
46

EMULATION TECHNIQUES ON THE RCA SPECTRA SYSTEMS

The very rapid advances in computer technology have made it desirable for users
to update their existing data processing equipment with third-generation hard­

ware. To accomplish this transition, a user must consider the cost of converting
his programs-a major project for which the typical user seldom has a sufficient

programming staff. In the past, simulation software has been supplied by the
manufacturers to facilitate the program conversion effort; however, this tech­
nique is very inefficient. Simulation in general is economically practical only for
infrequently run programs, and the more frequently run programs must immedi­

ately be recoded before the old system can be replaced. Emulation is a tech­
nique involving both hardware and software which permits existing programs

written for the old system to be efficiently run directly on the new system. The
hardware cost is small and the perfo+mance is at least an order of magnitude
better than simulation.

T. A. FRANKS, MGR. and C. S. WARREN, LDR.

Computer Projects Advanced Systems

T. A. FRANKS received the BEE from Rensselaer

Polytechnic Institute in 1956 and the MS from

Stanford University on a fellowship program in

1957. Since joining RCA in 1956, he has taken part

in the development of solid-state memory circuits;

worked on various drum buffer memories; partici­

pated in the systems architecture, logic design, and

application of several advanced real-time process­

ing system; and was a proiect engineer on a

BMEWS computer installation. Upon joining EDP

in 1962, he was the engineering project leader of

the RCA 3301 and Spectra 70/45·55 systems; then

was manager of emulator microprogramming activi­

ties; and is currently manager, computer projects.

Mr. Franks is a licensed professional in the state

of New Jersey and a member of the IEEE, Tau

Beta Pi, Sigma Xi and Eta Kappa Nu.

EDP Engineering, Camden, New Jersey

C. S. WARREN received the BSEE in 1952 from
Virginia Polytechnic Institute. He joined RCA in
!~%'2 as an engineer on the specialized training
program, following which he spent seven years in
advanced development working on magnetic mem­
ory devices and transistor circuit design and devel­
opment. Also during this period, he was respon­
sible for the design of several memory systems
used in BMEWS. In 1959, Mr. Warren was trans­
ferred to the Van Nuys Division of RCA where he
was made leader of a logic design group and was
responsible for the design of a small real-time
computer, initially used in instrumentation radars.
In 1963, Mr. Warren transferred to his current posi­
tion as Leader, Advanced Systems, in EDP Systems
Engineering. In his current capacity, he has played
a major role in the architecture and design of
the Spectra 70 Emulators. Mr. Warren is a mem­
ber of the IEEE, Eta Kappa Nu, and author of
several papers and patents.

COMPUTER TECHNOLOGY has continued
to experience rapid advances in

machine performance, range of applica­
tion, and varieties of peripheral devices.
Accordingly, data processing users have,
at various times, had to consider the eco­
nomics of trading in outmoded equip­
ment and replacing with the latest units.
As users have become more sophisticated
in the application of computers, a sub­
stantial investment exists in their library
of programs and data files. The con­
siderations of how to make a smooth
transition from one system to another
with minimum loss of investment has
typically been traumatic.

There are currently several techniques
that aid in this conversion, but none is a
panacea:

Higher Level Languages: Any portion of
the work that has been programmed in a
machine-independent language can be run
on a new computer, if a compiler is pro­
vided for that language. However, com·
pilers have not been truly machine inde­
pendent and often the language compilers
are not available with delivery of the
equipment. Further difficulties arise when
machine language coded subroutines are
mixed with the higher level language
statements to patch in a special feature
or fix a bug.
Translation: Each instruction or group of
instructions can be automatically changed
from the machine language of the old
computer to that of the new. This transla­
tion is performed from either source

Final manuscript received May 2, 1967.

