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ABSTRACT 

The Ridge operating system is decomposed into processes and 
relies on message passing for its interprocess communication. 
Messages and processes are used to improve reliability and ex
tensibility and to facilitate networking. The challenge was to 
provide a high performance UNIXt implementation in this en
vironment. The technique used was to blend in other operat
ing facilities, such as virtual memory, with the message sys
tem. Key aspects of the design were to minimize the number 
of primitives and to provide support from the Ridge instruc
tion set architecture. 

1. INTRODUCTION 

AB computer technology has evolved over the last twenty 
years, new market classes of computers have evolved. The 
1960's brought the creation of the minicomputer and desktop 
calculator. The seventies saw the emergence of the super
minicomputer and microcomputer chip technology. Now the 
1980's have brought personal computers and workstations. 
The Ridge 32 computer was created to fill a niche in the per
formance curve between microprocessor-based workstations on 
the low end and the coming generation of superminicomputers 
on the high end. The Ridge was designed to explore the high 
end of the personal computer and workstation spectrum of 
performance, with a particular emphasis on delivering the 
most performance for the least cost. 

Ridge has concentrated its efforts on the computational inten
sive portion of the scientific and engineering market, which 
means large programs, lots of floating point operations, high
speed graphics, fast disks, and high-bandwidth networks. The 
Ridge is particularly well suited for computer-aided-design 
and computer-aided-engineering applications. 

The Ridge 32 machine was designed as a complete computer 
systems effort, including a new instruction architecture, I/O 
bus, and operating system. Later, its style of instruction 
architecture became known as Reduced Instruction Set 
Computer (RISC). 

t UNIX is a trademark of AT&T Bell Laboratories 
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What Came Before 

The designers of the Ridge system had previously been 
involved in the development of a 1970 generation 
superminicomputer, a system that in many ways is in 
complete contrast to the new system: 

a. The system required special air conditioning and power. 
It usually lived in a computer room. 

b. The instruction architecture was extremely complicated, 
with a very high instruction count and many addressing 
modes. 

c. The various levels of the hardware and software were 
"closed". Hardware and software were intertwined and 
the details were hidden from the user, both to protect 
the naive user and to protect the corporation's technical 
knowhow. 

The problems with this type of system included: 

a. The high cost and special environment made the 
purchase and acquisition of such systems difficult. The 
six-figure system cost required upper management of a 
corporation or laboratory to approve the purchase. 
Then, since the computer was so expensive, major 
attention was paid to squeezing the most out of it by 
attaching as many users as possible. Control of the 
machine was removed from the individual user, and 
elaborate protection and accounting schemes were put 
into place to prevent any user from getting too much of 
the computing resource. 

b. The complicated (some would say baroque) instruction 
set architecture made it difficult to make higher
performance systems, or to lower the cost on similar
performance systems. 

c. The closed nature of the system required that all 
software be created by the manufacturer. This type of 
architecture is incompatible with today's world, in 
which a large number of independent software vendors 
sell programs for a large number of machines. 



Design Requirements 

The Ridge design had to meet several stringent constraints. 
First, the machine's performance had to be from one to four 
MIPS, with prices ranging from $40,000 to $100,000. The 
machine was to run in an office environment with no special 
power or air conditioning. It was anticipated that the 
machine would be used by a small number of users (one to 
four) who would be part of a project that frequently used one 
application that consumed hours and processor time and 
many megabytes of disk storage. 

The operating system needed to fill several needs. For the 
user running one application for hours, the operating system 
must generally stay out of the way and provide the complete 
computer resource to the application. At other times, the 
operating system would be expected to pass large volumes of 
data to and from the disk, so good file system performance 
would be required. 

A third major need was extensibility. Operating systems are 
never finished; they are always under construction. Constant 
changes to the system provide a large and steady supply of 
bugs. Thus, the design should make additions simple and 
allow bugs to be quickly eliminated. 

TO THE RESCUE: A RADICAL APPROACH 

The Ridge system design began as a retreat from the complex, 
monolithic system to one of severe simplicity. The idea was 
to base the operating system upon a very small set of 
principles. This brings to mind the now traditional layering 
concept. However, a system that is more "flat" rather than 
"deep" was desired. If the operating system itself was made 
up of underlying layers, high performance hardly seemed 
possible. Also, complex applications, such as databases, 
access the "levers of power" and re-implement many parts of 
the operating system because the cost associated with 
penetrating all the operating system layers is too high. The 
Ridge Operating System was designed to make this 
unnecessary. 

There were two operating system principles which seemed to 
fit the new mold: messages and virtual memory. Previous 
systems drawn upon include two message-based operating 
systems, Guardian[4] and DEMOS [3], and the IBM system 
38[6], which implements single-level store in a large virtual 
address space. 

