

Ridge 32 User's Guide

First Edition: 9054 (OCTOBER 85)

PUBLICATION HISTORY

Manual Title: Ridge 32 User's Guide
First Edition: 9054 (OCTOBER 85)

NOTICE

No part of this document may be translated, reproduced, or copied in any form
or by any means without the written permission of Ridge Computers.

The information contained in this document is subject to change without notice.
Ridge Computers shall not be liable for errors contained herein, or for incidental
or consequential damages in connection with the use of this material.

FEDERAL COMMUNICATIONS COMMISSION NOTICE

This equipment generates and uses radio frequency energy and, if not installed
and used properly, i.e. in strict accordance with the instructions manual, may
cause harmful interference to radio communications. It has been tested and
found to comply with the limits for a Class A computing device pursuant to sub
part J of Part 15 of FCC rules, which are designed to provide reasonable protec
tion against such interference when operated in a commercial environment.
Operation of this equipment in a residential area is likely to cause interference,
in which case the user may be required to correct the interference at his own
expense.

ACKNOWLEDGEMENTS

This software and documentation is based in part on the fourth Berkeley
Software Distribution, under license from the re"gents of the University of Cali
fornia. We acknowledge the following individuals for their part in its develop
ment: Ken Arnold, Rick Blau, Earl Cohen, Robert Corbett, John Foderaro, Mark
Horton, Bill Joy, Howard Katseff, Randy King, Jim Kleckner, Steve Levine,
Colin McMaster, Geoffrey Peck, Rob Pike, Eric Scott, and Eric Shienbrood.

Sections of the Ridge User's Guide are reprinted from the UNI~ System V
User's Guide under license from AT&T Bell Laboratories.

TRADEMARKS

UNIX is a trademark of AT&T Bell Laboratories.
Tektronix 4014 is a trademark of Tektronix Inc.
Ethernet is a trademark of Xerox Corp.

© Copyright 1985, Ridge Computers.
All rights reserved.
Printed in the U.S.A.

PREFACE

This manual provides an overview of capabilities and technical procedures for
the Ridge 32 product line, and refers the reader to the appropriate Ridge refer
ence manuals.

Chapter 1 describes the Ridge 32 hardware, such as powering the system on
and loading the disk and tape drives.

Chapter 2 provides an overview of the Ridge Operating System (ROS).

Chapter 3 describes how to log into ROS and some simple ROS commands.

Chapter 4 describes ROS command conventions and how to use the ROS file
system.

Chapter 5 introduces the more advanced capabilities of the ROS system.

Chapter 6 is a tutorial on the use of the Bourne shell.

Chapter 7 describes the commands used to access the floppy disk drive

Chapter 8 describes the procedures to be performed by the System Adminis-
trator.

Chapter 9 describes how to care for your system hardware.

CONVENTIONS USED IN THIS MANUAL

An outline of a terminal display screen is used to set off examples of interactions
between you and the ROS system. These examples apply regardless of the type
of terminal you use. Inside the screen, the ROS system prompts and its
responses are printed in pica font. The commands you type in response to
the system prompts and your other input and data are printed in boldface type.
These include the commands you type that do not appear on the screen (such as,
a carriage return), which are enclosed in angle brackets < >. The following
screen summarizes these conventions.

pica

bold

italics

<>

(ROS system prompts and responses)

(Your commands)

(Variable which you or the computer
substitutes a name or value)

(Your commands or parts of commands
that do not appear on the screen)

(A control character, hold down the control key
CTRL while your press "g".)

In the text, italics are used in the command{ #) form to reference the number of
the section in which a command is described in the ROS Reference Manual.

RIDGE 32 STANDARD MANUAL SET

This User IS Guide refers to the following manuals which are shipped with
every Ridge 32 system:

• ROS Reference Manual (order number 9010)
This c'ontains the reference page for each system command, utility, subrou
tine, library, and device file. Use this manual as the first source of infor
mation on any topic, then follow the references to the other manuals.
The UNIX convention for referring to an entry in this manual is command
name(#), such as cat(l). The # is the numbered tab section of the ROS
Reference Manual in which the commandname is explained. Other topics,
which are not commands or programs, are referred to in the same form;
example: termio(4) means that the "terminal i/o)) topic is described in sec
tion four.

• ROS Programmer's Guide (order number 9050)
This contains tutorial information on programming topics that are not
covered in sufficient detail in the ROS Reference Manual. The ROS
Reference Manual refers the reader to this manual when appropriate.

• ROS Text Editing Guide (order number 9051)
This contains tutorial information on text-editing topics that are not
covered in sufficient detail in the ROS Reference Manual. The ROS
Reference Manual refers the reader to this manual when appropriate.

• ROS Utility Guide (order number 9053)
This contains tutorial information on utility programs that are not covered
in sufficient detail in the ROS Reference Manual. The ROS Reference
Manual refers the reader to this manual when appropriate.

• AT&T UNIX System V Graphics Guide (order number 9026)
This contains tutorial information on UNIX graphics programs that are
not covered in sufficient detail in the ROS Reference Manual. The ROS
Reference Manual refers the reader to this manual when appropriate.

• Ridge Hardware Reference Man ual (order n um ber 9007)
Describes the theory of operation and programming of Ridge input/output

, boards, such as the disk and tape controllers.

• Ridge Processor Reference Manual (order number 9008)
Describes the processor architecture and design criteria of the Ridge
"reduced)) instruction set.

Other Ridge manuals that describe optional peripherals and software are
shipped with the product; you can also order most Ridge manuals from the pro
duct price list.

HOW TO ORDER MANUALS

Use the Technical Publications Order Form at the back of this book. Order
a Ridge manual by its 4-digit document number (like 9004) and its title. Based
on the 4-digit document number, Ridge Order Processing will ensure you receive
the most recent edition of a manual, the binder that comes with it, and any
updates that exist at the time.

Manual editions are identified with sequential letters of the alphabet. The first
edition has the 4-digit document number. Starting with the second edition, new
editions have a new letter suffix. The suffixes start with A and continue alpha
betically.

Manual update packages are identified with sequential numbers, starting with 1.

Example of Manual Part Numbers

• The first edition of the XYZ manual may be number 9004.

• The first update is 9004-1.

• The second edition is 9004-A.

• The first update to the second edition is 9004-Al.

• The second update to the second edition is 9004-A2.

• The third edition is 9004-B.

CONTENTS

Chapter 1: THE RIDGE 32

INTRODUCTION ... 1-1

INSTALLATION ... 1-1

TURNING THE SYSTEM ON ... 1-2

TURNING THE SYSTEM OFF ... 1-3

DISK DRIVES .. 1-4
HARD DISK DRIVE .. 1-4
FLOPPY DISK DRIVE .. 1-4

Inserting a Floppy Disk .. 1-4
TAPE DRIVE ... 1-6

AUTOMATIC LOADING .. 1-7
AUTOMATIC UNLOADING .. 1-7
MANUAL UNLOADING ... 1-8

Chapter 2: THE RIDGE OPERATING SYSTEM (ROS)

INTRODUCTION .. 2-1
HOW ROS WORKS 2-2

KERNEL ... 2-3
File System .. 2-3

SHELL ... 2-6
Commands ... 2-7
What Commands Do 2-8
How Commands Execute 2-8

Chapter 3: GETTING STARTED

INTRODUCTION .. 3-1
ABOUT THE TERMINAL 3-1

REQUffiED TERMINAL SETTINGS .. 3-2
KEYBOARD CHARACTERISTICS 3-3

OBTAINING A LOGIN NAME ... 3-4
ESTABLISHING CONTACT WITH THE ROS SYSTEM 3-4

LOGIN PROCEDURE ... 3-4
PASSWORD ... 3-5
POSSIDLE PROBLEMS WHEN LOGGING IN ... 3-6
TYPING CONVENTIONS ... 3-7

Responding to the Command Prompt 3-8
Type-Ahead Buffer .. 3-9
Stopping a Command 3-9

(9054) Vll

Control Characters•....................•...... , .. 3-9
Correcting Typing Errors 3-9
Temporarily Stopping Output ... 3-10
Terminating a Computing Session .. 3-10
Additional Control Character Capabilities .. 3-10

STh1PLE C01-lliANDS ... 3-10
LOGGING OFF ... 3-11

Chapter 4: USING THE FILE SYSTEM

INTRODUCTION .' ... 4-1
C01-lliAND STRUCTURE ... 4-1
HOW THE FILE SYSTEM IS STRUCTURED ... 4-3
YOUR PLACE IN THE FILE SYSTEM STRUCTURE ... 4-4

YOUR H014E DIRECTORy.............................. 4-4
YOUR WORKING DIRECTORy .. 4-5
P ATHNAMES .. 4-7

Full Path Names ... 4-7
Relative Path Names ... 4-8

ORGANIZING A DIRECTORY STRUCTURE .. 4-11
CREATING DIRECTORIES (mkdir) ... 4-12
LISTING THE CONTENTS OF A DIRECTORY (Is) 4-13

Frequently Used Is Options .. 4-15
CHANGING YOUR WORKING DIRECTORY (cd) .. 4-18
REMOVING DIRECTORIES (rmdir) ... 4-20

ACCESSING AND MANIPULATING FILES ... 4-22
BASIC CO~S ... 4-22

Displaying a File's Contents (cat, pg, pr) ... 4-22
Printing a File (lp) 4-30
Making a Duplicate Copy of a File (cp) ... 4-33
Moving and Renaming a File (mv) .. 4-35
Removing a File (rm) ... 4-36
Counting Lines, Words, and Characters in a File (wc) 4-37
Protecting Your Files (chmod) 4-40

ADVANCED CO~S ... 4-44
Identifying Differences Between Files (diff) 4-45
Searching a File for a Pattern (grep 1 ... 4-46
Sorting and Merging Files (sort) ... 4-48

SUMMARY ... 4-50

VUI (9054)

Chapter 5: ROS SYSTEM CAPABILITIES

INTRODUCTION ... : 5-1
TEXT EDITING '" 5-1

THE TEXT EDITOR ... 5-1
TEXT EDITOR OPERATION ... 5-2

Text Editing Buffers 5-2
Modes of Operation .. 5-3

LINE EDITOR 5-3
SCREEN EDITOR ... 5-5

WORKING IN THE SHELL ... 5-5
SHELL SHORTHAND 5-6
REDffiECTING THE FLOW OF INPUT AND OUTPUT 5-7

Redirecting the Standard Output (» .. 5-9
Redirecting and Appending the Standard Output (> » 5-10
Redirecting the Standard Input «) ... 5-11
Connecting Commands with the Pipe (l) .. 5-12
Summary ... 5-13

RUNNING MULTIPLE PROGRAMS .. 5-13
Executing Commands in Sequence .. 5-13
Executing Commands Simultaneously .. 5-14

CUSTOMIZING YOUR COMPUTING ENVIRONMENT 5-15
CO~NICATION UTILITIES ... 5-16
PROGRAMMING IN THE SYSTEM 5-17

PROGRAMMING IN THE SHELL .. 5-18
PROGRAMMING IN THE C LANGUAGE .. 5-19
OTHER PROGR.AM:MING LANGUAGES .. 5-20
TOOLS TO AID SOFTWARE DEVELOPMENT .. 5-20

Source Code Control System (SCCS) .. 5-20
Maintaining Programs (make) ... 5-21
Checking Programs for Type Compliance (lint) .. 5-21
Generating Programs for Lexical Tasks (lex) 5-21
Generating Parser Programs (yacc) .. 5-22

Chapter 6: SHELL TUTORIAL

INTRODUCTION .. 6-1
HOW TO RE.AD THIS TUTORIAL .. 6-2
SHELL COMMAND LANGUAGE ... 6-2

SPECIAL CHARACTERS IN THE SHELL ... 6-2
Metacharacters ... 6-3
Commands in the Background Mode .. 6-7
Sequential Execution ; ... 6-8
Turning Off Special Character Meaning .. 6-9
Turning Off Special Characters by Quoting 6-9

(9054) IX

REDffiECTING INPUT AND OUTPUT ... 6-11
Redirecting Input .. 6-11
Redirecting Output .. 6-12
Redirecting Output and Append ... 6-14
Pipes .. 6-15
Command Output Substitution ... 6-18

EXECUTING AND TERMINATING PROCESSES ... 6-19
Obtaining the Status of Running Processes ... 6-19
Terminating Active Processes ... 6-20
Using the No Hang Up Command ... 6-21

COMMAND LANGUAGE EXERCISES 6-22
SHELL PROG~G 6-23

GETTING STARTED 6-23
Creating a Simple Shell Program 6-24
Executing a Shell Program 6-25
Creating a bin Directory for Executable Files ... 6-26

VARIABLES 6-28
Positional Parameters .. 6-29
Parameters with Special Meaning .. 6-32
Variable Names .. 6-35
Assign Values to Variables 6-36
Assign Values by the Read Command 6-36
Substitute Command Output for the Value of a Variable 6-39
Assign Values with Positional Parameters 6-40

SHELL PROGRAMMING CONSTRUCTS ... 6-41
Comments '" 6-42
The Here Document .. 6-42
Using ed in a Shell Program .. 6-44
Looping .. 6-45
The for Loop ... 6-46
The while Loop ... 6-48
Conditional Constructs if...then .. 6-50
The Shell Garbage Can /dev /null .. 6-51
The test Command for Loops 6-53
The Conditional Construct case ... esac .. 6-55
Unconditional Control Statement break 6-58

DEBUGGING PROGRAMS .. 6-59
MODIFYING YOUR SHELL ENVIRONMENT ... 6-62

The .profile File ... 6-62
Adding Commands to .profile 6-63
Setting Terminal Options 6-63
Using Shell Variables .. 6-65

CONCLUSION ... 6-66
SHELL PROGRAMMING EXERCISES .. 6-66
ANSWERS TO EXERCISES 6-68

COMMAND LANGUAGE EXERCISES .. 6-68
SHELL PROGRAMMING EXERCISES .. 6-69

x (9054)

Chapter 7: FLOPPY DISK DRIVE COMMANDS

INTRODUCTION .. 7-1
FLOPPY DISK CO~DS .. 7-1

DISPLAYING CONTENTS OF FLOPPY DISK .. 7-1
LISTING CONTENTS OF FILES .. 7-2
COPYING FILES ... 7-2
COPYING FLOPPY DISKS ... 7-3
FORMATTING FLOPPY DISKS ... 7-3
REMOVING AND COMPARING FILES .. 7-3

Chapter 8: ADMINISTRATIVE DUTIES

INTRODUCTION .. 8-1
THE SYSTEM CONSOLE .. 8-1
THE ROOT ACCOUNT ... 8-2

SUPER-USER ACCESS ... 8-2
MONITORING DISK SPACE .. 8-3

E"VER-EXP ANDING LOG FILES .. 8-3
ALTERING SYSTEM CONFIGURATION ... 8-4

THE BOURNE SHELL /etc/profile FILE ... 8-4
ADDING AN RS-232 TERMINAL ... 8-5

General .. 8-5
RS-232 Connections .. 8-5
Terminal Settings 8-6
The inittab File .. 8-6
The gettydefs File 8-7
Activating New Terminals ... : 8-8
Character Case ... 8-8

ADDING A RIDGE MONOCHROME DISPLAy ... 8-8
ADDING OTHER DEVICES ... 8-9

ADDING A USER .. 8-9
MESSAGE OF THE DAY ... 8-11
BACKING UP AND ARCHIVING DATA .. 8-11

ARCHIVE CO~DS ... 8-11
The cpio and tar Commands ... 8-11

TAPE DEVICE FILES ... 8-12
BACKUP CO~DS .. 8-13

Tape Backup ... 8-13
Floppy Disk Backup ... 8-14
Compressed Data Backup .. 8-15

(9054) Xl

Xll

RESTORE CO~DS .. 8-15
Restoring From Tape ... 8-15
Restoring From Floppy Disks .. 8-16
Restoring Compressed Data From Floppy Disk ... 8-17

SYSTEM F~URES ... 8-17
REGISTER D~ PROCEDURE ... 8-18
REBOOTING THE SYSTEM ... 8-19

ERROR MESSAGES ... 8-19
SYSTEM UPGRADES, SOFTWARE UPDATES, AND SERVICE CONTRACTS 8-20

Chapter 9: PREVENTIVE MAINTENANCE

INTRODUCTION .. 9-1
REPLACING THE RIDGE 32 AIR FILTER .. 9-1
CLEANING THE EXTERIOR ... 9-2
CLEANING THE READfWRITE HEADS ON THE FLOPPY
DISK DRIVE .. 9-2
OTHER EQUIPMENT .. 9-2

GLOSSARy ... G-l

INDEX .. 1-1

TECHNICAL MANUAL ORDER FORM

READER FEEDBACK

Table 3-1
Table 3-2
Table 4-1
Table 5-1
Table 5-2
Table 5-3

LIST OF TABLES

Troubleshooting Problems When Logging In 3-7
ROS System Typing Conventions 3-8
Summary of Selected Commands for pg .. 4-25
Comparision of Line (ed) and Screen (vi) Editors 5-4
Shorthand Notation for File and Directory Names 5-7
Options for Redirecting Input and/or Output 5-13

(9054)

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 3-1
Figure 3-2
Figure 4-1
Figure 4-2
Figure 4-3

Figure 4-4

Figure 4-5
Figure 4-6
Figure 4-7
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 8-1

LIST OF FIGURES

The Ridge 32 Product Line .. 1-1
The Floppy Disk Drive Mechanism 1-4
Floppy Disk .. 1-5
Position of the Tape Drive in the Companion Enclosure 1-6
Control Buttons on Front Panel of the Companion Enclosure 1-6
Accessing the Tape Drive Mechanism ... 1-8
ROS System Model ... 2-2
Functional View of Kernel ... 2-3
Treelike ROS Directory Structure 2-4
Typical File System Structure 2-5
Flow of Control During Program Execution 2-8
Ridge Graphics Display Terminal 3-2
Ridge Graphics Display Keyboard Layout 3-3
Sample File System 4-3
User and System Directories in the ROS File System 4-5
Full Pathname to the /userl/starship Directory
Traced by Heavy Bold Lines .. 4-8
Relative Path Name for the Draft Directory
is Traced with Heavy Bold Lines .. 4-9
The Relative Path draft/outline is Traced in Bold Lines 4-11
Output Produced by the Is -I Command ... 4-17
Line Printer ... 4-31
Standard Input/Output Flow ... 5-8
Redirecting Standard Output to File 5-9
Directing Standard Input from File to Program 5-11
Sample Pipe ; ... 5-12
Location of Switch 0 Button on the Clock Board 8-18

(9054) Xlll

XIV (9054)

Chapter 1: THE RIDGE 32

INTRODUCTION ... 1-1

INSTALLATION ... 1-1

TURNING THE SYSTEM ON ... 1-2

TURNING THE SYSTEM OFF ... 1-3

DISK DRIVES .. 1-4
lIARD DISK DRIVE .. 1-4
FLOPPY DISK DRIVE .. 1-4

Inserting a Floppy Disk .. 1-4
TAPE DRIVE ... 1-6

AUTOMATIC LOADING .. 1-7
AUTOMATIC UNLOADING .. 1-7
MANUAL UNLOADING ... 1-8

INTRODUCTION

Chapter 1

THE RIDGE 32

The Ridge 32 is a minicomputer with mainframe power, integrated high-resolution
graphics, and networking capabilities.

The Ridge 32 product line allows end users , system houses, and software developers to
build integrated solutions for advanced computational applications. The large data
storage capacity and high-speed computation capability of the Ridge 32 make it espe
cially suitable for compute-intensive applications with large program files and data sets.

Figure 1-1. The Ridge 32 Product Line

INSTALLATION

Your Ridge 32 should be installed by a Ridge Systems Engineer . If you have not made
arrangements to have your system installed, contact the Ridge Computers Customer
Service department .

Do not attempt to install your Ridge 32 computer yourself.

(9054) 1-1

User's Guide Ridge 32 Introduction

TURNING THE SYSTEM ON

1-2

Once your Ridge 32 computer is installed, you can turn the power on by setting the
power switch on the front panel to ON. After turning the power on, you will need
access to the system console terminal, which is the terminal connected to the port
marked Jl (if an RS-232 terminal) or Displayl (if a Bit-mapped terminal, such as a
Ridge display). Within 45 seconds after turning on the power, the following appears on
the system console's screen:

current date and time

Do you want to run with this date? (y)

If you wish to use the date and time displayed, press the RETURN key without an
entry. To set a new date and time, enter n and press the RETURN key. The prompt
Enter new date (YYMMDDhhmm) : will appear, after which you should type two
digit values for the year, month, day, hour, and minute in the YYMMDDhhmm form
displayed by the prompt. Press the RETURN key.

For example, upon powering the system on, you notice that the date and time is set to
May 6, 1985. 3:30pm, but the current date and time is May 18, 1985. 5:15pm. To set
the correct date and time enter: 8505181715. The screen will appear as follows:

May 6, 1985. 3:30pm
Do you want to run with this date? (y) n<CR>
Enter new date (YYMMDDhhmm): 8505181715<CR>

The BACKSPACE key does not work when entering the date in this way. Therefore,
the date must be entered correctly on the first try. If you enter the date incorrectly,
you can reset the date from the root account using the date(l) command. (See Chapter
8 for information on the root account.)

After a series of diagnostic messages, the login: prompt will appear, indicating the sys
tem is ready for use. You will find a description of the ROS operating system in
Chapter 2 and instructions on how to log in and use some of the basic ROS commands
in Chapter 3.

(9054)

User's Guide Ridge 32 Introduction

TURNING THE SYSTEM OFF

Only the person acting as the system administrator for your Ridge computer installa
tion should turn the system power on or off. If a key is required to turn the system
power off, it should be kept by the system administrator.

Do NOT turn off the power if:

• there are remote users

• the system is a link in a network

• jobs are scheduled to run when the system is unattended

• you are not sure what would be affected

Before turning off the power, you should use the ps -a command (see the ps(l) page in
the ROB Reference ManuaQ to verify there are no shell or background processes run
ning. After verifying that no user processes are running, it is safe to turn off the power
if the login: prompt appears at all of the terminals connected to the system.

The Ridge 32 and peripheral equipment may be turned off when the system is not in
use, but the electronics will not be harmed if they are left on overnight. If the system
will not be used for more than a day, it may be wise to turn it off.

(9054) 1-3

User's Guide Ridge 32 Introduction

DISK DRIVES

1-4

The Ridge 32 has two types of disk drives:

• Hard Disk Drive

• Floppy Disk Drive

HARD DISK DRIVE

Your system is equipped with a Winchester hard disk drive. This means the hard disk
is non-removable and should only be serviced by a Ridge Systems Engineer. Depending
on which system you have selected, the hard disk will store between 78 and 445 Mbytes
of data.

FLOPPY DISK DRIVE

The floppy disk drive is located at the top of the Ridge 32 computer on the right-hand
side. This drive accepts double-sided, double-density, 8-inch floppy disks. Each format
ted floppy disk can store up to 1.248 Mbytes of data.

.....+-+-- Disk Drive Door
c=====~====~====~

Disk Release Button

Disk Access Light

Figure 1-2. The Floppy Disk Drive Mechanism

Inserting a Floppy Disk

Before opening the door on the floppy disk drive, verify that the disk access light on the
drive is off. If the disk access light is on, a disk is in the drive and is currently being
read from or written to by the computer.

(9054)

User's Guide Ridge 32 Introduction

WARNING
NEVER REMOVE A FLOPPY DISK WHEN THE DISK ACCESS LIGHT IS ON!

When the disk access light is off, push the disk release button. If a disk is in the drive,
it will be ejected.

Before inserting the floppy disk into the drive, see if the disk has a notch on the left side
of the slotted end (see Figure 1-3). This is the "write disable" notch. If the write dis
able notch is exposed, you will only be able to read data from the disk. If you plan to
write data to the disk, cover the write disable notch with one of the adhesive tabs
packaged with your new disk.

i Insert

o
Write Disable Notch

D
Figure 1-3. Floppy Disk

Insert the floppy disk, label side up and slotted edge first, all the way into the disk drive
until you feel it "lock" into place. Pull down the disk drive door until it clicks shut.

The disk is now ready to be accessed by the floppy disk drive. See Chapter 7, FLOPPY
DISK DRIVE COMMANDS for details on how to format and access the floppy disk.

(9054) 1-5

User's Guide Ridge 32 Introduction

TAPE DRIVE

1-6

A reel-to-reel, half-inch tape drive is available in the Ridge Companion Enclosure. The
versatility of the tape drive software (see mt(7)) allows you to transfer data between
the Ridge 32 and many types of computer systems.

Companion Enclosure

Figure 1-4. Position of the Tape Drive in the Companion Enclosure

CAUTION
Do not force open the plastic door of the tape drive when it is in use. The door opens
easily by hand when the tape is not loaded.

~ ~ ~Wi#EN~
REWIND UNLOAD ON-LINE TEST DEN
\.) \..) \..) \.) \..)

Figure 1-5. Control Buttons on Front Panel of the Companion Enclosure

(9054)

User's Guide Ridge 32 Introduction

AUTOMATIC LOADING

The tape drive can accommodate tapes up to 10.5 inches in diameter. To load a tape
onto the drive:

1. Open the front panel of the Companion Enclosure and press the power button on
the lower right of the tape drive mechanism to the ON position. After an
automatic and brief self-test cycle, the UNLOAD light should remain on.

2. By hand, wind the tape neatly and completely onto the reel to be loaded.

3. Press in at the bottom of the tape drive door to open it.

4. If the tape is to be written to, make sure the write-enable ring is fitted into the
groove at the bottom of the tape spool. If the tape is to be read from only, you
can protect the data on the tape from accidentally being overwritten by leaving
the write-enable ring off. Insert the tape reel, label side up, into the opening.

5. Close the tape drive door.

6. Press the LOAD/REWIND button. The LOAD/REWIND light blinks during
automatic threading of the tape. After successful loading, the LOAD/REWIND
and WRT EN-TEST (if the write-enable ring is installed) lights stay on. If the
LOAD /REWIND light blinks for more than one minute, automatic loading has
failed. In this event power the tape drive off and back on, press UNLOAD, and
repeat this step again. In the rare event that loading fails three times, manual
loading is necessary.

7. When the LOAD/REWIND light stays on, press ON-LINE. Now the
LOAD /REWIND, WRT EN-TEST (if write-enable ring is installed), and ON-LINE
lights should be on. The tape is now ready to be accessed.

AUTOMATIC UNLOADING

To unload a tape automatically:

1. Take the tape drive off-line by pressing ON-LINE. The ON-LINE light should go
off.

2. Press UNLOAD. As the tape is rewinding and unloading inside the tape drive, the
UNLOAD light blinks. When the UNLOAD light stays on, the tape has finished
unloading, and the door unlocks.

3. Open the tape drive door and remove the tape. Close the door.

(90.54) 1-7

User's Guide Ridge 32 Introduction

MANUAL UNLOADING

In the rare event that the tape will not unload automatically, it must be removed from
the drive by hand.

1. Remove the top lid of the Companion Enclosure by pulling up on the front edge of
the lid, as pictured. (Some enclosures have quick release screws on the back of the
cover. On these enclosures, unscrew the screw, pull the cover towards you, then lift
up.)

Tape Drive Assembly
Lid

Figure 1-6. Accessing the Tape Drive Mechanism
Through the Top of Companion Enclosure

2. Raise the lid of the tape drive mechanism. Prop it open with the plastic stick
attached to the left side of the lid.

3. Release the supply reel by pressing and holding the white button underneath it,
then turning the supply reel by hand until all the tape is wound onto it.

4. Turn the supply reel until it resists, then turn it past the point of resistance. The
drive will release the reel.

5. Close the lid and put the Companion Enclosure back in the original operating posi
. tion.

1-8 (9054)

Chapter 2: THE RIDGE OPERATING SYSTEM (ROS)

INTRODUCTION .. 2-1
HOW ROS WORKS .. 2-2

KERNEL ... 2-3
File System .. 2-3

SHELL ... 2-6
Commands ... 2-7
What Commands Do .. 2-8
How Commands Execute .. 2-8

Chapter 2

THE RIDGE OPERATING SYSTEM

INTRODUCTION

The Ridge Operating System (ROS) is derived from two popular variants of the UNIX
operating system: UNIX System V from AT&T Bell Laboratories and the 4.2 Berkeley
Software Distribution (bsd) from the University of California at Berkeley. If you are
familiar with a UNIX system, you already have a working knowledge of ROS.

ROS software does three things:

• It controls the computer

• It acts as an interpreter between you and the computer

• It provides a package of programs or tools that allow you to do your work

The ROS software that controls the computer is referred to as the operating system.
The operating system coordinates all the details of the computer's internals, such as
allocating system resources and making the computer available for general purposes.
The nucleus of this operating system is called the kernel.

The ROS software that acts as a liaison between you and the computer is called the
shell. The shell interprets your requests and, if valid, retrieves programs from the
computer's memory and executes them.

The ROS software that allows you to do your work includes programs and packages of
programs for electronic communication, for creating and changing text, and for writing
programs and developing software tools.

This package of services and utilities called ROS offers:

• A general purpose system that makes the resources and capabilities of the
computer available to you for performing a wide variety of jobs or applications,
not simply one or a few specific tasks.

• A computing environment that allows for an interactive method of operation so you
can directly communicate with the computer and receive an immediate response to
your request or message.

• A technique for sharing what the system has to offer with other users, even though
you have the impression that ROS is giving you its undivided attention. This is
called tz·mesharing. ROS creates this feeling by allowing you and other users-
multiusers-- slots of computing time measured in fractions of seconds. The rapidity
and effectiveness with which ROS switches from working with you to working with

(9054) 2-1

The ROS System User"'s Guide

other users makes it appear that the system is working with all users
simultaneously.

• A system that provides you with the capability of executing more than one
program simultaneously, this feature is called multitasking.

HOW ROS WORKS

2-2

This section describes the main components of the Ridge Operating System. Look at
Figure 2-1. It shows a set of layered circles in graduated sizes. Each circle represents
specific ROS software, such as:

• Kernel

• Shell

• Programs/tools that run on command

Additional
Utility

Programs

Figure 2-1.

Text
Processing

Information
Management

ROS System Model

You should know something about the major components of ROS software to
communicate with the ROS system. Therefore, the remainder of this chapter
introduces you to each component: the kernel, the shell, and user programs or
commands.

(9054)

User's Guide The ROS System

KERNEL

The heart of ROS is called the kernel. Figure 2-2 gives an overview of the kernel's
activities. Essentially, the kernel is software that controls access to the computer,
manages the computer's memory, and allocates the computer's resources to one user,
then to another. From your point of view, the kernel performs these tasks
automatically. The details of how the kernel accomplishes this are hidden from you.
This arrangement lets you focus on your work, not on the computer's.

Allocates
system

resources

Figure 2-2. Functional View of Kernel

On the other hand, you will become increasingly familiar with another feature of the
kernel; this feature is referred to as the file system.

File System

The file system is the cornerstone of the Ridge Operating System. It provides you with
a logical, straightforward way to organize, retrieve, and manage information
electronically. If it were possible to see this file system, it might look like an inverted
tree or organization chart made up of various types of files.

(9054) 2-3

The ROS System User's Guide

The file is the basic unit of ROS and it can be anyone of three types:

2-4

o ",D"'OCIO"S

0'" O,dinerv File.

V '" Spec,,1 File.

Figure 2-3. Treelike ROS Directory Structure

• An ordinary file is simply a collection of characters. Ordinary files are used to
store information. They may contain text or data for the letters or reports you
type, code for the programs you write, or commands to run your programs. In
ROS, everything you wish to save must be written into a file.

In other words, a file is a place for you to put information for safekeeping until you
need to recall or use its contents again .. You can add material to or delete
material from a file once you have created it, or you can remove it entirely when
the file is no longer needed.

• A directory is a file maintained by the operating system for organizing the treelike
structure of the file system. A directory contains files and other directories as
designated by you. You can build a directory to hold or organize your files on the
basis of some similarity or criterion, such as subject or type.

For example, a directory might hold files containing memos and reports you write
pertaining to a specific project or client. Or a directory might hold files containing
research specifications and programming source code for product development. A
directory might hold files of executable code allowing you to run your computing
jobs. Or a directory might contain files representing any combination of these
possibilities.

• A special file represents a physical device, such as the terminal on which you do
your computing work or a disk on which ordinary files are stored. At least one
special file corresponds to each physical device supported by ROS.

(9054)

User's Guide The ROS System

In some operating systems, you must define the kind of file you will be working with and
then use it in a specified way. You must consider how the files are stored since they can
be sequential, random-access, or binary files. To ROS, however, all files are alike. This
makes the ROS file structure easy to use. For example, you need not specify memory
requirements for your files since the system automatically does this for you. Or if you
or a program you write needs to access a certain device, such as a printer, you specify
the device just as you would another one of your files. In ROS, there is only one
interface for all input from you and output to you; this simplifies your interaction with
the system.

The source of the ROS file structure is a directory known as root, which is designated
with a slash (/). All files and directories in the file system are arranged in a hierarchy
under root. Root normally contains the kernel as well as links to several important
system directories that are shown in Figure 2-4:

o = Directories

D = Ordinary Files

V = Special Files

Figure 2 - 4. Typical File System Structure

Many executable programs and utilities reside in this directory. /bin

/dev This directory contains special files that represent peripheral devices,
such as the console, the line printer, user terminals, and disks.

(9054) 2-5

The ROS System User's Guide

2-6

fete Programs and data files for system administration can be found in this
directory.

/lib This directory contains available program and language libraries.

/ros This directory contains ROS system files. These files should not be
changed or executed from the command line.

/tmp This directory is a place where anyone can create temporary files.

/usr This directory holds other directories, such as mail (which further
holds files storing electronic mail), news (which contains files holding
newsworthy items), and games (which contains files holding electronic
games).

In summary, the directories and files you create comprise the portion of the file system
that is structured and, for the most part, controlled by you. Other parts of the file
system are provided and maintained by the operating system, such as bin, dey, ete,
lib, tmp and usr, and have much the same structure on all UNIX and ROS systems.

Chapter 4 shows how to organize a file system directory structure and how to access
and manipulate files. Chapter 5 gives an overview of ROS capabilities. The effective
use of these capabilities depends on your familiarity with the file system and your
ability to access information stored within it.

SHELL

The shell is a unique ROS program or tool that is central to most of your interactions
with the ROS system. Figure 2-1 illustrates how the shell works. The drawing shows
the shell as a circle containing arrows pointing away from the kernel and the file system
to the outer circle that contains programs and then back again. The arrows indicate
that a two-way flow of communication is possible between you and the computer via
the shell.

When you enter a request to the ROS system by typing on the terminal keyboard, the
shell translates your request into language the computer understands. If your request is
valid, the computer honors it and carries out an instruction or set of instructions.
Because of its job as translator, the shell is called the command language interpreter.

As the command language interpreter, the shell can also help you to manage
information. The shell's ability to manage information stems from the design of the
ROS system. Each ROS program is designed to do one thing well. In a sense, a ROS
program is a building block or module that you can use in tandem with other programs
to create even more powerful tools.

In addition to acting as a command language interpreter, the shell is a programming
language complete with variables and control flow capabilities.

(9054)

User's Guide The ROS System

ROS allows you to use two types of shells:

• Bourne Shell

• C-Shell

In order to keep the discussions of shell use as simple as possible, this guide will only
describe the operations of the Bourne shell. The C-shell offers some special features
which you may find desirable. For information on the use of the C-shell, see the G-Shell
section in the ROS Programmer's Guide and the csh(l) pages in the ROS Reference
Manual.

The WORKING IN THE SHELL section in Chapter 5 describes the Bourne shell's
capabilities. The tutorial in Chapter 6 teaches you how to use these capabilities to
write simple shell programs called shell scripts and how to custom-tailor your
computing environment.

Commands

A program is a set of instructions that the computer follows to do a specific job. In
ROS, programs that can be executed by the computer without need for translation are
called executable programs or commands.

As a typical user of the ROS system, you have many standard programs and tools
available to you. If you also use the ROS system to write programs and to design and
develop software, you have system calls, subroutines, and other tools at your disposal.
And you have, of course, the programs you write.

This book introduces you to approximately 40 of the most frequently used programs
and tools that you will probably use on a regular basis when you interact with the ROS
system. If you need additional information on these or other standard ROS system
programs, check the ROS Reference Manual. If you want to use tools and routines that
relate to programming and software development, you should consult the ROS
Programmer's Guide and the ROS Utility Guide.

The details contained in the ROS Reference Manual may also be available Vla your
terminal in what is called the on-line version of the ROS Reference Manual. This on
line version is made up of formatted text files that look like the printed pages in the
manuals. You can summon pages in this electronic manual using the command man,
which stands for manual page. If the electronic version of the manuals is available on
your computer, the man command is documented in the man(1) page of your copy of
the ROS Reference Manual.

(9054) 2-7

The ROS System User's Guide

What Commands. Do

The outer circle of Figure 2-1 organizes ROS system programs and tools into general
categories according to what they do. The programs and tools allow you to:

• Process text. This capability includes programs, such as, line and screen editors
(which create and change text), a spelling checker (which locates spelling errors),
and optional text formatters (which produce high-quality paper copies that are
suitable for publication).

• Manage information. The ROS system provides many programs that allow you to
create, organize, and remove files and directories.

• Communicate electronically. Several programs, such as mail, provide you with the
capability to transmit information to other users and to other ROS systems. See
the ROB Utility Guide for deatils on the mail utility.

• Use a productive programming and software development environment. A number of
ROS system programs establish a friendly programming environment by providing
ROS system-to-programming-Ianguage interfaces and by supplying numerous utility
programs.

• Take advantage of additional system capabilities. These programs include graphics,
a desk calculator package, and computer games.

How Commands Execute

Figure 2-5 gives a general idea of what happens when the ROS system executes a
command.

YOUR
REQUEST

INPUT
SHELL

OUTPUT (COMMAND
~ __ -I LANGUAGE

..... __ INTERPRETER) PROGRAM
EXECUTION

DIRECTORY
SEARCH

PROGRAM
RETRIEVAL

Figure 2-5. Flow of Control During Program Execution

2-8 (9054)

User's Guide The ROS System

When the shell signals it is ready to accept your request, you type in the command you
wish to execute on the keyboard. The command is considered input, and the shell
searches one or more directories to locate the program you specified. When the
program is found, the shell brings your request to the attention of the kernel. The
kernel then follows the program's instructions and executes your request. After the
program runs, the shell asks you for more information or tells you it is ready for your
next command.