language or object program decks.
Translators process the instructions be­
fore execution time; hence, it is difficult
to translate an instruction that will be
modified or replaced by the program it­
self before its actual execution. Transla­
tion is generally less successful between
two computers that differ widely in
architecture.
Simulation.· Simulation differs from trans­
lation in that each instruction is inter­
preted in sequence at execution time. An
image of the entire state of the computer
being simulated (memory contents, reg­
isters, indicators, etc.) is maintained on
a bit-for-bit or character-for-character
basis in the simulating computer. Strict
adherence to this rule of interpretation
at execution time removes the conceptual
problems present with translation. Be­
cause of their simplicity, interpretive rou­
tine simulators have been quite successful.
Unlike a translator, a simulator must in­
terpret an instruction each time it is exe­
cuted rather than just once. Thus, there
is a large performance degradation _du_e
to the interpretive overhead. Further hm1-
tations are often required on the fidelity
of the interpretive routines to keep the
simulation program size within reason.
Most simulator programs have not been
fast enough to be of significant value in
the conversion efforts.
Reprogram: As a last resort, a problem
may be reprogrammed in the new com­
puter language. This reprogramming is
costly, time consuming, and is just a
brute force solution to the conversion
problem. Eventually, all programs of
value will be reprogrammed. However,
reprogramming and debugging to this
extent during a tolerably short transition
interval is usually not feasible.
Emulation: An emulator is a package
supplied by the computer manufacturer
that includes special hardware and a
complementary set of software. The pack­
age runs in the manner of an interpretive
routine simulator program but is approxi­
mately an order of magnitude faster. The
combination of emulator and the new
computer in effect create an extended
computer which, to the user, is the com­
puter for which the original object code
was written. The advantages of emula­
tion are simplicity of operation and system
thruput performance. Thruput can typi·
cally range from equal to four times
better than the original system depend­
ing on the application.

EMULATION

In the Spectra computer series, emula­
tion is used to perform the interpretive
processing on all non input/ output in­
structions by hardware microprogram.
Interpretive processing of input/ output
instructions is handled by the comple­
mentary set of software. Microprogram
computers generally have two sequence
counters, one for the macro-instruction
sequence, with which the machine lan­
guage programmer is familiar, and one
for a micro-instruction sequence, which
interprets and executes the macro-in­
struction. These micro-instruction se­
quence steps are called elementary
operations (Eo's) and are pre-wired in a
read-only memory.

The economic feasibility of read-only

memories has allowed the Spectra 70/35
and 70/ 45 computers to employ these
techniques for system control. Addi­
tional read-only memories may be op­
tional add-ons to the system; each one
containing the micro-instruction steps
corresponding to a particular order code.
Several earlier machines of the micro­
program type have been described in the
literature and include the TRW-1331,
Packard Bell 440' and Collins 8401". The
Spectra 70/ 45 and 70/35 have also been
described. " 0

A microprogram simulation is invari­
ably more efficient than a macroprogram
simulation, since the interpretation is
being executed at a point of least differ­
ence between the computers. On a
macroprogram level, computers have
widely different structures: instruction
formats, fixed or ;ariable data fields,
binary or decimal character codes, etc.
On a microprogram level, the ability to
process bit-by-bit or character-for-char­
acter allows the more complex macro­
level operations to be implemented by
relatively straightforward sequences of
elementary-bit or character manipula­
tions.

To take a different view of the effi­
ciency of micro versus macroprogram­
ming, a given data processing problem
coded in machine language for several
computers causes a wide variation in the
total number of memory cycles. The
most efficient routine is a result of the
computer with the best instruction reper­
toire for the original problem. This has
been evident in the performance of soft­
ware simulators. Emulators or micro­
programmed simulators allow routines
which, in terms of memory cycles, show
little difference from the original com­
puter's operation. Interpretive routine
simulation by hardware microprogram
allows the process to be done at the point
of minimum difference.'

The complementary set of software in
emulation has a large part to play. In
several cases, it becomes uneconomical
to do a function by microprogram. Soft­
ware control of input/ output sequences
allows a flexible approach to perform­
ance enhancements such as buffering,
look;Jlhead, multiprogramming, and ad­
diti)ns of facilities for handling periph­
eral devices not included in the initial
microprogram release. Execution of ap­
propriate error-recovery procedures is a
problem best handled by software. Also,
to the operator, the systems are totally
dissimilar; the software provides an in­
terpretive console to allow execution of
operating procedures in the most con­
venient manner.

IMPLEMENTATION

Emulation is provided on the 70/35 and
70/ 45 by the inclusion of additional

read-only memory banks, special soft­
ware package, and some minor hardware
modifications to the respective proces­
sors. The added read-only memory is
used in two ways: interpret the instruc­
tion repertoire of the machine being
emulated and to provide some special
Spectra 70 instructions to assist the soft­
ware portion of the emulator. The wired
program within the read-only memory is
referred to as the Emulator Micropro­
gram (EMP).

