RAYTHEON DATA SYSTEMS

R ‘
e
o . .
I et ;
=0
L> ORCKCK
© ol o

44-7644

" PROGRAMMABLE TERMINAL SYSTEM
PTS-100
PROGRAMERS HANDBOOK

Revision 1

June 1973

PREPARED BY

RAYTHEON DATA SYSTEMS
1415 BOSTON-PROVIDENCE TURNPIKE
NORWOOD, MASSACHUSETTS 02062

PROPRIETARY NOTICE: This document is the property of Raytheon Company,
with the information herein reserved as proprietary to Raytheon Company, and
is not to be published, reproduced, copied, disclosed or used without the ex-
press written consent of a duly authorized representative of Raytheon Company.

PREFACE

This publication was prepared as a reference handbook for
the programing personnel of PTS-100 users. It presents the
information necessary to write programs to be executed on the
PTS-100 and to use the software support systems provided with
the PTS-100. The handbook is organized in distinct parts,

as follows:

PART 1: This part of the handbook presents a programer
overview of the PTS-100 operating environment
and software support available to users of the
PTS-100.

PART 2: This part of the handbook presents detailed
descriptions of the Assembler language and pro-

graming features available to PTS-100 programers.

PART 3: Presented in this part of the handbook are "how to
use'' descriptions of the utility programs supplied
with the PTS-100.

PART 4: This portion of the handbook describes the macro

library files available to users.
The Table of Contents on the following page indicates the

general coverage of information in this handbook. Each of the

four parts of the handbook includes a detailed table of contents.

iii

TABLE OF CONTENTS

R

gl
N

APPENDIX A PTS-100 CHARACTER SET

PART 1

PTS-100 PROGRAMMER OVERVIEW

PART 1
PTS-100 PROGRAMER OVERVIEW
TABLE OF CONTENTS

Page
SECTION 1. GENERAL INTRODUCTION TO THE PTS-100

Central Processor Unit 1:1-1
1.1.1 Program Counter (PC) 1: 1-
1.1.2 Accumulator (AC) 1: 1-
1.1.3 Index Registers 1 and 2 (X1 and X2) 1: 1~
Control Panel 1: 1-

SECTION 2. PTS-100 OPERATING SYSTEM

I1/0O Control Nucleus
Physical I/ O Routines
IOCS Systems Records
2.3.1 I/0O Request Records
2.3.2 Physical Control Records
2.3.2.1 I/O Control Table
2.3.2.2 Interrupt Packets
2.3.3 Special Function Records
2.3.4 Master Service Call Vector Table
2.3.5 Logging Tables

.

L T R R
. P T

[xS)

1

o o

[\
[
O

SECTION 3. PTS-100 SOFTWARE SYSTEMS

Assembler Program 1: 3-1
Utility Programs 1: 3-1
3.2.1 PTS-100 Loader Programs 1: 3-1
3.2.2 Interactive Debug Program 1: 3-2
3.2.3 System Generator Program 1: 3-2
3.2.4 Memory Dump Program 1: 3-3
3.2.5 Peripheral Device Dump Program 1: 3-3
3.2.6 File Update Program 1: 3-3
3.2.7 Disc Support Programs 1: 3.3

3.2.7.1 Disc Volume Preparation 1: 3-3

3.2.7.2 Disc Allocator 1: 3-3

3.2.7.3 Disc Dump 1: 3-4
3.2.8 Cassette Utility Program 1:3-4

1: idi

Figure

1-2
1-3

1-4

Table

1-1

LIST OF ILLUSTRATIONS

Interface Relationship of Executing Programs, IOCS
Monitor, and Physical I/ O Devices in the Equipment
Configuration of the PTS-100

Relationship of I/O Request Records ’

Format and Usage of FIOB and IOCQ Entry by IOCS

Format of the PIOT Generated by IOCS

Format of the Input/Output Control Table (IOCT)

Format of PCB Entries in the IOCT

LIST OF TABLES

Logical-to-Physical Pointer Entries in the IOCT

1: iv

1: 2-5
1: 2-6

1: 2-8

Page
1: 2-7

PART 1.
Section 1.

The Programable Terminal System 100
(PTS-100) contains a general purpose computer
consisting of a central processor unit (CPU), a
modular semiconductor (MOS) main memory ex-
pandable from 8192 to 65536 bytes, a control
panel, and both low speed and high speed device
controllers. A customer engineer's console is
also optionally available as an expanded console

for debugging programs.

The low speed controllers accommodate
peripheral devices that operate at data transfer
rates at or below 9600 bits per second, including CRT
display devices, card readers, serial printers,
The

high speed controllers provide interface for pe-

teletype devices, cassette tape drives, etc.

ripheral devices that operate at data transfer
rates in excess of 9600 bits per second such as
disc devices, magnetic tape transports, and host
computer channel interface devices such as the
IBM 360/370 multiplexer/selector channel
interface.

The memory size and peripheral equipment
configuration of a given PTS-100 installation are
flexible so that individual users can select those
components especially suited to their application
processing needs. Certain device controllers
and the peripheral devices that may be attached
to them are offered to users as ''standard"
equipment. That is, standard hardware equip-
ment is supported by the PTS-100 operating
system--the Input/Output Control System (IOCS)
monitor--which interfaces the CPU, I/0 devices,
and the programs to be executed on the PTS~100.
The IOCS monitor, described in Section 2 follow-
ing, is specially tailored for each standard PTS-
100 equipment configuration via the RDS-supplied
System Generator program, described in Part 3
of this handbook, and the Assembler program,

described in Part 2. If nonstandard devices are

PTS-100 PROGRAMER OVERVIEW

GENERAL INTRODUCTION TO THE PTS-100

to be attached to the PTS-100, the user must
modify the IOCS monitor to accommodate the
devices, as described in appropriate areas with-
in this handbook.

Since the total equipment configuration of a
PTS-100 installation is user-selected, no
attempt has been made in this handbook to de-
scribe the operational characteristics of specific
devices. For this information, the reader
should consult the PTS-100 Reference Manual,
Certain I/O devices are required by various
software programs offered with the PTS-100,
as noted in the detailed descriptions of these

support systems throughout this handbook.

Regardless of the memory size and types
of I/0 devices attached to a given PTS-100, the
CPU and the control console are standard for all
installations. For convenience, information re-
lating to programing the system and programer
usage of the CPU and control console is
presented in summary form on subsequent pages
of this section. For detailed descriptions of the
hardware characteristics of these components
of the PTS-100, see the PTS-100 Reference

Manual.

1.1 Central Processor Unit

The central processor unit (CPU) executes
programs stored in main memory and controls
data transfers between main memory and I/O
devices. The CPU communicates with executing
programs via regisfers, four of which are pro-
gram addressable, CPU communication with
main memory is via the 16-bit processor
Communication between
the CPU and I/0 devices takes place over the

input output bus (IOB).

memory bus (PMB).

The CPU utilizes a 16-bit word, and is
capable of executing one word (short) or two word
(long) instructions. Each word is composed of
two 8-bit bytes, or characters. Memory
addressing is by word (16 bits) or byte (8 bits).
The following methods of addressing may be used

with or without single level indirect miode:

° Absoluie addressing over the maximum

memory capacity of 65,536 bytes.

® Dynamic page addressing of £128 words
relative to the program counter register in
short instructions and £32768 bytes in long

instructions.

Indexed addressing via index register 1 or
index register 2 of +128 words in short
instructions or £32768 bytes in long

instructions.

A 16-bit byte displacement value is used to
compute the effective address of long instruc-
tions, and a 7-bit word displacement value is
used to compute the effective addresses of

short instructions.

CPU instructions are termed ''executable. "
That is, they are assembly language statements
that the Assembler translates to executable
machine language format. Executable instruc=-
tions are provided to accomplish the following:

Arithmetic operations

Branches in program execution

Loading CPU registers with data values

stored in memory locations

Storing contents of CPU registers in

memory locations

Comparative tests of data values

Logical testing of data values

Interrupt masking and level changes

1/0 operations

For a detailed description of executable instruc-
tions and other Assembler language statements,
see Part 2 of this handbook.

The CPU communicates with executing pro-
grams via registers within itself. Four of the
registers are program addressable. They are
the program counter, the accumulator, index
register 1, and index register 2. These

registers are described below.

1.1.1 Program Counter (PC)

The program counter is a 16-bit register
that supplies the addresses of instructions to be
fetched from main memory, and hence directs
the program execution sequence. Normally, as
an instruction word is fetched the PC contents
are incremented by 2 to advance the byte-
oriented address to that of the next program
instruction word, or the second word of a double
word instruction. This sequencing is disrupted
only by the occurrence of a branch instruction or
the CPU response to a priority interrupt. In the
first case, if the branch instruction's conditions
are satisfied, its effective address replaces the
current PC content and initiates a sequential.
change in program processing. In the case of a
priority interrupt, the CPU hardware automatical-
ly saves the interrupted program's current PC
content, and enters the effective address of the
appropriate IOCS monitor interrupt servicing
routine in the PC. The interrupt servicing
routine effects an interrupt return via its last
executable instruction, which restores the saved
content of the PC, thus restarting the interrupted

program at the point of interrupt.

1.1.2 Accumulator (AC)

The 16-bit accumulator (AC) register is the
principal data handling register for the CPU and
is involved in the execution of most instructions.
The accumulator's most significant bit (MSB),
bit 0, is employed as the sign bit (value = 0 for
positive, and = 1 for negative) for arithmetic
operations, leaving 15 bits for fixed-point data
representation of the following range of values:

2P a5

or, in decimal equivalents:
-32,768 < n < 32,767
1.1.3 Index Registers 1 and 2 (X1 and X2)
Index registers 1 and 2 are both 16-bit
registers used, primarily, to provide address

components for the computation of effective

addresses. They may also be used as temporary

storage registers for data and address references.

1.2 Control Panel

The control panel of the PTS-100 computer
provides for primary power and initialization of
computer processing. The power is controlled
by the POWER ON/OFF switch on the console.

Initialization of processing is effected by
depressing the IPL (Initial Program Load) push-
button on the console. Whenever the IPL button
is depressed, a hardwired IPL bootstrap routine
is activated in the Read Only Memory (ROM).
The IPL bootstrap routine then performs the
following:

o Clears all main memory locations to zero

values,

¢ Transfers a section of itself into memory,

beginning at location zero.

O Activates the transferred section, which
then transfers four words (i.e., 64 bits)
from manually set switches to word locations

3 through 6 of main memory, and:

Determines the address of the loading

device from the first word of switch data

Issues a read command to the loading
device to cause the six-byte header
record of the program to be loaded into
main memory. The header record con-

tains the following:

Load address of the program to
be loaded

Byte count (number of characters)
to be read

Execution (starting) address of the
program to be loaded

Reads one record (the program to be
loaded) into consecutive memory loca-
tions, starting at the load address, until
the number of characters specified by

the byte count have been loaded.

Transfers control to the loaded program
and starts its execution at the starting

address specified in the header record.

The Initial Program Load bootstrap is
required to load a one record binary program
into PTS-100 memory. Under typical operating
conditions, the one record binary program is the
Piggyback Loader, which in turn loads the
Absblute/Relocating Loader. The Absolute/
Relocating Loader must be used to load object
programs produced by the PTS-100 Assembler.
Before programs other than the Piggyback
Loader can be loaded via the IPL button, they
must have been assembled by the PTS-100
Assembler, loaded by the Absolute/Relocating
Loader, and then dumped from main memory to
a cassette tape or punched paper tape device.
The procedures for loading and dumping pro-

grams are described in Part 3 of this handbook.

1: 1-3/4

Section 2.

The operating system of the PTS-100 is the
Input/Output Control System (IOCS) which moni-
tors the servicing of interrupts from the multi-
level interrupt system, described in detail in
Part 2 of this handbook. That is, the IOCS moni-
tor optimizes I/O resources in the PTS-100 real
time interrupt environment by interfacing execut-
ing programs, the CPU, and I/O devices. For
any given PTS-100, a specially tailored IOCS is
created by the System Generator and Assembler
programs, as described elsewhere in this

publication.

The IOCS monitor is composed of two major
components: the I/O Control Nucleus and the
Physical I/0O Routines. The Nucleus interfaces
between executing systems and applications pro-
grams and the Physical I/O Routines, which issue
I/O commands %o peripheral devices attached to
the PTS-100 and receive and initiate processing
of I/O interrupts from devices in the equipment
configuration. The interface relationship of the
executing object programs, the IOCS monitor,
and the peripheral devices attached to the PTS-
100 is illustrated in figure 1-1. The structural
and operating characteristics of the Nucleus and
the Physical I/O Routines are described in the

following subsections.

2.1 I/0 Control Nucleus

The I/ O Control Nucleus contains three

groups of routines:

® Level Service Routines, which perform the

following functions:

Service interrupts from I/O devices and

object program calls
~Service "unknown'' interrupts

Restore interrupt levels after interrupts

from other levels have been serviced.

PTS-100 OPERATING SYSTEM

'Y Monitor Service Call Routines, which per-
form the processing required to open, close,
and initialize devices, to perform I/O opera-
tions, and to exit from the éystem when

program processing is completed

e An optional Monitor Log Service Routine,
which produces 32-character messages on

the System Log device.

Within a given IOCS monitor, one set of
Level Service Routines (LSRs) is generated for
each of the interrupt levels 1 - 8. That is, these
routines service interrupts that occur on the
external (device) interrupt levels 1 - 8, to which
devices have been previously assigned. Each set

of LSRs contains the following functional routines:
A level service entry and save routine

A linkage to all Device Service Routines
within the Physical I/O Routines

An "unknown'' interrupt handling routine

A level restore and exit routine.

For each of the 11 interrupt levels, an
interrupt packet, described in Part 2 of this hand-
book, exists in the IOCS monitor. For interrupt
levels 1 - 8, the starting address of the asso-
ciated LSR is stored in the interrupt packet asso-
ciated with the interrupt level. Thus, when an
interrupt occurs, control is turned over to the
LSR associated with the level at which the inter-
rupt occurred. The LSR then transfers control
to one of the Device Service Routines (DSRs)
associated with one or more devices assigned to
the corresponding interrupt level. The DSR that
receives control checks to see if its associated
physical I/O device has an interrupt pending. If
so, the DSR calls the appropriate device driver
routine to service the interrupt, after which con-

trol returns to the LSR, which then returns

PHYSICAL 1/O DEVICES

EXECUTING OBJECT PROGRAMS 10CS MONITOR

DISPLAY
KEYBOARD

APPLICATIONS
PROGRAMS -

SYSTEMS
PROGRAMS o

/O CONTROL NUCLEUS

CARD
READER

— e e

PHYSICAL 1/O ROUTINES

PRINTER
DEVICE

|
|
|
|

OTHER 1/0
DEVICES

Figure 1-1. Interface Relationship of Executing Programs, IOCS Monitor, and Physical I/O Devices
in the Equipment Configuration of the PTS-100

control to the previous interrupt level. If no
interrupt was pending, the next DSR, if any, on
the interrupt level is polled. This polling pro-
cedure continues until the interrupting device is
located. If no device on this level issued an
interrupt, the unknown interrupt error routine
for this level is entered to log an error message
on the System Log device. The level service
restore routine then restores the registers of the
interrupted program, and returns control to the
interrupt level from which the LSR received

control.

The Monitor Service Call (MSC) routines are
entered by the execution of an MSC (i.e., trap)
instruction within the executing program. MSC

routines operate at interrupt priority level 9.

The routines that may be called by the execu-

ting prograni to perform I/O services are the

following:

OPEN routine, which opens a logical unit

(i. e. , device) by initializing the device and
its related software controls so that I/O
operations can subsequently be performed on

the-device

IO ACTion routine, which responds to and
queues requests for input/output operations

on specific devices

CLOSE routine, which immediately closes a
specific logical unit (i. e., device) at the end
of a processing job or to facilitate an error

recovery

L INITialization routine, which resets all I/O

devices on the system

. EXIT routine, which is called when an
executing program exits from the system.
This routine issues a message that the pro-
gram has exited and waits for manual inter-

vention to specify restart of processing.

The procedures for calling these routines from
within the program are described in detail in
Part 2 of this handbook.

The Log Service Routine prints monitor
messages on the System Log device, if thedevice
was assigned at system generation time. These
messages can be used for error logging, operator
notes, or any other short (i.e., 32-character)
messages. Monitor message logging does not
interfere with executing program output of
messages to the System Log device. In fact, no
special prévisions or precautions need be made

within the executing object program.

2.2 Physical I/O Routines

The Physical I/O Routines of the IOCS moni-
tor handle the device-specific hardware/software
interface. They service I/ O device interrupts,
control the transfer of data to and from the phys-
ical I/ O devices, and initiate new I/O actions
when appropriate. They also detect hardware
errors and report them to executing object pro-
grams and in some cases, perform corrective
actions to clear error conditions. The Physical
I/0 Routines include Device Driver Routines and

Device Service Routines.

There is a Device Driver Routine and a
Device Service Routine for each type of device in
the standard PTS-100 equipment configuration.
The Device Driver is called when an I/O request
has been queued in the logical Input/Output Con-
trol Queue (IOCQ) table and the channel is in-

active. The Driver uses the information in the
appropriate entry of the IOCQ to set up the
Physical I/O Control table and initiate the re-
quested I/O action. It calls the Driver Common
routine to perform any required device-

independent processing.

At system generation time, a Device Service
routine is generated for each device assigned to
a given external interrupt level. These routines
identify the cause of an interrupt, update control
and status fields in the IOCQ entry, take any re-
quired actions, and then initiate action on the
next I/O request that is queued as an entry in the
IOCQ table (see subsection 2.3.1).

The level service routine for a given external
interrupt level activates the appropriate Device
Service routine each time an interrupt is queued
for its associated device. When several devices
are assigned to one interrupt level, there is a
Device Service routine for each assigned device.
The relative priority of several DSRs on the same
interrupt level is specified at system generation
time. The Device Service routines run with
interrupts enabled, so that an interrupt of a
higher level can always interrupt processing of a

lower priority interrupt without delay.

2.3 IOCS Systems Records

There are five kinds of systems recordsused
by the IOCS monitor:

e I/0O request records, which include:

Programer defined File Input/Output
Block (FIOB), which has been assembled

into the executing program

Program defined Input/Output Control
Queue (IOCQ) table entry, used by
IOCS to queue I/O requests

IOCS generated Physical Input/Output
Table (PIOT)

Two physical control records:

Input/Output Control Table (IOCT)

Interrupt Packets

. Two optional special function records, the
Search and Translate 1ables, defined by the
programer within the program to be assem-
bled and executed

° Monitor Service Call Vector Table

® Logging tables

The content and usage of each of these records
are described in the following subsections.

2.3.1 I/0O Request Records

There are three kinds of I/O request
records: the FIOB (File I/O Block), the IOCQ
(Input/Output Control Queue) table entry, and
the PIOT (Physical I/O Table).
of the required I/ O request records for one

logical unit is shown in figure 1-2.

Executing Program

10CQ

The relationship

1OCS Nucleus

Table

The FIOB contains the programer defined
That is, the

programer defines the FIOB in the source pro-

information on the I/O request.
gram. At program execution time, the FIOB
information is passed to IOCS when the executing
program issues an IO ACTion service request.
The IOCS extracts the information from the FIOB
and enters it into the next entry of the IOCQ
table.
perform the requested I/O operation, IOCS

When the time comes for the hardware to

moves the information from the IOCQ entry into
the PIOT, where the Physical I/O routines and

hardware devices can access and use it.

While the main data flow is from the execut-
ing program to IOCS and then to the hardware,
there is some status information that the hard-
ware transmits to IOCS for the executing program.
For example, when the requested I/O operation
is completed, the hardware reports the logical
and physical status to IOCS, which makes it
available to the program via the IOCQ entry. The
logical status informs the executing program that
the requested service has been completed, and
the physical status indicates the typé of comple-

tion that occurred.

10CS Physical 1/0O Routines

FIOB
l0cq

i link address

Entry 1

PIOT

10CQ

link address

fee e — — c—

Entry 2

)

10CQ

link address

Entry 3

link a

ddress

e et e e

10CQ Entry 4

‘j.

link address '/

r———-—'——-

10CQ Entry 5

Figure 1-2.

Relationship of I/O Request Records

For each I0 ACTion service to be requested
from IOCS, the executing program must contain
a 9-word FIOB describing the parameters of the
request. For each I/O device channel to be used
by the executing program, the assembly language
programer must set up a 10-word IOCQ table
entry to be placed in the IOCQ table when the I/ O
request is queued by IOCS. The first word of the
IOCQ entry (Word 0) contains the address of the
next IOCQ entry, which is specified by the pro-
gram. The second word (Word 1) is used by the
hardware to report the status of the request to
the program. The remaining words are filled by
IOCS from Words 1 through 8 of the FIOB when
the request is queued. The format and usage of
the FIOB and IOCQ entry are illustrated in figure
1-3. See Part 2 of this handbook for detailed
descriptions of the content of the FIOB and I0OCQ

entry.

When the executing program issues an

IOACT request, the FIOB information is accessed | J

by the IOCS monitor, which extracts the I/O re-
quest information in words 1-8 and enters it into
the next entry of the IOCQ table. When the
queued I/ O request is to be serviced, the Physi-
cal I/O Routines of the monitor extract the IOCQ
entry information and place it in the Physical
I/0 Table (PIOT) for use of the hardware device
controller that performs the requested I/O
operation. When the I/O request has been ser-
viced, the device service routine returns the
logical and physical status to Word 1 of the
I0CQ entry.

The format of the PIOT is shown in figure
1-4. Notice that the MODE and FUNCtion infor-
mation occupies the first half of Word 0 of the
PIOT, and the last half of the word contains an
8-bit Interrupt Mask. This mask is set up by

-
|
|
|
|
|
|
!
|
|
|
|
|
|

the device driver routine for the associated
device. Each bit of the mask corresponds with
a bit in the Interrupt Condition Byte (ICB) in the
When the

device controller detects an ICB bit setting,

hardware controller for the device.

indicating an interrupt condition, it compares the

FIOB FORMAT
e (ol 1 J2faa]s]e]7]s]o]ww]u]z]a]u]s
Word 0 (SPARE) ERROR CODE
MWord 1 | MODE___| FUNCTION LOGICAL UNIT NUMBER ID
| Word 2 BUFFER ADDRESS (starting byte)
| Word3 BYTE COUNT
| Word 4 TRANSLATE TABLE BASE OR DISC ADDRESS
1 Word 5 SEARCH TABLE BASE OR DISC ADDRESS
: Word 6 (SPARE)
| Word 7 (SPARE)
| word 8 (SPARD) I UN ex-
I_ _____ tension
10CQ FORMAT
o[v[2]s[a]s][ef7]s]o]w0][n]2]3a]wu]s
Word 0 LINK
PHYSICAL STATUS
Word1 | LOGICAL STATUS aroup P
MWord2 | MODE__ | FUNCTION LOGICAL UNIT NUMBER ID
' Word 3 BUFFER ADDRESS (sfarting byte)
D Word 4 BYTE COUNT
Word 5 TRANSLATE TABLE BASE OR DISC ADDRESS
| Word 6 SEARCH TABLE BASE OR DISC ADDRESS
: Word 7 (SPARE)
| Word 8 (SPARE))
| Word 9 (SPARE) l LUN ex-
L~___ tension

Figure 1-3. Format and Usage of FIOB and IOCQ
Entry by 10CS

0 1 2|3 4 5 6 7|8 9 10 11 12 13 14 15
Word
0 MODE FUNCTION INTERRUPT MASK BYTE
1 BUFFER ADDRESS
2 BYTE COUNT
3 TRANSLATE TABLE BASE OR DISC ADDRESS
4 SEARCH TABLE BASE OR DISC ADDRESS
5 BUFFER ADDRESS - C
6 BYTE COUNT - C
7 (SPARE)
Figure 1-4. Format of the PIOT Generated by 10CS

bit with the corresponding bit in the Interrupt
Mask to determine whether the interrupt should
be '"allowed' (i.e., generated). If an interrupt
is generated, the appropriate LSR receives con-
trol, calls the Device Service routine for the
interrupt level, and the interrupt processing is
performed. If the interrupt is not ""allowed,"

then an invalid interrupt is logged.

IOCS queueing of I/ O requests allows the
executing program to operate asynchronously
with I/O data transfer operations. The number
of entries in a particular IOCQ table is defined
by the assembly language programer when the

source program is coded.
2.3.2 Physical Control Records

The IOCS monitor uses two physical records
to control I/ O devices and the interrupt system.
These records are the I/O Control Table and the
interrupt packets, both of which are described on
the following pages.

2.3.2.1 _1/O Control Table. The I/O Control
Table (IOCT) consists of two parts: the logical-

to-physical device pointers and the Physical
Control Blocks (PCBs), as illustrated in figure
1-5.

Generator macro calls according to user-

The IOCT is constructed from System

specified physical device assignment on directive
cards input to the SYSGEN program, described
in Part 3 of this handbook.

The logical-to-physical pointers portion of
the IOCT contains 13 one-word entries containing
the identifier of the physical unit assigned to the
logical unit. That is 13 logicalunits maybe assigned
to actual physical devices. Eight logical units
may be assigned for the use of system programs
(e. g., the Assembler, the loaders, Batch Debug,
Dump programs, etc.). Five logical units may

be assigned for use of applications programs.

1SYSF - LUN O
F 1SYs1 - LUN 1
ISYSL - LUN 2
1SYSD - LUN 3
1SYSB - LUN 4
£ 1SYST - LUN 5
1550 - LUN 6
FEISYSR - LUN 7
1LOGS - LUN 8
1LOGY - LUNS

LOGICAL-
TO-PHYSICA
POINTERS

=

1-WORD
ENTRIES

PHYSICAL PCB 2
CONTROL
BLOCKS

(PcCB)

7-WORD
ENTRIES

PCB n

T

LI L]

Format of the Input/Output Control
Table (IOCT)

Figure 1-5.

The names of the system-reserved logical units
begin with the characters #ISYS, followed by an
additional character that denotes the use of the
unit by system programs. The names of logical
units that may be assigned for applications pro-
grams begins with the characters #ILOG. The
logical-to-physical pointer entries in the IOCT
and the assigned usage of the units are shown

in table 1-1.

Table 1-1. Logical-to-Physical Pointer Entries in the IOCT

PHYSICAL DEVICE

LOGICAL UNIT NAME (Dy)* LUN ID USAGE

#ISYSF (System File) D; - LUNO Reading and writing systems program files.

#ISYSI (System Input) D, - LUN1 Reading directive inputs to systems programs)

#ISYSL (Sy'stem Log) D3 - LUN 2 Writing messages from systems programs.

#ISYSD (System Data) Dy - LUN3 Reading data input to systems programs for
processing.

#ISYSB (System Binary) Ds - LUN4 Reading relocatable or absolute binary inputs

to systems programs.

#ISYST (System List) D6 - LUN S5 Writing tabular outputs (i.e., listings) of
systems programs.

#ISYSO (System Output) D.7 - LUN 6 Systems program writing of binary text of
absolute or relocatable programs.

#ISYSR (System Scratch) D8 - LUN 7 Systems program temporary storage of work
files.

#I1LOGS8 (Logical Unit 8) D9 - LUN 8 Performing applications program I/0O
operations.

#ILOG9 (Logical Unit 9) DlO - LUN 9 Performing applications program I/0O
operations;

#ILOGA (Logical Unit A) Dy - LUN A Performing applications program I/O
operations.

#1LOGB (Logical Unit B) D12 - EUN B Performing applications program I/O
operations.

#ILOGC (Logical Unit C) D13 - LUNC Performing applications program I/0O
operations.

*The Dps are the physical device identifiers specified on the System Generator program directive
that causes the IOCT to be created. Physical devices are assigned to the logical units in the order in
which their identifiers appear on the directive. That is, the first device whose identifier, D}, appears
on the directive is assigned to LUN 0, etc.

The PCB portion of the IOCT contains 7-word
entries that specify the necessary information to
control the physical devices whose identifiers,
interrupt levels, and addresses were assigned on
the appropriate input directive to SYSGEN, As
many as 22 devices may be assigned addresses.
For each device, a PCB entry is generated in the
IOCT. The format of PCB entries is illustrated

in figure 1-6.

0 1 3 4 12 15
' Word 0
R PCB STATUS INTERRUPT LEVEL
COMMAND Word 1
CODE DEVICE ADDRESS
DEVICE DRIVER ROUTINE ADDRESS o Word 2
ADDRESS OF 10CQ ENTRY FOR INTERRUPT BEING Word 3
QUEUED
ADDRESS OF IOCQ ENTRY CURRENTLY BEING PROCESSED Word 4
PIOT ADDRESS Word 5
(Spare) Word 6
Figure 1-6. Format of PCB Entries in the IOCT

2.3.2.2 Interrupt Packets. For each physical

device assigned an address at system generation
time, the external interrupt level to which the
device is to be assigned must be specified. For
each interrupt level assigned, a 4-word interrupt
packet is created in the IOCS monitor being gen-
erated. The interrupt packets, described in de-
tail in Part 2 of this handbook, are used by the
Level Service Routines to record the old and new
interrupt information when processing control

passes from one interrupt level to another.
2.3.3 Special Function Records

The PTS-100 hardware device controllers
perform two special functions: the Translate
function and the Search function. These functions
use byte table lookups and use the current char-
acters passing through the controller to offset

the byte table base addresses.

The Translate function enables the I/O hard-
ware device ccntroller to perform code transla-
tion on the I/O byte stream as it flows into or
out of main memory, The Translate function
therefore allows the programer to specify input/
output code conversion (i.e., to specify that
input/output data characters are to be converted
to or from the ASCII code used internally by the

PTS-100).

The Search function enables the I/O hard-
ware device controller to test for particular con-
trol characters within the I/O byte stream as it
flows into or out of main memory, and to set
interrupt conditions when the control characters
appear. Thus, the Search function allows the
programer to specify hardware tésting for the
occurrence of control characters, and setting of
interrupt conditions when the characters appear

in the I/ O data stream.

To utilize these functions, the programer
must have defined and assembled the associated
Search and Translate byte tables containing the
control and/or conversion codes within the pro-
gram to be executed. The Search and Translate
functions are specified in conjunction with the
IOACT service request by entering a code in the
MODE field of Word 1 of the FIOB, and specify-
ing the base address(es) of the associated table(s)
in the FIOB. Detailed descriptions of the MODE
code and the Search and Translate table defini-
tions are presented in Part 2 of this handbook.

2.3.4 Master Service Call Vector Table

The Master Service Call (MSC) Vector table
contains the starting addresses (i.e., entry
points) of the individual MSC routines that ser-

vice I/O requests from the executing programs.

2.3.5 Logging Tables messages will be output on the System Log
device. Monitor messages output to the logging
There are three logging tables within I0CS: device are enclosed in the special symbols <

and > to differentiate between monitor output

) Canned Messages Table (CMT), which is and any messages or printouts from an executing
used for logging messages on the System object program that may also be using the System
Log device Log device.

e Message Locate Table (MLT), which pro- Following are the canued messages from the
vides IOCS with the starting address of each canned message table:

message in the canned message table

END OF JOB, 00 DATA LOST,nn
. LUN Conversion Table (LCT), which is used DEV NOT OPER,nn STACK OR HOP,nn
by IOCS to convert the decimal logical unit NO LUN,nn MOTION, nn
number into ASCII format. LUN OPEN, nn END OF TAPE,nn
LUN NOT OPEN, nn WRITE PROTECT, nn
~ These tables are incorporated in a given user's QUE FULL,nn PARITY,nn
IOCS monitor if message logging is selected by INVALID INTR, nn DEBUG:. nn
the user. If message logging is selected, READ CHECK,nn

1: 2-9/10

Section 3.

In addition to the IOCS monitor, the following

software systems are provided to users of the
PTS-100:

. PTS-100 Assembler program, which trans-
lates source programs written in assembly

language to object (executable) programs

° Utility programs to load, execute, debug,

and maintain user programs.

3.1 Assembler Program

The PTS-100 Assembler program accepts
source program coding as input and translates
it to executable machine language instructions.
The Assembler program must be used to
assemble all programs to be executed on the
PTS-100, There are three versions of the PTS-
100 Assembler:

L] PTS-100 Native Assembler

° Raytheon 704 Cross Assembler

U IBM 360/370 Cross Assembler.

Assembler program processing is accom-

plished in five phases:

Phase 0 determines and sets up for the out-
put options required for the program to be
assembled and calls the next processing

phase,

Phase 1, the macro processor, is called
when macro calls in source programs must
be processed, or when an IOCS monitor is
to be assembled from the macro calls

generated 'by the System Generator program.

Phase 2 analyzes all source statements and
performs the preprocessing for program

assembly proper.

PTS-100 SOFTWARE SYSTEMS

Phase 3 optimizes core storage requirements

of object (assembled) programs.

Phase 4 completes the construction of
executable machine instructions, generates
any required listing of the assembled pro-
gram, and produces the final object program

code.
Part 2 of this handbook discusses the assembly
language structure and use and Assembler pro-

gram processing in detail,

3.2 Utility Programs

The PTS-100 utility programs are providéd

to perform such functions as:

Object program loading

Interactive debugging of object

programs

Generation of specially tailored Input/Output
Control System (IOCS) monitors

Dumping of the content of main memory

storage areas

Dumping binary files to conventional output

devices

Program file creation and maintenance

General descriptions of the functions performed
by the utility programs are presented on the
following pages. Detailed ""how to use' descrip-
tions of the programs are presented in Part 3 of
this handbook.

3.2.1 PTS-100 Loader Programs

Two loader programs are supplied with the

PTS-100: the Piggyback Loader and the

Absolute/Relocating Loader. The sole function

of the Piggyback Loader is to load the Absolute/
Relocating Loader. The Piggyback Loader is
bootstrapped into low memory by depressing the
IPL button on the user console of the PTS-100.
Once loaded, the Piggyback Loader loads the
Absolute/Relocating Loader into high memory

and starts its execution.

r
grame ass d by the

PTS-100 Assembler, which develops object
coding in the format required by the Absolute/

m

Relocatihg Loader. The object programs may
be absolute or relocatable, and may consist of

one or more segments each,

The Absolute/Relocating Loader computes
effective addresses of object program instruc-
tions, sets up storage areas, loads literal values
and address constants, relocates relocatable
programs, establishes linkages between multiple
program segments, etc. When its loading proc-
essing is completed, the Absolute/Relocating
Loader terminates itself and activates the loaded
program(s) at the execution address defined in
the last program loaded, or entered manually
into the PTS-100.