This is how the ROS system works when your request is in a format that the shell
understands. The structure that the shell understands is called a command line.
Chapter 4 explains what you need to know about the command line so you can request
a program to run.

This chapter has outlined some basic principles of the ROS operating system and
explained how they work. The following chapters will help you begin to apply these
principles according to your computing needs.

(9054) 2-9

Chapter 3: GETTING STARTED

INTRODUCTION .. 3-1
ABOUT THE TERMINAL .. 3-1

REQUIRED TERMINAL SETTINGS .. 3-2
KEYBOARD CHARACTERISTICS 3-3

OBTAINING A LOGIN NAME ... 3-4
ESTABLISHING CONTACT WITH THE ROS SYSTEM 3-4

LOGIN PROCEDURE ... 3-4
PASSWORD ... 3-5
POSSIBLE PROBLEMS WHEN LOGGING IN ... 3-6
TYPING CONVENTIONS ... 3-7

Responding to the Command Prompt 3-8
Type-Ahead Buffer 3-9
Stopping a Command 3-9
Control Characters 3-9
Correcting Typing Errors 3-9
Temporarily Stopping Output ... 3-10
Terminating a Computing Session .. 3-10
Additional Control Character Capabilities .. 3-10

SIMPLE COMMANDS ... 3-10
LOGGING OFF ... 3-11

INTRODUCTION

Chapter 3

GETTING STARTED

There are general rules and guidelines with which you should be familiar before you
begin to work on the RaS system. For example, you need information about your
terminal and how to use its keyboard and about how to begin and end a computing
seSSIon.

This chapter acquaints you with these rules and guidelines and presents you with
information to help to make your first encounter with the RaS system understandable
and to lay the groundwork for future computing sessions. Since the best way to learn
about the Ras system is to use it, this chapter helps to get you started by providing
examples of how to use these rules and guidelines to establish contact with the Ras
system and to respond to its requests and prompts.

To establish contact with the RaS system, you need:

• A terminal

• An identification name, called a login name, by which the RaS system recognizes
you as one of its authorized users

• A password with which the RaS system double-checks and verifies your identity
after you log in and before it allows you to use its resources

ABOUT THE TERMINAL

A terminal is an input/output device: through it you input a request to the Ras
system and the system, in turn, outputs a response to you. The terminal is equipped
with a keyboard, a monitor or display unit, a control unit, and a link that allows it to
communicate with the computer.

The terminal you use to interact with the RaS system can be either a Ridge Display
(Figure 3-1) or any type of RS-232 terminal.

(9054) 3-1

Getting Started User's Guide

3-2

Power
Switch

Figure 3-1. Ridge Graphics Display Terminal

REQUffiED TERMINAL SETTINGS

Regardless of the type of terminal you use, you must set it up or configure it in a
certain way to ensure proper communication with the ROS system. If you have not
configured a terminal before, you might feel more comfortable seeking help from your
System Administrator.

How you configure a terminal depends on the type of terminal that you are using.
Some terminals are configured with switches, whereas other terminals are configured
directly from the keyboard using a set of function keys. To determine how to configure
your terminal, consult the owner's manual provided by the manufacturer. If you are
connecting an RS-232 terminal, the ADDING AN RS-282 TERMINAL section .. in
Chapter 8 provides the general guidelines for connecting an RS-232 terminal. If you are
connecting a Ridge Graphics Display, follow the installation procedure outlined in the
user's guide shipped with the display.

(9054)

User's Guide Getting Started

KEYBOARD CHARACTERISTICS

Figure 3-2 illustrates the keyboard layout of the Ridge Graphics Display Terminal.

Il '~RIOOE 1]

PREV ~~ l~~. ~
NEXT INS DEl. Q

CI4M CIIAA CJ

Figure 3-2. Ridge Graphics Display Keyboard Layout

Its keys correspond to:

• Letters of the English alphabet a through z and A through Z when you are holding
down a shift key,

• Numeric characters 0 through 9,

• A variety of symbols, such as ! @ # $ % A & () _ - + = r--J ' { } [] \:;'" < > ,
? /

• Words, such as RETURN and BREAK, and abbreviations, such as DEL (delete),
CTRL (control), and ESC (escape).

• Special Function keys. Many terminals have special keys that can be assigned a
particular function by software.

Many of the keys corresponding to symbols, words, and abbreviations have been added
to the keyboard layout and the placement of these characters or symbols on a keyboard
may vary from terminal to terminal.

Consequently, there is not a truly standard layout for terminal keyboard characters.
There is, however, a standard set of characters that keyboards have, consisting of 128
characters, called the ASCII character set. ASCII is the abbreviation for American

(9054) 3-3

Getting Started User"s Guide

Standard Code for Information Interchange. When you depress a key or combination of
keys, the appropriate ASCII code is sent to the computer for translation from the
alphabetic and numeric characters that we understand to electronic signals that the
computer can decode.

After you configure the terminal and survey its keyboard, all you need is a login name
to establish communication with the ROS system.

OBTAINING A LOGIN NAME

When you attempt to establish contact with the ROS system, ROS must be able to
verify that you are an authorized user. You identify yourself as an authorized user by
means of a login name.

To receive a login name, set up a ROS system account through your local System
Administrator or the person in charge of your Ridge 32 computer installation.

Your login n~me is determined by local practices. Possible examples are your last
name, your nickname, or a ROS system account number. Typically, a login name is
three to eight characters in length. It can contain any combination of alphanumeric
characters, as long as it starts with a letter. It cannot, however, contain any symbols.
The following are examples of legal ROS system login names: starship, mary2, and
jmrs.

ESTABLISHING CONTACT WITH THE ROS SYSTEM

3-4

When the system's power is on and startup sequence described in Chapter 1 is complete,
your terminal should display the login: prompt.

If you are greeted with a series of meaningless characters, depress the BREAK key. If
the ROS system does not display the login: prompt within a few seconds, depress
the BREAK key once again.

LOGIN PROCEDURE

When the connection is made and the ROS system prompts for your login name, type in
your login name and depress the <CR> key. In the following examples, starship is
the login name.

(9054)

User's Guide Getting Started

r login: starship<CR>

Remember to type your login name in the same case as it was established. By
convention, login names are established in lowercase letters.

PASSWORD

If you do not have a password yet, the system will display a message, such as:

login: starship<CR>

Welcome to the Ridge - This is ROS 3.3

$

If the system did not request a password, you should assIgn one to your account by
typing

login: starship<CR>

Welcome to the Ridge - This is ROS 3.3

$ passwd<CR>

Your password should be as least seven characters long and can be made up of any
combination of alphabetic and numeric characters. Examples of valid passwords are:
mar84ch, JonathOn, and BRA V3S.

Enter the name you wish to use as your password after the new password: prompt.
Notice your password entry does not appear on your screen as you type it. This is to
ensure that only you know the password to your account. After pressing the <CR>
key, you will be asked to retype your password to confirm that you entered it correctly
the first time. Re-enter your password and press the <CR> key. (The passwd
command is discussed in the passwd(l) pages of the ROB Reference Manual.)

(9054) 3-5

Getting Started User # s Guide

3-6

The next time you log in, ROS will ask you for both your user name and your password,
as demonstrated by the user starship in the following example:

login: starship<CR>
password: your_password<CR>

Welcome to the Ridge - This is ROS 3.3

If you made a typing mistake that you did not correct before depressing <OR>, the
ROS system displays the message login incorrect on your terminal monitor and
asks you to try again by printing the login: prompt.

login: ttarship<CR>
password: your_password<CR>
login incorrect
login:

PossmLE PROBLEMS WHEN LOGGING IN

A terminal usually behaves predictably providing you have configured it properly.
Sometimes, however, it may act peculiarly. For example, each character you type may
appear twice on the terminal monitor or the carriage return may not work properly.

Some problems can be corrected by entering stty sane. Note that when you enter this
command, it may not be echoed back to your display. If this command doesn't work,
try reentering it and, instead of pressing the <OR> key, press the line feed key. If all
else fails, log out and back in again. If none of these actions remedy the problem, you
should check the following and try logging in once again:

• Keyboard-- Keys that are marked CAPS, LOCAL, BLOCK, and so on should not be
enabled, that is, in the locked position. You can usually disable these keys simply
by depressing them.

• Data phone set or modem~- If your terminal is connected to the computer via
telephone lines, verify that the baud rate and duplex settings are correctly
specified.

• Swz'tches-- Some terminals have several switches that must be set to be compatible
with the ROS system. If this is the case with the terminal you are using, make
sure they are set properly.

(9054)

User"s Guide Getting Started

If all of the users connected to the same system have terminal problems, you might
have to reboot the system (see Chapter 8). It is never necessary to turn the Ridge 32
off and on again.

Table 3-1 presents a list of procedures you can follow to detect, diagnose, and correct
some problems you may experience when trying to establish contact with the ROS
system. If none of the possibilities covered in the table helps you, contact the system
administrator or the person in charge of the Ridge 32 computer installation at your
location.

Table 3-1

Troubleshooting Problems When Logging in*

Problemt

Stream of meaningless characters when
logging in

Input and output is printed in
uppercase letters

Input is printed in UPPERCASE letters,
output in LOWERCASE

Input is printed (echoed) twice

Tab key does not work properly

Communication link cannot be
established in spite of receiving high
pitched tone when dialing in

Communication link between terminal
and ROS system is repeatedly
dropped on logging in

Possible Cause

ROS system attempting to
communicate at wrong speed

Terminal configuration includes
UPPERCASE setting

Key marked CAPS or CAPS LOCK is
locked or enabled

Terminal is set to HALF DUPLEX mode

Tabs are not set to advance to next

Terminal is set to LOCAL or OFF-LINE
mode

Terminal is set to LOCAL or OFF-LINE
mode

Action/Remedy

Depress BREAK key

Log off, set character generation to
LOWERCASE, and log in again

Depress the CAPS or CAPS LOCK key
to disable setting

Change setting to FULL DUPLEX mode

Type stty -tabst

Set terminal to ON-LINE operation and
try logging in again

Call system administrator

* Numerous problems can occur if your terminal is not configured properly. To eliminate these possibilities befQre
attempting to log in, perform the configuration checks listed on page 2-4.

t Some problems may be specific to your terminal, data set, or modem, check the owner's manual for this
equipment if suggested actions do not remedy the problem. * Typing stty -tabs corrects tab setting only for your current computing session. To insure correct tab setting for
all sessions, add the line stty -tabs to your .profile (see Chapter 8).

TYPING CONVENTIONS

To interact effectively with the ROS system, you should be familiar with certain typing
conventions. An example of a ROS system typing convention is using lowercase letters
when you issue commands. Other typing conventions require that you use combinations
of characters to erase letters and delete lines, temporarily stop the ROS system from
sending output to your terminal, and so on.

The next few pages introduce you to these conventions. Table 3-2 lists these special
characters, keystrokes, and their meanings for quick reference.

(9054) 3-7

Getting Started User's Guide

3-8

Table 3-2

ROS System Typing Conventions

Key(s) Meaning

DEL Stop execution of a program or command

ESC Use with another character to perform specific function (called escape
sequence) Or, use to indicate end of create mode when using screen editor
(vi)

RETURN End a line of typing; designated as <CR>
BACKSPACE Erase a character

Control x Erase an entire line

Control d Stop input to system or log off; designated as <Ad>
Control h Erase a character for terminals without a BACKSPACE key; designated

as <Ah>
Control i Horizontal tab for terminals without a tab key; designated as <Ai>
Control s Temporarily stops output from printing on screen; designated as <AS>
Control q Resumes printing after typing <AS>; designated as <A q>

NOTE: All control characters are sent by holding down the control key and pressing the appropriate letter.

Responding to the Command Prompt

The ROS system command prompt will be either $, %, or #, depending on whether you
are using the Bourne shell, C-shell, or are logged in as root. When the system prompt
appears on your terminal monitor, it means that the ROS system is waiting for you to
enter a command and press the carriage return key, designated as <CR> throughout
this guide, to execute it.

The $, %, and # are the default command prompts. Chapter 6 explains how to change
the default value to another prompt.

(9054)

User's Guide Getting Started

Type-Ahead Buffer

ROS features a type-ahead buffer that allows you to type characters while the system is
computing previous input or writing on the screen. Up to 256 characters can be typed
before the system prompt appears and the system is ready to accept input.

Normally, if you type a command before the system prompt appears, the command will
not be echoed (or displayed) on your terminal screen until the system completes its
current task. If you wish your input to be displayed the moment you type it, enter:

$ stty echoi

When you log off the system, type-ahead will be reset to its original echo state. See the
echoi mode for the stty command in the stty(l) pages of the ROB Reference Manual for
details.

Stopping a Command

If you wish to stop the execution of a command, simply depress the DEL key. In turn,
you will receive the system prompt indicating that the ROS system terminated the
running of the program and is ready to accept your next command.

Control Characters

Locate the control key on your terminal keyboard. The key may be labeled CTRL or
CONTROL and is probably to the left of the A. key or below the Z key. The control
character is used in combination with other keyboard characters to initiate a physical
controlling action across a line of typing, such as backspacing or tabbing. In addition,
some control characters define ROS-specific commands, such as temporarily halting
output from printing on a terminal monitor.

Type a control character by holding down the CTRL key and depressing an appropriate
alphabetic key. Control characters do not print on the terminal when typed. In this
guide, control characters are designated with a preceding carat (A), such as <AS> for
control s, to help identify them.

The following sections describe some of the control character combinations you will be
using regularly when working with the ROS system.

(9054) 3-9

Getting Started User'8 Guide

Correcting Typing Errors

You can correct typing errors in two ways providing you have not pressed <CR>. The
BACKSPACE key allows you to erase previously typed characters on a line, and
<AX> allows you to delete the entire line on which you are working.

Temporarily Stopping Output

At times, you may wish to stop the ROS system temporarily from printing output on
your terminal monitor. This is useful when you wish to keep information from rolling
off the screen monitor on a video display terminal. If you type <AS>, printing is
suspended; typing <Aq> causes the printing to resume.

Terminating a Computing Session

When you have completed a session with the ROS system, you should type <Ad>. This
is the recommended way to log off the system and is described in detail later in this
chapter.

Additional Control Character Capabilities

The ROS system furnishes other control character capabilities. For instance, if your
terminal keyboard does not have a backspace key, typing <Ah> gives you a backspace.
Typing <Ai> gives you a tab key if your terminal is set properly. (Refer to the section
entitled Possa·ble Problems When Logging In for information on how to set the tab key.)

SIMPLE COMMANDS

When the system prompt is displayed on your monitor, the ROS system recognizes you
as an authorized user. Your response to the system prompt is to request ROS system
programs to run.

Type in the command date and press <OR> after the command prompt. When you
do this, the ROS system retrieves the date program and executes it. As a result, your
terminal monitor should look something like the following.

3-10

$ date<CR>
Wed Oct 12 09:49:44 PST 1983
$

(9054)

User"s Guide Getting Started

As you can see, the ROS system prints the date and the time. In this example, the PST
stands for Pacific Standard Time. Your terminal monitor will display the appropriate
time for your geographical location.

Now type the command who and depress <CR>. Your screen will look something like
this.

$ who<CR>
starship ttyOO
mary2 tty02
acct123 tty05
jmrs tty06
$

Oct 12
Oct 12
Oct 12
Oct 12

8:53
8:56
8:54
8:56

The who command lists the login names of everyone currently working on your system.
The tty## designations refer to the names of the special files that correspond to the
terminals on which you and other users are currently working. The login date and time
for each are also given.

LOGGING OFF

When you have completed a session with the ROS system, you should type <Ad> after
the system prompt. (Remember that control characters such as the <A d> are typed
by holding down the control key and depressing the appropriate alphabetic key.) Since
they are nonprinting characters, they do not appear on the terminal monitor. In a few
seconds, the ROS system should display the login: message again. This indicates
you have logged off successfully and someone else can log in at this time. Your terminal
monitor should look like the one that follows.

r $ <Ad>
login:

It is strongly recommended that you log off the system using <Ad> before turning off
the terminal or hanging up the phone. It is the only way to assure you have been
logged off the ROS system.

(9054) 3-11

Chapter 4: USING THE FILE SYSTEM

INTRODUCTION .. 4-1
C01\111AND STRUCTURE ... 4-1
HOW THE FILE SYSTEM IS STRUCTURED ... 4-3
YOUR PLACE IN THE FILE SYSTEM STRUCTURE ... 4-4

YOUR HO~ DIRECTORy .. 4-4
YOUR WORKING DIRECTORy .. 4-5
P ATHNA11ES .. 4-7

Full Path Names .. 4-7
Relative Path Names ... 4-8

ORGANIZING A DIRECTORY STRUCTURE .. 4-11
CREATING DIRECTORIES (mkdir) ... 4-12
LISTING THE CONTENTS OF A DIRECTORY (Is) 4-13

Frequently Used Is Options 4-15
CHANGING YOUR WORKING DIRECTORY (cd) .. 4-18
REMOVING DIRECTORIES (rmdir) ... 4-20

ACCESSING AND MANIPULATING FILES ... 4-22
BASIC COMMANDS 4-22

Displaying a File's Contents (cat, pg, pr) ... 4-22
Printing a File (lp) 4-30
Making a Duplicate Copy of a File (cp) ... 4-33
Moving and Renaming a File (mv) .. 4-35
Removing a File (rm) ... 4-36
Counting Lines, Words, and Characters in a File (wc) 4-37
Protecting Your Files (chmod) .. 4-40

ADVANCED COMMANDS ... 4-44
Identifying Differences Between Files (diff) 4-45
Searching a File for a Pattern (grep) ... 4-46
Sorting and Merging Files (sort) ... 4-48

SU1.1MARY ... 4-50

Chapter 4

USING THE FILE SYSTEM

INTRODUCTION

To use the file system effectively you must be familiar with its structure, know
something about your relationship to this structure, and understand how the
relationship changes as you move around within the file system. Reading this chapter
serves as preparation to use this file system.

The first ten or so pages should help to give you a working perspective of the file
system. These pages contain information on the makeup of the file system and on how
you fit into its organization. The remainder of the chapter introduces you to a number
of ROS system commands. Some of these commands allow you to build your own
directory structure, whereas others allow you to access and manipulate the
subdirectories and files you organize within it. There are also commands that allow you
to examine the contents of other directories in the system that you have permission to
look at or to use.

Each command is discussed in a separate subsection in a way that will allow you to use
it effectively. Many of the commands presented in this section have additional,
sophisticated uses; these, however, are left for more experienced users and are described
in other ROS system documentation. You can read these sections in the order in which
they are presented in the text or you can read about the commands and their
capabilities in the order that best suits your interests and purpose. Nevertheless, all
the commands presented are basic to using the file system efficiently and easily. It is
recommended that you read through them thoroughly and then try them out. Before
viewing how the file system is structured, however, let's take a look at the structure of
a command.

COMMAND STRUCTURE

For the ROS system to understand your intentions when usmg commands, you must
take care to see that you input commands using the correct format, called the
command line syntax. The command line syntax provides a procedure for ordering
elements in a command line. It serves the same purpose as putting words in a certain
sequence or order so that you can meaningfully express your ideas and thoughts to
others. Without sentence structure, people would have difficulty interpreting what you
mean. Similarly, without command line syntax, the ROS system shell cannot interpret
your request.

(9054) 4-1

Using the File System User#s Guide

4-2

Command line syntax consists of one or more of the following elements separated by a
blank or blanks and followed by pressing the carriage return <OR> key:

command option(s} argument(s}

where

command is the name of the program you wish to run

option modifies how the command runs

argument specifies data on which the command is to focus or operate (usually a
directory or file name)

A command line can simply contain a command name followed by <OR>, or it can list
options and/or arguments in addition to the command. If you specify options and
arguments on the command line, you must separate them with at least one blank.
Blanks can be typed by pressing the space bar or the tab key. If a blank is part of the
argument name, enclose the argument in double quotation marks, for example,
"sample I".

Some commands allow you to specify multiple options and/or arguments on a command
line. Consider the following command line:

Command
Arguments

Options

! I
A~
we -I -w fUel filee file9

In this example, we is the name of the command and two options -I and -w have been
specified. (The ROS system usually allows you to group options such as these to read
-Iw if you prefer.) In addition, three files-- filel, file2, and file3 -- are specified as
arguments.

Although most options can be grouped together, arguments cannot.

(9054)

User's Guide Using the File System

The following examples show the proper sequence and spacing in command line syntax:

Incorrect

wcfile
wc-lfile
wc -1 w file

wc filelfile2

Correct

wc file
wc -1 file
wc -lw file

or
wc -1 -w file
wc filel file2

You can refer back to the ground rules on command line syntax as you read and work
through the chapter.

HOW THE FILE SYSTEM IS STRUCTURED

The file system comprises a set of directories, ordinary files, and special files. These
components provide you with a way to organize, retrieve, and manage information.
Chapter 2 introduced you to directories and files, but let's review what they are before
learning how to use them to tap the resources of the file system. o = Directories

D = Ordinary Files

V = Special Files

Figure 4-1. Sample File System

(9054) 4-3

Using the File System User's Guide

In general, a directory is a collection of files and other directories. Specifically, it
contains the names of these files and directories. You can build a directory to organize
the files you create on the basis of some similarity. An ordinary file is a collection of
characters stored on a disk. Such a file may contain text for a status report you type
or code for a program you write. Any information you wish to save must be written
into a file. And a special file represents a physical device, such as your terminal.

The set of all the directories and files is organized into a treelike structure. Figure 4-1
helps you to visualize this. It shows a single directory called root as the source of a
sample file structure. By descending the branches that extend from root, several other
major system directories can be reached. By branching down from these, you can, in
turn, reach all the directories and files in the file system. In this hierarchy, files and
directories that are subordinate to a directory have what is called a parent/child
relationship. This type of relationship is possible for many generations of files and
directories, giving you the capability to organize your files in a variety of ways.

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

4-4

When you are interacting with the ROS system, you will be doing so from a location in
its file system structure. The ROS system automatically places you at a specific point
in its file system every time you log in. From that point, you can move through the
hierarchy to work in any of the directories and files you own and to access those
belonging to others that you have permission to use.

The following sections describe your place in relation to the file system structure and
how this relationship changes as you move through the file system.

YOUR HOME nffiECTORY

When you successfully complete the login procedure, the ROS system positions you at a
specific point in its file system structure called your login or home directory. The login
name that was assigned to you when your ROS system account was set up is usually
the name of this home directory. Every user with an authorized login name has a
unique home directory in the file system.

The ROS system is able to keep track of all these home directories by maintaining one
or more system directories that organize them. For example, let's say that the name of
one of these system directories is user!, and that it contains the home directories of
the login names starship, mary2, and jmrs. Figure 4-2 shows you how a system
directory like user! ranks in relation to the other important ROS system directories
you read about in Chapter 2.

(9054)

User's Guide

o = Directories

D = Ordinary Files

V = Special Files

Using the File System

Figure 4-2. User and System Directories in the ROS File System

Within your home directory, you can create files and additional directories (sometimes
called subdirectories) to organize them, you can move and delete these files and
directories, and you can control who can access your files and directories. You have full
responsibility for everything you create in your home directory because you own it.
Your home directory is a vantage point from which to view all the files and directories
it holds. It is also a point from which to view the file system all the way up to root.

YOUR WORKING DffiECTORY

As long as you continue to work in your home directory, it is considered your current or
working directory. If you move to another directory, that directory becomes your
wor king directory.

There is a ROS system command called pwd, which stands for print working directory,
that you can use to verify the name of the directory in which you are currently
working.

(9054) 4-5

Using the File System User's Guide

4-6

For example, if your login name is starship and you issue the pwd command in
response to the first $ prompt after logging in, the RaS system should respond as
follows:

$ pwd<CR>
/userl/starship
$

The system reply indicates that your working directory is /userl/starship.
Technically, /userl/starship is the full or complete name of your working directory,
which indicates your current location in the Ras file system. Strings like
/userl/starship are referred to as a path names. Path names are discussed in the
next section.

We will analyze and trace this path name in the next few pages so you can start to
move around in the file system. For now, it is sufficient to say that what
/userl/starship tells you is that the root directory / (indicated by the leading slash in
the line) contains the directory userl, which in turn contains the current working
directory, which is starship. All other slashes in the path name are simply used to
separate names of directories and files.

Remember, you can always use the pwd command to determine where you are in the
file system. The pwd command will be especially helpful if you try to read or copy a
file and the RaS system tells you that the file you are trying to access does not exist.
You may be surprised to find that you are in a different directory than you thought.

To provide you with a quick summary of what you can expect the pwd command to do,
a recap of how to use it follows.

Command Recap

pwd - print full name of working directory

command

pwd

Description:

Remarks:

options arguments

none none

pwd prints the full path name of the directory
in which you are currently working.

If the system responds with messages, such as,
cannot open directory or read error in
directory, there> may be problems with the
file system. Inform the system administrator.

(9054)

User's Guide Using the File System

PATH NAMES

Every file and directory in the ROS system is identified by a unique path name. The
path name tracks or indicates the location of the file or directory in the file system
structure. Additionally, a path name provides directions to a specific file or directory.
Knowing how to follow the directions the path name gives is your key to moving around
the directory structure successfully.

In the file system, there are two types of path names--full and relative.

Full Path Names

A full path name (sometimes called an absolute path name) gives you directions that
take you from the root directory down through a unique sequence of directories that
leads to a particular directory or file. You can use a full path name to reach any file or
directory in the ROS system in which you are working. A full path name always starts
at the root of the file system and its leading character is a / (slash). The final name in
a full path name can be either a file name or a directory name. All other names in the
path must be directories.

To understand how a full path name is constructed and where it can lead you, let's use
the sample file system (Figure 4-2) and say that your current working directory is
starship. If you issue the pwd command, the system responds by printing the full
path name of your working directory, which is /userl/starship.

We can analyze the elements of this path name using the following diagram.

Root

where:

System
Directory

Delimite!
rJ~

Vuser l/starship

Home
Directory

/ (leading) = Root of the file system when it is the first character in the path
name,

userl = System directory one level below root in the hierarchy to which root
poin ts or branches,

/ (subsequent) = Slash that separates or delimits the directory names, user! and
starship, and

starship = Current working directory, which is also the home directory.

(9054) 4-7

Using the File System User'8 Guide

4-8

Now look at Figure 4-3, it traces the full path to /userl/starship through the sample
file system we are using.

o = Directories

D =Ordlnery Files

V = Specie' Flies

Figure 4-3. Full Pathname to the /userl/starship Directory Traced by
Heavy Bold Lines

Relative Path Names

A relative path name is the name of a file or directory that varies with relation to the
directory in which you are currently working. From your working directory, you can
move "down" in the file system structure to access files and directories you own or you
can move "up" in the hierarchy through generations of parent directories to the
grandparent of all system directories, the root. A relative path name begins with a
directory or file name, with a • (dot), which is a shorthand notation for the directory in
which you are currently located, or a •• (dot dot), which is a shorthand notation for the
directory immediately above your current working directory in the file system
hierarchy. The •• (dot dot) is called the parent directory of the one in which you are
currently located, which is the current directory or • (dot).

(9054)

User's Guide Using the File System

For example, if you are in the home directory starship in the sample system and
starship contains directories named draft, letters, and bin and a file named mbox,
the relative path name to any of these is simply its name, be it draft, letters, bin, or
mbox. Figure 4-4 traces the relative path name from starship to draft.

o = Directories

D =Ordin_ry Files

Figure 4-4. Relative Path Name for the Draft Directory is
Traced With Heavy Bold Lines

Now, let's say the draft directory belonging to starship contains the files outline and
table. Then, the relative path name from starship to the file outline is written as
draft/outline.

Figure 4-5 traces this relative path. Notice that the slash in this path name separates
the directory named draft from the file named outline. Here, the slash is a delimiter
that indicates that outline is subordinate to draft; that is, outline is a child of its
parent, draft.

Thus far, the discussion of relative path names covered how to specify names and
directories of files that belong to, or are children of, your current directory -- in other
words, to descend the system hierarchy level by level until you reach your destination.
You can also, however, ascend the levels in the system structure or ascend and
subsequently descend into other files and directories.

(9054) 4-9

Using the File System User"s Guide

To ascend to the parent of your working directory, you can use the •• notation. This
means that if you are in the directory named draft in the sample file system, .. is the
path name to starship, and .. / •. is the path name to starship's parent directory
userl. From draft, you could also trace a path to the file sanders in the sample
system by using the path name .• /letters/sanders (.• brings you up to starship, then
down to letters, and finally sanders).

Keep in mind that you can always use a full path name in place of a relative one.

In summary, some examples of full and relative path names would be:

Path Name Meaning

/ Full path name of the root directory for the file system.

/bz"n Full path name of the bin directory that contains most
executable programs and utilities.

/userl/starship/bin/tools Full path name of the directory called tools belonging
to the directory bin that belongs to the directory
starship belonging to userl that belongs to root.

bin/tools Relative path name to the file or directory tools in the
directory bin. If the current directory is /, then the
ROS system searches for /bin/tools. But, if the
current directory is starship, then the system searches
the full path /userl/starship/bin/tools.

tools Relative path name of a file or directory tools in the
working directory.

It might take some practice to move around in the file system with confidence. But this
is to be expected when learning a new concept and the techniques to use it.

To give you a chance to try your hand at moving about in the system's structure, the
remainder of the chapter introduces you to the ROS system commands that make it
possible for you to peruse the file system. If you lose track of where you are in the
system's structure, use the pwd command to identify your location.

4-10 (9054)

User's Guide Using the File System

o = Directories

D = Ordinary Files

Figure 4-5. The Relative Path draft/outline is Traced in Bold Lines

ORGANIZING A DIRECTORY STRUCTURE

This section introduces you to four ROS system commands that make it possible for
you to organize and use a directory structure. These commands and what you can
expect them to do are as follows:

mkdir -- Allows you to create or make new directories and subdirectories from
your current working directory

Is Allows you to list the names of all the subdirectories and files In a
directory

cd Provides you with the ability to change your location from one
directory to another in the file system

rmdir -- Lets you remove a directory when you no longer have a need for it

All of the commands can be used with path names-- full or relative -- when organizing a
directory structure and when moving to the directories and subdirectories you organize,
as well as when navigating to directories in the file system that belong to others that
you have permission to access. The Is and cd commands can also be used without a
path name.

(9054) 4-11

Using the File System User's Guide

Each of the commands is described more fully in the four sections that follow. In
addition, a summary called a command recap is given for each command. The
command recaps allow you to review quickly the command line syntax and the
capabilities of each command.

CREATING DffiECTORIES (mkdir)

It is recommended that you create subdirectories in your home directory according to
some logical and meaningful scheme to help you retrieve information you will keep in
files. A convenient way to organize your files is to put all files pertaining to one subject
together in a directory.

To create a directory, the ROS system provides you with the mkdir command, which
stands for make directory. In the sample file system, the draft subdirectory in the
home directory starship, for example, may have been built by entering the following
while located in starship:

mkdir draft<CR>

The $ response to the mkdir command indicates that a directory named draft was
successfully created.

Similarly, the other subdirectories named letters and bin were created with the same
command, as indicated in the following screen:

$ mkdir letters<CR>
$ mkdir bin<CR>
$

All the subdirectories (draft, letters, bin) could have been created in one command
with the same results, as the following screen shows:

4-12

$ mkdir draft letters bin<CR>
$

(9054)

User's Guide Using the File System

You can also move to a subdirectory you created and build additional directories.
When you build directories, or create files, keep in mind the following guidelines:

• The name of a directory (or file) can be from one to sixteen characters in length.

• All characters other than / are legal.

• Some characters are best avoided, such as a blank or space, a tab, or a backspace,
and the following:

; , " < >

If you use a blank or tab in a directory or file name, you must enclose the name in
quotation marks on the command line.

• Avoid using the +, - or • as the first character in names.

• Uppercase and lowercase characters are distinct to the ROS system. For example,
the directory or file named draft would not be the same as the directory or file
named DRAFT or Draft.

Examples of legal directory or file names would be:

memo
file.c

MEMO
chap3+4

section2 ref:list
iteml-l0 outline

See the command recap that follows for a quick reference to mkdir's capabilities.

command

mkdir

Description:

Remarks:

Command Recap

mkdir - make a new directory

options

none

arguments

directoryname(s)

mkdir creates a new directory (subdirectory).

The system returns the $ prompt if the
directory is successfully created.

LISTING THE CONTENTS OF A DIRECTORY (Is)

All directories in the file system have information about the files and directories they
contain, such as name, size, and the date last modified. You can obtain this
information about what your working directory and other system directories contain by
using the Is command.

(9054) 4-13

Using the· File System User's Guide

The Is command, which stands for list, lists the names of the files and subdirectories of
the directory you specify by path name. If you do not specify a path name, Is lists the
names of files and directories in your working directory. To demonstrate how the Is
command works, let's use the sample file system (Figure 4-2) once again.

You are logged into the ROS system and the shell responds to your pwd command with
the line /userl/starship. To display the names of files and directories in the working
directory, you would type Is<CR>. After this sequence, your terminal should read:

$ pwd<CR>
$ /userl/starship
$ Is<CR>
bin draft letters
$

list mbox

As you can see, the system responds by listing the names of files and directories in the
working directory starship in alphabetical order. If the first character of any of the
file or directory names was a number or a capital letter, it would have been printed
first.

Now, if you want to print the names of files and subdirectories in a directory other than
your working directory without moving from your working directory, you should use the
command format:

Is d£rectoryname< OR>

where the directoryname is the full or relative path name of the desired directory. This
means that you can print the contents of draft while you are working in starship by
entering Is draft<CR>.

4-14

$ Is draft<CR>
outline table
$

(9054)

User's Guide Using the File System

In the previous example, draft was a relative path name from starship to draft.
Similarly, you could print the contents of the userl directory, which is the parent of
the starship by typing:

$ Is .. <CR>
jmrs
$

mary2 starship

where .. is the relative path name from starship to useri. You could also list the
contents of userl by typing Is luserl <CR> (since luser! is the full path name from
root to user!) and get the identical listing.

In general, you can list the contents of any system directory that you have permission
to access using the Is command and a full or relative path name.

The Is command is particularly useful if you have a long list of files and you are trying
to determine whether one of them exists in your working directory. For example, if you
are in the directory draft and you wish to determine if the files named outline and
notes are there, you can use the Is command as follows:

$ Is outline notes<CR>
notes not found
outline
$

The output on the terminal monitor shows that the system acknowledges the existence
of outline by printing its name, but says that the file notes is not found.

The Is command will not print the contents of a file. If you wish to see what a file
contains, you can use the cat, pg, or pr command, which are described in the section of
this chapter entitled Accessing and Manipulating Files.

Frequently Used is Options

The Is command also accepts options that cause specific attributes of a file or
subdirectory to be listed. There are more than a dozen available options for the Is
commands. Of these, the -a and -1 will probably be most valuable in your basic use of
the ROS system. Refer to the ROB Reference Manual for information and details on
the other options.

(9054) 4-15

Using the File System User's Guide

Listing All Names in a File. Some important file names in your home directory begin
with a . (dot), such as .profile, • (the current' directory), and .• (the parent
directory). The Is command will not print these names unless you use the -a option in
the command line. Thus, to list all files in your working directory starship, including
those that start with a (dot), type Is -a<CR>. The terminal should look
something like this:

$ Is -a<CR>

.profile
$

draft
letters
list

mbox

Listing Contents in Long Format. Probably the most informative Is option is -1.
If you type Is -1<CR> while in the starship directory, you would get the following:

$ Is -1<CR>
total 30
drwxr-xr-x 3 starship project 96 Oct 2708:16 bin
drwxr-xr-x 2 starship project 64 Nov 114: 19 draft
drwxr-xr-x 2 starship project 80 Nov 808 :41 letters
-rwx------ 2 starship project 12301 Nov 2 10: 15 list
-rw------- 1 starship project 40 Oct 27 10:00 mbox
$

After the command line, the first line of output, total 30, shows the amount of
memory used, which is measured in chunks called blocks. Next is one line for each
directory and file. The first character in each of these lines tells you what kind of file is
listed, where:

d = Directory!

- = Ordinary disk file,

b = Block special file, and

c = Character special file.

4-16 (9054)

User's Guide Using the File System

The next several characters, which are either letters or hyphens, describe who has
permission to read and use the file or directory. (Permissions are discussed with the
chmod command in the section entitled Accessz'ng and Manz'pulatz'ng Fz'les in this
chapter.) The following number is the link count, which in the case of a file, equals the
number of directories it is in, or in the case of a directory, also includes the number of
directories immediately under it in the file system structure. Next is the login name of
the owner of the file, which is starship, and then the group name of the file or
directory, which is project. The following number indicates the length of the file or
directory entry measured in units of information (or memory) called bytes. Then there
is the month, day, and time that the file was last modified. Finally, the file or directory
name IS gIven.

Figure 4-6 sums up what you get when you list the contents of a directory In long
format.

File
type

Number of
blocks used

Owner
name

Number
of links

Group
name

d rwxr-xr-x 3
d rwxr-xr-x 2
d rwxr-xr-x 2
- rwx------ 2

t
starship project
starship project
starship project
starship pro j ect

Number of
characters

/ Name

~
96 Oct 27 08:16 bin
64 Nov 1 14:19 draft
80 Nov 8 08:41 letters

12301 Nov 2 10:15 list ~
a130

- rw------- 1 starship project 40 Oct 27 10:00 mbox

~ ~

i t
Time/date last

Permissions modified

Figure 4-6. Output Produced by the Is -I Command

(9054) 4-17

Using the File System User"s Guide

Command Summary. Following is a recap of capabilities provided by the Is
command and two available options. See the ROB Reference Manual for information on
other available options.

command

Is

Description:

Options:

Remarks:

Command Recap

Is - list contents of a directory

options

-a, -1, and others*

arguments

directoryname(s)

Is lists the names of the files and
subdirectories in the specified directories. If no
directory name is given as an argument, the
contents of your working directory are listed.