Sections 2 and 3 below give a basic overview of the Ridge 
hardware and operating system. Section 4 attempts to justify 
the design strategy in decomposing the system. The "meat" of 
the article is Section 5, the message system design, hardware 
support, and message system performance. Finally, system 
performance, related works, and a critical review of the 
system is presented in Sections 6 through 8. 
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2. HARDWARE OVERVIEW 

The Ridge 32 is the first commercial example of. a new 
generation of computer architectures that use simplified 
hardware to provide high performance at reduced cost [2]. 
The Ridge is a RISC-style machine as described by 
Patterson[8]. 

The Ridge 32 utilizes 32-bit architecture to provide both 32-
bit arithmetic and 32-bit addressability. Both single and 
double precision floating point are supported. The processor 
is implemented in standard Shottky logic, and fits on three 
fifteen by sixteen inch printed circuit boards. The processor 
uses sixteen general purpose registers, cycles in 125 
nanoseconds, uses a 256-byte code cache with no data cache, 
and can load or store a 32-bit word to memory every three 
cycles. Simple instructions, such as integer add or shift, 
execute in one cycle, while more complex instructions, such as 
single-precision floating point add, execute in five cycles. 

The system contains one or more I/O boards, each of which 
has its own DMA. The I/O boards communicate with 
memory over a common bus that is separate from the CPU 
bus. Minimum system configuration is an 8~Mbyte disk and 
four Mbytes of main memory. Terminals may be standard 
asynchronous devices or high resolution bit-mapped displays 
with keyboard and mouse. Ridge systems are frequently 
connected to Ethernett to provide communication with other 
Ridge computers, as well as with computers manufactured by 
other vendors. 

3. SOFTWARE OVERVIEW 

As illustrated in Figure 1, the Ridge operating system (ROS) 
consists of a kernel and a set of server processes. The basic 
server processes are: 

• User Monitor. Provides the UNIX interface to user 
processes. 

• Directory Manager(s). Manage the directory structure for 
all named objects, including files and devices. 

• Volume Manager(s). Manages disk space. 

• Virtual Memory Manager. Implements memory 
mangement and high level scheduling policies. 

• Network Server. Provides network access. 

• File Manager(s). Provides file system services to individual 
files. 

With this set of server processes, the ROS kernel needs to 
provide only the most basic support for memory management, 
interprocess communication, and interrupt handling. This 
greatly reduces the kernel size to only eight kilobytes of 
assembly language. 

t Ethernet is a trademark of XEROX Corporation. 



In traditional operating system implementations, a system 
call traps to the kernel. In ROS, a system call is an entry in 
a runtime library, which packages the request as a message 
and sends it to the user monitor. The user monitor performs 
the system service, either directly or indirectly through the 
use of other ROS server processes, and sends a reply message 
back to the user process. One user monitor is created for 
each terminal on the system, and provides most of the 
security checking for user requests. This allows the remainder 
of the operating system to be simpler, open, and free of 
protection requirements. 

ROS emulates the UNIX hierarchical file system. Each UNIX 
file system is managed by a directory manager and a volume 
manager. The directory manager maintains the namespace 
for objects on that file system. The volume manager controls 
space allocation and maintains file control information, such 
as file owner, group, and reference count. These processes are 
both virtual and pageable. File name lookups are much faster 
than traditional UNIX systems because the opening of a file 
for each directory is avoided and a cache of recent directory 
entries is maintained by the virtual memory system. 
Applications that read the directory as a file are connected to 
the directory manager, which then behaves as a file manager 
by providing the relevant UNIX file system calls. 

Kernel 

Hardware 

Figure 1. ROS Overview 
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Devices may also be entered in the directory structure, as in 
traditional UNIX. A directory entry for a device points to an 
associated device manager. If a device entry is encountered 
when parsing a pathname, the remainder of the path name is 
passed to the device manager. This permits a manager to 
implement its own arbitrary naming scheme, which in turn 
permits extension to a distributed, heterogeneous 
environment. 

A device manager operates together with the kernel to 
manage its device. The kernel guarantees a process exclusive 
access to the device by making the device manager the 
recipient of interrupts from the device. The kernel forwards 
interrupts in the form of messages to the device manager. 
Since device managers are implemented as processes, they 
may be initiated and dynamically bound to the device. This 
allows multiple device managers to exist for the same physical 
device, although only one device manager may have access to 
a device at a time. Thus, device managers are easy to 
develop, and do not require re-compilation or re-binding of the 
kernel. 

