
character char
DESCRIPTION
These routines return the next character from a file associated with a fortran logical unit,

bypassing normal fortran I/O. Getc reads from logical unit 5, normally connected to the control
terminal input.

The value of each function is a system status code. Zero indicates no error occured on the read;
— 1 indicates end of file was detected. A positive value will be either a UNIX system error
code or an 77 I/O error code. See perror(3F).

FILES
/usr/lib/1ibU77.a

SEE ALSO
getc(3S), intro(2), perror(3F)
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NAME
getcwd — get pathname of current working directory

'SYNTAX
integer function getcwd (dirname)
character*(*) dirname
DESCRIPTION

The pathname of the default directory for creating and locating files will be returned in dirname.
The value of the function will be zero if successful; an error code otherwise.

FILES
Jusr/lib/1ibU77.a

SEE ALSO
chdir(3F), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sysparam.h>.
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NAME
getenv — return Fortran environment variable

SYNTAX
character*N ¢
getenv(”TMPDIR”, ¢)

DESCRIPTION
Getenv returns the character-string value of the environment variable represented by its first
argument into the character variable of its second argument. If no such environment variable
exists, all blanks will be returned.

SEE ALSO
getenv(3C), environ(5).
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NAME

getlog — get user’s login name
SYNTAX

subroutine getlog (name)
character*(*) name

character*(*) function getlog()
DESCRIPTION

GETLOG( 3F)

Getlog will return the user’s login name or all blanks if the process is running detached from a

terminal.

FILES
/usr/lib/1ibU77.a

SEE ALSO
getlogin(3)
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NAME
getpid — get process id
SYNTAX
integer function getpid()
DESCRIPTION
Gelpid returns the process ID number of the current process.
FILES
/usr/lib/1ibU77.a
SEE ALSO

getpid(2)
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NAME
getuid, getgid — get user or group ID of the caller

SYNTAX
integer function getuid()

integer function getgid()

DESCRIPTION
These functions return the real user or group ID of the user of the process.

FILES
/usr/1ib/1ibU77.a

SEE ALSO
getuid(2)
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NAME

hostnm — get name of current host
SYNTAX

integer function hostnm (name)

character*(*) name
DESCRIPTION

This function puts the name of the current host into character string name. The return value
should be 0; any other value indicates an error.

FILES
/usr/lib/1ibU77.a

SEE ALSO
gethostname(2)
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NAME
idate, itime — return date or time in numerical form

SYNTAX
subroutine idate (iarray)
integer iarray(3)

subroutine itime (iarray)
integer iarray(3)
DESCRIPTION

Idate returns the current date in ierray. The order is: day, mon, year. Month will be in the
range 1-12. Year will be > 1969.

Itime returns the current time in ¢array. The order is: hour, minute, second.

FILES
/usr/lib/1ibU77.a

SEE ALSO
ctime(3F), fdate(3F)
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NAME

index — return location of Fortran substring
SYNTAX

character*N1 chl

character*IN2 ch2

integer i

i = index(chl, ch2)
DESCRIPTION

Index returns the location of substring ch?2 in string chl. The value returned is the position at
which substring ch2 starts, or O if it is not present in string chl.
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NAME
ioinit — change £77 I/O initialization

SYNTAX
logical function ioinit (cctl, bzro, apnd, prefix, vrbose)
logical cetl, bzro, apnd, vrbose
character( *) prefix

DESCRIPTION
This routine will initialize several global parameters in the f77 I/O system, and attach externally
defined files to logical units at run time. The effect of the flag arguments applies to logical
units opened after toenit is called. The exception is the preassigned units, 5 and 6, to which eccil
and bzro will apply at any time. Jotnitis written in Fortran-77.

By default, carriage control is not recognized on any logical unit. If cct/ is .true. then carriage
control will be recognized on formatted output to all logical units except unit 0, the diagnostic
channel. Otherwise the default will be restored.

By default, trailing and embedded blanks in input data fields are ignored. If bzro is .true. then
such blanks will be treated as zero’s. Otherwise the default will be restored.

By default, all files opened for sequential access are positioned at their beginning. It is some-
times necessary or convenient to open at the END-OF-FILE so that a write will append to the
existing data. If apnd is .true. then files opened subsequently on any logical unit will be posi-
tioned at their end upon opening. A value of .false. will restore the default behavior.

Many systems provide an automatic association of global names with fortran logical units when
a program is run. There is no such automatic association in f77. However, if the argument
prefiz is a non-blank string, then names of the form prefixNN will be sought in the program
environment. The value associated with each such name found will be used to open logical unit
NN for formatted sequential access. For exambple, if {77 program myprogram included the call

call ioinit (.true., .false., .false., 'FORT, .false.)
then when the following C-Shell sequence:

% setenv FORTO1 mydata
% setenv FORT12 myresults
% myprogram

or the following Bourne-Shell sequnece:

$ FORTO1=mydata

$ FORTO2=myresults

$ export FORTO1 FORTO2

$ myprogram
would result in logical unit 1 opened to file mydata and logical unit 12 opened to file myresults.
Both files would be positioned at their beginning. Any formatted output would have column 1

removed and interpreted as carriage control. Embedded and trailing blanks would be ignored
on input.

If the argument vrbose is .true. then tomit will report on its activity.

The internal flags are stored in a labeled common block with the following definition:

integers2 ieof, ictl, ibzr
common /ioiflg/ ieof, ictl, ibzr
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FILES

/usr/1ib/libI77 .a £77 1/O library
SEE ALSO

getarg(3F), getenv(3F),
BUGS

Prefiz can be no longer than 30 characters. A pathname associated with an environment name
can be no longer than 255 characters.

The ‘‘4 *’ carriage control does not work.
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NAME

kill - send a signal to a process
SYNTAX

function kill (pid, signum)

integer pid, signum
DESCRIPTION

Pid must be the process id of one of the user’s processes. Signum must be a valid signal
number (see sigvec(2)). The returned value will be 0 if successful; an error code otherwise.

FILES
/usr/lib/1ibU77.a

SEE ALSO
kill(2), sigvec(2), signal(3F), fork(3F), perror( 3F)
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NAME
len — return length of Fortran string

SYNTAX
character*N ch
integer i
i =len(ch)
DESCRIPTION
Len returns the length of string ch.
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LEN(3F)
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NAME
link — make a link to an existing file

SYNTAX
function link (namel, name2)
character*(*) namel, name2

integer function symlnk (namel, name2)
character*(*) namel, name2

DESCRIPTION
Namel must be the pathname of an existing file. Name?2 is a pathname to be linked to file

namel. Name?2 must not already exist. The returned value will be 0 if successful; a system
error code otherwise.

Symlink creates a symbolic link to namel.

FILES
/usr/lib/1ibU77.a

SEE ALSO
link(2), symlink(2), perror(3F), unlink(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN .as defined in <sys/param.h>.
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NAME
loc — return the address of an object

SYNTAX
function loc (arg)

DESCRIPTION
The returned value will be the address of arg.

FILES
/usr/lib/1ibU77.a
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NAME

log, alog, dlog, clog — Fortran natural logarithm intrinsic function

SYNTAX

real rl, r2

double precision dpl, dp2
complex cx1, cx2

r2 = alog(rl)

r2 = log(rl)

dp2 = dlog(dp1)

dp2 = log(dp1)

ex2 = clog(ex1)

ex2 = log(cx1)

DESCRIPTION

Log return the natural logarithm of its argument, in the same type as the argument.

Alog returns the real natural logarithm of its real argument.

Dlog returns the double-precision natural logarithm of its double-precision argument.

Clog returns the complex logarithm of its complex argument.

Log works for different types, but the various forms are for programming clarity.

SEE ALSO
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exp(3M).
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NAME
log10, alogl0, dlogl0 — Fortran common logarithm intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2
r2 = alog10(r1)
r2 = log10(rl)
dp2 = dlog10(dpl)
dp2 = logl0(dp1)
DESCRIPTION
Log10 returns the common logarithm of its argument, in real or double-precision type of the

argument.
Alog10 returns the real common logarithm of its real argument.

Dlog returns the double-precision common logarithm of its double-precision argument.

Log works for real or double arguments, but the other forms are for programming clarity.

