
5F1E'_ I IllA. 71 I
RADIO CORPORATION OF AMERICA • ELECTRONIC DATA PROCESSING

~ RADIO

PROCESSORS 35

7C,~§

REFERENCE MANUAL

CORPORATION
70-35-601
March 1966

OF AMERICA

The information contained herein is subject
to change without notice. Revisions ma~y be
issued to advise of such changes and/or
additions.

First Printing: June, 1965
Revised: :\lal'ch, 1966

CONTENTS

Page

INTRODUCTION RCA :Model 70/35 Processor 1
RCA Model 70/45 Processor 1
RCA Model 70/55 Processor . 2
Organization of Data 2
Data Formats 2
N umbering System 3

SYSTEMS STRUCTURE Introduction. 4

INSTRUCTION
FORMATS

ADDRESSING

PROGRAM INTERRUPT

INPUT /OUTPUT
OPERATION

Main Memory 4
Non-Addressable Main Memory. 5
Scratch-Pad Memory . 5
Program Control and Arithmetic Unit . 6
Input/Output Control .. 6
Read-Only Memory .. 7

RR Format
RX Format
RS Format
SI Format
SS Format

Introduction

8
8
8
8
8

10

10
Processor States 10

Processing State P, 10
Interrupt Response State P 2 • 10
Interrupt Control State P:; 11
Machine Condition State PI . 11

Processor State Registers . 11
Program Counter . 11
General Registers 13
Floating-Point Registers 13
Interrupt Status Registers 13
Interrupt lVIask Registers 14
Program Mask Registers 15
Register Addressing 15
Interrupt Flag Register 16

Interrupt Conditions ... 17
Interrupt Mechanization . 23

Automatic Interrupt 23
Program Controlled Interrupt . 26

Introduction
Input/Output Channels

Selector Channels

30
30
30

MUltiplexor Channel. 31

iii

INPUT /OUTPUT
OPERATION

(Cont'd)

MULTI-PROCESSOR
INSTALLATION

PRIVILEGED
INSTRUCTIONS

CONTENTS (Cont/d)

Page

Input/Output Operational Control 32
Programming Considerations prior to Input/Output Initiation. . 32
Input/Output Initiation 32
Channel Servicing 32
Channel Address VVord 34
Channel Command vVord ... 34

Input/Output Channel Registers . 38
Channel Address Register, CAR 39
Channel Command Register-I, CCR-I 39
Channel Command Register-II, CCR-II 40
Assembly/Status Register 40

Input/Output Instructions 41
Start Device Instruction. 41
Halt Device Instruction 46
Test Device Instruction. 51
Check Channel Instruction . 53

Input/Output Status Indicators . 55
Condition Code . 55
Channel Status Byte. 58
Standard Device Byte 60
Sense Bytes . 61

Channel Servicing ... 61
Servicing a Data Transfer. 61
End and Chaining Servicing . 67
Interrupt Servicing...................................... 72

Introduction .. 76
Operational Characteristics 76
Direct Control Interface . 77

Static Out Lines .. 77
Static In Lines 77
Signal Out Line ... 77
External Signal Line . 77
Power Failure Line (PFND) " . . . 77
Power Failure Inhibit In Line (PFIR) 77

Dual Processor Complex . 78
Master/Satellite Complex . 79
Maximum Multi-Processor Complex . 80
Operational Procedures . 81

Transmission Procedure 81
Response Procedure..................................... 81

Introduction .. 83
Instruction Formats ... 83
Interrupt Action .. 83
Special Considerations 84
Load Scratch-Pad (LSP) 86
Store Scratch-Pad (SSP) 87
Program Control (PC) 88
Idle (IDL) ... 90
Diagnose (DIG) ... 91

iv

PRIVILEGED
INSTRUCTIONS

(Cont'd)

PROCESSOR STATE
CONTROL

INSTRUCTIONS

FIXED-POINT
INSTRUCTIONS

CONTENTS (Cont'd)

Start Device (SDV) .. .
Halt Device (HDV)
Test Device (TDV)
Check Channel (CKC)
Insert Storage Key (ISK)
Set Storage Key (SSK)
\Vrite Direct (\VRD) .. .
Read Direct (RDD) .. .

Introduction
Instruction Format
Condition Code Utilization
Interrupt Action
Supervisor Call (SVC)
Set Program Mask (SPM)

Introduction
Data Format .. .

Page

92
95
97
99

100
101
102
103

104
104
104
104
105
106

107
107

Representation of Numbers. .. 107
Instruction Formats ... 108
Condition Code Utilization 109
Interrupt Action. .. 110
Load Word (LR) (L) 111
Load Halfword (LH) .. 112
Load and Test (LTR) 113
Load Complement (LCR) 114
Load Positive (LPR) .. 115
Load Negative (LNR) 116
Load Multiple (LM) ... 117
Add \Vord (AR) (A) 118

i Add Halfword (AH) .. 119
, Add Logical (ALR) (AL) 120

Subtract Word (SR) (S) 121
: Subtract Halfword (SH) 122
I Subtract Logical (SLR) (SL) 123

Compare Word (CR) (C) 124
Compare Halfword (CH) 125
Multiply \Vord (MR) (M) 126

I MUltiply Halfword (MH) 127
Divide (DR) (D) ... 128
Convert to Binary (CVB) 129
Convert to Decimal (CVD) 130
Store \Vord (ST) ... 131
Store Halfword (STH) 132
Store Multiple (STM) 133
Shift Left Single (SLA) 134
Shift Right Single (SRA) 135
Shift Left Double (SLDA) 136
Shift Right Double (SRDA) 137

v

DECIMAL
ARITHMETIC

INSTRUCTIONS

LOGICAL
INSTRUCTIONS

BRANCHING
INSTRUCTIONS

CONTENTS (Cont'd)

Page

Introduction 0 •••••••••••••••••• 0 • • • • • • • • • • •• 138
Data Formats 138
Representation of Numbers 139
Instruction Format .. 139
Condition Code Utilization 140
Interrupt Action. .. 140
Add Decimal (AP) .. 142
Subtract Decimal (SP) 143
Zero and Add (ZAP) .. 144
Compare Decimal (CP) 145
Multiply Decimal (MP) 146
Divide Decimal (DP) .. 147
Pack (PACK) ... 148
Unpack (UNPK) .. 149
Move with Offset (MVO) 150

Introduction .. 151
Data Format .. 151
Instruction Formats ... 152
Condition Code Utilization 153
Interrupt Action .. 153
Move (MVI) (MVC) .. 154
Move Numerics (MVN) 155
Move Zones (MVZ) ... 156
Compare Logical (CLR) (CL) (CLI) (CLC) 157
AND (NR) (N) (NI) (NC) 158
OR (OR) (0) (01) (OC) 159
Exclusive OR (XR) (X) (XI) (XC) 160
Test Under Mask (TM) 161
Insert Character (IC) 162
Store Character (STC) 163
Load Address (LA) .. 164
Translate (TR) ... 165
Translate and Test (TRT) 166
Edit (ED) .. 167
Edit and Mark (EDMK) 170
Shift Left Single Logical (SLL) 172
Shift Right Single Logical (SRL) 173
Shift Left Double Logical (SLDL) 174
Shift Right Double Logical (SRDL) 175

Introduction .. 176
Sequential Execution. .. 176
Instruction Formats ... 176
Interrupt Action. .. 177
Branch on Condition (BCR) (BC) 178
Branch and Link (BALR) (BAL) 179
Branch on Count (BCTR) (BeT) 180
Branch on Index High (BXH) 0 •• , • , • • • • • • • • • • • • • • • • • •• 181
Branch on Index Lo,,, or Equal (BXLE) 182
Execute (EX) .. 183

vi

FLOA TING-POINT
INSTRUCTIONS

OPTIONAL
FEATURES

APPENDICES

LIST OF TABLES

CONTENTS (Cont/d)

Introduction
Data Formats .. .
Representation of Numbers
Normalization .. .
Instruction Formats .. .
Condition Code Utilization
Interrupt Action
Load (LER) (LE) (LDR) (LD)
Load and Test (LTER) (LTDR)
Load Complement (LCER) (LCDR)
Load Positive (LPER) (LPDR)
Load Negative (LNER) (LNDR)
Add Normalized (AER) (AE) (ADR) (AD)
Add Unnormalized (AUR) (AU) (AWR) (AW)
Subtract Normalized (SER) (SE) (SDR) (SD)
Subtract Unnormalized (SUR) (SU) (SWR) (SW)
Compare (CER) (CE) (CDR) (CD)
Halve (HER) (HDR)
Store (STE) (STD) .. .
MUltiply (MER) (ME) (MDR) (MD)
Divide (DER) (DE) (DDR) (DD)

Feature 5001- Memory Protect
Feature 5002 - Elapsed Time Clock
Feature 5003 - Direct Control
Feature 5015 - Selector Channel
Feature 5016 - Selector Channel
Feature 5020 - Selector Channel
Feature 5022 - Selector Channel
Feature 5024 - Selector Channel
Feature 5030 - Selector Channel
Feature 5031 - Selector Channel
Emulator Options .. .

A - Summary of Instructions
B - Program Interrupts

I C _ Input/Output Seryice Request
D - Extended Binary-Coded-Decimal Interchange Code
E - American Standard Code for Information Interchange
F -- Character Codes
G - Pm,vers of Two Table

Page

184
184
185
185
185
186
187
188
189
190
191
192
193
195
196
197
198
199
200
201
202

203
203
204
204
204
204
204
204
204
204
204

208
228
230
231
232
233
238

H - Hexadecimal-Decimal Number Conversion 239
I - Scratch-Pad Memory Layout and Register Assignments. 247

Table 1. Basic Hexadecimal ::.vlarking System 4
Table 2. 70/35-45-55 Memory Capacities u
Table 3. Main :Memory Capacity and Multiplexor Sets/Devices '" 5
Table 4. Use of General Registers . 9
Table 5. Processor State Registers 11
Table 6. Instruction Length Codes 11

vii

LIST OF TABLES
(Cont'd)

LIST OF
ILLUSTRATIONS

CONTENTS (Cont'd)

Table 7. Interrupt State Identifier Codes
Table 8. Program Indicator Codes
Table 9. Register Addressing in Processor States
Table 10. Interrupt Conditions and Priority
Table 11. Interrupt Conditions
Table 12. Command Code Operations
Table 13. Input/Output Channel Registers

Figure 1. Data Formats
Figure 2. Functional Logic of Automatic Interrupt
Figure 3. Functional Logic of Program Control Instruction
Figure 4. Functional Logic of Start Device Instruction
Figure 5. Functional Logic of Halt Device Instruction
Figure 6. Functional Logic of Test Device Instruction
Figure 7. Functional Logic of Check Channel Instruction
Figure 8. Functional Logic of Servicing a Data Transfer
Figure 9. Functional Logic of End and Chaining Servicing
Figure 10. Functional Logic of Interrupt Servicing
Figure 11. Dual-Processor Complex
Figure 12. Master jSatellite Complex
Figure 13. Maximum Multi-Processor Complex

viii

Page

13
13
15
16
18
34
39

2
24
27
42
48
52
54
62
68
74
78
79
80

INSTRUCTION INDEX

The index marks at the right edge of this
page line up with similar index marks in the
text. By merely examining the page edges,
the reader can quickly locate a category of
instructions.

Appendix A summarizes the instruction
set for the 70/45-55 Processors, including
timing, formats and condition codes.

Instruction Index

Privileged Instructions

Processor State Control Instructions

Fixed-Point Instructions

Decimal Arithmetic Instructions

Logical Instructions

Branching Instructions

Floating-Point Instructions _

Frontispiece

INTRODUCTION

RCA MODEL 70/35
PROCESSOR

RCA MODEL 70/45
PROCESSOR

• The RCA Model 70/35 Processor is the small-scale member of the
70/45, 70/55 product line. It is a powerful, solid-state, general-purpose,
digital processor. It is the main element of a system handling small to
medium-large data processing applications. This processor is capable of
handling commercial, scientific, and communications applications. The
internal logic is controlled by microinstructions stored in a read-only
control memory.

All instructions, character codes, formats, interrupt facilities, and
programming features are functionally the same as corresponding features
on the Model 70/45 and 70/55 Processors. Programs may be interchanged
between processors provided:

1. Systems features are equivalent.

2. Programs are written to be independent of strict timing considera­
tions.

3. Programs are restricted to specified functions and do not utilize
unspecified characteristics peculiar to the hardware of anyone of
the processors.

The 70/35 is a variable-format processor consisting of main memory,
I read only control memory, non-addressable memory, program control, and

input/output control. Internal logic processes one byte at a time. However,
internal transmission paths are two bytes such that addresses and some­
times data are transferred two bytes at a time.

• The RCA Model 70/45 Processor, a member of the Spectra 70 Series,
is a powerful, solid-state, general-purpose, digital processor. It is the main
element of a system that handles medium-large data processing applica­
tions. Because of its large storage capacity, fast data transmission, com­
putation rates and communications capabilities, this processor is highly
efficient as a data processor, a scientific problem solver, or a communica­
tions control processor. The internal logic is controlled by microinstruc-

I tions stored in a read-only control memory.

All instructions, character codes, interrupt facilities, and program­
ming features are functionally the same as corresponding features on the
Model 70/35 and 70/55 Processors. Programs can be interchanged between
processors provided that:

1. Systems features are equivalent.

2. Programs are written to be independent of strict timing considera­
tions.

3. Programs are restricted to specified functions and do not use
unspecified characteristics peculiar to the hardware of either
processor.

The 70/45 is a halfword-organized, variable-format processor consist­
ing of main memory, non-addressable main memory, scratch-pad memory,
read-only memory, program control and arithmetic unit, and input/output
control.

1

I.
I. 32 Bits

Word

64 Bits
Double Word

Word

h. ~~I~~::d P I Halfword Halfword -,

By.e - By.e ~ By'e ~ By.e -f-- By.e ~ By.e ~
o 718 15116 23124 31 32 39140 47148

I Halfword Fixed-Point No. I I I

I
~ I

15
1 I I . . Integer .

Fullwo.d F;X~d-po;n. No. I I I
I I

I

31
5

Integer

7 24 I
5 Character Fraction

I
7

5
Character Fraction

IPOCked oeC;~OI Numbe. I
L-D_i..::;g_i:_L-ID_i-=9_it_4-1--D.....:i9~i4--J. 1 ~] ~ J 0;9;: 0;9;.410;9;,4 o;J 5;9n4

I Zoned Decimal Number

I Fixed-Length Logical Information

31

Logical Data

Introduction

Halfword ---~

Byte ____ Byte _

55156 63

56

4

it

I
variable Length Logical Information

1 cha.oc.e.

8

1 Cha.oc.e. 8

- - - - - .----·8;'"1

N-OTE: Numbers in upper right corners of blocks
indicate number of bits used.

Figure 1. Data Formats

2

Character

RCA MODEL 70/55
PROCESSOR

ORGANIZATION
OF DATA

Introduction

• The RCA Model 70/55 Processor, largest of the open-ended Spectra 70
Series, satisfies the most sophisticated data processing, scientific problem
solving, or communications systems requirements. Its order code is imple­
mented by processor logic, resulting in extremely fast data transmission
and instruction execution rates.

All instructions, character codes, interrupt facilities, and program­
ming features are functionally the same as corresponding features on the
Model 70/35 and 70/45 Processors Programs can be interchanged between
the processors provided that:

1. Systems features are equivalent.

2. Programs are written to be independent of strict timing considera­
tions.

3. Programs are restricted to specified functions and do not use
unspecified characteristics peculiar to the hardware of either
processor.

The 70/55 is a word-organized, variable-format processor consisting
of main memory, non-addressable main memory, scratch-pad memory,
program control and arithmetic unit, and input/output control.

• The following definitions describe the various levels of data organiza­
tion for the 70/35-45-55 Processors:

Bit • A bit is a single binary digit having the value of either zero or one.

Byte

Halfword

Word

Doubleword

Item/Field

Record

• A byte consists of eight information bits. It represents two decimal
digits, one alphabetic character, or one special symbol.

• A halfword consists of two consecutive bytes beginning on a main
memory location that is a multiple of two.

• A word consists of four consecutive bytes beginning on a main
memory location that is a multiple of four.

• A doubleword consists of eight consecutive bytes beginning on a main
memory location that is a multiple of eight.

• An item/field consists of any number of bytes that specify a particular
unit of information (numeric field, alphabetic name, street address, stock
number, etc.).

• A record consists of one or more related items.

DATA FORMATS • The basic unit of information in the 70/35, 70/45 and 70/55 Pro­
cessors is a byte, which is the smallest addressable unit. A byte consists of
eight information bits. The parity bit ensures the accuracy of all bytes

I accessed by the processor. Odd parity is used in all processors.

The internal code representation in the 70/35, 70/45 and 70/55 is
either the Extended Binary-Coded-Decimal Interchange Code (EBCDIC)
or the American Standard Code for Information Interchange (ASCII) as

i specified by program. (See Appendices D and E.)

There are eight distinct formats for data in main memory (see figure
1). Further explanation of each format appears in the instruction sections
of this manual.

3

NUMBERING
SYSTEM

SYSTEMS
STRUCTURE

INTRODUCTION

MAIN MEMORY

Systems Structure

• Since binary addresses are cumbersome to work with, the hexadecimal
numbering system has been adopted to represent characters and addresses
in the 70/35-45-55 Processors. The hexadecimal system has a base of 16.
The first ten marks are represented by decimal numbers zero (0) through
nine (9); the last six marks are represented by the letters A through F.

The basic hexadecimal marking system and its binary and decimal
equivalent are specified in table 1. (See also Appendix H.)

Table 1. Basic Hexadecimal Marking System

Hexadecimal Binary Decimal Hexadecimal Binary Decimal

(Base 16) (Base 2) (Base 10) (Base 16) (Base 2) (Base 10)

0 0000 0 8 1000 8

1 0001 1 9 1001 9

2 0010 2 A 1010 10

3 0011 3 B 1011 11

4 0100 4 C 1100 12

5 0101 5 D 1101 13

6 0110 6 E 1110 14

7 0111 7 F 1111 15

• The RCA 70/35-45-55 Processors consist of main memory, non­
addressable main memory, scratch-pad memory, (or equivalent scratch­
pad memory in the 70/35), program control and arithmetic unit, and
input/ output control. In addition, the 70/35-45 Processors contain a
read-only memory.

• The main memory of the RCA 70/35-45-55 Processors is central
storage for both data to be processed and the controlling instructions.
Main memory consists of planes of magnetic cores, with each core repre­
senting one binary digit. The smallest addressable unit of information in
main memory is one byte (eight bits).

The basic cycle time of these processors is the time required to access
and transfer a halfword (70/35-45) or a full word (70/55) from main
memory to the memory register and regenerate the information in main
memory. For the 70/35-45 Processors, the memory cycle time is 1.44
microseconds; for the 70/55 Processor, the memory cycle time is 0.84
microseconds.

Table 2 indicates the various main memory capacities and correspond­
ing model number for the three Processors.

4

MAIN MEMORY
(Cont'd)

NON-ADDRESSABLE
MAIN MEMORY

SCRATCH-PAD
MEMORY

Systems Structure

Table 2. 70/35-45-55 Memory Capacities

Model Capacity Model Capacity Model Capacity
Number (in Bytes) Number (in Bytes) Number (in Bytes)

70/35C 16,384 70/45D 32,768 70/55E 65,536

70/35D 32,768 70/45E 65,536 70/55F 131,072

70/35E 65,536 70/45F 131,072 70/55G 262,144
70/45C 16,384 70/45G 262,144 70/55H 524,288

The first 128 locations of main memory are reserved for processor use
and must not be used by the program.

• A non-addressable main memory, is in addition to main memory and
cannot be addressed by programming. It contains the subchannel registers
that control the operation of input/output devices on the multiplexor
channel. A set of three 32-bit registers services each device on the multi­
plexor channel. The number of subchannel register sets and the number
of devices that can be connected to the multiplexor channel are determined
by the capacity of main memory, which is given in table 3.

Table 3. Main Memory Capacity and Multiplexor Sets/Devices

No. of Multiplexor Subchannel
Capacity of Main Register Sets/Devices
Memory (Bytes)

70/35 70/45 70/55

16,384 64 64 Not Applicable

32,768 192 128 Not Applicable

65,536 192 256 256

131,072 Not Applicable 256 256

262,144 Not Applicable 256 256

524,288 Not Applicable Not Applicable 256

• The scratch-pad memory is a micromagnetic storage device consisting
of 128 four-byte words, the access time of which is 300 nanoseconds. Each
word in scratch-pad memory is uniquely addressed.

The following registers are contained in scratch-pad memory. (See
also Appendix H.) :

1. Processor Utility Registers - All locations designated as processor
utility registers are used by the processor for program control and
cannot be used by the program.

2. General Registers - These locations are the general registers for
each processor state. These registers are used by the program for
base addressing, for indexing, or for storing operands.

Note: The RCA/35-45-55 Processors have four processor states
that pertain to system and program interrupts (see
page 9).

3. Interrupt Mask Registers - An Interrupt Mask register for each
processor state permits or inhibits 32 interrupt conditions.

5

SCRATCH-PAD
MEMORY

(Cont'd)

PROGRAM
CONTROL AND

ARITHMETIC UNIT

INPUT/OUTPUT
CONTROL

Systems Structure

4. Interrupt Status Registers - An Interrupt Status register for
each processor state stores interrupt identification information and
operational control information. This register contains indications
of the last state interrupted, the protection key, the decimal mode
(ASCII or EBCDIC), the privileged mode bit, and the supervisor
call identification.

5. Program Counter - A Program Counter for each processor state
contains the main memory address of the next instruction to be
executed, the condition code, the instruction length code, and the
program mask.

6. Input/Output Channel Registers - A set of six registers for each
selector channel controls input/ output operation. A set of four
registers for the multiplexor channel controls initiation and ter­
mination of input/output operations on the multiplexor channel.

7. Floating-Point Registers - Four floating-point registers (each is
two words long) are used in floating-point arithmetic.

8. Interrupt Flag Register - One Interrupt Flag register is pro­
vided. When an interrupt condition occurs, a bit associated with
this condition is set in the Interrupt Flag register.

Note: On the 70/35, the Scratch-Pad Memory is contained in
non-addressable main memory.

• The program control and arithmetic unit in the Model 70/45 and 70/55
Processors interprets and executes the instructions stored in main memory.
Registers and indicators monitor the sequence of operations, perform auto­
matic accuracy checks, and communicate with the RCA standard interface
in the control of input/output devices.

• The RCA 70/35, 70/45 and 70/55 Processors communicate with all
input/output devices through the RCA standard interface.

The 70/35 Processor can have up to two selector channels (optional).
Each selector channel contains two standard interface trunks. Each
standard interface trunk controls one device subsystem (from 1 to 16
devices). All selector channels can operate simultaneously.

The 70/45 Processor can have up to three selector channels (optional).
Each selector channel contains two standard interface trunks. Each stan­
dard interface trunk controls one device subsystem (from 1 to 16 devices).
All selector channels can operate simultaneously.

The 70/55 Processor can have up to six selector channels (optional).
Each selector channel contains four standard interface trunks. Each stan­
dard interface trunk controls one device subsystem (from 1 to 16 devices).
All selector channels can operate simultaneously.

In addition to the selector channels, a multiplexor channel is standard
equipment on the 70/35, 70/45 and 70/55 Processors. The multiplexor
channel on the 70/35 contains seven standard interface trunks. Each trunk
controls one device subsystem. An eighth trunk is provided on the multi­
plexor for exclusive use of the *Model 70/97 Console.

6

INPUT/OUTPUT
CONTROL

(Cont'd)

READ-ONLY
MEMORY

INSTRUCTION
FORMATS

Instruction Formats

The multiplexor channel on the 70/45 and 70/55 contains eight
standard interface trunks. Each trunk controls one device subsystem.
A ninth trunk is provided on the multiplexor for exclusive use of the
*Model 70/97 Console. All trunks on the multiplexor channel can operate
simultaneously. Also, the multiplexor channel and all selector channels
can operate simultaneously.

• Read-Only Memory is a standard feature of both the Spectra 70/35
and 70/45 Processors. The 70/35 ROM consists of 1,024 54-bit words
(each containing two microinstructions of 27-bit length) ; and the 70/45
ROM consists of 2,048 54-bit words (each containing one microinstruction
ot 53-bit length). In addition both the 70/35 and 70/45 ROM each contain
a 12-bit address register and a 54-bit memory register.

The wired-in microprogram logic contained in these read-only memory
banks control the elementary operations of the 70/35 and 70/45. The
effective cycle time of both ROM banks is 480 nanoseconds with a 54-bit
access.

The 70/35 Processor can be ordered with one additional ROM bank
containing the microinstructions for either the 1401 or the RCA 301
Emulator feature (but not both). The 70/45 Processor can be ordered
with two additional ROl\1 banks containing the microinstructions for any
combination of the available Emulator features.

Although the Read-Only Memory is a standard feature in the 70/35
and 70/45, it is not accessible by programming and the programmer need
not be familiar with the detailed method of operation of the ROM.

• The five basic instruction formats express, in general terms, the opera­
tion to be performed as follows:

RR == register-to-register

RX == register-to-indexed main memory

RS == register-to-main memory

SI == main memory and immediate operand operation

SS == main memory to main memory

The instruction subfields are defined as fellows:

Rb R2, R3 - four-bit general register designation used for an operand

X2 - four-bit general register designation used for indexing

Bb B2 - four-bit general register designation used for base
addressing

Db D2 - 12-bit displacement

12 - eight-bit immediate operand

Lb L2 - four-bit operand length specification

L - eight-bit operand length specification

M - eight-bit mask

* The Model 70/97 Console has been assigned the permanent device address of "0"
(zero) as a standard.

RR FORMAT

RX FORMAT

RS FORMAT

Shift Instructions

Branching Instructions

Load/Store Multiple
Instructions

SI FORMAT

SS FORMAT

Instruction Formats

• The contents of the general register specified by Rl is the first operand.
The contents of the general register specified by R2 is the second operand.
In floating-point operations, Rl designates the address of the floating-point
register that contains the first operand. R2 designates the floating-point
register that contains the second operand. The first and second operands
can be the same and are designated by identical Rl and R!! addresses.

Op Code

o 7 8 11 12 15

• The contents of the general register specified by Rl is the first operand.
To obtain the address of the second operand, the contents of the general
registers specified by X2 and B2 are add~d to the D2 field. In floating-point
operations, Rl designates the floating-point register that contains the
first operand.

Op Code

o 7 8 11 12 15 16 19 20 31

• The RS format is used by shift instructions, branching instructions,
and load/store multiple instructions.

Op Code R3

o 7 8 11 12 15 16 19 20 31

• The contents of the general register specified by Rl is the first operand.
The contents of the general register specified by B!! are added to the D2
field. The sum specifies the number of bits of shifting to be done by the
shift operation. The R3 field is ignored.

• The contents of the general register specified by Rl is the first operand.
The contents of the general register specified by B2 are added to the D2
field to obtain the branch address. The contents of the general register
specified by R3 is the third operand.

• The Rl and Ra fields specify the general register boundaries. The
contents of the general register specified by B2 are added to the D2 field to
obtain the main memory address of the second operand.

• The contents of the general register specified by Bl are added to the
contents of the Dl field to obtain the address of the first operand. The
second operand is the immediate eight-bit byte in the 12 field of instruction.

Op Code

o 7 8 15 16 19 20 31

• The contents of the general register specified by Bl are added to the
contents of the Dl field to obtain the address of the leftmost byte of the
first operand. The Ll field specifies the number of additional bytes in
the operand that are to the right of the first operand address. To obtain
the second operand address, the contents of the general register specified by

8

SS FORMAT
(Cont'd)

Notes

Instruction Formats

B2 are added to the contents of the D2 field. The ~ field specifies the
number of additional bytes in the operand that are to the right of the
second operand address. The L field specifies the number of additional
bytes that are to the right of the first and the second operand address.

Op Code

o 7 8 11 12 15 16 19 20 31 32 35 36 47

• 1. A zero appearing in the X2, Bi or B2 fields indicates an absence of
the corresponding address or shift-amount component. An Instruc­
tion can specify the same general register both for address modifi­
cation and for operand location.

2. Address modification is completed before the execution of an
operation.

3. The results replace the first operand (except in Store Character
instruction), where the result replaces the second operand.

4. A variable-length result is never stored outside the field specified
by the address and length.

5. The contents of all registers and main memory locations not speci­
fied by an instruction remain unchanged except fpr the Edit and
Mark instruction and the Translate and Test instructions. These
instructions automatically use certain general registers as given
in table 4.

Table 4. Use of General Registers

Processor State* Edit and Mark Translate and Test

Pi GR 1 GR 1 and 2

P2 GR 1 GR 1 and 2

Ps GR 13 GR 13 and 14

P4 GR 9 GR 9 and 10

* Processor States are discussed on page 9.

9

ADDRESSING

PROGRAM
INTERRUPT

INTRODUCTION

PROCESSOR STATES

Processing State P1

Interrupt Response
State P2

• Locations in main memory are consecutively numbered starting with
zero. In forming an address, the base address (Bl B2) and the index (X2)

are treated as unsigned 24-bit positive binary numbers. The displacement
(D1 D2) is treated as a I2-bit positive binary number. The three are added
together as absolute binary numbers and overflow is ignored. The results
of these additions is an effective address of up to 24-bits depending on the
processor model as follows:

70/35 - yields a I6-bit effective address
70/45 - yields an I8-bit effective address
70/55 - yields a 24-bit effective address

Any address which is within the effective address as shown above,
but specifies memory not available in the particular installation, causes an
interrupt to occur. Any address which is outside the effective address as
shown above is ignored. However, to maintain program compatibility on
all processors, all addressing should assume a 24-bit effective address.
Negative indexing may be achieved by address wrap-around since overflow
bits over the 24-bit address are ignored.

• Program interrupts occur as a result of errors in data or instruction
specifications, input/output operations, external signals, equipment mal­
functions or arithmetic errors. The instruction being executed at the time
of the interrupt can be completed, suppressed, or terminated depending on
the cause of the interrupt.

An interrupt can be inhibited or permitted in any state through pro­
gramming. If an interrupt occurs and is permitted, conditions existing in
the interrupted state are automatically stored. Control is then passed to
the Interrupt Control State Ps or Machine Condition State P 4 , depending
on the cause of the interrupt. (See Processor States below.) The priority
of the interrupt is established and an analysis is made to determine the
proper linkage to the Interrupt Response State P2 so that the interrupt
may be processed. After interrupt processing is completed, control is
returned to the state which was last interrupted, and normal processing
is resumed.

If several interrupts occur at the same time, the one having the high­
est priority is processed. The remaining interrupts are processed in turn,
depending on their priority.

• The RCA 70/35, 70/45 and 70/55 Processors have four processor
states that provide control of system and program interrupts. Programs
can be executed in anyone of the states, because each state is completely
independent and has its own set of registers. The processor states and
their functions are as follows:

• The Proces~ing State PI interprets and executes the user's program.
This processing state is the problem-oriented state.

• The Interrupt Response State P 2 performs specific program tasks as
dictated by the Interrupt Control State Ps.

10

Interrupt Control
State P3

Machine Condition
State P4

PROCESSOR STATE
REGISTERS

Program Counter

Program Interrupt

• The Interrupt Control State P 3 is automatically entered when an inter­
rupt is recognized that is other than one caused by a machine check or
power failure. In this state, programming is responsible for performing a
detailed analysis of the cause of the interrupt and establishing its priority.
After these functions are performed, linkage is provided to the related
interrupt processing routine in the Interrupt Response State P2 •

• The Machine Condition State P 4 is entered whenever a machine check
or power failure occurs. In this state, programming analyzes the cause of
a machine interrupt and establishes its priority. Control is then trans­
ferred to the Interrupt Response State P2, so that an indication of the
cause of interrupt can be given to the operator.

• Registers are provided in scratch-pad memory, for each processor
state as given in table 5.

Table 5. Processor State Registers

Register
State

Pl P2 P3 P4

Program Counter 1 1 1 1

General Registers 16 16 6 5

Floating-Point Registers 4 * * *
Interrupt Status Register 1 1 1 1

Interrupt Mask Register 1 1 1 1

* Floating-point instructions executed in any of the processor states use the fioating­
point registers assigned to Pl.

Because each processor state has its own general registers, Interrupt
Status Register and Interrupt Mask Register, storing and reloading these
registers is not necessary during interrupt processing.

• The Program Counter (P counter) is a 32-bit register that is located
in scratch-pad memory. A separate P counter is provided for each of the
four processor states.

The format of the P counter is as follows:

Program Mask N ext Instruction Address

o 1 2 3 4 7 8 31

Bit Positions 0 and 1 contain the instruction length code. When an
interrupt occurs and is taken, or a Program Control instruction is exe­
cuted, the length of the last instruction executed in the terminated state,
before the interrupt condition occurred, is stored in bit positions 0 and 1
as given in table 6. The instruction length code is always generated from
the operation code of the instruction.

Table 6. Instruction Length Codes

ILC Length in Bytes

01 Two-byte instruction.

10 Four-byte instruction.

11 Six-byte instruction.

11

Program Counter
(Cont'd)

Program Interrupt

Notes:

1. If the interrupt condition is an operation code trap, the length of
the instruction causing the interrupt is generated from the opera­
tion code and is stored in bit positions 0 and 1 as given in table 6.

2. The instruction length code is unpredictable if the interrupt was
caused by one of the following:

Power Failure

Machine Check

Address Error (only if the address error was caused
by an invalid instruction address)

Bit Positions 2 and 3 contain the condition code. When an interrupt
occurs or a Program Control instruction is executed, the condition code
is moved from a machine register, where it is maintained for instruction
execution, and stored in this field of the P counter of the state being ter­
minated. The condition code in this field of the P counter of the state being
initiated is moved into a machine register where it is maintained for
possible future use.

Bit Positions -'+ through 7 contain the program mask. vVhen an inter­
rupt occurs or a Program Control instruction is executed, the program
mask is moved from the machine register, where it is maintained for
instruction execution, and stored in bits 4 through 7 of the P counter of
the state being terminated. The program mask in this field of the P counter
of the state being initiated is moved into the machine register where it is
maintained for possible future use.

Note: On the 70/35 Processor, there is no machine register used to main­
tain the program mask during instruction execution. The program
mask is always maintained in the P counter of each state. Conse­
quently, when an interrupt occurs or a Program Control instruction
is executed on the 70/35 the program mask is not affected.

Bit Positions 8 through 31 contain the next instruction address. This
field stores the address of the next instruction in main memory to be
staticized by the appropriate processor state. Each time an instruction is
staticized, the P counter is updated to the next instruction. This field is
left intact whenever an interrupt requires switching to a new processor
state.

Note: Because the scratch-pad memory on the 70/35 is a portion of non­
addressable main memory, a special machine register is incorpo­
rated into this processor to speed up staticizing time. This machine
register contains the next instruction address and is updated each
time an instruction is staticized. When an interrupt occurs or a
Program Control instruction is executed, the next instruction ad­
dress is moved from the machine register where it is maintained
and is stored in bits 8 through 31 of the P counter of the state being
terminated. The next instruction address in this field of the state
being initiated is moved into the machine register where it is main­
tained for the initiated state.

12

Program Interrupt

General Registers I • A separate set of general registers is assigned to each processor state.

Floating-Point Registers

Interrupt Status Registers

I Each general register is 32 bits long. Sixteen general registers are
assigned to P 1 and P 2 , six general registers are assigned to P 3 and five
general registers are assigned to P 4. These registers serve as operands,
base address registers, or index registers.

• Four floating-point registers are provided. Each floating-point register
is 64 bits long (double length). These registers are used only in floating­
point arithmetic. The floating-point registers can be used by any of the
processor states.

• The Interrupt Status register is a 32-bit register. A separate register
is provided for each of the four processor states.

The format of each Interrupt Status register is as follows:

I lSI I 000 I PI I KEY I A EB I N 00000000 Call

0235678 11 12 13 14 15 16 23 24 31

Bit Positions 0 through 2 contain the interrupt state identifier. When
an interrupt occurs, the number of the processor state being interrupted is
stored in this field of the processor state being initiated as given in table 7.

Table 7. Interrupt State Identifier Codes

151 Definition

000 P4 was interrupted.

001 P3 was interrupted.

010 P2 was interrupted.

011 P1 was interrupted.

Bit Positions 3 through 5 are not used and must be zeros.

Bit Positions 6 and 7 contain the program indicators. 'Vhen an inter­
rupt occurs due to a parity error in Main Memory or Scratch Pad Memory,
the program indicators are stored in this field in P 4 as given in Table 8.

Table 8. Program Indicator Codes

Program Indicators Definition

00 Neither error has occurred.

01 Scratch Pad Memory parity error has occurred.

10 Main Memory parity error has occurred.

11 Scratch Pad Memory parity error and Main
Memory parity error have occurred.

Note: On the 70/35 Processor, the program indicators are always zeros
since Scratch Pad Memory is a part of non-addressable main
memory.

13

Interrupt Status Registers
(Cont'd)

Interrupt Mask Registers

Program Interrupt

Bit Positions 8 through 11 contain the memory protection key. This
field is set by the program to indicate the desired protection key. When an
interrupt occurs or a Program Control instruction is executed, the memory
protection key is extracted from this field of the processor state being
initiated and placed in a machine register where it performs the memory
protect function. The four-bit key provides a possible 15 keys ranging from
(1) 16 to (F) 16. Each 2,048-byte block of main memory has its individual
machine register for the protection key. When the key related to the cur­
rent processor state and the key related to the main memory block are
equal, or either is zero, the main memory block accepts a data store.
Conversely, if the keys do not match, and neither is zer9, an address error
(protection) interrupt occurs.

Note: If the memory protect feature is not installed, this field must be
zero.

Bit Position 12 designates the internal decimal code. When an inter­
rupt occurs or a Program Control instruction is executed, the decimal code
(either ASCII or EBCDIC) for the processor state being initiated is
established by the setting of this bit. If the bit is 1, ASCII Code is estab­
lished; if the bit is 0, EBCDIC is established.

Note: The setting of this Decimal Code does not affect any automatic trans­
lation of data read into or written from the processor. The Decimal
Code is used to determine what zone configuration (ASCII or
EBCDIC) is to be established internally when executing the deci­
mal arithmetic instruction set, the Edit instruction, and the Edit
and Mask instruction.

Bit Positions 13 and 14 are used when an Emulator feature is included
in the system. If an Emulator feature is not installed, this field must be
zero or an address error interrupt occurs (for further details, refer to the
Emulator Reference Manual).

Bit Position 15 is the non-privileged mode bit. This field is set by the
program to indicate the privileged status of the processor state being
initiated. If N == 0, the initiated processor state runs in the privileged
mode, allowing execution of the privileged instructions; if N == 1, the
processor state runs in the non-privileged mode, inhibiting the execution
of the privileged instructions.

Bit Positions 16 through 23 are not used and must be zeros.

Bit Positions 24 through 31 is the call field. This field is set during the
execution of a Supervisor Call instruction. The Rl and R2 field of this
instruction provide a code which is placed into the call field of the Inter­
rupt Status register of the processor state in which the Supervisor Call
instruction is issued. This code provides linkage to the program required
to accomplish the purpose of the Supervisor Call instruction.

• The Interrupt Mask register is a 32-bit register. A separate register
is provided for each of the four processor states. Each bit in the Interrupt
Mask register is associated with an interrupt condition. A 0 bit in any bit
position in this register inhibits the associated interrupt condition; a 1 bit
in any bit position in this register permits the associated interrupt
condition.

14

Interrupt Mask Registers
(Cont'd)

Program Mask Registers

Register Addressing

Program Interrupt

Important:

1. The Power Failure and Machine Check interrupts must be inhib­
ited in the Machine Condition State P 4• The mask bits in the Interrupt
Mask register for these interrupt conditions must always be zero. This is a
program restriction.

2. The Address Error interrupt must be inhibited in the Interrupt
Control State P3 • The mask bit in the Interrupt Mask register for this
interrupt condition must always be zero. This is a programming restriction.

• In addition to the Interrupt Mask register, a Program Mask register
is also provided for each state. The Program Mask register is not contained
in main memory or scratch-pad memory. It is a separate machine register
which is set by the non-privileged instruction, Set Program Mask, and it
applies to the following interrupt conditions:

Significance error.
Exponent underflow.
Decimal overflow.
Fixed-point overflow.

The program mask bit settings have priority over the bit settings in
the Interrupt Mask register for the above four program interrupts. A 0 bit
in any bit position in this register cancels the interrupt condition if it
occurs. A 1 bit in any bit position in this register indicates that the Inter­
rupt Mask register is to be examined. If an interrupt condition occurs and
is inhibited by the Interrupt Mask register, it remains pending until it is
serviced (permitted).

• Register addressing in each of the processor states is given in table 9.

Table 9. Register Addressing in the Processor States

Register

Number
P1 P2

0 GR GR
1 GR GR
2 GR GR
3 GR GR
4 GR GR
5 GR GR
6 GR GR
7 GR GR
8 GR GR
9 GR GR

10 GR GR
11 GR GR
12 GR GR
13 GR GR
14 GR GR
15 GR GR

GR = General Register
IMR = Interrupt Mask Register
ISR = Interrupt Status Register

15

Processor States

P3 P4

IMR, PI State Processor Utility
ISR, PI State

I
Processor Utility

P counter, P 1 State Processor Utility
Interrupt Flag Register

,
Processor Utility

IMR, P2 State Processor Utility
ISR, P2 State Processor Utility
P counter, P2 State Processor Utility
GR I Processor Utility
IMR, P3 State GR
ISR, P3 State GR
P counter, P3 State GR
GR

I
GR

GR IMR, P 4 State
GR ISR, P4 State
GR P counter, P4 State
GR/Weight GR/Weight

Program Interrupt

Register Addressing : Notes:
(Cont'd)

Interrupt Flag Register

1. The P counter, Interrupt Status register, and Interrupt Mask reg­
ister for processor state PI, P:! and P:i can be addressed by register
notation (Rl, R2 or R3 field of an instruction) in processor state P 3
only. The P counter, ISR and IMR for processor state P 4 can be
addressed by register notation in processor state P 4 only. Because
the P counter, the ISR's and the IMR's are contained in scratch­
pad memory, they can be addressed in any of the processor states
by using the Load Scratch Pad instruction and the Store Scratch
Pad instruction. However, these instructions are privileged in­
structions and the processor state in which they are executed must
be running in the privileged mode. (Bit position 15 of the appro­
priate Interrupt Status register must be set to zero.)

2. Floating-Point registers may be addressed by floating-point in­
structions only, and are addressed as 0, 2, 4 and 6 in all processor
states.

• The Interrupt Flag register is a 32-bit register. There is only one
Interrupt Flag register. When an interrupt condition occurs, a bit asso­
ciated with the specific interrupt is set in the Interrupt Flag register.
If the corresponding bit in the Interrupt Mask register for the current
state is set, an interrupt occurs.

Note: If the interrupt condition is one of the four program interrupts, the
corresponding bit in the Program l\Iask register must also be set to
cause an interrupt.

The Interrupt Flag register is scanned on a priority basis and the
highest priority interrupts are serviced first. Each interrupt condition is
assigned a specific weight which is put into the rightmost eight bits of
General register No. 15 of the initiated state (P3 or P 4). This weight can
be used by the program to enter the proper interrupt routine.

i

Note: General register No. 15 in P 3 or P 4 is cleared and reloaded each time
an interrupt occurs.

Table 10 lists the priority, the Interrupt Flag register position, the
program state initiated, and the weight of each of the interrupt conditions.

Table 10. Interrupt Conditions and Priority

Flag
Priority Interrupt Condition

*Bit

1 Power Failure 20

2 Machine Check 21

3 External Signal No. 1 22

4 External Signal No. 2 23

5 External Signal No. 3 24

6 External Signal No. 4 I
2;)

7 External Signai No. 5 I 2G I
8 External Signal No. 6 ! 2i
" ~" .. c<_~_.t: rl

10 Selector Channel No. 1
(Cont.)

i

L< __

16

State

Initiated

P 4

P4

P3

P3
P3
P3

I P3
P 3 I

Weight

0
4

8

12
16

20
24

28

32

36

I
!
~
i

Interrupt Flag Register
(Cont'd)

INTERRUPT
CONDITIONS

Progra1n Interrupt

Table 10. Interrupt Conditions and Priority (Cont'd)

Priority Interrupt Condition
Flag State

Weight
*Bit Initiated

11 Selector Channel No. 2 210 Ps 40

12 Selector Channel No. 3 211 Ps 44

13 Selector Channel No. 4 212 Ps 48

14 Selector Channel No. 5 213 Ps 52

15 Selector Channel No. 6 214 P3 56

16 Multiplexor Channel 215 P3 60

17 Elapsed Time Clock 21G Ps 64

18 Console Interrupt Request 217 Ps 68

19 Not Specified 218 Ps 72

20 Not Specified 219 Ps 76

21 Supervisor Call Instruction 220 Ps 80

22 Privileged Operation 221 Ps 84

23 Op-Code Trap 222 Ps 88

24 Address Error (Protect, 22S P3 92
Addressing, Specification)

25 Data Error 224 P3 96

26 Exponent Overflow 225 Ps 100

27 Divide Error 226 Ps 104

28 Significant Error** 227 P3 108

29 Exponent Underflow** 228 Ps 112

30 Decimal Overflow* * 229 Ps 116

31 Fixed Point Overflow** 2s0 Ps 120

32 Test Mode 2S1 Ps 124

* 20 = The rightmost bit in the Interrupt Flag register.

** Note: These interrupt conditions can be masked by two separate masks. The first,
the program mask, is a four-bit, non-privileged, program settable mask, that
can be used to cancel the interrupt condition when it occurs. The second mask
is composed of bits 2S0 through 227 of the 32-bit Interrupt Mask register asso­
ciated with the state in which the processor is operating. If the Program
Mask prohibits the interrupt it is cancelled. If the Program Mask permits the
interrupt, the Interrupt Mask register is scanned, Like all the other interrupt
conditions, the masks of the 32-bit Interrupt Mask register leave these tour
interrupt conditions pending if the associated mask bits are zeros.

• A description of the individual interrupt conditions is given in table II.
More detailed information concerning the interrupt conditions is given in
the instruction descriptions. Some interrupt conditions arise from input/
output channel operations, and these conditions are further discussed in
the Input/Output Operational Control section.

Note: When an interrupt condition occurs, the current instruction can be
suppressed or it can be terminated. \Vhen an instruction is sup­
pressed, the condition code setting that existed before the instruc­
tion was attempted remains unchanged. Data in main memory and
the general registers specified by the instruction also remain un­
changed. When an instruction is terminated, the condition code
setting and data in the general registers and/or main memory are
unpredictable.

17

Table 11. Interrupt Conditions

Priority No. Condition Flag Bit Explanation

--,--,--, ---.-------------t--------~--(

1

2

3
4
5
6
'1
8

9

10
11
12
13
14
15·
16;

Power Failure

Machine Check

External Signal No. 1
External Signal No. 2
External Signal No.3
External Signal No. 4
External Signal No.5
External Signal No. 6

-. r-

A power failure interrupt occurs when there is a power failure in the processor or
main memory caused by a line faiHhe or by pressing the MASTER pushbutton indi­
cator on the 70/97 Console. Any instruction being executed at the time of interrupt
is terminated. It is a program restriction that the mask bit in processor state P'i for
this interrupt condition must always be zero when this interrupt occurs. This permits
the program to operate in processor state P4 for the purpose of closing down the
machine during a one-millisecond inter\ral between power failure and actual power
loss to the system.

The machine check interrupt occurs when a machine fault or malfunction is detected.
Any instruction being executed at the time of interrupt is terminated.' It is a pro­
gram restriction that the mask bit in processor state P4 for this interrupt condition
must always be zero when this interrupt occurs. The following conditions can cause
a machine check interrupt to occur:

Scratch-Pad Memory Parity Error-This error is detectable on the 70/45 and
70/55 Processors only and can occur when data is read from the Scratch-Pad Memory.

Main Memory or Non-Addressable Main Memory Parity Error-This error is
detectable on the 70/35, 70/45 and 70/55 Processors and can occur when data or
instructions are read from Main Memory or Non-Addressable Main Memory (70/35
only). If a main memory parity error occurs during an I/O data transfer, this
interrupt condition does not occur. A channel interrupt occurs and the program is
notified of the condition via the channel status byte.

The external signal interrupt occurs when a signal is received on an external line
(1-6) associated with the Direct Control option. Any instruction being executed at
the time of interrupt goes to completion.

.. - - _._------_ ... _---_ .. __ .. - --·-----~I--·-··-.. ··--·- ---... ---' -'----' ..--.-... - .-- -----. ----.--- -_._--_ ... _--_ .. - ---_._--------- ----------------

Not Used
... - --------.--.-.---------f

Selector Channel No. 1
Selector Channel No.2
Selector Channel No. 3
Selector Channel No.4
Selector Channel No. 5
Selector Channel No. 6
Multiplexor Channel

. ---_ _------- ---- ------------ -_._ _---_. ---------------------_ .. _-----._----_._----

29

210

211
212

218

214

215

This interrupt provides the means by which the processor can receive and act upon
signals from input/output devices connected to a Selector Channel (1-6) or the
Multiplexor Channel. This interrupt can occur as a result of the termination (normal
or abnormal) of an input/output operation or at the request of an input/output
device. It can -also occur as the result of a program controlled interrupt. Any
instruction being executed at the time of interrupt goes to completion. (Selector
Channels are optional.)

Note: Selector Channel No. 3 is applicable to the 70/45 and 70/55 only; Selector
Channels No.4, 5, and 6 are applicable to the 70/55 only.

Table 11. Interrupt Conditions (Cont'd)

-.-----~----_r---------------------------------._r----------.~--.------------------,
Priority No.

17

18

19

20

21

22

23

Condition

Elapsed Time Clock

Console Interrupt Request

Not Used

Not Used

Supervisor Call

Privileged Operation

Operation Code Trap

-.------~--.-- -------- ------_. __ .. _---------

Flag Bit

216

219

220

Explanation

This interrupt occurs when the Elapsed Time Clock counts downward from positive
to negative, indicating that its maximum range has been reached. Any instruction
being executed at the time of interrupt goes to completion. (The Elapsed Time Clock
is an option.)

r- ---------- -- ----- -- ------------ --- -------

r-

This interrupt is controlled by the Console Interrupt key on the operator's console.
Any instruction being executed at the time of interrupt goes to completion.

-------------- ---

This interrupt results from the execution of the Supervisor Call instruction. The P
counter and the Interrupt Status register of the interrupted state are updated nor­
mally. The rightmost eight bits of the Interrupt Status register of the state in which
the instruction is executed receives the R1, R2 field of the Supervisor Call instruction.

------ ----f----- ---- ---- ------ --- -- --- - ------------- ---

221

222

This interrupt occurs when a privileged instruction is attempted and the current
processor state is in non-privileged mode. (Bit position 15 of the Interrupt Status
register is set.) The instruction is suppressed. The privileged instructions in the
70/35, 70/45 and 70/55 Processors are:

Diagnose
Start Device
Test Device
Halt Device
Check Channel
Program Control
Load Scratch Pad
Store Scratch Pad
Idle
Set Storage Key
Insert Storage Key
W rite Direct
Read Direct

} If the Memory Protect option is installed.

} If the Direct Control option is installed.

This interrupt occurs when an operation code that is either not assigned or not avail­
able on the particular processor is attempted. No operation is performed. The length
of the instruction upon which the trap occurred is determined by the instruction
length code field of the P counter of the terminated state as follows:

ILC

01
10
11

Length in Bytes

Two-byte instruction
Four-byte instruction
Six-byte instruction

Note: The ILC is always generated from the operation code of the instruction.

Table 11. Interrupt Conditions (Cont'd)

.. -.-.-".---.. ----... --~--------------------------.------.. --------~ .. ------------r-----------------.--~
Priority' No. Condition Flag Bit

24 Address Error

(Cont'd)

Explanation

Three conditions cause an address error interrupt to occur. They are: address error,
specification error, and protection error.

Addressing - An address error (addressing) interrupt occurs when:

1. An address specifies any part of data, an instruction or control word outside the
available main memory for the particular installation. The instruction operation
is terminated for an invalid data address, and the results of the instruction are
unpredictable. The instruction operation is suppressed for an invalid instruction
address.

2. An Execute instruction specifies another Execute instruction to be performed.
The operation is suppressed.

8. The first operand address field of an instruction designates an odd register
address for a pair of general registers that contain a double word operand. The
operation is suppressed.

4. A floating-point instruction addresses a floating-point register other than 0, 2,
4, 6. The operation is suppressed.

Specification - An address error (specification) interrupt occurs when:

1. A data, instruction, or control word address does not specify a doubleword, word,
halfword, or byte boundary as required by the particular instruction concerned.
The operation is suppressed.

2. The multiplier or divisor in decimal arithmetic exceeds 15 digits and sign. The
operation is suppressed.

3. The first operand field is not longer than the second operand field in decimal divi­
sion or multiplication. The operation is suppressed.

4. Bit positions 28 through 31 of the second operand of a Set Storage Key or Insert
Storage Key instruction are not zero. The operation is suppressed.

5. The Memory Protect option is not installed and the protection key in the Inter­
rupt Status register is not zero. The operation is suppressed.

6. The Program Control instruction specifies an instruction address which is not on
a halfword boundary. The operation is suppressed.

Protection - An address error (protection) interrupt occurs when the storage key
and the protection key of the result main memory location do not match, and neither
is zero. The operation is suppressed if the first main memory location specified that
the instruction is in a protected area. The operation is terminated with unpredictable
results if the instruction is in progress when the protected area is addressed. (This
interrupt can only occur if the Memory Protect option is installed.)

____ ", ___ ,_, __ , __ _____ ,, _______ , ____________ -L.. ______ --'--__ --------'

Table 11. Interrupt Conditions (Cont'd)

~-----------,-----------------------------~~-----------,---.
Priority No.

24

25

26

I-

27

28

Condition

Address Error
(Cont'd)

Data Error

Exponent Overflow

Divide Error

Significance Error

Flag Bit

223

224

225

226

227

Explanation

Notes:

1. If an address error type interrupt occurs during an input/output operation (after
initiation), an address error interrupt does not occur. Instead, a channel inter­
rupt occurs for the appropriate channel.

2. It is a program restriction that the mask bit in processor state P3 for this inter­
rupt condition must always be zero when this interrupt occurs.

----~

This interrupt occurs when any of the following conditions occur::

1. The sign or digit codes of operands in decimal arithmetic, editing, or Convert To
Binary instructions are incorrect.

2. Fields overlap incorrectly in decimal arithmetic.

3. A decimal multiplicand has too many high-order, significant digits.

The operation is terminated (suppressed if the operation is a Convert To Binary
instruction) upon detection of any of the above.

--- ----------------

The exponent overflow interrupt occurs when the result exponent of floating-point
addition, subtraction, multiplication, or division is greater than 127. The operation
is terminated.