The software portion of the emulator is
called the emulator control program
(ECP) and consists of two components:
the emulator monitor system (EMS) and
the emulator interface program (EIP).
The EMS is a special operating system
designed to run any of the Spectra 70
emulator features. The EIP is a special
software package designed for each emu­
lator to interface the EMP with the EMS.
Both the EIP and EMS are programs writ­
ten in Spectra 70 code. The primary
responsibilities of the EIP are:

1) Translate the r/ o instruction of the
machine being emulated to equivalent
Spectra 70 operations;

2) Perform any peculiar code transla­
tions;

3) Interpret r/ o termination conditions
and set any necessary emulated indi­
cators; and

4) Interpret and execute all emulated
console functions relating to errors,
normal operation intervention, initiali­
zation, etc.

The hardware modifications consist of
the control logic necessary for selecting
and addressing the added read-only
memory banks, and some added func­
tions, to the microprogrammed structure
of the machine to facilitate or enhance
the emulation capability. In the imple­
mentation discussion which follows, it is
assumed that the reader is generally
familiar with normal Spectra operations
and technology."·"

The operation of the emulator is con­
trolled by two control bits in the Inter­
rupt-Status Register. The first bit is the
Emulator ON (EON) and the second bit
is the Bank 3 (BK3) control; the BK3
control selects one of two possible emu­
lators. The 70/ 45 allows up to two dif­
ferent emulators to be added to the sys­
tem; the 70/35 allows only one. With
the Emulator ON (EON-1) the four nor­
mal program states of the Spectra 70
processor take on the following func­
tions:

Program State 1 fetches and executes all
instructions out of the added read-only
memory (bank 2 or 3 depending on the
state of the BK3 emulator control).
Program States 2, 3 and 4 fetch and exe­
cute all Spectra instructions out of the
original Spectra read-only memory bank
and allow a special set of EIP instructions
unique to the emulator.

By designing the program states to
operate in this manner, the emulator can

47

48

1/0 TERMINATION
• INTERRUPT ANALYSIS

• IIO TERMINATION MAPPED BOUNDARY ERROR PROGRAM
STATE

3 • OETECTEO BOUNDARY ERROR

PROGRAM
STATE

2

PROGRAM
STATE

1

• CONSOLE INTERRUPTS

• EIP ANALYSIS EMP CALLS

• l/O INSTRUCTION CALL

• PROGRAM ERROR

• CONSOLE ROUTINE

•DEVICE TRANSLATION

• 1/0 CONTROL PROGRAM

• USER PROGRAM EXECUTION
UNOER CONTROL OF EMP

INTERRUPT DECODING

WAIT FOR OPERATOR

RESPONSE

ECP CALL

RETURN TO l
USER

.,

I

Fig. 1-Utilization of Spectra 70 program stoles by the emulator.

incorporate normal Spectra 70 coding
for the ECP which must be executed in
program states 2 and 3 and execution of
the user's program being emulated in
program state 1.

Fig. 1 illustrates how the program
states of the Spectra 70 are used by the
emulator. Program state 1 is the state in
which the user program is executed un­
der control of the emulator micropro­
gram (EMP) . State 3 is used by the EMS

to analyze all program interrupts. All
interrupts, once analyzed, are turned
over to either the emulator monitor sys­
tem (EMS) or emulator interface pro­
gram (EIP) in program state 2 for proper
handling of the interrupt. In program
state 2, the bulk of the EIP and EMS are
executed. An EIP routine analyzes all r/ o
instructions encountered by the EMP and
prepares them for execution. Program
errors encountered in the user's program
are handled in program state 2; the con·
sole routine for operator communications
is contained in program state 2 and the
r/ o control program which is responsible
for issuing all r/ o commands are also
contained in program state 2.

During execution of a user program,
the EMP will turn control over to the ECP

for any of the following reasons:

1) An 1/ o instruction is staticized and
decoded;

2) A condition is detected that would
result in a machine halt or malfunc­
tion in the emulated machine ; or

3) The instruction fetch or data fetch/
store was outside permitted memory
bounds.