SEE ALSO
exp(3M).
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NAME
max, max0, amax0, max1, amax1l, dmaxl — Fortran maximum-value functions

SYNTAX
integer i, j, k, 1
real a, b, ¢, d
double precision dpl, dp2, dp3

1 = max(j, j, k)
¢ =max(a, b)
dp = max(a, b, c)
k = max0(i, j)
a = amaxO0(i, j, k)
i = max1(a, b)
d = amax1(a, b, ¢)
dp3 = dmax1(dpl, dp2)

DESCRIPTION
The maximum-value functions return the largest of their arguments (of which there may be
any number). Maz is the generic form which can be used for all data types and takes its return
type from that of its arguments (which must all be of the same type). Maz0 returns the
integer form of the maximum value of its integer arguments; amaz0, the real form of its
integer arguments; mazl, the integer form of its real arguments; amazl, the real form of its
real arguments; and dmazl, the double-precision form of its double-precision arguments.

SEE ALSO
min(38F).
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NAME

mclock — return Fortran time accounting
SYNTAX

integer i

i = mclock( )
DESCRIPTION

Meclock returns time accounting information about the current process and its child processes.
The value returned is the sum of the current process’s user time and the user and system times
of all child processes.

SEE ALSO
times(2), clock(38C), system(3F).
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NAME
min, min0, amin0O, minl, aminl, dminl — Fortran minimum-value functions

SYNTAX
integer i, j, k, 1
real a, b, ¢, d
double precision dpl, dp2, dp3
1= min(i, Js k)
¢ =min(a, b)
dp = min(a, b, ¢)
k= minO(i, j)
a = aminO(i, j, k)
i = minl(a, b)
d = aminl(a, b, ¢)
dp3 = dmin1(dp1, dp2)
DESCRIPTION
The minimum-value functions return the minimum of their arguments (of which there may be
any number). Min is the generic form which can be used for all data types and takes its return
type from that of its arguments (which must all be of the same type). Min0 returns the integer
form of the minimum value of its integer arguments; amn0, the real form of its integer argu-
ments; minl, the integer form of its real arguments; aminl, the real form of its real arguments;
and dminl, the double-precision form of its double-precision arguments.

SEE ALSO
max(3F).
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NAME

mod, amod, dmod — Fortran remaindering intrinsic functions

SYNTAX

integer i, j, k

real r1, r2, r3

double precision dpl, dp2, dp3
k = mod(i, j)

r3 = amod(rl, r2)

r3 = mod(rl, r2)

dp3 = dInOd(dply dp2)
dp3 = mod(dp1, dp2)

DESCRIPTION
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Mod returns the integer remainder of its first argument divided by its second argument, in the
real or double-precision type of the arguments.

Amod and dmod return the real and double-precision whole number remainder of argl divided
by arg2.

mod works with real or double types, but the various forms are for programming clarity.
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NAME :
perror, gerror, ierrno — get system error messages

SYNTAX
subroutine perror (string)
character*( *) string

subroutine gerror (string)
character*( *) string

character*(*) function gerror()

function ierrno()

DESCRIPTION
Perror will write a message to fortran logical unit O appropriate to the last detected system error.
String will be written preceding the standard error message.

Gerror returns the system error message in character variable siring. Gerror may be called either
as a subroutine or as a function.

Ierrno will return the error number of the last detected system error. This number is updated
only when an error actually occurs. Most routines and I/O statements that might generate such
errors return an error code after the call; that value is a more reliable indicator of what caused
the error condition.

FILES
/usr/lib/1ibU77.a
SEE ALSO
intro(2), perror(3)
BUGS
String in the call to perror can be no longer than 127 characters.
The length of the string returned by gerror is determined by the calling program.
NOTES
UNIX system error codes are described in ntro(2). The £77 I/O error codes and their mean-

ings are:
100 ‘““error in format’’
101 ““illegal unit number’’
102 ““formatted io not allowed’’
103 ‘“unformatted io not allowed”’

104 ‘“direct io not allowed’’
105 ‘“‘sequential io not allowed”’
106 ‘‘can’t backspace file’’

107 ‘““off beginning of record”’
108 ‘““can’t stat file”’

109 ‘““no x after repeat count’”’

110 ‘““off end of record”’

111 ‘““truncation failed”’

112 ““incomprehensible list input”’
113 ‘“‘out of free space”’

114 ‘““unit not connected’’

115 ‘““read unexpected character’

116 ““blank logical input field”’
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117
118
119
120
121
122
123

(bsd 4.2)

‘“’new’ {ile exists’’

‘““can’t find ’old’ file’’
‘‘unknown system error’’
‘“‘requires seek ability’’
‘‘illegal argument’’
‘‘negative repeat count’’
‘‘illegal operation for unit”’

PERROR( 3F)
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NAME
putc, fputc — write a character to a fortran logical unit
SYNTAX
integer function putc (char)
character char

integer function fputc (lunit, char)
character char
DESCRIPTION

These funtions write a character to the file associated with a fortran logical unit bypassing nor-

mal fortran I/O. Putc writes to logical unit 6, normally connected to the control terminal out-
put.

The value of each function will be zero unless some error occurred; a system error code other-
wise. See perror( 3F).

FILES
/usr/1lib/1ibU77.a

SEE ALSO
pute(3S), intro(2), perror(3F)
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NAME
gsort — quick sort
SYNTAX
subroutine gsort (array, len, isize, compar)
external compar
integer*2 compar
DESCRIPTION

One dimensional arrey contains the elements to be sorted. len is the number of elements in the
array. tsize is the size of an element, typically -

4 for integer and real

8 for double precision or complex

16 for double complex

(length of character object) for character arrays

Compar is the name of a user supplied integerx2 function that will determine the sorting order.

This function will be called with 2 arguments that will be elements of array. The function must
return -

negative if arg 1 is considered to precede arg 2
zero if arg 1 is equivalent to arg 2
positive if arg 1 is considered to follow arg 2

On return, the elements of array will be sorted.

FILES
/usr/lib/1ibU77.a

SEE ALSO
gsort(3)
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NAME

srand, rand — Fortran uniform random-number generator
SYNTAX

integer i

double precision x, rand

call srand(i)

x =rand( )
DESCRIPTION

Srand takes its integer argument as the seed of a random-number generator, the values of
which are returned through successive invocations of rand.

The value returned by rand are double-precision floating point numbers evenly distributed
between O and 1, exclusive of both O and 1.

SEE ALSO
rand(3C).
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NAME
rename — rename a file
SYNTAX
integer function rename (from, to)
character*( *) from, to
DESCRIPTION '
From must be the pathname of an existing file. 7o will become the new pathname for the file.
If to exists, then both from and to must be the same type of file, and must reside on the same
filesystem. If fo exists, it will be removed first.
The returned value will be 0 if successful; a system error code otherwise.
FILES
/usr/lib/1ibU77 .a
SEE ALSO
rename(2), perror(3F)
BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.
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NAME

anint, dnint, nint, idnint — Fortran nearest integer functions

SYNTAX

integer i

real r1, r2

double precision dpl, dp2
r2 = anint(rl)

i = nint(rl)

dp2 = anint{dpl)
dp2 = dnint(dp1)

DESCRIPTION
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Nint returns the number that is nearest to its real or double-precision argument, in the type of
the argument.

Idnint returns the integer that is nearest to its double-precision argument.

Anwmnt returns the number nearest to its real or double-precision argument, in the type of the
argument.

Dnint returns the double real number nearest to its double argument.

The various forms are for programming clarity.
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NAME

sign, isign, dsign — Fortran transfer-of-sign intrinsic function

SYNTAX

integer i, j, k

real rl, r2, r3

double precision dpl, dp2, dp3
= isign(i, j)

k= sign(i, J)

r3 =sign(rl, r2)

dp3 = dsign(dpl, dp2)
dp3 — sign(dp1, dp2)

DESCRIPTION
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Sign returns the magnitude of its first argument with the sign of its second argument, in the
integer, real, or double-precsion type of its arguments.

ISign returns the integer magnitude of its integer arguments.
Dsign returns the double magnitude of its double arguments.

Although sign works for integers, reals, and doubles, the various forms are for programming
clarity.
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NAME

signal — change the action for a signal

SYNTAX

integer function signal(signum, proe, flag)
integer signum, flag
external proc

DESCRIPTION

FILES

When a process incurs a signal (see signal(3C)) the default action is usually to clean up and
abort. The user may choose to write an alternative signal handling routine. A call to signal is
the way this alternate action is specified to the system.