When a data object is opened, the user monitor connects the 
user process to an appropriate I/O manager. This manager is 
either dynamically created or it is a static device manager. 
Once the connection is made, the user process performs I/O 
directly with the manager, bypassing the rest of the operating 
system. 

Examples of static I/O managers are the device managers for 
the RS232 terminals, tape, and line printer. I/O managers 
are created dynamically for files and pipes. Each open file is 
managed by a separate file manager, whose data space is the 
contents of the file. Similarly, pipes are associated with pipe 
managers, whose data space is the contents of the pipe buffer. 

Creating one process per open file may seem to be rather 
startling at first, but it does have its advantages. First, file 
manager processes place files into the process model in which 
all system services are provided by server processes. Second, 
by making a file the data space of a process, it was easy to 
create a combined virtual memory/file system. 

The virtual memory manager is responsible for bringing pages 
from disk into main memory. Because virtual memory is 
combined with the file system, the virtual memory manager 
pages only files in from disk. Program code and data are files 
created and managed by the volume manager. For efficiency 
reasons, the disk driver is part of the virtual memory 
manager. Consequently, only the virtual memory manager 
has direct access to the disk and can allocate main memory. 
This allows the entire main memory to be treated as a disk 
cache and provides an opportunity for high file system 
throughput by utilizing the virtual memory manager to 
manage the file buffer cache. 

UNIX applications operate in the ROS environment exactly as 
they operate in the UNIX environment. Porting them 
primarily consists of eliminating machine dependencies and 
recompiling them. 



4. JUSTIFICATION 

As stated previously, the idea was to provide two basic 
facilities -- messages and virtual memory -- make them as 
simple as possible, and build the operating system and user 
environment on top in a very "flat" manner. The motivation 
for this environment was to reduce the amount of "special" 
code to an absolute minimum, and to keep it at a minimum 
by discouraging the operating systems programmer from 
adding high level functionality into the kernel. Every effort 
was made to make sharing difficult or impossible, in the belief 
that pathological and time-dependent bugs come through 
unknown or poorly understood functions due to sharing. 
Although semaphores and monitors fix these problems, as long 
as shared memory is available, programmers may "forget" to 
use a semaphore and cause subtle bugs. 

Ridge hardware was designed to complement this model. The 
processor has only two modes: user and kernel. User mode 
uses virtual addresses and is interruptable. Each user process 
has a separate virtual address space, which protects processes 
from each other. Shared memory is not permitted. (This did 
not work out too well in practice. Section 8 discusses this in 
detaiL) 

The kernel is intended for only the most basic of operating 
system functions. To simplify both the instruction set and the 
operating system model, interrupts are disabled in kernel 
mode. Therefore, only functions that are guaranteed to 
complete in a short interval may be placed in the kernel. The 
kernel code is non-interruptible in order to keep functionality 
in the kernel limited and to rule out asynchronous bugs. 
Usually the most difficult and seldom occurring bugs in an 
operating system lie deep within it, and frequently are created 
when some new feature violates timing or priority rules that 
have long since been forgotten. By making the kernel 
"synchronous", bugs should pop up early and be reproducible 
without having to wait for circumstances such as "fails under 
heavy load". Also, kernel mode uses only real addresses, 
making it difficult to peer into the user data space in 
performing operating system functions. Given these 
restrictions in the kernel, operating system functionality must 
nearly all be placed in user processes. 

5. THE MESSAGE SYSTEM 

The ROS message system was created from three guidelines: 

Performance 

Protection 

Simplicity 

Round trip message time should be below 
one millisecond. In order to decompose the 
operating system into multiple processes 
and to use multiple messages to perform a 
function, overhead due to messages and 
context switching must be kept at an 
acceptable level. 

Since messages are the key component in 
the ROS architecture, it was decided to 
handle them within a protected address 
space, with access controlled by the 
message primitives. 

The functions were to be few and simple in 
order to keep the size of code small and the 
number of bugs at a minimum. 
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The message system is described in detail according to the 
outline below: 

a. Message primitives. 

b. Data movement. 

c. Context switching. 

d. Trace execution of a round-trip message. 

e. Hardware support and special instructions. 

f. Performance. 

The message system is connection-oriented. Processes send 
messages over a communication channel called a link, and 
messages are placed in a queue. Links, queues, and messages 
reside in a data space called a "queue segment", which can 
only by accessed by the kernel. Each process has its own 
queue segment, which is virtual, paged, and has a maximum 
size of four gigabytes. Making the queue segment virtual 
simplifies the message system, so that buffering and dynamic 
allocation of data structures are handled by virtual memory, 
rather than by the message system. 