-a Lists all entries, including those beginning
with • (dot).

-1 Lists con ten ts of a directory in long
format furnishing mode, permissions, size
in bytes, and time of last modification.

If you want to read the contents of a file, use
the cat command.

* See the ROS Reference Manual for all available options and an explanation of their capabilities.

CHANGING YOUR WORKING nffiECTORY (cd)

When you first log into the ROS system, you are placed in your home directory, which
becomes your current or working directory. You may, however, wish to work in a
different directory for any number of reasons. For example, you might want to create a
file in a specific directory, you may need to make corrections to a file in another
directory, or you may wish to obtain information by reading a file in a different
directory.

Whatever the reason, the ROS system provides you with the cd command that allows
you to move around in its directory structure. When you use the cd command to move
to a new directory, that directory becomes your working directory.

4-18 (9054)

User's Guide Using the File System

To use· the cd command, enter the command:

cd newdirectory-pathname<CR>

where the path name, whether full or relative, to the new directory is optional. Any
valid path name of a directory can be used as an argument to the cd command. If you
use the cd command without specifying a path name, it will move you to your home
directory regardless of where you are in the file system.

When you specify a valid directory path name on the command line, the ROS system
moves you to that directory. For example, to move from the starship directory to the
child directory draft in the sample file system, type cd draft<CR>. In this example,
draft is the relative path name to the desired directory. When you get the $ prompt,
verify your new location by typing pwd<CR>. Your terminal monitor should look
something like the following:

:;; cd draft<CR>
:;; pwd<CR>
/userl/starship/draft
:;;

Now that you are in the draft directory you can access the files and directories in it, in
this case, the files outline and table. You can also create subdirectories in draft with
mkdir and additional files with the ed and vi commands. (See the ROS Text Editing
Guide for general information on the ed and vi commands.

You may also use full path names with the cd command. For example, to move to the
letters directory from the draft directory, you could use the command

cd /userl/starship/letters<CR>

where /userl/starship/letters is the full path name to letters.

Or, since letters and draft are both children of starship, you could use the cd
command with the relative path name •• /letters. The •• notation moves you to the
directory starship, and the remainder of the path name moves you to letters.

If you wish to return to your home directory after perusing the file system, simply type
cd<CR>. The cd command with no arguments returns you to your home directory.

(9054) 4-19

Using the File System

command

cd

Description:

Remarks:

User's Guide

Command Recap

cd - change your working directory

options

none

arguments

directoryname

cd changes your position in the file system
from the current directory to the directory
specified. If no directory name is given as an
argument, the cd command places you in your
home directory.

When the shell places you in the directory
specified, the $ prompt is returned to you.
You will also receive a $ prompt when you
issue the cd command with no argument. To
access a directory that is not in your working
directory, you must substitute the full or
relative path name in place of a simple
directory name.

REMOVING DIRECTORIES (rmdir)

If you decide you no longer need a directory, you can remove it with the rmdir
command. The rmdir command, which stands for remove a directory, removes a
directory if that directory does not contain subdirectories and files, or, in other words, if
the directory is empty.

If the directory you are attempting to remove is not empty, rmdir will not remove it
unless you remove the contents of the directory first. In addition, you are not allowed
to remove directories belonging to other system users unless you have permission to do
so.

The standard format for the rmdir command is:

rmdir directoryname(s)< OR>

where one or more directory names can be specified.

4-20 (9054)

User's Guide Using the File System

If you were to attempt to remove the directory bin in the sample file system, the ROS
system would respond in the following manner:

$ rmdir bin<CR>
rmdir: bin not empty
$

To remove the directory bin with the rmdir command, you would first have to remove
the files display and list and the subdirectory tools. If you wish to remove files, see
the section entitled Accessz"ng and Manz"pulatz"ng FZ"les in this chapter. To remove any
subdirectories like tools, use the rmdir command. The system will return the $
prompt in response to the rmdir command when the directory specified in the
command line is empty.

The command recap that follows summarizes how rmdir works.

command

rmdir

Description:

Remarks:

Command Recap

rmdir - remove a directory

options

none

arguments

directoryname(s)

rmdir removes named directories if they do
not contain files and/or subdirectories.

If the directory is empty, the system returns
the $ prompt when the directory is removed.
If the directory contains files or subdirectories,
the message, rmdir: directory name not
empty is returned to you.

(9054) 4-21

Using the File System User's Guide

ACCESSING AND MANIPULATING FILES

This section introduces you to several ROS system commands that access and
manipulate files in the file system structure. Information in this section is organized
into two parts-- basic and advanced. The part devoted to basic commands is
fundamental to your using the file system; the advanced commands offer you more
sophisticated information processing techniques when working with files. You may skip
reading the advanced section if you do not need to use the commands it covers.

BASIC COMMANDS

This section discusses ROS system commands that are important to your being able to
access and use the files in your directory structure. Specifically, these commands and
their capabilities are:

cat Outputs the contents of a file you name

pg Prints on a video display terminal the contents of a file you name In

chunks or pages

pr Prints on your terminal a partially formatted version of the file you name

lpr -- Allows you to produce a paper copy of a file on a line printer

cp -- Makes a duplicate copy of an existing file

mv -- Moves and renames a file

rm -- Permanently removes a file when you no longer need it

wc -- Counts the lines, words, and characters in a file

chmod -- Changes permission modes for a file (and a directory)

Each command is covered in one of following sections. A command recap follows the
discussion of each command allowing you to review quickly the command line syntax
and command capabilities.

Displaying a File's Contents (cat, pg, pr)

The ROS system provides three commands that allow you to display and print the
contents of a file or files-- cat, pg, and pro The C1\t command, which stands for
concatenate, outputs the contents of files you specify by name on the command line,
and displays the result on your terminal unless you tell cat to direct the output to
another file or a new command. The pg command is particularly useful when you wish
to read the contents of a lengthy file or a number of files because the command displays

4-22 (9054)

User's Guide Using the File System

the text of a file in chunks or pages, a screenful at a time at your direction on a video
display terminal. The pr command partially formats and outputs the files you specify
on your terminal unless you direct the output to a paper printing device (see the lpr
command in this chapter).

The following three sections describe how to use these commands.

Concatenate and Print Contents of a File (cat). The cat command displays the
contents of a file or files. For example, if you are located in directory letters in the
sample file system and you wish to display the contents of the file johnson, you would
type cat johnson<CR> and the following output would appear on the terminal.

$ cat johnson<CR>
This file contains a letter
to Mr. Johnson on the topic of
office automation.
$

As you can see, the contents of the file are displayed after the command line and are
followed by the $ prompt.

To display the contents of two (or more) files, like johnson and sanders, simply type
$ cat johnson sanders<CR> and the cat command reads johnson and sanders
and displays their contents in that order on your terminal.

$ cat johnson sanders<CR>
This file contains a letter
to Mr. Johnson on the topic of
office automation.
This file contains a letter
to Mrs. Sanders inviting her to
speak at our departmental
meeting.
$

To direct the output of the cat command to another file or to a new command, see the
REDIRECTING INPUT AND OUTPUT section in Chapter 6.

(9054) 4-23

Using the File System User'8 Guide

The command recap that follows summarizes what you can expect the cat command to
do.

Command Recap

cat - concatenate and print a file's contents

command

cat

Description:

Remarks:

options

available*

arguments

filename(s)

cat reads the name of each file given on the
command line and displays the contents of the
files.

If the file{s) exist, the contents are displayed
on the terminal monitor; if not, the message
cat: cannot open filename is returned to
you.

If you wish to display the contents of a
directory, use the Is command.

* See the ROS Reference Manual for all available options and an explanation of their capabilities.

Paging Through the Contents of a File (pg). The pg command, short for page,
allows you to examine the contents of a file or files screenful by screenful on a video
display terminal. The pg command displays the text of a file in chunks or pages
followed by a colon (:). After displaying the colon, the system pauses and waits for your
instructions to proceed. For example, your instructions can request pg to continue
displaying the file's contents a page at a time or you can ask pg to search through the
file(s) to locate a specific character pattern. Table 4-1 summarizes some of the
instructions you can give pg after the colon is displayed.

4-24 (9054)

User's Guide Using the File System

Table 4-1

Summary of Selected Commands for pg*

Commandt

h

q or Q

<OR>

d or "d

. or "I

f

n

p

$

/pattern/

"pattern"

Meaning

Help; display list of available pg
commands

Quit pg perusal mode

Display next page of text

Display next line of text

Display additional half page of text

Redisplay current page of text

Skip next page of text, and display
following one

Begin displaying next file you ,specified
on command line

Display previous file specified on command
line

Display last page of text in file currently
displayed

Search forward in file for specified
character pattern

Search backward in file for specified
character pattern

* See the ROS Reference Manual for a detailed explanation of all available pg commands.
t Most commands can be typed with a number preceding them: + 1 (display next page), -1 (display

previous page), or 1 (display first page of text).

The pg command is especially useful when you wish to peruse a long file or a series of
files because the system pauses after displaying each page allowing you as much time as
you need to examine it. The size of the page displayed depends on the terminal you are
using. For example, on a video display terminal with a window capable of showing
24 lines, 23 lines of text and a line containing the colon will be displayed as a page.
However, if the file is less than 23 lines long, the page size will be the number of lines in
the file plus the line containing the colon.

(9054) 4-25

Using the File System User's Guide

To peruse the contents of a file with pg, use the following command line format:

pg filename(s)<OR>

For example, to display the .contents of the file outline in the sample file system, type
pg outline<OR> and the first page of the file will appear on the screen. Since the file
has more lines in it than can be displayed in one page, the colon indicates there is more
to be looked at when you are ready. Pressing the <OR> key will print the next page
of the file.

The following screen summarizes what has been done thus far.

4-26

$ pg outline<CR>
After you analyze the subject for your
report, you must consider organizing and
arranging the material you wish to use in
writing it.

An outline is an effective method o·f
organizing the material. The outline
is a type of blueprint or skeleton,
a framework for you the builder-writer
of the report; in a sense it is a recipe
: <CR>

(9054)

User's Guide Using the File System

After pressing the <OR> key, the pg program will resume outputting the file's
contents on the screen as follows:

that contains the names of the
ingredients and the order in which
to use them.

Your outline need not be elaborate or
overly detailed; it is simply a guide you
may consult as you write, to be varied,
if need be, when additional important
ideas are suggested in the actual writing.
(EOF) :

In addition to the remainder of the file's contents, a line with the output (EOF): is
displayed. The EOF designates that you have reached the end of the file and the colon
is your cue for the next instruction.

When you have completed examining the file, you can type q or Q followed by pressing
the <OR> key and the $ prompt will appear on your screen. Or you can choose to use
one of the other available commands given in Table 4-1 depending on your needs.

In addition, there are a number of options that can be specified on the pg command
line. Refer to the ROS Reference Manual if you are interested in learning more about
them.

(9054) 4-27

Using the' File System User's Guide

The following command recap summarizes the highlights of pg's capabilities.

Command Recap

pg - display a file's contents in chunks or pages

command

pg

Description:

Remarks:

options

available*

arguments

filename(s)

pg reads the name of each file given on the
command line and displays the contents of the
file(s) in chunks or pages, screenful by
screenful.

After displaying a screenful of' text, the pg
command awaits your instruction to continue
to display text, to search for a pattern of
characters, or to exit the pg perusal mode. In
addition, a number of options are available for
you to use with pg on the command line. For
example, you can start to display the contents
of file at a specific line or at a line containing
a certain sequence or pattern or you can opt
to go back and review text that has already
been displayed.

* See the ROS Reference Manual for all available options and an explanation of their capabilities.

The more command is similar to the pg command, but offers additional capabilites.
See the more(l) pages in the ROB Reference Manual for details.

Print Partially Formatted Contents of a File (pr). The pr command is typically
used to prepare files for printing. You can expect the pr command to title, paginate,
supply headings, and print a file according to varying page lengths and widths on your
terminal monitor unless you specify that it prints on another output device, such as a
line printer (read the discussion on the lpr command in this section), or you direct the
printing to a different file (see the section REDIRECTING INPUT AND OUTPUT in
Chapter 6).

If you choose not to specify any of the available options, the pr command produces
output that is in a single column with 66 lines per page and is preceded by a short
heading. The heading consists of five lines-- two blank lines; a line containing the date,
time, file name, and page number; and two more blank lines. And the formatted file is
followed by five blank lines. (Complete sets of text formatting tools, called nroft' and
troif, are available for your ROS system.)

4-28 (9054)

User's Guide Using the File System

Typically, the pr command is used in tandem with the lpr command to provide a paper
copy of text as it was entered into a file. (See the section discussing the lpr command
for details.) However, you can also use the pr command to format partially and print
the contents of a file on your terminal. For example, to review the contents of the file
johnson in the sample file system, type in the command pr johnson<CR>. The
following screen summarizes this activity.

$ pr johnson<CR>

Nov 29 09:19 1983 johnson Pagel

This file contains a letter
to Mr. Johnson on the topic of
office automation.

$

Note that the ellipses after the last line in the file stand for the remaining 58 lines (all
blanks in this case) that pr formatted into the output. If you are working on a video
display terminal, which typically allows you to view about 24 lines at a time, the entire
66 lines of the formatted file will print continuously and rapidly to the end of file. This
means that the first 41 lines will "roll" off the top of your screen making it impossible
for you to read them unless you have the ability to "roll" or "page" back a screen or
two. If you are looking at a particularly long file, this feature might not solve the
problem.

In this case, you should use the control-s <"'s> combination to stop printing on your
terminal temporarily and control-q <A q> to resume the printing.

(9054) 4-29

Using the File System User's Guide

The command recap that follows summarizes what you can expect the pr command to
do.

Command Recap

pr - print partially formatted contents of a file

command

pr

Description:

Remarks:

options

available*

arguments

filename(s)

pr produces a partially formatted copy of a
file(s) on your terminal monitor unless
otherwise specified. The program prints the
text of the file(s) on 66-line pages and places
five blank lines at the bottom of each page
and a five-line heading at the top of each
page. The heading consists of two blank lines;
a line containing the date, time, file name and
page number; and two additional blank lines.

If the specified file(s) exists, the contents are
partially formatted and displayed on the
screen; if not, the message pr: can't open
filename is returned to you.

The pr command is most commonly used with
the lpr command when a paper copy of a file
is needed. However, when using the pr
command to review a file on a video display
terminal, use <AS> and <A q> to temporarily
stop and start printing the file.

* See the ROS Reference Manual for all available options and an explanation of their capabilities.

Printing a File (lpr)

At some point in time, you may want a paper copy of a file. In this case, if you have a
printer connected to your Ridge, simply turn the printer on and use cat or pr to print
the file. If, however, you wish to obtain a higher quality paper copy, you will want to
use the lpr command. The lpr command, which stands for line printer, allows you to
request your printer to furnish you with a paper copy of a file or files (Figure 4-7).

4-30 (9054)

User's Guide Using the File System

Figure 4-7. Line Printer

The line printer or types of line printers that you have access to depends on your
specific Ridge 32 installation. You should ask your system administrator for the names
of the printers available to you.

The basic format for the command is:

lpr file<CR>

For example, to print the file letters on a line printer, you would type
lpr letters<CR> on the command line. In turn, the system would provide you with
the name of the device or type of device on which the file will be printed and an
identification (id) number indicating your request. The following screen summarizes this
activity.

$ lpr letters<CR>
Request id is 6885 1 file
$

The system response indicates that your job is to be printed on a line-printing device
(the system default), has a request id number of 6885, and is to include the printing of
one file.

(9054) 4-31

Using the File System User's Guide

Using the -m option would cause mail to be sent to you indicating when the job IS

completed.

If you would like to cancel the request to lpr to print the file letters, use the format:

lprm file<CR>,

where file is the request id, the filename or the owner.

The lpq command gives the status and request id of the line printer jobs.

A command recap follows that summarizes what you can expect of the lpr command.

Command Recap

lpr - request paper copy of file from a line printer

command

lpr

Description:

Options:

Remarks:

opta'ons

-m, and others*

arguments

file{s)

lpr requests that specified files be printed by a line
printer, thus providing paper copies of the
contents.

-m Sends a message to you via mail after the
printing is complete.

You can cancel a request to the line printer by
typing cancel and the request id furnished to you
by the system when the request was acknowledged.

Check with the system administrator for
information on additional and/or different
commands for printers that may be available at
your location.

* See the lpr(l) pages in the ROS Reference Manual for all available options and an explanation of their capabilities.

The lpr command is also available with the optional lp spoolingsystem. See the lpr(l)
pages in the ROS Reference Manual for details.

4-32 (9054)

User's Guide Using the File System

Making a Duplicate Copy of a File (ep)

When using the ROS system, you may wish to make a copy of a file. For example, you
might want to revise a file while leaving the original version intact. The ROS system
provides you with the cp command, short for copy, which copies the complete contents
of one file into another. The cp command also allows you to copy one or more files
from one directory into a different directory while leaving the original file or files in
place.

To copy the file named outline to a file named new.outline in the sample directory,
simply type cp outline new.outline<CR>. The system returns the $ prompt when
the copy is made. To verify the existence of the new file, you can type ls<CR>, which
lists the names of all files and directories in the current directory, in this case draft.
The following screen summarizes the activity.

$ cp outline new.outline<CR>
$ ls<CR>
new. outline
$

outline table

You know from looking at the sample file system that the file new.outline did not exist
before the cp command to copy outline to new.outline was given. However, if it had,
it would have been replaced by a copy of the file outline and the previous version of
new.outline would have been deleted.

If you had tried to copy the file outline to another file named outline in the same
directory, the system would have told you that the file names were identical and
returned the $ prompt to you. If you listed the contents of the directory to determine
exactly how many copies of outline exist, the terminal monitor would look something
like the following:

$ cp outline outline< CR>
cp: outline and outline are identical
$ ls<CR>
outline
$

table

As you can see, the ROS system does not allow you to have two files with the same
name in a directory.

You could, however, copy the file named outline from the directory draft to another
file named outline in the directory named letters by using any of the following
command lines assuming you are currently in draft:

(9054) 4-33

Using the File System User's Guide

cp
cp

. cp
cp

outline
outline
outline
outline

•• /letters / outline< CR>
•• /letters< CR>
luser I /starship /letters /outline< CR>
luserl/starship/letters<CR>

A copy of the file outline would reside in both directories draft and letters after using
one of these commands since each of them contains a legal path name to the file
outline. From this example, you can see that the ROS system allows you to have files
with identical names as long as they are in different directories.

If you would like to copy the file outline in the directory draft to a file named
outline.vers2 in the directory letters, you could use either. of the following command
lines:

cp outline .. /letters/outline.vers2<CR>
cp outline /userl/starship/letters/outline.vers2<CR>

The following recap summarizes how the cp command works.

command

cp

Description:

Remarks:

4-34

Command Recap

cp - make a copy of a file

options arguments

filel file2
none file (s) directory

cp allows you to make a copy of filel and call
it file2 leaving file! intact, or to copy one or
more files into a different directory.

When copying filel to file2 and file2 already
exists, the cp command will overwrite the first
version of file2 with a copy of file! calling it
file2. The first version of file2 is deleted.

You cannot copy directories with the cp
command.

(9054)

User "s Guide Using the File System

Moving and Renaming a File (mv)

The my command allows you to rename a file in the same directory or to move a file
from one directory to another. If you move a file to a different directory, the file can be
renamed or it can retain its original name.

To rename a file in a directory, use the following command:

my filel file!2< CR>

The my command changes a file's name from filel to file2. Remember that the names
filel and file2 can be any valid names, including path names.

For example, if you are in the directory draft in the sample file system and you would
like to rename the file table as new.table, simply type my table new.table<CR>.
You should receive the $ command prompt if the command executed successfully. To
verify that the file new.table exists, you can list the contents of the directory by
typing Is<CR>. In turn, the terminal should read:

$ my table new.table<CR>
$ ls<CR>
new. table
$

outline

You can also move a file from one directory to another keeping the file's name the same
or changing it to a different one. To do so, use the following command line.

my filers) directory<CR>

where the file and directory names can be any valid names, including path names.

To move the file table from the current directory named draft (whose full path name
is /userl/starship/draft) to a file with the same name in the directory letters (whose
relative path name from draft is •• /letters and whose full path name is
/userl/starship/letters), anyone of several command lines can be used, including the
following:

my table /userl/starship/letters<CR>
my table /userl/starship/letters/table<CR>
my table .. /letters<CR>
my table .. /letters/table<CR>
my /userl/starship/draft/table /userl/starship/letters/table<CR>

(9054) 4-35

Using the· File System User's Guide

The file table could have been renamed table2 when moving it to the directory letters
using any of the following:

mv table /userl/starship/letters/table2<CR>
mv table .• /letters/table2<CR>
mv /userl/starship/draft/table2 /userl/starship/letters/table2<CR>

You can verify that the command worked by listing the contents of the directory with
the Is command.

Refer to the recap that follows for a summary of how the mv command works.

command

mv

Description:

Remarks:

Removing a File (rm)

Command Recap

mv - move or rename files

options

none

arguments

filel file2
file(s) directory

mv allows you to change the name of a file or
to move a file(s) into another directory.

When changing the name of filel to file2 and
file2 already exists, the mv command will
overwrite the first version of file2 with filel
and rename it file2~ The first version of file2
is deleted.

When you no longer need a file, you can get rid of it by using the rm command, which
is short for remove.

To remove one or more files, use the format:

rm file(s)< CR>

Mter the command executes, the file(s) you specified are removed permanently.

To remove a file named new.outline in the curren t directory type
rm new.outline<CR> and list the contents of the directory with the Is command to
verify that the file new.outline no longer exists.

4-36 (9054)

User's Guide Using the File System

To remove more than one file, such as the files outline and table, type
rm outline table<CR> and list the contents of the directory by typing ls<CR>.

$ rm outline table<CR>
$ ls<CR>
$

The $ response indicates that the files named outline and table were removed
permanently.

The following recap summarizes how the rm command works.

command

rm

Description:

Remarks:

Command Recap

rm - remove a file

options

available*

arguments

fi Ie (s)

rm allows you to remove one or more files.

Files specified as arguments to the rm
command are removed permanently.

* See the ROS Reference Manual for all available options and an explanation of their capabilities.

Counting Lines, Words, and Characters in a File (we)

The we command, which stands for word count, reports the number of lines, words, and
characters there are in a file that you specify by name on the command line. If you
name more than one file, the we program counts the number of lines, words, and
characters in each specified file and then totals the counts. In addition, you can direct
the we program to give you only a line, a word, or a character count by using the -1,
-w, or -e options, respectively.

To determine the number of lines, words, and characters In a file, use the following
format on the command line:

we filel<CR>

When you do, the system responds with a line in the format:

I w c filel

(9054) 4-37

Using the File System User IS Guide

where

I = Number of lines in file1,

w = Number of words in file1, and

c = Number of characters in file1.

For example, to count the lines, words, and characters in the file johnson in the
current directory letters, type we johnson<CR>. The terminal monitor would show
the following output:

$ we johnson<CR>
3 14 78 johnson

The system response displays the line count (3), the word count (14), and the character
count (78) for the file johnson.

To determine the number of lines, words, and characters in more than one file, use the
following format:

we file1 file2<CR>

In turn, the system responds with the following format:

I w c file1
I w c file2
I w c total

where line, word, and character counts are displayed for file1 and file2 on separate
lines and the combined counts appear on the last line called total.

If you request that the we program count lines, words, and characters in the files
johnson and sanders in the current directory, the system would respond as follows:

$ we johnson sanders<CR>
3 14 78 johnson
4 16 95 sanders
7 30 173 total

In this case, the first line of the system response shows the line, word, and character
counts for the file johnson. The second line of output gives line, word, and character

4-38 (9054)

User's Guide Using the File System

counts for sanders. The last line of output shows combined line, word, and character
counts for both files in the line labeled total.

If you prefer to get only a line, a word, or a character count, select the appropriate
format from the following lines:

wc
wc
wc

-1 filel<CR>
-w filel<CR>
-c filel<CR>

(line count)
(word count)
(character count)

For instance, by typing wc -I sanders<CR> on the command line you would obtain
the following output:

$ wc -1 sanders<CR>
4 sanders

The system tells you that the number of lines in the file sanders is 4 in answer to
specifying -I. If the -w or -c option was specified for that file, the ROS system would
have responded with the number of words or number of characters, respectively, in the
file.

The command recap that follows summarizes how the wc command works.

Command Recap

we - count lines, words, and characters in a file

command

wc

Description:

Options

Remarks:

options

-1, -W,-c

arguments

file(s)

wc counts lines, words, and characters in the
file(s) named keeping a total count of all
tallies when more than one file is specified.

-1 Counts the number of lines in the specified
file(s).

-w Counts the number of words In the
specified file(s).

-c Counts the number of characters in a
specified file(s).

When a file name is specified in the command
line, it is printed with the count(s) requested.

(9054) 4-39

Using the File System User's Guide

Protecting Your Files (chmod)

The chmod command, short for change mode, allows you to decide who can read,
alter, and use your files and who cannot. Because the ROS operating system is a
multiuser system, you are not working alone in the file system: you and other system
users can follow path names and run system commands to move to various directories
and to read and use files belonging to one another if you have permission to do so.

If you own a file, then you are able to determine who has the right to read that file, to
make changes to or write the file, and to run or execute the file if it is a program.
These permissions are defined as:

r = Allows system users to read a file or to copy its contents,

w = Allows system users to write changes into a file or copy of a file, and

x = Permits system users to run an executable file.

Specifically, you can determine who in the community of ROS system users is entitled
to these various permissions and who is not according to the following classifications:

u = You, the user and login owner of your files and directories,

9 = Members of the group to which you belong (the group could consist of
team members working on a project, members of a department, or a
group arbitrarily designated by the person who set up your ROS system
account), and

o = All other system users.

When you create a file or a directory, the system automatically grants or denies
permission specifically to you, members of your group, and other system users. You can
alter this automatic action to some extent by modifying your environment, which is
discussed in Chapter 6. Regardless of how the permissions are granted when a file is
created, as the owner of the file or directory it is up to you to allow current permissions
to remain in effect or to change them to suit your purposes and the situation. For
example, you may wish to keep certain files private and for your use only. Or you may
wish to grant permission to read and to write changes into a file to members of your
group and all other system users as well. Or you may share a program with members
of your group by granting them permission to execute it.

4-40 (9054)

User's Guide Using the File System

How to Determine Existing Permissions. You can determine what permissions are
currently in effect on a file or a directory by using the command that produces a long
listing of a directory's content, which is Is -1. For exa.mple, typing Is -1<CR> while
in the directory named starship/bin in the sample file system would produce the
following output:

$ Is -I<CR>,
total 35
-rwxr-xr-x 1 starship project 9346 Nov 1 08:06 display
-rwx--x--x 1 starship project 6428 Dec 2 10:24 list
drwx--x--x 2 starship project 32 Nov 8 15:32 tools
$

Permissions for the files display and list and the directory tools are shown on the left
of the terminal monitor under the line total 35, and look like:

rwxr-xr-x
rwx--x--x
rwx--x--x

(file display)
(file 1 ist)
(directory tools)

These nine characters represent three groups of three characters. The first set of three
characters refers to your (or the user's/owner's) permissions, the second set to members
of the group, the last set to all other system users. Within each set of characters, the
r, w, and x indicate the permission currently enabled for the groups. If a dash appears
instead of an r, w, or x, permission to read, write, or execute is denied.

The following diagram ·summarizes this breakdown for the file named display.

User Group Others

\1/
rwxr-xr-x

/
1

~ Permission to write to
. ~ the file denied to

read group and other

write
execute

As you can see, the owner has r, w, and x permissions and members of the group and other
system users have r and x permissions.

(9054) 4-41

Using the File System User's Guide

How to Change Existing Permissions. After you have determined what permissions are
in effect, you can change them using the following format:

chmod who + (or -) permission file(s)<CR>

where:

chmod =Name of program,

who = One of three user groups u, g, 0:

u = User,
9 = Group, and
0= Other.

+ - = Instruction that grants (+) or denies (-) permission.

permission = Authorization to r, w, or x:
r = Read,
w = Write, and
x = Execute.

filers) = File (or directory) name(s) listed; assumed to be branches from your working
directory, unless you use full path (names).

This may sound a bit confusing. But, a few examples on how to use the chmod command
should help to make permission possibilities clear.

Let's use the permissions for the file display to experiment with chmod. You can see from
the permissions that as the user and owner of display you can read, write, and run this
executable file. You can protect the file against accidentally changing it by denying
yourself write (w) permission by typing the command line chmod u-w display<CR>.
After receiving the $ prompt, type in Is -1<CR> to verify the permission has changed.

$ chmod u-w display<CR>
$ Is -1<CR>
total 35
-r-xr-xr-x 1 starship project 9346
-rwx--x--x 1 starship project 6428
drwx--x--x 2 starship project 32
$

Nov 1 08 :06 display
Dec 2 10: 24 list
Nov 8 15: 32 tools

From this output, you can see that you no longer have permission to write changes into the
file, that is, unless you change the mode back to include write permission.

4-42 (9054)

User's Guide Using the File System

Now, let's consider another example. Notice that permission to write into the file display
has been denied to members of your group and other system users. These users, however,
have read permission, which means that any of these users can copy the file into their own
directories and then make changes to it. To prevent all system users from copying this file,
you could deny them read permission by typing chmod go-r display<CR>. The g and
o stand for group members and all other system users, respectively, and the -r denies them
permission to read or copy the file. Check the results with the Is -I command.

$ chmod go-r display<CR>
$ Is -I<CR>
total 35
-rwx--x--x 1 starship
-rwx--x--x 1 starship
drwx--x--x 2 starship
$

project
project
project

9346
6428

32

Nov 1 08 :06 display
Dec 2 10: 24 list
Nov 8 15: 32 tools

A Note on Permissions and Directories. You can use the chmod command to grant or
deny permission for directories as well as files. Simply use the directory name instead of a
file name on the command line.

The impact, however, of granting or denying permissions for directories to various system
users is worth considering. For example, if you grant read permission for a directory to
yourself (u), members of your group (g), and other system users (0), every user who has
access to the system can read the names of the files that directory contains by using the
Is -I command. Similarly, granting write permission allows the designated users to create
new files in the directory and change and remove existing ones. And granting permission to
execute the directory allows the designated users the ability to move to that directory (and
make it their working directory) by using the cd command.

An Alternate Method. The chrnod method described in the preceding pages is one of
two ways to change permissions to read, write, and execute files and directories. The
method previously described uses symbols, such as r, W, x and u, g, 0, to specify instructions
to chrnod. Hence, it is called the symbolic method.

The alternate method uses a number system called octal that is different than the decimal
number system we typically use on a day-to-day basis. This method uses three octal
numbers ranging from 0 through 7 to assign permissions. If you wish to use the octal
method when changing permISSIOn, see the description of chrnod in the ROB Reference
Manual.

(9054) 4-43

Using the File System User IS Guide

Summary. The command recap that follows provides a quick reference on how chmod
works.

Command Recap

chmod - change permission modes for files (and directories)

command

chmod

Descripti0!l :

Remarks:

instruction

who + - permission

arguments

filename(s)
directoryname(s)

chmod gives (+) or removes (-) read, write,
and execute permissions for three types of
system users: user (you), group (members of
your group), and other (all other users able to
access the system on which you are working).

The instruction set can be represented in
either octal or symbolic terms.

ADVANCED COMMANDS

You will become more and more familiar with the file system as you use the commands
thus far discussed in this chapter. As this familiarity increases so might your need or
interest for more sophisticated information processing techniques when working with files.
This section introduces you to three commands that give you just that. These commands
and their capabilities are listed as follows:

difJ -- Finds difference between two files,

grep -- Searches a file for a pattern, and

sort -- Sorts and merges files.

The following discussion only scratches the surface on information processing techniques
available with the ROS system. You may refer to the ROB Reference Manual for
additional information.

4-44 (9054)

User "s Guide Using the File System

Identifying Differences Between Files (diff)

The diff command locates all the differences between two files and proceeds to tell you how
to change .the first file to be a carbon copy of the second. It reports all differences between
the files.

The basic format for the command is:

diff filel file 2< CR>

If filel and file2 are identical, the system returns the $ prompt to you. If not, the diff
command instructs you on how to bring the first file into agreement with the second by
using line editor (ed) commands. (See the ROS Text Editing Guide for details on the
line editor.) The ROS system flags lines in filel with the < symbol and file2 with the>
symbol.

For example, if you use the diff command to identify differences between the files johnson
and sanders, the system would respond as follows:

$ diff johnson sanders<CR>
2,3c2,4
< to Mr. Johnson on the topic of
< office automation.

> to Mrs. Sanders inviting her to
> speak at your departmental
> meeting.
$

The first line of the system response is

2,3e2,4

which means lines 2 through 3 in the file johnson must be changed (designated bye) to
lines 2 through 4 in the file sanders. .

The system then displays lines 2 through 3 in the file johnson as follows:

< to Mr. Johnson on the topic of
< office automation.

(9054) 4-45

Using the File System User's Guide

and lines 2 through 4 in the file sanders

> to Mrs. Sanders inviting her to
> speak at our departmental
> meeting.

If you make these changes (using the ed or the vi text editing program), the file johnson
will be identical to the file sanders. Remember, the diff command tells you exactly what
the differences are between the named files. If you simply want an identical copy of a file,
use the cp command.

Refer to the recap that follows for a summary of what you can expect the diff command to
do when no options are specified. See the reference to the ROB Reference Manual for
details on available options.

Command Recap

cliff - finds differences between two files

command

diff

Description:

Remarks:

options

available*

arguments

filel file2

diff reports what lines are different in two files
and what you must do to make the first file
identical with the second.

Instructions on how to change a file to bring it
into agreement with another file are line editor
(ed) commands: a (append), c (change), or d
(delete). Numbers given with a, c, or d
indicate the lines to be modified. Also used
are the symbols < (indicating a line from the
first file) and > (indicating a line from the
second file).

* See the ROS Reference Manual for all available options and an explanation of their capabilities.

Searching a File for a Pattern (grep)

You can request the ROS system to search through files for a specific word, phrase, or
group of characters by using the grep command. Technically, grep means globally search
through a file or files to locate a regular expression and print the lines that contain the
regular expression. Put simply, a regular expression is the pattern of characters-- be it a
word, a phrase, or an equation-- that you specify.

4-46 (9054)

User"s Guide Using· the File System

The basic format for the command line is:

grep pattern file{s}<CR>

Thus, to locate the line containing the word automation in the file johnson, you would
type:

grep automation johnson<CR>

and the system would respond as follows:

$ grep automation johnson<CR>
office automation
$

The output gives you all the lines in the file johnson that contain the pattern for which
you were searching, which is the word automation.

If the pattern contains multiple words or any characters that have a special meaning to
the ROS system, such as $, L *, r, and so on, the entire pattern must be enclosed in single
quotes. (For an explanation of the special meaning for these and other characters see the
section entitled Metacharacters in Chapter 6.) For example, if you are interested in
locating the lines containing the pattern office automation, the command line and system
response would read:

$ grep 'office automation' johnson<CR>
office automation.
$

But what if you could not recall to whom you sent a letter on the topic of office automation
in the first place -- Mr. Johnson or Mrs. Sanders? You could type:

grep "office automation' johnson sanders<CR>

If you did, the system would respond in the following manner:

$ grep 'office automation' johnson sanders<CR>
johnson:office automation.
$

(9054) 4-47

Using the File System User "s Guide

The output tells you that the pattern office automation is found once in the file johnson.

In addition to the capabilities of the grep command that are summarized in the recap that
follows, the ROS system provides variations to the basic grep command, called egrep and
fgrep, along with several options that further enhance the searching powers of the
command. See the ROS Reference Manual if you are interested in learning more.

command

grep

Description:

Remarks:

Command Recap

grep - searches a file for a pattern

options

available*

arguments

pattern file(s)

grep searches the file or files you name for
lines containing a pattern and then prints the
lines that match. If you name more than one
file, the name of the file containing the pattern
is given also.

If the pattern you give contains multiple
words or special characters, enclose the
pattern in single quotes on the command line.

* See the ROS Reference Manual for all available options and an explanation of their capabilities.

Sorting and Merging Files (sort)

The ROS system provides you with an efficient tool called sort for sorting and merging
files. The basic form of the command line is:

sort file{s}<CR>

which causes lines in the specified files to be sorted and merged in the order defined by the
ASCII representations of the characters in the lines.

• Lines beginning with numbers are sorted by digit and listed before letters 1D the
output,

• Lines beginning with uppercase letters are listed before lines beginning with lowercase
letters, and

• Lines beginning with symbols, such as * %, or @, are sorted on the basis of the
symbol's ASCII representation.

To get an idea of how the sort command works, let's say that you have two files, named
phase! and phase2, each containing a list of names that you wish to sort alphabetically

4-48 (9054)

User"'s Guide Using the File System

and finally interfile into one list. First, display the contents of each file uSIng the eat
command.

$ eat phase! <CR>
Smith, Allyn
Jones, Barbara
Cook, Karen
Moore, Peter
Wolf, Robert
$ eat phase2<CR>
Frank, M. Jay
Nelson, James
West, Donna
Hill, Charles
Morgan, Kristine
$

(Note: we could have used the command line eat phase! phase2<CR> instead of
listing the contents of each file separately.)

Now, sort and merge the contents of the two files using the sort command. Note that the
output of the sort program will print on the terminal monitor unless you specify otherwise.

$ sort phase! phase2<CR>
Cook, Karen
Frank, M. Jay
Hill, Charles
Jones, Barbara
Moore, Peter
Morgan, Kristine
Nelson, James
Smith, Allyn
West, Donna
Wolf, Robert
$

In addition to putting together simple listings as in the previous examples, the sort
command can rearrange the lines and parts of lines (called fields) according to a number of
other specifications you can designate on the command line. The possible specifications are
complex and are not within the scope of this text. You should consult the ROB Reference
Manualfor a full rundown on the available options.

(9054) 4-49

Using the File System User's Guide

However, the following command recap summarizes the capabilities of the sort program.

command

sort

Description:

Remarks:

Command Recap

sort - sorts and merges files

options

available*

arguments

file(s)

sort sorts and merges lines from the file or
files you name and displays the result on your
terminal.

