
THE RIDGE OPERATING SYSTEM:

HIGH PERFORMANCE THROUGH MESSAGE-PASSING AND VIRTUAL MEMORY

Ed Basart
Ridge Computers

2451 Mission College Blvd.
Santa Clara, California

ABSTRACT

The Ridge operating system is decomposed into processes and
relies on message passing for its interprocess communication.
Messages and processes are used to improve reliability and ex
tensibility and to facilitate networking. The challenge was to
provide a high performance UNIXt implementation in this en
vironment. The technique used was to blend in other operat
ing facilities, such as virtual memory, with the message sys
tem. Key aspects of the design were to minimize the number
of primitives and to provide support from the Ridge instruc
tion set architecture.

1. INTRODUCTION

AB computer technology has evolved over the last twenty
years, new market classes of computers have evolved. The
1960's brought the creation of the minicomputer and desktop
calculator. The seventies saw the emergence of the super
minicomputer and microcomputer chip technology. Now the
1980's have brought personal computers and workstations.
The Ridge 32 computer was created to fill a niche in the per
formance curve between microprocessor-based workstations on
the low end and the coming generation of superminicomputers
on the high end. The Ridge was designed to explore the high
end of the personal computer and workstation spectrum of
performance, with a particular emphasis on delivering the
most performance for the least cost.

Ridge has concentrated its efforts on the computational inten
sive portion of the scientific and engineering market, which
means large programs, lots of floating point operations, high
speed graphics, fast disks, and high-bandwidth networks. The
Ridge is particularly well suited for computer-aided-design
and computer-aided-engineering applications.

The Ridge 32 machine was designed as a complete computer
systems effort, including a new instruction architecture, I/O
bus, and operating system. Later, its style of instruction
architecture became known as Reduced Instruction Set
Computer (RISC).

t UNIX is a trademark of AT&T Bell Laboratories

CH2228-5/85/0000/0134$01.00 © 1985 IEEE
134

What Came Before

The designers of the Ridge system had previously been
involved in the development of a 1970 generation
superminicomputer, a system that in many ways is in
complete contrast to the new system:

a. The system required special air conditioning and power.
It usually lived in a computer room.

b. The instruction architecture was extremely complicated,
with a very high instruction count and many addressing
modes.

c. The various levels of the hardware and software were
"closed". Hardware and software were intertwined and
the details were hidden from the user, both to protect
the naive user and to protect the corporation's technical
knowhow.

The problems with this type of system included:

a. The high cost and special environment made the
purchase and acquisition of such systems difficult. The
six-figure system cost required upper management of a
corporation or laboratory to approve the purchase.
Then, since the computer was so expensive, major
attention was paid to squeezing the most out of it by
attaching as many users as possible. Control of the
machine was removed from the individual user, and
elaborate protection and accounting schemes were put
into place to prevent any user from getting too much of
the computing resource.

b. The complicated (some would say baroque) instruction
set architecture made it difficult to make higher
performance systems, or to lower the cost on similar
performance systems.

c. The closed nature of the system required that all
software be created by the manufacturer. This type of
architecture is incompatible with today's world, in
which a large number of independent software vendors
sell programs for a large number of machines.

Design Requirements

The Ridge design had to meet several stringent constraints.
First, the machine's performance had to be from one to four
MIPS, with prices ranging from $40,000 to $100,000. The
machine was to run in an office environment with no special
power or air conditioning. It was anticipated that the
machine would be used by a small number of users (one to
four) who would be part of a project that frequently used one
application that consumed hours and processor time and
many megabytes of disk storage.

The operating system needed to fill several needs. For the
user running one application for hours, the operating system
must generally stay out of the way and provide the complete
computer resource to the application. At other times, the
operating system would be expected to pass large volumes of
data to and from the disk, so good file system performance
would be required.

A third major need was extensibility. Operating systems are
never finished; they are always under construction. Constant
changes to the system provide a large and steady supply of
bugs. Thus, the design should make additions simple and
allow bugs to be quickly eliminated.

TO THE RESCUE: A RADICAL APPROACH

The Ridge system design began as a retreat from the complex,
monolithic system to one of severe simplicity. The idea was
to base the operating system upon a very small set of
principles. This brings to mind the now traditional layering
concept. However, a system that is more "flat" rather than
"deep" was desired. If the operating system itself was made
up of underlying layers, high performance hardly seemed
possible. Also, complex applications, such as databases,
access the "levers of power" and re-implement many parts of
the operating system because the cost associated with
penetrating all the operating system layers is too high. The
Ridge Operating System was designed to make this
unnecessary.