Message Primitives 

When a process is created, its queue segment must be 
initialized by making the following kernel call: 

ErrReturn := InitQSeg ( NumLinks, NumQueues, 
NumMessages, NumPages); 

This establishes the maximum number of links and queues in 
the queue segment. Also set are the maximum number of 
messages for all links, NumMessages, and, for large amounts 
of data, the maximum number of pages, NumPages. 

In order to receive messages, a queue must be opened: 

ErrReturn := OpenQueue (NumMessages, MyQueue); 

NumMessages specifies the maximum message count in the 
queue, and MyQueue is a descriptor used for receiving 
messages. The next step is to open a link to another process 
queue: 

ErrReturn := OpenLink (ReceiverProcessId, 
ReceiverQueue, MyLink); 

The process opening the link specifies the process identifier of 
the receiver, ReceiverProcessld, and the number of the queue, 
ReceiverQueue that will receive the messages. The OpenLink 
call returns MyLink, which is used as a descriptor when 
sending messages. The link number, MyLink, and the queue 
number (MyQueue, above) are both small integers, similar to 
UNIX file descriptors. 

The processes are now ready to communicate. Data can be 
passed in both short and long messages. A message is sent by: 

ErrReturn := Send (MyLink, Message); 



This places a 32-byte message in the queue pointed to by 
MyLink. In addition to a short message, up to 4096 bytes (one 
page) can be sent with the following function: 

ErrReturn := SendData ( MyLink, Message, 
Address, NumBytes); 

Address is the location specifying NumBytes as a byte count of 
data to be sent. Both Send and SendData are asynchronous, 
which allow the sender to continu,e processing after the 
message has been queued, although most clients immediately 
wait for a reply from the server before continuing. Messages 
are received by: 

ErrReturn := ReceiveData( MyQueue, Message, 
Address, NumBytes, SenderId); 

The next Message is read from the queue MyQueue along with 
NumBytes of data. If there is no message, ReceiveData blocks 
and waits until a message is placed into the queue. Address is 
the location for received data. Senderld is the process 
identifier of the sender. If the message is a short message, 
this is indicated by an ErrReturn value. 

The message system provides other primitives, which are only 
briefly mentioned here: 

Test Tests a queue for the presence of a message. 
Test is used in place of ReceiveData when 
blocking on an empty queue is not desired. 

Arm and Wait Processes may wait for multiple 
asynchronous events. Each asynchronous 
queue is Armed. The process then calls 
Wait. When a message is placed in an 
Armed queue, the process is awakened from 
the Wait. Test is then used to determine 
which queues have messages, and 
ReceiveData is used to receive messages from 
the queues. Prioritization of multiple 
asynchronous events is handled by making 
Tests in priority order. 

Data Movement 

Study of other message systems showed that short, fast 
messages were desirable and would be the most frequent. 
Passing I?essages in registers (as the message system does) 
hel~s to lDcrease performance. Eight of the sixteen general 
reg~sters are used to hold a 32-byte message, leaving eight 
regIsters for scratchpads, environment, and stackframe 
pointers. 

Large amounts of data are passed through the message 
syste.m in 4096-byte pages. Transfers longer than a page use 
multiple messages. Limiting the maximum amount of data to 
one -page simplifies buffering by the kernel in the queue 
segment and in the receiving process. Receiving an arbitrary 
amount of data requires dynamic heap allocation, which 
reduces performance. DEMOS and the Stanford V system [5] 
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solved this problem by introducing separate calls to handle 
data transfer. The dialogue proceeds something like: 

Client: "I'm sending you 10,000 bytes of data". 
Server: "I'll accept the data". 
Message system moves data from client to server. 

Although this allows an arbitrary amount of data to be 
transferred, the receiver needs to know how big a buffer is 
required. As a consequence, a synchronous send is used. Since 
it was desired to keep the ROS message system asynchronous, 
the data is transferred along with the message in the Send 
primitive. (However, measurements of the system have shown 
most messages to be synchronous. This decision is revisited in 
Section 8.) 

The virtual memory system and message system work 
together to provide file system services. Each open file is 
accessed with a file manager process. The file data is passed 
one page at a time, using SendData. For example, on a file
read, the file manager calls SendData to pass the page of data 
at the current file position, through the message system, to 
the user process. The kernel checks to see if the page at that 
address is present in main memory and, finding it absent 
locates it out on the disk. The kernel then generates a pag~ 
fault for the file manager and sends a page fault message to 
the virtual memory manager. The disk page is then read-in 
by the virtual memory manager. 