If no options are specified on the command
line, lines are sorted and merged in the order
defined by the ASCII representations of the
characters in the lines.

* See the ROS Reference Manual for all available options and an explanation of their capabilities.

SUMMARY

This chapter described the structure of the file system and presented ways to use and to
navigate through the file system via ROS system commands. The next chapter gives
you an overview of a variety of ROS system capabilities, such as text editing, using the
shell as a command language, communicating electronically with other system users,
and programming and developing software.

4-50 (9054)

Chapter 5: ROS SYSTEM CAPABILITIES

INTRODUCTION .. 5-1
TEXT EDITING 5-1

THE TEXT EDITOR ... 5-1
TEXT EDITOR OPERATION ... 5-2

Text Editing Buffers 5-2
Modes of Operation .. 5-3

LINE EDITOR .. 5-3
SCREEN EDITOR ... 5-5

WORKING IN THE SHELL ... 5-5
SHELL SHORTIIAND ... 5-6
REDIRECTING THE FLOW OF INPUT AND OUTPUT 5-7

Redirecting the Standard Output (» .. 5-9
Redirecting and Appending the Standard Output (> » 5-10
Redirecting the Standard Input «) ... 5-11
Connecting Commands with the Pipe (D .. 5-12
Summary ... 5-13

RUNNING MULTIPLE PROGRAMS .. 5-13
Executing Commands in Sequence .. 5-13
Executing Commands Simultaneously .. 5-14

CUSTOMIZING YOUR COMPUTING ENVIRONMENT 5-15
CO~ICATION UTILITIES ... 5-16
PROGRA.MMING IN THE SYSTEM .. 5-17

PROG~ING IN THE SHELL .. 5-18
PROGRA.MMING IN THE C LANGUAGE .. 5-19
OTHER PROGRAMMING LANGUAGES .. 5-20
TOOLS TO AID SOFTWARE DEVELOPMENT .. 5-20

Source Code Control System (SCCS) .. 5-20
Maintaining Programs (make) ... 5-21
Checking Programs for Type Compliance (lint) .. 5-21
Generating Programs for Lexical Tasks (lex) .. 5-21
Generating Parser Programs (yacc) .. 5-22

Chapter 5

ROS SYSTEM CAPABILITIES

INTRODUCTION

The material in this chapter combines basic, fundamental concepts about the ROS
system covered in Chapters 2, 3, and 4 of this guide with information about system
capabilities that you may use to do your computing work efficiently and effectively.

This chapter provides an overview of the following ROS system capabilities: text
editing, working in the shell, communicating electronically, and programming in the
ROS system environment.

TEXT EDITING

You have read a good deal about files up to this point simply because using the file
system is a way of life in a ROS system environment. The information in this section
will enhance your knowledge about manipulating files by introducing you to a software
tool called a text editor. A text editor provides you with the ability to create and
modify files: it will help you to fare well in the ROS system since a considerable
amount of your computing time may be spent writing and revising letters, memos,
reports, or source code for programs that will be stored in files.

This section contains information that tells you what a text editor is and how it works.
In addition, this section acquaints you with two types of text editors supported on the
ROS system: the line editor and the visual, or screen, editor. Since you will probably
come to prefer one of these editing programs over the other -- even if you learn to use
them equally well-- the line editor and the screen editor are briefly compared to help
you to assess their capabilities. For detailed information on the line editor and the
screen editor, see the ROB Text Editing Guide.

THE TEXT EDITOR

When you write or type letters, memos, and reports and then decide to change what
you have written or typed, you will use skills required in text editing. These skills
include inserting new or additional material, deleting unneeded material, transposing
material (sometimes called cutting and pasting), and finally preparing a clean,
corrected copy. Text editors perform these tasks at your direction making writing and
revising text much easier and quicker than if done by hand or on a typewriter.

(9054) 5-1

ROS System Capabilities User"s Guide

5-2

In the ROS system, a text editor is much like the ROS system shell. Both a text editor
and the shell are programs that accept your commands and then perform the requested
functions-- essentially, they are both interactive programs. A major difference between
a text editor and the shell, however, is the set of commands that each recognizes. All
the commands you have learned up to this point belong to the shell's command set. A
text editor, on the other hand, has its own distinct set of commands that allow you to
create, move, add, and delete text in files, as well as acquire text from other files.

TEXT EDITOR OPERATION

To understand how a text editor works you need information about the environment
created when you use an editing program and the modes of operation understood by a
text editor.

Text Editing Buffers

To create a new file, you must ask the shell to put the editor in control of your
computing session. When you do, a temporary work space is allocated to you by the
editor. This work space is called the editing buffer; in it you can enter information you
want the file to hold and modify it if you wish.

Because you are in a temporary work space when using a text editor, the file you are
creating along with the changes you make to it are also temporary. This work space
allotment and what it is holding will exist only as long as you work in the editing
program. If you wish to save the file, you must tell the text editor to write the contents
of the buffer into a storage area. If you do not 'tell the editor to write or record what
you have done during the editing session, the buffer's contents will disappear when you
leave the editing program. If you forget to write a new file or update an existing one,
the text editors remind you to do so when you attempt to leave the editing
environment.

To modify an existing file, the procedure is almost identical to the one you follow when
creating a new file. First, call the editor and give it the name of the file you wish to
change. In turn, the editor makes a copy of the file that is in the storage area and
places it in the buffer so you can work on it.

When you finish editing the file, you can write the buffer's contents into storage and
leave the editing program knowing the file is updated and ready to be recalled when
you need it again. Or you can chose to leave the editor without writing the file if you
have made a critical mistake or you are unhappy with the edited version. This step
leaves the original file intact and the edited copy disappears.

(9054)

User's Guide ROS System Capabilities

Regardless of whether you are creating a new file or updating an existing one, the text
you put in the buffer is organized into lines. A line of text is simply the series of
characters that appears horizontally across a row of typing that is ended by pressing
the <CR> key. Occasionally, files may contain a line of text that is too long to fit on
the terminal monitor. Some terminals will automatically display the continuation of
the line on the next row of the monitor, whereas others will not.

Modes of Operation

Text editors are capable of understanding two modes of operation: the command mode
and the text input mode.

When you begin an editing session, you will automatically be placed in command mode.
In command mode, all your input is interpreted as a command. Typical editing
commands allow you to move about in a file, search for patterns in the file's contents,
or print a portion of a file on the terminal monitor. The input mode is entered when
you use a command to create text. Once in input mode, what you type on the
keyboard is placed into the buffer as part of the text file until you send the appropriate
instruction to the editor that returns you to command mode.

LINE EDITOR

The line editor, accessed by the ed command, is a fast, versatile program for preparing
text files. This editor gets its name because it operates on the lines of text a file holds.
For example, to change a single character in a file, you specify the line of the file that
contains the character you wish to change and then specify the change.

Put simply, you manipulate text on a line-by-line basis with the line editor. Commands
for this text editor can change lines, print lines, read and write files, and initiate text
entry. In addition, you can specify the line editor to run from a shell program;
something you cannot do with the screen editor. (See Chapter 6 for information on
basic shell programming techniques.)

The line editor works equally well on paper printing terminals and video display
terminals. It will also obligingly accommodate you if you are using a slow-speed
telephone line.

Refer to the ED Section in the ROS Text Editing Guide for instructions on how to
use this editing tool. If you are interested in a compa.rison of line editor (ed) and screen
editor (vi) features, see Table 5-1.

(9054) 5-3

ROS System Capabilities User~s Guide

5-4

Table 5-1

Comparison of Line (ed) and Screen (vi) Editors

Feature Line Editor (ed) Screen Editor (vi)

Recommended Paper-printing or VDT* VDT
terminal type

Speed Accommodates high
and low-speed da. ta
transmission lines.

Versatility Can be specified to run
from shell scripts as
well as used during
editing sessions.

Sophistication Changes text quickly.
Uses comparatively
small amounts of
processing time.

Power Provides a reduced set
of editing commands.

* VDT - video display terminal

(9054)

Wor ks best via high
speed data
transmission lines
(1,200+ baud).

Must be used
interactively during
editing sessions.

Changes text easily.
However, can make
heavy demands on
computer resources.

Provides its own
editing commands
and recognizes all line
editor commands as
well.

User's Guide ROS System Capabilities

SCREEN EDITOR

The screen editor, accessed by the vi command, is a display-oriented, interactive
software tool. When you use the screen editor, your terminal acts as a window to let
you view the file you are editing a screenful or page at a time. This editor works most
efficiently and effectively when used on a video display terminal operating at 1,200 or
higher baud.

For the most part, modifications to a file (such as, additions, deletions, and changes) are
accomplished by positioning the cursor at the point in the window where the
modification is to be made and then making the change. In other words, the screen
editor displays the effects of editing changes in the context in which you make them.
Because of this feature, the screen editor in considered to be much more sophisticated
than the line editor.

Furthermore, the screen editor offers a replete collection of commands. For example, a
number of screen editor commands allow you to move the cursor around within the
window to a file. Other commands move the window up or down through a page or
more of the file. Still other commands allow you to change existing text or to create
new text: In addition to its own set of commands, the screen editor has access to all
the commands offered by the line editor. This arsenal of commands accounts for the
screen editor's tremendous power.

There is, however, a trade-off for the screen editor's speed, visual appeal, efficiency, and
power, which is the heavy demand that it places on the computer's processing time.
For example, a simple change might cause an entire screen to need updating.
Moreover, if simple changes lead to long delays while you wait for a screen to be
updated, the pleasant experience of using a visual-oriented editor can be somewhat
diminished.

Refer to the VI section in the ROS Text Editing Guide for instructions on how to use
this software. If you wish to compare the features of the line editor (ed) and the screen
editor (vi), see Table 5-l.

WORKING IN THE SHELL

Every time you log into the ROS system you will be communicating directly with a
program called the shell. You will continue to interact with the shell until you log off
the system, unless you use a program, such as a text editor, that temporarily suspends
your dealings with the shell until you are finished using that particular program.

The shell is much like other programs, except that instead of performing one job, as cat
or Is does, it is central tQ most of your interactions with the ROS system. This is
because the shell's primary function is to act as an interpreter between you and the
Ridge 32 computer. As an interpreter, the shell translates your requests into language
the computer understands, calls requested programs into memory, and executes them.

(9054) 5-5

ROS System Capabilities User's Guide

5-6

This section acquaints you with some of the ways you can use the Bourne shell (which is
the default shell on your system) as the command language interpreter to simplify a
computing session and to enhance your ability to use system features. In addition to
running a single program for you, you can also use the shell to:

• interpret the name of a file or a directory you input in an abbreviated way using a
type of "shell shorthand"

• redirect the flow of input and output of the programs you run

• execute multiple programs

• tailor your computing environment to meet your individual needs and preferences

In addition to being the command language interpreter, the shell is also a programming
language. If you would like an overview of Bourne shell's programming capabilities, see
the section entitled Programming in the System at the end of this chapter. Or refer to
the Shell Tutorial in Chapter 6 for detailed information on how to use the shell as a
command language interpreter and as a programming language. The ROS
Programmer's Guide, should be consulted for complete, unabridged information on both
Bourne shell and C-shell programming.

SHELL SHORTHAND

Many ROS system commands require that you name a file or a directory as an
argument to it on a command line, such as mkdir directory name(s)<C,R> or rm
tilename(s)<CR>. Easy enough! But suppose you have 12 files to remove
corresponding to monthly reports for 1983 named reptl, rept2, rept3, rept4, and so
on? Or suppose you need to move 24 files corresponding to file names sectl, sect2, ...
sect24 to a different directory?

Typing the file name for each monthly report after the rm command or the file name
for each section after the mv command is still easy, but all the repetition gets tedious
after entering four or five names.

In instances like these, you should consider using shorthand notation when specifying
file or directory names. If the file or directory names have some part in common, you
can use a type of shorthand to tell the shell that you are referring to all of them on the
basis of the similarity without specifying each one individually. Or, if a file has a
unique character or sequence of characters within a group of similarly named files, you
can use this shorthand notation to locate the file on the basis of the difference.

The ROS system recognizes several characters as having special meanings when they
are used in place of a directory name or when they appear as part of a file or directory
name on a command line. These characters allow you to specify the names of files and
directories in a rapid, abbreviated way. Some of the characters are referred to as
metacharacters because of their special meanings to the shell.

(9054)

User's Guide ROS System Capabilities

The special characters are . .. r * [] - \ and their meanings are summarized in
Table 5-2. When you specify file or directory names, you can substitute various
characters within them with the appropriate shorthand abbreviation. Any part of the
name that is not a special character is taken at its literal value.

Table 5-2

Shorthand Notation for File and Directory Names

Special Meaning
Character Reference

Curren t directory Chapter ..{.

Parent directory Chapter ..(.

r Match any single character Chapter 6

* Match any number of characters Chapter 6

[] Designate a sequence of characters

Specify a character range within
[], such as A-Z Chapter 6

\ Remove meaning of special characters Chapters 9, 6

For example, for the possibilities described at the beginning of this section, typing
rm rept*<CR> would remove all the files in the current directory starting with the
characters rept followed by any other characters corresponding to monthly reports for
1983, and typing mv sect* •. /chapterS<CR> would move all the files from the

. current directory beginning with the letters sect and followed by any other characters
to another directory named chapterS belonging to its parent directory.

Details on how to use the special characters appear in other chapters of this guide as
indicated in Table 5-2. Refer to that chapter for the information you need.

REDIRECTING THE FLOW OF INPUT AND OUTPUT

Up to this point in this guide, any request to ask the shell to execute a command was
done by entering the command and the necessary argument(s) on the terminal
keyboard. In turn, the output, if any, was displayed on the terminal monitor. This
pattern illustrates the idea of standard input (stdin) and standard output (stdout).

(9054) 5-7

ROS System Capabilities User's Guide

5-8

In general, the place from which a program expects to receive its input is called the
standard input. A ROS system command called mail, which you will learn more about
in the ROS Utility Guide, provides a good example of this and warrants mentioning
here. For example, to use mail, you would simply type mail jmrs<CR> and the mail
command takes everything you type on your keyboard after <CR> until you type
<Ad> as input. After you type <Ad>, mail sends your input to the person with the
login name jmrs. The place to which a program writes its results, in this case the login
name jmrs, is referred to as the standard output.

In the ROS system, most commands expect to receive their input from the keyboard
and then display output on the terminal monitor. By default, then, the standard input
is the keyboard and the standard output is the terminal monitor (Figure 5-1).

Figure 5-1. Standard Input/Output Flow

You can, if you wish, use a feature called redirection to change these defaults. Put
simply, redirection is a ROS system feature that allows you to request the shell to
reassign standard input and/or standard output to other files or devices.

With the redirection feature, you can request the shell to do the following:

• reassign to a file any output that a program would ordinarily send to your terminal

• have a program take its input from a file rather than from your terminal keyboard

• use a program as the source of data for another program

You request the shell to redirect input and output using a set of operators, which are>
(greater than sign), » (two greater than signs), < (less than sign), and I (a pipe). Now
let's take a look at what each of these operators can do for you.

(9054)

User's Guide ROS Sys~em Capabilities

Redirecting the Standard Output (»

The> operator allows you to redirect the output of a command (or program) into a file
(Figure 5-2).

Figure 5-2. Redirecting Standard Output to File

To use the> operator, follow the command line format:

command> newfile<CR>

in which you can choose to surroQnd the > operator with spaces as indicated in the
command line or leave the spaces out (command>newfile<CR»; either method is
correct.

For example, if you have two files, named group! and group2 each containing a list of
names with telephone extension numbers that you would like to sort alphabetically and
then interfile into a separate file called members, you would type:

sort groupl group2 > members<CR>

When you do, the ROS system first alphabetically sorts and then interfiles the contents
of the files group! and group2 and redirects the output into the file called members
rather than displaying it on your terminal. If you wish to read the contents of the
members file, you could use the cat or pg command.

(9054) 5-9

ROS System Capabilities User'8 Guide

Therefore, if the contents of the file group! is:

Smith, Allyn 101
Jones, Barbara 203
Cook, Karen 521
Moore, Peter 180
Wolf, Robert 125

and the contents of the file group2 is:

Frank,M. Jay 118
Nelson, James 210
West, Donna 333
Hill, Charles 256
Morgan, Kristine 175

then the file members would appear as follows on your terminal when displayed with
the cat command.

$ sort phase! phase2 > members<CR>
$ cat members<CR>
Cook~ Karen 521
Frank~ M. Jay 118
Hill~ Charles 256
Jones~ Barbara 203
Moore~ Peter 180
Morgan~ Kristine175
Nelson~ James 210
Smith~ Allyn 101
West~ Donna 333
Wolf~ Robert 125
$

Keep in mind that if the file to which you are redirecting the standard output already
exists, its contents will be replaced with the output of the redirection command.

Redirecting and Appending the Standard Output (»)

Occasionally, you might like to add information to the end of an existing file. You can
use the» operator to do so. Simply input the following command line:

command> > file<CR>

5-10 (9054)

User's Guide ROS System Capabilities

For example, if the file members created in the previous section was subject to
additions and deletions, it might be a good idea to date the list so you know at a glance
what version of the list you are using. You could do so by typing

date» members<CR>

on the command line and the date and time would be printed at the end of the file
members. Or, instead of adding the date to the end of the file members, you could
have appended another file containing even more names.

Redirecting the Standard Input «)

Standard input can be redirected as well as standard output with the < operator. The
general command line format for input redirection is:

command < file<CR>

in which the < operator informs the command (or program) to take input from the file
you specify rather than from the terminal keyboard (Figure 5-3).

Figure 5-3. Directing Standard Input from File to Program

For example, if you would like to send a copy of the file members to co-workers who
work on your ROS system and who have the login names mary2 and jmrs, typing

mail mary2 jmrs < members<CR>

(9054) 5-11

ROS System Capabilities User's Guide

will accomplish the task. The mail command, however, does not know whether it
received its input from the file members (which it did) or from your keyboard .. Rather,
input/output redirection is a service provided by the ROS system shell and is available
to every program. (You will learn more about the mail command in the ROS Utility
Guide.)

Connecting Commands with the Pipe (I)

The pipe operator is a powerful and flexible mechanism for doing computing tasks
quickly and without the need to develop special purpose tools. You can use it to
redirect the standard output of one program to be the standard input of another
(Figure 5-4). Generally, the format for using the pipe is:

command I command<CR>

CD--~
Figure 5-4. Sample Pipe

A popular example of this is taking the output of the who command (which you were
introduced to in Chapter 3) and using it as input to the we command (which counts
lines. words. and/or characters) as follows:

, " J

who I we -I<CR>

This example shows that the standard output of the who command was passed to the
we -I command (-I is the option that counts the number of lines output by the who
command, each corresponding to a user who is logged into your ROS system.)

5-12 (9054)

User's Guide ROS System Capabilities

Summary

Table 5-3 summarizes which operator performs which redirection task and what
general format should be followed in using it. Refer to the section on redirection in
Chapter 6 for details on how to use them.

Table 5-3

Options for Redirecting Input and/or Outputt

Action

Redirecting output to a file

Redirecting and appending
output to a file

Redirecting input from a file

Redirecting output of first
command to be input for
second

Operator General Format

> command > filename

> > command > > filename

< command < filename

command I command

RUNNING MULTIPLE PROGRAMS

There are two methods for running multiple programs: you can specify more than one
command to execute in sequence from a single command line or you can run commands
simultaneously.

Executing Commands in Sequence

Up to this point, the command lines to which you have been introduced and examples
for using them have dealt with asking the shell to run a single request or program. For
example, each of the command lines cat filename<CR>, date<CR>, and Is -I
directoryname<CR> requests the shell to perform one task. You can, however, ask
the shell to execute more than one request per command line. Sequential execution
allows you to enter as many commands as you wish on one command line and have
them execute in the order in which you input them.

To do so, you should first be familiar with the general rules for command line syntax
given in Chapter 4. Briefly, command line syntax orders elements in the command line
so that the command name, any options you wish to specify, and the data on which the
command is to operate (usually the name of a file or directory) follow one another.

(9054) 5-13

ROS System Capabilities User's Guide

To execute more than one command on a line, simply separate the request sequences
with semicolons (;) as follows:

command option{s} argument{s}; command option{s} argument{s}; ... <OR>

For example, to determine where you are in the file system and then list the contents of
the directory in which you are working, you can type pwd; Is<CR> and the terminal
monitor might read:

$pwd; Is<CR>
/userl/starship/bin
dir list
$

tools

As you can see, the output of the multiple commands is ordered the same way the input
is: first, the current working directory is given (in response to pwd) and, then, the
names of the files and/or directories it holds follow (in response to Is).

You could just as easily type:

who am i;date;who<CR>

or

mkdir directoryabc;cd directoryabc;pwd<CR>

or any combination of commands that you wish to use.

Executing Commands Simultaneously

In addition to running programs sequentially, you can choose to run them
simultaneously. To do so, you need to know the difference between foreground and
background commands. When a program runs in the background, the computer is
executing that program concurrently with the commands that you enter or with the
program that you run in the foreground. However, the computer considers your
foreground work more important than your background program. This difference has
no perceivable effect on the execution of most programs, but running a job in the
background is a useful technique when you wish to run a lengthy or time-consuming job
without tying up your terminal.

All the command lines. used in this guide until now have been examples of foreground
commands. This means that they were initiated and run to completion before other
commands could be executed and before the shell would return the $ prompt for you to
continue. However, you also have the option of running a command in the background
so you can continue to work in the foreground.

5-14 (9054)

User's Guide ROS System Capabilities

You can run a command in the background by placing an ampersand (&) at the end of
the command line as follows:

command option(s) argument(s) &<CR>

When the shell reads the &, it starts running the program, prints an identification
number, and displays the $ prompt so you can use the terminal immediately for other
work.

To save the output from the job you are running in the background, you must redirect
the results of the execution into another file so you can look at or use the output when
you are ready. For example, if you input the command:

cat filel file2 > file3 &< CR>

the shell would first give you an identification number, and then the prompt. It will
also save the results of cat filel file2 in a file named file3. When you are ready to
peruse file3, simply use cat or pg. If you do not redirect the output, then no output is
saved.

When a program is running in the background, it ignores interrupt and break signals,
but if you log off, the shell terminates the background program along with the
computing session. If you would like to stop a background command while you are still
logged into the ROS system, type kill id<CR>, where id is the identification number
of the command. On the other hand, to have a program continue to run after you log
off, you can use the nohup command (which stands for "no hang up") in the following
way

nohup command &<CR>

When you do, the command will continue to run until completion and its output IS

saved in a file called nohup.out (which stands for nohup output).

CUSTOMIZING YOUR COMPUTING ENVIRONMENT

The information in this section deals with another dimension of control provided to you
by the shell called your environment. When you log into the ROS system, the shell
automatically sets up a computing environment for you. You can choose to use it as
supplied by the system or you can tailor it to meet your needs.

By default, the environment set up by the shell includes the variables:

HOME = your login directory,

PATH = route the shell takes to search for executable files or commands
(typically PATH=:/bz'n:/usr/b£n), and

(9054) 5-15

ROS System Capabilities User's Guide

LOGNAME = your login name.

If you find the default environment satisfactory, simply leave it as it is and go on with
your work. However, if you would like to modify it, you must have a file in your login
directory named .profile. If you do not, you can create one with a text editor like ed or
vi.

To determine if you have a .profile, move to your login directory and type
eat .profile<CR> and its contents should appear on the terminal monitor. Typically,
the .profile tests for mail and sets data parameters, system variables, and terminal
settings.

Possible modifications to your login environment might include changing your login
prompt, setting tab stops, and changing erase and kill characters. If you would like to
customize your .profile, see the section entitled MODIFYING YOUR SHELL
ENVIRONMENT, in Chapter 6.

COMMUNICATION UTILITIES

You can send messages or transmit information stored in files to other users who work
on your system or on another ROS or UNIX system. If you wish to communicate with
remote computers, your ROS system must be physically connected to these computers
by means of an Ethernet communications network. The utilities listed in this section
offer a variety of methods for transferring files, sending messages, and other types of
communication between local computer users or those on remote computers.

LAN -- The Local Area Network (LAN) is an optional hardware/software
package that allows you to move files to and from remote systems. LAN
also allows you to login onto a remote computer from your local
computer. See the Ridge Local Area Network User's Guide for details.

Kermit -- Kermit allows you to transfer files between computers, or to use one
computer as a terminal for the other, on computers with modems.
Versions of kermit are widely available for different micro- and mini
computers, and some mainframes, allowing you access to a variety of
systems. The kermit utility is included with the standard ROS software

cu -- The eu (Call Unix) utility allows a terminal on the Ridge 32 to serve as
a virtual terminal to most systems requiring RS-232 ASCII terminals.
Cu allows you to transfer ASCII character data from most other UNIX
systems to the Ridge 32, and to other UNIX-compatible systems. The eu
link is by direct RS-232 connection or telephone modems. Cu is
standard software with ROS (see cU(l) in the ROS Reference ManuaQ.

5-16 (9054)

User's Guide ROS System Capabilities

UUCP -- The UUCP (Unix-to-Unix Copy) utility copies and transfers files
between UNIX systems with direct or modem connections. UUCP is
typically used for distribution of software and documentation, personal
communication (mail), data transfer, and transmission of debugging
dumps. The uucp software manages periodic and automatic contact
between the systems on which communications are scheduled. UUCP is
available on Ridge 32 systems as an add-on feature (see uucp(1) in the
ROB Reference ManuaQ.

mail -- This command is typically used for sending messages to others and
reading the messages sent to you. You can use mail to send messages or
files to other ROS system users using their login names as addresses.
And, at your convenience, you can use the mail command to read
messages sent to you by other users. With mail, the recipient can choose
when to read it. The mail command is described in detail in the ROB
Utility Guide.

PROGRAMMING IN THE SYSTEM

The ROS system provides an efficient, effective, and convenient environment for
programming and software development. This section briefly describes the environment
and your programming options when working in it.

If you are not a programmer, your immediate reaction might be to skip this section.
But you need not be a programmer or software developer to enjoy some of the
capabilities described in this section.

For example, you can use the shell as a command level programming language as well
as the command line interpreter. Shell programming capabilities are useful and usable
techniques that allow you to take simple, existing programs and make them more
powerful. So why not read on.

On the other hand, if you're interested in sophisticated programming and software
development capabilities, this section can serve as a springboard to using them.

What you can expect to find in the next few pages is an overview of shell and
C language programming and a mention of other languages that can be used on the
ROS system. In addition, an overview of some ROS system tools for software
development is included.

(9054) 5-17

ROS System Capabilities User's Guide

PROGRAMMING IN THE SHELL

Most interactive users of the ROS system think of the shell solely as the command
language interpreter. The shell, however, is also a command level programming
language. What this means is that you can let the shell continue to act as your liaison
with the computer or you can program the shell to repeat sequences of instructions and
to test certain considerations for you automatically. When you program the shell to
perform a task, you use the shell to read and to execute commands that you place in an
executable file. These files are sometimes called shell scripts or shell procedures.

When you use the shell in this manner, it provides you with features, like variables,
control structures, subroutines, and parameter passing that are very similar to those
offered by programming languages. These features provide you with the ability to
create your own tools by linking together system commands.

For example, you can write a simple shell procedure from existing ROS system
programs that tells you the date and time along with the number of users working on
your ROS system. One way to do so is illustrated in the following screen:

$ eat > users<CR>
date; who I we -1<CR>
<Ad>
$ ehmod u+x users<CR>
$

A file called users is created using the> redirection operator. In the example, eat is
taking as input everything you type after <CR> on the command line and placing it
in a file named users. Then the file is made executable with the ehmod command. If
you type the command users<CR>, your terminal monitor would look something like
the next screen.

$ users<CR>
Tues May 22 10:29:09 eDT 1984

7

The output tells you that seven users were logged into the system when you typed the
command at approximately 10:30 A.M. on Tuesday, May 22.

5-18 (9054)

User's Guide ROS System Capabilities

For additional information on shell procedures and for more sophisticated shell
programming techniques, see Chapter 6 for step-by-step instructions.

PROGRAMMING IN THE C LANGUAGE

C is a general purpose programming language. C is closely associated with the ROS
system because it was developed on the UNIX system and because ROS and UNIX
system software is largely written in C.

Although the C programming language is implemented on many computers, it is
independent of any particular machine architecture. With a little care, it is easy to
write portable programs, that is, programs that can be run without change on a variety
of computers if the machine supports a C compiler.

The C programming language comprises the following main elements:

• Types, operators, and expressions--Constants and variables are the basic data
objects manipulated in a program. Constants are data objects that do not change
during the execution of a program, while variables are assigned new values
throughout execution. Declarations list variables, state type, and perhaps initial
values. Operators specify what is to be done on them. Expressions combine
variables and constants to produce new values.

• Control flow--Control How statements of a language specify the order in which
computations are done. In C, these include if-else, else-if, and switch statements,
and while, for, and do-while loops. In addition, break, continue, and goto
statements can be used. Labels can be used as well.

• Functions and program structure--C programs generally consist of numerous small
functions rather than a few big ones. These functions break large computing tasks
into smaller ones and enable you to build on what others have done.

• Pointers and arrays--A pointer is a variable that contains the address of another
variable. Pointers are frequently used when programming in C because oftentimes
they provide the only way to express a computation and partly because their use
typically leads to more compact and efficient code than can be obtained in other
ways.

• Structures--A structure is a collection of one or more variables, possibly of different
types, that are grouped together under a single name for convenient handling.
Structures help to organize complicated data because they permit a group of
related variables to be treated as a unit instead of separate entities.

• Input and output--A standard I/O library containing a set of functions designed to
provide a standard input and output system is available for C programs. This
library is a ROS system feature available for programming in C.

These elements are covered in detail in The C Programming Language by
B. W. Kernighan and D. M. Ritchie (Prentice-Hall, 1978). Additional information is also
available in the ROS Programmer's Guide.

(9054) 5-19

ROS System Capabilities User"s Guide

OTHER PROGRAMMING LANGUAGES

In addition to C, other programming languages are available for use on the ROS system,
such as FORTRAN-77, and Pascal.

You can obtain details on FORTRAN and Pascal in the ROS Programmer'8 Guide.

TOOLS TO AID SOFTWARE DEVELOPMENT

This section highlights some sophisticated software development tools available on the
ROS system. The tools are designed to make development of software easier and to
provide you with a systematic approach to programming.

There are numerous software development aids that operate with ROS. This section
introduces you to five of them to give you an idea of what you can expect development
utilities to do. They are:

sees -- Source Code Control System

make -- Maintaining programs

lint -- Checks programs for type compliance

lex -- Generating programs for simple lexical tasks

yacc -- Generating parser programs

Refer to the ROS Utility Guide and the ROS Programmer's Guide for more information.

Source Code Control System (SeeS)

The Source Code Control System (SCCS) is a collection of ROS system commands that
help you to control and report changes to source code files or text files. SCCS allows you
to access different versions of the same file while maintaining only one file. The way this
works is that secs stores the original file on a disk. Whenever modifications are made
to the file, SCCS stores only those changes as a set in something called a delta. Each
delta or set of changes is numbered to reflect the different versions of a file. You can then
choose to retrieve either the original file or a version of the original file.

5-20 (9054)

User's Guide ROS System Capabilities

By allowing sees to store and control all iterations of a file, space allocations for storage
are minimized and administration of different versions of the same program or document
is efficient and simplified. Updates to files can be made quickly and the original version of
a program or document is retained if you should need to recall it later.

sees is available on Ridge 32 systems as an option. For additional information, see the
ROB Utility Guide. Most of the commands needed to use sees are documented in the
ROB Reference Manual.

Maintaining Programs (make)

The make command is a tool for maintaining, supporting, and regenerating large
programs or documents on the basis of smaller ones. Since it is easier to handle and
modify small programs, it is recommended that if you wish to develop a large program,
you start by creating a series of smaller ones that work together to produce the large
one.

The make command provides you with a method to store all the information you need to
assemble small programs or modules into a large, more sophisticated one. A file called a
makefile holds the file names of the small programs, the steps necessary to generate the
large program, and specifies the dependencies among the files.

When make executes the makefile, the date and time you last modified any of the small
programs are checked and the operations needed to update them are performed in
sequence. Then, make goes on to create the overall large program.

For details on the operation of make, see the ROB Utility Guide. Or, for a quick
reference, see the entry for make(l) in the ROB Reference Manual.

Checking Programs for Type Compliance (lint)

LINT is a e language development tool that checks programs for type compliance and
potential portability problems. LINT also detects errors, such as mismatched argument
types and uninitialized variables.

For details on the operation of lint, see the ROB Utility Guide. Or, for a quick reference,
see the entry for lint{l) in the ROB Reference Manual.

Generating Programs for Lexical Tasks (lex)

The lex utility generates programs to be used in simple lexical analysis of text. Lexical
analysis is done by evaluating a stream of characters and constructing the forms that are
acceptable to the language. Proper forms are defined in the lex program and usable
forms can be defined by lex defaults or by you. Lex produces a subroutine as output
that must be compiled and combined with other programs to use the lexical analyzer.

(9054) 5-21

ROS System Capabilities User's Guide

The processing done by the lex command can be the first step in creating a compiler-type
program. In addition, it can be useful as a preprocessing tool for many different software
generation functions.

For additional information on the lex command, see the ROB Utz'lity Guide. A brief
description of how lex operates and an explanation of its options can be found in the ROB
Reference Manual.

Generating Parser Programs (yacc)

The yacc program, short for yet another compiler compiler, is primarily used in the
generation of software compilers. Essentially, yacc is a utility for creating parser
subroutines. The way this works is that first yacc uses specified syntax and produces
source code for a parser subroutine. Then, the parser subroutine is compiled, and finally
used with a program that calls it to parse input. In this way, structure can be imposed
on the input to a program and the desired language can be created from defined rules.

See the ROB Utility Guide for details on the yacc command. Or refer to the ROB
Reference Manual for some general guidelines on how to use it.

5-22 (9054)

Chapter 6: SHELL TUTORIAL

INTRODUCTION .. 6-1
HOW TO READ THIS TUTORIAL ... 6-2
SHELL COMMAND LANGUAGE .. 6-2

SPECIAL CHARACTERS IN THE SHELL ... 6-2
Metacharacters . .. 6-3
Commands in the Background Mode .. 6-7
Sequential Execution .. 6-8
Turning Off Special Character Meaning ... 6-9
Turning Off Special Characters by Quoting ... 6-9

REDIRECTING INPUT AND OUTPUT .. 6-11
Redirecting Input .. 6-11
Redirecting Output ... 6-12
Redirecting Output and Append ... 6-14
Pipes .. 6-15
Command Output Substitution ... 6-18

EXECUTING AND TERMINATING PROCESSES .. 6-19
Obtaining the Status of Running Processes .. 6-19
Terminating Active Processes .. 6-20
Using the No Hang Up Command ... 6-21

COMMAND LANGUAGE EXERCISES ... 6-22
SHELL PROGRAMMIN'G ... 6-23

GETTING STARTED ... ; .. 6-23
Creating a Simple Shell Program .. 6-24
Executing a Shell Program ... 6-25
Creating a bin Directory for Executable Files .. 6-26

VARIABLES ... 6-28
Positional Parameters .. 6-29
Parameters with Special Meaning ... 6-32
Variable Names ... 6-35
Assign Values to Variables ... 6-36
Assign Values by the Read Command .. 6-36
Substitute Command Output for the Value of a Variable 6-39
Assign Values with Positional Parameters ... 6-40

SHELL PROGRAMMING CONSTRUCTS .. 6-41
Comments .. 6-42
The Here Document .. 6-42
Using ed in a Shell Program .. 6-44
Looping .. 6-45
The for Loop 6-46
The while Loop ... 6-48
Conditional Constructs if ... then .. 6-50
The Shell Garbage Can /dev /null ... 6-51
The test Command for Loops .. 6-53
The Conditional Construct case ... esac .. 6-55
Unconditional Control Statement break ... 6-58

DEBUGGING PROGRAMS .. 6-59
MODIFYING YOUR SHELL ENVIRONMENT .. 6-62

The .profile File ... 6-62
Adding Commands to .profile .. 6-63
Setting Terminal Options 6-63
Using Shell Variables .. 6-65

CONCLUSION ... 6-66
SHELL PROGRAMMING EXERCISES ... 6-66
ANSWERS TO EXERCISES 6-68

COMMAND LANGUAGE EXERCISES ... 6-68
SHELL PROGRAMMING EXERCISES ... 6-69

INTRODUCTION

Chapter 6

SHELL TUTORIAL

You have used the shell to interact with the ROS system by typing in commands that
give you information, such as who, or commands that perform a task, such as sort.
This chapter introduces some methods and commands that will help expedite the day
to-day tasks that you perform in the shell.

Two types of shells are available with ROS:

• Bourne Shell

• C-Shell

To avoid confusion, this tutorial will only describe the Bourne shell operations. If, after
reading this tutorial, you wish to learn about the C-shell, read the csh(l) pages in the
ROS Reference Manual and the C-SHELL section in the ROS Programmer's Guide.

The first part of the tutorial, Shell Command Language, introduces some basic shortcuts
and commands to help you perform tasks in the ROS system quickly and easily. The
second part of the tutorial, Shell Programming, shows you how to put these tasks into a
file and call on the shell to execute the commands in the file while you go get a cup of
coffee. The following basics are covered:

• How to use some special characters in the shell,

• How to redirect input and output,

• How to execute and terminate processes,

• How to create and execute a simple shell program,

• How to use variables in a shell program,

• How to use shell programming constructs for looping, conditional execution, and
unconditional execution,

• How to locate problems and debug a shell program, and

• How to modify your login environment by editing the file called .profile.

(9054) 6-1

Shell Tutorial User's Guide

HOW TO READ THIS TUTORIAL

Log into your ROS system and try the examples as you read the text. Experiment with
the concepts and perhaps combine them into a shell program. Often, there is more then
one correct way to write a shell program. You may discover a different method. If
your shell program works, if it performs the task, then it is a correct method.

