
~AYTHEOra~[R3(Q)~[R3~IT¥iJ~[R3~ G=O~~[Q)[g3(Q)(Q)~

~Li~=4J@(Q)

l
RAYTHEON DATA SYSTEMS

I
• •
• •

. PROGRAMMABLE TERMINAL SYSTEM

PTS-100

PROGRAMERSHANDBOOK

Revision 1

June 1973

PREPARED BY

RAYTHEON DATA SYSTEMS
1415 BOSTON-PROVIDENCE TURNPIKE
NORWOOD, MASSACHUSETTS 02062

PROPRIETARY NOTICE: This document is the property of Raytheon Company,
with the information herein reserved as proprietary to Raytheon Company, and
is not to be pubHshed, reproduced, copied, disclosed or used without the ex­
press written consent of a duly authorized representative of Raytheon Company.

44-7644

PREFACE

This publication was prepared as a reference handbook for

the programing personnel of PTS-100 users. It presents the

information necessary to write programs to be executed on the

PTS-100 and to use the software support systems provided with

the PTS- l 00. The handbook is organized in distinct parts,

as follows:

PART 1: This part of the handbook presents a programer

overview of the PTS- 100 operating environment

and software support available to users of the

PTS-100.

PART 2: This part of the handbook presents detailed

descriptions of the Assembler language and pro­

graming features available to PTS-100 programers.

PART 3: Presented in this part of the handbook are "how to

use" descriptions of the utility programs supplied

with the PTS- l 00.

PART 4: This portion of the handbook describes the macro

library files available to users.

The Table of Contents on the following page indicates the

general coverage of information in this handbook. Each of the

four parts of the handbook includes a detailed table of contents.

iii

TABLE OF CONTENTS

APPENDIX A PTS-100 CHARACTER SET

v

PART 1

PTS-100 PROGRAMMER OVERVIEW

1. 1

1. 2

2. 1

2.2

2.3

3. 1

3.2

PART 1

PTS-100 PROGRAMER OVERVIEW

TABLE OF CONTENTS

SECTION 1. GENERAL INTRODUCTION TO THE PTS-100

Central Processor Unit

1. 1. 1

1. 1. 2

1. 1. 3

Program Counter (PC)

Accumulator (AC)

Index Registers l and 2 (Xl and X2)

Control Panel

SECTION 2. PTS-100 OPERATING SYSTEM

I/ 0 Control Nucleus

Physical I/0 Routines

IOCS Systems Records

2. 3. 1 I/O Request Records

2. 3. 2 Physical Control Records

2. 3. 3

2.3.4

2. 3. 5

2. 3. 2. 1 I/O Control Table

2. 3. 2. 2 Interrupt Packets

Special Function Records

Master Service Call Vector Table

Logging Tables

SECTION 3. PTS-100 SOFTWARE SYSTEMS

Assembler Program

Utility Programs

3. 2. 1 PTS- 100 Loader Programs

3. 2 .• 2 Interactive Debug Program

3.2.3

3.2.4

3.2.5

3.2.6

3.2.7

3.2.8

System Generator Program

Memory Dump Program

Peripheral Device Dump Program

File Update Program

Disc Support Programs

3.2.7.1

3.2.7.2

3.2.7.3

Disc Volume Preparation

Disc Allocator

Disc Dump

Cassette Utility Program

1: iii

l: 1- 1

1: 1-2

1: 1- 3

1: 1- 3

1: 1- 3

1: 2- 1

1: 2- 3

1: 2- 3

1: 2-4

1: .2-6

1: 2-6

1: 2-8

1: 2-8

1: 2-8

1: 2-9

1: 3-1

1: 3-1

1: 3- 1

1: 3-2

1: 3-2

1: 3-3

1: 3-3

1: 3-3

1: 3-3

l: 3-3

1: 3-3

l: 3-4

1: 3-4

Figure

1-1

1-Z

1- 3

1-4

1-5

1-6

Table

1-1

LIST OF ILLUSTRATIONS

Interface Relationship of Executing Programs, IOCS
Monitor, and Physical 1/0 Devices in the Equipment
Configuration of the PTS- 100

Relationship of I/ 0 Request Records

Format and Usage of FIOB and IOCQ Entry by IOCS

Format of the PIOT Generated by IOCS

Format of the Input/ Output Control Table (IOCT)

Format of PCB Entries in the !OCT

LIST OF TABLES

Logical-to-Physical Pointer Entries in the !OCT

1: iv

1: Z-Z

· 1: Z-4

1: Z-5

1: Z-5

1: Z-6

1: Z-8

1: Z-7

PART 1, PTS-100 PROGRAMER OVERVIEW

Section 1. GENERAL INTRODUCTION TO THE PTS-100

The Programable Terminal System 100

(PTS-100) contains a general purpose computer

consisting of a central processor unit (CPU), a

modular semiconductor (MOS) main memory ex­

pandable from 8192 to 65536 bytes, a control

panel, and both low speed and high speed device

controllers. A customer engineer's console is

also optionally available as an expanded console

for debugging programs.

The low speed controllers accommodate

peripheral devices that operate at data transfer

rates at or below 9600 bits per second, including CRT

display devices, card readers, serial printers,

teletype devices, cassette tape drives, etc. The

high speed controllers provide interface for pe­

ripheral devices that operate at data transfer

rates in excess of 9600 bits per second such as

disc devices, magnetic· tape transports, and host

computer channel interface devices such as the

IBM 360 / 370 multiplexer I selector channel

interface.

The memory size and peripheral equipment

configuration of a given PTS-100 installation are

flexible so that individual users can select those

components especially suited to their application

processing needs. Certain device controllers

and the peripheral devices that may be attached

to them are offered to users as "standard"

equipment. That is, standard hardware equip­

ment is supported by the PTS-100 operating

system--the Input/Output Control System (IOCS)

monitor--which interfaces the CPU, I/O devices,

and the programs to be executed on the PTS-100.

The IOCS monitor, described in Section 2 follow­

ing, is specially tailored for each standard PTS-

100 equipment configuration via the RDS-supplied

System Gene_rator program, dePcribed in Part 3

of this handbook, and the Assembler program,

described in Part 2. If nonstandard devices are

l: l -1

to be attached to the PTS-100, the user must

modify the IOCS monitor to accommodate the

devices, as described in appropriate areas with­

in this handbook.

Since the total equipment configuration of a

PTS-100 installation is user- selected, no

attempt has been made in this handbook to de­

scribe the operational characteristics of specific

devices. For this information, the reader

should consult the PTS-100 Reference Manual.

Certain I/O devices are required by various

software programs offered with the PTS-100,

as noted in the detailed descriptions of these

support systems throughout this handbook.

Regardless of the memory size and types

of l/O devices attached to a given PTS-100, the

CPU and the control console are standard for all

installations. For convenience, information re­

lating to programing the system and programer

usage of the CPU and control console is

presented in summary form on subsequent pages

of this section, For detailed descriptions of the

hardware characteristics of these components

of the PTS-100, s.ee the PTS-100 Reference

Manual.

1. 1 Central Processor Unit

The central processor unit (CPU) executes

programs stored in main memory and controls

data transfers between main memory and l/O

devices. The CPU communicates with executing

programs via registers, four of which are pro­

gram addressable. CPU communication with

main memory is via the 16-bit processor

memory bus (PMB). Communication between

the CPU and l/O devices takes place over the

input output bus (!OB).

The CPU utilizes a 16-bit word, and is

capable of executing one word (short) or two word

(long) instructions. Each word is composed of

two 8-bit bytes, or characters. Memory

addressing is by word (16 bits) or byte (8 bits),

The following methods of addressing may be used

with or without single level indirect mode:

•

•

•

Absolute addressing over the maximum

memory capacity of 65, 536 bytes.

Dynamic page addressing of ±128 words

relative to the program counter register in

short instructions and :1:32768 bytes in long

instructions.

Indexed addressing via index register 1 or

index register 2 of +128 words in short

instructions or :1:32768 bytes in long

instructions.

A 16-bit byte displacement value is used to

compute the effective address of long instruc­

tions, and a 7-bit word displacement value is

used to compute the effective addresses of

short instructions.

CPU instructions a.re termed "executable. 11

That is, they are assembly language statements

that the Assembler translates to executable

machine language format. Executable instruc­

tions are provided to accomplish the following:

Arithmetic operations

Branches in program execution

Loading CPU registers with. data values

stored in memory locations

Storing contents of CPU registers in

memory locations

Comparative tests of data values

Logical testing of data values

Interrupt masking and level changes

I/O operations

For a detailed description of executable instruc­

tions and other Assembler language statements,

see Part 2 of this handbook •

The CPU communicates with executing pro­

grams via registers within itself. Four of the

registers are program addressable. They are

the program counter, the accumulator, index

register 1, and index register 2. These

registers are described below· •

1. 1.1 Program Counter (PC)

The program counter is a 16-bit register

that supplies th~ addresses of instructions to be

fetched from main memory, and hence directs

the program execution sequence. Normally, as

an instruction word is fetched the PC contents

are incremented by 2 to advance the byte-

oriented address to that of the next program

instruction word, or the second word of a double

word instruction. This sequencing is disrupted

only by the occurrence of a branch instruction or

the CPU response to a priority interrupt. In the

first case, if the branch instruction's conditions

are satisfied, its effective address replaces the

current PC content and initiates a sequential

change in program processing. In the case of a

priority interrupt, the CPU hardware automatical­

ly saves the interrupted program's current PC

content, and enters the effective address of the

appropriate roes monitor interrupt servicing

routine in the PC. The interrupt servicing

routine effects an interrupt return via its last

executable instruction, which restores the saved

content of the PC, thus restarting the interrupted

program at the point of interrupt.

1: 1-2

1. 1. 2 Accumulator (AC)

The 16-bit accumulator (AC) register is the

principal data handling register for the CPU and

is involved in the execution of most instructions.

The accumulator's most significant bit (MSB),

bit 0, is employed as the sign bit (value = 0 for

positive, and = l for negative) for arithmetic

operations, leaving 15 bits for fixed-point data

representation of the following range of values:

15 15
-2 s:n s: 2 - 1

or, in decimal equivalents:

-32,768 s: n s; 32,767

1. 1. 3 Index Registers 1 and 2 (Xl and X2)

Index registers 1 and 2 are both 16-bit

registers used, primarily, to provide address

components for the computation of effective

addresses. They may also be used as temporary

storage registers for data and address references.

1, 2 Control Panel

The control panel of the PTS-100 computer

provides for primary power and initialization of

computer processing. The power is controlled

by the POWER ON/OFF switch on the console.

Initialization of processing is effected by

depressing the IPL (Initial Program Load) push­

button on the console. Whenever the IPL button

is depressed, a hardwired IPL bootstraP' routine

is activated in the Read Only Memory (ROM).

The IPL bootstrap routine then performs the

following:

•

•

Clears all main memory locations to zero

values.

Transfers a section of itself into memory,

beginning at location zero.

• Activates the transferred section, which

then transfers four words (i.e., 64 bits)

from manually set switches to word locations

3 through 6 of main memory, and:

Determines the address of the loading

device from the first word of switch data

Issues a read comm.and to the loading

device to cause the six- byte header

record of the program to be loaded into

main memory. The header record con­

tains the following:

Load address of the program to
be loaded

Byte count (number of characters)
to be read

Execution (starting) address of the
program to be loaded

Reads one record (the program to be

loaded) into consecutive memory loca­

tions, starting at the load address, until

the number of characters specified by

the byte count have been loaded.

Transfers control to the loaded program

and starts its execution at the starting

address specified in the header record.

The Initial Program Load bootstrap is

required to load a one record binary program

into PTS-100 memory. Under typical operating

conditions, the one record binary program is the

Piggyback Loader, which in turn loads the

Absolute/Relocating Loader. The Absolute/

Relocating Loader must be used to load object

programs produced by the PTS-100 Assembler.

Before programs other than the Piggyback

Loader can be loaded via the IPL button, they

must have been assembled by the PTS-100

Assembler, loaded by the Absolute/Relocating

Loader, and then dumped from main memory to

a cassette tape or punched paper tape device.

The procedures for loading and dumping pro­

grams are described in Part 3 of this handbook.

1: 1-3/4

Section Z. PTS-100 OPERATING SYSTEM

The operating system of the PTS-100 is the

Input/Output Control System (IOCS) which moni­

tors the servicing of interrupts from the multi­

level interrupt system, described in detail in

Part 2 of this handbook. That is, the IOCS moni­

tor optimizes r/ 0 re sources in the PTS- 1 00 real

time interrupt environment by interfacing execut­

ing programs, the CPU, and I/O devices. For

any given PTS-100, a specially tailored roes is

created by the System Generator and Assembler

programs, as described elsewhere in this

publication.

The IOCS monitor is composed of two major

components: the I/ 0 Control Nucleus and the

Physical I/O Routines. The Nucleus interfaces

between executing systems and applications pro­

grams and the Physical 1/0 Routines, which issue

I/ 0 commands 1:•) peripheral devices attached to

the PTS- 100 and receive and initiate processing

of r/O interrupts from devices in the equipment

configuration. The interface relationship of the

executing object programs, the roes monitor,

and the peripheral devices attached to the PTS-

1 00 is illustrated in figure 1- 1. The structural

and operating characteristics of the Nucleus and

the Physical I/O Routines are described in the

following subsections.

2. 1 r/O Control Nucleus

The r/ 0 Control Nucleus contains three

groups of routines:

• Level Service Routines, which perform the

following functions:

Service interrupts from r/ 0 devices and

object program calls

Service "unknown" interrupts

Restore interrupt levels after interrupts

from other levels have been serviced.

•

•

Monitor Service Call Routines, which per­

form the processing required to open, close,

and initialize devices, to perform l/O opera­

tions, and to exit from the system when

program processing is completed

An optional Monitor Log Service Routine,

which produces 32- character messages on

the System Log device.

Within a given roes monitor, one set of

Level Service Routines (LSRs) is generated for

each of the interrupt levels 1 - 8. That is, these

routines service interrupts that occur on the

external (device) interrupt levels 1 - 8, to which

devices have been previously assigned. Each set

of LSRs contains the following functional routines:

A level service entry and save routine

A linkage to all Device Service Routines

within the Physical r/O Routines

An "unknown" interrupt handling routine

A level restore and exit routine.

For each of the 11 interrupt levels, an

interrupt packet, described in Part 2 of this hand-·

book, exists in the roes monitor. For interrupt

levels 1 - 8, the starting address of the as so -

ciated LSR is stored in the interrupt packet asso­

ciated with the interrupt level. Thus, when an

interrupt occurs, control is turned over to the

LSR associated with the level at which the inter­

rupt occurred. The LSR then transfers control

to one of the Device Service Routines (DSRs)

associated with one or more devices assigned to

the corresponding interrupt level. The DSR that

receives control checks to see if its associated

physical r/ 0 .device has an interrupt pending. If

so, the DSR calls the appropriate device driver

routine to service the interrupt, after which con­

trol returns to the LSR, which then returns

1: 2-1

PHYSICAL 1/0 DEVICES

EXECUTING OBJECT PROGRAMS ,------IO~M~T-;- ----,

I I
APPLICATIONS
PROGRAMS

SYSTEMS
PROGRAMS

1/0 CONTROL NUCLEUS
I
I
I
I
I
I

CARD
READER

PHYSICAL 1/0 ROUTINES

I :
PRINTER
DEVICE

L _______ J

Figure 1-1. Interface Relationship of Executing Programs, IOCS Monitor, and Physical I/O Devices
in the Equipment Configuration of the PTS- I 00

control to the previous interrupt level. lf no

interrupt was pending, the next DSR, if any, on

the interrupt level is polled. This polling pro­

cedure continues until the interrupting device is

located. lf no device on this level issued an

interrupt, the unknown interrupt error routine

for this level is entered to log an error message

on the System Log device. The level service

restore routine then restores the registers of the

interrupted program, and returns control to the

interrupt level from which the LSR received

control.

The Monitor Service Call (MSC) routines are

entered by the execution of an MSC (i, e., trap)

instruction within the executing program, MSC

routines operate at interrupt priority level 9,

1: 2-2

The routines that may be called by the execu­

ting program to perform 1/0 services are the

following:

•

•

•

OPEN routine, which opens a logical unit

(i.e., device) by initializing the device and

its related software controls so that 1/0

operations can: subsequently be performed on

the·device

IO ACTion routine, which responds to and

queues requests for input/ output operations

on specific devices

CLOSE routine, which immediately closes a

specific logical unit (i. e. , device) at the end

of a processing job or to facilitate an error

recovery

•

•

IN!Tialization routine, which resets all I/ 0

devices on the system

EXIT routine, which is called when an

executing program exits from the system.

This routine issues a message that the pro­

gram has exited and waits for manual inter­

vention to specify restart of processing.

The procedures for calling these routines from

within the program are described in detail in

Part Z of this handbook.

The Log Service Routine prints monitor

messages on the System Log device, if the device

was assigned at system generation time. These

messages can be used for error logging, operator

notes, or any other short (i.e., 3Z-character)

messages. Monitor message logging does not

interfere with executing program output of

messages to the System Log device. In fact, no

special provisions or precautions need be made

within the executing object program.

z. Z Physical 1/0 Routines

The Physical I/ 0 Routines of the IOCS moni­

tor handle the device- specific hardware/ software

interface. They service I/ 0 device interrupts,

control the transfer of data to and from the phys­

ical I/ 0 devices, and initiate new 1/ 0 action_s

when appropriate. They also detect hardware

errors and report them to executing object pro­

grams and in some cases, perform corrective

actions to clear error conditions. The Physical

1/0 Routines include Device Driver Routines and

Device Service Routines.

'I;here is a Device Driver Routine and a

Device Service Routine for each type of device in

the standard PTS- l 00 equipment configuration.

The Device Driver is called when an 1/0 request

has been queued in the logical Input/ Output Con­

trol Queue (IOCQ) table and the channel is in -

1: 2-3

active. The Driver uses the information in the

appropriate entry of the IOCQ to set up the

Physical I/ 0 Control table and initiate the re­

quested 1/0 action. It calls the Driver Common

routine to perform any required device­

independent processing.

At system generation time, a Device Service

routine is generated for each device assigned to

a given external interrupt level. These routines

identify the cause of an interrupt, update control

and status fields in the IOCQ entry, take any re­

quired actions, and then initiate action on the

next 1/0 request that is queued as an entry in the

IOCQ table (see subsection Z. 3. 1).

The level service routine for a given external

interrupt level activates the appropriate Device

Service routine each time an interrupt is queued

for its associated device. When several devices

are assigned to one interrupt level, there is a

Device Service routine for each assigned device.

The relative priority of several DSRs on the same

interr.upt level is specified at system generation

time. The Device Service routines run with

interrupts enabled, so that an interrupt of a

higher level can always interrupt processing of a

lower priority interrupt without delay.

Z. 3 IOCS Systems Records

There are five kinds of systems records used

by the roes monitor:

• 1/0 request records, which include:

Programer defined File Input/ Output

Block (FIOB.), which has been assembled

into the executing program

Program defined Input/ Output Control

Queue (IOCQ) table entry, used by

!OCS to queue I/ 0 requests

IOCS generated Physical Input/ Output

Table (PIOT)

•

•

•

•

Two physical control records:

Input/Output Control Table (!OCT)

Interrupt Packets

Two optional special function records, the

Search and Translate 'l'ables, defined by the

programer within the program to be assem­

bled and executed

Monitor Service Call Vector Table

Logging tables

The FIOB contains the programer defined

information on the I/ 0 request. That is, the

programer defines the FIOB in the source pro­

gram. At program execution time, the FIOB

information is passed to roes when the executing

program issues an 10 ACTion service request._

The IOCS extracts the information from the FIOB

and enters it into the next entry of the IOCQ

table. W:hen the time comes for the hardware to

perform the requested 1/0 operation, roes
moves th~ information from the IOCQ entry into

the PIOT, where the Physical I/ 0 routines and

hardware devices can access and use it.

The content and usage of each of these records

are described in the following subsections.

While the main data flow is from the execut­

ing program to roes and then to the hardware,

there is some status information that the hard­

ware transmits to roes for the executing program.

For example, when the requested I/ 0 operation 2. 3. 1 1/0 Request Records
is completed, the hardware reports the logical

There are three kinds of 1/0 request

records: the FIOB (File 1/0 Block), the IOCQ

(Input/Output Control Queue) table entry, and

and physical status to roes, which makes it

available to the program via the IOCQ entry. The

logical status informs the executing program that

the requested service has been completed, and the PIOT (Physical 1/0 Table). The relatiOnship

of the required I/ 0 request records for one

logical unit is shown in figure 1-2.

the physical status indicates the type of comple­

tion that occurred.

Executing Program I OCS Nucleus IOCS Physical 1/0 Routines

IOCQ Table

i link address ~\ l

FIOB
1--------H ~ PIOT

i-._ -- fOc;:Q Entry l I""'" - ~

link address ~ i--------
'· IOCQ Entry 2

link address ~ 1-------- I"

IOCQ Entry 3

link address ' 1-------1-
IOCQ Entry 4 v link address ~

1---- - - --
IOCQ Entry5

Figure 1-2. Relationship of 1/0 Request Records

1: 2-4

For each 10 ACTion service to be requested

from IOCS, the executing program must contain

a 9-word FIOB describing the parameters of the

request. For each 1/0 device channel to be used

by the executing program, the assembly language

programer must set up a 10-word IOCQ table

entry to be placed in the IOCQ table when the I/ 0

request is queued by IOCS. The first word of the

IOCQ entry (Word O) contains the address ofthe

next IOCQ entry, which is specified by the pro­

gram. The second word (Word 1) is used by the

hardware to report the status of the request to

the program. The remaining words are filled by

IOCS from Words 1 through 8 of the FIOB when

the request is queued. The format and usage of

the FIOB and IOCQ entry are illustrated in figure

1- 3. See Part Z of this handbook for detailed

descriptions of the content of the FIOB and IOCQ

entry.

When the executing program issues an

IOACT request, the FIOB information is accessed

by the IOCS monitor, which extracts the 1/0 re­

quest information in words 1-8 and enters it into

the next entry of the IOCQ table. When the

queued I/ 0 request is to be serviced, the Physi­

cal 1/0 Routines of the monitor extract the IOCQ

entry information and place it in the Physical

I/ 0 Table (PIOT) for use of the hardware device

controller that performs the requested 1/0

operation. When the 1/0 request has been ser­

viced, the device service routine returns the

logical and physical status to Word 1 of the

IOCQ entry.

The format of the PIOT is shown in figure

the device driver routine for the associated

device. Each bit of the mask corresponds with

a bit in the Interrupt Condition Byte (ICB) in the

hardware controller for the device. When the

device controller detects an ICB bit setting,

indicating an interrupt condition, it compares the

FIOB FORMAT

Bits o! 1 !21314151617 BJ 9 I 10 I 11J 12 I 13 I 14] 15

Word 0

;-w~,d"I
I Word 2

I Word 3

I Word 4
r-1 Word5

: Word 6

I Word 7

I Word 8

L-----

(SPARE) ERROR CODE

MODE] FUNCTION LOGICAL UNIT NUMBER ID
BUFFER ADDRESS (starting byte)

BYTE COUNT
TRANSLATE TABLE BASE OR DISC ADDRESS
SEARCH TABLE BASE OR DISC ADDRESS

(SPARE)
(SPARE)

(SPARE)' T WNex-
tension

IOCQ FORMAT

o 11 l 2 J 3 l 4151617 J a 19 J 10 I 11J 12 I 13 I 14 I 15

WordO

Word 1

r-w;,;:d2-
: Word 3

I Word 4

L_.J Word5

I Word6

I Word 7

I Word 8

I Word 9
I
I---

LINK

l PHVSICAL STATUS
LOGICAL STATUS l grou..e_ J subgroup

MODE 1 FUNCTION J LOGICAL UNIT i'IJMBER ID

BUFFER ADDRESS (starting byte)

BYTE COUNT

TRANSLATE TABLE BASE OR DISC ADDRESS
SEARCH TABLE BASE OR DISC ADDRESS

(SPARE)

(SPARE)
(SPARE)] LUN ex-

tension

Figure 1- 3. Format and Usage of FIOB and IOCQ
Entry by IOCS

Word
0
1

2

3
4
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MODE FUNCTION INTERRUPT MASK BYTE

BUFFER ADDRESS
BYTE COUNT
TRANSLATE TABLE BASE OR DISC ADDRESS

SEARCH TABLE BASE OR DISC ADDRESS

BUFFER ADDRESS - C

1-4. Notice that the MODE and FUNCtion infor- 6)YTE COUNT - C

mation occupies the first half of Word 0 of the

PIOT, and the last half of the word contains an

8- bit Interrupt Mask. This mask is set up by

7 (SPAR!:)

Figure 1-4. Format of ·the PIOT Generated by IOCS

1: Z-5

bit with the corresponding bit in the Interrupt

Mask to determine whether the interrupt should

be "allowed" (i.e., generated). lf an interrupt

is generated, the appropriate LSR receives con­

trol, calls the Device Service routine for the

interrupt level, and the interrupt processing is

performed. If the interrupt is not "allowed,"

then an invalid interrupt is logged.

IOCS queueing of I/ 0 requests allows the

executing program to operate asynchronously

with 1/0 data transfer operations. The number

of entries in a particular IOCQ table is defined

by the assembly language programer when the

source program is coded.

2. 3. 2 Physical Control Records

The IOCS monitor uses two physical records

to control I/ 0 devices and the interrupt system.

These records are the 1/0 Control Table and the

interrupt packets, both of which are described on

the following pages.

2. 3. 2. 1 _ 1/0 Control Table. The 1/0 Control

Table (!OCT) consists of two parts: the logical­

to-physical device pointers and the Physical

Control Blocks (PCBs), as illustrated in figure

1- 5. The !OCT is constructed from System

Generator macro calls according to user­

specified physical device assignment on directive

cards input to the SYSGEN program, described

in Part 3 of this handbook.

The logical-to-physical pointers portion of

the !OCT contains 13 one-word entries containing

the identifier of the physical unit assigned to the

T #1sYSF-LUNO

ISYSI - LUN 1

ISYSL - LUN 2

ISYSD - LUN 3

LOGICAL- ISYSB - LUN 4
TO-PHYSICAL # ISYST - LUN 5
POINTERS

PHYSICAL
CONTROL
BLOCKS
(PCB)

ILOGB - LUN B

ILOGC - LUN C

PCB 1

PCB 2

PCB 3

PCB n

1-WORD
ENTRIES

7-WORD
ENTRIES

Figure 1-5. Format of the Input/Output Control
Table (!OCT)

The names of the system-reserved logical units

begin with the characters #!SYS, followed by an

additional character that denotes the use of the

logical unit. That is 13 logical units maybe assigned unit by system programs. The names of logical

to actual physical devices. Eight logical ti.nits

may be assigned for the use of system programs

(e; g., the Assembler, the loaders, Batch Debug,

Dump programs, etc.). Five logical units may

be assigned for use of applications programs.

units that may be assigned for applications pro­

grams begins with the characters #!LOG. The

logical-to-physical pointer entries in the !OCT

and the assigned usage of the units are shown

in table 1- 1.

1: 2-6

Table 1-1. Logica.l,.to-Physical Pointer Entries in the !OCT

PHYSICAL DEVICE
LOGICAL UNIT NAME (Dn)* LUN ID USAGE

#ISYSF (System File) D1 - LUN 0 Reading and writing systems program files.

#ISYSI (System Input) Dz - LUN 1 Reading directive inputs to systems programs,

#ISYSL (System Log) D3 - LUNZ Writing messages from systems programs.

#ISYSD (System Data) D4 - LUN 3 Reading data input to systems programs for

processing.

#ISYSB (System Binary) Ds - LUN 4 Reading relocatable or absolute binary inputs

to systems programs.

#ISYST (System List) D6 - LUN 5 Writing tabular outputs (i.e., listings) of

systems programs.

#ISYSO (System Output) D7 - LUN 6 Systems program writing of binary text of

absolute or relocatable programs.

#ISYSR (System Scratch) DS - LUN 7 Systems program temporary storage of work

files.

#!LOGS (Logical Unit 8) D9 - LUN 8 Performing applications program 1/ 0

operations.

#ILOG9 (Logical Unit 9) D 10 - LUN 9 Performing applications program 1/ 0

operations.

#ILOGA (Logical Unit A) D 11 - LUNA Performing applications program I/ 0

operations.

#ILOGB (Logical Unit B) D 12 - .J::UN B Performing applications program I/ 0

operations.

#ILOGC (Logical Unit C) Dl3 - LUN C Performing applications program I/ 0

operations.

*The Dns are the physical device identifiers specified on the System Generator program directive
that causes the !OCT to be created. Physical devices are assigned to the logical units in the order in
which their identifiers appear on the directive. That is, the first device whose identifier, D1, appears
on the directive is assigned to LUN O, etc.

1: Z-7

The PCB portion of the IOCT contains 7-word

entries that specify the necessary information to

control the physical devices whose identifiers,

interrupt levels, and addresses were assigned on

the appropriate input directive to SYSGEN. As

many as ZZ devices may be assigned addresses.

For each device, a PCB entry is generated in the

IOCT. The format of PCB entries is illustrated

in figure 1-6.

0 3 4 12 15

RI

-::- l INTERRUPT LEVEL PCB STATUS

COMMAND l CODE DEVICE ADDRESS

DEVICE DRIVER ROUTINE ADDRESS

ADDRESS OF IOCQ ENTRY FOR INTERRUPT BEING
QUEUED

ADDRESS OF IOCQ ENTRY CURRENTLY BEING PROCESSED

PIOT ADDRESS

(Spare)

Word 0

Word 1

Word2

Word 3

Word4

Word5

Word 6

Figure 1-6. Format of PCB Entries in the IOCT

z. 3. z. 2 Interrupt Packets. For each physical

devic.e assigned an address. at system generation

time, the external interrupt level to which the

device is to be as signed must be specified. For

each interrupt level assigned, a 4-word interrupt

packet is created in the IOCS monitor being gen­

erated. The interrupt packets, described in de­

tail in Part Z of this handbook, are used by the

Level Service Routines to record the old and new

interrupt information when processing control

passes from one interrupt level to another.

z. 3. 3 Special Function Records

The PTS-100 hardware device controllers

perform two special functions: the Translate

function and the Search function. These functions

use byte table lookups and use the current char­

acters passing through the controller to offset

the byte table base addresses.

The Translate function enables the I/O hard­

ware device cc.ntroller to perform code transla­

tion on the 1/0 byte stream as it flows into or

out of main memory. The Translate function

therefore allows the programer to specify input/

output code conversion (i.e. , to specify that

input/ output data characters are to be converted

to or from the ASCII code used internally by the

PTS-100),

The Search function enables the I/ 0 hard­

ware device controller to test for particular con­

trol characters within the I/ 0 byte stream as it

flows into or out of main memory, and to set

interrupt conditions when the control characters

appear. Thus, the Search function allows the

programer to specify hardware testing for the

occurrence of control characters, and setting of

interrupt conditions when the characters appear

in the I/ 0 data stream.

To utilize these functions, the programer

must have defined and assembled the associated

Search and Translate byte tables containing the

control and/ or conversion codes within the pro­

gram to be executed. The Search and Translate

functions are spt:cified in conjunction with the

IOACT service request by entering a code in the

MODE field of Word 1 of the FIOB, and specify­

ing the base. address(es) of the associated table(s)

in the FIOB. Detailed descriptions of the MODE

code and the Search and Translate table defini -

tions are presented in Part Z of this handbook.

z. 3. 4 Master Service Call Vector Table

The Master Service Call (MSC) Vector table

contains the starting addresses (i.e., entry

points) of the individual MSC routines that ser­

vice I/O requests from the executing programs.

1: 2-8

2. 3. 5 Logging Tables

•

•

•

There are three logging tables within !OCS:

Canned Messages Table (GMT), which is

used for logging messages on the System

Log device

Message Locate Table (MLT), which pro­

vides roes with the starting address of each

message in the canned message table

LUN Conversion Table (LCT), which is used

by roes to convert the decimal logical unit

number into ASC!l format.

These tables are incorporated in a given user's

roes monitor if message logging is selected by

the user. If message logging is selected,

messages will be output on the System Log

device. Monitor messages output to the logging

device are enclosed in the special symbols <

and > to differentiate between monitor output

and any messages or printouts from an executing

object program that may also be using the System

Log device.

Following are the caniied messages from the

canned message table:

END OF JOB, 00

DEV NOT OPER, nn

NO LUN,nn

LUN OPEN,nn

LUN NOT OPEN,nn

QUE FULL,nn

INVALID !NTR, nn

READ CHECK, nn

1:2-9/10

DATA LOST,nn

STACK OR HOP,nn

MOT!ON,nn

END OF TAPE,nn

WRITE PROTECT,nn

PARITY,nn

DEBUG.nn

Section 3. PTS-100 SOFTWARE SYSTEMS

In addition t:o the IOCS monitor, the following

software systems are provided to users of the

PTS-100:

• PTS-100 Assembler program, which trans­

lates source programs written in assembly

language to object (executable) programs

• Utility programs to load, execute, debug,

and maintain user programs.