For the first two conditions, the EMP will
turn control over to the EIP in program
state 2 directly. Communication with

the EIP portion of the emulator is through
a communication constant which is used
by the software to determine the reason
for the EIP call. In the case of an r/ o in­
struction, the EIP will return control back
to the EMP in program state 1 as soon as
the r/ o instruction has been executed
and/ or the device started. In the case
of error conditions, the ECP will gen·
erally be required to give a printout on
the console and wait for a response by
the operator. Under any condition, the
ECP will return control to the EMP in pro·
gram state 1 only when the emulated
program is able to continue its opera­
tion. The third condition is an automatic
interrupt to program state 3 where it is
handled like all othe:i; interrupts by the
ECP. Special hardware has been added
to the processor to facilitate the detec­
tion of the memory boundary used by the
emulated program. This is a special
addressing error condition detected only
when the emulator operation is in effect.

MAPPING

T.he operation of the emulator depends
on an instruction-for-instruction inter­
pretation of the· program being emu­
lated. To do this, the characteristics of
the native machine must be mapped one­
for-one into the Spectra processor. To
date, all of the machines being emulated
on the Spectra equipment have been
character oriented and, with the excep·
tion of the RCA 501, are decimally ad­
dressed machines. Spectra is a combi·
nation word and character machine with
binary addressing and 8-bit characters.
These characters of the Spectra and the
machines to be emulated permitted a

rather straightforward mapping of mem­
ory on a character-for-character basis. A
contiguous portion of the Spectra main
memory represents the main memory of
the system being emulated. This portion
of the Spectra memory is bounded on
both sides by a special character which
is used by the EMP to detect an operation
which crosses the boundary. The ECP or
software portion of the emulator resides
outside these boundaries. To permit
multiprogramming and facilitate two
emulators in the system, the mapped
memory is floated.

In addition to main memory, all regis­
ters and indicators used or referenced
by the instruction repertoire of the native
machine must be mapped or allocated
equivalent storage in the Spectra 70 sys­
tem. In all the emulators designed to
date, the Spectra floating-point registers
were assigned the function of represent­
ing the native machine registers and in­
dicators. These were chosen for two
primary reasons:

1) The floating point registers were not
needed by the software portion of the
emulator, and therefore, would not re­
quire storing and restoration every
time the program state is changed ;

2) The software system operating in pro­
gram states 2 and 3 can access the
floating-point registers as readily as the
EMP. This later was a key considera­
tion since both the software and, par­
ticularly, microprograms require fre­
quent access to the mapped registers.

The ready availability of these regis­
ters is a major factor in the performance
of the emulator.

In addition to the mapping of registers
and memory, the emulator requires stor­
age for conversion and translation tables.
Address conversion and code translation
tables are required to enhance the per­
formance of the emulator. In all the
Spectra emulators to date, the general
registers for program state 1 were allo­
cated to address conversion tables, since
these registers are most readily accessi­
ble by the EMP, and address constants are
the most frequently accessed arguments.
Other tables needed by the micropro­
gram utilize a special portion of main
memory which is not accessible to the
programmer. Normally, this portion is
allocated to the multiplexer subchannel
register. This restricted the number of
subchannel registers that the emulator
system could use to 64. However, this
has not affected any system configura­
tions to date since 64 still provides ade­
quate room for expansion. This approach
has the advantage that more of the main
memory space is conserved for the pro­
grammer.

EMULATOR MICROPROGRAM

The emulator microprogram (EMP) con­
sists of the following parts:

1) Instruction fetch and decode;

2) Individual execution algorithms for
emulated instructions; and

3) Decode and execution of all special
Spectra instructions.

The instruction fetch and decode por­
tion of the emulator microprogram is en­
tered automatically whenever an instruc­
tion in program state 1 is completed or
whenever control is returned to program
state 1. This portion of the EMP is com­
mon to the interpretation or execution of
all emulated instructions. It fetches
from mapped memory the next instruc­
tion, performs any necessary address
conversions, updates all simulated ma­
chine registers, decodes the operations,
and enters the execute portion of the
instruction.