Here is a quick review of the text conventions mentioned at the beginning of this guide.

bold command (Type in the command line exactly as shown.)

pica response (The system's response to a command.)

italics (Variable which you or the computer
substitutes a name or value)

< > (Commands that are typed in, but not displayed
on your terminal, are enclosed in < >.)

;., g (A control character, hold down the control key
CTRL while your press "g".)

A display screen like the one above is used to illustrate the commands and the text of
the shell programs. You may not be working on a terminal with a screen. This will not
affect the shell tasks that you perform or shell programs that you create. The lines
that you type in and the system responses should be the same.

SHELL COMMAND LANGUAGE

SPECIAL CHARACTERS IN THE SHELL

The shell language has special characters that give you some shortcuts for performing
tasks in the shell. These special characters are listed below and are discussed in this
section of the tutorial.

* r [] These are metacharacters (also known as "filename expansion
characters" or "wildcards"). A metacharacter is a character that
has a special meaning in shell command language. These
metacharacters give you shortcuts for file names.

6-2 (9054)

User's Guide Shell Tutorial

& This character places commands in the background mode. While
the shell is performing the commands in the background, your
terminal is free for you to work on other tasks.

This character allows you to type in several commands on one
line. Each command must be followed by a ;. When you type in
the <CR>, each command will execute sequentially from the
beginning of the line to the end of the line.

\ This character allows you to turn off the meaning of special
characters such as *, ?, [], & and ; .

" " Both double and single quotes turn off the delimiting meaning of
the space, and the special meaning of special characters.
However, double quotes will allow the characters $ and \ to
retain their special meaning. (The $ and \ are discussed later in
this chapter and are important for shell programs.

Metacharacters

The meaning of the metacharacters is similar to saying "etc. etc. etc.", "all of the
above", or "one of these". Using metacharacters for all or part of a file name is called
file name generation. It is a quick and easy way to refer to file names.

Metacharacter That Matches All Characters

o This metacharacter matches "all", any string
of characters, including no characters at all.

The * alone refers to all the file names in the current directory, the directory you are in
now. To see the effect of the *, try the next command.

Type in: echo *<CR>

The echo command displays its arguments on your terminal. The system response to
echo * should have been a listing of all file names in the current directory.

Since you may not have used the echo command before, here is a brief recap of the
command.

(9054) 6-3

Shell Tutorial User's Guide

6-4

Problem:

Command Recap

echo - write any arguments to the output

command

echo

Description:

Remarks:

options

none

arguments

any character

echo writes arguments, which are separated
by blanks and ended with <OR>, to the
output.

In shell programming, echo will be used to
issue instructions, to redirect words or data
into a file, and to pipe data into a command.
All of these uses will be discussed later in this
chapter.

Be very careful with * because it is a powerful character. If you type in rm * you will
erase all the files in your current directory.

The * metacharacter is also used to expand file names in the current directory. If you
have written several reports and have named them:

then

report
reportl
reportla
reportl b.OI
report25
report316

report *

refers to all six reports in the current directory. If you want to find out how many
reports you have written, you could use the Is command to list all the reports that
begin with the letters report.

$ ·18 report*<CR>
report reportla
reportl reportlb.Ol
$

report25
report316

The * refers to any characters after the letters report, including no letters at all.

(9054)

User's Guide Shell Tutorial

Notice that * calls the files in numerical and alphabetical order. A quick and easy way
to print out all of those reports in order is:

Type in: pr report*<CR>

Choose a character that your file names have In common, such as an a, and list all
those files in the current directory.

Type in: Is *a *<CR>

The * can be placed anywhere in the file name.

Type in: Is F*E<CR>

This command line would list all of the following files in order:

F123E
FATE
FE
Fig3.4E

Metacharacter That Matches One Character

[] This metacharacter matches any
single character.

The? metacharacter replaces anyone character of a file name. If you have created
text for several chapters of a book, but you only want to list the chapters you have
written through chapter9, you would use the? .

$ Is chapter1<CR>
chapterl chapter 2 chapterS
chapter9
$

Although? matches anyone character, you can use it more than once in a file name.
To list the rest of the chapters up through chapter99, type in:

Is chapter??<CR>

(9054) 6-5

Shell Tutorial User's Guide

6-6

Of course, if you want to list all the chapters in the current directory you would use
chapter*.

Problem:

Sometimes when you mv or cp a file you accidentally press a character that does not
print out on your terminal as part of the file name when you do an Is. If you try to cat
that file, you get an error message. The * and ? are very useful in calling up the file
and moving it to the correct name. Try the following example.

1. Make a very short file called trial.

2. Type in: mv trial trial<"g>l<CR>

Remember to type in <"g> you hold down the CTRL key and press the "g" key.

3. Type in: Is triall <CR>

$ Is triall <OR>
triall not found
$

4. Type In: Is trial?l <CR>

$ Is trial?l<OR>
triall
$ mv trial?l triall<OR>
$ Is triall<OR>
triall
$

Metacharacters That Match One of a Specific Range of Characters

(9054)

The shell matches one of
the specified characters
or range of characters
within the brackets.

User's Guide Shell Tutorial

Characters enclosed in [] act as a specialized form of the!. The shell will match only
one of the characters enclosed in the brackets in the position specified in the file name.
If you use [crr] as part of a file name, the shell will look for c, or r, or f.

$ Is [crf] at< CR>
cat fat rat
$

The shell will also look for a range of characters within the brackets. For chapter [0-5]
the shell looks for the files named chapterO through chapterS. This is an easy way to
print out only certain chapters at one time.

Type in: pr chapter [2-4] <CR>

This command will print out the contents of chapter2, chapter3, and chapter4 in
that order.

The shell will also look for a range of letters. For [A-Z] , the shell will look for
uppercase letters, or for [a-z], the shell will look for lowercase letters.

Tryout each of these metacharacters on the files in your current directory.

Commands in the Background Mode

This character, placed at the end of a command
line, runs a task in background mode.

Some shell commands take considerable time to execute. It is convenient to let these
commands run in background mode to free your terminal so that you can continue to
type in other shell tasks. The general format for a comnland to run in background
mode is:

command &<CR>

The grep command can perform long searches that may take a lot of time. If you
place the grep command in a background mode, you can continue doing some other
task at your terminal while the search is being done by the shell. In the example below,

,thebackgrQund mode is used while all the files in the directory are being searched for
the characters word. The & is the last character after the command.

(9054) 6-7

Shell Tutorial User's Guide

$ grep word * &<CR>
21940
$

21940 is the process number. This number is essential if you want to stop the
execution of a background command. This will be discussed in Executing and
Terminating Processes.

In the next section of this tutorial you will see how to redirect the system response of
the grep command into a file so that it does not display on your terminal and interrupt
your current work. Then, you can look at the file when you have finished your task.

Sequential Execution

[J The shell performs sequential execution
of commands typed on one line and
separated by a ; •

If you want to type in several commands on one line, you must separate each command
with a ;. The general format to place command1, command2, and command3 on
one command line is the following:

command1; command2; command3<CR>

Tryout the;. Type in several commands separated by a ;. Notice that, after you
press <CR>, the system responds to each command in the order that they appear on
the command line.

Type in: cd; pwd; Is; ed trial<CR>

The shell will execute these commands sequentially:

1. cd Change to login directory.

2. pwd Print the path of the current directory.

3. Is List the files in the current directory.

4. ed trial Enter the line editor ed and begin editing the file trial.

Did· you notice the rapid fire response to each of the commands? You may not want
these responses to display on your terminal. The section on Redirecting Out put will

. show you how to solve this problem.

6-8 (9054)

User'8 Guide

Turning Off Special Character Meaning

The backslash turns off the special
meaning of a metacharacter.

Shell Tutorial

How do you search for one of the special characters in a file? Type in a backslash just
before you type in the special character. The backslash turns off the special meaning of
the next character that you type in. Create a file called trial that has one line
containing the sentence "The all * game". Search for the * character in the file trial.

$ grep \. trial<CR>
The all * game
$

Turning Off Special Characters by Quoting

o
o

o
o

All special characters
enclosed in single quotes
lose their special meaning.

All special characters except
$, \, and ' lose their special
meaning when they are in
double quotes.

The special characters in the shell lose their special meaning when they are enclosed by
quotes. The single quote turns off the special meaning of any character. The double
quote will turn off the special meaning of any character except $ and '. The $ and '
are very important characters in shell programming.

A delimiter separates arguments, telling the shell where one argument ends and a new
one starts. The space has a special meaning to the shell because it is used as a
delimiter between arguments of a command.

(9054) 6-9

Shell Tutorial User's Guide

The banner command uses spaces to delimit arguments. If 'you have not used the
banner command, try it out. The system response is rather surprising.

Type in: banner happy birthday to you<CR>

Was each word displayed in large poster sized letters?

Now put quotes around to you.

Type in: banner happy birthday "to you"<CR>

Notice that to and you appear on the same poster display line. The space between the
to and the you has lost its special meaning as a delimiter.

Since you may not have used the banner command before, the following is a quick
recap of that command. You may find that you do not have access to the banner
command. Not all systems have all the commands referenced in this chapter. If you
cannot access a command, check with your system administrator.

command

banner

Description:

Remarks:

Command Recap

banner - make posters

options

none

arguments

characters

Displays arguments, up to ten characters on a
poster-sized line, in large letters.

Later in this chapter you will learn how to
redirect the banner command in to a file to be
used as a poster.

If you use single quotes in the argument for the grep command, the space loses the
meaning of a delimiter. You can search for two words. The line, The all * game is in
your file trial. Look for the two words The all in the file trial.

$ grep "'The all'" trial<CR>
The all * game
$

Try turning off the special character meaning of the * using single quotes.

6-10 (9054)

User's Guide

$ grep ,*, trial<CR>
The all * game
$

Shell Tutorial

If you want to know more about quoting, read the sh(1) pages of the ROS Reference
Manual.

REDIRECTING INPUT AND OUTPUT

The redirection of input and output are important tools for performing many shell
tasks and programs.

Redirecting Input

You can redirect the text of a file to be the input for a command.

This character redirects the contents
or a file into a command.

The general format to redirect the contents of a file into a command is shown below.

command < filename<CR>

If you write a report to your boss, you probably do not want to type in the mail
command and then type in your text. You want to be able to put your report in an
editor and correct errors. You want to run the file through the spell command to make
sure there are no misspelled words. You can mail a fiie containing your report to
another login using the input redirection symbol. In the example below, a file called
report is checked for misspelled words and then redirected to be the input to the mail
command and mailed to login boss.

$ spell report< CR>
$ mail boss < report<CR>
$

(9054) 6-11

Shell Tutorial User"s Guide

Since the only response to the spell command is the prompt, there are no misspelled
words in report. The spell command is a useful tool that gives you a list of words that
are not in a dictionary spelling list. The following is a brief recap of spell.

command

spell

Description:

Options:

Remarks:

Command Recap

spell - find spelling errors

options

available*

arguments

filename

spell collects words from the specified file or
files and looks them up in a spelling list.
Words that are not on the spelling list are
displayed on your terminal.

spell has several options, including one for
checking the British spelling.

The misspelled words can be redirected into a
file. See the redirection symbol > discussed
next.

* See the ROS Reference Manual for all available options and an explanation of their
capabilities.

Redirecting Output

You can redirect the output of a command to be the contents of a file. When you
redirect output into a file, you can either create a new file, append the output to the
bottom of a file, or you can erase the contents of an old file and replace it ,with the
redirection output.

This character redirects the output
of a command into a, file.

The single redirection symbol> will create a new file, or it will erase an old file and
replace the contents with new output. The general format to redirect output is shown
below.

command> filename<CR>

6-12 (9054)

User's Guide Shell Tutorial

If you want the spell command list of misspelled words placed in a file instead of
displayed on your terminal, redirect spell into a file. In the example, spell searches the
file memo for misspelled words and places those words in the file misspell.

$ spell memo> misspell<CR>
$

The sort command can be redirected into a file. Suppose a file called list contains a
list of names. In the next example, the output of the sort command lists the names
alphabetically and redirects the list to a new file names.

Problem:

$ sort list > names<CR>
$

Be careful to choose a new name for the file that will contain the alphabetized list. The
shell first cleans out the contents of the file that is going to accept the redirected
output, then it sorts the file and places the output in the clean file. If you type in

sort list> list<CR>

the shell will erase list and then sort nothing into list.

Problem:

If you redirect a command into a file that exists, the shell will erase the existing file and
put the output of the command into that file. No warning is given that you are erasing
an existing file. If you want to assure yourself that there is not an existing file, first
execute the Is command with the file name as an argument.

If the file exists, Is will list the file. If the file does not exist, Is will tell you the file was
not found in the curre.nt directory.

$ Is filename<CR>
filename
$ Is junk<CR>
junk not found
$

(9054) 6-13

Shell Tutorial User's Guide

Redirecting Output and Append

The double redirection symbol » app<ends the output of a command after the last line
of a file.

The general format to append output to a file is:

command » filename<CR>

In the next example, the contents of trial2 are added after the last line of trial! by
redirecting the eat command output of trial2 into triall. .

The first command, eat triall, displays the contents of trial!. Then, cat trial2
displays the contents of trial2. The third command line, cat trial2 » trial!, adds
the contents of trial2 to the bottom of file trial!, and cat trial! displays the new
contents of trial!.

$ cat triall < CR>
hello
this is a trial
This is the last line of this file
$
$ cat triaI2<CR>
Add this to file triall
This is the last line of file trial2
$
$ cat trial2 » triall<CR>
$ cat triall<CR>
hello
this is a trial
This is the last line of this file
Add this to file triall
This is the last line of file trial2
$

In the section on Special Characters, one of the examples showed how to execute the
grep command in background mode with &. Now, you can redirect the output of that
command'into a file called wordfile, and then look at the file when you have finished
your current task. The & is the last character of the command line.

6-14

$ grep word * > wordfile &<CR>
$

(9054)

User's Guide Shell Tutorial

Pipes

The I character is called a pipe. It redirects the output of one command to be the input
of another command.

This character directs the output
from one command to be the input
of the next command.

If two or more commands are connected by a pipe, I , the output of the first command
is "piped" into the next command as the input for that command.

The general format for the pipe line is:

commandl I command2 I command8<CR>

The output of command! is used as the input of command2. The output of
command2 is then usedast.li'einput for command3.

You have already tried the banner display on your terminal. The pipe can be used to
send a banner birthday greeting to someone by electronic mail.

If the person using login david has a birthday, pipe the banner display of happy
birthday into the mail command.

Type in: banner happy birthday I mail david<CR>

Login david will get a banner display in his electronic mail.

The date command gives you the date and the time. Since you may not have used the
date command before, a brief recap of date follows.

(9054) 6-15

Shell Tutorial User'8 Guide

command

date

Description:

Options:

Remarks:

Command Recap

date - display the date and time

options

+%m%d%y*
+%H%M%S

arguments

available*

date displays the current date and time on
your terminal.

+% followed by m for month, d for day, y for
year, H for hour, M for month, and S for
second will echo these back to your terminal.
You can add an explanation to these such as:

date ' +%H:M is the time'

If you are working on a small computer system
in which you are acting as both user and
system administrator, you may be able to set
the date and time using optional arguments to
the date command. Check your reference
manual for details. When working in a
multiuser environment, the arguments are
available only to the system administrator.

* See the ROS Reference Manual for all available options and an explanation of their
capabilities.

Tryout the date command on your terminal.

6-16

$ date<CR>
Mon Nov 25 17:57:21 CST 1985
$

(9054)

User #s Guide Shell Tutorial

Notice that the time is given from the 12th character through the 19th character. If
you want to know just the time and not the date, you can pipe the output of the date
command into the cut command. The cut command looks for characters only in a
specified part of each line of a file. If you use the -c option, cut will choose only those
characters in the specified character positions. Character positions are counted from
the left. To display only the time on your terminal, pipe the output of the date
command into the cut command asking for characters 12 through 19.

$ date: cut -c12-16<CR>
18:08:23
$

Several pipes can be used in one command line. The output of the example can be
piped into the pr command.

Type In: date cut -e12-16 pr<CR>

Try each of these examples. Check the system response.

Later in this chapter, you will write a shell program that will give you the time.

Since you may not have used the cut command until now, a brief recap of that
command follows next.

(9054) 6-17

Shell Tutorial User's Guide

Command Recap

cut - cut out selected fields of each line of a file

command

cut

Description:

Options:

Remarks:

options

-clist
-flist [-d)

arguments

filel file2

cut will cut out columns from a table or fields
from each line of a file.

-c lists the number of character positions
from the left. A range of numbers such as
characters 1-9 can be specified by -cl-9

-f lists the' number of fields from the left
separated by a delimiter described by...,}.

-d gives the field delimiter for -f. The
default is a tab. If the delimiter is a colon,
this would be specified by ...,} : .

If you find the cut command useful, you may
also want to use the paste command and the
split command.

Command Output Substitution

The output of any command line or shell program that is enclosed in back quotes, "
can be substituted anywhere on a shell command line. In the section on Shell
Programming, you will substitute the output of a command line as the value for a
variable.

o o

6-18

Substitute the output of the
command line in back quotes.

(9054)

User"'s Guide Shell Tutorial

The output of the time command can be substituted for the argument In a banner
printout.

Type in: banner' date I cut -c12-16' <OR>

Did you get a banner display of the time?

EXECUTING AND TERMINATING PROCESSES

Obtaining the Status of Running Processes

The ps command will give you the status of the processes you are running.

Running a process or command in background with & was discussed in the section on
special characters. The ps command will tell you the status of those processes. In the
next example, the grep command is run in the background, and then the ps command
is typed in. The system response, the output from the ps command, gives the PID,
which is the process identification number, and TTY, which is the current number
identification assigned to the terminal you are logged in on. It also gives the
cumulative execution TIME for each process, and the COMMAND that is being
executed. The PID is an important number if you decide to stop the execution of that
command.

$grep word • &<CR>
28223
$
$ ps<CR>
Precessld Runtime State Command
22123 4.015 R /res/um
23135 0.005 R Ires/debug
28124 2.416 S sh
28223 0.015 R grep
28224 0.002 S /usr/bin/ps
$

The example not only gives you the PID for the grep command, but also for the other
processes that are running, the ps command itself, and the sh command (or csh
command, if using the C-shell) that is always running as long as you are logged in. sh
is the shell program that interprets the shell commands. It is discussed in Chapter 2
and Chapter 5.

(9054) 6-19

Shell Tutorial User's Guide

command

ps

Description:

Options:

Remarks:

Command Recap

ps - report process status

optz"ons

several*

arguments

none

Displays information about active processes.

This command has several options. If you do
not use any options you will get the status of
the active processes that you are running.

Gives you the PID, the Process ID. This is
needed if you are going to kill the process,
that is, stop the process from executing.

* See the ROS Reference Manual for all available options and an explanation of their
capabilities.

Terminating Active Processes

The kill command is used to stop active shell processes. The general format for the kill
command is:

kill PID<CR>

What do you do if you decide you do not need to execute the command that you are
running in the background? If you press the BREAK key or the DEL key, you will find
it does not stop the background process as it does the interactive commands. The kill
command terminates a background process. If you want to terminate the grep
command used in the previous example:

$ kill 28223<CR>
28223 Terminated
$

If you are running several background processes, you can kill all of your background
processes by entering: kill o.

6-20 (9054)

User's Guide Shell Tutorial

It is important to note that the kill command normally sends a signal, called signal 15,
that requests the process to terminate. Some processes have the capability to "catch"
or ignore signal 15 and may not terminate right away.

You can unequivocally kill a process by specifying -9 after the kill command. This
sends a signal 9, which is a demand, rather than a request, to kill the process. For
example, to demand that process number 360032 be killed, you would enter:

$ kill -g 380032<CR>
360032 Terminated
$

and the process will terminate, no matter what.

A recap of the kill command follows.

command

Command Recap

kill - terminate a process

arguments

kill

options

available* job number or PID

Description: kill will terminate the process gIven by the
PID.

* See the ROS Reference Manual for all available options and an explanation of their
capabilities.

Using the No Hang Up Command

Another way to kill all processes is to hang up on the system, to log off. What if you
want the background process to continue to run after you have logged off? The nohup
command will allow background commands to continue to run even if you log off.

nohup command &<CR>

If you place the nohup command at the beginning of the command that you will be
running as a background process, the background process will continue to run to
completion after you have logged off.

Type in: nohup grep word * > word.list &<CR>

(9054) 6-21

Shell Tutorial User#s Guide

The output will be sent to word.list. If you did not specify an output file, the output
would be directed to a file named nohup.out.

The nohup command can be stopped by the kill command. The recap of the nohup
command is the following:

Command Recap

nohup - runs a command, ignoring hanging up or
quitting the system

command

nohup

Description:

opt£ons

none

arguments

command line

Executes a command line, even if you hang up
or quit the system.

Now that you have mastered these shortcuts in the shell commands, use them in your
shell programs.

COMMAND LANGUAGE EXERCISES

1-1. What happens if you use the * at the beginning of a file name? Try to list
some of the files in a directory using the * with a last letter of one of your file
names. What happens?

1-2. Tryout the following two commands.

1-3.

1-4.

6-22

Type in: cat [O-9]*<CR>
echo *<CR>

Can you use r at the beginning or in the middle of a file name generation?
Try it.

Do you have any files that begin with a number? Can you list them without
listing the other files in your directory? Can you list only those files that begin
with a lowercase letter between a and m? (Hint use a range of numbers or
letters in [D.

(9054)

User's Guide Shell Tutorial

1-5. Can you place a command in background mode on the line that is executing
several other commands sequentially. Try it. What happens? (Hint use; and
&.) Can the command in background mode be placed at any position on the
command line? Try it. Experiment with each new character that you learn,
so that you can learn the full power of the character.

1-6. Using the command line

cd; pwd; Is; ed trial<CR>

redirect the output of pwd and Is into a file. Remember, if you want to
redirect both commands to the same file, you have to use » for the second
redirection or you will wipe out the information from the pwd command.

1-7. Instead of cutting the time out of the date response, try redirecting only the
date, without the time, into banner. What is the only part that you need to
change in the "time" command line?

banner .. date cut -c12-16"

SHELL PROGRAMMING

GETTING STARTED

Let a shell program perform your tasks for you. A shell program is a ROS system file
that contains the commands that you would use to perform your task .

• How do you create a simple shell program?

• What makes the program run?

• Is there a special directory for your shell programs?

(9054) 6-23

Shell Tutorial User" 8 Guide

In this section of the tutorial you will learn the answers to these questions. The
examples for creating shell programs usually show two display screens. The first screen
display.s the contents of the file containing the commands used in your program. It
shows the command line

cat file<CR>

and the system response to that command, which is the contents of the file.

$ eat file<CR>
.FirBt command

Last command
$

The $ indicates the Bourne shell prompt. The second screen shows the results of
executing your shell program.

r $ file<CR>
Results
$

The names of the file containing the shell program will be printed in bold in the text,
since it is a command and not an ordinary text file.

Before you begin to create shell programs, you should be familiar with one of the
editors. The editors are discussed in the ROS Text Editing Guide.

Creating a Simple Shell Program

This section describes how to create a simple shell program that will:

• Tell you t.he directory you were in,

• List the contents of that directory, and then

• Display on your terminal: "This is the end of the shell program".

6-24 (9054)

User's Guide Shell Tutorial

To create this shell program, you will need the following three commands:

pwd The command that prints the path name of the current directory,

Is The command that lists the contents of the current directory, and

echo The command that displays on your terminal the characters following echo.

Enter an editor and type in the following three commands.

Type in: pwd<CR>
Is<CR>
echo This is the end of the shell program.<CR>

Write the contents of the editor buffer to a file called dl (for directory list) and quit the
editor. You have just created a shell program.

$ cat dl<CR>
pwd
Is
echo This is the end of the shell program.
$

Executing a Shell Program

How do you tell the shell that your file is a shell program that needs to be executed?
The simplest way to execute a program is to use the sh command.

Type in: sh dl<CR>

What happened?

Did you notice the path name of the current directory printed out first, then the list of
the contents of the current directory, and last of all the comment This is the end of the
shell program. ?

The sh command is a good way to test out your shell program to make sure that it
works.

If dl is a useful command, you will want to change the file permissions so that you need
only type in dl to execute the command. The command that changes the permissions
on a file, chmod, is discussed in Chapter 4. The example below reminds you how to
type in the chmod command to make a file executable, and then do an Is -1 so you can
see the change in the permissions.

(9054) 6-25

Shell Tutorial

$ ehmod u+x dl<CR>
$ Is -I<CR>
total 4
-rw- - - - - - - 1 login login
drwxrwxrwx 2 login login
-rwx------ 1 login login
$

User's Guide

3661 Nov 2 10:28 mbox
1056 Nov 11 18:20 rje

48 Nov 15 10:50 dl

Now you have an executable program named dl in your current directory.

Type in: dl<CR>

Did the dl command execute?

Creating a bin Directory for Executable Files

If your shell program is useful, you will want to keep it in a special directory called bin,
which is under your login directory.

If you want your dl command accessible from all your directories, make a bin directory
from your login directory and move the dl file to your bin. Below is a reminder of
those commands. In this example, dl is in the login directory.

Type in: mkdir bin<CR>
mv dl bin/dl<CR>

Move to the bin directory and type in the Is -I command. Does dl still have execute
permission?

Now add the following to the end of the PATH entry in your .profile file:

:/ directory path/bin:

where directory path contains the names of the directories leading to the /bin
directory. You must then execute the .profile file by entering .. profile.

6-26 (9054)

User's Guide Shell Tutorial

For example, if starship created the /bin directory from his home directory, he would
enter /userl/starship/bin to the PATH entry. Starship's .profile file may then look
like the following:

$ eat. profile
other entries

PATH=/bin:/userl/bin:/userl/starship:/userl/games:/userl/starship/bin
$ •• profile
$

The PATH variable IS discussed In more detail In the Using Shell Variables section
later in this chapter.

After completing these operations, move to another directory other than the bin
directory and enter:

dl<CR>

The dl command is now executable from all of the directories in your account.

A command recap of your new program dl follows.

Shell Program Recap

dl - display the directory path and directory contents

command

dl

Description:

arguments

none

Displays the output of the shell command pwd
and then lists the contents of the directory.

The bin is the best place to keep your executable shell programs. It is possible to give
the bin directory another name, but you will need to change the PATH variable to
specify the new directory name.

Problem:

You can give your shell program file any appropriate file name. However, you should
not name your program with the same name as a system command. The system will
execute your command instead of the system command.

(9054) 6-27

Shell Tutorial User's Guide

If you had named your dl program mY, each time you tried to move a file, the system
would not move your file. It would have executed your program to display the
directory name and list the contents.

Problem:

Another problem would occur if you had named the dl file Is, and then tried to execute
the file Is. You would create an infinite loop. After some time, the system would give
you an error message:

Too many processes, cannot fork

What happened? You typed in your new command Is. The shell read the command
pwd and executed that command. Then the shell read the command Is in your file and
tried to execute your Is command. This formed an infinite loop: $« IS) pwd

Is >
echo This is the end of the shell program

ROS limits the number of times this infinite loop can execute. One way to keep this
from happening is to give the path name for the system's Is command, /bin/Is.

The following Is shell program would work.

$ cat Is<CR>
pwd
/bin/Is
echo This is the end of the shell program

If you name your command Is, then you can only execute the system command with
/bin/Is.

VARIABLES

If you enjoyed sending the banner birthday greeting, you could make a shell program
that would pipe the banner printout into the electronic mail. A good shell program
would let you send to a different login each time you executed the program. The login
would then be a variable. There are two ways you can specify a variable for a shell
program:

• Positional parameters and

• Variables that you define.

6-28 (9054)

User's Guide Shell Tutorial

Positional Parameters

A positional parameter is a variable that is found in a specified position on the
command line that invokes your shell program. Positional parameters are typed in
after the name of your shell program. They are strings of c"haracters delimited by
spaces, except for the last parameter, which is ended with <CR>. If ppl is the first
positional parameter, pp2 is the second positional parameter, and ... pp9 is the ninth
positional parameter, then the command line that invokes the shell program called
shell.prog will look like:

shell.prog ppl pp2 pp3 pp4 ppS pp6 pp7 pp8 pp9<CR>

The shell program will take the first positional parameter (ppl) and substitute it in the
shell program text for the characters $1. The second positional parameter (pp2) will
be substituted for the characters $2. The ninth positional parameter (pp9), of course,
will be substituted for the characters $9.

If you want to see how the positional parameters are substituted into a program, try
typing the following lines into a file called pp (positional parameters).

Type in: echo The first positional parameter is: $1 <CR>
echo The second positional parameter is: $2<CR>
echo The third positional parameter is: $3<CR>
echo The fourth positional parameter is: $4<CR>

First the echo command tells which parameter will be displayed and then displays the
parameter. The next example shows the contents of the file pp.

$ cat pp<CR>
echo The first positional parameter is: $1
echo The second positional parameter is: $2
echo The third positional parameter is: $3
echo The fourth positional parameter is: $4
$

The following example shows the results of giving the four positional parameters one,
two, three, and four to the shell program pp. Remember to change the mode of pp to
be executable.

(9054) 6-29

Shell Tutorial

$ ehmod u+x pp<CR>
$
$ pp one two three four<CR>
The first positional parameter is: one
The second positional parameter is: two
The third positional parameter is: three
The fourth positional parameter is: four
$

User's Guide

Now, return to creating your shell program for the banner birthday greeting. Call the
file bbday. What command line would go into that file? Before you go on reading, try
it.

Did you get the following?

$ eat bbday<CR>
banner happy birthday I mail $1

Try sending yourself a birthday greeting. If your login name IS slowmo, then the
command line would be:

$ bbday slowmo<CR>
you have mail
$

The following is a brief recap of the shell program command bbday.

6-30

Shell Program Recap

bbday - mail a banner birthday greeting

command

bbday

Description:

arguments

login

bbday mails "happy birthday" in poster-sized
letters to the specified login.

(9054)

User's Guide Shell Tutorial

The who command will tell you every login that is currently using the system. -How
would you make a simple shell program called whoson that will tell you if a particular
login is currently working on the system? You could try the following:

$ who I grep boss<CR>
boss ttyS1 Nov 29 17:01
$

This command pipes the output of the who command into the grep command. The
grep command is searching for the characters "boss". Since login boss is currently
logged into the system, the shell will respond with:

boss tty51 Nov 29 17:01

If the only response is a prompt sign, then login boss is not currently on the system
because the grep command found nothing. Create a whoson shell program.

Below are the ingredients for your shell program whoson.

who _ The shell command that lists everyone on the system,

grep The search command, and

$1 The first positional parameter for your shell program.

The grep command searches the output of the who command for the parameter
designated in the program by $1. If it finds the login, it will display thelirie of
information. If it does not find the login in the output from who, it will display your
prompt.

Enter an editor and type the following command line into a file called whoson.

Type in: who I grep $1 <OR>

Write the file, quit the editor, and use the chmod command to give execute permission
to the file whoson.

Now try using your login as the positional parameter for the new program whoson.
What was the system's response?

(9054) 6-31

Shell Tutorial User #s Guide

If your login name is slowmo, your new shell command line would look like:

$ whoson slowmo<CR>
slowmo tty26 Jan 24 13:35
$

The first positional parameter is slowmo. The shell substitutes slowmo for the $1 in
your program.

who I grep slowmo<CR>

The following is a brief recap of the whoson command.

Shell Program Recap

whoson- display login information if user is logged in

command

whoson

Description:

arguments

login

If a user is on the system, displays the user's
login, the TTY number, the time and date-the
user logged in.

The shell command line will allow 128 positional parameters. However, your shell
program text is restricted to $1 through $9, unless you use the $* described below.

Parameters with Special Meaning

$# This variable in your shell program will record and display the number of
positional parameters you typed in for your shell program.

Let's look at an example that will show you what happens when you use $#. Put the
following command lines in a shell program called get.num.

6-32

$ eat get.num<CR>
echo The number of parameters is: $#
$

(9054)

User's Guide Shell Tutorial

The program counts all the positional parameters and displays that number. Give
get.num four parameters. They can be any string of characters.

$ get.num test out this program<CR>
The number of parameters is: 4
$

Shell Program Recap

get.num - count and display the number of arguments

command

get.num

Description:

Remarks:

arguments

(any string)

get.num counts the number of arguments
given to the command and then displays that
number.

This command demonstrates the special
parameter $#.

$* This variable in your shell program will substitute all positional parameters
starting with the first positional parameter. The parameter $* does not
restrict you to nine parameters.

You can make a simple shell program to demonstrate $*. Make a shell program called
show.param that will echo all of the parameters. Type in the echo command line
shown in the following screen.

$ eat show.param<CR>
echo The parameters for this command are: $*
$

Make show.param executable and try it out.

(9054) 6-33

Shell Tutorial User's Guide

$ showoparam hello how are you<CR>
The parameters for this command are: hello how are you
$

Now try show.param using more than nine positional parameters.

$ show.param one two 3 4 5 six 7 8 9 10 II<CR>
The parameters for this command are: one two 3 4 S six
7 8 9 10 11
$

The $* is very handy if file generation names are used as the parameters.

Try a file name generation parameter in your show.param command. If you have
several chapters of a manual in your directory called chap!, chap2 through chap7, you
will get a printout listing of all of those chapters.

$ show.param ehap?<CR>
The parameters for this command are: chapl chap2 chap3
chap4 chapS chap6 chap7
$

A quick recap of show.param follows.

6-34

Shell Program Recap

show.param - display all of the parameters

command

show.param

Description:

Remarks:

arguments

(any positional parameters)

show.param displays all of the parameters.

If the parameters are file name generations, it
will display each of those file names.

(9054)

User's Guide Shell Tutorial

You may want to practice with positional parameters so that they are familiar to you
before you continue on to the next section in which you will name the variables within
the program, rather than use them as arguments in a command line.

Variable Names

The shell allows you to name the variables within a shell program. Naming the
variables in a shell program makes it easier for another person to use. Instead of using
positional parameters, you will tell the user what to type in for the variable, or you will
give the variable a value that is the output of a command.

What does a named variable look like? In the example below, varl is the name of the
variable and myname is the value or character string assigned to that variable. There
are no spaces on either side of the = sign.

varl=myname<CR>

Within the shell program, a $ in front of the variable name alerts the shell that a
substitution is needed in the shell program. $varl tells the shell to substitute the value
myname, which was given to varl, for the characters $varl.

The first character of a variable name must be a letter or an underscore. The rest of
the name can be composed of letters, underscores, and digits. As in the case of shell
program file names, it is a risky business to use a shell command as a variable name.
Also, the shell has reserved some variable names to be used by the shell. The following
names are used by the shell and should not be used as the name of one of your
variables. A brief explanation of each variable is given.

CDPATH
This variable defines the search path for the cd command.

HOME
This is the default variable for the cd command (Home Directory).

IFS
This variable defines the internal field separators, normally the space, the tab,
and the carriage return.

MAlL
This variable is set to the name of the file that contains your electronic mail.

PATH
This variable determines the path that is followed to find commands.

(9054) 6-35

Shell Tutorial User's Guide

PSI
PS2

These variables define the primary and secondary prompt strings. The defaults
are $ and >. Do you have a prompt sign $?

TERM
This variable tells the shell what kind of terminal you are working on. It IS

important to set this variable if you are editing with vi.

Many of these named variables are explained in the last section of this chapter on your
login environment.

Assign Values to Variables

If you edit with vi, you know that you must set the variable TERM to equal the code
for your type of terminal before you use the vi editor. For example:

TERM=T3<CR>

This is the simplest way to assign a value to a variable.

There are several other ways to assign values to variables. One way is to use the read
command to assign input to the variable. Another way is to assign the value from the
output of a command using back quotes ' '" '. A third way would be to assign a
positional parameter to the variable.

Assign Values by the Read Command

You can set up your program so that you can type in the command and then be
prompted by the program to type in the value for the variable. The read command
assigns the input to the specified variable. The general format for the read command
IS:

read var<CR>

The values assigned by read to var will be substituted for $var in the program. If the
echo command is executed just before the read command, the program can display the
directions "type in ... ". The read command will wait until you type in the value, and
then assign the string of characters that you type in as the value for the variable.

If you had a list that contained the names and telephone numbers of people you called
often, you could make a simple shell program that would automatically give you
someone's number. Stop for a minute. How would you make up the program using the
following ingredients?

6-36 (9054)

User's Guide Shell Tutorial

echo The command that echoes the instructions.

read The command that assigns the input value to the variable name.

grep The command that searches for the person's name and number.

First, you would use the echo command to inform the user to type in the name of the
person to be called.

echo person's last name<CR>

The read command will then assign the person's name to the variable name.

read name<CR>

Notice that you do not use the = to assign the variable, the read command
automatically assigns the typed in characters to name.

The grep command will then search your phone list for the name. If your phone list
were called list, the command line would be:

grep $name list<CR>

In the next example, the shell program is called num.please. Remember, the system
response to the cat command is the contents of the shell program file.

$ cat num.please<CR>
echo Type in the last name
read name
grep $name list
$

Make a list of last names and phone numbers and try num.please. Or, try the next
example, which is a program that creates a list. You can use several variables in one
program. If you have a phone list, you may want a quick and easy way to add names
and numbers to the list. The program:

• Asks for the name of the person,

• Assigns the name to the variable name,

• Asks for the person's number,

• Assigns the number to the variable num, and

• Echos the name and num into the file list. You must use » to redirect the
output of the echo command to the bottom of your list. If you use >, your list will
contain only the last phone number.

(9054) 6-37

Shell Tutorial User ~s Guide

The program is called mknum.

$ eat mknum<CR>
echo Type in name
read name
echo Type in number
read num
echo $name $num » list
$
$ ehmod u+x mknum<CR>
$

Now tryout the new programs for your phone list. In the next example, mknum
creates the new listing for Mr. Niceguy. Then, num.please gives you Mr. Niceguy's
phone number.

$. mknum<CR>
Type in the name
Mr. Nieeguy<CR>
Type in the number
668-0007 <CR>
$
$ num.please<CR>
Type in last name
Nieeguy<CR>
Mr. Niceguy 668-0007
$

Notice that the variable name accepts both Mr. and Niceguy as the value.

Here is a brief recap of mknum and num.please.