The divide error interrupt occurs when any of the following occur:

1. A quotient exceeds the general register size in fixed-point division, including divi­
sion by zero. The division is suppressed.

2. The result of a Convert To Binary instruction exceeds one word. The conversion
is completed by ignoring information which is outside the general register size.

3. A quotient exceeds the specified data field size in decimal divide. The division is
suppressed.

4. Floating-point division is attempted with a divisor whose mantissa is zero. The
operation is suppressed.

-----~--- ----------------------------------- - ------- - - -- - - ---

This interrupt occurs when the result mantissa of a floating-point add or subtract
instruction is zero. If the interrupt is permitted (by the program mask and the
the interrupt mask) the operation is completed, the exponent is unaltered, and the
interrupt is taken. If the interrupt is inhibited by the program mask, the interrupt
condition is cancelled and the operation is completed by setting the result to true zero
(zero sign, zero exponent and zero mantissa). If the interrupt is permitted by the
program mask but inhibited by the interrupt mask, the interrupt remains pending
and the operation is completed by setting the result to true zero (zero sign, zero
exponent and zero mantissa).

- -----------------'--

Table 11. Interrupt Conditions (Cont'd)

Priority No. Condition Flag Bit Explanation

--------,--4-----------------------------4-----------4---~
29

30

31

I----~-~

32

Exponent Underflow 228 This interrupt occurs when the result exponent of a floating-point addition, subtrac­
tion, multiplication, or division is less than zero. The operation is completed by
making the result true zero (zero sign, zero exponent, and zero mantissa). If the
interrupt is inhibited by the program mask, the interrupt condition is cancelled. If
the interrupt is permitted by the program mask, but inhibited by the interrupt mask,
the interrupt remains pending .

. ---.--~--------------- ~ .. ~.~.-~ .. ~~---t-----........ - -- ... ----.. ~ ~ .. -.... ~-.---.. -----------------------.---___i

Decimal Overflow

--~.-~-----.---------------_+-------- c .. ····

Fixed-Point Overflow 230

This interrupt occurs when the result field is too small to contain the result of a
decimal operation. The operation is completed by ignoring the overflow data. If the
interrupt is inhibited by the program mask, the interrupt condition is cancelled. If
the interrupt is permitted by the program mask, but inhibited by the interrupt mask,
the interrupt remains pending.

. ~- .. -~- --.----.-.-------------------------------I

This interrupt occurs when a high-order carry occurs or high-order significant bits
are lost in fixed-point addition, subtraction, shifting, or sign control operations. The
operation is completed by ignoring the overflow data. If the interrupt is inhibited by
the program mask, the interrupt condition is cancelled. If the interrupt is permitted
by the program mask, but inhibited by the interrupt mask, the interrupt remains
pending .

. --... -~ .. --.. ~~~.----~ .. ~~~ ----.-..... ----------t-----.. - -.-.+--.. --.. --........ ---...... --~ ... ----~-~--. -------.----.-----------------------

Test Mode 231 This interrupt provides program control over the processor during program testing.
The program test interrupt flag is set by the Program Control instruction. When the
interrupt flag bit and the related interrupt mask bit in the state to be initiated are
both set, an interrupt occurs after the first instruction that is executed in the initi­
ated processor state.

'----.-.--....... - ... --.- _~._ ... _._ .. __________________ ..L...... _____ _'_ ___________________ --------_____________ ..J

INTERRUPT
MECHANIZATION

Automatic Interrupt

Block 1

Program Interrupt

• There are two ways of causing a change of processor state. They are:

1. Automatic Interrupt: effected when any interrupt condition de­
scribed in table 11 occurs, and is permitted.

2. Program Controlled Interrupt: effected when a Program Control
instruction is executed.

Whenever the processor state is changed, either by automatic inter­
rupt or by the execution of a Program Control instruction, some machine
conditions must be stored in the P counter and the Interrupt Status reg­
ister of the terminated state for possible use when the state is initiated
again. In addition, certain machine conditions associated with the state
being initiated must be extracted from the P counter and the Interrupt
Status register of the new state.

All the storing and extracting required when processor status are
changed is accomplished by hardware.

• When an automatic interrupt condition occurs, the following events
occur: (See figure 2.)

• A check is made to see if the interrupt condition is one of the following
four:

Significance Error

Exponent Underflow

Decimal Overflow

Fixed-Point Overflow

Block 2 • If the interrupt condition is one of the above, the program mask
(machine register) for the current program state is checked to see if the
interrupt is permitted. If the program mask indicates that the interrupt
is inhibited (mask == 0), the interrupt condition is cancelled and the next
instruction in the current processor state is executed.

Block 3 • If the interrupt condition is not one of the four program interrupts,
or is one of the four program interrupts but the program mask indicates
that the interrupt is to be permitted (mask == 1), the specific bit associated
with the interrupt condition is set in the Interrupt Flag register.

Block 4- • The bit in the Interrupt Flag register is compared with the correspond-
ing bit in the Interrupt Mask register for the current state. If the bit in
the Interrupt Mask register is reset (0), the interrupt condition remains

! pending and the next instruction in the current processor state is executed.
The interrupt remains pending until the mask is changed to a permit status
and the interrupt is serviced.

Block 5 • If the bit in the Interrupt Mask register is set, the interrupt is taken
and information (ILC, CC, program mask) is stored in the P counter of
the state being terminated.

23

2.

Is Program Mask Bit
Set (1)?

No

Yes

Cancel the Interrupt and Proceed
with Next Instruction

l.

One of Four
Program Interrupts?

Yes No

3.

Set Bit in the Interrupt
Flag Register

4.

Is Corresponding Bit Set
(1) in Interrupt Mask

Register?

5. Yes

Store ILC, CC, and Program

Mask in P Counter of

Term inated State

6.

Is it Power Failure or
Machine Check Interrupt?

7.

9. No

Initiate P3, Reset Flag in
Interrupt Flag Register

8.

10.

Extract CC and Program Mask
from P Counter of Initiated

State

Figure 2. Functional Logic of Automatic Interrupt

24

No

Program Interrupt

Hold Interrupt Pending
and Continue at Next

Instruction

Yes

In itiate P 4, Reset Flag in
Interrupt Flag Register

If the Interrupt is a
Machine Check Set the

Program Indicators in the
ISP of P4 (70/45-55 Only)

Program Interrupt

11.
0p

Extract Key, Decimal Code,
and Privilege Mode bits from

ISR of Initiated State

12.

Store Identity of Term inated

State in IS R of

Initiated State

13.

Store Weight of Interrupt in

GR No. 15 of Initiated State

14.

Supervisor Call Interrupt?
Yes

I 15 ..

Store Call in ISR of State in
No which the Supervisor call

was executed

16.

Staticize and Execute
instruction specified by

P Counter of Initiated State

Interrupt Analys is Program

Figure 2. Functional Logic of Automatic Interrupt (Cont'd)

25

Automatic Interrupt

(Cont'd)

Blocks 6 and 7

Block 8

Block 9

Block 10

Block 11

Block 12

Block 13

Blocks 14 and 15

Block 16

Program Controlled
Interrupt

Block 1

Block 2

Program Interrupt

• If the interrupt condition is a power failure or a machine check, the
Machine Condition State P 4 is initiated. The flag in the Interrupt Flag
register is reset.

• If the interrupt is a Machine Check, the Program Indicators are stored
in the Interrupt Status register of P 4 • (The Program Indicators are appli­
cable only on the 70/45 and 70/55 Processors.)

• If the interrupt condition is not a power failure or machine check, the
Interrupt Control State P 3 is initiated. The flag in the Interrupt Flag
register is reset.

• The condition code setting and the program mask are extracted from
the P counter of the initiated state and stored in the appropriate hardware
registers.

• The memory protection key, the decimal code and the privileged mode
bits are extracted from the Interrupt Status register of the initiated state
and stored in the appropriate registers.

• The state being terminated is identified to the state being initiated by
setting an interrupted state identifier code in the Interrupt Status register
of the initiated state.

• The weight of the condition causing the interrupt is stored in general
register No. 15 of the initiated state (P3 or P 4).

• If the interrupt condition is a Supervisor Call, the Rl and R2 fields of
the Supervisor Call instruction are stored in the rightmost eight-bits of the
Interrupt Status register of the state in which the instruction is executed.

• The instruction at the address specified in the P counter of the initi­
ated state is staticized and executed.

The Program Control instruction transfers the program from one
processor state to another. This instruction is a privileged operation and
can be executed only if the state in which the processor is operating is in
the privileged mode (bit position 15 of the Interrupt Status register == 0).
When a Program Control instruction is executed, the following events
occur. (See Figure 3.)

• The address (BdD1) specified in the Program Control instruction is
stored in the P counter of the terminated state. The length of the last
instruction executed in the terminated state, the condition code setting,
and the program mask is stored in the P counter of the terminated state.

• A check is made to see if the program test bit in the Program Control
instruction is set.

26

8.

9.

10

11

12.

Program
Control

Instruction

l.

Store Address in Program
Control Instruction in

P Counter of
Term inated State.

Store ILC, CC and Program
Mask, in P Counter
of Terminated State

2. I
Is Program Test Bit in

Yes Program Control

Instruction Set?

Initiate State Specified in

Program Control Instruction.

Extract CC & Program

Mas k from P Counter of

Initiated State

Extract Key, Decimal Code
and Privilege Mode from the

ISR of Initiated State.

Set Program Test

Flag Bit (231) in
Interrupt Flag Register.

Statici ze and Execute
Instruction Specified in P
Counter of Initiated State.

(An interrupt occurs after the
execution of this instruction)

3.

4.

5.

6.

7.

Program Interrupt

Compare IFR to IMR of

State to be initi ated by
Program Control

Instruction

No Interrupts
Outstanding

Initiate State Specified in
Program Control Instruction

Extract CC and Program
Mask from P Counter of

Initiated State.

Extract Key, Decimal Code
and Privilege Mode from the

ISR of Initiated State.

Stati ci ze and Execute
Instruction Specified in

p Counter of Initiated State.

An outsta
Interru
Requir
Servici

nding
pt
es
ng

I
Se e

Figu re 2
k 6 Bloc

Figure 3. Functional Logic of Program Control Instruction

27

Program Controlled
Interrupt

(Cont'd)
Block 3

Block 4-

Block 5

Block 6

Block 7

Block B

Block 9

Block 10

Block 11

Block 12

Progratn Interrupt

• If the program test bit is not set, the Interrupt Mask register for the
state to be initiated by the Program Control instruction is compared to the
Interrupt Flag register. If an interrupt condition has occurred, the events
described under automatic interrupt take place (see figure 2, block 3).

ltnportant: If an interrupt is outstanding in the state to be initiated by
the Program Control instruction, the number of the initiated
state specified by the Program Control instruction is stored in
the interrupt status identifier field of the Interrupt Status
register of the initiated state (P3 or P 4).

• If an interrupt condition is not outstanding in the state to be initiated
by the Program Control, instruction control is transferred to the state
specified by the Program Control instruction (directly or indirectly - See
Program Control instruction) .

• The condition code setting and the program mask are extracted from
the P counter of the initiated state and stored in the appropriate machine
registers.

• The memory protection key, the decimal code and the privileged mode
bits are extracted from the Interrupt Status register of the initiated state
and stored in the appropriate machine registers.

• The instruction at the address specified in the P counter of the initi­
ated state is staticized and executed.

• If the program test bit is set, control is transferred to the state speci­
fied by the Program Control instruction (directly or indirectly - see Pro­
gram Control instruction).

• The condition code setting and the program mask are extracted from
the P counter of the initiated state and stored in the appropriate registers.

• The memory protection key, the decimal code, and the privileged mode
bits are extracted from the Interrupt Status register of the initiated state
and stored in the appropriate registers.

• The program test flag bit (2:{1) in the Interrupt Flag register is set.

• The instruction at the address specified in the P counter of the initi­
ated state is staticized and executed.

Notes:

1. 'Vhen a Program Control instruction has the program test bit set,
the first instruction of the initiated state is always executed before
any interrupt is taken.

28

Program Controlled
Interrupt

Block 12
(Cont'd)

Program Interrupt

2. If the initiated state permits the program test interrupt (via the
Interrupt Mask register), a program test interrupt occurs after
the first instruction in the initiated state is executed.

3. An interrupt condition can occur while executing the first instruc­
tion of the initiated state. If it does, and is permitted, it is serviced
before the program test interrupt.

General Notes for Program Interrupt:

1. The decimal mode in the 70/45 and 70/55 Processors is either
ASCII or EBCDIC as specified by bit 12 in the Interrupt Status
register. When an automatic interrupt occurs or a Program Con­
trol instruction is executed, the decimal mode is not stored in the
Interrupt Status register of the terminated state. The mode of the
state being initiated is determined by the mode bit in its own
Interrupt Status register. .

Consequently, to change mode, the mode bit of the Interrupt Status
register associated with the appropriate state must be altered by
the program, and that state must be initiated either by an inter­
rupt condition or a Program Control instruction. This is the
method available to the program for changing the mode.

2. The interrupt flags are scanned to determine whether or not an
interrupt shall occur if the Interrupt Mask register associated with
the current state or the Interrupt Flag register are written into
by the program.

3. Changing the protection key, decimal mode, or privileged mode
fields in the Interrupt Status register does not change the protec­
tion key, machine mode, or privileged mode bits of the associated
processor state. To change the status of the processor, the state
concerned must be initiated by an interrupt condition or a Program
Control instruction.

29

INPUT/OUTPUT
OPERATION

INTRODUCTION • The RCA Model 70/35-45-55 Processors can control a variety of input/

INPUT/OUTPUT
CHANNELS

Selector Channels

i output devices. All the input/output devices function independently of
normal processor operation. This simultaneous operation is achieved by
processor input/output channels that control input/output operations. The
control electronics of each peripheral device is connected to an input/
output channel via the RCA Standard Interface. This interface permits
all peripheral equipment (with the exception of remote communications
and random access devices) to be attached to any channel in the 70/35-
45-55 Processors. Remote communication devices must be connected to the
multiplexor channel. Random access devices must be connected to a selector
channel.

After an input/output operation is initiated by the program, data is
transferred, byte-by-byte, between the processor and the peripheral device.
This data transfer over the standard interface is controlled by the appli­
cable input/output channel, freeing the processor to continue the program.
Each of the channels on the 70/35-45-55 Processors can interrupt normal
-process or operations.

• The 70/35-45-55 Processors have two types of input/output channels,
selector channels and a multiplexor channel.

• Up to two selector channels (optional) can be attached to a 70/35
Processor; up to three selector channels (optional) can be attached to a
70/45 Processor; and up to six selector channels (optional) can be attached
to a 70/55 Processor. Each selector channel can address up to 256
peripheral devices.

On the 70/35 and 70/45 Processors, each selector channel has two
standard interface trunks; on the 70/55 Processor each selector channel
has four standard interface trunks. Each standard interface trunk can be
connected to the control electronics of an input/output device. A device
control electronics controls one device (i.e., card reader, printer), or a
number of devices (i.e., tape controller: up to 16 tape stations).

Only one device can operate on a selector channel at one time. How­
ever, all selector channels can operate simultaneously with, and independ­
ently of, normal processor operation.

The multiplexor channel operates simultaneously with selector chan­
nels and independently of normal processor operation.

Control and operation of each input/output device connected to the
multiplexor channel is done through a set of subchannel registers con­
tained in non-addressable main memory.

In addition to the subchannel registers, four 32-bit registers, called
multiplexor registers, are provided in scratch-pad memory. These registers
are used for subchannel initiation and termination. Upon servicing a
termination interrupt of a device connected to the multiplexor channel, the
information which pertains to the completed operation is transferred from
the non-addressable main memory to the scratch-pad memory.

30

Selector Channels
(Cont'd)

Multiplexor Channel

Input/Output Operation

The multiplexor registers in scratch-pad memory are called:

Channel Address Register (CAR)
Channel Command Register-II (CCR-II)
Channel Command Register-I (CCR-I)
Assembly /Status Register

Each selector channel is controlled and operated via four 32-bit reg­
isters. These registers are located in scratch-pad memory and are called:

Channel Address Register (CAR)
Channel Command Register-II (CCR-II)
Channel Command Register-I (CCR-I)
Assembly/Status Register

All the information that is required to control selector channel opera­
tion is contained in these registers. Data is transferred between the selec­
tor channel and the peripheral device one byte at a time.

Note: Because the scratch-pad memory is part of non-addressable main
memory in the 70/35 Processor, machine registers are used to
control selector channel operation and thereby provide a higher
throughput rate. The registers in equivalent scratch-pad memory
are used only during initiation and termination of input/output
operations.

• The multiplexor channel is standard on the 70/35-45-55 Processors,
and can address up to 256 devices.

The multiplexor channel has seven standard interface trunks (70/35)
or eight standard interface trunks (70/45, 55) each of which can be con­
nected to a device control electronics. This permits the multiplexor channel
to operate devices on all seven or eight trunks simultaneously. The limit as
to the number of input/output devices that can be connected is determined

I by the device control electronics. An eighth trunk (70/35) or a ninth trunk
(70/45-55) is provided on the multiplexor channel for exclusive use by the

I Model 70/97 Console.

Although the multiplexor channel can handle slow-speed devices on a
time-sharing basis, it can accommodate fast devices through a burst mode.
Burst mode operation is specified by the program, and causes a transfer of
data to occur between a specific device and main memory without time-

I sharing the multiplexor channel with other input/output devices. If a
program is to specify burst mode, a program check is made that other
devices on the multiplexor channel have completed operation. This ensures
that data is not lost.

Data is transferred between the multiplexor channel and each periph­
eral device one byte at a time.

Note: When a burst mode operation is executed the subchannel registers
are not utilized. The input/output operation is similar to a selector
channel operation and is controlled entirely by the multiplexor
registers in scratch-pad memory.

31

INPUT/OUTPUT
OPERATIONAL

CONTROL
Programming

Considerations
Prior to

Input/Output
Initiation

Input/Output Initiation

Channel Servicing

Servicing a
Data Transfer

End and Chaining
Servicing

Interrupt Servicing

Input/Output Operation

• All input/output operations are executed by the selected channel and
are independent of normal processor operation. Prior to initiation of an
input/ output operation, the program must supply information concerning
the operation. The program must store information in main memory, such
as the type of operation (read, write, etc.), the data area address in main
memory at which to begin the operation, and the number of bytes to be
transferred by the channel. This information is called the Channel Com­
mand Word (CCW).

After the channel command word is stored in main memory, the
I address of this CCW must be stored in a standard main memory location.

This standard location is called the Channel Address Word (CAW) and is
main memory locations 72 through 75.

Once the channel address word and the channel command word have
been assembled, the input/output operation can be initiated.

• All input/output operations are initiated by executing a Start Device
instruction or by manually depressing the LOAD pushbutton/indicator on
the Model 70/97 Console. Execution of the Start Device instruction causes
the information contained in the Channel Address Word (CAW) and the
Channel Command Word (CCW) to be transferred to the input/output
channel registers in scratch-pad memory for the specified selector channel.
If the specified channel is the multiplexor channel, this information is
transferred to the subchannel registers in non-addressable main memory
for the specified device. Once this has been accomplished, the Start Device
instruction terminates and the input/output operation has been initiated.
Completion of the input/output operation is under control of the channel,
and normal processor operation can proceed.

• When an input/output operation has been initiated and the input/
output device control electronics is ready to send or receive a data byte,
the channel asks the processor for a service request. When the processor

I permits the service request, a data transfer occurs. This servicing permits
the transfer of a data byte between main memory and the input/output
device to occur. It also updates the information in the input/output channel
registers or the subcharinel registers (multiplexor) to prepare for the next
data byte.

• When an input/output operation has been completed, the channel asks
the processor for another service request. This service request is required
so that the channel can (1) tell the device control electronics to set a
channel interrupt condition, or (2) check the current command to see if
chaining is specified, and if it is to initiate the next command.

• If an input/output operation has been completed and chaining has not
been specified, the input/output device control electronics causes the
appropriate channel interrupt flag to be set in the Interrupt Flag register.
If the Interrupt Mask register for the current processor state permits the

32

Interrupt Servicing
(Cont'd)

Servicing Priority

Input/Output Operation

interrupt, it is taken. At this time the channel asks the processor for
another service request. This service request is required so that the channel
can transfer information concerning the status of the device and the
channel to the input/output channel registers in scratch-pad memory. If
the interrupt is caused by a device on the mUltiplexor channel, the appro­
priate subchannel registers are transferred from non-addressable main
memory to scratch-pad memory.

Because all input/output servicing (servicing a data transfer, end and
chaining servicing, and interrupt servicing) requires that the channel
utilize main memory, scratch-pad memory and non-addressable main
memory (multiplexor devices), normal processor operation is· held-off
until the servicing has been completed. Servicing is time-shared with
normal mode processing.

• Because input/output operations on all selector channels and the mul­
tiplexor channel proceed simultaneously, the processor must constantly
scan the channels to determine their servicing status. If servicing is
required by a channel, scanning is stopped and the input/output device
is serviced. After a device is serviced, scanning is resumed.

Each selector channel and the multiplexor channel has a scanning
priority. If servicing is required by devices on more than one channel, the
channel with the highest priority is serviced first. The priority is as
follows:

Selector Channel No. 1

Selector ChannelN o. 2

Selector Channel No.3 (70/45 and 70/55 only)

Selector Channel No.4 (70/55 only)

Selector Channel No.5 (70/55 only)

Selector Channel No.6 (70/55 only)

Multiplexor Channel

The devices on the multiplexor have a priority depending upon the
, standard interface trunk to which they are connected; the lower the

standard interface trunk in the scanning sequence, the higher the priority.

After a device has been serviced, scanning always resumes with Selec­
tor Channel No. 1. With this scanning technique, the devices with the
shortest holding time (high-speed devices) must be connected to the
channel with the highest scan priority. Servicing of a device connected to
the multiplexor channel may be temporarily interrupted by a selector

I channel service request. If this occurs, all selector channels requiring
! service are served before multiplexor channel servicing resumes.

The most optimum connection of device control electronics to selector
I channels and the mUltiplexor channel depends on the requirements of each

installation. However, a general rule is to connect the device control elec­
! tronics which control devices with the highest data transfer requirements
I to the channels with the highest priority. The remaining device control

electronics are connected in descending order of data transfer require­
ments to descending priority sequence of channels.

33

Channel Address
Word

(CAW)

Channel
Command

Word (CCW)

Input/Output Operation

• The Channel Address Word (CAW) is used by the Start Device in­
struction (see Privileged Instructions section), and specifies the address
of the first Channel Command Word (CCW) used to control the operation
of the input/output device. If the Memory Protect option is installed, the
memory protection key must also be stored in the CAW before a Start
Device instruction is issued.

The CAW must be stored in main memory locations 72 through 75
before executing a Start Device instruction and has the following format:

Key 0000 Address of CCW

o 3 4 7 8 31

Bit Positions 0 through 3 contain the memory protection key. It is
used to ensure that data is not being transferred to a protected memory
area. If the Memory Protect option is not installed, these bits must be zero.

Bit Positions 4- through 7 are reserved for future expansion.

Bit Positions 8 through 31 contain the main memory address of the
initial channel command word.

• The Channel Command Word (CCW) supplies the information for
controlling the operation of the input/output device. This information
must be stored in main memory by the program before a Start Device
instruction is issued. The CCW consists of two 32-bit words in main
memory that must be aligned on a double word boundary. The CCW has
the following format:

32

Command
Code

36 37

Address of First Data Byte or Address of
Next CCW if Command is a Transfer in Channel

7 8

Reserved for
Future Expansion Byte Count

47 48

31

63

Bit Positions 0 through 7 contain the command code, which specifies
the operation to be performed by the I/O device. (See table 12.)

Table 12. Command Code Operations

Command Code Operation

0 1 2 3 4 5 6 7 Bit Position

M M M M 0 0 0 1 Sense

M M M M M/O 0 1 0 Read Reverse

M M M M/B M/O 0 1 1 Write

M M M M/B M/O 1 0 0 Write Erase

M M M M/B M/O 1 0 1 Read

M M M M 0 1 1 1 Write Control

M M M M 1 0 0 1 Transfer in Channel

34

Channel Command
Word (CCW)

(Cont'd)

Input/Output Operation

Notes:

1. Any command code other than the ones shown in table 12 is illegal
and must not be programmed. If this rule is violated, the resulting
effect on the channel and device is unpredictable. If one of the
legal commands is issued to a device which is not capable of
accepting the operation (i.e. a Write command is issued to a card
reader), the command, after being accepted, is terminated by the
device control electronics. A channel interrupt occurs and the sense
byte (s) indicate the illegal operation.

2. The bit position designated as "B" indicates that the specified
device is connected to the multiplexor channel and the multiplexor
is to be operated in the burst mode. If this position is a 1 bit, the
multiplexor channel is locked-on to the selected device, and the
servicing of other devices connected to the multiplexor channel is
inhibited. A burst mode can only be initiated when it is specified
in the first command of a chain. Subsequent commands, linked by
chaining, cannot initiate a burst mode. However, if the first com­
mand in a chain specifies burst mode, all commands in the chain
are executed under burst mode conditions.

3. Bit positions designated as M (modifier) indicate variations of the
operation and are unique to the specific input/output device. Defi­
nition of these M bits is provided in the applicable input/output
device reference manuals.

An explanation of the commands shown in table 12 is as follows:

Sense (0001) - Information is transferred from the specified input/
ouput device control electronics to main memory. The information trans­
ferred indicates unusual conditions that occurred as a result of the last
operation performed by the device. (The information received is defined in
the individual input/output device reference manuals.) The address speci­
fied by the CCW is the leftmost main memory location of the input area.

Note: Parity is not checked on data transferred to main memory by this
command.

Read Reverse (0010) - Information is transferred from the specified
input/ output device to main memory in descending order. The address
specified by the CCW is the rightmost main memory location of the input
area.

Write (0011) - Information is transferred from main memory to the
specified input/output device. The address specified by the CCW is the
leftmost main memory location of the output area.

Write Erase (0100) - Information is transferred from main memory
to the specified input/output device control electronics. Data is not written
to tape and the tape is erased in accordance with the byte count (applicable
to magnetic tapes only). The address specified by the CCW is the leftmost
main memory location of the output area.

35

Channel Command
Word (CCW)

(Cont'd)

Input/Output Operation

Read (0101) - Information is transferred from the specified input/
output device to main memory in ascending order. The address specified by
the CCW is the leftmost main memory location of the input area.

Write Control (0111) - Information is transferred from main mem­
ory to the specified input/output device control electronics. The device
control electronics interprets this information as control information and
initiates a function not involving a data transfer. The address specified by
the CCW is the leftmost main memory location of the output area.

Transfer in Channel (1001) - This command provides chaining of
CCW's that are not located in adjacent double word main memory. An
actual branch to the address of the next CCW is taken. The branch address
(specified in bits 8 through 31 of the channel command word) must specify
a double word location. (Bits 29 through 31 must be zero.) This command
cannot be the first command in a chain. A Transfer in Channel command
may address another Transfer in Channel command.

Note: The flag bits are ignored if a Transfer in Channel command is spec­
ified. The flag bits of the preceding command remain effective.

Bit Positions 8 through 31 (see CCW format) contain the address of
the first byte in main memory at which the input/output operation begins,
or if the command is a transfer in channel, the main memory address of
the next CCW to be executed. The address of the first byte of the next data
segment can also be specified if data chaining.

Bit Positions 32 through 36 are the flag bits and have the following
significance:

1. Bit position 32 is the Chain Data flag (CD). In addition to trans­
ferring data to and from a single main memory area, the 70/35-
45-55 Processors can read into, or write from, many non-con­
tiguous areas of main memory by executing one Start Device
instruction. When data chaining is specified by setting this bit, a
chain (series of channel command words in sequence) is used and
each channel command word designates an area of main memory
at which to continue the current operation. When one channel
command word has a lapsed byte count, the next channel command
word in sequence is automatically fetched. The current operation
is continued at the main memory area specified by the new channel
command word. The command code of the new CCW is ignored
unless it specifies a Transfer in Channel. If any of the following
channel status byte conditions occur, data chaining is suppressed
(see Channel Status Byte for further definition) :

Program Check

Protection Check

Channel Control Check

Channel Data Check (if the operation is a write)

Incorrect Length Condition

36

Channel Command
Word (CCW)

(Cont'd)

Input/Output Operation

When data chaining, the chain data flag in the last channel com­
mand word must be reset. This causes the data chain to be termi­
nated upon completion of the operation specified by this CCW.

2. Bit position 33 is the Chain Command flag (CC). The 70/35-45-55
Processors can perform several operations to an input/output
device by executing one Start Device instruction. When command
chaining is specified by setting this bit, a chain (series of channel
command words in sequence) is used and each channel command
word specifies the operation to be performed. When the operation
specified by one channel command word is completed, the next
channel command word in sequence is automatically fetched and
the operation specified is initiated. If any of the following condi­
tions occur, command chaining is suppressed:

a. Channel status byte conditions (see channel status byte for
further definition).

Incorrect Length Condition and suppress length flag is zero.

Program Check

Protection Check

Channel Control Check

b. Standard device byte conditions (see standard device byte for

further definition).

Secondary Indicator is set

Device Inoperable is set

Device End is not set

When command chaining, the chain command flag in the last
channel command word must be reset. This causes the command
chain to be terminated upon completion of the operation specified
by this CCW.

3. Bit position 34 is the Suppress Length Indication flag (SLI).
Incorrect length occurs in the 70/35-45-55 Processors when the
number of bytes specified in the channel command word is not
equal to the number of bytes sought by, or sent from, the input/
output device. (When a command or chain of commands termi­
nates, the data byte count has not lapsed.) An example of an incor­
rect length condition is a tape read which terminates on a gap
before the byte count has lapsed. If the SLI bit is set, the program
does not receive an indication of an incorrect length upon termi­
nation of the input/output operation. If the SLI bit is reset, the
program receives an indication of an incorrect length upon termi­
nation of the input/output operation. This indication is contained
in the channel status byte.

37

Channel Command
Word (CCW)

(Cont'd)

INPUT/OUTPUT
CHANNEL
REGISTERS

Input/Output Operation

Notes:

1. If the SLI bit is set and the chain data flag of the final CCW in a
chain is reset, the incorrect length indication is suppressed, if it
occurs.

2. If the chain data flag of a CCW is set and an incorrect length
condition occurs, the program is notified of the condition regardless
of the setting of the SLI flag.

4. Bit position 35 is the Skip flag (SKIP). In conjunction with data
chaining, portions of a block of information can be suppressed
during an input operation. If this bit is set, the transfer of data
to main memory specified by this command is suppressed. This bit
can be used only with Read, Read Reverse or Sense commands.

5. Bit position 36 is the Program Controlled Interrupt flag (PCI).
During data and command chaining, the 70/35-45-55 Processors
have the ability to notify the program of the progress of chaining
through an interrupt when a channel command word is fetched.
When this bit is set, a channel interrupt occurs when the channel
command word is fetched from main memory and the first data
byte has been transferred. This flag is ineffective if the channel is
the multiplexor operating in burst mode.

6. Bit positions 37 through 47 are reserved for future expansion and
must be set to all zeros by the program.

7. Bit positions 48 through 63 contain the count of the number of
bytes to be transferred to or from main memory during the input/
output operation (from 0 to 65,536 bytes). An initial count of zero
specifies the maximum number of bytes to be transferred.

• The Channel Address Word (CAW) and the Channel Command
Word(s) (CCW) are stored by the program in main memory. However,
when an input/output operation is initiated, the information contained in
the CAW and the first CCW is transferred to the scratch-pad input/output
channel registers for the channel specified by the Start Device instruction.
(See table 13.) Because the access speed in scratch-pad memory is faster
than main memory, faster servicing of input/output devices is possible.
These registers also eliminate the need for the program to reset channel
command words, because incrementing and decrementing addresses and
byte count is done in scratch-pad memory. These registers allow the input/
output operation to proceed under control of the specified channel, thereby
permitting normal mode processing to continue.

Note: Because the scratch-pad memory is part of non-addressable main
memory in the 70/35 Processor, machine registers are used to con­
trol selector channel and multiplexor channel operation and thereby
provide a higher throughput rate. The registers in equivalent
scratch-pad memory are used only during initiation and termination
of input/output operation.

38

INPUT/OUTPUT
CHANNEL
REGISTERS

(Cont'd)

Channel Address
Register (CAR)

Channel Command
Register-I (CCR-I)

Input/Output Operation

Table 13. Input/Output Channel Registers

Selector Channel Multiplexor Channel

Register Scratch-Pad Scratch-Pad Non-Addressable
Memory Memory Main Memory

Channel Address 1 per selector 1 per multiplexor 1 per device
Register (CAR) channel channel

Channel Command 1 per selector 1 per mUltiplexor 1 per device
Register-I (CCR-I) channel channel

Channel Command 1 per selector 1 per multiplexor 1 per device
Register-II (CCR-II) command channel

Assembly / Status 1 per selector 1 per mUltiplexor None
Register channel channel

The format for each of these four 32-bit registers is as follows:

Device No. Address of next CCW

o 7 8 31

Bit Positions 0 through 7 contain the device number specified in the
input/ output operation. This number is obtained from the BdDl Address
in the Start Device instruction.

Bit Positions 8 through 31 contain the address of the next channel
command word if chaining is specified. * This information is obtained by
incrementing the address of the first CCW by eight. The address of the
first CCW is obtained from the Channel Address Word (CAW) .

0000

o
I

Command I
Code I

3 4 7 8

Data Address of First Byte or Location of new CCW
if Command is Transfer in Channel

31

Bit Positions 0 through 3 are used by the processor. It should be noted
I that these bits are used in the channel command word as modifier bits.
I Once the command has been initiated and the entire 8-bit command code

has been sent to the specified device control electronics, these bits are used
by the processor. They no longer contain the modifier bits.

Bit Positions 4- through 7 contain the command code. This code is
obtained from the channel command word. The commands are defined as
follows:

Read (0101)
Write (0011)
Write Control (0111)
Sense (0001)
Read Reverse (0010)
Write Erase (0100)
Transfer in Channel (1001)

* If a program check occurs as a result of a Transfer in Channel, the low order 3 bits
of the CAR must be ignored in the 70/35 Processor. These 3 bits are cleared to zero in
the 70/35 system.

39

Input/Output Operation

Channel Command Bit Positions 8 through 31 contain the address of the initial byte in
Register-I (CCR-I) main memory at which the operation begins; or contains the branch

(Cont'd) i address if the command is a Transfer in Channel. This information is
. obtained from the Channel Command Word.

Channel Command
Register-II (CCR-II)

Assembly /Status
Register

Flags Channel Status Byte Byte Count

o 4 5 7 8 15 16 31

Bit Positions 0 through 4- contain the flags. The flags are obtained
from the channel command word. The flag bits are defined as follows:

Bit 0 - Chain data flag (CD)

Bit 1 - Chain command flag (CC)

Bit 2 - Suppress length indicator flag (SLI)
Bit 3 - Skip flag (SKIP)
Bit 4 - Program controlled interrupt flag (PCI)

Bit Positions 5 through 7 are reserved for future use.

Bit Positions 8 through 15 contain the channel status byte. The bits
of the channel status byte are generated as a result of the input/output
operation and are defined as follows:

Bit 8 - Program Controlled Interrupt
Bit 9 - Incorrect Length
Bit 10 - Program Check
Bit 11 - Protection Check
Bit 12 - Channel Data Check
Bit 13 - Channel Control Check
Bit 14 - Reserved for use by the processor
Bit 15 - Termination Interrupt

(For a detailed description of the above see Channel Status Byte sec­
tion, below.)

Bit Positions 16 through 31 contain the number of bytes of main
memory to or from which data is transferred. This information is obtained
from the Channel Command Word. The count can range from 0 bytes to
65,536 bytes.

Data Bytes Standard Device Byte

o 23 24 31

Bit Positions 0 through 31 are used as an intermediate storage area
during the transfer of data between an input/output device connected to
a selector channel and "70/55 Processor main memory. Data is transferred
one byte at a time across the channel and the information is stored in these
scratch-pad memory locations until a word (4 bytes) is accumulated. Then,
the word is transferred to main memory, thus requiring memory access on
a. word basis rather than byte-by-byte. In the 70/35-45 Processors, inter­
mediate storage is not used and data is transferred one byte at a time
directly to main memory.

40

Assembly /Status
Register

(Cont'd)

INPUT/OUTPUT
INSTRUCTIONS

Start Device Instruction

Block 1

Input/Output Operation

When the device status is stored as a result of an input/output opera­
tion, bit positions 24 through 31 of the assembly/status register are used
to store the standard device byte. The bits of the standard device byte
supply status information pertaining to the device control electronics and
the input/output device and are defined as follows:

Bit 24 - External Device Request Interrupt Pending
Bit 25 - Terminating Interrupt Pending
Bit 26 - Device Busy
Bit 27 - Control Busy (not applicable)
Bit 28 - Device End
Bit 29 - Secondary Indicator
Bit 30 - Device Inoperable
Bit 31- Status Modifier

(For a detailed description of the above, see Standard Device Byte
section, below.)

• There are four processor instructions which are concerned with input/
output operations. They are Start Device, Halt Device, Check Channel and
Test Device. These instructions are executed by the processor and the
results, in the form of condition codes, are available upon instruction com­
pletion. It should be noted that the condition code settings indicate the
results of the instruction and not the results of the input/output operation
that the instruction may be initiating. The channel continues off-line to
accomplish the input/output operation as specified by the instruction.
However, during this time the processor continues executing subsequent
instructions.

• The Start Device instruction is a privileged operation and, therefore,
can be executed only if the mode bit (bit position 15 of the Interrupt Status
register for the current state) is set to zero. This instruction is executed
in the normal mode. Continuation of program execution is delayed until
the Start Device instruction has been terminated.

Upon execution of a Start Device instruction, the following events
occur. (See figure 4) .

• If the privileged mode bit (bit position 15 of the Interrupt Status
register) for the current state is not set to zero, the privileged operation
bit is set in the Interrupt Flag register and an interrupt occurs (if
permi tted) .

Block 2 I • If the specified channel is a selector channel that is not available on
the system, the condition code is set to 3, the Start Device instruction is
terminated and program control is transferred to the next instruction.
The input/output operation is not initiated.

Block 3 • If the specified channel is a selector channel that is busy or has an
interrupt pending (termination or external device request) or if the speci­
fied channel is the multiplexor that is operating in the burst mode, the
condition code is set to 2, the Start Device instruction is terminated and
program control is transferred to the next instruction. The input/output
operation is not initiated.

41

Set Condition Code To 3 and
Terminate Start Device

Instruction

Next Instruction

(I/O Operation Not Initiated)

Set Program Check Bit in

Channel Status Byte

Set Condition Code to 1

and Term inate Start Devi ce
Instruction

Next Instruction
(I/O Operation Not Initiated)

No

2

3

4

5

No

6

No

7

No

START

Is Privi leged
Mode Bit Set To

Zero?

Yes

Is Specified
Selector Channel

On System?

Yes

Is Specified Channel:
1. Busy Selector
2. Selector with Interrupt

Pending
3. Multiplexor In Burst

No

Reset the Channe I Status
Byte and the Standard Device

Byte to Zero

If the Memory Protect
Feature is Not Installed:

Is Key in CAW = O?

Yes

Is Main Memory Address
in CAW on a Double Word

Boundary?

Yes

Is Main Memory Address
in CCW in Avai lable

Main Memory?

Yes

Yes

Input/Output Operation

Set Condition Code to 2
and Terminate Start Device

Instruction

Next Instruction

(I/O Operation Not Initiated)

Figure 4. Functional Logic of Start Device Instruction

42

20

8

10

11

No

I
Set Condition Code to 3 and

Terminate Start Device
12

Instruction

~
Next Instruction

(I/O Operation Not Initiated) 13

14

15

Yes

18 I K'" .he CCW 'peoH, Burst Mode?
16

19
I Yes

Transfer CAW and CCW to
Multiplexor Channel

Registers in Scratch Pad
Memory

17
Transfer CAW and CCW to

Appropriate Subchannel
Reg isters in Non-Addressabl e

Main Memory

o Y I es

If Specified Channel is

Multiplexor: Does CCW
Specify Burst Mode?

No

Send Device Address To
All Trunks on the
Specified Channel

Is the Specified
Devi ce Control

Electronics Operable?

Yes

Send Command to Specified
Device Control Electronics

Receive Standard Device
Byte from Device and

Set Condition Code

Is the Condition
Code Set to "O"?

Yes

Is the Specified Channel
the Multiplexor?

No

Transfer CAW and CCW
to Appropriate Selector

Channel Regi sters in

Scratch Pad Memory

Send Command to Specified
Device and Terminate

Start Device
Instruction

T
Next Instruction

(I/O Operation Initiated)

Input/Output Operation

Yes

9

No Is there a Pending
Channel Interrupt?

Yes

Set Condition Code to 2 and
Terminate Start Device

Instruction

~
Next Instruction

(I/O Operation Not Initiated)

NO

21

Is the Condition No
Code Set to "1"?

Yes
22

Store Standard Device Byte
in Scratch Pad Memory and

Terminate Start Device,
Instruction

Next Instruction
(I/O Operation Not Initiated)

Figure 4. Functional Logic of Start Device Instruction {Cont'd}

43

Input/Output Operation

Block 4- ' • The channel status byte and the standard device byte for the specified
channel are reset to zeros in the appropriate channel registers.

Block 5 • If the Memory Protect feature is not installed, the key in the Channel
Address Word (CAW) is tested to see if it is equal to zeros. If it is not
zeros, the program check bit in the channel status byte is set, the condition
code is set to 1, the Start Device instruction is terminated, and program
control is transferred to the next instruction. The input/output operation
is not initiated.

Block 6 • The main memory address in the Channel Address Word is tested
to see if it is on a double word boundary. If it is not, the program check
bit in the channel status byte is set, the condition code is set to 1, the Start
Device instruction is terminated and program control is transferred to the
next instruction. The input/output operation is not initiated.

Block 7 • The main memory address in the Channel Command Word (CCW) is
tested to see if it is within the available main memory for the system. If
it is not, the program check bit in the channel status byte is set, the condi­
tion code is set to 1, the Start Device instruction is terminated and program
control is transferred to the next instruction. The input/output operation
is not initiated.

Block 8 • If the specified channel is the multiplexor channel, the command code
in the Channel Command Word is tested to see if a burst mode operation
has been specified.

Block 9 • If a burst mode operation has been specified, a test is made to see if
there is a terminating interrupt pending on any of the trunks on the multi­
plexor. If a terminating interrupt is pending, the condition code is set to
2, the Start Device instruction is terminated and program control is trans­
ferred to the next instruction. The input/output operation is not initiated.

Block 10 • The device address as specified in the Start Device instruction is sent
to all trunks on the addressed channel.

Block 11 • A test is made to see if the specified device control electronics is oper­
able. The device control electronics has 50 microseconds to signal the
processor that it is operable. If it does not, the condition code is set to 3,
the Start Device instruction is terminated and program control is trans­
ferred to the next instruction. The input/output operation is not initiated.

Block 12 • 11 ~ne specified device control electronics is operable, the connnand
code from the Channel Command Word is sent to the specified device con­
trol electronics.

44

Block 13

Input/Output Operation

• After receiving the command code, the device control electronics sends
the standard device byte to the processor. This standard device byte is not
stored in the channel registers in scratch-pad memory. It is used to set the
proper condition code as follows:

Condition Code Definition

3 Device control electronics is inoperable.

2 A termination interrupt pending condition exists in the device
control electronics on the multiplexor channel.

2 The device control electronics is busy working with the speci-
fied device.

2 The device control electronics is busy working with a device
other than the one specified.

1 An external device request interrupt pending condition exists
in the device control electronics on the mUltiplexor channel.

1 The specified device is busy but the device control electronics
is not busy (i.e. tape rewinding, off-line seek).

*1 The specified device is inoperable.

0 The specified device and control electronics is available.

* If the command is a Sense, the condition code is set to 0 permitting the operation to
be initiated.

Block 14 • A test is made to see if the condition code is set toO (input/output
operation can be initiated).

Block 15 • If the condition code is zero, a test is made to see if the specified chan­
nel is the multiplexor channel.

Block 16 • If the specified channel is a selector channel, the channel address word
is fetched from main memory locations 72 through 75 and stored in the
appropriate channel address register. Using the main memory address

I specified in the CAW, the Channel Command Word is fetched from main
, memory and stored in the appropriate channel command registers.

Block 17 • The command is sent to the specified device control electronics and the
Start Device is terminated (with the condition code set to 0). The input/
output operation is initiated and proceeds under control of the appropriate
channel and registers in scratch-pad memory and non-addressable main

I memory (multiplexor devices). Normal program execution of the next
instruction continues simultaneously with the input/output operation.

Block 18 • If the specified channel is the multiplexor channel, the command code
in the Channel Command Word is tested to see if a burst mode operation
has been specified.

Block 19 • If a burst mode operation has been specified, the Channel Address Word
is fetched main memory locations 72 through 75 and stored in the channel
address register for the multiplexor channel. Using the main memory
address specified in the CAW, the Channel Command Word is fetched and
stored in the channel command registers for the multiplexor channel.

45

Input/Output Operation

Block 20 ' • If a burst mode operation has not been specified, the Channel Address
Word and the Channel Command Word are fetched from main memory and
stored in the subchannel registers in non-addressable main memory for the
device specified.

Block 21

Block 22

Halt Device Instruction

• If the condition code is not set to 0, a test is made to see if the condi­
tion code is set to 1.

• If the condition code is set to 1, the standard device byte is transferred
to the channel registers for the channel specified, the Start Device instruc­
tion is terminated and program control is transferred to the next instruc­
tion. The input/output operation is not initiated.

Notes on Start Device Instruction

1. The channel status byte and the standard device byte are not
stored if the condition codes are 0, 2, 3.

2. If the specified channel and device can be initiated (CC = 0) the
contents of the Channel Address Word and Channel Command Word
are loaded into the appropriate channel registers and the command
is sent to the device. The legality of the command is not determined
at initiation time. If the device gets an illegal command, the opera­
tion is terminated and a channel interrupt occurs. The standard
device byte (stored in the appropriate channel registers when the
interrupt is taken) indicates a secondary indicator. A Sense com­
mand must be issued to bring the Sense byte(s) into main memory.
The Sense byte (s) indicate the illegal operation.

3. If execution of this instruction causes the channel status byte or
the standard device byte to be stored, the program must inhibit
interrupts on this channel until the status byte has been analysed
or moved from the channel registers. If interrupts are permitted
and one occurs the standard device byte and the channel status
byte are destroyed.

• The Halt Device instruction is a privileged operation and can be exe­
cuted only if the mode bit (bit position 15 of the Interrupt Status register)
for the current state is set to O. This instruction is executed in the normal
mode. Continuation of program execution is delayed until termination is
accepted by the device control electronics. When the device control elec­
tronics receives the termination, it causes a channel interrupt to occur.
Both the channel number and the device number must be specified in the
instruction. Because the Channel Address Word is not referred to by the
Halt Device instruction, both the Channel Address Word and a Channel
Command Word are not required.

Upon execution of a Halt Device instruction, the following events
occur (see figure 5).

46

Block 1

Block 2

Block 3

Input/Output Operation

• If the priviliged mode bit (bit position 15 of the Interrupt Status
register) for the current state is not set to zero, the privileged opera­
tion bit is set in the Interrupt Flag register and an interrupt occurs
(if permitted).

• If the specified channel is a selector channel which is not available
on the system, the condition code is set to 3, the Halt Device instruction is
terminated and program control is transferred to the next instruction.

• If the specified channel is a selector channel that is busy or if the speci­
fied channel is the multiplexor that is operating in the burst mode, the
Chain Command (CC) flag in CCR-II is reset, the device control electronics
is told to set an end condition, the condition code is set to 2, the Halt Device
instruction is terminated, and program control is transferred to the next
instruction.

Notes:

1. Setting an end condition causes the device to be halted on servicing
the next data transfer (see Servicing a Data Transfer).

2. The Chain Command flag must be reset to suppress chaining during
termination (see Chaining and End Servicing section, below).

Block 4- • If the specified channel is not the multiplexor channel, the condition
code is set to 0, the Halt Device instruction is terminated and program
control is transferred to the next instruction.

Block 5 • If the specified channel is the multiplexor channel, the channel status
byte and the standard device byte are reset to zeros in the multiplexor

I channel registers.

Block 6 • The device address as specified in the Start Device instruction is sent
to all trunks on the multiplexor channel.

Block 7 • A test is made to see if the specified device control electronics is oper­
able. The device control electronics has 50 microseconds to signal the
processor that it is operable. If it does not the condition code is set to 3,
the Halt Device instruction is terminated and program control is trans­
ferred to the next instruction.

Block 8 • If the specified device control electronics is operable, it sends the
standard device byte to the processor. This standard device byte is not
stored in the channel registers. It is used to set the proper condition code
as follows:

47

Set Condition Code to 3
and Terminate Halt Device

Instruction

Next Instruction

No

No

Set Cond ition Code to
o and Terminate Halt

Device Instruction

Next Instruction

2

3

4

5

6

Start

Is Privileged Mode Bit
Set to Zero?

Yes

Is Specified Selector
Channel on System?

Yes

Is Specified Channel:

Input/Output Operation

No

1. Busy Selector Channel Yes
2. Multiplexor Channel 1----------....,

in Burst

No

Is Specified Channel
the Multiplexor?

Yes

Reset the Channel Status
Byte and the Standard

Device Byte to Zero

Send Device Address to
All Trunks on

Multiplexor Channel

Tell Devi ce to Set an End

Condition; Reset Chain
Command (CC) Flag in CCR-II

in Scratch Pad Memory

Set Condition Code to 2
and Terminate Halt
Device Instruction

Next Instruction

Figure 5. Functional Logic of Halt Device Instruction

48

No

Set Condition Code to 3
and Terminate Halt Device

Instruction

Next Instruction

Yes

Store Standard Devi ce Byte
in Multiplexor Channel

Registers in SPM

Terminate Halt
Device Instruction

Next Instruction

7

8

9

10

11

Is the Specified Device
Control Electronics

Operable?

Yes

Receive Standard Device
Byte from Device and Set

Condition Code

Is the Condition Code
Set to 2?

No

Is the Condition Code
Set to 1

No

Terminate Halt
Device Instruction

Next Instruction

Yes

Input/Output Operation

Tell Device to Set an
End Condition

Reset Chain Command (CC)
Flag in CCR-II in Non­

Addressable Main Memory

Terminate Halt
Device Instruction

Next Instruction

Figure 5. Functional Logic of Halt Device Instruction (Cont'd)

49

Block 8
(Cont'd)

Block 9

Block 10

Block 11

Input/Output Operation

Condition Code Definition

3 Device control electronics is inoperable.

0 A termination interrupt pending condition exists in the device
control electronics.

2 The device control electronics is busy working with the speci-
fied device.

0 The device control electronics is busy working with a device
other than the one specified.

1 An external device request interrupt pending condition exists
in the device control electronics.

1 The specified device is busy but the device control electronics
is not busy (Le. tape rewinding, off-line seek).

1 The specified device is inoperable.

0 The specified device and control electronics is available.

• A test is made to see if the condition code is set to 2 (input/output
operation can be terminated). If it is, the device control electronics is told
to set an end condition, the Chain Command (CC) flag in CCR-II in the
appropriate sub-channel register is reset and control is transferred to the
next instruction.

Notes:

1. Setting an end condition causes the device to be halted on servicing
next data transfer (see Servicing a Data Transfer).

2. The Chain Command flag must be reset to suppress chaining during
termination (see Chaining and End Servicing section, below).

• If the condition code is set to 1, the standard device byte is transferred
to the assembly /status registers for the multiplexor channel, the Halt
Device instruction is terminated and program control is transferred to
the next instruction.

• If the condition code is not set to 1 (it is 0, 3) the Halt Device
instruction is terminated and program control is transferred to the next
instruction.

Notes on Halt Device instruction:

1. The channel status byte is not stored as a result of this operation.
However, the incorrect length bit in the channel status byte may
be set.

2. The standard device byte is not stored if the condition codes are
0,2,3.

3. If an interrupt pending (termination or external device request)
condition exists on a specified selector channel, the condition code
is set to zero.

50

Block 11
(Cont'd)

Test Device
Instruction

Block 1

Input/Output Operation

4. The channel and device are terminated at the next data service
request (see Servicing a Data Transfer).

5. The Channel Address Word (CAW) and Channel Command Word
(CCW) are not used by this instruction.

6. If execution of this instruction causes the standard device byte to
be stored in the multiplexor channel registers, the program must
inhibit interrupts from the multiplexor channel until the standard
device byte has been analysed or moved from the channel registers.
If interrupts are permitted and one occurs, the standard device
byte is destroyed.

• The status of an input/output device can be tested by executing a Test
Device instruction. The Test Device instruction is a privileged operation
and can be executed only if the mode bit (bit position 15 of the Interrupt
Status register for the current state) is set to O. This instruction is exe­
cuted in the normal mode. Continuation of program execution is delayed
until the instruction is terminated.

Both the channel number and the device number must be specified in
the instruction. Because the Channel Address Word is not referred to by
the Test Device instruction, the Channel Address Word and a Channel
Command Word are not required.

Upon execution of a Test Device instruction, the following events
occur (see figure 6) .

• If the privileged mode bit (bit position 15 of the Interrupt Status
register) for the current state is not set to 0, the privileged operation
bit is set in the Interrupt Flag register and an interrupt occurs, if
permitted.

Block 2 • If the specified channel is a selector channel that is not available on
the system, the condition code is set to 3, the Test Device instruction is
terminated and program control is transferred to the next instruction.

Block 3 • If the specified channel is a selector channel that is busy or has on
interrupt pending (termination or external device request) ; or if the speci­
fied channel is the multiplexor that is operating in the burst mode, the
condition code is set to 2, the Test Device instruction is terminated and
program control is transferred to the next instruction.

Block 4- • The channel status byte and the standard device byte for the specified
channel are reset to zeros in the appropriate channel registers.

Block 5 • The device address as specified in the Test Device instruction is sent
I to all trunks on the addressed channel.

Block 6 • A test is made to see if the specified device control electronics is oper­
able. The device control electronics has 50 microseconds to signal the
processor that it is operable. If it does not, the condition code is set to 3,
the Test Device instruction is terminated and program control is trans­
ferred to the next instruction.

51

No

Set Condition Code to 3
and Terminate Test Device

Instruction

Next Instruction 4

5

2

3

6

Start

Is Privileged Mode
Bit Set to Zero?

Yes

Is Specified Selector
Channel on System?

Yes

Is Specified Channel:
1. Busy Selector Channel
2. Selector with Interrupt

Pending
3. Multiplexor in Burst

Reset the Channel Status
Byte and the Standard
Devi ce Byte to Zero

Send Devi ce Address to
All Trunks on

Specified Channel

No Is the Specified
.---________ -\ Device Control Electronics

Set Condition Code to 3
and Terminate Test Device

Instruction

Next Instruction

7

8

Operable?