The instructions consist of individual
microprogram routines. In the case of
non-I/ o instructions, these routines per­
form the operation and leave all simu­
lated registers, indicators, and memory
locations exactly as in the native ma­
chine. In the case of an II o instruction,
the EMP decodes the particular operation
into an ECP communication constant
which is utilized to select an appropriate
EIP subroutine. Control is then switched
by the EMP to program state 2 so that this
selected EIP subroutine may proceed with
the translation into an equivalent Spectra
operation. The EIP will return control to
the EMP only after the I/ o operation is
completed or the device is initiated and
I/ o simultaneity is specified and per­
mitted.

The third portion of the EMP consists
of the microprogramming routines for
special operations to assist the EIP. For
example the 301 emulator uses a move
and translate instruction to move data of
specified length from one memory loca­
tion to another, translating the codes
from one representation to another via a
specified conversion table. In the case
of this special operation, the EIP can
translate I/ o data from 301 codes to
Spectra codes, thus permitting standard
Spectra devices to be substituted for 301
devices. The special operations are in
the format of Spectra 70 instructions and
can only be executed when in States 2, 3
or 4 and the EON control is set to one.
If the emulator is not ON or the emulator
bank specified is not installed, these
special operation codes (op-codes) will
cause a normal illegal op-code error to
occur. The special op-codes are fetched
and staticized as a normal Spectra 70
instruction using the Spectra read-only
memory bank. In the Spectra 70 stati­
cizing microgram, a group of unused
op-codes are assigned to these special
operations and are designed to auto­
matically branch to a fixed read-only
memory location in the emulator bank.
If the emulator is not installed or the
emulator control is not ON, this branch

will result in an op-code error. At this
fixed read-only memory location, the EMP
must decode all the special operations
for this particular emulator. Once de­
coded, the EMP completes the execution
of the special operation. This technique
of expanding the Spectra repertoire per­
mits each emulator to have its unique set
of special instructions.

EMULATOR SYSTEM PERFORMANCE

In an emulator system design, perfor­
mance is predominantly determined by
1) similarity of the processor being
emulated and the emulating processor
and 2) degree of fidelity desired in the
processing functions. These factors can
be separated into two categories: those
related to the internal instructions and
those related to the jnput-output func­
tions. A partial list of items found to
be of principal significance is tabulated
below:

Internal Instructions
1) Conversion of decimal memory ad­

dresses to a binary equivalent;
2) Differences in character codes be­

tween the system being emulated and
Spectra representations.

Input-Output Functions
3) Per-character processes required on

data exchanges with peripheral de­
vices;

4) Emulator software overhead required
for interpretative translation of input/
output requirements; and

5) Peripheral equipment speed differ­
ences.

Memory Address Conversion

All Spectra data processors employ
straight binary-coded address references.
The 70/ 45, for example, allows binary
addresses ranging to 18 bits. However,
the 1410 system employs a five-digit deci­
mal field. The 1401 and.301 systems em­
ploy six-bit characters with a combina­
tion of decimal digits and zone bit com­
binations within each character of the
address field to designate a memory
reference. A conversion must thus be
performed for each operand address
fetched from the native address format
to an equivalent Spectra binary refer­
ence. Since the base of mapped memory
or equivalent location of the emulated
systetil' s zero address is relocated to
some other non-zero value, this offset
must be incorporated in the address
conversion algorithm. These conver­
sions have generally been implemented
through series of decimal-to-binary table
lookups so as to reduce the execution
time. To further reduce the extra addi­
tion cycle required for the mapped mem­
ory base offset, one of the decimal-to­
binary tables is offset an equivalent
amount by the emulation software at
initial load time. Thus, the decimal-to­
binary weight and base offset are avail­
able in one table lookup operation.

Character codes

Character-code representations in the
system to be emulated and Spectra equiv­
alents are generally not the same. Oper­
ations such as comparisons and addition/
subtractions therefore follow different
rules. For example, the six-bit binary.
coded decimal (BCD) representations
used in the 1410 and 1401 systems differ
from Spectra formats in two ways:

1) The collating sequence used in com·
pare operations does not correspond
to the actual binary weights; and

2) The binary representation of the deci·
mal digit zero is 1010, not 0000 as in
Spectra.