Signum is the signal number (see signal(3C)). If flag is negative, then proc must be the name
of the user signal handling routine. If ﬂag is zero or positive, then proc is ignored and the
value of flag is passed to the system as the signal action definition. In particular, this is how
previously saved signal actions can be restored. Two possible values for flag have specific
meanings: 0 means "use the default action” (See NOTES below), 1 means “ignore this signal”.

A positive returned value is the previous action definition. A value greater than 1 is the
address of a routine that was to have been called on occurrence of the given signal. The
returned value can be used in subsequent calls to signal in order to restore a previous action
definition. A negative returned value is the negation of a system error code. (See perror(3F))

/usr/lib/libU77.a

SEE ALSO

NOTES

Page 1

signal(3C), kill(3F), kill(1)

If the user signal handler is called, it will be passed the signal number as an integer argument.
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SIN( 3F) (UNIX 5.0) SIN( 3F)

NAME
sin, dsin, csin — Fortran sine intrinsic function

SYNTAX

real rl, r2

double precision dpl, dp2

complex cx1, cx2

r2 =sin(rl)

dp2 = dsin(dpl)

dp2 = sin(dpl)

cx2 = csin(ex1)

cx2 = sin(ex1)
DESCRIPTION

Sin returns the sine of its argument, in the real, double-precision, or complex type of its argu-

ment.
Dsin returns the double-precision sine of its double-precision argument.

Csin returns the complex sine of its complex arguemnt.

Sin works with double, real, and complex types, but the various forms are for programming
clarity.

SEE ALSO
trig(3M).
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SINH( 3F) ( UNIX 5.0) SINH( 3F)

NAME
sinh, dsinh — Fortran hyperbolic sine intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2

r2 =sinh(rl)

dp2 = dsinh(dp1)
dp2 = sinh(dp1)

DESCRIPTION
Sinh returns the hyperbolic sine of its argument, either real or double-precision, in the type of
its argument.

Dsinh returns the double-precision hyperbolic sine of its double-precision argument.

Sinh works with either type, but Dsinh is for programming clarity.

SEE ALSO
sinh(3M).
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SLEEP( 3F) (bsd 4.2) SLEEP( 3F)

NAME
sleep — suspend execution for an interval
SYNTAX
subroutine sleep (itime)
DESCRIPTION
Sleep causes the calling process to be suspended for itime seconds. The actual time can be up to
1 second less than stime due to granularity in system timekeeping.
FILES
/usr/lib/1ibU77.a

SEE ALSO
sleep(3)
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SQRT( 3F) (UNIX 5.0) SQRT( 3F)

NAME
sqrt, dsqrt, csqrt — Fortran square root intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2
complex ¢cx1, cx2

r2 =sqrt(rl)
dp2 = dsqrt(dp1)
dp2 = sqrt(dp1)

cx2 == csqrtcx1)
cx2 = sqrt{cx1)

DESCRIPTION
Sqrt returns the square root of its argument, in the real, double-precision, or complex type of
its argument.
Dsqrt returns the double-precision square root of its double-precision arguement.

Csqrt returns the complex square root of its complex argument.

Sqrt works with each type, but the other forms are available for programming clarity.

SEE ALSO
exp(3M).
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STAT( 3F) (bsd 4.2) ‘ STAT( 3F)

NAME
stat, Istat, fstat — get file status

SYNTAX
integer function stat (name, statb)
character*(*) name
integer statb(12)

integer function Istat (name, statb)
character*(*) name
integer statb(12)

integer function fstat (lunit, statb)
integer statb(12)

DESCRIPTION
These routines return detailed information about a file. Stat and Istaf return information about
fille name; fstat returns information about the file associated with fortran logical unit lun#. The
order and meaning of the information returned in array statb is as described for the structure
stat under stat(2). The ‘‘spare’’ values are not included.

The value of either function will be zero if successful; an error code otherwise.

FILES
/usr/lib/1ibU77.a

SEE ALSO
stat(2), access(3F), perror(3F), time(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/ﬁ7aram..h>.
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SYSTEM( 3F) (UNIX 5.0) SYSTEM( 3F)

NAME
system — issue a shell command from Fortran

SYNTAX
character*N ¢
call system(c)

DESCRIPTION

System causes its character argument to be given to sh(1l) as input, as if the string had been
typed at a terminal. The current process waits until the shell has completed.

SEE ALSO
sh(1), exec(2), system(3S).
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TAN(3F) (UNIX 5.0) TAN( 3F)

NAME
tan, dtan — Fortran tangent intrinsic function

SYNTAX
real rl1, r2
double precision dpl, dp2
r2 = tan(rl)
dp2 = dtan(dp1)
dp2 = tan(dp1)
DESCRIPTION
Tan returns the tangent of its argument, in the type of its argument.

Dtan returns the double-precision tangent of its double-precision argument.

Tan works with real or double-precision arguments, but Dtan is for programming clarity.

SEE ALSO
trig(3M).
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TANH(3F) (UNIX 5.0) TANH( 3F)

NAME
tanh, dtanh — Fortran hyperbolic tangent intrinsic function

SYNTAX
real rl, r2
double precision dpl, dp2

r2 = tanh(rl)
dp2 = dtanh(dp1)
dp2 = tanh(dp1)

DESCRIPTION
Tanh returns the hyperbolic tangent of its argument, in the type of its argument.

Dtanh returns the doup;é-precision hyperbolic tangent of its double precision argument.

Tanh works with real 6t demble-precision arguments, but déanh is for programming clarity.

SEE ALSO
‘sinh(3M).
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TIME(3F) (bsa42) TIME( 3F)

NAME
time, ctime, Itime, gmtime — return system time

SYNTAX
integer function time()

character*(*) function ctime (stime)
integer stime

subroutine ltime (stime, tarray)
integer stime, tarray(9)

subroutine gmtime (stime, tarray)
integer stime, tarray(9)
DESCRIPTION

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. This is the
value of the UNIX system clock.

Ctime converts a system time to a 24 character ASCII string. The format is described under
ctime(3). No ’newline’ or NULL will be included.

Ltime and gmtime disect a UNIX time into month, day, etc., either for the local time zone or as
GMT. The order and meaning of each element returned in tarray is described under ctime(3).

FILES
/usr/lib/1ibU77.a

SEE ALSO
ctime(3), itime(3F), idate(3F), fdate(3F)
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TTYNAM(3F) (bsa 4.2) TTYNAM( 3F)

NAME .
ttynam, isatty — find name of a terminal port

SYNOPSIS
character*(*) function ttynam (lunit)

logical function isatty (lunit)

DESCRIPTION
Ttynam returns a blank padded path name of the terminal device associated with logical unit
lunat.

Isatty returns .true. if lunit is associated with a terminal device, .false. otherwise.

FILES
/dev /*
/usr/lib/libU77.a
DIAGNOSTICS

Ttynam returns an empty string (all blanks) if lunit is not associated with a terminal device in
directory ‘/dev’.
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UNLINK(3F) (bsd 4.2) UNLINK( 3F)

NAME
unlink — remove a directory entry

SYNTAX
integer function unlink (name)
character*( *) name
DESCRIPTION

Unlink causes the directory entry specified by pathname name to be removed. If this was the
last link to the file, the contents of the file are lost. The returned value will be zero if success-
ful; a system error code otherwise.

FILES
/usr/lib/1ibU77.a
SEE ALSO
unlink(2), link(3F), filsys(5), perror(3F)
BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <<sys/param.h>.
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WAIT(3F) (bsd 4.2) WAI'T( 3F)

NAME
wait — wait for a process to terminate

SYNTAX
integer function wait (status)
integer status

DESCRIPTION
Wait causes its caller to be suspended until a signal is received or one of its child processes ter-
minates. If any child has terminated since the last wast, return is immediate; if there are no
children, return is immediate with an error code.

If the returned value is positive, it is the process ID of the child and statfus is its termination
status (see wa#(2)). If the returned value is negative, it is the negation of a system error code.

FILES
Jusr/lib/libU77.a

SEE ALSO
wait(2), signal(3F), kill(3F), perror( 3F)

Page 1 (9050)



RATFOR — A Preprocessor for a Rational FORTRAN

This document is based on a paper by Brian W.
Kernighan of Bell Laboratories. It supplements
the ratfor(1) pages of the ROS Reference
Manual (9010).

1. INTRODUCTION

Although often considered clumsy, FOR-
TRAN is the closest thing to a universal pro-
gramming language. FORTRAN is often the
most ‘‘efficient’’ language available, particularly
for programs requiring much computation. With
care, it is possible to write truly portable FOR-
TRAN programs(1]}.