There were two operating system principles which seemed to
fit the new mold: messages and virtual memory. Previous
systems drawn upon include two message-based operating
systems, Guardian[4] and DEMOS [3], and the IBM system
38[6], which implements single-level store in a large virtual
address space.

Sections 2 and 3 below give a basic overview of the Ridge
hardware and operating system. Section 4 attempts to justify
the design strategy in decomposing the system. The "meat" of
the article is Section 5, the message system design, hardware
support, and message system performance. Finally, system
performance, related works, and a critical review of the
system is presented in Sections 6 through 8.

135

2. HARDWARE OVERVIEW

The Ridge 32 is the first commercial example of. a new
generation of computer architectures that use simplified
hardware to provide high performance at reduced cost [2].
The Ridge is a RISC-style machine as described by
Patterson[8].

The Ridge 32 utilizes 32-bit architecture to provide both 32-
bit arithmetic and 32-bit addressability. Both single and
double precision floating point are supported. The processor
is implemented in standard Shottky logic, and fits on three
fifteen by sixteen inch printed circuit boards. The processor
uses sixteen general purpose registers, cycles in 125
nanoseconds, uses a 256-byte code cache with no data cache,
and can load or store a 32-bit word to memory every three
cycles. Simple instructions, such as integer add or shift,
execute in one cycle, while more complex instructions, such as
single-precision floating point add, execute in five cycles.

The system contains one or more I/O boards, each of which
has its own DMA. The I/O boards communicate with
memory over a common bus that is separate from the CPU
bus. Minimum system configuration is an 8~Mbyte disk and
four Mbytes of main memory. Terminals may be standard
asynchronous devices or high resolution bit-mapped displays
with keyboard and mouse. Ridge systems are frequently
connected to Ethernett to provide communication with other
Ridge computers, as well as with computers manufactured by
other vendors.

3. SOFTWARE OVERVIEW

As illustrated in Figure 1, the Ridge operating system (ROS)
consists of a kernel and a set of server processes. The basic
server processes are:

• User Monitor. Provides the UNIX interface to user
processes.

• Directory Manager(s). Manage the directory structure for
all named objects, including files and devices.

• Volume Manager(s). Manages disk space.

• Virtual Memory Manager. Implements memory
mangement and high level scheduling policies.

• Network Server. Provides network access.

• File Manager(s). Provides file system services to individual
files.

With this set of server processes, the ROS kernel needs to
provide only the most basic support for memory management,
interprocess communication, and interrupt handling. This
greatly reduces the kernel size to only eight kilobytes of
assembly language.

t Ethernet is a trademark of XEROX Corporation.

In traditional operating system implementations, a system
call traps to the kernel. In ROS, a system call is an entry in
a runtime library, which packages the request as a message
and sends it to the user monitor. The user monitor performs
the system service, either directly or indirectly through the
use of other ROS server processes, and sends a reply message
back to the user process. One user monitor is created for
each terminal on the system, and provides most of the
security checking for user requests. This allows the remainder
of the operating system to be simpler, open, and free of
protection requirements.

ROS emulates the UNIX hierarchical file system. Each UNIX
file system is managed by a directory manager and a volume
manager. The directory manager maintains the namespace
for objects on that file system. The volume manager controls
space allocation and maintains file control information, such
as file owner, group, and reference count. These processes are
both virtual and pageable. File name lookups are much faster
than traditional UNIX systems because the opening of a file
for each directory is avoided and a cache of recent directory
entries is maintained by the virtual memory system.
Applications that read the directory as a file are connected to
the directory manager, which then behaves as a file manager
by providing the relevant UNIX file system calls.

Kernel

Hardware

Figure 1. ROS Overview

136

Devices may also be entered in the directory structure, as in
traditional UNIX. A directory entry for a device points to an
associated device manager. If a device entry is encountered
when parsing a pathname, the remainder of the path name is
passed to the device manager. This permits a manager to
implement its own arbitrary naming scheme, which in turn
permits extension to a distributed, heterogeneous
environment.

A device manager operates together with the kernel to
manage its device. The kernel guarantees a process exclusive
access to the device by making the device manager the
recipient of interrupts from the device. The kernel forwards
interrupts in the form of messages to the device manager.
Since device managers are implemented as processes, they
may be initiated and dynamically bound to the device. This
allows multiple device managers to exist for the same physical
device, although only one device manager may have access to
a device at a time. Thus, device managers are easy to
develop, and do not require re-compilation or re-binding of the
kernel.

When a data object is opened, the user monitor connects the
user process to an appropriate I/O manager. This manager is
either dynamically created or it is a static device manager.
Once the connection is made, the user process performs I/O
directly with the manager, bypassing the rest of the operating
system.