3. 1 Assembler Program

The PTS-100 Assembler .program accepts

source program coding as input and translates

it to executable machine language instructions.

The Assembler program must be used to

assemble all programs to be executed on the

PTS-100. There are three versions of the PTS-

100 Assembler:

• PTS-100 Native Assembler

• Raytheon 704 CrQss Assembler

• IBM 360/370 Cross Assembler •

Assembler program processing is accom­

plished in five phases:

Phase 0 determines and sets up for the out­

put options required for the program to be

assembled and calls the next processing

phase.

Phase 1, the macro proc.essor, is called

when macro calls in source programs must

be processed, or when an IOCS monitor is

to be assembled from the macro calls

generated by the System Generator program.

Phase 2 analyzes all source statements and

performs the preprocessing for program

assembly proper.

Phase 3 optimizes core storage requirements

of object {assembled) programs.

Phase 4 completes the construction of

executable machine instructions, generates

any required listing of the assembled pro­

gram, and produces the final object program

code.

Part 2 of this handbook discusses the assembly

language structure and use and Assembler pro­

gram processing in detail.

3. 2 Utility Programs

The PTS-100 utility programs are provided

to perform such functions as:

Object program loading

Interactive debugging of object

programs

Generation of spe~ially tailored Input/Output

Control System (IOCS) monitors

Dumping of the content of main memory'

storage areas

Dumping binary files to conventional output

devices

Program file creation and maintenance

General descriptions of the functions performed

by the utility programs are presented on the

following pages. Detailed "how to use" descrip­

tions of the programs are presented in Part 3 of

this handbook.

3. 2. 1 PTS-100 Loader Programs

Two loader programs are supplied with the

PTS-100: the Piggyback Loader and the

Absolute/Relocating Loader, The sole function

1: 3-1

of the Piggyback Loader is to load the Absolute/

Relocating Loader. The Piggyback Loader is

bootstrapped into low memory by depressing the

IPL button on the user console of the PTS-100.

Once loaded, the Piggyback Loader loads the

Absolute/Relocating Loader into high memory

and starts its execution.

The Absolute/Relocating Loader must be

us~d to. load all programs assembled by t~e

PTS-100 Assembler, which develops object

coding in the format required by the Absolute/

Relocating Loader. The object programs may

be absolute or relocatable, and may consist of

one or more segments each.

The Absolute/Relocatirig Loader computes

effective addresses of object program instruc­

tions, sets up storage areas, loa,ds literal values

and address constants, relocates relocatable

programs, establishes linkages between multiple

program segments, etc. When its loading proc­

essing is completed, the Absolute/Relocating

Loader terminates itself and activates the loaded

program(s) at the execution address defined in

the last program loaded, or entered manually

into the PTS-100,

3, z. Z Interactive Debug Program

The Interactive Debug Program allows the

programer to interface actively With it during

object program checkout to effect the folloWing:

Addition or subtraction of hexadecimal

constants

Single or successive memory location

dumps

Searches of memory locations for specific

full word values, or masked searches on

values less than 16-bits in length

Alterations of single memory location

content to a specific value

Successive memory location loading with

specific values

Breakpoint setting and clearing

Transfers of control to specific addresses

and resumption of program execution

Transfers of control to specific addresses

v:ith the accumulator and/ er one or bet..~

index registers set to specific values and

resumption of program execution

Continuation of previously issued commands

to the Interactive Debug program

Input command editing.

Thus the Interactive Debug program provide.s the

programer with hands-on control of the execµtiori

of his program. This capability allows selective

examination of memory, manipulation of memory

words by accessing and altering them, selective

execution .of any part or all of the program,

preparation of active unit tests, minor progr·am

patching, etc.

3, 2. 3 System Generator Program

The System Generator (SYSGEN) program

provides for the generation of a specially tailored

PTS-100 IOCS monitor to meet unique applications

processing requirements. That is, for any given

PTS-100 installation, a specialized IOCS monitor

can be generated by describing its content to the

SYSGEN .program. The system descriptions are

supplied on key word directive cards, which are

input to the SYSGEN program.

SYSGEN analyzes the directives and gener­

ates specialized macro calls to the generalized

IOCS monitor routines required in the described

monitor. The macro calls are written onto an

Assembler formated file. The Assembler

processes the SYSGEN macro call file against

the System Macro Library file (i.e. , the gener­

alized IOCS monitor macro routines file) to pro-

1: 3-Z

duce the specially tailored roes monitor the user

described to SYSGEN.

3. z. 4 Memory Dump Program

The Memory Dump program is a small,

easi.ly relocatable program capable of dumping

the contents of contiguous locations of main

memory to any sequential storage device that

accepts variable length output records. The

length of dumped records depends on the output

device being used.

There are two versions of the Dump program:

Version 1 dumps hard copy hexadecimal

or ASCll records onto a character

printing device.

Version Z dumps reloadable binary

records to a magnetic tape cassette or

paper tape punch device.

Either version of the program may receive dump

parameters as inputfromanASRkeyboarddevice or

as arguments of a subprogram assembled within

the main program whose memory locations are

to be dumped.

3, z. 5 Peripheral Device Dump Program

The sole function of the Peripheral Device

Dump (PDD) program is to produce printed

listings of binary data files stored in one of the

following media:

Cassette magnetic tape files
Punched paper tape files
Punched card files.

The output listings of the PDD program are

either in ASCII code or hexadecimal notation,

as specified by the programer via a control

card input to the program.

Disc files are dumped by a separate program,

described in subsection 3. z. 7. 3,

1: 3-3

3. z. 6 File Update Program

The File Update program provides a conven­

ient, easily used method of creating, maintaining,

and updating files of both object and source pro­

grams. That is, the File Update program may

be used to create a master file of object and/ or

source programs and subsequently to maintain

and update the master file. The specific update

features that can be accomplished using this

program are:

Insertion of one or more programs on the

master file

Correction of programs by changing their

names and/or deleting, replacing, or

inserting data lines

Replacing one or more programs on the

master file

Deletion of one or more programs on the

master file

Creation of a file directory of the current

master file.

3. z. 7 Disc Support Programs

Three utility programs are available to

support the use of disc files with the PTS-100.

3. z. 7. 1 Disc Volume Preparation. This

program initializes a new disc for use in the

PTs;., 100 system. It can also erase the informa­

tion on an old disc to prepare it for reuse. A

disc must be preprocessed with the Disc Volume

Preparation program whether it is to accessed by

physical or logical input/output.

3. z. 7. Z Disc Allocator. This program must

be used before any disc file can be written or

read through the logical input/output. If a disc

is to be accessed solely by physical input/output

(not ulitizing the roes monitor), it is not neces­

sary to use the Disc Allocator program.

Prior to running the Disc Allocator, the

disc must have been initialized by means of the

Disc Volume Preparation program. The Disc

Allocator then assigns disc space to files,

extends the disc area allocated to files, and

deletes files. The program operates from

free-frnm keyword type parameters read from

the card reader,

3. 2. 7. 3 Disc Dump. The Disc Dump program

produces a printed listing of data on all or a

selected portion of the sectors of any disc unit in

use with the PTS-100. The output is listed on the

serial printer in either hexadecimal or ASCII nota­

tion, as specified by the input directives. Dump

parameters are input from the display or teletype­

writer keyboard in response to program messages.

3, 2. 8 Cassette Utility Program

The Cassette Utility program provides a

method of storing on, deleting, copying, position-

ing, and printing the contents of cassette mag­

netic tape files. A display keyboard is used for

input directives. The output can be on any of

four cassette units, the teletypewriter printer,

or serial printer. The program can perform

the following functions:

Copy all or parts of one cassette tape to

another.

Forward or backspace one tape a specified

number of records.

Position a cassette tape to a specific record

located by matching a keyword.

Rewind a tape to its beginning.

Print a specified number of records from

one tape.

Read car-ds from the card reader and write

the information to a tape.

Print the input dir.ectives.

1: 3-4

PART 2

PTS-100 ASSEMBLER LANGUAGE PROGRAMMING

PART 2

PTS-100 ASSEMBLER LANGUAGE PROGRAMING

TABLE OF CONTENTS

SECTION 1. INTRODUCTION TO THE PTS- 100 ASSEMBLER LANGUAGE

1. 1 Machine Instructions

1. 2 Machine Instruction Execution Timing

1. 3 Word and Data Formats

2. 1

2.2

2.3

2.4

2.5

2.6

3. 1

SECTION 2. ASSEMBLER STATEMENT FORMATS

Source Statement Coding Form

Label Field

Operation Code Field

Operand Field

2. 4. 1 Symbolic Tag Operands

2.4.2

2. 4. 3

2.4.4

Literal Operands

Absolute Address Operands

Self- Reference Operand

2. 4. 5 Expression Operands

Comments Field

Sequence Number Field

SECTION 3. DETAILED DESCRIPTIONS OF
SOURCE LANGUAGE STATEMENTS

Executable Statements

3. 1. 1

3. 1. 2

3. 1. 3

Arithmetic Statements

3.1.1.1

3.1.1.2

3. 1. 1. 3

3.1. l.4

3. 1. l. 5

3. 1. 1. 6

Add Statement {ADD)

Add Accumulator to Memory
Statement (ACM)

Add Immediate Statement {ADI)

Add One to Memory Statement (AOM)

Shift Right One, Arithmetic Statement (SRO)

Subtract Statement {SUB)

Branch Statements

3. 1. 2. 1 Branch If Accumulator Minus
Statement {BRM)

3. 1. 2. 2 Branch If Condition Bit Set
Statement (BCB)

3. l. 2. 3 Jump Statement {JMP)

Compare Statements

3. 1. 3. l Compare Accumulator Less Than
Word Statement (CAL)

3. l. 3. 2 Compare For Not Equal Statement (CNE)

2: iii

2: 1- 1

2: 1-4

2: 1-4

2: 2- 1

2: 2- 1

2: 2- 1

2: 2- 8

2: 2- 9

2: 2- 9

2: 2- 1 0

2: 2- 11

2: 2- 11

2: 2-12

2: 2- 12

2: 3- 1

2: 3-2

2: 3-2

2: 3-3

2: 3- 3

2: 3-4

2: 3-4

2: 3-5

2: 3-5

2: 3-6

2: 3-6

2: 3-7

2: 3-7

2: 3-7

2: 3-8

TABLE OF CONTENTS

Page

3. 1. 4 Load Statements Z: 3-8

3.1.4.1 Load Address In Index Register Z
Statement (LAXZ) Z: 3-8

3. 1. 4. z Load Byte Statement (LDB) Z: 3-9

3. l. 4. 3 Load linmediate Statement (LDI) Z: 3-9

3. 1. 4. 4 Load Index Register 1 Statement (LXl) Z: 3-10

3. 1. 4. 5 Load Index Register 2 Staternent (LXZ) 2: 3- 11

3.1.4. 6 Load Word Statement (LDW) ·z: 3-11

3. 1. 5 Store Statements 2: 3-12

3. 1. 5. 1 Store Byte Statement (STB) 2: 3-12

3. 1. 5. 2 Store Index Register 1 Statement (SX 1) 2: 3-12

3. 1. 5. 3 Store Index Register 2 Statement (SX2) 2: 3-13

3.1.5.4 Store Word Statement (STW) 2: 3- 13

3.1. 6 Logical Statements 2: 3-14

3. 1. 6. 1 AND Statement (AND) 2: 3-14

3. 1. 6. 2 Exclusive OR Statement (XOR) 2: 3-14

3.2 Nonexecutable Statements 2: 3-15

3. 2. 1 Constant Assignment Statements 2: 3- 15

3. 2. 1. 1 Address Constant Statement (ADC) 2: 3-15

3.2.l.2 Concatenated Integer Constant
Statement (CAT) 2: 3-16

3. 2. 1. 3 Decimal Constant Statement (DEC) 2: 3-17

3. 2. 1. 4 Hexadecimal Constant Statement (HEX) 2: 3-17

3. z'. l. 5 Octal Constant Statement (OCT) 2: 3-18

3.2.1.6 Text Constant Statement (TEXT) 2: 3-18

3.2.1.7 Text Constant (7-bit)Statement (TEX7) 2: 3-lBA

3.2.2 Symbol Defining Statements 2: 3-19

3. 2. 2. l Equate Statement (EQU) 2: 3-19

3.2.2.2 External Definition Statement (EXDEF) 2: 3-19

3. 2. 2. 3 External Reference Statement
(EXREF) 2: 3-20

3.2.3 Storage Assignment Statements 2: 3- 21

3. 2. 3. 1 Literal Origin Statement (LTORG) 2: 3-21

3. 2. 3. 2 Mod Statement (MOD) 2: 3-22

3. 2. 3. 3 Origin Statement (ORG) 2: 3-22

3.2.3.4 Page 0 Statement (PGO) 2: 3-23

3.2.3.5 Reserve Statement (RESV) 2: 3-23

3.3 Program Control Statements 2: 3- 24

3. 3. 1 End Statement (END) 2: 3-24

3.3.2 Skip Statement (SKIP) 2: 3-25

3. 3. 3 Unlist Statement (UNLIST) 2: 3-25

3. 3. 4 List Statement (LIST) 2: 3-25

2: iv

TABLE OF CONTENTS (cont)

3.4 Input/ Output Services i: 3-26

3. 4. 1 File Input/Output Block Definition 2: 3-27

3.4.2 Input/Output Control Queue Table Definition 2: 3- 30

3.4.3 Special Functions 2: 3- 32

3. 4. 3. 1 Search Table Definition 2: 3-32

3. 4. 3. 2 Translate Table Definition 2: 3- 33

3.4.4 Monitor Service Calls 2: 3- 34

3. 4. 4. l Device Initialization Service 2: 3- 34

3.4.4.2 Device Open Service 2: 3- 34

3.4.4.3 I/ 0 Action Service 2: 3- 35

3.4.4.4 Device Close Service 2: 3- 36
3.4.4.5 System Exit Service 2: 3-37

3.4.4.6 Watchdog Timer Service 2: 3-37

3.4.4.7 Channel Interface Controller
(CIC) Service 2: 3-38

3.4.4.8 Device Sensing Service 2: 3-39

3.4.4.9 Reconfiguration Service 2: 3-40

3. 5 Disc Logical Input/Output 2: 3-41

3. 5. 1 User File Area 2: 3-41

3.5.1.1 Sequential Files 2: 3-41

3.5.1.2 Random Files 2: 3-42

3.5.2 File Description Macro 2: 3-42

3.5.3 Main Processing Macro 2: 3-43

3.5,4 Action Macros 2: 3-43

3.5.4.1 Open Macro 2: 3-43

3.5.4.2 Close Macro 2: 3-44

3.5.4.3 Get Macro 2: 3-44

3.5.4.4 Put Macro 2: 3-44

3.5.4.5 Read Macro 2: 3-44

3.5.4.6 Write Macro 2: 3-45

3.5.4.7 Delete Macro 2: 3-46

3.5.5 Status Macros 2: 3-46

3.5.5.1 Wait Macro 2: 3-46

3.5.5.2 Test Macro 2: 3-46

3.·5. 6 Error Indicators 2: 3-47

SECTION 4. MACRO ROUTINES

4. l Basic Macro Routine Structure 2: 4-1

4.2 Calling Macro Routines 2: 4-2

4.3 Extended Macro Routine Structure 2: 4-4

4. 3. l Statement Label Insertion 2: 4-4

4.3.2 Conditional Inclusion and Deletion of Macro
Routine Statements 2: 4-5

4. 3. 3 Embedded Macro Calls 2: 4-8

2: v

5. 1

5.2

5.3

5.4

5. 5

6. 1

6.2

6. 3

6.4
6.5

6.6

7. 1

7.2

7.3

TABLE OF CONTENTS (cont)

SECTION 5. ASSEMBLER PROGRAM

Programer lnput11

5. 1. 1 A1111embly Control Card Content

Auembly Proce1111ing

5. 2. 1

5.2.2

5.2.3

5.2.4

Pha11e 0 Proce1111ing

Pha11e 1 Proceuing

Pha11e 2 Proceuing

Pha11e 3· Proceuing

5. 2. 5 Pha11e 4 Proceuing

Auembler Output Li!!ting

A1111embler Limitation11 and Machine Requirement!!

5.4.1 Raytheon 704 Crou Auembler

5.4.2 IBM 360/370 Crou Auembler

5.4.3 PTS-100 Native Auembler

Dille A1111embler

SECTION 6. PROGRAMING TECHNIQUES

Shifting Techniquu

Setting Addreue11

Defining Menage Content

Label Definition

Con11tant Definition!!

Compari11on Bit Setting

SECTION 7. SYSTEM PROGRAMING CONSIDERATIONS

Interrupt Sy11tem

Interrupt Statement!!

Sy11tem Programing of I/ 0 Operation11

7. 3. 1 Performing I/O Operation11

7. 3. 1. 1 I/O Packet

7. 3. 2 Te11ting Device Operational Statu11

INDEX TO PART 2

2: vi

2: 5-1

2: 5-1

2: 5:..2

2: 5-2

2: 5-4

2: 5-5

2: 5-6

2: 5-6

2: 5-6

2: 5- 9

2: 5- 9

2: 5-9

2: 5-9

2: 5-9

2: 6-1

2: 6-1

2: 6-1

2: 6-1

2: 6-1

2: 6-1

2: 7-1

2:7-3

2: 7-3

2:7-4

2: 7-4

2:7-6

Figure

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12

2-13

2-14

2-15

Table

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

LIST OF ILLUSTRATIONS

Assembler-Generated Machine Instruction Formats

Sample PTS- 100 Coding Form

Format of File Input/Output Block (FIOB)

Format of Input/Output Control Queue (IOCQ) Entries

Search Table Format for 8- Bit Code

Translate Table Format for 8-Bit Code Conversion

Sample Macro Routine

Specialized Macro Routine

Generalized Macro Routine to Create an FIOB

Generalized Macro Routine for Device Service Requests

Flow Overview of Assembly Processing

Sample Assembler Output Listing

Interrupt Priority Levels in the PTS- 100

Interrupt Packet Format and Content

1/0 Packet

LIST OF TABLES

Machine Instruction Execution Times

Summary of Executable Assembler Statements

Summary of Constant, Address, and Storage
Assignment Assembler Statements

Summary of Program Control Statements

Summary of 1/ 0 Service Statements

Device Function Field Settings of Bits 3-7 in Word 1
of the FIOB

IOCQ Logical Status Codes

IOCQ Physical Status Codes

Assembler Option Selection

File (Device) Assignments for Assembly Processing

Interrupt Statements

2: vii/viii

2: 1-2

2: 2-2

2~ 3- 27

2: 3- 30

2: 3-32

2: 3- 33

2: 4-2

2: 4-3

2: 4-5

2: 4-7

2: 5-3

2: 5-8

2: 7-2

2: 7-2

2: 7-5

2: 1-5

2: 2-3

2: 2-5

2: 2-6

2: 2-7

2: 3-29

2: 3-31

2: 3-31

2: 5-1

2: 5-2

2: 7-3

PART Z. PTS-100 ASSEMBLER LANGUAGE PROGRAMING

Section l, INTRODUCTION TO THE PTS-100 ASSEMBLER LANGUAGE

The programing language of the PTS-100

System is the Assembler language--a symbolic,

machine oriented language which is suitable for

solving any application processing problem.

Applications programs are coded in symbolic,

or source, statements which are translated by

the Assembler into object programs that can be

loaded and executed on the PTS-100 System.

Locations within programs can be addressed

through symbolic names (i.e., tags or labels).

Data constants can be defined in several different

ways, either as explicit constants or as literals

coded directly in the source statements.

A set of source statements constitutes a

source program. The assembled program is

called an object program. The object program

may be either in absolute or relocatable form

for execution on the PTS-100 system. The

object program is output on the specific periph­

eral device used for loading executable programs

on the specific machine used for program

assembly. That is, there are three versions of

the PTS-100 Assembler:

IBM 360/370 Cross Assembler

Raytheon 704 Cross Assembler

PTS-100 Native Assembler

Object programs are output in one of the

following forms, depending on the available

device:

Punched cards

Punched paper tape

Cassette magnetic tape.

The input/ output devices for the three

versions of the Assembler are specified in

Section 5 of this part of the handbook, which

describes the assembly process in detail,

Assembler language source statements fall into

four functional groupings:

Executable statements, which the Assembler

translates into machine instructions (see

subsection 1. 1) to be executed by the

computer.

Nonexecutable statements, which set up

data values and storage areas for executable

object program use.

Program control statements, which control

Assembler output,

Input/ output service statements, which

effect peripheral device operations via the

IOCS monitor of the PTS-100.

The format of Assembler source statements

is discussed and illustrated in detail in Section Z

following. Section 3 presents a detailed descrip­

tion of each statement and its use.

The PTS-100 assembly language programer

is provided with the capability of defining gener­

alized sets of source statements, called macro

routines, which can subsequently be specialized

by the Assembler and inserted into any other

source program. The definition and use of

macro routines is described in detail in Section 4

of this part of the· handbook,

1. 1 Machine Instructions

As mentioned earlier, certain Assembler

source statements are termed "executable''

statements. That is, these statements are

translated by the Assembler into machine

instructions that can be executed by the central

processing unit (CPU) of the computer. Machine

instructions are formated as 16-bit (one word)

instructions or as 3Z-bit (two word) instructions.

One word instructions contain five fields and are

Z: 1-1

said to be in short format. Two word instruc­

tions are composed of six fields and are said to

be in long format. The assembly language pro­

gramer may specify the long instruction format

(see Section 2), or the instruction length may be

left to the discretion of the Assembler, which

determines whether the long or short format is

required for the instruction. That is, the

Assembler will optimize execution speeds and

memory storage requirements by using the short

format whenever possible, as described in

Section 5 of this part of the handbook. The

machine instruction formats are presented in

figure 2-1 and described in detail in the following

paragraphs.

As shown in figure 2-1, both the long and

short machine instructions contain OP, R, E,

and I fields. The short format contains a D

field, and the long format contains a D' field.

The significance of these fields is described in

detail below:

bits 0 4 5 6 7 8 9 15

L Sign
,Machine

Register g or Word displacement
op code t Adr value

h Type

OP R E I D

Short Instruction Format

bits 0 4 5 6 7 8 9 15

Machine
op code

OP

0

Register

R E

L
g
t

Adr
type o------------0

h

Zeros

15

16-bit byte displacement value

D'

Long Instruction Format

Figure 2-1. Assembler-Generated
Machine Instruction Formats

OP {bits 0 - 4): This 5-bit field contains the operation code, which identifies the specific instruc­

tion to the central processor unit as shown in table 2-1.

R (bits 5 - 6):

E (bit 7):

I (bit 8):

This 2-bit field specifies one of four address components to be used in computing

the effective address, where:

0 = zero

= contents of the program counter (PC)

2 = contents of index register 1 (Xl)

3 = contents of index register 2 (X2)

This 1-bit field specifies the instruction length, where:

0 16-bit (short format)

32-bit (long format)

This 1-bit field specifies direct or indirect addressing, where:

2: 1-2

D (bits 9 - 15):

0 :: direct addressing

1 :: indirect addressing

except in the following cases:

When the R field :: 1 (PC relative addressing) and the E field :: 0 (short format),

the I field specifies the sign of the 7-bit word displacement value, where:

0 :: positive sign

1 :: negative sign

NOTE

Indirect addressing is not available
when R :: 1 and E :: 0.

In the Add Immediate and Load Immediate machine instructions the I field is not

used. That is, the short format machine instructions contain four fields: OP

(bits 0-4) R (bits 5- 6), where:

0 :: accumulator

1 = program counter

2 :: index register 1

3 :: index register 2

E (bit 7), and the OPERAND field (bits 8-15), which contains the immediate byte

value to be loaded or added. The long instructions contain five fields, with the

fir st three the same as in the short format, the fourth field (bits 8-15) containing

zeros, and the fifth field (i. e,, the second 16-bit word) containing the immediate

word operand to be loaded or added.

The D field of a short machine instruction (E :: O) contains a 7-bit positive word

displacement value to be used in forming the effective address. For short

machine instructions the effective address is computed as follows:

R field I= 0 I = 1

0 2D (2D)

1 (PC) + 2D (PC) - 2D

2 (Xl) + 2D ((Xl) + 2D)

3 (X2) + 2D ((X2) + 2D)

To explain, the disi>lacement value in the D field is multiplied by 2, and the

product is added to the value specified by the R field except in the case where

R = 1 and I = 1, in which case the product is subtracted from the current location

of the program counter, The current location of the program counter is the

next instruction.

The D field content of two machine instructions are exceptions to the above

discussion. These instructions are the Add Immediate and Load Immediate

instructions. In the short format of these instructions, the R field indicates

the registe.r: and the D field contains the immediate value specified in the

operand field of the source statement.

2: 1-3

I D 1 (bits 16 - 31, i. e,,

the second word of

the two-word

instruction): The D' field of a long instruction (E = 1) contains a 16-bit ~displacement

value to be used in forming the effective address, Negative displacement values

are represented in two's complement form. For long machine instructions, the

effective address is computed as follows:

R field L=_Q, .L:..1.
0 D' (D')

1 (PC)+ D 1 ((PC) + D')

2 (Xl) + D' ((Xl) + D')

3 (X2) + D' ((X2) + D')

Notice that in all cases the D' field value is added to the value specified by the

R field. In the case of a long instruction, the current location of the program

counter is the instruction following the second word (D 1 field) of the long

instruction,

There are two exceptions to the above discussion: the Add Immediate and Load

Immediate statements. In the long format of these machine instructions the R

field indicates the register and the D' field contains the immediate value speci­

fied in the operand field of the source statement.

1. 2 Machine Instruction Execution Timing

Machine instruction execution timing depends

upon the length of the instruction, the number of

processor cycles required to execute the instruc­

tion, and the time required for an instruction

fetch. Each processor cycle requires O. 160

microsecond, All machine instructions require

O. 960 microsecond for an instruction fetch. A

long machine instruction (E = 1) requires O. 960

microsecond additional for execution. When an

instruction specifies indirect addressing, another

O. 960 microsecond is required for its execution.

Hence, a long machine instruction in which in­

direct addressing is specified requires an addi­

tional 1. 920 microsecond for execution.

Table 2-1 presents the total execution

times for all short format (E = 0) machine

instructions, including O. 960 microsecond for

the instruction fetch.

1. 3 Word and Data Formats

Internally iri the PTS-100, instructions and

data are stored in 16-bit word units. The words

are composed of two bytes (i.e., 8-bit units).

Internally, data is stored in standard ASCII code.

Provision has been made, however, to accept any

code up to 8 bits per character. That is, input/

output controllers perform a special code

Translate function to convert input/ output data

to or from the 7-bit ASCII code used by the PTS-

100. To utilize the Translate function for data

conversion, the programer must define Translate

tables, as described later in Section 3,

Another special function, the Search function,

is performed by the PTS-100 input/output con­

trollers. This function allows programers to

test for the occurrence of particular I/O control

characters and specify interrupt conditions when

the control characters appear in the data stream,

See Section 3 for a description of this special

function.

2: 1-4

Table Z-1. Machine Instruction Execution Times

r EXECUTION
~ASSEMBLY TIME**

fMACHINE I MNEMONIC INSTRUCTION (in micro-
PP CODEj_ OP CODE se~onds)

i
00 JMP Jump (unconditional branch) 1. 60

01 ENB R = 00 Enable Interrupts 1. 60
DIN R = 01 Disable Interrupts 1. 60
INR R = 10 Interrupt Return 4.00
MSC R = 11 Monitor Service Call 1. 60

I- . ··-··· .. ----·-----
02 BCB Branch if Condition Bit Set 1. 60

03 ' BRM Branch if Accumulator Minus 1. 60

04 LDI Load Immediate 1. 60

05 ADI Add Immediate 1. 60

06 SRO Shift Right One, Arithmetic 1. 60

07 DIO Do Input /Output 2. 08

!
Load Address in Index Register 2 08 LAX2 2. 08

10 ADD Add Memory Word to Ac:cumulator 2.08
~· ·---····----·· ·----

II XOR Exclusive OR 2.08

12 AND Logical AND 2.08

14 SUB Subtract 2.08

16 CNE Compare for Not Equal 2.08
-

17 CAL Compare Accumulator for Less 2. 08
than Memory Word

18 LDW Load Word in Accumulator . 2. 08

19 LDB Load Byte 2. 08

20 LXl Load Index Register 1 2.08

21 LX2 Load Index Register 2 2.08

24 STW Store Word 2.40

26 SXl Store Index Register 1 2.40

27 SX2 Store Index Register 2 2.40

28 STB Store Byte 2.40

29 RIO Read Input/Output Device Status 3. 04

30 ACM Add Accumulator to Memory Word 3.20

31 AOM Add One to Memory Word 3.20

*The machine op codes here and throughout this handbook are expressed in decimal notation.

**These times are for short format instructions using direct addressing. They include one
instruction fetch (0. 960 microsecond).

2: 1-5/6

Section 2. ASSEMBLER STATEMENT FORMATS

2. 1 Source Statement Coding Form

All assembler source statements are written

as 80- column records on the coding form shown

in figure 2- 2. A source statement may comprise

one to five fields in the following order:

1. A label field, which is optional except

for the EQUate statement.

2. An operation code field, which is

required for all source statements.

3. An operand field, required as

described for the individual statements

in Section 3.

4. An optional comments field, which may

follow the operand field and continue

through column 72 to document the

source statement, or which may begin

with an asterisk (*) in column 1 of the

coding form and continue across

columns 2 through 72.

5. An optional sequence number field,

which begins in column 7 3 and ter­

minates in column 80.

If all fields are present in a source state­

ment, they must appear in the sequential order

shown in figure 2- 2. Except for the label and

sequence number fields, whose lengths are re­

stricted as shown in figure 2- 2, there is no re­

striction on statement field lengths. The label,

operation code, and operand fields are ter -

minated by a blank (6) character. The content

and use of individual statement fields are

described below.

2. 2 Label Field

The label field is optional for all source

statements except the EQUate statement

described in Section 3. If a label is used, its

first character must be alphabetic and must

appear in column 1 of the source record. Up

to five additional alphabetic, numeric, or alpha­

numeric characters may appear in the label field

(i. e. , the label must not continue beyond column

6 of the coding form). The label field is ter­

minated by a blank character. Labels may be

used as symbolic tags in the operand field to

identify data locations and values on which opera­

tions are to be performed.

2. 3 Operation Code Field

This field specifies the mnemonic operation

code (op code), which identifies a unique state­

ment specifying action to be taken by the pro­

gram, the processor, or the Assembler. The

op codes are of variable length.

In executable statements, op codes may be

followed optionally by from one to two flags, in

any order, specifying either indirect, indexed,

or a combination of indirect and indexed address­

ing. The flags and their significance are:

N specifies indirect addressing

Xl specifies indexed addressing using
index register 1

X2 specifies indexed addressing using
index register 2.

To specify both indirect and indexed addressing,

the following combinations of flags are valid:

2: 2-1

N,Xl or N,X2

Xl,N or X2~N

N

N
I
N

~YTHE~ PROGRAM NAME
PROGRAM ER

PTS-100 CODING FORM PAGE __ OF __ _

ASSEMBLER STATEMENT

SEQUENCE
LABEL I I OPERATION I I OPERAND LIST. "BLANKFIELD". COMMENTS I I NUMBER

I 2 3 4 5 6 7 8 9 10 11 12 !3 14 15 16 17 18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 3S 37 38 39 40 41 42 43'44 45 46 4748 49 50 51 52 5354 55 5657 58 59 60 61 62 63 64 65 ~67 68 69 ll)_!i_i72j73 74 7516 7778 7980

1mf:. ~::::~1
1@1 :rti
:~ill Im~@

m!! 1::r:

iI: ir;~:·

:~~~~: :~~:~:

I:@!
:::?:;
":····"

10 .J· ~~~~I\
:@: tff!

12 1l!
13 WI
14 1~
15 ~~t:
16 1@:
17 ;~f
18 :;},
19 i{~!
i!:)i :I:
21 :t
22

23
1!/iiil I I I I I I I LI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 !"'''''! 1 1 1 1 1 1 1 1

124 ;~~§. I I I I I : I ! I

Z5i ·~m~
J 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 a:> 21 22 23 24 25 26 2728 29 30 31 32 33 34 35 3637 383940 4142434445 46 4748 4950 51 5253 5455 56 57585960 61 62 6364 65 6667686970 71 72 73 74 75 76 7778 7980

FORM NO ROS06-0012 REV(l/73)

Figure 2-2. Sample PTS-100 Coding Form

10

II

If flags are specified they are separated

from the op code and each other by commas. If

a label precedes the operation code field, the op

code field begins with the first non- blank char­

acter following the blank character that termi­

nates the label field. If no label is specified,

column 1 of the coding form must be blank. The

-.1p code field may begin in column 2 or any

column after column 1. The operation code field

is terminated by a blank character.