FORTRAN’s worst deficiency may be in
the control flow statements — conditional
branches and loops — which express the logic of
the program. The conditional statements in
FORTRAN are primitive. The Arithmetic ™
forces the user into at least two statement
numbers and two (implied) GoTO’s; it leads to
unintelligible code, and is eschewed by good pro-
grammers. The Logical IF is better, in that the
test part can be stated clearly, but hopelessly res-
trictive because the statement that follows the F
can only be one FORTRAN statement (with
some further restrictions!). And of course there
can be no ELSE part to a FORTRAN IF: there is
no way to specify an alternative action if the IF is
not satisfied.

The FORTRAN DO restricts the user to
going forward in an arithmetic progression. It is
fine for ‘‘1 to N in steps of 1 (or 2 or ...)"’, but
there is no direct way to go backwards, or even
(in ANSI FORTRAN][2]) to go from 1 to N-1.
And of course the DO is useless if one’s problem
doesn’t map into an arithmetic progression.

The result of these failings is that FOR-
TRAN programs must be written with numerous
labels and branches. The resulting code is partic-
ularly difficult to read and understand, and thus
hard to debug and modify.

When one is faced with an unpleasant
language, a useful technique is to define a new
language that overcomes the deficiencies, and to
translate it into the unpleasant one with a
preprocessor. This is the approach taken with
Ratfor. (The preprocessor idea is of course not
new, and preprocessors for FORTRAN are espe-
cially popular today. A recent listing {3] of
preprocessors shows more than 50, of which at
least half a dozen are widely available.)

2. LANGUAGE DESCRIPTION

Design

Ratfor attempts to retain the merits of
FORTRAN (universality, portability, efficiency)
while hiding the worst FORTRAN inadequacies.
The language 13 FORTRAN except for two
aspects. First, since control flow is central to any
program, regardless of the specific application,
the primary task of Ratfor is to conceal this part
of FORTRAN from the user, by providing
decent control fiow structures. These structures
are sufficient and comfortable for structured pro-
gramming in the narrow sense of programming
without GoTo’'s. Second, since the preprocessor
must examine an entire program to translate the
control structure, it is possible at the same time
to clean up many of the ‘‘cosmetic’’ deficiencies
of FORTRAN, and thus provide a language
which is easier and more pleasant to read and
write.

Beyond these two aspects — control flow
and cosmetics — Ratfor does nothing about the
host of other weaknesses of FORTRAN.
Although it would be straightforward to extend it
to provide character strings, for example, they
are not needed by everyone, and of course the
preprocessor would be harder to implement.
Throughout, the design principle which has
determined what should be in Ratfor and what
should not has been Ratfor doesnt know any
FORTRAN. Any language feature which would
require that Ratfor really understand FORTRAN
has been omitted. We will return to this point in
the section on implementation.

Even within the confines of control flow
and cosmetics, we have attempted to be selective
in what features to provide. The intent has been
to provide a small set of the most useful con-
structs, rather than to throw in everything that
has ever been thought useful by someone.

The rest of this section contains an infor-
mal description of the Ratfor language. The con-
trol flow aspects will be quite familiar to readers
used to languages like Algol, PL/I, Pascal, etc.,
and the cosmetic changes are equally straightfor-
ward. We shall concentrate on showing what the
language looks like.

Statement Grouping

FORTRAN provides no way to group
statements together, short of making them into a
subroutine. The standard construction ‘‘if a con-
dition is true, do this group of things,” for
example,
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if (x > 100)

{ call error(”x>100"); err = 1; return }

cannot be written directly in FORTRAN.
Instead a programmer is forced to translate this
relatively clear thought into murky FORTRAN,
by stating the negative condition and branching
around the group of statements:

if (x .le. 100) goto 10
call error(5hx >100)
err =1
return
10

When the program doesn’t work, or when it
must be modified, this must be translated back
into a clearer form before one can be sure what
it does.

Ratfor eliminates this error-prone and
confusing back-and-forth translation; the first
form s the way the computation is written in
Ratfor. A group of statements can be treated as
a unit by enclosing them in the braces { and }.
This is true throughout the language: wherever a
single Ratfor statement can be used, there can be
several enclosed in braces. (Braces seem clearer
and less obtrusive than begin and end or do and
end, and of course do and end already have
FORTRAN meanings.)

Cosmetics contribute to the readability of
code, and thus to its understandability. The
character ‘>’ is clearer than *.GT.”, so Ratfor
translates it appropriately, along with several
other similar shorthands. Although many FOR-
TRAN compilers permit character strings in
quotes (like "x>100"), quotes are not allowed in
ANsSI FORTRAN, so Ratfor converts it into the
right number of H's: computers count better
than people do.

Ratfor is a free-form language: statements
may appear anywhere on a line, and several may
appear on one line if they are separated by semi-
colons. The example above could also be written
as

it (x > 100) {
call error(”x >100")
err =1
return

}

In this case, no semicolon is needed at the end
of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the
if is a single statement (Ratfor or otherwise), no
braces are needed:
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if (y <=00&z <=0.0)
write(6, 20) y, z

No continuation need be indicated because the
statement is clearly not finished on the first line.
In general Ratfor continues lines when it seems
obvious that they are not yet done. (The con-
tinuation convention is discussed in detail later.)

Although a free-form language permits
wide latitude in formatting styles, it is wise to
pick one that is readable, then stick to it. In par-
ticular, proper indentation is vital, to make the
logical structure of the program obvious to the
reader.

The ““else’’ Clause

Ratfor provides an else statement to han-
dle the construction ‘‘if a condition is true, do
this thing, otherwise do that thing.”’

if (a <= b)
{sw = 0; write(6, 1) a, b }
else
{sw = 1; write(6, 1) b, a }
This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The FORTRAN equivalent of this code is
circuitous indeed:

if (a .gt. b) goto 10

sw =20
write(6, 1) a, b
goto 20
10 sW =1
write(6, 1) b, a
20

This is a mechanical translation; shorter forms
exist, as they do for many similar situations. But
all translations suffer from the same problem:
since they are translations, they are less clear and
understandable than code that is not a transla-
tion. To understand the FORTRAN version,
one must scan the entire program to make sure
that no other statement branches to statements
10 or 20 before one knows that indeed this is an
if-else construction. With the Ratfor version,
there is no question about how one gets to the
parts of the statement. The if-else is a single
unit, which can be read, understood, and ignored
if not relevant. The program says what it means.

As before, if the statement following an if
or an else is a single statement, no braces are
needed:
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if (a<=0")
sWw =20
else
sw=1

The syntax of the if statement is

if (legal FORTRAN condition)
Ratfor statement

else
Ratfor statement

where the else part is optional. The legal FOR-
TRAN condition is anything that can legally go
into a FORTRAN Logical . Ratfor does not
check this clause, since it does not know enough
FORTRAN to know what is permitted. The Rat-
for statement is any Ratfor or FORTRAN state-
ment, or any collection of them in braces.

Nested if’s

Since the statement that follows an if or an
else can be any Ratfor statement, this leads
immediately to the possibility of another if or
else. As a useful example, consider this problem:
the variable f is to be set to — 1 if x is less than
zero, to + 1 if x is greater than 100, and to 0O
otherwise. Then in Ratfor, we write

if (x <0)
{=-1
else if (x > 100)
f=+1
else
f=0

Here the statement after the first else is another
if-else. Logically it is just a single statement,
although it is rather complicated.

This code says what it means. Any ver-
sion written in straight FORTRAN will neces-
sarily be indirect because FORTRAN does not
let you say what you mean. And as always,
clever shortcuts may turn out to be o clever to
understand a year from now.

Following an else with an if is one way to
write a multi-way branch in Ratfor. In general
the structure

if (...)

else if (...

else if (...

| =
|

else

provides a way to specify the choice of exactly
one of several alternatives. (Ratfor also provides
a switch statement which does the same job in

-3-
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certain special cases; in more general situations,
we have to make do with spare parts.) The tests
are laid out in sequence, and each one is fol-
lowed by the code associated with it. Read down
the list of decisions until one is found that is
satisfied. The code associated with this condition
is executed, and then the entire structure is
finished. The trailing else part handles the
‘‘default’’ case, where none of the other condi-
tions apply. 1f there is no default action, this
final else part is omitted:

if (x < 0)
X =0
else if (x > 100)
X = 100

if-else ambiguity

There. is one thing to notice about compli-
cated structures involving nested if’s and else’s.
Consider

if (x > 0)
if (y > 0)
write(6, 1) X, ¥
else

write(6, 2) ¥

There are two if’s and only one else. Which if
does the else go with?