3.2.2 Interactive Debug Program

The Interactive Debug Program allows the
programer to interface actively with it during
object program checkout to effect the following:

Addition or subtraction of hexadecimal

constants

Single or successive memory location
dumps

Searches of memory locations for specific
full word values, or masked searches on

values less than 16-bits in length

Alterations of single memory location

content to a specific value

Successive memory location loading with

specific values
Breakpoint setting and clearing

Transfers of control to specific addresses

and resumption of program execution
Transfers of control to specific addresses

index registers set to specific values and

resumption of program execution

Continuation of previously issued commands

to the Interactive Debug >program

Input command editing.

Thus the Interactive Debug program provides the
programer with hands-on control of the execution
of his program. This capability allows selective
examination of memory, manipulation of memory
words by accessing and altering them, selective
execution of any part or all of the program,
preparation of active unit tests, minor program

patching, etc.

3.2.3 System Generator Program

The System Generator (SYSGEN) program
provides for the generation of a specially tailored
PTS-100 IOCS monitor to meet unique applications
processing requirements. That is, for any given
PTS-100 installation, a specialized IOCS monitor
can be generated by describing its content to the
SYSGEN program. The system descriptions are
supplied on key word directive cards, which are
input to the SYSGEN program.

SYSGEN analyzes the directives and gener-
ates specialized macro calls to the generalized
IOCS monitor routines required in the described
monitor. The macro calls are written onto an
Assembler formated file. The Assembler
processes the SYSGEN macro call file against
the System Macro Library file (i.e., the gener-

alized IOCS monitor macro routines file) to pro-

duce the specially tailored IOCS monitor the user
described to SYSGEN.

3.2.4 Memory Dump Program

The Memory Dump program is a small,
easily relocatable program capable of dumping
the contents of contiguous locations of main
memory to any sequential storage device that
accepts variable length output records. The
length of dumped records depends on the output

device being used.

There are two versions of the Dump program:

Version 1 dumps hard copy hexadecimal
or ASCII records onto a character

printing device.

Version 2 dumps relcadable binary
records to a magnetic tape cassette or

paper tape punch device.

Either version of the program may receive dump
parameters as input from an ASR keyboarddevice or
as arguments of a subprogram assembled within
the main program whose memory locations are
to be dumped.
3.2.5 Peripheral Device Dump Program

The sole function of the Peripheral Device
Dump (PDD) program is to produce printed
listings of binary data files stored in one of the

following media:

Cassette magnetic tape files
Punched paper tape files
Punched card files.

The output listings of the PDD program are
either in ASCII code or hexadecimal notation,
as specified by the programer via a control

card input to the program.

Disc files are dumped by a separate program,

described in subsection 3.2.7. 3.

3.2.6 File Update Program

The File Update program provides a conven-
ient, easily used method of creating, maintaining,
and updating files of both object and source pro-
grams. That is, the File Update program may
be used to create a master file of object and/or
source programs and subsequently to maintain
and update the master file, The specific update
features that can be accomplished using this

program are:

Insertion of one or more programs on the

master file

Correction of programs by changing their
names and/or deleting, replacing, or

inserting data lines

Replacing one or more programs on the

master file

Deletion of one or more programs on the

master file

Creation of a file directory of the current

master file.

3.2.7 Disc Support Programs

Three utility programs are available to
support the use of disc files with the PTS-100.

3.2.7.1 This
program initializes a new disc for use in the
PTS-100 system.

tion on an old disc to prepare it for reuse. A

Disc Volume Preparation.

It can also erase the informa-

disc must be preprocessed with the Disc Volume
Preparation program whether it is to accessedby

physical or logical input/output.

3.2.7.2 Disc Allocator.
be used before any disc file can be written or

If a disc
is to be accessed solely by physical input/output

This program must

read through the logical input/output.

(not ulitizing the IOCS monitor), it is not neces-

sary to use the Disc Allocator program.

Prior to running the Disc Allocator, the
disc must have been initialized by means of the
The Disc
Allocator then assigns disc space to files,

Disc Volume Preparation program.

" extends the disc area allocated to files, and
deletes files. The program operates from
free-fnrmkeyword type parameters read from

the card reader.

3.2.7.3 Disc Dump.

produces a printed listing of data on all or a

The Disc Dump program

selected portion of the sectors of any disc unit in
use with the PTS-100.

serial printer in either hexadecimal or ASCII nota-

The output is listed on the

tion, as specified by the input directives. Dump
parameters are input from the display or teletype-

writer keyboard in response to program messages.

3.2.8 Cassette Utility Program

The Cassette Utility program provides a

method of storing on, deleting, copying, position-

ing, and printing the contents of cassette mag-

netic tape files. A display keyboard is used for

input directives.

The output can be on any of

four cassette units, the teletypewriter printer,

or serial printer.

The program can perform

the following functions:

3-4

Copy all or parts of one cassette tape to

another.

Forward or backspace one tape a specified

number of records.

Position a cassette tape to a specific record

located by matching a keyword.
Rewind a tape to its beginning.

Print a specified number of records from

one tape.

Read cards from the card reader and write

the information to a tape.

Print the input directives. .

PART 2

PTS-100 ASSEMBLER LANGUAGE PROGRAMMING

[SV S I AN
Bw N

SECTION 1.

PART 2

PTS-100 ASSEMBLER LANGUAGE PROGRAMING

TABLE OF CONTENTS

Page

INTRODUCTION TO THE PTS-100 ASSEMBLER LANGUAGE

Machine Instructions

Machine Instruction Execution Timing

Word and Data Formats

SECTION 2.

ASSEMBLER STATEMENT FORMATS

Source Statement Coding Form
Label Field
Operation Code Field
Operand Field

2.4.1
2.4.2
2.4.3
2.4.4
2.4.5

Symbolic Tag Operands

Literal Operands
Absolute Address Operands
Self-Reference Operand

Expression Operands

Comments Field

Sequence Number Field

SECTION 3. DETAILED DESCRIPTIONS OF
SOURCE LANGUAGE STATEMENTS

Executable Statements

3.1.1

Arithmetic Statements

3.1.1.1
3.1.1.2

3.1.1.3
3.1.1.4
3.1.1.5
3.1.1.6

Add Statement (ADD)

Add Accumulator to Memory
Statement (ACM)

Add Immediate Statement (ADI)

Add One to Memory Statement (AOM)
Shift Right One, Arithmetic Statement (SRO)
Subtract Statement (SUB)

Branch Statements

3.1.2.1

3.1.2.2

3.1.2.3

Branch If Accumulator Minus
Statement (BRM)

Branch If Condition Bit Set
Statement (BCB)

Jump Statement (JMP)

Compare Statements

3.1.3.1

3.1.3.2

Compare Accumulator Less Than
Word Statement (CAL)

Compare For Not Equal Statement (CNE)

NN DDV

[SN oSN SSIR ST oS I oV

: 2-1

2-1

: 2-1

2-8

1 2-9
: 2-9

: 2-10
: 2-11
s 2-11
: 2-12
: 2-12

on

oDV IV IV DNV IV Y

2: 3-7
2: 3-8

TABLE OF CONTENTS

Page
3.1.4 Load Statements 2: 3-8
3.1.4.1 Load Address In Index Register 2

Statement (LAX2) 2: 3-8
3.1.4.2 Load Byte Statement (LDB) 2: 3-9
3.1.4.3 Load Immediate Statement (LDI) 2: 3-9
3.1.4.4 Load Index Register 1 Statement (LX1) 2: 3-10
3.1.4.5 Load Index Register 2 Statement (LX2) 2: 3-11
3.1.4.6 Load Word Statement (LDW) 2: 3-11
3.1.5 Store Statements 2: 3-12
3.1.5.1 Store Byte Statement (STB) 2: 3-12
3.1.5.2 Store Index Register 1 Statement (SX1) 2: 3-12
3.1.5.3 Store Index Register 2 Statement (SX2) - 2: 3-13
3.1.5.4 Store Word Statement (STW) 2: 3-13
3.1.6 Logical Statements 2: 3-14
3.1.6.1 AND Statement (AND) 2: 3-14
3.1.6.2 Exclusive OR Statement (XOR) 2: 3-14
Nonexecutable Statements 2: 3-15
3.2.1 Constant Assignment Statements 2: 3-15
3.2.1.1 Address Constant Statement (ADC) 2: 3-15

3.2.1.2 Concatenated Integer Constant
Statement (CAT) 2: 3-16
3.2.1.3 Decimal Constant Statement (DEC) 2: 3-17
3.2.1.4 Hexadecimal Constant Statement (HEX) 2: 3-17
3.2.1.5 Octal Constant Statement (OCT) 2: 3-18
3.2.1.6 Text Constant Statement (TEXT) 2: 3-18
3.2.1.7 Text Constant (7-bit) Statement (TEX7) 2: 3-18A
3.2.2 Symbol Defining Statements ’ 2: 3-19
3.2.2.1 Equate Statement (EQU) 2: 3-19
3.2.2.2 External Definition Statement (EXDEF) 2: 3-19

3.2.2.3 External Reference Statement
(EXREF) 2: 3-20
3.2.3 Storage Assignment Statements 2: 3-21
3.2.3.1 Literal Origin Statement (LTORG) 2: 3-21
3.2.3.2 Mod Statement (MOD) 2: 3-22
3.2.3.3 Origin Statement (ORG) 2: 3-22
3.2.3.4 Page 0 Statement (PGO) 2: 3-23
3.2.3.5 Reserve Statement (RESV) 2: 3-23
Program Control Statements 2: 3-24
3.3.1 End Statement (END) 2: 3-24
3.3.2 Skip Statement (SKIP) 2: 3-25
3.3.3 Unlist Statement (UNLIST) 2: 3-25
3.3.4 List Statement (LIST) 2: 3-25

3.4

TABLE OF CONTENTS (cont)

Input/ Output Services

3.4.1
3.4.2
3.4.3

3.4.4

File Input/Output Block Definition
Input/Output Control Queue Table Definition
Special Functions

3.4.3.1 Search Table Definition

3.4.3.2 Translate Table Definition
Monitor Service Calls

3.4.4.1 Device Initialization Service
3.4.4.2 Device Open Service

3.4.4.3 1I/0 Action Service

3.4.4.4 Device Close Service
3.4.4.5 System Exit Service

3.4.4.6 Watchdog Timer Service

3.4.4.7 Channel Interface Controller
(CIC) Service

3.4.4.8 Device Sensing Service

3.4.4.9 Reconfiguration Service

Disc Logical Input/Output

3.5.1

3.5.2
3.5.3
3.5.4

3.5.5

3.5.6

User File Area

3.5.1.1 Sequential Files
3.5.1.2 Random Files
File Description Macro
Main Processing Macro
Action Macros

3.5.4.1 Open Macro
3.5.,4.2 Close Macro
3.5.4.3 Get Macro
3.5.4.4 Put Macro
3.5.4.5 Read Macro
3,5.4.6 Write Macro
3.5.4.7 Delete Macro
Status Macros

3.5,5.1 Wait Macro
3.5,5.2 Test Macro

Error Indicators

SECTION 4., MACRO ROUTINES

Basic Macro Routine Structure

Calling Macro Routines

Extended Macro Routine Structure

4.3.1
4.3.2

4.3.3

Statement Label Insertion

Conditional Inclusion and Deletion of Macro
Routine Statements

Embedded Macro Calls

2: v

N NN N DD DN DD DN DN DD

2:

N NNV DD DN NN

[\
.

.

.

BN DD DN DN DD DN N DN DD NN

[\V]

NN NN

: 3-26
: 3-27
: 3-30
: 3-32
: 3-32
: 3-33
: 3-34
: 3-34
: 3-34
: 3-35
: 3-36
1 3-37
: 3-37

3-38

: 3-39
: 3-40
: 3-41
: 3-41
: 3-41
1 3-42
: 3-42
: 3-43
: 3-43
:3-43
1 3-44
: 3-44
: 3-44
: 3-44
: 3-45
: 3-46
: 3-46
: 3-46
: 3-46
1 3-47

1 4-1
: 4-2
: 4-4
: 4-4

6.1
6.2
6.3
6.4
6.5
6.6

TABLE OF CONTENTS (cont)
SECTION 5. ASSEMBLER PROGRAM

Programer Inputs

5.1.1 Assembly Control Card Content
Assembly Processing

5.2.1 Phase 0 Processiné

5.2.2 Phase 1 Processing

5.2.3 Phase 2 Processing

5.2.4 Phase 3. Processing

5.2.5 Phase 4 Processing

Assembler Output Listing

Assembler Limitations and Machine Requirements
5.4.1 Raytheon 704 Cross Assembler
5.4.2 IBM 360/370 Cross Assembler
5.4.3 PTS-100 Nati%re Assembler

Disc Assembler

SECTION 6. PROGRAMING TECHNIQUES

Shifting Techniques
Setting Addresses
Defining Message Content
Label Definition

Constant Definitions

Comparison Bit Setting

SECTION 7. SYSTEM PROGRAMING CONSIDERATIONS

Interrupt Systemv

Interrupt Statements .

System Programing of I/O Operations

7.3.1 Performing I/O Operations
7.3.1.1 .I/O Packet ,

7.3.2 Testing Device Operational Status

INDEX TO PART 2

2: vi

[R R [B R
O O O O 000U NN =

.

U’!tﬂU‘lU’lkﬂU‘ll.ﬂU'\(.hmkﬂU'an

n
.
($))
1
O

: 7-4

N DD DD DD N D

:7-6

2-4
2-5

2-6

2-7
2-8
2-9
2-10
2-11

LIST OF ILLUSTRATIONS

Assembler-Generated Machine Instruction Formats
Sample PTS-100 Coding Form

Format of File Input/Output Block (FIOB)

Format of Input/Output Control Queue (IOCQ) Entries
Search Table Format for 8- Bit Code

Translate Table Format for 8-Bit Code Conversion
Sample Macro Routine

Specialized Macro Routine

Generalized Macro Routine to Create an FIOB
Generalized Macro Routine for Device Service Requests
Flow Overview of Assembly Processing

Sample Assembler Output Listing

Interrupt Priority Levels in the PTS-100

Interrupt Packet Format and Content

I/0O Packet

LIST OF TABLES

Machine Instruction Execution Times
Summary of Executable Assembler Statements

Summary of Constant, Address, and Storage
Assignment Assembler Statements

Summary of Program Control Statements
Summary of I/O Service Statements

Device Function Field Settings of Bits 3-7 in Word 1
of the FIOB

IOCQ Logical Status Codes

IOCQ Physical Status Codes

Assembler Option Selection

File (Device) Assignments for Assembly Processing

Interrupt Statements

2: vii/viii

2: 3-29
2: 3-31

2: 3-31

PART 2. PTS-100 ASSEMBLER LANGUAGE PROGRAMING

Section 1.

The programing language of the PTS-100
System is the Assembler language--a symbolic,
machine oriented language which is suitable for
solving any application processing problem.
Applications programs are coded in symbolic,
or source, statements which are translated by
the Assembler into object programs that can be
loaded and executed on the PTS-100 System.
Locations within programs can be addressed
through symbolic names (i.e., tags or labels).
Data constants can be defined in several different
ways, either as explicit constants or as literals

coded directly in the source statements.

A set of source statements constitutes a
source program. The assembled program is
called an object program. The object program
may be either in absolute or relocatable form
for execution on the PTS-100 system. The
object program is output on the specific periph-
eral device used for loading executable programs
on the specific machine used for program
assembly. That is, there are three versions of
the PTS-100 Assembler:

IBM 360/370 Cross Assembler
Raytheon 704 Cross Assembler
PTS-100 Native Assembler

Object programs are output in one of the
following forms, depending on the available

device:

Punched cards
Punched paper tape

Cassette magnetic tape.

The input/output devices for the three
versions of the Assembler are specified in
Section 5 of this part of the handbook, which
describes the assembly process in detail,
Assembler language source statements fall into

four functional groupings:

INTRODUCTION TO THE PTS-100 ASSEMBLER LANGUAGE

Executable statements, which the Assembler
translates into machine instructions (see
subsection 1, 1) to be executed by the

computer.

Nonexecutable statements, which set up
data values and storage areas for executable

object program use.

Program control statements, which control

Assembler output.

Input/output service statements, which
effect peripheral device operations via the
IOCS monitor of the PTS-100,

The format of Assembler source statements
is discussed and illustrated in detail in Section 2
following. Section 3 presents a detailed descrip-

tion of each statement and its use.

The PTS-100 assembly language programer
is provided with the capability of defining gener~
alized sets of source statements, called macro
routines, which can subsequently be specialized
by the Assembler and inserted into any other
source program. The definition and use of
macro routines is described in detail in Section 4

of this part of the handbook.

1.1 Machine Instructions

As mentioned earlier, certain Assembler
source statements are termed "executable"
statements. That is, these statements are
translated by the Assembler into machine
instructions that can be executed by the central
processing unit (CPU) of the computer. Machine
instructions are formated as 16-bit (one word)
instructions or as 32-bit (two word) instructions.

One word instructions contain five fields and are

said to be in short format. Two word instruc-

tions are composed of six fields and are said to bits 0 45 8 7 '8. ? 15
be in long format. The assembly language pro- Machine Register ; 2:9n Word displacement
gramer may specify the long instruction format op code L ?;j;e valve
(see Section 2), or the instruction length may be op R E 1 D
left to the discretion of the Assembler, which Short Instruction Format
determines whether the long or short format is
required for the instruction. That is, the bits 0 45 ¢ 7L 8 L 15
Assembler will optimize execution speeds and Machine Register | 9 :\d’e Ommmmmmmmmmm 0
memory storage requirements by using the short op code I\ P
format whenever possible, as described in or R E I Zeros
Section 5 of this part of the handbook. The 0 15
machine instruction formats are presented in
figure 2-1 and described in detail in the following 16-bit byte displacement value
paragraphs. D!

Long Instruction Format

As shown in figure 2-1, both the long and
short machine instructions contain OP, R, E,
and I fields.

field, and the long format contains a D' field.

Figure 2-1. Assembler-Generated

i D
The short format contains a Machine Instruction Formats

The significance of these fields is described in

detail below:

OP (bits 0 - 4): This 5-bit field contains the operation code, which identifies the specific instruc-

tion to the central processor unit as shown in table 2-1.
R (bits 5 - 6): This 2-bit field specifies one of four address components to be used in computing

the effective address, where:

0 = zero
1 = contents of the program counter (PC)
2 = contents of index register 1 (X1)
3 = contents of index register 2 (X2)
E (bit 7): This 1-bit field specifies the instruction length, where:
0 = 16-bit (short format)
= 32-bit (long format)
I (bit 8): This 1-bit field specifies direct or indirect addressing, where:

D (bits 9 - 15):

direct addressing

- O
1

indirect addressing

except in the following cases:

When the R field = 1 (PC relative addressing) and the E field = 0 (short format),

the I field specifies the sign of the 7-bit word displacement value, where:
0 = positive sign
1 = negative sign
NOTE

Indirect addressing is not available
when R =1 and E =0.

In the Add Immediate and Load Immediate machine instructions the I field is not
used. That is, the short format machine instructions contain four fields: OP
(bits 0-4) R (bits 5-6), where:

= accumulator
= program counter

= index register 1

w N = O

= index register 2

E (bit 7), and the OPERAND field (bits 8-15), which contains the immediate byte
value to be loaded or added. The long instructions contain five fields, with the

first three the same as in the short format, the fourth field (bits 8~15) containing
zeros, and the fifth field (i.e., the second 16-bit word) containing the immediate

word operand to be loaded or added.

The D field of a short machine instruction (E = 0) contains a 7~bit positive word
displacement value to be used in forming the effective address. For short

machine instructions the effective address is computed as follows:

R field 1=0 1=1
0 2D (2D)
1 (PC) + 2D (PC) - 2D
2 (X1) + 2D ((X1) + 2D)
3 (X2) +2D ((X2) + 2D)

To explain, the displacement value in the D field is multiplied by 2, and the
product is added to the value specified by the R field except in the case where

R =1andI=1, in which case the product is subtracted from the current location
of the program counter, The current location of the program counter is the

next instruction.

The D field content of two machine instructions are exceptions to the above
discussion. These instructions are the Add Immediate and Load Immediate
instructions. In the short format of these instructions, the R field indicates
the régiste.r and the D field contains the immediate value specified in the

operand field of the source statement.

D' (bits 16 - 31, i.e.,
the second word of
the two-word

instruction):

The D' field of a long instruction (E = 1) contains a 16-bit byte displacement
value to be used in forming the effective address. Negative displacement values
are represented in two's complement form. For long machine instructions, the

effective address is computed as follows:

R field I=0 I1=1
0 D! (DY)
1 (PC) + D' ((PC) + DY)
2 (X1) + D! ((X1) + DY)
3 (X2) + D! ((X2) + DY)

Notice that in all cases the D' field value is added to the value specified by the
R field. In the case of a long instruction, the current location of the program
counter is the instruction following the second word (D' field) of the long

instruction.

There are two exceptions to the above discussion: the Add Immediate and Load
Immediate statements, In the long format of these machine instructions the R
field indicates the register and the D' field contains the immediate value speci-

fied in the operand field of the source statement.

1.2 Machine Instruction Execution Timing

Machine instruction execution timing depends
upon the length of the instruction, the number of
processor cycles required to execute the instruc-
tion, and the time required for an instruction
fetch. Each processor cycle requires 0.160
microsecond. All machine instructions require
0. 960 microsecond for an instruction fetch. A
long machine instruction (E = 1) requires 0,960
microsecond additional for execution. When an
instruction specifies indirect addressing, another
0.960 microsecond is required for its execution.
Hence, a long machine instruction in which in-
direct addressing is specified requires an addi-

tional 1,920 microsecond for execution,

Table 2-1 presents the total execution
times for all short format (E= 0) machine
instructions, including 0. 960 microsecond for

the instruction fetch.

1.3 Word and Data Formats

Internally in the PTS-100, instructions and
data are stored in 16-bit word units. The words
are composed of two bytes (i.e., 8-bit units),
Internally, data is stored in standard ASCII code,
Provision has been made, however, to accept any
code up to 8 bits per character. That is, input/
output controllers perform a special code
Translate function to convert input/output data
to or from the 7-bit ASCII code used by the PTS-
100.

conversion, the programer must define Translate

To utilize the Translate function for data

tables, as described later in Section 3.

Another special function, the Search function,
is performed by the PTS-100 input/output con-
trollers. This function allows programers to
test for the occurrence of particular I/O control
characters and specify interrupt conditiohs when
the control characters appear in the data stream.
See Section 3 for a description of this special

function.

2: 1-4

Table 2-1. Machine Instruction Execution Times

' EXECUTION
i ASSEMBLY TIME**
MA CHINE | MNEMONIC INSTRUCTION (in micro-
OP CODE¥ OP CODE seconds)
00 IMP Jump (unconditional branch) 1.60
01 ~ ENB R = 00 Enable Interrupts 1,60
- DIN R = 01 Disable Interrupts 1.60
INR R = 10 Interrupt Return 4,00
MsSC R =11 Monitor Service Call 1.60
B 02 T BCB Branch if Condition Bit Set 1.60
03 BRM Branch if Accumulator Minus 1. 60
i 04 . LDI Load Immediate 1. 60
05 ADI Add Immediate 1.60
06 : SRO Shift Right One, Arithmetic 1. 60
07 ~ DIO Do Input/Output 2.08
08 LAX2 Load Address in Index Register 2 2.08
10 ADD Add Memory Word to Accumulator 2.08
m—ll»_ XOR Exclusive OR 2.08
12 AND _ Logical AND 2.08
14 SUB Subtract 2.08
16 CNE Compare for Not Equal 2.08
17 CAL Compare Accumulator for Less 2.08
than Memory Word
18 LDW Load Word in Accumulator . 2.08
19 LDB Load Byte 2.08
20 LX1 Load Index Register 1 2.08
21 LX2 Load Index Register 2 2,08
24 STW Store Word 2.40
26 SX1 ' Store Index Register 1 2.40
27 SX2 Store Index Register 2 2.40
28 STB Store Byte 2.40
29 RIO Read Input /Output Device Status 3.04
30 ACM Add Accumulator to Memory Word 3.20
31 AOM Add One to Memory Word 3.20

*The machine op codes here and throughout this handbook are expressed in decimal notation.

#%These times are for short format instructions using direct addressing. They include one
instruction fetch (0. 960 microsecond).

2:1-5/6

Section 2.

2.1 Source Statement Coding Form

All assembler source statements are written
as 80-column records on the coding form shown
in figure 2-2. A source statement may comprise

one to five fields in the following order:

1. A label field, which is optional except
for the EQUate statement.

2. An operation code field, which is

required for all source statements.

3. An operand field, required as
described for the individual statements

in Section 3.

4. An optional comments field, which may
follow the operand field and continue
through column 72 to document the
source statement, or which may begin
with an asterisk (%) in column 1 of the
coding form and continue across

columns 2 through 72.

5. An optional sequence number field,
which begins in column 73 and ter-

minates in column 80.

If all fields are present in a source state-
ment, they must appear in the sequential order
shown in figure 2-2. Except for the label and
sequence number fields, whose lengths are re-
stricted as shown in figure 2-2, there is no re-
striction on statement field lengths. The label,
operation code, and operand fields are ter -
minated by a blank (A) character. The content
and use of individual statement fields are

described below.

ASSEMBLER STATEMENT FORMATS

2.2 Label Field

The label field is optional for all source
statements except the EQUate statement
described in Section 3. If a label is used, its
first character must be alphabetic and must
appear in column 1 of the source record. Up
to five additional alphabetic, numeric, or alpha-
numeric characters may appear in the label field
(i. e., the label must not continue beyond column
6 of the coding form). The label field is ter-
minated by ablank character. Labels may be
used as symbolic tags in the operand field to
identify data locations and values on which opera-

tions are to be performed.

2.3 Operation Code Field

This field specifies the mnemonic operation
code (op code), which identifies a unique state-
ment specifying action to be taken by the pro-
gram, the processor, or the Assembler. The

op codes are of variable iength.

In executable statements, op codes may be
followed optionally by from one to two flags, in
any order, specifying either indirect, indexed,
or a combination of indirect and indexed address-

ing. The flags and their significance are:

N specifies indirect addressing

X1 specifies indexed addressing using
index register 1

X2 specifies indexed addressing using
index register 2.

To specify both indirect and indexed addressing,

the following combinations of flags are valid:

N, X1 or N, X2
X1,N or X2,N

: 2-1

2-2:¢

PTS-100 CODING FORM ‘ PAGE___OF_______

PROGRAM NAME
PROGRAMER

ASSEMBLER STATEMENT
SEQUENCE
LABEL OPERATION OPERAND LIST. "BLANKFIELD". COMMENTS NUMBER
1234567 9 10 111213 14 15 16017 18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 35 37 38 39 40 41 42 43 44 45 46 47 48 49 50 5! 52 5354 55 5% 57 58 59 60 61 62 63 64 65 66 67 68 69 0 71 {72 74 75 7% 77 78 79 80|

I 3 !
2 2
3 3
4 4
5 5
6 6
7 7
[8
9 \ 9
10 ' 10
] 11}
12 [
13 3
" "
5 15|
16 16
1 lt4
8 18
] 19
| lw
21 lz|

i
> g

la
25, £

1234 5 678 9 101121314 151617
FORM NO RDS06-0012 REV(1/73)

18 19 20 21 2223 24 2526 2728 29 30 31 32 33 34 35 36 37 383940 41 42 43 44 45 46 47 48 4950 51 52 53 5455 56 5758 59 €60 61 62 6364 65 66 67686970 71 72 73 74 75 76 77 78 79 80

Figure 2-2. Sample PTS-100 Coding Form

If flags are specified they are separated Loading of CPU registers with data

from the op code and each other by commas. If : values in memory storage locations
a label precedes the operation code field, the op

code field begins with the first non-blank char- Storing contents of CPU registers
acter following the blank character that termi- in memory locations

nates the label field. If no label is specified, .
Comparative tests of data values
column 1 of the coding form must be blank. The

vp code field may begin in column 2 or any Logical (true/false) testing of data
column after column 1. The operation code field values.

is terminated by a blank character.

. Nonexecutable statements, summarized in
Each source statement is assigned a table 2-3, which define constant data values
mnemonic op code that uniquely identifies it and and storage areas for executable programuse.

the operation it specifies. For purposes of dis-

cussion in this manual, the Assembler source
statements may be classified as follows: ° Program control statements, summarized in
table 2-4, which direct the Assembler to
° Executable statements, which result in perform actions regarding the end of the pro-
Assembler- generated machine instructions gram and the object program listing.
to be executed by the CPU, Executable
statements, summarized in table 2-2,
specify the following:) Input/output service statements, which are
sets of statements defining tables and para-
Arithmetic operations meters for use by the IOCS monitor in ser-
vicing input/output requests, as summarized

Branches in program execution in table 2-5.

Table 2-2. Sumfnary of Executable Assembler Statements

OPERATION CODE

Mnemonic|Machine*

STATEMENT SPECIFIED OPERATION

Arithmetic Statements

Add AC to Memory ACM 30 Add contents of accumulator to memory word
specified by operand; store results in memory
word; set CB if no carry generated.

Add ADD 10 Add contents of memory location specified by
operand to accumulator value; store result in
accumulator; set CB if addition overflow.

Add Immediate ADI 5 Add immediate operand algebraically with con-
tents of specified register and store in register.
Set CB if no carry generated.

Add One to Memory AOM 31 Increment memory word specified as operand
by one; set CB if no carry.

Shift Right One SRO 6 Shift the value in the accumulator right one bit
positionandretain signbit; right-most bit is lost.

* . . : . .
The machine op codes are given in decimal notation.

2: 2-3

Table 2-2.

Summary of Executable Assembler Statements (cont)

OPERATION CODE
STATEMENT MnemoniclMa chine® SPECIFIED OPERATION
Subtract SUB 14 Subtract the value in the memory location speci-
fied by the operand from the contents of the
accumulator; store results in accumulator; set
CB if arithmetic overflow.
Branch Statements
Branch if AC Minus BRM 3 Branch if value in accumulator is negative
number (MSB =1).
Branch if CB Set BCB 2 Branch if CB set; otherwise execute next
sequential instruction,
Jump (unconditional IMP 0 Jump (unconditionally branch) to execution
branch) point specified by operand.
Compare Statements
Compare AC Less than CAL 17 Compare accumulator value with value of
Memory Word memory word specified as operand; if AC
value less than operand value set CB.
Compare for Not Equal CNE 16 Compare accumulator value with value of
g memory word specified as operand; set CB if
values not equal,
Load Statements
Load Address in Index LAX2 8 Load address of the memory location
Register 2 specified by operand into index register 2.
Load Byte LDB 19 Load byte from memory location specified by
operand into right-hand side of accumulator and
clear left-hand side.
Load Immediate LDI 4 Load immediate operand into specified register,
Load Index Register 1 LX1 20 Load memory word specified by operand into
index register 1.
Lioad Index Register 2 LX2 21 Load memory word specified by operand into
index register 2.
Load Word LDW 18 Load memory word specified by operand into
the accumulator.
Logical Statements
And AND 12 And the value in the accumulator with the mem-
ory word specified by the operand and place the
result in the accumulator, Set CB if result not
Zero,
XOR XOR 11 Exclusive OR the value in the accumulator with
the memory word specified by the operand and
place the result in the accumulator,

&
The machine op codes are given in decimal notation.

: 2-4

Table 2-2. Summary of Executable Assembler Statements (cont)
OPERATION CODE
STATEMENT MnermoniclMa chine¥ SPECIFIED OPERATION
Store Statements

Store Byte STB 28 Store the right-hand byte value in the accumu-
lator in the memory word specified as the
operand, either as left-hand or right-hand
portion of word,

Store Index Register 1 SX1 26 Store content of index register 1 in memory
word specified by operand.

Store Index Register 2 SX2 27 Store content of index register 2 in memory
word specified by operand.

Store Word STW 24 Store content of accumulator in the memory
word specified by operand.

*
The machine op codes are given in decimal notation.

Table 2-3. Summary of Constant, Address, and Storage Assignment Assembler Statements
MNEMONIC
STATEMENT OP CODE SPECIFIED OPERATION

Address Constant ADC Establish an address constant as specified by the expres-

Definition sion operand.

Concatenated Integer CAT Establish a concatenated integer constant as specified by

Constant Definition the values used as the operand. The CAT statement is
not implemented in the native version of the PTS-100
Assembler.

Decimal Integer Constant DEC Convert the decimal expression operand to a binary constant]

Definition

Hexadecimal Constant HEX Establish a hexadecimal constant one word long as specified

Definition by the expression operand,

Octal Constant Definition OoCT Establish an octal constant one word long as specified by
the expression operand,

Text (alphanumeric con- TEXT Establish a variable-length alphanumeric constant as speci-

stant definition) fied by the operand in 8-bit code.

Text (7-bit alphanumeric TEX7 Establish a variable-length alphanumeric constant as

constant definition) specified by the operand in 7-bit code.

Equate Symbol EQU Assign the symbol in the label field to the value specified
by the operand.

External Definition EXDEF Create a symbol table entry for the symbol operand and its
address value to enable another program to reference the
current program in which the symbol is defined.

External Reference EXREF Create a symbol table entry for the symbol operand and its

Definition address value to enable the current program to be linked to
the program in which the symbol is defined,

Literal Origin Storage LTORG Reserve a biock of sequential storage locations for literal

Specification data values.

MOD Storage MOD Allocate the next instruction to the next location that is a

Specification multiple of n, a power of two value specified as the operand.

2: 2-5

Table 2-3. Summary of Constant, Address, and Storage Assignment Assembler Statements (cont)
MNEMONIC
STATEMENT OP CODE SPECIFIED OPERATION
Origin ORG Establish the origin of the object program at the absolute
address specified by the decimal, hexadecimal, or octal
operand (i.e., store the first statement of the object pro-
gram at the location specified by the operand).
Page 0 PGO Use the absolute address of the symbolic tag specified
as operand each time it is referenced (i.e., the sym-
bol is to be assigned an address relative to page 0),
Reserve RESV Reserve an area of memory for buffers, data areas, etc.
RESV, xx Reserve an area of memory for buffers, data areas, etc.,
and set each byte location to value xx, if specified.
Table 2-4, Summary of Program Control Statements
MNEMONIC
STATEMENT OP CODE SPECIFIED ACTION
End END Terminate source program assembly and establish the
starting address at the first statement to be executed for
object program execution if an address is specified
as an operand
List LIST Resume printing the object program listing that was
suspended by the UNLIST statement
Unlist UNLIST Suspend the object listing until a LIST statement is pro-
cessed or until the end of the program
Skip SKIP Skip, or space, the object listing the number of spaces

specified by the operand.