6-38

Shell Program Recap

mknum - place name and number on a phone list

command

mknum

Description:

Remarks:

arguments

(interactive)

Asks you for the name and number of a person
and adds the name and number to your phone
list.

This is an interactive command.

(9054)

User's Guide Shell Tutorial

Shell Program Recap

num.please - display a person's name and number

command

num.please

Description:

Remarks:

arguments

(interactive)

Asks you for a person's last name, and then
displays the name and telephone number.

This is an interactive command.

Substitute Command Output for the Value of a Variable

Another way to assign a value to a variable is to substitute the output of a command
for the value. This will be very useful in the next section when you try loops and
conditional constructs.

The general format to assign output as the value for a variable is:

var=' command' <CR>

The variable var has the value of the output from command.

In one of the previous examples on piping, the date command was piped into the cut
command to get the correct time. That command line was:

date I cut -c12-19<CR>

You can place that command in a simple shell program called t that will give you the
time.

$ cat t<CR>
time='date I cut -c12-16'
echo The time is: $time
$

Remember there are no spaces on either side of the equal sign.

Change the mode on the file and you now have a program that gives you the time.

(9054) 6-39

Shell Tutorial

$ chmod u+x t<CR>
$ t<CR>
The time is: 10:36
$

The recap for the t shell program follows.

command

t

Shell Program Recap

t - display the correct time

User's Guide

arguments

none

Description: t gives you the correct time in hours and
minutes.

Assign Values with Positional Parameters

A positional parameter can be assigned to a named parameter. For example:

varl=$l <CR>

The example below is a simple program simp.p that demonstrates how you can assign
a positional parameter to a variable. The command lines in the file would be the
following:

$ cat simp.p<CR>
var1=$1
echo $var1
$

Or, you can assign the output of a command that uses a positional parameter.

person='who I grep $l'<CR>

If you wanted to keep track of the results of your whoson program, you could create
the program log.time. The output of your whoson shell program is assigned to the
variable person. Then, that value $person is added to the file login.file with the

6-40 (9054)

User"s Guide Shell Tutorial

echo command. The last part of the program displays the value of $person, which is
the same as the response to the whoson command.

$ cat log.time<CR>
person='who I grep $1'
echo $person » login. file
echo $person
$

The system response to log.time would appear as in the following screen.

$ log.time maryann<CR>
maryann tty61 Apr 11 10:26
$

The following is a quick recap of the log.time program.

Shell Program Recap

log.time - log and display a specified login that is
currently logged in

command

log.time

Description:

arguments

login

If the specified login is currently on the
system, log.time places the line of information
from the who command into the file login.file
and then displays that line of information on
your terminal.

As you do more programming, you may discover other ways to assign variables that
will help you in shell programs.

SHELL PROGRAMMING CONSTRUCTS

The shell programming language has several constructs that give you more flexibility in
your programs .

• The "here document" allows you to redirect lines of input into a command .

• The looping constructs for or while cause a program to reiterate commands in a
loop.

(9054) 6-41

Shell Tutorial User's Guide

• The conditional control commands, if or ease, execute a group of commands only if
a particular set of conditions is met.

• The break command gives the unconditional end of a loop.

Comments

Before you begin writing shell programs with loops, you may want to know how to put
comments about your program into the file, which the system will ignore. To place
comments in a program, begin the comment with # and end it with <OR>. The
general format for a comment line is:

#comment<OR>

The shell will ignore all characters after the #. These lines

This program sends a generic birthday greeting< OR>
This program needs a login as the positional parameter< OR>

will be ignored by the system when your program is being executed. They only serve as
a reminder to you, the. programmer.

The Here Document

The here document allows you to redirect lines of input of a shell program into a
command. The here document consists of the redirection symbol « and the delimiter
that specifies the beginning and end of the lines of input. The delimiter can be one
character or a string of characters. The ! is often used as a delimiter. The general
format for the here document is:

eommand «!<OR>
... input lines ... <OR>
!<OR>

The here document could be used in a shell program, to redirect lines of input into the
mail command. The program shown below sends a generic birthday greeting with the
mail command. The program is called gbday.

$ eat gbday<OR>
mail $1 «~I
Best wishes to you on your birthday.
!
$

The person's login is the first positional parameter $1.

6-42 (9054)

User's Guide Shell Tutorial

The redirected input is:

Best wishes to you on your birthday.

To send the greeting:

gbday mary<CR>

To receive the greeting, login mary would execute the mail command.

$ mail<CR>
mailx version 2.14 06/08/85 Type? for help.
"/usr/mail/mary": 1 message 1 new
>N 1 mylogin Wed Jul 17 14:26 11/281
? <CR>
Message 1:
From mylogin Wed Jul 17 10:19 PDT 1985
Recei ved : by system names (1.4/4. 7)

id AA28~8325; Wed, 17 Jul 85 10:19:07 pdt
Date: Wed, 17 Jul 85 10:19:07 pdt
From: mylogin (My Name)
Message-Id: <8507171719.AA2818325>
To: mary
Status: RO

. Best wishes to you on your birthday

? q<CR>
Saved 1 message in /usr/mary/mbox

The following is a recap of gbday.

Shell Program Recap

gbday - send a generic birthday greeting

command

gbday

Description:

arguments

login

gbday sends a generic birthday greeting to
the login given as an argument.

(9054) 6-43

Shell Tutorial User's Guide

Using ed in a Shell Program

The line editor ed can be used within a shell program if it is combined with the here
document commands.

Suppose you want to make a shell program that will enter the editor, ed, make a global
substitution to a file, write the file, and then quit the editor. The ed command to make
a global substitution is:

g/text to be changed/sf /new text/g<CR>

Before you read any further, jot down what you think the command sequence will be.
Put your command sequence into a file called ch.text. If you want to suppress the
character count of ed so that it will not appear on your terminal, use the - option:

ed - filename<CR>

Try to execute the file. Did it work?

If you used the read command to enter the variables, your program ch.text may look
similar to what appears in the following screen.

$ cat ch.text<CR>
echo Type in the file name.
read filel
echo Type in the exact text to be changed.
read oldtext
echo Type in the exact new text to replace the above.
read newtext
ed - $filel «~I
g/$oldtext/s//$newtext/g
w

q

$

This program uses three variables. Each of them is entered into the program with the
read command.

$:6 Ie The name of the file to be edited.

$oldtext The exact text to be changed.

$newtext The new text.

Once the variables are entered into the program, the here document redirects the
global, write, and quit commands into the ed command. Tryout the new ch.text
command.

6-44 (9054)

User's Guide

$ eh.text<CR>
Type in the filename.
memo<CR>
Type in the exact text to be changed.
Dear John:<CR>

Shell Tutorial

Type in the exact new text to replace the above.
To whom it may eoneern:<CR>
$ eat memo<CR>
To whom it may concern:
$

Did you try to use positional parameters? Did you have any problems entering the text
changes as variables, or did you quote the character strings for each parameter?

The recap of the ch.text command is:

command

ch.text

Description:

Remarks:

Shell Program Recap

ch.text - change text in a file

arguments

(interactive)

Replaces text in a file with new text.

This shell program is interactive. It will
prompt you to type in the arguments.

If you want to become more familiar with the line editor ed, or any of the other editors
that run with ROS, see the ROB Text Editing Guz·de.

Looping

Until now, the commands in your shell program have been executed once and only once
and in sequence. Looping constructs give you repetitive execution of a command or
group of commands. The for or while constructs will cause a program to loop and
execute a sequence of commands several times.

(9054) 6-45

Shell Tutorial User's Guide

The for Loop

The for loop executes a sequence of commands for each member of a list. The for
command loop also requires the keywords in, do, and done. The for, do, and done
keywords must be the first word on a line. The general format of the for loop is:

for variable<CR>
in this list of values<CR>

do the following commands<CR>
command l<CR>
command 2<CR>

last command<CR>
done<CR>

The variable can be any name you choose. If it is var, then the values given after the
keyword in will be sequentially substituted for $var in the command list. If in is
omitted, the values for var will be the positional parameters. The command list
between the keywords do and done will be executed for each value.

When the commands have been executed for the last value, the program will execute
the next line below done. If there is no line, the program will end.

It is easier to read a shell program if the looping constructs stand out. Since the shell
ignores spaces at the beginning of the lines, each section of commands can be indented
as it was in the above format. Also, if you indent each command section, you can
quickly check to make sure each do has a corresponding done statement to end the
loop.

The easiest way to understand a shell programming construct is to try an example.
Try to create a program that will move files to another directory.

The ingredients for the program are:

echo

read

6-46

You want to echo directions to type in
the path name to reach the new
directory.

You want to type in the path name, and
assign it to the variable path.

(9054)

User's Guide Shell Tutorial

for variable You must name the variable. Call it file
for your shell program. It will appear as
$file in the command sequence.

in list of values The list of values will be the file names.
If the in clause is omitted, the list of
values is taken to be $*, that is, the
parameters entered on the command
line.

do command sequence The command sequence for this program
IS:

mv $file $path/$file<CR>

done

Your shell program text for the program called mv.file will look like:

$ eat mv.file<CR>
echo Please type in the directory path
read path
for file

in memol memo2 memo3
do

mv $file $path/$file
done
$

Notice that you did not type in any values for the variable file. The values are already
in your program. If you want to change the files each time you invoke the program, use
positional parameters or variables that you name. You do not need the in keyword to
list the values wheri you use positional parameters. If you choose positional
parameters, your shell program will look like:

$ eat mv .file< CR>
echo type in the directory path
read path
for file
do

mv $file $path/$file
done
$

(9054) 6-47

Shell Tutorial User IS Guide

It is likely that you will want to move several files using the special file name
generation characters.

If this is a useful command, remember to move it into your bin.

Following is a recap of the mv.file shell program.

Shell Program Recap

mv.ex - move all executable files in the current
directory to the bin directory

command

mv.ex

Description:

Remarks:

arguments

all file names (*)

Moves all the files with execute permission
that are in the current directory to the bin
directory

All executable files in the bin directory (or the
directory indicated by the PATH variable)
can be executed from any of your directories.

The while Loop

The while loop will continue executing the sequence of commands in the do ... done list
as long as the final command in the while command list returns a status of true, that is
can be executed. The while, do, and done keywords must be the first characters on
the line. The general format of the while loop is the following:

6-48

while<CR>
command l<CR>

last command<CR>
do<CR>

command l<CR>

last command<CR>
done<CR>

(9054)

User's Guide Shell Tutorial

A simple program using the while loop enters a list of names into a file. The command
lines for that program called enter.name are:

$ eat enter.name<CR>
while

read x
do

echo $x»xfile
done
$

This shell program needs some instructions. You have to know to delimit or separate
the names by a <CR>, and you have to use a <Ad> to end the program. Also, it
would be nice if your program displayed the list of names in the xfile at the end of the
program. If you added those ingredients to the program, the commands lines for the
program become:

$ eat enter.name<CR>
echo 'Please type in each person's name and then a <CR>'
echo 'Please end the list of names with a <~d>'

while read x
do

echo $x»xfile
done
echo xfile contains the following names:
cat xfile
$

Notice that after the loop is completed, the program executes the commands below the
done.

In the echo command line, you used characters that are special to the shell, so you
must use the ' ••. ' to turn off that special meaning. Put the above command lines in an
executable file and tryout the shell program.

(9054) 6-49

Shell Tutorial User's Guide

$ enter.name<CR>
Please type in each person's name and then a <CR>
Please end the list of names with a <Ad>
Mary Lou<CR>
Janiee<CR>
<Ad>
xfile contains the following names:
Mary Lou
Janice
$

Conditional Constructs if ... then

The if command tells the shell program to execute the then sequence of commands only
if the final command in the if command list is successful. The if construct ends with
the keyword fl. The general format for the if construct is as follows:

if<CR>
commandl<CR>

last command<CR>
then<CR>

commandl<CR>

last command<CR>
fi<CR>

The next shell program demonstrates the if ... then construct. The program will search
for a word in a file. If the grep command is successful then the program will echo that
the word is found in the file. In this example the variables are read into the shell
program. Type in the shell program shown below and try it out. Call the program
search.

6-50 (9054)

User's Guide

$ cat search<CR>
echo Type in the word and the file name.
read word file
if grep $word $file

fi
$

then echo $word is in $file

Shell Tutorial

Notice that the read command is assigning values to two variables. The first
characters that you type in, up to a space, are assigned to word. All of the rest of the
characters including spaces will be assigned to file.

Pick a word that you know is in one of your files and tryout this shell program. Did
you see that even though the program works, there is an irritating problem? Your
program displayed more than the line of text called for by the program. The extra
lines of text displayed on your terminal were the output of the grep command.

The Shell Garbage Can /dev /null

The shell has a file that acts like a garbage can. You can deposit any unwanted output
in the file called /dev /null, by redirecting the command output to /dev /null.

Tryout /dev /null by throwing out the results of the who command. First, type in the
who command. The response tells you who is on the system. Now, try the who
command, but redirect the response into the file /dev /null.

who> /dev/null<CR>

The response displayed on your terminal was your prompt. The response to the who
command was placed in /dev /n ull and became null, or nothing. If you want to dispose
of the grep command response in your search program, change the if command line.

if grep $word $file > / dey /n ull < CR>

Now execute your search program. The program should only respond with the text of
the echo command line.

The if ... then construction can also issue an alternate set of commands with else, when
the if command sequence is false. The general format of the if ... then ... else construct
follows.

(9054) 6-51

Shell Tutorial

it<CR>
commandl<CR>

last command<CR>
then<CR>

commandl<CR>

last command<CR>
else<CR>

commandl <CR>

last command<CR>
fi<CR>

You can now improve your search command. The shell program search can look for a
word in a file. If the word is found, the program will tell you the word is found. If it is
not found (else) the program will tell you the word was NOT found. The text of your
search file will look like the following:

6-52

$ eat seareh<CR>
echo Type in the word and the file name.
read word file
if

grep $word $file >/dev/null
then

echo $word is in $file
else

echo $word is NOT in $file
fi
$

(9054)

User's Guide Shell Tutorial

Following is a quick recap of the enhanced shell program called search.

command

search

Description:

Remarks:

Shell Program Recap

search - tell if a word is in a file

arguments

interactive

Tells the user whether or not a word IS In a
file.

The arguments, the word and the file, are
asked for interactively.

The test Command for Loops

test is a very useful command for conditional constructs. The test command checks to
see if certain conditions are true. If the condition is true, then the loop will continue.
If the condition is false, then the loop will end and the next command is executed.
Some of the useful options for the test command are:

test -r filename<CR>
True if the file exists and is readable

test -w filename<CR>
True if the file exists and has write permission

test -x filename<CR>
True if the file exists and is executable

test -s filename<CR>
True if the file exists and has at least one character

If you have not changed the values of the PATH variable that were initially given to
you by the system, then the executable files in your bin directory can be executed from
anyone of your directories. You may want to create a shell program that will move all
the executable files in the current directory to your bin directory. The test -x
command can be used to select the executable files from the list of files in the current
directory. Review the mv.file program example of the for construct.

(9054) 6-53

Shell Tutorial

$ eat mv.:6.1e<CR>
echo type in the directory path
read path
for file
do

mv $file $path/$file
done
$

User'8 Guide

Include an if test -x statement in the do ... done loop to move only those files that are
executable.

If you name the shell program mv.ex, then the shell program will be as follows:

$ eat mv.ex<CR>
echo type in the directory path
read path
for file

$

do
if test -x $file

fi
done

then
mv $file $path/$file

The directory path will be the path from the current directory to the bin directory.
However, if you use the value for the shell variable HOME, you will not need to type in
the path each time. $HOME gives the path to the login directory. $HOME/bin gives
the path to your bin.

$ eat mv.ex<CR>
for file

do
if test -x $file

then
mv $file $HOME/bin/$file

fi
done

$

To execute the command, use all the files in the current directory, *, as the positional
parameters. The following screen executes the command from the current directory
and then moves to the bin directory and lists the files in that directory. All the
executable files should be there.

6-54 (9054)

User's Guide Shell Tutorial

$ mv.ex *<CR>
$ cd; cd bin; ls< CR>

The Conditional Construct case .. esac

The case ... esac is a multiple choice construction that allows you to choose one of
several patterns and then execute a list of commands for that pattern. The keyword in
must begin the pattern statements with their command sequence. You must place a)
after the last character of each pattern. The command sequence for each pattern is
ended with ;;. The case construction must be ended with esac (letters of case
reversed). The general format for the case construction is:

case ehal"acters<CR>
in<CR>

patternl)<CR>
com.mand line 1< CR>

h\$t command line<CR>
;;<OR>
patttu,"n2)< CR>

c<>mmand line 1< CR>

la$t command line< CR>
;;<CR>
pattel"n3)< CR>

eOlllmand line 1 < CR>

last command line<CR>
;;<OR>
*)<OR>

~ommand l<CR>

last command<CR>
;;<OR>

esae<:OR>

The case construction will try to match characters with the first pattern. If there is a
match, the program will execute the command lines after the first pattern and up to
the ;;.

(9054) 6-55

Shell Tutorial User's Guide

If the first pattern is not matched, then the program will proceed to the second pattern.
Mter a pattern is matched, the program does not try to match any more of the
patterns, but goes to the command following esac. The * used as a pattern at the
end of, the list of patterns allows you to give instructions if none of the patterns are
matched. The * means any pattern, so it must be placed at the end of the pattern
list if the other patterns are to be checked first.

If you have used the vi editor, you know you must assign a value to the TERM
variable so that the shell knows what kind of terminal is going to display the editing
window of vi. A good example of the case construction would be a program that will
set up the shell variable TERM for you according to what type of terminal you are
logged in on. If you log in on different types of terminals, the program set.term will be
very handy for you.

set.term will ask you to type in the terminal type, then it will set TERM equal to the
terminal code. You may want to glance back at the beginning of the vi tutorial for the
explanation of those commands. The command lines are:

TERM=terminal code<CR>
export TERM<CR>

In this example of set.term, the person uses either a Ridge Graphics Display or a
Televideo 950.

6-56 (9054)

User's Guide Shell Tutorial

The set.term program will first check if the value of term is ridge. If it is, then it will
assign the value ridge to TERM, and exit the program. If it is not ridge, it will check
for televideo. It will execute the commands under the first pattern that it finds, and
then go to the next command after the esac command.

At the end of the patterns for the terminals, the pattern *, meaning everything else,
will warn you that you do not have a pattern for that terminal, and it will also allow
you to leave the case construct.

$ cat set.term<CR>
echo If you have a Ridge Display type in ridge
echo If you have a Televideo 950 type in televideo
read term
case $term

in

esac

ridge)
TERM=ridge

televideo)
TERM=tvi950

*)
echo not a correct terminal type

export TERM
echo end of program
$

What would have happened if you had placed the * pattern first? The set.term
program would never assign a value to TERM since it would always fit the first pattern
*, which means everything.

When you read the section on modifying your login environment, you may want to put
the set.term command in your bin, and add the command line

set.term<CR>

to your . profile.

(9054) 6-57

Shell Tutorial User"'s Guide

Following is a quick recap of the set.term shell program.

Shell Program Recap

set. term - assign a value to TERM

command

set.term

Description:

Remarks:

arguments

interactive

Assigns a value to the shell variable TERM
and then exports that value to other shell
proced ures.

This command asks for a specific terminal
code to be used as a pattern for the case
construction.

Unconditional Control Statement break

The break command unconditionally stops the execution of any loop in which it IS

encountered, and goes to the next command after the done, fi, or esac statement. If
there are no commands after that statement, the program ends.

In the example for the program set.term, the break command could have been used
instead of the echo command.

6-58 (9054)

User's Guide Shell Tutorial

$ cat set.term<CR>
echo If you have a Ridge Display type in ridge
echo If you have a Televideo 950 type in televideo
read term
case $term

in

*)

esac

ridge)
TERM=ridge

televideo)
TERM=tvi950

break

export TERM
echo end of program
$

As you do more shell programming, you may want to use two other unconditional
commands, the continue command and the exit command. The continue command
causes the program to go immediately to the next iteration of a do or for loop without
executing the remaining commands in the loop.

Normally, a shell program terminates when the end of the file is reached. If you want
the program to end at some other point, you can use the exit command.

DEBUGGING PROGRAMS

Debugging is computer slang for finding and correcting errors in a program. There will
be times when you will execute a shell program and nothing will happen. There is a
"bug" in your program.

Your program may consist of several steps or several groups of commands. How do you
discover which step is the culprit? There are two options to the sh command that will
help you debug a program.

sh -v<CR>
sh -x<CR>

Prints the shell input lines as they are read by the system.
Prints commands and their arguments as they are executed.

To tryout these two options, create a shell program that has an error in it. For
example, type in the following list of commands in a file called bug.

(9054) 6-59

Shell Tutorial

$ eat bug<OR>
today='date'
person=$l
mail $2
$person
When you log off come into my office please.
$today.
MLH
$

User's Guide

The mail message sent to Tom ($1) at login tommy ($2) should read as shown in the
following screen.

$ mail<OR>
mailx version 2.14 06/08/85 Type? for help.
"/usr/mail/tommy": 1 message 1 new
>N 1 mlh Wed Jul 17 14:26 11/281
? <OR>
Message 1:
From mlh Wed Jul 17 10:19 PDT 1985
Recei ved : by system names (1.4/4. 7)

id AA3815328; Wed, 17 Jul 85 10:19:07 pdt
Date: Wed, 17 Jul 85 ~0:19:07 pdt
From: mlh (Melvin Hopper)
Message-Id: <85071717~9.AA3815328>
To: tommy
Status: RO

Tom
When you log off come into my office please.

? q<OR>
Saved 1 message in /usr/tommy/mbox

If you try to execute bug, the program will execute up until the mail $2 instruction.
The mail $2 instruction will then cause the mail command to execute interactively, as
indicated by the Subject: prompt. However, the intention of bug is to send the mail
message automatically.

To debug this program, try sh -v, which will print the lines of the file as they are read
by the system.

6-60 (9054)

User's Guide

$sh -v bug tom tommy<CR>
today= ' date'
person=$1
mail $2
Subject:

Shell Tutorial

Notice that the output stops on the mail command. There IS a problem with mail.
The here document must be used to redirect input into mail.

Before you fix the bug program, try sh -x, which prints the commands and their
arguments as they are read by the system.

$ sh -x bug tom tommy<CR>
+date
today= Wed Jul 17 11:25:59 PDT 1985
person=tom
+ mail tommy
Subject:fR

Once again, the program stops at the mail command. Notice that the substitutions for
the variables have been made and are displayed.

The corrected bug program is as follows:

$ cat bug<CR>
today='date'
person=$1
mail $2 «~I
$person
When you log off come into my office please.
$today
MLH

$

(9054) 6-61

Shell Tutorial User'8 Guide

The tee command is a helpful command to debug pipe lines. It places a copy of the
output" of a command into a file that you name, as well as piping it to another
command. The general form of the tee command is:

command1 I tee save.file I command2<CR

save.file is the name of the file that will save the output of commandl for you to
study.

If you wanted to check on the output of the grep command in the following command
line

who I grep $1 I cut -cl-9<CR>

you can use tee to copy the output of grep into a file to check after the program is
done executing.

who I grep $1 I tee check I cut -cl-9<CR>

The file check contains a copy of the output from the grep command.

$ who: grep mlhmo : tee check: cut -cl-9<CR>
$ mlhmo
$ eat check<CR>
mlhmo tty61 Apr 10 11:30
$

If you do a lot of shell programming, you will want to refer to the ROS
Programmer's Guide and learn about command return codes and redirecting
standard error.

MODIFYING YOUR SHELL ENVmONMENT

The . profile File

When you log into the Bourne shell, a file in your login directory, named .profile is
executed. The .profile is a Bourne shell program that issues commands to control your
shell environment. The C-shell has a similar file, named .login. For information on the
C-shell's .login file and other C-shell "dot" files, see the csh(l) pages of the ROS
Reference Manual and the C-Shell section in the ROS Programmer's Guide.

Since the .profile is a file, it can be edited and changed to suit your needs. On some
systems you can edit this file yourself, and on other systems the system administrator
will do this for you.

6-62 (9054)

User's Guide Shell Tutorial

If you can edit the file yourself, you may want to be cautious the first few times and
make a copy of your .profile in another file called safe.profile.

$ ep • profile safe. profile< OR>
$

You can add commands to your .profile just as you can add commands to any other
shell program. You can also set some terminal options with the stty command, and
you can set some shell variables.

Adding Commands to .profile

How do you add commands to your .profile? Try this pleasant example. The ROS
system will allow you to start out your day with a message from your computer. Edit
your .profile and add the following echo command to the last line of the file.

Type in:

echo Good Morning!

Write and quit the editor.

Whenever you make changes to your .profile and you want to initiate them in the
current work session, you may type in a . and space before .profile. The shell will
reinitialize your environment, that is, it will read and execute the commands in your
.profile.

Now, type in: •. profile<CR>

The system should respond with:

Setting Terminal Options

Good Morning!
$

The stty command can make your shell environment more convenient for you. The
following are only two of the options available for stty.

stty tabs

This option prevents tabs from being expanded on output. This substantially
reduces the number of characters output on terminals that understand tabs.
Read the stty(l) pages in the ROS Reference Manual for more details.

(9054) 6-63

Shell Tutorial User's Guide

sttyechoi

This option causes your teminal to immediately echo characters from the type
ahead buffer to the screen.

If you want to use these options for the stty command, you create those command lines
in your .profile just as you would create them in one of your the shell programs. If you
use the· tail command, which displays the last few lines of a file, you can see the results
of adding those three command lines to your .profile.

$ tail -3 .profile<CR>
echo Good Morning!
stty abs
stty echoi
$

If you have not used the tail command before, the following is a brief recap of tail.

6-64

Command Recap

tail - display the last portion of a file

command

tail

Description:

Options:

options

-n

Displays the last lines of a file.

arguments

file name

Using the option you can specify number of
lines n. The default (no options) is ten lines.
There are other options, besides specifying -no
You can specify blocks (b) or characters (c)
instead of lines.

(9054)

User's Guide Shell Tutorial

Using Shell Variables

Several of the variables reserved by the shell are used in your .profile.

Let's take a quick look at four of these variables.

HOME

This variable gives the path for your login directory. Go to your login directory
and type in pwd<CR>. What was the system response? Now type in echo
$HOME<CR>. Was the system response the same as the response to pwd?
$HOME is the default option for cd. If you do not specify a directory for cd, it
will move you to $HOME.

PATH

This variable gives the system the search path for finding and executing
commands.

If you want to see the current values for your PATH variable type m:
echo $PATH.

$ echo $PATH<CR>
:/mylogin/bin:/bin:/usr/bin:/usr/lib
$

The is a delimiter. Notice that for this PATH the system looks in
Imylogin/bin, for the command first, then into Ibin, then into lusr Ibin, and
so on.

If you are working on a project with several other people, you may want to set
up a group bin, a directory of special shell programs used only by your group.
The directory would be found from the root directory. The path would be
Igroup/bin. How do you add this to your PATH variable? Edit your _profile,
and add :/group/bin to the end of your PATH.

P ATH=: Imylogin/bin: Ibin: lusr llib: I group Ibin < CR>

TERM

This variable tells the shell wh.at kind of terminal you are working on. If you
have done any editing with vi you know that you have to specify:

TERM=code<CR>

where code is your terminal type, such as ridge, tvi950, etc.

(9054) 6-65

Shell Tutorial User's Guide

If you do not want to specify the TERM variable each time you log in, you can
add those two command lines to your .profile and they will automatically be
recognized each time you log into the ROS system. Or, if you log in on more
than one type of terminal, you will want to add your set.term command to your
.profile.

PSl

The PSl command allows you to change your prompt string. Try the following
example. If you wish to use several words, remember to quote the phrase. Also,
if you use quotes you can add a carriage return to your prompt.

Type in: PSl="Enter command:<CR>"

Now your prompt sign looks like:

$ • .profile<CR>
Enter command:

The mundane $ is gone forever, or until you delete the PS1 variable from your
.profile.

CONCLUSION

This tutorial has given you the basics for creating some shell programs. If you have
logged in and tried the examples and exercises as you read the tutorial, you can
probably perform many of your day-to-day tasks with your new shell programs. Shell
programming can be much more complex and perform more complicated tasks than
shown in this brief tutorial. If you want to read further on shell commands and
programming, read the sh(1) and csh(1) pages in the ROB Reference Manual and the
Shell and C-Shell sections of the ROS Programmer's Guide.

SHELL PROGRAMMING EXERCISES

2-1. Make the command line

banner 'date cut -cl2-l6'<CR>

in to a shell program called time.

6-66 (9054)

User's Guide Shell Tutorial

2-2. Make a shell program that will give only the date in a banner display. Be careful
what you name the program!

2-3. Make a shell program that will send a note to several people on your system.

2-4. Redirect the date command without the time into a file.

2-5. Echo the phrase "Dear colleague" in the same file as the date command without
erasing the date.

2-6. Using the above exercises, make a shell program that will send a memo with:

• Current date and the "Dear colleague" at the top of the memo,

• Body of a file that is the memo, and

• Closing statement

to the same people on your system as in Exercise 2-3.

2-7. How would you read variables into the mv.file program.

2-8. Use the for loop to move a list of files In the current directory to another
directory.

How would you move all files to another directory?

Ingredien ts:

*
$*
mv $file newdirectory

2-9. How would you change the program search, to search through several files?

Hint:
for file
in $*

2-10. Give yourself a new prompt that includes a carriage return. (Hint " <OR>")

2-11. Check to see what $HOME, $TERM, and $PATH are set to in your environment.

(9054) 6-67

Shell Tutorial

ANSWERS TO EXERCISES

COMMAND LANGUAGE EXERCISES

1-1. The * at the beginning of a file name will refer to all files that end in that file name, including
that file name.

$ls *t<CR>
cat 123t new.t t
$

1-2. cat [0-9]* would display the files:

Imemo
100data
9
05name

echo * will list all the files in the current directory.

1-3. You can place r any place in a file name.

1-4. Is [0-9]* will list only those files that start with a number.

Is [a-m]* will list only those files that begin with letters "a" through "m".

1-5. If you placed the sequential command line in the background mode, the
immediate system response was the PID for the job.

No, the & must be placed at the end of the command line.

1-6. The command line would be:

cd; pwd > junk; Is > > junk; ed trial<OR>

1-7. Change the -c option of the command line to read:

banner .. date cut ---cl-lO" <OR>

6-68 (9054)

User's Guide Shell Tutorial

SHELL PROGRAMMING EXERCISES

2-1.

2-2.

2-3.

$eat time<CR>
banner 'date I cut -c12-16'
$
$ehmod u+x time<CR>
$ time<CR>
banner d£sp/ay of the t£me 10: 26
$

$eat mydate<CR>
banner 'date I cut -c1-10'
$

$eat tofriends<CR>
echo "Type in the name of the file containing the note."
read note
mail janice marylou bryan < $note
$

Or, if you wanted to use parameters for the logins.

$cat tofriends<CR>
echo "Type in the name of the file containing the note."
read note
mail $* < $note
$

2-4. date I cut -cl-IO > file I <CR>

2-5. echo Dear colleague > > filel <CR>

2-6.

$eat send.memo<CR>
date I cut -c1-10 > memo1
echo Dear colleague » memo1
cat memo » memo1
echo A memo from M. L. Kelly» memo1
mail janice marylou bryan < memo1
$

(9054) 6-69

Shell Tutorial

2-7.

2-8.

$eat mv.file<CR>
echo type in the directory path
read path
echo "type in file names, end with <"'d>"
while
read file

do
for file

in $file
do

mv $file $path/$file
done

done
echo all done
$

$eat mv.file<CR>
echo Please type in directory path
read path
for file

in $*
do

mv $file $path/$file
done
$

The command line would then be:

r : mv.file *<CR>

6-70 (9054)

User's Guide

User" s Guide

2-9. See hint.

$ cat search<CR>
for file

in $*
do

if grep $word $file >/dev/null
then echo $word is in $file
else echo $word is NOT in $file
fi

done

2-10. Type the following command line into your .profile

2-11.

PSl="Hello<CR>" <CR>

($ echo SHOME<CR>

($ I'cho STERM<CR>

($ echo $PATH<CR>

(9054)

Shell Tutorial

6-71

Chapter 7: FLOPPY DISK DRIVE COMMANDS

INTRODUCTION .. 7-1
FLOPPY DISK CO~S .. 7-1

DISPLAYING CONTENTS OF FLOPPY DISK .. 7-1
LISTING CONTENTS OF FILES .. 7-2
COPYING FILES ... 7-2
COPYING FLOPPY DISKS ... 7-3
FORMATTING FLOPPY DISKS ... 7-3
REMOVING AND COMPARING FILES .. 7-3

Chapter 7

FLOPPY DISK DRIVE COMMANDS

INTRODUCTION

This section describes the commands used to access the floppy disk drive. The floppy
disk drive uses the standard UCSD Pascal format which allows 77 files and 1.2 Mbytes
of storage on each disk.

FLOPPY DISK COMMANDS

The commands used with the floppy disk drive are:

dir
cat

cmp
copy:8oppy
rm

zero

List directory

concatenate files

compare two files

copy the contents of one floppy disk to another

remove files

format floppy disk

DISPLAYING CONTENTS OF FLOPPY DISK

To list the floppy file names, insert a floppy disk in the drive, label side up and slotted
edge first. Use dir as follows:

$ dir<CR>
back-1 9-Jul-85 2 Sided, Double Density, # Blocks: 2448
GOODFILE 41 10-May-83 10 81 Datafile
BADFILE 48 10-May-83 51 255 Datafile
<Unused> 2349 99
2 files, 99 used blocks, 2349 unused blocks

$

Notice that the UCSD format displays filenames in upper case characters. Unlike the
format used to access files on the hard disk, UCSD filenames are not case-specific; you
can use either upper- or lower-case characters to access these files.

In the example above, BADFILE occupies 48 512-byte sectors, was created May 10,
starts at disk sector 51, and occupies 255 bytes of its last (48th) sector.

(9054) 7-1

User's Guide Floppy Disk Commands

7-2

LISTING CONTENTS OF FILES

The contents of a Hoppy disk file can be listed using the cat command, followed by the
device name of the floppy disk and the name of the file, as follows:

$ cat /dev/fl/filename

For example, to list the contents of the file testfile, enter:

$ cat /dev /ft/testfile<CR>
This is the contents of testfile

COPYING FILES

To copy a file from the working directory onto the floppy disk, use the cat program.
Cat simply copies a file from one place to another:

$ cat filename> /dev/fl/filename

This command instructs the system to copy filename to a file of the same name on the
floppy disk device (specified by /dev /ft).

To copy a file from the floppy disk into the working directory, use dir to verify the
name of the file on the disk, then use cat. F.or example, to copy badfile from the
floppy disk into your working directory, enter:

$ dir<CR>
back-1 9-Jul-85 2 Sided, Double Density, # Blocks: 2448
GOODFILE 41 10-May-83 10 81 Datafile
BADFILE 48 10-May-83 51 255 Datafile
<Unused> 2349 99
2 files, 99 used blocks, 2349 unused blocks

cat /dev /ft/badfile > badfile<CR>
$

WARNING
You cannot use the cp command to copy files to or from the floppy disk.

(9054)

User's Guide Floppy Disk Commands

COPYING FLOPPY DISKS

The copyHoppy command allows you to copy the entire contents of a floppy disk to
another floppy disk. The copyHoppy command has two options: -c and -f.

The -c (crunch) option compacts the files toward the beginning of the disk being copied
to. This option is useful when you need more storage space for larger files. Since files
are stored contiguously, you can gain more storage space on the disk by crunching the
files toward the beginning of the disk and leaving a large contiguous space at the end of
the disk blank.

The -f option formats the destination disk before attempting to write the contents of
the source disk to it.

FORMATTING FLOPPY DISKS

If the floppy disk has never been used, it must be formatted for use with the Ridge 32.
Before you can format the disk, a tab must be placed over the write-disable notch, as
described in Chapter 1. Insert the floppy in the disk drive and enter the zero command
as follows:

$ zero - f volumename

When you format your floppy disk, you must assign it a volumename, which is any name
of seven or less characters.

WARNING
Formatting the floppy disk will remove .all current files from the disk.

REMOVING AND COMPARING FILES

The rm (remove file) and cmp (compare files) commands operate as described in the
rm(l) and cmp(l) pages of the ROS Reference Manual. However, filenames must be
specified using the following syntax:

/ dey / f 1 / filename

to specify that the files are on the floppy disk. If the filename is not preceded by the
floppy disk designation, the operation will occur in your current working directory on
the hard disk.

For example, to remove the file testfile from the floppy disk, enter:

$ rm /dev /fl/testfile<CR>

$

(9054) 7-3

User IS Guide Floppy Disk Commands

7-4 (9054)

Chapter 8: ADMINISTRATIVE DUTIES

INTRODUCTION .. 8-1
THE SYSTEM CONSOLE .. 8-1
THE ROOT ACCOUNT ... 8-2

SUPER-USER ACCESS ... 8-2
MONITORING DISK SPACE .. 8-3

EVER-EXPANDING LOG FILES .. 8-3
AL TERING SYSTEM CONFIGURATION ... 8-4

THE BOURNE SHELL /etc/profile FILE ... 8-4
ADDING AN RS-232 TERMINAL ... 8-5

General.. 8-5
RS-232 Connections .. 8-5
Terminal Settings ... 8-6
The inittab File .. ~................. 8-6
The gettydefs File ... 8-7
Activating New Terminals ... 8-8
Character Case 8-8

ADDING A RIDGE MONOCHROME DISPLAY ... 8-8
ADDING OTHER DEVICES ... 8-9

ADDING A USER .. 8-9
MESSAGE OF THE DAY ... 8-11
BACKING UP AND ARCHIVING DATA .. 8-11

ARCHIVE CO~S ... 8-11
The cpio and tar Commands 8-11

TAPE DEVICE FILES ... 8-12
BACKUP CO~S .. 8-13

Tape Backup 8-13
Floppy Disk Backup 8-14
Compressed Data Backup .. 8-15

RESTORE CO~S ... : 8-15
Restoring From Tape ... 8-15
Restoring From Floppy Disks .. 8-16
Restoring Compressed Data From Floppy Disk ... 8-17

SYSTEM FAILURES ... 8-17
REGISTER DUMP PROCEDURE ... 8-18
REBOOTING THE SYSTEM ... 8-19

ERROR MESSAGES ... 8-19
SYSTEM UPGRADES, SOFTWARE UPDATES, AND SERVICE CONTRACTS 8-20

Chapter 8

ADMINISTRATIVE DUTIES

INTRODUCTION

This chapter is for the person responsible for the day-to-day operations of your
organization's Ridge 32 computer system. This person is referred to as the System
Administrator.