Each source statement is assigned a

mnemonic op code that uniquely identifies it and

the operation it specifies. For purposes of dis­

cussion in this manual, the Assembler source

statements may be classified as follows:

• Executable statements, which result in

Assembler- generated machine instructions

to be executed by the CPU. Executable

statements, summarized in table 2- 2,

specify the following:

Arithmetic operations

Branches in program execution

•

•

•

Loading of CPU registers with data

values in memory storage locations

Storing contents of CPU registers

in memory locations

Comparative tests of data values

Logical (true/false) testing of data

values.

Nonexecutable statements, summarized in

table 2- 3, which define constant data values

and storage areas for executable program use.

Program control statements, summarized in

table 2-4, which direct the Assembler to

perform actions regarding the end of the pro­

gram and the object program listing.

Input/ output service statements, which are

sets of statements defining tables and para­

meter"! for use by the roes monitor in ser­

vicing input/ output requests, as summarized

in table 2- 5.

Table 2-2. Summary of Executable Assembler Statements

STATEMENT OPERATION CODE SPECIFIED OPERATION
Mnemonic Machine*

Arithmetic Statements

Add AC to Memory ACM 30 Add contents of accumulator to memory word
specified by operand; store results in memory
word; set CB if no carry generated.

Add ADD 10 Add contents of memory location specified by
operand to accumulator value; store result in
accumulator; set CB if addition overflow.

Add Immediate ADI 5 Add immediate operand algebraicallr with con-
tents of specified register and store in register.
Set CB if no carry generated.

Add One to Memory AOM 31 Increment memory word specified as operand
by one; set CB if no carry.

Shift Right One SRO 6 Shift the value in the accumulator right one bit
position and retain sign bit; right-most bit is lost.

0

*The machine op codes are given in decimal notation.

2: 2-3

Table 2-2. Summary of Executable Assembler Statements (cont)

STATEMENT

Subtract

Branch Statements

Branch if AC Minus

Branch if CB Set

Jump (unconditional
branch)

Compare Statements

Compare AC Less than
Memory Word

Compare for Not Equal

Load Statements

Load Address in Index
Register 2

Load Byte

Load Immediate

Load Index Register l

Load Index Register 2

Load Word

Logical Statements

And

XOR

*

OPERATION CODE

Mnemonic~chine*

SUB 14

BRM 3

BCB 2

JMP 0

CAL 17

CNE 16

LAX2 8

LDB 19

LDI 4

LXl 20

LX2 21

LDW 18

AND 12

XOR 11

SPECIFIED OPERATION

Subtract the value in the memory location speci­
fied by the operand from the contents of the
accumulator; store results in accumulator; set
CB if arithmetic overflow.

Branch if value in accumulator is negative
number (MSB= 1).

Branch if CB set; otherwise execute next
sequential instruction.

Jump (unconditionally branch) to execution
point specified by operand.

Compare accumulator value with value of
memory word specified as operand; if AC
value less than operand value set CB.

Compare accumulator value with value of
memory word specified as operand; set CB if
values not equal,

Load address of the memory location
specified by operand into index register 2.

Load byte from memory location specified by
operand into right-hand side of accumulator and
clear left-hand side.

Load immediate operand into specified register,

Load memory word specified by operand into
index register 1.

Load memory word specified by operand into
index register 2.

Load memory word specified by operand into
the accumulator.

And the value in the accumulator with the mem­
ory word specified by the operand and place the
result in the accumulator. Set CB if result not
zero.

Exclusive OR the value in the accumulator with
the memory word specified by the operand and
place the result in the accumulator,

The machine op codes are given in decimal notation.

2: 2-4

Table 2-2. Summary of Executable Assembler Statements (cont)

OPERATION CODE
STATEMENT

Mnemonic Machine*
SPECIFIED OPERATION

Store Statements

Store Byte STB 28 Store the right-hand byte value in the accumu-
later in the memory word specified as the
operand, either as left-hand or right-hand
portion of word.

Store Index Register 1 SXl 26 Store content of index register 1 in memory
word specified by operand.

Store Index Register 2 SX2 27 Store content of index register 2 in memory
word specified by operand.

Store Word STW 24 Store content of accumulator in the memory
word specified by operand.

* The machine op codes are given in decimal notation.

Table 2-3. Summary of Constant, Address, i:l.nd Storage Assignment Assembler Statements

STATEMENT

Address Constant
Definition

Concatenated Integer
C ens tant D efi niti on

Decimal Integer Constant
Definition

Hexadecimal Constant
DefiniEon

Octal Constant Definition

Text (alphanumeric con­
stant definition)

Text (7-bit alphanumeric
constant definition)

Equate Symbol

External Definition

External Reference
Definition

Literal Origin Storage
Specification

MOD Storage
Specification

MNEMONIC
OP CODE

ADC

CAT

DEC

HEX

OCT

TEXT

TEX7

EQU

EXDEF

EXREF

LTORG

MOD

SPECIFIED OPERATION

Establish an address constant as specified by the expres -
sion operand.

Establish a concatenated integer constant as specified by
the values used as the operand. The CAT statement is
not implemented in the native version of the PTS-100
Assembler.

Convert the decimal expression operand to a binary constant

Establish a hexadecimal constant one word long as specified
by the expression operand,

Establish an octal constant one word long as specified by
.the expression operand,

Establish a variable -length alphanumeric constant as speci­
fied by the operand in 8-bit code.

Establish a variable -length alphanumeric constant as
specified by the operand in 7 -bit code,

Assign the symbol in the label field to the value specified
by the operand.

Create a symbol table entry for the symbol operand and its
address value to enable another program to reference the
current program in which the symbol is defined.

Create a symbol table entry for the symbol operand and its
address value to enable the current program to be linked to
the program in which the symbol is defined.

Reserve a b1ock of sequential storage locations for literal
data values,

Allocate the next instruction to the next location that is a
multiple of..!!• a power of two value specified as the operand.

2: 2-5

Table 2- 3. Summary of Constant, Address, and Storage Assignment Assembler Statements (cont)

STATEMENT MNEMONIC
SPECIFIED OPERATION OP CODE

Origin ORG Establish the origin of the object program at the absolute
address specified by the decimal, hexadecimal, or octal
operand (i.e., store the first statement of the object pro-
gram at the location specified by the operand),

Page 0 PGO Use the absolute address of the symbolic tag specified
as operand each time it is referenced (i.e., the sym-
bol is to be assigned an address relative to page 0).

Reserve RESV Reserve an area of memory for buffers, data areas, etc.

RESV, xx Reserve an area of memory for buffers, data areas, etc .. ,
and set each byte location to value xx, if specified.

Table 2-4. Summary of Program Control Statements

STATEMENT MNEMONIC SPECIFIED ACTION
OP CODE

End END Terminate source program assembly and establish the
starting address at the first statement to be executed for
object program execution if an address is specified
as an operand

List LIST Resume printing the object program listing that was
suspended by the UNLIST statement

Unlist UNLlST Suspend the object listing until a LIST statement is pro-
ceased or until the end of the program

Skip SKIP Skip, or space, the object listing the number of spaces
specified by the operand.

2: 2-6

Table 2- 5. Summary of I/O Service Statements

STATEMENT FORMS

1/0 OPERATION Mnemonic EFFECT
Label Op Code Operand

INITialization Service Initializes all I/O devices (i.e., stops
Request any r /0 operations in process and re -

sets logical status bits to the load
condition).

Issue Monitor Service MSC Transfe.rs control to the roes monitor
Call and informs it that an I/O service is

required.

Identify I /0 Command DEC 2 Informs the monitor that the initialization
Code request is to be serviced for all

4 devices.

Specify Return Address ADC Address Specifies the location in the object pro-
gram to which the monitor is to return
control.

OPEN and CLOSE Device The OPEN device service sets up IOCQ
Service Request entries and linkages, and checks the

operational status of the specified device.

The CLOSE device service issues a STOP
I/O, which immediatelv causes a physical
and logical shutdown of the specified device.

Issue Monitor Service MSC Transfers control to the roes monitor
Call and informs it that an I/O service is

required.

Identify I/O Command DEC 6 Informs the monitor that an OPEN de -
Code vice request is to be serviced,

DEC 1 Informs the monitor that a CLOSE de-
vice function is to be performed.

Specify Return Address ADC address Specifies the object program location
to which the monitor is to return control.,

Specify the parameter ADC symbolic Directs the monitor to the object pro-
address tag gram location in which the logical unit

number identification (LUN ID) is stored.

Establish the LUN ID pymbolicj HEX LUNID Assigns the desired device's LUN
tag ID.

For OPEN, specify ADC IOCQ addrj Establishes the beginning location
IOCQ table starting (address of first word) of IOCQ for an
address OPEN device request (i.e., when

Command Code =6). Note that this
statement is not used when a CLOSE
service is specified.

Reserve an error field RESV, f)({J 2 Establishes a storage area 2 bytes in
length in which the monitor is to store
a word indicating an error occurrence
that prevented the successful com-
pletion of the OPEN or CLOSE service.

2: 2-7

Table 2- 5. Summary of I/O Service Statements (cont)

STATEMENT FORMS

Mnemonic I/O OPERATION
Label Op Code Operand EFFECT

Input/Output Action (IOACT)
Service Request

Issue Monitor Service
Call

Identify I/O Command
Code

Specify Return Address

Establish the FIOB
address

EXIT Service Request

Issue Monitor Service
Call

Identify I/O Command
Code

MSC

DEC

ADC

ADC

MSC

DEC

At assembly time, the Assembler interprets

the mnemonic op code of each source statement

to determine the type of operation requested,

and translates the source language statement to

object code format by translating executable

statements to machine instruction format, re­

solving address computations, reserving storage

locations, etc., as described in Section 5.

2. 4 Operand Field

The operand field of a source statement

specifies the element or elements to be used in

performing the operation specified in the op code

field of the statement. The specified operands

that may be used in a given source statement are

described in the individual statement discussions

in Section 3. In general, an operand may be any

of the following:

7

Transfers input and output data between
memory and the spt:cified I/O device.

Transfers control to the IOCS monitor
and informs it that an I/O request is
to be serviced.

Informs the monitor that a data transfer
to or from the specified device is to be
serviced.

address Specifies the location in the object pro­
gram to which the monitor is to return
control.

address Assigns the beginning location (address
of the first word) of the FIOB (File IO
Block) that contains the programer­
defined parameters specifying the pre -
cise I/O action requested.

0

Provides a common system exit of the
program when execution is completed.

Transfers control to the IOCS monitor
and informs it that an I/O service is
required.

Informs the monitor that an EXIT
request is to be serviced.

Symbolic tag (i. e. , label)

Literal data value

Absolute address

Self- referencing indicator, *
Expression formed by combining two or

more of the single- element operands above

with plus (+) and minus (-) signs.

The operand of an executable instruction may

be followed by the characters

,L

to inform the Assembler that a long machine

instruction is to be generated. In all cases the

operand field is terminated by a blank character.

The operand fields of the Add. Immediate and

Load Immediate statements are special cases, as

described in Section 3.

2: 2-8

Detailed discussions of the construction and

use of each type of operand are presented in the

following paragraphs.

2. 4. 1 Symbolic Tag Operands

A symbolic tag used as an operand may be

composed of from one to six characters, the

first of which must be alphabetic. When a sym­

bolic tag is used as an operand, it must reference

memory locations or data values defined else­

where in the current program or in a program

referenced by the current program. That is, a

symbolic tag operand must have appeared else­

where in the current program as one or a com­

bination of the following:

Label of a statement in the current program.

Label (i.e., symbolic tag) of an EQUate

statement, the operand of which specifies

the actual value of the symbolic tag.

Operand in an EXternal REFerence state­

ment (mnemonic op code EXREF) that

specifies that the symbolic tag is defined

in another program referenced by the

current program.

NOTE

When a symbolic tag appears in
the operand field of the EXREF
statement, it may also be usedas
the operand in any statement in
the current program where
symbolic tags are permitted. The
EXREF definition must precede
any such use, however.

If more than one symbolic tag appears in an

expression in the operand field, all but one of the

tags must have been assigned absolute addresses

in EQUate statements.

The use of symbolic tags as operands is

illustrated in the following examples.

Z: 2-9

Example 1:

OP CODE OPERAND

JMP ENDJOB

This statement specifies that program execution

is to jump (unconditionally branch) to the current

location of ENDJOB.

Example 2:

OP CODE OPERAND

ADD TOTAL

This statement specifies that the value currently

stored in the memory location associated with the

symbolic tag operand TOT AL is to be added to

the value in the accumulator, and the result

stored in the accumulator.

2. 4. 2 Literal Operands

Literal operands are defined within the

operand field in which they appear. A literal

definition is written in one of the following

formats:

=X' constant value' which defines a hexadecimal
constant value

=0' constant value' which defines an octal con­
stant value

=D'constant value' which defines a decimal
constant value

=constant value which defines a decimal
constant value by default
(i.e., if neither of the
letters X,O, or D follows
the equal sign and the con­
stant value is not enclosed
in quotation marks, the
constant value is assumed
to be a decimal value).

The constant value must not be greater than 16

bits (a full word) in length. Leading zeros in

literal constant values less than 16 bits in length

are not required in the Assembler source lan­

guage. That is, the Assembler stores literal

constant values in 16-bit words, right-justified.

Following are examples of acceptable literal

operand definitions.

Example 1:

OP CODE OPERAND

ADD =X 1FF'

This statement specifies that the value currently

in the accumulator is to be added to the hexa­

decimal constant whose value is FF, and the

result stored in the accumulator.

Example 2:

OP CODE OPERAND

ADD =0'377 1

This statement specifies that the octal value of

377 is to be added to the current value in the

accumulator.

Example 3:

OPCODE

ADD

OPERAND

=D 110'

This statement specifies that the decimal value

of 10 is to be added to the current value in the

accumulator.

Example 4:

OP CODE OPERAND

SUB =10

This statement specifies that the decimal (default)

value of 10 is to be subtracted from the value in

the accumulator.

2. 4. 3 Absolute Address Operands

Absolute address operands may be defined in

two ways:

By identifying a symbolic tag as a reference

to page 0 (see the Page O.statement descrip­

tion in Section 3), and subsequently using the

tag as an operand.

By specifying a decimal, hexadecimal, or

octal memory address as the operand.

When absolute addresses are used, either

symbolically with a PGO statement or directly,

each absolute address is assembled into the

operand field of the machine instruction and the

R bits of the instruction are 00. Following are

examples of the use of absolute address operands.

Example 1:

LABEL

ONE

TWO

THREE

OP CODE

PGO

LDW

PGO

LDW

PGO

LDW

OPERAND

A

A

B

B

c

c

The Page 0 statements specify that data

values associated with. symbolic tags A, B, and

C are to be assigned absolute addresses relative

to Page 0. Statement ONE specifies that the

value in the absolute address assigned to A is to

be loaded into the accumulator. Statements TWO

2: 2-10

and THREE specify the same thing for the values

of symbolic tags B and C. In these i:;tatements,

direct addressing is specified and the absolute

addresses of the respective data values will

appear in the operand fields of the machine in­

structions generated by the Assembler.

Example 2:

LABEL OP CODE OPERAND

BRl JMP X'FO'

BRZ JMP QI 377'

BR3 JMP D 1 1001

BR4 JMP 26

Statement BRl specifies an unconditional

jump (branch) of program control to hexadecimal

FO. Statement BR2 specifies a jump to octal

location 377. Statement BR3 specifies an uncon­

ditional branch to decimal location 100, BR4

specifies a branch to decimal (by default) location

26.

2. 4. 4 Self-Reference Operand

The self- referencing indicator (*) may be

used as an operand, as illustrated below.

DTAG7 ADC *

DKEY EQU *

JMP *

2. 4 .• 5 Expression Operands

Expression operands arP formed by com­

bining any of the previously described single­

element operands with plus (+) and minus (-)

signs. Recall, however, that when two or more

symbolic tags are used as expression elements,

all but one of the tags must have been assigned

absolute addresses in EQUATE statements.

Examples of expression operands are shown·

below:

Example 1:

OP CODE OPERAND

JMP *+16

The JMP statement specifies a transfer of pro­

gram control to a point 8 decimal locations (i.e.,

16 bytes) beyond the current location of the self­

referencing indicator.

Example 2:

OP CODE

LDW

OPERAND

TABLE +6

The LDW statement specifies that the accumu­

lator is to be loaded with the contents of the

fourth word of TABLE. That is, the third word

after the first {beginning) word of Table contains

the value to be loaded.

Example 3:

OP CODE OPERAND

STW X' lF0'-2

The STW statement specifies that the value in

the accumulator is to be stored in the memory

location just preceding ·the hexadecimal location

lFO.

2: 2-11

Z. 5 Comments Field

The programer may thoroughly document his

program by writing des-criptive comments follow­

ing the blank character that terminates the

operand field and continuing through column 72.

In addition, the programer may specify that an

entire source record (coding line) is to be treated

as a comment by writing an asterisk (*) in

column 1 of the source record, and then writing

the comment text in any columns from Z through

7 Z of the coding form. Embedded blanks are

accepted in the comments field. Comments are

not processed by the Assembler, but are carried

on the object listing exactly as they were speci­

fied in the source statements.

Z. 6 Sequence Number Field

The. prograiner may assign a sequence num­

ber to each line of source coding of his program.

If sequence numbers are specified, thex must

appear in columns 7 3 through 80. Th,e sequence

number field may contain any combination qf

alphanumeric characters from the PTS- 100

character set. At assembly time, the programer ·

may specify the sequence checking of his pro­

gram by the Assembler, as described in Section

5. If a sequence number field is blank in a

source statement, sequence checkin~ for the

associated record is bypassed by the Assembler.

Z: Z-lZ

Section 3. DETAILED DESCRIPTIONS OF SOURCE LANGUAGE STATEMENTS

This section presents detailed descriptions

of all Assembler source statements that may be

used in coding applications programs for assem­

bly and subsequent execution on the PTS-100.

For purposes of discussion, the source state­

ments are described in the following four

functional groups:

Executable statements

Non executable statements

Program control statements

Input/output service statements.

For each source statement, a format diagram is

presented to graphically illustrate the statement

fields that may be used and the permissible con­

tent of each field. In all cases, the mnemonic

op code must be specified, as shown in upper

case letters in the format diagrams. Optional

fields are indicated by enclosing them in paren­

theses. When a required statement field permits

a choice in the form of its contents, the permis­

sible ~hoices are shown enclosed in brackets in

the format diagram. When no choice of field

content is allowed, the form is shown unenclosed,

The label, op code, and operand fields must be

terminated by at least one blank character, in­

dicated by the character ti in the format diagrams.

Logical input/outputfor disc files is covered

separately at the end ofthe section (subsection 3. 5).

In addition to the statements presented in

this section, the programer may write macro

routines to be subsequently specialized and in­

corporated within his programs as described in

Section 4.

Special statements and considerations for

writing systems programs are presented in

Section 7 of this part of the manual.

2: 3-1

3. 1 Executable Statements

Executable statements are those source

statements the Assembler translates to machine

instruction format for execution by the CPU. As

described in Section 1, assembled machine in­

structions are either short (i.e., one word or

16 bits in length) or long (i. e,, two words or 32

bits in length).

Short machine instructions contain 7- bit

operands which specify either word displacement

values to be used in computing the effective

addresses of object code or data values, or the

assigned absolute addresses of object code or data

values. That is, short instructions provide

addressing capability for ±128 words relative to

the current program counter value, or addressing

of +128 words relative to zero or the value con­

tained in one of the index registers.

Long machine instructions contain 16-bit

operands which specify byte displacement values

to be used in computing the effective addresses

of relocatable coding or data values, or the

actual memory location of object coding or data

values that have been assigned absolute

addresses.

Word boundaries in memory are fixed.

When a memory word is referenced in one of

the machine instructions generated for a branch

statement, the least significant bit (LSB) of the

effective address must be zero.

In all other machine instructions that

reference memory words the least significant

bit (LSB) of the effective address is ignored.

When a byte address is referenced in a

machine instruction, the LSB is used to select

either the left-hand byte (LSB=O) or the right­

hand byte (LSB=l),

The CPU provides a hardware condition bit

(CB) to record status as the result of arithmetic

computations; comparative testing, and the logi­

cal AND operation, A condition bit setting of one

indicates the following conditions:

Arithmetic overflow

No carry

The logical AND operation result is zero

True results of comparison tests

The condition bit testing is specified in the

conditional branch statement (BRANCH IF CB

SET). The hardware maintains the current

status of the condition bit until another instruc­

tion is executed that alters, or resets, it.

The executable statements provided in the

Assembler language are discussed in functional

groupings in the following paragraphs.

3, 1. 1 Arithmetic Statements

The source language for the PTS-100

Assembler provides six statements that perform

arithmetic computations:

Add (ADD)

Add Accumulator to Memory (ACM)

Add Immediate (ADI)

Add One to Memory (AOM)

Shift Right One, Arithmetic (SRO)

Subtract (SUB)

These statements, their permissible for­

mats, and the effects of their use are described

individually below,

3. 1 .. 1. 1 Add Statement (ADD). The ADD state -

ment specifies that the memory word specified in

the operand field is to be added to the value cur -

rently in the accumulator, and the result of

the addition is to be, stored in the accumulator.

The acceptable formats of the ADD source state -

ment are presented in the following diagram.

LABEL OP CODE OPERAND/COMMENTS FIELD J SEQUENCE
FIELD FIELD NUMBER FIELD

(label) Symbolic tag
(xxxxxxxx) ,Xl Literal

,X2
'ADD ('N)'

Absolute address) (,L) t.; (Comments)

*

'--
Expression

L.... r i
COL COL

1 6

At assembly time, the Assembler generates

either a short or long machine instruction with a

machine command code of 10 in the op code field,

and the displacement of the memory word in the

operand field.

At program run time, execution of the ADD

t
COL
73

machine instruction causes the specified memory

word to be accessed, its value to be added to the

value in the accumulator, and the resultant value

to be stored in the accumulator. If the addition

operation causes an arithmetic overflow, the

hardware condition bit is set to one; otherwise,

the condition bit is reset to zero.

2: 3-2

3. 1. 1. 2 Add Accumulator to Memory Statement

(ACM). This statement specifies that the current

value in the accumulator is to be added to the

contents of the memory word specified as the

operand, and the result is to be stored in memory

word. The ACM source statement format is

presented in the following diagram.

LABEL OP CODE OPERAND/COMMENTS FIELD I SEQUENCE
FIELD FIELD NUMBER FIELD

(label) Symbolic tag
(xxxxxxxx)

,Xl Literal

L
•ACMc~·

,XZ < Absolute address) (. L) (:.(Comments)

*
Expression

........
f T

COL COL
1 6

At assembly time, the Assembler generates

either a short or long machine instruction with

the machine command code 30 in the op code field

and the displacement of the memory word in the

operand field.

At program run time, execution of the ACM

machine instruction causes the specified memory

word to be accessed, the current value of the

accumulator to be added to it, and the result of

the addition to be stored in the memory word.

The current value of the accumulator is not

modified. If no carry is generated by the addition

operation, the hardware condition bit is set;

otherwise, the condition bit is reset to zero.

3. 1 . 1. 3 Add Immediate Statement (ADI). This

statement specifies that a value is to be

combined algebraically with the value in a

specific register, and the resultant value is to be

stored in the register. That is, the Add Imme­

diate source statement requires a specially for­

mated two-element operand, as follows:

•

•

f
COL
73

Element 1 specifies the register to be used in

in the Add Immediate operation, where:

AC = accumulator

PC = program counter

XI = index register 1

XZ = index register 2

Element 2 specifies the value to be algebra­

ically added to the specified register. The

immediate value may be absolute (coded in

hexadecimal, decimal, or octal notation) or

may be a symbolic tag whose address becomes

the immediate value.

The operand field may optionally contain the

characters , L following the immediate value to

specify that the long machine instruction format

is to be used by the Assembler. The elements

in the operand field of the source statement are

separated by commas, as illustrated in the

following diagram.

LABEL OP CODE OPERAND/COMMENTS FIELD J SEQUENCE
FIELD FIELD NUMBER FIELD

(label)

...._
f
L

T
COL

I
COL

6

t:. ADI/l

<

AC, value
(xxxxxxxx)

PC, value

XI, value } (. L) t:. (Comments)

XZ, value

f
COL
73

2: 3-3

At assembly time, the Assembler generates

either a long or short machine instruction with

the command code 5 in the op code field and the

immediate operand in the operand field.

At program run time, execution of the short

form of the ADI machine instruction causes the

byte operand to be treated as a sign plus 7 -bit

magnitude. The 7 -bit field is added to the value

in the register if the sign is positive (i.e., O) or

subtracted from the register if the sign is neg­

ative (i.e., 1). Note that the 7 bit field is

unshifted when combined with the register data.

Execution of the long format of the ADI

machine instruction causes the 16-bit operand

(i.e., the second word of the machine instruc­

tion) to be added to the value in the register.

Negative operands are represented in two's

complement form in the long instruction.

If the first element of the ADI source operand

field specified the accumulator (AC), the hard­

ware condition bit is set when an arithmetic over -

flow condition occurs. If another register is

specified (i.e., PC, XI, XZ) as the first element

of the operand field, the condition bit is set when

no carry is generated as a result of the ADI

instruction execution. Otherwise the condition

bit is res et to zero.

3. 1 • 1 .4 Add One to Memory Statement (AOM).

This statement specifies that the contents of the

memory word specified as the operand is to be

incremented by one (in the Least Significant Bit).

The AOM source statement format is presented

in the following diagram.

LABEL OP CODE
OPERAND/COMMENTS FIELD J SEQUENCE

FIELD FIELD NUMBER FIELD

(label) O AOM(,NlO Symbolic tag

L
,Xl

, xz ~ Absolute address

*
Expression

...._
r i

COL COL
I 6

At assembly time, the Assembler generates

either a short or long machine instruction with

the command code 31 in the op code field and the

effective address of the memory word in the

operand field.

At program run time, execution of the AOM

machine instruction causes the specified memory

word to be accessed, and its value to be incre -

mented by one. The hardware condition bit is

set if no carry was generated by the addition

(xxxxxxxx)

> (, L) t. (C ornments)

t
COL
73

operation; otherwise the condition bit is reset to

zero.

3. 1. 1. 5 Shift Right One, Arithmetic Statement

(SRO). This statement specifies that the value

in the accumulator is to be shifted one bit posi­

tion to the right and the sign bit is to be retained;

the right-most bit is lost.

As shown in the following diagram, no

operand is specified in the SRO source statement.

The programer may optionally specify a label,

comments, and sequence number field.

2: 3-4

LABEL OP CODE
OPERAND/COMMENTS FIELD J SEQUENCE

FIELD FIELD NUMBER FIELD

(label)

~L
i T

COL
1

COL
6

t::,SRO t::, (Comments)

At assembly time, a 16- bit word is

generated for use by the CPU when the SRO

instruction is executed. At execution time, the

value currently in the accumulator is shifted

right one bit position.

(xxxxxxxx)

f
COL
73

3. 1. 1. 6 Subtract Statement (SUB). The sub­

tract statement specifies that the memory word

specified in the operand field is to be subtracted

from the contents of the accumulator, and the

difference is to be stored in the accumulator •.

The Subtract statement format diagram follows.

LABEL OP CODE OPERAND/COMMENTS FIELD I SEQUENCE
FIELD FIELD NUMBER FIELD

(label)

··~er
Symbolic tag

(xxxxxxxx)
,Xl Literal

L ,X2 Absolute address) (, L) !:::, (Comments)

*
Expression

..._
i T

COL COL
1 6

At assembly time, the Assembler generates

either a short or long machine instruction with

the command code 14 in the op code field and the

displacement of the memory word in the operand

field.

At program run time, execution of the Sub­

tract instruction causes the specified memory

word to be accessed, its value to be subtracted

from the value in the accumulator, and the re -

sultant difference stored in the accumulator. If

the subtraction operation causes an arithmetic

overflow condition, the hardware condition bit is

set to one; otherwise it is reset to zero.

f
COL
73

3. 1. 2 Branch Statements

The source language for the PTS-100

Assembler provides two conditional and one

unconditional branch statements to effect trans -

fers of control within the executable program,

as follows:

Branch if Accumulator Minus (BRM)

Branch if Condition Bit Set (BCB)

Jump (JMP)

These statements, their permissible

formats, and the effects of their use are de­

scribed individually below.

2: 3-5

3. 1. Z. 1 Branch If Accumulator Minus State -

ment (BRM). This statement specifies that the

program execution is to branch to the location

specified by the operand if the value in the ac -

cumulator is a negative number (i.e., if the

Most Significant Bit = 1). The BRM source

statement format is presented below.

LABEL OP CODE OPERAND/COMMENTS FIELD I SEQUENCE
FIELD FIELD NUMBER FIELD

(label)
l BRM(,Nl; Symbolic tag

L
,Xl

,XZ ~ Absolute address

*
Expression

'--
1 i

COL COL
1 6

At assembly time, the Assembler generates

either a long or short machine instruction with

the command code 3 in the op code field and the

displacement of the address to which control is

to branch in the operand field.

At execution time, the most significant

bit (MSB) in the accumulator value is tested. If

it is 1 (minus), the branch address is placed in

the program counter and the transfer of control

takes place, If the MSB is 0 (positive) the next

sequential program instruction is executed.

(xxxxxxxx)

) (, L) t:, (Comments)

f
COL
73

3. 1. Z. Z Branch If Condition Bit Set Statement

(BCB). This statement tests the hardware

condition bit (CB) after the execution of a

machine instruction that may have set the CB to

indicate one of the following:

Arithmetic overflow

No carry generated

The logical AND operation result is zero

True results of comparison tests

The BCB source statement format is pre -

sented below.

LABEL OP CODE OPERAND/COMMENTS F'.:l;"'.D I SEQUENCE
FIELD FIELD NUMBER FIELD

(label)

'-- L
1 i

COL
1

COL
6

;.BCB(,N r
,Xl

,XZ <

·····
Symbolic tag (xxxxxxxx)

Absolute address > (, L) t:, (Comments)

*
Expression

f
COL
73

Z: 3-6

At assembly time, the Assembler generate-s

either a short or long machine instruction with

the command code 2 in the op code field and the

effective address to which control is to transfer

in the operand field.

When the BCB instruction is executed, the

condition bit is tested to determine whether it is

equal to one. If so, the branch address is placed

in the program counter, and the transfer of con­

trol takes place. If the CB is not set, the next

sequential program instruction is executed.

3. 1. 2. 3 Jump Statement (JMP). This state -

ment specifies an unconditional branch in program

execution. The Jump statement format is

diagramed below.

LABEL OP CODE OPERAND/COMMENTS FIELD l SEQUENCE
FIELD FIELD NUMBER FIELD

(label) Symbolic tag
(xxxxxxxx)

- ,Xl

~L
6 JMP('N r

,X2 ~ Absolute address) (. L) t:, (Comments)

r
COL

I

f
COL

6

*
Expression

At assembly time, the Assembler generates

either a short or long instruction with the

- command code 0 in the op code field and the

effective address to which control is to transfer

in the operand field.

When the Jump machine instruction is exec­

uted, the branch address is placed in the program

counter and execution control jumps to the

specified point.

3. 1. 3 Compare Statements

The PTS -100 Assembler source language

provides two statements to specify comparative

testing of the current value of the accumulator

f
COL
73

against the value of memory words, as follows:

•

•

Compare for Accumulator Less than

Memory Word (CAL)

Compare for Not Equal (CNE)

These statements are discussed in detail in the

following paragraphs.

3. 1. 3. l Compare Accumulator Less Than

Word Statement (CAL). This statement specifies

comparative testing of the current value in the

accumulator with the value of the memory word

specified by the operand to determine whether

the magnitude of the accumulator value is less

than that of the operand value. The CAL state -

ment format is diagramed below.

LABEL OP CODE OPERAND/COMMENTS. FIELD J SEQUENCE
FIELD FIELD NUMBER FIELD

(label) t:i CAL(,N r Symbolic tag (xxxxxxxx)

L
,Xl Literal

- ,X2 Absolute address
) (, L) t:, (Comments)

*
Expression .._

r f f
COL COL COL

1 6 73

2: 3-7

At assembly time, the Assembler generates

either a long or short machine instruction with

the command code 17 in the op code field and the

qisplacement of the memory word value in the

operand field.

At execution time, the value currently

stored in the accumulator is compared with the

specified memory word value. If the magnitude

of the accumulator value is less than the magni-

tude of the memory word, the hardware condi -

tion bit is set to one; otherwise the CB is reset.

3. 1. 3. 2 Compare For Not Equal Statement

(CNE). This statement specifies that a "not

equal" comparison is to be made with the current

value of the accumulator and the value of the

memory word specified by the operand. The

format of,the CNE statement is diagramed below.

LABEL OP CODE
OPERAND/COMMENTS FIELD I SEQUENCE

FIELD FIELD NUMBER FIELD

(label) 'CNE(,N) Symbolic tag

L
, Xl Literal

,X2 Absolute address

*
Expression

,__
i t

COL COL
1 6

At assembly time, the Assembler generates

either a short or long machine instruction with

the command code 16 in the op code field and the

displacement value of the memory word in the

operand field.