This is a genuine ambiguity in Ratfor, as it
is in many other programming languages. The
ambiguity is resolved in Ratfor (as elsewhere) by
saying that in such cases the else goes with the
closest previous un-else’ed if. Thus in this case,
the else goes with the inner if, as we have indi-
cated by the indentation.

It is a wise practice to resolve such cases
by explicit braces, just to make your intent clear.
In the case above, we would write

it (x> 0){
if (y > 0)
write(6, 1) X, ¥
else

write(6, 2) ¥

}

which does not change the meaning, but leaves
no doubt in the reader’s mind. If we want the
other association, we must write

it (x > 0) {
if (y > 0)
write(6, 1) X, ¥
}
else
write(6, 2) ¥
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The “‘switch” Statement

The switch statement provides a clean way
to express multi-way branches which branch on
the value of some integer-valued expression.
The syntax is

switch (ezpression) {

case erprl :
statements

case expr?, exprs :
statements

default:
statements

}

Each case is followed by a list of comma-
separated integer expressions. The ezpression
inside switch is compared against the case
expressions ezprl, ezpr?, and so on in turn until
one matches, at which time the statements fol-
lowing that case are executed. If no cases match
expresston, and there is a default section, the
statements with it are done; if there is no
default, nothing is done. In all situations, as
soon as some block of statements is executed,
the entire switch is exited immediately.
(Readers familiar with C[4] should beware that
this behavior is not the same as the C switch.)

The “‘do’’ Staternent

The do statement in Ratfor is quite similar
to the DO statement in FORTRAN, except that it
uses no statement number. The statement
number, after all, serves only to mark the end of
the DO, and this can be done just as easily with
braces. Thus

doi=1,n{
x(i) = 0.0
y(i) = 0.0
z(i) = 0.0

}

is the same as

do10i=1,n

x(i) = 0.0

y(i) = 0.0

z(i) = 0.0
10 continue

The syntax is:

do legal-FOR TRAN-D O-text
Ratfor statement

The part that follows the keyword do has to be
something that can legally go into a FORTRAN
DO statement. Thus if a local version of FOR-
TRAN allows Do limits to be expressions (which

RATFOR

is not currently permitted in ANst FORTRAN),
they can be used in a Ratfor do.

The Ratfor statement part will often be
enclosed in braces, but as with the if, a single
statement need not have braces around it. This
code sets an array to zero:

doi=1,n
x(i) = 0.0

Slightly more complicated,

doi=1,n
doj=1,n
m(i, j) =0

sets the entire array m to zero, and

doi=1,n
doj=1,n

if (1< j)
m(i, j) = -1

else if (i ==j)
m(i, j) =0

else
m(i, j) =+1

sets the upper triangle of m to — 1, the diagonal
to zero, and the lower triangle to +1. (The -
operator === is ‘‘equals’’, that is, ‘. EQ.””.) In
each case, the statement that follows the do is
logically a single statement, even though compli-
cated, and thus needs no braces.

“break’’ and “next”

Ratfor provides a statement for leaving a
loop early, and one for beginning the next itera-
tion. break causes an immediate exit from the
do; in effect it is a branch to the statement after
the do. next is a branch to the bottom of the
loop, so it causes the next iteration to be done.
For example, this code skips over negative
values in an array:

doi=1,n {
if (x(i) < 0.0)
next
process positive element

}

break and next also work in the other Ratfor
looping constructions that we will talk about in
the next few sections.

break and next can be followed by an
integer to indicate breaking or iterating that level
of enclosing loop; thus

break 2

exits from two levels of enclosing loops, and
break 1 is equivalent to break. next 2 iterates
the second enclosing loop. (Realistically, multi-
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level break’s and next's are not likely to be
much used because they lead to code that is hard
to understand and somewhat risky to change.)

The ‘“‘while’’ Statement

One of the problems with the FORTRAN
DO statement is that it generally insists upon
being done once, regardless of its limits. If a
loop begins

DOI =21
this will typically be done once with I set to 2,
even though common sense would suggest that

perhaps it shouldn’t be. Of course a Ratfor do
can easily be preceded by a test

if (j <=X)
doi=1j k {

}

but this has to be a conscious act, and is- often
overlooked by programmers.

A more serious problem with the DO state-
ment is that it encourages that a program be
written in terms of an arithmetic progression
with small positive steps, even though that may
not be the best way to write it. If code has to be
contorted to fit the requirements imposed by the
FORTRAN Do, it is that much harder to write
and understand.

To overcome these difficulties, Ratfor pro-
vides a while statement, which is simply a loop:
‘‘while some condition is true, repeat this group
of statements’. It has no preconceptions about
why one is looping. For example, this routine to
compute sin(x) by the Maclaurin series combines
two termination criteria.

real function sin(x, €)
# returns sin(x) to accuracy e, by
# sin(x) = X — x**3/3! 4+ x¥*5/5! — ...

sin = x
term = X

i=3

while (abs(term)>e & i<100) {
term = —term * x*+2 / float(i*(i- 1))
sin = sin + term
i=i+ 2

}

return
end

Notice that if the routine is entered with
term already smaller than e, the loop will be
done zero times, that is, no attempt will be made
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to compute x**3 and thus a potential underflow
is avoided. Since the test is made at the top of a
while loop instead of the bottom, a special case
disappears — the code works at one of its boun-
daries. (The test i< 100 is the other boundary —
making sure the routine stops after some max-
imum number of iterations.)

»

As an aside, a sharp character “‘#' in a
line marks the beginning of a comment; the rest
of the line is comment. Comments and code can
co-exist on the same line — one can make mar-
ginal remarks, which is not possible with
FORTRAN’s “C in column 1 convention.
Blank lines are also permitted anywhere (they
are not in FORTRAN); they should be used to
emphasize the natural divisions of a program.

The syntax of the while statement is

while (legal FORTRAN condition)
Ratfor statement

As with the if, legal FORTRAN condition is
something that can go into a FORTRAN Logical
v, and Ratfor statement is a single statement,
which may be multiple statements in braces.

The while encourages a style of coding not
normally practiced by FORTRAN programmers.
For example, suppose nextch is a function which
returns the next input character both as a func-
tion value and in its argument. Then a loop to
find the first non-blank character is just

while (nextch(ich) == iblank)

’

A semicolon by itself is a null statement, which
is necessary here to mark the end of the while;
if it were not present, the while would control
the next statement. When the loop is broken,
ich contains the first non-blank. Of course the
same code can be written in FORTRAN as

100 if (nextch(ich) .eq. iblank) goto 100

but many FORTRAN programmers {and a few
compilers) believe this line is illegal. The
language at one’s disposal strongly influences
how one thinks about a problem.

The “for”’ Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop-
body from reason-for-looping a step further than
the while. A for statement allows explicit initiali-
zation and increment steps as part of the state-
ment. For example, a DO loop is just

for(i=1i<=n;i=i+ 1) ..

This is equivalent to

-5-
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i=1
while (i <=n) {

i=i+ 1
The initialization and increment of i have been

moved into the for statement, making it easier to
see at a glance what controls the loop.

The for and while versions have the
advantage that they will be done zero times if n
is less than 1; this is not true of the do.

The loop of the sine routine in the previ-
ous section can be re-written with a for as

for (i=3; abs(term) > e & i < 100; i=i+2) {
term = —term * x**2 / float(i*(i— 1))
sin = sin + term

The syntax of the for statement is

for ( init; condition ; tncrement )
Ratfor statement

tnit is any single FORTRAN statement, which
gets done once before the loop begins. tncrement
is any single FORTRAN statement, which gets
done at the end of each pass through the loop,
before the test. condition is again anything that is
legal in a logical IF. Any of i, condition, and
increment may be omitted, although the semi-
colons must always be present. A non-existent
condition is treated as always true, so for(;;) is an
indefinite repeat. (But see the repeat-until in
the next section.)