Receive Standard Device
Byte from Devi ce and

Set Condition Code

Yes

Is the Condition Code Yes

Input/Output Operation

Set Condition Code to 2
and Terminate Test

Device Instruction

Next Instruction

Set to 1? 1-----------,

9
No

Terminate Test

Device Instruction

Next Instruction

Store Standard Device
Byte in Scratch Pad

Memory

Terminate Test
Device Instr uction

Next Instruction

Figure 6. Functional Logic of Test Device Instruction

52

Block 7

Block 8

Block 9

Check Channel
Instruction

Input/Output Operation

• If the specified device control electronics is operable, it sends the
standard device byte to the processor. This standard device byte is not
stored in the channel registers. It is used to set the proper condition code
as follows:

Condition Code Meaning

3 Device control electronics is inoperable.

2 A termination interrupt pending condition exists in the device
control electronics on the mUltiplexor channel.

2 The device control electronics is busy working with the speci-
fied device.

2 The device control electronics is busy working with a device
other than the one specified.

1 An external device request interrupt pending condition exists
in the device control electronics on the mUltiplexor channel.

1 The specified device is busy but the device control electronics
is not busy (Le. tape rewinding, off-line seek).

1 The specified device is inoperable.

0 The specified device and control electronics is available.

• A test is made to see if the condition code is set to 1. If it is, the
standard device byte is transferred to the channel registers for the channel
specified, the Test Device instruction is terminated and program control
is transferred to the next instruction.

• If the condition code is not set to 1, the Test Device instruction is ter­
minated and control is transferred to the next instruction.

Notes on Test Device Instruction:

1. The channel status byte is not stored as a result of this operation.

2. The standard device byte is not stored if the condition codes are
0, 2, or 3.

3. The Channel Address Word (CAW) and Channel Command \Vord
(CCW) are not used by this instruction.

4. If execution of this instruction causes the standard device byte to
be stored in the multiplexor channel registers, the program must
inhibit interrupts from the multiplexor channel until the standard
device byte has been analysed or moved from the channel registers.
If interrupts are permitted and one occurs, the standard device
byte is destroyed.

• The status of an input/output channel can be tested by executing a
Check Channel instruction. The Check Channel instruction is a privileged
operation and can only be executed if the mode bit (bit position 15 of the
Interrupt Status register for the current state) is set to O. This instruc­
tion is executed in the normal mode. Continuation of program execution
is delayed until the instruction is terminated.

53

2

No

Set Condition Code to 3
and Terminate Check Channel 3

Instruction

Next Instruction

4
Yes

Set Condition Code to 1
and Terminate Check Channel

Instruction 5

Next Instruction

Start

Is Privileged Mode
Bit Set to Zero?

Yes

Is Specified Selector
Channel on System?

Is Specified Channel:
1. Busy Sel ector
2. Selector with Interrupt

Pending
Multiplexor in Burst

No

Does Specified Selector
Channel have External

Device Request Interrupt
Pending?

No

Set Condition Code to 0
and Terminate Check
Channel Instruction

Next Instruction

Yes

Input/Output Operation

Set Condition Code to 2
and Terminate Check
Channel Instruction

Next Instruction

Figure 7. Functional Logic of Check Channel Instruction

54

Check Channel
instruction

(Cont'd)

Block 1

Block 2

Block 3

Block 4-

Block 5

INPUT/OUTPUT
STATUS INDICATORS

Condition Code

Input/Output Operation

Only the channel number must be specified in the instruction. Because
the Channel Address Word is not referred to by the Check Channel instruc­
tion, the Channel Address Word and a Channel Command Word are not
required.

Upon execution of a Check Channel instruction, the following events
occur (see figure 7).

• If the privileged mode bit (bit position 15 of the Interrupt Status
register) for the current state is not set to 0, the privileged operation
bit is set in the Interrupt Flag register and interrupt occurs if permitted.

• If the specified channel is a selector channel that is not available on
the system, the condition code is set to 3, the Check Channel instruction
is terminated and program control is transferred to the next instruction.

• If the specified channel is a selector channel that is busy or has a ter­
mination interrupt pending; or if the specified channel is the multiplexor
that is operating in the burst mode, the condition code is set to 2, the
Check Channel instruction is terminated and program control is trans­
ferred to the next instruction.

• If the specified channel is a selector channel that has an external device
request interrupt pending, the condition code is set to 1, the Check
Channel instruction is terminated and program control is transferred to
the next instruction.

• If the specified channel is a selector channel that is not busy and has
no interrupts pending; or is the multiplexor channel that is not operating
in the burst mode, the condition code is set to 0, the Check Channel
instruction is terminated and program control is transferred to the next
instruction.

Notes on Check Channel instruction:

1. The channel status byte and the standard device byte are never
stored by this instruction.

2. The Channel Address Word (CAW) and the Channel Command
Word (CCW) are not used by this instruction.

• Three levels of status information are available to the program to
control input/output operation. The first pertains to the setting of the
condition code when an input/output instruction is issued. The second level
provides more detailed information by storing the channel status byte and
the standard device byte in the appropriate input/output channel registers
in scratch-pad memory. The third level of status information is generated
by, and stored in, the device control electronics until a Sense command is
issued. At that time the status information (Sense bytes) are transferred

I to main memory similar to a data transfer.

• The condition code is set by the input/output instructions and can be
tested by the Branch On Condition instruction. It should be noted that the
condition code settings indicate the result of the input/output instructions

r only. They do not indicate the results of the input/output operation. Con­
dition Code settings for all input/output instructions are as follows:

55

Condition Code

(Cont'd) Condition

Code

0

I
1

2

f--- .-- ..

3

Input/Output Operation

Start Device Instruction Condition Code Settings

I/O Operation

Initiated

Yes

No

No

No

Meaning

1. The device control electronics and the device specified
are available.

2. The Start Device instruction specifies a Sense com­
mand to a device that is inoperable.

This condition code indicates that either the channel
status byte or the standard device byte has been stored
in the channel registers for the specified channel.

The channel status byte is stored under the following
conditions:

1. A parity error occurs while accessing the Channel
Address Word or a Channel Command Word. The
channel control check bit in the channel status
. byte is set.

2. The Memory Protect feature is not installed and
the key in the CAW is not zero. The program
check bit in the channel status byte is set.

3. The main memory address specified in the CAW
is not on a double word boundary. The program
check bit in the channel status byte is set.

4. The main memory address in the CCW specifies
an address outside the available memory for the
system. The program check bit in the channel
status byte is set.

The standard device byte is stored under the following
conditions:

1. The specified device control electronics on the
mUltiplexor channel indicates that a device
request interrupt pending condition is present.
The external device request interrupt pending
bit in the standard device byte is set.

2. The Start Device instruction specifies a com­
mand which is other than a Sense command
and the addressed device is inoperable. The
device inoperable bit in the standard device
byte is set.

3. The specified device is busy but the device con­
trol electronics is not busy (i.e. tape rewinding,
off-line seek to a random access device). The
device busy bit and the device end bit in the
standard device byte is set.

1. A selector channel is specified that is busy.

2. A selector channel is specified that has an interrupt
pending (termination or external device request).

3. The multiplexor channel is specified and it is operating
in burst mode.

4. The mUltiplexor channel is specified and the addressed
device control electronics is busy with addressed or
non-addressed device.

5. The multiplexor channel is specified and the addressed
device control electronics has a termination interrupt
pending.

6. A burst mode operation is directed to the multiplexor
and there is a termination interrupt pending on one of
the attached device control electronics.

1. A selector channel is specified that is not in the system.

2. The specified device control electronics is inoperable.

56

Condition Code
(Cont'd)

Input/Output Operation

Halt Device Instruction Condition Code SeHings

Condition I/O Operation
Meaning

Code Terminated

o

1

2

3

Condition

Code

0

1

No

No

Yes

No

1. The device control electronics or the device specified on
the mUltiplexor channel is not busy. No termination
is required.

2. A selector channel or the multiplexor channel operat­
ing in burst mode is specified and it is not busy. No
termination is required.

3. The multiplexor channel is specified and the addressed
device control electronics has a termination interrupt
pending. No termination is required.

This condition code indicates that the specified device is
on the multiplexor channel and that the standard device
byte has been stored in the channel registers for the multi­
plexor channel. The channel status byte is never stored.

The standard device byte is stored under the following
conditions:

1. The specified device indicates that a device request
interrupt pending condition is present. The external
device request interrupt pending bit in the standard
device byte is set.

2. The specified device is busy but the device control
electronics is not busy (Le. tape rewinding). The
device busy bit in the standard device byte is set.

3. The specified device is inoperable. The device inop­
erable bit in the standard device byte is set.

1. A selector channel is specified that is busy.

2. The mUltiplexor channel is specified and it is operating
in the burst mode.

3. The mUltiplexor channel is specified and the addressed
device control electronics and device are busy.

1. A selector channel is specified that it is not in the
system.

2. The specified device control electronics is inoperable.

Test Device Instruction Condition Code Settings

Meaning

The device control electronics and the device are available.

Note: There may be pending interrupts on the mUltiplexor channel
that would prohibit a burst mode operation being initiated.

This condition code indicates that the standard device byte has been
stored in the channel registers for the specified channel. The channel
status byte is never stored by this instruction.

The standard device byte is stored under the following conditions:

1. The specified device control electronics on the multiplexor chan-
nel indicates that a device request interrupt pending condition
is present. The external device request interrupt pending bit in
the standard device byte is set.

2. The specified device is busy but the device control electronics
is not busy (Le. tape rewinding, off-line seek to a random access
device). The device busy bit in the standard device byte is set.

3. The specified device is inoperable. The device inoperable bit in
the standard device byte is set.

57

Condition Code
(Cont'd)

Channel Status Byte

Input/Output Operation

Test Device Instruction Condition Code Settings (Cont'd)

Condition

Code
Meaning

2 1. A selector channel is specified that is busy.

2. A selector channel is specified that has an interrupt pending
(termination or external device request).

3. The multiplexor channel is specified and it is operating in burst
mode.

4. The multiplexor channel is specified and the addressed device
control electronics is busy with addressed or non-addressed device.

5. The mUltiplexor channel is specified and the addressed device
control electronics has a termination interrupt pending.

3 1. A selector channel is specified which is not on the system.

2. The specified device control electronics is inoperable.

3. A device is specified that is not in the system.

Check Channel Instruction Condition Code Setting

Condition

Code Meaning

0 1. The specified selector channel is not busy and has no interrupts
pending.

2. The specified multiplexor channel is not operating in the burst
mode.

1 The specified selector channel has an external device request inter-
rupt pending.

2 1. The specified selector channel is busy or has a terminating inter-
rupt pending.

2. The specified mUltiplexor is operating in the burst mode.

3 A selector channel is specified that is not in the system.

• The channel status byte is stored in Channel Command Register-II
(bit positions 8 through 15) for the appropriate channel. It contains infor­
mation concerning the status of the channel when a channel interrupt
occurs, or at the completion of a Start, Halt or Test Device instruction if
the condition code indicates that Status is stored. The bit significance of
the channel status byte is as follows:

Bit Position 8 is the program controlled interrupt bit. When set, this
bit indicates that a Channel Command Word was accessed which had the
program controlled interrupt flag bit set. A channel interrupt occurs for
the appropriate channel while the input/output operation specified by the
Channel Command Word is being executed.

Notes:

1. The program controlled channel interrupt occurs after the first
data byte has been transferred.

2. If a Channel Command Word that specifies a burst mode operation
is fetched and the program controlled interrupt flag hit is set, the
program controlled interrupt does not occur until completion of
the burst operation.

58

Channel Status Byte

(Cont'd)

Input/Output Operation

Bit Position 9 is the incorrect length bit. When set, this bit indicates
that when the input/output operation was terminated, the byte count
specified in the channel command was not equal to the number of bytes
received from, or sent to, the input/output device. The incorrect length
indicator can be set only if the suppress length indicator flag bit in the
channel command word is reset to o.

The following conditions cause the incorrect length bit to be set:

1. Count High on Input (Read, Read Reverse, Sense). The main
memory area specified by the Channel Command Word is not com­
pletely filled by transmission from the device. The final byte count
in Channel Command Register-II is greater than zero.

2. Count High on Output (Write, Write Control). Data in the main
memory area specified by the Channel Command Word is not com­
pletely transferred and the device terminated. The final byte count
in Channel Command Register-II is greater than zero.

Notes:

1. If incorrect length occurs during command chaining and the
Suppress Length Indicator flag bit of the current command is reset,
the incorrect length bit is set.

2. If incorrect length occurs during the last command of a chain (the
Chain Data flag bit it reset), and the Suppress Length Indicator
flag of the command is set, the incorrect length bit is not set.

Bit Position lOis the program check hit. When set, this bit indicates
that a programming error was detected by the channel.

The following conditions cause the program check bit to be set:

1. Invalid Channel Command Word Address. The addressed Channel
Command Word is not located on a double word boundary.

2. Invalid Channel Command Word Address. The addressed Channel
Command Word is outside the available main memory for the par­
ticular installation.

3. Invalid Data Address. The main memory location specified by the
data address in the Channel Command Word is outside the avail­
able main memory for the particular installation.

4. Invalid- Key. The memory protection key in the Channel Address
Word is not zero and the system does not have the Memory Protect
option installed.

Notes:

1. If a program check error occurs during input/output initiation,
the operation is suppressed and the program is notified of the
error by the condition error setting.

2. If a program check error occurs while the input/output operation
is in progress, the operation is terminated and a channel interrupt
occurs for the specified channel.

3. If a program check error occurs during chaining (command or
data), a channel interrupt occurs for the specified channel and
chaining is suppressed.

59

Channel Status Byte
(Cont'd)

Standard Device Byte

Input/Output Operation

Bit Position 11 is the protection check bit. When set, this bit indicates
that the channel tried to store data in a protected main memory area. The
operation is terminated and a channel interrupt occurs for the specified
channel. If chaining (command or data) is in progress, it is suppressed.

Bit Position 12 is the channel data check bit. When set, this bit indi­
cates that a parity error was detected in the channel, in main memory,
non-addressable main memory or in scratch-pad memory. Reading of
characters with bad parity going into memory are replaced with the sys­
tems error byte (hexadecimal FF), and the input/output operation is
completed. For parity error characters going to a device, (writing) the
invalid character is transferred unchanged, the operation is terminated
and a channel interrupt occurs for the specified channel. (The transfer of
sense byte(s) to memory is not checked for parity.)

Bit Position 13 is the channel control check bit. When set, this bit
indicates that a machine malfunction has occurred affecting the channel
controls. Conditions which cause this bit to be set are parity error in the
Channel Command Word, data address, or contents of the Channel Com­
mand Word. The operation is terminated and a channel interrupt occurs
for the specified channel. If chaining (command or data) is in progress,
it is suppressed.

Bit Position 14 is reserved for use by the processor.

Bit Position 15 is the termination interrupt bit. When set, this bit
indicates that a termination interrupt has been effected.

Important: The channel status byte is reset only when an input/output
operation is initiated.

• The standard device byte is stored in scratch-pad memory in the
Assembly/Status register (bit positions 24 through 31) for the appropri­
ate channel. This byte indicates the status of a device after an input/out­
put operation. It may also indicate a device request interrupt.

The standard device byte is automaticaly stored when:

1. An input/output interrupt is serviced (request or termination).

2. An -input/output operation is attempted and the condition code
indicates that status bits are stored (channel status byte, standard
device byte).

The standard device byte is defined as follows:

Bit Position 24 is the external device request interrupt pending bit.
When set, this bit indicates that a random access device, a data exchange
control or a communications device requires servicing.

Bit Position 25 is the termination interrupt pending bit. When set,
I this bit indicates that a termination interrupt condition exists in an input/

output device.

Bit Position 26 is the device busy bit. When set, this bit indicates that
the specified device is busy and cannot accept another operation.

B1.:t PO.,)1:U()n 27 is the control busy bit. Not applicable.

60

Standard Device Byte

(Cont'd)

Sense Bytes

CHANNEL
SERVICING

Servicing a Data Transfer

Input/Output Operation

Bit Position 28 is the device end bit. When set, this bit indicates that
the specified device has terminated. Another operation can be accepted by
the device if the device busy bit (26) is not set.

Bit Position 29 is the secondary indicator bit. When set, this bit indi­
cates that the specified device has additional indicators to be tested. These
indicators can be brought into main memory by using the Sense command.

Bit Position 30 is the device inoperable bit. When set, this bit indi­
cates that the specified device is inoperable.

Bit Position 31 is the status modifier bit. This bit is used with chain­
ing (command or data). When set, this bit indicates that the next Channel
Command Word is skipped. This bit is set as a result of device termination.

• The sense byte, or bytes, are brought into main memory from an
input/ output device by using the Sense command. These bytes contain
status information for the device referred to. The exact status information
sent is defined in the Spectra 70 input/output reference manuals for the
individual devices.

• The following sections explain in detail the three types of channel
servicing which may be performed during input/output operations. They
are: servicing a data transfer, end and chain servicing, and interrupt
servicing.

Because channel servicing requires that the channel utilize main
memory, scratch-pad memory and non-addressable main memory (multi­
plexor devices), normal mode processing is held off until the servicing has
been completed. Consequently, channel servicing is time-shared with
normal mode processing. Between service requests, normal mode process­
ing is resumed, or another channel is permitted to service its device (s).

Channel servicing for a device on the multiplexor channel (multiplex
mode) requires more time than channel servicing for a device on a selector
channel. To balance the system's throughput rate, multiplexor channel
servicing is segmented to permit selector channel servicing to break-in if

I any selector channels require servicing. After all selector (s) demanding
service have been satisfied, multiplexor servicing is resumed. This tech­
nique insures that the interference to selector channel servicing caused by
the multiplexor channel is no greater than that of an additional selector
channel.

• Once an input/output operation has been initiated, it proceeds under
control of the appropriate channel and registers in scratch-pad memory
and non-addressable main memory (multiplexor devices). When an input/
output operation has been initiated and the input/output device is ready
to send or receive a data byte, it asks the processor for a service request.
When the processor honors this service request, servicing of a data trans­
fer occurs.

Because servicing a data transfer requires that the channel utilize
main memory, scratch-pad memory and non-addressable main memory
(multiplexor devices), normal mode processing is held off until the servic­
ing has been completed. Servicing of a data transfer is time-shared with
normal mode processing. Between service requests, processing is resumed,
or another channel is permitted to service its device (s).

61

Input/Output Operation

2

I/O Service Request for
Multiplexor in Burst Mode

Reset PCI Flag
in the Command

Set Program Control
Interrupt Bit in Channel

Status Byte

2

Yes

I/O Serv! ce Request

Is Specified Channel Yes
the Multiplexor? I-------------~

No

Is the PCI Flag in

the Command Set?

Get Device Address and
Fetch Subchannel

Registers

r---------~ No

4

5

Has Device Indicated
an End Condition?

No

Decrement the Byte
Count by One

No Is the Command

I--Y:....:e:..:s'--______ Go to II En d an d
Chaining Servicing" - Block 1

~---------------------------~ A Read

Fetch Data Byte from
Memory and Send it

to the Device
-- See Note 4

Yes

7

10

Yes

Is the Skip Flag
in the Command Set?

No

Is the Command
a Sense

Figure 8. Functional Logic of Servicing a Data Transfer

62

__ See Note 5

Input/Output Operation

Figure 8. Functional Logic of Servicing a Data Transfer (Cont'd)

63

Servicing a Data Transfer
(Cont'd)

Block 1

Block 2

Block 3

Block 4-

Input/Output Operation

If a burst mode operation has been initiated to the multiplexor chan­
nel, the channel operates similar to a selector and only one device is ser­
viced. Service requests by devices other than the one operating in burst
mode are ignored until the multiplexor channel is operating in the multi­
plexor mode. This occurs at the conclusion of the burst operation when
the last data byte has been serviced (prior to interrupt).

Servicing of a data transfer causes the following events to occur (see
figure 8).

• If the service request comes from a device control electronics con­
nected to the multiplexor channel which is operating in the multiplex mode,
the processor gets the device address and fetches the appropriate sub­
channel registers in non-addressable main memory. These registers are
placed in processor utility registers in scratch-pad memory. (They are not
sent to the multiplexor channel registers in scratch-pad memory.) If the
service request comes from a device control electronics connected to the
multiplexor channel which is operating in the burst mode or from a device
connected to a selector channel, the appropriate channel registers in
scratch-pad memory are used to service the data transfer.

• A test is made to see if the Program Controlled Interrupt (PCI) flag
is set. If it is, the channel interrupt bit is set in the Interrupt Flag register
and an interrupt occurs, if permitted. The PCI flag is reset and the pro­
gram control interrupt bit is set in the channel status byte.

• A test is made to see if the device control electronics requesting service
has indicated an end condition. An end condition is indicated when one of
the following occurs:

1. The processor reaches a byte count lapse. If this occurs, the
processor tells the device control electronics to indicate an end con­
dition on the next data service request.

2. The device has completed the input/output operation (i.e. a gap
is sensed on tape). If this occurs, the device control electronics
automatically indicates an end condition. (In this case the byte
count is never zero.)

If an end condition has been indicated, the processor goes to End and
Chaining Servicing (see figure 9, Block 1).

Note: Certain error conditions cause the processor to tell the device con­
trol electronics to indicate an end condition on the next data service
request (see Notes 3, 4, 5, 6 on Servicing a Data Transfer).

• If the device control electronics has not indicated an end condition, the
byte count is decremented by one.

64

Input/Output Operation

Block 5 i • A test is made to see if the command is a read. A read command can
be anyone of the following:

Read Forward

Read Reverse

Sense

All other commands (except Transfer in Channel) are write com­
mands. If the command is a write, the data byte is fetched from main
memory and sent to the device. Control is then transferred to Block 11.

Block 6 • If the command is a read, a test is made to see if the SKIP flag is set.
If it is, transfer of the data byte to main memory is bypassed and control
is transferred to Block 10.

Block 7 • If the SKIP flag is not set, a test is made to see if the command is a
: Sense. If it is, parity checking of the data byte is bypassed and control is

transferred to Block 9.

Block 8 • If the command is not a Sense, a test is made to see if the data byte
received from the device has correct parity. If it does not, the channel data
check bit in the channel status byte is set and the data byte in converted to
(FF) 16. The input/output operation continues.

Block 9 • The data byte is transferred to the main memory address specified.

Block 10 • A test is made to see if the command is a Read Reverse. If it is, the
main memory address is decremented by one.

Block 11 • If the command is not a Read Reverse, the main memory address is
incremented by one.

Block 12 • A test is made to see if the byte count has lapsed. If it has, a test is
made to see if the Chain Data flag is set. If it is, the processor goes to End

I and Chaining Servicing (see figure 9, Block 11).

Block 13 • If the Chain Data flag is not set, the processor tells the device control
electronics to indicate an end condition on the next data service request.

Block 14 • A test is made to see if the service request was honored for a device
on the multiplexor channel. If it was not, program control continues with
the next instruction or with the instruction that was interrupted due to the
service request.

Block 15 • If the service request was honored for a device on the multiplexor
channel, a test is made to see if it is a burst mode operation. If it is not a
burst mode operation, the sub-channel registers are sent back to non­
addressable main memory. In either case, program control continues with
the next instruction or with the instruction that was interrupted due to
the service request.

65

Servicing a Data Transfer

(Cont'd)

Input/Output Operation

Notes on Servicing a Data Transfer:

1. All input/output data service requests are honored depending on
the channel's position in the priority sequence.

2. The following tests occur when a data byte is transferred to main
memory:

a. The main memory address to which the data byte is to be
transferred is tested to see if it is in a memory protected
area (Memory.Protect feature must be installed). If it is,
the protection check bit in the channel status byte is set
(no data transfer occurs) and the device control elec­
tronics is told to set an end condition on the next data
service request (see Block 13).

b. The main memory address to which the data byte is to be
transferred is tested to see if it is in available main mem­
ory for the system. If it is not, the program check bit in
the channel status byte is set (no data transfer occurs)
and the device control electronics is told to set an end con­
dition on the next data service request (see Block 13).

3. The following tests occur when a data byte is transferred from
main memory:

a. The main memory address from which the data byte is to
be transferred is tested to see if it is in available main
memory for the system. If it is not, the program check
bit in the channel status byte is set (no data transfer
occurs) and the device control electronics is told to set an
end condition on the next data service request (see
Block 13).

b. The data byte to be transferred is checked for correct
parity. If parity is not correct, the data check bit in the
channel status byte is set and the device control electronics
is told to set an end condition on the next data service
request (see Block 13).

4. If a main memory parity error occurs while fetching the subchan­
nel registers, the channel control check bit in the channel status
byte is set, and the device control electronics is told to set an end
condition on the next data service request (see Block 13).

5. If a scratch-pad memory parity error occurs during the servicing
of a data transfer, the channel control check bit in the channel
status byte is set and the device control electronics is told to set
an end condition on the next data service request (see Block 13).

66

End and Chaining
Servicing

Block 1

Input/Output Operation

• End and chaining servicing is required when the input/output opera­
tion specified by the current command has been completed (normally or
abnormally). Entry to this servicing always comes from "servicing a data
transfer". The following conditions cause end and chaining servicing to
take place:

1. A device control electronics has indicated an end condition. This
end condition is recognized in Servicing a Data Transfer.

2. The byte count in the current command has lapsed and the Chain
Data (CD) flag in this command is set. If this condition occurs,
entry to End and Chaining Servicing occurs at a point which
bypasses the normal end servicing with no chaining and the end
servicing with command chaining.

For input/output operations that do not specify chaining, end servic­
ing is used so that the processor can tell the appropriate device control
electronics to set an interrupt condition. This interrupt condition is in turn
reported to the processor and the appropriate flag in the Interrupt Flag
register is set, at which time the interrupt is taken, if permitted.

For input/ output operations that specify chaining (command or
data), this servicing does one of the following:

1. If the current command specifies command chaining (the CC flag
in the command is set) this service is used to fetch the next com­
mand in the chain and to send this new command to the input/
output device.

2. If the current command specifies data chaining (the CD flag in
the command is set) this service is used to fetch the next command
in the chain so that the current operation can be continued.

End and Chaining Servicing causes the following events to occur (see
figure 9).

• Entry to this block occurs when the input/output device control elec­
tronics has indicated an end condition. This end condition is recognized
during servicing a data transfer and is generated:

1. automatically by the device, or

2. by the device on command from the processor

The processor receives the standard device byte from the device control
electronics. This standard device byte is used by the processor for testing
purposes. It is not stored in the channel registers.

Block 2 • The standard device byte is tested to see if the device busy bit is set
and the device end bit is reset. This condition normally arises in buffered
device::t (i.e. card punch, printer) when the buffer has been loaded and the
completion of the operation is off-line (no more data has to be sent between
the processor and the device control electronics). If this condition exists,
the processor tells the device to set another end condition and ask for
another service request when the device is no longer busy. Control is then

I transferred to Block 14.

67

11

9

No

9

See Note 3)

Input/Output Operation

From Servicing a Data Transfer

and Device Contral Electronics has Indicated an End Condition

Tell Device Control
Electronics to Set an End
Condition when Device is

No Longer Busy

(Normal End Servicing)

Tell Device Control
Electronics to Set Channel

Interrupt

Is This a Multiplexor
Channel Device?

Yes

Stare Subchannel Registers
Back in Non-Addressable

Main Memory

Next Instruction

Yes

No

4

Yes

Yes

Na

7

Receive the Standard
Device Byte from Device

Control Electronics

Does the Standard Device
Byte Indicate a Device

Busy Condition?

No

Is the Chain Command
(CC) Flag Set?

Yes

Test Channel Status Byte
for: Program Check, Pro­

tection Check, Data Check
or Channel Control Check

No

Is the Chain Data
(CD) Flag Set?

No

T est Standard Devi ce
Byte for the Following:
• Device Inoperable" No
• Secondary Ind = No
• Device End = Yes

Yes

I s Byte Count ;f:;

o and SLI Flag = 0

These Tests are made to see if Command Chaining
can take place. Failure of any of these Tests
causes Command Chaining to be Suppressed

Figure 9. Functional Logic of End and Chaining Servicing

68

From "Servicing a Data Transfer"
Byte Count = ~ and Data Chaining

is specified

13
~----------~--------~

Yes

10

T est Standard Devi ce
Byte for Status

Modifier Condition?

No

11r---------~--------~

12

13

Fetch the Next CCW and
Place it in the Appropriate

Channel Registers in
Scratch Pad Memory

Does the Command Specify
a Transfer in Channel?

Is this a
Command Chain Operation?

I nputj Output Operation

Yes

10

Increment the Next CCW
Address by 8

(See Note 1, 2)

Yes

15
Is Main Memory Address
in Transfer in Channel

Command on a Double-Word
Boundary?

17 No

Yes

16

Transfer Main Memory
Address in Transfer in

Channel Command in Next
CCW Address

Send Command to
Specified Devic.~_ r-----------------------+i No (Data Chai n)

Set Program Check Bit
in Channel Status Byte

14 __ ------L-----__

Is this a
Burst Mode Operatian?

14 No

Store Subchannel Regi sters
back in Non-Addressabl e

Main Memory

Yes

Yes

(See Note 4)

14

Is this a Multiplexor

Channel Operation?

No

Next Instruction

18

Is thi s a Data
Chain Operation

Yes

Tell Device to Set an

End Condition

Figure 9. Functional Logic of End and Chaining Servicing (Cont'd)

69

Block 3

Block 4-

Block 5

Input/Output Operation

• If the device is not busy, a test is made to see if the Chain Command
(CC) flag is set. If it is not, control is transferred to Block 8 which causes
termination of the command to occur.

• If the Chain Command (CC) flag is set, a test is made to see if one of
the following bits is set in the channel status byte:

Program Check bit

Protection Check hit

Data Check bit (This bit is checked only if the
current operation is a write)

Channel Control Check bit

If any of the above bits are set (except the data check bit on a Read) con­
trol is transferred to Block 8 which causes termination of the command
and suppression of command chaining to occur.

• If none of the bits tested in the channel byte are set, a test is made to
see if the Chain Data (CD) flag is set. If the Chain Data flag is set, control
is transferred to Block 8 which causes termination of the command and
suppression of command chaining to occur.

Block 6 i • If the Chain Data (CD) flag is not set the standard device byte is tested

Block 7

Block 8

to see that the following conditions are present:

Device is operable

Secondary indicator is not set

Device end is set

If any of the above conditions is not present, control is transferred to Block
8 which causes termination of the command and suppression of command
chaining to occur.

• If all of the conditions tested in the standard device byte are present, a
test is made to see if the byte count is not equal to zero and the Suppress
Length Indicator (SLI) flag is equal to zero. If these conditions are pres­
ent, the program desires an indication of incorrect length, and control is
transferred to Block 8 which causes termination of the command and sup­
pression of command chaining to occur.

• Entry to this block occurs under the following conditions:

a. A device control electronics has indicated an end condition, the
device is not busy and the chain command flag bit is not set.

b. A device control electronics has indicated an end condition and the
chain command flag is set. However, a condition is present which
causes command chaining to be suppressed.

The processor tells the device control electronics is set a channel interrupt
condition for the appropriate channel.

70

Block 9

Block 10

Block 11

Input/Output Operation

• A test is made to see if the device is on the multiplexor channel. If it is,
the subchannel registers are sent back to non-addressable main memory.
In either case, program control continues with the next instruction or with
the instruction that was interrupted due to chaining and/or end servicing.

Note: If the operation that was terminated was a burst mode operation,
the burst mode is completed at this point and other multiplex mode
operations can be directed to devices on the multiplexor channel.
The processor does not have to wait for the burst mode terminating
interrupt to occur.

• Entry to this block occurs when command chaining is to take place.
The standard device byte is tested to see if the status modifier bit is set.
If it is, the next Channel Command Word (CCW) address is incremented
by eight. (The next channel command word in sequence is skipped.)

• In addition to continuing command chaining processing, entry to this
block occurs from Servicing a Data Transfer when the following conditions
are present:

a. The byte count is equal to zero.

b. The Chain Data (CD) flag is set.

The next Channel Command Word (CCW) is fetched from main memory
and placed in the appropriate channel registers. The next Channel Com­
mand Word address is incremented by eight.

Block 12 • A test is made to see if the next command in sequence is a Transfer in
Channel command.

Block 13 • If the command is not a Transfer in Channel command, a test is made
to see if this is a command chain or a data chain operation. If it is a com­
mand chain operation, the new command is sent to the specified device con­
trol electronics. (This is not required if this is a data chain operation.)

Block 14 • A test is made to see if the chaining servicing has occurred for a device
on the multiplexor channel. If it has, a test is made to see if it is a burst
mode operation. If it is not a burst mode operation, the subchannel regis­
ters are sent back to non-addressable main memory. In all cases, program

i control continues with the next instruction, or with the instruction that
was interrupted due to the chaining servicing.

Block 15 • If the next command in sequence is a Transfer in Channel command,
the main memory address specified by the Transfer in Channel command
is tested to see if it is on a double word boundary.

Block 16 i • If the main memory address specified in the Transfer in Channel com­
mand is on a double word boundary, this address is placed in the next
Channel Command Word address and control is transferred to Block 11

I which fetches the CCW specified by the Transfer in Channel command.

Block 17 I • If the main memory address specified in the Transfer in Channel com­
mand is not on a double word boundary, the program check bit is set in the
channel status byte.

71

Input/Output Operation

Block 18 ! • A test is made to see if this is a data chain operation. If it is, the device
is told to set an end condition on the next data service request and control
is transferred to Block 14 to complete the end servicing. If this is a com­
mand chain operation (the device has already indicated an end condition)
control -is transferred to Block 8 where the device control electronics is
told to set an interrupt condition.

I nterrupt Servicing

Notes On End and Chaining Servicing:

1. The following test occurs when the next Channel Command Word
is fetched:

The main memory address specified is tested to see if it is in
available main memory for the system. If it is not, the pro­
gram check bit in the channel status byte is set; and, if data
chaining, the device is told to set an end condition on the next
data service request (see Block 2) ; if command chaining, the
device control electronics is told to set a channel interrupt
condition (see Block 8).

2. If a main memory parity error occurs when fetching the next
Channel Command Word, the channel control check bit in the chan­
nel status byte is set; and, if data chaining, the device control
electronics is told to set an end condition on the next data service
request (see Block 2) ; if command chaining, the device control
electronics is told to set a channel interrupt condition (see Block 8).

3. If a scratch-pad memory parity error occurs when storing the sub­
channel registers back in non-addressable main memory the chan­
nel control check bit in the channel status byte is set.

4. If a scratch-pad memory parity error occurs when storing the sub­
channel registers back in non-addressable main memory, the chan­
nel control check bit in the channel status byte is set; and, if data
chaining, the device control electronics is told to set an end condi­
tion on the next service request (see Block 2) ; if command chain­
ing, the device control electronics is told to set a channel interrupt
condition (see Block 8).

• Interrupt servicing occurs when the appropriate flag in the Interrupt
Flag register has been set, and the Interrupt Mask register for the current
state permits the interrupt and it is taken. This service is required to:

1. Obtain the standard device byte from the device control electronics
(if applicable) and store it in the appropriate input/output
channel registers.

2. Fetch the appropriate subchannel registers from non-addressable
main memory if the interrupt is due to a multiplexor channel
device. The subchannel registers are stored in the multiplexor
channel registers in scratch-pad memory.

There are three kinds of channel interrupts. They are as follows:

Programmed Control Interrupt-This interrupt occurs when a Channel
Command Word is fetched and the program controlled interrupt flag bit is

72

Interrupt Servicing
(Cont'd)

Block 1

Block 2

Input/Output Operation

set. This interrupt condition has no effect upon the input/output operation
specified by the Channel Command Word. The standard device byte and the
subchannel registers are not stored.

Device Request Interrupt-This interrupt occurs as a result of a condition
arising in an input/output device control electronics. It may occur inde­
pendent of a processor initiated input/output operation. Examples of this
type of interrupt are as follows:

1. A remote processor wishes to send data via a Data Exchange
Control. The Data Exchange Control initiates the channel inter­
rupt. (This interrupt occurs independent of a processor initiated
input/output operation).

2. The processor initiates an off-line seek to a random access device.
When the seek is complete, the random access device control elec­
tronics initiates a channel interrupt. (This interrupt occurs in
conjunction with a processor initiated input/output operation).

When an external device request interrupt occurs, the standard device
byte and the subchannel registers (if a multiplexor device) are stored in
the appropriate input/output channel registers.

Terminating Interrupt-This interrupt occurs when an input/output
operation initiated by the processor has terminated. When this interrupt
occurs, the standard device byte and the subchannel registers (if a multi­
plexor device) are stored in the appropriate input/output channel regis­
ters. This is the final servicing of the channel and device. At the completion
of this servicing, the channel is free to accept another operation. The
contents of the input/output channel registers must be utilized by the
program before another operation is initiated. (When another operation is
initiated, the contents of these registers are altered.) The following infor­
mation is available in the input-output channel registers for interrogation
by the program:

Channel status byte

Standard device byte

Byte count

Address of next CCW

Low-order 4 bits of the command code

Device number

Interrupt servicing causes the following events to occur (see figure 10).

• The device control electronics is asked for the address of the device
requiring interrupt servicing.

• A test is made to see if the device control electronics is operable. The
device control electronics has 50 microseconds to signal the processor that
it is operable. If it does not, the processor generates a standard device byte
of all zeros. Control is then transferred to Block 4.

Block 3 ! • If the device control electronics is operable, it sends the standard
device byte to the processor.

73

Input/Output Operation

Device Control Electronics is

Asked for the
Device Address

2

Is Device Control No

Electronics Operable?
2

Generate an All Zero

Yes Standard Device Byte

3 and Store it into I/O
Channel Registers in

Recei ve Standard Devi ce Scratch Pad Memory

Byte from Device
Control Electronics

4

Yes Is This a Multiplexor
Channel Interrupt?

4

Fetch Appropriate
Subchannel Regi sters

(See Note 2)

and Transfer Them to No

Scratch P ad Memory

5

No Is This a

Termination Interrupt?

6
Yes

Set Termination
Interrupt Bit in

Channel Status Byte

7

Test for Yes
Incorrect Length

8

No
Set Incorrect Length

- Bit in Channel

8
Status Byte

Store Standard Device
Byte in Appropriate

Registers in Scratch Pad
Memory (If Required)

t
Next Instruction

Figure 10. Functional Logic o·f Interrupt Servicing

74

Input/Output Operation

Block 4- • If the service request comes from a device control electronics con­
nected to the multiplexor channel, the processor uses the device address
to fetch the appropriate subchannel registers in non-addressable main
memory. The subchannel registers are stored in the input/output channel
registers in scratch-pad memory for the multiplexor channel.

Block 5 • A test is made to see if this is a terminating interrupt. If it is not
(it is a program controlled or a device request interrupt) control is trans­
ferred to Block 8.

Block 6 • If the interrupt is a terminating interrupt, the termination interrupt
hit in the channel status byte is set.

Block 7 • A test is made to see if the byte count is not equal to zero and the
Suppress Length Indicator (SLI) flag is equal to zero. If these conditions
are present, the program desires an indication of incorrect length and the
incorrect length bit in the channel status byte is set.

Block 8 • The standard device byte is stored in the appropriate input/output
channel registers and program control continues with the next instruction.

Note: On the 70/55 Processor, if the interrupt is a program controlled
interrupt, the standard device byte is not stored.

Notes on Interrupt Servicing:

1. The device address is always stored in the input/output channel
registers in scratch-pad memory if the interrupt is due to a device
connected to the multiplexor channel. If the interrupt is due to a
device on a selector channel, the device address is stored only if it
is a device request interrupt.

2. If a main memory parity error occurs when fetching the subchan­
nel registers, the channel control check bit in the channel status
byte is set.

75

MULTI-PROCESSOR
INSTALLATION

INTRODUCTION

OPERATIONAL
CHARACTERISTICS

• Installations where more than one computer shares peripheral equip­
ment or work loads require extra machine-program communications. To
enable this rapid signaling between processors independent of input/output
operations the Direct Control feature is provided.

To signal a receiving processor (or processors) a Write Direct instruc­
tion is used to effect an external interrupt in the receiving processor. To
enable the receiving processor to honor this external interrupt and com­
plete the transfer, a Read Direct instruction is used (refer to Privileged
Instructions section). This Write Direct action of one processor to another
is analogous to a Supervisor Call instruction and corresponding interrupt
of a user's program to the Interrupt Control State (Ps).

The Direct Control feature is identical on the 70/35, 70/45 and 70/55
Processors, therefore permitting all three of the processors to be connected
in any combination of up to six. Some typical cases for which this feature
is used are:

Request use of a control file.
Notify that file access has been completed.
Notify back-up system that a processor machine failure

has been detected.
Notify back-up system that a processor power failure

has been detected.
Request assistance because of program overload.
Request for task assignments.

• The 8-bit data byte transmitted from the out line of one processor to
the in line of a second processor in a multi-processor installation by means
of the Direct Control feature provides 256 code combinations. The code
sets can be any required by the program including EBCDIC and ASCII
with code interpretation being performed by the program.

When a transmitting processor issues a Write Direct instruction, an
external interrupt is set in the receiving processor (specified by the I-Field
of the Write Control instruction) in response to the signal. To service the
interrupt, the receiving processor issues a Read Direct instruction to
accept the control byte and then issues a Write Direct with an acknowl­
edgement code to the transmitting processor. (Write Direct of an acknowl­
edgement code does not require a return acknowledgement.) When an
acknowledgement has been received from each of the receiving processors
(if more than one connected), the transmitting processor may execute
another transmission.

In the event of power failing in a processor, interrupt occurs to
processor state P 4. In a multi-processor installation with the Direct Control
feature, the failing processor issues a Write Direct instruction with a data
byte of all zero bits to all processors it is connected to in the system.

Note: The Direct Control feature does not provide error checking on the
data transmitted. When checking is required, it must be performed
by program.

76

DIRECT CONTROL
INTERFACE

Static Out Lines

Static In Lines

Signal Out Line

External Signal In Line

Power Failure
Line (PFND)

Power Failure Inhibit
In Line (PFIR)

Multi-Processor Installation

• The Direct Control interface connects from two to six processors into
a multi-processor complex. Each of the processors can have up to six direct
control trunks which contain the signal lines that transmit and receive the
direct control information. These signal lines function as follows:

• The Static Out lines are logically identical (common) on all trunks,
(information on one trunk is identical to information of all other trunks).
The state of these Static Out lines is established when a Write Direct
instruction is executed and remains static until altered by a subsequent
Write Direct instruction. Parity is not generated or checked on these lines.
(See Write Direct instruction.)

• The Static In lines provide the means for the receiving processor to
receive 8-bit bytes of data from other transmitting processors via their
Static Out lines. Each trunk may be uniquely sampled by a Read Direct
instruction which specifies the desired trunk. (See Read Direct instruc­
tion.)

• The Signal Out line provides a signal to the other processors upon
execution of a Write Direct instruction. The Direct Control Trunks (DCT)
whose Signal Out lines are signaled is specified by the I-Field pattern of
the instruction.

• The External Signal In line provides the means for receiving a signal
from other processors via their Signal Out lines. The External Signal In
line is logically connected to the external signal interrupt flag associated
with each Direct Control Trunk (DCT) as indicated:

Trunk Signaled External Interrupt Flag

DCT #1 1

DCT #2 2

DCT #3 3

DCT #4 4

DCT #5 5

DCT #6 6

• The PFND line is logically identical on all Direct Control Trunks
(DCT) in the complex. Its signal is normally up but is dropped upon
detection of a power failure. The signal on this line remains down through­
out the one millisecond of available program time remaining, and does not
come up again until after power has been restored.

• The PFIR line provides the means for inhibiting a Read Direct in­
struction of the associated Static In lines when its signal is dropped. When
the signal is dropped, all zeros are read by the receiving processor.

77

DUAL-PROCESSOR
COMPLEX

PROCESSOR # 1

STATIC IN

STATIC OUT

EXT. S IGNAL IN

SI GNA LOUT

PFIR

PFND

HOLD IN

WRITE OUT

CABLE
CONNECTS
TO DCT2

Multi-Processor Installation

• The following illustration is presented to demonstrate the manner in
which two processors are interconnected. In this instance only one cable is
required.

PROCESSOR #2

STATIC OUT

STA TIC IN

SIGNA LOUT

EXT. SIG NAL IN

PFND

P FIR

WRIT E OUT

HO LD IN

CABLE
CONNECTS
TO OCT 1

Figure 11. Dual-Processor Complex

78

Multi-Processor Installation

MASTER/SATELLITE
COMPLEX

• The Master/Satellite complex permits the master processor to commu­
nicate with its satellites and the satellites to communicate with the master
processor. However, the satellites cannot communicate with each other.
The following illustration demonstrates the manner in which the master
processor interconnects with up to five satellite processors via the Direct
Control Trunks (DCT).

OCTl OCT2

I OCT' ~

SATELLITE
PROCESSOR (# 2)

I OCTl

SATELLITE

PROCESSOR (#3)

I OCT1

SATELLITE
PROCESSOR (# 4)

MASTE R PROCESSOR (# 1)

OCT3 OCT4 OCT5

Figure 12. Master/Satellite Complex

79

OCT6

~ OCT! I
SATELLITE
PROCESSOR (#6)

OCT1 I
SATELLITE

PROCESSOR (#5)

MAXIMUM
MULTI-PROCESSOR

COMPLEX

OCT1

OCT2

PROCESSOR OCT3

#1
OCT4

OCT5

OCT6

OCT1

OCT2

PROCESSOR OCT3

#2
OCT4

OCT5

OCT6

OCTI

OCT2

PROCESSOR
OCT3

#3
OCT4

OCT5

OCT6

Multi-Processor Installation

• The following illustration demonstrates the manner in which six pro­
cessors may be interconnected so that any two processors may communicate.

OCTl

OCT2

OCT3
PROCESSOR

OCT4
#4

OCT5

OCT6

OCT1

OCT2

OCT3 PROCESSOR
#5

OCT4

OCT5

OCT6

OCTl

OCT2

OCT3
PROCESSOR

OCT4
#6

OCT5

OCT6

Figure 13. Maximum M.ulti-Processor Complex

80

OPERATIONAL
PROCEDURES

Transmission Procedure

Response Procedure

Multi-Processor Installation

• The following sections are furnished to illustrate typical operational
procedures when using the Direct Control feature. They are presented for
clarification only and are not meant to imply fixed and firm standards.
For a detailed description of the actual programming procedures, reference
should be made to the applicable reference manuals.

• User Program - (PI) The user program in Processing State (PI)
contains a Supervisor Call instruction with a Write Direct Interrupt Code.
In addition, it contains the following parameters required when interrupt
is effected to the operating system in processor state (P3) :

Data Byte (8-bit code)

Signal Byte (specifies processor (s) to which
Write Direct is addressed)

Return Address (for return to normal processing)

Operating System - (P3) The operating system accepts the Super­
visor Call Interrupt and issues a Program Control instruction to (P2).

In addition, the location of the user parameters are saved, the processor is
set to the Privileged Mode and a change made from (P3) to (P2).

Supervisor Call Routine - (P2) The Interrupt Weight is used to
branch to the Supervisor Call routine where the Supervisor Call Interrupt
Code is decoded and a branch is made to the required routine, in this case
the Write Direct routine. The Write Direct routine then performs the
following:

1. Checks to determine whether Write Direct instruction can be
issued or must be stacked in queue.

2. Fetches the user parameters.

3. Sets Write Direct instruction I-Field to the Signal byte, the
Address field to the Data byte, and the Return After Interrupt to
the user Return Address in (PI)'

4. Executes Write Direct instruction.

5. If no acknowledgement is received, sets control in Acknowledge
queue.

6. Sets processor to non-privileged mode.

7. After interrupt, executes Program Control instruction and branch
to user return address in (P I) .

• Operating System - (P3) The operating system accepts the Direct
Control Interrupt and issues a Program Control instruction to (P2). In
addition, the processor is set to privileged mode and a change made from
(P:J to (P2).

81

Response Procedure
(Cont'd)

Multi-Processor Installation

Read Direct Routine - (P2) The Interrupt Weight is used to branch
to the Read Direct routine. The Read Direct routine then performs the
following:

1. Issues a Read Direct instruction to read the Data Byte.

2. Saves the Data Byte and the External Interrupt number (which
corresponds to the transmitting processor) for user Read Direct
processing.

3. Issues a Program Control instruction to (PI) and sets processor to
non-privileged mode.

4. Changes from (P2) to (PI) and branches to user Read Direct
routine.

User Read Direct Routine - (PI) Using the External Interrupt
number, the user Read Direct routine determines the transmitting pro­
cessor number and decodes the Data Byte to determine the type of action
required.

If the Power Failure code (all zeros) is received, the processor that is
down is removed from the system configuration and a return to normal
processing is effected.

For all other codes received, a Write Direct acknowledgement is issued
as follows:

1. Supervisor Call is issued with a Write Direct Interrupt Code.

2. A Write Direct instruction with a Data Byte of an Acknowledge
Code and a return address of the user Read Direct routine is
executed.

When the return is accomplished, the function specified by the Data
Byte inti ally read is performed, and at the end of the Read Direct process­
ing a branch is made back to the (PI) program.

82

PRIVILEGED
INSTRUCTIONS

INTRODUCTION

INSTRUCTION
FORMATS

RR Format

Description

SI Format

Description

SS Format

Descript'ion

INTERRUPT ACTION

Address Error

Addressing

• The instructions described in this section are called privileged instruc­
tions and can only be executed if the non-privileged mode bit (bit position
15 in the Interrupt Status register) for the current state is zero.

In addition to the standard privileged instruction set, inclusion of the
memory protect and/or the direct control optional features cause additional
privileged instructions to be added.

Op Code

o 7 8 11 12 15

• The RR format is used only by the Set Storage Key and the Insert
Storage Key instructions. The contents of the general register specified
by the Rl field is the first operand. The general register specified by the
R2 field contains the second operand address.

o 7 8 15 16 19 20 31

• The SI format is used by the Program Control, the Write Direct, the
Read Direct instructions and all input/output instructions. The first address
(B]/D]) specifies the main memory location of the first operand. The
second operand is the immediate byte in the 12 field.

I Op Code [L

o 7 8 15 16 19 20 31 32 35 36 47

• The SS format is used by the Load Scratch Pad and the Store Scratch
Pad instructions. The location of the first operand is specified by the first
address (BdD1), and the location of the second operand is specified by
the second address (B2/D2). The L field is the number of words in addition
to the addressed word that are to be transferred.

• The following interrupt conditions can occur as a result of a privileged
instruction:

• An address error interrupt occurs when an address specifies a location
outside the available main memory of the particular installation. The
operation is terminated at the point of error. The result data and condition
code, if produced, are unpredictable. If the address of an instruction is
invalid, the operation is suppressed.

83

Specification

Protection

Privileged Operation

Operation Code Trap

SPECIAL
CONSIDERATIONS

Program Mask

Scratch-Pad Addresses

• An address error interrupt occurs when:

Privileged
Instructions

1. A Load Scratch Pad or Store Scratch Pad instruction specifies a
first or second address which is not on a word boundary.

2. Bits 28 through 31 of the second operand of a Set Storage Key or
Insert Storage Key instruction are not zero.

3. The memory protect feature is not installed and the protection key
in the Interrupt Status register for the current program state is
not zero.

4. The Program Control instruction specifies an instruction address
which is not on a halfword boundary.

In these error interrupt conditions, the operation is suppressed. The
data in main memory and registers is unchanged.

• An address error interrupt occurs when the storage key and the protec­
tion key of the result location do not match. The operation is terminated.
The result data is unpredictable. (This interrupt can occur only if the
memory protect feature is installed.)

• A privileged operation interrupt occurs if execution of any privileged
instruction is attempted and the non-privileged mode bit (bit position 15
in the Interrupt Status register) for the current state is 1. The operation
is suppressed and the condition code, registers, and main memory are
unaltered.

• An operation code trap interrupt occurs under the following conditions:

1. The memory protect feature is not installed and an attempt to
execute a Set Storage Key or Insert Storage Key instruction is made.

2. The direct control feature is not installed and an attempt to execute
a Write Direct or Read Direct instruction is made.

• The following sections outline programming rules which must be fol­
lowed in order to maintain compatibility for programs which are to run
on all three processors (70/35, 70/45, and 70/55).

• The contents of the P-Counter in scratch-pad memory associated with
the current program state does not necessarily contain the active Program
Mask. Programs should not address the P-Counter of the current program
state via Load or Store Scratch Pad instructions and expect to effect or
obtain the active Program Mask. While the 70/45 and 70/55 processors
utilize a hardware register to contain the Program Mask (which is updated
whenever a change of program state is made or a Set Program Mask
instruction is executed), the 70/35 processor utilizes the P-Counter as the
active Program Mask at all times.

• The first address of the Load and of the Store Scratch Pad instructions
specifies word locations 0-127 by the seven rightmost bits. Bits to the
left of these must be zeros since the 70/35 processor incorporates the
scratch-pad area as the lower 128-word portion of non-addressable memory.
Addresses greater than 127 will specify portions of 70/35 non-addressable
memory not containing scratch pad. This does not occur on the 70/45

R4

Scratch-Pad Addresses
(Cont'd)

Next Instruction Address

Privileged
Instructions

and 70/55 processors as scratch pad is implemented separately and wrap­
around occurs module 128. (i.e., if location 127 is loaded, location zero
may be loaded next.)

• The contents of the P-Counter in scratch-pad memory associated with
the current program state does not necessarily contain the Next Instruction
Address (NIA). Programs should not address the P-Counter of the current
program state via the Load or the Store Scratch Pad instructions and
expect to effect a branch or obtain the address of the next instruction in
sequence. While the 70/45 and 70(55 processors utilize the P-Counter as
the NIA Register at all times, the 70/35 utilizes a hardware NIA Register.
(The contents of the NIA-Field in the P-Counter are updated whenever
a change of program state is to be effected or if the hardware NIA Register
is to be used as a temporary utility register.)

85

Load Scratch Pad
(LSP)

General Description

Format
(55)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

• Operands from main memory, starting with the storage location specified
by the second address (BdD2), are loaded in the scratch-pad memory
starting at the location specified by the first address (B1/D1).

D8 L

o 7 8 15 16 19 20 31 32 35 36 47

• Unchanged except when the P counter in scratch-pad memory is loaded.

• Privileged operation.

Address error:

Addressing.

Specification.

• 1. The L field provides an eight-bit count specifying the number of
scratch-pad memory locations to be loaded. An initial count of zero
specifies one word to be loaded.

2. The first address specifies scratch-pad memory words 0 through 127
by the seven rightmost bits of the address. The bits to the left of
the seven-bit address must be zero.

3. The second address must be on a word boundary. (This is a
program restriction.)

4. The processor uses utility registers in scratch-pad memory to execute
this instruction. If these registers are included in the range of this
instruction results are unpredictable.

86

Store Scratch Pad
(SSP)

General Description

Format
(55)

Condition Code

Interrupt Action

Privileged
Instructions

• Operands from the scratch-pad memory, starting with the location
specified by the first address (B1/D1), are stored in main memory locations,
starting with the location specified by the second address (BdD2).