At execution time, the specified memory

word is accessed and compared with the value

stored in the accumulator. ·If the two values are

not equal, the hardware condition bit is set to

one; otherwise it is reset.

3. 1. 4 Load Statements

There are six source statements that provide

assembly language programers with the facility

for loading data values or addresses into special

registers:

(xxxxxxxxl

) (,L) 6 (Comments)

r
COL
73

Load Address in Index Register 2

Load Byte

Load Immediate

Load Index Register 1

Load Index Register 2

Load Word

These statements, their permissible formats,

and the effects of their use are discussed in

detail on the following pages.

3.1. 4. 1 Load Address In Index Register 2

Statement (LAX2). This statement specifies

that the address of the operand is to be placed

in index register 2. The LAX2 statement format

is diagramed below.

2: 3 -8

LABEL OP CODE OPERAND/COMMENTS FIELD l SEQUENCE
FIELD FIELD NUMBER FIELD

(label) Symbolic tag
(xxxxxxxx)

, XI

~L
ALAXTN)'

, xz ~ Absolute address) (, L) r:, (Comments)

f
COL

1

t
COL

6

*
Expression

At assembly time, the Assembler generates

a long or short machine .instruction with the

command code 8 in the op code field and the dis -

placement value in the operand field.

At execution time, the actual address of the

operand is computed and loaded into index

register 2.

f
COL
73

3. 1. 4. 2 _Load Byte Statement (LDB). This

statement specifies that a data value one byte

(8 bits) in length is to be retrieved from the

memory location specified by the operand,

stored in the right-hand half of the accumulator,

and that the left-hand half of the accumulator is

to be cleared. The LDB source statement

format is diagramed below.

LABEL OP CODE OPERAND/COMMENTS FIELD l SEQUENCE
FIELD FIELD NUMBER FIELD

(label) Symbolic tag (xxxxxxxx)
,Xl Literal

~L
ALDB ('N r

,XZ Absolute address) (. L) r:, (Comments)

f
COL

1

t
COL

6

*
Expression

At assembly time, the Assembler generates

either a short or long machine instruction with

the command code 19 in the op code field and the

displacement of the byte value in the operand field

field.

At execution time, the byte value stored at

the effective address is loaded into the right-hand

portion of the accumulator and the left-hand

portion is zeroed.

3.1.4. 3 Load Immediate Stat.ement (LDI).

This statement specifies that the value

specified as the second operand is to be loaded

f
COL
73

into the register specified as the first operand.

That is, the LDI source statement requires a

specially formated two-element operand, as

follows:

Element l specifies the register into which

the numeric value is to be loaded.

Element 2 specifies the value to be loaded

into the register specified as the first

operand. The immediate value may be

absolute (coded in hexadecimal, octal, or

decimal notation) or may be a symbolic tag

whose address becomes the immediatevalue.

2: 3-9

The operand field may optionally contain

the characters , L following the immediate value

to specify that the long machine instruction

format is to be used by the Assembler. The

elements in the operand field of the LDI source

statement are separated by commas, as .illustra­

ted in the following diagram.

LABEL OP CODE OPERAND/COMMENTS FIELD I SEQUENCE
FIELD FIELD NUMBER FIELD

(label) t:,LDI t:, AC,value

L
PC, value

<: X 1, value

X2, value

"--'

i i
COL COL

1 6

At assembly time, the Assembler generates

either a long or short machine instruction with

the command code 4 in the op code field. If a short

instruction is generated, the immediate operand

value appears in the operand field of the instruction.

In a long instruction, the immediate operand value

appears in the second word of the instruction.

At program run time, execution of the short

form of the LDI instruction causes the byte

operand to be placed in the right half of the

(xxxxxxxx)

} (.L) !::. (Comments)

r
COL
73

specified register and the left half to be zeroed.

Execution of the long form of the LDI instruc­

tion causes the word operand to be placed in the

specified register.

3. 1. 4. 4 Load Index Register 1 Statement (LXl).

This statement specifies that the value of the

operand is to be loaded into index register 1.

The format of the LXl statement is diagramed

below.

LABEL OP CODE OPERAND/COMMENTS FIELD I SEQUENCE
FIELD FIELD NCMBER FIELD

(label) 6~1(,N)' Symbolic tag

_L
,Xl Literal

, X2 <: Absolute address

*
Expression

i
COL

i
COL

I 6

At assembly time, the Assembler generates

a long or short machine instruction with the

command code 20 in the op code field and the

displacement of the memory word to be loaded

(xxxxxxxx)

} (. L) !::. (Comments)

r
COL
73

in the operand field.

At execution time, the specified value is

loaded into index register 1.

2: 3-10

3. 1. 4. 5 Load Index Register Z Statement (LXZ).

This statement specifies that the value of the

operand is to be loaded into index register Z.

The format of the LXZ is presented below.

LABEL OP CODE OPERAND/COMMENTS FIELD I SEQUENCE
FIELD FIELD NUMBER FIELD

(label)
.~z ('N r

L
,Xl

,XZ ~

L-' r i
COL

1
COL

6

Symbolic tag

Literal

Absolute address

*
Expression

At assembly time, the Assembler generates

a long or short machine instruction with the

command code Zl in the op code field and the

displacement of the memory word to be loaded

in the operand field.

At execution time, the specified value is

(xxxxxxxx)

} (, L) t::. (Comments)

t
COL
73

loaded into index register Z.

3. 1. 4. 6 Load Word Statement (LDW). This

statement specifies that the value of the operand

is to be loaded into the accumulator. The format

of the LDW statement is diagramed below.

LABEL OP CODE OPERAND/COMMENTS FIELD f SEQUENCE
FIELD FIELD NUMBER FIELD

(label)

_L
r i

COL
1

COL
6

•LDTN r Symbolic tag

, Xl Literal

.xz ~ Absolute address

*
Expression

At assembly time, the Assembler generates

either a short or long instruction with the

command code 18 in the op code field and the

dis placement of the value to be loaded in the

(xxxxxxxx)

) (, L) t::. (Comments)

t
COL
73

operand field.

At execution time, the specified value is

loaded into the accumulator.

Z: 3-11

3. 1 . 5 Store Statements

There are four source statements that pro­

vide assembly language programers with the

facility for storing data values or addresses in

memory locations:

Store Byte

Store Index Register 1

Store Index Register 2

Store Word

These statements, their permissible for­

mats, and the effects of their use are discussed

in detail on the following pages.

3.1. 5. 1 Store Byte Statement (STB). This

statement specifies that the right-hand byte of

the data value in the accumulator is to be stored

in the byte location of the memory word specified

by the operand. The format of the Store Byte

statement is diagramed below.

LABEL OP CODE OPERAND/COMMENTS FIELD 1 SEQUENCE
FIELD FIELD NUMBER FIELD

(label) Symbolic tag
(xxxxxxxx)

'x 1

L
;STB(,N r

,X2 Absolute address } (.L) L (Comments)

*
Expression

'--

t i
COL COL

I 6

At assembly time, the Assembler generates

either a short or long machine instruction with

the command code 28 in the op code field and the

displacement of the value to be stored in the

operand field. The least significant bit of the

effective address indicates whether the byte value

is to appear in the left-hand portion of the memory

word (i.e., I.SB = 0) or the right-hand portion

(I.SB = 1).

t
COL
73

At execution time, the right-hand byte of

the accumulator is stored in that portion of the

memory word specified by the effective address

of the machine instruction.

3.1.5.2 Store Index Register 1 Statement(SXl).

This statement specifies that the current value in

index register 1 is to be stored at the memory

location specified by the operand. The format

of the statement is presented below.

LABEL OP CODE OPERAND/COMMENTS FIELD 1 SEQUENCE
FIELD FIELD NUMBER FIELD

(label)
;SXl ('N r Symbolic tag

(xxxxxxxx)

L
,XI

,X2 Absolute address } (. L) L (Comments)

*
Expression

'--

t
COL

r
COL

t
COL

1 6 73

2: 3-12

At assembly time, the Assembler generates

a long or short machine instruction with the

command code 26 in the op code field and the

displacement at which the value is to be stored

in the operand field.

When the SXl instruction is executed, the

value in index register 1 is stored in the memory

location specified by the effective address.

3. 1. 5. 3 Store Index Regititer 2 Statement (SX2).

This statement specifies that the current value in

index register 2 is to be stored at the memory

location specified by the operand. The per­

missible format of the statement is presented

below.

LABEL OP CODE OPERAND/COMMENTS FIELD l SEQUENCE
FIELD FIELD NUMBER FIELD

(label)

~L
i i

COL
1

COL
6

;SXZ ('N r Symbolic tag

,Xl

,X2 < Absolute address

*
Expression

At assembly time, the Assembler generates

either a long or short machine instruction with

the command code 27 in the op code field and the

displacement at which the value is to be stored

in the operand field.

At execution time, the current value of

index register 2 is stored in the specified

(xxxxxxxx)

) (, L) t::. (Comments)

f
COL
73

memory location.

3. 1. 5. 4 Store Word Statement (STW). This

statement specifies that the current value in

the accumulator is to be stored in the memory

word specified· in the operand field. The Store

Word source statement format is presented

below.

LABEL OP CODE OPERAND/COMMENTS FIELD I SEQUENCE
FIELD FIELD NUMBER FIELD

(label) Symbolic tag (xxxxxxxx)
,Xl

L
;STW ('N y

,X2 < Absolute address) (, L) !'::.(Comments)

*
Expression

I.....'

i i
COL COL

1 6

At assembly time, the Assembler generates

a long or short machine instruction with the

command code 24 in the op code field and the

displacement at which the current value of the

f
COL
73

accumulator is to be stored in the operand field.

At execution time, the current value of the

accumulator is transferred to the effective

address.

2: 3-13

3. 1. 6 Logical Statements

The PTS-100 Assembler provides the follow­

ing two statements for logical combination of

accumulator and memory word data values:

AND statement

Exclusive OR statement

These statements, their permissible for-

n.c:.ts, and the effects of their use are discussed

in detail on the following pages.

3. 1. 6. 1 AND Statement (AND). This statement

specifies that the current value in the accumula­

tor is to be ANDed with the value specified by the

operand and the result is to be placed in the ac­

cumulator. The AND source statement format is

diagramed below.

LABEL OP CODE OPERAND/COMMENTS FIELD 1 SEQUENCE
FIELD FIELD NUMBER FIELD

(label) Symbolic tag
(xxxxxxxx)

, Xl Literal

L
OANlN r

,X2 ~ Absolute address } (. L) 6 (Comments)

..._
t

COL
i

COL
6

*
Expression

At assembly time, the Assembler generates

either a long or short machine instruction with the

command code 12 in the opcode field and the dis­

placement of the memory word in the operand field.

At execution time, the bits of the accumulator

and of the memory word are ANDed. Both bits

must equal 1 to produce a 1- bit setting in the re­

sultant value, as illustrated below.

Current Accumulator Value: 01011101 10010011
Memory Word Value: 00100000 11101101
ANDed Resultant Value: 00000000 10000001

t
COL
73

The resultant value is stored in the ac cumu -

lator. If the resultant value of the AND opera­

tion is not equal to zero, the hardware condition

bit is set to one; otherwise it is reset.

3. 1. 6. 2 Exclusive OR Statement (XOR). This

statement specifies that the current value in the

accumulator is to be exclusive ORed with the

value specified by the operand and the result is

to be placed in the accumulator. The XOR

source statement format is diagramed below.

LABEL OP CODE OPERAND/COMMENTS FIELD l SEQUENCE
FIELD FIELD NUMBER FIELD

(label) ;XOR(r Symbolic tag
(xxxxxxxx)

L
, Xl Literal

L_ ,X2 Absolute address } (,L) 6 (Comments)

*
Expression

....._
t i t

COL COL COL
1 6 73

2: 3-14

At assembly time, the Assembler generates

either a long or short machine instruction con­

taining the command code 11 in the op code field

and the displacement of the memory word value

in the operand field.

At execution time, the bits of the current

accumulator value and the memory word value

are XORed to determine the resultant value,

where one bit but not both must be one to produce

a 1 -bit setting in the resultant value, as illu­

strated below.

Current Accumulator Value: 01011101 10010011

Memory Word Value: 00100000 11101101

XORed Resultant Value: 01111101 01111110

The resultant value is stored in the

accumulator.

3. 2 Nonexecutable Statements

Nonexecutable statements are those that do

not result in Assembler-generated machine in­

structions. That is, they are not executed by

the CPU, but rather establish data values and

reserve storage areas for use by the executable

object program. For purposes of discussion,

these statements are grouped as follows:

•

•

•

Constant assignment statements, which

are used to establish constant data values

and address constants.

Symbol defining statements, which assign

values to symbols or identify symbols used

or referenced by the program segment.

Storage area assignment statements, which

reserve storage areas for literal pools,

absolute addresses, I/O data buffers and

the executable program coding.

3. 2. 1 Constant Assignment Statements

Seven types of constants maybe defined in

PTS-100 Assembler source language:

Address Constants
Concatenated Integer Constants
Decimal Constants
Hexadecimal Constants
Octal Constant
Text (alphanumeric) Constants
TEX7 (7-bit.alphanumeric) Constants

The constant assignment statement formats

and us age are described in the following para -

graphs.

3. 2. 1. 1 Address Constant Statement (ADC).

This statement defines an Address Constant.

The ADC statement format is diagramed below.

LABEL OP CODE OPERAND/COMMENTS FIELD 1 SEQUENCE
FIELD FIELD NUMBER FIELD

(label) 6 ADC /';. Symbolic tag

~L
"< Absolute address

*
Expression

r T
COL COL

1 6

There is one restriction on the use of a

symbolic tag in the operand field 'of the ADC

statement: if the operand is an external

reference symbol (i.e., a symbol that is defined

in a program segment other than the current one

(xxxxxxxx)

} /';.(Comments)

f
COL
73

as described in the EXREF statement discussion),

it must be the only element in the operand field.

That is, it may not appear within an expression

formed by combining other operand elements

with the plus (+) or minus (-) sign.

2: 3-15

3. 2. l. 2 Concatenated Integer Constant State­

ment (CAT). This statement is used to construct

a concatenated integer cons.tant one word (16 bits)

in length, based on the values specified in the

operand field. The format of the CAT source

statement is presented below. However, the

CAT statement is not implemented in the native

version of the PTS-100 Assembler,

LABEL OP CODE OPERAND/COMMENTS FIELD SEQUENCE
FIELD FIELD NUMBER FIELD

(label) t:. CAT t:. expression1,
(xxxxxxxx)

L
expression t:. (comments) where each n
expres.sion is written in the format:

absolute value:bits

"--' r
COL

1

i
COL

6

As shown in the diagram above, the operand

field may contain one or more expressions, each

of which is written in the format

Absolute value:bits

where the absolute value may be expressed as

one of the following:

A symbolic tag previously assigned an

absolute value via the EQUate statement

An octal, hexadecimal, or decimal value

An expression formed by combining any

of the above with the plus (+) or minus (-)

sign

and where bits is a decimal number, from 1 - 16,

specifying the number of bits the absolute value

is to· occupy in the 16 -bit concatenated word. If

a string of expressions is specified in the CAT

statement operand field, the total number of bits

must not be greater than 16. If fewer than 16

bits is specified for a concatenated word, the

final value of the word is left-justified, and the

right-most bit positions are zero filled.

Following are examples of CAT source

statements, and the resulting word values

they produce.

t
COL
73

Example 1:

CAT X 1AB 1:8, 12:8

The expression X'AB' :8 specifies that the hexa­

decimal value AB is to appear in an 8-bit field.

The expression 12:8 specifies that the decimal

value 12 is to occupy an 8-bit field in the con­

catenated word. The resultant integer constant

constructed by this statement is shown below.

binary value

hexadecimal value

Example 2:

FIVE EQU 5

SIX EQU 6

A B 0

CAT FIVE-1:3,SIXt4:7, 0'77':6

c

The first two statements EQUate absolute values

to the symbolic tags FIVE and SIX. The CAT

statement specifies that the value FIVE -1 is to

appear in. a 3 -bit field in the left-most portion of

the concatenated constant word, the value SIX+4

is to appear in the next 7 -bit field, and the octal

value 77 is to appear in the right-most 6-bit

portion of the word. The resultant integer con­

stant is shown below.

binary value

hexadecimal value 8 2 B F

2: 3-16

3. Z. 1. 3 Decimal Constant Statement (DEC).

This statement is used to define one or more

16-bit decimal constants. The format of the

statement is shown below.

LABEL OP CODE OPERAND/COMMENTS FIELD
SEQUENCE

FIELD FIELD NUMBER FIELD

(label) ti DEC ti { ±nnnnn }
(comment~ (xxxxxxxx) ti

L
L±nnnnn,±nnnnn, ... ,±nnnnn

where n's = decimal digits

....__
t i

COL COL
1 6

One or more decimal constant values may

appear in the operand field. li two or more

constant values are specified, they must be

separated by commas. The magnitude of any

given constant value must be less than 65535.

Constant values may be preceded by the plus (+)

or minus (-) signs. If a negative decimal value

is specified, the two's complement of the binary

representation of the value appears in the 16-bit

memory word. The decimal constant value is

right-justified in the memory word, with the left­

most unused portion zero-filled. If a label

f
COL
73

appears in the label field of a DEC statement in

which a string of constant values is specified,

the label will become the symbolic tag of the

first value in the operand field. That is, strings

of values are assigned to consecutive storage

locations, with the tag associated with the first

{lowest) memory address.

3. Z. 1. 4 Hexadecimal Constant Statement {HEX).

This statement is used to define one or more

16-bit hexadecimal constant values, as shown in

the following diagram.

LABEL OP CODE OPERAND/COMMENTS FIELD I SEQUENCE
FIELD FIELD NUMBER FIELD

(label) ti HEX ti nnnn
(xxxxxxxx)

L
nnnn,nnnn, ... ,nnnn

~ > t::. (Comments)

where n's=
hexadecimal digits

L-

t i
COL COL

1 6

In the HEX statement, one or more hexa -

decimal constant values may be specified, each

from one to four ·digits in length. If two or more

constant values are specified, they are separated

by commas. If a label is specified for a state -

ment in which a string of values is specified, the

label becomes the symbolic tag of the first value

f
COL
73

in the operand field. That is, strings of values

are assigned to consecutive locations, with the

symbolic tag associated with the first (lowest)

memory address. If less than four digits are

specified in a given value, the binary represen­

tation of the value is right-justified, with the

left-most unused bit positions zero-filled.

Z: 3-17

3. 2. 1. 5 Octal Constant Statement (OCT). The

OCT statement is used to define one or more 16 -

bit octal constant values, as shown in the follow­

ing diagram.

LABEL OP CODE OPERAND/COMMENTS FIELD 1 SEQUENCE
FIELD FIELD NUMBER FIELD

(label) /::,.OCT /::,. nnnnnn
(xxxxxxxx)

L
nnnnnn, • ..• , nnnnnn

.__
r

COL
1

f
COL

6

'<

where n's=

octal digits

As shown in the diagram above, one or more

octal constant values may be specified, each

from one to six digits in length. If a label is

specified for a statement in which a string of

values is specified, the label becomes the sym­

bolic tag of the first value in the operand field.

If less than six digits are specified in a given

octal constant value, the binary representation

of the value is right~justified in the memory

word, with the left-most unused bit positions

} /::,.(Comments)

f
COL
73

zero-filled. If six digits are specified, the two

high-order bits of the first digit are truncated.

3. 2. 1. 6 Text Constant Statement (TEXT). This

statement is used to define an alphanumeric

constant from one to forty characters in length.

The alphanumeric constant value appears in the

operand field, as shown in the format diagram

below.

LABEL OP CODE OPERAND/COMMENTS FIELD T SEQUENCE
FIELD FIELD NUMBER FIELD

(label) /::,.TEXT/::,. 'alphacon' /::,.(comment) (xxxxxxxx)

...._ L r f
COL

1
COL

6

The alphanumeric constant value must be

enclosed in single quotation marks, which !!ore

used as delimiters. The constant value may

contain any characters from the PTS-1 00

character set (see Appendix A) except the single

quotation marks. If quotation marks are to

appear within the alphanumeric constant value,

the programer uses double quotation marks,

which will be replaced by the single quotation

marks when the constant value is assembled.

f
COL
73

Alphanumeric constants must start on a word

boundary.

Alphanumeric constants are stored as 8-bit

ASCII characters (i.e., two characters per

memory word). If the constant value contains an

uneven number of characters, the last character

will appear in the left-most byte of the last

memory word, and the right-most byte will be

blank-filled.

2: 3-18

3. 2. 1. 7 Text Constant (7-bit) Statement (TEX7).

This statement is used to define an alphanumeric

constant from one to forty characters in length.

The alphanumeric constant value appears in the

operand field, as shown in the format diagram

below.

LABEL I OP CODE
OPERAND/COMMENTS FIELD

SEQUENCE
FIELD FIELD NUMBER FIELD

(label) 6. TEX7 6. 1alphacon1 6. (comment) (xxxxxxxx)

'-- LJ
+ +

COL COL
1 6

The alphanumeric constant value must be

enclosed in single quotation 1Tlarks, which are

used as delimiters. The constant value may

contain any characters from the PTS-100

character set (see Appendix A) except the single

quotation mark. If quotation marks are to appear

within the alphanumeric constant value, the

programer uses double quotation marks, which

will be replaced by the single quotation mark

when the constant value is assembled. Alpha•

numeric constants must start on a word boundary.

+
COL

73

Each character in the alphanumeric constant

is treated as a 7-bit ASCII character and stored

as an 8-bit character, with the most significant

bit (MSB) set to 0 (i.e., two characters per

memory word). If the constant value contains an

uneven number of characters, the last character

will appear in the left-most byte of the last

memory word, and the right-most byte will be

blank-filled,

2: 3-lSA/B

3. 2. 2 Symbol Defining Statements

Three source statements are used to define

or identify symbols in the PTS-100 assembly

language:

• The Equate statement is used to assign an

absolute value to a symbol.

•

•

The External Definition statement informs

the Assembler that a defined symbol in one

program segment is to be ·referenced in

another program segment.

The External Reference statement informs

the Assembler that a referenced symbol in

one program segment is to be defined in

another program segment.

3. 2. 2. 1 Equate Statement (EQU). This state­

ment is used to as sign an absolute address value

.to a symbol. The symbol must appear in the

label field of the source statement, and the

operand field must contain the absolute address

value, expressed as one of the following:

The self-referencing indicator (*)

An absolute decimal, hexadecimal, or

octal number

Another symbol, previously assigned an

absolute number value in another EQUate

statement •

The format of the Equate statement is

presented below.

LABEL OP CODE OPERAND/COMMENTS FIELD I SEQUENCE
FIELD FIELD NUMBER FIELD

(label) A EQU A Symbolic tag (xxxxxxxx)

~L
Absolute number

r
COL

I

i
COL

6

< *

At assembly time, the operand field is

evaluated and the resulting absolute number is

assigned as the address value of the specified

symbol in the symbol table created by the

Assembler.

Each time the symbol is referenced in the

executable program, the address value is used

to locate the' associated data value.

> t:, (Comments)

t
COL
73

3, 2. 2. 2 External Definition Statement (EXDEF).

This statement is used to inform the Assembler

that the symbol defined in the immediately pre -

ceding or following source statement in the pro­

gram segment currently being assembled is to

be referenced in some other program segment

to which the current segment will be linked at

load time. The EXDEF statement format is

presented below.

2: 3-19

OP CODE
OPERAND/COMMENTS FIELD SEQUENCF

FIELD NUMBER FIELD

!::,. EXDEF !::,. Symbolic tag /::,. (comments)
(xxxxxxxx)

'--'

t
L

i
COL COL

I 6

Note that the label field in the EXDEF state -

ment is not used. That is, a label specified for

this statement will be ignored by the Assembler.

The EXDEF op code may begin in any column

other than column 1, which must be blank.

At assembly time, the Assembler places

the named symbol and its address value in the

symbol table. The symbol and its address are

subsequently written on the relocatable loading

file. At load time, the relocating loader re-

f
COL
73

solves the address of the symbol when it is

referenced in another program segment.

3. 2. 2. 3 External Reference Statement

(EXREF). This statement informs the Assem­

bler that a symbol referenced in the program

segment currently being assembled is defined

in some other program segment to which

the current segment will be linked at load time.

The EXREF statement format is diagramed

below.

OP CODE
OPERAND/COMMENTS Fl£LD SEQUENCE

FIELD NUMBER FIELD

t::,.EXREF !::,. Symbolic tag !::,.(comments)
(xxxxxxxx)

'--'

t
L

i
COL COL

6 I

Note that the label field in the EXREF state -

ment is not used. That is, a label specified for

this statement will be ignored by the Assembler.

The EXREF op code may begin in. any column

other than column 1, which must be blank.

At assembly time, the Assembler places

f
COL
73

the symbol in the symbol table. The symbol and

the addresses referencing it are written on the

object file for resolution by the Absolute/

Relocating Loader. At load time, the address of

the symbol is resolved by the Loader when the

current program segment is linked to the

program segment in which the symbol is defined.

2: 3-20

3. 2. 3 Storage Assignment Statements

The storage assignment statements allow the

programer to establish memory storage locations

for source coding, literal values, and buffer or

data areas. There are five storage assignment

statements:

•

•

•

Literal Origin statement, which establishes

the storage areas for blocks of literal data

values.

MOD statement, which causes the instruction

following it to be allocated to the storage

location that is the next higher multiple of

a given power of two.

Origin statement, which specifies the

beginning storage location at which object

program loading is to begin.

•

•

Page 0 statement, which causes an absolute

addres., to be assigned to a symbol.

Reserve statement, which specifies that a

memory area is to be reserved for use as

a buffer or data storage area.

These statements are described in the following

paragraphs.

3. 2. 3.1 Literal Origin Statement (LTORG). It

is the programer' s responsibility to indicate

where literal data values are to be stored within

his program. The Literal Origin (LTORG)

statement is used to inform the Assembler that

a literal storage pool is to be set up within the

program. The LTORG statement format is

diagramed below.

OP CODE OPERAND/COMMENTS FIELD SEQUENCE
FIELD NUMBER FIELD

~L
i i

COL
I

COL
6

t;LTORG 6 (comments)

As shown above, the label field and the

operand field are not used in the LTORG state­

ment. The op code may begin in any column

after column I, which must be blank. The op

code is terminated by a blank character, after

which a comment may be specified.

When the Assembler encounters a LTORG

statement in a source program, it establishes

a literal storage area, beginning with the loca­

tion at which the LTORG statement was en­

countered and continuing through the number of

sequential locations required to store all literals

defined since the beginning of the program, or

(xxxxxxxx)

t
COL
73

since the last LTORG statement was encountered.

That is, all literal values defined prior to the

occurrence of a given LTORG statement are

assigned storage locations in the same sequential

order as their appearance in the program.

Duplicate literal values are eliminated only when

they both appear within the block of source

coding preceding a given LTORG statement.

Thus, the Assembler establishes a new literal

table each time a LTORG statement is encounter­

ed, and writes the previous literal table on an

Intermediate Text file. Therefore, redundant

entries between tables are not eliminated.

2: 3-21

3. 2. 3. 2 Mod Statement (MOD). This statement

specifies that the statement immediately follow­

ing it is to be stored in the next storage location

that is a multiple of the power of two which is

specified as its operand. The MOD statement

format is shown in the diagram below.

OP CODE OPERAND/COMMENTS FIELD SEQUENCE
FIELD NUMBER FIELD

•··

ll,MOD6

..._
f
L

i
COL

1
COL

6

deciznal number

As shown above, the label field in the MOD

statement is not used. The op code may begin

in any column after column 1, which must be

blank. The op code is terminated by a blank

character, after which the operand is specified

as a decimal number, which must be a power of

two. When the Assembler encounters this state -

ment, it locates the object coding of the state -

ment immediately following the MOD statement

6 (comments) (xxxxxxxx)

f
COL
73

at the next full-word location that is a multiple

of the value specified as the operand.

3. 2. 3. 3 Origin Statement (ORG). One ORG

statement may optionally be used as the first

statement in a source program to specify the

origin of the object program (i.e., the first

memory location at which object program loading

is to begin). The ORG statement is diagramed

below.

LABEL OP CODE OPERAND/COMMENTS FIELD SEQUENCE
FIELD FIELD NUMBER FIELD

(label) 6 ORG 6 Absolute address 6 (comments) (xxxxxxxx)

~L
f i

COL COL
6

As shown in the diagram above, the ORG

statement label is optional. The operand field of

the statement must specify the absolute address,

which must be expressed as a hexadecimal, octal,

or decimal number. If a label is defined for the

ORG statement, it is assigned the address value

of the operand.

If a program contains several segments,

only one segment (the one to be loaded first) may

f
COL
73

contain an ORG statement at its beginning. If

more than one ORG statement should appear in

a program, the duplicate statement(s) will not

be detected by the Assembler. That is, the

statements will be accepted, and unpredictable

results will occur at load time.

If no ORG statem.ent appears in a program,

object program loading will begin at location 0.

2: 3-22

3. 2. 3. 4 Page 0 Statement (PGO). The PGO

statement is used to specify that a symbolic tag

is to be assigned an absolute address when it is

used in an executable instruction. The format of

this statement is shown below.

OP CODE
OPERAND/COMMENTS FIELD SEQUENCE

FIELD NUMBER FIELD

6 PGO 6 Symbolic tag 6 (comment) (xxxxxxxx)

'-
i
L

i
COL COL

(-,

As shown above, the label field is not used

in the Page 0 statement. The op code may begin

in any column after column 1, which must be

blank. The operand field may contain one

symbolic tag of a data value defin~d in a state -

ment immediately following or preceding the

Page 0 statement. That is, the Page 0 source

statement must physically appear either immed­

iately before or after the statement in which the

value of the symbol is defined. The symbol may

be defined as the label of an EQUate statement

whose operand specifies its actual value, the

label of some other statement in the current

program, or the operand of an EXREF state -

f
COL
73

ment in the current program.

The PGO statement identifies the symbolic

tag as a reference to page O; thus when the sym­

bolic tag is used in an executable instruction,

the absolute address of the symbolic tag appears

in the operand field of the Assembler-generated

machine instruction.

3. 2. 3. 5 Reserve Statement (RESV). This

statement is used to inform the Assembler that

an area of memory is to be reserved for use as

a buffer or a data storage area. It is written in

the formats shown below.

LABEL OP CODE
loPERAND/COMMENTS FIELD

SEQUENCE
FIELD FIELD NUMBER FIELD

(label) 6 RESV 6 absolute numbers A(comment) (xxxxxxxx)

~L
RESv,xx 6

i i
COL COL

1 6

A label may optionally be specified for the

Reserve statement. If it is specified, it is

assigned the address of the first word location

of the reserved area.

f
COL
73

The op code may be written in either of the

forms:

RESV or RESV,xx

2: 3 -23

The first form specifies that a zero-filled

storage area of the byte -length specified by the

operand is to be reserved on a word boundary

in memory. The RESV, xx form specifies that

every byte location in the reserved area is to

be set to the hexadecimal value specified by xx.

The operand of the RESV statement must be

an absolute number expressed in octal, hexa­

decimal, or decimal notation, specifying the

number of bytes to be reserved. If the absolute

number is an odd number, the Assembler incre­

ments it by one (i.e., makes it even) to preserve

subsequent storage allocation on word boundaries.

Thus, the Assembler responds to the Reserve

statement request by reserving enough full

storage words to accommodate the maximum

number of bytes specified in the operand field.

3. 3 Program Control Statements

The program control statements allow the

programer to control the object program listing,

to specify the end of program assembly, and to

specify the starting address for program execu­

tion. There are four such statements in the

PTS-100 Assembler language.

•

•

•

•

The END statement, which terminates

program assembly, and optionally specifies

the starting address for program execution.

The SKIP statement, which controls the

vertical spacing of the object program

listing.

The UNLIST statement, which tells the

Assembler to suspend production of the

opj:ct program listing.

The LIST statement, which rescinds the

UN LIST statement (i.e., resumes produc­

tion of the object program listing).

These statements are individually described

below.

3. 3.1 End Statement (END)

The END statement marks the end of the

source program (i.e., terminates a given assem­

bly) and may optionally specify the starting

address of program execution (i.e., the address

of the first instruction to be executed in object

program, which is the point at which the

Absolute/Relocating Loader is to turn control

over to the executable program). The format of

the END stateme'nt is presented below.

OP CODE OPERAND/COMMENTS FIELD SEQUENCE
FIELD NUMBER FIELD

-
!c,END 6 (S~bolic ~g)

6
(xxxxxxxx)

L
~bsolute. Address

Expression

'-- t i
COL COL

6

As shown above, the label field is not used

in the END statement. The op code may begin

in any column after column 1, which must be

blank. The operand is optional in the END state -

ment. If present, it may contain any of the ele­

ments shown above. When several progiam

segments are to be individually assembled and

f
COL
73

combined into one object program, only the last

segment should contain an END card with a

starting address specified in the operand field.