To eliminate special translations for
every compare or arithmetic operation,
the 1400 BCD characters are represented
internally in extended BCD interchange
code (EBCDIC) whose binary codes cor­
rect the above peculiarities. Since
EBCDIC is a standard for Spectra equip­
ment, compatible translation facilities
are included in all input/ output devices
to convert card, tape, etc. codes into
EBCDIC as the data is entering or leaving
the processor. Thus, the codes are auto­
matically translated as data is read or
written and internal emulator processing
of the characters is compatible with the
Spectra hardware arithmetic unit.

Some internal operations still require
conversion of the EBCDIC codes into BCD,
and vice versa. Examples are the move­
digit/ zone or branch-on-bit-equal in­
structions. However, the additional pen­
alty to these instructions is small
compared to the gains in other algo­
rithms.

Similar problems, although not as
severe, occur with 301 and 501 codes.
Here the difficulty is concatenation of a
six-bit character into an eight-bit byte.
Special provisions must be made to in­
sure proper propagation of carries in
arithmetic operations.

Per-Character 1/0 Processes

In put/ output operations in the Spectra
system are count controlled. For in­
stance, a tape write command employs a
starting memory address and a specific
number of bytes to be written out. Input/
output instructions available in the 1410,
1401, and 501 systems, however, are sym­
bol controlled. That is, the length of a
field to be written out (or read in) is
determined by the location of a special
terminating symbol in memory. Thus,
before an emulated I/ o instruction can
be converted into an equivalent Spectra
command, the field must be scanned to
determine a byte count. This scanning
operation adds to the time required to
execute an I/ o instruction and consti­
tutes additional overhead. The time in­
volved is determined on a per-character
basis and if performed with conventional

49

50

instructions, would range from approxi­
mately 10 to 25 µs, depending on appli­
cation. However, by utilizing special
microprogrammed routines designed for
these processes, the per-character times
range from 1.2 to 5.5 µs. Through micro­
programming techniques, almost an or­
der of magnitude improvement was pos­
sible. When compared with the data rate
from a 60KB tape station, this processing
typically represents an increase of only
15% in data transfer time, which is ex­
clusive of start/ stop delays. Th,us, the
apparent increase in total type time is
not excessive.

Emulation Software Overhead

The complimentary software package
employed in an emulator (called ECP)

provides the translation linkage to exe­
cute r/ o instructions. To perform this
function, a variety of actions are re­
quired 1) to initiate the equivalent Spec­
tra device operation and 2) to translate
termination conditions into correspond­
ing mapped emulation indicators. Where
appropriate, routines have been included
to enhance system performance. These
include such facilities as:

1) Advanced card reading into a buffer
area;

2) Advanced print release by moving data
to be printed into a buffer area;

3) Error recovery through retries; and
4) Provision for multiprogramming two

emulation operations.
Typically, execution of the ECP rou­
tines adds 0.5 to 1.5 ms to the execution
time of an r/ o operation (exclusive of
any per-character processing) . This
overhead can be minimized by overlap­
ping the processing with input/ output
operations and using the above enhance­
ments.

Peripheral Speed Differences

Device speeds in r/ o-bound programs
have as direct a bearing on overall thru­
put as execution time of internal instruc­
tions in compute-bound programs. By
selecting peripheral devices which are
faster than the corresponding units in
the system being emulated, substan­
tial improvements in thruput can be
achieved. The start/ stop characteristics
of r/ o devices can be as significant in
system performance as the data rates;
particularly where short records are in­
volved. It is difficult to predict r/ o per­
formance or system thruput due to the
complex inter-relationship between the
device time, ECP overhead, and internal
instruction mix being executed through
microprograms.

Performance Measurements

The level of emulator performance is
usually measured by total program thru­
put. This performance is determined
by inter-relationships between the fol­
lowing:

1) Execution time of the micropro­
grammed internal (non-I/ o) instruc­
tions;

2) 1 Io device character rates and start I
stop times;

3) ECP overhead time required to translate
1/ o requirements into Spectra equiva­
lents; and

4) The timing distribution of the above
three items in actual operations.

The "average" performance ratios of
native instruction times to emulated in­
struction times are listed below:

Parameter 1410 1401 301 601
Memory Speed Native

System (µ,s) 4.5 11.5 7.0 15.0
Perfmmance Ratios:

Native time of 70/45 2.3 4.1 2.6 2.4
Native time of 70/35 * 3.8 1.6 *

* 1410 and 501 e111ulators are not available for the
70/35 system.