Examples of static I/O managers are the device managers for
the RS232 terminals, tape, and line printer. I/O managers
are created dynamically for files and pipes. Each open file is
managed by a separate file manager, whose data space is the
contents of the file. Similarly, pipes are associated with pipe
managers, whose data space is the contents of the pipe buffer.

Creating one process per open file may seem to be rather
startling at first, but it does have its advantages. First, file
manager processes place files into the process model in which
all system services are provided by server processes. Second,
by making a file the data space of a process, it was easy to
create a combined virtual memory/file system.

The virtual memory manager is responsible for bringing pages
from disk into main memory. Because virtual memory is
combined with the file system, the virtual memory manager
pages only files in from disk. Program code and data are files
created and managed by the volume manager. For efficiency
reasons, the disk driver is part of the virtual memory
manager. Consequently, only the virtual memory manager
has direct access to the disk and can allocate main memory.
This allows the entire main memory to be treated as a disk
cache and provides an opportunity for high file system
throughput by utilizing the virtual memory manager to
manage the file buffer cache.

UNIX applications operate in the ROS environment exactly as
they operate in the UNIX environment. Porting them
primarily consists of eliminating machine dependencies and
recompiling them.

4. JUSTIFICATION

As stated previously, the idea was to provide two basic
facilities -- messages and virtual memory -- make them as
simple as possible, and build the operating system and user
environment on top in a very "flat" manner. The motivation
for this environment was to reduce the amount of "special"
code to an absolute minimum, and to keep it at a minimum
by discouraging the operating systems programmer from
adding high level functionality into the kernel. Every effort
was made to make sharing difficult or impossible, in the belief
that pathological and time-dependent bugs come through
unknown or poorly understood functions due to sharing.
Although semaphores and monitors fix these problems, as long
as shared memory is available, programmers may "forget" to
use a semaphore and cause subtle bugs.

Ridge hardware was designed to complement this model. The
processor has only two modes: user and kernel. User mode
uses virtual addresses and is interruptable. Each user process
has a separate virtual address space, which protects processes
from each other. Shared memory is not permitted. (This did
not work out too well in practice. Section 8 discusses this in
detaiL)

The kernel is intended for only the most basic of operating
system functions. To simplify both the instruction set and the
operating system model, interrupts are disabled in kernel
mode. Therefore, only functions that are guaranteed to
complete in a short interval may be placed in the kernel. The
kernel code is non-interruptible in order to keep functionality
in the kernel limited and to rule out asynchronous bugs.
Usually the most difficult and seldom occurring bugs in an
operating system lie deep within it, and frequently are created
when some new feature violates timing or priority rules that
have long since been forgotten. By making the kernel
"synchronous", bugs should pop up early and be reproducible
without having to wait for circumstances such as "fails under
heavy load". Also, kernel mode uses only real addresses,
making it difficult to peer into the user data space in
performing operating system functions. Given these
restrictions in the kernel, operating system functionality must
nearly all be placed in user processes.

5. THE MESSAGE SYSTEM

The ROS message system was created from three guidelines:

Performance

Protection

Simplicity

Round trip message time should be below
one millisecond. In order to decompose the
operating system into multiple processes
and to use multiple messages to perform a
function, overhead due to messages and
context switching must be kept at an
acceptable level.

Since messages are the key component in
the ROS architecture, it was decided to
handle them within a protected address
space, with access controlled by the
message primitives.

The functions were to be few and simple in
order to keep the size of code small and the
number of bugs at a minimum.

137

The message system is described in detail according to the
outline below:

a. Message primitives.

b. Data movement.

c. Context switching.

d. Trace execution of a round-trip message.

e. Hardware support and special instructions.

f. Performance.

The message system is connection-oriented. Processes send
messages over a communication channel called a link, and
messages are placed in a queue. Links, queues, and messages
reside in a data space called a "queue segment", which can
only by accessed by the kernel. Each process has its own
queue segment, which is virtual, paged, and has a maximum
size of four gigabytes. Making the queue segment virtual
simplifies the message system, so that buffering and dynamic
allocation of data structures are handled by virtual memory,
rather than by the message system.

Message Primitives

When a process is created, its queue segment must be
initialized by making the following kernel call:

ErrReturn := InitQSeg (NumLinks, NumQueues,
NumMessages, NumPages);

This establishes the maximum number of links and queues in
the queue segment. Also set are the maximum number of
messages for all links, NumMessages, and, for large amounts
of data, the maximum number of pages, NumPages.