Table 2-5. Summary of I/O Service Statements
STATEMENT FORMS
Mnemonic
1/0 OPERATION Label | Op Code | Operand EFFECT
INITialization Service Initializes all I/O devices (i.e., stops
Request any I/O operations in process and re-
sets logical status bits to the load
condition).

Issue Monitor Service MSC Transfers control to the IOCS monitor

Call and informs it that an I/O service is
required.

Identify I/O Command DEC 2 Informs the monitor that the initialization

Code request is to be serviced for all
devices.

Specify Return Address ADC Address Specifies the location in the object pro-
gram to which the monitor is to return
control.

OPEN and CLOSE Device The OPEN device service sets up IOCQ

Service Request entries and linkages, and checks the
operational status of the specified device.
The CLOSE device service issuesa STOP
1/0, which immediatelv causes a physical
and logical shutdown of the specified device.

Issue Monitor Service MsSC Transfers control to the IOCS monitor

Call and informs it that an I/O service is
required,

Identify I/O Command DEC 6 Informs the monitor that an OPEN de~

Code vice request is to be serviced,

DEC 1 Informs the monitor that a CLOSE de-
vice function is to be performed.

Specify Return Address ADC address Specifies the object program location
to which the monitor is to return control,

Specify the parameter ADC symbolic | Directs the monitor to the object pro-

address tag gram location in which the logical unit
number identification (LUN ID) is stored.

Establish the LUN ID pymbolic| HEX LUNID Assigns the desired device's LUN

tag 1D,

For OPEN, specify ADC IOCQ addr{ Establishes the beginning location

IOCQ table starting (address of first word) of IOCQ for an

address OPEN device request (i.e., when
Command Code =6). Note that this
statement is not used when a CLOSE
service is specified.

Reserve an error field RESV, 9. 2 Establishes a storage area 2 bytes in
length in which the monitor is to store
a word indicating an error occurrence
that prevented the successful com-
pletion of the OPEN or CLOSE service.

2:2-7

Table 2-5.

Summary of I/O Service Statements {cont)

STATEMENT FORMS
Mnemonic
I1/0 OPERATION Label | Op Code | Operand EFFECT
Input/Output Action (IOACT) Transfers input and output data between
Service Request " memory and the specified I/0 device, -

Issue Monitor Service MsC Transfers control to the IOCS monitor

Call and informs it that an I/O request is
to be serviced,

Identify I/0 Command DEC 7 Informs the monitor that a data transfer

Code to or from the specified device is to be
serviced.

Specify Return Address ADC address Specifies the location in the object pro-
gram to which the monitor is to return
control,

Establish the FIOB ADC address Assigns the beginning location (address

address of the first word) of the FIOB (File IO
Block) that contains the programer-
defined parameters specifying the pre-
cise I/O action requested.

EXIT Service Request Provides a common system exit of the
program when execution is completed,

Issue Monitor Service MSC Transfers control to the IOCS monitor

Call and informs it that an I/O service is
required.

Identify I/O Command DEC 0 Informs the monitor that an EXIT

Code request is to be serviced.

At assembly time, the Assembler interprets
the mnemonic op code of each source statement
to determine the type of operation requested,
and translates the source language statement to
object code format by translating executable.
statements to machine instruction format, re-
solving address computations, reserving storage

locations, etc., as described in Section 5.

2.4 Operand Field

The operand field of a source statement
specifies the element or elements to be used in
performing the operation specified in the op code
field of the statement. The specified operands
that may be used in a given source statement are
described in the individual statement discussions
in Section 3. In general, an operand may be any

of the following:

Symbolic tag (i.e., label)

Literal data value

Absolute address

Self-referencing indicator, *

Expression formed by combining two or

more of the single-element operands above

with plus (+) and minus (-) signs.

The operand of an executable instruction may

be followed by the characters

, L

to inform the Assembler that a long machine

instruction is to be generated. In all cases the

operand field is terminated by a blank character.

The operand fields of the Add Immediate and

Load Immediate statements are special cases, as

described in Section 3.

:2-8

Detailed discussions of the construction and
use of each type of operand are presented in the
following paragraphs.

2.4.1 Symbolic Tag Operands

A symbolic tag used as an operand may be
composed of from one to six characters, the
first of which must be alphabetic. When a sym-
bolic tag is used as an operand, it mustreference
memory locations or data values defined else-
where in the current program or in a program
referenced by the current program. Thatis, a
symbolic tag operand must have appeared else-
where in the current program as one or a com-

bination of the following:

Label of a statement in the current program.

Label (i. e., symbolic tag) of an EQUate
statement, the operand of which specifies

the actual value of the symbolic tag.

Operand in an EXternal REFerence state-
ment (mnemonic op code EXREF) that
specifies that the symbolic tag is defined
in another program referenced by the

current program.
NOTE

When a symbolic tag appears in

the operand field of the EXREF
statement, it may also be usedas
the operand in any statement in
the current program where
symbolic tags are permitted. The
EXREF definition must precede
any such use, however.

If more than one symbolic tag appears in an
expression in the operand field, all but one of the
tags must have been assigned absolute addresses

in EQUate statements.

The use of symbolic tags as operands is

illustrated in the following examples.

: 2-9

Example 1:
OP CODE OPERAND
JMP ENDJOB

This statement specifies that program execution
is to jump (unconditionally branch) to the current
location of ENDJOB.

Example 2:
OP CODE OPERAND
ADD TOTAL

This statement specifies that the value currently
stored in the memory location associated with the
symbolic tag operand TOTAL is to be added to
the value in the accumulator, and the result
stored in the accumulator.

2.4.2 Literal Operands

Literal operands are defined within the

A literal

definition is written in one of the following

operand field in which they appear.

formats:

which defines a hexadecimal
constant value

=X'constant value'

which defines an octal con-
stant value

=O'constant value'

which defines a decimal
constant value

=D'constant value'

which defines a decimal
constant value by default
(i. e., if neither of the
letters X, 0, or D follows
the equal sign and the con-
stant value is not enclosed
in quotation marks, the
constant value is assumed
to be a decimal value).

=constant value

The constant value must not be greater than 16
bits (a full word) in length. Leading zeros in
literal constant values less than 16 bits in length
are not required in the Assembler source lan-
guage., That is, the Assembler stores literal
constant values in 16-bit words, right-justified.
Following are examples of acceptable’literal

operand definitions.

Example 1:
OP CODE OPERAND
ADD =X'FF!

This statement specifies that the value currently
in the accumulator is to be added to the hexa-
decimal constant whose value is FF, and the

result stored in the accumulator.

Example 2:
OP CODE OPERAND
ADD =0'377!

This statement specifies that the octal value of

377 is to be added to the current value in the

accumulator.
Example 3:
OP CODE OPERAND
ADD =D'10'

This statement specifies that the decimal value
of 10 is to be added to the current value in the

accumulator.

Example 4:

OP CODE OPERAND
SUB =10

This statement specifies that the decimal (default)
value of 10 is to be subtracted from the value in

the accumulator.

2.4.3 Absolute Address Operands

Absolute address operands may be defined in

two ways:

By identifying a symbolic tag as a reference
to page 0 (see the Page 0 statement descrip-
tion in Section 3), and subsequently using the

tag as an operand.

By specifying a decimal, hexadecimal, or

octal memory address as the operand.

When absolute Addresses are used, either
symbolically with a PGO statement or directly,
each absolute address is assembled into the
operand field of the machine instruction and the
R bits of the instruction are 00. Following are

examples of the use of absolute address operands.

Example 1:

LABEL OP CODE OPERAND

PGO A

ONE LDW A

' PGO B

TWO LDW B

PGO C

THREE LDW C

The Page 0 statements specify that data
values associated with symbolic tags A, B, and
C are to be assigned absolute addresses relative
to Page 0. Statement ONE specifies that the
value in the absolute address assigned to A is to

be loaded into the accumulator. Statements TWO

2: 2-10

and THREE specify the same thing for the values
of symbolic tags B and C. In these statements,
direct addressing is specified and the absolute
addresses of the respective data values will
appear in the operand fields of the machine in-

structions generated by the Assembler.

Example 2:

LABEL oP C:,ODE OPERAND
BR1 Jl\/:IP X'F0'
BR2 JI\/:LP 0'377! |
BR3 JN.;P D'100!
BR4 JI\/iP 26

Statement BR1 specifies an unconditional
jump (branch) of program control to hexadecimal
F0. Statement BR2 specifies a jump to octal
location 377. Statement BR3 specifies an uncon-
ditional branch to decimal location 100, BR4
specifies a branch to decimal (by default) location
26.

2.4.4 Self-Reference Operand

The self-referencing indicator (¥) may be

used as an operand, as illustrated below.

DTAG7 ADC *
DKEY EQU *
JIMP *

2: 2-11

2.4.5 Expression Operands

Expression operands are formed by com-
bining any of the previously described single-
element operands with plus (+) and minus (-)
signs. Recall, however, that when two or more
symbolic tags are used as expression elements,
all but one of the tags must have been assigned
absolute addresses in EQUATE statements.

Examples of expression operands are shown:

below:
Example 1:
OP CODE OPERAND
JIMP *+16

The JMP statement specifies a transfer of pro-
gram control to a point 8 decimal locations (i.e.,
16 bytes) beyond the current location of the self-

referencing indicator.

Example 2:
OP CODE OPERAND
LDW TABLE +6

The LDW statement specifies that the accumu-
lator is to be loaded with the contents of the
fourth word of TABLE. That is, the third word
after the first (beginning) word of Table contains
the value to be loaded.

OP CODE OPERAND
STW X'1F0'-2

The STW statement specifies that the value in
the accumulator is to be stored in the memory

location just preceding the hexadecimal location
1FO0.

2.5 Comments Field

The programer may thoroughly document his
program by writing descriptive comments follow-
ing the blank character that terminates the
operand field and continuing through column 72.
In addition, the programer may specify that an
entire source record (coding line) is to be treated
as a comment by writing an asterisk (¥) in
column 1 of the source record, and then writing
the comment text in any columns from 2 through
72 of the coding form. Embedded blanks are
accepted in the comments field. Comments are
not processed by the Assembler, but are carried
on the object listing exactly as they were speci-

fied in the source statements.

2.6 Sequence Number Field

The programer may assign a sequence num-
ber to each line of source coding of his program.
If sequence numbers are specified, they must
appear in columns 73 through 80. The sequence
number field may contain any combination of
alphanumeric characters from the PTS-100
character set. At assembly time, the programer:
may specify the sequence checking of his pro-
gram by the Assembler, as described in Section
5. If a sequence number field is blank in a
source statement, sequence checking for the

associated record is bypassed by the Assembler.

2: 2-12

Section 3.

This section presents detailed descriptions
of all Assembler source statements that may be
used in coding applications programs for assem-
bly and subsequent execution on the PTS-100.
For purposes of discussion, the source state-
ments are described in the following four

functional groups:

Executable statements
Non executable statements
Program control statements

Input/output service statements.

For each source statement, a format diagram is
presented to graphically illustrate the statement
fields that may be used and the permissible con-
tent of each field. 1In all cases, the mnemonic
op code must be specified, as shown in upper
case letters in the format diagrams. Optional
fields are indicated by enclosing them in paren-
theses. When a required statement field permits
a choice in the form of its contents, the permis~
sible choices are shown enclosed in brackets in
the format diagram. When no choice of field
content is allowed, the form is shown unenclosed,
The label, op code, and operand fields must be

terminated by at least one blank character, in-

. dicated by the character A in the format diagrams.

Logical input/output for disc files is covered

separately atthe end of the section (subsection 3. 5).

In addition to the statements presented in
this section, the programer may write macro
routines to be subsequently specialized and in-
corporated within his programs as described in

Section 4.

Special statements and considerations for
writing systems programs are presented in

Section 7 of this part of the manual.

: 3-1

DETAILED DESCRIPTIONS OF SOURCE LANGUAGE STATEMENTS

3.1 Executable Statements

Executable statements are those source
statements the Assembler translates to machine
instruction format for execution by the CPU. As
described in Section 1, assembled machine in-
structions are either short (i.e., one word or
16 bits in length) or long (i.e., two words or 32
bits in length).

Short machine instructions contain 7-bit
operands which specify either word displacement
values to be used in computing the effective
addresses of object code or data values, or the
assigned absolute addresses of object code or data
values. That is, short instructions provide
addressing capability for 128 words relative to
the current program counter value, or addressing
of +128 words relative to zero or the value con-

tained in one of the index registers.

Long machine instructions contain 16-bit
operands which specify byte displacement values
to be used in computing the effective addresses
of relocatable coding or data values, or the
actual memory location of object coding or data
values that have been assigned absolute

addresses.

Word boundaries in memory are fixed.
When a memory word is referenced in one of
the machine instructions generated for a branch
statement, the least significant bit (LSB) of the

effective address must be zero.

In all other machine instructions that
reference memory words the least significant

bit (LSB) of the effective address is ignored.

When a byte address is referenced in a
machine instruction, the LSB is used to select
either the left-hand byte (LSB=0) or the right-
hand byte (LSB=1).

The CPU provides a hardv&are condition bit
(CB) to record status as the result of arithmetic
computations; comparative testing, and the logi-
cal AND operation. A condition bit setting of one

indicates the following conditions:

Arithmetic overflow
No carry
The logical AND operation result is zero

True results of comparison tests

The condition bit testing is specified in the
conditional branch statement (BRANCH IF CB
SET).

status of the condition bit until another instruc-

The hardware maintains the current
tion is executed that alters, or resets, it.
The executable statements provided in the

Assembler language are discussed in functional

groupings in the following paragraphs.

3.1.1 Arithmetic Statements

The source language for the PTS-100
Assembler provides six statements that perform

arithmetic computations:

Add (ADD)

Add Accumulator to Memory (ACM)
Add Immediate (ADI)

Add One to Memory (AO’M)

Shift Right One, Arithmetic (SRO)
Subtract (SUB)

These statements, their permissible for-
mats, and the effects of their use are described

individually below.

3.1.1.1 Add Statement (ADD). The ADD state-

"ment specifies that the memory word specified in

the operand field is to be added to the value cur-
rently in the accumulator, and the result of

the addition is to be stored in the accumulator.
The acceptable formats of the ADD source state-

ment are presented in the following diagram.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
S
(label) AADD [,N\pA Symbolic tag
X1 . (xxxxxxxx)
,XZ Literal
’ { Absolute address } (,L) A (Comments)
*
Expression
_1l T \ V.
COL COL COL
1 6 73

At assembly time, the Assembler generates
either a short or long machine instruction with a
machine command code of 10 in the op code field,
and the displacement of the memory word in the

operand field.

At program run time, execution of the ADD

machine instruction causes the specified memory
word to be accessed, its value to be added to the
value in the accumulator, and the resultant value
If the addition

operation causes an arithmetic overflow, the

to be stored in the accumulator.

hardware condition bit is set to one; otherwise,

the condition bit is reset to zero.

:3-2

3.1.1.2 Add Accumulator to Memory Statement
(ACM).

value in the accumulator is to be added to the

This statement specifies that the current

contents of the memory word specified as the

operand, and the result is to be stored in memory
word. The ACM source statement format is

presented in the following diagram.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
" A
(label) AACM [,N \ Al Symbolic tag
(xxxxxXXXX)
, X1 Literal
,X2[< Absolute address > (,L) A (Comments)
%
Expresczion
L} L
COL COL COL
1 6 73

At assembly time, the Assembler generates
either a short or long machine instruction with
the machine command code 30 in the op code field
and the displacement of the memory word in the

operand field.

At program run time, execution of the ACM
machine instruction causes the specified memory
word to be accessed, the current value of the
accumulator to be added to it, and the result of
the addition to be stored in the memory word.
The current value of the accumulator is not
modified. If no carry is generated by the addition
operation, the hardware condition bit is set;

otherwise, the condition bit is reset to zero.

3.1.1.3 Add Immediate Statement (ADI).

statement specifies that a value is to be

This

combined algebraically with the value in a
specific register, and the resultant value is to be
That is, the Add Imme-

diate source statement requires a specially for-

stored in the register.

mated two-element operand, as follows:

e Element 1 specifies the register to be used in

in the Add Immediate operation, where:

AC = accumulator

PC = program counter
X1 = index register 1
X2 = index register 2

e Element 2 specifies the value to be algebra-
ically added to the specified register. The
immediate value may be absolute (coded in
hexadecimal, decimal, or octal notation) or
may be a symbolic tag whose address becomes

the immediate value.

The operand field may optionally contain the
characters , L following the immediate value to
specify that the long machine instruction format
is to be used by the Assembler. The elements
in the operand field of the source statement are
separated by commas, as illustrated in the

following diagram.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
A
(label) A ADIA AC,value
(XxXXXXXX)
PC, value
< X1, value > (,L) A (Comments)
X2, value
.._.T T Z
COL COL COL
1 6 73

At assembly time, the Assembler generates
either a long or short machine instruction with
the command code 5 in the op code field and the

immediate operand in the operand field.

At program run time, execution of the short
form of the ADI machine instruction causes the
byte operand to be treated as a sign plus 7-bit
magnitude. The 7-bit field is added to the value
in the register if the sign is positive (i.e., 0) or
subtracted from the register if the sign is neg-
ative (i.e., 1). Note that the 7 bit field is

unshifted when combined with the register data.

Execution of the long format of the ADI
machine instruction causes the 16-bit operand
(i.e., the second word of the machine instruc-
tion) to be added to the value in the register.

Negative operands are represented in two's

complement form in the long instruction.

If the first element of the ADI source operand
field specified the accumulator (AC), the hard-
ware condition bit is set when an arithmetic over-
flow condition occurs. If another register is
specified (i.e., PC, X1, X2) as the first element
of the operand field, the condition bit is set when
no carry is generated as a result of the ADI
instructi'on execution. Otherwise the condition

bit is reset to zero.

3.1.1.4 Add One to Memory Statement (AOM).

This statement specifies that the contents of the

memory word specified as the operand is to be
incremented by one (in the Least Significant Bit).
The AOM source statement format is presented

in the following diagram.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
3\
(label) A AOM[,N\aA|] Symbolic tag (x33x%X%%X)
, X1
,X2|€ Absolute address > (L) A (Comments)
£
: Expression
LT \ y.
COL COL COL
1 6 73

At assembly time, the Assembler generates
either a short or long machine instruction with
the command code 31 in the op code field and the
effective address of the memory word in the

operand field.

At program run time, execution of the AOM
machine instruction causes the specified memory
word to be accessed, and its value to be incre-
mented by one. The hardware condition bit is

set if no carry was generated by the addition

operation; otherwise the condition bit is reset to

zero.

3.1.1.5 Shift Right One, Arithmetic Statement
(SRO).

in the accumulator is to be shifted one bit posi-

This statement specifies that the value

tion to the right and the sign bit is to be retained;

the right-most bit is lost.

As shown in the following diagram, no
operand is specified in the SRO source statement.
The programer may optionally specify a label,

comments, and sequence number field.

LABEL OP CODE SEQUENCE
A
FIELD FIELD OPERAND/COMMENTS FIELD) NUMBER FIELD
(label) A SRO A (Comments)
(xxxxxxxx)

CC!L CCIL CgL
1 6 73
At assembly time, a 16-bit word is 3.1.1.6 Subtract Statement (SUB). The sub-
generated for use by the CPU when the SRO tract statement specifies that the memory word
instruction is executed. At execution time, the specified in the operand field is to be subtracted
value currently in the accumulator is shifted from the contents of the accumulator, and the
right one bit position. difference i_.s to be stored in the accumulator.

The Subtract statement format diagram follows.

LAREL | OF CODE |0PERAND/GOMMENTS FIELD NN b
(label) ASUB[,N\ A ‘Symbolic tag) (xxxxxxx%)
, X1 Literal
,X2| € Absolute address ¢ (,L) A (Comments)
*
L Expression
2
COL COL COL
1 6 73
At assembly time, the Assembler generates 3.1.2 Branch Statements
either a short or long machine instruction with
the command code 14 in the op code field and the The source language for the PTS-100
displacement of the memory word in the operand Assembler provides two conditional and one
field. unconditional branch statements to effect trans-

fers of control within the executable program,
At program run time, execution of the Sub- as follows:
tract instruction causes the specified memory Branch if Accumulator Minus (BRM)
word to be accessed, its value to be subtracted ‘

Branch if Condition Bit Set (BCB)
from the value in the accumulator, and the re-

sultant difference stored in the accumulator. If Jump (JMP)

the subtraction operation causes an arithmetic These statements, their permissible
overflow condition, the hardware condition bit is formats, and the effects of their use are de-
set to one; otherwise it is reset to zero. scribed individually below.

3.1.2.1 Branch If Accumulator Minus State -
ment (BRM).

program execution is to branch to the location

This statement specifies that the

specified by the operand if the value in the ac-

cumulator is a negative number (i.e., if the
Most Significant Bit = 1). The BRM source

statement format is presented below.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
- - S
(label) L. BRM[,N\A| Symbolic tag (x3x33306%%)
, X1
,X2| { Absolute address > (, L) o (Comments)
k3
Expression
L y,
COL CcoL COL
1 6 73

At assembly time, the Assembler generates
either a long or short machine instruction with
the command code 3 in the op code field and the
displacement of the address to which control is

to branch in the operand field.

At execution time, the most significant
bit (MSB) in the accumulator value is tested. If
it is 1 (minus), the branch address is placed in
the program counter and the transfer of control
takes place. If the MSB is 0 (positive) the next

sequential program instruction is executed.

3.1.2.2 Branch If Condition Bit Set Statement
(BCB).
condition bit (CB) after the execution of a

This statement tests the hardware

machine instruction that may have set the CB to

indicate one of the following:

Arithmetic overflow
No carry generated
The logical AND operation result is zero

True results of comparison tests

The BCB source statement format is pre-

sented below.

LABEL OP CODE : N SEQUENCE
FIELD FIELD |CPERAND/COMMENTS /7D NUMBER FIELD
-
(label) ABCB/,N \ Al Symbolic tag (333003033)
,X1
,X2/ ¢ Absolute address) (,L) s (Comments)
%
Expression
L o
COL COL coL
1 6 73

At assembly time, the Assembler generates
either a short or long machine instruction with
the command code 2 in the op code field and the
effective address to which control is to transfer

in the operand field.

When the BCB instruction is executed, the

condition bit is tested to determine whether it is

equal to one. If so, the branch address is placed
in the program counter, and the transfer of con-
trol takes place. If the CB is not set, the next

sequential program instruction is executed.

3.1.2.3 Jump Statement (JMP).

ment specifies an unconditional branch in program

This state -

execution. The Jump statement format is

diagramed below.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
N
(label) A JMP(,N \A] Symbolic tag
(xxxxxXxxX)
, X1
,X2/ ¢ Absolute address p (,L) A (Comments)
%*
Expression
COL COL COL
1 6 73

At assembly time, the Assembler generates
either a short or long instruction with the
command code 0 in the op code field and the
effective address to which control is to transfer

in the operand field.

When the Jump machine instruction is exec-
uted, the branch address is placed in the program
counter and execution control jumps to the

specified point.
3.1.3 Compare Statements
The PTS-100 Assembler source language

provides two statements to specify comparative

testing of the current value of the accumulator

against the value of memory words, as follows:

o Compare for Accumulator Less than
Memory Word (CAL)

. Compare for Not Equal (CNE)

These statements are discussed in detail in the

following paragraphs.

3.1.3.1 Compare Accumulator Less Than
Word Statement (CAL).

comparative testing of the current value in the

This statement specifies

accumulator with the value of the memory word
specified by the operand to determine whether
the magnitude of the accumulator value is less
The CAL state-

ment format is diagramed below.

than that of the operand value.

LABEL OP CODE 3 SEQUENCE
'FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
(3
(label) A CAL;,N \A Symbolic tag (333305
,X1 Literal ‘
\, X2 9 Absolute address > (,L) & (Comments)
&

LT T Expression).

COL COL COL

1 6 73

At assembly time, the Assembler generates
either a long or short machine instruction with
the command code 17 in the op code field and the
displacement of the memory word value in the

operand field.

At execution time, the value currently
stored in the accumulator is compared with the
specified memory word value. If the magnitude

of the accumulator value is less than the magni-

tude of the memory word, the hardware condi-

tion bit is set to one; otherwise the CB is reset.

3.1.3.2 Compare For Not Equal Statement

(CNE). This statement specifies that a ''not
equal'' comparison is to be made with the current
value of the accumulator and the value of the
memory word specified by the operand.. The

format of-the CNE statement is diagramed below.

LABEL OP CODE SEQUENCE
FIELD FIELD |OPERAND/COMMENTS FIELD NUMBER FIELD
: ” ~
(label) A CNE /,N \A| Symbolic tag
(xxxxxxxX)
, X1 Literal
,X2/ { Absolute address) (,L) A (Comments)
*
Expression
| / t
COL COL COL
1 6 73

At assembly time, the Assembler generates
either a short or long machine instruction with
the command code 16 in the op code field and the
displacement value of the memory word in the

operand field.

At execution time, the specified memory
word is accessed and compared with the value
stored in the accumulator. 'If the two values are
not equal, the hardware condition bit is set to

one; otherwise it is reset.

3.1.4 Load Statements

There are six source statements that provide
assembly language programers with the facility
for loading data values or addresses into special

registers:

Load Address in Index Register 2
Load Byte

Load Immediate

Load Index Register 1

Load Index Register 2

Load Word

These statements, their permissible formats,
and the effects of their use are discussed in

detail on the following pages.

3.1.4.1 Load Address In Index Register 2
Statement (LAX2).

This statement specifies

that the address of the operand is to be placed
in index register 2. The LAX2 statement format

is diagramed below.

: 3-8

LABEL OP CODE SEQUENCE
OPERAND
FIELD FIELD E /COMMENTS FIELD NUMBER FIELD
S
label) LAX2 i
(labe A »N \A]l Symbolic tag (xxxxxxx%X)
, X1
,X2/ { Absolute address ¢ (»L) A (Comments)
*
Expression
__.T T L
COL COL COL
1 6 73
At assembly time, the Assembler generates 3.1.4.2 Load Byte Statement (LDB). This

a long or short machine instruction with the
command code 8 in the op code field and the dis -

placement value in the operand field.

At execution time, the actual address of the
operand is computed and loaded into index

register 2.

statement specifies that a data value one byte

(8 bits) in length is to be retrieved from the
memory location specified by the operand,
stored in the right-hand half of the accumulator,
and that the left-hand half of the accumulator is
to be cleared. The LDB source statement

format is diagramed below.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
)
(label) ALDB /,N \aA]l Symbolic tag (cxscc5)
, X1 Literal
, X2 < Absolute address ¢ (L) & (Comments)
*
L Expression)
COL COL COL
1 6 73

At assembly time, the Assembler generates
either a short or long machine instruction with
the command code 19 in the op code field and the
displacement of the byte value in the operand field
field.

At execution time, the byte value stored at
the effective address is loaded into the right-hand
portion of the accumulator and the left-hand

portion is zeroed.

3.1.4.3 Load Immediate Statement (LDI).
This statement specifies that the value

specified as the second operand is to be loaded

into the register specified as the first operand.
That is, the LDI source statement requires a
specially formated two-element operand, as

follows:

Element 1 specifies the register into which

the numeric value is to be loaded.

Element 2 specifies the value to be loaded
into the register specified as the first
operand. The immediate value may be
absolute (coded in hexadecimal, octal, or
decimal notation) or may be a symbolic tag

whose address becomes the immediate value.

The operand field may optionally contain
the characters , L following the immediate value
to specify that the long machine instruction

format is to be used by the Assembler. The

elements in the operand field of the LDI source
statement are separated by commas, as illustra-

ted in the following diagram.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
)
(label) A LDI A AC,value (3303
PC, value
< XI1,value > (,L) A (Comments)
X2,value
__.T T \ Z ?
COL COL COL
1 6 73

At assembly time, the Assembler generates
either a long or short machine instruction with
the command code 4 inthe opcode field. Ifa short
instruction is generated, the immediate operand
value appears inthe operand field of the instruction.
In a longinstruction, the immediate operand value

appears in the second word of the instruction.

At program run time, execution of the short
form of the LDI instruction causes the byte

operand to be placed in the right half of the

specified register and the left half to be zeroed.
Execution of the long form of the LDI instruc-
tion causes the word operand to be placed in the

specified register.

3.1.4.4 Load Index Register 1 Statement (LX1).

This statement specifies that the value of the
operand is to be loaded into index register 1.
The format of the LX1 statement is diagramed

below.

LABEL - OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
S
, N Symboli
(label) A LX1 N ymbolic tag (xxxxXXKX)
, X1 Literal
,X2/ Absolute address > (,L) A (Comments)
*
Expression
~ t /
COL COL COL
1 6 73

At assembly time, the Assembler generates
a long or short machine instruction with the
command code 20 in the op code field and the

displacement of the memory word to be loaded

in the operand field.

At execution time, the specified value is

loaded into index register 1.

3.1.4.5

Load Index Register 2 Statement (LX2).

This statement specifies that the value of the

operand is to be loaded into index register 2.

The format of the LX2 is presented below.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
S
(label) ALX2 /,N \ Al Symbolic tag [—
, X1 Literal
,X2/ § Absolute address > (,L) A (Comments)
)
Expression
S / VT
COL COL COL
1 6 73

At assembly time, the Assembler generates

a long or short machine instruction with the

command code 21 in the op code field and the

displacement of the memory word to be loaded

in the operand field.

At execution time, the specified value is

loaded into index register 2.

3.1.4.6 Load Word Statement (LDW). This

statement specifies that the value of the operand

is to be loaded into the accumulator. The format

of the LDW statement is diagramed below.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
)
(label) ALDW/,N \ Al Symbolic tag
(xxxxxXXXX)
, X1 Literal
, X2/ € Absolute address) (,L) A (Comments)
%
Expression
s_T T Vi
COL COL COL
1 6 73

At assembly time, the Assembler generates

either a short or long instruction with the

command code 18 in the op code field and the

displacement of the value to be loaded in the

operand field.

At execution time, the specified value is

loaded into the accumulator.

2: 3-11

3.1.5 Store Statements

There are four source statements that pro-
vide assembly language programers with the
facility for storing data values or addresses in
memory locations:

Store Byte
Store Index Register 1
Store Index Register 2

These statements, their permissible for-
mats, and the effects of their use are discussed

in detail on the following pages.

3.1.5.1 This
statement specifies that the right-hand byte of

Store Byte Statement (STB).

the data value in the accumulator is to be stored
in the byte location of the memory word specified

by the operand. The format of the Store Byte

Store Word statement is diagramed below.
LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD

] Y
(label) ASTB y,N \A| Symbolic tag (XxXXXXXX)
, X1
,X2/ € Absolute address p (,L) A (Comments)
*
Expression
L ' A L).
COL COL COL
1 6 7

At assembly time, the Assembler generates
either a short or long machine instruction with
the command code 28 in the op code field and the
displacement of the value to be stored in the
operand field. The least significant bit of the
effective address indicates whether the byte value
is to appear in the left-hand portion of the memory
word (i.e., LSB = 0) or the right-hand portion
(LSB =1).

At execution time, the right-hand byte of
the accumulator is stored in that portion of the
memory word specified by the effective address

of the machine instruction.

3.1.5.2 Store Index Register 1 Statement (SX1).

This statement specifies that the current value in

index register 1 is to be stored at the memory
location specified by the operand. The format

of the statement is presented below.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
)
(label) ASX1 y,N \A| Symbolic tag [
, X1
,X2/ € Absolute address > (,L) A (Comments)
%
Expression
= :
COL COL COL
1 6 73

2: 3-12

At assembly time, the Assembler generates
a long or short machine instruction with the
command code 26 in the op code field and the
displacement at which the value is to be stored

in the operand field.

When the SX1 instruction is executed, the

value in index register 1 is stored in the memory

location specified by the effective address.

3.1.5.3 Store Index Register 2 Statement (SX2).

This statement specifies that the current value in
index register 2 is to be stored at the memory
location specified by the operand. The per-
missible format of the statement is presented

below.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
A
(label) ASX2 ,N \A|l Symbolic tag T
, X1
, X2 < Absolute address > (L) A (Comments)
*
Expression
| y.
COL COL COL
1 6 73

At assembly time, the Assembler generates
either a long or short machine instruction with
the command code 27 in the op code field and the
displacement at which the value is to be stored

in the operand field.

At execution time, the current value of

index register 2 is stored in the specified

memory location.

3.1.5.4 Store Word Statement (STW). This

statement specifies that the current value in
the accumulator is to be stored in the memory
word specified in the operand field. The Store
Word source statement format is presented

below.

LABEL OP CODE ~ SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
(label) ASTW [,N \,| Symbolic tag (330035
, X1
,x2] § Absolute address > (L) & (Comments)
%
Expression
L.T /
COL COL COL
1 6 73

At assembly time, the Assembler generates
a long or short machine instruction with the
command code 24 in the op code field and the

displacement at which the current value of the

accumulator is to be stored in the operand field.

At execution time, the current value of the
accumulator is transferred to the effective

address.

3.1.6 Logical Statements

The PTS-100 Assembler provides the follow-
ing two statements for logical combination of

accumulator and memory word data values:

AND statement
Exclusive OR statement

These statements, their permissible for-

mzts, and the effects of their use are discussed
in detail on the following pages.

3.1.6.1 AND Statement (AND).
specifies that the current value in the accumula-
tor is to be ANDed with the value specified by the

operand and the result is to be placed in the ac-

This statement

cumulator. The AND source statement format is

diagramed below.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
(label) AAND /,N \A] Symbolic tag (33030563035
, X1 Literal
,X2/ Absolute address > (,L) A (Comments)
*
Expression
1t ’ t
COL COL COL
1 6 73
At assembly time, the Assembler generates The resultant value is stored in the accumu-
either along or short machine instruction with the lator. If the resultant value of the AND opera-

command code 12 in the opcode field and the dis-

placement of the memory wordin the operand field.

At execution time, the bits of the accumulator
Both bits

must equal 1 to produce a 1-bit setting in the re-

and of the memory word are ANDed.

sultant value, as illustrated below.

01011101 10010011
00100000 11101101
00000000 10000001

Current Accumulator Value:
Memory Word Value:
ANDed Resultant Value:

tion is not equal to zero, the hardware condition

bit is set to one; otherwise it is reset.

3.1.6.2 Exclusive OR Statement (XOR). This

statement specifies that the current value in the

accumulator is to be exclusive ORed with the
value specified by the operand and the result is
The XOR

source statement format is diagramed below.

to be placed in the accumulator.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
‘)
label \ i
(label) s XOR/, N \A| Symbolic tag (xxxxxxxx)
, X1 Literal
,X2/ € Absolute address > (,L) A (Comments)
&
Expression
.__T T .
COL COL COL
1 6 73

2: 3-14

At assembly time, the Assembler generates
either a long or short machine instruction con-
taining the command code 11 in the op code field
and the displacement of the memory word value

in the operand field.