The System Administrator's duties include:

• Periodic data backups
• Monitoring disk usage
• Adding new users and devices to the system

• Correcting system failures

• Routine hardware maintenance

If you are the only user of the Ridge computer, you will have to act as the System
Administrator.

THE SYSTEM CONSOLE

Most administrative activities are performed using the system console. If you are using
a standard RS-232 terminal as your system console, it should be connected to the port
labeled Jl on the back of the Ridge computer. If you are using a Ridge graphics
display as your system console, it must be designated as dispO by setting the device ID
to 5 on that terminal's graphics interface board located in the Ridge card cage. By
convention, this board is connected to the port labeled display 1. (See the Ridge
Hardware Reference Manual for more information.)

Only one port can serve the system console. If both an RS-232 terminal and a Ridge
graphics display are set to work as the system console, the graphics terminal will be
selected.

From the system console, the System Administrator can:

• Install new software
• Restore the system after a system crash

• Receive system error messages

If only one terminal is connected to your Ridge 32 computer, it should be configured as
the system console.

(9054) 8-1

User's Guide Administrative Duties

THE ROOT ACCOUNT

8-2

Most administrative activities must be done from a special account, called the root
account.

From the root account, you have unrestricted access to any file or directory in the sys
tem, regardless of the security codes. The root-user can modify the codes and user and
group ID names of any file or directory in the system.

To become the root user, log in as root:

login: root<CR>
password: root_password<CR>

Welcome to the Ridge - This is ROS 3.3

Notice the # system prompt, which indicates you are in the root account.

When a new system is shipped, root has no password. Create your root password by
using the passwd command described in ESTABLISHING CONTACT WITH THE ROS
SYSTEM in Chapter 3. After you establish a password for your root account with the
passwd command, DON'T FORGET IT.

SUPER-USER ACCESS

As the System Administrator, you should also have a normal user account (typically
/directory/adm) in which you perform all of your non-administrative tasks. ROS
allows you to change your access level from that of a normal user to that of the root
user (super-user) without logging out of your regular account.

To change your access permission to that of root user, use the su (set user) command
without specifying a new user name and enter the password used by your root account,
as follows:

$ su<CR>
password: root_password<CR>

Once you gain super-user access, your user name (the user name of your regular
account) will remain the same. For example, if starship becomes a super-user, his user
name will still be starship.

(9054)

User"s Guide Administrative Duties

MONITORING DISK SPACE

The system administrator should check disk usage regularly. To find out what percen
tage of the disk is full, use df as in the following example:

=It df<CR>
dey kbytes used
/dev/disc 141244 65524
=It

avail capacity mounted at
75720 46% /

If the "capacity" field, which shows the actual percentage of disk space used, shows 80%
or more, system performance can be improved by removing files from the disk. Typi
cally, individual user text files do not cause a significant disk usage problem, but there
may be huge unused directories or data files whose removal would substantially reduce
disk usage. It is wise to back up a file before removing it - attempting to reduce disk
usage can end in accidental removal of important files.

EVER-EXPANDING LOG FILES

Some system log files accumulate data through time, and must be controlled by the
administrator to prevent an eventual disk space shortage.

• /usr /adm/sulog - an ever-expanding log file to which a record of su usage is
appended, but only if the super-user creates the directory /usr /adm.

• /usr/lib/cron/log - an ever-expanding log file to which cron activity and error
messages are appended.

• /etc/wtmp - an ever-expanding log file to which login information, system
reboots, and time changes are appended. This will only occur if the super-user
creates the file.

• /usr/spool/uucp/SYSLOG and /usr/spool/uucp/LOGFILE - ever-expanding
log files to which uucp communications data are appended. See the UUCP section
in the ROS Utility Guide for details.

Periodically remove each log file or move it to a file of another name. This mainte
nance procedure could be accomplished by the following, if performed weekly:

mv log file logfile.lastweek

With this move, logfile will never exceed one week's worth of data, and logfile.lastweek
will contain last week's data until it is overwritten the following week.

(9054) 8-3

User's Guide Administrative Duties

ALTERING SYSTEM CONFIGURATION

8-4

THE BOURNE SHELL fete/profile FILE

fete/profile is a Bourne shell file that is executed each time a Bourne shell user logs in.
This file is maintained by the root user and cannot be modified by the individual user.
The standard fete/profile sets certain environment variables, runs the mail and news
programs, and prints the message of the day.

The following is an example of a fete/profile script:

"@ (#) profile 1.3 3/14/85"

trap "" 1 2 3
export TZ LOGNAME TERM
if disptype .-s
then

TERM=ridge
case 'disptype' in
0) TERM=$TERM-mO
1) TERM=$TERM-ml"
2) TERM=$TERM-m2
*)
esac

else
TERM=tvi950

fi
TZ=PST8PDT
case "$0" in
-sh I -rsh)

trap : 1 2 3
cat /etc/motd
trap "" 1 2 3
if mail -e
then echo "you have mail"
fi

-su)

esac

if [$LOGNAME != root]
then

news -n
fi

trap 1 2 3

In the script above, the conditional expression beginning with the line if disptype
-s determines whether the terminal the user is logging in on is a Ridge Display or some
other terminal type. The terminal type is then established using TERM. This expres
sion must be modified if other types of terminals are to be used. Read the comments in
/usr /lib/terminfo/terminfo.sre to learn which abbreviation to use for your terminal.

(9054)

User's Guide Administrative Duties

If you are not using a Tele Video or a Ridge terminal, you must use the tie command to
create the entry (see the tic{l) page in the ROB Reference Manua~.

The line TZ=PST8PDT means that this is the Pacific Standard Time zone, eight hours
behind Greenwich Mean Time, and that Pacific Daylight Saving Time is observed in
season. If Daylight Saving Time is never observed in a locality, omit the string follow
ing the time difference. In the time line above, you would remove PDT, leaving only
TZ=PST8.

Individual users can not modify the fete/profile file. A file similar to the fete/profile
file, called the .profile file, is available to each user of the Bourne shell. (See the The
.profile Fz'le section in Chapter 4 and the Chapter 6 tutorial for more information.)

ADDING AN RS-232 TERMINAL

This procedure applies to RS-232 terminals only; it does not apply to the Ridge graphics
display, or other non-RS-232 terminals.

General

RS-232 terminals are connected to the Floppy Disk / Line Printer (FDLP) board via
RS-232 cables and the ports labeled Jl - J4 located on the back panel of the Ridge
computer enclosure. By default, characters are sent and received as 8 bits with no par
ity bit generated on output or expected on input. All RS-232 communication is handled
in full duplex.

RS-232 Connections

The following lists the active pins and their functions on the Jl - J4 ports.

pin 2

pin 3

pin 7
pin 8

pin 20

Transmit Data.

Receive Data.

Signal Ground.

Carrier Detect. On a non-modem port this pin will be ignored. On a
modem port, this pin must be high to enable communications; if it goes
low, the communication will be terminated.

DTR (Data Terminal Ready). This pin will be high, except to hang up
when it is set to low for .5 of a second.

Since there is no "standard" RS-232 configuration, you must make sure the pins on your
RS-232 cable are located in the correct positions for your terminal. Look at the user
manual for your RS-232 terminal and compare the pin settings described above with
those expected by your terminal. The Ridge RS-232 ports are configured as DTE (Data
Terminal Equipment). When connecting DTE devices, such as an RS-232 terminal, the
position of pins 2 & 3 on one end of the cable must be swapped. When connecting Data
Communications Equipment (DCE), such as modems, use a "straight-through" cable
with the same pin numbers on both ends.

(9054) 8-5

User's Guide Administrative Duties

8-6

Once you have your terminal cable configured correctly, connect the terminal to any of
the 4 ports labeled Jl - J4. (Note that if no Ridge graphics display has been desig
nated as the system console, Jl will serve as the system console port; otherwise it is
just like any of the other J ports.)

Terminal Settings

Since there is such a wide range of terminals, step-by-step instructions for configuring
your terminal cannot be presented in this guide. The best this guide can do is explain
the RS-232 characteristics of the Ridge. You will have to use this information in con
junction with the documentation provided with your terminal to determine the correct
configuration for your· terminal.

As stated at the beginning of this section, by default, characters are sent and received
as 8 bits with no parity bit generated on· output or read on input and that terminal
communication is handled in full-duplex. Therefore, the internal switches of your termi
nal should be set to NO PARITY and FULL DUPLEX.

You should set the terminal's speed to either 9600, 2400, 1200, 300, or 19200 baud. Ter
minals connected to the Ridge via a modem typically require a 2400, 1200 or 300 baud
setting. (See The gettydefs F~'le section for more information on how the Ridge estab
lishes baud rates.)

The remaining switches should be set as instructed by the documentation provided with
your terminal.

The inittab File

The /etc/inittab file associates terminals with RS-232 ports. For each RS-232 termi
nal connected to the Ridge, there must be a corresponding entry in the inittab file.
Dial-out lines, such as those used for modems and printers, do not have entries in the
inittab file.

List the /etc/inittab file as follows:

cat /etc/inittab<CR>
UMOO::respawn:/etc/getty /dev/ttyO 9600
UM01::respawn:/etc/getty /dev/ttyl 9600
UM02::respawn:/etc/getty /dev/tty2 9600

The following briefly describes the entry format for each line in the inittab file:

id:rstate:action:process

(9054)

User's Guide Administrative Duties

The id field identifies the entry; the rstate field is traditionally used for process
scheduling, but is currently not recognized by ROS; the action field contains a keyword
that specifies how the process defined in the process field is to be handled; and the
process field executes the getty program with the specified line and label parameters.
(The getty program is discussed in the next section.)

The third entry in the example inittab file shown here has an id of UM02, no entry in
the rstate field, specifies the respawn keyword in the action field, and executes the
getty program with a line of / dev /tty'\ and a label of 9600.

Each id field entry should be numbered consecutively (i.e., UMOO, UM01, ...) for each
line in the inittab file. The line parameters (ttyO, ttyl, ...) in the process field
should. be numbered to correspond to the J# ports on the back-panel. The ports
labeled Jl, J2, J3, and J4 correspond to ttyO, ttyl, tty2, and tty3, respectively.

For example, if you have connected a fourth terminal to the J4 port, you might add the
following line to the inittab file shown above:

UM03: :respawn:/etc/getty /dev/tty3 9600

Read the inittab(4) page of the ROS Reference Manual for full details on the
/etc/inittab file.

The gettydefs File

The /etc/gettydefs file contains a list of entries that determine the initial baud rate,
login message, and tty settings for RS-232 devices. Entries in the gettydefs file are
read by the getty program during the system startup sequence.

After connecting a new RS-232 terminal to the· Ridge, list the /etc/gettydefs file by
entering:

cat /etc/gettydefs<CR>
9600#B9600 CLOCAL#B9600 SANE TAB3 CLOCAL#login: #2400

2400#B2400 CLOCAL#B2400 SANE TAB3 CLOCAL#login: #1200

1200#B1200 CLOCAL#B1200 SANE TAB3 CLOCAL#login: #300

300#B300 CLOCAL#B300 SANE TAB3 CLOCAL#login: #19200

19200#B19200 CLOCAL#B19200 SANE TAB3 CLOCAL#login: #9600

modem1200#B1200#B1200 SANE TAB3 HUPCL#login: #modem300

modem300#B300#B300 SANE TAB3 HUPCL#login: #modem1200

(9054) 8-7

User's Guide Administrative Duties

8-8

The meaning of these lines is described in detail on the gettydefs(4) page in the ROS
Reference Manual. The following briefly describes the entry format:

label#initial-flags#.linal-flags#login-prompt#next-label

Recall the /etc/inittab file described in the previous section. Each entry in the
/etc/inittab file executes the getty program with line and label parameters that indi
cate an RS-232 line and a specific entry in the gettydefs file. The entry in the get
tydefs file is located when getty matches its label par-ameter with a label field at the
beginning of an entry in the gettydefs file. (For example, all of the entries in the
example inittab file use the 9600 label, which specifies the first line in the gettydefs
file above.)

If the baud rate specified by the initial gettydefs entry is incorrect for a terminal, the
user can direct getty to try another entry in the gettydefs file by pressing the BREAK
key on the terminal keyboard. This next entry is "located by matching the contents of
its label field with that of the next-label field in the initial entry. The user should con
tinue pressing BREAK until the correct gettydefs line is located and the contents of
the login-prompt field is printed on the screen.

In most cases, the /etc/gettydefs file need not be modified. If you cannot find an entry
in the gettydefs file to match your terminal's baud rate and tty settings, read the get
tydefs(4) page for information on creating a new entry in this file.

Activating New Terminals

The system must be rebooted in order to activate the new terminal(s). Follow the
reboot procedure described in the REBOOTING THE SYSTEM section in this chapter.

Character Case

In order to establish communication with ROS, your terminal must be set to generate
lowercase letters. This may be as simple as releasing the "caps lock" key. An
uppercase-only terminal can be used on the Ridge 32 if the user converts uppercase to
lowercase by entering stty -iuclc < /dev/tty? (where? is the appropriate tty number)
from a lowercase terminal or a Ridge display. Unfortunately, the functionality of the
uppercase terminal is still reduced because now it is impossible to generate uppercase
characters when they are truly needed.

ADDING A RIDGE MONOCHROME DISPLAY

A Ridge Monochrome Display terminal need not be configured in software, but you may
wish to activate the mouse pointer and window management software automatically at
login time. This can be accomplished by adding the appropriate instructions to the
.profile or .login file of those users with Ridge displays. Installation and mouse startup
instructions are shipped with the display.

(9054)

User's Guide Administrative Duties

ADDING OTHER DEVICES

Most peripheral devices, such as the tape drive and DR11 interface board, require a
software device driver to be running on the system. To automatically run the appropri
ate device drivers, modify the /ros/conf file.

:l:/drivers/fdlp
: 32:/drivers/tapedriver

See conj(4) in the ROB Reference Manual for details on the fields in /ros/conf.

The physical connection of a Ridge-supported peripheral device is explained in the
instructions shipped with that device, or is to be performed by the Ridge Systems
Engineer.

ADDING A USER

A new user is specified by adding an entry to the /etc/passwd file. Each entry in the
passwd file contains up to 7 fields, separated by colons. Below 'is a sample passwd file,
the bold entry is for a guest user.

root:ynsSOvNHjtT6U:O:O:OOOO-Admin(OOOO) :/:
daemon:xx:l:l:OOOO-Admin(OOOO) :/:

shqer:xx:69:8:0000-rje(OOOO) :/usr/rje:
trouble:xx:70:2:trouble(OOOO) :/usr/lib/trouble:
lp:xx:71:2:0000-lp(OOOO) :/usr/spool/lp:
ftp:xx:99:1:0000-ftp(OOOO) :/usr/ftp:
starship:MJOiOj/xrx/FY:100:100:Grace Jefferson:/userl/starship:
joe:IH4COYhjxLMOo:10l:100:Joe Webster:/usr/joe:/bin/csh
george:c2FcJAmRzXUqI:102:100:George Turner:/userl/george:
guest::l03:100:Guest User:/usr /guest:/bin/csh

The colon-separated fields in the /etc/passwd file are:

Login Name

Encrypted Password

User ID

This field specifies the character string the user will type
after the login: prompt to gain access to his account.

This specifies the password the user will use. When you
create a new account, do not make an entry in this field.
When the user of the new account logs in and creates a
password using the passwd command, an encrypted form
of that user's password will be entered in this field. To
make an account inactive, enter xx in this field, and no
one will be able to log in to that account.

This is the ID number for the user. The user ID number is
used by ROS to determine which files belong to which
users.

(9054) 8-9

User's Guide Administrative Duties

Group ID

Optional Field

Home Directory

This is the ID number for the group. Users with the same
group ID can share access to particular files and direc
tories. The members of each group are specified in the
fete/group file. (See group(4) for more information.)

This field can contain any information you wish to associ
ate with the user. Typically, it contains the user's full
name.

This field identifies what directory will be the user's work
ing directory when he logs in.

Shell Program If the user uses the C-shell, or any shell other than the
Bourne shell, the file containing the shell program can be
specified in this field. If no entry is made in this field, the
user will use the Bourne shell (/hin/sh).

The entry for guest in the sample passwd file shows that the login name is guest; no
encrypted password has been created; the user ID is 103; the group ID is 100; the
optional field identifies the account as belonging to Guest User; the initial working
directory is /usr/guest/; and /hin/esh specifies that guest is to use the C-shell.

These fields are also described on the passwd(4) page of the ROB Reference Manual.

Now the administrator should create the home directory (as listed in the second to last
field of /ete/passwd) for the new user and set its ownership using the following com
mand forms:

mkdi r / user _dz'rectory/ username
chown username /user_directory/username
chgrp group id /user_directory/username

For example, to create a home directory for joe in the usr directory and assign him a
group ID of 100, enter:

mkdir /usrfjoe<CR>
ehown joe /usr/joe<CR>
=If: ehgrp 100 /usr /joe< CR>

Immediately after modifying /ete/passwd and making the new directory, the new user
will have access to the system. Use the passwd command to create and change a pass
word from a user account. If you damage the password field of the passwd file with
the editor, or if you destroy the passwd file itself, call your Ridge Systems Engineer for
directions on accessing the system without passwords.

8-10 (9054)

User's Guide Administrative Duties

MESSAGE OF THE DAY

/ete/motd contains the message each Bourne shell user sees upon logging into ROS.
To modify this message, the root user may edit this file.

BACKING UP AND ARCHIVING DATA

Regularly scheduled backups of system data may prevent catastrophic data loss due to
negligence or system failure.

It is not necessary to store the entire Ridge Operating System on tape because it is con
tained on floppy disks kept at your site. If your application software comes from Ridge,
it will also be safe on floppy disk or tape at your site. User data and text files, and
locally written program files must be backed up regularly.

Most system administrators do a complete backup of user directories every week. How
ever, in some situations, it may be desirable to backup certain directories or files every
day, or every few hours, depending on how often the data changes and how much of it
you can afford to lose since the last backup.

ARCHIVE COMMANDS

The archive commands used when backing up files are:

• epio

• tar

The cpio and tar Commands

Both the tar (tape archiver) and epio (copy I/O) commands are used to archive and
'de-archive' files. tar is the original archive facility, which remains interchangeable
with most UNIX systems. epio, on the other hand, was developed later and, though
easier to use, is not compatible with UNIX systems prior to System III.

This section will only discuss the epio command. If you are interested In learning
about the tar command, see the tar{l) pages in the ROS Reference Manual.

The epio command has two forms:

epio -0

epio -i patterns

Read a list of files from the standard input and write them,
with pathname and status information, to standard output
(the file representing the hard disk or tape device).

Read files previously saved using epio -0 from the standard
input. These files are specified using "patterns", which can be
any combination of metacharacters mixed with alphabetic
and numeric characters. These files are written into the
current directory tree.

(9054) 8-11

User's Guide Administrative Duties

See the cpio(1) pages in the ROS Reference Manual for more information. Examples on
the use of the cpio command are given later in the BACKUP COMMANDS section.

TAPE DEVICE FILES

There are special files that identify the tape drive unit number, bytes-per-inch (bpi)
density value, and specify whether or not to rewind the tape when finished accessing it.
These are called mt files. There are two general types of mt files:

• rmt

• mt

The mt files specify non-raw mode. In non-raw mode, characters are buffered by the
driver and every tape record is exactly 4096 bytes long. You can read any number of
bytes, but the driver will read physical records of 4096 and transfer to you the number
requested. Non-raw mode is rarely used.

The rmt files specify raw mode. In raw mode, whatever size you write is the number of
bytes in the next physical record. When you read in raw mode the driver always reads
exactly one physical record, returning to you either exactly as many bytes as you asked
for (if that matches the record size), fewer bytes (if the record was smaller than your
request), or exactly as many bytes as you asked for and an error indicating that there
were more (if the record was larger than your request).

Unless you have more than one tape drive, your unit number will be O. Therefore, you
will only be concerned with the following files:

raw mode non-raw mode
--------------------- -------------------------

minor bytes re- unit file minor bytes re- unit file
no. linch wind no. name no. linch wind no. name

----- ----- --- -- ----- ----- ----- ----- ----- ----- -----
5 1600 n 0 rmtO 4 1600 n 0 mtO
7 1600 Y 0 rmt1 6 1600 Y 0 mt1
9 3200 n 0 rmt16 8 3200 n 0 mt16

11 3200 Y 0 rmt17 10 3200 Y 0 mt17

Tape device files are located in the /dev directory. Therefore, these files are typically
identified using the form:

I dey I filename

For example, tape drive 0, with no rewind on close, raw mode, at 1600 bpi is identified
by:

Idev/rmtO

See the mt(7) pages in the ROS Reference Manual for more information.

8-12 (9054)

User's Guide Administrative Duties

BACKUP COMMANDS

This section describes the commands you use to backup data using tapes or floppy
disks. Once you have executed these commands and have determined which ones you
will be using on a regular basis, you may wish to create aliases (if using the C-shell) or
write shell programs to simplify the task of entering these commands.

Tape Backup

Use the following command form to back up specified directories from your hard disk to
tape:

find directory -print: cpio -ovB > /dev /rmt16

where directory is the name of the initial directory from to begin backing up data. The
above command will save the contents of the initial directory and the contents of every
subdirectory "below" it in the file system.

For example, to backup all of the directories owned by starship enter:

=it: find /userl/starship -print: epio -ovB > /dev /rmt16<CR>
list of filenames will appear

=it:

This command would backup the /userl/starship directory and all of the directories
below it in the file system (i.e., /userl/starship/draft, /userl/starship/letters,
etc ..). The names of all of the files copied to the tape will be listed by the system as
they are backed up.

You can also backup individual files. To specify an individual file to be backed up on
tape, enter the directory pathname and the name of the file for the directory argument.
For example, to backup the file/userl/starship/mbox you would enter:

=it: find /userl/starship/mbox -print: epio -ovB> /dev /rmt16<CR>
/userl/starship/mbox

=it:

(9054) 8-13

User's Guide Administrative Duties

Floppy Disk Backup

Backing up directories to floppy disk is very similar to backing them up on tape. How
ever, in . most situations, you will require several formatted disks. Therefore, before
attempting your first backup, you must format several floppy disks using the zero -f
command described in Chapter 7.

To estimate the number of floppy disks you should format, you can use the du -s com
mand to determine the total number of blocks used by all of the files you wish to
backup.

Each floppy disk holds over 1 Mbyte (1 million bytes) of data. Since each block
represents 1 Kbyte (1,024 bytes), each disk can hold over 1,000 blocks. Once you deter
mine the total number of blocks used by your files, you can roughly estimate the
number of floppies required to store these files by the following formula:

number of blocks
= number of floppy disks (round down)

1000

For example, to determine the number of blocks used by the user starship, you would
enter:

du -s /userl/starship<CR>
14580

/user1/starship

The total number of blocks for all of the files below /userl/starship is 14580 blocks,
which means that you should format 14 ftoppy disks.

After formatting the correct number of floppy disks, backup the files to floppy disks
using the following command form:

find directory -print I cpio -ov > /dev /ft/filename

where directory is the initial directory from which to begin backing up (as described in
the Tape Backup section above) and filename is the name you wish to give the data on
the disk. .

For example, to backup all of the directories from the current working directory and
name the resulting file baekup12 enter:

8-14

find. -print I epio -ov > /dev/fl/baekup12<CR>
list of filenames will appear

(9054)

User's Guide Administrative Duties

If your current working directory is /usr, then entering this command would backup
the directories under /usr.

When one disk is full, the system will prompt you to insert the next one and press the
RETURN key. Should it be necessary to restore your backup directories after a hard
disk failure or similar disaster, you must read the information from the floppy disks in
the same order in which they were written to during the backup procedure. Because of
this, it is important that you label each disk to indicate the order in which they are
inserted during backup.

Compressed Data Backup

You may wish to make better use of the space on your floppy disk by compacting the
data during backup. This involves sending the backup data to a file, compressing the
file using the compact command and sending the compressed file to the floppy disk.
This command sequence uses the form:

find directory -print I cpio -vo I compact> /dev/fl/filename

For example, if the directory you wish to backup is named /userl/starship and you
want the backup file to be called backup, you would enter:

find /userl/starship -print I cpio -vo I compact> /dev /fl/backup<CR>
list of filenames will appear

RESTORE COMMANDS

This section describes the commands used to transfer backed up data from tape or
floppy disks to your hard disk.

Restoring From Tape

To restore backed up directories from tape, enter:

cpio -imdBv < /dev/rmt16<CR>
list of filenames will appear

(9054) 8-1 S

User's Guide Administrative Duties

You can restore specific files from the tape using the form:

epio -imdBv filename < /dev/rmt16

For example, iff after backing up the entire /userl/starship directory, you wish to
restore the file /userl/starship/filel, you would enter:

cpio -imdBv /userl/starship/filel < /dev /rmt16<CR>

/userl/starship/filel

Restoring From Floppy Disks

To restore backed up. directories from floppy disks, insert the first floppy disk in the
backup series and enter: '

cpio -imdv < /dev /ft/ filename<CR>
list of filenames will appear

where filename is the name given to the backup file. When the system is finished reading
data from the first floppy disk, it will prompt you to insert the second floppy disk and
continue.

You can restore a single file from a backup file stored on floppy disks using the form:

epio - imdv single-Jilename < /dev /fl/backup-Jilename

For example, if, after backing up the entire /userl/starship directory under the
filename backup, you wish to restore the file /userl/starship/filel, you would insert
the first in the series of backup disks into the floppy disk drive and enter:

cpio -imdv /userl/starship/filel < /dev /ft/backup<CR>
/userl/starship/filel

If the file is not found on the first disk, the system will prompt you to insert the next
disk. The system will continue to prompt you to insert the next disk in the backup
series until the file is found and restored to the hard disk.

8-16 (9054)

User's Guide Administrative Duties

Restoring Compressed Data From Floppy Disk

To restore from a floppy disk in which the data was compacted, use the following com
mand form:

uncompact /dev /fl/filename I cpio -idvm

For example, to restore the /userl/starship directory that was backed up In the
example for compressed data backup, enter:

uncompact /dev/fl/backup I cpio -idvm<CR>
list of filenames will appear

SYSTEM FAILURES

It may be difficult to determine between a system crash and a terminal failure. If one
terminal indicates a failure and another one works, the Ridge processor has not failed.
If this occurs, check to see if all of the setting are correct for that terminal by entering:

stty -a < /dev /tty#<CR>

(where tty# is the stty file assigned to your terminal in the inittab file.) This command
will display all of the current setting for the specified terminal.

If all of the tty processes seem to be running correctly, the terminal or terminal i/o
hardware may be faulty.

If all of the terminals are inoperative, the system has crashed. If you are uncertain
about what caused the system crash, you should contact the Ridge Customer Service
department and describe your problem to a Ridge Systems Engineer (SE).

(9054) 8-17

User's Guide Administrative Duties

REGISTER DUMP PROCEDURE

After a complete system failure, the SE may ask you to perform the following steps:

1. Press the switch 0 (zero) button. This is the white button on the bottom of the
clock board (see Figure 8-1), which is the half-sized circuit board at the far right
end of the card cage. If your computer is equipped with an interface shield, this
button is accessible through the right-most opening.

2. Go to the system console and notice the: prompt on the screen. This prompt indi
cates you have entered the RBUG debugger program.

3. The current value of the Program Counter (PC) will appear on the system console's
display. Write this value down.

4. Enter DR to dump the user process registers. This will display the values of 16
general registers. Write down the sixteen 8-character numbers that appear on the
screen.

5. Enter DSR to dump the kernel registers. This will display the current values of
the code segment, data segment, and process control block. Write these values
down.

6. Replace the front panel.

7. Press the blue LOAD button on the front panel. The system will then reboot .

..... --- Switch 0 Button

Figure 8-1. Location of Switch 0 Button on the Clock Board

8-18 (9054)

User IS Guide Administrative Duties

REBOOTING THE SYSTEM

To reboot your computer, do the following:

1. Open the front panel of the Ridge 32, but do not open the metalic radio interfer
ence shield if so equipped.

2. Press the Switch 0 button on the clock board, as described in REGISTER DUMP
PROCEDURE, Step 1.

3. Press the blue LOAD button on the Ridge 32 front panel,

4. After a while the system console will display a date followed by the prompt: Do
you want to run with this date? (y). If this date is correct, press the
RETURN key. If you wish to set a new date, follow the procedure described in the
TURNING THE SYSTEM ON section in Chapter 1.

After approximately 5 minutes, the login: prompt should reappear, indicating the
system has been successfully rebooted.

ERROR MESSAGES

Most error messages displayed on your system console require the assistance of a Ridge
Service Engineer. However, if any of the following hard disk I/O error messages is
repeatedly displayed on the system console, you should certify the integrity of the hard
disk.

I/O Error #7 Missing address mark
I/O Error #8 Can't find header that matches
I/O Error #9 CRC error in header
I/O Error #10 Uncorrectable error in data
I/O Error #11 Seek failure

Certify the integrity of the hard disk by the following procedure:

1. Back up the disk as described earlier in this chapter.

2. Obtain the SUS floppy disk and insert it in the floppy disk drive. For information
on SUS operation, see the SYSTEM DIAGNOSTICS Chapter in the Hardware
Reference Manual.

3. Ask all users to log off the system, and verify that they have done so.

4. On the Ridge 32 front panel, press and hold the DEV2 button, then press and
release the LOAD button. Release DEV2 only after the red light on the floppy disk
drive goes on.

5. At the system console, enter: discutil.
6. If the hard disk is a 78-Mb, 445-Mb, or other SMD-type drive, remove the SUS

floppy and insert the "Ba,d Block" floppy that was shipped with the hard disk, and
then enter: RBB. If the hard disk is a 60-Mb, 142-Mb, or other HD-type drive, just
enter: MBB.

7. Now enter: certify

(9054) 8-]9

User's Guide Administrative Duties

8. The certify utility may take 1 to 2 hours to complete. After certify completes,
enter LSP to print a list of any bad spots that may have been detected during the
check. Write the list down on paper. If no bad pages are reported, press the
LOAD button on the Ridge 32 front panel.

If bad pages were reported, re-run the "certify" utility to verify the bad spots:
a. For each bad block on your hand-written list, enter

blocknumber-100, 200

For example, if certify reports a bad page at 37025, enter: 36925, 200.

b. If certify reports a bad page at the same location again, this is a bona-fide bad
block which must be entered on the bad blocks file on the disk (and on the floppy
disk if it's a 445-Mb hard disk). In this case, call the Ridge Systems Engineer.

c. Press the LOAD button on the Ridge 32 front panel.

WARNING
NEVER stop certify prior to normal compilation. Doing so may cause one page of disk
data to be destroyed. You can safely stop certify by toggling the load enable switch
(second switch from the bottom on the clock board) from left to right and then back to the
left.

SYSTEM UPGRADE~ SOFTWARE UPDATES,
AND SERVICE CON'~'RACTS

In some cases, new software or hardware products from Ridge Computers may be
installed by the customer according to instructions supplied by the factory. However,
many installation and upgrade duties are handled by a Ridge Systems Engineer if the
customer has purchased a service contract.

Ridge Computers' service contract gives maximum hardware and licensed software sup
port. Among other features, a service contract entitles the customer to:

• Parts, material, and labor to maintain the covered equipment in peak operating
condition

• Upgrades of hardware equipment, software releases, and user documentation as
they become available

• Periodic software bulletins with technical information related to Ridge software
products

A service contract makes Ridge Computers responsible for maintaining the system
correctly, and is considered indispensable by many customers.

For full details on the Ridge service contract program, contact the Ridge Customer Ser
vice department.

8-20 (9054)

Chapter D: PREVENTIVE MAINTENANCE

INTRODUCTION .. 9-1
REPLACING THE RIDGE 32 AIR FIL TER .. 9-1
CLEANING THE EXTERIOR ... 9-2
CLEANING THE READ/WRITE HEADS ON THE FLOPPY DISK DRIVE 9-2
OTHER EQUIPMENT .. 9-2

Chapter 9

PREVENTIVE MAINTENANCE

INTRODUCTION

To keep your system service contract valid, you must

• Maintain the environment at your computer site In accordance with the Ridge
Computer System Site Planning Guide.

• Perform routine but simple preventive maintenance tasks on your own, as described
in this chapter.

Read and follow all preventive maintenance instructions that are shipped with each
peripheral product.

REPLACING THE RIDGE 32 AIR FILTER

Your air filter should be cleaned or replaced every three to six months.

On a Ridge 32/100:

1. Turn off and unplug the system.

2. Open the front panel of the Ridge 32/100, then open the radio interference shield
with a phillips screw driver.

3. Remove the metallic air filter, clean it under running water, wait for it to dry, and
replace it in the Ridge 32/100.

4. Close the radio interference shield and secure the phillips screws, then close and
lock the front door of the Ridge 32/100. .

On a Ridge 32/300:

1. Customers with a service contract may obtain an air filter free from the Ridge SE.
The filter is an unusual size that you probably won't find at a hardware store.

2. Remove the six screws on the air filter cover on the back panel of the Ridge 32.

3. Remove and discard the dirty air filter.

4. Install a clean filter and replace the screws.

(9054) 9-1

User" s Guide Ridge 32 Preventive Maintenance

CLEANING THE EXTERIOR

As needed, clean the exterior of the Ridge 32 and peripheral equipment:

• Turn off and unplug the equipment.
• Use water, and/or a mild soap, and a non-abrasive cloth to remove fingerprints and

food spills.

CLEANING THE READ /WRITE HEADS ON THE FLOPPY
DISK DRIVE

1. Obtain the SUS floppy disk (the one you created according to the instructions
under "Administrative Duties") and insert it in the floppy disk drive.

2. Ask all users to log off the system, and verify that they have done so.
3. On the Ridge 32 front panel, press and hold the DEV2 button, then press and

release the LOAD button. Release DEV2 only after the red light on the floppy disk
drive goes on.

4. Obtain a cleaning solution, such as isopropyl alchohol, and a floppy disk cleaner,
such as a 8-inch cleaning disk.

5. Read the instructions on the cleaning disk, apply the solution to the cleaning disk
and insert it in the drive.

6. At the SUS prompt, enter: sh PMFD

7 . Verify the cleaning disk is in the slot and press the RETURN key.
8. Let the cleaning disk rotate in the disk drive for 30 seconds, then press LOAD on

the front panel.
7. Remove the cleaning disk.

OTHER EQUIPMENT

9-2

If you have other equipment, such as a tape drive or 445-Mbyte disk in the Companion
Enclosure, ioilow the maintenance instructions that come with that equipment.

(9054)

GLOSSARY

This glossary defines terms and acronyms used in the R":dge 82 User's Gu":de that may not be
familiar to you.

address
Generally, a number that indicates the location of information in the computer's
memory. In the ROS system, the address is part of an editor command that specifies a
line number or range.

append mode
A text editing mode where you enter (append) text after the current position in the
buffer. See text input mode, compare with command mode and insert mode.

argument

ASCII

Special instructions on the command line that specify data on which a command is to
operate. Arguments usually follow the command and can include numbers, letters, or
text strings. For instance, in the command lp -m myfile, lp is the command and
myfile is the argument. See option.

(pronounced as'-kee) American Standard Code for Information Interchange, a
standard for data transmission that is used in the ROS system. ASCII assigns sets of
Os and 1s to represent 128 characters, including alphabetical characters, numerals, and
standard special characters, such as #, $, %, and &.

background
A type of program execution where you request the shell to run a command away from
the interaction between you and the computer (lfin the background"). While this
command runs, the shell prompts you to enter other commands through the terminal.

baud rate
A measure of the speed of data transfer from a computer to a peripheral device (such
as a terminal) or from one device to another. Common baud rates are 300, 1200, 4800,
and 9600 . .Ai; a general guide, divide a baud rate by 10 to get the approximate number
of English characters transmitted each second.

Bourne shell

buffer

The original UNIX shell developed by AT&T Bell Laboratories. ROS uses this shell by
default.

A temporary storage area of the computer used by text editors to make changes to a
copy of an existing file. When you edit a file, its contents are read into a buffer, where
you make changes to the text. For the changes to become a part of the permanent file,
you must write the buffer contents back into the file. See permanent file.

(9054) G-I

Glossary

C-shell
A shell developed at University of California, Berkeley. The C-shell interface is similar
to programming in the C language and is, therefore, preferred by some programmers.

child directory
See subdirectory.

command
The name of a file that contains a program that can be processed or executed by the
computer on request.

command file
See executable file.

command language interpreter
A program that acts as a direct interface between you and the computer. In the ROS
system, a program called the shell takes commands and translates them into a
language understood by the computer.

command line
A line containing one or more commands, ended by typing a carriage return «CR».
The line may also contain options and arguments. You type this line to the shell to
instruct the computer to perform one or more tasks.

command mode
A text editing mode in which each character you type is interpreted as an editing
command. This mode permits actions such as moving around in the buffer, deleting
text, or moving lines of text. See text input mode, compare with append mode and
insert mode.

context search
A technique for locating a specified pattern of characters (called a string) when in a
text editor. Editing commands that cause a context search scan the buffer, looking for
a match with the string specified in the command. See string.

control character
A nonprinting character that is entered by holding down the control key and typing a
character. A control character transmits a special command to the computer. For
instance, when viewing a long file on your screen with the cat command; typing
control-s (.... s) stops the display so you can read it, and typing control-q (.... q) continues
the display.

current directory

cursor

G-2

The directory in which you are presently working. You have direct access to all files
and subdirectories contained in your current directory. The shorthand notation for the
current directory is a dot (.).

A cue printed on the terminal screen that indicates the position at which you enter or
delete a character. It is usually a rectangle or a blinking line.