In order to receive messages, a queue must be opened:

ErrReturn := OpenQueue (NumMessages, MyQueue);

NumMessages specifies the maximum message count in the
queue, and MyQueue is a descriptor used for receiving
messages. The next step is to open a link to another process
queue:

ErrReturn := OpenLink (ReceiverProcessId,
ReceiverQueue, MyLink);

The process opening the link specifies the process identifier of
the receiver, ReceiverProcessld, and the number of the queue,
ReceiverQueue that will receive the messages. The OpenLink
call returns MyLink, which is used as a descriptor when
sending messages. The link number, MyLink, and the queue
number (MyQueue, above) are both small integers, similar to
UNIX file descriptors.

The processes are now ready to communicate. Data can be
passed in both short and long messages. A message is sent by:

ErrReturn := Send (MyLink, Message);

This places a 32-byte message in the queue pointed to by
MyLink. In addition to a short message, up to 4096 bytes (one
page) can be sent with the following function:

ErrReturn := SendData (MyLink, Message,
Address, NumBytes);

Address is the location specifying NumBytes as a byte count of
data to be sent. Both Send and SendData are asynchronous,
which allow the sender to continu,e processing after the
message has been queued, although most clients immediately
wait for a reply from the server before continuing. Messages
are received by:

ErrReturn := ReceiveData(MyQueue, Message,
Address, NumBytes, SenderId);

The next Message is read from the queue MyQueue along with
NumBytes of data. If there is no message, ReceiveData blocks
and waits until a message is placed into the queue. Address is
the location for received data. Senderld is the process
identifier of the sender. If the message is a short message,
this is indicated by an ErrReturn value.

The message system provides other primitives, which are only
briefly mentioned here:

Test Tests a queue for the presence of a message.
Test is used in place of ReceiveData when
blocking on an empty queue is not desired.

Arm and Wait Processes may wait for multiple
asynchronous events. Each asynchronous
queue is Armed. The process then calls
Wait. When a message is placed in an
Armed queue, the process is awakened from
the Wait. Test is then used to determine
which queues have messages, and
ReceiveData is used to receive messages from
the queues. Prioritization of multiple
asynchronous events is handled by making
Tests in priority order.

Data Movement

Study of other message systems showed that short, fast
messages were desirable and would be the most frequent.
Passing I?essages in registers (as the message system does)
hel~s to lDcrease performance. Eight of the sixteen general
reg~sters are used to hold a 32-byte message, leaving eight
regIsters for scratchpads, environment, and stackframe
pointers.

Large amounts of data are passed through the message
syste.m in 4096-byte pages. Transfers longer than a page use
multiple messages. Limiting the maximum amount of data to
one -page simplifies buffering by the kernel in the queue
segment and in the receiving process. Receiving an arbitrary
amount of data requires dynamic heap allocation, which
reduces performance. DEMOS and the Stanford V system [5]

138

solved this problem by introducing separate calls to handle
data transfer. The dialogue proceeds something like:

Client: "I'm sending you 10,000 bytes of data".
Server: "I'll accept the data".
Message system moves data from client to server.

Although this allows an arbitrary amount of data to be
transferred, the receiver needs to know how big a buffer is
required. As a consequence, a synchronous send is used. Since
it was desired to keep the ROS message system asynchronous,
the data is transferred along with the message in the Send
primitive. (However, measurements of the system have shown
most messages to be synchronous. This decision is revisited in
Section 8.)

The virtual memory system and message system work
together to provide file system services. Each open file is
accessed with a file manager process. The file data is passed
one page at a time, using SendData. For example, on a file
read, the file manager calls SendData to pass the page of data
at the current file position, through the message system, to
the user process. The kernel checks to see if the page at that
address is present in main memory and, finding it absent
locates it out on the disk. The kernel then generates a pag~
fault for the file manager and sends a page fault message to
the virtual memory manager. The disk page is then read-in
by the virtual memory manager.

Context Switching

In order to improve message system performance, context
switching and low-level scheduling are included in the message
system. The kernel maintains the context and priority for
each process in.a process control block. The processes waiting
to be executed are placed in descending order in a ready list.
The kernel then dispatches the highest priority process on the
ready list.

Processes with empty message queues are removed from the
ready list. (Processes are also removed from the ready list on
page faults.) Executing a ReceiveData on an empty queue
suspends the process and removes it from the ready list.
Sending the process a message places it again on the ready
list; the process will become active when it becomes the
highest priority process on the list.

Processes are generally scheduled as a result of sending and
r~ceiving messages, but there are two other scheduling
CIrcumstances. When an interrupt occurs, the kernel places
an interrupt message in the interrupt queue of the driver
process, which is then placed on ready list. If the driver has a
higher priority, then the currently executing process is
suspended and the driver is scheduled and dispatched. A
timer interrupt causes time-slicing scheduling to occur every
twenty milliseconds. If the currently executing process has
had its time-slice, and another process of equal priority is on
the ready list, the waiting process is dispatched.