At execution time, the bits of the current
accumulator value and the memory word value
are XORed to determine the resultant value,
where one bit but not both must be one to produce
a 1-bit setting in the resultant value, as illu-

strated below.

Current Accumulator Value: 01011101 10010011
Memory Word Value: 00100000 11101101

XORed Resultant Value: 01111101 01111110

The resultant value is stored in the

accumulator.

3.2 Nonexecutable Statements

Nonexecutable statements are those that do
not result in Assembler -generated machine in-
structions. That is, they are not executed by
the CPU, but rather establish data values and
reserve storage areas for use by the executable
object program. For purposes of discussion,

these statements are grouped as follows:

° Constant assignment statements, which
are used to establish constant data values

and address constants.

e Symbol defining statements, which assign
values to symbols or identify symbols used

or referenced by the program segment.

o Storage area assignment statements, which
reserve storage areas for literal pools,
absolute addresses, I/O data buffers and
the executable program coding.

3.2.1 Constant Assignment Statements

Seven types of constants maybe definedin
PTS-100 Assembler source language:

Address Constants

Concatenated Integer Constants
Decimal Constants

Hexadecimal Constants

Octal Constant

Text (alphanumeric) Constants
TEX7 (7-bit alphanumeric) Constants

The constant assignment statement formats
and usage are described in the following para-

graphs.

3.2.1.1 Address Constant Statement (ADC).

This statement defines an Address Constant.

The ADC statement format is diagramed below.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
S
(label) A ADC A Symbolic tag [—
< Absolute address > A (Comments)
*
Expression
L \ /
COL COL COL
1 6 73

There is one restriction on the use of a
symbolic tag in the operand field of the ADC
statement: if the operahd is an external
reference symbol (i.e., a symbol that is defined

in a program segment other than the current one

as described in the EXREF statement discussion),
it must be the only element in the operand field.
That is, it may not appear within an expression
formed by combining other operand elements

with the plus (+) or minus (-) sign.

2: 3-15

3.2.1.2 Concatenated Integer Constant State -

ment (CAT). This statement is used to construct
a concatenated integer constant one word (16 bits)

in length, based on the values specified in the

operand field. The format of the CAT source
statement is presented below. Howevei-, the
CAT statement is not implemented in the native
version of the PTS-100 Assembler.

LABEL OP CODE SEQUENCE
P)
FIELD FieLD |OPERAND/COMMENTS FIELD NUMBER FIELD
(label) A CAT expression.,
1 (xxxXXXXXX)
expressionn A (comments) where each
expression is written in the format:
absolute value:bits
COL CcOoL CJL
1 6 73

As shown in the diagram above, the operand
field may contain one or more expressions, each

of which is written in the format
Absolute value:bits

where the absolute value may be expressed as

one of the following:

A symbolic tag previously assigned an

absolute value via the EQUate statement
An octal, hexadecimal, or decimal value

An expression formed by combining any
of the above with the plus (+) or minus (-)

sign

and where bits is a decimal number, from 1 - 16,
specifying the number of bits the absolute value
is to'occupy in the 16-bit concatenated word. If
a string of expressions is specified in the CAT
statement operand field, the total number of bits
must not be greater than 16. If fewer than 16
bits is specified for a concatenated word, the
final value of the word is left-justified, and the

right -most bit positions are zero filled.

Following are examples of CAT source
statements, and the resulting word values

they produce.

Example 1:
CAT X'AB':8, 12:8

The expression X'AB':8 specifies that the hexa-
decimal value AB is to appear in an 8-bit field.
The expression 12:8 specifies that the decimal
value 12 is to occupy an 8-bit field in the con-
catenated word. The resultant integer constant

constructed by this statement is shown below.

binary value [to1of1011]0000[1100]

hexadecimal value A B 0 C

Example 2:

FIVE EQU 5
SIX EQU 6
CAT FIVE-1:3,SIX+4:7,0'77':6

The first two statements EQUate absolute values
to the symbolic tags FIVE and SIX. The CAT
statement specifies that the value FIVE -1 is to
appear in.a 3-bit field in the left-most portion of
the concatenated constant word, the value SIX+4
is to appear in the next 7-bit field, and the octal
value 77 is to appear in the right-most 6-bit
portion of the word. The resultant integer con-

stant is shown below.

binary value [toooJoorof1011{1111]

hexadecimal value 8 2 B F

2: 3-16

3.2.1.3 Decimal Constant Statement (DEC).

This statement is used to define one or more

16-bit decimal constants. The format of the

statement is shown below.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
(label) ADEC A *nnnnn } A (co entd (x3cxxxx)
L *nnnnn, #nnnnn, ... ,tnnnnn
where n's = decimal digits
COL COL COL
1 6 73

One or more decimal constant values may
appear in the operand field. If two or more
constant values are specified, they must be
separated by commas. The magnitude of any
given constant value must be less than 65535.
Constant values may be preceded by the plus (+)
or minus (-) signs. If a negative decimal value
is specified, the two's complement of the binary
representation of the value appears in the 16-bit
memory word. The decimal constant value is
right-justified in the memory word, with the left-

most unused portion zero-filled. If a label

appears in the label field of a DEC statement in
which a string of constant values is specified,
the label will become the symbolic tag of the
first value in the operand field. That is, strings
of values are assigned to consecutive storage
locations, with the tag associated with the first

(lowest) memory address.

3.2.1.4 Hexadecimal Constant Statement (HEX),

This statement is used to define one or more
16-bit hexadecimal constant values, as shown in

the following diagram.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
HEX
(label) A A nnnn (33303630530
nnnn,nnnn,...,nnnn
< > A (Comments)
where n's =
‘hexadecimal digits)
COL COL COL
1 6 73

In the HEX statement, one or more hexa-
decimal constant values may be specified, each
from one to four-digits in length. If two or more
constant values are specified, they are separated
by commas. If a label is specified for a state-
ment in which a string of values is specified, the

label becomes the symbolic tag of the first value

in the operand field. That is, strings of values
are assigned to éonsecutive locations, with the
symbolic tag associated with the first (lowest)
memory address. If less than four digits are
specified in a given value, the binary represen-
tation of the value is right-justified, with the

left-most unused bit positions zero-filled.

2: 3-17

3.2.1.5 Octal Constant Statement (OCT). The

OCT statement is used to define one or more 16-

bit octal constant values, as shown in the follow -

ing diagram.

LABEL OP CODE SEQUENCE
FIELD FiELD |OPERAND/COMMENTS FIELD NUMBER FIELD
S
(label) A OCT A nnnnnn
(XxxXXXXXX)
nnnnnn, ..., nnnnnn
< > A {Comments)
where n's =
octal digits)
COL COL CO1.
1 6 73

As shown in the diagram above, one or more
octal constant values may be specified, each
from one to six digits in length. If a label is
specified for a statement in which a string of
values is specified, the label becomes the sym-
bolic tag of the first value in the operand field.

If less than six digits are specified in a given
octal constant value, the binary representation
of the value is right-justified in the memory

word, with the left-most unused bit positions

zero-filled. If six digits are specified, the two

high-order bits of the first digit are truncated.

3.2.1.6 Text Constant Statement (TEXT). This

statement is used to define an alphanumeric

constant from one to forty characters in length.
The alphanumeric constant value appears in the
operand field, as shown in the format diagram

below.

LABEL OP CODE SEQUENCE
FIELD FigLp |OPERAND/COMMENTS FIELD NUMBER FIELD
1
(label) ATEXT A alphacon' A (comment) (33306505
COL COL COL
1 6 73

The alphanumeric constant fralue must be
enclosed in single quotation marks, which are
used as delimiters. The constant value may
contain any characters from the PTS-100
character set (see Appendix A) except the single
quotation marks. If quotation marks are to .

. appear within the alphanumeric constant value,
the programer uses double quotation marks,
which will be replaced by the single quotation

marks when the constant value is assembled.

Alphanumeric constants must start on a word

boundary.

Alphanumeric constants are stored as 8-bit
ASCII characters (i.e., two characters per
memory word). If the constant value contains an
uneven number of characters, the last character
will appear in the left-most byte of the last
memory word, and the right-most byte will be
blank-filled.

2: 3-18

3.2.1.7 Text Constant (7-bit) Statement (TEX7). The alphanumeric constant value appears in the

This statement is used to define an alphanumeric operand field, as shown in the format diagram
constant from one to forty characters in length. below.

LABEL OP CODE SEQUENCE

FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD

(label) A TEX7 A 'alphacon' A (comment) (sexxsxexsexxx)

*

COL COL COoL
1 73
The alphanumeric constant value must be Each character in the alphanumeric constant

enclosed in single quotation marks, which are is treated as a 7-bit ASCII character and stored
used as delimiters. The constant value may as an 8-bit character, with the most significant
contain any characters from the PTS-100 bit (MSB) set to 0 (i.e., two characters per
character set (see Appendix A) except the single memory word)., If the constant value contains an
quotation mark, If quotation marks are to appear uneven number of characters, the last character
within the alphanumeric constant value, the will appear in the left-most byte of the last
programer uses double quotation marks, which memory word, and the right-most byte will be
will be replaced by the single quotation mark blank-filled.

when the constant value is assembled. Alpha-

numeric constants must start on a wordboundary.

2: 3-18A/B

3.2.2 Symbol Defining Statements

Three source statements are used to define
or identify symbols in the PTS-100 assembly

language:

° The Equate statement is used to assign an

absolute value to a symbol.

° The External Definition statement informs
the Assembler that a defined symbol in one
program segment is to be referenced in

another program segment.

° The External Reference statement informs
the Assembler that a referenced symbol in
one program segment is to be defined in

another program segment.

3.2.2.1 Equate Statement (EQU). This state-

ment is used to assign an absolute address value

to a symbol. The symbol must appear in the
label field of the source statement, and the
operand field must contain the absolute address

value, expressed as one of the following:

The self-referencing indicator (%)

An absolute decimal, hexadecimal, or

octal number

Another symbol, previously assigned an
absolute number value in another EQUate

statement.

The format of the Equate statement is

presented below.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIFLD
A
(label) A EQU Symbolic tag (xxxx%%%X)
Absolute number
< * > A (Comments)
L} 2z
COL COL COL
1 6 73

At assembly time, the operand field is
evaluated and the resulting absolute number is
assigned as the address value of the specified
symbol in the symbol table created by the

~ Assembler.

Each time the symbol is referenced in the
executable program, the address value is used

to locate the associated data value.

3.2.2.2 External Definition Statement (EXDEF).

This statement is used to inform the Assembler
that the symbol defined in the immediately pre-
ceding or following source statement in the pro-
gram segment currently being assembled is to
be referenced in some other program segment
to which the current segment will be linked at
load time. The EXDEF statement format is

presented below.

2: 3-19

OP CODE
FIELD

OPERAND/COMMENTS FIELD

SEQUENCE
NUMBER FIELD

A EXDEF A

Symbolic tag A (comments)

(xxxxxXx%xX)

Note that the label field in the EXDEF state -
ment is not used. That is, a label specified for
this statement will be ignored by the Assembler.
The EXDEF op code may begin in any column

other than column 1, which must be blank.

At assembly time, the Assembler places
the named symbol and its address value in the
symbol table. The symbol and its address are
subsequently written on the relocatable loading

file. At load time, the relocating loader re-

(EXREF).

solves the address of the symbol when it is

referenced in another program segment.

3.2.2.3 External Reference Statement

This statement informs the Assem-
bler that a symbol referenced in the program
segment currently being assembled is defined
in some other program segment to which
the current segment will be linked at load time.
The EXREF statement format is diagramed

below.

OP CODE U SEQUENCE
FIELD OPERAND/COMMENTS ¥Iig LD NUMBER FIELD
AEXREF A Symbolic tag A(comments)
(xxxxxxx%X)
COL COL COL
1 6 73

Note that the label field in the EXREF state -
ment is not used. That is, a label specified’for
this statement will be ignored by the Assembler.
The EXREF op code may begin in any column

other than column 1, which must be blank.

At assembly time, the Assembler places

the symbol in the symbol table. The symbol and
the addresses referencing it are written on the
object file for resolution by the Absolute/
Relocating Loader. At load time, the address of
the symbol is resolved by the Loader when the
current program segment is linked to the

program segment in which the symbol is defined.

2:3-20

3.2.3 Storage Assignment Statements

The storage assignment statements allow the
programer to establish memory storage locations
for source coding, literal values, and buffer or
data areas. There are five storage assignment
statements:

. Literal Origin statement, which establishes
the storage areas for blocks of literal data

values,

° MOD statement, which causes the instruction
following it to be allocated to the storage
location that is the next higher multiple of

a given power of two.

° Origin statement, which specifies the
beginning storage location at which object

program loading is to begin.

. Page 0 statement, which causes an absolute

addrese to be assigned to a symbol.

. Reserve statement, which specifies that a
memory area is to be reserved for use as

a buffer or data storage area.

These statements are described in the following

paragraphs.

3.2.3.1

is the programer's responsibility to indicate

Literal Origin Statement (LTORG). It

where literal data values are to be stored within
his program. The Literal Origin (LTORG)
statement is used to inform the Assembler that
a literal storage pool is to be set up within the
program. The LTORG statement format is

diagramed below.

OP CODE SEQUENCE
FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
A LTORG » (comments)
(xxxxxx%%xX)
COL COL COL
1 6 73

As shown above, the label field and the
operand field are not used in the LTORG state-
ment. The op code may begin in any column
after column 1, which must be blank. The op
code is terminated by a blank character, after

which a comment may be specified.

When the Assembler encounters a LTORG
statement in a source program, it establishes
a literal storage area, beginning with the loca-
tion at which the LTORG statement was en-
countered and continuing through the number of
sequential locations required to store all literals

defined since the beginning of the program, or

since the last LTORG statement was encountered.
That is, all literal values defined prior to the
occurrence of a given LTORG statement are
assigned storage locations in the same séquential
order as their appearance in the program.
Duplicate literal values are eliminated only when
they both appe#r within the block of source

coding preceding a given LTORG statement.
Thus, the Assembler establishes a new literal
table each time a LTORG statement is encounter -
ed, and writes the previous literal table on an
Intermediate Text 'file. Therefore, redundant

entries between tables are not eliminated.

2: 3-21

3.2.3.2 Mod Statement (MOD).,

specifies that the statement immediately follow-

This statement

ing it is to be stored in the next storage location

that is a multiple of the power of two which is
specified as its operand. The MOD statement

format is shown in the diagram below.

OP CODE SEQUENCE
FIELD OPERAND/COMMENTS FIELD NUMBER FIFLD
AMOD A decimal number A (comments) (xxxxxxxx)
COL COL COoL
1 6 73

As shown above, the label field in the MOD
statement is not used. The op code may begin
in any column after column 1, which must be
blank. The op code is terminated by a blank
character, after which the operand is specified
as a decimal number, which must be a power of
two. When the Assembler encounters this state -
ment, it locates the object coding of the state -

ment immediately following the MOD statement

at the next full-word location that is a multiple

of the value specified as the operand.

3.2.3.3 Origin Statement (ORG). One ORG

statement may optionally be used as the first

statement in a source program to specify the
origin of the object program (i.e., the first
memory location at which object program loading
is to begin). The ORG statement is diagramed

below.

LABEL OP CODE ” SEQUENCE
ETELD FIELD OPERAND/COMMENTS FIELD NUMEEE FIELD
(label) A ORG A Absolute address A (comments) [—
COL COL coL
1 6 73

As shown in the diagram above, the ORG
statement label is optional. The operand field of
the statement must specify the absolute address,
which must be expressed as a hexadecimal, octal,
or decimal number. If a label is defined for the
ORG statement, it is assigned the address value

of the operand.

If a program contains several segments,

only one segment (the one to be loaded first) may

contain an ORG statement at its beginning. If
more than one ORG statement should appear in
a program, the duplicate statement(s) will not
be detected by the Assembler., That is, the
statements will be accepted, and unpredictable

results will occur at load time.

If no ORG statement appears in a program,

object program loading will begin at location 0.

2: 3-22

3.2.3.4 Page 0 Statement (PG0). The PGO
statement is used to specify that a symbolic tag

is to be assigned an absolute address when it is

used in an executable instruction. The format of

this statement is shown below.

OP CODE SEQUENCE
FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
A PGO A Symbolic tag A (comment) (xxxx%%%%)
S
COL COL COL
6 73

As shown above, the label field is not used
in the Page 0 statement. The op code may begin
in any column after column 1, which must be
blank. The operand field may contain one
symbolic tag of a data value defined in a state-
ment immediately following or preceding the
Page 0 statement. That is, the Page 0 source
statement must physically appear either immed-
iately before or after the statement in which the
value of the symbol is defined. The symbol may
be defined as the label of an EQUate statement
whose operand specifies its actual value, the
label of some other statement in the current

program, or the operand of an EXREF state -

ment in the current program.

The PGO statement identifies the symbolic
tag as a reference to page 0; thus when the sym-
bolic tag is used in an executable instruction,
the absolute address of the symbolic tag appears
in the operand field of the Assembler -generated

machine instruction.

3.2.3.5 Reserve Statement (RESV). This

statement is used to inform the Assembler that

an area of memory is to be reserved for use as
a buffer or a data storage area. It is written in

the formats shown below.

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
(label) A RESV absolute numbers A (comment) (33003350)
RESV, XX A
L
COL COL COL
6 73

A label may optionally be specified for the
Reserve statement. If it is specified, it is
assigned the address of the first word location

of the reserved area.

The op code may be written in either of the

forms:

RESV or RESV, xx

2:3-23

The first form specifies that a zero-filled
storage area of the byte -length specified by the
operand is to be reserved on a word boundary
in memory. - The RESV, xx form specifies that
every byte location in the reserved area is to

be set to the hexadecimal value specified by xx.

The operand of the RESV statement must be
an absolute number expressed in octal, hexa-
decimal, or decimal notation, specifying the
number of bytes to be reserved. If the absolute
number is an odd number, the Assembler incre-
ments it by one (i.e., makes it even) to preserve
subsequent storage allocation on word boundaries.
Thus, the Assembler responds to the Reserve
statement request by reserving enough full
storage words to accommodate the maximum

number of bytes specified in the operand field.

3.3 Program Control Statements

The program control statements allow the
programer to control the object program listing,
to specify the end of program assembly,‘ and to
specify the starting address for program execu-
tion. There are four such statements in the

PTS-100 Assembler language.

° The END statement, which terminates
program assembly, and optionally specifies

the starting address for program execution.

° The SKIP statement, which controls the
vertical spacing of the object program
listing. ‘

e The UNLIST statement, which tells the
Assembler to suspend production of the
obj‘ect program listing.

N The LIST statement, which rescinds the
UNLIST stafement (i.e., resumes produc-

tion of the object program listing).

These statements are individually described

below.

3.3.1 End Statement (END)

The END statement marks the end of the
source program (i.e., terminates a given assem-
bly) and may optionally specify the starting
address of program execution (i.e., the address
of the first instruction to be executed in object
program, which is the point at which the
Absolute /Relocating Loader is to turn control
over to the executable program), The format of

the END statement is presented below.

OP CODE ; SEQUENCE
FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
. A
AEND A Symbolic tag (x30335¢)

Absolute Address
*
Expression

e

COL COL COL

1 6 73

As shown above, the label field is not used
in the END statement. The op code may begin
in any column after column 1, which must be
blank. The operand is optional in the END state -
ment. If present, it may contain any of the ele-
ments shown above. When several program

segments are to be individually assembled and

combined into one object program, only the last
segment should contain an END card with a
starting address specified in the operand field.
That is, when the Loader loads an END state -
ment with a starting address, it places the
address in the program counter and starts execu-

tion of the program. Hence, when the program

2: 3-24

is to be debugged, the END statement of the
source program must not contain an execution
starting address if the Debug program is to be
loaded as the last part of the object program to
be debugged, as described in Part 3 of this
handbook.

3.3.2 Skip Statement (SKIP)

The SKIP statement causes the object listing
produced by the Assembler to be vertically
spaced as specified by the operand. The format

of the statement is shown below.

OP CODE SEQUENCE
FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
ASKIP A P (xxxxxxxx‘)
decimal number
COL COL COL
73

The label field is not used in the SKIP state-
ment. The op code may begin in any column
after column 1, which must be blank. The oper-
and may be a decimal number from 1- 10, spe-
cifying the number of print lines to be skipped
withina given page of the objectlisting, or the

value P, specifying thatthe Assembleris toskipto

the top of the nextpage to continue the object listing.

3.3.3 Unlist Statement (UNLIST)

The UNLIST statement specifies that the
Assembler is to temporarily suspend the output
object listing at the point at which the UNLIST
statement is encountered. The UNLIST state -

ment is diagramed below.

OP CODE SEQUENCE
FIELD COMMENTS FIELD NUMBER FIELD
AUNLIST A (xxxXXXXXX)
S
COL COL COL
1 6 73

As shown above, the label and operand fields
are unused in the UNLIST statement. The op
code may begin in any column after column 1,
which must be blank. The object listing remains
suspended from the point at which an UNLIST
statement is encountered until a LIST statement
appears in the program, or until the end of the

source program.

3.3.4 List Statement (1LIST)

The LIST statement rescinds the UNLIST
statement. That is, it tells the Assembler to
resume printing the object program listing.

Only the op code LIST is required in the state-
ment, beginning anywhere after column 1, which

must be blank, as shown below.

2: 3-25

OP CODE SEQUENCE
FIELD COMMENTS FIELD NUMBER FIELD
A LIST a (xxxxxxxX)
L
COL COL coL
1 6 73

3.4 Input/Output Services

With each PTS-100 System an IOCS monitor

is available to perform the following functions:
Automatic device interrupt handling

Processing I/O requests from applications

programs.

The device interrupt handling capability is
built into the specific IOCS monitor for a given
PTS-100 when the user's system is generated.
Thus, device interrupt handling is performed
automatically for individual programs according
to the parameters and priorities defined prior to
system generation. For a description of avail-
able devices, their logical unit number identifi-
cations (LUN ID's), and the interrupt priorities
assigned to them, the programer should con-
sult the system generation documentation of his
specific PTS-100 System., For description of
logical IOCS for disc see Section 3.5 of this part.

Applications programs may request the
following basic. I/O device services from the

monitor:
Device initialization
Device opening and closing

Device input/output actions

A common system exit at the end of a

processing job.

In all cases, a program must issue a moni-
tor service call (i.e., a source statement with

MSC in the op code field) to signal a request for

monitor services. The MSC statement must be
félléwed immediately by a Decimal Constant
(DEC) statement whose operand is one of the
following monitor service identification codes:

0 = request for a. common system
EXIT

1 = request to CLOSE a specific device
2 = request to INITialize all devices
3 = request for Watchdog Timer Service

4 = request for channel interface controller
service

5 = request for device status sensing
6 = request to OPEN a specific device

7 = request to perform a specific I/O file
action (IOACT) on a specific device

11= requestto change peripheraldevice
addresses

Except for the EXIT request, the DEC state -
ment must be followed by an Address Constant
statement whose operand is an address within
the program to which the monitor is to return
processing control when the request has been

serviced.

The three service requests concerned with
specific devices are CLOSE, OPEN, and IOACT.
The argument lists for these requests must
specify the device to be used by passing the logi-
cal unit number identification (LUN ID) to the
IOCS monitor. In the CLOSE and OPEN requests,
the LUN ID is passed to the monitor via a con-
stant statement. In the case of the IOACT

2: 3-26

request, the LUN ID is passed to the monitor in
a programer -defined table called the file I/O
Block (FIOB), described in subsection 3.4.1.
The FIOB is referenced in an Address Constant
statement which appears as the last argument of
the IOACT request. Associated with the FIOB is
the programer -defined Input/Output Control
Queue (IOCQ) table entry, described in detail in
The IOCQ table is used by

the monitor to queue 1/0O requests for particular

subsection 3. 4. 2.

input/output device channels. An IOCQ table
entry is required for each IOACT request. In
the OPEN request, the starting address of the
IOCQ is given as an operand in an Address

Constant statement.

For CLOSE and OPEN requests, the last
argument must be a Reserve statement to set
up a storage word in which the monitor can
store a code indicating any error that may occur
during the attempt to OPEN or CLOSE the device.
In the case of the IOACT fequest, the device
error code is returned to the FIOB; as described
below.
3.4.1 File Input/Output Block Definition

For each input/output service requested
from the IOCS monitor, the programer describes
the parameters of the request in a 9-word File
Input/Output Block (FIOB), the format of which

is shown in figure 2-3.

sis (0] 1]2]3]4]s]e]7]8]o]rw0]n|r12]ia]1a]1s

Word 0 (spare) ERROR CODE

Word 1 | MODE | FUNCTION _|LOGICAL UNIT NUMBER ID

Word 2 BUFFER ADDRESS (starting byte)

Word 3 BYTE COUNT

Word 4 TRANSLATE TABLE BASE OR DISC ADDRESS

Word 5 SEARCH TABLE BASE OR DISC ADDRESS

Word 6 (Spare)

Word 7 (Spare)

Word 8 (Spare LUN
e.xten-
sion

Figure 2-3. Format of File Input/Output

Block (FIOB)

The individual fields of the FIOB and their
significance are as follows:

Word 0: Error Code Field (8-bit field). After
the I/O request has been processed,
the IOCS monitor returns one of the

following codes to this field:

Code Meaning
0 No error
1 Device not operational
2 No such LUN
3 LUN already open
4 LUN not open
5 Queue full

Word 1: This word contains three fields: the
data transfer MODE field, the device
FUNCTION field, and the LUN ID

field, as described individually below.

MODE field (bits 0 - 2): the programer
specifies the data transfer mode to be
used by the device controller by setting

these bits to the appropriate value, as

follows:
Value Transfer MODE

0 No Search or Translate func-
tion is to be used.

1 Use the Translate function
with no interrupt condition
when the MSB is on, using
the Translate Table Base
(TTB) whose address is
specified in word 4 of the
FIOB.

2 Not defined

3 Not defined

4 Not defined

2:3-27

Word 2:

Value Transfer MODE

5 Use Translate function with
interrupt cohdition when MSB
is on (i.e., Search and Trans-
late through a common table
using the Translate Table
Base whose address appears
in word 4 of the FIOB).

6 Use Search function and set
interrupt condition when the
MSB is on.
only and use the Search Table
Base (STB) whose address is
given in word 5 of the FIOB.

That is, search

7 Use Search function and set
interrupt condition when the
MSB is on, using the STB,
then translate with no inter-
rupt condition when the MSB
is on, using TTB addressed
in word 4 of the FIOB.

FUNCTION Field (bits 3-7): This field
specifies the code for the particular de-
vice function requested (i.e., read,
write, rewind, etc.). The specific
codes for various device functions are

shown in table 2-6.

LUN ID Field (bits 8-15): The pro-
gramer uses this field to specify the
assigned LUN ID of the device control-
ler on which the I/O request is to be
performed. The I0OCS monitor will
translate the LUN ID into the physical

address of the requested device.

In this word the programer specifies
the 16-bit starting address of the buffer
to or from which input or output data is

to be transferred.

Word 3:

Disc
Word 3:

Word 4:

Disc
Word 4:

Word 5:

Disc
Word 5:

Word 6:
Word 7:

Word 8:

2: 3-28

The programer specifies the number of
bytes of data to be transferred in 15 bits

of this word. Bit zero is not used.

The programmer specifies the byte count
in bits 0 through 15 (must be an even

number of bytes).

This 16-bit field is used to specify the
base address (i.e., the location of the
first byte) of the Translate Table if the
Translate function is specified in the
MODE field of word 1.

Bits 0 and 1 are spares; bits 2 through
6 specify the track address; bits 7
through 15 specify the cylinder address.

If the Search function is specified in the
MODE field of word 1, the programer
must specify the 16-bit base address

(i. e., the location of the first byte) of
the Search Table to be used by the monitor.

Bits 0 through 10 are spares; bits 11
through 15 specify the sector address.

(Spare)
(Spare)

Bits 13 - 15 of this word are used to
specify an extended identification number
for a specific device on a device con-
troller to which multiple devices may be
attached.
tape devices may be attached to one con-
The LUN ID extension identifies

the specific drive to be used, as follows:

For example, four cassette

troller.

Cassette

Disc

mauonnu
-
(=]
-

Table 2-6. Device Function Field Settings of Bits 3-7 in Word 1 of the FIOB

Function Field
Device Function Bit Settings
Bit3 4 5 6 7

CARD READER READ HOLLERITH 00100
READ BINARY 000O00O
IPARS ADAPTER START RECEIVE (look for sync) CcC 0010
CONTINUE INPUTTING c 0110

RECEIVED DATA

CHECK CRC CHARACTER AND cC 0100
START RECEIVE

START TRANSMIT1 - NO CRC C 0001
TRANSMITTED AT BYTE
COUNT ZERO

START TRANSMIT2 - CRC C 01 01
TRANSMITTED AT BYTE
COUNT ZERO

CONTINUE TRANSMITTING DATA cC 1001
1 - CRC NOT TRANSMITTED AT
BYTE COUNT ZERO

CONTINUE TRANSMITTING DATA C 0111
2 - CRC TRANSMITTED AT
BYTE COUNT ZERO

TRANSMIT IDLES C 0011
SEND NEW SYNC PULSE C 0000
TELETYPE/ READ (teletype full duplex mode) 00000O0

TERMINET
WRITE (teletype full duplex 00001

mode)
WRITE (terminet simplex mode) 00001
CASSETTE READ 0 0000
’ WRITE 00 0 01
BACKSPACE 00010
REWIND 00011
ERASE 00101
2848 START RECEIVE (look for sync) cC 0010
CONTINUE INPUTTING RECEIVED cC 0110
DATA

RECEIVE STOP DATA C 0111
START TRANSMIT C 0001
TRANSMIT IDLES C 0011
TRANSMIT STOP DATA C 0101
SEND NEW SYNC PULSE C 0000

2: 3-29

Table 2-6.

Device Function Field Settings of Bits 3-7 in

Word 1 of the FIOB (cont)

Function Field

Bit Settings
Device Function Bit3 4 5 6 7
DISPLAY KEYBOARD | READ (chained) C 0000
DISC WRITE 0 0 001
READ 0 0010
COMPARE DATA 0 01 00O
SEEK 0 0101
RECALIBRATE 00110

NOTE

Bit 3 is used to specify chaining of certain I/O commands,
where: 0 = no chaining permitted and C = chaining per-

mitted.

When the programer issues an IOACT re-
quest, the FIOB information is accessed by the
IOCS monitor, which extracts the I/O request
information and enters it into the next entry of
the IOCQ Table, described below. When the
queued I/O request is to be performed, the
monitor extracts the IOCQ entry information and
places it in the internally-stored Physical I/0O
Table (PIOT) for use of the device controller,

which performs the I/O action request.

3.4.2 Input/Output Control Queue Table

Definition

For each I/O device channel to be used by
the program, the programer must set up an IOCQ
Table area in which entries for each I/O request
The IOCQ entries are a fixed for-

mat and size, as shown in figure 2-4.

can be made.

The first word of each IOCQ entry is specified
via a source statement by the programer, as ‘
follows:

Word 0: Link Field (16 bits).
gramer specifies the address of
the next IOCQ entry in this 16-bit
field.

The pro-

To specify chaining, a one bit is set in bit 3.

A storage area must be reserved for the re-
maining nine words. The Logical and Physical
Status fields in Word 1 are used by the monitor
and the device drivers to report the status of I/O
requesfs, as shown in tables 2-7 and 2-8,
respectively. These status fields can be tested
by the program to determine the status of each

I/0O request.

The remaining words are filled from the
FIOB by the monitor when an IOACT request is
issued by the program, and used by the specified

hardware device controller when the I/O action is

performed.
sirs [o]1]2]3]4]s]e]7]8]o]10] 1]12]13]14 15
Word 0 LINK
Word 1 Logical Status PHYSICAL ST?TUS
group subgroup
Word 2 MODE l FUNCTION LOGICAL UNIT NUMBER ID
Word 3 BUFFER ADDRESS (starting byte)
Word 4 BYTE COUNT
Word 5 TRANSLATE TABLE BASE OR DISC ADDRESS
Word 6 SEARCH TABLE BASE OR DISC ADDRESS
Word 7 (Spare)
Word 8 (Spare)
Word 9 (Sporek . ‘LUN
' e'xten—
sion
Figure 2-4. Format of Input/Output Control

Queue (IOCQ) Entries

2: 3-30

Table 2-7. IOCQ Logical Status Codes

Code Significance

0 Processing completed. This code is the initial value of the
logical status field., When the program completes I/O re-
quest processing, it should reset the logical status code to 0.

1 I1/0 pending. This code is set by the IOCS monitor when the
I/0 request has been queued in the IOCQ table.
2 1/0O initiated. This code is set by the device driver when the
hardware has started the I/O action.
3 I1/O completed® The physical status field can be checked to
L_ see which kind of I/O completion has occurred.

*An exception in this case is that the display keyboard service routine
sets the status to 0 on an I/O completed, rather than setting it to 3.

Table 2-8. IOCQ Physical Status Codes

GROUP STATUS SUBGROUP STATUS

Code s g Code s e
(bits 8-11) Significance (bits 12-15) Significance

0 Normal completion 1 Search requested and
byte found

Byte count = 0

EOR

EOR with attention
Noncompare
Seek initiated (disc)

(=2 o) N0 NN NN V)

1 Illegal operation for this

€ None
device

None

Hopper check {CR)
Motion check (CR)
CIC tumble table entry
made

CIC system reset
End of tape (EOT)
Beginning of tape
Write protect
Data transmission
problem

Motor off
Abandoned call
Break

2 Attention (hardware alert
condition)

00~ O U1 > W=

W o

(spare)

4 Error (hardware detected) 0 None

i 1 a. Device not opera-
tional, or

b. Present order
chained, next byte
count = 0

Data lost

Check character bad

Read check (CR)/ error

Illegal interrupt

Format error (disc)

Punch tape out

Disconnected

Parity error

OO0 W

10-15 (spares)

2: 3-31

3.4.3 Special Functions

In addition to the basic I/O services of
CLOSE, OPEN, INITialize, and IOACT, the

PTS-100 hardware provides two special functions:

° The Search function allows the programer to
test for the occurrence of particuar control
characters within the I/O character stream,
and specify interrupt conditions when these

characters appear.

° The Translate function allows the programer
to specify input/output code conversion (i.e.,
to specify that input/output data characters
are to be converted to or from the ASCII code
used internally by the PTS-100).