Context Switching 

In order to improve message system performance, context 
switching and low-level scheduling are included in the message 
system. The kernel maintains the context and priority for 
each process in.a process control block. The processes waiting 
to be executed are placed in descending order in a ready list. 
The kernel then dispatches the highest priority process on the 
ready list. 

Processes with empty message queues are removed from the 
ready list. (Processes are also removed from the ready list on 
page faults.) Executing a ReceiveData on an empty queue 
suspends the process and removes it from the ready list. 
Sending the process a message places it again on the ready 
list; the process will become active when it becomes the 
highest priority process on the list. 

Processes are generally scheduled as a result of sending and 
r~ceiving messages, but there are two other scheduling 
CIrcumstances. When an interrupt occurs, the kernel places 
an interrupt message in the interrupt queue of the driver 
process, which is then placed on ready list. If the driver has a 
higher priority, then the currently executing process is 
suspended and the driver is scheduled and dispatched. A 
timer interrupt causes time-slicing scheduling to occur every 
twenty milliseconds. If the currently executing process has 
had its time-slice, and another process of equal priority is on 
the ready list, the waiting process is dispatched. 



A Round Trip Message 

Let's follow a message from a user client process to a server 
process. The client loads the message into registers, then 
issues a Send. The kernel verifies that the specified link is 
valid, then checks the state of the server process queue. Note 
that both these checks are made on virtual data structures in 
the queue segment. Should any data be absent, the kernel 
sends a page fault message at the appropriate address in the 
queue segment to the virtual memory manager. Mter the 
page fault completes, the client continues executing Send. 

Much of the traffic in the message system consists of higher 
priority servers waiting for messages. In order to improve 
message system performance, high-priority servers are given 
special treatment. If the server process is blocked when a 
message is put on its message queue, the kernel checks the 
server's priority. If the server has higher priority, the kernel 
suspends the client and starts the server running as if it had 
just executed a ReceiveData. The message is transferred 
directly in the registers without making any copies. In this 
way, a single entry into the kernel performs a Send, context 
switch, and a ReceiveData. If the server isn't waiting for a 
message, or does not have a higher priority, then the message 
is placed in the server's message queue and the client 
continues executing. 

The server performs its function, then Sends a reply message 
to the waiting client. If the server has a higher priority than 
the client, the message is placed in the client's message queue. 
The client is then put onto the ready list and executed when 
it becomes the highest priority process. 

Mter sending a reply message to the client, the server then 
does a ReceiveData. Since there is no message, the kernel 
suspends the server and removes it from the ready list. The 
kernel then starts the process at the head of the ready list, 
which in this case is the client. The client begins executing 
just after the Send, issues a ReceiveData, a.nd locates the 
message. The round trip is completed. 

Hardware Support 

The Ridge operating system and processor were designed at 
the same time, allowing close cooperation at the 
software/hardware interface. Mter the main instruction set 
was defined, sixteen opcodes (out of 256 total) were set· aside 
for "privileged" instructions. These instructions were to be 
used for message system support, virtual-to-real translation 
and I/O instructions. ' 

There are four instructions used by the message system: 

Kernel Call 
Resume User Mode 
Load User Sta.te 
Save User State 

Approximate Execution 
Time in Microseconds (cycles) 

1.625 ( 13) 
0.750 ( 6) 

12.875 (103) 
6.750 ( 54) 

Crea.ting the above special instructions does contradict the 
design principle of a reduced instruction set computer, but 
without them the performance objectives could not be met. 
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Kernel Call and Resume User Mode 

All message system functions are place" in the kernel and 
accessed via the Kernel Call instruction Kernel Call enters 
the kernel at one of 256 possible entry pomts (so far there are 
about 80 kernel functions), switches from user to kernel mode, 
and saves the user program counter in a special register. 
When the kernel is finished executing, it uses the Resume User 
Mode to return to the user. This instruction reloads the 
program counter from the saved register, sets virtual (user) 
mode, and starts the user executing again at the instruction 
following the Kernel Call. 

Save User State and Load User State 

The Save User State and Load User State instructions are 
used to save and load the general purpose registers and 
environment registers. The Save User State is generally 
executed by the kernel upon entry to a function, and the Load 
User State is executed by the kernel at the exit of a function, 
which is immediately followed by a Resume User Mode 
instruction. Every effort was made to minimize the amount of 
environment information needed on context switch. The 
complete process state used by the hardware was reduced to 
nineteen words: sixteen words containing the registers, plus 
three control words. 

The Load User State instruction reads three 32-bit words 
from main memory in addition to the registers. These are: 

• program counter 

• code and data segment number (the upper sixteen bits of 
the virtual address. 

• traps word containing bits specifying the enabling or 
disabling of integer overflow, floating pointer overflow, and 
other arithmetic traps. 