A Round Trip Message

Let's follow a message from a user client process to a server
process. The client loads the message into registers, then
issues a Send. The kernel verifies that the specified link is
valid, then checks the state of the server process queue. Note
that both these checks are made on virtual data structures in
the queue segment. Should any data be absent, the kernel
sends a page fault message at the appropriate address in the
queue segment to the virtual memory manager. Mter the
page fault completes, the client continues executing Send.

Much of the traffic in the message system consists of higher
priority servers waiting for messages. In order to improve
message system performance, high-priority servers are given
special treatment. If the server process is blocked when a
message is put on its message queue, the kernel checks the
server's priority. If the server has higher priority, the kernel
suspends the client and starts the server running as if it had
just executed a ReceiveData. The message is transferred
directly in the registers without making any copies. In this
way, a single entry into the kernel performs a Send, context
switch, and a ReceiveData. If the server isn't waiting for a
message, or does not have a higher priority, then the message
is placed in the server's message queue and the client
continues executing.

The server performs its function, then Sends a reply message
to the waiting client. If the server has a higher priority than
the client, the message is placed in the client's message queue.
The client is then put onto the ready list and executed when
it becomes the highest priority process.

Mter sending a reply message to the client, the server then
does a ReceiveData. Since there is no message, the kernel
suspends the server and removes it from the ready list. The
kernel then starts the process at the head of the ready list,
which in this case is the client. The client begins executing
just after the Send, issues a ReceiveData, a.nd locates the
message. The round trip is completed.

Hardware Support

The Ridge operating system and processor were designed at
the same time, allowing close cooperation at the
software/hardware interface. Mter the main instruction set
was defined, sixteen opcodes (out of 256 total) were set· aside
for "privileged" instructions. These instructions were to be
used for message system support, virtual-to-real translation
and I/O instructions. '

There are four instructions used by the message system:

Kernel Call
Resume User Mode
Load User Sta.te
Save User State

Approximate Execution
Time in Microseconds (cycles)

1.625 (13)
0.750 (6)

12.875 (103)
6.750 (54)

Crea.ting the above special instructions does contradict the
design principle of a reduced instruction set computer, but
without them the performance objectives could not be met.

139

Kernel Call and Resume User Mode

All message system functions are place" in the kernel and
accessed via the Kernel Call instruction Kernel Call enters
the kernel at one of 256 possible entry pomts (so far there are
about 80 kernel functions), switches from user to kernel mode,
and saves the user program counter in a special register.
When the kernel is finished executing, it uses the Resume User
Mode to return to the user. This instruction reloads the
program counter from the saved register, sets virtual (user)
mode, and starts the user executing again at the instruction
following the Kernel Call.

Save User State and Load User State

The Save User State and Load User State instructions are
used to save and load the general purpose registers and
environment registers. The Save User State is generally
executed by the kernel upon entry to a function, and the Load
User State is executed by the kernel at the exit of a function,
which is immediately followed by a Resume User Mode
instruction. Every effort was made to minimize the amount of
environment information needed on context switch. The
complete process state used by the hardware was reduced to
nineteen words: sixteen words containing the registers, plus
three control words.

The Load User State instruction reads three 32-bit words
from main memory in addition to the registers. These are:

• program counter

• code and data segment number (the upper sixteen bits of
the virtual address.

• traps word containing bits specifying the enabling or
disabling of integer overflow, floating pointer overflow, and
other arithmetic traps.

The Save User State instruction saves the program counter in
addition to the general registers. The traps word need not be
saved, as it is not modified when the process is running. The
execution times quoted above for the instructions include
moving all sixteen general purpose registers. These
instructions specify which registers are to be affected, and
along with a count, permit the kernel to save and restore
fewer registers.

Message System Performance

A round trip message· executes approximately 150 instructions
and takes 190 microseconds. Table 1 shows the time spent in
each function. Context switch time is estimated to be 30
microseconds. The time spent is roughly divided into three
portions: 1/3 in the kernel instructions (including saving and
restoring the user state), 1/3 translating virtual addresses to
real data and moving the data (for a short 32-byte message),
and 1/3 making decisions and context switching.

Round Trip Message Time in Microseconds

Client - Send to Higher Priority
Process (Run Server) 60

Server - Send to Lower Priority Process 50
Server - Receive and Block, Queue Empty 40
Client - Receive 40

190

Table 1. Message System Performance

The above round trip time does not quite tell the whole story.
The message system functions are embedded inside library
code that is bound to the calling program. The procedure call
overhead for the round trip is about 20 microseconds. The
compiler loads the parameters for the function from memory,
stores them on the stack, then makes the procedure call. The
message function must then load the parameters from the
stack into the registers again.