DO L

o 7 8 15 16 19 20

• Unchanged.

• Privileged operation.

Address error:

Addressing.

Specification.

Protection.

31 32 35 36 47

Notes • 1. The L field provides an eight-bit count specifying the number of
scratch-pad memory locations to be stored. An initial count of zero
specifies one word to be stored.

2. The first address specifies scratch-pad memory words 0 through 127
by the seven rightmost bits of the address. The bits to the left of
the seven-bit address must be zero.

3. The second address must be on a word boundary. (This is a
program restriction.)

87

Program Control I

(PC)

General Description

Format
(SI)

Privileged
Instructions

• This instruction specifies the termination of program execution in the
current state, and the initiation of another state under control of the
immediate byte in the 12 field. The address computed from the Bl/DJ
address components of the instruction is stored in the P counter of the state
being terminated (bit positions 8-31).

82

o 7 8 15 16 19 20 31

Condition Code • The condition code indicators of the state being terminated are preserved
in the state's P counter. The condition code in the P counter of the initiated
state is then used to set the condition code indicators.

Interrupt Action I • Privileged operation.

Address error:

Addressing.

Specification.

Note • 1. The immediate byte in the 12 field of the instruction is divided
into four subfields as follows:

8 9 10 11

\'---~V,-------JI

Unused

Program
Test
Bit

12 13 14 15

'"----..V,---.--I�

Direct
State

Initiation

Indirect
Control Flag

Bits 8 through 10 are unused. The three bit unused portion must be zero.

Bit 11 is the program test bit. If bit 11 = 1, the program test mode
is initiated. The program test interrupt bit is set in the Interrupt Flag
register of the initiated state.

The scan of the Interrupt Flag register in the initiated state is delayed
until after the first instruction of the initiated state is executed, at which
time the scan is made in normal priority.

If bit 11 = 0, the program test mode is not initiated.

88

Note
(Cont'd)

Privileged
Instructions

Bits 12 through 14 are the direct state initiation bits. The three-bit
direct state initiation codes that may be specified are as follows:

000 - Go to Machine Condition State P 4.

001 - Go to Interrupt Control State P:1•

010 - Go to Interrupt Response State P 2.

011- Go to Processing State Pl.

Programming Note: The leftmost bit of the three-bit direct state
initiation field must be zero. (This is a programming restriction.)

Bit 15 is the indirect control flag bit. If indirect state control is specified
(bit 15 = 1), the three-bit direct state initiation field is ignored. The three­
bit interrupted state identifier (lSI), which indicates the last state inter­
rupted, specifies the state to be initiated. This information is contained in
the Interrupt Status register of the state being terminated.

If bit 15 = 0, direct state initiation is used.

89

Idle
(IOL)

General Description

Format
(51)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

• This instruction effects an idle mode within the processor by con­
tinuously branching back to itself.

80

o 7 8 15 16 19 20 31

• Unchanged.

• Privileged operation.

• 1. When this instruction is operating with the I field zero, the Idle
light of the console is on.

2. Any interrupt occurring while the idle mode is in effect is taken
(if permitted via the Interrupt Mask register).

3. The Bl and Dl fields of this instruction must be zero.

4. For normal programming, the I field must be zero. For maintenance
programming, bits within the I field, have the following meaning:

Bit 15 = I-set alarm inhibit.
Bit 14 = I-reset alarm inhibit.
Bit 13 = I-set inhibit simultaneity.

Bit 12 = l-reset-inhibit simultaneity.

90

Diagnose
(DIG)

General Description

Format
(SI}

Privileged
Instructions

• The purpose of this privileged instruction is to provide a means for
facilitating maintenance techniques on the 70/35, 70/45 and 70/55 Proces­
sors. It is provided for the RCA Customer Service and Engineering
Representatives and cannot be used for a program debugging aid.

The mechanics of this instruction are implemented differently for each
of the three processors. The Diagnose instruction designed for the 70/35
Processor is unique to that processor, the one designed for the 70/45 is
unique to that processor, and the one designed for the 70/55 is unique
to that processor.

83

o 7 8 15 16 19 20 31

91

Start Device
(SDV)

General Description

Format
(SI)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

• The contents of the general register specified by BJ are added to the Dl
field. The resultant sum identifies the channel and device to which the
instruction applies. These are specified by bit positions 21 through 31 of
the sum. The I-field is not used and must be zeros.

The channel address word in main memory location 72 contains the
protection key to be used and the address of the first channel command
word. The channel command word designated by the channel address word
specifies the operation to be performed, the main memory area to be used,
and the action to be taken when the operation is completed. The condition
code indicates the result of the instruction.

9C

o 7 8 15 16 19 20 31

• 0 - input/output operation initiated and channel proceeding with
execution.

1 - status bits stored in scratch-pad memory.

2 - busy or interrupt pending.

3 - inoperable.
(For a detailed description of the condition code settings, see Notes

below.)

• Privileged operation.

• 1. The address portion of this instruction specifies the device and
channel as follows:

Bit Positions

Channel Specified
21 22 23

0 0 0 Multiplexor
0 0 1 Seleetor No. 1
0 1 0 Selector No. 2
0 1 1 Selector No. 3
1 0 0 Selector No. 4
1 0 1 Selector No. 5
1 1 0 U ndesignated
1 1 1 Selector No. 6

Bit positions 24 through 31 specify one of 256 possible devices.

2. The standard device byte and the channel status byte stored by the
previous input/output instruction in scratch-pad memory is destroyed
if the condition code at the completion of the Start Device instruc­
tion is 0 or 1.

3. Status storage (channel status byte and standard device byte), if
required, occurs before the Start Device instruction terminates.

4. Condition Code 0 is set under the following conditions:

92

Notes
(Cont'd)

Privileged
Instruction s

a. The device control electronics and the device specified are
available.

b. The Start Device instruction specifies a Sense command to a
device that is inoperable.

5. Condition Code 1 indicates that either the channel status byte or
the standard device byte has been stored in the channel registers in
scratch-pad memory for the specified channel.

The channel status byte is stored under the following conditions:

a. A parity error occurs while accessing the Channel Address Word
(CA W) or a Channel Command Word (CCW). The channel
control check bit in the channel status byte is set.

b. The Memory Protect feature is not installed and the key in the
CAW is not zero. The program check bit in the channel status
byte is set.

c. The main memory address specified in the CAW is not on a double
word boundary. The program check bit in the channel status byte
is set.

d. The main memory address in the CCW specifies an address out­
side the available memory for the system. The program check
bit in the channel status byte is set.

The standard device byte is stored under the following conditions:

a. The specified device control electronics on the multiplexor chan­
nel indicates that a device request interrupt pending condition is
present. The external device request interrupt pending bit in the
standard device byte is set.

b. The Start Device instruction specifies a command which is other
than a Sense command and the addressed device is inoperable.
The device inoperable bit in the standard device byte is set.

c. The specified device is busy but the device control electronics is
not busy (i.e., tape rewinding, off-line seek to a random access
device end bit in the standard device byte are set.

6. Condition Code 2 is set under the following conditions:

a. A selector channel is specified that is busy.
b. A selector channel is specified that has an interrupt pending

(termination or external device request).
c. The multiplexor channel is specified and it is operating in burst

mode.
d. The multiplexor channel is specified and the addressed device

contro.l electronics is busy with addressed or non-addressed device.
e. The multiplexor channel is specified and the addressed device con­

trol electronics has a termination interrupt pending.
f. A burst mode operation is directed to the multiplexor and there

is a termination interrupt pending on one of the attached device
control electronics.

7. Condition Code 3 is set under the following conditions:

a. A selector channel is specified that is not in the system.
b. The specified device control electronics is inoperable.

93

Notes
(Cont'd)

Privileged
Instructions

8. If the condition code is 1, 2 or 3 the input/output operation is not
initiated.

9. Parity errors that occur while fetching the CAW or CCvV or that
occur after the input/output operation has been initiated do not
cause a machine check interrupt. A channel interrupt occurs and
the program is notified of the error via the channel status byte.

10. If the first CCW is a Transfer in Channel command the Start Device
instruction terminates and the condition code is set to o. However,
the specified device control electronics recognizes this command as
an illegal operation and causes a channel interrupt to occur.

94

Halt Device
(HDV)

General Description

Format
(SI)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

• The contents of the general register specified by Bl are added to the Dl
field, and the resultant sum identifies the channel to be halted. The channel
is specified by bit positions 21 through 23 of the sum. If a mUltiplexor is
specified, bit positions 24 through 31 of the sum identify the device to be
halted. The I field is not used and must be zeros. Bufferred devices operating
off-line, and independent of the channel/device control electronics, cannot
be stopped by using this instruction. The condition code specifies the results
of the instruction.

9E

o 7 8 15 16 19 20 31

• 0 - not busy.

1- standard device byte stored in scratch-pad memory.

2 - termination accepted.

3 - inoperable.

(For a detailed description of the condition code settings, see Notes
below.)

• Privileged operation.

• 1. The address portion of this instruction specifies the device and
channel as follows:

Bit Positions

Channel Specified
21 22 23

0 0 0 Multiplexor
0 0 1 Selector No. 1
0 1 0 Selector No. 2
0 1 1 Selector No. 3
1 0 0 Selector No. 4
1 0 1 Selector No. 5
1 1 0 Undesignated
1 1 1 Selector No. 6

Bit positions 24 through 31 specify one of 256 possible devices.

2. If a device operating on a selector channel is to be halted, the device
number does not have to be specified.

3. The channel address word in main memory location 72 and the
channel command word are not used by this instruction.

4. A termination interrupt occurs when any input/output operation is
terminated. Status bits are stored in scratch-pad memory when the
termination interrupt occurs.

5. All five flags in CCR-II are cleared if the Halt Device instruction is
accepted. Therefore, upon termination, the incorrect length counter
in the channel status byte is set if the count is not zero.

95

Notes
(Cont'd)

Privileged
Instructions

6. A Halt Device instruction that specifies a multiplexor channel that
is operating in the burst mode must specify a device that is operating
in the burst mode.

7. Condition Code 0 is set under the following conditions:
a. The device control electronics or the device specified on the multi­

plexor channel is not busy. No termination is required.
b. A selector channel or the multiplexor channel operating in burst

mode is specified and it is not busy. No termination is required.
c. The multiplexor channel is specified and the addressed device con­

trol electronics has a termination interrupt pending. No termina­
tion is required.

8. Condition Code 1 indicates that the specified device is on the multi­
plexor channel and that the standard device byte has been stored
in the channel registers in scratch-pad memory for the multiplexor
channel. The channel status byte is never stored.

The standard device byte is stored under the following conditions:

a. The specified device indicates that a device request interrupt pend­
ing condition is present. The external device request interrupt
pending bit in the standard device byte is set.

b. The specified device is busy but the device control electronics is
not busy (i.e., tape rewinding). The device busy bit in the stand­
ard device byte is set.

c. The specified device is inoperable. The device inoperable bit in
the standard device byte is set.

9. Condition Code 2 is set under the following conditions:

a. A selector channel is specified that is busy.
b. The multiplexor channel is specified and it is operating in the

burst mode.
c. The multiplexor channel is specified and the addressed device

control electronics and device are busy.

10. Condition Code 3 is set under the following conditions:

a. A selector channel is specified that it is not in the system.
b. The specified device control electronics is inoperable.

11. Status storage (standard device byte), if required, occurs before
the Halt Device instruction terminates.

96

Test Device
(TDV)

General Description

Format
(SI)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

• The contents of the general register specified by BI are added to the DI
field. The resultant sum identifies the channel and device to which the
instruction applies. These are specified by bit positions 21 through 31 of
the sum. The I-field is not used and must be zeros. The condition code
specifies the results of the instruction.

9D

o 7 8 15 16 19 20 31

• 0 - available.
1- standard device byte stored in scratch-pad memory.
2 - busy or interrupt pending.
3 - inoperable.

(For a detailed description of the condition code settings, see Notes
below.)

• Privileged operation.

• 1. The address portion of this instruction specifies the device and
channel, as follows:

Bit Positions

Channel Specified
21 22 23

0 0 0 Multiplexor
0 0 1 Selector No. 1
0 1 0 Selector No. 2
0 1 1 Selector No. 3
1 0 0 Selector No. 4
1 0 1 Selector No. 5
1 1 0 Undesignated
1 1 1 Selector No. 6

Bit positions 24 through 31 specify one of 256 possible devices.

2. The channel address word in main memory location 72 and the
channel command word are not used by this instruction.

3. Status storage (standard device byte), if required, occurs before
the Test Device instruction terminates.

4. Condition Code 0 is set if the device control electronics and the
device are available.

Note: There may be pending interrupts on the multiplexor
channel that would prohibit a burst mode operation
to be initiated.

5. epndition Code 1 indicates that the standard device byte has been
stored in the channel registers in scratch-pad memory for the
specified channel. The channel status byte is never stored by this
instruction.

The standard device byte is stored under the follov~Ting conditions:
a. The specified device control electronics on the multiplexor chan­

nel indicates that a device request interrupt pending condition

97

Notes
(Cont'dJ

Privileged
Instructions

is present. The external device request interrupt pending bit in
the standard device byte is set.

b. The specified device is busy but the device control electronics is
not busy (i.e., tape rewinding, off-line seek to a random access
device). The device busy bit in the standard device byte is set.

c. The specified device is inoperable. The device inoperable bit in
the standard device byte is set.

6. Condition Code 2 is set under the following conditions:
a. A selector channel is specified that is busy.
b. A selector channel is specified that has an interrupt pending

(termination or external device request.)
c.The multiplexor channel is specified and it is operating in burst

mode.
d. The multiplexor channel is specified and the addressed device

control electronics is busy with addressed or non-addressed device.
e. The multiplexor channel is specified and the addressed device

control electronics has a termination interrupt pending.

7. Condition Code 3 is set under the following conditions:
a. A selector channel is specified which is not in the system.
b. The specified device control electronics is inoperable.
c. A device is specified that is not in the system.

98

Check Channel
(CKC)

General Description

Format
(SI)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

• The contents of the general register specified by BJ are added to the Dl
field, and the resultant sum identifies the input/output channel to be tested.
This is specified by bit positions 21 through 23 of the sum. Only the channel
is tested.

9F

o 7 8 15 16 19 20 31

• 0 - a. The specified selector channel is not busy and has no interrupts
pending.

b. The specified multiplexor channel is not operating in the burst
mode.

1 - The specified selector channel has an external device request inter­
rupt pending.

2 - a. The specified selector channel is busy or has a terminating
interrupt pending.

b. The specified multiplexor is operating in the burst mode.
3 - A selector channel is specified that is not in the system.

• Privileged operation.

• 1. The address portion of this instruction specifies the channel to be
tested as follows:

Bit Positions

Channel Specified
21 22 23

0 0 0 Multiplexor
0 0 1 Selector No. 1.
0 1 0 Selector No.2.
0 1 1 Selector No. 3
1 0 0 Selector No. 4
1 0 1 Selector No. 5
1 1 0 U ndesigna ted
1 1 1 Selector No. 6

2. The channel address word in main memory location 72 and the
channel command word are not used by this instruction.

3. The device address (bit positions 24 through 31 of the sum) is not
used by this instruction.

4. Status bits (channel status byte and standard device byte) are not
stored in scratch-pad memory by this instruction.

5. Current operations proceeding in the specified channel are unaffected
by this instruction.

99

Insert Storage Key
(15K)

General Description

Format
(RR)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

• The storage key of the 2,048-byte main memory block, which is located
at the address contained in the general register specified by the second
address (R2), is inserted in the general register specified by the first
address (R l).

° 7 8 11 12 15

• Unchanged.

• Privileged operation.

Address error:

Addressing.

Specification.

Operation code trap (if the memory protect feature is not installed).

• 1. The general register specified by the second address (R2) contains
the location of the 2,048-byte main memory block in bits 8 through
20. Bits 0 through 7 and 21 through 27 are ignored. Bits 28 through
31 must be zero.

o

°

o

2. When the four-bit storage key is inserted into bits 24 through 27
of the general register specified by the first address, bits 0 through
23 are unaltered and bits 28 through 31 are made zero.

3. The address of the storage key for a specific 2,048-byte main memory
block is specified in R2 by a binary count as shO\vn in the following
examples:

IGNORED

IGNORED

IGNORED

Storage Key Address in R2

I ° I ° I ° 1° I ° 1° I ° 1° I ° I ° 1° 10
1

0 I IGNORED I 0 0 0 0 I
7 \ 8 _____ ---"Ivr------20-J1 21

Address of Storage
key for first 2,048
main memory block

7 \I.-8 _____ """'\v,... _____ 2_0J1 21

Address of Storage
key for third 2,048
main memory block

7 \ 8 _____ ---,.vr--_____ 2_0/ 21

Address of Storage
key for tenth 2,048
main memory block

100

27~

Must be
zeros

27~
Must be

zeros

27~

Must be
zeros

Set Storage Key
(SSK)

General Description

Format
(RR)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

• The storage key of a 2,048-byte main memory block located at the
address contained in the general register specified by the second address
(R2) is set according to the value contained in the register specified by the
first address (R1).

o 7 8 11 12 15

• Unchanged.

• Privileged operation.

Address error:

Addressing.

Specification.

Operation code trap (if the memory protect feature is not installed).

• 1. Bits 8 through 20 of the register specified by the second address (R2)

contain the location of the storage key for a 2,048-byte main memory
block. Bits 0 through 7 and 21 through 27 are ignored. Bits 28
through 31 must be zero.

2. Bits 24 through 27 of the general register specified by the first
address (R1) contain the four-bit storage key to be assigned. Bits
o through 23 and 28 through 31 are ignored.

3. The address of the storage key for a specific 2,048-byte main memory
block is specified in R2 by a binary count (see examples under Insert
Storage Key description).

101

Write Direct
(WRD)

General Description

Format
(SI)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

• The eight-bit byte specified by the first address (Bl/Dd is accessed and
transmitted to all units via the Static Out lines. The eight-bit I field
specifies the Signal Out lines to be pulsed. The Static Out lines remain as
specified until the next Write Direct instruction.

84

o 7 8 15 16 19 20 31

• Unchanged.

• Privileged operation.

Address error:

Addressing.

Operation code trap (if Direct Control option is not installed).

1. Each trunk has only one Signal Out line and is pulsed according to
the following pattern:

I-Field TTunk(s) Pulsed

Bit 0 = 1 Six
Bit 1 = 1 Five
Bit 2 = 1 Four
Bit 3 = 1 Three
Bit 4 = 1 Two
Bit 5 = 1 One
Bit 6 = 0 Reserved (Must be zero)
Bit 7 = 0 Reserved (Must be zero)

More than one I-Field bit may be set to 1 providing pulses for
sending over more than one direct control trunk. This permits
sending the same byte to all processors connected to the trans­
mitting processor.

2. A processor cannot Write Direct to itself. The I-Field bit associated
with the transmitting processor must always be reset to zero. (This
is a programming restriction.)

102

Read Direct
(ROD)

General Description

Format

Condition Code

Interrupt Action

Privileged
Instructions

• The eight-bit I field specifies one of up to five possible sets of Direct
Control trunks to be sampled. The sampled eight-bit byte is transferred to
the main memory location specified by the first address (Bl/D]) from the
Static In lines.

85

o 7 8

• Unchanged.

• Privileged operation.

Address error:

Addressing.

Protection.

15 16 19 20

Operation code trap (if Direct Control option is not installed).

31

Notes • 1. Each of the six Direct Control trunks has a set of Direct In lines
which are sampled according to the following pattern:

I-Field Trunk Sampled

Bit 0 = 1 Six
Bit 1 = 1 Five
Bit 2 = 1 Four
Bit 3 = 1 Three
Bit 4 = 1 Two
Bit 5 = 1 One
Bit 6 = 0 Unused (Must be zero)
Bit 7 = 0 Unused (Must be zero)

The program must specify only one I-Field bit set to 1, otherwise
results of the instruction are unpredictable.

2. A processor cannot Read Direct to itself. The I-Field bit associated
with the receiving processor must always be reset to zero. (This is
a programming restriction.)

3. This instruction may be prolonged by the presence of a HOLD signal.
If so, timer updating may be skipped. However, I/O servicing will
not be affected.

103

PROCESSOR
STATE CONTROL

INSTRUCTIONS

INTRODUCTION

INSTRUCTION
FORMAT

RR Format

Description

CONDITION CODE
UTILIZATION

INTERRUPT ACTION

• There are two control instructions that can be used in the Processing
State (P l). These instructions are Supervisor Call, and Set Program Mask.
These instructions can also be executed in any other state.

The Supervisor Call instruction enables the program to switch from
any state to the Interrupt Control State (P.1). Through this operation a
program in any processor state can communicate with and initiate the
Interrupt Control State (P3) programs.

The Set Program Mask instruction permits the user to specify whether
or not the program is to be interrupted for any of the following errors:

1. significance error.
2. exponent underflow.
3. decimal overflow.
4. fixed-point overflow.

The execution of the Set Program Mask instruction causes the condition
code and program mask bits in the P counter of the state in which the
system is operating to be set to the value specified by the instruction. This
instruction always changes the condition code.

o 7 8 11 12 15

• The RR format is used for the Supervisor Call and Set Program Mask
instructions. For the Set Program Mask instruction, the R2 field is ignored.
The contents of the general register specified by the Rl field form the
first operand.

For the Supervisor Call instruction, the Rl and R2 fields are combined
to become an immediate operand. This operand does not refer to any regis­
ter, but is a value which is placed in the Interrupt Status Register (lSR)
of the initiated state to provide communication with the software in
this state.

• The condition code is changed by the Set Program Mask instruction. The
condition code and program mask bits of the current P counter are replaced
by the contents of the general register (bits 2-7) specified by the first
address of the instruction.

• No error interrupts can occur as a result of using the instructions in
this section. The Supervisor Call instruction causes an interrupt, but this
interrupt is the desired result of its execution.

104

Supervisor Call
(SVC)

General Description

Format
(RRJ

Condition Code

Interrupt Action

Note

Processo'r
State Control

Instructions

• The Rl and R2 fields provide an interruption code and this code is placed
into the rightmost byte of the Interrupt Status Register (ISR) of the
program state in which this instruction is issued. The supervisor call
interrupt flag bit (priority 21) is set in the Interrupt Flag register and a
program interrupt may occur depending on the associated mask bit in the
Interrupt Mask register of the current state.

o 7 8 11 12 15

• Unchanged.

• None.

• If a higher priority interrupt is honored upon executing this instruc­
tion, the flag bit (priority 21) will be set and the Supervisor Call byte
stored in the ISR so that when it is honored, the results are independent
of any higher priority interrupts.

105

Set Program Mask
(SPM)

General Description

Format
(RR)

Condition Code

Program Mask

Processor
State Control

Instructions

• Bits 2-7 of the general register specified by the first address (R I)

establish new program masks and condition code setting for the current
program state.

04

o 7 8 11 12 15

• The condition code is set according to bits 2 and 3 of the general register
specified by RI as follows:

Condition Code Setting

2 3 Result

0 0 Set condition code 0 (zero) .
0 1 Set condition code 1.
1 0 Set condition code 2.
1 1 Set condition code 3.

• The program mask is set according to bits 4-7 of the general register
specified by RI as follows:

Program Mask Setting

Bit Result

4 Fixed-point overflow.
5 Decimal overflow.
6 Exponent underflow.
7 Significance error.

Note • The contents of the P-counter and the register specified by the first
address are unaltered.

106

FIXED-POINT
INSTRUCTIONS

INTRODUCTION

DATA FORMAT

Halfword Fixed-Point
Number

Full-word Fixed-Point
Number

REPRESENTATION
OF NUMBERS

• Using fixed-point instructions, binary arithmetic is performed on
operands used as addresses, index quantities, counts, and fixed-point data.
Generally, the operands involved are 32 bits long and signed. One of the
general registers always holds one operand. The other operand is in either
main memory or in a general register. Negative quantities are in the two's­
complement form.

This instruction set performs the following functions:
1. loading.
2. storing.
3. comparing.
4. shifting.
5. sign control.
6. radix conversion of fixed-point operands.
7. adding.
8. subtracting.
9. multiplying.

10. dividing.

The result of all sign control, compare, shift, add, and subtract opera­
tions is reflected in the condition code.

• A fixed-length format of a one-bit sign followed by the integer field
makes up fixed-point numbers. In one of the general registers, the number
is a 31-bit integer field. The complete 32-bit register is occupied by the
fixed-point quantity and sign. A 64-bit operand, with a 63-bit integer
field, is used by some shift, multiply, and divide instructions. A pair of
adjacent registers, addressed by the even address of the leftmost register,
contains these longer operands. The sign-bit of the rightmost register
becomes part of the integer field. The same register can be specified for
both operands in register-to-register operations (except for the Divide
instructions). In main memory, fixed-point operands are in either a 32-bit
word or a 16-bit halfword. The integer fields are then either 31 bits or 15
bits. Radix conversion operations always use a 64-bit decimal field. Integral
storage boundaries for these units of data must be observed. Halfword,
full-word, or double-word operands are addressed with one, two, or three
low-order address bits set to zero. Half-word operands are extended to full
words when they are fetched from main memory and used as a full-word
operand.

I SIGN 15-hit
Integer

0 1 15

I SIGN 31-hit
Integer

0 1 31

• All fixed-point operands are treated as signed integers. True binary
notation with a sign bit of zero is the representation of positive numbers.
Two's-complement notation with a sign bit of one is the representation of
negative numbers. To obtain the two's complement of a number, the value
of each bit is changed and a one is added to the low-order bit.

107

REPRESENT ATION
OF NUMBERS

(Cont'd)

INSTRUCTION
FORMATS

RS Format

Description

RX Format

Description

RR Format

Description

Fixed-Point
Instructions

This number representation can be regarded as the low-order part of
an infinitely long representation of the number. A positive number has all
zero bits, including the sign, to the left of the most significant bit of the
number. A negative number has all one bits, including the sign, to the left
of the most significant bit of the number. When an operand is to be extended
with high-order bits, the extension is made by prefixing the operand with
bits equal to the high-order bit of the operand.

A negative zero is not included in two's-complement notation. In the
number range, the set of positive numbers is one less than the set of
negative numbers. The maximum negative number is made up of an all-zero
integer field with a one-bit sign. The maximum positive number consists
of all l's in the integer field with a zero-bit sign. The complement of the
maximum negative number cannot be represented in the processor. For
example, on a subtraction from zero that produces the complement of the
maximum negative number, a fixed-point overflow exception is noted and
the number remains unchanged. If the final result is within the represent­
able range, then an overflow does not result (such as a subtraction from
minus one). The representation of the product of two maximum negative
numbers is a double-length positive number.

An overflow carries into the leftmost bit, which is the sign, and changes
it. In algebraic shifting, however, the sign bit is unchanged even when
significant bits in a shift left instruction are shifted out.

• The following three formats (RS, RX, RR) are used for fixed-point
operations:

o 7 8 11 12 15 16 19 20 31

• An address is formed by adding the contents of the general register
specified by B2 to the displacement of field D2. The address formed is that
of the main memory location of the second operand in the Load and Store
Multiple instructions. In the shift operations, the result formed designates
the amount of shift. The Rl and Rs fields specify the general register
boundaries for Load and for Store Multiple instructions. In shift operations,
Rl specifies the general register holding the first operand, and Rs is ignored.

o 7 8 11 12 15 16 19 20 31

• An address is formed by adding the contents of general registers
specified by the X2 and B2 fields to the displacement field D2. This address
specifies the main memory location of the second operand in the operation.
The Rl field designates the general register containing the first operand.

o 7 8 11 12 15

• In this format, the Rl field specifies the general register holding the
first operand. The R2 field specifies the general register holding the second
operand. The same register can be specified for both operands.

108

Notes

CONDITION CODE
UTILIZATION

Fixed-Point
I nst1'uctions

• 1. A zero in an X2 or B2 field indicates there is no corresponding address
component to enter in the forming of an address in either the RX
or RS format.

2. Except for the instructions Store and Convert to Decimal, results
of fixed-point operations replace the first operand.

3. Except for storing the result, the contents of general registers and
main memory locations used in the operations are not changed.

4. It is possible to designate the same general register both for operand
locations and for address modification. Address modification occurs
prior to operation execution.

• The condition code indicates the results of fixed-point sign control, add,
subtract, shift, and compare instructions. 'The code is not changed by any
other fixed-point instruction. Decision making by branch on condition
operations can be done after those instructions which set the code.

For most arithmetic instructions, the Condition Codes 0, 1, or 2 indicate
respectively a zero, less than zero, or greater than zero result. Condition
Code 3 is set for overflow result. In comparison instructions, the Condition
Codes 0, 1, or 2 indicate that the first operand is equal to, less than, or
greater than the second operand. In add and subtract logical instructions,
the Condition Codes 2 and 3 indicate either a zero or non-zero result with
a carry from the sign bit. The Condition Codes ° and 1 indicate the same
conditions with no carry out of the sign position. Instructions that cause
the condition code to be set and the meaning of the setting are as follows:

Condition Code SeHing
Instruction

0 1 2 3

Add Word Zero < Zero > Zero Overflow

Add Halfword Zero < Zero > Zero Overflow

Add Logical Zero Not Zero Zero Carry Carry

Compare Word Equal

I
Low High --

Compare Halfword Equal Low High --
Load and Test Zero

I < Zero > Zero --
Load Complement Zero < Zero > Zero Overflow

Load Negative Zero < Zero -- --
Load Positive Zero I > Zero Overflow -- I

Shift Left Double Zero < Zero > Zero

I

Overflow

Shift Left Single Zero < Zero > Zero Overflow

Shift Right Double Zero < Zero > Zero --
Shift Right Single Zero < Zero > Zero --
Subtract Word Zero < Zero > Zero Overflow

Subtract Halfword Zero < Zero .1 > Zero I Overflow

I
I

Subtract Logical -- Not Zero Zero Carry I Carry

109

INTERRUPT ACTION

Address Error

Addressing

Specification

Protection

Data Error

Fixed-Point Overflow

Divide Error

Fixed-Point
Instructions

• The following interrupt conditions can occur as a result of fixed-point
instructions:

• An address error interrupt occurs when an address specifies a location
outside the available main memory. The operation is terminated at the
point of error. The result data and the condition code, if produced, are
unpredictable.

• An address error interrupt occurs when an instruction specifies a:

1. Full-word operand that is not located on a 32-bit boundary.

2. Halfword operand that is not located on a 16-bit boundary.

3. Double-word operand that is not located on a 64-bit boundary.

4. Register with an odd-numbered address when using an even/odd
pair containing a 64-bit operand.

The instruction is suppressed. The condition code, data in main memory,
and registers remain unchanged.

• An address error interrupt occurs when the storage key and the protec­
tion key of the result location do not match. The operation is suppressed
and the condition code and data in the registers and main memory are
unaltered. The only exception is the Store Multiple instruction which is
terminated. The amount of data stored is unpredictable. (This interrupt
can only occur if the memory protect feature is installed.)

• A data error interrupt occurs when an invalid digit or sign code of the
decimal operand is encountered in the Convert to Binary instruction. The
operation is suppressed and the condition code and data in the register and
main memory are unaltered.

• A fixed-point overflow interrupt occurs when the results overflow in
sign control, add, subtract or shift operations. The operation is completed
by placing the truncated result in the register and setting Condition Code 3.
Overflow bits are lost. If the fixed point program mask bit is reset, inter­
rupt will not occur and the flag in the IFR will not be set.

• A divide error interrupt occurs when the quotient would exceed the
register size in division, or the result of a Convert to Binary instruction
exceeds 31 bits. The operation is suppressed and the data in the registers
remains unaltered.

110

load Word
(lR) (l)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Note

Fixed-Point
InstrucUons

• The operand specified by the second address (R2 or XdBdD 2) is loaded
into the general register specified by the first address (RJ).

I (LR) 18 Rl R2

0 7 8 11 12 15

I (L) 58 Rl X 2 B2 D2

0 7 8 11 12 15 16 19 20 31

• Unchanged.

• Address error:

Addressing (RX format).

Specification (RX format).

• The operand in the register or main memory location specified by the
second address remains unchanged.

111

Load Ha1fword
(LH)

General Description

Format
(RX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The halfword operand in the main memory specified by the second
address (XdBdD 2) is loaded into the general register specified by the
first address (R1).

o 7 8 11 12 15 16 19 20 31

• Unchanged.

• Address error:

Addressing.

Specification.

• 1. When the halfword (second operand) is fetched from main memory,
it is expanded to a full word by propagating the sign-bit value
through the 16 high-order positions of the receiving register.

2. The operand specified by the second address is unaltered.

112

Load and Test
(LTR)

General Description

Format
(RR)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The operand in the register specified by the second address (R2) is
loaded into the general register specified by the first address (R J). The
condition code is determined by the magnitude and the sign of the loaded
operand.

o 7 8 11 12 15

• 0 - result is zero.

1 - result is less than zero.

2 - result is greater than zero.

3-not used.

• None.

• 1. The same register can be specified for both Rl and R~. If this is done,
the operation is equivalent to a test with no data movement.

2. The operand specified by the second address (R:l) is unaltered.

113

Load Complement
(LCR)

General Description

Format
(RR)

Condition Code

Interrupt Action

Notes

Fixed-Point
I nst'i'Uctions

• The two's complement of the operand in the register specified by the
second address (R2) is loaded into the general register specified by the
first address (R 1). The condition code is determined by the magnitude and
the sign of the loaded operand.

o 7 8 11 12 15

• 0- result is zero.

1- result is less than zero.

2- result is greater than zero.

3 - overflow.

• Fixed-point overflow.

• 1. Zero operands remain constant and unchanged under complementa­
tion.

2. A fixed-point overflow interrupt occurs when the maximum negative
number is complemented.

3. The operand specified by the second address is unaltered.

114

Load Positive
(LPR)

General Description

Format
(RR)

Condition Code

Interrupt Action

Notes

Fixed-Point
I n::;tl"uctions

• The operand in the register specified by the second address (R2) is
made positive, if negative, and loaded into the general register specified by
the first address (R1). In loading the absolute value of the operand, nega­
tive numbers are complemented and positive numbers remain unaltered.
The magnitUde of the absolute value determines the condition code.

o 7 8 11 12 15

• 0 - result is zero.
1-not used.

2 - result greater than zero.

3 - overflow on complement.

• Fixed-point overflow.

• 1. A fixed-point overflow interrupt exists if a maximum negative num­
ber is complemented.

2. The operand specified by the second address is unaltered.

115

Load Negative
(LNR)

General Description

Format
(RR)

Condition Code

Interrupt Action

Notes

Fixed-Point
I n::;tructions

• The two's complement of the operand in the register specified by the
second address (R2) is loaded into the general register specified by the
first address (R]). In loading the operand value, positive numbers are
complemented and negative numbers remain unaltered. The magnitude of
the loaded value determines the condition code setting.

o 7 8 11 12 15

• 0 - result is zero.

1 - result is less than zero.

2-not used.

3-not used.

• None.

• 1. A zero operand is not altered and retains a positive sign.

2. The operand specified by the second address is unaltered.

116

Load Multiple
(LM)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The set of general registers, beginning with the register specified by
the first address (R I) and ending with the register specified by the third
address (R:,), is loaded with operands from main memory. The second
address (BdD 2) specifies the main memory location of the first word to be
loaded. Loading of the general registers continues in the ascending order
of their addresses beginning with the register specified by R I • As many
words as needed are fetched from the main memory location specified,
continuing up to, and including, the register specified by R3 •

o 7 8 11 12 15 16 19 20 31

• Unchanged.

• Address error:

Addressing.

Specification.

• 1. If Rl and R3 specify the same register, only one word is loaded.

2. If the register specified by R3 is less than the register specified by
R 1 , wrap-around occurs from register 15 to O.

3. The operands specified by the second address are unaltered.

117

Add Word
(AR) (A)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The operand specified by the first address (R J) is added to the operand
specified by the second address (R 2 or XdBdD2) and the sum is placed in
the general register specified by the first address (R1). The magnitude and
the sign of the sum determine the condition code setting.

I (AR) 1A Rl Rz

0 7 8 11 12

I (A) 5A Rl X2

0 7 8 11 12

• 0 - sum is zero.

1- sum is less than zero.

2 - sum is greater than zero.

3 - overflow.

• Fixed-point overflow.

• Address error:

Addressing (RX format).

Specification (RX format).

15

B2

15 16 19 20 31

• 1. All 32 bits of both operands participate in the addition. If the high­
order numeric bit position of the result and the carries out of the
sign bit position disagree, an overflow condition exists. The overflow
does not alter the sign bit created by the carries.

2. A negative overflow results in a positive sum and a positive overflow
results in a negative sum with overflow bits being lost.

3. A zero result is always positive.

4. The operand specified by the second address is unaltered.

118

Add Halfword
(AH)

General Description

Format
fRX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The halfword operand specified by the second address (XdBdD 2) is
added to the operand specified by the first address (R J) and the sum is
placed into the register specified by the first address (R1). The sign and
the magnitude of the sum determine the condition code setting.

o 7 8 11 12 15 16 19 20 31

• O-sum is zero.

I-sum is less than zero.

2-sum is greater than zero.

3 - overflow

• Fixed-point overflow.

• Address error:

Addressing.

S pecifica tion.

• 1. The halfword in main memory specified by the second address is
expanded to full-word length prior to the addition by propagating
the sign bit value through the high-order 16 positions. The addition
is completed by adding all 32 bits of both operands.

2. An overflow exists if the high-order numeric result bit and the
carry out of the sign-bit position disagree. The sign is not corrected
after overflow occurs. A negative overflow results in a positive sum
and a positive overflow results in a negative sum with the overflow
bits being lost.

3. The operand specified by the second address is unaltered.

119

Add Logical
(ALR) (AL)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Fixed-Point
Instructions

• The operand specified by the second address (R:! or XdBdD 2) is
logically added (32-bit unsigned) to the operand specified by the first
address (R1). The sum is placed in the general register specified by the first
address. The condition code is determined by the relation of the sum
to a zero number and the occurrence of a carry out of the sign bit
position. An overflow on such carries is not recognized and does not set an
interrupt condition.

I (ALR) 1E Rl R2

0 7 8 11 12 15

I (AL) 5E Rl x2

0 7 8 11 12 15 16

• 0 - sum is zero and no carry.

1 - sum is not zero and no carry.

2 - sum is zero with a carry.

3 - sum is not zero with a carry.

• Address error:
Addressing (RX format).

Specification (RX format).

B:! D~

19 20 31

Notes • 1. All 32 bits of the operands participate in the logical addition.

2. The operand specified by the second address is unaltered.

120

Subtract Word
(SR) (S)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The operand specified by the second address (R2 or XdBdD 2) is sub­
tracted from the operand specified by the first address (R1) and the
difference is placed in the general register specified by the first address
(R1). The magnitude and the sign of the difference determine the condition
code setting.

I (SR) 1B RI R2

0 7 8 11 12 15

I (S) 5B RI x2 B2 D2

0 7 8 11 12 15 16 19 20 31

• 0 - difference is zero.

1 - difference is less than zero.

2 - difference is greater than zero.

3 - overflow.

• Fixed-point overflow.

Address error:

Addressing (RX format).

Specification (RX format).

• 1. The operation is accomplished by adding the one's complement of
the second operand and a one in the low -order position of the first
operand. The one's complement of a number is obtained by changing
all the 1 bits to 0 bits and all the 0 bits to 1 bits. All 32 bits are
involved in the operation. An overflow exists if the high-order
numeric result bit and the carry out of the sign bit position disagree.

2. The difference between a maximum negative number and another
maximum negative number is zero with no overflow.

3. When the same register is specified for RI and R2 , the operation is
equivalent to clearing RI to zero.

4. The operand specified by the second address is unaltered.

121

Subtract Halfword
(SH)

General Description

Format
(RX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The halfword operand specified by the second address (X2/BdD2) is
expanded and subtracted from the operand specified by the first address
(R I). The difference is placed in the general register specified by R I •

The sign and the magnitude of the difference determine the condition
code setting.

o 7 8 11 12 15 16 19 20 31

• 0 - difference is zero.

1- difference is less than zero.

2 - difference is greater than zero.

3 - overflow.

• Fixed-point overflow.

Address error:

Addressing.

S pecifica tion.

• 1. The halfword in main memory specified by the second address is
expanded to full-word length by propagating the sign bit value
through the 16 high-order positions.

2. The subtraction is completed by adding the one's complement of the
second operand and a one in the low-order position of the first
operand. All 32 bits are involved in the operation.

3. An overflow exists if the high-order numeric result bit and the
carry out of the sign bit position disagree.

4. The operand specified by the second address is unaltered.

122

Subtract Logical
(SLR) (SL)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The operand specified by the second address (R 2 or XdBdD 2) is
logically subtracted (32-bit unsigned) from the operand specified by the
first address (R 1). The difference is placed in the general register specified
by the first address. The condition code is determined by the relation of
the sum to a zero number and the occurrence of a carry out of the sign
bit position. An overflow on such carries is not recognized and does not
set an interrupt condition.

I (SLR) IF Rl R2

0 7 8 11 12 15

I (SL) 5F Rl X 2 B2 D2

0 7 8 11 12 15 16 19 20 31

• 0 - not used.

1 - difference is not zero and no carry.

2 - difference is zero with a carry.

3 - difference is not zero with a carry.

• Address error:

Addressing (RX format).

Specification (RX format).

• 1. A zero difference cannot occur without a carry out of the sign position.

2. Logical subtraction is accomplished by adding the one's complement
of the second operand and a one in the low-order position of the
first operand.

3. All 32 bits of the operands participate in the logical subtraction
without change to the resulting sign bit.

4. The operand specified by the second address is unaltered.

123

Compare' Word
(CR) (C)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Fixed-Point
Instructions

• The operand specified by the first address (RJ) is compared with the
operand specified by the second address (R2 or XdB~/D2). Both operands
remain unaltered. The result of the comparison determines the condition
code setting.

I (CR) 19 Rl R2

0 7 8 11 12 15

I (C) 59 Rl X2 B2

0 7 8 11 12 15 16 19 20

• 0 - operands are equal.

1 - the operand specified by the first address is low.

2 - the operand specified by the first address is high.

3-not used.

• Address error:

Addressing (RX format).

Specification (RX format).

D2

31

Note • Both operands are considered as 32-bit signed integers and the com­
parison is algebraic.

124

Compare Halfword
(CH)

General Description

Format
(RX)

Condition Code

Interrupt Action

Fixed-Point
Instructions

• The operand specified by the first address (R1) is compared with the
halfword operand expanded to a full word, specified by the second address
(X:jB 2/D:J. Both operands remain unaltered. The result of the comparison
determines the condition code setting.

o 7 8 11 12 15 16 19 20

• 0 - operands are equal.

1 - the operand specified by the first address is low.

2 - the operand specified by the first address is high.

3 -not used.

• Address error:
Addressing.

Specification.

31

Notes • 1. The halfword in storage specified by the second address is expanded
to full-word length by propagating the sign bit value through the
16 high-order positions.

2. Both operands are considered as 32-bit signed integers and the
comparison is algebraic.

125

Multiply Word
(MR) (M)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Fixed-Point
Instructions

• The operand (multiplicand) specified by the first address (R 1) is
multiplied by the operand (multiplier) specified by the second address
(R2 or Xz/B2/D~). The double-length product is loaded into the register
specified by the first address (R 1), which must be an even number, and the
next odd-numbered register.

I
(MR) lC Rl R2

0 7 8 11 12 15

I (M) 5C Rl x2 B2 D2

0 7 8 11 12 15 16 19 20 31

• Unchanged.

• Address error:

Addressing (RX format) .

Specification.

Notes • 1. The first address (R 1) must always refer to the even-numbered regis-
ter of an even/odd pair. The multiplicand is taken from the
odd-numbered register of the pair. The original contents of the
even-numbered register, which is replaced by the product, is ignored.
An overflow cannot occur.

2. Only when two maximum negative numbers are multiplied does the
product exceed 62 significant bits. This product produces 63 signifi­
cant bits.

3. In two's-complement notation, the sign bit is propagated right, up
to the first significant product bit.

4. The sign of the product is determined algebraically. A zero result
is always positive.

5. The least significant digit of the product goes into the odd-numbered
register.

6. The operand specified by the second address (multiplier) is unaltered
except when the first and second addresses specify the same (even
numbered) register. In this case the multiplier is taken from the
even register, the multiplicand is taken from the odd register and
the product is placed into the even/odd pair.

126

Multiply Halfword
(MH)

General Description

Format
(RX)

Condition Code

Interrupt Action

Fixed-Point
Instructions

• The operand (multiplicand) specified by the first address (R1) is
multiplied by the halfword operand (multiplier) specified by the second
address (XdB 2/D2). The product of the operands replaces the contents of
the register specified by the first address (R l).

o 7 8 11 12 15 16 19 20 31

• Unchanged.

• Address error:
Addressing.

Specification.

Notes • 1. The halfword operand in main memory is expanded to a full word
before multiplication by propagating the sign bit value through the
16 high-order positions. Both operands are considered as 32-bit
signed integers. The multiplicand is replaced by the low order 32 bits
of the product.

2. The product usually occupies 46 bits of significance except when
both operands are maximum negative numbers and occupy 47 bits.

3. The bits to the left of the 32 low-order bits of the product are not
tested for significance. No overflow indication is given. Since the
bits to the left of the low -order 32 are ignored, the sign of the result
may differ from the true sign of the product, if the product exceeds
32 bits.

4. The operand specified by the second address is unaltered.

5. A zero product is always positive.

127

Divide
(DR) (D)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Fixed-Point
Instructions

• The double-word operand (dividend) specified by the first address (R1)

is divided by the operand (divisor) specified by the second address
(R2 or XdBz/D2). The quotient and remainder replace the double-word
operand in the registers specified by the first address (R1). The register
specified by the first address must be the even-numbered register of an
even/odd pair.

I· (DR) 1D Rl R2

0 7 8 11 12 15

1
(D) 5D Rl X2 B2

0 7 8 11 12 15 16 19 20 31

• Unchanged.

• Address error:
Addressing (RX format).

Specification.

Divide Error.

Notes • 1. The dividend, a 64-bit signed integer, is replaced by a 32-bit signed
quotient and a 32-bit signed remainder; the remainder is placed in
the even-numbered register and the quotient is placed in the odd­
numbered register. The divisor is a 32-bit signed integer and is
unaltered.

2. A divide error interrupt occurs when the magnitude of the dividend
to the divisor is such that the quotient cannot be expressed by a
32-bit signed integer. (The divisor must be greater in absolute value
than the first word of the dividend.)

3. The sign of the quotient is determined algebraically except that a
zero quotient as a zero remainder is always positive.

4. The remainder has the same sign as the dividend.

128

Convert to Binary
(CVB)

General Description

Format
(RX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The radix of the double-word operand in main memory specified by the
second address (XdBdD2) is converted from decimal to binary notation
and loaded into the general register specified by the first address (R 1).

The operand in main memory is treated as a right-justified signed integer
before and after the conversion.

o 7 8 11 12 15 16 19 20 31

• Unchanged.

• Address error:
Addressing.

Specification.

Data error.

Divide error.

• 1. The double-word operand in main memory (15 digits plus sign)
must be in the packed decimal format. The operand is checked for
valid sign and digit codes. The sign representation depends on the
current decimal code (ASCII or EBCDIC).

2. The maximum decimal number that can be converted and still be
contained in a 32-bit register is (2,147,483,647) 10 positive and
2,147,483,648) 10 negative. A larger decimal number causes a divide
error interrupt.

3. Negative decimal zero is converted to positive binary zero.

4. The operand specified by the second address remains unaltered In
main memory.

129

Convert to Decimal
(CVD)

General Description

Format
(RX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The radix of the operand specified by the first address (R 1) is converted
from binary to decimal notation and stored at the double-word main
memory area specified by the second address (XdB:)D2). The operand is
treated as a right-justified signed integer before and after the conversion.

o 7 8 11 12 15 16 19 20 31

• Unchanged.

• Address error:
Addressing.

Specification.

Protection.

• 1. The result is placed in the double-word main memory location in the
packed decimal format of 15 digits plus sign.

2. The low-order four bits of the result are the sign which is generated
according to the current decimal code, EBCDIC or ASCII.

3. The maximum binary number (32-bit signed integer) that can be
converted is (2,147,483,647) positive and (2,147,483,648) negative.
No overflow can occur.

130

Store Word
(ST)

General Description

Format
(RX)

Condition Code

Interrupt Action

Fixed-Point
Instructions

• The operand in the general register specified by the first address (R l)

is stored in the main memory location specified by the second address
(XdBdD 2).

o 7 8 11 12 15 16 19 20

• Unchanged.

• Address error:
Addressing.

Specification.

Protection.

31

Notes • 1. The complete contents (32 bits) of the general register specified by
the first address are placed unaltered in main memory.

2. The operand specified by the first address is unaltered.

131

Store Halfword
(5TH)

General Description

Format
(RX)

Condition Code

Interrupt Action

Fixed-Point
Instructions

• The rightmost half (16 bits) of the operand in the general register
specified by the first address (R]) is stored unaltered in the halfword main
memory location specified by the second address (X2/Bz/D 2).

o 7 8 11 12 15 16 19 20

• Unchanged.

• Address error:
Addressing.

Specification.

Protection.

D2

31

Notes • 1. The 16 high-order bits of the operand specified by the first address
field are ignored by the operation.

2. The operand specified by the first address is unaltered.

132

Store Multiple
(STM)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The operands in the set of general registers, beginning with the register
specified by the first address (R1) and ending with the register specified
by the third address (R;;), are stored in main memory locations starting with
the location specified by the second address (BdD2). The second address
(BdD2) refers to the main memory location where the first operand (word)
is to be stored. Storing of the operands continues in the ascending order
of the register number specified by R1 , up to and including R;;, storing as
many words as indicated in the main memory locations that immediately
follow the initial operand.

o 7 8 11 12 15 16 19 20

• Unchanged.

• Address error:
Addressing.
Specification.
Protection.

31

• 1. If the same register is specified for Rl and R3 , only one word is stored.

2. If R;l is less than R}, the register addresses wrap around from 15 to o.
For instance, all registers can be stored by making R3 one less than R I •

3. The operands in the set of registers designated are unaltered.

133

Shift Left Single
{SLA}

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The integer portion of the operand in the general register specified by
the first address (R J) is shifted left the number of positions specified by
the second address (BdD 2). The second address is used as a count and not
to address data. The low-order six bits of the second address constitute
the count. The remaining bits are ignored.

8B

o 7 8 11 12 15 16 19 20 31

• 0- result is zero.
1- result is less than zero.
2 - result is greater than zero.
3 - overflow.

• Fixed-point overflow.

• 1. All 31 bit positions of the integer are shifted. The sign is not altered.
Zeros are inserted in the right-hand end of the operand for each shift.

2. If a bit is shifted out of the left-hand end that is not identical to the
sign bit, a fixed-point overflow condition exists.

134

Shift Right Single
(SRA)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The integer portion of the operand in the general register specified by
the first address (R1) is shifted right the number of positions specified by
the second address (B 2/D2). The second address is used as a count and not
to address data. The low-order six bits of the second address field constitute
the count. The remaining bits are ignored.

SA

o 7 S 11 12 15 16 19 20 31

• 0 - result is zero.

1 - result is less than zero.

2 - result is greater than zero.

3-not used.

• None.

• 1. All 31 bit positions of the integer are shifted. The sign is not altered.
The sign bit is propagated through the positions vacated in the left
end of the operand. The bits shifted out to the right are lost.

2. Shifting to the right is equivalent to low-order truncation or division
by powers of two.

3. Shifts greater than 31 cause all significant bits to be lost. A zero for
positive numbers and a minus one for negative numbers is the result
of such shifts.

4. Fixed-point positive numbers go towards zero; Fixed-point negative
numbers go towards minus one.

135

Shift Left Double
(SLDA)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

• The integer portion of the double-word operand specified by the first
address (R1) and the first address plus one is shifted left the number of
positions specified by the second address (BdD 2). The first address (R 1)

specifies an even-numbered register of an even/odd pair that contains the
63-bit integer to be shifted. The second address is used as a count and not
to address data. The low-order six bits of the second address field constitute
the count. The remaining bits are ignored.

8F

o 7 8 11 12 15 16

• 0 - result is zero.

1 - result is less than zero.

2 - result is greater than zero.

3 - overflow.

• Fixed-point overflow.

Address error:

Specification.

19 20 31

• 1. All 63 bit positions of the integer are shifted. The sign bit (posi­
tion 0) in the even register is not altered. Zeros are inserted in the
right-hand end of the double-word operand for each shift.

2. If a bit is shifted out of the left-hand end that is not identical to the
sign bit, a fixed-point overflo\v condition exists.

136

Shift Right Double
(SRDA)

General Description

Format
(RS)

Condition Code

Interrupt Action

Fixed-Point
Instructions

• The integer portion of the double-word operand specified by the first
address (R1) and the first address plus one is shifted right the number of
positions specified by the second address (BdD2). The first address (R 1)

specifies an even-numbered register of an even/odd pair that contains the
63-bit integer to be shifted. The second address is used as a count and not
to address data. The low-order six bits of the second address constitute the
count. The remaining bits are ignored.

8E

o 7 8 11 12 15 16

• 0 - result is zero.
1 - result is less than zero.

2 - result is greater than zero.

3-not used.

• Address error:
Specification.

19 20 31

Notes • 1. All 63 bit positions of the integer are shifted. The sign bit in the
leftmost position of the even-numbered register is not altered. This
sign bit is propagated through the positions vacated in the left end
of the double-word operand. The bits shifted out to the right are lost.

2. A shift count of zero provides a double-word sign and magnitude
check.

137

DECIMAL
ARITHMETIC

INSTRUCTIONS

INTRODUCTION

DATA FORMATS

Packed Format

Zoned Format

Description of Formats

• Decimal arithmetic is performed on data in packed format. In this
format, two decimal digits are placed in one byte (four bits each). The
operands may be variable in length, and must contain a sign in the right­
most four bits.

All decimal instructions are two-address, SS-type format. The instruc­
tion set includes addition, subtraction, comparison, multiplication, and divi­
sion. Since data sent to, and from, external devices are usually in zoned
(unpacked) format (one digit in one byte), there are also instructions for
converting to, and from, packed and zoned format. All decimal arithmetic
instructions are standard features on the 70/35, 45, and 55 processors.

• The formats for decimal data in high-speed memory are:

Byte Byte Byte Byte Byte Byte

Digit i Digit

In packed format, one byte represents two decimal digits. The right­
most half-byte (4 bits) of a field represents the sign.

Byte Byte Byte Byte Byte Byte

Zone : Digit
I

In zoned format, the low-order four bits of each eight-bit byte contain
the decimal digit and the high-order four bits contain the zone. The
high-order four bits of the rightmost byte of a field contain the sign
of the field.