That is, when the Loader loads an END state­

ment with a starting address, it places the

address· in the program counter and starts execu­

tion of the program. Hence, when the program

2: 3 -24

is to be debugged, the END statement of the

source program must not contain an execution

starting address if the Debug program is to be

loaded as the last part of the object program to

be debugged, as described in Part 3 of this

handbook.

3. 3. 2 Skip Statement (SKIP)

The SKIP statement causes the object listing

produced by the Assembler to be vertically

spaced as specified by the operand. The format

of the statement is shown below.

OP CODE OPERAND/COMMENTS FIEI D SEQUENCE
FIELD NUMBE'R FIELD

t:,.SKIP t:,.

{ :ecimal number}
(xxxxxxxx)

L '--'

f i
COL COL

I 6

The label field is not used in the SKIP state­

ment. The op code may begin in any column

after column 1, which must be blank. The oper­

and may be a decimal number from 1 - 10, spe­

cifying the number of print lines to be skipped

within a given page of the object listing, or the

valueP, specifying thattheAssembleris toskipto

the top of the next page to continue the object listing.

t
COL
73

3. 3. 3 Unlist Statement (UNLIST)

The UNLIST statement specifies that the

Assembler is to temporarily suspend the output

object listing at the point at which the UNLIST

statement is encountered. The UN LIST state -

ment is diagramed below.

OP CODE l COMMENTS FIELD l SEQUENCE
FIELD NUMBER FIELD

!>. UNLIST /::,.

L.-'

f
L

i
COL

1
COL

6

As shown above, the label and operand fields

are unused in the UNLIST statement. The op

code may begin in any column after column 1,

which must be blank. The object listing remains

suspended from the point at which an UNLIST

statement is encountered until a LIST statement

appears in the program, or until the end of the

source program.

(xxxxxxxx)

t
COL
73

3. 3. 4 List Statement (LIST)

The LIST statement rescinds the UNLIST

statement. That is, it tells the Assembler to

resume printing the object program listing.

Only the op code LIST is required in the state -

ment, beginning anywhere after column 1, which

must be blank, as shown below.

2: 3-25

OP CODE l COMMENTS FIELD I SEQUENCE
FIELD NUMBER FIELD

!::,. LIST t::,,

"--'
f
L

i
COL

1
COL

6

3. 4 Input/ Output Services

With each PTS-100 System an IOCS monitor

is available to perform the following functions:

Automatic device interrupt handling

Processing I/O requests from applications

programs.

The device interrupt handling capability is

built into the specific IOCS monitor for a given

PTS-100 when the user's system is generated.

Thus, device interrupt handling is performed

automatically for individual programs according

to the parameters and priorities defined prior to

system generation. For a description of avail­

able devices, their logical unit number identifi­

cations (LUN ID 1s}, and the interrupt priorities

as signed to them, the programer should con­

sult the system generation documentation of his

specific PTS-100 System, For description of

logical IOCS for disc see Section 3. 5 of this part.

Applications programs may request the

following basic I/O device· services from the

monitor:

Device initialization

Device opening and closing

Device input/ output actions

A common system exit at the end of a

processing job.

In all cases, a program must is sue a moni­

tor service call (i.e., a source statement with

MSC in the op code field) to signal a request for

(xxxxxxxx)

t
COL
73

monitor services. The MSC statement must be

followed immediately by a Decimal Constant

(DEC) statement whose operand is one of the

following monitor service identification codes:

0 ::: request for a. common system
EXIT

1 request to CLOSE a specific device

Z ::: request to INITialize all devices

3 ::: request for Watchdog Timer Service

4 request for channel interface controller
service

5 request for device status sensing

6 = request to OPEN a specific device

7 request to perform a specific I/O file
action (IOACT) on a specific device

11::: request to change peripheral device
addresses

Except for the EXIT request, the DEC state -

ment must be followed by an Address Constant

statement whose operand is an address within

the program to which the monitor is to return

processing control when the request has been

serviced.

The three service requests concerned with

specific devices are CLOSE, OPEN, and IOACT.

The argument lists for these requests must

specify the device to be used by passing the logi­

cal unit number identification (LUN ID) to the

IOCS monitor. In the CLOSE and OPEN requests,

the LUN ID is passed to the monitor via a con­

stant statement. In the case of the IOACT

2: 3-26

request, the LUN ID is passed to the monitor in

a programer-defined table called the file I/O

Block (FIOB), described in subsection 3. 4.1.

The FIOB is referenced in an Address Constant

statement which appears as the last argument of

the IOACT request. Associated with the FIOB is

the programer -defined Input/Output Control

Queue (IOCQ) table entry, described in detail in

subsection 3. 4. 2. The IOCQ table is used by

the monitor to queue I/O requests for particular

input/output device channels. An IOCQ table

entry is required for each IOACT request. In

the OPEN request, the starting address of the

IOCQ is given as an operand in an Address

Constant statement.

For CLOSE and OPEN requests, the last

argument must be a Reserve statement to set

up a storage word in which the monitor can

store a code indicating any error that may occur

during the attempt to OPEN or CLOSE the device.

In the case of the IOACT request, the device

error code is returned to the FIOB; as described

below.

3, 4. 1 File Input/Output Block Definition

For each input/ output service requested

from the IOCS monitor, the programer describes

the parameters af the request in a 9 -word File

Input/Output Block (FIOB), the format of which

is shown in figure Z-3.

Bits

WordO
Word 1

Word 2
Word 3

Word4

Word 5

Word6

Word 7

Word 8

0I1I 21314Jsl617 s J 9l10111 1121131141 is

(scare) ERROR CODE

MODE T FUNCTION . LOGICAL UNIT NUMBER ID

BUFFER ADDRESS (starting byte)

BYTE COUNT

TRANSLATE TABLE BA~E OR DISC ADDRESS
SEARCH TABLE BASE OR DISC ADDRESS

(Spare)

(Spare)

(Spare] LUN
exten-
sion

Figure Z-3. Format of File Input/Output
Block (FIOB)

The individual fields of the FIOB and their

significance are as follows:

Word 0: Error Code Field (8-bit field). After

the I/O request has been processed,

the roes monitor returns one of the

following codes to this' field:

Code Meaning

0 No error

1 Device not operational

2 No such LUN

3 LUN already open

4 LUN not open

5 Queue full

Word 1: This word contains three fields: the

data transfer MODE field, the device

FUNCTION field, and the LUN ID

field, .as described individually below.

MODE field (bits 0 - Z): the programer

specifies the data transfer mode to be

used by the device controller by setting

these bits to the appropriate value, as

follows:

Value

0

1

z

Transfer MODE

No Search or Translate func­

tion is to be used.

Use the Translate function

with no interrupt condition

when the MSB is on, using

the Translate Table Base

(TTB) whose address is

specified in word 4 of the

FIOB.

Not defined

3 Not defined

4 Not defined

Z: 3-27

Value

5

6

7

Transfer MODE

Use Translate function with

interrupt condition when MSB

is on (i.e., Search and Trans­

late through a common table

usirig the Translate Table

Base whose address appears

in word 4 of the FIOB).

Use Search function and set

interrupt condition when the

MSB is on. That is, search

only and use the Search Table

Base (STB) whose address is

given in word 5 of the FIOB.

Use Search function and set

interrupt condition when the

MSB is on, using the STB,

then trans late with no inter -

rupt condition when the MSB

is on, using TTB addressed

in word 4 of the FIOB.

FUNCTION Field (bits 3-7): This field

specifies the code for the particular de -

vice function requested (i. e. , read,

write, rewind, etc.). The specific

codes for various device functions are

shown in table Z-6.

LUN ID Field (bits 8-15): The pro­

gramer uses this field to specify the

assigned LUN ID of the device control­

ler on which the I/0 request is to be

performed. The IOCS mqnitor will

translate the LUN ID into the physical

address of the requested device.

Word Z: In this word the programer specifies

the 1 6 -bit starting address of the buffer

to or from which input or output data is

to be transferred.

Word 3: The programer specifies the number of

bytes of data to be transferred in 15 bits

of this word. Bit zero is not used.

Disc The programmer specifies the byte count
Word 3: in bits 0 through 15 (must be an even

number of bytes).

Word 4: This 16-bit field is used to specify the

base address (i.e., the location of the

first byte) of the Translate Table if the

Translate function is specified in the

MODE field of word 1.

Disc Bits 0 and 1 are spares; bits Z through
Word 4: 6 specify the track address; bits 7

through 15 specify the cylinder address.

Word 5: If the Search function is specified in the

MODE field of word 1, the programer

must specify the 16-bit base address

(i.e., the location of the first byte) of

the Search Table to be used by the monitor.

Disc Bits 0 through 10 are spares; bits 11
Word 5: through 15 specify the sector address.

Word 6: (Spare)

Word 7: (Spare)

Word 8: Bits 13 - 15 of this word are used to

specify an extended identification number

for a specific device on a device con­

troller to which multiple devices may be

attached. For example, four cassette

tape devices may be attached to one con­

troller. The LUN ID extension identifies

the specific drive to be used, as follows:

Cassette

Disc

0 = 000
1 = 001
z = 010
3 = 011
0 = 000
1 = 001
z = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111

Z: 3-28

Table Z-6. Device Function Field Settings of Bits 3-7 in Word 1 of the FIOB

Function Field
Device Function Bit Settings

Bit 3 4 5 6 7

CARD READER READ HOLLERITH 0 0 1 0 0

READ BINARY 0 0 0 0 0

!PARS ADAPTER START RECEIVE (look for sync) c 0 0 1 0

CONTINUE INPUTTING c 0 1 1 0
RECEIVED DATA

CHECK CRC CHARACTER AND c 0 1 0 0
START RECEIVE

START TRANSMIT I - NO CRC c 0 0 0 1
TRANSMITTED AT BYTE
COUNT ZERO

START TRANSMITZ - CRC c 0 1 0 1
TRANSMITTED AT BYTE
COUNT ZERO

CONTINUE TRANSMITTING DATA c 1 0 0 1
1 - CRC NOT TRANSMITTED AT
BYTE COUNT ZERO

CONTINUE TRANSMITTING DATA c 0 1 1 1
2 - CRC TRANSMITTED AT
BY TE COUNT ZERO

TRANSMIT IDLES c 0 0 1 1

SEND NEW SYNC PULSE c 0 0 0 0

TELETYPE/ READ (teletype full duplex mode) 0 0 0 0 0
TERMINET

WRITE (teletype full duplex 0 0 0 0 1
mode)

WRITE (terminet simplex mode) 0 0 0 0 1

CASSETTE READ 0 0 0 0 0

WRITE 0 0 0 0 1

BACKSPACE 0 0 0 1 0

REWIND 0 0 0 1 1

ERASE 0 0 1 0 1

2848 START RECEIVE (look for sync) c 0 0 1 0

CONTINUE INPUTTING RECEIVED c 0 1 l 0
DATA

RECEIVE STOP DATA c 0 1 1 1

START TRANSMIT c 0 0 0 1

TRANSMIT IDLES c 0 0 1 1

TRANSMIT STOP DA TA c 0 I 0 1

SEND NEW SYNC PULSE c 0 0 0 0

2:3-29 /

Table 2-6. Device Function Field Settings of Bits 3-7 in
Word 1 of the FIOB (cont)

Function Field
Bit Settings

Device Function Bit 3 4 5 6 7

DISPLAY KEYBOARD READ (chained) c 0 0 0 0
DISC WRITE 0 0 0 0 l

READ 0 0 0 1 0

COMPARE DATA 0 0 1 0 0

SEEK 0 0 1 0 1

RECALIBRATE 0 0 1 1 0

NOTE

Bit 3 is used to specify chaining of certain I/O commands,
where: 0 = no chaining permitted and C = chaining per­
mitted. To specify chaining, a one bit is set in bit 3.

When the programer issues an IOACT re­

quest, the FIOB information is accessed by the

roes monitor, which extracts the 1/0 request

information and enters it into the next entry of

the IOCQ Table, described below. When the

queued 1/0 request is to be performed, the

monitor extracts the IOCQ entry information and

places it in the internally- stored Physical 1/0

Table (PIOT) for.use of the device controller,

which performs the I/ 0 action request.

3. 4. 2 Input/Output Control Queue Table

Definition

For each I/ 0 device channel to be used by

the program, the programer must set up an lOCQ

Table area in which entries for each 1/0 request

can be made. The IOCQ entries are a fixed for­

mat and size, as shown in figure 2-4.

The first word of each IOCQ entry is specified

via a source statement by the programer, as

follows:

Word 0: Link Field (16 bits). The pro­

gramer specifies the address of

the next IOCQ entry in this 16- bit

field.

A storage area must be reserved for the re­

maining nine words. The Logical and Physical

Status fields in Word 1 are used by the monitor

and the device drivers to report the status of 1/0

requests, as shown in tables 2- 7 and 2- 8,

:respectively. These status fields can be tested

by the program to determine the status of each

I/ 0 request.

The remaining words are filled from the

FIOB by the monitor when an IOACT request is

issued by the program, and used by the specified

hardware device controller when the I/O action is

performed.

Bits

WordO

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Word 8

Word 9

0T1l2I3J4Jsl6I7 sl9l1ol11 l12 T13T14T1s
LINK

L.ogicol Status
PHYSICAL STATUS

group I subgroup

MOD~ I FUNCTION LOGICAL UNIT NUMBER ID

.BUFFER ADDRESS (starting byte)

BYTE COUNT
TRANSLATE TABLE BASE OR DISC ADDRESS

SEARCH TABLE BASE OR DISC ADDRESS

{Spore)

{Spore)

(Spore
lLUN e:cten-

s1on

Figure 2-4. Format of Input/Output Control
Queue (IOCQ) Entries

2: 3-30

Table 2-7. IOCQ Logical Status Codes

Code Significance

0 Processing completed. This code is the initial value of the
logical status field. When the program completes I/O re-
quest processing, it should reset the logical status code to O.

1 1/0 pending. This code is set by the IOCS monitor when the
I/0 request has been queued in the IOCQ table.

2 I /0 initiated, This code is set by the device driver when the
hardware has started the I/O action.

3 I/O completed.* The physical status field can be checked to
see which kind of I/O completion has occurred •

......_
*An exception in this case is that the display keyboard service routine

sets the status to 0 on an I/O completed, rather than setting it to 3.

Table 2-8. IOCQ Physical Status Codes

GROUP STA:rus SUBGROUP STATUS

Code
Significance

Code
Significance (bits8-ll) (bits 12-15)

0 Normal completion 1 Search requested and
byte found

2 Byte count = 0
3 EOR
4 EOR with attention
5 Noncompare -··-·-·- ·--··-

6 See~ ini!_:l:_a_!;_~~.iq~-~l---
1 Illegal operation for this 0 None

device

2 Attention (hardware alert 0 None
condition) 1 Hopper check (CR)

2 Motion check (CR)
3 CIC tumble table entry

madP,
4 CIC system reset
5 End of tape (EOT)
6 Beginning of tape
7 Write protect
8 Data transmission

problem
9 Motor off
A Abandoned call
B Break

3 (spare)
f-

4 Error (hardware detected) 0 None
1 a. Device not opera-

tional, or
b. Present order

chained, next byte
count = 0

2 Data lost
3 Check character bad
4 Read check (CR) I error
5 Illegal interrupt
6 Format error (disc)
7 Punch tape out
8 Disconnected
9 Pari!Y_ error

10-15 (spares) -

2: 3-31

3. 4. 3 Special Functions

In addition to the basic I/O services of

CLOSE, OPEN, INITialize, and IOACT, the

PTS- 100 hardware provides two special functions:

•

•

The Search fun.ction allows the prog:famer to

test for the occurrence of particuar control

characters within the I/ 0 character stream,

and specify interrupt conditions when these

characters appear.

The Translate function allows the programer

to specify input/ output code conversion (i.e. ,

to specify that input/ output data characters

are to be converted to or from the ASCII code

used internally by the PTS- 100).

These functions are specified in conjunction

with the IOACT service request by entering a code

in the MODE field of Word 1 in the FIOB (see sub­

section 3. 4. 1). They use numerically ordered,

programer-defined byte tables containing the con­

trol and/ or conversion codes. The Search and

Translate Table addresses are specified in words

5 and 4, respectively, of the FIOB. The MODE

field code specifies whether the hardware is to

use a common table or separate Search and Trans­

late Tables. When an IOACT service request is

issued, the IOCS monitor accesses the FIOB and

moves the Search and Translate Table base

addresses to the IOCQ. When the IOCS is ready

to start the I/O device action, it moves the base

addresses into words 3 and 4 of the PIOT. Thus,

by the time the hardware device controller is

ready to perform the specified action, the Search

and Translate Tables are accessible to the con­

troller. The definition and usage of Search and

Translate Tables are presented below.

3. 4. 3. 1 Search Table Definition. The Search

function enables the programer to specify inter­

rupt condition settings when particular control

characters appear in the data stream flowing

through a device controller. The interrupt co.n-

dition settings are specified by control codes

stored in given byte locations within a programer­

defin~d Search Table, whose total length is

determined by the length of the I/O data code, as

follows:

Code Length

8 bit

7 bit

6 bit

etc•.•

Table Length

256 bytes

128 bytes

64 brtes

In the Search Table, the byte location of a

given control code must correspond to the

following:

search table base address

+ numeric value of the control data

character

That is, the base address (the location of byte 0)

of the Search Table is offset (i. e. , incremented)

by the value of the data character pas sing through

the controller to determine the byte location of

the corresponding control code. To effect a hard­

ware interrupt condition setting, t,1e left-most

bit (MSB) of a control code must be set to one.

Figure 2- 5 illustrates the Search Table format

and control code bit settings.

OFFSET*

0

2

3

253
254
255

*

~

SEARCH CODE

00000000
10000000
00000000
00000000

I
I

~ I
I
I

00000000
1 0 0 0 0 0 0 ')
00000000

Value of current data character
passing through controller

Figure 2- 5. Search Table Format for 8- Bit Code

2: 3-32

When the Search function is specified in the

MODE field of Word l in the FIOB, each character

flowing through the device controller is used to

loc;i_te the control code in the Search Table. When

the code is located, its MSB is tested. If it is

equal to 1, an interrupt condition is set for the

device. If the MSB = 0, the next character is

selected and the Search function is repeated.

Notice that the byte locations corresponding

to offset characters 110 and 254 10 in figure 2- 5

contain MSB' s equal to l; hence, when a data

character whose value is equal to l or 254 passes

through the specified device controller an

interrupt condition will be set.

The Search Table may be combined with the

Translate Table when the data codes used are 7

bits or less in length. That is, if the actual

translate character codes are no more than 7 bits

in length, the first bit of the 8- bit field may be

used as the control code setting on which to test.

For 8- bit code, separate tables must be used for

the Search and Translate functions.

3. 4. 3. 2 Translate Table Definition. The

Translate function allows the programer to specify

conversion of data characters to or from the 7-

bit ASCII code used internally in the PTS- 100.

When a code other than 7- bit ASCII is to be read

into the main memory of the PTS-100, the pro­

gramer must set up a Translate Table containing

ASCII characters whose byte locations are equiva­

lent to the value of the input data characters.

That is, the base address (the location of byte 0)

of the Translate Table is offset (i.e., incremented)

by the value of the input character passing through

the controller to determine the byte location of the

conversion code value that is to replace the input

character value. When output data is to be con­

verted from ASCII to another code, a Translate

Table must be set up in which the values of the

ASCII characters correspond to the byte locations

in which the associated values of the output con­

version codes are stored. The format of a

Translate Table for 8- bit code conversion is

illustrated in figure 2- 6.

* OFFSET CONVERSION
CODE VALUES

Value in
Byte O 0

Value in
Byte 1

2 Value in
Byte 2

Value in
Byte 3

3

,L t T
253 Value in

Byte 253

Value in
Byte 254

254

255 Value in
Byte 255

* Value of current data character
passing through controller

Figure 2- 6. Translate Table Format for 8- Bit
Code Conversion

When the Translate function is specified in

the MODE field of Word l in the FIOB, the device

controller matches each data character in the I/O

stream with the corresponding position in the

Translate Table and replaces its value with the

conversion code value stored in the byte location.

If the Translate Table contains conversion

codes of 7 bits or less in length, it may be used

simultaneously as a Search Table. That is, the

MSB of each byte location is available for use as

an interrupt condition indicator, since conversion

code values are right-justified i.n the byte fields.

If 8- bit code is to be converted, a separate Search

Table must be defined for Search function use.

2: 3 -33

The Translate Table length is determined by

the length of the code to be converted, as follows:

Code Length

8 bit

7 bit

6 bit

etc

3. 4. 4 Monitor Service Calls

Table Length

256 bytes

128 bytes

64 bytes

When the application programer wishes to

initiate any of the basic I/O device services for

his program he must is sue a monitor service call

statement, followed by the necessary number of

arguments to effect the desired device service.

When an MSC statement is encountered in a pro­

gram, processing control is transferred to the

roes monitor' which performs the specified ser­

vice, as described in the following subsections.

3. 4. 4. l Device Initialization Service. The

initialization service requests the monitor to

reset all I/O devices on the system. This service

should be requested at the beginning of a program

or before an interrupted program is restarted.

Three statements are required in the source pro­

gram to effect device initialization, as shown in

the diagram below.

LABEL OP CODE
JoPERAND/COMMENTS FIELD 1 SEQUENCE

FIELD FIELD NUMBER FIELD

(label) I::!. MSC I::!. (comments)
(xxxxxxxx)

/::J. DEC I::!. 2 I::!. (comment)

L
I::!. ADC I::!. (Symbolic tag 1

rb•oluto. addre" (return address)
Expression

.__
t i

COL COL
1 6

The MSC statement transfers control to the

IOCS monitor. The DEC statement with the

decimal constant 2 in the operand field specifies

that the monitor is to perform the initialization

service for all devices on the system. The ADC

statement operand specifies the object program

location to which the monitor is to return control

when the service is completed.

When the monitor receives control, it

initializes all I/O devices on the system as follows:

• Issues a STOP I/O command to every device,

thus terminating any I/O operation in process.

•

•

f
COL
73

Sets the PCB' s logical status bits to the

initial condition for all devices.

Enables interrupts.

3. 4. 4. 2 Device Open Service. The device

OPEN service requests the IOCS monitor to

initialize a specific device and its associated

monitor software routines so that subsequent pro­

gram IOACT requests may be serviced. The

statements necessary to effect an OPEN device

service are shown below.

2: 3-34

LABEL
FIELD

OP CODE
FIELD }OPERAND/COMMENTS FIELD l SEQUENCE

NUMBER FIELD

(label) L MSC L

L DEC L

L ADC L

(comment)
(xxxxxxxx)

6 L (comment) l Symbolic tag 1
Absolute. address

.Expression

(return address)

I 6 ADC L Symbolic tag I 1

Symb. Tag L HEX L LUN ID j l

U I If L ADC L \IOCQ Table Address 11·
L L RESV, 00 L 2 bytes 1 f---~~~~~~~~~~~~~~~t..._~~-·

COL COL COL
1 6 73

The DEC statement with the decimal constant

6 in the operand field specifies that the monitor

is to perform the OPEN service for the device

specified by the LUN ID in the HEX statement,

to which the monitor is directed in the preceding

ADC statement. The last ADC statement spe­

cifies the starting address of the programer­

defined IOCQ table for the device. The RESV

statement reserves a two-byte field into which the

IOCS monitor can store a code indicating that an

error occurred during the attempt to service the

OPEN request.

When the monitor receives control to service

an OPEN request, it performs any initialization

for the device, and its associated software

routines. The monitor resets all relevant status

fields within its internal tables and the IOCQ so

that obsolete I/ 0 requests will be eliminated.

If the specified device is a full duplex com­

munications device, separate OPEN service

requests must be issued to initialize transmit and

receive actions. That is, each action is treated

as though it were to be performed on a separate

device, each with its unique LUN ID and asso­

ciated IOCQ table entry.

3. 4. 4. 3 1/0 Action Service. The IOACT seryice

requests the monitor to initiate specific I/ 0

actions of which the device is capable, such as

read, write, rewind, backspace, etc. Associated

with each IOACT service request is a programer­

defined FIOB Table (see subsection 3. 4. 1) that

specifies the parameters to be used by the moni­

tor in servicing the request. The source state­

ments necessary to effect an IOACT service are

shown below.

LABEL OP CODE
lOPERAND/COMMENTS FIELD l SEQUENCE

FIELD FIELD NUMBER FIELD

(label) L MSC L (comment)
L DEC L 7 L (comment) (xxxxxxxx)

L f mbolio tag } L ADC L Absolute. address (return address)

Expression
L ADC L FIOB address ..._

i i f
COL COL COL

6 73

2: 3-35

The DEC statement with the decimal constant

7 in the operand field specifies that the monitor is

to perform an IOACT service on the device whose

associated FIOB is referenced in the operand field

of the last ADC statement. The first ADC state­

ment specifies the address in the object program

to which control is to return when the IOACT

request has been serviced.

When the monitor receives the IOACT ser­

vice request, it accesses the specified FIOB,

enters the 1/0 request into the IOCQ, and changes

the IOCQ' s logical status field setting from

"Initial" (= 0) to "I/ 0 pending" (= 1). When the

device controller actually starts the specified

action, the logical status field setting is changed

to "I/O Initiated" (= 2). When the I/O request has

been serviced the logical status setting is changed

to "I/0 Completed" (= 3).

Once the IOACT request has been serviced,

·the programer should ensure that the logical

status field is cleared to zero (initial setting) to

signal the monitor that the IOCQ entry is again

a;vailable for use.

If an IOACT request cannot be serviced by

the monitor, an error code is passed to the pro­

gram via the error code field in the right- most

byte in Word 0 of the FIOB. No other FIOB fields

are altered by the monitor. After control is re­

turned to the program, the error code field should

be tested.

3. 4. 4. 4. Device Close Service. The device

CLOSE service requests the monitor to close

down a device at the end of a job or to facilitate

an error recovery. The statements necessary to

effect a device CLOSE service are shown below.

LABEL
FIELD

OP CODE
FIELD

OPERAND/COMMENTS FIELD SEQUENCE
NUMBER FIELD

(label) t. MSC t.
!:::. DEC!:::.

(comment) (xxxxxxxx)
1 t::. (comment)

!:::. ADC t. irSymbolic tag 1
Absolute. Address

Expression

Symbolic tag

(return address)

t. ADC !:::.

.Symb. Tagl t. HEX t::. u LJ i !:::. RESV,OO t.

c6L c6L
6

LUNID

2

The DEC statement with the constant I in the

operand field specifies that the monitor is to per­

for.m the CLOSE service for the device specified

by the LUN ID in the HEX statement, to which the

monitor is directed by the preceding ADC state­

ment. The RESV statement reserves a two- byte

field into which the monitor can store a code to

indicate that an error occurred during the attempt

to CLOSE the device.

When the monitor receives control to service

a CLOSE request, it performs all steps necessary

(error code field) l,LJ
COL

73

to terminate operation on the specified device.

The monitor sets all status fields in its internal

tables to indicate a device "closed" condition.

It does not, however, clear any of the fields in

the IOCQ, since this table may be examined for

error analysis by the program.

When a device has been closed in this

manner, it must be initialized by an OPEN ser­

vice request before subsequent IOACT service

requests can be issued to it.

2: 3-36

3. 4. 4. 5 System Exit Service. The EXIT

service requests the monitor to log the end- of-

j ob and loop at location 0 until some manual

intervention specifies a new processing step,

such as the use of the Debug program, program

loading, etc. The EXIT service is effected by

issuing an MSC statement followed by a DEC

statement with a decimal constant 0 in the

operand field, as shown below.

LABEL OP CODE
lOPERAND/COMMENTS FIELD J SEQUENCE

FIELD FIELD NUMBER FIELD

(label) 6 MSC 6 (comment)

L
L DEC 6 0 6 (comment)

'--

i t
COL COL

1 6

3. 4. 4. 6 Watchdog Timer Service. The Watch­

dog Timer service call controls or interrogates

the optional Watchdog Timer if the feature board

(xxxxxxxx)

1'
COL
73

WATCHDOG TIMER switch is set to ENABLE.

The source statements necessary to effect a

Watchdog Timer service call are as follows:

LABEL OP CODE
lOPERAND/COMMENTS FIELD 1 SEQUENCE

FIELD FIELD NUMBER FIELD

(label) 6 MSC 6 (comment) (xxxxxxxx)

6 DEC 6 3

fl ADC 6 { Symbolic Tag }
Absolute. Address (return address)

Expression

6 ADC 6

Symb. Tag 6 DEC /';,

6 HEX 6 LJ 6 RESV, 00

t
COL

1

t
COL

6

Symbolic Tag

Request Code

0

6 2

The DEC statement with the constant 3 in the

operand field specifies that the monitor is to

control or interrogate the Watchdog Timer. The

(power status field)

(error field)

t
COL

73

second DEC statement specifies the nature of the

request as follows:

2! 3-37

WDT
Request

Code

1

2

3

4

Meaning

Reset Watchdog Timer - must be given at least once every 34 seconds
or automatic program restart will occur.

Start Watchdog Timer - turns Watchdog Timer on under program
control and automatically initializes counter to zero.

Stop Watchdog Timer - turns off Watchdog Timer under program
control. This should be reserved for special cases since the
watchdog capability is disabled when turned off.

Read power status - power status is interrogated and the reading
stored in the power status field.

If any other request code is specified, an error code of 1 will be placed in the error field.

3. 4. 4. 7 Channel Interface Controller (CIC)

Service. The CIC service call tests or resets

busy or off-line bits of devices attached to the

Channel Interface Controller. The necessary

source program statements are as follows:

LABEL
FIELD

(label)

OP CODE
FIELD

t:. MSC t:.
t:. DEC t:.

loPERAND/COMMENTS FIELD

(comment)

4t,. (comment)

Symbolic Tag }

Absolute Address

Expression

Symbolic Tag

LUN ID

CIC Request Code

0 (status field)

2 (error code field)

(return address)

I SEQUENCE
NUMBER FIELD

(xxxxxxxx)

c6L
73

The DEC statement with the constant 4 in the

operand field specifies that the monitor is to test

or reset the busy or off-line bits (according to.

the CIC request code in the second DEC state-

mer..t) of the device specified by the LUN ID in

the first HEX statement, to which the monitor

is directed by the preceding ADC statement. The

CIC request code must be one of the following:

Z: 3-38

CIC
Code

2

3

4

Meaning

Test and set busy bit - the status of the device busy bit
(1 = busy, 0 = not busy) will be placed in bit 0 of the status field
and the remaining bits are undefined. Then the device busy bit
will be set.

Reset busy bit - the device busy bit will be reset.

Test and set off-line bit - the status of the device off-line bit
(1 = off-line, 0 = on line) will be placed in bit 0 of the status
field and the remaining bits are undefined. Then the device off­
line bit will be set.

Reset off-line bit - the device off-line bit will be reset.

When the routine is executed, the specified

action is taken unless an unassigned LUN ID or

CIC code was specified. If either error occurs,

IOCS will return an error code to the error field

and take no other action. The error codes are

as follows:

CIC
Error
Code

0

1

2

Meaning

No error

Illegal request code

No such LUN in this system

3. 4. 4. 8 Device Sensing Service. The device

sensing service call requests the roes monitor

to sense the status of a specific device. The

source statements necessary to effect a device

sensing service call are as follows:

LABEL OP CODE
FIELD FIELD

(label) t::, MSC !::,

t::, DEC t:,

t::, ADC b. {
t::, ADC !::,

t::, HEX t:,

t::, HEX !::, (JTJ' t::, RESV, 00 t::,

t
COL

1

t
COL

6

}OPERAND/COMMENTS FIELD

(comment)

St::,(comment)

Symbolic tag }
Absolute Address (return address)

Expression

Symbolic tag

LUN ID

0 (status field)

2 (error code field)

2: 3-39

I SEQUENCE
NUMBER FIELD

(xxxxxxxx)

t
COL

73

The DEC statement with the constant 5 in the

operand field specifies that the monitor is to

sense the status of the device specified by the

LUN ID in the first HEX statement, to which the

monitor is directed by the preceding ADC state -

ment. When the routine is executed, the device's

hardware status is returned to the status field,

unless an unassigned LUN was specified, in

which case an error code of 2 is returned to the

error field, (If no error occurred the error

field setting remains all zeros.)

3. 4, 4. 9 Reconfiguration Service. The re­

configuration service call changes the addresses

of one or more peripheral devices which may

include serial printers, card readers,. modems,

magnetic tape cassettes, and display keyboards.

All peripherals of the same type are handled as

one group. Therefore, the programer should code

one reconfiguration call per group. Reconfigura­

tion is done only at device initialization time.

The source statements necessary to effect

a reconfiguration service call are as follows:

LABEL OP CODE
FIELD FIELD

JoPERAND/COMMENTS FIELD I SEQUENCE
NU MB ER FIELD

(label) /:;.MSC /:;.

/:;.DEC /:;.

/:;.ADC/:;.

!:;.ADC/:;.

Symb. tag /:;.HEX/:;.

/:;.HEX/:;.

/:;.HEX /:;.

/:;.HEX /:;.