The for statement is particularly useful for
backward loops, chaining along lists, loops that
might be done zero times, and similar things
which are hard to express with a DO statement,
and obscure to write out with 1F’s and GOTO’s.
For example, here is a backwards Do loop to find
the last non-blank character on a card:

for(i=280;i>0i=1i- 1)
if (card(i) '= blank)
break

(‘t==""is the same as “.NE.'). The code scans
the columns from 80 through to 1. If a non-
blank is found, the loop is immediately broken.
(break and next work in for’s and while’s just as
in do's). If i reaches zero, the card is all blank.

This code is rather nasty to write with a
regular FORTRAN DO, since the loop must go
forward, and we must explicitly set up proper
conditions when we fall out of the loop. (For-
getting this is a common error.) Thus:
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DO10J=1, 80
I=81-1J
IF (CARD(I) .NE. BLANK) GO TO 11
10 CONTINUE
=0
11

The version that uses the for handles the termi-

nation condition properly for free; i 8 zero when
we fall out of the for loop.

The increment in a for need not be an
arithmetic progression; the following program
walks along a list (stored in an integer array ptr)
until a zero pointer is found, adding up elements
from a parallel array of values:

sum = 0.0
for (i = first; i > 0; i = ptr(i))
sum = sum -+ value(i)

Notice that the code works correctly if the list is
empty. Again, placing the test at the top of a
loop instead of the bottom eliminates a potential
boundary error.

The ““repeat-until’’ statement

In spite of the dire warnings, there are
times when one really needs a loop that tests at
the bottom after one pass through. This service
is provided by the repeat-until:

repeat
Ratfor statement
until (legal FORTRAN condition)

The Ratfor statement part is done once, then the
condition is evaluated. If it is true, the loop is
exited; if it is false, another pass is made.

The until part is optional, so a bare repeat
is the cleanest way to specify an infinite loop. Of
course such a loop must ultimately be broken by
some transfer of control such as stop, return, or
break, or an implicit stop such as running out of
input with a READ statement.

As a matter of observed fact[8], the
repeat-until statement is much less used than the
other looping constructions; in particular, it is
typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don’t handle null
cases well.

More on break and next

break exits immediately from do, while,
for, and repeat-until. next goes to the test part
of do, while and repeat-until, and to the incre-
ment step of a for.
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“‘return’’ Statement

The standard FORTRAN mechanism for
returning a value from a function uses the name
of the function as a variable which can be
assigned to; the last value stored in it is the
function value upon return. For example, here
is a routine equal which returns 1 if two arrays
are identical, and zero if they differ. The array
ends are marked by the special value — 1.

# equal _ compare strl to str2;

# return 1 if equal, O if not
integer function equal(stri, str2)
integer stri(100), str2(100)

integer i
for (i = 1; stri(i) == str2(i); i=1i+ 1)
if (str1(i) == -1) {
equal =1
return
equal = 0
return
end

In many languages (e.g., PL/I) one instead
says

return ( ezpressson)

to return a value from a function. Since this is
often clearer, Ratfor provides such a return
statement — in a function F, return(expression)
is equivalent to

{ F = expression; return }
For example, here is equal again:

# equal _ compare strl to str2;

# return 1 if equal, 0 if not
integer function equal(strl, str2)
integer str1(100), str2( 100)

integer i
for (i = 1; stri(i) == str2(i); i =i+ 1)
if (stri(i) == -1)
return(1)
return(0)
end

If there. is no parenthesized expression after
return, a normal RETURN is made. (Another
version of equal is presented shortly.)

Cosmetics

As we said above, the visual appearance of
a language has a substantial effect on how easy it
is o read and understand programs. Accord-
ingly, Ratfor provides a number of cosmetic
facilities which may be used to make programs
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more readable.

Free-form Input

Statements can be placed anywhere on a
line; long statements are continued automati-
cally, as are long conditions in if, while, for, and
until. Blank lines are ignored. Multiple state-
ments may appear on one line, if they are
separated by semicolons. No semicolon is
needed at the end of a line, if Ratfor can make
some reasonable guess about whether the state-
ment ends there. Lines ending with any of the
characters

= + - * | & (

are assumed t be continued on the next line.
Underscores are discarded wherever they occur;
all others remain as part of the statement.

Any statement that begins with an all-
numeric field is assumed to be a FORTRAN
label, and placed in columns 1-5 upon output.
Thus

write(6,"100); 100 format(“hello”)
is converted into

write(6, 100)
100 format(5hhello)

Translation Services

Text enclosed in matching single or double
quotes is converted to nH... but is otherwise
unaltered (except for formatting — it may get
split across card boundaries during the reformat-
ting process). Within quoted strings, the
backslash \ serves as an escape character: the
next character is taken literally. This provides a
way to get quotes (and of course the backslash
itself) into quoted strings:

B\

is a string containing a backslash and an apos-
trophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more
general.)

Any line that begins with the character ‘%’
is left absolutely unaltered except for stripping
off the ‘% and moving the line one position to
the left. This is useful for inserting control
cards, and other things that should not be
transmogrified (like an existing FORTRAN pro-
gram). Use ‘% only for ordinary statements,
not for the condition parts of if, while, etc., or
the output may come out in an unexpected place.

The following character translations are
made, except within single or double quotes or
on a line beginning with a ‘%'.
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—_—— .eq. l= e,
> .gt. >= .ge.
< At <= le.
& .and. | .or.
! .not. = .not.

In addition, the following translations are pro-
vided for input devices with restricted character
sets.

[
$(

]
$)

A
B e

“‘define’’ Staternent

Any string of alphanumeric characters can
be defined as a name; thereafter, whenever that
name occurs in the input (delimited by non-
alphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing white
spaces are stripped off). A defined name can be
arbitrarily long, and must begin with a letter.

define is typically used to create symbolic
parameters:

define ROWS 100
define COLS 50

dimension s ROWS), b(ROWS, COLS)
if (i> ROWS | j > COLS) ...
Alternately, definitions may be written as
define(ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right parenthesis;
this allows multi-line definitions.

It is generally a wise practice to use sym-
bolic parameters for most constants, to help
make clear the function of what would otherwise
be mysterious numbers. As an example, here is
the routine equal again, this time with symbolic
constants.

define YES 1
define NO (4]
define EOS -1
define ARB 100

# equal _ compare strl to str2;

# return YES if equal, NO if not
integer function equal(strl, str2)
integer str1{ ARB), str2(ARB)

integer i
for (i = 1; str1(i) === str2(i); i =i+ 1)
if (str1(i) == EOS)
return(YES)
return( NO)
end

RATFOR

““include’’ Statement
The statement

include file

inserts the file found on input stream file into the
Ratfor input in place of the include statement.
The standard usage is to place COMMON blocks
on a file, and include that file whenever a copy is
needed:

subroutine x
include commonblocks

end
suroutine y
include commonblocks

end
This ensures that all copies of the COMMON
blocks are identical

Pitfalls, Botches, Blemishes and other Failings

Ratfor catches certain syntax errors, such
as missing braces, else clauses without an if, and
most errors involving missing parentheses in
statements. Beyond that, since Ratfor knows no
FORTRAN, any errors you make will be
reported by the FORTRAN compiler, so you will
from time to time have to relate a FORTRAN
diagnostic back to the Ratfor source.

Keywords are reserved — using if, else,
etc., as variable names will typically wreak havoc.
Don’t leave spaces in keywords. Don’t use the
Arithmetic I1F.

The FORTRAN nH convention is not
recognized anywhere by Ratfor; use quotes
instead.

3. IMPLEMENTATION

Ratfor was originally written in C on the
UNIX operating system. The language is
specified by a context-free grammar and the
compiler constructed using the vyAcc compiler-
compiler.

The Ratfor grammar is simple and straight-
forward, being essentially
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prog :stat
| prog stat
stat :if(...) stat
| if (...) stat else stat
| while (...) stat
| for (..; ...; ...) stat
| do ... stat
| repeat stat
| repeat stat until (...)
| switch (...) { case ...: prog ...
default: prog }
| return
| break
| next
| digits stat
| { prog }
| anything unrecognizable

The observation that Ratfor knows no FOR-
TRAN follows directly from the rule that says a
statement is ‘‘anything unrecognizable’’. In fact
most of FORTRAN falls into this category, since
any statement that does not begin with one of
the keywords is by definition ‘‘unrecognizable.”’