The Save User State instruction saves the program counter in 
addition to the general registers. The traps word need not be 
saved, as it is not modified when the process is running. The 
execution times quoted above for the instructions include 
moving all sixteen general purpose registers. These 
instructions specify which registers are to be affected, and 
along with a count, permit the kernel to save and restore 
fewer registers. 

Message System Performance 

A round trip message· executes approximately 150 instructions 
and takes 190 microseconds. Table 1 shows the time spent in 
each function. Context switch time is estimated to be 30 
microseconds. The time spent is roughly divided into three 
portions: 1/3 in the kernel instructions (including saving and 
restoring the user state), 1/3 translating virtual addresses to 
real data and moving the data (for a short 32-byte message), 
and 1/3 making decisions and context switching. 



Round Trip Message Time in Microseconds 

Client - Send to Higher Priority 
Process (Run Server) 60 

Server - Send to Lower Priority Process 50 
Server - Receive and Block, Queue Empty 40 
Client - Receive 40 
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Table 1. Message System Performance 

The above round trip time does not quite tell the whole story. 
The message system functions are embedded inside library 
code that is bound to the calling program. The procedure call 
overhead for the round trip is about 20 microseconds. The 
compiler loads the parameters for the function from memory, 
stores them on the stack, then makes the procedure call. The 
message function must then load the parameters from the 
stack into the registers again. 

Making the message system functions built-in functions in the 
compilers would eliminate much of the overhead caused by 
storing and loading from the stack, but would limit the 
flexibility of changing message system functions. 

Message system performance has proved to be quite 
satisfactory and has not proved to be the factor limiting 
performance in the operating system. Two areas in the 
message system, however, have been selected for 
improvement. The first area is hardware. Currently, the 
processor requires sequential flushing of a small code cache 
and virtual mapping table on context switch, which requires 
eight microseconds. New versions of the processor have 
eliminated this, The second area is to provide a synchronous 
interface that would reduce the number of kernel calls from 
four to two. Most message traffic is between servers and 
clients, and resemble procedure calls. The asynchronous 
capability of the message system is never used and, without 
the addition of two kernel calls, performance can be increased 
by about one third. These two improvements and careful 
recoding of the message system should decrease round trip 
message times to 100 microseconds. 

6. SYSTEM PERFORMANCE 

Table 2 compares ROS performance with UNIX on the VAX 
11/780 on several key factors that affect system performance. 
Both systems were similarly configured, adequate memory was 
present and disk system speed is roughly equal. All programs 
were written in C. 
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Test Name 

Write 8MB 
Read 8MB 
Copy 8MB 
Pipe 8MB 
getpid 
sbrk 
creat 
fork 8KB 

Ridge 32 
4 Mbytes Memory 
Fujitsu Eagle Disk 
ROS 3.2 

499KB/sec 
611KB/sec 
303KB/sec 
435KB/sec 
52K/sec 
62K/sec 
16/sec 
13/sec 

VAX 11/780 
8 Mbytes Memory 
RA81 Disk 
UNIX 4.2bsd 

142KB/sec 
202KB/sec 
243KB/sec 
243KB/sec 
5K/sec 
2K/sec 
30/sec 
28/sec 

Table 2. Performance Comparison 

The write, read, and copy programs measure file system 
throughput. The write program creates a dummy file by 
repeatedly writing the same 8 Kbyte blocking of data until 8 
Mbytes have been written. The read program does the 
opposite, reading all the data into the same 8 Kbyte array in 
memory. Although these programs are trivial, they do 
measure raw file system speed. The copy program is the 
UNIX cp program, making a copy of an 8 Mbyte file on a 
relatively empty disk. The ROS times are very good, and can 
be significantly improved by a synchronous message system. 
These programs illustrate how the message system moves 
data, and the relationship between virtu,al memory and the 
message system. 

There are two special features of the system which help make 
the file system fast. The first is the use of hardware providing 
copy-on-write pages. If the data is page-aligned, rather than 
copy the 4096 bytes of data, the virtual memory page table 
entry pointing to the data is copied instead. Only when a 
store operation is attempted will the data be copied. In the 
case of a file system read, the data is never written, so the 
data is never copied. Performance measurements have shown 
that the use of copy-on-write boosts file system performance 
by approximately 20%. 