• Decimal arithmetic instructions operate from right to left. The addresses
specify the leftmost byte of the operand, and the length specifies the addi­
tional number of bytes that are to the right of the addressed byte. The
fields specified by the addresses can be variable in length beginning at any
byte in main memory and consisting of from 1 to 16 eight-bit bytes. Results
of operations are always placed in the first operand field. The result never
exceeds the limits set by the address and length of the first operand field.
If a decimal arithmetic operation results in a carry outside the operand
limits, a decimal overflow interrupt occurs. If the first operand is longer
than the second, the second operand is extended with high-order zeros
up to the length of the first operand during operation execution (in addition
and subtraction only). This extension never changes main memory.

Because the code configurations of digits and sign are verified while
arithmetic operations are performed, improper overlapping of fields is
recognized as a data error. The arithmetic instruction set (except Pack,
Unpack, Move with Offset) should not specify overlapping fields unless
the rightmost byte of the fields coincide.

In the move-type instructions of this set (Pack, Unpack, Move with
Offset), no checking is made for valid codes. Consequently, overlapping is
permitted without any restrictions. (Although unusual results are possible,
overlapping is dangerous.)

138

REPRESENT ATION
OF NUMBERS

INSTRUCTION
FORMAT

SS Format

Description

Decimal Arithmetic
Instructions

• Decimal operands in packed format are four-bit, binary-coded, decimal
digits packed two to a byte. The operands may be variable in length and
must contain a sign in the rightmost four bits of the rightmost byte.
The digit and sign codes are as follows:

Digit and Sign Codes

Digit Code Sign Code

0 0000 + 1010
1 0001 - 1011
2 0010 + 1100
3 0011 - 1101
4 0100 + 1110
5 0101 + 1111
6 0110
7 0111
8 1000
9 1001

EBCDIC or ASCII sign or zone codes are generated for the decimal
arithmetic results depending on the setting of the decimal code bit in the
Interrupt Status Register. When the decimal code bit is set for EBCDIC,
the following codes are generated:

Sign
Zone

Plus Minus

1100 1101 1111

When the decimal code bit is set for ASCII, the following codes are
generated:

Sign
Zone

Plus Minus

1010 1011 0101

Note: The codes (1110) 2 and (1111) 2 are accepted as plus signs. However,
if an arithmetic operation is performed on a field with these signs,
the sign of the result will be in EBCDIC or ASCII, as shown above.

• Decimal arithmetic instructions use the two-address, SS format as
follows:

o 7 8 11 12 15 16 19 20 31 32 35 36 47

• The contents of the general register specified by Bl are added to the
contents of the displacement field (D1) to obtain the main memory location
of the leftmost byte of the first operand. The length (L1) of the first address
specifies the number of bytes that are to the right of the location obtained
above, thus giving the processor the address of the rightmost byte of the
first operand. The length of the operand can be from one to 16 bytes, since

139

SS Format
(Cont'd)

CONDITION CODE
UTILIZATION

INTERRUPT ACTION

Address Error

Addressing

Specification

Protection

Data Error

Decimal Arithmetic
Instructions

LI can be from 0000 to 1111. The address and size of the second operand
is obtained in the same way using B2, D2 and L2 •

Results of operations are always stored in the first operand field and
never exceed the limits specified by the address and length. The second
operand is not changed in an add-type instruction unless the second operand
addresses the same rightmost byte as the first operand.

Note: A zero in the BIOI' B2 field indicates that no general register is to
be used.

• The condition code is set as a result of all add-type and comparison
operations. No other decimal arithmetic instructions affect the condition
code.

The condition code setting has a different meaning for the comparison
operation result than for the add-type result. The results of the following
decimal arithmetic instructions cause the indicated condition code settings:

Condition Code SeHing
Instruction

0 1 2 3

Add Decimal Zero < Zero > Zero Overflow
Subtract Decimal Zero < Zero > Zero Overflow
Zero and Add Zero < Zero > Zero Overflow
Compare Decimal Equal Low High --

• The following interrupt conditions can occur as a result of a decimal
arithmetic instruction.

• An address error interrupt exists when an address specifies a location
outside the available main memory of the particular installation. The
operation is terminated at the point of error. The result data and the
condition code are unpredictable.

• An address error interrupt exists when a multiplier or divisor size
exceeds 15 digits plus sign; or when the multiplier size or the divisor
size is equal to, or greater than, the mUltiplicand or dividend size, respec­
tively. The instruction is suppressed. The condition code, data in main
memory, and registers remain unchanged.

• An address error interrupt exists when the protection key and the
storage key of the result location do not match. The operation is terminated.
The result data and condition code are unpredictable. (This interrupt can
occur only if the memory protect feature is installed.)

• A data error interrupt exists in decimal arithmetic when an invalid
sign (not greater than nine) or digit code (not zero through nine) is
detected in an operand, a nlultiplicand has insufficient high-order zeros,
or there is incorrect overlapping of operands. The operation is terminated.
The result data and the condition code setting are unpredictable.

140

Decimal Overflow I

Divide Error

Decimal Arithrnetic
Instructions

• A decimal overflow interrupt exists when the result field of an Add
Decimal, Subtract Decimal, or Zero and Add instruction is too small to
contain the overflow data. The operation is completed by ignoring the
overflow data, and setting the condition code to 3. If the decimal overflow
program mask bit is reset, interrupt will not occur and the flag in the IFR
will not be set.

• A divide error interrupt occurs when the quotient is greater than the
specified data field, including division by zero, or the dividend does not
have one leading zero. Division is suppressed and the dividend and divisor
remain unchanged in main memory.

Add Decimal
(AP)

General Description

Format
(55)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic
Instructions

• The operand specified by the second address (BdD2) is added alge­
braically to the operand specified by the first address (B 1 /D 1). The result
is stored in the field specified by the first address. The sign and the magni­
tude of the sum determine the condition code.

The operands can be variable in length up to 16 bytes and must be in
packed format. If operands overlap, their rightmost byte location must
coincide.

The addition of the two operands can cause decimal overflow. Two
conditions which cause overflow are:

0

•

•

1. a carry out of the high-order position of the result.

2. a second operand that is larger than the first operand and significant
result positions are lost.

FA
I LI I L2 I Bl I Dl

7 8 11 12 15 16 19 20 31 32 35 36 47

O-sum is zero.

I-sum is less than zero.

2-sum is greater than zero.

3 - overflow.

Address error:

Addressing.

Protection.

Data error.

Decimal overflow.

• 1. High-order zeros are supplied for either operand during instruction
execution.

2. All signs and digits are checked for validity.

3. The operand specified by the second address is unaltered.

4. Processing is from right to left.

5. A zero result is always positive except when high-order digits are
lost because of overflow. In overflow, a zero result has the sign of
the correct result.

142

Subtract Decimal
(SP)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic
Instructions

• The operand specified by the second address (BdD 2) is subtracted
algebraically from the operand specified by the first address (B1/D1). The
result is stored in the field specified by the first address. The sign and
the magnitude of the difference determine the condition code.

The operands can be variable in length up to 16 bytes and must be in
packed format. If operands overlap, their rightmost byte location must
coincide.

The subtraction of two operands can cause decimal overflow.

FB

o 7 8 11 12 15 16 19 20 31 32 35 36 47

• 0 - difference is zero.

1- difference is less than zero.

2 - difference is greater than zero.

3- overflow.

• Address error:

Addressing.

Protection.

Data error.

Decimal overflow.

• 1. High-order zeros are supplied for either operand during instruction
execution.

2. All signs and digits are checked for validity.

3. The operand specified by the second address is unaltered.

4. Processing is from right to left.

5. A zero difference is always positive except when high-order digits
are lost because of overflow. In overflow, a zero result has the sign
of the correct difference.

Zero and Add
(ZAP)

General Description

Format
(55)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic
Instructions

• The operand specified by the second address (BdD2) is loaded into the
location specified by the first address (B1/D1). The operation is equivalent
to an addition to zero and the result of the addition determines the
condition code.

The operands may be variable in length up to 16 bytes and must be in
packed format. High-order zeros are provided when necessary. Operands
may overlap if their rightmost byte locations coincide, or if the rightmost
byte of the first operand is to the right of the rightmost byte of the
second operand.

A second operand that is longer than the first operand causes overflow.

F8

o 7 8 11 12 15 16 19 20 31 32 35 36 47

• 0- result is zero.

1- result is less than zero.

2 - result is greater than zero.

3 - overflow.

• Address error:

Addressing.

Protection.

Data error.

Decimal overflow.

• 1. Only the second operand is checked for valid sign and digit codes.

2. The second operand is unaltered.

3. Processing is from right to left.

4. A zero result is positive except ,vhen high-order digits are lost because
of overflow. In overflow, a zero result has the sign of the second
operand.

144

Compare Decimal
(CP)

General Description

Format
(55)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic
Instructions

• The operand specified by the first address (Bl/D J) is algebraically
compared with the operand specified by the second address (BdD2). The
results of the comparison determine the condition code.

The operands may be variable in length up to 16 bytes and must be in
packed format. The shorter operand is extended with high-order zeros
when the operands are unequal in length. If operands overlap, their right­
most byte location must be identical.

Overflow cannot occur as a result of this operation.

F9

o 7 8 11 12 15 16 19 20 31 32 35 36 47

• 0 - the fields are numerically equal.

1 - the first operand is algebraically less than the second operand.

2 - the first operand is algebraically greater than the second operand.

• Address error:

Addressing.

Data error.

• 1. All signs and digits are checked for validity.

2. Both operands are unaltered.

3. Comparison is from right to left.

4. A positive zero compares equally to a negative zero.

145

Multiply Decimal
(MP)

General Description

Format
(55)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic
Instructions

• The operand specified by the first address (multiplicand) is multiplied
by the operand specified by the second address (multiplier). The product
is stored in the location of the first operand, righ t-justified.

The operands may be variable in length and must be in packed format.
Operands can overlap if their rightmost byte locations coincide.

The second operand (multiplier) must be shorter than the first operand
(multiplicand) and must not exceed eight bytes in length (15 digits plus
sign). Otherwise, an address error (specification) occurs.

The multiplicand must have high-order zero digits equal to the number
of digits in the multiplier, or a data error occurs. The maximum product
size is 31 digits.

Fe I Ll I L2 Bl

0 7 8 11 12 15 16 19 20 31 32 35 36 47

• Unchanged.

• Address error:

Addressing.

Protection.

Specification.

Data error.

• 1. All signs and digits are checked for validity.

2. The second operand is unaltered unless operands overlap.

3. Overflow cannot occur.

4. The sign of the product is determined by the rules of algebra, even if
one, or both, operands are zero; that is, minus zero is a possible result.

146

Divide Decimal
(DP)

General Description

Format
(55)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic
Instructions

• The operand specified by the first address (the dividend) is divided by
the operand specified by the second address (the divisor) and the result
(quotient plus remainder) replaces the first operand. The quotient is placed
leftmost in the first operand field. The remainder, which has a size equal
to the divisor size, is placed rightmost in the first operand field.

The operands may be variable in length and must be in packed format.
Overlapping is allowed if the rightmost byte locations are identical. The
second operand (the divisor) must be shorter than the first operand
(the dividend) and must not exceed eight bytes in length (15 digits plus
sign). If either rule is not observed, an address error (specification) occurs.

The dividend must have at least one high-order zero. Otherwise, a
decimal divide error occurs.

Together, the quotient and remainder occupy the entire dividend field
after division. Therefore, the address of the quotient field is the address of
the dividend field and its size in bytes is Ll - L2 - 1. The quotient and
remainder are signed integers which are right-aligned in the first operand.

No overflow can occur. A quotient that is larger than the number of
digits allowed causes a decimal divide error.

FD

o 7 8 11 12 15 16 19 20 31 32 35 36 47

• Unchanged.

• Address error:

Addressing.

Protection.

Specification.

Data error.

Decimal divide error.

• 1. All signs and digits are checked for validity.

2. The second operand is unaltered.

3. The sign of the quotient is determined by the rules of algebra from
dividend and divisor signs. The sign of the remainder has the same
value as the dividend sign.

4. The first address plus (Ll - L:!) specifies the address of the remainder.
The length of the remainder is specified by L:!.

147

Pack
(PACK)

General Description

Format
(55)

Condition Code

Interrupt Action

Decimal Arithmetic
Instructions

• The operand specified by the second address (BdD2) is converted from
zoned format to packed format ·and the result is placed in the location
specified by the first address (BtlD1).

The operand specified by the second address must be in zoned format.
The sign is obtained from the zone portion of the rightmost byte of the
second operand and is placed in the rightmost four bits of the first operand
(result field). All other zones are ignored. The four-bit numeric portions
(stripping the four-bit zone) of each byte are then placed adjacent to the
sign, and to each other, to fill the result field.

The result is extended with high-order zeros if the second operand field
is shorter than the first. If the first operand field is not large enough to
contain all the significant digits from the second operand field, the remaining
digits are ignored. The operands may overlap.

F2

o 7 8 11 12 15 16 19 20 31 32 35 36 47

• Unchanged.

• Address error:
Addressing.

Protection.

Notes • 1. Signs and digits are not checked for validity.

2. The second operand is not changed except when the operands overlap.

3. Processing is from right to left, one byte at a time.

148

Unpack
(UNPK)

General Description

Format
(5S)

Condition Code

Interrupt Action

Decimal Arithmetic
Instructions

• The operand specified by the second address (B 2/D2) is converted from
packed format to zoned format and the result is placed in the location
specified by the first address (B1/D1).

Each of the eight-bit bytes of the packed, second-operand field repre­
sents two four-bit digits. Each of the four-bit digits is stored in a byte of
the first operand field in the low-order four-bit positions. If the Decimal
Code is EBCDIC, a zone code of 1111 is inserted into the high-order four
bits of each byte. If the Decimal Code is ASCII, a zone code of 0101 is
inserted. These zones are inserted in all but the zone portion of the right­
most byte, which receives the sign of the packed operand.

If the first operand is not large enough to receive the significant digits
of the second operand, the remaining digits are ignored. The second-operand
field is extended with zero digits before unpacking.

F3

o 7 8 11 12 15 16 19 20 31 32 35 36 47

• Unchanged.

• Address error:
Addressing.

Protection.

Notes • 1. Signs and digits are not checked for validity.

2. The second operand is not altered, except when operands overlap.

3. Processing is from right to left.

149

MOVE with OFFSET
(MVO)

General Description

Format
(55)

Condition Code

Interrupt Action

Decimal Arithmetic
Instructions

• The operand specified by the second address (B 2 /D z) is offset 4 bits to
the left (a I-digit left shift) and is placed to the left of, and adjacent to,
the low-order four bits of the operand specified by the first address (B 1/D 1).

If the first operand is not large enough to receive all bytes of the second
operand, the remaining bytes are ignored. If the second operand is shorter
than the first operand, the second operand is extended with high-order
zeros. The first and second operands may overlap.

F1

o 7 8 11 12 15 16 19 20

• Unchanged.

• Address error:

Addressing.

Protection.

31 32 35 36 47

Notes • 1. Signs and digits are not checked for validity.

2. The second operand is not changed except when operands overlap.

3. Processing is from right to left.

4. The initial low-order 4-bit digit of the operand specified by the first
address is left unaltered.

150

LOGICAL
INSTRUCTIONS

INTRODUCTION

DATA FORMAT

• Logical instructions are used to manipulate data. The operands
are usually treated as eight-bit bytes. Some logical operations require a
single eight-bit byte specified as an operand; others may have variable­
length operands composed of many eight-bit bytes. Some instructions oper­
ate on the zone portion only, or on the digit portion only, of the bytes of
a variable-length operand. Some instructions have an operand that is part
of the immediate instruction being executed. Finally, there is a group of
instructions that provide for bit shifting.

Operands are in either main memory or general registers. Processing of
data in main memory is from left-to-right starting at any byte location.
Processing in general registers usually involves the entire contents of a
general register, or in some cases, two general registers.

The Edit instruction is the only instruction which requires that the
data be in packed decimal data. The Edit instruction converts packed
decimal data into alphanumeric characters with editing under the control
of a mask pattern.

The logical instruction set includes moving, comparing, bit testing,
translating, editing, shifting, and bit connecting.

The condition code is set by all instructions except the moving, trans­
lating, and shifting instructions .

• Data in general registers usually involves the entire 32 bits. There is
no distinction made between sign and numeric bits. In some operations,
only the least significant eight bits of the general register are involved,
and in another case, the least significant 24 bits are involved. In addition,
there are some shift operations in which an even/odd numbered pair of
general registers is involved.

The storage data in memory-to-register operations resides in either a
32-bit word or an eight-bit byte. A word must be oriented on word
boundaries (i.e., the address of the 32-bit word must have the two low-order
bits zero).

The storage data in memory-to-memory operations have a variable
length format and can have a field size of up to 256 bytes starting at any
byte location. Processing is from left to right.

Instructions that specify an operand that is part of the immediate
: instruction being executed are restricted to a field size of one eight-bit byte.

The Translate and Test and the Edit and Mark instructions imply
the use of General Register 1 *. An address of 24 bits may be placed in this
register during the execution of these instructions. The Translate and Test

I instructivn also implies the use of General Register 2 where an insertion of
I an eight-bit function byte may be placed during the execution of the

instruction.

Overlapping of fields in memory-to-memory operations mayor may
not affect the operands of the various instructions. The execution of some

* When these instructions are executed in P3' General Registers 13 and 14 are used;
in P 4' General Registers 9 and 10 are used.

151

DATA FORMAT
(Cont'd)

INSTRUCTION
FORMATS

RR Format

Description

RX Format

DescTiption

RS format

Description

SI Format

DescTiption

SS Format

Desc1'ipfion

Logical
Instructions

logical instructions does not change the operands. Other instructions, such
as Move, Edit, and Translate, replace one operand with new data, and this
data is handled one eight-bit byte at a time. This procedure enables the
user to determine the effect overlapping fields have on the execution of the
instruction. Unpredictable results can occur while overlapping fields are
being edited. Overlapping fields are valid for all other operations.

• The logical instructions use the following five instruction formats
(RR, RX, RS, SI, SS) :

I Op Code I Rl I R2 I
o 7 8 11 12 15

• In the RR format, the contents of the general register specified by Rl
are called the first operand. The contents of the general register specified
by R2 are called the second operand.

o 7 8 11 12 15 16 19 20 31

• In the RX format, the contents of the general register specified by Rl
are called the first operand. To obtain the address of the second operand,
the contents of the general registers specified by X 2 and B2 are added to
the contents of the D2 field.

o 7 8 11 12 15 16 19 20 31

• In the RS format, which is only used for shift instructions in this
instruction set, the contents of the general register specified by Rl are
called the first operand. There is no actual storage address formed by adding
the contents of the general register specified by B2 and the contents of D2 •

Instead, this sum specifies the number of bits to be shifted by the shift
operations. The R3 field is ignored in the shift operation.

Op Code I
o 7 8 15 16 19 20 31

• In the SI format, the contents of the general register specified by Bl
are added to the contents of the Dl field to obtain the address of the first
operand. The second operand is the immediate eight-bit byte in the I2
field of the instruction.

Op Code I
o 7 8 15 16 19 20 31 32 35 36 47

• In the SS format, the contents of the general register specified by Bl
are added to the contents of the Dl field to obtain the address of the leftmost
byte of the first operand. The L field specifies the number of additional
bytes in the operand that are to the right of the first operand. To obtain

152

55 Format
(Cont'd)

CONDITION CODE
UTILIZATION

INTERRUPT ACTION

Address Error

Addressing

Specification

Protection

Data Error

Logical
Instructions

the second operand address, the contents of the general register specified
by B2 are added to the contents of the D2 field. The length of the second
operand is the same as the length of the first.

The use of a zero in the X2, B I , or B2 field of any instruction indicates
that no register is to be used as a component of the instruction. Instructions
may use a general register for both address modification and operand
location. Addresses are always modified before an instruction is executed.

• The condition code is set as a result of using most of the logical instruc­
tions. The condition code setting has a different meaning when using
different instructions and can be tested by subsequent branch on condi­
tion instructions for decision making. Altogether, there are five types
of result meanings. The instructions which cause the condition code to be
set and the meaning of the setting are as follows:

Condition Code SeHing
Instruction

0 1 2 3

AND Zero Not Zero -- --
Compare Logical Equal Low High --
Edit Zero < Zero > Zero --
Edit and Mark Zero < Zero > Zero --
Exclusive OR Zero Not Zero -- --
OR Zero Not Zero -- --
Test Under Mask Zero Mixed -- One
Translate and Test Zero Incomplete Complete --

• The following interrupt conditions can occur as a result of logical
instructions:

• An address error interrupt occurs when an address specifies a loca­
tion outside the available memory. At the point of error the operation is
terminated. The result data and condition code, if affected, are
un predictable.

• An address error interrupt occurs when a full-word operand is not
located on a word boundary in a storage-to-register operation, or when an
odd register is specified as the first register in an instruction which per­
forms an operation on an even/odd pair of general registers. The operation
is suppressed.

• An address error interrupt occurs when the storage key and the protec­
tion key of the result location do not match. The operation is suppressed
and the condition code, registers, and main memory are unaltered. The
variable-length memory-to-memory instructions are the only exception,
in which case the operation is terminated and the result data and the
condition code setting are unpredictable. (This interrupt can only occur
if the memory protect feature is installed.)

• A data error occurs if a digit code of the second operand in the Edit
instruction or Edit and Mark instruction is invalid. The operation is
terminated, and the result data and condition code setting are unpredictable.

153

Move
(MV.) (MVe)

General Description

Format
(51)

(SS)

Condition Code

Interrupt Action

Notes

Logical
Instructions

• To process the SS format Move instruction, the source field specified by
the second address (BdD2) is moved into the destination field specified by
the first address (BdD1). This format is used for a main memory-to-main
memory move.

For the 81 format Move instruction, the immediate byte in the 12 field
of the instruction being executed is stored in the main memory location
specified by the first address (B]/D 1).

I (MV1) 92 I 12
I

Bl I Dl

0 7 8 15 16 19 20 31

I (MV'C) D21 L
I Bl I Dl B2 D2

0 7 8 15 16 19 20 31 32 35 36 47

• Unchanged.

• Address error:

Addressing.

Protection.

• 1. The bytes being moved are not inspected or changed.

2. Processing is from left to right and overlapping of fields is permitted.

3. The second operand is not altered, unless operands overlap in the
88 format.

4. It is possible to propagate one byte through an entire field by having
the first operand address specify one location to the right of the
second operand address.

154

Move Numerics
(MVN)

General Description

Format
(55)

Condition Code

Interrupt Action

Notes

Logical
Instructions

• The low-order four bits of each byte in the source operand specified by
the second address (BdD 2) are placed into the low-order four bits of the
corresponding byte of the destination operand specified by the first address
(BdD1).

Dl L

o 7 8 15 16 19 20 31 32 35 36 47

• Unchanged.

• Address error:
Addressing.
Protection.

• 1. The numerics are not changed or checked for validity.

2. The operand specified by the second address is not altered, unless
operands overlap.

3. Processing is from left to right.

4. The high-order four bits of the source and destination operand bytes
are not altered.

5. The operand fields may overlap in any way and may be variable
in length.

155

Move Zones
(MVZ)

General Description

Format
(55)

Condition Code

Interrupt· Action

Notes

Logical
Instructions

• The high-order four bits of each byte in the source operand specified by
the second address (BdD 2) are placed into the high-order four bits of the
corresponding byte of the destination operand specified by the first address
(B1/D1) .

D3 L

o 7 8 15 16 19 20 31 32 35 36 47

• Unchanged.

• Address error:
Addressing.
Protection.

• 1. The zones are not changed or checked for validity.

2. The operand specified by the second address is not altered, unless
operands overlap.

3. Processing is from left to right.

4. The low-order four bits of the source and destination operand bytes
are not altered.

5. The operand fields may overlap in any way and may be variable
in length.

156

Compare logical
(ClR) (Cl) (eLi) (ClC)

General Description

Format
(RR)

(RX)

(51)

(55)

Condition Code

Interrupt Action

Notes

Logical
Instructions

• The operand specified by the first address is logically compared with the
operand specified by the second address (RR format: Rl to R2 ; RX format:
Rl to XdB2/D2; SI format: BJ/Dl to 12 ; SS format: BJ/Dl to B2/D2).

The result of the comparison determines the condition code. These instruc­
tions process all bits as part of an unsigned binary quantity. All codes are
valid and the instruction is terminated on inequality or when the operand
bytes have been exhausted.

I (CLR) 15 I Rl I R2 I
o 7 8 11 12 15

o 7 8 11 12 15 16 19 20 31

I (CLI) 95 I 12 I Bl I
0 7 8 15 16 19 20 31

I (CLC) D5 I L I Bl I
0 7 8 15 16 19 20 31 32 35 36

• 0 - the operands are equal.

1 - the first operand is less than the second operand.

2 - the first operand is greater than the second operand.

3 -not used.

• Address error:
Addressing (RX, SI, SS only).

Specification (RX only).

• 1. Both operands are unaltered.

47

2. In the SI format, the immediate byte in the 12 field of the instruction
being executed is the second operand.

3. Processing is from left to right and can extend to field lengths of
256 bytes.

4. The operation can be used for alphanumeric comparisons.

157

AND
(NR) (N) (NI) (NC)

General Description

Format
(RR)

(RX)

(51)

(55)

Condition Code

Interrupt Action

Notes

Logical
Instructions

• These instructions perform a logical "AND" operation on two operands
bit-by-bit according to the following rules:

Rules of Logical "AND" Operation

If Bit in And Bit in Then Bit in

First Operand is Second Operand is Result is

0 0 0
0 1 0
1 0 0
1 1 1

The logical product of the operation is placed in the location specified
by the first address (R1 or B1/D1) and determines the condition code.

(NR) 14 I Rl I R2 I
0 7 8 11 12 15

(N) 54 I Rl I X2 I B2

0 7 8 11 12 15 16 19 20

(NI) 94 12

0 7 8 15

(NC) D4 I L

0 7 8 15

• 0 - result is zero.

1 - result not zero.

2-not used.

3 -not used.

• Address error:

I Bl I
16 19 20

I Bl I
16 19 20

Addressing (RX, SI, SS only).

Protection (SI, SS only).

Specification (RX only).

D2

31

Dl

31

Dl B2 D2

31 32 35 36 47

• 1. The second operand is unaltered, unless operands overlap in the
SS format.

2. In the SI format, the immediate byte in the I~ field of the instruction
being executed is the second operand.

3. Processing is from left to right.

4. All operands and results are valid.

5. The "AND" instruction is also used to set a bit to zero.

158

OR
(OR) CO) {Oil (oe)

General Description

Format
(RR)

(RX)

(51)

(55)

Condition Code

Interrupt Action

Notes

Logical
Instructions

• This instruction performs a logical "OR" operation on two operands
bit-by-bit according to the following rules:

Rules for Logical "OR" Operation

If Bit in And Bit in Then Bit in

First Operand is Second Operand is Result is

0 0 0
0 1 1
1 0 1
1 1 1

The logical result of the operation is placed in the location specified by
the first address (R1 or B1/D1) and determines the condition code.

(OR) 16 I Rl I R2 I
0 7 8 11 12 15

(0) 56 I Rl I X2 I B2 D2

0 7 8 11 12 15 16 19 20 31

(01) 96 12 I Bl I Dl

0 7 8 15 16 19 20 31

(OC) D6 I L I Bl I Dl B2 D2

0 7 8 15 16 19 20 31 32 35 36 47

• 0- result is zero.

1- result is not zero.

2 -not used.

3 -not used.

• Address error:
Addressing (RX, SI, SS only).

Protection (81, SS only).

Specification (RX only).

• 1. The second operand is unaltered, unless operands overlap in the
SS format.

2. In the SI format, the immediate byte in the l~ field of the instruction
being executed is the second operand.

3. Processing is from left to right.

4. All operands and results are valid.

5. The "OR" instruction is also used to set a bit to one.

159

Exclusive OR
(XR) (X) (XI) (XC)

General Description

Format
(RR)

(RX)

(51)

(55)

Condition Code

Interrupt Action

Notes

Logical
Instructions

• These instructions perform an Exclusive "OR" operation on two oper­
ands bit-by-bit according to the following rules:

Rules for Exclusive "OR" Operation

If Bit of And Bit of Then Bit in

First Operand is Second Operand is Result is

0 0 0

0 1 1

1 0 1

1 1 0

The modulo-two sum (binary addition without carries) of the operation
is placed in the location specified by the first address (R1 or Bl/Dd and
determines the condition codes.

(XR) 17 I Rl I R2 I
0 7 8 11 12 15

II (X) 57 I Rl I X 2 I B2 D2

0 7 8 11 12 15 16 19 20 31

(XI) 97 12 I Bl I Dl

0 7 8 15 16 19 20 31

I (XC) D7 I L I Bl I Dl B2 D2

0 7 8 15 16 19 20 31 32 35 36 47

• 0 - result is zero.
1 - result is other than zero.
2 -not used.
3 -not used.

• Address error:
Addressing (RX, SI, SS only).

Protection (SI, SS only).

Specification (RX only).

• 1. The second operand is unaltered, unless operands overlap in the
SS format.

2. In the SI format, the immediate byte in the 12 field of the instruction
being executed is the second operand.

3. Processing is from left to right.
4. All operands and results are valid,

5. These instructions may be used to complement a number (one's
complement) .

160

Test Under Mask
(TM)

General Description

Format
(SI)

Condition Code

Interrupt Action

Logical
Instructions

• The operand (byte) specified by the first address (B1/D1) is tested
against the immediate I field (byte) as a mask. The result determines the
condition code. The I field is used as an eight-bit mask and is made to
correspond one-for-one with the bits of the byte in main memory that is
specified by the first address.

A bit in the byte being examined is said to be selected when the corre­
sponding mask bit is a one. When the mask bit is a zero, the bit in main
memory is ignored.

91

o 7 8 15 16 19 20 31

• 0 - selected bits all zero or mask is all zero.

1 - selected bits mixed zero and one.

2-not used.

3 - selected bits all one's.

• Address error:
Addressing.

Note I • The operands are unaltered.

161

Insert Character
(IC)

General Description

Format
(RX)

Condition Code

Interrupt Action

Note

Logical
Instructions

• The eight-bit byte specified by the second address (XdBz/D2) is loaded
into the rightmost byte of the general register specified by the first address
(R1). The remaining bits of the register are unaltered.

43 I Rl I X2 I B2 I D2

0 7 8 11 12 15 16 19 20 31

• Unchanged.

• Address error:

Addressing.

• The operand specified by the second address is not altered or inspected.

162

Store Character
(STC)

General Description

Format
(RX)

Condition Code

Interrupt Action

Logical
Instructions

• The rightmost eight-bit byte of the general register specified by the first
address (R2) is stored into the main memory location specified by the
second address (XdBdD2)'

42

o 7 8 11 12 15 16 19 20 31

• Unchanged.

• Address error:

Addressing.

Protection.

Note • The operand specified by the first address is not altered or inspected.

163

Load Address
(LA)

General Description

Format
(RX)

Condition Code

Interrupt Action

Notes

Logical
Instructions

• The final main memory address specified by the second operand
(XdBdD2) is loaded into the rightmost 24 bits of the general register
specified by the first address (R1). The leftmost eight bits of the register are
set to zeros.

The contents of the registers specified by the X2 and B2 fields are added
to the contents of the D2 field of the instruction to obtain an address. This
is the address that is loaded into the register specified by the first address.
Any carry beyond the rightmost 24 bits is ignored.

41

o 7 8 11 12 15 16 19 20 31

• Unchanged.

• None.

• 1. All specified address arithmetic is computed before loading.

2. R1 , X2 and B2 may specify the same register; however Rl only may
specify register O.

3. This instruction can be used to increment the low-order 24 bits of a
general register (other than 0) by the contents of the D2 field.
The register to be incremented is specified by R 1 , and either X 2

(with B2 set to zero) or B2 (with X 2 set to zero). Since Rl and
X 2 or B2 must specify the same register, register zero cannot be
incremented (a zero in the B2 or X 2 field indicates that the corre­
sponding address component is absent).

4. Main memory is not accessed by this instruction.

164

Translate
(TR)

General Description

Format
(55)

Condition Code

Interrupt Action

Logical
Instructions

• The variable length operand specified by the first address (BdD1) is
translated, byte-for-byte, according to the byte translation table specified
by the second address (B2/D2). The result replaces the bytes in the field
specified by the first address.

The bytes of the first operand are termed the argument bytes. Bytes of
the first operand are selected for translation from left-to-right, one byte
at a time. Each argument byte is added to the second operand address,
which is the starting location of a translation table. This sum, in turn,
addresses a byte location within the table containing a function byte. The
function byte at this location replaces the original argument byte of the
first operand.

The operation terminates when the first operand bytes have been
exhausted.

DC L

o 7 8

• Unchanged.

• Address error:
Addressing.

Protection.

15 16 19 20 31 32 35 36 47

Notes • 1. The translation table is unaltered unless overlap occurs.

2. The field to be translated and the translation table are addressed by
their leftmost byte.

3. The length of a table, in general, must be 256 bytes, unless the
domain of argument bytes is limited to a specific subset by the
program and data.

4. The L field specifies the length of the first operand minus one
(binary 00000001 = 2 bytes).

165

Translate and Test
(TRT)

General Description

Format
(55)

Condition Code

Interrupt Action

Notes

Logical
Instructions

• The variable length operand, which is specified by the first address
(B1/D 1), is used as the argument (byte-by-byte) to reference a list (func­
tions) specified by the second address (B 2/D2). The functions referenced
are inspected for zero or non-zero. If a non-zero is encountered, the address
of the argument byte is loaded into General Register 1 (General Register
13 in P 3 ; General Register 9 in P 4) and the function byte is loaded into the
rightmost end of General Register 2 (General Register 14 in P 3 ; General
Register 10 in P 4). Whenever zeros are encountered in the function list,
the operation proceeds to the next byte. The first operand is unaltered.

The bytes of the first operand are termed the argument bytes. Processing
of the first operand is from left-to-right, one byte at a time. Each argument
byte is added to the second operand, which is the starting location of the
translate table. This sum, in turn, addresses a byte location within the
table, which is termed a function byte. Then, the function byte retrieved
from the table is inspected for all zeros.

If the function byte is all zeros, the operation proceeds to the next
argument byte and continues processing. If the function byte is not all
zeros, the instruction inserts the address of the argument byte in the low­
order 24 bits of General Register 1 (13 or 9) and inserts the retrieved
non-zero function byte in the low-order eight-bits of General Register 2
(14 or 10). The high-order eight bits of General Register 1 (13 or 9)
and high-order 24 bits of General Register 2 (14 or 10) are unaltered.

The operation terminates when a (non-zero) function byte is accessed
or when the first operand field is exhausted.

DD L

o 7 8 15 16 19 20 31 32 35 36 47

• 0 - accessed function bytes all zeros.
1 - a non-zero function byte is encountered before the first operand

field is exhausted.
2 - the last function byte is non-zero.
3 - not used.

• Address error:
Addressing.

• 1. The variable length field specified by the first address is unaltered.
2. If non-zero functions do not occur, General Registers 1 (13 or 9) and

2 (14 or 10) are unaltered.
3. The first operand and the translation table are addressed by their

leftmost bytes.
4. The length of the table, in general, must be 256 bytes, unless the

domain of argument bytes is limited to a specific subset by the
program and data.

5. The L field specifies the length of the first operand minus one.
6. This instruction is useful for scanning input streams and locating

delimiters for variable length records and fields.
7. In processor states PI and P 2, General Registers 1 and 2 are used.

In processor state P3, General Registers 13 and 14 are used. In
processor state P 4 , General Registers 9 and 10 are used.

166

General Description

Format
(55)

Editing Rules

Logical
Instructions

• The variable length source field specified by the second address (BdD2)

is changed from packed format to" zoned format with the results edited
under the control of a mask pattern. The result of the operation replaces
the mask pattern specified by the first address (Bt/DI) and determines the
condition code.

The L field applies to the mask pattern (first address field). The source
digits are processed left-to-right, one byte at a time. The leftmost four
bits of each byte are examined first and the rightmost four bits of each
byte are held available for the next mask character that calls for digit
examination. Immediately after the leftmost four bits have been examined,
the rightmost four bits are checked for a sign code. When one of the sign
codes is encountered, these bits are no longer treated as a digit. A new
character is fetched from the mask pattern for the next digit to be examined.

DE L

o 7 8 15 16 19 20 31 32 35 36 47

• Editing includes sign control, punctuation control, zero suppression or
check protection, and also facilitates blanking of all-zero fields. In addition,
multiple fields of digits can be edited in one operation, and numeric data
can be combined with alphabetic and special characters.

Editing rules depend on the control code, significance, and the source
digit, and are given as follows:

Control Codes
Hexadecimal

Code

Filler Any

Start Significance 21

Digit Select 20

Field Separator 22

Insertion Character Any

Editing Rules

Decimal

Code

Any

33

32

34

Any

Function

* Replaces leading zeros.

Stops replacement of leading
zeros. Also acts as a digit
select code.

Specifies digit position in data
(replaced by filler code if ap­
pears after a negative sign
has been sensed).

Indicates editing of a new
field is to begin (replaced by
filler code).

Inserted in the result.

* The most common filler characters are the blank and the asterisk.

1. Source digits are examined only when a digit select code (20) 16 or a
start significance code (21L6 is encountered in the mask pattern.

2. Significance is established either:
a. upon encountering a non-zero digit in the source field.
b. after encountering a start significance code (21) 16 within the

mask pattern.

167

Editing Rules
(Cont'd)

Condition Code

Logical
Instructions

3. If significance has not been established, every control code or insertion
character encountered in the mask pattern (including the start
significance code) is replaced by the filler character.

4. If significance has been established, every digit select code (20) 16 or
start significance code (21) 16 encountered in the mask pattern is
replaced by a digit from the source field, which is expanded by
attaching a zone.

5. If significance has been established, every insertion character (other
than the digit select, start significance, or field separator codes)
encountered within the mask pattern is left in place without
alteration.

6. Significance is disestablished by:
a. encountering a field separator code (22) 16 in the mask pattern.
b. encountering a positive (plus) sign within the rightmost four

bits of a source field byte.

7. A negative (minus) sign within the rightmost four bits of a source
byte does not disestablish significance. Additional digit select codes
encountered in the mask pattern are replaced by filler characters,
but insertion characters are left in place without alteration.

8. Field separator codes (22) 16 are always replaced by the filler
character.

Note: The filler character is obtained from the mask pattern as part
of the editing operation. The first character (leftmost byte)
of the mask pattern is used as a filler character and is left
unchanged in the result, except:

a. when it is a digit select code.

b. when it is a start significance code.

In these codes, a source digit is examined and, when non-zero,
inserted in the result field.

To facilitate blanking out all-zero result fields, or triggering negative
field special processing, the condition code is used to indicate the sign and
zero status of the last field edited. All digits examined are tested for zero,
and the presence, or absence, of an all-zero source field is indicated in the
condition code at the termination of the editing operation. Sign significance
is also indicated by the condition code.

• 0 - indicates a zero source field regardless of whether or not significance
is established.

1 - indicates non-zero result field with significance established to
indicate less than zero.

2 - indicates non-zero result field with no significance established to
indicate greater than zero.

3 -not used.

Note: The condition code setting reflects only the field following the last
(rightmost) field separator code of the mask pattern for multiple­
field-editing operations.

168

Interrupt Action

Notes

• Address error:

Addressing.

Protection.

Data error.

Logical
Instructions

• 1. The leftmost four-bits of any source field byte must be a valid digit,
otherwise a data error interrupt occurs.

2. The rightmost four-bits of any source field byte can be either a digit
or a sign.

3. Multiple field editing is possible by using the field separator code
within the mask pattern.

4. The zones of the expanded source digits can be either EBCDIC or
ASCII, as specified by the mode code. When the mode code specifies
EBCDIC, zone code 1111 is generated. When the mode code specifies
ASCII, the zone code 0101 is generated.

5. The rightmost four bits of any source field byte can be a digit or
sign as follows:

Codes Definition

0000 ~ 1001 Digits

1010,1100,1110,1111 Plus sign

1011,1101 Minus sign

6. Overlapping of fields yields unpredictable results.

169

Edit and Mark
(EDMK)

General Description

Format
(55)

Condition Code

Interrupt Action

Notes

Logical
Instructions

• The variable length source field specified by the second address (BdD2
is changed from packed format to zoned format and the results are edited
under control of a mask pattern. The result of the operation replaces the
mask pattern specified by the first address (B 1/D 1) and determines the
condition code. In addition, the address of each first significant result digit
is stored in General Register 1 (General Register 13 in P 3; General Register
9 in P 4).

The operation of this instruction is identical to the Edit instruction
except for the additional function of inserting a byte address in General
Register 1 (13 or 9). The destination address of the digit that establishes
significance within the source field being edited is loaded into the right­
most 24 bits of General Register 1 (13 or 9). The leftmost eight bits are
unaltered. The address is not loaded when significance is forced by recogni­
tion of the start significance code in the mask pattern.

The Edit and Mark instruction facilitates the insertion of floating cur­
rency symbols, sign indicators, relational operators, and other editing
symbols ($, +, -, <, >, etc.). The address loaded into the register is one
byte to the right of the address where such a symbol would be inserted.
(The Branch on Count instruction, with zero in the R2 field, can be used to
reduce the loaded address by one.)

Because the address is not loaded when significance is forced by the start
significance code, the address of the byte immediately to the right of the
start significance code in the mask pattern field should be loaded in General
Register 1 (13 or 9) before an Edit and Mark instruction is executed.

DF L

o 7 8 15 16 19 20 31 32 35 36 47

• 0 - indicates a zero source field whether or not significance is estab­
lished.

1- indicates non-zero result field with significance established to indi­
ciate less than zero.

2 - indicates non-zero result field with no significance established to
indicate greater than zero.

3-not used.

• Address error:
Addressing.

Protection.

Data error.

• 1. All notes of the Edit instruction are applicable to the Edit and Mark
instruction.

2. The address of the byte is loaded each time significance is established
and a non-zero character is inserted into the result field.

170

Notes
(Cont'd)

Logical
Instructions

3. The address is loaded into the rightmost 24 bits of General Register
1 (13 or 9). The leftmost eight bits are unaltered.

4. When a single instruction is used to edit multiple fields, the address
of the first significant digit of each field is loaded into the register.
However, only the address of the last field processed will be available
upon completion of the instruction.

5. In processor states PI and P 2 , General Register 1 is used. In processor
state P 3, General Register 13 is used. In processor state P 4, General
Register 9 is used.

171

Shift Left Single
Logical (SLL)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Logical
Instructions

• The entire contents of the general register specified by the first address
(RJ are shifted left the number of bit positions specified by the second
address (B2/D2). The R3 field is ignored.

The second address does not refer to a main memory location. The low­
order six bits of the second address are used as the count to specify the
number of bits of shifting to be done. The remaining bits are ignored.

89

o 7 8 11 12 15 16 19 20 31

• Unchanged.

• None.

• 1. High-order bits of the register are shifted out and lost.

2. Zeros are placed into the right end of the register.

3. All 32 bits of the specified register are shifted.

172

Shift Right Single
Logical (SRL)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Logical
Instructions

• The entire contents of the general register specified by the first address
(RJ) are shifted right by the number of bit positions specified by the
second address (BdD2). The R3 field is ignored.

The second address does not refer to a main memory location. The low­
order six bits of the second address are used as the count to specify the
number of bits shifting to be done. The remaining bits are ignored.

88

o 7 8 11 12 15 16 19 20 31

• Unchanged.

• None.

• 1. Low-order bits of the register are shifted out and lost.

2. Zeros are placed into the left end of the register.

3. All 32 bits of the specified register are shifted; that is, the operation
is unsigned.

178

Shift Left Double
Logical (SLDL)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Logical
Instructions

• The entire contents of the double-length operand (two general registers)
- even/odd specified by the first address (R1) are shifted left the number
of bit positions specified by the second address (B2/D2). The R3 field
is ignored.

The second address does not refer to a main memory location. The low­
order six bits of the second address are used as the count to specify the
number of bits of shifting to be done. The remaining bits are ignored.

8D I Rl ~~ B2 I D2

0 7 8 11 12 15 16 19 20 31

• Unchanged.

• Address error:

Specification.

• 1. The first address must specify an even-numbered register.

2. All 64 bits of the double-length operand are shifted.

3. High-order bits are shifted out and lost.

4. Zeros are placed into the low-order end of the odd-numbered register.

174

Shift Right Double
Logical (SRDL)

General Description

Format
(RS)

Condition Code

Interruption

Notes

Logical
Instructions

• The entire contents of the double-length operand (two general registers)
- even/odd specified by the first address (R1) are shifted right the number
of bit positions specified by the second address (B2/D2). The R3 field
is ignored.

The second address does not refer to a main memory location. The low­
order six bits of the second address are used as the count to specify the
number of bits of shifting to be done. The remaining bits are ignored.

0

•
•
•

8e I Rl ~~ B2 I D2

7 8 11 12 15 16 19 20 31

Unchanged.

Address error:

1.

2.

3.

4.

Specification.

The first address must specify an even-numbered register.

All 64 bits of the double-length operand are shifted.

Low-order bits are shifted out and lost.

Zeros are placed into the high-order end of the even-numbered
register.

175

BRANCHING
INSTRUCTIONS

INTRODUCTION

SEQUENTIAL
EXECUTION

INSTRUCTION
FORMATS

RS Format

Descript'ion

• In normal processor operation, instructions are executed in sequential
order according to the main memory locations in which they are stored.
When branching is performed, a break in this normal sequential execution
occurs. Branching instructions provide for referencing another subroutine
or repeating a segment of coding or continuing to the next instruction
in sequence. When branching occurs, the address specified in the branch
instruction replaces the current address in the P counter. The branch
address can be specified by an instruction address or it can be obtained
from one of the general registers.

The actual branching execution is based on the setting of the condition
code or on the contents of a general register as specified in the loop-closing
operations.

\
In a branching operation, the current address in the updated P counter

can be stored before the branch address is placed in the P counter. This
stored address can be used for linking the new segment of instructions
with the segment of instructions from which the branching occurred.

The Execute instruction is listed with the branch instructions, although
only a temporary departure from sequential operation is entailed by use
of this instruction. The branch address, in this instruction, specifies one
instruction to be executed in the instruction sequence. The address in the
P counter is not replaced by the branch address and only the instruction
located at the address is executed before the sequence is continued based
upon the updated P counter.

• Normally, the P counter instruction address specifies a main memory
location from which the next instruction to be executed is fetched. This
instruction address is updated in the P counter by the length, in bytes, of
the instruction to be executed as indicated by the current P counter. The
instruction currently indicated by the P counter is executed and the opera­
tion is repeated using the updated P counter to fetch the next instruction.

Instructions can occupy from one halfword (two bytes) up to three
halfwords (six bytes). The high-order two bits of the operation code of
each instruction designates its length as follows:

00 = halfword instruction (two bytes).

01, 10 = two-halfword instructions (four bytes).

11 = three-halfword instructions (six bytes).

• Branching instructions use the following three instruction formats:

o 7 8 11 12 15 16 19 20 31

• The contents of the general register specified by B2 are added to the
contents of the D2 field to obtain the branch address (second operand).
The Rl field specifies the general register that contains the first operand.
The R3 field specifies the general register that contains the third operand.

176

RX Format

Description

RR Format

Description

INTERRUPT ACTION

Address Error

Addressing

Specification

Branching Instructions

o 7 8 11 12 15 16 19 20 31

• The contents of the general registers specified by X 2 and B2 are added
to the contents of the D2 field to obtain the branch address (second
operand). The Rl field specifies the general register which contains the first
operand. In a Branch on Condition instruction, the M field is a mask
which specifies the condition codes to be tested.

o 7 8 11 12 15

• The contents of the general register specified by the R2 field are the
branch address (second operand). The Rl field specifies the general register
that contains the first operand. The same register can be specified by Rl
and R2. If R2 is zero, no branching occurs. In a Branch on Condition
instruction, the M field is a mask that specifies the condition codes to
be tested.

Notes:

1. A zero in the X2 or B2 field indicates that the corresponding address
component is absent.

2. The sequence of operations when using general registers is as follows:
a. compute the address.
b. store arithmetic or link information.
c. replace the P counter with the branch address.

• Interrupts can occur as a result of an Execute instruction only. The
interrupt conditions are as follows:

• An address error interrupt occurs when the branch address of an
Execute instruction is outside the main memory for the particular installa­
tion, or if an Execute instruction is attempted to perform another Execute
instruction. The operation is suppressed and the condition code, registers,
and main memory are unaltered.

• An address error interrupt occurs if the branch address of an Execute
instruction is not on a halfword boundary. The operation is suppressed
and the condition code, registers, and main memory are unaltered.

177

Branch on Condition
(BCR) (BC)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Notes

Branching Instructions

• If the condition code is set to any of the conditions specified by the
four-bit mask field (M or M1), the P counter is replaced by the branch
address (R2 or XdBdD 2). If the four-bit mask field (M or M1) is not
equivalent to the condition code settings, branching does not occur and
the next instruction in sequence is executed. The branch is initiated when­
ever the condition code has a corresponding mask bit set.

(BCR) 07 Ml R2

0 7 8 11 12 15

(BC) 47 M X2 B2 D2

0 7 8 11 12 15 16 19 20 31

• Unchanged.

• None.

• 1. The four-bit mask In Ml corresponds, left-to-right, with the four
condition codes:

Instruction Bit Condition Code

8 0
9 1

10 2
11 3

2. If all mask bits are set (M l = F 16), an unconditional branch is
effected.

3. When all mask bits are zero, or if R2 in the RR format is zero, the
instruction is a no-op.

4. When a branch occurs, the leftmost eight-bit portion of the 32-bit
P counter OLC, CC, and mask) is unpredictable. However, the
actual condition code and program mask (hardware registers) are
unaffected by branching.

5. The contents of the registers specified by the second address are
unaltered.

17~

Branch and Link
(BALR) (BAL)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Branching Instructions

• The entire 32-bit contents of the P counter are loaded into the general
register specified by R1 • Then, the program branches to the instruction
address specified by the branch address (R2 or XdB2/D2). The instruction
length counter, the condition code, the program mask, and the updated
instruction address are stored. However, when branching occurs, only the
instruction address is replaced.

(BALR) 05 Rl R2

0 7 8 11 12 15

(BAL) 45 Rl
-I

X2 B2 D2

0 7 8 11 12 15 16 19 20 31

• Unchanged.

• None.

Notes • 1. The P counter is stored without branching in the RR format when
the R2 field is zero.

2. When a branch occurs, the leftmost eight-bit portion of the 32-bit P
counter (ILC, CC, and mask) is unpredictable. However, the actual
condition code and program mask (hardware registers) are
unaffected by branching.

3. 'The contents of the register specified by the second address are
unaltered.

179

Branch on Count
(BCTR) (BCT)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Notes

Branching Instructions

• The contents of the general register specified by the R1 · field are alge­
braically decremented by one. The contents of the register are examined,
and if the contents are zero, no branching occurs. If the contents are not
zero, the instruction address in the P counter is replaced by the branch
address (R2 or XdBdD2) and branching occurs.

(BCTR) 06 Rl R2

0 7 8 11 12 15

(BCT) 46 Rl X2 B2 D2

0 7 8 11 12 15 16 19 20 31

• tJ nchanged.

• None.

• 1. The subtraction executes as in fixed-point arithmetic with all 32
bits participating.

2. An initial count of zero in the Rl field results in branching, because
subtraction occurs before testing the contents of the register. If the
value is zero, branching occurs and the result is minus one. To effect
a no branch, the contents of the Rl field must be 1.

3. The contents of the registers specified by the second address are
unaltered.

4. When branching occurs, the leftmost eight-bit portion of the 32-bit
P counter (ILC, CC, and mask) is unpredictable. However, the
actual condition code and program mask (hardware registers) are
unaffected by branching.

5. In the RR format, if the R2 field is zero, counting is performed
without branching.

6. If a negative number appears in R 1, an overflow condition occurs
when this field is decremented. However, this overflow is ignored.

7. Overflow from a maximum negative number to a maximum positive
n umber is ignored.

180

Branch on Index High
(BXH)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Branching Instructions

• The operand specified by the third address (R3) is added to the operand
specified by the first address (R1) and the sum is algebraically compared
with the operand specified by the third address (R3), if R3 specifies an odd
register. If R3 specifies an even register, the sum is algebraically com­
pared with R3 + 1. If the sum is low or equal, branching does not occur
and the next instruction is executed. If the sum is high, the instruction
address in the P counter is replaced by the branch address (B2/D2) and
branching occurs.

o 7 8 11 12 15 16 19 20 31

• Unchanged.

• None.

• 1. The sum replaces the operand specified by the first address (R1)

regardless of the comparison. The sum replaces (R1) after the
comparison has been made.

2. Overflow is not recognized.

3. The contents of the register specified by R3 or R3 + 1 are unaltered.

4. When a branch occurs, the leftmost eight-bit positions of the 32-bit
P counter OLC, CC, and mask) are unpredictable. However, the
actual condition code and program mask (hardware registers) are
unaffected by branching.

181

Branch on Index
Low or Equal

(BXLE)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Branching Instructions

• The operand specified by the third address (Ra) is added to the operand
specified by the first address (R1) and the sum is algebraically compared
with the operand specified by the third address (R3), if R3 specifies an odd
register. If R3 specifies an even register, the sum is algebraically compared
with R3 + 1. If the sum is high, branching does not occur and the next
instruction in sequence is executed. If the sum is low or equal, the
instruction address in the P counter is replaced by the branch address
(B2/D2) and branching occurs.

o 7 8 11 12 15 16 19 20 31

• Unchanged.

• None.

• 1. The sum replaces the operand specified by the first address (R1)

regardless of the comparison. The sum replaces (R1) after the
comparison has been made.

2. Overflow is not recognized.

3. The contents of the register specified by R3 or R3 + 1 are unaltered.

4. When a branch occurs, the leftmost eight-bit positions of the 32-bit
P counter (ILC, CC, and mask) are unpredictable. However, the
actual condition code and program mask (hardware registers) are
unaffected by branching.

182

Execute
(EX)

General Description

Format
(RX)

Condition Code

Interrupt Action

Branching Instructions

• The instruction in the location specified by the second address
(X2/B2/D2) is modified by the contents of the register specified by the first
address (Rr). Then, the modified instruction is executed and control is
returned to the instruction following the Execute instruction.

o 7 8 11 12 15 16 19 20

• May be set by the instruction being modified and executed.

• Address error:

Addressing.

Specification.

31

Notes • 1. Bits 8-15 of the subject instruction are "OR"ed with bits 24-31

of the register specified by the first address (R1).

2. If Rl is zero, no modification takes place.

3. The ILC is set to two (length of the Execute) and the P counter
is set to the address of the instruction following the Execute
instruction.

4. The contents of Rl and the subject instruction in main memory
are unaltered.

5. Interrupts are inhibited until the subject instruction has been
completed.

6. When the subject instruction is a successful branching instruction,
the P counter is updated by the branch address.

183

FLOATING-POINT
INSTRUCTIONS

INTRODUCTION

DATA FORMATS

Short Floating-Point
Number

long Floating=Point
Number

• Floating-point arithmetic instructions provide the capability to process
operands of large magnitude with precise results.