These functions are specified in conjunction
with the IOACT service request by entering a code
in the MODE field of Word 1 in the FIOB (see sub-
section 3.4.1). They use numerically ordered,
programer-defined byte tables containing the con-
The Search and
Translate Table addresses are specified in words
5 and 4, respectively, of the FIOB. The MODE

field code specifies whether the hardware is to

trol and/or conversion codes.

use a common table or separate Search and Trans-
late Tables.
issued, the IOCS monitor accesses the FIOB and

When an IOACT service request is

moves the Search and Translate Table base
addresses to the IOCQ. When the IOCS is ready
to start the I/ O device action, it moves the base
addresses into words 3 and 4 of the PIOT. Thus,
by the time the hardware device controller is
ready to perform the specified action, the Search
and Translate Tables are accessible to the con-
troller. The definition and usage of Search and

Translate Tables are presented below.

3.4.3.1 Search Table Definition. The Search

function enables the programer to specify inter-

rupt condition settings when particular control
characters appear in the data stream flowing

through a device controller. The interrupt con-

dition settings are specified by control codes
stored in given byte locations within a programer-
defined Search vTable, whose total length is
determined by the length of the 1/O data code, as

follows:

Code Length Table Length

8 bit 256 bytes
7 bit 128 bytes
6 bit 64 bytes
etc........

In the Search Table, the byte location of a
given control code must correspond to the

following:

search table base address
+ numeric value of the control data

character

That is, the base address (the location of byte 0)
of the Search Table is offset (i.e., incremented)
by the value of the data character passing through
the controller to determine the byte location of
the corresponding control code. To effect a hard-
ware interrupt condition setting, t.e left-most .
bit (MSB) of a control code must be set to one.
Figure 2-5 illustrates the Search Table format

and control code bit settings.

OFFSET* SEARCH CODE
0 00000000
1 10000000
2 00000000
3 00000000
—
~ | x
|
|
253 00000000
254 10000002
255 00007000

*
Value of current data character
passing through controller

Figure 2-5. Search Table Format for 8- Bit Code

2:3-32

When the Search function is specified in the
MODE field of Word 1 in the FIOB, each character
flowing through the device controller is used to
When
the code is located, its MSB is tested. If it is

locate the control code in the Search Table.

equal to 1, an interrupt condition is set for the
device. If the MSB = 0, the next character is

selected and the Search function is repeated.

Notice that the byte locations corresponding

to offset characters l1 and 25410 in figure 2-5

0
contain MSB's equal to 1; hence, when a data
character whose value is equal to 1 or 254 passes
through the specified device controller an

interrupt condition will be set.

The Search Table may be combined with the
Translate Table when the data codes used are 7
bits or less in length., That is, if the actual
translate character codes are no more than 7 bits
inlength, the first bit of the 8-bit field may be
used as the control code setting on which to test.
For 8-bit code, separate tables must be used for

the Search and Translate functions.

3.4.3.2 The

Translate function allows the programer to specify

Translate Table Definition.

conversion of data characters to or from the 7-
bit ASCII code used internally in the PTS-100.
When a code other than 7-bit ASCII is to be read
into the main memory of the PTS-100, the pro-
gramer must set up a Translate Table containing
ASCII characters whose byte locations are equiva-
lent to the value of the input data characters.

That is, the base address (the location of byte 0)
of the Translate Table is offset (i.e., incremented)
by the value of the input character passing through
the controller to determine the byte location of the
conversion code value that is to replace the input
character value. When output data is to be con-
verted from ASCII to another code, a Translate
Table must be set up in which the values of the
ASCII characters correspond to the byte locations
in which the associated values of the output con-

version codes are stored. The format of a

Translate Table for 8-bit code conversion is

illustrated in figure 2-6.

*
OFFSET CONVERSION
CODE VALUES
0 Value in
Byte 0
1 Value in
Byte 1
2 Value in
Byte 2
3 Value in
Byte 3
|
Lo 4
|
|
253 Value in
Byte 253
254 Value in
> Byte 254
255 Value in
Byte 255

*
Value of current data character
passing through controller

Translate Table Format for 8-Bit
Code Conversion

Figure 2-6.

When the Translate function is specified in
the MODE field of Word 1 in the FIOB, the device
controller matches each data character in the I/O
stream with the corresponding position in the
Translate Table and replaces its value with the

conversion code value stored in the byte location.

If the Translate Table contains conversion
codes of 7 bits or less in length, it may be used
simultaneously as a Search Table. That is, the
MSB of each byte location is available for use as
an interrupt condition indicator, since conversion
code values are right-justified in the byte fields.
if 8-bit code is to be converted, a separate Search

Table must be defined for Search function use.

2: 3-33

The Translate Table length is determined by

the length of the code to be converted, as follows:

Code Length Table Length
8 bit 256 bytes

7 bit 128 bytes

6 bit 64 bytes
etc........

3.4.4 Monitor Service Calls

When the application programer wishes to
initiate any of the basic I/O device services for

his program he must issue a monitor service call

statement, followed by the necessary number of
arguments to effect the desired device service.
When an MSC statement is encountered in a pro-
gram, processing control is transferred to the
IOCS monitor, which performs the specified ser-

vice, as described in the following subsections.

3.4.4.1 Device Initialization Service. The

initialization service requests the monitor to
reset all I/O devices on the system. This service
should be requested at the beginning of a program
or before an interrupted program is restarted.
Three statements are required in the source pro-
gram to effect device initialization, as shown in

the diagram below.

LABEL OP CODE SEQUENCE
FIELD rieLp |OPERAND/COMMENTS FIELD NUMBER FIELD
(label) A MSC p (comments)
A DEC A 2 A (comment) (xxxxxxx)
A ADC A (Symbolic tag
bsolute address (return address)
Expression
S by
COL COL COL
1 6 73

The MSC statement transfers control to the
IOCS monitor. The DEC statement with the
decimal constant 2 in the operand field specifies
that the monitor is to perform the initialization
service for all devices on the system. The ADC
© statement operand specifies the object program
location to which the monitor is to return control

when the service is completed.

When the monitor receives control, it

initializes all I/O devices on the system as follows:

° Issues a STOP I/O command to every device,

thus terminating any I/O operation in process.

e Sets the PCB's logical status bits to the

initial condition for all devices.

° Enables interrupts.

3.4.4.2 Device Open Service. The device

OPEN service requests the IOCS monitor to
initialize a specific device and its associated
monitor software routines so that subsequent pro-
gram IOACT requests may be serviced. The
statements necessary to effect an OPEN device

service are shown below.

2: 3-34

LABEL OP CODE - SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
(label) A MSC A {comment)
(xxxxxx%%xX)
A DEC A 6 A (comment)
Symbolic tag
A ADC A Absolute address
(return address)
.Expression
A ADC A Symbolic tag .
Symb. Taglas HEX A LUN ID 1;
A ADC IOCQ Table Address I
A RESV, 00A 2 bytes
e
11 t
COL cCoL COL
1 6 73

The DEC statement with the decimal constant
6 in the operand field specifies that the monitor
is to perform the OPEN service for the device
specified by the LUN ID in the HEX statement,
to which the monitor is directed in the preceding
ADC statement. The last ADC statement spe-
cifies the starting address of the programer-
defined IOCQ table for the device. The RESV
statement reserves a two-byte field into which the
IOCS monitor can store a code indicating that an
error occurred during the attempt to service the

OPEN request.

When the monitor receives control to service
an OPEN request, it performs any initialization
for the device, and its associated software
routines. The monitor resets all relevant status
fields within its internal tables and the IOCQ so

that obsolete I/ O requests will be eliminated.

If the specified device is a full duplex com-
munications device, separate OPEN service
requests must be issued to initialize transmit and
receive actions. That is, each action is treated
as though it were to be performed on a separate
device, each with its unique LUN ID and asso-

ciated IOCQ table entry.

3.4.4.3 1/0O Action Service. The IOACT service

requests the monitor to initiate specific I/O

actions of which the device is capable, such as
read, write, rewind, backspace, etc. Associated
with each IOACT service request is a programer-
defined FIOB Table (see subsection 3.4.1) that
specifies the parameters to be used by the moni-
tor in servicing the request. The source state-
ments necessary to effect an IOACT service are

shown below.

LABEL OP CODE SEQUENCE
FIELD FIE'LD OPERAND/COMMENTS FIELD NUMBER FIELD
(1abel) A MSC A (comment)
A DEC A 7 & (comment) (xxxxxXxXx%X)
Symbolic tag
A ADC A Absolute address (return address)
Expression
A ADC A FIOB address
COL COL COL
1 6 73

2: 3-35

The DEC statement with the decimal constant
7 in the operand field specifies that the monitor is
to perform an IOACT service on the device whose
associated FIOB is referenced in the operand field
of the last ADC statement. The first ADC state-
ment specifies the address in the object program
to which control is to return when the IOACT

request has been serviced.

When the monitor receives the IOACT ser-
vice request, it accesses the specified FIOB,
enters the I/O request into the IOCQ, and changes
the IOCQ's logical status field setting from
"Initial" (= 0) to "I/O pending' (= 1). When the
device controller actually starts the specified
action, the logical status field setting is changed
to "'I/O Initiated' (= 2). When the I/O request has
been serviced the logical status setting is changed
to ""I/O Completed" (= 3).

Once the IOACT request has been serviced,

‘the programer should ensure that the logical

status field is cleared to zero (initial setting) to
signal the monitor that the IOCQ entry is again

available for use.

If an IOACT request cannot be serviced by
the monitor, an error code is passed to the pro-
gram via the error code field in the right- most
byte in Word 0 of the FIOB. No other FIOB fields
are altered by the monitor. After control is re-
turned to the program, the error code field should
be tested.
3.4.4.4. Device Close Service. The device

CLOSE service requests the monitor to close

down a device at the end of a job or to facilitate
anerror recovery. The statements necessary to

effect a device CLOSE service are shown below.

I;“?gfll; OPFEEOL?DE OPERAND/GOMMENTS FIELD NUSI\I/‘jlgggr\;‘CI‘ELD
(label) A MSC A (comment) (33333%%%%)
A DEC A 1 A (comment)
Symbolic tag
A ADC A Absolute Address (return address)
Expression
i A ADC A Symbolic tag
Symb. Tag; A HEX A LUN ID
| i [A RESV,00 p 2 (error code field)
C(f)L ch ch
1 6 73

The DEC statement with the constant 1 in the
operand field specifies that the monitor is to per-
form the CLOSE service for the device specified
by the LUN ID in the HEX statement, to which the
monitor is directed by the preceding ADC state-
ment. The RESV statement reserves a two-byte
field into which the monitor can store a code to
indicate that an error occurred during the attempt
to CLOSE the device.

When the monitor receives control to service

a CLOSE request, it performs all steps necessary

to terminate operation on the specified device.
The monitor sets all status fields in its internal
tables to indicate a device ''closed' condition.
It does not, however, clear any of the fields in
the IOCQ, since this t‘able may be examined for

error analysis by the program.

When a device has been closed in this
manner, it must be initialized by an OPEN ser-
vice request before subsequent IOACT service

requests can be issued to it.

2: 3-36

3.4.4.5 System Exit Service. The EXIT loading, etc. The EXIT service is effected by

service requests the monitor to log the end- of- issuing an MSC statement followed by a DEC
job and loop at location 0 until some manual statement with a decimal constant 0 in the
intervention specifies a new processing step, operand field, as shown below.

such as the use of the Debug program, program

LABEL OP CODE SEQUENCE
FIELD FIELD OPERAND/COMMENTS FIELD NUMBER FIELD
(label) A MSC A (comment) (x3300x5%%)

A DEC A 0 A (comment)

0 t
COL COL COL
1 6 73
3.4.4.6 Watchdog Timer Service. The Watch- WATCHDOG TIMER switch is set to ENABLE,
dog Timer service call controls or interrogates The source statements necessary to effect a
the optional Watchdog Timer if the feature board Watchdog Timer service call are as follows:
LABEL OP CODE SEQUENCE
FIELD rieLp | OPERAND/COMMENTS FIELD NUMBER FIELD
(label) A MSC p (comment) (xxxxXXXXX)
A DEC) 3
A ADC A Symbolic Tag
Absolute Address (return address)

Expression

A ADC A Symbolic Tag

Symb. Tag|p DEC A Request Code
A HEX A 0 (power status field)
A RESV,00 p 2 (error field)

I S

COL COL COL
1 6 73
The DEC statement with the constant 3 in the second DEC statement specifies the nature of the
operand field specifies that the monitor is to request as follows:

control or interrogate the Watchdog Timer. The

2: 3-37

WDT
Request
Code

Meaning

Reset Watchdog Timer — must be given at least once every 34 seconds
or automatic program restart will occur,

Start Watchdog Timer — turns Watchdog Timer on under program
control and automatically initializes counter to zero.

Stop Watchdog Timer — turns off Watchdog Timer under program

control.

This should be reserved for special cases since the

watchdog capability is disabled when turned off.

Read power status — power status is interrogated and the reading
stored in. the power status field.

If any other request code is specified, an error code of 1 will be placed in the error field.

3.4.4.7 Channel Interface Controller (CIC)

Service. The CIC service call tests or resets

busy or off-line bits of devices attached to the

Channel Interface Controller. The necessary

source program statements are as follows:

Fretp | C'RlELp |OPERAND/COMMENTS FIELD NUMBER FIELD
(label) A MSC p (comment) [
A DEC A 4A (comment)
Symbolic Tag
A ADC Absolute Address (return address)
Expression
A ADC A Symbolic Tag
Symb. Tag A HEX A LUN ID
A DEC p CIC Request Code
A HEX A 0 (status field)
|| ARESV, 00A 2 (error code field)
C?)L CgL CSL
1 6 73

The DEC statement with the constant 4 inthe
operand field specifies that the monitor is totest
or reset the busy or off-line bits (according to .

the CIC request code in the second DEC state -

2: 3-38

mert) of the device specified by the LUN ID in
the first HEX statement, to which the monitor
is directed by the preceding ADC statement. The

CIC request code must be one of the following:

CIC

Code Meaning
1 Test and set busy bit — the status of the device busy bit

(1 = busy, 0 = not busy) will be placed in bit 0 of the status field
and the remaining bits are undefined. Then the device busy bit
will be set.

2 Reset busy bit — the device busy bit will be reset.

3 Test and set off-line bit — the status of the device off-line bit
(1 = off-line, 0 = on line) will be placed in bit 0 of the status
field and the remaining bits are undefined. Then the device off-
line bit will be set.

4 Reset off-line bit — the device off-line bit will be reset.

When the routine is executed, the specified IOCS will return an error code to the error field
action is taken unless an unassigned LUN ID or and take no other action. The error codes are
CIC code was specified. If either error occurs, as follows:

CIC
Error
Code Meaning
0 No error
1 Illegal request code
2 No such LUN in this system
3.4.4.8 Device Sensing Service. The device source statements necessary to effect a device
sensing service call requests the IOCS monitor sensing service call are as follows:

to sense the status of a specific device. The

I;.‘?Sfé‘ OF COPE |oPERAND/COMMENTS FIELD NOEQUENCE
(label) A MSC A (comment) (3x330%5%)
A DEC A 5A(comment)
Symbolic tag
A ADC A Absolute Address (return address)
Expression
A ADC A Symbolic tag
Symb, Tag A HEX , LUN ID
A HEX A 0 (status field)
| A RESV,00 A 2 (error code field)
R 4
COL cCOL : COL
1 6 73

2: 3-39

The DEC statement with the constant 5 in the
operand field specifies that the monitor is to
sense the status of the device specified by the
LUN ID in the first HEX statement, to which the
monitor is directed by the preceding ADC state -
ment. When the routine is executed, the device's
hardware status is returned to the status field,
unless an unassigned LUN was specified, in
which case an error code of 2 is returned to the
error field, (If no error occurred the error

field setting remains all zeros.)

3.4.4.9 Reconfiguration Service. The re-

configuration service call changes the addresses

of one or more peripheral devices which may

include serial printers, card readers, modems,
magnetic tape cassettes, and display keyboards.
All peripherals of the same type are handled as
one group. Therefore, the programer should code
one reconfiguration call per group. Reconfigura-

tion is done only at device initialization time.

The source statements necessary to effect

a reconfiguration service call are as follows:

LABEL | OF O |OPERAND/COMMENTS FIELD e e .
(label) A MSC (comment) (3300303056
A DEC A (comment)
Symbolic tag
A ADC Absolute Address (return address)
Expression
| A ADC A Symbolic tag
Symb. tag | A HEX A 0 (error field)
A HEX A LUN ID (first LUN of group)
A HEX A Interrupt Level
A HEX A List of Drivers
A EXREF A List of Drivers
A HEX A First device address*
A HEX A Second device address*
A HEX A Last device address*
L A HEX A FFFF (sentinel defining end of group)
CgL CgL CgL
1 6 73

*The devices will be placed into the PCB's in the sequence given in the parameter list.

2: 3-40

The following drivers support reconfiguration:

#IDPMn for multiple serial printers
#IDCMn for multiple ;ard readers

#IDMMn for multiple modems

#IDSRn for special display keyboard receive

#IDCAn for cassettes

Error codes are as follows:

0 = no error
2 = no such LUN in this system
6 = PCB overflow

3.5 Disc Logical Input/Output

The use of a disc storage device with the
PTS-100 requires a specialized IOCS for disc
in addition to the usual system IOCS monitor.
The logical IOCS for disc has two interfaces:

~one with the user and one with the disc. The
interface with the user is through macro calls,
described in subsections 3.5.3 and 3.5.4. The
interface with the disc is handled through the
physical IOCS monitor.

Before a disc is used with a PTS-100
system, it must be formated with the Disc
Volume Preparation program, and all files
that are to be accessed must be allocated with
the Disc Allocator program (see Parts 1 and 3
of this manual). Then the disc is ready to be
written and read by a program incorporating
the disc logical I/0 macros. Any program using

the disc logical I/O must contain four types of

2: 3-41

macros: the file description macros, mainprocess-

ing macro, action macros, and status macros.

3.5.1 User File Area

The user file area consists of the parts of
the disc not occupied by the Volume Label or
Volume Directory. The user file area is divided
into one or more files, as indicated by the
Volume Directory. Files are established,
initialized, altered in extent, or deleted by the
Disc Allocator utility program. A file may be
one of three types: sequential, random with
keys, or random without keys. All files start

and end on cylinder boundaries.

3.5.1.1

consists of a series of records written and read

Sequential Files. A sequential file

in physical sequence. The records may be
fixed or variable in length. Records are packed
densely into the allocated file area, in such a
way that no disc space is wasted. Thus, a
record may span two or more sectors, or

several records may occupy one sector.

The last record in a sequential file, the
end-of-file record, is marked by a special
configuration in its first word: FEDClé. It is
automatically written at the time the Close
macro is executed, This record marks the
end of the written portion of the file, not the
end of the allocated file area, which is indicated

by an address in the Volume Directory.

In files containing variable -length records,
the first word of each record is the length word.
The length word gives the number of bytes inthe

record, including the length word itself.

3.5.1.2 Random Files. A random file consists
of a series of records that may be accessed
There

are two types of random files: those whose

either sequentially or non-sequentially.

records contain keys (K type) and those whose

records do not contain keys (N type).

Random file records must be unblocked,. and
fixed in length., For K ty;pe files, the first word
of every record is a banner word. (N type files
do not use banner words.) The banner word is
included to permit the read and write routine to
determine whether a particular record position
has been written, or whether it is still in the
original state to which it was initialized by the
Disc Allocator utility program. A value of
0000, indicates that the record is unused', and
a value of 000116 indicates that the record is

used (i.e. that it has been written).

Records may be of any length up to a track,
but records always start on sector boundaries.,
Thus, if a record is not a multiple of the sector
length (160 words), there will be unused space
following each record. Records may not extend
from track to track., If the track is not evenly
divisible into records, there will be unused space

at the end of a track.

Random files may be written only in direct
access fashion, but they may be read either
sequentially or directly. The macros Open,
Close, Read, Write, Delete, Test, and Wait may
be applied to them. Get and Put are not applica-

ble to random files.

In files containing keys (K type files), each
key value must be unique; it must be different

from all other key values in the file.

3.5.2 File Description Macro

The File Description macro is called once
It establishes

a File Control Block, which is a work area about

for each file that is to be accessed.

2: 3-42

100 bytes long, in which all information about
the file and the current state of its processing is
maintained by logical I/0. The call to the file

description macro has the following format:

$ FCBD a,b,c,d,e,f,g,h,i,j

where

a = label of File Control Block; this label is

referred to in all the action macros to

identify which file is to be accessed.

1

device number, a number from 0-7, identi-

fying the discdrive onwhichthe file resides.

type of buffering
S

D = double buffering (may be specified
only for sequencial files).

single buffering

first buffer address.

second buffer address; enter 0 if single
buffered.

address of file name; the address of a
10-byte field containing the name that was
assigned to the file through the Disc

Allocator program.

address of error word; the address of a
one word field which will be set to an
identifying number if an error occurs in

processing this file.

relative position of key in record; for
random files of type K, the first byte,
relative to byte 0, of a field in the record
that is to be used as a key in searching

for a particular record.

length of keys3 number of bytes inkeyfield.

length of buffer, in sectors; the number of
320-byte sectors that can be read or written
at one time, based on the length of the

buffer(s) provided.

3.5.3 Main Processing Macro

There is one Main Processing macro, which
is called into a program only once. It contains
the coding necessary to carry out actions on the
disc files requested by the action macros, which
are simply branches to certain routines in the
main processing macro. The call to the Main
Processing macro has the following format:

$ LIOCSD a,b,c,d,e,f,g,h

where

a = logical unit number of disc; this must
correspond with the LUN ID assigned
through the physical IOCS monitor.

b = SE if sequential files are used; omitted

if not.
¢ = GT if GETD macro is used; omitted if not.
d = PT if PUTD macro is used; omitted if not.

e = RN if random files are used; omitted

if not.
f = RD if READD is used; omitted if not.
g = WR if WRITED is used; omitted if not.
h = DE if DELD is used; omitted if not.

The above parameters cause the Main Processing
macro to be tailored to the needs of a particular
program, omitting any portions that are not to

be used. For example, to generate a macro for
random reads and v:rrites only, under LUN 3,
include the following call:

$ LIOCSD 3,,,,RN,RD,WR

2: 3-43

3.5.4 Action Macros

Action macros are used as many times as
necessary in a program to process the disc files.
Each macro call results in a branch to the Main
Processing macro, followed by a series of para-
meters. The first parameter of every action
macro is the label of the File Controi Block,
which identifies the file to be accessed. This
must be the same as the first parameter of the

file description macro for that file.

All action macros return to the next

sequential instruction after the calling sequence.

There are seven action macros: Open,
Close, Get, Put, Read, Write, and Delete. Open
and Close apply to all file types, Getand Putapply
only to sequential files. Read, Write, and Delete

apply only to random files.
3.5.4.1 Open Macro.

has the following format:

The Open macro call

$ OPEND a,b,c

where

a = label of file control block

b = type of open
I = open for input

O = open for output

c = error exit. Location to branch to if

uncorrectable error occurs on open.

The Open macro must be issued before any
acéess'mg can be done on a file. It searches for
the file in the Volume Directory (established by
the File Allocator program), and places in the
File Control Block various pieces of information
describing the file. If the file is not open, it

will be opened at this time.

3.5.4.2 Close Macro. The Close macro call

has the following format:
$ CLOSED a,b
where

label of File Control Block

©
n

o’
i

error exit

The Close macro is issued when all file
accessing is completed. For output sequential
files, it causes the last record to be written on
the disc, followed by an end of file indicator. It
also closes the Logical Unit if the re are no other

files open.

3.5.4.3 Get Macro. The Get macro call has

the following format:

$ GETD a,b,c,d

where
a = label of File Control Block

b = address of work area into which next

record is to be moved

¢ = end-file exit. Location to branch to if

end-file is found
d = error exit

The Get macro, applicable only to sequential
files, causes the next logical record to be moved
from the buffer to the specified work area.
Buffer switching and disc reads are executed

when necessary.

3.5.4.4 Put Ma'cro‘ The Put macro call has

the following format:

$ PUTD a,b,c

where

a = label of File Control Block

b = address of work area from which record

is to be taken
¢ = error exit

The Put macro, applicable only to sequential
files, causes the logical record in the designated
work area to be moved to an output buffer.
Buffer switching and disc writes are executed

when necessary.

3.5.4.5 Read Macro. The Read macro call has

the following format:

$ READD a,b,c,d,e,f
where

label of File Control Block

a

b = address of work area into which record is

to be moved
c = end-file exit
d = error exit
e = type of access
D = direct

S = sequential

f = address of parameter list (zero if no

parameter list)

2: 3-44

The parameter list is needed only for direct type
address.
fields:

If present, it contains the followingtwo

address of key field in program

relative address

The Read macro is applicable only to random
files (type K or N organization). Its function is
to input one record from the disc and place it in

the indicated work area. It is assumed that the
file is unblocked, or that deblocking is to be
handled by the user. It is also assumed that

records are of fixed length.

For N type files (no keys), the access type
given in the call is first consulted. If the access
type is S (sequential), the system reads the
record following the one previously read, and
moves it into the work area. If the last record
was at the end of the file area, the end-of-file
exit is taken. If the access type is D (direct),
the relative address pointed to in the call is
interpreted as a record address, relative to the
first record in the file, The indicated record is
read and moved into the work area. For example,
if relative address is 50, then logical record
number 50 is read. The first record in the file

is counted as number 0.

The Read macro operates somewhat
differently for K type files (files with keys). If
the access type is S (sequential), the system
reads the record following the one previously
If a

sequential Read is executed after a series of

read, and moves it into the work area.

direct Reads, the first sequential Read obtains
If a

sequential Read is executed without any previous

the same record as the last direct Read.

direct Read's, the first sequential Read obtains

the first record in the file.

If the access type is D (and file type is K)
the relative address and key fields are used. A

key is simply a field, in some fixed position, in

the record, which is used in looking for a
particular record. The logical I/O searches
for a match between this key field in the record
and a key value pointed to in the call. The key
can start anywhere in a record, and be of any
(even) byte length. However, its length and
position are constant throughout any one given

file.

The relative address is interpreted as a
track address, relative to the first track in the
file, The first track is relative track 0. For
example, if relative address is 10) the logical
1/0 searches for a record with the given key
value, on track number 10 of the file. If it is
not found on that track, the logical I/O continues
searching through the overflow area, if there is
one. When a record is found whose key matches
the given value, it is moved to the work area.

If no such record is found either on the home
track or in the overflow area, the error exit

is taken.

3.5.4,6 Write Macro. The Write macro has

the following format:

$ WRITED a,b,c,d
where
a = label of File Control Block
b = address of work area
c = error exit
d = address of parameter list
The parameter list contains only the relative

address.

The Write macro is applicable only to
random files (type K or N organization). Its
function is to output one record to the disc,
taking it from the designated work area. It

operates differently for type K and N files.

For type N files (no keys), the relative
address is interpreted as a relative record
address. The given record is written at that
relative record position in the file, regardless
of what was written there previously. For
example, if relative address is 25, the record
is written as record 25 in the file, destroying
the previous record 25 if any record had already

been written there.

The Write action for type K files differs in
two ways. First, the relative address is
interpreted as a relative track address. Second
a previously written record will not be destroyed.
This is possible because type K files have banner
words. A banner word of 1 indicates that the
record has been written by logical I/0O; a banner
word of 0 indicates that it is available for
writing. The logical I/O searches down the
designated track for an available position; if
one is found, it writes the record there. If no
space is available on the home track, the lbgical
I/0 then looks for space in the overflow area,
if any. If no space is available there either, the
error exit is taken.
3.5.,4,7 Delete Macro. The Delete macro

has the following format:

$ DELD a,b,c
where .
a = label of File Control Block
b = error exit
c = parameter list adaress

The parameter list contains:

address of key field

relative address

The Delete macro is a.pplicable'only totype K
random files, Its function is to delete a particular
record from the file, making its space available
for rewriting. It does so by changing the banner
from 1 to 0. The record to be deleted is located
in the same way as described under the Read

macro for file type K and access type D (direct).
3.5.5 Status Macros

The two status macros, Test and Wait,do
not result in any file accessing. One of the two
must be used after each of the action macros to
ensure that one action has been completed before
the next one is requested. The Test or Wait
macro need not follow the action macro immedia -
tely; it must, however, be issued before another
call can be issued. This applies to all the action
calls, including Open and Close.
3.5.5.1 The Wait macro call has

the following formadt:

Wait Macro.

- $ WAITD a

where a - is the label of the File Control Block,

The Wait macro assures completion of the last
action on the designated file. Control remains
in the logical I/O until the last action has been
completed, - Only then will an exit take place to

the next sequential instruction.

3.5.5.2 Test Macro. The Test macro call has

the following format:
$ TESTD a,b
where

label of File Control Block

®
1]

address of indicator word

o'
1

2: 3-46

The test macro provides an alternate means of Error

Meani
checking for the completion of an action macro. Lode cenne
The logical I/O sets the designated indicator 0004 File not properly opened for

word to 0 if action is incomplete, or to 1 if the requested action,

action is complete. The indicator word can 0005 Attempt to write beyond end of

then be tested by the main program to decide file area.

whether another action macro can be executed. 0006 Requested key not found in random
file.
3.5.6 Error Indicators 0007 Random access file write overflow;

requested track and overflow area,
if any, are full.
Whenever an error exit occurs, the error
word (item g, subsection 3.5.2) designated in 0008 Incorrect file organization for
requested action.

the file description macro is set as follows:

0009 Attempt to access outside of random
file; relative address too large.
Error
Code Meaning 0010 Invalid operation.
0001 Cannot open Logical Unit specified. 0011 Byte count too large.
0002 File name not found in Volume 0041 Device not operational.
Directorys
0043 CRC/rate error.
0003 Previous action not completed
before call for new action. 0046 Format error.

2:3-47/48

Section 4.

The PTS-100 programer may develop sets
of generalized statements that may be used to
create specialized sets of statements according
to predefined limits and formats. Such gener-
alized statements sets are called macro routines,
which are assembly language program segments
defined to perform processing for any number of
other program segments into which the routines
' That is,

a macro routine is a set of Assembler source

can be incorporated at assembly time.

statements that may be '"called" by other program

segments.

For purposes of discussion, macro routines
have been classified herein as basic macro
routines and extended macro routines. The
structure and use of macro routines is described

in detail in this section.

4,1 Basic Macro Routine Structure

Basic macro routine structure is as follows:

Statement 1: This statement must identify
the program segment as a macro routine as

follows:

° The question mark (?) character must

appear in column 1 of the coding form.

. The unique name of the macro routine, con-
sisting of from 1 to 8 characters, must be-
gin in column 2. The routine name may be

composed of any characters in the PTS-100

character set (see Appendix A).

The format of the first statement in the

macro routine then, is:
? macronam

beginning in column 1.

MACRO ROUTINES

Statement 2 through Statement n: The body

of the macro routine begins with statement 2 and

ranges through statement n. Any source language
statement may appear in the body of the macro
routine. In addition, these statements contain
dummy arguments in the form of decimal num-
bers, from 1 to 99, enclosed in parentheses.

The parentheses identify dummy arguments to the
Assembler; the numeric value within a given set
of parentheses dictates the sequential order in
which an actual argument must appear in the
argument list passed from the calling programs

to the macro routines.

Statement n + 1: The last statement in the

macro routine must contain END in the op code
field. This statement marks the physical end
of the macro routine for Phase 1 of the Assem-

bler, as described in Section 5 following.

To illustrate macro routine writing, assume
that a number of independent programs will re-
quire a card reading operation such as the

following:

1. Read a card.

2. Test for last card and branch to a
specified point if present, or branch
to an IOACT service to read another

card if the last card is not present.

3. Branch when a successful card read

operation has been performed.

Figure 2-7 presents a generalized macro
routine, named READCARD, to accomplish the
desired card reading operation. In the sample
routine, the operand fields of statements 2, 5,

8 and 9 indicafe parenthesized dummy arguments
for which actual arguments must be supplied

when the macro routine is called by another

OPERAND/ COMMENTS

Statement LABEL OP CODE
Number FIELD FIELD
?READCARD

2 LDW, N

3 CNE

4 BCB

5 JMP

[RD MSC

7 ' DEC

8 ADC

9 ADC

10 EF HEX
B END

(1)+4 Get contents of first character
in card.

EF Compare for last card.
RD Not last card. Go To read.

(2) Specifies dummy argument for
branch address if last card is read
during 1OCS request servicing.

Monitor service call.

7 Specifies that monitor is to service
a device IOACT request.

(3) Specifies dummy argument for
address to which control is to branch
when read request has been serviced.

(1) Specifies dummy argument for
FIOB address to be used by 10CS

monitor.

4546 Constant to be used for last
card compare.

Figure 2-7. Sample Macro Routine

program. The actual arguments will subse-
quently be inserted in place of the parenthesized
dummy arguments by the Assembler's Phase 1
when it specializes the macro routine for in-

corporation in a given calling program.

Once a macro routine has been coded, it

must be stored on thé appropriate macro library

file* to make it accessible to the Assembler for

incorporation in any programs that call it,

4,2 Calling Macro Routines

Once a macro routine has been placed on the
library file, any other source programs, includ-
ing other macro routines, may call it via state-

ments in the format shown below.

- LABEL OP CODE
FIELD FIELD OPERAND/COMMENTS
" $ MACRONAM | Argument N Argument EE ,Argument

As shown above, column one of the source
program call statement must contain a dollar .
sign ($) to inform the Assembler that a macro

routine is being called. The assigned macro

routine name must appear as the call statement
op code. The operand field of the call statement
must specify the actual argument(s) to be passed

to the generalized macro routine. The actual

*If the macro routine is an IOCS monitor routine, it must be stored on the System Macro Library
file. If it is a user application macro routine, it should appear on the User Macro Library file.

1 4-2

arguments may be any valid operands, labels,
or op codes permitted in the respective fields of

the affected statements.

If two or more arguments are specified, they
must be separated by commas and the entire list
of arguments must be terminated by a blank
character. Because of the way in which actual
arguments are associated with dummy arguments
they are to replace, the order of appearance of
actual arguments in the operand field is critical.
That is, when the Assembler encounters a call
statement in a source program, it reads the
argument list in the operand field and constructs
a table in which the actual arguments are inserted
in the sequential order in which they appear in
the list. The Assembler then locates the called
macro routine in the input library file and copies
each of the routine's source statements into an
intermediate file, replacing all dummy argu-
ments in the routine with corresponding actual
arguments from the Assembler-generated table.

That is, the first actual argument replaces all

occurrences of dummy argument (1), the second
actual argument replaces all occurrences of
dummy argument (2), etc. Hence, if the actual
arguments are specified in improper order, they
will be erroneously matched to dummy arguments
and the specialized routine will produce unreliable
results at execution time. At the programer's
discretion, hoWever, actual arguments may be
: Each

omission must, however, be indicated by a comma

omitted from the call statement list.
in the omitted argument's position in the list.