(9054)

default

Glossary

An automatically assigned value or condition that exists unless you explicitly change
it. For example, the shell prompt string has a default value of $ unless you change it.

delimiter
A character that logically separates items or arguments on a command line. Two
frequently used delimiters in the ROS system are the space and the tab. Another is
the slash character U) that separates directories from subdirectories and files in a path
name.

diagnostic
A message printed at your terminal to indicate an error encountered while trying to
execute some command or program. Generally, you need not respond directly to a
diagnostic message.

directory

disk

A type of file used to group and organize other files or directories. You cannot enter
text or other data into a directory. (For more detail, see Chapter 4.)

A magnetic data storage device consisting of several round plates similar to
phonograph records. Disks store large amounts of data and allow quick access to any
piece of data.

electronic mail
The feature of an operating system that allows computers users to exchange written
messages via the computer. The ROS system mail command provides electronic mail
in which the addresses are the login names of users.

environment
The conditions under which you work while using the ROS system. Your environment
includes those things that personalize your login and allow you to interact in specific
ways with the ROS system and the computer. For example, your shell environment
includes such things as your shell prompt string, specifics for backspace and erase
characters, and commands for sending output from your terminal to the computer.

erase character

escape

execute

The character you type to delete the previous character on the current line. The ROS
system default e~ase character is #.

A means of getting into the shell from within a text editor or another program.

The computer's action of interpreting a programmed instruction or command and
performing the indicated operation(s).

executable file
A file that can be processed or executed by the computer without . any further
translation. When you type in the file name, the commands in the file are executed.
See shell procedure.

(9054) G-3

Glossary

field

file

A word or a group of characters treated as one word on a command line. Fields are
usually a fixed number of character positions in size, but they may also vary.

A collection of information. Files may contain data, programs, or other text. You
access ROS system files by name. See ordinary file, permanent file, and executable
file.

file name
A sequence of characters that denotes a file. (In the ROS system, a slash character U)
cannot be used as part of a file name.)

file system

filter

A collection of files and the structure that links them together. The file system is a
hierarchical structure -- that is, a ranked system of files. (For more detail, see Chapter
4.)

A command that reads the standard input, acts on it in some way, and then prints the
result as standard output.

final copy
The completed, printed version of a file of text.

foreground
The normal type of program execution. In foreground mode, the shell waits for a
command to end before prompting you for another command. In other words, you
enter something into the computer and the computer "replies" before you enter
something else.

full-duplex
A type of data communication in which a computer system can transmit and receive
data simultaneously. Terminals and modems usually have settings for half-duplex
(one-way) and full-duplex communication; the ROS system uses the full-duplex setting.

full path name

global

A path name that originates at the root directory of the ROS system and leads to a
specific file or directory. Each file and directory in the ROS system has a unique full
path name, sometimes calied an absolute path name. See path name.

A qualifier that indicates the complete or entire file. While normal editor commands
commonly act on only the first instance of a pattern in the file, global commands
perform the action on all instances in the file.

hardware
The physical machinery of a computer and any associated devices.

hidden character

G-4

One of a group of characters within the standard ASCII set, but not normally printed
as visible symbols. Control characters, such as backspace and· escape, are examples.

(9054)

Glossary

home directory
The directory in which you are located when you log in to the ROS system; also known
as your login directory.

input/output
The path by which information enters a computer system (input) and leaves the system
(output). An input device that you use is the keyboard and an output device is the
terminal monitor.

insert mode
A text editing mode in which you enter (insert) text before the current position in the
buffer. See text input mode, compare with append mode and command mode.

interactive
Describes an operating system (such as the ROS system) that can handle immediate
response communication between you and the computer. In other words, you interact
with the computer from moment to moment.

line editor

login

An editing program in which text is operated upon on a line-by-line basis within a file.
Commands for creating, changing, and removing text use line addresses to determine
where in the file the changes are made. Changes can be viewed after they are made by
displaying the lines changed. See text editor, compare with screen editor.

The procedure used to gain access to the ROS operating system.

login directory
See home directory.

login name

log off

A string of characters used to identify a user . Your login name is different from other
login names.

The procedure used to exit from the ROS operating system.

metacharacter

mode

modem

One of a group of characters with a special meaning to the shell, such as
<>*?I&$;()\'" '[].

In general, a particular type of operation (for example, an editor's append mode). In
relation to the file system, a mode is an octal number used to determine who can have
access to your files and what kind of access they can have. See permissions.

A device that connects a terminal and a computer by way of a telephone line. A
modem converts digital signals to tones and converts tones back to digital signals,
allowing a terminal and a computer to exchange data over standard telephone lines.

multitasking
The ability of an operating system to execute more than one program at a time.

(9054) G-5

Glossary

multiuser

nroft'

The ability of an operating system to support several users on the system at the same
time.

A text formatter available as an add-on to the ROS system. You can use the nroff'
program to produce a formatted on-line copy ora printed copy of a file. See text
formatter.

operating system

option

The software system on a computer under which all other software runs. The ROS
system is an operating system.

Special instructions that modify how a command runs. Options are a type of
argument that follow a command and are preceded by a minus sign (-). You can
specify more than one option for any command given in the ROS system. For example,
in the command Is -I -a directory, -I and -a are options that modify the Is
command. See argument.

ordinary file

output

A collection of one to several thousand characters. Ordinary files may contain text or
other data but are not executable. See executable file.

../
Information processed in some fashion by· a computer and delivered to you by way of a
printer, a terminal, or a similar device.

parameter
Generally, a value that determines the characteristics or behavior of something. In the
ROS system, a type of variable found only on the command line. See variable.

parent directory

parity

The directory immediately above a subdirectory or file in the file system organization.
The shorthand notation for the parent directory is two dots (..).

A method used by a computer for checking that the data received matches the data
sent.

password
A code word known only to you that is called for in the login process. The computer
uses the password to verify that you may indeed use the system.

path name
A sequence of directory names separated by the slash character U) and ending with
the name of a file or directory. The path name defines the connection path between
some directory and a file.

peripheral device

G-6

Auxiliary devices under the control of the main computer, used mostly for input,
output, and storage functions. Some examples include terminals, printers, and disk
drives.

(9054)

Glossary

permanent file
The data stored permanently in the file system structure. To change a permanent file,
you must make use of a text editor, which maintains a temporary work space, or
buffer, apart from the permanent files. Once changes have been made to the buffer,
they must be written to the permanent file to make the changes permanent. See
buffer.

permissions

pipe

pipeline

Access modes, associated with directories and files, that permit or deny system users
the ability to read, write, and/or execute the directories or files. You determine the
permissions for your directories or files by changing the mode for each one with the
chmod command.

A method of redirecting the output of one command to be the input of another
command. It is named for the character (I) that redirects the output. For example,
the shell command who I wc -I pipes output from the who command to the wc
command, telling you the total number of people logged into your ROS system.

A series of filters separated by the pipe character (I). The output of each filter
becomes the input of the next filter in the line. The last filter in the pipeline writes to
its standard output. See filter.

positional parameters

prompt

printer

process

Variables that hold arguments supplied with a shell procedure. They are placed into
variable names, such as $1, $2, and $3 when the shell calls for the shell procedure.
The name of the shell procedure is positional parameter $0. See variable and shell
procedure.

A cue displayed at your terminal by the shell, telling you that the shell is ready to
accept your next request. The prompt can be a character or a series of characters.
The ROS system default prompt is the dollar sign character ($).

An output device that prints the data it receives from the computer on paper.

Generally a program that is at some stage of execution. In the ROS system, it also
refers to the execution of a computer environment, including contents of memory,
register values, name of the current directory, status of files, information recorded at
login time, and various other items.

program
The instructions given to a computer on how to do a specific task. Programs are user
executable software.

read-ahead· capability
The ability of the ROS system to read and interpret your input while sending output
information to your terminal in response to previous input. The ROS system separates
input from output and processes each correctly.

(9054) G-7

Glossary

relative path name
The path name to a file or directory which varies in relation to the directory in which
you are currently working.

remote system
A system other than the one on which you are working.

root
The source of all files and directories in the file system, designated by a slash character
(/).

ROS system
A general-purpose, multiuser, interactive, time-sharing operating system based on the
UNIX system developed by AT&T Bell Laboratories. The ROS system allows limited
computer resources to be shared by several users and efficiently organizes the user's
interface to a computer system.

screen editor
An editing program in which text is operated on relative to the position of the cursor
on a visual display. Commands for entering, changing, and removing text involve
moving the cursor to the area to be altered and performing the necessary operation.
Changes are viewed on the terminal display as they are made. See text editor,
compare with line editor.

search pattern
See string.

search string
See string.

secondary prompt

shell

A cue displayed at your terminal by the shell to tell you that the command typed in
response to the primary prompt is incomplete. The ROS system default secondary
prompt is the "greater than" character (».

A ROS system program that handles the communication between you and the
computer. The shell is also known as a command language interpreter because it
translates your commands into a language understandable by the computer. The shell
accept/s commands and causes the appropriate program to be executed.

shell procedure
An executable file that is not a compiled program. A shell procedure calls the shell to
read and execute commands contained in a file. This lets you store a sequence of
commands in a file for repeated use. It is also called a command file. See executable
file.

shell script
See shell procedure.

silent character
See hidden character.

G-8 (9054)

Glossary

software
Instructions and programs that tell the computer what to do. Contrast with
hardware.

source code
The English-language version of a program. The source code must be translated to
machine language by a program known as a compiler before the computer can execute
the program.

special character
See metacharacter.

special file
A file (called a device driver) used as an interface to an input/output device, such as a
user terminal, a disk drive, or a line printer.

standard input
An open file that is normally connected directly to the keyboard. Standard input to a
command normally goes from the keyboard to this file and then into the shell. You
can redirect the standard input to come from another file instead of from the
keyboard; use an argument in the form < file. Input to the command will then come
from the specified file.

standard output

string

An open file that is normally connected directly to a primary output device, such as a
terminal printer or screen. Standard output from the computer normally goes to this
file and then to the output device. You can redirect the standard output into another
file instead of to the printer or screen; use an argument in the form> file. Output will
then go to the specified file.

Designation for a particular group or pattern of characters, such as a word or phrase,
that may contain special characters. In a text editor, a context search interprets the
special characters and attempts to match a specified string with an identical string in
the editor buffer.

string value
A specified group of characters that is symbolized to the shell by a variable. See
variable.

subdirectory
A directory pointed to by a directory one level above it in the file system organization;
also called a child directory.

system administrator
The person who monitors and controls the computer on which your ROS system runs;
sometimes referred to as a super-user.

system console
The terminal from which the system is initiated, debugged, and monitored. This
terminal is connected to either the port labeled Jl (if a standard ASCII, RS-232
terminal) or display 1 (if a bit-map graphics display terminal).

(9054) G-9

Glossary

terminal
An input/output device connected to a computer system, usually consisting of a
keyboard with a video display or a printer. A terminal allows you to give the
computer instructions and to receive information in response.

text editor
Software for creating, changing, or removing text with the aid of a computer (known
as text processing). Most text editors have two modes--an input mode for typing in
text, and a command mode for moving or modifying text. Two examples are the ROS
system editors ed and vi. See line editor and screen editor.

text formatter
A program that prepares a file of text for printed output. To make use of a text
formatter, your file must also contain some special commands for structuring the final
copy. These special commands tell the formatter to justify margins, start new
paragraphs, set up lists and tables, place figures, and so on. Two text formatters
available as add-ons to your ROS system are nroff and troff.

text input mode
A text editing mode where the text you type is added into the buffer. To execute a
command, you must leave the input mode. See command mode, compare with
append mode and insert mode.

timesharing

tool

troff

tty

user

A method of operation in which several users share a common computer system
seemingly simultaneously. The computer interacts with each user in sequence, but the
high-speed operation makes it seem that the computer is giving each user its complete
attention.

A package of software programs.

A text formatter available as an add-on to the ROS system. The troff program drives
a phototypesetter to produce high-quality printed text from a file. See text
formatter.

Historically, the abbreviation for a teletype terminal. Today, it is generally used to
denote a user terminal.

Anyone who uses a computer or an operating system.

user-defined
Something determined by the user.

user-defined variable

utility

G-IO

A shell name given by the user for the value of a string of characters. See variable.

Software used to carry out routine functions or to assist a programmer or system user
in establishing routine tasks.

(9054)

variable

Glossary

A symbol whose value may change within a program or a repetition of a program. In
the shell, a variable is a name representing some string of characters (a string value).
Some variables are normally set only on a command line and are called parameters
(positional parameters and keyword parameters). Other variables are simply
names to which the user (user-defined variables) or the shell itself may assign string
values. (Keyword parameters are discussed fully in the Shell and G-Shell sections in
the ROS Programmer '8 Guide.)

video display terminal
A terminal that uses a televisionlike screen (a monitor) to display information. A video
display terminal can display information much faster than printing terminals.

visual editor
See screen editor.

wor king directory
See current directory.

(9054) G-ll

INDEX

· character .. 5-7 ROS ... 3-4
.login file 6-62, 8-8 tape drive 1-8
.profile file ~ 5-16, 6-27, 6-62, 8-8 Account, creating user 8-9
prompt 3-8, 8-2 Account, system administrator 8-2
$ prompt ... 3-8 Active process termination 6-20
% prompt .. 3-8 Adding devices 8-9
: prompt .. 8-18 Adding terminal 8-5
$1 parameter 6-29-6-32, 6-40-6-42, Adding user ... 8-9
6-60, 6-62 Administrator account 8-2
I delimiter .. 4-9 Advanced ROS commands 4-44
I directory .. 2-5 Air filter .. 9-1
Ibin directory 2-5, 6-26 Altering system configuration 8-4
I dev directory 2-5 Appending output 6-14
I dev I disc file .. 8-3 Archive commands 8-11-8-15
Idev Ifl file ... 8-15 Archiving data 8-11
Idev Imotd file 8-11 Argument, command4-2
Idev Inull file 6-51 Arrays ... 5-19
I dev IrmtO file 8-12 Ascending directories4-8
Idev Irmt16 file 8-13 ASCII characters 3-4
letc directory 2-6 Assigning password 3-5
I etc Ipasswd file 8-9 Assigning parameter values 6-40
I etc Iprofile file 8-4 Assigning variable names 6-35
Ilib directory .. 2-6 Assigning variable values 6-36
Iros directory 2-6 Authorized user 3-1
Itmp directory 2-6 Automatic tape loading 1-7
lusr directory 2-6 Automatic tape unloading 1-7
& character 5-15, 6-3, 6-7, 6-14
* character 5-7, 6-2, 6-3, 6-56 B
! character .. 6-42
\ character 6-3, 6-9 Background process ... 1-3, 5-14, 6-7, 6-19
; character 5-14, 6-3 starting .. 5-15
< character 5-8, 6-11 stopping 5-15
< < characters ~ 6-42 Backslash character 6-9
> character 5-8, 6-12 Backspace key 3-7, 3-9
> > characters 6-14 Backup
= character ... 6-35 commands '" 8-13
? character 5-7, 6-2, 6-5 compacted data 8-15
[] characters 5-7, 6-2, 6-6 files ... 8-15
I character ... 6-15 hard disk 8-11-8-15
o switch ... 8-18 restoration 8-15

A
to floppy disk 8-14
to tape ... 8-13

Bad block floppy 8-20
Absolute path name4-7 banner command 6-10
Accessing Baud rate 3-6, 8-7

directories 4-18 bbday program 6-30
files ... 4-22 Berkeley software distribution 2-1
floppy disk 7-1 bin directory 2-5~ 6-26

(9054) I-I

User's Guide

Block size .. 8-14
Bourne shell ... 2-6, 2-7, 3-8, 5-6, 6-1, 6-62
Bourne shell files 8-4
break command 6-58
Break key .. 3-4
break statement 5-19
Buffers

text editing 5-2
type ahead 3-9

Building directories4-4
Buttons

disk release 1-5
HI-DEN ... 1-6
LOAD .. 8-19
LOAD-REWIND 1-6
ON-LINE 1-6
switch 0 8-18
tape drive 1-6
UNLOAD 1-6
WRT-EN TEST 1-6

Bytes per inch 8-12

c
C language 5-17, 5-19
C-shell 2-7, 3-8, 6-1, 6-62
cancelling print jobs4-32
case construct ~ 6-55
cat command . .4-15, 4-22, 4-23, 6-6,6-7,
6-14, 6-24, 6-25, 6-28-6-30, 6-37,7-1, 7-2
cd command4-11, 4-18
Certify utility 8-20
ch.text program 6-45
Changing directories4-11, 4-18, 4-42
Changing prompt string 6-66
Changing terminal characteristics 8-7
Characters, shell 6-2
chgrp command 8-10
Child directory4-4
chmod command4-22, 4-40, 5-18,
6-25,6-29
chmod, symbolic form4-43
chown command 8-10
Cleaning equipment 9-2
Cleaning floppy disk heads 9-2
Clock board .. 8-18
cmp command 7-1, 7-3
Combining contents of files 4-23
Command

argument 4-2
background 5-14
execution 2-8
exercises 6-22
foreground 5-14

1-2

Index

language interpreter 2-6, 5-6
line ... 2-9
options ... 4-2
prompt ... 3-8
structure .. 4-1
syntax .. 4-1

Commands .. 2-7
advanced 4-44
background 6-7
floppy disk 7-1
linking .. 5-18
multiple 5-13

Communication utilities 5-16
compact command 8-15
Compacting data 8-15
Companion enclosure 1-6
Companion enclosure, opening 1-8
Comparing editors 5-3
Comparing files 7-3
Compiler compiler 5-22
Computing environment 5-15
Concatenating files (see cat command)
Concurrent execution 5-14
Conditional construct 6-55,6-50
conf file ... 8-9
Configuring the terminal 3-2
Connecting modem 8-5
Connecting monochrome display 8-8
Constants .. 5-19
continue command 6-59
continue statement 5-19
Control characters 3-9
Control d 3-10, 3-7
Control flow statements 5-19
Control h .. 3-7
Control i ... 3-7
Control q 3-7, 4-29
Control s 3-7, 4-29
Control x ... 3-7
copyfloppy command 7 -1, 7-3
Copying files4-22, 4-33, 7-2
Copying floppy disks 7-3
Correcting terminal errors 3-6
Correcting typing errors 3-9
Count words in file4-22
Counting characters4-37
Counting lines4-37
Counting words4-37
cp command4-22, 4-33
cpio command 8-11, 8-13-8-17
Creating a bin directory 6-26
Qreating a shell program 6-24
Creating directories4-11, 4-12
Creating login name 8-9

(9054)

User's Guide Index

Creating new accounts 8-9 floppy ... 1-4
Cu utility .. 5-16 hard ... 1-4
Current directory character 5-7 integrity 8-19
Customizing shell 5-15 release button 1-5
cut command 6-17, 6-17 space .. 8-3

storage, estimating 8-14
D Display time 6-17, 6-40

Display working directory4-5
Data dl program .. 6-27

backup 8-11, 8-13 do keyword 6-46, 6-48
compressed 8-15 do-while loop 5-19
objects ... 5-19 done keyword 6-46, 6-48
transferring 1-6, 5-16 Dot directory specifications 4-8
uncompressing 8-17 Double-density disks 1-4

date command 1-2, 3-10, 6-15 Double-sided disks 1-4
DCE ... 8-5 DR command 8-18
Debugger, RBUG 8-18 DR11 board, adding 8-9
Debugging programs 6-59 DSR command 8-18
Default shell ... 5-6 DTE ... 8-5
Default terminal characteristics 8-7 du command 8-14
Defined variables 6-35 Dumping registers 8-18
Del key ... 3-7, 3-9 Duplex settings 3-6
Delete permission4-20
Deleting directories 4-20 E
Deleting files4-22, 4-36, 7-3
Descending directories 4-8 echo command 6-29, 6-3
dev directory .. 2-5 echoi command 3-9
Developing software 5-17 Ed editor 5-3, 6-44
Device driver .. 8-9 Editor
df command .. 8-3 command mode 5-3
Diagnosing problems 3-7 comparison 5-3
Dial-out lines .. 8-6 modes ... 5-3
diff command 4-45 text input mode 5-3
dir command ... 7-1 tradeoffs '" 5-5
Directory Editors, line and screen 2-8, 5-1

access permissions4-22, 4-43 Electronic communication .. 2-1, 2-8, 5-16
changing to another 4-18 else construct 6-50, 6-51, 5-19
creation .. 4-11 Encrypted password 8-9
defined ... 2-4 Ending command line 3-7
delimiter .. 4-9 Entering time and date 1-2
hierarchy 4-4 EOF sign ... 4-27
home .. 4-4 Erasing command line 3-7
listing contents of 4-13 Erasing command line characters 3-7
name .. 4-13 Error Messages 8-19
null ... 6-51 esac keyword 6-55
removing 4-20 ESC key .. 3-7
root .. 2-5 Establishing password 3-5
shorthand 4-8 Estimating disk storage 8-14
size ... 4-17 etc directory ... 2-6
structure .. 4-4 Executable commands 2-7, 2-8
working .. 4-5 Executing commands in sequence 5-13

Disk Executing sequentially 6-8
access light 1-5 Executing shell programs 6-25
drives ... 1-4 Executing simultaneous commands .. 5-14

(9054) 1-3

User's Guide Index

Exercises, command language 6-22 files ... 7-1
Exercises, programming 6-66 formatting 7-3
exit command 6-59 head cleaning 9-2
Expressions ... 5-19 inserting .. 1-4

name .. 7 -3
F restoring data 8-16

storage ... 8-14
fi keyword ... 6-50 write disable 1-5
File Flow control.. 5-19

access commands 4-22 for loop 5-19, 6-46
backup ... 8-15 Foreground commands 5-14
changing permissions 4;.22, 4-40-4-44 Formatting floppy disks 7-3, 8-14
copying' 4-22, 4-33 FORTRAN ... 5-20
concatenating (see cat command) Frequently used options4-15
counting characters 4-37 Full duplex .. 8-5
counting lines4-37 Full path names4-7
counting words4-22, 4-37 Function keys 3-2
display contents4-22
execute permission4-40-4-44 G
group permissions 4-40-4-44
hard copy 4-30 games directory 2-6
identifying differences4-45 gbday program 6-43
input redirection 5-11 get.num program 6-33
listing (see Is command) getty program 8-7
listing contents ... (see cat command) gettydefs file ... 8-7
manipulation 4-22 Global substitution 6-44
moving4-22, 4-35 goto statement 5-19
name generation 6-3 grep command 4-46, 6-7, 6-9, 6-10,
other permissions4-40-4-44 6-14, 6-19, 6-31
owner permissions4-40-4-44 Group ID, creating 8-9
paging through 4-24-4-28 Grouping options 4-2
printing formatted4-28
protection4-40-4-44 H
read permission4-40-4-44
redirect output and append 5-10 Halting execution 3-9
redirecting output 5-9 Hard disk drive 1-4
removing4-22, 4-36 Hard disk integrity 8-19
renaming 4-22, 4-35 Head cleaning, floppy disk 9-2
searching for patterns (see grep 'Here document 6-42
command) HI-DEN button 1-6
size 4-16, 4-17 'Hierarchical directories 4-4
sorting contents4-48 Home directory 4-4, 4-9
system 2-3, 4-1, 4-3 Home directory, returning to4-19
system structure4-3 HOME variable 5-15, 6-35, 6-65
transferring 5-16, 5-17 Horizontal tab 3-7
types 2-4, 4-5
write permission4-40-4-44 I

Filter ... 9-1
find command : 8.:13 I/O interface .. 2-5
Floppy disk I/O library .. 5-19

backup ... 8-14 Identification name 3-1
commands 7-1 if construct ... 6-50
copying .. 7-3 if statement .. 5-19
drive ... 1-4 IFS variable .. 6-35

1-4 (9054)

User's Guide

Ignoring special characters 6-9
Immediate echo 3-9
in keyword 6-46, 6-55
Inactive account 8-9
Infinite loop ... 6-28
Initial working directory 8-9
inittab file 8-5, 8-6
Input lines, displaying 6-59
Input redirection 5-11, 5-7, 6-11
Inserting floppy disk 1-4
Installing the system l-1
Integrity, hard disk 8-19
Interactive operation 2-1

K

Kermit utility 5-16
Kernel 2-1, 2-3, 2-9
Kernel register dumping 8-18
Keyboard characteristics 3-3
Keyboard layout 3-3
Keyword searching 04-46
kill command 5-15, 6-20

L

Lex utility ... 5-21
Lexical tasks 5-21
lib directory .. 2-6
Library, 1/0 .. 5-19
Light, disk access 1-5
Line editor 5-1, 5-3, 6-44
Line printer4-30, 4-32
Linking commands 5-18
Lint utility .. 5-21
Listing

contents of directory4-11, 4-13
contents of file (see cat command)
contents of floppy 7-1
dot files .. 4-16
file permissions4-16, 4-41
file size ... 4-16

LOAD button 8-19
LOAD-REWIND button 1-6
Loading tape .. 1-7
Local Area Network 5-16
Locating files .. 4-7
Log files ... 8-3
log.time program 6-41
Logging in ... 3-4

as root ... 8-2
as super-user 8-2

Logging off 3-7, 3-11

(9054)

Index

Login
directory .. 4-4
incorrect message 3-6
name 3-1, 3-4
name, creating 8-9
problems 3-6, 3-7
procedure 3-4

login: prompt .. 3-4
Long directory listing4-16
Long listing ... 4-15
Loop testing .. 6-53
Loop, breaking 6-58
Looping 6-28, 6-45
Lowercase letters 3-7
Ip command .. 4-32
Ipq command 4-32
Ipr command 04-22, 4-29, 4-30-4-32
Iprm command 04-32
Is command 04-11, 4-13, 6-4, 6-8, 6-13,
6-26,6-28
Is -a command 4-15
Is -1 command A-15, 4-16, 4-41

M

Machine independence 5-19
mail command 2-8, 6-11, 6-60
mail directory 2-6
Mail utility 5-8, 5-17, 8-4
MAIL variable 6-35
Maintaining programs 5-21
Maintenance ... 9-1
Make utility .. 5-21
Making directories4-11
man command 2-7
Manipulating files 4-22
Manual tape unloading 1-8
Manual, on-line 2-7
Manually unloading tape 1-8
Matching

all characters 6-3
range of characters 6-6
single characters 6-5
strings ... 5-7

Mbytes .. 1-4
Merging files 4-48
Message of the day 8-11
Metac haracters 5-7, 6-3
mkdir command4-11, 4-12, 8-10
mknum program 6-38
Model of ROS 2-2
Modem .. 3-6
Modem, connecting 8-5
Modifying shell 5-16, 6-62

1-5 .

User's Guide Index

Monitoring disk space 8-3 Parameters, positional 6-29, 6-40
Monochrome display, adding 8-8 Parameters, special 6-32
more command4-28 Parent directory4-4, 4-8
motd -file .. 8-11 Parent directory character 5-7
Mouse pointer 8-8 Parity .. 8-5, 8-6
Moving among directories 4-18 Parser programs 5-22
Moving files 4-22, 4-35 Pascal .. 5-20
Moving files between directories 4-35 passwd command 3-5, 8-10
mt files .. 8-12 passwd file ... 8-9
Multiple options 4-2 Password 3-1, 3-4, 3-5
Multiple programs 5-13 Password, establishing 3-5
Multitasking ... 2-2 Path name, full4-7
mv command 4-22, 4-35 Path name, relative4-8
mv.ex program 6-48 Path names ... 4-7

N
PATH variable 5-15, 6-27, 6-35,
6-46, 6-65
Pathname examples4-10

Naming directories4-13 Pattern matching 6-56
Naming floppy disk 7-3 Pattern search4-46
news program .. 8-4 pcat command 8-17
news directory 2-6 Permission codes4-16
nohup command 5-15, 6-21 Permissions
Non-raw mode 8-12 changing4-22, 4-42
Notch, write disable 1-5 directory 4-43
null directory 6-51 listing ... 4-41
num.please program ... ~ 6-39 Personal shell program 8-9

o
pg command4-15, 4-22, 4-24, 4-28
Pins, swapping 8-5
Pipes ... 5-12, 6-15

ON-LINE button 1-6 Pointers ... 5-19
On-line documentation 2~7 . Portability problems 5-21
Opening companion enclosure 1-8 Portable programs 5-19
Operating system, defined 2-1 Positional parameters 6-29-6-32,
Operators .. 5-19 6-40-6-42, 6-60, 6-62
Options Powering off .. 1-3

command 4-2 Powering on .. 1-2
frequently used4-15 pr command4-15, 4-22, 4-28
multiple : 4-2 Preventive maintenance 9-1
terminal 6-63 Print

Ordinary files 2-4, 4-5 commands on execution 6-59
Organizing directories4-11 file to screen4-22-4-30
Organizing files4-4 file to printer4-22, 4-30-4-32
Output redirection and append 5-10 input lines ; .. 6-59
Output redirection 5-7, 5-9, 5-18, request, cancelling4-32
6-11, 6-12 status, displaying4-32
Output substitution 6-18 working directory4-5
Output, appending 6-14 Problems, login 3-6
Outputting contents of file 4~22 Problems, terminaL 3-6
Overview of ROS 2-1 Process status 6-19

Process termination 6-20
p Process, background .. 1-3, 5-14, 6-7, 6-19

. Processing text 2-8
Paging file contents4-24 Product line .. 1-1
Parameter substitution 6-29 profile file .. 8-4

1-6 (9054)

User"s Guide Index

Program counter 8-18 Restoring
Program debugging 6-59 compressed data 8-17
Program structure 5-19 data from backup 8-15-8-17
Programming from floppy disks 8-16-8-17

constructs 6-41 from tape 8-15
environment 2-8 Resume printing4-29
exercises 6-66 Resuming output 3-7
in shell 2-6, 6-2, 6-23 Return key .. 3-7
in system 5-17 Returning to home directory4-19

Prompt string, changing 6-66 Ridge 32 installation l-l
Protecting files4-40 Ridge 32, description of 1-1
ps command 1-3, 6-19 Ridge display .. 1-2, 3-1-3-3, 6-56, 8-1, 8-8
psI command 6-66 Ridge product line l-1
PSI variable 6-35 Ring, write enable 1-7
PS2 variable 6-35 rm command4-22, 4-36, 7-1, 7-3
pwd command4-5, 4-14 rmdir command4-11, 4-20

rmt files ... 8-12
Q Root account .. 8-2

Root directory 2-5
Quote characters 6-3 Root system prompt 8-2
Quoting ... 6-9 Root user 3-8, 8-2

ROS ... 2-1
R RaS capabilities 5-1

ROS commands 2-7
Raw data .. 8-12 ros directory ... 2-6
RBUG program 8-18 RaS kernel ... 2-3
read command 6-36, 6-44 RaS model .. 2-2
Read-ahead capability 3-9 RaS overview 2-1-2-9
Reassigning standard input 5-8 RS-232 pins ... 8-5
Rebooting computer 8-19 RS-232 ports, identifying 8-6
Redirecting . RS-232 terminal. 1-2, 3-1, 8-1, 8-5-8-8

I/O ... 5-7
I/0 options 5-13 s
input 5-11, 6-11
input to command 6-42 Sample file system4-3
output 5-9, 5-12, 5-18, 6-11, 6-12 Sccs utility .. 5-20
output and append 5-10, 6-14 Screen editor 5-1, 5-5

Reel-to-reel tape 1-6 Scripts, shell 5-18
Register dump procedure 8-18 Search program 6-51, 6-53
Registers Sequential execution 5-13, 6-8

kernel ... 8-18 Service contracts 8-20
user process 8-18 Set user command 8-2

Relative path names4-8, 4-15 set.term program 6-58
Removing Setting

directories4-11, 4-20 date .. 1-2
files4-22, 4-36, 7-3 shell variables 6-63
multiple files '"4-37 terminal options 6-63

Renaming files4-22, 4-35 terminal types 6-56
Repetitive execution '" 6-45 time and date 1-2
Replacing filter 9-1 type-ahead buffer 3-9
Request II) .. 4-32 sh command .. 6-25
Resetting date 1-2 debugging 6-59
Restore commands 8-15 with -v option 6-59

with -x option 6-59

(9054) 1-7

User's Guide

Shell ... 2-6
characters 6-2
changing 5-15
defined ... 2-1
garbage .. 6-51
program execution 6-25
program, personaL 8-9
programming 2-6, 5-17, 5-18, 6-2,
6-23, 6-41
programming language 5-6
script 5-18, 6-23
shortcuts .. 6-2
shorthand ~ 5~6
shorthand characters 5-7
tutorial .. 6-1
variables 6-28, 6-63, 6-65
working in 5-5

Shell programs
bbday ... 6-30
ch.text .. 6-45
dl .. 6-27
gbday ... 6-43
get.num : 6-33
log. time .. 6-41
mknum ... 6-38
mv.ex ... 6-48
num.please 6-39
search .. 6-53
set.term : 6-58
show.param 6-34
t .. 6-40
whoson ... 6-32

Show working directory4-5
show.param program 6-34
Signal 15 ... 6-21
Signal 9 ... 6-21
Simple commands 3-10
Simultaneous execution 5-14
Single user ... 8-1
Software development 5-17, 5-20
Software tools 5-20
Software updating ; 8-20
sort command .. ; ;4-48, 6-13
Source control system 5-20
Special characters, ignoring 6-9
Special files 2-4, 4-4
Special function keys 3-3
Special parameters ,6, .. 32
Specifying terminal type 6-56
spell command 6-11, 6-13
Standard I/O library 5-19
Standard input ; 5-7
Standard output 5-7
Status of processes ~ 6-19

1-8 (9054)

Index

Status, printer4-32
Stdio .. 5-19
Stopping

background processes 5-15
execution 3-7, 3-9
input .. 3-7
loops ; 6-58
output .. 3-10
processes~ 5-15, 6-20

Storing commands 3-9
Structures ... 5-19
stty command 3-9, 6-63, 8-5
stty echoi command 3-9, 6';'63, 6-64
stty options ~.6-63
stty sane command 3-6
stty tabs command 6-63
su command .. 8-2
Subdirectories4-5
Subroutines ... 2-7
Substituting

names ... 6-35
output .. 6-18
text .. 6-44

Super-user ... 8-2
SUS disk .. 9-2
Suspend display 4-29
Suspending output 3-7
Swapping pins 8-5
Switch 0 .. 8-18
switch statement 5-19
Switching users 8-2
System

administrator 3-4, 8-1
administrator account 8-2
backup ... 8-11
calls .. 2-7
configuration 8-4
console 1-2, 8-1
crash .. 8-17
directories 4-4
directory, listing contents 4-15
failures ... 8-17
reboot .. 8-19
upgrades 8-20

T

t program .. 6-40
tail command 6-64
Tape

accessing .. 1-8
backing up data on :8-13
bpi : 8-12
device files 8-12

User's Guide Index

drive ... 1-6 u
minor number 8-12
restoring data from 8-15 uncompact command 8-17
rewinding 8-12 Uncompacting data 8-17
unit number 8-12 Unconditional break 6-58
write enable ring 1-7 UNIX 2-1, 5-16, 5-17, 5-19, 8-1, 8-11

Tape drive .. 1-6 UNLOAD button 1-6
adding .. 8-9 Unloading tape manually 1-8
buttons .. 1-6 Updating software 8-20
loading, automatic 1-7 Upgrading system 8-20
unloading automatic 1-7 User
unloading manual.. 1-8 access, unlimited 8-2

tar command 8-11 account .. 3-4
TERM variable 6-35, 6-56, 6-65 account, creating 8-9
Terminal ... 3-1 directory .. 2-6

characteristics, changing 8-7 ID, creating 8-9
configuration '" 3-2 password .. 3-4
options ... 6-63 process registers 8-18
problems .. 3-6 Using the file system4-1
Ridge 1-2, 3-1-3-3, 6-56, 8-1, 8-8 usr directory ... 2-6
settings 3-2, 6-56, 8-6 Uucp utility .. 5-17
switches 3-6, 8-6
types 3-2, 6-56 v
virtual .. 5-16

Terminating processes 6-20 Variable assignment 6-36
Terminating ROS session 3-11 Variables ... 5-19
test command 6-53 defining .. 6-35
Testing loops 6-53 shell .. 6-28
Text Verifying current directory4-5

editing ... 5-1 . Vi editor .. 5-5
editor buffers 5-2 Virtual terminal 5-16
editor operation 5-2 Volume name .. 7-3
formatting 2-8
processing 2-8 w

then construct 6-50
tic command ... 8-5 wc command4-2, 4-22, 4-37, 5-12
Time while command 6-45

displaying 6-17, 6-40 while loop 5-19, 6-48
setting .. 1-2 who command 3-11, 5-12, 6-31

Timesharing .. 2-1 whoson program 6-32
tmp directory 2-6 Wildcard characters 5-7, 6-3
Tools, software 5-20 Winchester hard disk 1-4
Transferring files 1-6, 5-16, 5-17 Window management software 8-8
Troubleshooting login problems 3-7 Working directory4-5
Turning power off 1-3 Write disable notch 1-5
Turning power on 1-2 Write enable ring 1-7
Tutorial. .. 6-1 WRT-EN TEST button 1-6
Type compliance 5-21
Type-ahead buffer 3-9 y&Z
Types ... 5-19
Typing conventions 3-7 Yacc utility ... 5-22
Typing errors, correcting 3-9 zero command 7-1, 7-3

(9054) 1-9

Reader Feedback

Manual Title: __________________________________ _

Overall rating of this document

Readability of text

Usefulness of information

Any errors?

D Excellent

D Very Clear

D Helpful

DYes

D Adequate

D Adequate

D Adequate

D No

D Poor

D Difficult

D Not Useful

If so, identify error and page number _________________________ ~

Additional comments: _________________ --,--_____________ _

~ould you like more information on Ridge products? ___________________ ~

Name _____________________________________ ___

Company ___ _

Address __ ___

City __________________________ State _____ Zip __________ _

IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1590

POSTAGE WILL BE PAID BY ADDRESSEE

Ridge Computers
Publications Department
2451 Mission College Blvd.
Santa Clara, CA 95050-8290

SANTA CLARA. CA

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

--

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	7-00
	7-01
	7-02
	7-03
	7-04
	8-00
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	9-00
	9-01
	9-02
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	replyA
	replyB
	xBack