Making the message system functions built-in functions in the
compilers would eliminate much of the overhead caused by
storing and loading from the stack, but would limit the
flexibility of changing message system functions.

Message system performance has proved to be quite
satisfactory and has not proved to be the factor limiting
performance in the operating system. Two areas in the
message system, however, have been selected for
improvement. The first area is hardware. Currently, the
processor requires sequential flushing of a small code cache
and virtual mapping table on context switch, which requires
eight microseconds. New versions of the processor have
eliminated this, The second area is to provide a synchronous
interface that would reduce the number of kernel calls from
four to two. Most message traffic is between servers and
clients, and resemble procedure calls. The asynchronous
capability of the message system is never used and, without
the addition of two kernel calls, performance can be increased
by about one third. These two improvements and careful
recoding of the message system should decrease round trip
message times to 100 microseconds.

6. SYSTEM PERFORMANCE

Table 2 compares ROS performance with UNIX on the VAX
11/780 on several key factors that affect system performance.
Both systems were similarly configured, adequate memory was
present and disk system speed is roughly equal. All programs
were written in C.

140

Test Name

Write 8MB
Read 8MB
Copy 8MB
Pipe 8MB
getpid
sbrk
creat
fork 8KB

Ridge 32
4 Mbytes Memory
Fujitsu Eagle Disk
ROS 3.2

499KB/sec
611KB/sec
303KB/sec
435KB/sec
52K/sec
62K/sec
16/sec
13/sec

VAX 11/780
8 Mbytes Memory
RA81 Disk
UNIX 4.2bsd

142KB/sec
202KB/sec
243KB/sec
243KB/sec
5K/sec
2K/sec
30/sec
28/sec

Table 2. Performance Comparison

The write, read, and copy programs measure file system
throughput. The write program creates a dummy file by
repeatedly writing the same 8 Kbyte blocking of data until 8
Mbytes have been written. The read program does the
opposite, reading all the data into the same 8 Kbyte array in
memory. Although these programs are trivial, they do
measure raw file system speed. The copy program is the
UNIX cp program, making a copy of an 8 Mbyte file on a
relatively empty disk. The ROS times are very good, and can
be significantly improved by a synchronous message system.
These programs illustrate how the message system moves
data, and the relationship between virtu,al memory and the
message system.

There are two special features of the system which help make
the file system fast. The first is the use of hardware providing
copy-on-write pages. If the data is page-aligned, rather than
copy the 4096 bytes of data, the virtual memory page table
entry pointing to the data is copied instead. Only when a
store operation is attempted will the data be copied. In the
case of a file system read, the data is never written, so the
data is never copied. Performance measurements have shown
that the use of copy-on-write boosts file system performance
by approximately 20%.

The second feature which makes the file system fast is the use
of contiguous disk allocation by the volume manager and
read-ahead and write-behind by the virtual memory manager.
During sequential disk activity, the virtual memory manager
reads up to sixteen pages ahead. Since files are paged into
memory by the virtual memory manager, during periods of
intense file system activity, all of main memory can be
treated as a file system cache. For example, if a n~w: file is
created and 1 Mbyte is written into it, it is unlikely that any
of the file would he w.ritten to disk. When the file is closed it
is flushed from main memory and written to disk in sixte~n
page transfers. This use of multiple page transfers J>rovides a
big performance improvement. The file system throughput
without read-ahead, write-behind, or copy-on-write is
approximately 250,000 bytes per second.

In regard to further improving file system p.erformance, it
should be noted that for a file system read (or write) the data
is copi~d twice. (If the data is page-aligned, the page table
entries are copied twice.) Eliminating the copy into the queue
data pa.ge should provide another ten percent improvement.

Other test program results from Table 2 are summarized
below:

pipe

getpid

sbrk

creat

fork

DEMOS

This program sends 8 Mbytes of data through a
UNIX pipe. The ROS message system is used to
create pipes.

The process id is returned to the calling process.
In ROS this is a kernel call, and does not involve
the message system. This demonstrates that
entering the Ridge kernel is very inexpensive.

This is the number of UNIX sbrk system calls that
can be executed per second. sbrk dynamically
allocates data. In typical UNIX systems, this is
handled by going into the kernel and manipulating
system tables. In ROS, no kernel call is made.
Instead a run-time space allocator merely bumps
the space pointer. Actual memory allocation is
made when the data area is referenced and causes
a page fault.

Creates new disk files and closes them repeatedly.
This measures how fast files can be opened and
closed. ROS performance is discussed in Section 8.