If an argument list is too long to appear in
the operand field of the call statement, it may
be continued in successive statements by writing
a slash (/) character in column 1, and the con-

tinued list in the operand field.

To illustrate the manner in which actual
arguments replace dummy arguments, assume
that the READCARD macro routine shown in
figure 2-7 is called by a program containing the

following call statement.

LABEL OP CODE
FIELD FIBLD OPERAND/COMMENTS
$ READCARD FIOB, TOTAL, PRINT

The assembler will replace dummy argu-
ments (1), (2), and (3) in the generalized macro
routine with the respective actual arguments
FIOB, TOTAL, and PRINT to produce the
This

routine will follow the processed call statement

specialized routine shown in figure 2-8.

in the calling program.

The AssemBler treats actual arguments as
character strings; hence, they need not be
syntactic units. For example, an actual argu-
ment value may be inserted as a character in a
symbolic tag. That is, a generalized macro
routine statement may contain a dummy argument

such as

JIMP (7)TAG

1 4-3

Had | OPSODE | OPERAND/COMMENTS

LDW, N FIOB+4
CNE EF
BCB RD
JMP TOTAL

RD MSC
DEC 7
ADC PRINT

~ADC FIOB
EF HEX 4546
Figure 2-8. Specialized Macro Routine

and the seventh actual argument in the call state-
ment list may be the character N, which would

cause the JMP statement to be specialized as
IJMP NTAG

Field content of generalized routine statements
and actual arguments transmitted in call state-
ment lists may be written in the formats per-

missible in source statements of a given type.

4.3 Extended Macro Routine Structure

Extended macro routines may be written to
generate flexible specialized routines, depend-
ing on the needs of calling programs. That is,
statements of generalized macro routines may

specify the following:

° Insertion of statement labels to facilitate
linkage between and within object program

segments, described in subsection 4.3.1

° Conditional inclusion or deletion of gener-
alized macro statements depending upon
the presence or absence of actual arguments

in the calling program's argument. list as

described in subsection 4. 3. 2.

. Deletion of generalized macro statements
depending upon equality testing of actual
argument values against predefined values
within the macro routine as described in
subsection 4. 3. 3.

4,3,1 Statement Label Insertion
The macro routine may contain dummy argu-

ments in statement label fields to enable proper

linkage between the calling program and the
macro routine, and/or to facilitate transfers of
control between coding sections within the spe-
cialized macro routine generated for insertion

in the calling program. When dummy arguments

" have been defined in label fields, the calling pro-

gram must transmit an appropriate label to the

routine via its argument list.

To illustrate statement label insertion, a
generalized macro routine to create an FIOB is

shown in figure 2-9.

Assume that a calling program contains the

following statement:

LABEL OP CODE
FIELD FIELD OPERAND /COMMENTS
$ FIOBMAC |RFIOB,LUNDAT,BUFAD,BCT,TTBAD,
/ | sTBAD

When the specialized routine is created by
the Assembler, dummy argument (1) in statement
1 will be replaced with the actual argument
RFIOB. Actual arguments LUNDAT, BUFAD,
BCT, TTBAD, and STBAD will replace dummy
arguments (2) through (6). Thus, once the

generalized macro routine is coded and filed, it
can be called at any time an FIOB is needed in a
source program by merely writing a call state-
ment containing the appropriate arguments, the
first of which is a label specifying the starting

address of a given FIOB,

1 4-4

Statement LABEL OP CODE '
Number FIELD FIELD OPERAND/COMMENTS
1 ?FIOBMAC
2 (n HEX 0 Spare/error code
3 HEX (2) Dummy argument for mode, function and LUN
4 ADC (3) Dummy argument for input buffer address
5 DEC (4) Dummy argument for byte count
6 ADC (5) Dummy argument for translate table base
7 ADC (6) Dummy argument for search table base
8 RESV,0 6 6-byte spare area
o END
Figure 2-9. Generalized Macro Routine to Create an FIOB

4.3.2 Conditional Inclusion and Deletion of

Macro Routine Statements

The PTS-100 Assembler can be directed to
include or delete statements in the generalized
macro routines, depending on the presence,
absence, or value of actual arguments trans-
mitted via the call statement list. That is, the
programer may specify that given generalized
statements are to be treated in one of the follow-

ing ways:

e Included in the specialized routine only if the
corresponding actual arguments appear in

the call statements list.

® Omitted from the specialized routine if the
corresponding actual argument is equal to,
not equal to, greater than, or less than a

given value.

These actions are communicated to the Assem-
bler via the following notations in the form of

dummy arguments:

° (nC) or (nN), either of which specifies that
the statement is to be included in the spe-

cialized routine only if the actual argument

corresponding to the nth dummy argument
appears in the call statement list. The
difference in the use of the dummy arguments
C and N is that when the nth argument is pre-
sent, it replaces the nC dummy argument in
the specialized routine, whereas the nth
argument does not replace the nN dummy
argument in the specialized routine. For

example, in the statement

JMP (3C)
the C in the dummy argument informs the
Assembler that the TMP statement is to be
inserted in the specialized routine only if an
actual argument appears in the third position
of the call statement list, and that if the
actual argument is present, it is to be in-
serted in the operand field of the JMP state-

ment. However, in the statement
STW (3) (4N)

the (4N) dummy argument informs the
Assembler that the Store Word statement is
to be included in the specialized routine only
when an actual argument appears in the
fourth position of the call statement list. It
does not specify that the fourth argument is
to be inserted in the place of the (4N) dummy

argument in the specialized routine.

1 4-5

(nY), which specifies that the statement is
to be omitted from the specialized routine if
the actual argument corresponding to the nth
dummy argument does appear in the call
statement argument list. For example, in

the statement:

LDI AC,0 (4Y)

the Y in the dummy argument informs the
Assembler that the Load Immediate state-
ment is to be omitted from the specialized
routine when an actual argument appears in

the fourth position of the call statement list.

NOTE

The (nY) and (nN) form of dummy
arguments may be combined to
specify omission of statements
depending on the presence of one
actual argument or the absence
of another actual argument in the
call list.

(n, E or N,vv), which specifies that the
statement is to be omitted from the spec -
cialized routine if the nth actual argument
is equal (E) or not equal (N) to the value of
vv, a value specified as two characters.

For example, in the statement:

ADC (6) (5, E,01)

the dummy argument (5, E, 01) specifies that
the ADC statement is to be omitted from the
specialized routine if the fifth actual argu-
ment's value is equal to 0l. In the state -

ment:
LDW (15) (12,N,AA)

the dummy argument (12, N, AA) specifies
that the LDW statement is to be omitted if
the value transmitted for the twelfth actual

argument is not equal to AA.

® (n,Gor L,vv), which specifies that the state-
. ment is to be omitted from the specialized
routine if the nth actual argument is greater
than (G) or less than (L) the value of vv, a
value specified as two characters. For

example, in the statement:
ADC (6) (5,G,01)

the dummyargument (5, G, 01) specifies thatthe
ADC statement is to be omitted from the specia -
lized routine if the value of the fifthactualargu-

mentis greater than 01. In the statement:
LDW (15) (i2,1,05)

the dummy argument (12, L, 05) specifies
that the LDW statement is to be omitted if
the value transmitted for the twelth actual

argument is less than 05.

In all cases, omission of an actual argument
from a call statement list is affected by entering
a comma in the corresponding position in the list
as illustrated below, where the third, fifth, sixth,
and seventh actual arguments have been omitted.

Trailing commas are unnecessary,
$ MACRONAM Argl,Arg2,,Arg4,,,,Arg8

To illustrate the flexibility provided by these
optional directives to the Assembler, assume
that a generalized macro routine named SERREQ,
shown in figure 2-10, has been coded to create
specialized routines to request services from the
IOCS monitor. The use of the SERREQ macro
routine to generate specialized routines to re-
quest the INITialization, OPEN, IOACT, CLOSE,
and EXIT services is described in the following
paragraphs. In all cases, arguments 1 and 2
must appear in the SERREQ call statement list.
That is, statements 1 and 2 must appear in any
of the specialized routines. These two state-
ments are the only ones required for the EXIT
service request; hence, the call statement:

$ SERREQ EXIT, 00

: 4-6

Statement LABEL OP CODE OPERAND/COMMENTS
Number FIELD FIELD /
?SERREQ

1) MSC

2 DEC (2) Dummy argument for the device service request
code.

3 ADC (3) (2,E,00) Dummy argument for the return address
in all service requests except EXIT, whose service
request code is 00,

4 ADC (4C) Dummy argument for FIOB address in IOACT
request or parameter address in OPEN or CLOSE
requests.

5 (40 HEX (5) (8N) Dummy argument for LUN ID assignment
statement for CLOSE and OPEN requests.

6 ADC (6) (2,N,06) Dummy argument for IOCQ address
used only in OPEN service request with service
request code 06.

7 RESV, (7 (8) (5N) Dummy argument for error code field for
OPEN and CLOSE requests.
8 END
Figure 2-10. Generalized Macro Routine for Device Service Requests

will create a specialized routine as follows:

MSC
DEC

EXIT
00

Statement 3 is required in all other service re-
quests, and an actual argument must appear in
position 3 of all the call lists. Statements 4
through 7 are not required for the INITialization
request, as shown in the call statement below.

$

SERREQ INIT, 02, RETADI

The following specialized routine will be generated

as a result of the call statement.

INIT MSC
DEC 02
ADC RETADI

Statement 4 is required for the IOACT, OPEN
and CLOSE requests. However, statements 5

through 7 are not required for the IOACT request.

4.7

The call statement below

$ SERREQ IOACTI1,07,RETAD2,FIOBI
will create the service request shown below:
IOACTI MSC
DEC 07
ADC RETAD2
ADC FIOB1

The OPEN service request requires all
statements in the generalized routine and, there-
fore, eight arguments must appear in its call
statement list. The CLOSE service request re-
quires all statements except statement 6, which
will be omitted from the CLOSE specialized
routine because of the (2,N, 06) test in the state-
ment (i.e., the CLOSE service request code is
01). Actual argumentlé in the CLOSE call state-

ment must therefore be represented as a comma.

Calls and resulting specialized routines for OPEN

and CLOSE service requests are presented below:

OPEN CALL

$ SERREQ OPENI1, 06,RETAD3, PARAMI,
/ ‘ LUNID, I0CQ, 00, 2

OPEN SERVICE REQUEST ROUTINE

OPEN] MSC
DEC 06
ADC RETAD3
ADC PARAMI
PARAM HEX LUNID
ADC 10CQ
RESV,00. 2

CLOSE CALL

$ SERREQ CLOSEI,0l,RETAD4, PARAM2,
/ LUNID, , 00, 2

CLOSE SERVICE REQUEST ROUTINE

CLOSE1 MSC
DEC 01
ADC RETAD4
ADC PARAM?2
PARAM2 HEX LUNID
RESV,00 2

4.3.3 Embedded Macro-Calls

Generalized macro routines may contain one
or more macro call statements that specify the
names of other macro routines in their op code
fields. Macro routines may not call themselves
recursively, however, since this would cause an

endless repetition of the macro processing phase

~ of:the Assembler.

Macro call statements embedded in gener-
alized macro routines may themselves contain
dummy arguments within their argument lists.
This facility allows the programer to pass argu-

ments from one macro routine level to another.

:4-8

Section 5.

There are three versions of the PTS-100

Assembler:

PTS-100 Native Assembler
Raytheon 704 Cross Assembler
IBM 360/370 Cross Assembler.

The applications program input requirements
for the Assemblers are described in subsection
5.1 below.

bly run is the Assembler-formated tape file pro-

The input to an IOCS monitor assem-

duced by the System Generator program,
described in Part 3 of this handbook., Processing
and the output listing are identical for all ver-
sions of the Assembler, as described in sub-
sections 5.2 and 5.3. Machine requirements and
Assembler limitations of the two Cross Assem-
The disc

version of the PTS-100 native assembler is de-

blers are presented in subsection 5.4.
scribed in subsection 5.5

5.1 Programer Ihputs

The inputs to the PTS-100 Assembler are
punched card decks, each of which contains both

of the following:

° One assembly control card described below,
which must contain the program name and

may specify assembly options.

e The source program statements, the last of
which must be an END statement card to ter-

minate assembly processing.
5.1.1 Assembly Control Card Content

The assembly control card specifies two

types of information:

° The program name, which must appear in

columns 1 through 8.
e Assembler options, as shown in table 2-9.

File assignments for the Assembly process are
default, as shown in table 2-10.

ASSEMBLER PROGRAM

Table 2-9. Assembler Option Selection
CONTROL CARD
OPTION Content |Column]|
Cross reference listing 1 28
No cross reference listing No punch
(default)
Sequence checking 1 30
No sequence checking (default)] Nopunch

Macros included (default) Nopunch | 32

Macros not included 1

Relocatable object text Nopunch | 34
[Absolute object text 1

Full listing,™ macros ex-
panded (default)

Nopunch | 36

Full listing, macros not 1

expanded

Error listing only 2

No listing 3

Machine language produced No punch 38
(default)

No machine language produced 1

Rewind - object cas sette™r Nopunch | 40
No rewind - object cassette 1

Source program - card rea,d:‘e‘:;:f Nopunch | 42
Source program - high speed 1

paper tape

Listing - serial printer** Nopunch | 44
Listing - ASR 1

Object program - cassette™ Nopunch | 46
Object program -~ high speed 1

paper tape

Disc scratch file 1
Disc scratch file 2

Disc macro file

DriveNo. t 12
IDriveNo. 14
[DriveNo. T 16

Disc binary output DriveNo.#%| 18

Note: If macro calls appear in the source
program, the programer must en-
sure that the macro library file is

available as input to the Assembler.

*A full listing contains diagnostic error codes,
object program code, and source language state-
ments (see subsection 5. 3).

**PTS-100 native Assembler only.

tA dig t from 0-7; if no punch, drive 0 assumed.

*A digit from 0-7; if no punch, drive 2 assumed.

: 5-1

Table 2-10.

File (Device) Assignments for

Device reassignment for the IBM
360 must be effected via Job Con-
trol Language cards. Specific de-
vice assignment for the PTS-100
is effected at system generation
time, as is device reassignment.
On the Raytheon 704, device re-
assignments are effected via ASR
keyboard commands prior to pro-
gram assembly,

5.2 Assembly Processing

Assembly processing is accomplished in

four phases if no macro processing is required,
or in the following five phases if macro process-

ing is required:

Phase 0, described in subsection 5.2.1,
which reads the control card, constructs an
options table for use by all subsequent
Assembler phases, and transfers control to
Phase 1 if macro processing is required, or

to Phase 2 if no macros are present.

Phase 1, which processes all macro calls in
the source program, described in subsection

5,2.2, and transfers control to Phase 2.

Phase 2, which analyzes the source state-
ments and performs preprocessing for pro-
gram assembly proper,. as described in

subsection 5.2, 3.

Phase 3, which optimizes object program
memory storage requirements, as described

in subsection 5.2.4.

Phase 4, which completes the construction
of executable instructions, generates the re-
quired listing, and produces the final object
program code, as described in subsection
5.2.3.

Figure 2-11 presents a general flow overview

of the Assembler processing steps, which are de-

scribed in detail on the following pages.

5.2.1

°
Assembly Processing
Default Device Assigned
IBM Raytheon
File 360 PTS-100 704

°
Source Card Card Card Reader
Deck Reader Reader :
Macro Tape Unit | Cassette | Tape Unit 3
Library or Disc

)
Phase 1 Discs Cassette | Tape Unit 0
Work " or Disc X
Storage Tape Unit 1
Phase 2 Discs Cassette | Tape Unit 0
Work or Disc -
Storage Tape Unit 1
Object Card Cassette | Card Punch
Program Punch or Paper

Tape Punch
Listings Line Serial Line Printer
. Printer Printer
NOTE

Phase 0 Processing

Phase 0 reads the assembly control card, its

only input, and constructs the options table for

use by all other phases of the Assembler.

The

options table specifies the following:

1,

2,

The name of the program to be assembled.
Whether a cross reference listing is desired.

Whether sequence number checking is

desired.
Whether there are macros to be expanded.

Whether output is to be relocatable or

absolute.
Listing options:
° Full listing, with macros expanded

[Listing of program containing macro

calls, but no macro expansion

>kDoes not apply to PTS-100 native Assembler.

€9 e

Phase 2

If control is passed by Phase 0, reads
source statements from card reader

If control comes from Phase 1, reads
source images from final work file

Analyzes each source statement to
construct symbol and literal tables,
assign values, allocate memory, and
pre-optimize machine instructions

Prepares intermediate text file and
passes it & control to Phase 3

- — — -

Phase 3

Processes intermediate text file to
optimize memory requirements

by constructing short executable
instructions except when long format
is required

Passes optimized text file and con-
trol to Phase 4

Source

User

Statements

Assembly
Control Card

Macro
Library

File E

Y

Phase 0

Reads Assembly control card

2. Constructs options table 2.
3. Calls Phase 1 if default option

indicates macro calls are present -
4. Calls Phase 2 if option indicates

macro calls are not present

Figure 2-11.

Phase 1

Reads source statements and writes
images of all non macro call state-
ments to work file

Replaces macro call statements
with specialized code, using gen-
eralized macro routines stored on
Library tape and writes specialized
code images on work file

Flags macro calls within macro
routines and recycles to expand all
calls to specialized code on a
second work file

Transfers control and final work
file to Phase 2 when all macro pro-
cessing is done

Alternate
Work File

Phase 4

operands

options table

options table

1. Resolves executable instruction

2. Completes executable instructions

3. Generates- listings indicated in

4. Produces or suppresses object
program file as specified in

Listing(s)

Flow Overview of Assembly Processing

e Listing of error lines only
o No listing.
7. Machine language output options:

o Machine language to be produced

o No machine language.
. . *
8. Whether object cassette is to be rewound.

9. Whether source program is on cards or high

¢
speed paper tape.

10. Whether listing is on the serial printer or
ASR. "

11. Whether object code is to be written on

cassette or high speed paper tape. ™

Phase 0 transfers control to Phase 1 if
macro calls are to be processed, or to Phase 2
if no macro calls were indicated by a 1 punched

in control card column 32.

5.2.2 Phase 1 Processing

Phase 1 is the macro processor. Its two

inputs are:

® The souree program statements on punched

cards.
° The user macro library file.

Phase 1 processing is performed in the

following manner:

° The cards in the input deck are read one at

a time.

] If column 1 of a source statement card does
not contain $ or /, indicating a macro call or
a calllist continuation, respectively, the card

image is written onto the output work file.

° If column 1 of a statement contains a §,
Phase 1 constructs an argument table con-
taining actual arguments in the order in

which they appear in the call statement list.

Thatis, the first (leftmost)actual argumentin
the list appears asthe first entry inthe argu-

ment table, followed by the secondargumentas
the second entry; etc’. Eachentryin the argu-

ment table contains the following fields:
Length of entry (1 byte)

The variable-length argument value

When all arguments in the call statement and
any continuation cards have been entered into
the table, Phase 1 searches the macro library
file for the generalized routine named in the
If the

named macro routine is not found in the

op code field of the call statement.

library file, Phase 1 sets an N flag in the
error code field of the macro call statement
card image, writes the card image onto the
work file, and reads the next source state-
ment card. If the named routine is located
in the library file, Phase 1 creates the spe-
cialized routine specified in the macro call

statement list, as described in detail below.

When a call generalized routine has been
located in the library file, Phase 1 scans each
of the routine's source statements for dummy
arguments in any of the permissible forms de-
scribed in Section 4. If no dummy arguments
appear in a statement, or when all dummy argu-
ments have been scanned and processed, the
source statement is written onto the work file.
When a dummy argument of the form (n) is found,
Phase 1 locates the nth entry in the argument
table and substitutes its value for the dummy

argument.

When a dummy argument of the form (nC) is
found in a generalized source statement, Phase 1
locates the nth entry in the argument table, and if
it contains a value, the value is substituted for the
dummy argument and Phase 1 continues the state-
ment scan or writes the specialized statement on-

to the work file if no more dummy arguments are

*Items 8-11 apply only to the PTS-100 native

Assembler.

5-4

present. If the nth entry of the argument table
does not contain a value, the source statement is
not excluded from the specialized routine (i.e.,

it is written on the work file).

When a dummy argument in the form (nY) is
located in the statement scan, Phase 1 locates the
nth entry in the table. If a value appears in the
entry, the statement containing the dummy argu-
ment is omitted from the specialized routine. If
a value does not appear in the entry, the source

statement will be written on the work file.

When a dummy argument in the form {nN) is
found in the source statement scan, Phase 1
locates the nth entry in the argument table to
If not,

the source statement is omitted from the spe-

determine whether it contains a value.

cialized routine; otherwise, it is written onto the

work file,

When a statement contains a dummy argu-
ment of the form (n, E, vv) Phase 1 locates the
nth entry in the argument table, compares its
value to the value specified by vv, and omits the
statement containing the dummy argument if the
values are equal. Otherwise, the statement is
written onto the work file. A dummy argument
in the form (n, N, vv) causes the nth entry value
and vv value to be compared for not equal, and
the source statement to be omitted from the spe-
cialized routine if they are unequal; otherwise,

the statement is written onto the work file.

If an embedded macro call statement (i.e.,
a statement calling another macro routine)
appears within the generalized routine being pro-
cessed, it is scanned for dummy arguments,
which are processed as above. Phase | then sets
a MORE flag within its own coding to indicate that
another macro processing pass is to be perform-

ed when the current pass has been completed

(i. e., when the END source statement is encount-
ered in the input deck). That is, when a second
macro routine is called within the current macro
routine, Phase 1 writes the embedded call state-
ment to the work file, finishes processing the
current macro routine and the remainder of the
input source statement deck, recycles to its be-
ginning, then rewinds and reads its output woi‘k
file as input to process the embedded macro calls
The out-
put source statements for the second pass are

If additional

2mbedded macro calls are found during the second

encountered during the previous pass.

written onto the alternate work file.

pass they are flagged, the alternate work file

becomes input to another pass, and Phase 1 writes
processed source statements to the original work

file.
tests its MORE flag to determine if another pass

At the end of each processing pass, Phase 1

is necessary, alternating work files and recycling
When the MORE flag is not set at

the end of a pass, Phase 1 transfers the address

if necessary.

of its final output work file and control to Phase 2,
which begins the first step in assembly proper

processing.

5.2.3 Phase 2 Processing

Phase 2 is the first step in the conversion of
source language to object language. This phase
converts the source code to an intermediate text
which becomes input to Phase 3. Input to Phase

2 is either:

. The source statement deck, if control was

passed from Phase 0

° The final work file from Phase 2, when

macro processing was required.

Phase 2 reads input source statements, scanning
each statement to identify and analyze its com-
ponent parts and convert the statement to an inter-
mediate text format. Each statement is processed
according to its content and type by Phase 2, as

follows:

. All hexadecimal, octal, and decimal constants

"are converted to binary representation.

e Memory is allocated as specified by ORIGIN;
MOD, and RESERVE statements and for

machine instructions.

° Executable instructions are preoptimized to J

long or short format where possible.

e Values are assigned to symbolic tags and
placed in a symbol table for use by Phase
3 and 4.

° Literals are placed in four-byte entries in a
memory table or pool. Entries in the table

contain a two-byte system generated symbol,
and the two-byte literal value itself. When a
Literal Origin statement is processed by

Phase 2, the literal table entries are written
on the intermediate text file, along with their
system-generated addresses. A new literal

pool is then started.

The output from Phase 2 is the intermediate
text file containing the processed statements and

symbol and literal tables.
5.2.4 Phase 3 Processing

Phase 3 optimizes executable instructions to
guarantee a minimum core requirement for the
object program. That is, it determines whether
the short instruction format can be used, using
the long format only where necessary. Thus,
Phase 3 assumes the burden of efficient core
utilization for the programer and enables sub-
sequent program changes without inducing

addressing errors in existing code.

The input to Phase 3 is the intermediate text

file, and the output is the optimized text file.

5.2.5 Phase 4 Processing

This phase completes assembly processing.
Its input is the optimized text file. Phase 4 per-

forms the following functions:

e Completes the construction of executable
instructions by inserting memory address in

operand fields.

e Generates and prints the listing as described
in subsection 5. 3, unless no listing is spe-

cified in the options table.
e Generates an absolute or relocatable object
program file unless the options table spe-

cifies no object language file to be produced.

5.3 Assembler Output Listing

Depending on options specified on the assemb-
bly control card, the Assembler produces the

following output listing:

e A full listing, containing the following:

specialized macro routines
error diagnostic codes
object program code

source language statements

. A full listing of the current program without
specialized macro routines, containing the

following:

error diagnostic codes
object program code

source language code
e An error listing only

As shown in table 2-9, the programer may specify

that no listing is to be produced.

: 5-6

Figure 2-12 illustrates a sample page of a
full listing without specialized macro routines.
The left-most column is titled ERRORS. If the
Assembler detects coding errors in the source
language statements, the appropriate error codes

appear in this field, as shown below:

Error Code Significance

A addressing error:

] attempt to reference non-word
boundary with word instruction

. attempt to use externally de-
fined symbol in instruction
other than ADC

B symbol table overflow
C constant error:

) illegal constant type
. illegal constant length

D duplicate symbol

E symbol, as used, not defined as
an absolute EQU

¥ format error in the operand field

G symbol, required to be predefined,
not predefined

H too many symbols in operand field

-

label error:

° in label field, either an illegal
start character or label too
long

e in operand field, label too long
illegal op code modifier
unrecognized op code

macro argument error

sequence error

undefined symbol

symbol is both operand of EXREF
and defined in current program

Y o g o g

Column LOC of the listing specifies the byte
location, expressed in hexadecimal, of the current
instruction.
contents of the current instruction, also express-
OP, R, E, I,
S, and OPERAND contain the code of executable

ed in hexadecimal. The columns

instructions, where:

The, CONTENTS column indicates the

Column OP contains the machine operation

code, expressed in hexadecimal.

Column R specifies the register being used,

where:
-0 = accumulator operation, or
absolute addressing

1 = program counter relative
operation

2 = index register 1 operation

3 = index register 2 operation.

Column E specifies the length of the instruc-

tion, where:
0 = short instruction

1 = long instruction.

Column I speéiﬁes the type of addressing,

where:

0
1

direct addressing

indirect addressing.

Column S specifies the sign of the OPERAND

value.

Column
OPERAND

specifies the displacement value
used to form the effective address,
where: ‘

The OPERAND of a short
instruction is a 7-bit word
displacement value

The OPERAND of a long
instruction is a 16-bit byte
displacement value.

NOTE

See Section 1 of part
2 for a description

of executable instruc-
tion format.

Column SEQ of the listing contains an Assem-

bler-generated sequence number.

Column SOURCE contains the source statement
as read by the Assembler. If the
programer specified sequence num-
ber checking, the programer-
assigned sequence number appears
at the righthand side of the listing.

8-G :¢

ERRNRS

MARY

LLOC CONTENTS

1302 1302
1302 NA1A 1R 1 0 X+ 16
1334 930 12112 -

_ B 1306 FCc2m - WA3Fu
1328 c3nn 18 1 1 @

. __13vaA FFEA - @11C
134C [)

TTTTTTTN3aF T pané

_ 1310 1314

- 1312 1314
1314 (L) o
1316 VwFae

S _1318 - woon
1314 2000 a2 a0+ a0
131C 8283 171 Aa= " a3 "
131E 12114 w2 1 a0 + a1

T T 13e ‘@2vR 2L R I eR
1322 2021 4 X A 7 e o
1324 c3nn 18 1 1 v

- i 1326 FECE - @132
1328 4201 A8 1 2 2 4 21
1324 0233 (227 W/ 33
132¢ 132r e
132¢ Adwv 151 2 0+ ni
132€ (L1149 w3 3 A s "
13300 133~
1332 1332
1334 1334 _
1336 1EDE e
1338 1338
1338 2nnm (Y- B - - 7 IS an
1334 c284 18 1 A 0 = na
133C 9284 12 1 a4 a - a4’
133F c287 18 1 2 ¥ - w7
1340 A3ui 14 1 1 @
1342 FEC? - V13F

w521
n822
n523
Nne24
w525
2526
n527
w528
0529
#8530
@531

n532

7533

..2534
nR35

AK36
n537
P538
n539

8540

7541
n542
7543
n544
n545
n546

‘2847

2848
4549
ns5A
71551
w652

VL]

wh54

AR55
NREH
w857

T @558

7559
NRe 4
n561
wR62
9563
n&64
A565
7566
aAs567
n568
569

W70

ns71
A872

PAanF 114

0P R F [S NPERAND SFN = SNIIPFE

AL AL AR LA A R R R A S A A R R Y R R R R R 222 2 R]

THTS RNUTINE ATTEMPTS TN (PFN THF MONEM RECFIVE

TNTTTALISATION IS SUCCESSFUL

*

*

* CHANNEL AND QUFUF 3 T/0 REQUESTS IN THE 10CR, IF

: IF
* TF UNSUCCESSFUI

B —,

-
*
*
_SNAMR IS SFT T0 a, T w
SNAMR IS SET 70 1, .
L
-

LA R AL AR A SRR AR 222 A R N N Y R R R 22222]

/PRINT TN FIRST FNTRY IN I0CQ

MSC OPEN CHANNEL REOUEST

/OPFN CODE = 6

/RETURN ADDRESS
/PARAMETER LTIST ADDRESS
LUN=TD

/70CNQ ADDRFSS

/CHECK FOR FRROR RETURN
/YES
/NN,

SNA LTGHTS

/SET SNAMT = { OR @

/RETURN

*
MRSET Foui *
- 8X? MRRT
LD¥ INMR3
STw INWMR
*
 kkkk sk dttmmmmen= TSSUE A
L 2
MSC
ADC CNNE6
ADC TR2
N ADC T63
_T63 DEC Y
ADC I0MR1
MRERR RESV,m 2
*
*h Atk Ak k¥ mmomee=e CHECK FAR ERRNR RETIIRN
-
TE2 LDI AC, 0
) CNE MRERR
RCR ERRMR
JMP NPNEH
w
Ak kN k kK mmmeme=e=T(JRN ON
*
ERPMR DI AC,1
ToRR STw SMAMR
LAX? T2
JMP SNALT
T2 EQU - 0
MRRTN X2 MRRT
JMP, X2 @
MRPT ADC *
*
OMRTP ADC *
MRTDX ADC &
AMRA ADC OMR Y

hk bk kb k kN mmmmee=e QUFHF 3
*
OPNCH EQU *
' LD AC,®
STw MRIDX
LDwW OMRA
STw UMBTP
LX1 FIRMR

'Figure 2-12.

1/0 RFQUFSTS IN INCA

/1.0AD ADDPESS OF MOPEM RECEIVF FINRK

Sample Assembler Output Listing

5.4 Assembler Limitations and Machine

Requirements

Following are the recommended machine
requirements and pertinent limitations of the
Raytheon 704 and IBM 360 Cross Assemblers.

5.4.1 Raytheon 704 Cross Assembler

The recommended minimum Raytheon 704
equipment configuration for the PTS-100 Assem-

bler is as follows:
1 card reader
1 card punch
3 magnetic tape drives if the source pro-
gram contains macro calls; otherwise
only 2 tape drives are required
1 line printer

1 ASR 33/35

16K words of core storage

Device reassignment on the Raytheon 704 may
be effected through the use of the I/O device re-
assignment facility of the Series 700 operating

system.

5.4.2 IBM 360/370 Cross Assembler

The recommended minimum IBM 360/370 con-

figurationfor the PTS-100 Assembleris as follows:

card reader
card punch

magnetic tape drive

— e e

disc drive
1 line printer
32K bytes of core

The IBM 360/370 version of the PTS-100
Assembler is designed to run under both the DOS
and OS systems. With the exception of the system
dependent code to produce object code in column
binary, no system dependent macros are used,
facilitating compatibility between systems. All
input/output is performed through the use of a

Cobol subroutine.

2:

The IBM 360/370 version of the PTS-100
Assembler ignores all device reassignment
facilities of the assembly control card. Device
reassignment is performed through the Job Con-

trol Language.

5.4.3 PTS-100 Native Assembler

The recommended minimum PTS -100 configura -
tion for the PTS-100 Native Assembler is as follows:

1 card reader

4 cassette drives
1 serial printer
16K bytes of core

Optionally, the source program may be read
from a high speed paper tape reader, eliminating
Also, the object
program may output onto a high speed paper tape

the necessity of the card reader.
punch.
A disc may be used for intermediate text

storage, eliminating the necessity of two of the

cassettes.

5.5 Disc Assembler

For the Disc Assembler, the scratch files
and the macro file may be on the same or different
disc drives. To designate the drive number loca-
tions for each file)the fbllowing fields have been

added to the control card:

SCRATCH FILE 1 - COL. 12
SCRATCH FILE 2 - COL. l4
MACRO FILE - COL. 16
BINARY OUTPUT - COL. 18

Columns 12, 14, and 16 should contain a number
from 0 through 7, designating the drive on which
the corresponding file is mounted; if there is no
; Column 18 should

contain the drive number for the binary output; if

punch, drive 0 is assumed.

this column is left blank, drive 2 is assumed.

5-9

The scratchand macro files mustbe alloca-

ted previous to the as sembly execution, using the

Disc Allocator utility program. (If macrosarenot

used, only twofiles need be allocated.) The follow-

ing parameters should be used for allocation:

Scratch File 1:

FILENAME
DRIVENO

FUNCTION
FIRSTCYL
LASTCYL
FILEORG
RECSIZE

Scratch File 2:

FILENAME
DRIVENO

FUNCTION
FIRSTCYL
LASTCYL
FILEORG
RECSIZE

ASSEMBSCR1

same as punched in column
12 of the assembly control
card.

NEW

(see Note)
(see Note)
S

164

ASSEMBSCR2

same as punched in column
14 of assembly control card.

NEW

(see Note)
(see Note)
S

164

Macro File:

FILENAME = DMACROFILE

DRIVENO = same as punched in column
16 of assembly control card.

FUNCTION = NEW

FIRSTCYL = (see Note below)

LASTCYL = (see Note below)

FILEORG =S

REGCSIZE = 80
NOTE

The parameters FIRSTCYL and
LASTCYL are not given above,
because the sizes of the files
are variable.

The sizes of scratch files I and 2, which
should be the same size, depend on the size

size of the program to be assembled. Allow one
cylinder for each 78 statements in the program to

be assembled. For example, if a source program
contains 500 statements, a minimum of 7 cylinders

- should be allocated to each of the scratch files.