These figures were derived from a
weighted mix of ty.rical internal instruc­
tions, and hence are considered "aver­
age." The ratios vary from 1.6 to 4.1 and
in no case is emulation slower than the
original system; these figures illustrate
the efficiency of emulation at the micro­
programmed level versus simulation at
the instruction level. Typical perfor­
mance of simulation programs would be
approximately an order of magnitude
slower.

If programs only consisted of internal
instructions and essentially no r/ o ac­
tivity, then the above ratios would
properly represent thruput. However,
most commercial data processing activi­
ties are quite dependent on extensive r/ o
activity. Thus, performance of the peri­
pheral devices is a very significant factor
in determining thruput. Peripheral de­
vice performance between the native sys­
tem and emulating system may generally
be com pared on two accounts: per­
character data rates and start/ stop times.
Since r/ o activity can be (and usually is)
overlapped with internal processing func­
tions, an emulating system with devices
twice as fast as the native configuration
and a minimum of non-overlapped pro­
cessing will not have an equivalent in­
crease in thruput.

Any ECP overhead time required to
translate r/ o requirements into Spectra
equivalents adds to the execution times
of the r/ o instructions. ECP device initia­
ti6n:ltermination sequences are by their
very nature non-overlapped with any
emulation processing time. Device initia­
tion or termination times may only be
overlapped with r/ o activity on another
r/ o channel if such activity is required
by the program being emulated. To this
extent, ECP overhead does not quite add
directly to total program execution time.
However, the effects of ECP overhead are
most noticeable in r/ o bound programs
handling short records. Per-character
1/ o processing is an ECP function and
since it occurs at initiation or termina-

tion time, can be considered as an ex­
tension of the ECP overhead factors.

The most complex factor affecting
performance is the timing distribution
of internal processing, 1/ o activity, and
ECP overhead functions. These inter­
relationships can cause idle processor or
1/ o time at points in the emulated pro­
gram where none existed in the native
system. Evaluation of this factor in the
design of emulators was only attempted
through timing simulation runs. The
effects and interrelationships were too
complex to predict by a simple set of
ground rules. Actual program running
times have been measured on the 301
and 1410 emulators for the 70/45. The
thruput ratios range from 1.30 to 2.95
on the 301 and from 1.89 to 2.66 on the
1410. The variability of thruput reflects
the interplay between the four perfor­
mance factors described above.

CONCLUSIONS

The emulators, as described in the article,
are currently operational. Field experi­
ence has proven them to be a valuable
program conversion technique. It has
been demonstrated that a user program
can be run directly on the emulator with­
out reprogramming and with an actual
increase in performance. Emulation has
been made economically feasible, pri­
marily because of the use of read-only
memory in the design of the computer
control and the improved cost-perfor­
mance ratio of third generation hard­
ware.

Emulation, on the other hand, has not
solved the reprogramming problem faced
by a user who wants to take full ad­
vantage of third generation hardware. It
does, however, permit him to spread his
reprogramming investment over a longer
period of time. Although the primary
purpose of emulation is to ease the user's
burden of reprogramming, it has, in cer­
tain instances, actually reduced the total
rental cost.

ACKNOWLEDGMENTS

The emulator design has been the JOmt
effort of many groups and individuals
within the EDP organization. Special men­
tion is made of Engineers and Program­
mers within the Emulation Design group
and the designers of the Spectra 70/35
and 70/ 45 systems, without whose co­
operation this program would not have
been possible.

REFERENCES
!. McGee, "The TRW-133 Computer," Datama­

tion, Vol. 10, No. 2, p. 27,
2. Boutwell, "The PB-440 Computer," Datama­

tion, Vol. 10, No. 2, p. 30,
3. Beck and Keeler, "The C-8401 Data Processor,"

Datamation, Vol. 10, No. 2, p. 35,
4. Can1bell and N eilson 1 "Microprogramming the

Spectra 70/35: Datamation, Vol. 12, No. 9, p. 64,
5. Yen, !<Internal Logic Structure of the 70/45,1'

RCA reprints PE-257, PE-258.
6. Form 70-35-601, 70/35-70/45-70/55 Processors

Reference Manual, RCA, Electronic Data Pro­
cessing Div., Cherry Hill, N.J.