Code generation is also simple. If the first
thing on a source line is not a keyword (like if,
else, etc.) the entire statement is simply copied
to the output with appropriate character transla-
tion and formatting. (Leading digits are treated
as a label.) Keywords cause only slightly more
complicated actions. For example, when if is
recognized, two consecutive labels L and L+ 1
are generated and the value of L is stacked. The
condition is then isolated, and the code

if (.not. {condition)) goto L,

is output. The statement part of the if is then
translated. When the end of the statement is
encountered (which may be some distance away
and include nested if’s, of course), the code

L continue

is generated, unless there is an else clause, in
which case the code is

goto L+ 1
L continue

In this latter case, the code
L+ 1 continue

is produced after the statement part of the else.
Code generation for the various loops is equally
simple.

One might argue that more care should be
taken in code generation. For example, if there
is no trailing else,

if(i>0)x=a

should be left alone, not converted into

RATFOR

if (.not. (i .gt. 0)) goto 100
X =a
100 continue

But what are optimizing compilers for, if not to
improve code? It is a rare program indeed where
this kind of ‘“‘inefficiency’’ will make even a
measurable difference. In the few cases where it
is important, the offending lines can be protected
by ‘%' .

The wuse of a compiler-compiler is
definitely the preferred method of software
development. The language is well-defined, with
few syntactic irregularities. Implementation is
quite simple; the original construction took
under a week. The language is sufficiently sim-
ple, however, that an ad hoc recognizer can be
readily constructed to do the same job if no
compiler-compiler is available.

C compilers are not as widely available as
FORTRAN, however, so there is also a Ratfor
written in itself and originally bootstrapped with
the C version. The Ratfor version was written
so as to translate into the portable subset of
FORTRAN described in [1], so it is portable,
having been run essentially without change on at
least twelve distinct machines. (The main res-
trictions of the portable subset are: only one
character per machine word; subscripts in the
form c*v4 ¢; avoiding expressions in places like
DO loops; consistency in subroutine argument
usage, and in COMMON declarations. Ratfor itself
will not gratuitously generate non-standard FOR-
TRAN.)

The Ratfor version is about 1500 lines of
Ratfor (compared to about 1000 lines of C); this
compiles into 2500 lines of FORTRAN. This
expansion ratio is somewhat higher than average,
since the compiled code contains unnecessary
occurrences of COMMON declarations. The exe-
cution time of the Ratfor version is dominated
by two routines that read and write cards.
Clearly these routines could be replaced by
machine coded local versions; unless this is
done, the efficiency of other parts of the transla-
tion process is largely irrelevant.

4. EXPERIENCE

Good Things

“It’s so much better than FORTRAN" is
the most common response of users when asked
how well Ratfor meets their needs. Although
cynics might consider this to be vacuous, it does
seem to be true that decent control flow and
cosmetics converts FORTRAN from a bad
language into quite a reasonable one, assuming
that FORTRAN data structures are adequate for
the task at hand.
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Although there are no quantitative results,
users feel that coding in Ratfor is at least twice
as fast as in FORTRAN. More important,
debugging and subsequent revision are much fas-
ter than in FORTRAN. Partly this is simply
because the code can be read. The looping state-
ments which test at the top instead of the bottom
seem to eliminate or at least reduce the
occurrence of a wide class of boundary errors.
And of course it is easy to do structured pro-
gramming in Ratfor; this self-discipline also con-
tributes markedly to reliability.

One interesting and encouraging fact is
that programs written in Ratfor tend to be as
readable as programs written in more modern
languages like Pascal. Once one is freed from
the shackles of FORTRAN's clerical detail and
rigid input format, it is easy to write code that is
readable, even esthetically pleasing. For exam-
ple, here is a Ratfor implementation of the linear
table search discussed by Knuth [7]:

A(m+1) =x
for(i=1, A(i)!=x;i=1i+ 1)

if(i>,m){
m=i
B(i) =1
else
B(i) = B(i) + 1

A large corpus (5400 lines) of Ratfor, including
a subset of the Ratfor preprocessor itself, can be
found in [8].

Bad Things

The biggest single problem is that many
FORTRAN syntax errors are not detected by
Ratfor but by the local FORTRAN compiler.
The compiler then prints a message in terms of
the generated FORTRAN, and in a few cases
this may be difficult to relate back to the
offending Ratfor line, especially if the implemen-
tation conceals the generated FORTRAN. This
problem could be dealt with by tagging each gen-
erated line with some indication of the source
line that created it, but this is inherently
implementation-dependent, so no action has yet
been taken. Error message interpretation is actu-
ally not so arduous as might be thought. Since
Ratfor generates no variables, only a simple pat-
tern of IF's and GOTO’s, data-related errors like
missing DIMENSION statements are easy to find in
the FORTRAN. Furthermore, there has been a
steady improvement in Ratfor’s ability to catch
trivial syntactic errors like unbalanced
parentheses and quotes.

There are a number of implementation
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weaknesses that are a nuisance, especially to new
users. For example, keywords are reserved.
This rarely makes any difference, except for
those hardy souls who want to use an Arithmetic
IF. A few standard FORTRAN constructions are
not accepted by Ratfor, and this is perceived as a
problem by users with a large corpus of existing
FORTRAN programs. Protecting every line with
a ‘% is not really a complete solution,  although
it serves as a stop-gap. The best long-term solu-
tion is provided by the program Struct [9], which
converts arbitrary FORTRAN programs into Rat-
for.

Users who export programs often complain
that the generated FORTRAN is ‘‘unreadable’’
because it is not tastefully formatted and con-
tains extraneous CONTINUE statements. To some
extent this can be ameliorated (Ratfor now has
an option to copy Ratfor comments into the gen-
erated FORTRAN), but it has always seemed
that effort is better spent on the input language
than on the output esthetics.

One final problem is partly attributable to
success — since Ratfor is relatively easy to
modify, there are now several dialects of Ratfor.
Fortunately, so far most of the differences are in
character set, or in invisible aspects like code
generation.

5. CONCLUSIONS

Ratfor demonstrates that with modest
effort it is possible to convert FORTRAN from a
bad language into quite a good one. A prepro-
cessor is clearly a useful way to extend or
ameliorate the facilities of a base language.

‘When designing a language, it is important
to concentrate on the essential requirement of
providing the user with the best language possi-
ble for a given effort. One must avoid throwing
in ‘‘features’’ — things which the user may trivi-
ally construct within the existing framework.

One must also avoid getting sidetracked on
irrelevancies. For instance it seems pointless for
Ratfor to prepare a neatly formatted listing of
either its input or its output. The user is
presumably capable of the self-discipline required
to prepare neat input that reflects his thoughts.
It is much more important that the language pro-
vide free-form input so he can format it neatly.
No one should read the output anyway except in
the most dire circumstances.
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Ridge C Programming Notes

This document was previously Ridge C Programming Notes, Second Edition: 9014-B (FEB 84). It is
now a section of the ROS Programmer s Guide, part 9050.

When programming in C on the Ridge 32, use this document to supplement the information found
in: Kernighan & Ritchie, The C Programming Language, Prentice Hall, Inc., 1978.

CHARACTERISTICS OF C ON THE RIDGE 32
Data Structures

The C compiler uses the following Ridge 32 data types to represent data:

C type data type bits
char character (unsigned) 8
int integer (signed) 32
unsigned int integer (unsigned) 32
unsigned short int short integer (unsigned) 16
short int short integer (signed) 16
unsigned long int long integer (unsigned) 32
long int long integer (signed) 32
float floating point 32 *
double double precision 64 *

* JEEE 754 standard representation of 32- and 64-bit floating point numbers

Ridge C data structures start on a 4-byte (1-word) boundary, except any structure containing a
double-precision number starts on an 8-byte (2-word) boundary. Most structures are an integral
number of 32-bit words in length. Structures that are members of other structures, however, start on
a 1-, 2-, 4-, or 8-byte boundary corresponding to the size of the largest type within. Therefore,
member structures that contain only 1-byte chars or 2-byte shorts will not be an integral number of
32-bit words in length.

To load a signed short integer into a register, both LOAD and SEH (sign-extend halfword) are
required. All other data types can be loaded with one LOAD instruction.

(9050) -1-
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Bit Handling
Bit fields are considered unsigned. Bit fields are assigned left to right.

Up to 31 bits can be shifted by the shift operations. Left shifts are performed with logical shift
instructions. Right shifts are performed with arithmetic shift instructions, except in the case of a right.
shift on an unsigned target, in which case the right shift is logical.

Variable Names

Ridge C variables contain any number of characters, all of which are significant. When passed to the
linker, an underscore ”_" is added to the front of the name.