A floating-point number is made up of three parts: a sign, an exponent
and a mantissa. The sign portion applies to the mantissa. The exponent is
a power to which the number 16 is raised. The mantissa is a hexadecimal
number with an assumed radix point to the left of the high-order digit.
The quantity that the floating-point number represents is obtained by
multiplying the mantissa by the number 16 raised to the power represented
by the exponent.

Four floating-point registers are provided, each of which is 64 bits
long. These registers are numbered 0, 2, 4 and 6.

Included in this set are instructions for loading, adding, subtracting,
comparing, multiplying, dividing, storing, and controlling signs of short
and long operands.

Addition, subtraction, mUltiplication, and division produce normalized
results. Addition and subtraction can also produce unnormalized results.
Operands can be normalized, or unnormalized, in any floating-point
operation.

Sign control, add, subtract, and compare operation results are indicated
in the condition code settings .

• Floating-point numbers are fixed in length and are either full-word
short or double-word long in format.

The first bit in both formats is the sign of the mantissa. A 1 bit repre­
sents a minus sign and a 0 bit represents a plus sign. The next seven bits
represent the exponent. The mantissa contains six hexadecimal digits (short
floating-point number) or 14 (long floating-point number) hexadecimal
digits.

The short format allows for faster processing and uses less storage.
Because floating-point registers are 64 bits long, the rightmost 32 bits are
ignored when dealing with short operands. When the short format is
specified, all operands and the result are 32 bits long. When using the long
format, which provides greater precision, all operands are 64 bits long and
require the full register.

Mantissa

o 1 7 8 31

S 1 I Exponent 71 Mantissa

o 1 7 8 63

184

REPRESENTATION
OF NUMBERS

NORMALIZATION

INSTRUCTION
FORMATS

RX Format

Floating-Point Inst'fucUons

• The mantissa is always represented in hexadecimal. An assumed radix
point is always immediately to the left of the high-order digit of the
mantissa.

The exponent, bits 1 through 7, indicates the power to which the number
16 must be raised. The range of the exponent is from -64 to +63 corre­
sponding to the binary value of 0-127. The power is equal to the binary
number minus 64, as shown in following table:

Exponent Decimal Equivalent Power

(1 111 111) 2 127 -64 = +63
(1 000 111) 2 71 -64 = +7
(0 000 000)2 o -64 = -64

Because the value (64) 10 represents the power zero, this technique is
called excess 64 notation.

The sign of a result from addition, subtraction, multiplication, or divi­
sion with a zero mantissa is positive. A zero sign, zero exponent, and zero
mantissa in a floating-point number is called true zero .

• A floating-point number with a mantissa containing a non-zero, high­
order, hexadecimal digit is called a normalized number. An unnormalized
number has one or more high-order hexadecimal zero digits in the mantissa.
To change an unnormalized number into a normalized number, the man­
tissa is shifted to the left until the high-order digit is non-zero. Then, the
exponent is decremented by the number of digits shifted.

Generally, normalization occurs when the intermediate arithmetic result
is changed to the final result. However, in multiplication and division
operations, normalization occurs before the arithmetic process.

Floating-point operations are performed with, or without, normaliza­
tion. Most operations are performed in only one way; however, addition
and subtraction may be performed either way as specified.

When normalization is not performed, high-order zeros in the result
mantissa are not eliminated. Depending on the original operands, the result
may, or may not, be normalized.

Initial operands in both normalized and unnormalized operations need
not be in normalized form. Because normalization takes place on hexa­
decimal digits, the three high-order bits of a normalized mantissa can
be zero .

• The following two instruction formats are used for floating-point
operations:

o 7 8 11 12 15 16 19 20 31

Description • An address is formed by adding the contents of general registers X2

and B2 to the displacement field D2. This address specifies a main memory
location that contains the second operand in the operation. R1 designates

I the floating-point register containing the first operand.

185

RR Format

Description

CONDITION CODE
UTILIZATION

Floating-Point Inst1'uctions

o 7 8 11 12 15

• In this format, Rl designates the address of the floating-point register
holding the first operand. R2 is the address of the floating-point register
holding the second operand. The first and second operands can be the same
and are designated by identical Rl and R2 addresses.

Notes:
1. Register addresses specified by the Rl and R2 fields must be 0, 2, 4,

or 6 or an address error (specification) interrupt occurs.
2. A short operand must be located on a word boundary and a long

operand must be on a double-word boundary; if not, an address
error (specification) interrupt occurs.

3. Floating-point registers are used by floating-point instructions only.
4. A zero in an X2 or B2 field shows that there is no address component

to enter in forming an address.
5. Except for the instructions Store (long) and Store (short), results

of floating-point operations replace the first operand.
6. Except for the storing of the result, the contents of floating-point

registers, general registers, and main memory locations used in the
operations are not changed.

7. It is possible to designate the same general register to specify both
operand locations and address generation. Addresses are generated
before execution.

• The condition code reflects results of floating-point sign control, add,
subtract, and compare instructions. The code is not changed by any other
floating-point operation. Decision-making by branch on condition instruc­
tions can be done after those instructions that set the code.

For most arithmetic and load instructions, Condition Codes 0, 1, or 2
indicate respectively a zero, or less than, or greater than zero content, of
the result. Condition Code 3 is set for overflow of the result in arithmetic
instructions only. In comparison instructions, the Condition Codes 0, 1,
or 2 show, respectively, that the first operand is either equal to, less than,
or greater than the second operand.

Instructions that cause the condition code to be set and the meaning
of the setting are as follows:

Condition Code Setting
Instruction

0 1 2 3

Add No.rmalized Short/Long Zero < Zero > Zero. Overflow
Add U nno.rmalized Short/Long Zero. < Zero > Zero Overflow

Co.mpare Short/Long Equal Low High --
Lo.ad and Test Sho.rtjLong Zero < Zero > Zero. --
Load Complement Short/Long Zero

I
< Zero > Zero --

Load Negative Short/Long Zero < Zero -- --
Load Positive Short/Long Zero.

I

-- > Zero --
Subtract Normalized Short/Long Zero < Zero > Zero Overflow

Subtract U nnormalized Short/Long Zero < Zero > Zero Overflow

186

INTERRUPT ACTION

Address Error

Floating-Point Instructions

• The following interrupt conditions can occur as a result of a floating­
point instruction.

Addressing • An address error interrupt occurs when an address in the RX instruc­
tion format specifies a location outside the available main memory. The
operation is terminated at the point of error. The result data and the
condition code (if affected) are unpredictabl€.

Specification • An address error interrupt occurs if a short operand is not located on
a word boundary or a long operand is not located on a double-word boundary.
An address error interrupt also occurs if a floating-point register other
than 0, 2, 4 or 6 is specified. The instruction is suppressed. The condition
code, the data in main memory, and the registers remain unchang8d.
Address restrictions do not apply to the X2, B2 and D2 components of
the instruction.

Protection • An address error interrupt occurs when the protection key and the
storage key of the result location do not match. The operation is suppressed.
The condition code, the data in main memory, and the registers remain
unchanged. (This interrupt can only occur if the memory protect feature
is installed.)

Significance Error • A significance error interrupt occurs when the result mantissa of an
add or subtract operation is zero. A program interrupt occurs if the
significance error mask bit in the Interrupt Mask Register of the current
state is set to 1. The operation is completed, the exponent is unaltered,
and the interrupt is taken. If the significance error mask bit is zero, the
interrupt is prohibited and the operation is completed by setting the result
to true zero (zero sign, zero exponent, and zero mantissa). In either case,
the condition code is set to zero.

Divide Error • A divide error interrupt occurs if division by zero is attempted.

Exponent Overflow • An exponent overflow interrupt occurs when the result exponent over-
flows and the mantissa is not zero. The operation is terminated and the
result data is unpredictable. Addition and subtraction set the condition

I code to 3. Multiplication and division do not affect the condition code setting.

Exponent Underflow • An exponent underft.ow interrupt occurs when the result exponent is
less than zero and the result mantissa is not zero. The operation is com­
pleted by setting the result to true zero (zero sign, zero exponent, and zero
mantissa). Addition and subtraction set the condition code to zero.
Multiplication and division do not affect the condition code setting.

187

Floating-Point Instructions

Load
(LER) (LE) (LDR) (LD)

General Description • The operand specified by.the second address (R2 or X2/BdD 2) is loaded
into the floating-point register specified by the first address (R1).

Format (LER) 38 Rl R2
(RR Short)

0 7 8 11 12 15

(RX Short) (LE) 78 Rl X 2 B2 D2

0 7 8 11 12 15 16 19 20 31

(RR Long) (LDR) 28 Rl R2

0 7 8 11 12 15

(RX Long) (LD) 68 Rl X 2 B2 D2

0 7 8 11 12 15 16 19 20 31

Condition Code • Unchanged .

Interrupt Action • Address error:

Addressing (RX format).

S pecifica tion.

Notes • 1. The operand specified by the second address is unaltered.

2. Exponent overflow, underflow, or lost significance cannot occur.

3. The low-order half of the register specified by the first address is
unaltered when short operands are used.

188

Load and Test
(LTER) (LTDR)

General Description

Format
(RR Short)

(RR Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

• The operand in the floating-point register specified by the second address
(R2) is loaded into the floating-point register specified by the first address
(R1). The sign and magnitude of the loaded operand determine the
condition code.

o 7 8 11 12 15

o 7 8 11 12 15

• 0 - result mantissa is zero.

1 - result mantissa is less than zero.

2 - result mantissa is greater than zero.

3 -not used.

• Address error:
Specification.

• 1. If Rl and R2 are equal, the operation is equivalent to a test without
data movement.

2. The operand specified by the second address is unaltered.

3. Short operands do not alter the low -order half of the register specified
by the first address.

189

Load Complement
(LCER) (LCDR)

General Description

Format
(RR Short)

(RR Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instruction

• The operand in the floating-point register specified by the second address
(R2) is loaded into the floating-point register specified by the first address
(R1) and the sign is changed to the opposite value. The sign and magnitude
of the loaded operand determine the condition code.

(LCER) 33 Rl R2

0 7 8 11 12 15

(LCDR) 23 Rl R2

0 7 8 11 12 15

• 0- result mantissa is zero.

1 - result mantissa is less than zero.

2 - result mantissa is greater than zero.

3-not used.

• Address error:

S pecifica tion.

• 1. The exponent and mantissa are unaltered.

2. Short operands do not alter the low-order half of the register specified
by the first address.

190

Load Positive
(LPER) (LPDR)

General Description

Format
(RR Short)

(RR Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

• The operand in the floating-point register specified by the second
address (R2) is loaded into the floating-point register specified by the first
address (Rd and the operand sign is made plus.

0

0

•

•
•

(LPER) 30 Rl R2

7 8 11 12 15

(LPDR) 20 Rl R2

7 8 11 12 15

o - result mantissa is zero.

I-not used.

2 - result mantissa is greater than zero.

3-not used.

Address error:

Specification.

1. The exponent and mantissa are unaltered.

2. Short operands do not alter the low-order half of the register specified
by the first address.

191

Load Negative
(LNER) (LNDR)

General Description

Format
(RR Short)

(RR Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

• The operand in the floating-point register specified by the second address
(R2) is loaded into the floating-point register specified by the first address
(R1) and the operand sign is made minus.

0

0

•

•
•

(LNER) 31 Rl R2

7 8 11 12 15

(LNDR) 21 Rl R2

7 8 11 12 15

o - result mantissa is zero.

1 - result mantissa is less than zero.

2 - not· used.

3 -not used.

Address error:

Specification.

1. The exponent and mantissa are unaltered.

2. Short operands do not alter the low-order half of the register specified
by the first address.

192

Add Normalized
(AER) (AE) (ADR) (AD)

General Description

Format
(RR Short)

(RX Short)

(RR Long)

(RX Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

• The operand specified by the second address (R2 or XdBdD 2) is added
to the operand in the floating-point register specified by the first address
(R1). The normalized sum is loaded into the register specified by the first
address. The sign and magnitude of the sum determine the condition code.

(AER) 3A R1 R2

0 7 8 11 12 15

(AE) 7A R1 X2 B2

0 7 8 11 12 15 16 19 20 31

(ADR) 2A R1 R2

0 7 8 11 12 15

(AD) 6A R1 X2 B2 D2

0 7 8 11 12 15 16 19 20 31

• o - result mantissa is zero.

1 - result mantissa is less than zero.

2 - result mantissa is greater than zero.

3 - result exponent overflows.

• Address error:

Addressing (RX format).

Specification.

Significance error.

Exponent overflow.

Exponent underflow.

• 1. To perform normalized addition, the computer must scale the two
operands. Scaling consists of comparing the exponents of the two
operands. If they do not agree, the mantissa with the smaller exponent
operand is shifted right. Its exponent is increased by one for each
digit right-shifted, until the two exponents agree. Then, the mantissas
are added algebraically to form an intermediate sum. If an over­
flow carry occurs, the intermediate sum is right-shifted one digit
and its exponent is increased by one. If this causes an overflow, an
exponent overflow interrupt condition occurs.

For short operands, the intermediate sum consists of seven hexa­
decimal digits and a possible carry. The low-order digit is the guard
digit which is retained from the mantissa which is shifted right.
Only one guard digit participates in the mantissa addition. The
guard digit is zero if no shift occurs.

193

Notes
(Cont'd)

Floating-Point Instructions

For long operands, the intermediate sum consists of fourteen hexa­
decimal digits and a possible carry. No guard digit is retained.

2. After addition, the intermediate sum is left-shifted until all high­
order zero hexadecimal digits have been eliminated. The vacated
low-order digits are made zero and the exponent is decremented by
one for each zero digit shifted. If no left-shift takes place, the inter­
mediate sum is truncated to the proper mantissa length. If the
exponent underflows (exceeds -64) during normalization, the float­
ing-point number is made true zero and an exponent underflow
interrupt occurs.

3. No normalization is performed when the intermediate sum is zero.
The sum mantissa is unaltered and a significance error interrupt
occurs. If a significance error interrupt is prohibited by the interrupt
mask, the quantity is made true zero and a significance error
interrupt does not occur.

4. Initial operands need not be in normalized form.

5. The sign of the sum is determined by the rules of algebra. A zero
sum is always plus.

6. Short operands do not alter the low-order halves of the registers
specified by the address fields.

194

Add Unnormalized
(AUR) (AU)

(AWR) (AW)

General Description

Format
(RR Short)

(RX Short)

(RR Long)

(RX Long)

Condition Code

Interrupt Action

Floating-Point Instructions

• The operand specified by the second address (R2 or XdB2/D2) is added
to the operand in the floating-point register specified by the first address
(R1). The unnormalized sum is loaded into the register specified by the
first address. The sign and magnitude of the loaded sum determine the
condition code.

o 7 8 11 12 15

o 7 8 11 12 15 16 19 20

o 7 8 11 12 15

o 7 8 11 12 15 16 19 20

• 0 - result mantissa is zero.

1- result mantissa is less than zero.

2 - result mantissa is greater than zero.

3 - result exponent overflows.

• Address error:

Addressing (RX format).

Specification.

Exponent overflow.

Significance.

31

31

Notes • 1. The Add Unnormalized is similar to the Add Normalized, except that
the sum is not normalized by this instruction and exponent underflow
cannot occur.

195

Subtract Normalized
(SER) (SE) (SDR) (SD)

General Description

Format
(RR Short)

(RX Short)

(RR Long)

(RX Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

• The operand specified by the second address (R2 or XdBdD 2) is sub­
tracted from the operand in the floating-point register specified by the first
address (R l). The normalized difference is loaded into the register specified
by the first address. The sign and magnitude of the difference determine
the condition code.

o 7 8 11 12 15

o 7 8 11 12 15 16 19 20

o 7 8 11 12 15

o 7 8 11 12 15 16 19 20

• 0 - result mantissa is zero.

1 - result mantissa is less than zero.

2 - result mantissa is greater than zero.

3 - result exponent overflows.

• Address error:
Addressing (RX format).

S pecifica tion.

Significance error.

Exponent overflow.

Exponent underflow.

31

31

• 1. The Subtract Normalized is the same as the Add Normalized, except
that the sign of the second operand is changed to the opposite value
before addition. A zero difference is always positive.

196

Subtract
Unnormalized

(SUR) (SU) (SWR) (SW)

General Description

Format
(RR Short)

(RX Short)

Floating-Point Instructions

• The operand specified by the second address (R:z or XdBdD 2) is sub­
tracted from the operand in the floating-point register specified by the first
address (R1). The unnormalized difference is loaded into the register
specified by the first address. The sign and magnitude of the difference
determine the condition code.

o 7 8 11 12 15

o 7 8 11 12 15 16 19 20 31

(RR Long) (SWR) 2F Rl R2

o 7 8 11 12 15

(RX Long) (SW) 6F Rl X 2 B2

Condition Code

Interrupt Action

o 7 8 11 12 15 16 19 20

• 0 - result mantissa is zero.

1 - result mantissa is less than zero.

2 - result mantissa is greater than zero.

3 - result exponent overflows.

• Address error:

Addressing (RX format).

Specification.

Significance error.

Exponent overflow.

31

Notes • 1. Subtract Unnormalized differs from Subtract Normalized only in that
the difference is not normalized before it is loaded into the result
register.

2. Exponent underflow cannot occur.

197

Compare
(CER) (CE) (CDR) (CD)

General Description

Format
(RR Short)

(RX Short)

(RR Long)

(RX Long)

Condition Code

Interrupt Action

Floating-Point Instructions

• The operand in the floating-point register specified by the first address
(R1) is algebraically compared to the operand specified by the second
address (R2 or XdB 2/D2). The result determines the condition code.

o 7 8 11 12 15

o 7 8 11 12 15 16 19 20 31

o 7 8 11 12 15

o 7 8 11 12 15 16 19 20 31

• 0 - operands are equal.

1 - operand specified by the first address is less than the one specified
by the second address.

2 - operand specified by the first address is greater than the one
specified by the second address.

3 -not used.

• Address error:
Addressing (RX format).

Specification.

Notes • 1. Comparison takes into account the sign, exponent, and mantissa of
each number. Exponent inequality is not decisive for magnitude
determination since the mantissas may have different numbers of
leading zeros. The operands are scaled, as in Subtract Normalized,
and if the mantissa of each operand is zero, the numbers are con­
sidered equal regardless of the sign and exponent.

2. Both operands are unaltered.

198

Halve
(HER) (HDR)

General Description

Format
(RR Short)

(RR Long)

Condition Code

Interrupt Action

Notes

Floating-Point instTuctions

• The operand in the floating-point register specified by the second address
(R2) is divided by two. The quotient is loaded into the floating-point register
specified by the first address (R1).

(HER) 34 Rl R2

0 7 8 11 12 15

(HDR) 24 Rl R2

0 7 8 11 12 15

• Unchanged.

• Address error:
Specification.

• 1. The difference between the Halve instruction and a Divide instruction
with a divisor of two, is that no normalization and no zero mantissa
testing takes place. The sign and exponent are unaltered and the
mantissa is shifted right one bit.

2. Short operands do not alter the low-order half of the result register.

199

Store
(STE) (STD)

General Description

Floating-Point Instructions

• The contents of the floating-point register specified by the first address
(R1) are stored in the main memory location specified by the second
address (X2/BdD 2).

Format I I
(RX Short) ~ __________ ~~ ______ ~ ______ ~ ____ ~b-__________________ ~

(RX Long)

Condition Code

Interrupt Action

Notes

o 7 8 11 12 15 16 19 20

(STD) 60 Rl X 2 B2

o 7 8 11 12 15 16 19 20

• Unchanged.

• Address error:
Addressing.
Specification.
Protection.

• 1. The first operand is unaltered.

31

D2

31

2. Short operands do not alter the low-order half of the register specified
by the second address.

200

Multiply
(MER) (ME)

(MDR) (MO)

General Description

Format
(RR Short)

(RX Short)

(RR Long)

(RX Long)

Condition Code

Interrupt Action

Floating-Point Instructions

• The operand in the floating-point register specified by the first address
(Rd is multiplied by the operand specified by the second address
(R2 or X2/B2/DJ. The normalized product is loaded into the register

specified by the first address.

(MER) 3C Rl R2

0 7 8 11 12 15

(ME) 7C Rl X2 B2

0 7 8 11 12 15 16 19 20 31

(MDR) 2C Rl R2

0 7 8 11 12 15

(MD) 6C Rl X2 B2

0 7 8 11 12 15 16 19 20 31

• Unchanged .

• Address error:
Addressing (RX format).
Specification.

Exponent overflow.
Exponent underflow.

Notes • 1. The exponents of the two operands are added, and the sum is reduced
by 64 to form an intermediate exponent. The mantissas are normal­
ized as described in the Add Normalize instruction, and multiplied
to form an intermediate mantissa. The intermediate mantissa is
then normalized (reducing its exponent by one for each digit left
shifted) to form the final product.

2. The sign of the product is determined by the rules of algebra.
3. If the product mantissa is zero, the final product is made true zero.
4. If the final product exponent is greater than 127, an exponent over­

flow interrupt occurs.
5. If final product exponent is less than zero, an exponent underflow

interrupt occurs.
6. For short operands, the low-order half of the register specified by

the first address is U3ed in the calculation of the intermediate man­
tissa. The product mantissa has the full 14 digits as in the long
format and the two low-order digits are always zero.

7. The least significant digit of the double word results of a floating
point Multiply (Long) may not be the same on the 70/55 processor
as the 70/35 and 70/45 since the algorithm for this instruction is
different on the 70/55. Final product digits above the least significant
are identical on all processors.

201

Divide
(OER) (OE) (OOR) (00)

General Description

Format
(RR Short)

(RX Short)

(RR Long)

(RX Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

• The operand (dividend) in the floating-point register specified by the
first address (R1) is divided by the operand divisor specified by the second
address (R2 or X2/B2/Ds). The normalized quotient is stored in the register
specified by the first address. The remainder is not retained.

(DER) 3D Rl R2

0 7 8 11 12 15

(DE) 7D Rl X2 B2

0 7 8 11 12 15 16 19 20 31

(DDR) 2D Rl R2

0 7 8 11 12 15

(DD) 6D Rl X2 B2

0 7 8 11 12 15 16 19 20 31

• Unchanged.

• Address error:

Addressing (RX format).

Specification.

Exponent overflow.

Exponent underflow.

Divide error.

• 1. The exponents of the two operands are subtracted and the difference
is increased by 64 to form an intermediate exponent. The mantissas
are normalized as described in the Subtract Normalize instruction,
and divided to form the mantissa of the intermediate quotient. The
intermediate exponent and mantissa are normalized to form a final
quotient.

2. If the dividend (first operand) is zero, the quotient is made true zero.

3. If the divisor (second operand) is zero, a divide error interrupt
occurs.

4. The sign of the quotient is determined by the rules of algebra.

5. If the final quotient exponent is less than zero, the final quotient is
made true zero and an exponent underflow interrupt occurs.

6. If the final quotient exponent exceeds 127, an exponent overflow
interrupt occurs.

7. For short operands, the lmv-order halves of the registers are
unaltered.

202

OPTIONAL
FEATURES

FEATURE 500 1
MEMORY PROTECT

Operational
Characteristics

FEATURE 5002
ELAPSED TIME

CLOCK

Operational
Characteristics

• Data in memory can be protected from destruction by the erroneous
storing of information during program execution through the optional
Memory Protect feature. Feature 5001-35 is applicable to the 70/35
Processor; feature 5001-45 is applicable to the 70/45 Processor; feature
5001-55 is applicable to the 70/55 Processor.

• Memory protection is accomplished by a four-bit storage key associated
with each block of 2,048 bytes of main memory. Whenever data is to be
stored in main memory during the execution of an instruction, the four-bit
protection key in the Interrupt Status register for the current program
state is compared with the four-bit storage key. During a channel-to­
memory data transfer, the protection key (as specified in the channel
address word) is compared with the storage key. If the storage and
protection keys are equal, or either one is zero, the storage of data
is completed.

If the storage and protection keys do not match (neither is zero),
the execution of an instruction that stores data into memory is suppressed
or terminated. An address error (protection) interrupt occurs, and the
protected memory remains unaltered. If the storage and protection keys
mismatch during a channel-to-memory data transfer, the data transfer is
terminated and a channel termination interrupt occurs. The protected
memory is unaltered and the indication of mismatch is stored in the input/
output channel registers in scratch-pad memory for the specified channel.

The storage key can be changed by the privileged instruction Set
Storage Key and can be inspected by the privileged instruction Insert
Storage Key.

When the Memory Protect feature is not installed and the protection
key is non zero, an address error (specification) interrupt occurs.

• The elapsed time clock is an optional feature available on the 70/35,
70/45, and 70/55 Processors. Feature 5002-35 is applicable to the 70/35
Processor; feature 5002-45 is applicable to the 70/45 Processor; feature
5002-55 is applicable to the 70/55 Processor.

• The elapsed time clock occupies a full word beginning at main memory
location 80. The word is treated as a signed binary operand and follows
the rules of fixed-point arithmetic.

The clock count is performed by decrementing bit positions 21 and 23
every 1/60th of a second (60 cycle processor) or by decrementing bit
positions 21 and 23 every 1/50th of a second (50 cycle processor). In either
case, the effect is equivalent to reducing the elapsed time clock by one in
bit position 23 every 1/300th of a second (every 3.3 milliseconds). When the
clock goes from positive to negative, an elapsed time clock interrupt occurs.

Normally, an updated elapsed time clock is available after the com­
pletion of each instruction execution. However, when input/output data
transmission approaches the limit of main memory capability, or a Read
Direct instruction time is excessive, elapsed time clock updating can
be skipped.

When an elapsed time clock interrupt occurs, the clock may have been
decremented several times before the interrupt takes effect, depending on
the execution time of the current instruction.

203

FEATURE 5003
DIRECT CONTROL

Operational
Characteristics

FEATURE 5015
SELECTOR

CHANNEL*

FEATURE 5016
SELECTOR

CHANNEL*

FEATURE 5020
SELECTOR

CHANNEL**

FEATURE 5022
SELECTOR

CHANNEL**

FEATURE 5024
SELECTOR

CHANNEL**

FEATURE 5030
SELECTOR

CHANNEL ***

FEATURE 5031
SELECTOR

CHANNEL ***

EMULATOR OPTIONS

Optional
Features

• The Direct Control feature enables one 70/35, 70/45, or 70./55 processor
program to directly signal the programs of from one to five other proces­
sors over an interface independent of the input/output channels. The
processors directly connected by this feature may be remotely located up
to 500 cable feet from the transmitting processor. Feature 5003-35 is
applicable to the 70/35 Processor; feature 5003-45 is applicable to the
70/45 Processor; feature 5003-55 is applicable to the 70/55 Processor.

• Two additional privileged instructions are provided with this option,
Write Direct and Read Direct, which initiate the transfer of one byte of
control information between processor memories, and which signal the
opposite unit (by external interrupt) upon execution of an instruction.

This feature can also initiate initial program loading in a remote
processor which is in a stopped state. In this case, the Load Unit Switches
on the console of the processor being signaled specify the device from
which the loading is to occur and the information byte is ignored.

• This feature is applicable to the 70/45 Processor. It provides two
selector channels with four input/output trunks (two trunks per channel).

• This feature is applicable to the 70/45 Processor. It provides three
selector channels with six input/output trunks (two trunks per channel).

• This feature is applicable to the 70/55 Processor. It provides two
selector channels and four input/output trunks.

• This feature is applicable to the 70/55 Processor. It provides four
selector channels and six input/output trunks.

• This feature is applicable to the 70/55 Processor. It provides six
selector channels and twelve input/output trunks.

• This feature is applicable to the 70/35 Processor. It provides one
selector channel and two input/output trunks.

• This feature is applicable to the 70/35 Processor. It provides two
selector channels and four input/output trunks.

• Object code programs for the RCA 301 and 501 systems and IBM 1410
and 1401 (including 1440 and 1460) systems can be executed on the
Model 70/35 and 70/45 systems through the optional Emulator features.
The feature numbers and applicable processors are listed on the follow­
ing page.

* Only one feature (5015 or 5016) is permitted on a system.
** Only one feature (5020, 5022 or 5024) is permitted on a system.

*** Only one feature (5030 or 5031) is permitted on a system.

204

Operational
Characteristics

Feature 5005-35
301 Emulator

Feature 5005-45
301 Emulator

Feature 5006-35
1401 Emulator

Feature 5006-45
1401 Emulator

Feature 5007-45
501 Emulator

Feature 5026-45
1410 Emulator

Feature 5036-45
301/501 Emulator

Feature 5046-45
1410/1401 Emulator

Optional
Features

• Using the facilities of the Model 70/35 and 70/45 Processors and
associated peripheral devices, the Emulator features permit the running
of RCA 301 and 501 and IBM 1400 series object-code programs on the
70/35-45 systems without modification or reprogramming.

A 70/45 system provided with the facility for emulating one of the
specified systems may be further enhanced to emulate anyone of the
remaining specified computers. (The 70/35 may only be enhanced with
the 301 and 1401 Emulator feature.) However, not more than two Emulator
features may be contained in a 70/35 or 70/45 system.

While reprogramming of programs is not required, certain conditions
must be considered before emulation is attempted. Programs to be emulated
must have been written in accordance with normal programming stand­
ards of the subject computer, must not utilize or be affected by non-standard
"RPQ" or "PQR" features installed in the subject computer, and must
be emulated with comparable 70/35 or 70/45 equipment complement
with equivalent standard or optional features as the subject computer.
In addition, programs with time dependency coding must be carefully
reviewed and modified where necessary.

Emulated programs may be inefficient, inaccurate, or may not function
unless they are compatible with timing factors for both the emulator system
and the 70/35-45 input/output operations.

Detailed functional descriptions and operating characteristics of these
emulator features may be found in the specific Emulator Reference Manuals.

• This feature is applicable to the 70/35 Processor.

• This feature is applicable to the 70/45 Processor.

• This feature is applicable to the 70/35 Processor.

• This feature is applicable to the 70/45 Processor.

• This feature is applicable to the 70/45 Processor.

• This feature is applicable to the 70/45 Processor.

• This feature is applicable to the 70/45 Processor.

• This feature is applicable to the 70/45 Processor.

205

APPENDICES

207

APPENDIX A-SUMMARY

Privileged

Instruction Op(6) Mnemonic Format Interrupt Action Condition Code

Check Channel 9F CKC SI 1. Privileged operation. o - I/O chan. avail.
1 - Interrupt pending in

selector channel.
2 - Selector chan. busy or into

pending or multiplex chan.
operating in burst mode.

3 - Inoperable.

Diagnose 83 DIG SI 1. Privileged operation. Unaltered.

Halt Device 9E HDV SI 1. Privileged operation. O-Not busy.
1 - Standard device byte stored

in scratch-pad memory.
2 - Termination accepted.
3 - Inoperable.

Idle 80 IDL SI 1. Privileged operation. Unchanged.

Insert Storage Key 09 ISK RR 1. Privileged operation.
2. Operation code trap Unchanged.

(if feature not installed).
3. Address error.

Load Scratch Pad D8 LSP SS 1. Privileged operation. Unchanged.
2. Address error.

Program Control 82 PC SI 1. PTivileged operation. CC of state being terminated is
2. Address error. stored in P counter.

CC of state being initiated used
to set CC indicators.

Read Direct 85 RDD SI 1. Privileged operation.
2. Operation code trap Unchanged.

(if feature not installed).
3. Address error.

Set Storage Key 08 SSK RR 1. Privileged operation.
2. Operation code trap Unchanged.

(if feature not installed).
3. Address error.

Start Device 9C SDV SI 1. Privileged operation. 0- I/O operation started and
channel proceeding.

1 - Status bits stored in
scratch-pad.

2 - Busy or interrupt pending.
3 - Inoperable.

Store Scratch-Pad DO SSP SS 1. Privileged operation. Unchanged.
2. Address error.

Test Device 9D TDV SI 1. Privileged operation. o - Available.
1 - Standard device byte stored

in scratch-pad.
2 - Busy or interrupt pending.
3 - Inoperable.

Write Direct 84 WRD SI 1. Privileged operation.
2. Operation code trap Unchanged.

(if feature not installed).
3. Address error.

208

OF INSTRUCTIONS

Instructions

Timing (,used

(Average and Includes Staticizing) Page

Ref.
70/35 70/45 70/55

Multiplexor = 5.52
2.70 99

Selector = 6.48

4.56 2.16 91

Multiplexor = 10.32 + CRT
Burst = 5.52 + CRT 7.14 + CRT 95

Selector = 6.00 + CRT

9.60 6.00 3.66 90

5.28 3.00 100

24.48 + 7.68R
7.20 + 2.88R 3.60 + 0.96R 86 (Note 3)

36.48
(Note 4) 7.44 3.66 88

8.64 + ED To be supplied. To he supplied. 103

5.28 3.36 101

I I

I ! ! Multiplexor = 33.36 + CRT !

I I 14.46 + CRT 92
I I

Selector = 27.60 + CRT I

j

23.52 + 7.68R

! 7.20 + 2.88R 3.60 + 1.20R 87 (Note 3)

I

I Multiplexor = 8.40 + CRT

I 7.14 + CRT 97

! Selector = 8.88 + CRT

8.16 I To he supplied. To be supplied. 102

! I l I
Legend: CRT - channel response time (two microseconds average).

R - number of registers specified.
ED - external delay.

209

SUMMARY OF

Processor State

Instruction Op(16) Mnemonic Format Interrupt Action Condition Code

Set Program Mask 04 SPM RR None. CC set according to GR bits 2, 3
specified by R1 •

Supervisor Call OA SVC RR None. Unchanged.

Fixed-Point

Add Halfword 4A AH RX 1. Fixed-Point overflow. 0- Sum is zero.
2. Address error. 1- Sum is less than zero.

2 - Sum is greater than zero.
3 - Overflow.

5E AL RX 1. Address error. 0- Sum is zero & no carry.

Add Logical
1- Sum is not zero & no carry.
2 - Sum is zero with carry.

1E ALR RR 3 - Sum is not zero with carry.

5A A RX 1. Fixed-Point overflow. o - Sum is zero.

2. Address error. 1 - Sum is less than zero.
Add Word 2 - Sum is greater than zero.

1A AR RR 3 - Overflow.

Compare Halfwol'd 49 CH RX 1. Address error. 0- Operands equal.
1 - First operand low.
2 - First operand high.
3 - Not used.

59 C RX 1. Address error. o - Operands equal.

Compare Word
1 - First operand low.
2 - First operand high.

19 CR RR 3 - Not used.

Convert to Binary 4F CVB RX 1. Address error. Unchanged.
2. Data error.
3. Divide error.

Convert to Decimal 4E CVD RX 1. Address error. Unchanged.

5D D RX 1. Address error.
Divide Unchanged.

1D DR RR 2. Divide error.

Load Complement 13 LCR RR 1. Fixed-Point overflow. 0- Result is zero.
1- Result is less than zero.
2 - Result is greater than zero.
3 - Overflow.

Load Halfword 48 LH RX 1. Address error. Unchanged.

Load Multiple 98 LM RS 1. Address error. Unchanged.

210

INSTRUCTIONS (Co nt/d)

Control Instructions

Timing (/LsecJ

(Average and Includes Staticizing)

70/35 70/45 70/55

11.52 2.88 1.80

12.48 2.88 2.04

Instructions

20.48 7.92 3.98

19.68 8.40 2.58

13.44 4.80 1.92

19.00 8.88 2.58

13.76 5.28 1092

19.04 7.44 2.58

19.04 8.40 I 2.58

12.80 4.80 I 1.92
!

43.20 + 18.24BY 91.20 I 5.34 to 26.34
,

60.96 + 3.36 bi (0 < bi < 16)
30.24 + 5.28 bi (17~ bi~ 32) 68.88 to 91.92 ! 5.70 to 23.82

I
211.00 94.89

I
19.86

i
204.00 90.81 I 19.20

11.84 5.28 1.92

16.32 7.92 2.58

7.68 + 7.2R 6.00 + 2.88R 2.10 + 0.84R

Legend: R - number of registel's specified.
BY - number of significant bytes in a decimal number (1 < BY < 8).

bi - number of significant bits of a binary number (0 ~ hi < 32).

211

Appendix A

Page

Ref.

106

105

119

120

118

125

124

,
129

i
130

128

114

I
112

117

Instruction °p(16) Mnemonic Format

Load Negative 11 LNR RR

Load Positive 10 LPR RR

Load and Test 12 LTR RR

58 L RX
Load Word

18 LR RR

Multiply Halfword 4C MH RX

5C M RX
Multiply Word

lC MR RR

Shift Left Double 8F SLDA RS

Shift Right Double 8E SRDA RS

Shift Left Single 8B SLA RS

Shift Right Single 8A SRA RS

Interrupt Action

None.

1. Fixed-Point overflow.

None.

1. Address error.

1. Address error.

1. Address error.

1. Fixed-Point overflow.
2. Address error.

1. Address error.

1. Fixed-Point overflow.

None.

212

SUMMARY O~

Fixed-Point

Condition Code

0- Result is zero.
1 - Result is less than zero.
2- Not used.
3 - Not used.

o - Result is zero.
1- Not used.
2 - Result greater than zero.
3 - Overflow.

o - Result is zero.
1 - Result is less than zero.
2 - Result is greater than zero.
3 - Not used.

Unchanged.

Unchanged.

Unchanged.

~

o - Result is zero.
1 - Result is less than zero.
2 - Result is greater than zero.
3 - Overflow.

o - Result is zero.
1 - Result is less than zero.
2 - Result is greater than zero.
3 - Not used.

o - Result is zero.
1 - Result is less than zero.
2 - Result is greater than zero.
3 - Overflow.

o - Result is zero.
1 - Result is less than zero.
2 - Result is greater than zero.
3 - Not used.

~NSTRUCTIONS (Cont/d)

Instructions (Cont/d)

Timing (tLsecJ

(Average and Includes Staticizing)

70/35 70/45

12.80 6.24

12.32 6.24

11.36 5.28

14.40 8.88

8.16 2.88

72.00 35.40

131.00 65.64

125.00 62.52

52.16 + .96N + 7.68NU + Under 16 = 11.04 + 0.96 (N)
.96J (NL =F 0) 16 to 31 = 15.12 + 0.96 (N-16)
51.68 + .96N + 7.68NU 32 to 47 = 19.20 + 0.96 (N-32)
(NL = 0) 48 to 63 = 23.28 + 0.96 (N-48)

56.96 + .96N + 10.56NU + Under 16 = 9.36 + 0.96 (N)
.96J (NL =F 0) 16 to 31 = 12.48 + 0.96 (N-16)
54.96 + .96N + 10.56NU 32 to 47 = 15.60 + 0.96 (N-32)
(NL = 0) 48 to 63 = 18.72 + 0.96 (N-48)

20.96 + .481 + .48N (N =F 0) Under 16 = 10.08 + 0.48 (N)
20.48 (N = 0) 16 to 31 = 13.20 + 0.48 (N-16)

32 to 47 = 16.32 + 0.48 (N-32)
48 to 63 = 19.44 + 0.48 (N-48)

21.92 + .48J + .48N (N =F 0) Under 16 = 8.16 + 0.48 (N)
20.48 (N = 0) 16 to 31 = 10.32 + 0.48 (N-16)

32 to 47 = 12.48 + 0.48 (N-32)
48 to 63 = 12.48 + 0.48 (N-48)

Legend: 1 - equals 1 when N is odd; equals 0 when N is even.

J - equals 0 when N is odd; equals 1 when N is even.

M - number of two-bit shifts.
N - total number of bits shifted.

P - number of four-bit shifts.

Q - number of one-bit shifts;

NL - lower 3 bits of N (Module 8 of N).

NU - upper 3 bits of N (Module 8 count of N).

8 (N) - 1 if N = 0; 8 (N) = 0 if N =F o.

213

Appendix A

PagE:

Ref.
70'55

1.92 116

1.92 115

1.98 113

2.46
111

1.98

12.28 127

12.78
126

12.12

2.10 + 0.72 (P + Q) +
136 0.728 (N)

2.10 + 0.72 (P + Q + M) +
137 0.728 (N)

2.10 + 0.36 (P + Q) +
134 0.368 (N)

2.10 + 0.36 (P + Q + M) +
135 0.368 (N)

Instruction Op(16) Mnemonic Format

Store Halfword 40 STH RX

Store MUltiple 90 STM RS

Store Word 50 ST RX

Subtract Halfword 4B SH RX

5F SL RX

Subtract Logical
IF SLR RR

5B S RX

Subtract Word

IB SR RR

Add Decimal FA AP SS

Compare Decimal F9 CP SS

Divide Decimal FD DP SS

Move with Offset Fl MVO SS

Multiply Decimal FC MP SS

Interrupt Action

1. Address error.

1. Address error.

1. Address error.

1. Fixed-Point overflow.
2. Address error.

1. Address error.

1. Fixed-Point overflow.
2. Address error.

1. Address error.
2. Data error.
3. Decimal overflow.

1. Address error.
2. Data error.

1. Address error.
2. Data error.
3. Decimal divide error.

1. Address error.

1. Address error.
2. Data error.

214

Condition Code

Unchanged.

Unchanged.

Unchanged.

0- Diff. is zero.
1 -- Diff. less than zero.

SUMMARY OF

Fixed-Poin~

2 - Diff. greater than zero.
3 - Overflow.

0- Not used.
1- Diff. not zero; no carry.
2 - Diff. zero with carry.
3 - Diff. not zero with carry.

0- Diff. is zero.
1 - Diff. less than zero.
2 - Diff. greater than zero.
3 - Overflow.

Decimal Arithmetic

0- Sum is zero.
1- Sum is less than zero.
2 - Sum is greater than zero.
3 - Overflow.

o - Fields algeb. equal.
1- 1st operand algeb. less than

2nd operand.
2 - 1st operand algeb. greater

than 2nd operand.

Unchanged.

Unchanged.

Unchanged.

Appendix A

INSTRUCTIONS (Cont'd)

~nstructions (Cont'd)

Timing (,used

(Average and Includes Staticizingl Page
Ref.

70/35 70/45 70/55

11.52 5.04 4.38 132

7.68 + 7.2R 6.00 + 2.88R 2.10 + 1.20R 133

17.76 7.44 2.70 131

20.96 7.92 2.58 122

20.16 8.40 2.58

123

13.92 4.80 1.92

20.48 8.88 2.58
121

14.24 5.28 1.92

Instructions

39.36 + 2.76L1 + 15.36 + 1.8L1 + 0.42L2 5.40 + 1.92W 1 + 0.96W 2 +
[1.92 + 3.84 (L2 - L1)] Z (Note 1) 0.48L1 142 (Note 1)

35.52 + 2.76L1 + 16.80 + 1.08L1 + 0.42L2 5.40 + 0.96W2 + 1.08W1 +
[1.92 + 3.84 (L2 - L1)] Z (Note 1) 0.48L1

(Note 1) 145

13.44 + 26.4L2 (L1 - L2) + 26.33 + 36.71L1 - 35.14L2 + 11.28 + 1.2W 1 + 0.36L1 +
71.52L1 - 75.36L2 5.40L2 (Ll - L2) 0.728 + 0.60W2 147

18.24 + 3.36L1 + 1.44L2 11.04 + 1.92L1 + 0.96L2 4.92 + 1.80W 1 + 0.60W 2 +
150 0.72 (L1 + L2)

42.72 + 13.30L2 (Ll - L2).+ 28.49 + 16.96L1 - 14.35L2 + 8.88 + 1.20W 1 + 1.08W 2 +
17.28L1 - 7.2L2 2.34L2 (Ll - L2) 5.16L2 + 8.888 + 3.128L2 + 146

0.72 (Ll - L2)

Legend: Ll - number of bytes in first operand field.
L2 - number of bytes in second operand field.
R - number of registers specified.

8 - (L1 - L2) -+ 4. If result is a mixed number, next higher integer is used.
WI - total number of words in first operand field including partial words.
W 2 - total number of words in second operand field including partial words.

Z - equals 0 when L2 < L1 ; equals 1 when L2 > L1 •

215

SUMMARY 01

Decimal Arithmeti~

Instruction OP(6) Mnemonic Format Interrupt Action Condition Code

Pack F2 PACK SS 1. Address error. Unchanged.

Subtract Decimal FB SP SS 1. Address error. 0- Diff. is zero.
2. Data error. 1 - Diff. is less than zero.
3. Decimal overflow. 2 - Diff. is greater than zero.

3 - Overflow.

Unpack F3 UNPK SS 1. Address error. Unchanged.

Zero and Add F8 ZAP SS 1. Address error. 0- Result is zero.
2. Data error. 1 - Result is less than zero.
3. Decimal overflow. 2 - Result is greater than zero.

3 - Overflow.

Logica

54 N RX 1. Address error. o - Result is zero.
1- Result is not zero.

D4 NC SS 2-Not used.
And 3 - Not used.

I

94 NI SI

14 NR RR

55 CL RX 1. Address error. o - Operands equal.
1 - 1st operand less than 2nd

D5 CLC SS opera,nd.
Compare Logical 2 - 1st operand greater than

95 CLI SI
2nd operand.

3 - Not used.

15 CLR RR

Edit DE ED SS 1. Address error. 0- Indicates zero source field
2. Data error. whether or not signif. is

established.
1 - Non-zero result field with

signif. established to
indicate less than zero.

2 - Non-zero result field with
no signif. established to
indicate greater than zero.

3- Not used.

216

INSTRUCTIONS (Cont'd)

Instructions (Cont'd)

70/35

12.00 + 2.4Ll + 2.88L2

39.36 + 2.76L1 +
[1.92 + 3.84 (Lz - L1)] Z

18.72 + 3.84L1 + .24L2

39.36 + 3.12L1 +
[1.92 + 3.84 (L2 - L1)] Z

Instructions

20.16

15.48 + 3.94L

10.08

13.92

18.40

12.96 + 3.36L

9.28

12.16

14.40 + 6.72L1 - .48F +
2.88K

Timing (,used

(Average and Includes Staticizingl

70/45

8.88 + 1.92L1 + 0.96L2

15.36 + 1.80L1 + O.42Lz
(Note 1)

9.90 + 0.96L1 + 0.90L2

15.48 + 1.08L1 + 0.42L2
(Note 1)

8.40

8.95 + 2.22L

6.96

5.28

8.40

8.96 + 1.44B
(Note 2)

6.0

4.8

10.56 + 3L1 + 1.92L22 -

0.12F - 0.6K

70/55

4.56 + 1.80W 1 + 0.60W 2 +
0.72Ll + 0.36L2

5.40 + 0.96W 2 + 1.92W 1 +
0.48L1

(Note 1)

4.80 + 1.80W 1 + 0.60W 2 +
0.36L1 + 0.72L2

6.96 + 0.96W 1 + 0.96W 2 +
0.48L1

(Note 1)

2.58

3.84 + 1.80W 1 + 0.96W 2 +
0.48L

3.18

1.92

2.58

3.24 + 0.96W 1 + 0.96W 2 +
0.48B

(Note 2)

2.46

1.92

3.72 + 1.80W 1 + 0.60W 2 +
0.36L1 + 0.96L2 + 0.36K

Legend: B - total number of bytes processed. This condition occurs if instruction
terminates before the L count is exhausted.

F - total number of field separating symbols in pattern field.

K - number of control characters in pattern field.

L - total number of bytes specified by L field.

Ll - number of bytes in first operand field.

L2 - number of bytes in second operand field.
WI - total number of words in first operand field including partial words.

W 2 - total number of \vords in second operand field including partial \vords.

Z - equals 0 when L2 < L1 ; equals 1 when L2 > L1 •

217

Appendix A

Page

Ref.

148

143

149

144

158

157

167

Instruction Op(16) Mnemonic

Edit and Mark DF EDMK

57 X

D7 XC
Exclusive Or

97 XI

17 XR

Insert Character 43 IC

Load Address 41 LA

D2 MVC

Move

92 MVI

Move Numerics D1 MVN

Move Zones D3 MVZ

56 0

D6 OC
Or

96 OI

16 OR

Shift Left Single 89 SLL
Logical

Format Interrupt Action

SS 1. Address error.
2. Data error.

RX 1. Address error.

SS

SI

RR

RX 1. Address error.

RX None.

SS 1. Address error.

SI

SS 1. Address error.

SS 1. Address error.

RX 1. Address error.

SS

SI

RR

RS None.

218

Condition Code

SUMMARY 01

Logicd

o - Indicates zero source field
whether or not sign if. is
established.

1- Non-zero result field with
signif. established to
indicate less than zero.

2 - Non-zero result field with
no signif. established to
indicate greater than zero.

3 -Not used.

0- Result is zero.
1 - Result is not zero.
2 - Not used.
3 - Not used.

Unchanged.

Unchanged.

Unchanged.

Unchanged.

Unchanged.

0- Result is zero.
1 - Result is not zero.
2 - Not used.
3 - Not used.

Unchanged.

INSTRUCTIONS (Cont'd)

.. nstructions (Cont'd)

70/35

18.76 + 6.72L1 - .48F +
2.88K

20.64

15.48 + 3.94L

10.57

14.40

12.00

19.20

13.92 + 1.92L

8.64

10.56 -+ 4.8L

10.56 + 4.32L

20.16

15.48 + 3.94L

10.08

13.92

18.24 + .48J + .48N (N =1= 0)
20.48 (N = 0)

Timing {JLsed

(Average and Includes StaticizingJ

70/45

13.44 + 3L1 + 1.92L2 -

0.12F - 0.6K

8.40

8.95 + 2.22L

6.96

5.28

5.52

7.92

8.94 + 1.44L

5.04

9.90 + 2.22L

9.90 + 2.22L

8.40

8.95 + 2.22L

6.96

5.28

Under 16 = 7.92 + 0.48 (N)
16 to 31 = 11.04 + 0.48 (N-16)
32 to 47 = 14.16 + 0.48 (N-32)
48 to 63 = 17.28 + 0.48 (N-48)

70/55

6.00 + 1.80W 1 + 0.60W 2 +
0.36L1 + 0.96L2 + 0.36K

2.58

3.84 + 1.80W 1 + 0.96W 2 +
0.48L

3.18

1.92

2.70

2.10

5.76 + G.84W 1 + 0.96W 2 +
0.36L

3.18

3.84 + 1.80W 1 + 0.96W 2 +
0.36L

3.84 + 1.80W 1 + 0.96W 2 +
0.36L

2.58

3.84 + 1.80W 1 + 0.96W 2 +
0.48L

3.18

1.92

2.10 + 0.36 (P + Q) +
0.368 (N)

Legend: F - total number of fields separating symbols in pattern field.
K - number of control characters in pattern field.
L - total number of bytes specified by L field.

Ll - number of bytes in first operand field.
L2 - number of bytes in second operand field.
N - number of bits shifted.
P - number of four-bit shifts.
Q - number of one-bit shifts.

WI - total number of words in first operand field including partial words.
W 2 - total number of words in second operand field including partial ... vords.

8 (N) - 1 if N = 0; 8 (N) = 0 if N =1= o.

219

Appendix A

Page

Ref.

170

160

162

164

154

155

156

159

172

SUMMARY 01

Logico'

Instruction Op(16) Mnemonic Format Interrupt Action Condition Code

Shift Right Single 88 SRL RS None. Unchanged.
Logical

Shift Left Double 8D SLDL RS 1. Address Error. Unchanged.
Logical

Shift Right Double 8C rSRDL RS 1. Address Error. Unchanged.
Logical

Store Character 42 STC RX 1. Address Error. Unchanged.

Test Under Mask 91 TM SI 1. Address Error. o - Selected bits all zero, or
mask all zero.

1 - Selected bits mixed zero
and one.

2- Not used.
3 - Selected bits all one.

Translate DC TR SS 1. Address Error. Unchanged.

Translate and Test DD TRT SS 1. Address Error. o - All accessed function bytes
all zeros.

1 - Non-zero function byte
encountered.

2 - Last function byte no.n-zero.
3 - Not used.

Bronchin!

45 BAL RX None.
Branch and Link Unchanged.

05 BALR RR

220

-

INSTRUCTIONS (Cont'd)

.nstructions (Cont'd)

Timing (.used

(Average and Includes Staticizingl

70/35 70/45 70/55

18.72 + .48J + .48N (N =I=- 0) Under 16 = 8.88 + 0.48 (N) 2.10 + 0.36 (P + Q + M) +
17.28 (N = 0) 16 to 31 = 11.04 + 0.48 (N-16) 0.36S (N)

32 to 47 = 13.20 + 0.48 (N-32)
48 to 63 = 13.20 + 0.48 (N-48)

49.44 + .96N + 8.64NU + Under 16 = 7.68 + 0.96 (N) 2.10 + 0.72 (P + Q) +
.48J (NL =I=- 0) 16 to 31 = 11.76 + 0.96 (N-16) 0.72S (N)
48.48 + .96N + 8.64NU 32 to 47 = 15.84 + 0.96 (N-32)
(NL = 0) 48 to 63 = 19.92 + 0.96 (N-48)

53.76 + .96N + 10.56NU + Under 16 = 7.44 + 0.96 (N) 2.10 + 0.72 (P + Q + M) +
.96J (NL =I=- 0) 16 to 31 = 10.56 + 0.96 (N-16) 0.7218 (N)
51.36 + .96N + 10.56NU 32 to 47 = 13.68 + 0.96 (N-32)
(NL = 0) 48 to 63 = 16.80 + 0.96 (N-48)

11.52 5.04 3.18

9.28 6.48 2.82

11.04 + 4.8L 6.24 + 5.04L 3.24 + 1.20W 1 + 2.88L1

1.92 + 4.8B (CC = 0)
11.04 + 4.08B 4.68 + 2.52B 19.30 + 4.8B (CC = 1 or 2)

Instructions

17.28 5.52 2.70

Branch = 12.48 Branch = 4.80 Branch = 2.52
No Branch = 11.52 No Branch = 3.84 No Branch = 2.04

Legend: B - total number of bytes processed. This condition occurs if instruction terminates
before L count is exhausted.

L - total number of bytes specified by L field.

Ll - number of bytes in first operand field.

M - number of two-bit shifts.

N - number of bits shifted.

P - number of four-bit shifts.

Q - number of one-bit shifts.

WI - total number of words in first operand field including partial words.

CC - condition code.

NL-lower 3 bits of N (Module 8 of N).

NU - upper 3 bits of N (Module 8 count of N).

S (N) - 1 if N = 0; S (N) = 0 if N =I=- O.

221

Appendix A

Page

Ref.

173

174

175

163

161

165

166

179

SUMMARY OF

Branching

Instruction °P(6) Mnemonic Format Interrupt Action Condition Code

47 BC RX None.

Branch on
Condition Unchanged.

07 BCR RR

46 BCT RX None.

Branch on Count Unchanged.
06 BCTR RR

Branch on 86 BXH RS None. Unchanged.
Index High

Branch on Index 87 BXLE RS None. Unchanged.
Low or Equal

Execute 44 EX RX 1. Address error. May be set by instruction being
modified and ex·ecuted.

Floating-Point

Add Normalized 6A AD RX 1. Address error. o - Result mantissa zero.

(Long) 2. Significance error. 1 - Result mantissa less than
2A ADR RR 3. Exponent overflow. zero.