!:;.EXREF

/:;.HEX/:;.

!:;.HEX /:;.

.

.

.
!:;.HEX /:;.

,__ ,__ /:;.HEX/:;.

+ +
COL COL

1 6

/:;.

(comment)

(comment)

{
Symbolic tag }
Absolute Address

Expression

Symbolic tag

0 (error field)

(return address)

LUN ID (first LUN of group)

Interrupt Level

List of Drivers

List of Drivers

First device address*

Second device address*

Last device address*

FFFF (sentinel defining end of group)

(xxxxxxxx)

t
COL

73

*The devices will be placed into the PCB's in the sequence given in the parameter list.

2: 3-40

The following drivers support reconfiguration:

#IDPM for multiple serial printers
n

#IDCM for multiple card readers
n

#IDMM for multiple modems
n

#IDSR for special display keyboard receive
n

#IDCA for cassettes
n

Error codes are as follows:

0 = no error

2 = no such LUN in this system

6 = PCB overflow

3. 5 Disc Logical Input/Output

The use of a disc storage device with the

PTS-100 requires a specialized IOCS for disc

in addition to the usual system roes monitor.

The logical IOCS for disc has two interfaces:

one with the user and one with the disc. The

interface with the user is through macro calls,

described in subsections 3. 5. 3 and 3. 5, 4. The

interface with the disc is handled through the

physical roes monitor.

Before a disc is used with a PTS-100

system, it must be formated with the Disc

Volume Preparation program, and all files

that are to be accessed must be allocated with

the Disc Allocator program (see Parts 1 and 3

of this manual), Then the disc is ready to be

written an,d read by a program incorporating

the disc logical I/O macros. Any program using

the disc logical I/O must contain four types of

2: 3-41

macros: the file description macros, main process­

ing macro, action macros, and status macros.

3. 5. 1 User File Area

The user file area consists of the parts of

the disc not occupied by the Volume Label or

Volume Directory. The user file area is divided

into one or more files, as indicated by the

Volume Directory. Files. are established,

initialized, altered in extent, or deleted by the

Disc Allocator utility program. A file may be

one of three types: sequential, random with

keys, or random without keys. All files start

and end on cylinder boundaries.

3. 5, 1.1 Sequential Files. A sequential file

consists of a series of records written and read

in physical sequence, The records may be

fixed or variable in length. Records are packed

densely into the allocated file area, in such a

way that no disc space is wasted, Thus, a

record may span two or more sectors, or

several records may occupy one sector.

The last record in a sequential file, the

end-of-file record, is marked by a special

configuration in its first word: FEDC 16• It is

automatically written at the time the Close

macro is executed, This record marks the

end of the written portion of the file, not the

end of the allocated file area, which is indicated

by an address in the Volume Directory.

In files containing variable -length records,

the first word of each record is the length word.

The length word gives the number of bytes in the

record, including the length word itself,

3. 5. 1. 2 Random Files. A random file consists

of a series of records that may be accessed

either sequentially or non-sequentially. There

are two types of random files: those whose

records contain keys (K type) and those whose

records do not contain keys (N type).

Random file records must be unblocked, and

fixed in length. For K type files, the first word

of every record is a banner word. (N type files

do not use banner words.) The banner word is

included to permit the read and write routine to

determine whether a particular record position

has been written, or whether it is still in the

original state to which it was initialized by the

Disc Allocator utility program. A value of

000016 indicates that the record is unused, and

a value of 0001 16 indicates that the record is

used (i.e. that it has been written).

Records may be of any length up to a track,

but records always start on sector boundaries.

Thus, if a record is not a multiple of the sector

length (160 words), there will be unused s.pace

following each record. Records may not extend

from track to track. If the track is not evenly

divisible into records, there will be unused space

at the end of a track.

Random files may be written only in direct

access fashion, but they may be read either

sequentially or directly. The macros Open,

Close, Read, Write, Delete, Test, and Wait may

be applied to them. Get and Put are not applica­

ble to random files.

In files containing keys (K type files), each

key value must be unique; it must be different

from all other key values in the file.

3. 5. 2 File Description Macro

The File Description macro is called once

for each file that is to be accessed. It establishes

a File Control Block, which is a work area about

l 00 bytes long, in which all information about

the file and the current state of its processing is

maintained by logical I/O. The call to the file

description macro has the following format:

$ FCBD a,b,c,d,e,f,g,h,i,j

where

a = label of File Control Block; this label is

referred to in all the action macros to

identify which file is to.be accessed.

b = device number, a number from 0- 7, identi­

fying the disc drive on which the file resides.

c = type of buffering

S = single buffering

D = double buffering (may be specified
only for sequencial files),

d =first buffer address.

e = second buffer address; enter 0 if single

buffered.

f = address of file name; the address of a

10-byte field containing the name that was

assigned to the file through the Disc

Allocator program.

g =address of error word; the address of a

one word field which will be set to an

identifying nurnber if an error occurs in

p·rocessing this file.

h = relative position of key in record; for

random files of type K, the first byte,

relative to byte O, of a field in the record

that is to be used as a key in searching

for a particular record.

i length of keys; number of bytes in key field.

length of buffer, in sectors; the number of

320-byte sectors that can be read or written

at one time, based on the length of the

buffer(s) provided.

2: 3-42

3. 5. 3 Main Processing Macro

There is one Main Processing macro, which

is called into a program only once. It contains

the coding necessary to carry out actions on the

disc files requested by the action macros, which

are simply branches to certain routines in the

main processing macro. The call to the Main

Processing macro has the following format:

$ LIOCSD a, b, c, d, e, f, g, h

where

a = logical unit number of disc; this must

correspond with the LUN ID assigned

through the physical roes monitor.

b SE if sequential files are used; omitted

if not.

c = GT if GETD macro is used; omitted if not.

d PT if PUTD macro is used; omitted if not.

e = RN if random files are used; omitted

if not.

f = RD if READD is used; omitted if not.

g = WR if WRITED is used; omitted if not.

h = DE if DELD is used; omitted if not.

The above parameters cause the Main Processing

macro to be tailored to the needs of a particular

program, omitting any portions that are not to

be used. For example, to generate a macro for

random reads and writes only, under LUN 3,

include the following call:

$ LIOCSD 3,,,, RN, RD, WR

Z: 3-43

3. 5.4 Action Macros

Action macros are usi;id as many times as

necessary in a program to process the disc files.

Each macro call results in a branch to the Main

Processing macro, followed by a series of para­

meters. The first parameter of every action

macro is the label of the File Control Block,

which identifies the file to be accessed. This

must be the same as the first parameter of the

file description macro for that file.

All action macros return to the next

sequential instructfon after the calling sequence.

There are seven action macros: Open,

Close, Get, Put, Read, Write, and Delete. Open

and Close apply to all file types, GetandPutapply

only to sequential files. Read, Write, and Delete

apply only to random files.

3. 5. 4, 1 Open Macro. The Open macro call

has the following format:

$ OPE ND a,b,c

where

a = label of file control block

b type of open

I = open for input

0 = open for output

c = error exit. Location to branch to if

uncorrectable error occurs on open.

The Open macro must be issued before any

accessing can be done on a file. It searches for

the file in the Volume Directory (established by

the File Allocator program}, and places in the

File Control Block various pieces of information

describing the file. If the file is not open, it

will be opened at this time.

3. 5. 4. 2 Close Macro. The Close macro call

has the following format:

$ CLOSED a,b

where

a = label of File Control Block

b = error exit

The Close macro is issued when all file

accessing is completed, For output sequential

files, it causes the last record to be written on

the disc, followed by ~n end of file indicator. It

also closes the Logical Unit if tlE re are no other

files open,

3. 5. 4. 3 Get Macro. The Get macro call has

the following f6rmat:

$ GETD a, b, c, d

where

a = label of File Control Block

b address of work area into which next

record is to be moved

c = end-file exit, Location to branch to if

end-file is found

d = error exit

The Get macro, applicable only to sequential

files, causes the next logical record to be moved

from the ·buffer to the specified work area,

Buffer switching and disc reads are executed

when necessary.

3. 5. 4. 4 Put Macro. The Put macro call has

the following format:

$ PUTD

where

a = label of File Control Block

b = address of work area from which record

is to be taken

c = error exit

The Put macro, applicable only to sequential

files, causes the logical record in the designated

work area to be moved to an output buffer.

Buffer switching and disc writes are executed

when necessary.

3, 5. 4. 5 Read Macro. The Read macro call has

the following format:

$ READD a,b,c,d,e,f

where

a = label of File Control Block

b = address of work area into which record is

to be moved

c = end-file exit

d = error exit

e = type of access

D = direct

S = sequential

f = address of parameter list (zero if no

parameter list)

2: 3-44

The parameter list is needed only for direct type

address, If present, it contains the followingtwo

fields:

address of key field in program

relative address

The Read macro is applicable only to random

files (type K or N organization). Its function is

. to input one record from the disc and place it in

the indicated work area. It is assumed that the

file is unblocked, or that deblocking is to be

handled by the user. It is also assumed that

records are of fixed length.

For N type files (no keys), the access type

given in the call is first consulted. If the access

type is S (sequential), the system reads the

record following the one previously read, and

moves it into the work area. If the last record

was at the end of the file area, the end-of-file

exit is taken. If the access type is D (direct),

the relative address pointed to in the call is

interpreted as a record address, relative to the

first record in the file. The indicated record is

read and moved into the work area. For example,

if relative address is 50, then logical record

number 50 is read. The first record in the file

is counted as number 0,

The Read macro operates somewhat

differently for K type files (files with keys). If

the access type is S (sequential), the system

reads the record following the one previously

read, and moves it into the work area. If a

sequential Read is executed after a series of

dire ct Reads, the first sequential Read obtains

the same record as the last direct Read. If a

sequential Read is executed without any previous

direct Read's, the first sequential Read obtains

the first record in the file.

If the access type is D (and file type is K)

the relative address and key fields are used. A

key is simply a field, in some fixed position, in

2: 3-45

the record, which is used in looking for a

particular record. The logical I/O searches

for a match between this key field in the record

and a key value pointed to in the call. The key

can start anywhere in a record, and be of any

(even) byte length. However, its length and

position are constant throughout any one given

file.

The relative address is interpreted as a

track address, relative to the first track in the

file, The first track is relative track O. For

example, if relative address is 10.) the logical

I/O searches for a record with the given key

value, on track number 10 of the file. If it is

not found on that track, the logical I/O continues

searching through the overflow area, if there is

one. When a record is found whose key matches

the given value, it is moved to the work area.

If no such record is found either on the home

track or in the overflow area, the error exit

is taken.

3. 5. 4. b Write Macro. The Write macro has

the following format:

$ WRIT ED a, b, c, d

where

a = label of File Control Block

b = address of work area

c = error exit

d = address of parameter list

The parameter list contains only the relative

address.

The Write macro is applicable only to

random files (type K or N organization), Its

function is to output one record to the disc,

taking it from the designated work area. It

operates dif~erently for type K and N files.

For type N files (no keys), the relative

address is interpreted as a relative record

address. The given record is written at that

relative record position in the file, regardless

of what was written there previously. For

example, if relative address is 25, the record

is written as record 25 in the file, destroying

the previous record 25 if any record had already

been written there.

The Write action for type K files differs in

two ways. First, the relative address is

interpreted as a relative track address, Second

a previously written record will not be destroyed.

This is possible because type K files have banner

words, A banner word of 1 indicates that the

record has been written by logical I/O; a banner

word of 0 indicates that it is available for

writing. The logical I/O searches down the

designated track for an available position; if

one is found, it writes the record there. If no

space is available on the home track, the logical

I/O then looks for space in the overflow area,

if any. If no space is available there either, the

error exit is taken.

3. 5,4. 7 Delete Macro. The Delete macro

has the following format:

$ DELD a,b,c

where

a = label of File Control Block

b error exit

c = parameter list address

The parameter list contains:

address of key field

relative address

The Delete macro is applicable only to type K

random files. Its function is to delete a particular

record from the file, making its space available

for rewriting. It does so by changing the banner

from I to O. The record to be deleted is located

in the same way as described under the Read

macro for file type Kand access type D (direct).

3. 5, 5 Status Macros

The two status macros, Test and Wait,do

not result in any file accessing. One of the two

must be used after each of the action macros to

ensure that one action has been completed before

the next one is requested. The Test or Wait

macro need not follow the action macro immedia -

tely; it must, however, be issued before another

call can be issued. This applies to all the action

calls, including Open and Close,

3. 5. 5. 1 Wait Macro. The Wait macro call has

the following format:

$ WAITD a

where a is the label of the File Control Block.

The Wait macro assures completion of the last

action on the designated file. Control remains

in the logical I/O until the last action has been

completed. Only then will an exit take place to

the next sequential instruction.

3. 5. 5. 2 Test Macro, The Test macro call has

the following format:

$ TES TD a,b

where

a = label of File Control Block

b address of indicator word

2: 3-46

The test macro provides an alternate means of

checki~ for the completion of an action macro.

The logical I/O sets the designated indicator

word to 0 if action is incomplete, or to 1 if the

action is complete. The indicator word can

then be tested by the main program to decide

whether another action rnacro can be executed.

3. 5. 6 Error Indicators

Whenever an error exit occurs, the error

word (item g, subsection 3. 5. 2) designated in

the file description macro is set as follows:

Error
Code

0001

0002

0003

Meaning

Cannot open Logical Unit specified.

File name not found in Volume
Directory•

Previous action not completed
before call for new action.

Error
Code Meaning

0004 File not properly opened for
requested action.

0005

0006

0007

0008

0009

0010

OOll

0041

0043

0046

Attempt to write beyond end of
file area.

Requested key not found in random
file.

Random access file write overflow;
requested track and overflow area,
if any, are full.

Incorrect file organization for
requested action.

Attempt to access outside of random
file; relative address too large.

Invalid operation.

Byte count too large.

Device not operational.

CRC/rate error.

Format error.

2:3-47/48

Section 4. MACRO ROUTINES

The PTS- 100 programer may develop sets

of generalized statements that may be used to

create specialized sets of statements according

to predefined limits and formats. Such gener­

alized statements sets are called macro routines,

which are assembly language program segments

defined to perform processing for any number of

other program segments into which the routines

can be incorporated at assembly time. That is,

a macro routine is a set of Assembler source

statements that may be 11 called" by other program

segments.

For purposes of discussion, macro routines

have been classified herein as basic macro

routines and extended macro routines. The

structure and use of macro routines is described

in detail in this section.

4. 1 Basic Macro Routine Structure

Basic macro routine structure is as follows:

Statement 1: This statement must identify

the program segment as a macro routine as

follows:

•

•

The question mark (?) character must

appear in column 1 of the coding form.

The unique name of the macro routine, con­

sisting of from 1 to 8 characters, must be­

gin in column 2. The routine name may be

composed of any characters in the PTS-100

character set (see Appendix A).

The format of the first statement in the

macro routine then, is:

? macronam

beginning in column 1.

2: 4-1

Statement 2 through Statement n: The body

of the macro routine begins with statement 2 and

ranges through statement n. Any source language

statement may appear in the body of the macro

routine. In addition, these statements contain

dummy arguments in the form of decimal num­

bers, from 1 to 99, enclosed in parentheses.

The parentheses identify dummy arguments to the

Assembler; the numeric value within a given set

of parentheses dictates the sequential order in

which an actual argument must appear in the

argument list passed from the calling programs

to the macro routines.

Statement n + 1: The last statement in the

macro routine must contain END in the op code

field. This statement marks the physical end

of the macro routine for Phase 1 of the Assem­

bler, as described in Section 5 following.

To illustrate macro routine writing, assume

that a number of independent programs will re­

quire a card reading operation such as the

following:

1. Read a card.

2. Test for last card and branch to a

specified point if present, or branch

to an IOACT service to read another

card if the last card is not present.

3. Branch when a successful card read

operation has been performed.

'Figure 2-7 presents a generalized macro

routine, named READCARD, to accomplish the

desired card reading operation. In the sample

routine, the operand fields of statements 2, 5,

8 and 9 indicate parenthesized dummy arguments

for whi.ch actual arguments must be supplied

when the macro routine is called by another

Statement
Number

1

2

3

4

5

6

7

8

9

10

11

LABEL
FIELD

?READCARD

RD

EF

OPCODE
FIELD

LDW,N

CNE

BCB

JMP

MSC

DEC

ADC

ADC

HEX

END

OPERAND/ COMMENTS

(1)+4 Get contents of first character
in card.

EF Compare for last card.

RD Not last card. Go To read.

(2) Specifies dummy argument for
branch address if last card is read
during IOCS request servicing.

Monitor service'call.

7 Specifies that monitor is to service
a device IOACT request.

(3) Specifies dummy argument for
address to which control is to branch
when read request has been serviced.

(1) Specifies dummy argument for
FIOB address to be used by IOCS
monitor.

4546 Constant to be used for last
card compare.

Figure Z- 7. Sample Macro Routine

program. The actual arguments will subse­

quently be inserted in place of the parenthesized

dummy arguments by the Assembler's Phase

when it specializes the macro routine for in­

corporation in a given calling program.

Once a macro routine has been coded, it

must be stored on the appropriate macro library

LABEL OP CODE
FIELD FIELD

file* to make it accessible to the Assembler for

incorporation in any programs that call it,

4. Z Calling Macro Routines

Once a macro routine has been placed on the

library file, any other source programs, includ­

ing other macro routines, may call it via state­

ments in the format shown below.

OPERAND/COMMENTS

$ MACRONAM Argument 1, Argument •.. ,Argument
Z n

As shown above, column one of the source

program call statement must contain a dollar ,

sign ($)to inform the Assembler that a macro

routine is being called. The as signed macro

routin,e name must appear as the call statement

op code. The operand field of the call statement

must specify the actual argument(s) to be passed

to the generalized macro routine. The actual

*If the macro routine is an IOCS monitor routine, it must be stored on the System Macro Library
file. If it is a user application macro routine, it should appear on the User Macro Library file.

Z: 4-Z

arguments may be any valid operands, labels,

or op codes permitted in the respective fields of

the affected statements.

If two or more arguments are specified, they

must be separated by commas and the entire list

of arguments must be terminated by a blank

character. Because of the way in which actual

arguments are associated with dummy arguments

they are to replace, the order of appearance of

actual arguments in the operand field is critical.

That is, when the Assembler encounters a call

statement in a source program, it reads the

argument list in the operand field and constructs

a table in which the actual arguments are inserted

in the sequential order in which they appear in

the list. The Assembler then locates the called

macro routine in the input library file and copies

each of the routine's source statements into an

intermediate file, replacing all dummy argu·

ments in the routine with corresponding actual

arguments from the Assembler-generated table.

That is, the first actual argument replaces all

LABEL OP CODE
FIELD FIELD

$ READCARD

The assembler will replace dummy argu.­

ments (1), (2), and (3) in the generalized macro

routine with the respective actual arguments

FIOB, TOTAL, and PRINT to produce the

specialized routine shown in figure 2- 8. This

routine will follow the processed call statement

in the calling program.

The Assembler treats actual arguments as

character strings; hence, they need not be

syntactic units. For example, an actual argu­

ment value may be inserted as a character in a

symbolic tag. That is, a generalized macro

routine statement may contain a dummy argument

such as

JMP (7)TAG

occurrences of dummy argument (1), the second

actual argument replaces all occurrences of

dummy argument (2), etc. Hence, if the actual

arguments are specified in improper order, they

will be erroneously matched to dummy arguments

and the specialized routine will produce unreliable

results at execution time. At the programer' s

discretion, however, actual arguments may be

omitted from the call statement list. Each

omission must, however, be indicated by a comma

in the omitted argument's position in the list.

If an argument list is too long to appear in

the operand field of the call statement, it may

be continued in successive statements by writing

a slash (j) character in column 1, and the con­

tinued list in the operand field.

To illustrate the manner in which actual

arguments replace dummy arguments, assume

that the READCARD macro routine shown in

figure 2- 7 is called by a program containing the

following call statement.

OPERAND/COMMENTS

FIOB, TOTAL, PRINT

LABEL OPCODE OPERAND/COMMENTS FIELD FIELD

LDW,N FIOB+4

CNE EF

BCB RD

JMP TOTAL
RD MSC

DEC 7

ADC PRINT

ADC FIOB
EF HEX 4546

Figure 2- 8. Specialized Macro Routine

2: 4-3

and the seventh actual argument in the call state­

ment list may be the character N, which would

cause the JMP statement to be specialized as

JMP NTAG

Field content of generalized routine statements

and actual arguments transmitted in call state­

ment lists may be written in the formats per­

missible in source statements of a given type.

4. 3 Extended Macro Routine Structure

Extended _macro routines may be written to

generate flexible specialized routines, depend­

ing on the needs of calling programs. That is,

statements of generalized macro routines may

specify the following:

•

•

Insertion of statement labels to facilitate

linkage between and within object program

segments, described in subsection 4. 3. 1

Conditional inclusion or deletion of gener­

alized macro statements depending upon

the presence or absence of actual arguments

in the calling program's argument list as

LABEL OP CODE
FIELD FIELD

•

described in subsection 4. 3. 2.

Deletion of generalized macro statements

depending upon equality testing of actual

argument values against predefined values

within the macro routine as described in

subsection 4. 3. 3.

4. 3. 1 Statement Label InsertiOn

The macro routine may contain dummy argu­

ments in statement label fields to enable proper

linkage between the calling program and the

macro routine, and/ or to facilitate transfers of

control between coding sections within the spe­

cialized macro routine generated for insertion

in the calling program; When dummy arguments

have been defined in label fields, the calling pro­

gram must transmit an appropriate label to the

routine via its argument list.

To illustrate statement label insertion, a

generalized macro routine to create an FIOB is

shown in figure 2- 9 •

Assume that a calling program contains the

following statement:

OPERAND/ COMMENTS

$ FIOBMAC RFIOB, LUNDAT, BUFAD, BCT, TTBADJ
I STBAD

When the specialized routine is created by

the Assembler, dummy argument (1) in statement

1 will be replaced with the actual argument

RFIOB. Actual arguments LUNDAT, BUFAD,

BCT, TT BAD, and ST BAD will replace dummy

arguments (2' through (6), Thus, once the

generalized macro routine is coded and filed, it

can be called at any time an FIOB is needed in a

source program by merely writing a call state­

ment containing the appropriate arguments, the

first of which is a label specifying the starting

address of a given FIOB.

2: 4-4

Statement
Number

2

3

4

5

6

7

8

9

LABEL
FIELD

?FIOBMAC

{l)

OP CODE
FIELD OPERAND/COMMENTS

HEX 0 Spare/error code

HEX (2) Dummy argument for mode, function and LUN

ADC {3) Dummy argument for input buffer address

DEC (4) Dummy argument for byte count

ADC (5) Dummy argument for translate table base

ADC (6) Dummy argument for search table base

RESV,O 6 6-byte spare area

END

Figure 2- 9. Generalized Macro Routine to Create an FIOB

4. 3. 2 Conditional Inclusion and Deletion of

Macro Routine Statements

The PTS-100 Assembler can be directed to

include or delete statements in the generalized

macro routines, depending on the presence,

absence, or value of actual arguments trans­

mitted via the call statement list. That is, the

programer may specify that given generalized

statements are to be treated in one of the follow­

ing ways:

•

•

Included in the specialized routine only if the

corresponding actual arguments appear in

the call statements list.

Omitted from the specialized routine if the

corresponding actual argument is equal to,

not equal to, greater than, or less than a

given value.

These actions are communicated to the Assem­

bler via the following notations in the form of

dummy arguments:

• (nC) or (nN), either of which specifies that

the statement is to be included in the spe­

cialized routine only if the actual argument

2: 4-5

corresponding to the nth dummy argument

appears in the call statement list. The

difference in the use of the dummy arguments

C and N is that when the nth argument is pre­

sent, it replaces the nC dummy argument in

the specialized routine, whereas the nth

argument does not replace the nN dummy

argument in the specialized routine. For

example, in the statement

JMP (3C)

the C in the dummy argument informs the

Assembler that the JMP statement is to be

inserted in the s.pecialized routine only if an

actual argument appears in the third position

of the call statement list, and that if the

actual argument is present, it is to be in­

serted in the operand field of the JMP state­

ment. However, in the statement

STW (3) (4N)

the (4N) dummy argument informs the

Assembler that the Store Word statement is

to be included in the specialized routine only

when an actual argument appears in the

fourth position of the call statement list. It

does not specify that the fourth argument is

to be inserted in the place of the (4N) dummy

argument in the specialized routine.

•

•

(nY), which specifies that the statement is

to be omitted from the specialized routine if

the actual argument corresponding to the nth

dummy argument does appear in the call

statement argument list. For example, in

the statement:

LDI AC,O (4Y)

the Y in the dummy argument informs the

Assembler that the Load Immediate state­

ment is to be omitted from the specialized

routine when an actual argument appears in

the fourth position of the call statement list.

NOTE

The (nY) and (nN) form of dummy
arguments may be combined to
specify omission of statements
depending on the presence of one
actual argument or the absence
of another actual argument in the
call list.

(n, E or N, vv), which specifies that the

statement is to be omitted from the spec -

cialized routine if the nth actual argument

is equal (E) or not equal (N) to the value of

vv, a value specified as two characters.

For example, in the statement:

ADC (6) (5,E,01)

the dummy argument (5, E, 01) specifies that

the ADC statement is to be omitted from the

specialized routine if the fifth actual argu­

ment's value is equal to 01. In the state -

ment:

LDW (15) (12,N,AA)

the dummy argument (12, N, AA) specifies

that the LDW statement is to be omitted if

the value transmitted for the twelfth actual

argument is not equal to AA.

• (n, G or L, vv), which specifies that the state­

ment is to be omitted from the specialized

routine if the nth actual argument is greater

than (G) or less than (L) the value of vv, a

value specified as two characters. For

example, in the statement:

ADC (6) (5, G, 01)

the dummy argument (5, G, 01) specifies that the

ADC statement is to be omitted from the specia -

lized routine ifthe value of the fifthactualargu­

mentis greaterthan 01. In the statement:

LDW (15) (12, L, 05)

the dummy argument (12, L, 05) specifies

that the LDW statement is to be omitted if

the value transmitted for the twelth actual

argument is less than 05.

In all cases, omission of an actual argument

from a call statement list is affected by entering

a comma in the corresponding position in the list

as illustrated below, where the third, fifth, sixth,

and seventh actual arguments have been omitted.

Trailing commas are unnecessary.

$ MACRONAM Argl, Arg2, , Arg4,, , , Arg8

To illustrate the flexibility provided by these

optional directives to the Assembler, assume

that a generalized macro routine named SERREQ,

shown in figure 2- 10, has been coded to create

specialized routines to request services from the

IOCS monitor. The use of the SERREQ macro

routine to generate specialized routines to re­

quest the INITialization, OPEN, IOACT, CLOSE,

and EXIT services is described in the following

paragraphs. In all cases, arguments l and 2

must appear in the SERREQ call statement list.

That is, statements 1 and 2 must appear in any

of the specialized routines. These two state­

ments are the only ones required for the EXIT

service request; hence, the call statement:

$ SERREQ EXIT, 00

2: 4-6

Statement
Number

2

3

4

5

6

7

8

LABEL OPCODE
FIELD FIELD

?SERREQ

(1) MSC

DEC

ADC

ADC

(4C) HEX

ADC

RESV,{7)

END

OPERAND/COMMENTS

(2) Dummy argument for tl-e device service request
code.

(3) (2, E,00) Dummy argument for the return address
in a II service requests except EXIT, whose service
request code is 00.

(4C) Dummy argument for FIOB address in IOACT
request or parameter address in OPEN or CLOSE
requests.

(5) {8t--0 Dummy argument for LUN ID assignment
statement for CLOSE and OPEN requests.

(6) (2, N,06) Dummy argument for IOCQ address
used only in OPEN service request with service
request code 06.

(8) (5 t--0 Dummy argument for error code field for
OPEN and CLOSE requests.

Figure 2- l O. Generalized Macro Routine for Device Service Requests

will create a specialized routine as follows:

EXIT MSC

DEC 00

Statement 3 is required in all other service re­

quests, and an actual argument must appear in

position 3 of all the call lists. Statements 4

through 7 are not required for the IN!Tialization

request, as shown in the call statement below.

$ SERREQ !NIT, 02, RETADl

The following specialized routine will be generated

as a result of the call statement.

!NIT MSC

DEC

ADC

02

RETADl

Statement 4 is required for the IOACT, OPEN

and CLOSE requests. However, statements 5

through 7 are not required for the IOACT request.

The call statement below

$ SERREQ IOACTl, 07, RETAD2,FIOB1

will create the service request shown below:

IOACTl MSC

DEC

ADC

ADC

07

RETAD2

FIOBl

The OPEN service request requires all

statements in the generalized routine and, there­

fore, eight arguments must appear in its call

statement list. The CLOSE service request re­

quires all statements except statement 6, which

will be omitted from the CLOSE specialized

routine because of the (2, N, 06) test in the state­

ment (i.e., the CLOSE service request code is

01). Actual argument' 6 in the CLOSE call state­

ment must therefore be represented as a comma.

Calls and resulting specialized routines for OPEN

and CLOSE service requests are presented below:

2: 4- 7

OPEN CALL

$ SERREQ OPEN1,06,RETAD3,PARAM1,

/ LUNID,IOCQ, 00, 2

OPEN SERVICE REQUEST ROUTINE

OPEN! MSC

DEC 06

ADC RETAD3

ADC PARAMl

PARAM HEX LUNID

ADC IOCQ

RESV, 00 2

CLOSE CALL

$
I

SERREQ CLOSE! I Ol,RETAD4, PARAMZ,

LUNID, I 00, 2

CLOSE SERVICE REQUEST ROUTINE

CLOSE! MSC

DEC 01

ADC RETAD4

ADC PARAMZ

PARAMZ HEX LUNlD

RESV, 00 2

4. 3. 3 Embedded Macro,Calls

Generalized macro routines may contain one

or more macro call statements that specify the

names of other macro routines in their op code

fields. Macro routines may not call themselves

recursively, however, since this would cause an

endless repetition of the macro processing phase

of the Assembler.

Macro call statements embedded in gener­

alized macro routines may themselves contain

dummy arguments within their argument lists.

This facility allows the programer to pass argu­

ments from one macro routine level to another.

2: 4-8

Section 5. ASSEMBLER PROGRAM

There are three versions of the PTS-100

Assembler:

PTS- 100 Native Assembler

Raytheon 704 Cross Assembler

IBM 360/370 Cross Assembler.

The applications program input requirements

for the Assemblers are described in subsection

5. 1 below. The input to an IOCS monitor assem­

bly run is the Assembler-formated tape file pro­

duced by the System Generator program,

described in Part 3 of this handbook. Processing

and the output listing are identical for all ver­

sions of the Assembler, as described in sub­

sections 5. 2 and 5. 3. Machine requirements and

Assembler limitations of the two Cross Assem­

blers are presented in subsection. 5. 4. The disc

version of the PTS-100 native assembler is de­

scribed in subsection 5. 5

5. 1 Programer Inputs

The inputs to the PTS-100 Assembler are

punched card decks, each of which contains both

of the following:

• One assembly control card described below,

which must contain the program name and

may specify assembly options.

• The source program statements, the last of

which must be an END statement card toter­

minate assembly processing.

5. l, 1 Assembly Control Card Content

The assembly control card specifies two

types of information:

•

•

The program name, which must appear in

columns 1 through 8.

Assembler options, as shown in table 2-9 •

File assignments for the Assembly process are

default, as shown in table 2-10.

Table 2-9. Assembler Option Selection

CONTROL CARD

OPTION Content Column

Cross reference listing 1

No cross reference listing No punch
(default)

Sequence checking 1

No sequence checking (default) No punch

Macros included (default) No punch

Macros not included 1

Relocatable object text No punch

Absolute object text 1

Full listing,* macros ex- No punch
panded (default)

Full listing, macros not 1
expanded

Error listing only 2

No listing 3

Machine language produced No punch
(default)

No machine language produced 1

Rewind - object cassette~'"' No punch

No rewind - object cassette 1

·"'"' Source program - card reader No punch

Source program - high speed 1
paper tape

Listing - serial printer** No punch

Listing - ASR 1

Object program - cassette** No punch

Object program - high speed 1
paper tape

Disc scratch file 1 IDriveNo, t

Disc scratch file 2 IDriveNo. t

Disc macro file jDriveNo. t

Disc binary output jDriveNo. :f:

Note: If macro calls appear in the source
program, the programer must en­
sure that the macro library file is
available as input to the Assembler.

28

30

32

34

36

38

40

42

44

46

12

14

16

18

*A full listing contains diagnostic error codes,
object program code, and source language state­
ments (see subsection 5. 3).

**PTS-100 native Assembler only.

tA dig t from 0-7; if no punch, drive 0 assumed.

*A digit from 0-7; if no punch, drive 2 assumed.