Thus, "ABCdef” becomes ”_ABCdef”. The following entry should be added to the table at the bottom
of page 179 in the standard text:

Ridge any number of characters, 2 cases

Although the compiler accepts any number of characters, the C preprocessor ¢pp(1) restricts Ffdefine
variable names to 128 characters.

Void Data Type

The void data type declares that a function has no return value, or that the return value is ignored. It
may be used in a cast or in a function declaration (unless the function returns a structure). Example:

void func () ' /* declares a function */
/* with no return value */

(void) printf (*hi”); /* indicates return value */
/* should be ignored */

ASM Statement Type

Asm is a statement type which allows the inclusion of one line of up to 50 characters of Ridge
Assembler code in the C program. Multiple ASM statements are allowed in a C program. Example:

asm ("P2 LOAD RI, varl”);
asm (~ LOAD R2, var2”);
asm (~” EADD R1, R2%);

The syntax of the included assembly statements must conform to the rules in the Ridge Assembler
Reference Manual (part 9005).

Traps
bit of the trap enabled
”trapword” by setting bat
16 integer overflow
17 integer divide-by-zero
18 real overflow
19 - real underflow
20 real divide-by-zero
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See signal(2) in the Ridge Operating System Reference Manual for a discussion on enabling, disa-
bling, and ignoring traps.

Order of Evaluation
The ROS C compiler pushes arguments onto the stack from left to right, except that any nested func-
tion calls are performed first (with the results of the nested calls left in temporary variables). Exam-
ple:

fun(a, f(a=3));

can be thought of as:

temp == f(a==3);
fun (a, temp);

If the variable "a” were initially equal to 5, the result of this bad progra,mmihg practice would be:
fun (3, temp);
not
fun (5, 1(5));
as might have been expected.
Structure Assignment
Structures may be assigned, passed as arguments to functions, and returned by functions. The types
of operands taking part must be the same. Other plausible operators, such as equality comparison,
have not been implemented. )

Structures that are Passed as Arguments

Structures that are passed as' arguments are passed by value. The caller pushes the structure onto the
stack, then calls the function which uses the stacked copy of the structure.

Functions Returning Structures

Functions returning structures are completely interruptable. The calling function places the address
and the length of a local structure return area in the stack frame. Upon exit, the called function
copies the structure which it is returning into this space.

Predefined Names

“ridge” and ™unix” are pre-defined to the value "1” by the C preprocessor cpp(1).

(9050) -3-



Programmer$s Guide C Notes

Enumeration Type

There is a new data type analogous to the scalar type of Pascal. Add the following to the type-
specifiers in the syntax on page 193 of the standard text:

enum-specifier
with syntax:

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
tdentifier
tdentifier = constant-expression

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a
struct-specifier; it names a particular enumeration. For example:

enum color {chartreuse, burgundy, claret, winedark };

XYY

enum color *cp, col;

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer
to an object of that type, and col as an object of that type.

The identifiers in the enum-list are declared as constants, and may appear wherever constants are
required. If no enumerators with = appear, then the values of the constants begin at 0 and increase
by 1 as the declaration is read from left to right. An enumerator with = gives the associated
identifier the value indicated; subsequent identifiers continue the progression from the assigned value.

Enumeration tags and constants must all be distinct, and, unlike structure tags and members, are
drawn from the same set as the ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct from objects of all other

types, and linf1) flags type mismatches. In the Ridge implementation, all enumeration variables are
treated as if they were int.
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C RUNTIME ENVIRONMENT

Code and Data Segments

The separate data and code segments are arranged as follows:

initial
stack frame

expansion area

user-allocable space
(via SBRK and HXK
system calls)
static
uninitialized
data
static
initialized
data

/lib/crt0.0, which is
linked at the beginning
of every C program, gets
the arguments and en-
vironment from the user
moni tor process, builds
the argument and envi-
ronment pointers,

stacks the first three
program parameters (env,
argv, and arge), builds
the initial stack frame,
and initializes R14 and
R15. /lib/crt0.0 also
moves the data initial-
izers from the code seg-
ment into the data seg-
ment and clears the
static unitialized data
area in the data seg-
ment. /lib/mert0.0 is
the version of c¢rt0 used
when profiling.

R15 ODE SEQVENT
high|--cccccmmcnmcacanana. |
menmory | |
| initialized data I
| |
[==mmmmmemmeeeeee s |
Ri14 | I
| |
| code |
| |
I |
I |
| l
| |
R R LT |
| |
| code |
| file |
| header |
| [see a.out(4)] |
i
| 00000000 | --------------------- ‘

(9050)
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Use of General Registers
RO through R5 - scratch registers
R6 through R13 - register variables
R14 - top-of-stack pointer
R15 - current frame pointer

Stack Frames

With each procedure call, the current runtime environment is recorded and pushed onto the data
stack in a structure called the stack frame. The stack frame is arranged as follows:

Ri4 (TOP-CF-STACK)

| |

| parameters . [ ... Parameters are aligned on
| parm3 | R15 + 40 8-byte boundaries.
| parm2 | R15 + 32

| parmt | R15 + 24
U |

| return structure length | R15 + 20

| return structure address | R15 + 18

|#of parms passed to procdr| R15 + 12 (if cc -g option is used)
| “old register 15 | R15 + 8

| (unused) | R15 + 4

| return address | R15
s |

| R8 | R15 - 4

| register R7 | Ri15 - 8

| save R8 | R15 -12

| area R | R15 -18

| R10 | R15 -20

| R11 | R15 -24

| R12 | R15 -28

| R13 | R15 -32

R —— |

| varl | R15 -38

| var2 | R15 -40

| var3 | R15 -44

| vard | ...

| varS | ...

| |

| l

|
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the 8-byte C parm:

| 1ow

|
T e st »

| hi |
| INTEGER

|HAR |1 ow

I
LT ST S
|

hi |

+---DOUBLE ---+

|
|

|1ow

SHCRT

|
e S
|

hi
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A stack of environments, therefore, has the form:

DATA SEQVENT
FFFFFFFF |-ccccemmaeaaann e ccaaaaaaaa | (high memory)
|
FFFFF000 | argument page |
(RS |
FFFFEO0O | environment page |
[EET e |
FFFFDOOO | user nmonitor page |
: |
| |
| parameters |

" | return structure length |
| return structure address |
|#of parms passed to procdr |

- old register 15 |
| (unused) |
-> | return address |

locals and temporaries

parameters

|

|

+

+

|

|

|

|

|

|

|

| | return structure length |

| | return structure address |

| |#fof parms passed to procdr|

+-- | old register 15 |
| (unused) |

+->| return address |

|

:

|

|

|

|

|

|

|

|

+

locals and temporaries

parareters

| return structure length |
| return structure address |
|#of parms passed to procdr |
-- old register 15 |
| (unused) !
| return address |

| locals and temporaries |
: | (low memory)
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Up to eight variables per function can be defined to reside in a register. "Floats” and "doubles”, how-
ever, are defined as regular stack variables even if the prograinmer tries to define them as register
variables. If more than 8 variables are defined as register variables, only the first eight will actually be
stored in registers; the excess will become regular stack variables. When a procedure is called and the
current environment is stored on the stack frame, the registers containing variables also must be
stored. One of two conventions apply to the method of storing the register variables.

By default, C procedure calls are compiled as follows:

store R11,R14,0 ;Store return address in R14.
store R15,R14,8 ;Save previous R15 in (R14 + 8).
move R15,R14 ;Point R15 to new stack frame.
laddr R14,R14,x ;Add x to the top-of-stack pointer,

;where x equals number of bytes
;10 represent new environment.

br regsave ;INow the registers must be saved.
regreturn:
...code of the procedure...
;Now it’t time to return to caller.
move R14,R156 ;Restore previous Top-Of-Stack pointer.
load R15,R14,8 ;Restore previous frame pointer.
load R1l1,R14,0 ;Load R11 with return address.
ret R11,R11 _ ;Return to calling function.
regsave: ’
store R13,R15,-32 ;Save register variables in register-save area
store R12,R15,-28 ;Save another register variable.

br regreturn ;

(9050) ' --
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PREFACE

This manual documents the Ridge Pascal language, which is based on
the standard language as defined by Jensen and Wirth in the "Pascal
User Manual and Report." The Ridge language shares various
modifications to the base language, including traditional
improvements to case statements, character synonyms, comments, and
declarations, with other Pascal implementations. The