7A AE RX
4. Exponent underflow. 2 - Result mantissa greater

Add Normalized than zero.
(Short) 3A AER RR 3 - Result exponent overflow.

Add U nnormalized 6E AW RX 1. Address error. 0- Result mantissa zero.

(Long) 2. Significance error. 1- Result mantissa less tha"n
2E AWR RR 3. Exponent overflow. zero.

7E AU RX
2 - Result mantissa greater

Add U nnormalized than zero.
(Short) 3E AUR RR 3 - Result exponent overflow.

69 CD RX 1. Address error. 0- Operands equal.
Compare (Long) 1 - Operand specified by 1st

29 CDR RR address low.

79 CE RX
2 - Operand specified by 1st

address high.
Compare (Short)

RR
3 -Not used.

39 CER

6D DD RX 1. Address error.
Divide (Long) 2. Exponent overflow.

2D DDR RR 3. Exponent underflow.
4. Divide error. Unchanged.

7D DE RX
Divide (Short)

3D DER RR

222

Appendix A

INSTRUCTIONS (Cont1d)

Instructions (Cont1d)

Timing (JLsed

(Average and Includes StaticizingJ Page

Ref.

70/35 70/45 70/55

Branch = 10.56 Branch = 4.56 Branch = 2.10
No Branch = 9.60 No Branch = 4.56 No Branch = 1.74

178
Branch = 6.72 Branch = 3.84 Branch = 1.98

No Branch = 4.80 No Branch = 3.36 No Branch = 1.62

Branch = 17.76 Branch = 7.92 Branch = 2.58
No Branch = 16.32 No Branch = 6.96 No Branch = 2.22

180
Branch = 12.96 Branch = 5.76 Branch = 2.40

No Branch = 11.52 C = 12.00 No Branch = 5.28 No Branch = 1.92

Branch = 24.48 Branch = 11.60 Branch = 3.72
No Branch = 23.04 No Branch = 11.12 No Branch = 3.36 181

Branch = 24.00 Branch = 11.60 Branch = 3.72
No Branch = 23.52 No Branch = 11.60 No Branch = 3.36 182

18.24 + EX 6.96 + EX 3.90 + EX
183

Arithmetic Instructions

73.62 27.69 9.95

68.34 22.63 8.57
193

46.33 19.20 7.46

42.01 16.08 6.32

71.19 26.81 9.82

65.91 21.77 8.44

44.95 18.96 6.59 195

40.63 15.84 6.25

61.66 23.52 7.20

56.38 18.48 5.82
198

38.62 15.36 6.57

34.32 12.24 5.43

1239.86 280.27 75.29

1234.58 275.68 73.91
202

410.89 83.00 22.68

406.57 79.88 21.54

Legend: C - counting only is performed.

EX - object instruction execution time.

223

SUMMARY OF

Floating-Point

Instruction Op(16) Mnemonic Format Interrupt Action Condition Code

Halve (Long) 24 HDR RR 1. Address error.
Unchanged.

Halve (Short) 34 HER RR

Load Complement 23 LCDR RR 1. Address error. o - Result mantissa zero.
(Long) 1- Result mantissa less than

zero.

Load Complement 33 LCER RR 2 - Result mantissa greater

(Short) than zero.
3 - Not used.

68 LD RX 1. Address error.
Load (Long)

28 LDR RR
Unchanged.

78 LE RX
Load (Short)

38 LER RR

Load Negative 21 LNDR RR 1. Address error. o - Result mantissa zero.
(Long) 1 - Result mantissa less than

zero.
Load Negative 31 LNER RR 2-Not used.
(Short) 3- Not used.

Load Positive 20 LPDR RR 1. Address error. o - Result mantissa zero.
(Long) 1- Not used.

2 - Result mantissa greater
Load Positive 30 LPER RR than zero.
(Short) 3- Not used.

Load and Test 22 LTDR RR 1. Address error. 0- Result mantissa zero.
(Long) 1 - Result mantissa less than

zero.

Load and Test 32 LTER RR 2 - Result mantissa greater

(Short) than zero.
3- Not used.

6C MD RX 1. Address error.
Multiply (Long) 2. Exponent overflow.

2C MDR RR 3. Exponent underflow.
U ncha!lged.

7C ME RX
Multiply (Short)

3C MER RR

Store (Long) 60 STD RX 1. Address error.
Unchanged.

Store (Short) 70 STE RX

Subtract 6B SD RX 1. Address error. o - Result mantissa zero.

Normalized 2. Significance error. 1 - Result mantissa less than

(Long) 3. Exponent overflow. zero.
2B SDR RR 4. Exponent underflow. 2 - Result mantissa greater

7B SE RX
than zero.

SUbtract 3 - Result exponent overflow.
Normalized
(Short) 3B SER RR

I I I I I I

224

INSTRUCTIONS (Cont'd)

Arithmetic Instructions (Cont'd)

70/35

20.16

14.40

23.76

16.56

17.28

17.76

16.32

12.00

22.80

15.60

23.28

16.08

22.32

15.12

494.11

488.83

168.06

163.74

24.96

18.24

73.62

69.30

47.29

42.97

riming (/LsecJ
(Average and Includes Staticizingl

70./45

8.16

6.00

8.16

6.00

13.68

8.64

9.84

6.72

7.68

5.52

7.68

5.52

8.16

6.00

186.55

181.51

49.42

46.40

11.28

8.40

27.69

22.63

19.20

16.08

225

Appendix A

Page

Ref.
70155

2.40
199

1.80

2.58

190

1.98

4.02

2.58
188

2.46

1.98

2.56

192

1.98

2.56

191

1.98

2.58

189

1.98

41.45

40.06
201

17.24

16.10

4.50
200

3.30

9.95

8.57
196

7.46

6.32

SUMMARY OF

Floating-Point

Instruction Op(l6) Mnemonic Format Interrupt Action Condition Code

Subtract 6F SW RX 1. Address error. o - Result mantissa zero.

U nnormalized 2. Significance error. 1 - Result mantissa less than

(Long) 3. Exponent overflow. zero.
2F SWR RR 2 - Result mantissa greater

7F SU RX
than zero.

Subtract 3 - Result exponent overflow.
U nnormalized
(Short) 3F SUR RR

226

INSTRUCTIONS (Cont'd)

Arithmetic Instructions (Cont'd)

Timing (JLsed

(Average and Includes Staticizing)

70/35 70/45 70/55

72.15 26.81

66.87 21.77

41.76 18.96

41.59 15.84

otes: 1. Time for Ll > L2 and no End Around Carry. Additional time must be added if L2 > Ll
or End Around Carry.

2. If the two fields are equal B = L since all bytes must be examined. If the fields are
unequal the instruction is terminated upon examining the first pair of unequal bytes.
In this case, B is less than L.

3. Each 127 words stored or loaded requires an extra 0.96 microseconds to effect
wrap around.

4. If Debug Mode, 19.20 + EX.

5. Indexing after base addressing (RX format only) requires an additional 1.44 micro­
seconds on the 70/35, no additional time on the 70/45 and .36 microseconds on
the 70/55.

227

9.82

8.44

6.59

6.25

Appendix A

Page

Ref.

197

APPENDIX B

LIST OF PROGRAM INTERRUPTS

State
Timing (If Interrupt Takenl

Priority Condition Initiated
Explanation

70/35 70/45 70/55

1 Power Failure 4 Power failure in pro-
cessor or memory. 50.88 11.64 7.32

2 Machine Check 4 Parity error or equip-
ment malfunction. 52.80 11.64 7.32

3 External Signal 1 3 54.72 (Note 1) 11.64 7.32

4 External Signal 2 3 Signal received on 56.64 (Note 1) 11.64 7.32

5 External Signal 3 3 one of the six ex- 58.56 (Note 1) 11.64 7.32

6 External Signal 4
ternal lines asso-

3 ciated with the di- 60.48 (Note 1) 11.64 7.32

7 External Signal 5 3 rect-control feature. 62.40 (Note 1) 11.64 7.32

8 External Signal 6 3 64.32 (Note 1) 11.64 7.32

9 Not Specified

10 Selector 1
Terminate 3

68.16 (Note 2) 18.86 + CRT 18.36 + CRT

11 Selector 2
Terminate 3

70.08 (Note 2) 18.86 + CRT 18.36 + CRT

12 Selector 3 70/45
Terminate 70/55 3

18.86 + CRT 18.36 + CRT
A device on the asso-

13 Selector 4 ciated selector or
Terminate 70/55 3 multiplexor channel

18.36 + CRT

14 Selector 5 has terminated.

Terminate 70/55 3
18.36 + CRT

15 Selector 6
Terminate 70/55 3

18.36 + CRT

16 Multiplexor
Terminate 3

79.68 (Note 2) 25.90 + CRT 19.80 + CRT

17 Elapsed Time Elapsed time count has
Clock 3 expired.

54.72 (Notes 1 & 3) 13.08 6.60

18 Console Request 3 Manual request for
interrupt by the oper- 56.64 (Note 1) 13.08 6.60
ator.

19 Not Specified

20 Not Specified

21 Supervisor Call 3 Result of execution of
Supervisor Call in-

67.40 (Note 1) 13.08 6.60
struction to utilize pro-
grammed routines.

22 Privileged Privileged instruction
Operation 3 attempted in non- 69.32 (Note 1) 13.08 6.60

privileged mode.

23 Op-Code Trap 3 Op Code attempted
which is invalid for 71.24 (Note 1) 13.08 6.60
this model.

24 Address Error 3 I Invalid address, speci"
fication, or memory 73.16 (Note 1) 13.08 6.60
protect violation.

228

Appendix B

APPENDIX B

LIST OF PROGRAM INTERRUPTS (Cont/d)

State
Timing (If Interrupt Taken)

Priority Condition Initiated
Explanation

25

26

27

28

29

30

31

32

70/35 70/45 70/55

Data Errol' 3 Sign of operand incor-
rect in decimal
arithmetic and editing, 75.08 (Note 1) 13.08 6.24
or ineorrect field over-
lap.

Exponent Overflow 3 Result characteristic
of floating-point oper-

77.00 (Note 1) 13.08 ation is greater than
127.

Divide Error 3 Rules pertaining to
Divide instruction have 78.92 (Note 1) 13.08
been violated.

Significance Error 3 Result of floating-point
or subtract has zero 80.84 (Note 1) 13.08
fraction.

Exponent Result characteristic
Underflow 3 of floating-point oper- 82.76 (Note 1) 13.08

ation is less than zero.

Decimal Overflow 3 Result field is too small
I

I
to contain the result of 84.68 (Note 1) I 13.08
a decimal operation.

Fixed-Point High-order carry or
Overflow 3 high-order significant

bits lost in fixed-point 86.60 (Note 1) 13.08

operation.

Test Mode 3 Allows program con- I
trol over processor

94.24 (Note 1) 13.08 during program test-
ing.

Priorities 1 thru 16 14.40 I 5.76 I
~

Priorities 17 thru 32 18.72 1 5.76 I

I

Note 1. Entnr to IntelTupt processing is delayed until the end of the instruction currently
being executed.

Note 2. Entry to Interrupt processing is delayed 29.76 microseconds plus the time required to
reach the end of the instruction currently being executed.

Note 3. When a timer update request exists, add 6.72 microseconds. When a timer update
request exists and Timer overflow occurs as a result of the update, add 7.68 microseconds.

229

6.24

6.24

6.24

6.24

6.24

6.24

6.24

2.04

2.04

APPENDIX C

INPUT / OUTPUT SERVICE REQUEST

Timing Per Byte (microseconds)

Operation

70/35 70/45 70/55

Selector Channel
a. Normal Service Note 3 2.40

Scratch-Pad Read and Write 1.20
Main Memory Read or Write (normal) 1.56
Less than 4 byte data move Read or Write (normal) 1.68

b. Data chaining with no Transfer In Channel Note 3 9.60 1.92 (Note 1)

c. Data chaining with Transfer In Channel Note 3 13.92 2.04 (Note 1)

d. End Service Note 3 Note 3

Normal 2.40
Data Chaining, Command Chaining 4.32

(1) For Status Modifier, add .96
(2) For each Transfer In Channel, add 2.04
(3) For Incomplete Read (Note 2), add .96

Multiplexor Channel
a. Normal Service Note 3 14.40 4.80
b. Data Chaining with no Transfer In Channel Note 3 27.36
c. Data Chaining with Transfer In Channel Note 3 31.68
d. Burst/Catch-up (per byte, after first byte) Note 3 1.68
e. End Service Note 3 Note 3

No chaining, no burst mode 4.68
Data chaining, burst mode 7.68
Data chaining, no burst mode 9.24
Command chaining, burst mode 7.80
Command chaining, no burst mode 8.76

(1) For Status Modifier, add .48
(2) For each Transfer In Channel, add 1.80

Note 1. Plus anyone of the times listed in item a.

Note 2. If a Read terminates while characters are still contained in the Scratch-Pad Assembly
Word, a special path must be taken to move these characters to Main Memory when
END is received.

Note 3. To be supplied.

230

APPENDIX D

EXTENDED BINARY-CODED-DECIMAL INTERCHANGE CODE
(EBCDIC)

~.~--------------------------------4567---.~

0123 0000 . 0001 0010 0011 0100 0101 0110

0000 NUL PF HT LC

0001 RES NL BS

0010 BYP LF EOB

0011 PN RS UC

0100 Space

0101 &

0110 - I

0111

1000 a b c d e f
I

j k I 1001 I m n 0

1010 s t u v w

1011

1100 A B C D E F

1101 J K L M N 0

1110 Blank S T U V W

1111 0 1 2 3 4 5 6

Bit Positions: 0 1 2 3 4 5 6 7

Control Characters:

NUL
PF
HT
LC
DEL
RES
NL
BS
IL

- All Zero-Bits
-Punch Off
- Horizontal Tab
- Lower Case
-Delete
- Restore
- New Line
- Backspace
-Idle

0111

DEL

IL

PRE

EOT

I

g

p

x

G

P

X

7

231

1000

h

q

y

H

Q

Y

8

BYP
LF
EOB
PRE
SM
PN
RS
UC
EOT

1001 1010 1011 1100 1101 1110 1111

SM

¢ < (+ I
! $ *) ; --.

1\ , % > ?
--

: # @ ,
= fI

i

r

z

I

R

Z

9 ~

-Bypass
-Line Feed
- End of Block
- Prefix
- Set Mode
-Punch On
- Reader Stop
- Upper Case
- End of Transmission

APPENDIX E

AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE (ASCII)
(Extended to 8 Bits)

~4~---------------------------------4321 --~~

76X5 I 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 NUL SOH STX ETX EaT ENQ ACK BEL BS HT LF VT FF CR SO SI

0001 DLE DCl DC2 DC3 DC4 NAK SYN ETB CAN EM SS ESC FS GS RS US

0010

0011

0100 SP # $

0101 o 1 2 3 4

0110

0111

1000 I
I

1001 !

1010 I \ A B I C D

1011 p Q R S T

1100

1101

1110 @ a b c d

1111 p q I' s t

Bit Positions: 7 6 X 5 4 3 2 1

Control Characters:

NUL -Null
SOH - Start of Heading (CC)
STX - Start of Text (CC)
ETX - End of Text (CC)
EaT - End of Transmission (CC)
ENQ - Enquiry (CC)
ACK - Acknowledge (CC)

% &

5 6

ElF

U v

e f

u v

BEL - Bell (audible or attention signal)
BS - Backspace (FE)
HT - Horizontal Tabulation

LF
VT
FF
CR
SO
SI
DLE

(punch card skip) (FE)
- Line Feed (FE)
- Vertical Tabulation (FE)
- Form Feed (FE)
- Carriage Return (FE)
- Shift Out
- Shift In
- Data Link Escape (CC)

DCl - Device Control 1
DC2 - Device Control 2
DC3 - Device Control 3

7

w

g

w

232

* +
8 9 <

J K LIM

x Y z

h k

x y z {

DC4 - Device Control 4 (stop)
NAK - Negative Acknowledge (CC)
SYN - Synchronous Idle (CC)

m

}

ETB - End of Transmission Block (CC)
CAN -Cancel
EM - End of Medium
SS - Start of Special Sequence
ESC -Escape
FS - File Separator (IS)
GS - Group Separator (IS)
RS - Record Separator (IS)
US - Unit Separator (IS)
DEL -Delete

SP - Space (normally non-printing)

(Ge) - Communication Co'ntrol
(FE) - Format Effector
(IS) - Information Separator

I

> ?

N I a

n 0

I DEL

Decimal Hexadecimal

0 00
1 01
2 02
3 03
4 04
5 05
6 06
7 07
8 08
9 09

10 OA
11 OB
12 OC
13 OD
14 OE
15 OF
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 1A
27 1B
28 1C
29 1D
30 IE
31 IF
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 2A
43 2B
44 2C
45 2D
46 2E
47 2F
48 30
49 31
50 32
51 33
52 34
53 35
54 36

APPENDIX F

CHARACTER CODES

Character Set

EBCDIC Punch

Combination

0000 0000 12,0,9,8,1
0000 0001 12,9,1
0000 0010 12,9,2
0000 0011 12,9,3
0000 0100 12,9,4
0000 0101 12,9,5
0000 0110 12,9,6
0000 0111 12,9,7
0000 1000 12,9,8
0000 1001 12,9,8,1
0000 1010 12,9,8,2
0000 1011 12,9,8,3
0000 1100 12,9,8,4
0000 1101 12,9,8,5
0000 1110 12,9,8,6
0000 1111 12,9,8,7
0001 0000 12,11,9,8,1
0001 0001 11,9,1
0001 0010 11,9,2
0001 0011 11,9,3
0001 0100 11,9,4
0001 0101 11,9,5
0001 0110 11,9,6
0001 0111 11,9,7
0001 1000 11,9,8
0001 1001 11,9,8,1
0001 1010 11,9,8,2
0001 1011 11,9,8,3
0001 1100 11,9,8,4
0001 1101 11,9,8,5
0001 1110 11,9,8,6
0001 1111 11,9,8,7
0010 0000 11,0,9,8,1
0010 0001 0,9,1
0010 0010 0,9,2
0010 0011 0,9,3
0010 0100 0,9,4
0010 0101 0,9,5
0010 0110 0,9,6
0010 0111 0,9,7
0010 1000 0,9,8
0010 1001 0,9,8,1
0010 1010 0,9,8,2
0010 1011 0,9,8,3
0010 1100 0,9,8,4
0010 1101 0,9,8,5
0010 1110 0,9,8,6
0010 1111 0,9,8,7
0011 0000 12,11,0,9,8,1
0011 0001 9,1
0011 0010 9,2
0011 0011 9,3
0011 0100 9,4
0011 0101 9,5
0011 0110 9,6

233

Printer

Graphics

i

I
I

Appendix F

CHARACTER CODES (Cont.)

Character Set Printer
Decimal Hexadecimal EBCDIC Punch

Combination
Graphics

55 37 0011 0111 9,7
56 38 0011 1000 9,8
57 39 0011 1001 9,8,1
58 3A 0011 1010 9,8,2
59 3B 0011 1011 9,8,3
60 3C 0011 1100 9,8,4
61 3D 0011 1101 9,8,5
62 3E 0011 1110 9,8,6
63 3F 0011 1111 9,8,7
64 40 0100 0000 Space
65 41 0100 0001 12,0,9,1
66 42 0100 0010 12,0,9,2
67 43 0100 0011 12,0,9,3
68 44 0100 0100 12,0,9,4
69 45 0100 0101 12,0,9,5
70 46 0100 0110 12,0,9,6
71 47 0100 0111 12,0,9,7
72 48 0100 1000 12,0,9,8
73 49 0100 1001 12,8,1

li 4A 0100 1010 12,8..2 1- (cents)
75 4B 0100 iOiT 12,8,3 (period)
76 4C 0100 1100 12,8,4 < (less than)
77 4D 0100 1101 12,8,5 ((open parenthesis)
78 4E 0100 1110 12,8,6 + (plus)
79 4F 0100 1111 12,8,7 I (vertical) I

80 50 0101 0000 12 & (ampersand)
81 51 0101 0001 12,11,9,1
82 52 0101 0010 12,11,9,2
83 53 0101 0011 12,11,9,3
84 54 0101 0100 12,11,9,4
85 55 0101 0101 12,11,9,5
86 56 0101 0110 12,11,9,6
87 57 0101 0111 12,11,9,7
88 58 0101 1000 12,11,9,8
89 59 0101 1001 11,8,1
90 5A 0101 1010 11,8,2 ! (exclamation)
91 5B 0101 1011 11,8,3 $ (dollar sign)
92 5C 0101 1100 11,8,4 * (asterisk)
93 5D 0101 1101 11,8,5) (close parenthesis)
94 5E 0101 1110 11,8,6 ; (semicolon)
95 5F 0101 1111 11,8,7 -, (logical NOT)
96 60 0110 0000 11 - (minus)
97 61 0110 0001 0,1 I (virgule)
98 62 0110 0010 11,0,9,2
99 63 0110 0011 11,0,9,3

100 64 0110 0100 11,0,9,4
101 65 0110 0101 11,0,9,5
102 66 01100110 11,0,9,6
103 67 01100111 11,0,9,7
104 68 0110 1000 11,0,9,8
105 69 0110 1001 0,8,1
106 6A 0110 1010 12,11 1\ (logical AND)
107

I
6B 0110 1011 0,8,3 , (comma)

108 6C OliO liOu O,g,4 % (percent)
109 6D 0110 1101 0,8,5 (underline)

Appendix F

CHARACTER CODES (Cont.)

Character Set
Printer

Decimal Hexadecimal EBCDIC Punch
Graphics

Combination

110 6E 0110 1110 0,8,6 > (greater than)
111 6F 0110 1111 0,8,7 ? (question mark)
112 70 0111 0000 12,11,0
113 71 0111 0001 12,11,0,9,1
114 72 0111 0010 12,11,0,9,2
115 73 0111 0011 12,11,0,9,3
116 74 0111 0100 12,11,0,9,4
117 75 0111 0101 12,11,0,9,5
118 76 0111 0110 12,11,0,9,6
119 77 0111 0111 12,11,0,9,7
120 78 0111 1000 12,11,0,9,8
121 79 0111 1001 8,1
122 7A 0111 1010 8,2 : (colon)
123 7B 0111 1011 8,3 # (number sign)
124 7C 0111 1100 8,4 @ (at the rate of)
125 7D 0111 1101 8,5 ' (apostrophe)
126 7E 0111 1110 8,6 = (equals)
127 7F 0111 1111 8,7 1/ (quote)
128 80 1000 0000 12,0,8,1
129 81 1000 0001 12,0,1
130 82 1000 0010 12,0,2
131 83 1000 0011 12,0,3
132 84 1000 0100 12,0,4
133 85 1000 0101 12,0,5
134 86 1000 0110 12,0,6
135 87 1000 0111 12,0,7
136 88 1000 1000 12,0,8
137 89 1000 1001 12,0,9
138 8A 1000 1010 12,0,8,2
139 8B 1000 1011 12,0,8,3
140 8C 1000 1100 12,0,8,4
141 8D 1000 1101 12,0,8,5
142 8E 1000 1110 12,0,8,6
143 8F 1000 1111 12,0,8,7
144 90 1001 0000 12,11,8,1
145 91 1001 0001 12,11,1
146 92 1001 0010 12,11,2
147 93 1001 0011 12,11,3
148 94 1001 0100 12,11,4
149 95 1001 0101 12,11,5
150 96 1001 0110 12,11,6
151 97 1001 0111 12,11,7
152 98 1001 1000 12,11,8
153 99 1001 1001 12,11,9
154 9A 1001 1010 12,11,8,2
155 9B 1001 1011 12,11,8,3
156 9C 1001 1100 12,11,8,4
157 9D 1001 1101 12,11,8,5
158 9E 1001 1110 12,11,8,6
159 9F 1001 1111 12,11,8,7
160 AO 1010 0000 11,0,8,1
161 Al 1010 0001 11,0,1
162 A2 1010 0010 11,0,2
163 A3 1010 0011 11,0,3
164 A4 1010 0100 11,0,4

235

Appendix F

CHARACTER CODES (Cont.)

Character Set
Printer

Decimal Hexadecimal EBCDIC Punch

Combination
Graphics

165 A5 1010 0101 11,0,5
166 I A6 1010 0110 11,0,6
167 A7 1010 0111 11,0,7
168 A8 1010 1000 11,0,8
169 A9 1010 1001 11,0,9
170 AA 1010 1010 11,0,8,2
171 AB 1010 1011 11,0,8,3
172 AC 1010 1100 11,0,8,4
173 AD 1010 1101 11,0,8,5
174 AE 1010 1110 11,0,8,6
175 AF 1010 1111 11,0,8,7
176 BO 1011 0000 12,11,0,8,1
177 B1 1011 0001 12,11,0,1
178 B2 1011 0010 12,11,0,2
179 B3 1011 0011 12,11,0,3
180 B4 1011 0100 12,11,0,4
181 B5 1011 0101 12,11,0,5
182 B6 1011 0110 12,11,0,6
183 B7 1011 0111 12,11,0,7
184

I
B8 1011 1000 12,11,0,8

185

I
B9 1011 1001 12,11,0,9

186 BA 1011 1010 12,11,0,8,2
187 BB 1011 1011 12,11,0,8,3
188 I BC 1011 1100 12,11,0,8,4
189 I BD 1011 1101 12,11,0,8,5
190 BE 1011 1110 12,11,0,8,6
191 BF 1011 1111 12,11,0,8,7
192 CO 1100 0000 12,0

@3?
I

<.m7 U:1n"0 0001 ~ 12,1 A
194 C2 1100 0010 12,2 B
195 i C3 1100 0011 12,3 C
196 C4 1100 0100 12,4 D
197 C5 1100 0101 12,5 E
198 C6 1100 0110 12,6 F
199 C7 1100 0111 12,7 G
200 C8 1100 1000 12,8 H
201 C9 1100 1001 12,9 I
202 CA 1100 1010 12,0,9,8,2
203 CB 1100 1011 12,0,9,8,3
204 CC 1100 1100 12,0,9,8,4
205 CD 1100 1101 12,0,9,8,5
206 CE 1100 1110 12,0,9,8,6
207 CF 1100 1111 12,0,9,8,7
208 DO 1101 0000 11,0
209 D1 1101 0001 11,1 J
210 D2 1101 0010 11,2 K
211 D3 1101 0011 11,3 L
212 D4 1101 0100 11,4 M
213 D5 1101 0101 11,5 N
214 D6 1101 0110 11,6 0
215 D7 1101 0111 11,7 P
216 D8 1101 1000 11,8 Q
217 D9 1101 1001 11,9 R
218 D~A~ 1101 1010 12,11,9,8,2
219 DB 1101 1011 12,11,9,8,3

236

Appendix F

CHARACTER CODES (Cont.)

Character Set
Printer

Decimal Hexadecimal EBCDIC Punch
Graphics

Combination

220 DC 1101 1100 12,11,9,8,4
221 DD 1101 1101 12,11,9,8,5
222 DE 1101 1110 12,11,9,8,6
223 DF 1101 1111 12,11,9,8,7
224 EO 1110 0000 0,8,2 Blank
225 El 1110 0001 11,0,9,1
226 E2 1110 0010 0,2 S
227 E3 1110 0011 0,3 T
228 E4 1110 0100 0,4 U
229 E5 1110 0101 0,5 V
230 E6 1110 0110 0,6 W
231 E7 1110 0111 0,7 X
232 E8 1110 1000 0,8 y

233 E9 1110 1001 0,9 Z
234 EA 1110 1010 11,0,9,8,2
235 EB 1110 1011 11,0,9,8,3
236 EC 1110 1100 11,0,9,8,4
237 ED 1110 1101 11,0,9,8,5
238 EE 1110 1110 11,0,9,8,6
239 EF 1110 1111 11,0,9,8,7
240 FO 1111 0000 ° ° 241 Fl 1111 0001 1 1
242 F2 1111 0010 2 2
243 F3 1111 0011 3 3
244 F4 1111 0100 4 4
245 F5 1111 0101 5 5
246 F6 1111 0110 6 6
247 F7 1111 0111 7 7
248 F8 1111 1000 8 8
249 F9 1111 1001 9 9
250 FA 1111 1010 12,11,0,9,8,2
251 FB 1111 1011 12,11,0,9,8,3
252 FC 1111 1100 12,11,0,9,8,4
253 FD 1111 1101 12,11,0,9,8,5
254 FE 1111 1110 12,11,0,9,8,6
255 FF 1111 1111 12,11,0,9,8,7 l:((lozenge)

237

APPENDIX G

POWERS OF TWO TABLE

2n n 2-n

1 0 1.0
2 1 0 .. 5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 45

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 00000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 00000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 .L 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

238

APPENDIX H

HEXADECIMAL-DECIMAL NUMBER CONVERSION

General • This Appendix contains the necessary reference information for the
conversion of decimal numbers to hexadecimal numbers and the conversion
of binary numbers to decimal or hexadecimal.

Hexadecimal­
Decimal Number
Conversion Table

Exarrtple #1 (0011 1010) 2 = (3Ah6 = (58) 10

Example #2 (FC)16 = (1111 1100)2 = (252)10

In the conversion of a hexadecimal number to its decimal value the
marks (O-F) represent a multiplier and their position (reading right to
left) within the hexadecimal number represent the exponent of the base.
Each mark is multiplied by the base raised to the appropriate power and
the summation of their product is the decimal value of the number.

Example #3 (36F) 16 = 3 (162) + 6 (161
) + 15 (160)

F

(36F) 16 = 3 (256) + 6 (16) + 15 (1) = (879) 10

To convert hexadecimal to binary substitute the binary equivalent of
the hexadecimal mark into its appropriate position as follows:

r--------------,
r---T-----' ,
, I + +

(3 6 F) 16 = (0011 0110 1111) 2
I t L ___________ ...J

• The table in this Appendix provides for direct conversion of decimal
and hexadecimal numbers in these ranges:

Hexadecimal
00000 to 01FFF

Decirnal
000000 to 008191

For numbers outside the range of the table, add the following values
to the table figures:

Hexadecimal Decimal
3000 12288
4000 16384
5000 20480
6000 24576
7000 28672
8000 32768
9000 36864
AOOO 40960
BOOO 45056
COOO 49152
nooo 53248
EOOO 57344
FOOO 61440

239

Appendix H

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

0000 000000 000001 000002 000003 000004 000005 000006 000007 000008 000009 000010 OOOOU 000012 000013 000014 000015
0001 000016 000017 00001B 000019 000020 000021 000022 000023 000024 000025 000026 0000" 000028 000029 000030 000031
0002 000032 000033 000034 000035 000036 00 003 7 000038 000039 000040 000041 000042 0000 4 3 000044 00 a 0 45 000046 000047
0003 000048 0'00049 000050 000051 000052 000053 000054 000055 000056 000057 00005A 00000;9 000060 000061 000062 000063
0004 000064 000065 000066 OOOOP 000068 000069 000070 000071 000072 000073 000074 000075 000076 000077 0000711 000079
0005 000080 000081 000082 000083 000084 0000A5 000086 000087 000088 0000119 000090 0000 Q1 000092 0000'13 000094 000095
0006 0000 96 0000 9 7 000098 000099 000100 000101 000102 000103 000104 000105 00010F. 0001~7 00010 8 000109 000110 000111
0007 000112 000113 000114 000115 000116 000117 000118 000119 000120 000121 000122 0001n 000124 000125 000126 000127
0008 000128 000129 000130 000131 000132 000133 000134 000135 000136 000137 000138 OOOBQ 000140 000141 000142 000143
0009 000144 000145 000146 000147 000148 000149 000150 000151 000152 000153 000154 0001~5 000156 000157 000158 000159
OOOA 000160 {l00161 000162 000163 000164 0001/>5 00016r. 000167 000168 0001,,9 000170 000171 000172 000173 on0174 000175
0008 000176 000177 000178 000179 000180 000181 000t82 000183 000184 0001115 00018/> nOOl07 000188 000189 000190 000191
oooe 000192 000193 000194 000195 000196 000197 000198 000199 000200 000201 000202 000203 000204 00"205 000206 000207
0000 000208 000209 000210 000211 000212 000213 000214 000215 000216 000217 000218 000219 000220 000221 000222 000223
OOOE 000224 000225 000226 000227 000228 000229 000230 000231 000232 000233 000;:>34 OO02~5 000236 000237 000238 000239
OOOF 000240 000241 000242 000243 000244 000245 000246 000247 000248 000249 000250 000251 000252 000253 000254 000255

0010 000256 000257 000258 000259 000260 000261 000262 000263 000264 000265 000266 0002~7 000268 00021>9 000270 000271
0011 000272 000273 000274 000275 000276 000277 000278 000279 000280 00021!1 000282 000203 000284 000285 000286 000287
0012 000288 000289 000290 000291 000292 000293 000294 000295 000296 000297 000291'1 000209 000300 000301 000302 000303
0013 000304 ~00305 000306 000307 000,308 000309 000310 000311 000312 000313 000314 000315 000316 000317 00031~ 000319
0014 000320 000321 000322 000323 000324 000325 000326 000327 000328 000329 000330 0003~1 000332 000333 000334 000335
0015 000336 000337 00CJ38 000339 000340 000341 000342 000343 000344 000345 00034/\ 000347 000348 00 n 349 on0350 000351
0016 000352 000353 000354 000355 000356 000357 000,358 000359 000360 0003~1 000362 0003q 000364 000365 On0366 000367
0017 000368 000369 000370 000371 000372 000373 000374 000375 000376 000377 0003711 000379 000380 000381 on0382 000383
0018 000384 000385 000 J86 000387 000388 000389 000390 000391 000392 0003Q3 000394 no 0 3 0 5 000396 000397 000398 000399
0019 000400 000401 000402 000403 000404 000405 000 4 06 000407 000408 000409 000410 000411 000412 000413 000414 000415
001A 000416 000417 000418 000419 000420 000421 000422 000423 000424 000425 000426 0004" 000428 000429 000430 000431
0018 000432 000433 000 434 000435 000436 000437 000 438 000439 000 44 0 000 4 41 000 44 ;:> OO04'~ 000 444 000 4 45 000 44 6 000 44 7
001C 000448 000 44 9 000 450 000451 000452 000453 000 454 000455 000 456 000457 000458 0004~9 000 4 60 000461 000462 000463
0010 000464 000465 000466 00041>7 000468 00041>9 000470 000471 000472 000473 00047. no 0475 000476 000477 000478 000479
001E 000480 000481 00Q48:? 00041'3 000484 0004A5 000486 0004~7 00048A 0004A9 000490 0004~1 000492 000493 00049 4 000495
001F 000496 000497 000498 000499 000500 000501 000 5 02 000503 000504 000505 000506 000507 000508 000509 on 051 0 000511

000514
[-::J

0020 000512 000513 000515 000516 000517 000 5 18 000519 000520 000521 000522 0005'3 00052 4 000525 000526 000527
0021 000528 000529 000530 000531 000532 000533 000534 000535 000536 0005,17 0005311 n005,~9 000540 00n541 000542 000543
0022 000544 000545 000546 000547 00054d 000549 000550 000551 000552 0005<;3 000554 n0055<; 000556 000557 000558 000559
0023 000560 000561 000562 000563 000564 000565 000566 000567 000568 0005~9 000<;70 0005'1 000572 000573 on0574 000575
0024 On0576 000577 000578 000579 000560 0005Al 000582 000583 000584 000585 000586 0005 Q 7 000588 0005119 0005 9 0 000591
0025 000592 000593 000594 000595 000596 000597 000598 000599 000600 000601 000 6 02 0006n~ 0001'>04 000b05 00060b 000607
0026 000608 000609 000610 000611 000~12 000b13 000614 000615 000616 000617 OOOolA 00061 Q 000~20 0006:a 000622 000623
0027 000624 o 00b25 000626 000b27 000~2~ 000629 000630 000631 000632 000633 000634 no 0 6 ~5 000~36 noObn on0638 OOOb39
0028 900b40 000641 00004;> 000643 000S44 000645 000646 000647 000648 000649 000650 0006~1 000652 00n653 000654 000655
0029 000651> OOOb57 00(16.58 000659 o OOS6{} ail n b/, 1, 000662 000663 000664 00061>5 000661> n006Q 0001068 000b69 000670 000671
002 A 0 0067 2 0006 7 3 000074 000b75 000~76 000677 01lO'b'18 000679 0001\80 000681 ooot-a, 00060~ 000684 0006A5 000686 000687
0028 000688 IJOOb89 000690 000691 000 ~92 0006 Q 3 000694 000695 000696 0006Q7 00069~ n006~9 000700 000701 000702 000703
002C 000704 UOO705 00P06 000707 000705 000709 000710 000711 000712 000713 000714 000715 000716 000717 0007111 000719
0020 000720 000721 000722 000723 000724 000725 000726 000727 OOO72A 000729 ooo73n 0007~1 000732 oon733 00073. 000735
002E 000736 000737 00073A 000739 000740 000741 000 742 000743 000 74 4 000745 000 7 46 000747 000748 000 7 49 000 750 000751
002F on0752 000753 000 754 000755 000756 000757 000 7 58 00u75_ 000 7 60 00071'>1 000 7 62 0007'3 000764 000765 000 7 66 000767

0030 000768 000769 000770 000771 000772 000773 000774 000775 000776 000777 OO07B 000779 000780 0007Al 000782 000783
0031 000764 000785 000786 000787 00078tl 000789 000790 0007 9 1 000792 000793 000794 0007QC; 000796 000797 000798 000799
0032 000800 000801 ooono:> 000803 000904 000805 000"06 000807 OOOAOA 000809 000810 0008i 1 000A12 000813 000814 000815
0033 000816 000817 OOOtllA 00081 9 000520 000 8 21 000 8 22 000823 000 11 24 000825 000R21> 0008" 000A28 0006;:>9 000830 000631
003 4 o n0832 1) 008 33 000°3 4 000 B3 5 000936 000837 000838 000839 000840 000841 000 84 ~ n0084~ 000844 00r845 On0846 000847
0035 OP0848 000849 00 0 ~50 000B51 000952 000853 OOO~54 000855 000A56 000857 000A5A 0008~Q OOoAbO o on8/\1 000862 000863
0036 000R64 000865 000~66 000867 000~6R 000869 000il70 000871 oooA72 000873 000R74 00087<; 000876 oon877 000878 000879
0037 00086 U 000881 000 d8;> 00081'3 0009B4 000885 000~86 0008A7 00098R 0008 R9 000890 000891 000A92 000893 On 0 89 4 000895
0038 000896 UOO897 o OOMA 000899 00 0 ~O 0 000901 000 9 02 000903 000 9 04 000905 00090/\ 000 9 07 000908 000909 000'110 000911
0039 000912 000913 000 914 000915 000_16 000917 000 9 18 000919 OOono 0009;>1 00092:> 0009'~ 000924 0009;>5 000926 000927
003A 000928 000929 000930 000931 000932 000933 000 9 34 000935 000 9 36 000937 00093R n009~Q 000 9 40 000 9 41 000 9 42. 000943
0038 000944 U00945 000946 000947 00094~ 000 9 49 000 '15 0 000951 000 9 5;> 000953 00 a Q5 4 0009~5 000 Q56 000957 000'15'1 000 9 59
003C 000960 800 9 61 OOO"6? 000963 000-64 000965 000 9 66 000967 000 9 68 000%9 000 9 70 000 9 '1 000 9 72 000 9 73 000 974 000 9 75
003 D 000 976 000 977 00097A 000 979 000 96 0 000 98 1 000 98 2 000 98 3 000 984 000 911 5 000 98 6 000 907 000 988 000 989 000 99 0 000 991
003E 000992 000993 00O~94 000995 000-96 000997 000 9 98 000999 001000 0010~1 00100;> 001003 00100 4 001005 001001\ 001007
o 03F 00100 8 001009 001010 001011 001012 001013 001014 001015 001016 001017 00101'1 001019 001020 n 010;>1 001022 001023

0040 001024 001025 001026 0010?7 001028 001029 001030 001031 001032 001033 001034 001035 001036 001037 001038 001039
0041 0010 4 0 001041 001')42 001043 001044 001045 001041\ 001047 001048 001049 001050 001 0~1 001052 001053 001054 001055
0042 001056 001057 00105A 001059 00106u 001061 001062 001063 001064 0010~5 001061> nol0<7 001068 0010"9 0010 7 0 0010 7 1
0043 oul072 001073 0011174 001075 001076 001077 001078 001079 001080 o 010'!1 00108'- 0010~3 0010B4 001085 001086 001087
0044 001088 001089 0OliJ90 001091 001092 001093 001094 001095 001091, 001097 00109R nol0Q9 001100 001101 001102 001103
0045 001104 1101105 00110A 001107 001108 0011119 001110 001111 001112 001113 001114 001110; 001116 001117 001111'1 001119
0046 001120 001121 001122 0011;>3 001124 001125 001126 001127 001128 001129 001130 n01P1 001132 001133 On1134 001135
0047 0°11 36 0011 37 001138 0011 39 001140 0011 41 0011 4 2 0011 4 3 0011 44 0011 45 00114~ 0011 47 o 0u 48 0011 49 0~1150 0011 51
0048 0[11152 U01153 OOl.~?1 001155 001156 001157 OOlt5!! 001159 001160 00111'1 001162 nollQ 001164 001165 on1166 001167
0049 001168 it1lI169 001170 '001171 001172 001173 001174 001175 001176 001177 001171'1 001179 001180 0011~1 001182 001183
o 04A 00118 4 001185 001186 001187 001188 0011H9 001190 0011 9 1 001192 001193 001194 0011=5 0011 9 6 001197 001198 0011'19
0048 OQ1200 ~ 0 12 01 001 2 02 0012pJ 001204 001205 00P06 001?07 001208 001209 001210 n 01211 001 :?12 001213 on1214 001215
004C 001216 u01217 00121A 001219 00122u 001221 001222 001223 001224 001225 00122~ 0012" 00122 8 001229 001230 001231
004D o r1232 I) 01233 001234 0012::15 001236 001231 001238 001239 0012 4 0 0012 41 001242 no12'~ 001244 001245 00124" 001247
o 04E o il124~ a 0 1249 00 125 0 001251 00125" 001d53 00U54 001255 o Ul ~56 001257 00125;; n012~Q 001260 00121>1 00i262 001263
a 04F 0"1264 (101265 001266 00120 001268 0012~9 0012 7 0 001271 0012 72 0012 7 3 001?74 no 1275 0012 76 001277 001278 0012 79

240

Appendix H

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cont/d)

0050 001280) 01281 0Ol~82 001283 001284 0012rl5 001286 001287 001288 001289 001290 001291 001292 001293 0~1294 0012 9 5
0051 001296 J012 9 7 001298 001299 001300 001301 001302 001303 001304 001305 001306 001307 00130 8 001309 001310 001311
0052 001312 001313 001->14 001315 001316 001317 00131 8 001319 001320 001321 001322 n013'~ 00132 4 001325 001326 00132 7
0053 001328 801329 001330 001331 001332 001.333 001334 001335 001336 0013:17 00133~ 00 13 ~9 0013 4 0 001341 001342 001343
0054 0[11344 001345 001546 001347 001348 0013 4 9 001.350 001351 001352 0013<;3 001354 0013~'5 001356 001357 001351\ 0013<;9
0055 001 36 0 0013 6 1 001362 0013~3 001364 001365 001,66 001367 001 368 001369 001 37 0 001371 001372 001373 001374 001375
0056 001376 001377 001378 001379 001380 0013 d l 001382 001383 001384 001385 001386 0013·7 001388 001389 0013 9 0 0013 91
0057 0"1392 001393 001394 001395 001396 001397 001398 001399 001400 001401 001 4 0;> ~o14n3 001 4 04 001405 001406 001407
0058 OcH08 001409 001410 001411 001412 001413 001414 001415 001416 001417 o 0141~ ~014' 9 001420 001421 0~1422 001423
0059 On1424 001425 001426 001427 001428 001429 001430 001431 001 4 32 0014~3 001434 no14~o; 001431> 0014~7 0014311 001439
005A 001440 001441 001442 00144 3 00 1 444 001445 001 44 6 00 1 44 7 001 44 8 00 1 44 9 001450 0014~1 00145 2 00 1 45 3 00 1 454 00 1 455
00'58 0(11456 D 01457 001451't 001459 001460 001461 001462 001463 001464 001465 0014M OO14Q 001468 001469 001 47 0 001471
005C 0[11472 001473 001474 001475 001476 001477 001478 0014n 001480 001481 00148:> 0014 0 3 001484 001485 00148'" 001487
0050 001488 001489 001 4 90 001491 001492 0014 9 3 001494 001495 001496 0014'17 001 4 9f\ 0014QQ 001500 001501 001 5 02 001503
005E Oa1504 001505 00150~ 00150 7 00150 8 001509 001<;10 001511 001 <;12 001513 001514 no15,0; 001516 001517 001518 001519
005F 001520 001521 00 1 ~22 001523 001524 001525 00152'" 001527 001<;28 001529 001530 0015~1 001532 001533 on1534 001535

0060 001536 001537 001538 001539 001540 0015 41 001542 001543 001544 001545 001546 001547 001548 001549 001550 001551
0061 001552 001553 001554 001555 001556 001557 001'558 001559 001<;60 001561 001562 0015q 001564 0015"'5 001566 001567
0062 001568 001569 001570 001571 001572 001573 001574 001575 001576 001577 001'57 11 001579 001580 001511 1 on15 8 2 001583
0063 001584 001585 001586 001587 001588 001589 001590 0015 9 1 001592 ~ 001594 on1500; 001596 001597 on15911 001599
006 4 0 01 600 001601 001602 0 01 60 3 001~04 001605 001606 00 1 607 001608 001609 001610 001611 o 01f,12 001613 001614 001615
0065 001616 U01617 001618 00161 9 00H20 001621 001622 001623 001624 001625 001626 0016'7 001628 0016?9 001630 001631
0066 001632 001633 001634 001635 001~36 001637 001638 001639 001640 001641 001642 001643 001644 001645 001646 001647
0067 001648 001649 001650 001651 001 S52 001653 001654 001b55 001656 0016'57 001658 0016~9 001660 001661 001662 001663
0068 001664 001665 001666 001H7 00H68 001669 001670 001671 001672 001673 001674 0016;'5 001 f-76 001677 001678 001679
0069 001680 001681 001682 001683 00B84 001685 001686 001687 001688 001689 001/>90 001691 00H92 001693 001694 001695
006A 001696 001697 001698 001699 001700 001701 001 7 02 001703 001704 001705 001706 0017n7 001708 001709 001710 001711
0068 on1712 001713 001714 001715 001716 001717 001718 001719 001720 001721 001722 0017'~ 001724 001125 001726 001727
OObC 001728 001729 001730 001731 001732 001733 001734 001735 001736 0017~7 001738 0017~9 001740 0017 4 1 001742 001743
0060 001744 001745 001 7 46 00174 7 001748 001 7 49 001750 001751 001 7 5<, 00 1753 001754 00175'5 001756 0017'57 001758 001759
006E 001760 001761 001762 001763 001764 001765 001766 001767 001768 001769 001770 001771 001772 001773 001774 001775
006F 001776 001777 001778 001779 001780 0017 81 001782 001783 001784 0017115 001786 no17·7 001788 001789 0017 9 0 001791

0070 001792 001793 001794 001795 001796 001797 001791l 00179. 001800 001801 001802 001803 0011104 001605 001806 001607
0071 0011108 001809 001r!10 001811 001912 001813 001814 001815 001816 001817 001 A1 A no1819 0011120 0018?1 001822 001823
0072 001 8 24 001 8 25 001 8 26 00182 7 001 ~28 001 8 29 001 83 0 001 8 31 001 9 32 001833 001 R34 no18~'5 001 8 3 6 001 8 37 001838 001839
0073 001840 001841 001842 001843 001944 001845 001846 001847 OU1848 001849 001850 0018~1 001852 001853 001854 001855
0074 001856 001857 001858 001859 001960 001861 001862 001863 001964 001865 001866 001867 001868 001869 001870 001871
0075 001872 001873 001074 001675 001976 001877 001'378 001879 001880 OOitH\l 001882 OO18~3 0011184 001885 001886 001887
0076 001888 001889 001~90 001891 001992 001893 001d94 001895 0011196 001897 0018911 0018Q9 001900 001901 001902 001903
0077 001904 001905 001906 001907 001908 001909 001 9 10 001911 001912 001913 001914 001915 001916 001917 00191A 001919
0078 001920 001921 00192:1 001923 00U24 001925 001926 001927 001928 001929 001930 0019~1 001932 001933 001934 001935
0079 o Q 1936 001937 001938 001939 001'140 001941 001942 001943 001944 001945 001946 001947 001948 001949 001950 001951
007A 001952 001953 001954 001955 001956 001957 001958 001959 001960 001961 001962 00 19 ~3 001964 001965 001966 001967
0078 001968 001969 001970 001971 OOD72 001973 001974 001975 001976 001977 00197A 001979 001980 001 9 '11 001982 001983
007C 001984 001985 00P86 0019A7 001'188 001989 001990 001991 001992 001993 001994 0019Q5 001996 001997 001998 001999
0070 002000 002001 002002 002003 002004 002005 002006 002007 00::>0011 002009 002010 002011 00;>012 002013 002014 002015
007E 002016 002017 0020V 002019 002020 00::>021 002022 002023 002024 0020::>5 0020:>6 0020'7 00:>028 00'029 002030 002031
007F' 002032 002033 002034 002035 002036 002037 002038 002039 002040 002041 00204<, 002043 00::> 0 44 002045 002046 002047

0080 002048 002049 002050 002051 002052 002053 002054 002055 002056 0020'57 0020511 o 020~9 00:>060 002061 002062 002063
0081 002064 002 065 002 "66 002067 0020 6B 00;>0 h9 002 a70 00;> 0 71 o O?O 7 2 002 07 3 002 074 002 07 5 00;>076 00,077 on2 078 002 079
0082 002080 ;] 02081 002:j 82 002083 002084 0020"5 002 Jd6 002087 002088 0020~9 002090 0020 Ql 00;>092 002093 002094 002095
00'13 002096 002097 002 J 98 002099 002100 002101 002102 002103 00;?1 0 4 002105 0021O~ 00 21n 7 00:>108 002109 002110 002111
0084 002112 002113 002114 002115 002116 002117 002118 0021U 002120 0021?1 002122 O021'~ 00:>124 002125 0~2126 002127
0085 0'i2128 " 02129 002130 002131 o 0213d 002133 002134 002135 o 0213~ 002U7 0021311 n021~9 00:>140 002141 002142 002143
0086 002144 002145 002141> 002147 0021 48 0021 4 9 002150 002151 002152 002153 002154 n02155 00;>156 0021'57 00 215 8 0021 5 9
0087 002160 J02161 00216<' 002163 002164 002165 002166 00211> 7 002168 002H9 o 02t 70 002171 00;>172 002173 002174 002175
oose OU2176 JO 2177 o 0217~ 002179 o 0218u o 0 21~1 00218<' 002183 00<'184 o 021 A5 002186 n021~7 OO~188 002189 0021 9 0 002191
0089 Ory2192 002193 002194 002195 002196 002197 o 0 219~ 002199 oonoo 002201 002:>0;> 002203 00;><'0 4 00'205 002206 002207
OORA 00220 8 a 0220 9 D02210 00 2 211 002212 00 22 13 002214 00 2 215 002216 002217 OO?21A 00 22 19 00:>;>20 O022?1 on2222 002223
0088 002224 002225 002226 0022;>7 002228 002229 002230 002231 00223;> 002233 002234 0022~5 00,:;>36 00 ;>237 002238 002239
008C 002240 002241 00224:;> 002243 002244 002245 002246 002247 00;>;?48 002249 002250 " 02251 00:>252 002253 002254 002255
OOBD 002256 002257 00225A 002259 002260 002261 002262 no~263 002264 00221\5 002266 no22Q 00,?68 00221\9 002270 002271
008E 002272 002273 002274 002275 002276 002277 002278 002279 002280 0022"1 00228' 0022Q~ 00?284 00'285 o n2286 002287
OOBF 002288 i)02289 002290 002291 002292 002293 002294 002295 002296 002297 002298 0022~9 00:>300 002301 002302 002303

0090 or2304 002305 002306 002307 002 30 ~ 002309 002Ho 002311 002312 002313 002314 n 02315 o 0?316 002317 002318 002319
0091 0[:2320 002321 002322 0023:;>3 002324 002325 002326· 002327 002328 002329 002330 0023~1 00:>332 002333 002334 002335
0092 002336 1)02337 002338 002339 002340 002341 002342 002343 o Q<,,~44 002345 o 02~46 002347 00:>348 00 ?349 002350 002351
0093 on2352 002353 002354 002355 002356 002357 002~58 002359 002360 0023"1 00236<, n023'~ 00:>30 4 002365 on2366 002367
0094 0"23 68 U 02369 0023 70 0023 71 0023 7 2 0023 73 0023 7 4 0023 7 5 00:>3 76 002377 002378 002379 00:>3 80 00, 38 1 on238 2 0023 8 3
0095 0"2384 002385 002386 o 0 23~ 7 o 0238~ 00?3~9 002390 0023 9 1 00239? 002393 002394 ~023Q5 002396 002397 002398 002399
0096 or2400 002401 002402 00240.3 002404 00;>405 002 4 06 002407 002 4 0 11 0024n9 002410 002411 00:>412 00:;>413 002414 002415
0097 002416 002417 0024H 002419 002420 002421 002422 00;;>423 00<,424 0024:>5 002426 0024" 00:>428 0024;>9 002430 002431
0098 002432 002433 002434 002435 002436 002437 002438 002439 002 44 0 002441 002 4 42 n 024 4 3 00::>444 002445 002446 002447
0099 0024 4 8 002 44 9 002450 002451 002452 002453 002454 002455 002456 00240;7 o 0245A n 024~9 00;>460 002461 002462 002463
009A On2464 002465 002466 002467 002468 0024"9 002470 002471 002472 002473 002474 00247'i 00:>476 00;>477 002478 002479
0098 002480 002481 00248, 0024~3 002484 0024 H 5 002486 002487 0)248A 002489 002490 OO24Qj 00::>492 002493 on2494 002495
009C 002496 002497 00249A 002499 002500 002501 002"02 002503 002504 002 5 n5 002 5 06 00 25 "7 00;>0;0 8 002 5 09 002510 002511
009D o n2512 002513 002 51 4 002515 00251 6 00 25 17 002 5 1 8 00 25 1 9 002 5 20 002521 002 5 n 0025n 00:>52 4 00;>525 002526 002 5 27
009E 0[12528 002529 002530 002531 002532 002533 002534 002535 002536 002537 002538 O025~9 00;>540 00 ;>541 002542 002543
009F' 002544 002545 002546 002547 002548 002549 002550 002551 002'552 002553 002554 n0250;<; o 0?556 002557 002558 002559

241

Appendix H

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cont'd)

9

OOAO 002560 002561 002562 002563 002564 002565 002566 002567 002568 002569 002570 002571 002572 002513 002574 002575

OOAl 002571> 002577 002578 002579 002580 002581 002582 002583 002584 002585 002581> 00251>7 00?588 002589 002590 002591