2: 5 -1

Table 2-10. File (Device) Assignments for
Assembly Processing

File

Source
Deck

Macro
Library

Phase 1
Work
Storage

Phase 2
Work
Storage

Object
Program

Listings

Default Device Assigned

IBM Raytheon
360 PTS-100 704

Card Card Card Reader
Reader Reader

Tape Unit Gas sette Tape Unit 3
or Disc

Discs Cassette Tape Unit 0
or Disc

Tape Unit 1

Discs Cassette Tape Unit 0
or Disc Tape Unit 1

Card Gas sette Card Punch
Punch or Paper

Tape Punch

Line Serial Line Printer
Printer Printer

NOTE

Device reassignment for the IBM
360 must be effected via Job Con­
trol Language cards. Specific de­
vice assignment for the PTS- 100
is effected at system generation
time, as is device reassignment.
On the Raytheon 7 04, device re­
assignments are effected via ASR
keyboard commands prior to pro­
gram assembly.

5. 2 Assembly Processing

• Phase 2, which analyzes the source state­

ments and performs preprocessing for pro­

gram assembly proper, as described in

subsection 5. 2. 3.

• Phase 3, which optimizes object program

memory storage requirements, as described

in subsection 5. 2. 4.

• Phase 4, which completes the construction

of executable instructions, generates the re­

quired listing, and produces the final object

program code, as described in subsection

5. 2. 3.

Figure 2- U presents a general flow overview

of the Assembler processing s.teps, which are de­

scribed in detail on the following pages.

5. 2. 1 Phase 0 Processing

Phase 0 reads the assembly control card, its

only input, and constructs the options table for

use by all other phases of the Assembler. The

options table specifies the following:

1 • The name of the program to be assembled.

2.. Whether a cross reference listing is desired.*

3. Whether sequence number checking is

Assembly.processing is accomplished in desired.

four phases if no macro processing is required,

or in the following five phases if macro process-

ing is required:

• Phase 0, described in subsection 5. 2.1,

which reads the control card, constructs an

options table for use by all subsequent

Assembler phases, and transfers control to

Phase 1 if macro processing is required, or

to Phase 2 if no macros are present.

• Phase 1, which processes all macro calls in

the source program, described in subsection

5. 2. 2, and transfers control to Phase 2.

4. Whether there are macros to be expanded.

5 . Whether output is to be relocatable or

absolute.

6. Listing options:

•

•

Full listing, with macros expanded

Listing of program containing macro

calls, but no macro expansion

~' Does not apply to PTS-100 native Assembler.

2: 5 -2

N

U1
I
v..>

1.

2.

3.

4.

r
I
I
I
I
I

Phase 2

If control is passed by Phase 0, reads
source statements from card reader

If control comes from Phase 1, reads
source images from final work file ·

Analyzes each source statement to
construct symbol and literal tables,
assign values, allocate memory, and
pre- optimize machine instructions

Prepares intermediate text file and
passes it & control to Phase 3

Phase 3

1. Processes intermediate text file to
optimize memory requirements
by constructing short executable
instructions except when long format
is required

2. Passes optimized text file and con­
trol to Phase 4

1.

2.

3.

4.

Figure Z- 11.

Source
Statements

Assembly
Control Card

Phase 0

Reads Ass.embly control card

Constructs options table

Calls Phase 1 if default option
indicates macro calls are present

Calls Phase 2 if option indic;ites
macro calls are not present

Phase 4

1.

2.

3.

4.

Phase 1

Reads source statements and writes
images of all non macro call state­
ments to work file

Replaces macro call statements
with specialized code, using gen­
eralized macro routines stored on
Library tape and writes specialized
code images on work file

Flags macro calls within macro
routines and recycles to expand all
calls to specialized code on a
second work file

Transfers control and final work
file to Phase 2 when all macro pro­
cessing is done

Listing(s)

1. Resolves executable instruction
operands

2. Completes executable instructions

3. Generates -listings indicated in
options table

4. Produces or suppresses object
program file as specified in
options table

Flow Overview of Assembly Processing

~

• Listing of error lines only

No listing.

7. Machine language output options:

• Machine language to "e produced

• No machine language •

8. Whether object cassette is to be rewound.*

9. Whether source program is on cards or high

* speed paper tape.

10. Whether listing is on the serial printer or

ASR. *
11. Whether object code is to be written on

cassette or high speed paper tape.*

Phase 0 transfers control to Phase 1 if

macro calls are to be processed, or to Phase 2

if no macro calls were indicated by a 1 punched

in control card column 32.

5. 2. 2 Phase 1 Processing

Phase 1 is the macro processor. Its two

inputs are:

•

•

The souree program statements on punched

cards.

The user macro library file •

Phase 1 processing is performed in the

following manner:

•

0

•

The cards in the input deck are read one at

a time.

If column 1 of a source statement card does

not contain $ or I, indicating a macro call or

a call list continuation, respectively, the card

image is written onto the output work file.

If column 1 of a statement contains a $,

Phase 1 constructs an argument table con­

taining actual arguments in the order in

which they appear in the call statement list.

That is, the first (leftmost) actual argument in

the list appearsasthefirstentryinthe argu­

ment table, followed by the second argument as

the second entry; etc. Each entry in the argu­

ment table contains the following fields:

Length of entry (1 byte)

The variable -length argument value

When all arguments in the call statement and

any continuation cards have been entered into

the table, Phase 1 searches the macro library

file for the generalized routine named in the

op code field of the call statement. If the

named macro routine is not found in the

library file, Phase 1 sets an N flag in the

error code field of the macro call statement

card image, writes the card image onto the

work file, and reads the next source state­

ment card. If the named routine is located

in the library file, Phase 1 creates the spe­

cialized routine specified in the macro call

statement list, as described in detail below.

When a call generalized routine has been

located in the library file, Phase l scans each

of the routine's source statements for dummy

arguments in any of the permissible forms de­

scribed in Section 4. If no dummy arguments

appear in a statement, or when all dummy argu­

ments have been scanned and processed, the

source statement is written onto the work file.

When a dummy argument of the form (n) is found,

Phase 1 locates the nth entry in the argument

table and substitutes its value for the dummy

argument.

When a dummy argument of the form (nC) is

found in a generalized source statement, Phase 1

locates the nth entry in the argument table, and if

it contains a value, the value is substituted for the

dummy argument and Phase 1 continues the state­

ment scan or writes the specialized statement on­

to the work file if no more dummy arguments are

*Items 8-11 apply only to the PTS-100 native

Assembler.

2: 5-4

present. If the nth entry of the argument table

does not contain a value, the source statement is

not excluded from the specialized routine (i.e.,

it is written on the work file).

When a dummy argument in the form (nY) is

located in the statement scan, Phase 1 locates the

nth entry in the table. If a value appears in the

entry, the statement containing the dummy argu­

ment is omitted from the specialized routine. If

a value does not appear in the entry, the source

statement will be written an the wo:rk file.

When a duml'l:ly argument in the form {nN) is

found in the source statement scan, Phase 1

locates the nth entry in the argument table to

determine whether it contains a value. If not,

the source statement is omitted from the spe­

cialized routine; otherwise, it is written onto the

work file.

When a statement contains a dummy argu­

ment of the form (n, E, vv) Phase 1 locates the

nth entry in the argument table, compares its

value to the value specified by vv, and omits the

statement containing the dummy argument if the

values are equal. Otherwise, the statement is

written onto the work file. A dummy argument

in the form (n,N,vv) causes the nth entry value

and vv value to be compared for not equal, and

the source statement to be omitted from the spe­

cialized routine if they are unequal; otherwise,

the statement is written onto the work file.

If an embedded macro call statement (i.e. ,

a statement calling another macro routine)

appears within the generalized routine being pro -

ceased, it is scanned for dummy arguments,

which are processed as above. Phase 1 then sets

a MORE flag within its own coding to indicate that

another macro processing pass is to be perform­

ed when the current pass has been completed

(i.e., when the END source statement is encount­

ered in the input deck). That is, when a second

macro routine is called within the current macro

routine, Phase 1 writes the embedded call state­

ment to the work file, finishes processing the

current macro routine and the remainder of the

input source statement deck, recycles to its be­

ginning, then rewinds and reads its output work

file as input to process the embedded macro calls

encountered during the previous pass. The out-'

put source statements for the second pass are

written onto the alternate work file. If additional

-,imbedded macro calls are found during the second

pass they are flagged, the alternate work file

becomes input to another pass, and Phase 1 writes

processed source statements to the original work

file. At the end of each processing pass, Phase 1

tests its MORE flag to determine if another pass

is necessary, alternating work files and recycling

if necessary. Whenthe MORE flag is not set at

the end of a pass, Phase 1 transfers the address

of its final output work file and control to Phase 2,

which begins the first step in assembly proper

processing.

5. 2. 3 Phase 2 Processing

Phase 2 is the first step in the conversion of

source language to object language. This phase

converts the source code to an intermediate text

which becomes input to Phase 3. Input to Phase

2 is either:

•

•

The source statement deck, .if control was

passed from Phase 0

The final work file from Phase 2, when

macro processing was required.

Phase 2 reads input source statements, scanning

each statement to identify and analyze its com-

ponent parts and convert the statement to an inter­

mediate text format. Each statement is processed

according to its content and type by Phase 2, as

follows:

2: 5-5

•

•

•

•

•

All hexadecimal, octal, and decimal constants

· are converted to binary representation.

Memory is allocated as specified by ORIGIN,

MOD, and RESERVE statements and for

machine instructions.

Executable instructions are preoptimized to

long or short format where possible.

Values are assigned to symbolic tags and

placed in a symbol table for use by Phase

3 and 4.

Literals are placed in four- byte entries in a

memory table or pool. Entries in the table

. contain a two- byte system generated symbol,

and the two- byte literal value itself. When a

Literal Origin statement is processed by

Phase Z, the literal table entries are written

on the intermediate text file, along with their

system- generated addresses. A new literal

pool is then started.

The output from Phase Z is the intermediate

text file containing the processed statements and

symbol and literal tables.

5. Z. 4 Phase 3 Processing

Phase 3 optimizes executable instructions to

guarantee a minimum core requirement for the

object program. That is, it determines whether

the short instruction format can be used, using

the long format only where necessary. Thus,

Phase 3 assumes the burden of efficient core

utilization for the programer and enables sub­

sequent program changes without inducing

addressing errors in existing code.

The input to Phase 3 is the intermediate text

file, and the output ~s the optimized text file.

5. Z. 5 Phase 4 Processing

This phase completes assembly processing.

Its input is the optimized text file. Phase 4 per­

forms the following functions:

• Completes the construction of executable

instructions by inse.rting memory address in

operand fields.

•

•

Generates and prints the listing as described

in subsection 5. 3, unless no listing is spe­

cified in the options table.

Generates an absolute or relocatable object

program file unless the options table spe­

cifies no object language file to be produced.

5. 3 Assembler Output Listing

Depending on options specified on the assemb­

bly control card, the Assembler produces the

following output listing:

•

•

•

A full listing, containing the following:

specialized macro routines

error diagnostic codes

object program code

source language statements

A full listing of the current program without

specialized macro routines, containing the

following:

error diagnostic codes

object program code

source language code

An error listing only

As shown in table Z- 9, the programer may specify

that no listing is to be produced.

Z: 5-6

Figure 2-12 illustrates a sample page of a

full listing without specialized macro routines.

The left- most column is titled ERRORS. If the

Assembler detects coding errors in the source

language statements, the appropriate error codes

appear in this field, as shown below:

Error Code

A

B

c

D

E

F

G

H

L

M

0

p

s
u
x

Significance

addressing error:

•

•

attempt to reference non-word
boundary with word instruction

attempt to use externally de­
fined symbol in instruction
other than ADC

symbol table overflow

constant error:

•
•

illegal constant type
illegal constant length

duplicate symbol

symbol, as used, not defined as
an absolute EQU

format error in the operand field

symbol, required to be predefined,
not predefined

too many symbols in operand field

label error:

• in label field, either an illegal
start character or label too
long

• in operand field, label too long

illegal op code modifier

unrecognized op code

macro argument error

sequence error

undefined symbol

symbol is both operand of EXREF
and defined in current program

Column LOG of the listing specifies the byte

location, expressed in hexadecimal, of the current

instruction. The, CONTENTS column indicates the

contents of the current instruction, also express­

ed in hexadecimal. The columns OP, R, E, I,

S, and OPERAND contain the code of executable

instructions, where:

Column OP

Column R

Column E

Column I

Column S

Column
OPERAND

contains the machine operation
code, expressed in hexadecimal.

specifies the register being used,
where:

0 = accumulator operation, or
absolute addressing

= program counter relative
operation

2 = index register 1 operation

3 = index register 2 operation.

specifies the length of the instruc­
tion, where:

0 = short instruction

1 = long instruction.

specifies the type of addressing,
where:

0 = direct addressing

1 = indirect addressing.

specifies the sign of the OPERAND
value.

specifies the displacement value
used to form the effective address,
where:

The OPERAND of a short
instruction is a 7- bit word
displacement value ---

The OPERAND of a long
instruction is a 16- bit ~
displacement value.

NOTE

See Section 1 of part
2 for a description
of executable instruc­
tion format.

Column SEQ of the listing contains an Assem­
bler-generated sequence number.

Column SOURCE contains the source statement
as read by the Assembler. If the
programer specified sequence num­
ber checking, the programer­
assigned sequence number appears
at the righthand side of the listing.

2: 5-7

N

1.11
I

00

MAJ.IV P6r.F 'H'l4
fl?l<o"RS l.OC CONT_ENTS __ O_!' 11 -FI_~ OP~R611JO SF'l • sn11<>r:~

131<12 13£11:>
13£112 DAiii 1~ I l'I ~-+ I Ii
n~.s 93£11£11 i2 1 Coil __ _
131111 FC2A i'13Flll
13.;fi CJl'l-1'1 - 11! t I "'

______ 1~1'A _ _i;:FF.<I _ "'11 c

Vl!i2t ••••••••••••••
1"12:> •
1•523 •
11!'\24 •
>'52!'> •
C'!i2b •
111527 ..
1'15211 ••••••••••••••
111529 Ml?!!ET F'll_I
"153111 - SX?
fll53t LDW

111!~32 STw

lo\533 •

••
THJS llOUTJNE ATTE~PTS ~n OPFN THF MOnfM l?ECFJVE
C:i"6NfJEL ANO QllF.llF 3 Tin llf:.'JUfSTS lfl4 THE 1ocr.i. IF
TNTTT6LI'IAT!0~4 JS 'lllr.CES~FlJL .S"-A"I? Is -SFT TO ~.
JF UNSUCr.FSSFUI SNAMR IS SF.T HI 1 •

•
• ..

-·----· -· ·-·-----------•
•
• •• *

•
MRRT
JOMRJ

JOl~MR /POJNT TO FlRST FNTRV IN JOCQ

0534 ··········---------- - -- lilf>.f5 - ;; ISSUE A MSC OPEN CHANNEL RfOUES~

t 311C tlF.illll -------13i1if:-- -- Oi,;jilif'i
1J10I 1316 --- ---- ----13f2 _____ 1314 -

1314 lol01t1Q

lil!iJ6
111537
111538
£11539
1<154£11 rtn

MSC
AOC COflE6
AOC Tl\2
Anc Tli3
DEC 11

/OPFN CODE a 15
/RfTURN AOOl?ESS
/PARAMETEI? LI S_T

U•N-TD
AOORESS

1316 t.'F0il' ----- --- ----~Mi:--- -- - -ADC ---"fii1<1Rt iiotil AOORFSS ---- - - ------------- -----------------
_______ 1}_1_~--- 1'11!00I

u __ _

'-

131 A 2111"1"' 1<!4 OI OI " + ;!QI
mc--s,113 I!" 1 <~ fll .;;---- - - >'i3 ___ _
IJ1E 1211Jt 112 I OI A + il I

-1321> -021t1FO 1!(11 t "' .. + flll<

CW? 21'1fll1 ~lll r.rlii --.- ------,.-r
I VI 1324 C30111 18 1

i32li FEC"
13211 421111
132A 02JJ
132C: I J2r"
13;!C: -.-..,,
132E l'li0l"1
fJJOI 13311!

1J3:i
1334
1336

133:>
133.t
U:06

13311 13311

I'll!
f,lOI

"' ,. +
r.o II +

0132

"'' 33

nr -,~-iA-+-- --11 i
I'll! i "' ·~ + "'"'

l~jA 21'10A 114 OI ~ Ill + ~r.o
1336 C284 18 1 QI VI - 1o14
t 33C 928.S 12 I i'I -c:f -;;.-- ---- l'i«i-- -
133F C287 tR 1
1341'1 A311"1 14 I
1 l4:i' FEC:>

ill iJl -

1 "'

IA7

lll13F

li'!\42 "11F"Rl1 RESV,l'I 2
li'l!i4J •

~fi44 ·········--------
CHEr.t< FOi? f l?f.IOR l?FTllRN

1!545 •
£11'146 Tl":>
-,,i647
A!\4&
r.1549

•

LOI
CNE
HCR
JMP

AC,£11
Ml?f-Rll
ERRMR
OPNr.11

/CMECt< FOR FRPOR 11ETUR~
ins
/Nn.

11'1!1£11
1!551 ********•---------TtJRl\I ON SNA ltGHTS
>!!;52

- !<!!'i"13
11155.S

1'!155
l'l!'\56
vt!\57

- 0558
1'155Q
r•!i6"
f.l!i61
Vt!i62
11563
-l'l!'i64
l'l!i65
li'566
>!567
.. 51\8
'"569

- ~571•
'1!i71
~"i7;>

•
lf"f.IPMR
T?Cll£11

T2
M-RR·r-.

MRPT
•

LOI AC ~1
STlo S'IAMR

LAX:> T2
JMP SNAL T
EQIJ * Ln MPRT
.IMP,X2 Iii
AOC: *

OMRTP AOC *
Ml?TDX AOC *
n~i:i-A- AOC OMRI

/SFT SNA"T • 1 OR Cl!

/f>f Tlll?N

·········-------- ()Uf!IF" 3 J /CJ RFr.lUFSTS JN 1nco •
OP NCH Etlll •

LOI AC,1'1
sri. MR!DX
LOW 0'1MA
STW OMHTP
LXI Flill'f> /l060 600PESS OF MOOEM l?~CEIV~ F!OH

- Figure Z-12. Sample Assembler Output Listing

- ---- - - ------ --- -------------

5. 4 Assembler Limitations and Machine

Requirements

Following are the recommended machine

requirements and pertinent limitations of the

Raytheon 704 and IBM 360 Cross Assemblers.

5. 4. 1 Raytheon 704 Cross Assembler

The recommended minimum Raytheon 7 04

equipment configuration for the PTS- 1 00 As sem­

bler is as follows:

3

card reader

card punch

magnetic tape drives if the source pro­
gram contains macro calls; otherwise
only 2 tape drives are required

line printer

ASR 33/35

l 6K words of core stora~e

Device reassignment on the Raytheon 7 04 may

be eff.ected through the use of the I/O device re­

assignment facility of the .. Series 700 operating

system.

5. 4. 2 IBM 360/ 370 Cross Assembler

The recommended minimum IBM 360/ 37 0 con­

figuration for the PTS- 100 Assembler is as follows:

card reader

card punch

magnetic tape drive

disc drive

line printer

32K bytes of core

The IBM 360/370 version of the PTS-100

Assembler is designed to run under both the DOS

and OS systems. With the exception of the system

dependent code to produce object code in column

binary, ho system dependent macros are used,

facilitating compatibility between systems. All

input/ output is performed through the use of a

Cobol subroutine.

The IBM 360/ 370 version of the PTS-100

Assembler ignores all device reassignment

facilities of the assembly control card. Device

reassignment is performed through the Job Con­

trol Language.

5. 4. 3 PTS:roo Native Assembler

The recommended minimum PTS-100 configura­

tion for the PTS-lOONative Assembler is as follows:

1

4

card reader

cassette drives

1 serial printer

l 6K bytes of core

Optionally, the source program may be read

from a high speed paper tape reader, eliminating

the necessity of the card reader. Also, the object

program may output onto a high speed paper tape

punch.

A disc may be used for intermediate text

storage, eliminating the necessity of two of the

cassettes.

5. 5 Disc Assembler

For the Disc Assembler, the scratch files

and the macro file may be on the same or different

disc drives. To designate the drive number loca­

tions for each file_,the following fields have been

added to the control card:

SCRATCH FILE 1 - COL. 12

SCRATCH FILE 2 - COL. 14

MACRO FILE - COL. 16

BINARY OUTPUT - COL. 18

Columns 12, 14, and 16 should contain a number

from 0 through 7, designating the drive on which

~he corresponding file is mounted; if there is no

punch, drive 0 is assumed. Column 18 should

contain the drive number for the binary output; if

this column is left blank, drive 2 is assumed.

2: 5-9

The scratch and macro files must be alloca­

ted previous to the assembly execution, using the

Disc Allocator utility program. (If macros are not

psed, only two files need be allocated.) The follow­

ing parameters should be used for allocation:

Scratch File 1:

FILENAME = ASSEMBSCRl

DRIVE NO = same as punched in column
12 of the assembly control
card.

FUNCTION = NEW

FIRSTCYL = (see Note)

LASTCYL = (see Note)

FILEORG = s
RECSIZE = 164

Scratch File 2:

FILENAME = ASSEMBSCR2

DRIVE NO same as punched in column
14 of assembly control card.

FUNCTION = NEW

FIRSTCYL = (see Note)

LASTCYL = (see Note)

FILEORG s
RECSIZE = 164

Macro File:

FILENAME = DMACROFILE

DRIVENO = same as punched in column
16 of assembly cont~ol card.

FUNCTION = NEW

FIRSTCYL = (see Note below)

LASTCYL = (see Note below)

FILEORG s
RECSIZE = 80

NOTE

The parameters FIRSTCYL and
LASTCYL are not given above,
because the sizes of the files
are variable.

The sizes of scratch files l and 2, which

should be the same size, depend on the size

size of the program to be assembled. Allow one
cylinder for each 78 statements in the program to

be assembled. For example, if a source program

contains 500 statements, a minimum of 7 cylinders

. should be allocated to each of the scratch files.

The size of the macro file depends on the

total number of statements in the macros that are

to be put into the file. Allow one cylinder for

every 160 macro statements or fraction thereof,

2: 5-10

Section 6. PROGRAMING TECHNIQUES

Presented below are some special techniques

that the PTS-100 application programer may find

useful.

6. 1 Shifting Techniques

The Shift Right One, Arithmetic statement is

the only shift statement provided in the PTS- 100

Assembler language. There are some techniques,

however, that may be used to effect shifting, as

follows:

1. To shift left one position, add the value

to be shifted to itself. For example,

X'l0' + X'l0' = X'ZO'

x 1 601 + x 1601 = x•co•

This technique can be used for each

multiple of two in a multiplier.

example,

For

= 1 01 2 shifted left three

Z. To shift left or right eight positions,

execute a Load Byte instruction, and

then a Store Byte instruction.

6. Z Setting Addresses

The programer should use the Load Address

In Index Register Z statement to effect the follow­

ing:

1. Set a return address and/or an argument

list address when calling a subroutine.

z. Obtain the address of a value instead of

defining an ADC for that value, if

possible.

6. 3 Defining Message Content

The Text constant statement should be used

to define the content of message buffers.

6. 4 Label Definition

The Equate statement may be used to define

labels, which facilitates program changes or

corrections. For example, the statements

START EQU

LDW

may be used instead of

START LDW

6. 5 Constant Definitions

*
KOUNT

KOUNT

In working with constants, the Load

Immediate statement saves core storage require­

ments. For example,

LDI AC, 1

may be used instead of

ONE

LDW

HEX

One

1

6. 6 Comparison Bit Setting

It is possible and sometimes helpful to set a

compare bit before the actual branch, as shown

below:

LDI

CNE

LDW

BCB

AC, 1

TWO

CONSTANT

SUBR

When this technique is used it is essential

for the programer to remember all instructions

that use the comparison bit.

Z: 6-1/Z

Section 7. SYSTEM PROGRAMING CONSIDERATIONS

The PTS-100 accommodates a wide range of

external input/ output device types. Input/ output

operations for application programs are managed

by the Input/ Output Control System (IOCS) monitor,

which is a resident modular software system com­

posed of two major components:

• The I/O Control Nucleus, which handles

monitor service calls from applications

programs and services interrupts from the

I/O devices.

• The physical I/O routines, which handle

requests to the specific I/O devices supported

by the system.

The I/O Control Nucleus provides two kinds

of service: device interrupt handling and process­

ing of service calls from application programs.

The interrupt handling service is provided by the

level service routines, which provide entry and

exit control for all interrupts, save and restore

registers, and link to the appropriate device

service routines.

The physical I/O routines handle all requests

for each physical I/O device in the system. There

is a set of physical I/O routines for each type of

I/ 0 device in the equipment configuration. A set

of routines includes the device driver routine and

the device service routine. The device driver

routine is called when there is an I/O request in

the logical IOCQ table and the channel for the de­

vice is inactive. The device driver routine uses

the information in the IOCQ entry to set up the

physical I/O control table and to initiate the I/O

action.

The device service routines are assigned to

one of eight external interrupt levels when a

particular IOCS monitor is generated for a spe­

cific installation, These routines determine the

reason for an interrupt, update control and status

fields, take any required action, and then initiate

action on the next I/O request in the IOCQ table.

The application program service calls are

processed as described in Section 3 of this part

of the handbook.

For any given PTS-100 installation, a hard­

ware specialized IOCS is created by the System

Generation program, described in Part 3 of this

handbook. If the PTS-100 user wishes, he may

alter the roes monitor by adding special physical

I/O and control routines to accommodate non­

standard devices that are not supported by the

IOCS monitor, or he may develop his own IOCS

monitor. In either case, an understanding of the

interrupt system of the PTS- l 00 and the systems

programing I/ 0 and interrupt statements is re­

quired, a~ described in the remainder of this

section.

7. 1 Interrupt System

A multilevel interruption system provides

eight external (device) interrupt levels and three

internal (CPU) levels. The CPU operates at a

given level and may be, interrupted when an

enabled higher priority interrupt condition is

detected. Instructions are provided to enable and

disable interrupts, trap to a higher priority

internal level, and return to prior levels after

servicing interrupts. The priority of interruption

is shown in figure Z-13, with the highest number­

ed level having the highest priority.

The Parity Interrupt is optional. It occurs

when the processor hardware detects invalid

parity on the data returned from memory. At

the completion of the current instruction the

interrupt is serviced and level l 0 is entered.

Z: 7-1

10 PARITY
9 TRAP
8 EXTERNAL 8
7 EXTERNAL 7
6 EXTERNAL 6
5 EXTERNAL 5
4 EXTERNAL 4
3 EXTERNAL 3
2 EXTERNAL 2
1 EXTERNAL 1
0 PROCESSOR/INTERVAL TIMER

Figure 2-13. Interrupt Priority Levels
in the PTS- 100

The Trap Interrupt is a synchronous interrupt

that occurs when a Monitor Service Call (MSC)

instruction is encountered in an executing pro­

gram. This interrupt may be issued at any level.

The interrupt is not maskable by the Disable

Interrupts instruction. Execution of the MSC

instruction consists of storing the present status

and loading the program counter from the level 9

interrupt packet. Instruction execution then re­

sumes at level 9.

There are eight External Interrupt signals

in levels 1 through 8. These may be assigned to

any configuration of input/ output devices. Inter­

rogation and resetting of interrupt conditions are

accomplished by executing the Read Device Status

instruction, described in subsection 7. 3. 2.

The Processor Interrupt level 0 does not

have the ability to interrupt execution at another

level. Level 0 may only be entered via the

Interrupt Return instruction with no higher level

interrupts outstanding. This is the level at which

object programs execute.

The Interval Timer Interrupt is an optional

external interrupt condition that occurs once

every 67 milliseconds. The interrupt may be

taken only when the CPU is already operating at

level 0 with external interrupts enabled. The
interrupt causes present status to be stored and

the program counter to be loaded from the level

0 packet. Processing continues at level O.

The central processor may be operating at

any of the 11 interrupt levels and is normally

enabled for external interrupts that occur at a

higher priority level than the present level. The

trap and parity interrupts are always enabled.

Interrupts of the same or lower priority than the

present operating level remain pending. All

external interrupts may be disabled (held pending)

by executing the Disable Interrupts instruction.

The processor returns to the enabled state when

the Enable Interrupts instruction is executed.

For each assigned interrupt level, an

associated four-word interrupt packet must be

set up in the format shown in figure 2-14.

Word 0

Word I

Word 2

Word 3

OLD PROGRAM COUNTER

I OLD 1 LEVEL l~
4 7 15

NEW PROGRAM COUNTER

(Spare)

0 15

Figure 2-14. Interrupt Packet Format
and Content

When the processor is operating at one level

and an interrupt of higher priority is enabled, the

processor completes the execution of the current

instruction and then enters the following fixed

sequence.

1. The value of the program counter (pointing to

the next sequential instruction to be executed)

is stored in the first word in the interrupt

packet.

2: 7-z

2. The old interrupt level and the condition bit

(CB) are then stored in the next sequential

word of the packet, in bits 4- 7 and 15,

respectively.

3. A new value for the program counter is then

loaded and the new interrupt level is entered.

This sequence of events cannot be interrupted. If

a higher priority interrupt occurs during the

sequence, servicing is deferred until completion

of one CPU instruction at the new level.

An Interrupt Return instruction should be

issued immediately following the completion of

interrupt servicing. This causes the processor

status to be restored to the point prior to the

interruption. The old PC, old interrupt level,

and old condition bit are restored by the hard­

ware from the save area at the departing level.

7. 2 Interrupt Statements

There are three statements provided for

changing the external interrupt level at which the

central processor is currently operating, as

shown in table 2- 11.

Table 2- 11. Interrupt Statements

LABEL OP CODE
FIELD FIELD COMMENTS

(label) DIN (disable interrupts)

(label) ENB (enable interrupts)

(label) INR (interrupt return)

The DIN (disable interrupts) statement

specifies that all interrupts at levels 0 through 8

are to be disabled. That is, they are to be held

pending so that current' instruction execution can­

not be interrupted.

.The ENB (enable interrupts) statement spe­

cifies that all external interrupts at levels 1

through 8 are to be enabled. That is, external

interrupts of a higher priority than the current

CPU operating level are to be serviced when

they occur.

The INR (ll).terrupt return) statement specifies

that the CPU is to return to the interrupt level

that was current just prior to the most recell;t

interrupt.

At assembly time these statements are trans­

lated to short machine instruction format. The

machine op code in all cases is 01. The R field

of a given machine instruction serves as an

extended op code to identify the specific interrupt

statement involved, where:

R = 00 Enable Interrupts

R = 01 Disable Interrupts

R = 10 Interrupt Return

In all cases, the operand field of the machine

instruction should be zero.

7. 3 System Programing of 1/0 Operations

Input/ output operations occur via direct

memory access channels. Data, addresses, and

status information are'exchanged between the

CPU and device controllers across a 16- bit bi­

directional bus. The 1/0 controllers may initiate

data transfers between devices and memory and

may also initiate limited arithmetic operations to

be performed in the CPU. These actions are

overlapped with CPU instruction execution.

For system programs that are to run inde­

pendently of the IOCS monitor, two statements

are provided to perform I/ 0 operations and

interrogate status indicators in the I/ 0 con­

trollers and devices. These statements are:

2: 7-3

•

•

Do IO statement, which is used to perform

all 1/0 operations.

Read IO Status statement, which is used to

test the operational status of devices and

device controllers.

7. 3. 1 Performing I/ 0 Operations

When I/ 0 operations are to be performed

independently of the IOCS monitor, the Do IO

statem~nt must be used in conjunction with a

Load Word statement as shown below.

LABEL OP CODE
FIELD FIELD OPERAND/ COMMENTS

(label) LDW X'O +Device Address'
(start I/ 0 on DA)

(label) DIO I/O Packet Address

(label) LDW X' 1 +Device Address'
(stop I/ 0 on DA)

(label) DIO *
The operand of the LDW statement must

have been previously stored by the programer.

It specifies the start or stop command and the

physical address of the device on which the opera­

tion is to be performed. The format of the LDW

operand is shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CMD I DEVICE ADDRESS

where: bits 4 - 15 specify the physical address

of the device, and

bits 0 - 3 specify one of the following:

CMD = 0 16 specifies that an IO
operation is to start

CMD = 1 16 specifies that the IO
operation is to stop

If CMD = 116 when the Do IO instruction is

executed, the addressed device will be stopped as

soon as possible and all pending or active memory

requests from the device will be cleared. The

IO controller for the device will be left in the not

busy state.

NOTE

When a stop I/ 0 command code is
specified, the Do 10 statement
operand must be a symbolic tag or
a self-referencing indicator.

If CMD = 016, the Do IO instruction operand

must be the starting address of an I/O packet

specifying all information necessary for executing

the 1/0 operation, as described in subsection

7. 3. 1. 1 below.

When the Do IO instruction to start an opera­

tion is executed, the value in the accumulator is

placed on the input/ output data bus for the spe­

cified device. The I/ 0 packet address is then

transferred to the selected controller. The con­

troller uses the address to locate the packet and

perform the specified operation. The· controller

subsequently interrupts the CPU to signal signifi­

cant device events.