The second feature which makes the file system fast is the use 
of contiguous disk allocation by the volume manager and 
read-ahead and write-behind by the virtual memory manager. 
During sequential disk activity, the virtual memory manager 
reads up to sixteen pages ahead. Since files are paged into 
memory by the virtual memory manager, during periods of 
intense file system activity, all of main memory can be 
treated as a file system cache. For example, if a n~w: file is 
created and 1 Mbyte is written into it, it is unlikely that any 
of the file would he w.ritten to disk. When the file is closed it 
is flushed from main memory and written to disk in sixte~n
page transfers. This use of multiple page transfers J>rovides a 
big performance improvement. The file system throughput 
without read-ahead, write-behind, or copy-on-write is 
approximately 250,000 bytes per second. 

In regard to further improving file system p.erformance, it 
should be noted that for a file system read (or write) the data 
is copi~d twice. (If the data is page-aligned, the page table 
entries are copied twice.) Eliminating the copy into the queue 
data pa.ge should provide another ten percent improvement. 



Other test program results from Table 2 are summarized 
below: 

pipe 

getpid 

sbrk 

creat 

fork 

DEMOS 

This program sends 8 Mbytes of data through a 
UNIX pipe. The ROS message system is used to 
create pipes. 

The process id is returned to the calling process. 
In ROS this is a kernel call, and does not involve 
the message system. This demonstrates that 
entering the Ridge kernel is very inexpensive. 

This is the number of UNIX sbrk system calls that 
can be executed per second. sbrk dynamically 
allocates data. In typical UNIX systems, this is 
handled by going into the kernel and manipulating 
system tables. In ROS, no kernel call is made. 
Instead a run-time space allocator merely bumps 
the space pointer. Actual memory allocation is 
made when the data area is referenced and causes 
a page fault. 

Creates new disk files and closes them repeatedly. 
This measures how fast files can be opened and 
closed. ROS performance is discussed in Section 8. 

Measures the number of UNIX fork (clone a 
process) system calls that can be executed per 
second. The ROS performance is discussed in 
Section 8. 

7. RELATED WORKS 

While both ROS and DEMOS use communication channels, 
DEMOS is very much capability oriented. Unlike DEMOS, 
ROS makes no provisions for duplicating links, passing on 
links, or controlling access rights to links. It was felt that 
capabilities made the system more difficult to program. Send 
time has been estimated at 80 microseconds. 

Guardian 

The Tandem system uses multiple processors with 
independent memories. A message system was required to 
implement a multi-processor operating system. Guardian is 
significant in that it is one of the first commercially successful 
products to rely on messages. Performance figures from early 
systems indicate that a round trip message took one 
millisecond. The system is not a pure message system in that 
it relies on semaphores to implement performance critical 
functions that are local to a processor. 

Elxsi EMBOS[ll] 

A multi-processor non-shared memory system derived from 
DEMOS. Like Ridge, Elxsi put message support in the 
architecture and instruction set. The message system is used 
for protection to the extent that there are no I/O instructions 
and I/O devices are sent messages. Half round-trip message 
time is 115 microseconds. Bulk data transfer bypasses the 
message system and uses mapped files instead for higher 
performance. 
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Accent[9] 

A very flexible message system that sends and receives typed 
messages via ports. Ports can be independent from processes. 
The Accent kernel is monolithic and rather large, but 
integrates a large number of functions into the message 
system, including copy-or-write support for message passing. 

Apollo Domain[l, 7] 

Although a network operating system, its model is single-level 
store, rather than messages. Messages are used among system 
processes and hidden below single-level store. This is 
interesting in that ROS is the opposite. Messages are the 
model, while the virtual memory system implements single
level store underneath. Apollo has incorporated UNIX within 
its system, while keeping its Domain kernel as a base. 

Stream I/O [10] 

This is a change to the UNIX I/O system in order to make it 
more modular and extensible for networkiJ?-g. It is interesting 
to see UNIX modernized in message-lilCe fashion. Ultra
lightweight processes pass data from module to module in 
streams. While increasing overhead on a per-character basis, 
overall system performance was not degraded. 

8. CRITICAL REVIEW 

On the whole, the design of the Ridge operating system has 
proved to be very satisfactory. The biggest fear was that the 
message system performance would be a problem, but this 
proved not to be the case. In evaluating and improving 
system performance, the major bottlenecks turned out to be 
elsewhere and message system overhead was not a factor. 

The best feature of the system has been its reliability. 
Although the system has its share of bugs, there have been 
remarkably few load-dependent and sporadic failures. This is 
attributed to protected address spaces and servers that are 
the sole manipulators of system data structures. The primary 
file system processes (file managers, directory manager, and 
volume manager) are synchronous, accepting a request and 
processing it to completion before going on to the next 
request. The code for these servers tends to follow a main 
~ath, and either it works or it doesn't. Failures are reported 
m messages back to the requesters, which typically disengage 
themselves and terminate without damaging the system. 