Measures the number of UNIX fork (clone a
process) system calls that can be executed per
second. The ROS performance is discussed in
Section 8.

7. RELATED WORKS

While both ROS and DEMOS use communication channels,
DEMOS is very much capability oriented. Unlike DEMOS,
ROS makes no provisions for duplicating links, passing on
links, or controlling access rights to links. It was felt that
capabilities made the system more difficult to program. Send
time has been estimated at 80 microseconds.

Guardian

The Tandem system uses multiple processors with
independent memories. A message system was required to
implement a multi-processor operating system. Guardian is
significant in that it is one of the first commercially successful
products to rely on messages. Performance figures from early
systems indicate that a round trip message took one
millisecond. The system is not a pure message system in that
it relies on semaphores to implement performance critical
functions that are local to a processor.

Elxsi EMBOS[ll]

A multi-processor non-shared memory system derived from
DEMOS. Like Ridge, Elxsi put message support in the
architecture and instruction set. The message system is used
for protection to the extent that there are no I/O instructions
and I/O devices are sent messages. Half round-trip message
time is 115 microseconds. Bulk data transfer bypasses the
message system and uses mapped files instead for higher
performance.

141

Accent[9]

A very flexible message system that sends and receives typed
messages via ports. Ports can be independent from processes.
The Accent kernel is monolithic and rather large, but
integrates a large number of functions into the message
system, including copy-or-write support for message passing.

Apollo Domain[l, 7]

Although a network operating system, its model is single-level
store, rather than messages. Messages are used among system
processes and hidden below single-level store. This is
interesting in that ROS is the opposite. Messages are the
model, while the virtual memory system implements single
level store underneath. Apollo has incorporated UNIX within
its system, while keeping its Domain kernel as a base.

Stream I/O [10]

This is a change to the UNIX I/O system in order to make it
more modular and extensible for networkiJ?-g. It is interesting
to see UNIX modernized in message-lilCe fashion. Ultra
lightweight processes pass data from module to module in
streams. While increasing overhead on a per-character basis,
overall system performance was not degraded.

8. CRITICAL REVIEW

On the whole, the design of the Ridge operating system has
proved to be very satisfactory. The biggest fear was that the
message system performance would be a problem, but this
proved not to be the case. In evaluating and improving
system performance, the major bottlenecks turned out to be
elsewhere and message system overhead was not a factor.

The best feature of the system has been its reliability.
Although the system has its share of bugs, there have been
remarkably few load-dependent and sporadic failures. This is
attributed to protected address spaces and servers that are
the sole manipulators of system data structures. The primary
file system processes (file managers, directory manager, and
volume manager) are synchronous, accepting a request and
processing it to completion before going on to the next
request. The code for these servers tends to follow a main
~ath, and either it works or it doesn't. Failures are reported
m messages back to the requesters, which typically disengage
themselves and terminate without damaging the system.

Incorporating external interrupts into the message system
also tends to reduce failure. Interrupts are fielded by the
kernel then sent in messages to driver processes. The drivers
are written as server processes, which handle interrupt
~essages much like user requests. Enabling and disabling of
mterrupts and priorities is handled once by the kernel and is
of no concern to the driver writer.

Dri.vers ar~ usually written and debugged as user programs
whIle runnmg under the operating system. Once the driver is
working, its path name is added to an initialization file that is
read at boot time, which starts the driver and effectively
makes it part of the system.

CRASHES AND FILE SYSTEM INTEGRITY

From the beginning, the operating system rarely crashed.
When failure occurs, it is usually a failed user monitor, which
results in a lost port into the system. Complete failure is
caused by the virtual memory manager detecting an
inconsistent data structure, which is then reported on the
console and the program goes into a loop. These failures can
be investigated by using the resident debugger, and sometimes
can be repaired.

File system integrity has been extremely high. Only a few
complete file systems (all the data on one disk) have been lost
in two years counting over three hundred systems. Yet, the
system has only one built-in fail-safe protection mechanism.
Both the directory manager and volume manager process
requests to completion, then flush their data spaces to disk at
the end of each transaction. This leaves the file system in a
consistent state at the end of file open and close and at the
end of process creation and termination (due to creating
process data spaces from files). Hence, the file system is only
vulnerable to crashes resulting from physical disk errors
(uncorrectable errors are extremely rare) or from bugs in the
directory manager or volume manager. Simple algorithms
and synchronous processing of requests have reduced bugs in
these processes to a very low level.

Corruption of data within a file is also rare due to the
restrictions in disk access. The volume manager and virtual
memory manager are the only processes that directly access
the disk. The volume manager controls disk allocation and
accesses its tables as part of virtual memory. The only
process that uses actual disk addresses is the virtual memory
manager.