00A2 002592 002593 01)2594 002595 002596 002',;97 002598 002599 002"'00 002601 0026()2 0026n3 002604 002605 o n2606 002607

00A3 002608 002609 002610 002611 002612 002613 002614 002615 002016 0026 17 002618 002619 002620 002621 002622 002623

00A4 002624 002625 002626 002627 002628 002629 002630 002631 002632 002633 002634 0026'<; 00'636 002637 002638 002639

DOA5 002640 002641 0021>42 002643 002644 002645 002646 002647 002648 002649 002650 0026<;1 00?652 002653 002654 002655

0046 002656 002657 002658 002659 002660 002661 002662 002663 002664 002665 002666 n026~7 002~68 n02669 002 67 0 002671

00A7 002672 002673 002674 002675 002!>76 002677 002678 00 2679 00268 0 0026111 0026B~ no26 A 3 0026B4 002685 on2686 002687

00A8 002688 0026B9 002690 002691 002692 002693 002694 002695 002696 002697 002698 002600 002700 002701 002702 002703

00A9 002704 002705 002706 002707 002708 002709 002710 002711 002712 002713 002714 002715 00??16 002717 on2718 002719

onAA 002720 002721 002722 002723 002724 002725 002726 002727 00:1728 002729 002730 0027~1 002732 00 ?733 on2734 002735

00A8 002736 002737 002738 ' 002739 002740 002741 002742 002743 002744 002745 00274~ 002747 00??48 002749 002750 002751

OOAC 002752 002753 002754 002755 002756 002757 002 758 002759 002760 002761 00276:1 n027~:I 002764 002765 on2766 00271>7

OOAO 002768 002769 002770 002771 002712 002773 002774 002175 002716 002777 002778 n02179 002780 002781 002782 002783

OOAE 002784 002785 002786 0027117 002788 002789 002790 002791 00:1792 002793 002794 n0270'5 002796 002797 002798 002799

OOAF' 002800 002801 002802 002803 002~04 002805 002806 002807 00280A 002809 002A10 00 28i 1 00?812 002813 on2814 002815

0080 0~2816 002817 002t!18 002819 002920 002821 002822 002823 002824 002825 00282(' Q028:>7 o 02"2~ 002 8 29 002830 002 831
0081 002832 002833 002.034 002835 002936 002837 002838 002839 002~40 002841 00284;> 0028 43 00?M4 002845 on2846 002 8 47

0082 OQ2848 002849 002850 002851 002952 002853 002.054 002855 002'356 0028 C;7 002 A5!! 0028"9 002/\60 0028 61 002 862 002863
0083 002864 002865 002 066 002867 002960 002869 002 8 70 0028 71 0021'172 002873 002 874 00287'5 00?A76 002877 on2 8 78 002879
00S4 002880 002881 002882 002883 002~84 0028~5 002~86 002887 002F!88 0028A9 002890 o 028Q1 002/192 00:;>893 002894 002895

00s5 002896 002897 002898 002899 002900 002901 0029 0;> 002903 00290 4 002905 002 9 0(, 0029 a 7 002906 002 9 09 002910 002911
DOM 002912 002913 002914 0029j 5 002a6 002917 002918 002919 002920 002921 002922 n029:>3 002924 002925 002926 002927
OOB7 002928 002929 002930 002931 002.32 002933 002 934 002935 002 9 36 0029"\7 0029 38 0029'9 002940 002941 0029 4 2 002943
00R8 002944 002945 002~46 002947 002948 00;:>949 002950 002951 00;:>952 0029'53 002954 0029'1'; 00;>956 002957 002958 002959
00R9 0~2960 002961 002 Y62 002963 002964 002965 002966 002967 00?968 0029~9 002970 0029"11 002'172 002973 002974 002975
OORA Oll2976 002977 002978 002979 002980 002981 002 982 002983 002984 0029A5 002986 0029 A7 00?988 002989 002 99 0 002991

0088 00 299 2 002993 00299 4 0 02995 00299 6 00 2 997 00299 8 00 2999 003000 003001 003002 00300~ 00300 4 003005 003006 003007
OOI'lC OQ3008 003009 003010 003011 003012 003013 003014 003015 003016 003017 003018 00 3 019 00:1020 003021 00 3 022 003023

OORO 003024 003025 003026 003027 003028 003029 003030 003031 003032 00.~033 003034 0030"\5 00:1036 003037 003038 0030·39

OOBE 003040 003041 003U42 003043 003044 0030 45 003046 003047 003048 003049 003050 n030'51 003052 00~053 003054 003055

OOBF' 00 3 05 1> 00 3 057 003il 58 00 3 059 00 3 96 0 00 3 061 0030 6 2 00 3 063 0030 64 00 3 0"'5 00 3 06(, n030Q 00 3 068 00 3069 00 3 07 0 00 3 071

OOCO 0(13072 0030 73 0031)74 003075 003076 00~077 003~78 003079 003 080 Q03 0A 1 003 082 0030 A :I 003084 003 085 003086 003087
OOcl 003088 1J030A9 003u90 003091 003092 003093 003094 003095 003091> 003097 00309A n030~9 00:1100 003101 on3102 003103
00r:2 00310 4 no 31 05 00310(, 003107 00310>1 003109 003110 003111 003112 003113 003114 00311 '; 00:1116 003117 003118 003119
OOC3 0(13120 003121 00312? 003123 00312 4 003125 003126 00,H27 003128 0031?9 003130 0031'1 00:1132 no3133 00 3134 003135
OOC4 003136 003137 003131' 003139 0031 4 0 0031 41 003142 00.31 4 3 0031 44 0031 45 0031 4'" 00 31'7 00~148 0031 49 00 3 15 0 0031 5 1
00c5 003152 003153 003154 003155 0031% 0031"7 00315'1 003159 003160 Oo,H~l 00316? "031~~ o O~j 64 003165 o n3166 003167
00C6 0(13168 UO 3169 003170 003171 0031 7 2 0031 73 003174 003175 0031 76 003177 00317'1 003170 00:1180 0031"1 on31 8 2 0031 83
ooc7 00318 4 0031 85 003186 00311\7 0031 8e 0031 R9 003190 00 31 91 0031 9 :> 0031 Q 3 003194 0031QC; 003196 0031 9 7 o n31911 0031 99

00C8 OLl3200 003201 003202 003203 00320 4 00 3 205 003~06 00320 7 00320 R 003209 003210 00 3211 003212 00 3213 on 321 4 00321 5
00r:9 003 216 001217 003 21A 00 32j 9 003 220 00:1 221 003 222 00322 3 003224 00~2?5 003:>2'" 0032 '7 00~226 00~229 on3 2 3 0 0032 31
OOCA o n3232 003233 0030!3 4 003235 003236 0032:17 003:?38 003239 0032 4 0 0032 41 003;>42 n 03243 003244 003245 On3246 003247

ooce 003248 003249 003250 003251 003252 00 3 253 003<54 o 0,~255 00;v56 o 0,~2<;7 00325/\ 0032~Q 003;>60 0032"1 00326;:> 0032f>3
ooCC 0[,3264 003265 003~6~ 0032f>7 00326~ 00 3 2/,'1 003no 00 32 71 003;:>72 0032 73 003274 n0 3 27 '; 003:>76 0032 77 00327~ 0032 79
OOCO 00328 0 00 32 81 00 3 28 2 00 3 21'3 00 3 284 0032B5 003286 00 3 28 7 o 0328~ 00 32 11 9 00 3 ;;>90 n0 3 2 01 o 0~292 no~2Q3 o n3 294 00 3295
OOCE 003296 U032 97 00329~ 003299 003300 003301 003302 003303 00330 4 0033n5 003306 0033n7 00330 8 003309 003310 003311
OOCF' OD3312 003313 00331 4 00331 5 00331 0 003317 003518 00 3319 003320 0033?1 o n332;> O033:>~ 00:132 4 0033;>5 003326 003327

0000 003328 1103329 003330 003331 003332 00 3 333 00333 4 003335 003336 00·~337 00333'1 n033~Q 0033 4 0 003341 003342 003343
00n1 Ofl3~44 003345 003.)4~ 003347 00334~ 0033 49 003350 0033 5 1 003352 0033"3 003354 n033~<; 003356 0033C;7 on335~ 003359
00n2 003360 ,]03361 003.162 003363 003364 0033 h5 o 0 3.~66 003367 00 336R 0033('9 0033 7 0 003371 003372 003373 on3374 0033 75
0003 or3370 003377 003378 003379 OOBtlu o 033f!1 00338? 0033B3 003384 0033'15 00 338 ~ "033~7 003388 0033R9 003390 003391
000 4 0f.l3392 0033 93 003394 003395 003396 003397 003..198 0033 9 9 003400 00~401 003 4 0::> 003 4 0:1 003404 003 4 05 on3406 003407
0005 00340 8 U03409 003 410 003411 003412 003413 003 414 003415 003 41(, 003417 0034111 n0341Q 003 4 20 003421 003422 003423
00n6 0('3424 (103425 003 4 26 0034:;>7 003428 00 34 2'1 003 430 003431 003 4 32 003433 003434 0034,<; 00:1436 0034:\7 On3 43A 003419
00n7 003440 003441 003442 003443 003444 003445 003441> 003447 003 44R 00.3449 003 450 00340;1 00:1452 003453 on3454 00:14'55
00n 8 OD3456 u03457 0034511 003459 00346u 003461 003462 003463 003464 0034,.,5 003466 n034Q 0034613 003469 003 47 0 003471
000 9 on3472 I) 0 34 7 3 003474 003475 003476 003477 003478 003479 003480 0034R1 00348;;> 0034 0 :\ 00:1484 0034A5 003486 0034117
OonA 003488 003489 003 490 003491 003492 0034 93 003494 003495 003496 003497 00349R n034~Q 00:1500 003501 On35 02 003503
oone 003504 'J03505 00350" 003507 00350B 003509 003510 003511 003512 003513 003'514 n0351 <; 003'516 003517 On351~ 003519
OODe 01.'3520 ')0:1521 003 52:> 0035<'3 003~24 00:1525 003 526 o 0 ~527 00:1 5211 00 ~5:>9 003 5 3 0 0035,1 00:153 2 003 5 33 On3534 00:1535
0000 003'536 U 03537 003"3'1 003539 003541) 003541 0030;42 00·3543 003544 0035 45 003';4'" no 35 4 7 o 03'54~ 003549 003550 003551
OOnE 0('3552 ')03553 003'>54 0035'55 003556 003557 003558 00·~559 003'560 0035"'1 00356:> 0035~3 00:1'564 003565 003566 003567
OOOF' 003568 U03569 003;'70 003571 003572 0035 73 003514 003575 003576 003577 00357A 00357'1 00:1580 0035111 0035 8 2 0035 11 3

OOFO 0103584 I) 03585 003:>86 003587 003588 003589 003590 0035 9 1 003592 0035 9 3 003594 0035 05 003'596 003597 003598 003599
OOFt 0(13600 003601 003602 003603 003504 00360',; 003606 00 3607 OOMOR 003609 003"'10 003611 003~12 003613 003614 003615
00E2 0113616 U03617 0036H 003619 00362 U 003621 003"22 "03623 003624 0036;>5 003"2" 0036:>7 003"28 003629 003630 003631
00F3 003632 003633 003634 003635 003636 003637 003638 0036.39 00:1,.,40 OO.~641 00364;;> n036 4 3 003644 003645 on3646 003647
00F4 on3648 U03649 003~50 003651 003652 003653 003654 003655 003656 003657 00365R 00 36 ~o 00~"'60 003661 o n3662 003663
00E5 003664 003665 0031>6/, 00361'7 00356~ 003669 003670 003671 003672 o 0 .~6 7 3 003674 n03675 003~76 003677 003678 003679
00E6 on 368 0 00 368 1 003 68 2 00361'03 003684 0036A5 003686 003687 003!,8A 0036R9 0031\90 00 369 1 00:16 9 2 00~693 On3694 0036 95
001'7 003696 003697 0030911 0036'19 003700 003701 003 702 003703 003704 003705 00370/\ 003707 003708 003709 003710 003711
o OE'B 0r,3712 003713 003714 003715 003716 00:1717 00H1 R 00·H19 003720 003n1 00372;> n037:>:1 00:1724 00H;>5 00372" 003727
OOF9 0(13728 ')03729 003 730 003731 003732 003733 003734 00:1735 003736 0037~7 003731\ 0037~9 00:1740 00:1741 o n3742 003743
o OFA 0')3744 [) 0 3745

003
7
."

003747 003748 003749 003750 003751 003 752 0037'53 003754 0037<;<; 00:1756 003757 on3758 003759
OOES 0 03 76 0 U037 61 on316'; 0 03 763 0037 64 0037~5 003766 00 3 7 6 7 o U 3761'0 0037~9 003770 00377t 00:1772 003773 003774 003775
o OFC on3776 iJ03777 00377~ 003779 C Q 3 780 00 37 ~1 003782 nOn R3 003 7 8 4 OOFR5 DQ378~ ~037P7 OQ:<788 n037A9 0037 9 0 003 791
OOFD OQ379~ 003793 003194 003795 003796 0037 97 003798 00,n9' o 03~00 0038Dl 00380;> n038n3 003~04 003805 003806 003807
o "I'E 0113808 1)03809 003~10 003811 003H? 003813 003 81 4 003815 003'116 003817 003A1 R D0381 '1 0031120 003821 o n3822 003823
o OEF on3824 IJ03 8 25 003~26 0038;> 7 003 92H o O:lfl,9 003~3° 003 8 31 003 8 3;> o 038~3 o 03A34 D n 38 ,'; 003~36 0038~7 003 8 38 003 8 39

242

Appendix H

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cont/d)

o OF'O Ou38 4 O)03841 003042 0038 4 3 0033 44 0038 4 5 003~46 0038 4 7 0038 4 8 003849 003/\5 0 n038~1 003~52 003853 ~~~~1~ 003855
00F'1 003856 003857 on3~5R 00385 9 o 03~oO 003861 003~62 003863 003'164 0038A5 o 03R6f. 0038~7 003A68 003 8 1'>9 003871
00F'2 on 3872 003873 003874 003875 O03~76 003877 003'178 0038n 003880 0038'11 003A82 n038~3 003P84 0038R5 003886 003887
00.3 003888 0038"9 003 rl9 0 003891 003'192 0038 9 3 003'l94 00·3895 0031'\96 003897 003R911 n038QQ 003'100 003901 003 9 02 003903
001'4 or3 9 0 4 003 9 05 o n3~0f. 003 9 0 7 00 390 ~ 003909 003 9 10 003911 003912 003 9 13 003 9 14 n0391 ~ 003"1 6 003917 003"18 003919
00F'5 0t.13920 003921 o 03~2? 003923 003924 003925 003 9 26 003927 003928 003 9 29 003 9 30 0039~1 00:1"32 003933 003934 003935
00,,6 003936 003937 003Y3A 003939 003940 003941 003942 003943 003 9 44 00·3945 003946 003947 003948 003949 003950 003951
001"7 o C3952 003953 003~54 003955 003956 003957 003 9 58 003959 003 9 60 OO39~1 o 0396:? 003%3 003964 003965 003966 0039 67
00F'8 003968 003969 003'10 003971 003~72 0039 7 3 003 9 74 Oc3975 003 9 76 003 9 77 o 03 Q 7R n 03979 003980 003 9 81 003 98 2 o 03 9A 3
00,,9 o ~3984 00.~985 003'/8~ 003987 00 3 ~8H 00~9"9 003 9 90 00399.1 o 0399~ 0039 9 3 003 9 94 003995 003 996 nO~997 0039911 003 999
OOrA 004000 U04001 OO4i10~ 004003 004004 00 4005 004006 00 4 007 00400R 004009 004010 004011 004012 004013 004014 004015

00"8 0114016 00 4017 004ulil 00 4 019 00402u 00 4 021 0041)22 00 4 023 0040~4 00 4 0:>5 0040:>" 0040?7 004028 00 4 0;>9 00 4 030 0040~1
OOF"C Ou 4 032 1)0 4 033 004u34 00 4 035 004036 004037 004038 00 4 039 004040 00 4041 004042 n0404.~ 0040 44 004045 00 4 046 004047
OOrO 004048 0040 49 004u50 004051 004052 0040~3 004054 00 4 055 004056 004057 00405R 0040~9 004060 0040"1 004062 004063
o OF'E 004064 004065 004066 004067 o 0406~ 0040h9 004070 00 4 071 004072 004073 004074 00 4 075 0040 76 004077 00407A 0040 7 9
OOH on4080 004081 004082 004083 004084 004085 004118& 00 4 087 0040811 0040R9 004090 0040 Q1 004092 00 4 0"3 004094 0040 9 5

0100 004096 004097 004 I] 98 004099 00410U 004101 004t02 004103 004104 004105 o 0410~ 004107 004108 004109 004110 004111
0101 on4112 '104113 004114 004115 004116 00 4 117 00411R 004119 004120 0041>'1 00412<' no 41' ~ 004124 004125 004126 004127
0102 o u4128 004129 004130 004131 004132 004113 004134 004135 004136 004U7 0041311 0041~9 004140 004141 00 4142 004143
010 3 OU4144 004145 004 146 004147 00414 H 004149 004150 004151 004152 0041~3 004154 ~O4155 004156 004157 0041511 004159
0104 01)4160 004161 004162 004H3 004164 004165 004166 004107 004168 004169 004170 004171 004172 004173 004174 004175
0105 004176 004177 00417A OG4179 0041tlO 0041~1 00418? 0041'33 004184 0041A5 004186 n041~7 004188 0041A9 004190 004191
010b 01)4192 '.I 0 4193 004194 004195 004196 004197 004198 004199 004200 004201 004:>0:> 00 4 203 004204 004205 004206 004207
0107 004208 1)0 4209 o 04~10 00 4211 00421 " 00 4 213 00 4 214 00 4 215 004?H 00 4 217 004?1 A 00 4 219 004220 00 4221 on4222 00 4223
0108 0114224 004225 004aA 0042?7 00422~ 00 422 9 004::>30 00 4231 004:>3? 00 4233 004234 o 042~0; 004236 004237 00 4 2311 00423 9
0109 ou4240 004241 00424? 004243 004244 004245 004246 004247 004248 004249 004250 0042~1 004252 004253 004254 004255
010 A 0(14256 (J04257 00425'1 0042'59 004260 o 0 42~1 004262 004263 004264 0042"5 004?6!> 0042Q 004268 0042"9 004270 004271
0108 0[14272 004273 004~74 00 4 275 004276 00 4277 004?7R n042n 004280 0042Al On4?B? on42~3 004284 0042R5 00 4 286 004287
010C 0,,4288 00 4 289 004~90 00 4 2 9 1 00 4 29 2 00 4293 00 4294 00 4295 004:>9A 0042Q7 00 4 2911 no42~9 00 4 300 00 43 01 00 43 02 00 43 03
0100 01:4304 004305 004JOl> 00 4 307 00430 e 00 4 3119 004.\10 00 4311 o U 4312 00 4313 004314 004315 004316 00 4 317 On 4318 004319
010E o U 4.320 004321 00 4 32:> 004323 004324 00 4325 004126 00 4327 004328 00 4329 00 4 330 0043~1 004332 00 4333 00 4334 00 4335
010F" OU4.336 004337 00413A 004339 004340 00 4341 004.H2 00 4 3 4 3 004344 004345 00434f. 00 4 3 47 004341\ 00 4349 00 4 3 5 0 00 4351

0110 0[14352 GO 4353 004354 004355 004356 00 4357 004358 00435g 004360 00 4361 004362 0043~3 004364 00 43"5 00 4 366 004367
0111 004368 U04369 004370 004371 0043n 004373 004374 00 4375 004376 004377 00437A 00437Q 004380 0043Rl 00 4 382 004383
0112 OU4384 ')04385 oa4S8~ 0043 H 7 00438~ o 0 43~9 004,\90 00 4391 004.392 00 4303 00439 4 n 043Q~ 00439" 00 4397 00 4398 00 4399
0113 Ou4400 U 04401 OQ440? 004403 00440 4 004405 004406 004407 o 0440A 004409 004410 00 44 11 004412 004413 00 4414 004 415
0114 0,14416 004417 004411' 004419 00442u 004421 004422 004423 004424 Q044?5 00442" 00 44 '7 004428 0044;>9 004430 004431
0115 004432 00 4 433 00 44 3 4 0044~5 004430 00 4 437 004438 00 44 39 OQ4440 00 444 1 00444' 00444~ 004444 00 44 45 on4446 00 4447
0116 00 4448 00 4449 00 445 0 00 445 1 00 4452 00 4453 00 4454 00 4455 00 4456 00 4457 00445~ n044~9 004 46 0 00 4461 00 446 2 00 4463
0117 004464 004465 00446A 004467 00446H 00441>9 004470 004471 004472 004473 004474 004475 004476 004477 004478 004479
0118 004480 ')04481 00448:> 00441'3 004484 0044il5 004486 0044 A 7 004488 0044119 OQ4490 004401 004492 004493 004494 004495
0119 004496 ')04497 00449A 004499 00450 II 004501 004502 004503 004504 004505 00450A 004507 004508 004509 004510 004511
011A 004512 Q04513 OQ4514 004515 004516 004517 004518 00 4519 004520 004521 00452:' n045,~ 004524 004525 00452" 004527
0118 0114528 004529 004':>30 004531 004532 004533 004534 004535 0 0453 6 00 4537 0045311 n045~9 004540 004541 004542 004543
011C on4544 u04545 00454t- 004547 00434~ 004549 004-;50 004551 004~52 00450;3 004554 0045~~ 004556 004557 004558 004559
0110 004560 004561 00456:> 0045~3 004564 004565 004~66 00451> 7 00456A 004%9 004570 004571 004572 004573 004574 004575
011E 01)4576 U04577 00457~ 004579 00458" 0045"1 004582 00 4583 004584 0045~5 00458'" 0045 0 7 004588 0045119 0045 9 0 004591
011F 004592 U045 9 3 00 4594 00 4595 00 4 396 00 45 "1 00 4 '>98 00 4599 004 6 00 00 46 n 1 00 46 0<> 00 46 03 004(,0 4 00 46 05 00 46 06 00 46 07

0120 0,:41>0 8 tJ 0 400 9 00 46 10 00 46 11 004~12 00 46 13 o 04~14 00 46 15 0)41,1 6 00 46 1 7 004"1 'I 00 46 1 9 004"20 00 46 :>1 00462? 00 46 23
0121 o r'41>24 ,104625 004~2A 0040?7 00462~ 004629 004630 004631 00463? 004633 004"34 ~ 046~0; 004f.36 n04637 00463~ 004639
0122 0(,4A40 d04641 OQ4042 004643 004~44 004~45 004646 004647 004!>48 004649 004~50 0046~1 004(,52 004653 004654 004655
01?3 0114!>56 J046~7 Ory465R 0046'59 o 04 ~o'.J 0046~1 004f,6? n0461>3 o 04~64 00461,5 004A6f. n 046'7 004"68 0046"9 0041>70 004671
0124 0,14,,72 'J04673 0041>74 004675 004~76 00 4677 004678 00 4679 004680 0046 R1 004"A? o 04t..~ 004,,84 0046A5 004681, 0046fl7
01?5 o r'468~ :104689 004090 004691 o 04 ~<,I2 0041),/3 004694 00 4695 004696 00 4697 o 041>9~ 004609 0 04 7 00 00 47 01 0 04 702 00 4 7 03
0126 0('4704 U04705 00410" 004707 00470,:s 004709 004710 004711 004712 004713 004714 0047' 0; 004716 004717 on47B 004719
0127 0[<4720 U04721 00412:> 004n3 004724 004725 004726 004727 004728 0047;>9 004730 nn47~1 004732 004733 00 47 34 004735
0128 00,4736 'J 04 7 ,37 00473 R 004739 00474J 00 4 741 00 4 742 no 4 7 43 004744 00 47 45 004741> n 04 7 4 7 004748 00 474 9 00 475 0 004751
0129 0' .. 4752)0 47 '53 00 4154 00 47 <;5 00 475 " o 047?7 00 4758 n 0475~ 00 476 0 00 47 "1 00 47 6' 00 47 '3 004764 00 47 "5 00 4766 004H7
012A 0',4768 U04769 004170 004771 004772 00 4 773 004774 00 4775 004776 004777 00477R no477Q 004780 00 4 781 004782 0047!!3
0128 0"4784 J 0 4 7 R5 004181> 0047A7 00476'< 0047M9 004190 00 4791 004792 004793 004794 00470<; 004796 00 4797 0047911 0047"9
012C 0[14800 1.104801 o 04~02 004803 004904 004805 004~01'> 004807 004~08 004809 0041'10 004811 0041'12 004813 004 8 14 004815
012D o n4!!16 004817 004~1~ 004819 o 04 ~2u 0048?1 004~22 00 4823 004~24 0048?5 004R?A n 048?7 0041'28 00 4 8:>9 on4830 004831
012E 004 8 3 2 004 8 33 004 d34 004835 004 93 6 004837 004~38 004839 004 8 40 004 8 41 004 R4:> on484~ 004 A44 004 8 45 0041'\46 004847
012" 0 1]4"48 ')04849 004«50 004851 004952 00 4053 004~54 004855 004856 0048<;7 o 04R5A 00480;9 004R60 004861 on4862 004863

ODO 01)4864 1.10 4865 004'6~ 0048~7 00436" 004869 U 04>l70 004871 o 0487? 00 4873 o 04A74 n 04875 0041\76 004877 OO4B7R 004879
0131 o r:4~80) 0 4881 004 :18:> o 04fj83 004 'le4 o 0 48~5 iJ04rl86 004887 o G4R8R 0048 A 9 004R90 0048 0 1 004A92 004893 004R94 0048 9 5
0132 0.'4.~96 d04897 o 04~9~ 004899 o 04 ~O C 0049;]1 004 iO 2 004903 004 9 04 00 49 05 o 04 9 0f. n 049n7 004908 00 49 09 00 49 10 004911
0133 0'14912 '10 49 13 00 4 '11 4 00 49 15 004~16 00 49 1 7 00 4 ~1 A 00 49 1 ~ 00 49 20 00 49 ;>1 ory49n n 049,~ 00 49 2 4 00 49 :>5 o 0492~ 00 4927
0134 0'.14928 004929 004-130 004931 004~32 004~33 004934 00 4935 004936 0049~7 o 0493A nn49~9 004940 00 4941 00 49 42 004943
0135 0"4944)04945 004-146 004947 004 ~4 ~ 004949 004/'>0 n 04951 o 0495? 0049<;3 004954 n049=;0; 004956 n 0490;7 on4958 004959
0136 o r4960)04961 004 -16;> 0049~3 004~64 004965 004'166 004967 o 0496~ o 049~9 004970 n 04971 004972 00 4973 on4974 004975
0137 0')4976 Q04977 00 4 >'7/\ 004979 004 ~8 U 0049Al 004~B:? 004983 004~84 0049~5 004986 00 49 .7 004988 0049R9 004990 004991
013 8 0"49<,12 <> 0499 3 004-194 004995 004~9h 004997 004 '198 n04999 005000 0050 n 1 005002 0050n~ 005004 005005 00500"> 005007
OD9 0"5008 1105009 005010 005011 005n12 005013 005014 005015 OOIjOH 005017 0050l A 0050' " 005020 005021 005022 005023
013A 0[1:>024 !105025 00502f. 005027 005028 o 0~029 005')30 00"031 OJ503;> 00'>033 005034 on50~o; 005036 005017 005038 005039
0138 0"5048)050 4 1 o 05'J42 005043 005n44 005045 005')46 00'0047 0051)48 00"049 005050 o n50"1 00<;052 00'5053 005054 005055
013C 0·,5056 'J 05057 OO?)5B 0050<;9 005000 000; 0 hl 005')62 o 050~3 005064 005065 o 05n66 n 050<7 005068 005069 0050 7 0 0050 71
0130 0"5072)05073 005.,74 005075 005076 005077 005178 005079 005080 00'OOA1 00508;> n050·3 o 0'i0 84 n 0~085 0050tll) 005087
o 13E 0(:5088 i) 00;0 89 005.190 005091 005092 00'i093 005094 00509, 005~9f. 0050Q7 o 0509A 0050QQ 000;100 005101 005102 005103
013F 0"5104 ')05105 On510~ 00'5H7 005103 005109 005110 005111 00'5112 005113 005114 ~ 0 511 <; 00~11f' 005117 o 0511R 005119

243

Page Missing From Original
Document

Appendix H

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cont'd)

0190 0,,6400 '.'06401 006 4 02 006403 006404 00M05 006406 006407 00640 A OO~409 006410 006411 00~412 ~0~413 on 64 14 00 64 15
0191 or!6416 U 06417 o 0641 A 006419 006420 OOM?l 006422 00 64,23 006424 0064;>5 006426 n 064:>7 o 0 ~ 4 28 00~4:?9 00 64 30 006431
0192 006432 U06433 006 434 0064~5 006436 006437 006438 0064,~9 006440 006441 00644:> n0644~ 006444 n 0 ~445 00 644 6 006447
0193 006448 006449 006450 006451 006452 006453 006454 006455 006456 00645-7 006458 n064~9 006460 n0641,1 o n646? 00 6 463
0194 on6464 006465 o 0646~ 006467 006468 006469 006470 006471 006472 006473 006474 00647'5 006476 00~477 on6478 006479

0195 006480 006481 006482 006483 006484 0064~5 006486 006487 006488 OO"4~9 00649n 0064 91 006492 o 0 ~493 006494 006495
0196 006496 006497 006498 006499 006500 006501 006'502 006503 006504 006505 006'50~ 006507 00~'508 OO~509 006510 00"511
0197 OQ6'512 006513 006')14 006515 006~16 00 6517 006518 006519 006'520 001,5'1 006';:?:? na 65n 001.'324 00 ~525 o ~6526 00"'527
0198 0116528 006529 006530 006531 006532 006533 006534 006535 006536 006537 0065311 0065~9 006<;40 00~541 006542 006543
0199 006'544 006545 00654~ 006547 006548 006549 006550 006551 006')52 0065<;3 0060;54 n065<;'5 00(,556 0065'57 on65511 006559
019A 006560 006561 006"6:1 006563 006564 006565 006566 006567 006<;68 00651>9 006'570 006571 00('572 o 0 ~573 006574 006575
01<1B 006576 006577 006:>7A 006579 00658u 00~5Al 006582 0065113 00(,584 o 065A5 006581\ n065~7 0060;88 nO~589 0065 9 0 001,591

°1 9C 006'592 8065 9 3 0065 9 4 006595 0065 9 6 0065 9 7 006598 0065 9 9 OD6600 006601 00660:> 0066n~ 006604 00~605 006606 006607
0190 006608 006609 006610 006611 006612 006613 006614 006615 006616 006617 006618 006619 00(,620 o 0 ~621 006622 006623
019E 006624 006625 006626 0066;>7 00652~ 006629 006630 006631 006632 006633 006634 n066~'i 00M36 00~637 00 66 38 006639
019F 006640 006641 006642 006643 006544 006645 006646 006647 006648 006649 006650 0066<;1 006652 00~653 on6654 006655

OlAO o U6656 006657 006058 006659 00666U 006661 006662 006663 006664 006665 006666 0066(,7 006668 006669 006670 006671
OlAl 006672 0066 7 3 001>674 006675 006s76 006677 006678 00667'1 006680 00661'11 00668:> n066"3 006684 o 0~6A5 on6686 006687
OlA2 0(16688 0066 89 00 66 90 006691 00659 2 006693 006 6 9 4 006695 006 6 96 00 66 9 7 000/'91\ n06699 006700 006701 006702 006703
01A3 00670 4 006705 006 7 06 0067n7 00670~ 006709 006710 006711 006712 006713 006714 006710; 006716 006717 on67111 006719
01A4 006720 006721 o 0612? 006723 006724 006725 006726 006727 006728 006729 006730 o 067~1 006732 006733 on6734 006735
OlA5 OQ6736 Il06737 006738 006739 006740 006741 006742 006743 006744 006745 006746 006747 006748 006749 006750 006751

olA 6 on 675 2 ~06753 00 6754 00 6755 00 6756 00 6757 00 6758 00 6759 00 676 0 00 676 1 o 0676? 00 6U 3 00 6764 00 6765 00 6766 00 6767

01A 7 006768 006769 006770 006771 006772 006773 006774 006775 006776 006777 006778 006779 006780 OO~781 OO678? 006783
01A8 006784 006785 006786 006787 00678e 006789 006790 006791 006792 006793 006794 006790; 006796 no~797 006798 006799
OlA9 0(>6800 006801 006~02 006803 006~04 006815 006 8 06 006807 006808 0068n9 006810 006811 00('812 006813 006814 006815
01AA 0061116 006817 006818 006&1 9 006320 006821 006822 006823 o 06il24 006825 006A;>6 0068" 006828 00~829 on6830 006831
OlAB 006832 0068 3 3 006 034 006835 0069 3 6 0068 3 7 006838 006839 006840 0068 41 0068 4 :> n068 4 3 0061'44 00.,8 45 on6 84 6 0068 4 7
OlAC 006848 006849 006~50 006851 006~52 006853 006d5"1t UllO-a?3 -~15 - --om;1l"57' -~ -1'I00-"8""q ~ olf/>81>r -- 0l1080"2" - -If(Jo"803
OlAO on6864 UOl,865 006<l6~ 00681-7 006~6~ 0068'>9 006R7n 00687t 006il72 006873 0061174 n06870; 006A76 00~877 00687~ 006879
01AE 0(16880 0068 81 006,,82 00681'3 006384 0068"5 006886 00 6887 o 06R88 O068A9 006 A9 0 00 68 °1 0061\92 o 0 ~893 006894 006895
OlAF on6896 006897 o 06 1i 98 006899 006~OO 00~901 006 9 02 006 9 03 006 9 04 006 9 05 006 9 06 on 69 0 7 001> 9 0 8 o 0 ~909 00 69 10 00 6911

01RO 00 69 12 00 69 13 00 691 4 00 69 1 5 00 691 6 00 69 17 00 69 1 8 00 69 1 9 006920 00 69 21 00 69 2:1 n 069 '3 001>92 4 n 0 ~9;>5 on 6921, 00 69 27
01Bl 006928 006929 006)30 006931 006~32 006933 006934 006935 006936 006937 o 06931l 0069~9 006940 006941 006942 006943
01R2 Or6944 U06945 006946 006947 006948 006949 006950 006951 006952 0069'53 006954 n069<;0; 001>956 OO~957 00695~ 006959
01R3 006960 006961 006'/62 006963 006964 001>965 006966 006967 006968 0069!)9 006970 006971 00~972 006973 006974 006975
01R4 orb976 006977 00697R 006979 006~80 0069Rl 006 9 82 006983 006 9 84 0069 A5 006986 n069"7 006988 OO~989 006990 006991
01RS on6 992 1) 0 6 993 000)94 006995 006 99 0 006 99 7 006-- 9 8 006999 007000 007001 007002 00700~ 00700 4 007005 007 00 6 007007
nlA6 0[<7008 007009 0071110 007011 007012 007013 007014 007015 007 Q 16 0070t7 0070111 007019 007020 007021 00 7 022 007023
01R7 007024 007025 007026 007027 007028 007029 007030 007031 007032 0070~3 007034 no 70 ~o; 007036 007037 007038 00 7 039
01R8 007040 007041 007042 00 7 043 007044 00 7 045 007046 00 7 047 007048 00 7 049 007050 0070~1 007052 00 7 053 00 7 054 00 7 055
018 9 00 7 056 00 7 0 57 007u5A 00 7 059 00 7 06 0 00 7 06 1 00 7 062 00 7 063 00706 4 00 7 065 0070M no70Q 00 7 0 68 00 7 069 00 7 07 0 00 7 0 71
01AA or7072 007073 007074 007075 007076 007077 007078 007079 007080 0070111 007082 0070"3 007084 007085 007086 007087
018B o r7088 007089 o 07u90 007091 007092 007093 007094 007095 007096 007097 007n9~ 0070 99 007100 007101 007102 007103
011?C 0117104 007105 007106 007107 007108 007109 007110 007111 007112 007113 007114 no 7110; 007116 007117 on7118 00 7119
01RD O[l712U 00 7121 00 7 122 007123 00 7 124 00 7125 007126 00 7 127 007128 00 71;>9 007130 0071~1 007132 00 7133 00 7134 00 7 135
01RE 007131> 007137 00 71 3 8 007139 007140 007141 007142 007143 007144 007145 00714" 007147 00714 8 007149 007150 007151
01RF 0(17152 007153 007154 007155 007156 007157 007158 00 7159 007160 00711\1 007162 0071q 007164 007165 007166 00 7167

01CO 007168 u07169 007170 007171 007172 007173 007174 007175 007176 007177 0071711 ~ 0 71 , 9 007180 o 071Rl 0~7182 007183
01el 0"7184 'lO7185 00718~ 0071~7 0071brl 0071f'9 007190 007191 007192 007193 007194 0071Q0; 007196 007197 007198 007199
01c2 0:'7200 ~ 07201 o 0720? 007203 007204 00721)5 007201> 007207 o G 72 08 007209 OOn10 00 7 211 007?12 007213 007214 00 7 215
01c3 0,721 6 U 0 7217 o 0 721~ 00 7 219 00722u 0072?1 00 7 222 00 7 223 007224 00 72'5 00 7 226 n 072:>7 007?2 8 n072?9 00 7 2 3 0 00 7231
01C4 007232 007233 007234 007235 007236 007237 00n3A 00 7239 007240 007241 00724:> 007243 00?:?44 007245 007246 007247
01e5 0[7248 J07249 007250 o 0 72~1 0072S2 007253 001254 00 7 255 OiJ7256 007257 0072511 n 07259 007260 007261 on7262 007263
01C6 OJ 7264 Q 0 7265 007 ?-66 007267 o 0 726~ 007269 007270 007271 007272 007273 00n74 007270; 00?:?76 007277 on7278 007279
01e7 0: 7280 J07281 00728? 007283 iJ 0 7 2b4 00 72 95 0072b6 007287 007288 0012119 007290 n07291 oon92 007293 007294 007295
01e S 007296 00 7 297 00729~ 007299 007 ~ 0 Q 00 7 301 0 07 302 00 7 303 OH104 00 7305 007306 00 730 7 o 07~08 007309 00 7 310 00 7 311
01C9 0 0 7312 IJ 0 7313 007314 007315 007316 00 7 317 007118 00 7319 007320 oo73n 007322 n 073'1 007324 007325 00 7 326 00 7 327
01CA 007328 007329 007330 007331 007332 007333 007334 007335 00n36 0073~7 OO733~ o 073~9 007340 007341 00 7342 007343
01CB or7344 U07345 007346 007347 00734d 00 7349 00n50 00 7 351 oon5:> 0073'53 007354 on73~'i 007356 00 73'57 00 7358 00 7 359
01cC or7360 007361 007362 OO73f.3 007364 007365 007366 00 7 367 00736A 00 73~9 00n70 00 7 371 007372 007373 007374 007375
01CO 0(17376 007377 00 737 8 007379 00738U 0073rll 007,382 00 7 383 00738 4 00 73~5 00ne 6 n 073.7 007388 00 73 89 00 7 390 00 7 391
01CE 0('7392 007393 007J94 007395 007396 007397 007.398 00 7 399 007400 007401 007 4 02 00740~ 007404 007405 00 74 06 00 74 07
011':F 007408 007409 007410 007411 007412 007413 007414 00 7 415 007416 00 7417 OO741~ no 7419 007420 007421 on7422 00 74 23

01no on7424 007425 007426 0074:?7 00 7 42~ 007429 007430 007431 007432 007433 007434 n 074~'5 007436 no 7437 00 74 38 00 74 39
01nl 0:17440 U07441 007442 007443 007444 007445 OO744~ 00 7 447 007448 007449 00745 n no 7 4= 1 007452 00 7 453 00 7 454 00 7 4'55
01n2 0(17456 u 0 7457 00745 8 007459 00746U 00 74 ~1 007462 007463 007464 00 74~5 OQ74M OO74q 007 4 68 007469 007470 007471
01D3 0<17472 007473 007474 007475 007476 007477 00747A 007479 007480 0074Al 00748;:> n074"~ 007484 0074115 On748" 007487
0104 or 7488 J07489 00 7 490 007491 007492 007493 007494 007495 007496 007497 00749a n 0 74~9 007500 007501 007502 00 7503
0105 007504 007505 007506 007507 00750 d 007509 007510 007511 007512 0075t3 007'514 00 7 510; 007516 007517 007518 00 7519
010 6 0117520 ;)07521 00752:> 0075?3 007524 o 0 75~5 007'526 00 7527 0075211 00 75;>9 0070;30 O075~1 007532 007533 00 7534 00 7535
01n7 007536 JO 7537 007 ?3A 007539 00754tl 007541 007542 00 7 543 007544 007545 007'54" 00 750 0070;48 007549 007550 00 7551
01nB o l' 7552 007553 007554 0075'55 007556 o 075?7 007558 00 7559 007'560 0075"1 007'56:> 0075'~ 007'564 n07565 007566 00 7567
01n9 o r,7568 U 0 7569 007~70 007571 007 ';72 007573 007'574 00 7 575 o D 75 7 6 007577 0070;7· n07579 007'580 O075fll 007582 00 7 583
nlnA 007584 007585 007?8" 00 75A 7 0075Bd 0075~9 001'590 00 7591 007592 007593 007594 OO75Q5 007'596 007597 00 7598 007599
01n8 0"7600 'J07601 On760:? 007603 007504 007605 007606 007607 007608 007609 007610 n 07611 007~12 n07613 on 7614 007615
Oloe on7616 00 7617 007618 007619 00762iJ 00 7 621 007"22 00 7 623 007624 00 7625 00 7 62(, no76?7 007628 00 7629 00 76 30 00 763 1
0100 0 0 7632 u0 7633 007634 007635 007636 00 76,7 007'>38 00763~ 007640 00 7 641 007642 00764~ 007644 on 7645 00 76 46 00 7647
01nE 0,!7648 tl 0 7649 007650 007651 007552 00 7653 007'>54 00 7655 007656 00 7 6<;7 00765 A 0076~9 OQU60 00 76 61 00 766:2 00 7663
01Tl, o r76b4 307665 007666 00760 007~6~ o 07b~9 007'> 7 0 00 7671 00767<> 00 7673 0071,74 OO767~ 00n76 00 7677 00767~ 00 7679

245

Appendix H

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cont'd)

OlEO 007680 00 7681 007682 00768.3 007~84 0076 B5 007686 0076 8 7 007688 0076 A9 007690 00 7 6 9 1 007692 00769 3 00 7 6 9 4 00 7 6 9 5
01El 007696 007697 00769B 007699 007700 007701 007702 007703 007704 0077n5 007706 0077n7 007708 007709 007710 007711
011=2 00,7712 007713 007714 007715 007716 007717 00771~ 007719 007720 007721 00772? n077?~ 007724 007725 00 77 26 007727
01F.3 on7728 007729 007 730 0077~1 007732 007 7 33 007734 007735 007736 007737 on 77 3R o 0 77~9 007740 007741 00 774 2 007743
01F4 007744 no7745 on 7 7 46 007747 00 77 4'1 007749 007150 007751 007752 007753 007754 no77~o; o 0775() 00 77 57 on 7758 00 77 59
01E5 007760 807761 0077():? 00771\3 00776 4 00776 5 007766 n07767 007768 007769 007770 ro7771 007172 007773 007774 007775
01E6 O{l7776 007777 00717R 007779 007780 0077 81 007782 007783 007784 0077115 007786 Oo77Q7 007788 007789 00 779 0 007791
011=7 0(,7792 0077 9 3 007794 007795 007796 0077 9 7 00779A 007799 007'l00 007801 007 8 02 n078n~ 0071'04 007805 00 7A 0" 007807
01F8 on7 A08 007809 007 810 007811 007912 007813 0071314 007815 007816 007817 o n781 ~ ~n781 'I 007R20 0078:?1 on7A2:1 007823
01F9 0[17 8 2 4 00 78 25 007d2~ 0078:?7 007 ~ 28 00 76 29 00 n3 0 00 783 1 00 78 32 00 78 33 00 711 3 4 OO78~? 007 A36 00 78 37 On 7838 00 78 39
01FA 0117840 !)07841 on7~4:? 007B43 007~44 00 78 45 007846 007B47 007848 007B49 007850 0078~1 007~52 007853 on7 8 54 00 7855
011=8 0;17flt;6 u0 7857 0071:l5A 00785 9 007%0 o 078~1 007~62 007B63 007'164 0078f>5 007 R66 n078p 007 11 6 8 ~07869 on7 87 0 00 787 1
01EC 007872 007873 007~74 007875 00 79 76 007877 007878 oo78n 007880 0078'1l. 007882 n07 8Q 3 007A84 007885 On 78B6 007887
01FO o "7'l88 007889 007<i 9 0 007891 007~92 007 89 3 007894 00 789:; 0079 9 6 0078 9 7 007898 n078Q9 007'100 007901 007 9 02 007 9 03
°l EE 007904 007905 007'/06 007907 007'108 007909 007'110 0079 11 0079 12 00 79 1 3 0079 1 4 OO 79 i? 007916 007917 00 79 1 8 007919
01EF 007920 00 7921 007 Y22 007923 00n24 007925 007 9 26 007927 Oil7928 007929 007 9 30 0079~1 007 9 32 0079:13 00 7934 007935

01ro o D 7 9 36 u0 79 37 007 y 3A 00 7 93 9 007'140 00 794 1 00 79 42 00 794 3 007 9 44 00 79 45 o 0794f, 00 7947 007 9 4B 007949 00 795 0 00 79 51
01.1 00 79 52 00 79 53 on 79 54 00 79 55 00n56 00 79 57 00N5/l 0079?9 007'160 00 79 61 007 9 6:;> no79~3 007964 00 79(,5 00 796 6 00 7%7
011'"2 o p 7968 00 79 69 O0 7n o 00 79 71 007'172 00 797 3 007n4 00 797 5 007'176 00 79 77 007 9 7 R n0797Q 007 98 0 007 9A l on 798 2 00 798 3
01F3 on7984 00 798 5 00 798 ", 0079 A 7 00nS8 00 7989 007 99 0 00 799 1 007 99 2 007 99 3 007 99 4 00 799 5 007'196 00 799 7 00 79911 00 7999
OlF4 0(,8000 '10 80 0 1 OObJO? 00 8 003 008004 001'005 00 8d 0 6 00 8 007 00800A 008009 008010 00 8 011 008012 008013 008014 008015
01F5 on 8 016 'lOA017 008U1 A 00 8 01 9 00 8 020 OORO~l 008022 00 8 023 0011024 00 8 0:>5 00802~ n080?7 001l02A 00~0:?9 00 8 030 00 8 031
01F6 0 0 8032 'lO8033 o Qb U34 00 8 035 008036 OO!' 0 37 008038 00 8 039 008040 QO<;041 00804~ n080·~ 0011044 nO~045 00 8 046 008047
01n 0:18048 ~O~049 0081)50 008051 008052 001\ 0 53 008u54 00 8 055 00805~ 0080<;7 OO805A 0080~Q 00R060 OOQ061 00 8 06:;> 0080"3
01F8 on B 0 64 0)08065 00886,., 0080~7 00806 H 00 R 069 00B070 00B071 008072 008073 o 08n 74 00 8 070; 0011076 OO~O77 008078 00'l079
01.9 0'.IB080 ')OR081 008J82 008083 008084 00RO~5 008086 00R087 00808A 0080119 008090 0080 '11 00A092 00~093 On8094 008095
01rA 0 0 8096 oo~o97 0080911 008099 00810U 001'101 00810:> 00 8103 00A104 00 III n 5 008106 008107 00R108 00R109 008110 008111
OHB 0~~112 ')011113 008114 008115 008116 001'117 OOSl1A 001l11~ 0011120 00 '11 21 OoBl2:? 0081n 0011124 00 Al?5 00812" 008127
olre o [l812~ 1)0'1129 00!H30 008131 008132 00A133 00B134 001:1135 00A13'" 00'l137 00813 11 n 081 ~9 00A140 0081 4 1 00 8 1 4 2 00 8143
01FO 0'11:1144 ~09145 008146 006147 008148 00A149 00B150 00 8151 008152 00810;3 008154 n081~0; 00Rj56 nO R1<;7 00 8 158 008159
OlFE 0llb160 U08161 00E16:? 008163 008164 00 8 165 008166 001:1167 008168 00B169 008170 00 8 171 00llj72 noll 173 on8174 008175
OlF. 0(18176 10 8177 OO&17Q 00 8179 0081Bo OO"l A l 008182 00 8183 0~A184 0081 R5 o 08t8~ no 81 Q 7 o 0~188 ~0~lR9 on81 9 0 aO A19l

246

APPENDIX I

SCRATCH-PAD MEMORY LAYOUT AND REGISTER ASSIGNMENTS

Hexadecimal
r----

I T I l I
.. PROCESSOR UTILITY

I ~~ot", .~ .. , -.:,~"t. __ --_._."---

_ PROCESSOR------.j

UTILITY

-I-
RUPT

SK
INTER

MA
REGIS

P
TER

1

CHANNEL

\

ADDRESS
REGISTER

STATIJS
PROGRAM

REGISTER
COUNTER

P1 P1

CHANNEL CHANNEL STATUS
COMMAND COMMAND REGISTER

REGISTER II REGISTER I

-

INTERRUPT INTERRUPT
INTERRUPT

MASK STATUS
FLAG

REGISTER REGISTER
REGISTER P2 P2

._-- -.----
I'''';'"'' I
~ 1/0 CHANNEL REGISTERS - SELECTOR NO.2 ______

P~~~~IS;~R ______

ERAL
POSE

GEN
PUR
REG ISTER

N 0.0
P2

1-- - ----

GENERAL
PURPOSE
REGISTER

·NO.1
P2

CHANNEL
ADDR ESS

REGISTER

1-----

GENERAL
PUR POSE
REGISTER

NO.2
P2

CHANNEL CHANNEL ASSEMBLY
COMMAND COMMAND STATUS

REGISTER II REGISTER I REGISTER

1------

GENERAL GENERAL GENERAL
PURPOSE PURPOSE PURPOSE
REGISTER REGISTER REGISTER

NO.3 NO.4 NO.5
P2 P2 P2

r---- 110 CHANNEL REGISTERS - SELECTOR NO.4 ----.

PROCESSOR ------. CHANNEL CHANNEL
UTILITY

----- .-

RAL
POSE

GENE
PUR
REGI STER

NO
P
.0
1

GENERAL
PURPOSE
REGISTER

NO.1
P1

FLOATING·POINT
REGISTER 1'10.0

-_._.-
_1

-

ADDRESS COMMAND
REGISTER REGISTER II

.--

GENERAL GENERAL
PURPOSE PURPOSE
REGISTER REGISTER

NO.2 NO.3
P1 P1

-t----i----
FLOATING·POINT
REGISTER NO. 2

I
* Word Address Is in Hexadecimal; e.g., 2A Program Counter P3.

CHANNEL ASSEMBLY
COMMAND STATUS

REGISTER I REGISTER

GENERAL GENERAL
PURPOSE PURPOSE

REGISTER REGISTER
NO.4 NO.5

P1 P1

--- -----

FLOATING·POINT
REGISTER NO.4

1

I I
---,

GENERAL
GENERAL GENERAL GENERAL GENERAL INTERRUPT INTERRUPT PURPOSE
PURPOSE PURPOSE PURPOSE PURPOSE MASK STATUS PROGRAM

REGISTER ~ .,,'"'' """"
REGISTER REGISTER

REGISTER REGISTER COUNTER
NO. 15

NO.8 NO.9 NO. 10 NO.n
P4 P4 P4

P4 P4 P4 P4 (WEIGHT)

--- .'--
P4

-------\-- c------- \---_. -'-- r-----

.... PROCESSOR
~ 1/0 CHANNEL REGISTERS - SELECTOR NO.1 ~ !

UTILITY ~

PROCESSOR UTILITY CHANNEL CHANNEL CHANN EL ASSEMBLY
ADDRESS COMMAND COMMAND STATUS

REGISTER REGISTER II REGISTER I REGISTER

-- ---

GENERAL GENERAL GENERAL GENERAL
GENERAL

GENERAL INTERRUPT INTERRUPT PURPOSE PROGRAM PURPOSE MASK STATUS
PROGRAM PURPOSE PUR POSE PUR POSE PURPOSE

REGISTER COUNTER REGISTER REGISTER RE GISTER
COUNnR REGISTER REGISTER REGISTER REGISTER

NO. 15
P2 NO.7

P3 P3
P3 NO.11 NO. 12 NO. 13 NO. 14

(WEIGHT)
P3 P3 P3 P3 P3 P3

---- r---IIO CHANNEL REGISTERS - SELECTOR NO.3 P ~~~~I~~R _____

PROCESSOR UTILITY
CHANNEL CHANNEL CHANNEL ASSEMBLY
ADDRESS COMMAND COMMAND STATUS

REGISTER REGISTER II REGISTER I REGISTER

GENERAL GENERAL GENERAL GENERAL GENERAL GENERAL GENERAL GENERAL GENERAL GENERAL
PURPOSE PURPOSE PURPOSE PURPOSE PUR POSE PUR POSE PURPOSE PURPOSE PURPOSE PURPOSE

REGISTER REGISTER REGISTER REGISTER REGISTER REGISTER REGISTER REGISTER REGISTER REGISTER
NO.6 NO.7 NO.8 NO.9 NO. 10 NO. 11 NO. 12 NO. 13 1'10.14 NO._15

P2 P2 P2 P2 P2 P2 P2 P2 P2 P2

..-- 1/0 CHANNEL REGISTERS - SELECTOR NO.5 P~~~~I~~R ---+

PROCESSOR UTILITY CHANN EL CHANNEL CHANNEL ASSEMBLY I ADDRESS COMMAND COMMAND STATUS
REGISTER REGISTER II REGISTER I REGISTER

GENERAL GENERAL GENERAL GENERAL GENERAL GENERAL GENERAL GENERAL GENERAL GENERAL
PURPOSE PURPOSE PURPOSE PURPOSE PURPOSE PURPOSE PUR POSE PURPOSE PURPOSE PURPOSE
REGISTER REGISTER REGISTER .REGISTER REGISTER REGISTER REGISTER REGISTER REGISTER REGISTER

NO.6 NO.7 NO.8 NO.9 NO. 10 1'10.11 NO .. 12 NO. 13 NO. 14 1'10.15
P1 P1 P1 P1 P1 P1 P1 P1 P1 P1

--

I+--- 1/0 CHANNEL REGISTERS - SELECTOR NO. 6 P~~~~IS;~R --to ...
FLOATING·POINT ~ P~~~L~~S~R ~ '"""'£"" " CHANNEL ASSEMBLY J REGISTER NO. 6

ADDRESS COMMAND COMMAND STATUS

I I REGISTER REGISTER II REGISTER I REGISTER

--'-----

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	000a
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247