Incorporating external interrupts into the message system 
also tends to reduce failure. Interrupts are fielded by the 
kernel then sent in messages to driver processes. The drivers 
are written as server processes, which handle interrupt 
~essages much like user requests. Enabling and disabling of 
mterrupts and priorities is handled once by the kernel and is 
of no concern to the driver writer. 

Dri.vers ar~ usually written and debugged as user programs 
whIle runnmg under the operating system. Once the driver is 
working, its path name is added to an initialization file that is 
read at boot time, which starts the driver and effectively 
makes it part of the system. 



CRASHES AND FILE SYSTEM INTEGRITY 

From the beginning, the operating system rarely crashed. 
When failure occurs, it is usually a failed user monitor, which 
results in a lost port into the system. Complete failure is 
caused by the virtual memory manager detecting an 
inconsistent data structure, which is then reported on the 
console and the program goes into a loop. These failures can 
be investigated by using the resident debugger, and sometimes 
can be repaired. 

File system integrity has been extremely high. Only a few 
complete file systems (all the data on one disk) have been lost 
in two years counting over three hundred systems. Yet, the 
system has only one built-in fail-safe protection mechanism. 
Both the directory manager and volume manager process 
requests to completion, then flush their data spaces to disk at 
the end of each transaction. This leaves the file system in a 
consistent state at the end of file open and close and at the 
end of process creation and termination (due to creating 
process data spaces from files). Hence, the file system is only 
vulnerable to crashes resulting from physical disk errors 
(uncorrectable errors are extremely rare) or from bugs in the 
directory manager or volume manager. Simple algorithms 
and synchronous processing of requests have reduced bugs in 
these processes to a very low level. 

Corruption of data within a file is also rare due to the 
restrictions in disk access. The volume manager and virtual 
memory manager are the only processes that directly access 
the disk. The volume manager controls disk allocation and 
accesses its tables as part of virtual memory. The only 
process that uses actual disk addresses is the virtual memory 
manager. 

FUTURES 

The initial goal of the operating system was to deliver the 
utmost in performance to a large dedicated application. This 
?oal was met in that system memory residency is low (kernel 
IS 8 Kbytes of code) and paging and file system throughput 
are high. Residency is kept low due to the operating system 
being virtual, page able, and modular. 

Unfortunately, the Ridge operating system is also used in a 
UNIX development environment which is characterized by 
executing many programs, most of them quite small. In this 
area the Ridge operating system's performance is noticeably 
below 4.2 bsd running on a V AX/780. 

The main culprits in system performance are process fork and 
kill. The reasons for this lie in the virtual memory design and 
lack of shared memory. In the UNIX fork system call, the 
complete process space is duplicated, including open files. In 
the Ridge system this requires creation of a queue segment 
and opening each queue and link in the descendent that exists 
in the parent. Each server process that is connected to the 
parent must be notified of its new client and it must establish 
a link to the client. The server must also be notified when the 
client is killed. In the case of the shell, it opens input, output, 
and standard error files, causing three connection and 
disconnection messages to the terminal driver when it forks 
and kills a child process. Opening a link or a queue takes 
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ap~roximately 25 microseconds and, in itself, is not expensive. 
It IS the processing time by the user monitor, clients, and 
servers that is expensive. 

To reduce costs, the file system tables should be moved into 
the kernel. This will eliminate the need to send notification 
to servers. Placing file system tables in the kernel will result 
in sharing data among operating system processes and the 
kernel. This is a deviation from the original design strategy 
of no shared memory, but it seems worthwhile in view of the 
increased performance. 

A second performance improvement will come from better 
data message primitives. At present, a copy-on-write must be 
broken into multiple four kilobyte SendData's. Thus, a fork 
requires many trips through the kernel. This can be avoided 
with a synchronous send primitive, which would reduce the 
nu~ber of entries in the kernel from four to two. Passing an 
arbItrary amount of data in the messages will speed process 
forks, which must copy the parent's data space into the newly 
created child's data space. 

Users of real-time systems have found the Ridge kernel 
attractive, and have used it for some real-time applications. 
Alth?ugh. not specifically designed for real-time, only small 
~odlficatlOns will be needed to make the Ridge a good real
tIme system. Real-time systems require semantics for process 
creation, destruction, communication and control which are 
very similar to those offered by the Ridge kernel. None of the 
kernel operations require disk access, so times spent in the 
kernel are inherently predictable. Measurement has shown 
most kernel calls executing in times ranging from 20 to 120 
microseconds. The only function that has unacceptable 
execution time is sending a single page of data by value 
rather than copy-on-write. The planned fix for this is to mak~ 
the kernel check for interrupts during a copy operation. 
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