FUTURES

The initial goal of the operating system was to deliver the
utmost in performance to a large dedicated application. This
?oal was met in that system memory residency is low (kernel
IS 8 Kbytes of code) and paging and file system throughput
are high. Residency is kept low due to the operating system
being virtual, page able, and modular.

Unfortunately, the Ridge operating system is also used in a
UNIX development environment which is characterized by
executing many programs, most of them quite small. In this
area the Ridge operating system's performance is noticeably
below 4.2 bsd running on a V AX/780.

The main culprits in system performance are process fork and
kill. The reasons for this lie in the virtual memory design and
lack of shared memory. In the UNIX fork system call, the
complete process space is duplicated, including open files. In
the Ridge system this requires creation of a queue segment
and opening each queue and link in the descendent that exists
in the parent. Each server process that is connected to the
parent must be notified of its new client and it must establish
a link to the client. The server must also be notified when the
client is killed. In the case of the shell, it opens input, output,
and standard error files, causing three connection and
disconnection messages to the terminal driver when it forks
and kills a child process. Opening a link or a queue takes

142

ap~roximately 25 microseconds and, in itself, is not expensive.
It IS the processing time by the user monitor, clients, and
servers that is expensive.

To reduce costs, the file system tables should be moved into
the kernel. This will eliminate the need to send notification
to servers. Placing file system tables in the kernel will result
in sharing data among operating system processes and the
kernel. This is a deviation from the original design strategy
of no shared memory, but it seems worthwhile in view of the
increased performance.

A second performance improvement will come from better
data message primitives. At present, a copy-on-write must be
broken into multiple four kilobyte SendData's. Thus, a fork
requires many trips through the kernel. This can be avoided
with a synchronous send primitive, which would reduce the
nu~ber of entries in the kernel from four to two. Passing an
arbItrary amount of data in the messages will speed process
forks, which must copy the parent's data space into the newly
created child's data space.

Users of real-time systems have found the Ridge kernel
attractive, and have used it for some real-time applications.
Alth?ugh. not specifically designed for real-time, only small
~odlficatlOns will be needed to make the Ridge a good real
tIme system. Real-time systems require semantics for process
creation, destruction, communication and control which are
very similar to those offered by the Ridge kernel. None of the
kernel operations require disk access, so times spent in the
kernel are inherently predictable. Measurement has shown
most kernel calls executing in times ranging from 20 to 120
microseconds. The only function that has unacceptable
execution time is sending a single page of data by value
rather than copy-on-write. The planned fix for this is to mak~
the kernel check for interrupts during a copy operation.

REFERENCES

1. Anonymous. Domain System Software. Apollo Computer,
Inc., Domain/IX Product Brief about Unix, April 1985.

2. E. Basart and D. Folger. Ridge 8~ Architecture -- A
RISC Variation. Proceeding of the IEEE International
Conference on Computer Design: VLSI in Computers,
October 1983, pp. 315-318.

3. F. Baskett, J. H. Howard and J. T. Montague. Task
Communication in DEMOS. Proceedings of the 6th
Symposium on Operating System Principles, ACM,
November, 1977, pp. 23-31. Published as Operating
Systems Review 11(5).

4. J. F. Bartlett. A NonStop Kernel. Proceedings of the
Eighth Symposium on Operating System Principles, ACM,
December, 1981, pp. 22-29.

5. D. R. Cheriton and W. Zwaenepoel. The Distributed V
Kernel and Its Performance for Diskless Workstations.
Proceedings of the Ninth ACM Symposium on Operating
System Principles, October 1983, pp. 129-140.

6. M. E. Houdek, F. G. Soltis, R. L. Hoffman. IBM
System/88 Support for Capability-Based Addressing.
Proceedings Eighth Symposium on Computer
Architecture, May 1981, pp. 341-348.

7. P. J. Leach, et. al. The Architecture of an Integrated
Local Network. IEEE Journal on Selected Areas in
Communications, Vol. SAC-I, No.5, November 1983, pp.
842-857

8. D. A. Patterson. Reduced Instruction Set Computers.
Communications of the ACM, vol. 28, no. 1, January
1985.

9. R. F. Rashid and G. G. Robertson. Accent: A
communication oriented network operating system kernel.
Proceedings of the Eighth Symposium on Operating
System Principles, ACM, December 1981, pp. 64-75.

10. D. M. Ritchie. A Stream Input-Output System. AT&T
Bell Laboratories Technical Journal. Vol. 63, no. 8,
October 1984.

11. R. Williams. A message-based operating system.
Systems and Software, February, 1985, pp. 139-142

143