The size of the macro file depends on the
total number of statements in the macros that are
to be put into the file. Allow one cylinder for

every 160 macro statements or fraction thereof.

2: 5-10

Section 6.
Presented below are some special techniques
that the PTS-100 application programer may find

useful.

6.1 Shifting Techniques

The Shift Right One, Arithmetic statement is
the only shift statement provided in the PTS-100
Assembler language. There are some techniques,
however, that may be used to effect shifting, as

follows:

1. To shift left one position, add the value
to be shifted to itself. For example,

X'10' + X'10' = X'20'
X'60' + X'60' = X'CO'

0]

This technique can be used for each
multiple of two in a multiplier. For

example,

5108107 50% 2]

1012 shifted left three

n

1010002 = 4010

2. To shift left or right eight positions,
execute a Load Byte instruction, and

then a Store Byte instruction.

6.2 Setting Addresses

The programer should use the Load Address
In Index Register 2 statement to effect the follow-

ing:

1. Set a return address and/or an argument

list address when calling a subroutine.

2. Obtain the address of a value instead of
defining an ADC for that value, if

possible.

PROGRAMING TECHNIQUES

6.3 Defining Message Content

The Text constant statement should be used

to define the content of message buffers.

6.4 Label Definition

The Equate statement may be used to define
labels, which facilitates program changes or
corrections. For example, the statements

START EQU *
LDW KOUNT
may be used instead of
LDW

START KOUNT

6.5 anstant Definitions

In working with constants, the Load
Immediate statement saves core storage require-
ments. For example,
LDI AC,1

may be used instead of

LDW One

ONE HEX 1

6.6 Comparison Bit Setting

It is possible and sometimes helpful to set a

compare bit before the actual branch, as shown

below:
LDI AC,1
CNE TWO
LDW CONSTANT
BCB SUBR

When this technique is used it is essential
for the programer to remember all instructions

that use the comparison bit.

2: 6-1/2

Section 7.

The PTS-100 accommodates a wide range of
external input/output device types. Input/output
operations for application programs are managed
by the Input/Output Control System (IOCS)monitor,
which is a resident modular software system com-

posed of two major components:

° The I/O Control Nucleus, which handles
monitor service calls from applications

programs and services interrupts from the
I/0 devices.

. The physical I/O routines, which handle
requests to the specific I/Odevices supported

by the system.

The I/O Control Nucleus provides two kinds
of service: device interrupt handling and process-
ing of service calls from application programs.
The interrupt handling service is provided by the
level service routines, which provide entry and
exit control for all interrupts, save and restore
registers, and link to the appropriate device

service routines.

The physical I/ O routines handle all requests
for each physical I/O device in the system. There
is a set of physical I/O routines for each type of
A set

of routines includes the device driver routine and

I/0 device in the equipment configuration.
the device service routine. The device driver

routine is called when there is an I/O request in
the logical IOCQ table and the channel for the de-
vice is inactive. The device driver routine uses
the information in the IOCQ entry to set up the

physical I/O control table and to initiate the I/O

action.

The device service routines are assigned to
one of eight external interrupt levels when a
particular IOCS monitor is generated for a spe-

cific installation. These routines determine the

SYSTEM PROGRAMING CONSIDERATIONS

reason for an interrupt, update control and status
fields, take any required action, and then initiate

action on the next I/O request in the IOCQ table.

The application program service calls are
processed as described in Section 3 of this part
of the handbook.

For any given PTS-100 installation, a hard-
ware specialized IOCS is created by the System ‘
Generation program, described in Part 3 of this
handbook. If the PTS-100 user wishes, he may
alter the IOCS monitor by adding special physical
I/0O and control routines to accommodate non-
standard devices that are not supported by the
IOCS monitor, or he may develop his own IOCS
monitor. In either case, an understanding of the
interrupt éystem of the PTS-100 and the systems
programing I/O and interrupt statements is re-
quired,. as described in the remainder of this

section.

7.1 Interrupt System

A multilevel interruption system provides
eight external (device) interrupt levels and three
internal (CPU) levels. The CPU operates at a
given level and may be interrupted when an
enabled higher prioritif interrupt condition is
detected. Instructions are provided to enable and
disable interrupts, trap to a higher priority
internal level, and return to prior levels after
servicing interrupts. The priority of interruption
is shown in figure 2-13, with the highest number-

ed level having the highest priority.

The Parity Interrupt is optional. It occurs

when the processor hardware detects invalid
parity on the data returned from memory. At
the completion of the current instruction the

interrupt is serviced and level 10 is entered.

: 7-1

—
o

PARITY
TRAP

EXTERNAL 8

EXTERNAL 7

EXTERNAL 6

EXTERNAL 5

EXTERNAL 4

EXTERNAL 3

EXTERNAL 2

EXTERNAL 1
PROCESSOR/INTERVAL TIMER

o —=| | w| a]juo]o] | o ©

Interrupt Priority Levels
in the PTS-100

Figure 2-13.

The Trap Interrupt is a synchronous interrupt
that occurs when a Monitor Service Call (MSC)
instruction is encountered in an executing pro-
gram. This interrupt may be issued at any level.
The interrupt is not maskable by the Disable
Execution of the MSC

instruction consists of storing the present status

Interrupts instruction.
and loading the program counter from the level 9
interrupt packet. Instruction execution then re-

sumes at level 9.

There are eight External Interrupt signals

in levels 1 through 8. These may be assigned to
any configuration of input/output devices. Inter-
rogation and resetting of interrupt conditions are
accomplished by executing the Read Device Status

instruction, described in subsection 7. 3. 2.

The Processor Interrupt level 0 does not

have the ability to interrupt execution at another
level. Level 0 may only be entered via the
Interrupt Return instruction with no higher level
This is the level at which

object programs execute.

interrupts outstanding.

The Interval Timer Interrupt is an optional

external interrupt condition that occurs once

every 67 milliseconds. The interrupt may be

taken only when the CPU is already operating at

level 0 with external interrupts enabled. The
interrupt causes present status to be stored and

the program counter to be loaded from the level
0 packet. Processing continues at level 0.

The central processor may be operating at
any of the 11 interrupt levels and is normally
enabled for external interrupts that occur at a
higher priority level than the present level. The
trap and parity interrupts are always enabled.
Interrupts of the same or lower priority than the
present operating level remain pending. All
external interrupts may be disabled (held pending)
by executing the Disable Interrupts instruction.
The processor returns to the enabled state when

the Enable Interrupts instruction is executed.

For each assigned interrupt level, an
associated four-word interrupt packet must be

set up in the format shown in figure 2-14,

Word 0 OLD PROGRAM COUNTER
OLD C
Word 1 LEVEL B
4 7 15
Word 2 NEW PROGRAM COUNTER
Word 3 | (Spare)
0 15

Interrupt Packet Format
and Content

Figure 2-14.

When the processor is operating at one level
and an interrupt of higher priority is enabled, the
processor completes the execution of the current
instruction and then enters the following fixed

sequence.

1. The value of the program counter (pointing to
the next sequential instruction to be executed)
is stored in the first word in the interrupt

packet.

2: 12

2. The old interrupt level and the condition bit
(CB) are then stored in the next sequential
word of the packet, in bits 4-7 and 15,

respectively.

3., A new value for the program counter is then

loaded and the new interrupt level is entered.

This sequence of events cannot be interrupted. If
a higher priority interrupt occurs during the
sequence, servicing is deferred until completion

of one CPU instruction at the new level.

An Interrupt Return instruction should be
issued immediately following the completion of
interrupt servicing. This causes the processor
status to be restored to the point prior to the
interruption. The old PC, old interrupt level,
and old condition bit are restored by the hard-

ware from the save area at the departing level.

7.2 Interrupt Statements

There are three statements provided for
changing the external interrupt level at which the
central processor is currently operating, as

shown in table 2-11.

Table 2-11. Interrupt Statements
LABEL OP CODE
FIELD FIELD COMMENTS
(label) DIN (disable interrupts)
(label) ENB (enable interrupts)
(label) INR (interrupt return)

The DIN (disable interrupts) statement
specifies that all interrupts at levels 0 through 8
are to be disabled. That is, they are to be held
pending so that current instruction execution can-

not be interrupted.

‘The ENB (enable interrupts) statement spe-
cifies that all external interrupts at levels 1
through 8 are to be enabled. That is, external
interrupts of a higher priority than the current
CPU operating level are to be serviced when

they occur.

The INR (interrupt return) statement specifies
that the CPU is to return to the interrupt level
that was current just prior to the most recent

interrupt.

At assembly time these statements are trans-
lated to short machine instruction format. The
machine op code in all cases is 0l. The R field
of a given machine instruction serves as an
extended op code to identify the specific interrupt

statement involved, where:

R = 00 Enable Interrupts
R = 01 Disable Interrupts
R = 10 Interrupt Return

In all cases, the operand field of the machine

instruction should be zero.

7.3 System Programing of I/O Operations

Input/output operations occur via direct
memory access channels. Data, addresses, and
status information are exchanged between the
CPU and device controllers across a 16-bit bi-
directional bus. The I/O controllers may initiate
data transfers between devices and memory and
may also initiate limited arithmetic operations to
be performed in the CPU. These actions are

overiapped with CPU instruction execution.

For system programs that are to run inde-
pendently of the IOCS monitor, two statements
are provided to perform I/O operations and
interrogate status indicators in the I/O con-

trollers and devices. These statements are:

° Do IO statement, which is used to perform

all I/O operations.

° Read IO Status statement, which is used to
test the operational status of devices and
device controllers.

7.3.1 Performing I/O Operations
When I/O operations are to be performed

independently of the IOCS monitor, the Do IO

statemént must be used in conjunction with a

Load Word statement as shown below.

LABEL | OP CODE ‘ :

FIELD FIELD OPERAND/COMMENTS

(label) LDW X'0 + Device Address’
(start I/O on DA)

(label) DIO I/ O Packet Address

(label) LDW X'1 +Device Address'
(stop I/ O on DA)

(label) DIO *

The operand of the LDW statement must
have been previously stored by the programer.
It specifies the start or stop command and the
physical address of the device on which the opera-
tion is to be performed. The format of the LDW

operand is shown below.

01234567 89 101112 13 14 15

CMD | DEVICE ADDRESS |

where: bits 4 - 15 specify the physical address

of the device, and

bits 0 -3 specify one of the following:

CMD = 0 specifies that an IO
16 s

operation is to start

CMD =1 specifies that the IO

16

operation is to stop

If CMD = 116 when the Do IO instruction is
executed, the addressed device will be stopped as
soon as possible and all pending or active memory
requests from the device will be cleared. The
10 controller for the device will be left in the not

busy state.

NOTE

When a stop I/O command code is
specified, the Do IO statement
operand must be a symbolic tag or
a self-referencing indicator.

If CMD = 016’ the Do IO instruction operand
must be the starting address of an I/O packet
specifying all information necessary for executing
the I/O operation, as described in subsection
7.3.1.1 below,

When the Do IO instruction to start an opera-
tion is executed, the value in the accumulator is
placed on the input/output data bus for the spe-
The I/O packet address is then

transferred to the selected controller.

cified device.
The con-
troller uses the address to locate the packet and
perform the specified operation. The controller
subsequently interrupts the CPU to signal signifi-

cant device events.

7.3.1.1 I/O Packet.
being performed independently of the IOCS monitor,
the I/ O packet performs the functions of the FIOB
and PIOT for operations under control of the

IOCS monitor.

output function to be performed on the device, the

When I/ O operations are

That is, it specifies the input/

data storage area to or from which data is to be
transferred, the total number of bytes of data
involved in the transfer, and the base addresses
of any Search or Translate tables to be used in the
The I/O packet must

start an eight-word boundary, in the format

operation or disc address.

shown in figure 2-15. I/O packet field content is

discussed in detail below.

Birs{ 0 1 2,3 4 5 6 7|8 9 10 11 12 13 14 15
Word 0 e : BYTE boc | MASK BYIE
Word 1 BYTE ADDRESS
Word 2 BYTE COUNT
Word 3 TRANSLATE TABLE BASE (TTB) OR DISC ADDRESS
Word 4 SEARCH TABLE BASE (STB) OR DISC ADDRESS
Word 5 ALTERNATE BYTE ADDRESS
Word 6 ALTERNATE BYTE COUNT
Word 7 SPARE

Figure 2-15. I/0O Packet

The Order Byte field of the I/ O packet con-
tains the device Controller Order Code (COC) in
bits 0 - 2 and the Device Order Code (DOC) in
bits 3- 7.

The Controller Order Code specifies the data
transfer mode (i.e., whether Search and Trans-
late functions are to be performed by the I/O con-
troller) See Section 3 for a detailed description

of these special functions.

The Device Order Code (DOC) in bits 3-7 of
the Order Byte specifies the desired I/O function
to be performed on the specific device, as shown

in the right-most column of table 2-6.

The interrupt mask in the right-hand byte of
Word 0 of the I/ O packet is used to allow or
That is, the bits of the Mask

Byte correspond one-for-one with the bits in the

inhibit interrupts.

Interrupt Condition Byte (ICB) in the device con-
troller. Hence, the programer may set a one

bit in each position of the Interrupt Mask Byte
where the corresponding interrupt is to be allow-
ed and a zero bit in each bit position of the Inter-
rupt Mask where the corresponding interrupt is

to be inhibited. When an interi'upt condition
occurs in the device controller, the Interrupt
Mask is ANDed with the ICB to determine whether

an interrupt should be generated.

NOTE

Mask bits do not reset ICB bits.
They merely specify whether
interrupts are to be enabled or
diabled for a given I/O activity.

The possible bit settings of the Interrupt
Mask and IC bytes are as follows:

Bit 0 = Search requested and MSB = 1
Bit 1 = Byte count incremented to zero

Bit 2 = Start command issued when the
device is in a NOT READY state

Bit 3 = Device "END OF RECORD' (EOR)
Bit 4 = Attention *

Bit 5 = Error *

(Data overrun, data error, or
unit check generated by the device)

Byte Address. Word 1 of the I/O control
packet specifies the address of the first byte of
the memory storage area into or from which input/

output data is to be transferred.

Byte Count. Word 2 of the I/O packet
specifies the two's complement of the total num-
ber of bytes of I/O data to be transferred. The
byte count is incremented each time a byte of data
When the

byte count reaches zero, the data transfer is

is transferred by the 1/O controller.

complete.

Words 5 and 6 of the I/O packet are used to
specify the alternate data storage address and
byte count when I/O commands are chained.
Command chaining is specified by a one in bit 3
of the device order code, as shown in table 2-6.

When command chaining is specified, the I/O

*The attention and error bits are summary
bits indicating a broad classification of the type
of interrupt that was generated, depending on the
variable device controller conditions which may
be indicated by individual bits in the device status
byte, described in subsection 7.3.2. The pro-
gramer should consult the PTS-100 Reference
Manual for detailed information about status in-
dicators of specific devices and controllers.

1 7-5

controller executes the first order specified by
the DOC and uses the byte address and count
located in words 1 and 2 of the I/O packet. Data
transfer is halted when the byte count in word 2
When the next

I/O command is executed, the I/O controller uses

reaches (is incremented to) zero.

the alternate address and byte count specified in
words 5 and 6 of the packet. Prior to issuing
v another chained set of commands against the
packet, the programer must reset the byte
addresses and counts in the packet. As chained
commands are subsequently received, the con-
troller again alternates between the byte
addresses and counts. Oddnumbered orders utilize
words 1 and 2 of the packet, and even numbered
orders utilize words 5 and 6 of the packet. Com-
mand chaining continues until a device order with
bit 3 set to zero is executed or until a Stop I/O

command is issued.

Disc Address. Bits 2 through 6 of word 3
contain the track address, and bits 7 through 15
Bits 11 through 15

of word 4 contain the sector address.

contain the cylinder address.

7.3.2 Testing Device Operational Status

Before and after issuing a Do IO command,
the programer should test the operational status
of the addressed device. Status testing is spe-
cified via the Read IO Status statement, preceded

by a Load Word statement as shown below.

LABEL OP CODE

FIELD FIELD OPERAND/COMMENTS

(label) LDW X'0 + Device Address'
(reads and resets status)

(label) RIO Memory Address

(label) LDW X'l + Device Address'
(reads device status)

(label) RIO Memory Address

The operand of the LDW statement must have
been previously stored by the programer. It
specifies the command code and the physical
address of the device whose status is to be
checked. The format of the LDW operand is

shown below.

012345678 91011 12 13 14 15
CMD DEVICE ADDRESS
where: bits 4 - 15 specify the physical address

of the device and bits 0 - 3 specify one
of the following:

CMD = 016 specifies that the device
status is to be read and
interrupts, are to be reset.

CMD = 116 specifies that the device
status is to be read, but
no interrupt conditions
are to be altered.

In both cases above, the RIO statement operand
specifies the memory address to which the device

status is to be transferred.

When the accumulator has been loaded with a
command code of zero and the device address,

execution of the RIO statement causes the device's

" status to be read and any pending interrupts to be

That

is, if interrupts are pending the following will

cleared (i.e., the device status is reset).

appear in the memory word specified in the RIO
operand field:

o . 0 ICB

If no interrupts were pending, the memory
word will contain all zeros after the read and re-
It should be noted in
this case that the ICB in the controller may not

set interrupts operation.

be zero because the interrupt mask may have

inhibited the generation of an interrupt.

When the accumulator has been loaded with a
command code of one and a device address,
execution of the RIO statement causes the device
status and the ICB to be stored in the memory,

as follows:

defined universally for all controllers and are

bits 0 and 1 of the status byte as shown below.

Device Status Byte ICB

Device/controller status in every case con-

sists of a minimum of two bits. The two bits are

READY BUSY

0 0 Device Not Operational

0 1 Order In Process (i.e.,
Busy)

1 0 Device and Controller
Available for New Order

1 1 (Undefined)

I—————- Bit 1 of device controller

status byte

Bit 0 of device controller
status byte

Therefore, only bit 0 of the status byte must
be tested to determine if a new Do IO instruction

may be issued.

2: 7-7/8

Add acummulator to memory
statment

Add immediate
Add one to memory statement
Address
buffer
byte
computations of
constant statement
starting execution
table base
Addressing
flags for indirect and indexed
Add statement
Arguments

actual, for specialized macro
routines

dummy, in macro rqutine
definitions

Arithmetic overflow

Assembler
coding form
control statements
disc
input
limitations
option control card
output
processing
statement format
Assignments
constant
device
storage
Bit
condition
significance of
testing of
least significant (LSB)
most significant (MSB)
Block, file input/output

Branch if accumulator minus
statement

Branch if condition bit set
statement

INDEX TO PART 2

2: 3-28
2: 7-5
2:1-2

2: 3-15

2: 3-24

2: 3-28

2: 4-1
2: 3-2

2: 3-15
2: 5-2
2: 3-21
2: 3-2
2: 3-6
2:3-1
2: 3-6
2:3-30
2: 3-6
2: 3-6

2:1-1

Branch, unconditional
(Jump statement)

Byte count
Byte
device status
mask
order
tables
Calls
embedded macro
macro routine
monitor service
Card, assembly control
Channel interface controller service
Chaining, device command

CIC Service
Code

conversion

device order

error

search control
Codes

logical status

physical status
Comments field

Compare accumulator less than
memory word statement

Compare for not equal
statement

Condition bit
significance of setting
testing

Constant
address
concatenated integer
decimal
hexadecimal
octal
text

Count, byte

Data
formats of
translate tables for

Decimal constant statement

Deck, order of input source

2: 3-7

2: 3-27;2: 7-5

[SSTN NS I

2: 3-32

2:4-8
2:4-2
2: 3-34
2: 5-1
2: 3-38
2: 7-5
2: 3-38

2: 3-32

2:7-5
2: 3-27
2: 3-32

2: 3-31
2: 3-31
2: 2-12

2: 3-15
2: 3-16
2: 3-17
2:3-17
2:3-18
2: 3-19
2: 3-27

2:1-4
2: 3-33
2: 3-17
2: 5-1

Deletion of macro statements
Device
closing of
initialization of
opening of
operational status testing
sensing service
Disc assembler
Disc logical input/output
Do IO statement

End statement
Equate statement
Error

device code

indicators (disc)

listing
Exclusive OR statement (XOR)
Execution, instruction timing
Exit service, system
Expressions, use as operands
External definition statement

External reference statement

Field
comments
label
link
operand

operation code
machine

mnermonic

sequence number
File description macro (disc)
FIOB (file input/output control block)
Form, source statement coding
Format

of machine instructions

of source language statements
Function, device
Functions

special hardware

search

translate

Hexadecimal constant statement

IBM 360 Cross Assembler

2: 3-36
2: 3-34
2: 3-34
2: 7-6
2: 3-39
2:5-9
2: 3-41
2:7-4

2: 3-24
2: 3-19

2: 3-27
2: 3-47
2: 5-7
2: 3-14
2:1-4
2: 3-37
2:2-11
2: 3-19
2: 3-20

2: 2-12
2:2-1
2: 3-30
2: 2-1

2: 2-1
2: 2-1
2:2-12
2: 3-42
2: 3-27
2: 2-1

2:1-1
2: 2-1
2: 327

2: 3-32
2: 3.32
2: 3-33

2: 3-17

ID, logical unit number
Identification, extended device
Inclusion of macro statements
Initialization, device service
Inputs, assembler
Insertion of statement labels
Instructions

format of machine

timing of machine
Integer, constant, concatenated
Interrupt mask
Interrupts

disabling

enabling

levels of

return

system of
I/0 action service
I/0 chaining

I0CQ (input/output control
queue table)

I0CQ entry

1/0 operations, systems
programing of

1/0 packet, definition of
1/0 services

Jump statement

Label
insertion in macro routine
source statement field
Least significant bit (LBS)
List statement
Listing, assembler output
Literal origin statement
Literals
assembly processing of
use as operands

Limitations, assembler

LIOCSD (disc main processing macro)

Load address in index register
2 statement

Load byte statement

Load immediate statement

Load index register 1 statement
Load index register 2 statement
Load word statement

Logical statements

2: 3-28
2:3-28
2:4-5
2: 3-34
2: 5-1
2: 4-4

2: 3-30
2: 3-30

2: 7-3
2:7-4
2: 3-26
2: 3-7

2: 4-4
2: 2-1
2: 3-1
2: 3-25
2: 5-6
2: 3-21

2: 5-6
2:2-8
2: 5-9
2: 3-43

2: 3-8
2: 3-9
2: 3-9
2:3-10
2: 3-11
2:3-11
2: 3-14

Logical unit number ID
(LUN ID)

LSB (least significant bit)
LTORG statement

Machine

execution time

instructions

requirements for assembler
Macro

basic routine structure

calls, embedded

format of

extended routine structure

routine specialization
Mask, interrupt
Messages, defining content of
Mod statement
Mode

addressing

transfer
Monitor service calls

MSB (most significant bit)

Names
assignment of macro routine
assignment of source program
No carry condition
Nonexecutable statements
Number
logical unit identification
sequence, assembler checking of

source statement field

Octal constant statement
Open statement
Operand
field of source statement
machine instruction
Operands
expression
literal
self-referencing
symbolic tag

use of absolute address

Operation code

machine

NN NN NN
'S
1
W~

2: 3-22

2:1-1
2: 3-27
2:3-34

2:3-6

2:4-1
2: 5-1
2: 3-2
2: 3-15

2: 3-26
2: 5-1
2:2-12

2: 3-18
2: 3-34

2: 2-11
2: 2-9
2: 1-4
2: 2-9
2: 2-10

2:1-3

mnemonic

Operations
systems programing of I/O
testing status of device

Optimization of executable
instructions

Options, selection of assembler
Order byte

Origin statement

Output, assembler

Overflow, arithmetic

Packet, definition of I/0O
Page 0 statement
Processing
assembler
of macro routines
Programing
considerations for systems
techniques for
PTS-100, character set for

Queue, input/output control
(I0CQ)

Random files (disc)

Raytheon 704 Cross Assembler
Read I/O status statement
Reconfiguration service
Requirements, assembler machine
Reserve statement
Routines
assembler processing of macro
basic structure of macro
calling macro
embedded calls to macro

extended structure of macro

Search, hardware function of
Sequence number

specifying assembler checking
specifying source statement

Sequential files (disc)

Service
calls to monitor
channel interface controller (CIC)
device close

device initialization

2: 5-6
2:5-2
2: 7-5
2: 3-22
2: 5-6
2:3-2

2: 7-4
2: 3-23

2: 3-30

2: 3-42
2:5-9
2: 7-6

2: 3-40
2:5-9
2: 3-2

2: 5-4
2:4-1
2: 4-2
2: 4-8
2:4-5

2: 3-32

2:5-2

2:2-12
2: 3-41
2: 3-34
2: 3-38
2: 3-36
2: 3-34

device open
device sensing
I/O action
reconfiguration
systefn exit
watchdog timer

Set, PTS-100 character

Shift right one, arithmetic
statement

Skip statement

Statements
arithmetic
branch
call, macro
compare
constant assignment
executable
format of source
load
logical
macro routine name defining
nonexecutable
order of source
program control
program name defining
sets of I/O service
storage assignment
store
symbol defining

systems programing

Status, testing device operational

Store byte statement

2: 3-34
2: 3-39
2: 3-35
2: 3-40
2: 3-37
2: 3-37

A-1

2: 3-4
2: 3-25

2: 3-2
2: 3.5
2: 4-2
2: 3-7
2: 3-15
2: 3-1
2: 2-1
2: 3-8
2: 3-14
2: 4-1
2:3-15
2:5-1
2: 3-24
2: 5-2
2: 3-34
2: 321
2:3-12
2: 3-19
2: 7-3
2: 7-6
2:3-12

2:1-4

Store index register 1 statement

Store index register 2 statement

Store word statement
Subtract statement

Symbolic tags, use as operands

Symbols, definitions of (equating)

System exit service

Systems programing

Table
definition of IOCQ
definition of search
definition of translate
Techniques
programing

shifting

Text constant statement
Testing

comparative

logical

of condition bit

of device status
Translate

definition of table

hardware function

Unlist statement
Watchdog timer service
Word, format of

XOR (exclusive OR) statement

2: 3-12
2: 3-13
2: 3-13
2: 3-5
2: 2-9
2: 3-19
2: 3-37
2: 7-1

2: 3-30
2: 3-32
2:3-33

2: 6-1

2: 3-18

2: 3-7
2: 3-14
2: 3-6
2: 7-6

2:3-33
2:3-32

PART 3

PTS-100 UTILITY PROGRAMS

PART 3
PTS-100 UTILITY PROGRAMS

TABLE OF CONTENTS

SECTION 1. GENERAL INTRODUCTION

SECTION 2. PTS-100 LOADER PROGRAMS

Piggyback Loader
2.1.1 Piggyback Loader Input
2.1.2 Piggyback Loader Output
Absolute/Relocating Loader
2,2.1 Absolute/Relocating Loader Input
2.2.2 Absolute/Relocating Loader Output
2.2.2.1 Symbol Map
2.2.2.2 Error Diagnostic Listing

SECTION 3. INTERACTIVE DEBUG PROGRAM

Inputs to the Interactive Debug Program

3.1.1 Interactive Debug Input Commands

3.1.1.1 Keyboard Editing Commands
3.1.1.2 Memory Value Access Commands
3.1.1.3 Go To Command

3.1.1.4 Address Computation Commands
3.1.1.5 Proceed Command

3.1.1.6 Breakpoint Control Commands

Debug Output Error Messages

SECTION 4. SYSTEM GENERATOR PROGRAM

Command Directives

4.1.1 TITLE Directive

4.1.2 ACIC Directive

4.1.3 ASGL Directive

4.1.4 ASGP Directive

4.1.5 CALL Directive

4.1.6 END Directive

SYSGEN Processing

4.2.1 TITLE Directive Processing
4,2.2 ACIC Directive Processing
4.2.3 ASGL Directive Processing
4.2.4 ASGP Directive Processing
4.2.5 CALL Directive Processing
4.2.6 END Directive Processing

3: iii

W W W Ww w w w w

w W W W w

W W LW W W W W W wWwwewwwuw
DYo o . o DY . .

3-1
3-2
3-3
3-4
3-8

: 3-10

3-12
3-16
3-17

5.2

TABLE OF CONTENTS (cont)

SECTION 5. PTS-100 DUMP PROGRAMS

Memory Dump Program

5.1.1 Version 1 of the Memory Dump Program
5.1.1.1 Version 1 Keyboard Input Format
5.1.1.2 Version 1 Calling Sequence Parameters
5.1.1.3 Version 1 Dump Output

5.1.2 Version 2 of the Memory Dump Program
5.1.2.1 Version 2 Keyboard Input Format
5.1.2.2 Version 2 Calling Sequence Parameters
5.1.2.3 Version 2 Dump Output

The Peripheral Device Dump Program

5.2.1 Inputs to the Device Dumping Process

5.2.1.1 IOCS Monitor and PDD Program
Object Code

5.2.1.2 PDD Control Director Record
5.2.1.3 Data File
5.2.2 Peripheral Device Dump Processing

5.2.3 Peripheral Device Dump Program Output

SECTION 6. FILE UPDATE PROGRAM

Input Directors

6.1.1 Program Directors
6.1.1.1 Insert Program Director ($INSP)
6.1.1.2 Delete Program Director ($DELP)
6.1.1.3 Correct Program Director ($CORP)
6.1.1.4 Replace Program Director ($REPP)

6.1.2 Data Line Directors
6.1.2.1 Insert Data Line Director ($INS)
6.1.2.2 Delete Data Line Director ($DEL)
6.1.2.3 Replace Data Line Director ($REP)

6.1.3 END Director ($END)

6.1.4 EOF Director ($EOF)

File Update Program Outputs

SECTION 7. DISC SUPPORT PROGRAMS

Disc Volume Preparation Program
7.1.1 Input to the Disc Volume Preparation Program
7.1.2 Disc Volume Preparation Program Output
7.1.3 Processing
7.1.3.1 Parameter Input
7.1.3.2 Formating and Checking the DiscSurface

3:iv

w

W W W WwWwwwwwwwww

W W W W W W wWw wwew.uw

w W w w

W W W W w w

: 6-1
: 6-2
: 6-3
:6-3
: 6-4
: 6-5
: 6-5
: 6-6
: 6-6
: 6-6
: 6-6
: 6-7
: 6-7

TABLE OF CONTENTS (cont)

Page
7.2 Disc Allocator Program 3:7-2
7.2.1 Input to Disc Allocator Program 3:7-3
7.2.2 Disc Allocator Program Output 3:7-3
7.2.2.1 Disc Allocator Entries in Volume
Directory 3:7-3
7.2.2.2 Disc Allocator Output toSerial Printer 3: 7-
7.2.3 Processing 3: 7-5
7.3 Disc Dump Program 3: 7-5
7.3.1 Disc Dump Program Assumptions 3: 7-
7.3.2 Input to the Disc Dumping Process 3: 7.7
7.3.3 Disc Dump Output 3: 7-8
SECTION 8. CASSETTE UTILITY PROGRAM
8.1 Input and Output Devices 3: 8-2
8.2 Operator Input 3: 8-2
8.2.1 Copy Function 3:8-2
8.2.2 Edit Function 3: 8-3
8.2.3 Forward Space Function 3: 8-3
8.2.4 Backspace Function 3: 8-3
8.2.5 Rewind Function 3:8-3
8.2.6 Write Function 3:8-3
8.2.7 Search Function 3: 8-4
8.3 Error Messages 3: 8-4
INDEX TO PART 3
LIST OF ILLUSTRATIONS
Figure Page
3-1 Inputs to the PTS-100 Loading Process, Assuming
the Card Reader as Input Device 3: 2-1
3-2 Sample Symbol Map Produced by the Absolute/
Relocating Lioader 3: 2-4
3-3 Format of the TITLE Directive 3: 4-2
3-4 Processing Flow of Specialized System Generation 3: 4-7
3-5 Alternate Flow Paths of the Memory Dump Program 3: 5-1
3-6 IOCS Monitor and PDD Program Object Code Input to
the Absolute/Relocating Loader: 3: 5-6
3-7 PDD Control Director Record Format, Assuming the
Card Reader as the System Input Device (SYSI) 3: 5-7
3-8 Functional Flow of Peripheral Device Dump/IOCS
Monitor Processing 3: 5-9

Figure

3-9

3-10
3-11
3-12
3-13

3-4

3-5
3-6

LIST OF ILLUSTRATIONS (cont)

ASCII and Hexadecimal PDD Output Listing
Disc Dump Flowchart

Disc Dump Listing in Hexadecimal Notation
Disc Dump Listing in ASCII Code

Cassette Utility Program Flowchart

LIST OF TABLES

Error Codes Output by the Absolute/Relocating Loader
Permissible Formats for Go To Command

Effect of Proceed Command After Alter, Dump or
Fill Commands

Effect of Proceed Command After Go To or Search
Commands

Interactive Debug Error Messages
Device Notations for Use as SYSGEN Directives

Interrupt Priority Levels in the PTS-100
Disc Volume Preparation Program Parameters

Disc Allocator Program Parameters

Page

w W w w w
1

3: 3-15

3: 3-17

PART 3. PTS-100 UTILITY PROGRAMS
Section 1. GENERAL INTRODUCTION

Optionally available to PTS-100 users are a two versions, which dumps main memory
number of utility programs to aid in the devel- contents onto peripheral devices.

opment, checkout, execution, and maintenance

of systems and applications processing programs. ® The Peripheral Device Dump program,

The following types of programs are available. which dumps serial binary data file records
onto a character printing device.

. Two loader programs, the first of which is . s
° The File Update program, which provides a
used to initialize the computer and to load the . . :
. convenient, easily used method of creating,
main loader program, which in turn must be e . . .
maintaining, and updating files of both ob- -
used to load all assembled programs to be

ject and source programs.
executed on the PTS-100.

° Three disc support programs to initialize
¢ The Interactive Debug program, which new discs for use with a PTS-100, allocate
allows the programer to interface disc file space, and dump disc files onto a
actively with it during object program printing device.
checkout and testing.

° The Cassette utility program, which pro-

The Syst Generat hich - :

¢ € System meneralor program, which pex vides a method of storing on, deleting, copy-
forms the initial processing to produce a
. ing, positioning, and printing the contents

specially-tailored PTS-100 IOCS monitor to .)
of cassette magnetic tape files.
meet the unique applications program '1/0

requirements of any given installation. Detailed, '""how to use' descriptions of these
utility programs are presented in this part of
° The Memory Dump program, available in the Programers Handbook.

3:1-1/2

Section 2.

There are two loader programs supplied
with the PTS-100:

The Piggyback Loader, the sole function of
which is to load the Absolute/Relocating
Loader.

The Absolute/Relocating Loader, which
must be used to load all other object pro-
grams, including systems programs, to be
executed on the PTS-100.

The inputs to the loading process are:
The binary code of the Piggyback Loader.

The assembled, relocatable code of the

Absolute/Relocating Loader program.

The assembled absolute or relocatable ob-
ject code of the programs or program seg-

ments to be loaded.

The inputs to the total loading process for
the PTS-100 are illustrated in figure 3-1. The
Piggyback Loader is bootstrapped into low mem-
ory by depressing the Initial Program Load (IPL)
button on the user console of the PTS-100. Once
loaded, the Piggyback Loader initializes its
tables and storage addresses and reads the ob-
ject code of the Absolute/Relocating Loader,
loads it into high memory, and then activates it,
The Absolute/Relocating Loader then reads and
loads the object program(s) from the input

device.

The processing, inputs, and outputs of the
two loaders are described in the remainder of

this section,

: 2-1

PTS-100 LOADER PROGRAMS

execution
starting
. address

program/
segment n /
/

/

[/ f
/ /]
program/ /
segment 4 Jl’

program/
segment 3

program/
segment 2

program/
segment |

ABSOLUTE/
RELOCATING
LOADER

PIGGYBACK
LOADER
(binary code)

Figure 3-1. Inputs to the PTS-100 Loading
Process, Assuming the Card Reader as Input Device

2.1 Piggyback Loader

The Piggyback Loader is used to load only
one program: the Absolute/Relocating Loader.
As mentioned earlier, the Piggyback Loader is
itself loaded via IPL bootstrap. Once loaded,

the Piggyback Loader performs the following:

e Initializes its own tables and storage

addresses,

° Determines the highest available memory
location in the computer into which it has

been loaded.

. Reads the object coding of the Absolute/
Relocating Loader from the input device
whose physical address has been assembled

into the Piggyback Loader. *

) Validates input records as they are read,
and loads the Absolute/Relocating Loader

into the highest memory area,

° Activates the Absolute/Relocating Loader

when it has been completely loaded,
2.1, 1 Piggyback Loader Input

The input to the Piggyback Loader is the ob-
ject code of the Absolute/Relocating Loader,
which has been assembled as a relocatable pro-
gram by the PTS-100 Assembler. The device
from which the Piggyback Loader is to read the
object code must be the same device whose
address™ has been assembled into the Piggyback
Loader. The programer must ensure that the
input device is operational and ready with the
input object code before the Piggyback Loader is

activated.
2,1.2 Piggyback Loader Output
The output of the Piggyback Loader is the

activated Absolute/Relocating Loader, residing

in high memory.

2.2 Absolute/Relocating Loader

The Absolute/Relocating Loader must be

used to load all assembled systems and applica-

tions programs to be executed on the PTS-100.
The programs to be loaded must have been
assembled by the PTS-100 Assembler, which
develops object coding in the format required
by the Absolute/Relocating Loader. The object
programs may be absolute or relocatable, and
may consist of one or more segments each. If
an execution address is specified in a given pro-
gram or program segment, it must appear at
the end of the last segment or program loaded,
since the Loader will immediately activate the
given program at the specified address as soon
as it is detected. That is, the Loader will turn
control over to the loaded program and start its
execution at the specified address. If no execu-
tion address is specified, the Loader will wait
for additional input to read or for a starting

address to be specified manually.

If additional programs or program segments
are to be loaded after the Loader has started
execution of a loaded program, the Loader must

be reinitialized in one of the following ways:

° The object program issues a call or trans-

fers control (via an EXREF # LOADR state-

ment) to the starting address of the Loader.

° The programer halts the current object

program execution via the customer engi-
neer's console or some other direct mem-
ory access device, enters the starting
address of the Loader (#LOADR, as
specified in the previous load map) as the
new program counter setting, and restarts

execution,

The Absolute/Relocating Loader performs
the following processing for a given object pro-

gram that is being loaded:

*
On systems with changeable Read Only Memories (ROMs) the input device address will be

determined by the first changeable word of the ROM.

1 2-2

. Loads all address constants and absolute

values.

. Computes the effective addresses of all

object program instructions.
. Relocates a relocatable program.

) Resolves addresses and prints a map of
symbols named in the External Definitior
(EXDEF) and External Reference (EXREF)
statements to establish linkages between

multiple programs or program segments,

° Sets blocks of memory locations to values

specified by object coding,

° Performs validity checks of input data
records and reports loading errors via an

output listing.

° Stores the execution starting address, if
specified, in the level zero interrupt packet,
and starts execution of the program via an

interrupt return instruction.
2.2.1 Absolute/Relocating Loader Input

The input to the Absolute/Relocating Loader
is one or more object program files produced by
the PTS-100 Assembler, described in Part 2,
Section 5, of this handbook. The object program

file(s) may be in one of the following forms:

punched cards
magnetic tape records

punched paper tape records

Hence, the input device must be an appro-
priate device to read the object code. The
address of the device must have been assembled
into the version of the Absolute/Relocating

Loader being used. *

The order of applications object programs
or program segments is program-determined.
Certain systems programs, if present in the in-
put device, must be loaded in prescribed orders.
For example, the Interactive Debug program
code should be loaded as the last program or
program segment if it is to be initialized prior
to starting execution of the programer's object
program. On the other hand, if the object pro-
gram(s) to be executed require input/output
services from the IOCS monitor, the object code
of the monitor should be loaded before any other
programs. That is, the monitor is an absolute
program, which is always loaded in low mem-
ory. Hence, if a relocatable program is loaded
first, and the monitor is subsequently loaded,
the monitor will be loaded over the first part of

the earlier program.
2.2.2 Absolute/Relocating Loader Output

There are three types of output produced by
the Absolute/Relocating Loader:

. The loaded executable program, residing

in main memory.

® A symbol map.

° A listing of diagnostic messages signaling

load errors detected during the attempt to

load the object program.

The output device address must have been

- assembled directly into the version of the

Absolute/Relocating Loader that is being used.

2.2.2.1 Symbol Map. The Absolute/Relo-
cating Loader produces a listing of its own
starting address, the program name(s), and all
externally defined and referenced symbols in the
program segment(s) it has loaded. A sample
Symbol Map listing is shown in figure 3-2. Each
symbol is listed with the memory address to

which it was assigned by the Loader. That is,

“On systems with changeable ROM's the input device address will be determined by the first

changeable word of the ROM.

:2-3

Program/ Program/

Symbol Symbol

Name Location Name Location
LOADR 3888 PROG NO1 l 1020
USERLC1 0000 UD USERLC2 1050
USERLC3 1055 USERLC4 1060
USERLC3 1055 DD

Figure 3-2. Sample Symbol Map Produced
by the Absolute/Relocating Loader

the listing indicates the location of program

elements after they have been relocated.

Any

‘undefined symbols will be shown by zero char-

acters in the location field, to which the charac-

ters UD (i. e., undefined) will be appended.

Duplicate symbols will be shown with the address

of the first definition of that symbol, and the

characters DD (i, e., duplicate definition) will

be appended to the location field.

If the symbol table created by the Loader is

too large, a symbol overflow condition occurs,

and the attempt to load the program is aborted.

In this case, the symbol map is produced un-
conditiénally to indicate the last symbol pfo-
The
symbol table overflow condition occurs because
the Loader starts the symbol table in high

cessed prior to the overflow condition.

memory, immediately preceding the first
location used by the Loader itself, and builds it
downwargl, toward the executable object'code,
If

the symbol table storage area reaches the pro-

which is built upward from lower memory,

gram code area before the program is com-
pletely loaded, the Loader cannot complete the
load process, which is aborted. If the program
code area reaches the symbol table storage area
during program load, a memory overflow error
condition is declared and the load is aborted in
the same way as for the symbol overflow

condition,

2.2,2,2 Error Diagnostic Listing. The

Absolute/Relocating Loader produces an error

coded listing of any load errors that occurred
during the attempt to load the object program,
The error codes, their causes, and the required

program actions are presented in table 3-1.

Table 3-1. Error Codes Output by the Absolute /Relocating Loader

Error

Code Cause Programer Action

CK A checksum (i.e., record read) Effect a re-read of the input
error has occurred during the record by repositioning input tape
Loader's input record reading. to beginning, or refeeding object

deck, and restarting load process

RD A read error has occurred during| from beginning.
the Card Version Loader's
attempt to read the last input
record.

SO A symbol table overflow has Reduce number of symbols in the
occurred and the Loader process | total program, reassemble, and
has been aborted. reload.

MO A memory overflow condition has| Reduce total program size, re-
occurred (i.e., the object pro- assemble, and reload.
gram is too large for available
memory) and the Loader process
is aborted.

sSQ A record sequence number is Correct sequence ordei of object
out of order (i.e., not in order code and restart the load process
produced by the Assembler). from the beginning.

Section 3.

The Interactive Debug Program for the
PTS-100 System allows the programer to active-
ly interface with it during object program check-
out to effect the following:

° Addition or subtraction of hexadecimal

constants.

Single or successive memory location

dumps.

Searches of memory locations for specific
full word values or masked searches on

values of less than 16-bits in length.

® Alterations of single memory location

content to a specific value.

° Successive memory location loading with

specific values,
) Breakpoint setting and clearing.

° Transfers of control to specific addresses

and resumption of program execution,

° Transfers of control to specific addresses
with the accumulator and/or one or both
index registers set to specific values and

resumption of program execution.

° Continuation of previously issued Debug
commands.
° Input command editing.

Thus the programer is provided hands-on
This

capability allows selective examination of mem-

control of the execution of his program,

ory, manipulation of memory words by
accessing and altering them, selective execu-
tion of any part or all of the program, prepara-
tion of active unit tests, minor program

patching, etc.

INTERACTIVE DEBUG PROGRAM

The Interactive Debug program requires the
ASR device for input and output. If some other
device is to be used for 1/O, the RDS- supplied
Interactive Debug program must be modified by
replacing its ASR driver routines with the

appropriate nonstandard driver routines.

The Debug program interrelates with the
programer and the executing object program as
to the functions it is to perform. Since it is a
slave type program it waits for input once it is
initialized. No timers are used and there are
no restrictions placed on the length of time be-
tween commands or between parameter entries
within commands. The types of functions per-
formed and program interface with the Debug
program are described in detail in the remain-
der of this section.

3.1 Inputs to the Interactive Debug Program

There are two basic inputs required to

initialize the Interactive Debug process:

® The object code of both the object program

and the Interactive Debug program, which
are entered into the computer via the Abso-
lute/Relocating Loader (see Section 2) from
whatever input device is required to read
the object code (i, e., card reader, cassette

tape device, etc.)

° The interactive debug input commands,

: 3-1

which are entered one at a time via the
ASR device keyboard.

When the Absolute/Relocating Loader com-
pletes loading the Interactive Debug program, it
activates Debug, which then performs its own
initialization and indicates that it is ready to
receive input commands by printing the word
DEBUG at the ASR device. That is, the only
programer action required to initialize Debug
De-

pending on the equipment resources available in

is to ensure that its object code is loaded.

a particular PTS-100 configuration, there are a
number of ways in which the Debug program may

be loaded, as follows:

On a standard PTS- 100, the most efficient
way to load the Debug program is to load
its object code immediately following the
object code of the program to be debugged.
That is, the Debug program is treated as
though it were the last segment of the pro-
gramer's object program. In this case,
the last statement of the Debug object code
would specify the address at which Debug
is to start executing., When the Debug pro-
gram has been loaded and initialized, it
wiil then notify the programer (via the De-
bug printout) that it is ready to receive in-

put commands from the ASR device.

If a customer engineer's console is avail-
able on the PTS-100 being used, the pro-
gramer may load and start execution of his
object program, then subsequently interrupt
execution and initialize the Absolute/Re-
locating Loader to load and activate the

Debug program.

If the console is not available on the PTS-
100 being used, the programer may pro-
gram a transfer of control to the Absolute/
Relocating Loader at the point at which De-
bug is to be loaded. That is, the programer
may write a source program branch state-
ment to cause a transfer of control to the
starting address of the Absolute/Relocating
Loader, thus setting up the mechanism to
cause the Loader to read the Debug object
code at the desired point in the object pro-

gram,

In any case, once Debug has indicated that
it is ready to receive commands, the programer
may enter the desired Debug input commands

described in subsection 3.1, 1.

:3-2

The outputs from Interactive Debug are in
the form of hexadecimal printouts indicating re-
sponses to the input commands, as described for
those commands that ellicit a Debug keyboard
printout, and in the form of error messages, de-
scribed in subsection 3.2 at the end of this

section.

3,1.1 Interactive Debug Input Commands

There are six kinds of input commands:

Keyboard editing commands, which provide
the programer with the facility to correct
typographical errors or edit input commands
before transmitting them to the Debug pro-

gram, as described in subsection 3.1, 1,1,

Memory value access commands, described

in subsection 3.1.1, 2.

The program execution control command,
Go To, which returns control to the execu-
ting program, as described in subsection
3.1.1.3,

The address or location computation state-
ments, Addition and Subtract, described in

subsection 3.1.1. 4,

The Proceed comrhand, described in sub-
section 3, 1, 1. 5, which causes Debug to
create a new command of the type just

previous to its occurrence.

The breakpoint control commands, Set
Breakpoint and Clear Breakpoint, described

in subsection 3.1.1, 6.

In all cases input commands are terminated,
and therefore transmitted to Debug, by a
carriage return on thc ASR device, or by the

entry of 72 consecutive input characters.

All Debug program input commands must be
specified in hexadecimal notation (i. e., 16-bit

unsigned quantities),

The generalized format of all input com-

mands is shown below:

PARAM! FUNCTION CODE PARAM2, PARAM3, PARAM4

where the command field significance is as
follows:
Field 1: PARAMI is the effective address to be
used by Debug except in the special
case of the Addition and Subtract
commands,

Field 2: FUNCTION CODE is a single character
indicating the operation Debug is to

perform.

Fields

3-5: PARAM2, PARAM3, and PARAM4 are
unique parameters requesting Debug

special actions.,

In all cases, input command elements are
The three

parameters to the right of the function code must

written without intervening spaces.

be separated by commas if they are all present;
or if the first or second parameter is omitted,
their omission must be indicated by an extra
comma, The formats of individual commands
are diagramed and illustrated in the specific
detailed descriptions of each command in the

remainder of this section.

3.1.1.1

are two editing commands provided:

There
the Cancel

Keyboard Editing Commands.

Record command, and the Logical Backspace

command.

3.1, 1.1, 1 The

Cancel Record command is used to terminate a

Cancel Record command (/).

partially completed input command. The com-
mand is specified by typing a slash (/) charac-
which is AF in ASCII code. When the slash

character is typed, Debug expects the first char-

ter,

acter of a new command to be entered. Exam-
ples of the cancel record command are shown

below,

Example 1:
Programer input command: 1000D5/1010D

The programer specified that the entire com-
mand to the left of the / character was to be re-
placed by the command following the cancel
record character, The printout below indicates
Debug's response to the command:

Debug response: 1010%*0000

Example 2:

Programer input command: 12/0000D

Debug response: 0000*0A00

The incorrect command 12 was cancelled and re-
placed by the command to dump location 0000,
which was effective, as shown by Debug's re-

sponse.

3,1,1,1,2 Logical Backspace command («).

The Logical Backspace command is used to re-
place the preceding character with the following
character. The backspace is specified by typing
the ~ character, which is the DF in ASCII code.
When the backspace character is typed, the De-
bug program replaces the character just preced-
ing it with the character immediately following
it. Contiguous preceding characters may be
replaced by typing contiguous backspace charac-
ters followed by the replacement characters.
There are two restrictions on the use of this

editing command:

1. Béckspacing is limited to the current field
being entered.
2. The backspace command cannot be used to

override the slash (/) character (i.e., the

cancel record command).

Examples of the use of the backspace command

are presented below.

Example 1:

Programer input command: 1000D23

Changes the count field 2 to 3. Hence the Debug
program dumps three locations, starting at

location 1000, as shown below:

Debug response: 1000%D900 0826 4283

Example 2:

Programer input command: 1000G-D

Asks that the G function code be changed to D,
Debug responds by dumping the value in location

1000, as shown below:

Debug response: 1000%D900 ‘

Example 3:

Programer input command:
1111+« ««0000D

Changes the entire ADDRESS field from 1's to

0's, and adds the function code D.

Debug response: 0000*0A00

1 3.4

Example 4:

Programer input command:
100%A~ B~ C~D-F+-G~AFFF

Specifies multiple corrections of the function
code A, with the last correction specifying a
function code of A and the value OFFF to which
location 1000 is to be altered, as shown in the
printout

Debug response: 1000%000B OFFF

3.1,1.2 Memory Value Access Commands.

These commands direct the Debug program to
perform the following operations on the values
stored in the memory locations used by the exe-

cuting object program;

) Dump the content of one or more locations.

° Alter the content of a location with a specific

value,

° Fill one or more locations with a specific

value.

® Search values in memory locations to find

a specific value.

Detailed descriptions of the statements to effect
these operations are presented in the following
subsections.
3.1.1.2.1

Dump command. The Dump com-

mand is used to specify that a single memory
word value is to be dumped on the output device,
or to specify that successive word values are to
be dumped, beginning at a specific location, as

shown in the format diagram below.

FORMAT

PARAMI FC PARAM2 SIGNIFICANCE

ADDRESS D A or Specifies that the content of the memory
word located at ADDRESS is to be
printed on the output device.

ADDRESS D (count >1) Specifies that the content of a block of

memory words is to be printed on the
output device, starting with the value
stored in ADDRESS,

If the single word Dump format is used
(i. e., if no count or a count of 1 is specified),
Debug prints the specified address and its con-
tent in hexadecimal notation on the output device,

as illustrated in the examples below.

Example 1:

Programer input command: 0100D

Debug response: 0100%C204
Example 2:
Programer input command: 1000Dl

Debug response: 1000%0281

The programer may specify that the single-word
Dump command is to be repeated, as described
under the Proceed command discussion in sub-

section 3.1.1.5.1,

If the multiword Dump format is used
(i. e. , if the count value is greater than 1) Debug
prints the specified hexadecimal address of the
first value, followed by a maximum of eight
hexadecimal values per line on the output device.
If more than eight values were specified, the
address and the content of the ninth location are
printed on the second line, followed by a maxi-
mum of seven additional memory word values.
If other lines are required to output the specified
number of values, the address of the first value
appears at the beginning of each line, followed
by successive values from the memory block
locations, Examples of multiword Dump com-

mands are presented below:

: 3-5

Example 1:
1000D5

Programer input command:
Debug response:
1000*C204 AAO02 0300 0806 0108

Example 2:
0100D20

Programer input command:
Debug response:
0100#C204 AA02 0300 0806 0108 1010 03F3 20A0
0110*E300 02E3 AA02 0300 07F4 0Ol11A 042E 03F8
0120%9300 0300 C300 02D4

The following three exeptions occur in the
Debug program's responses to multiword Dump

commands.

Exception 1

If the starting address specified as PARAMI1
in the Dump command does not end in zero,
the location of the next lowest MOD 8 word
is taken as the starting address of the mem-
ory block dump, in order to maintain column
integrity. For exarnple, assume the follow-
ing Dump command, which specifies that
four word values are to be dumped, begin-

ning at location 0106:

0106D4
The response of the Debug program is:
0100%C204 AA02 0300 0806 0108 1010 03F3

where the fourth value from the right (0806)
is from the programer-specified starting

address 0106. Hence, the first three values

were printed as a result of Debug's adjust-
ing the starting address back to the next
lowest MOD 8 word location,

Exception 2

If all the memory values to be printed on a
line are identical, only the address and
value of the starting location are printed,

For example, assume the Dump command
1000D6

which specifies that the values from six
locations are to be dumped, starting at
location 1000.

the same value, Debug's response will be:

If all six locations contain

1000%*0281

Exception 3

If all memory values to be printed on sev-
eral successive lines are identical, the out-
put lines are suppi‘essed until a line
containing an unequal value is detected by
Debug, at which point the location and value
are printed at the beginning of the line,
followed by subsequent values to complete

the line or the dump request. For example,

the command
1000D40
asks that the values stored in 40 consecu-

tive locations are to be dumped, starting at

location 1000.
1000%0281
10200281 0281 1002 1002 0281 0281 0281 0281
1030*AAAA AAAA 028102810281 028102810281

The Debug response below

indicates that the first 20 locations contained
the identical value 0281. Beginning at
locations 1020 and 1030 in the memory
block, unequal values were detected in the

output lines,

The Search

command directs the Debug program to search

3.1.1.2,2 Search command.

the values in memory locations, compare them
to a programer- specified value, and print the
addresses and values when equal conditions
The Search

command may specify a search on a single mem-

result from the comparisons.

ory location, a series-of successive locations, or
a series of successive locations whose stored
values are masked before the comparison with
the specified value. The permissible formats of

the Search command are diagrammed below:

FORMAT

PARAMI1 FC |PARAM2,PARAM3, PARAM4

SIGNIFICANCE

ADDRESS VALUE A
or

VALUE, 1

Specifies that the memory word located
at ADDRESS is to be compared to
VALUE and dumped on the output de-
vice if the values are equal.

ADDRESS VALUE, COUNT

Specifies that memory will be searched
starting at ADDRESS, and each word
will be compared to VALUE and dumped
if the comparison results are equal. The
search will terminate after the number
of words specified by COUNT.

ADDRESS VALUE, COUNT, MASK

Specifies that memory will be searched
starting at ADDRESS, and each word
logically ANDed with MASK, the result
compared to VALUE, and equal values
and their addresses dumped. The
search will terminate after the number
of words specified by COUNT.

: 3-6

If the single word Search format is used
(i. e., if no count or a count of 1 is specified),
Debug compares the programer- specified VALUE
with the content of the memory address, and if
the values are equal, prints the address and the
memory value in hexadecimal notation on the

output device.

The programer may specify that the single-
word search command is to be repeated as de-
scribed under the Proceed command discussion

in subsection 3.1.1,5.2.

When the multiword Search command is
issued, Debug searches each location fromthe
starting ADDRESS through the specified COUNT,
compares each stored value with VALUE, and
reports each match via a hexadecimal printout
of the memory address and value on the output

device.

When the MASK parameter is specified in
the multiword Search command, Debkug searches
each location from the starting address through
the specified COUNT, logically ANDs each
stored value with MASK, compares the result
with VALUE, and reports each match via a hexa-
decimal printout of the memory address and its

value on the output device.

Example 1:
Programer input command: 1000SF000, 8
This command specifies that Debug is to search
eight locations, beginning at location 1000, for
a stored value of FO00 and report a match if it
is found.

Debug response: 1008*F000

The response indicates that Debug found a stored
value matching VALUE at location 1008,

Example 2:

Programer input command: 1000SFFFF, 8

: 3.7

The command specifies that eight locations are
to be searched, beginning at location 1000, to
determine if the value FFFF is stored anywhere
within the memory block.

Debug response: l00E*FFFF

indicates that the value was stored at location
100E.

Example 3:

Programer input command: 1000S3, 8

Asks Debug to search eight locations, starting

with location 1000, for the value 3. A line feed
without an accompanying printout indicates that
the value 3 was not stored within the eight

locations specified for searching.

Example 4:

Programer input command:
1000s8000, 8,8000

Asks Debug to search eight memory locations,
starting at location 1000, mask their contents,
compare the results of the AND mask with 8000
to determine if the most significant bit (MSB) is
set. Assume the following response from the

Debug program:

1008%F000 100A*FF00 100C*FFF0 100E*FFFF

A match is found at locations 1008, 100A, 100C,
and 100E,

Example 5:

Programer input command: 1000S1, 8,000F
Asks Debug to search eight memory locations,
starting at location 1000, mask their stored
values with000F, and report any matched values
when comparedto l. The searchoperationistotest
for addresses whose contents have their L.SB and

notbits 12,13, 14 set, The Debug printout

1006%*0001

indicates that a matchwas found at location 1006,

3.1.1,2.3 Alter command. The Alter com-

" mand directs the Debug program to alter, or
replace, the memory word value in a specific
location with the value specified in the command,

the format of which is shown below,

FORMAT

PARAM 1 | FC | PARAM 2 SIGNIFICANCE

ADDRESS | A VALUE |Specifies that the
content of the mem-
ory location indica-
ted by ADDRESS is
to be replaced by
the VALUE in
parameter,, of the
command.

When the command is processed by the
Debug program, the specified VALUE replaces
the original content of the ADDRESSed location,
The ADDRESS, the original value stored there,
and the new value are printed in hexadecimal

notation on the output device.

The programer may specify that the Alter
command is to be repeated for the next consecu-
tive location(s), as described under the Proceed
command discussion in subsection 3.1,1,5.1,
To alter or fill blocks of memory locations with
new values, the programer should use the Fill

command described below,

3.1.1,2.4 Fill command. The Fill command
directs the Debug program to fill one or more
memory locations with a specific value, as

shown in the format diagram below:

If the single word Fill command format is
used (i. e., if no count or a count of 1 is speci-
fied) the Debug program fills the ADDRESSed
location with the specified VALUE,

Under Interactive Debug, the programer
may specify that the single word Fill command
is to be repeated for the next consecutive loca-
tion{s), as described under the Proceed com-
mand discussion in subsection 3.1,1.5.1., If the
multiword Fill format is used, the Debug pro-
gram fills each location from the starting
ADDRESS through the COUNT with the specified
VALUE, ‘

Neither format of the Fill command causes
printed output at the interactive device. If the
programer wishes to verify that the Fill opera-
tion is successful, he should dump the pertinent
memory locations before and after issuing the

Fill command.

3,1.1,3 Go To Command, This command

directs the Debug program to transfer control
to a specific address in the object program,
and start object program execution at that
address., The permissible formats of

the Go To command are presented in

Table 3-2.

As shown in table 3-2, the Go To command
may optionally specify that new values are to be
loaded into any one, two or all three of the
following registers: accumulator, index regis-
ter 1, and index register 2, If values are to be
loaded into the respective registers, they must
be specified in the appropriate order: AC value,
X1 value, and X2 value, If either the AC value

FORMAT

PARAM1 | FC | PARAM2, PARAM3

SIGNIFICANCE

ADDRESS | F | VALUE A or
VALUE, 1

Specifies that the ADDRESSed location
is to be filled with VALUE

ADDRESS | F VALUE,COUNT

Specifies that successive memory lo-
cations, specified by COUNT, are to
be filled with VALUE. ADDRESS
specifies the first, or starting, lo-
cation of the memory block.

Table 3-2. Permissible Formats for Go To Command

FORMAT
PARAM1 |FC |PARAM2,PARAM3,PARAM4 SIGNIFICANCE

ADDRESS | G Specifies that Debug is to
transfer control to ADDRESS
in the object program and
start its execution.

ADDRESS | G ACVAL,X1VAL, X2VAL Directs Debug to load speci-
fied VALS in the AC, X1, and
X2 and transfer control to
and start execution of the
object program at ADDRESS.

ACVAL Directs Debug to load speci-
fied VAL in AC, leave X1
and X2 unmodified, and start

object program execution at
ADDRESS.

ACVAL,X1VAL Directs Debug to load speci-
fied VALs in AC & X1, leave
X2 unmodified, and start
execution at ADDRESS.

ACVAL, ,X2VAL Directs Debug to load speci-
fied VALs in AC & X2, leave
X1 unmodified, and start
execution at ADDRESS.

, X1VAL,X2VAL Directs Debug to load speci-
fied VALs in X1 & X2, leave
AC unmodified, and start
execution at ADDRESS.

, X1IVAL Directs Debug to load speci-
fied VAL in X1, leave AC and
X2 unmodified, and start
execution at ADDRESS.

, s X2VAL Directs Debug to load X2 with
specified VAL, leave AC &
X1 unmodified, and start
execution at ADDRESS,

or the X1 value or both values are unspecified, Example 1:
their respective omission must be indicated by a
comma, That is, Debug assumes that the first R
Programer input command: 1000Gl,,1
value following the G function code is to be loaded

into the accumulator, the second in index regis-

ter 1, and the third in index register 2, Two or Debug reponse: loads AC with the value 1,
more values must be separated by commas. leaves X1 unmodified (specified by the second
Trailing commas are not required for unspecified comma), loads X2 with the value 1, transfers
values., Examples of Go To commands are pre- control to location 1000 in the object program,
sented below. and starts its execution.

Example 2:

Programer input command: 1010G, 1,2

Debug response: loads X1 with the value 1,
X2 with the value 2, leaves AC unmodified, and
starts execution of the object program at loca-
tion 1010,

Example 3:

Programer input command: 1000G,, 2

Debug response: loads X2 with the value 2,
leaves both AC and X1 unmodified, and starts

object program execution at location 1000,

Example 4:

Programer input command: 1000G, 3

Debug response: loads X1 with the value 3,
leaves AC and X2 unmodified, and starts object

program exeuction at location 1000,

Example 5:

Programer input command: 1000G6

Debug response: loads AC with the value 6,
leaves X1 and X2 unmodified, and starts pro-

gram execution at location 1000.

Example 6:

Programer input command: 1000G

Debug response: transfers control and
starts execution of the object program with AC,

X1, and X2 containing their original values.

3.1.1.,4 Address Computation Commands. To

aid in on-line testing and checkout of object pro-
grams, the capability to add or subtract two
hexadecimal constants and output the result has
been provided via the Addition and Subtract
commands., These statements assist the pro-
gramer in computing absolute locations in re-

locatable programs, or in computing the absolute

location of a data word based on a program
counter relative instruction referencing that data
word. The following pages present detailed de-
scriptions of the use of the Addition and Subtract

commands,

3.1.1,4,1 Addition command. The Addition
command specifies that the Interactive Debug

program is to add one hexadecimal constant to
another, as shown in the format diagram below.
The constants may be from one to four digits in
length. Leading zeros need not be written in

constants less than four digits long.

FORMAT
PARAMI1 | FC | PARAM 2 SIGNIFICANCE
CON1 + CON2 Directs Debug to add
the left constant to
the right constant.
NOTE

The Addition code is the plus
(+) sign, which is the shifted
semicolon on the ASR device,

When the Addition command is issued, the
Debug program adds the first constant (CONL) to
the second constant (CON2) and reports the re-
sults preceded by an equal (=) sign, as illustrated

below.
Example 1:
Programer input command: 1000+1

Debug response: =1001

Example 2:

Programer input command: 1000+1234
Debug response: =2234

Example 3:

Programer input command: 1+1

Debug response: =0002

3: 3-10

Example 4:

Programer input command: 8000+1
Debug response: =8001

Example 5:

Programer input command: FFFF+1
Debug response: =0000

Example 6:

Programer input command: 7FFF+l1
Debug response: =8000

Example 7:

Programer input command: 100+1000
Debug response: =1100

Example 8:

Programer input command: ABCD+F
Debug response: =ABDC

Example 9:

Programer input command: FFFF+FFFF

Debug response: =FFFE

The Proceed command (subsection
3,1.1.5,3) may be used following an Addition
command to supply different CON2's to be added
to the original CONI1, and thus perform other

Addition computations.

3.1.1.4.2 Subtract command. The Subtract

command specifies that the Interactive Debug
program is to subtract one hexadecimal con-

stant from another, as shown in the format

3: 3-11

diagram below. The constants may be from one
to four digits in length, Leading zeros need not

be written in constants less than four digits long.

FORMAT

PARAMI1 | FC | PARAM2 SIGNIFICANCE

CON1 - CON2 Directs Debug to
subtract the right
constant from the

left constant.

When the Subtract command is issued, the
Debug program subtracts the second constant
(CON2) from the first constant (CON1) and re-
ports the results, preceded by an equal (=) sign,

as illustrated below.
Example 1:
Programer input command: 0-1
Debug response: =FFFF
Example 2:
Programer input command: 1-1
Debug response: =0000
Example 3:
Programer input command: 2-1
Debug response: =0001

Example 4:

Programer input command: FFFF-1

Debug response: =FFFE

Example 5:

Programer input command: FFFF-FFF

Debug response: =F000

Example 6:

Programer input command: 8000-1

Debug response: =7TFFF (overflow condition)

Example 7:

Programer input command: FFFF-7FFF

Debug response: =8000

Example 8:

Programer input command: 0-CA

Debug response: =FF36

Example 9:
Programer input command: ABCD-AAAA

Debug response: =0123

The Proceed command, described below,
may be used following a Subtract command to
supply different CON2's to be subtracted from
the original CONI1 and thus perform other Sub-

tract computations.

3.1,1.5 Proceed Command. The Proceed

command specifies that the Debug program is to
refer to the input command just preceding it

(i. e. , the most recent command specifying a
command code other than P) and create a new
command of the same type with different param-
eters to the right of the function code. That is,
the previous effective address and function code
are used with the new parameters. The format
of the Proceed command depends, of course, on
the particular Debug input command it immedi-
ately follows, as shown in the following sub-
sections. The Proceed command is not effective
after a Set Breakpoint or Clear Breakpoint com-

mand.

3.1,1.5.1 Proceed command use after Alter,

Dump, and Fill commands. After execution of a

single word Alter, Dump, or Fill command, the
Debug program increments the ADDRESS speci-
fied in the command by 2 and saves it. If the
next sequential command is a Proceed (i. e., be-
gins with function code P), the Debug program
performs an Alter, Dump, or Fill operation, as
specified by the new parameter(s) following the
P function code, as shown in table 3-3 and
illustrated in the examples at the end of this

subsection.

Example 1:

Assume that the most recent Debug input

command is an Alter command: 1000AF0F0
The Proceed command below
PFFFF

tells Debug to fill location 1002 (i, e., the saved
Alter ADDRESS+2) with the value FFFF,

Example 2:

Assume that a second Proceed command
follows the one in Example 1, which specifies

the following: PAAAA

The command specifies that Debug is to fill the
location following 100242 (i. e., 1004) with the
value AAAA,

Example 3:

Assume that the most recent Debug input

command is the Dump command
0100D

after which the Proceed command
P

causes location 0102 (Dump ADDRESS+2) to be
dumped, as follows: 0102%*AA02

3: 3-12

Table 3-3. Effect of Proceed Command After Alter, Dump or Fill' Commands

PROCEED COMMAND

PREVIOUS FORMAT
COMMAND | FC | PARAMI, PARAM? SIGNIFICANGE

ALTER P VALUE!1 First Proceed command causes
VALUE]1 to be stored in ADDRESS+2,
which was saved after preceding
ALTER command execution, and a
printout of ADDRESS+2, the original
value and the new value to be printed
out.

P VALUE2 Second Proceed command causes
ADDRESS+2 to be incremented by 2,
VALUE?2 to be stored in ADDRESS+4,
and a printout of ADDRESS+4 and its
original and new value.

DUMP P Aorl The first Proceed following DUMP
causes a dump of the stored value in
ADDRESS+2, which was s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>