7. 3. 1. l I/ 0 Packet. When I/ 0 operations are

being performed independently of the IOCS monitor,

the 1/ 0 packet performs the functions of the FlOB

and PIOT for operations under control of the

lOCS monitor. That is, it specifies the input/

output function to be performed on the device, the

data storage area to or from which data is to be

transferred, the total number of bytes of data

involved in the transfer, and the base addresses

of any Search or Translate tables to be used in the

operation or disc address. The 1/0 packet must

start an eight-word boundary, in the format

shown in figure 2-15. I/O packet field content is

discussed in detail below.

2: 7-4

Bits 0 1 2I3 4 5 6 7 8 9 10 11 12 13 14

Word 0 ORDER I BYTE INTERRUPT
coc l DOC MASK BYTE

Word 1 BYTE ADDRESS

Word 2 BYTE COUNT

Word 3 TRANSLATE TABLE BASE (TTB) OR DISC ADDRESS

Word 4 SEARCH TABLE BASE (STB) OR DISC ADDRESS

Word 5 ALTERNATE BYTE ADDRESS

Word 6 ALTERNATE BYTE COUNT

Word 7 SPARE

Figure 2- 15. I/ 0 Packet

1he Order Byte field of the I/ 0 packet con­

tains the device Controller Order Code {COC) in

bits 0 - 2 and the Device Order Code (DOC) in

bits 3 - 7.

15

The Controller Order Code specifies the data

transfer mode (i.e., whether Search and Trans­

late functions are to be performed by the I/ 0 con­

troller), See Section 3 for a detailed description

of these special functions.

The Device Order Code (DOC) in bits 3- 7 of

the Order Byte specifies the desired 1/0 function

to b~ performed on the specific device, as shown

in the right-most column of table 2-6.

The interrupt mask in the right-hand byte of

Word 0 of the I/ 0 packet is used to allow or

inhibit interrupts. That is, the bits of the Mask

Byte correspond one-for-one with the bits in the

Interrupt Condition Byte (!CB) in the device con­

troller. Hence, the programer may set a one

bit in each position of the Interrupt Mask Byte

where the corresponding interrupt is to be allow­

ed and a zero bit in each bit position of the Inter­

rupt Mask where the corresponding interrupt is

to be inhibited. When an interrupt condition

occurs in the device controller, the Interrupt

Mask is ANDed with the !CB to determine whether

an interrupt should be generated.

NOTE

Mask bits do not reset !CB bits.
They merely specify whether
interrupts are to be enabled or
diabled for a given I/ 0 activity.

The possible bit settings of the Interrupt

Mask and IC bytes are as follows:

Bit 0 Search requested and MSB = l

Bit 1 Byte count incremented to zero

Bit 2 = Start command is sued when the
device is in a NOT READY state

Bit 3 Device "END. OF RECORD" (EOR)

Bit 4 = Attention *

Bit 5 Error *

(Data overrun, data error, or
unit check generated by the device)

Byte Address. Word 1 of the I/ 0 control

packet specifies the address of the first byte of

the memory storage ar_ea into or from which input/

output data is to be transferred.

Byte Count. Word 2 of the I/ 0 packet

specifies the two's complement of the total num­

ber of bytes of 1/0 data to be transferred. The

byte count is incremented each time a byte of data

is transferred by the 1/0 controller. When the

byte count reaches zero, the data transfer is

complete.

Words 5 and 6 of the I/ 0 packet are used to

specify the alternate data storage address and

byte count when I/ 0 commands are chained.

Command chaining is specified by a one in bit 3

of the device order code, as shown in table 2- 6.

When command chaining is specified, the 1/0

*The attention and error bits are summary
bits indicating a broad classification of the type
of interrupt that was generated, depending on the
variable device controller conditions which may
be indicated by individual bits in the device status
byte, described in subsection 7. 3. 2. The pro­
gramer should consult the PTS- 100 Reference
Manual for detailed information about status in­
dicators of specific devices and controllers.

2: 7 -5

controller executes the first order specified by

the DOC and uses the byte address and count

located in words l and 2 of the I/ 0 packet. Data

transfer is halted when the byte count in word 2

reaches (is incremented to) zero. When the next

I/O command is executed, the I/O controller uses

the alternate address and byte count specified in

words 5 and 6 of the packet. Prior to issuing

another chained set of commands against the

packet, the programer must reset the byte

addresses and counts in the packet. As chained

commands .are subsequently received, the con­

troller again alternates between the byte

addresses and counts. Odd numbered orders utilize

words 1 and 2 of the packet, and even numbered

orders utilize words 5 and 6 of the packet. Com­

mand chaining continues ~til a device order with

bit 3 set to zero is executed or until a Stop I/O

command is is sued.

Disc Address. Bits 2 through 6 of word 3

contain the track address, and bits 7 through 15

contain the cylinder address. Bits 11 through 15

of word 4 contain the sector address.

7. 3. 2 Testing Device Operational Status

Before and after is suing a Do IO command,

the programer should test the operational status

of the addressed device. Status testing is spe­

cified via the Read IO Status statement, preceded

by a Load Word statement as shown below.

LABEL OP CODE
FIELD FIELD OPERAND/ COMMENTS

(label) LDW X'O + Device Address'
(reads and resets status

(label) RIO Memory Address

(label) LDW X'l + Devic.e Address'
(reads device status)

(label) RIO Memory Address

The operand of the LDW statement must have

been previously stored by the programer. It

specifies the command code and the physical

address of the device whose status is to be

checked. The format of the LDW operand is

shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CMD I DEVICE ADDRESS

where: bits 4 - 15 specify the physical address

of the device and bits 0 - 3 specify one

of the following:

CMD = 0 16 specifies that the device
status is to be read and
interrupts.are to be reset.

CMD = 116 specifies that the device
status is to be read, but
no interrupt conditions
are to be altered.

In both cases above, the RIO statement operand

specifies the memory address to which the device

status is to be transferred.

When the accumulator has been loaded with a

command code of zero and the device address,

execution of the RIO statement causes the device's

status to be read and any pending interrupts to be

cleared (i •. e. , the device status is reset). That

is. if interrupts are pending the following will

appear in the memory word specified in the RIO

operand field:

0 7 8 15

I 0-------- --- ----~I ICB

U no interrupts were pending, the memory

word will contain all zeros after the read and re­

set interrupts operation. It should be noted in

this case that the ICB in the controller may not

be zero because the interrupt mask may have

inhibited the generation of an interrupt~

When the accumulator has been loaded with a

command code of one and a device address,

execution of the RIO statement causes the device

status and the !CB to be stored in the memory,

as follows:

0 7 8 15

Device Status Byte I !CB

Device/ controller status in every case con­

sists of a minimum of two bits. The two bits are

defined universally for all controllers and are

bits 0 and 1 of the status byte as shown below.

READY

0

0

BUSY

0

1

0

Device Not Operational

Order In Process (i.e.,
Busy)

Device and Controller
Available for New Order

(Undefined)

L_ Bit 1 of device
status byte

controller

"---------- Bit 0 of device controller
status byte

Therefore, only bit 0 of the status byte must

be tested to determine if a new Do IO instruction

may be issued.

2:7-7/8

Add acummulator to memory
statment

Add immediate

Add one to memory statement

Address

buffer

byte

computations of

constant statement

starting execution

table base

Addressing

flags for indirect and indexed

Add statement

Arguments

actual, for specialized macro
routines

dummy, in macro rqutine
definitions

Arithmetic overflow

Assembler

coding form

control statements

disc

input

limitations

option control card

output

processing

statement format

Assignments

constant

device

Bit

storage

condition

significance of

testing of

least significant (LSB)

most significant (MSB)

Block, file input/output

Branch if accumulator minus
statement

Branch if condition bit set
statement

INDEX TO PART 2

2: 3-3

2: 3_3

2: 3-4

2: 3-28

2: 7 -5

2: 1-2

2:3-15

2: 3-24

2: 3-28

2: 2-1

2: 3-2

2: 4-2

2: 4-1

2: 3-2

2: 2e2

2: 3-24

2: 5-9

2: 5-1

2: 5-9

2: 5-1

2: 5-6

2: 5-2

2: 2-1

2: 3 -15

2: 5-2

2: 3-21

2: 3-2

2: 3-6

2: 3-1

2: 3-6

2: 3-30

2: 3-6

2: 3-6

2: I- I

Branch, unconditional
(Jump statement)

Byte count

Byte

device status

mask

order

tables

Calls

embedded macro

macro routine

monitor service

Card, assembly control

2: 3- 7

2: 3-2 7; 2: 7 - 5

2: 7 - 7

2: 7-5

2: 7 -5

2: 3-32

Channel interface controller service

Chaining, device command

2: 4-8

2: 4-2

2: 3-34

2: 5-1

2: 3-38

2: 7-5

2: 3-38 CIC Service

Code

conversion

device order

error

search control

Codes

logical status

physical status

Comments field

Compare accumulator less than
memory word statement

Compare for not equal
statement

Condition bit

significance of setting

testing

Constant

address

concatenated integer

decimal

hexadecimal

octal

text

Count, byte

Data

formats of

translate tables for

Decimal constant statement

Deck, order of input source

2: 3-32

2: 7-5

2: 3-27

2: 3-32

2: 3-31

2: 3 -31

2: 2-12

2: 3- 7

2: 3-8

2: 3-2

2: 3-6

2: 3-15

2:3-16

2: 3-17

2: 3-1 7

2: 3 -18

2:3-19

2: 3-27

2: 1-4

2: 3 -33

2: 3-1 7

2: 5-1

Deletion of macro statements

Device

closing of

initialization of

opening of

operational status testing

sensing service

Disc assembler

Disc logical input/output

Do IO statement

End statement

Equate statement

Error

device code

indicators (disc)

listing

Exclusive OR statement (XOR)

Execution, instruction timing

Exit service, system

Expressions, use as operands

External definition statement

External reference statement

Field

comments

label

link

operand

operation code
machine

mnemonic

sequence number

File description macro (disc)

FIOB (file input/ output control block)

Form, source statement coding

Format

of machine instructions

of source language statements

Function, device

Functions

special hardware

search

translate

Hexadecimal constant statement

IBM 360 Cross Assembler

2: 4-5·

2: 3-36

2: 3-34

2: 3-34

2: 7-6

2: 3-39

7.: 5-9

2: 3-41

2: 7-4

2: 3-24

2: 3-19

2: 3-27

2: 3-47

2: 5-7

2: 3-14

2: 1-4

2: 3-37

2: 2-11

2: 3-19

2: 3-20

2: Z-12

2: 2-1

2: 3-30

2: 2-1

2: 2-i

2: 2-1

2: 2-12

2: 3-42

2: 3-27

2: 2-1

2: 1-1

2: 2-1--

2: 3..:27

2: 3-32

2: 3-32

2: 3-33

2: 3-17

2: 5-9

2: I-2

ID, logical unit number

Identification, extended device

Inclusion of macro statements

Initialization, device service

Inputs, assembler

Insertion of statement labels

Instructions

format of machine

timing of machine

Integer, constant, concatenated

Interrupt mask

Interrupts

disabling

enabling

levels of

return

system of

I/O action service

I/ 0 chaining

IOCQ (input/ output· control
queue table)

IOCQ entry

I/O operations, systems
programing of

I/O packet, definition of

I/O services

Jump statement

Label

insertion in macro routine

source statement field

Least significant bit (LBS)

List statement

Listing, assembler output

Literal origin statement

Literals

assembly processing of

use as operands

Limitations, assembler

LIOCSD (disc main processing macro)
Load address in index register
2 statement

Load byte statement

Load immediate statement

Load index register 1 statement

Load index register 2 statement

Load word statement

Logical statements

2: 3-28

2: 3-28

2: 4-5

2: 3-34

2: 5-1

2: 4-4

2: 1 -1

2: 1-4

2: 3-16

2: 7-5

2: 7-3

2: 7-3

2: 7-2

2: 7-3

2: 7 -1

2: 3-35

2: 3-30

2: 3-30

2: 3-30

2: 7-3

2: 7-4

2: 3-26

2: 3- 7

2:4-4

2: 2-1

2: 3-1

2: 3-25

2: 5-6

2: 3-21

2: 5-6

2: 2-8

2: 5-9

2: 3-43

2: 3-8

2: 3.-9

2: 3-9

2: 3-10

2: 3-11

2: 3-11

2: 3-14

Logical unit number ID
(LUN ID)

LSB {least significant bit)

LTORG statement

Machine

execution time

instructions

requirements for assembler

Macro

basic routine structure

calls, embedded

format of

extended routine structure

routine specialization

Mask, interrupt

Messages, defining content of

Mod statement

Mode

addressing

transfer

Monitor service calls

MSB (most significant bit)

Names

assignment of macro routine

assignment of source program

No carry condition

Nonexecutable statements

Number

logical unit identification

sequence, assembler checking of

source statement field

Octal constant statement

Open statement

Operand

field of source statement

machine instruction

Operands·

expression

literal

self- referencing

symbolic tag

use of absolute address

Operation code

machine

Z: 3-Z6

Z: 3-1

Z: 3-Zl

Z: 1-4

Z: 1 -1

Z: 5-9

Z: 4-1

Z: 4-8

Z: 4-Z

Z: 4-4

Z: 4-Z

Z: 7-5

Z: 6-1

Z: 3-ZZ

Z: 1- 1

Z: 3-Z7

Z: 3-34

Z: 3-6

Z: 4-1

Z: 5-1

Z: 3-Z

Z: 3-15

Z: 3-Z6

Z: 5-1

Z: 2-lZ

Z: 3-18

Z: 3-34

Z: Z-1

Z: 5-7

Z: Z- 11

Z: Z-9

Z: 1-4

Z: Z-9

Z: Z-10

Z: 1-5

Z: 1-3

mnemonic

Operations

systems programing of 1/0

testing status of device

Optimization of executable
instructions

Options, selection of assembler

Order byte

Origin statement

Output, assembler

Overflow, arithmetic

Packet, definition of 1/0

Page 0 statement

Processing

assembler

of macro routines

Programing

considerations for systems

techniques for

PTS-100, character set for

Queue, input/ output control
(IOCQ)

Random files (disc)

Raytheon 704 Cross Assembler

Read 1/0 status statement

Reconfiguration service

Requirements, assembler machine

Reserve statement

Routines

assembler processing of macro

basic structure of macro

calling macro

embedded calls to macro

extended structure of macro

Search, hardware function of

Sequence number

specifying assembler checking

specifying source statement

Sequential files (disc)

Service

calls to monitor

channel interface controller (CIC)

device close

device initialization

Z: Z-1

Z: 7-3

Z: 7-6

Z: 5-6

Z: 5-Z

Z: 7-5

Z: 3-ZZ

Z: 5-6

Z: 3-Z

Z: 7-4

Z: 3-Z3

Z: 5-Z

Z: 5-4

Z: 7-1

Z: 6-1

A-1

Z: 3-30

Z: 3-4Z

Z: 5-9

Z: 7-6

Z: 3-40

Z: 5-9

Z: 3-Z

Z: 5-4

Z: 4-1

Z: 4-Z

Z: 4-8

Z: 4-5

Z: 3-32

2: 5-Z
Z: Z- lZ

Z: 3-41

Z: 3-34

Z: 3-38

Z: 3-36

Z: 3-34

device open

device sensing

1/0 action

reconfiguration

system exit

watchdog timer

Set, PTS-100 character

Shift right one, arithmetic
statement

Skip statement

Statements

arithmetic

branch

call, macro

compare

constant assignment

executable

format of source

load

logical

macro routine name defining

nonexecutable

order of source

program control

program name defining

sets of 1/0 service

storage assignment

store

symbol defining

systems programing

Status, testing device operational

Store byte statement

Z: 3-34

Z: 3-39

Z: 3-35

Z: 3-40

Z: 3-37

Z: 3-37

A-1

Z: 3-4

Z: 3-Z5

Z: 3-Z

2: 3-5

Z: 4-Z

Z: 3- 7

Z: 3-15

Z: 3-1

Z: Z-1

Z: 3-8

Z: 3-14

Z: 4-1

Z: 3-15

Z: 5-1

Z: .3-Z4

Z: 5-Z

Z: 3-34

Z: 3-Zl

Z: 3-lZ

2: 3-19

2: 7-3

2: 7-6

Z:3-1Z

Z: 1-4

Store index register 1 statement

Store index register Z statement

Store word statement

Subtract statement

Symbolic tags, use as operands

Symbols, definitions of (equating)

System exit service

Systems programing

Table

definition of IOCQ

definition of search

definition of translate

Techniques

programing

shifting

Text constant statement

Testing

comparative

logical

of condition bit

of device status

Translate

definition of table

hardware function

Unlist statement

Watchdog timer service

Word, format of

XOR (exclusive OR) statement

Z: 3-lZ

2: 3-13

Z: 3 -13

Z: 3-5

2: 2-9

2: 3-19

Z: 3-37

2: 7 -1

2: 3-30

Z: 3-32

2: 3-33

2: 6-1

Z: 6-1

2: 3-18

2: 3-7

2: 3-14

2: 3-6

2: 7-6

Z: 3-33

2: 3-32

Z: 3-ZS

2: 3-37

2: 1-4

2: 3-14

PART 3

PTS-100 UTILITY PROGRAMS

2. l

2.2

3. l

3.2

4. l

4.2

PART 3

PTS- 100 UTILITY PROGRAMS

TABLE OF CONTENTS

SECTION 1. GENERAL INTRODUCTION

SECTION 2. PTS-100 LOADER PROGRAMS

Piggyback Loader

2. 1. 1 Piggyback Loader Input

2. 1. 2 Piggyback Loader Output

Absolute/ Relocating Loader

2. 2. 1 Absolute/Relocating Loader Input

2.2.2 Absolute/Relocating Loader Output

2. 2. 2. 1 Symbol Map

2.2.2.2 Error Diagnostic Listing

SECTION 3. INTERACTIVE DEBUG PROGRAM

Inputs to the Interactive Debug Program

3. 1. 1 Interactive Debug Input Commands

3. 1. 1. 1 Keyboard Editing Commands

3.1.1.2

3. 1. 1. 3

3.1.1.4

3. 1. 1. 5

Memory Value Access Commands

Go To Command

Address Computation Commands

Proceed Command

3. 1. 1. 6 Breakpoint Control Commands

Debug Output Error Messages

SECTION 4. SYSTEM GENERATOR PROGRAM

Command Directives

4. 1. 1 TITLE Directive

4. 1. 2 ACIC Directive

4. 1. 3 ASGL Directive

4. 1. 4 ASGP Directive

4. 1. 5 CALL Directive

4. 1. 6 END Directive

SYSGEN Processing

4. 2. 1 TITLE Directive Processing

4. 2. 2 ACIC Directive Processing

4.2.3

4.2.4

4.2.5

4.2.6

ASGL Directive Processing

ASGP Directive Processing

CALL Directive Processing

END Directive Processing

3: iii

3: 2- 1

3: 2-2

3: 2-2

3: 2-2

3: 2- 3

3: 2- 3

3: 2- 3

3: 2-4

3: 3- 1

3: 3-2

3: 3- 3

3: 3-4

3: 3- 8

3: 3- 10

3: 3- 12

3: 3- 16

3: 3-17

3: 4-1

3: 4-1

3: 4-2

3: 4-3

3: 4-4

3: 4-6

3: 4-6

3: 4-7

3: 4-8

3: 4- 8

3: 4-8

3: 4- 9

3: 4-9

3: 4- 9

5. 1

5.2

6. 1

6.2

7. 1

TABLE OF CONTENTS (cont)

SECTION 5. PTS-100 DUMP PROGRAMS

Memory Dump Program

5. 1. 1 Version 1 of the Memory Dump Program

5. 1. 2

5. 1. 1. 1 Version 1 Keyboard Input Format

5.1.1.2

5. 1. 1. 3

Version 1 Calling Sequence Parameters

Version 1 Dump Output

Version 2 of the Memory Dump Program

5. 1. 2. 1 Version 2 Keyboard Input Format

5. 1. 2. 2 Version 2 Calling Sequence Parameters

5. 1. 2. 3 Version 2 Dump Output

The Peripheral Device Dump Program

5. 2. 1

5.2.2

5. 2. 3

Inputs to the Device Dumping Process

5. 2. 1. 1 IOCS Monitor and PDD Program
Object Code

5, 2. 1. 2 PDD Control Director Record

5, 2. 1. 3 Data File

Peripheral Device Dump Processing

Peripheral Device Dump Program Output

SECTION 6. FILE UPDATE PROGRAM

Input Directors

6. 1. 1

6. 1. 2

6. 1. 3
6. 1. 4

Program Directors

6. 1. 1. 1 Insert Program Director ($INSP)

6. 1. 1. 2 Delete Program Director ($DELP)

6. 1. 1. 3 Correct Program Director ($CORP)

6. 1. 1. 4 Replace Program Director ($REPP)

Data Line Directors

6. 1. 2. 1 Insert Data Line Director ($INS)

6, 1. 2. 2 Delete Data Line Director ($DEL)

6. 1. 2. 3 Replace Data Line Director ($REP)

END Director ($END)

EOF Director ($EOF)

File Update Program Outputs

SECTION 7. DISC SUPPORT PROGRAMS

Disc Volume Preparation Program

7, l, 1 Input to the Disc Volume Preparation Program

7. 1. 2 Disc Volume Preparation Program Output

7.1. 3 Processing

7.1.3,1

7.1.3.2

Parameter Input

Formating and Checking the DiscSurface

3: iv

3: 5-1

3: 5-2

3: 5-2

3: 5-3

3: 5-3

3: 5-4

3: 5-4

3: 5-5

3: 5-5

3: 5-5

3: 5-6

3: 5-6

3: 5-7

3: 5-8

3: 5-8

3: 5- 9

3: 6-1

3: 6-2

3: 6-3

3: 6-3

3: 6-4

3: 6-5

3: 6-5

3: 6-6

3: 6-6

3: 6-6

3: 6-6

3: 6-7

3: 6-7

3: 7-1

3: 7-1

3: 7-2

3: 7-2

3: 7-2.

3: 7-2.

7.Z

7.3

8. 1

8.Z

8. 3

Figure

3-1

3-Z

3-3

3-4

3-5

3-6

3-7

3-8

TABLE OF CONTENTS (cont)

Disc Allocator Program

7. z. 1

7.Z.Z

Input to Disc Allocator Program

Disc Allocator Program Output

7. Z. Z. 1 Disc Allocator Entries in Volume
Directory

7. Z. Z. Z Disc Allocator Output to Serial Printer

7.Z.3 Processing

Disc Dump Program

7. 3. 1

7.3.Z

7.3.3

Disc Dump Program Assumptions

Input to the Disc Dumping Process

Disc Dump Output

SECTION 8. CASSETTE UTILITY PROGRAM

Input and Output Devices

Operator Input

8. z. 1

8.Z.Z

8.Z.3

8.Z.4

8.Z.5

8.Z.6

8.Z.7

Copy Function

Edit Function

Forward Space Function

Backspace Function

Rewind Function

Write Function

Search Function

Error Messages

INDEX TO PART 3

LIST OF ILLUSTRATIONS

Inputs to the .PTS-100 Loading Process, Assuming
the Card Reader as Input Device

Sample Symbol Map Produced by the Absolute/
Relocating Loader

Form.at of the TIT LE Directive

Processing Flow of Specialized System Generation

Alternate Flow Paths of the Memory Dump Program

IOCS Monitor and PDD Program Object Code Input to
the Absolute/ Relocating Loader

PDD Control Director Record Format, Assuming the
·Card Reader as the System Input Device (SYSI)

Functional Flow of Peripheral Device Dump/IOCS
Monitor Processing

3:v

Page

3: 7-Z

3: 7-3

3: 7 -3

3: 7-3

3: 7-5

3: 7-5

3: 7-5

3: 7- 7

3: 7- 7

3: 7 _8

3: 8-Z

3: 8-Z

3: 8-Z

3: 8-3

3: 8-3

3: 8-3

3: 8-3

3: 8-3

3: 8-4

3: 8-4

3: Z-1

3: Z-4

3: 4-Z

3: 4-7

3: 5-1

3: 5-6

3: 5-7

3: 5-9

Figure

3-9

3-10

3-11

3-12

3-13

Table

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

LIST OF ILLUSTRATIONS (cont)

ASCII and Hexadecimal PDD Output Listing

Disc Dump Flowchart

Disc Dump Listing in Hexadecimal Notation

Disc Dump Listing in ASCII Code

Cassette Utility Program Flowchart

LIST OF TABLES

Error Codes Output by the Absolute/Relocating Loader

Permissible Formats for Go To Command

Effect of Proceed Command After Alter, Dump or
Fill Commands

Effect of Proceed Command After Go To or Search
Commands

Interactive Debug Error Messages

Device Notations for Use as SYSGEN Directives

Interrupt Priority Levels in the PTS-100

Disc Volume Preparation Program Parameters

Disc Allocator Program Parameters

3:vi

3: 5-9

3: 7-5

3: 7-6

3: 7-6

3: 8-1

3: 2-4

3: 3- 9

3: 3- 13

3: 3-15

3: 3-17

3: 4-4

3: 4-5

3: 7-1

3: 7-4

PART 3. PTS-100 UTILITY PROGRAMS

Section 1. GENERAL INTRODUCTION

Optionally available to PTS-100 users are a

number of utility programs to aid in the devel­

opment, checkout, execution, and maintenance

of systems and applications processing programs.

The following types of programs are available.

•

•

•

•

Two loader programs, the first of which is

used to initialize the computer and to load the

main loader program, which in turn must be

used to load all assembled programs to be

executed on the PTS-1 :JO.

The Interactive Debug program, which

allows the programer to interface

actively with it during object program

checkout and testing.

The System Generator program, which per­

forms the initial processing to produce a

specially-tailored PTS-100 IOCS monitor to

meet the unique applications program ·I/O

requirements of any given installation.

The Memory Dump program, available in

•

•

two versions, which dumps main memory

contents onto peripheral devices.

The Peripheral Device Dump program,

which dumps serial binary data file records

onto a character printing device.

The File Update program, which provides a

convenient, easily used method of creating,

maintaining, and updating files of both ob­

ject and source programs.

• Three disc support programs to initialize

new discs for use with a PTS:-100, allocate

disc file space, and dump disc files onto a

printing device.

• The Cassette utility program, which pro­

vides a method of storing on, deleting, copy­

ing, positioning, and printing the contents

of cassette magnetic tape files.

Detailed, "how to use" descriptions of these

utility programs are presented in this part of

the Programers Handbook •

3: 1-1/2

Section 2. PTS-100 LOADER PROGRAMS

There are two loader programs supplied

with the PTS-100:

•

•

The Piggyback Loader, the sole function of

which is to load the Absolute/Relocating

Loader.

The Absolute/Relocating Loader, which

must be used to load all other object pro­

grams, including systems programs, to be

executed on the PTS- 100.

The inputs to the loading process are:

• The binary code of the Piggyback Loader.

• The assembled, relocatable code of the

Absolute/Relocating Loader program.

o The assembled absolute or relocatable ob­

ject code of the programs or program seg­

ments to be loaded,

The inputs to the total loading process for

the PTS- 100 are illustrated in figure 3-1. The

Piggyback Loader is bootstrapped into low mem­

ory by depressing the Initial Program Load (IPL)

button on the user console of the PTS-100. Once

loaded, the Piggyback Loader initializes its

tables and storage addresses and reads the ob­

ject code of the Absolute/Relocating Loader,

loads it into high memory, and then activates it.

The Absolute/Relocating Loader then reads and

loads the object program(s) from the input

device.

The processing, inputs, and outputs of the

two loaders are described in the remainder of

this section.

3: 2-1

I
I
I I
l.L

execution
starting

. address

program/ I
segment n I

I

c program/
segment 4

I
I

I
I

I' program/
segment 3

/ program/
segment 2

c program/
segment 1

A:..

/ABSOLUTE/
RELOCATING
LOADER

/PIGGYBACK
LOADER
(binary code)

Figure 3- 1. Inputs to the PTS- 1 00 Loading
Process, Assuming the Card Reader as Input Device

2.1 Piggyback Loader

The Piggyback Loader is used to load only

one program: the Absolute/Relocating Loader.

As mentioned earlier, the Piggyback Loader is

itself loaded via IPL bootstrap. Once loaded,

the Piggyback Loader performs the following:

• Initializes its own tables and storage

addresses,

•

•

•

•

Determines the highest available memory

location in the computer into which it has

been loaded.

Reads the object coding of the Absolute/

Relocating Loader from the input device

whose physical address has been assembled

into the Piggyback Loader.':'

Validates input records as they are read,

and loads the Absolute/Relocating Loader

into the highest memory area.

Activates the Absolute/Relocating Loader

when it has been completely loaded,

2, 1. 1 Piggyback Loader Input

The input to the Piggyback Loader is the ob­

ject code of the Absolute/Relocating Loader,

which has been assembled as a relocatable pro­

gram by the PTS-100 Assembler. The device

from which the Piggyback Loader is to read the

object code must be the same device whose

address':' has been assembled into the Piggyback

Loader. The programer must ensure that the

input device is operational and ready with the

input object code before the Piggyback Loader is

activated.

2. 1. 2 Piggyback Loader Output

The output of the Piggyback Loader is the

activated Absolute/Relocating Loader, residing

in high memory.

2. 2 Absolute/Relocating Loader

The Absolute/Relocating Loader must be

used to load all as·sembled systems and applica-

*

tions programs to be executed on the PTS- 100.

The programs to be loaded must have been

assembled by the PTS-100 Assembler, which

develops object coding in the format required

by the Absolute/Relocating Loader. The object

programs may be absolute or relocatable, and

may consist of one or more segments each. If

an execution address is specified in a given pro­

gram or program segment, it must appear at

the end of the last segment or program loaded,

since the Loader will immediately activate the

given program at the specified address as soon

as it is detected. That is, the Loader will turn

control over to the loaded program and start its

execution at the specified address. If no execu­

tion address is specified, the Loader will wait

for additional input to read or for a starting

address to be specified manually.

If additional programs or program segments

are to be loaded after the Loader has started

execution of a loaded program, the Loader must

be reinitialized in one of the following ways:

• The object program issues a call or trans­

fers control (via an EXREF #LOADR state­

ment) to the starting address of the Loader.

• The programer halts the current object

program execution via the customer engi­

neer1 s console or some other direct mem­

ory access device, enters the starting

address of the Loader (#LOADR, as

specified in the previous load map) as the

new program counter setting, and restarts

execution.

The Absolute/Relocating Loader performs

the following processing for a given object pro­

gram that is being loaded:

On systems with changeable Read Only Memories (ROMs) the input device address will be
determined by the first changeable word of the ROM.

3: 2-2

•

•

•

•

•

•

•

Loads all address constants and absolute

values.

Computes the effective addresses of all

object program instructions.

Relocates a relocatable program.

Resolves addresses and prints a map of

symbols named in the External Definitior:

(EXDEF) and External Reference (EXREF)

statements to establish linkages between

multiple programs or program segments.

Sets blocks of memory locations to values

specified by object coding.

Performs validity checks of input data

records and reports loading errors via an

output listing.

Stores the execution starting address, if

specified, in the level zero interrupt packet,

and starts execution of the program via an

interrupt return instruction.

2. 2. 1 Absolute/Relocating Loader Input

The input to the Absolute/Relocating Loader

is one or more object program files produced by

the PTS-100 Assembler, described in Part 2,

Section 5, of this handbook, The object program

file(s) may be in one of the following forms:

punched cards

magnetic tape records

punched paper tape records

Hence, the input device must be an appro­

priate device to read the object code. The

address of the device must have been assembled

into the version of the Absolute/Relocating

Loader being used.*

The order of applications object programs

or program segments is program- determined.

Certain systems programs, if present in the in­

put device, must be loaded in prescribed orders •

For example, the Interactive Debug program

code should be loaded as the last program or

program segment if it is to be initialized prior

to starting execution of the programer 1 s object

program, On the other hand, if the object pro­

gram(s) to be executed require input/output

services from the roes monitor, the object code

of the monitor should be loaded before any other

programs. That is, the monitor is an absolute

program, which is always loaded in low mem­

ory. Hence, if a relocatable program is loaded

first, and the monitor is subsequently loaded,

the monitor will be loaded over the first part of

the e~rlier program.

•

•
•

2. 2. 2 Absolute/Relocating Loader Output

There are three types of output produced by

the Absolute/Relocating Loader:

The loaded executable program, residing

in main memory.

A symbol map •

A listing of diagnostic messages signaling

load errors detected during the attempt to

load the object program,

The output device address must have been

assembled directly into the version of the

Absolute/Relocating Loader that is being used.

2. 2. 2. 1 Symbol Map. The Absolute/Relo­

cating Loader produces a listing of its own

starting address, the program name(s), and all

externally defined and referenced symbols in the

program segment(s) it has loaded. A sample

Symbol Map listing is shown in figure 3- 2. Each

symbol is listed with the memory address to

which it was assigned by the Loader. That is,

"~On systems with changeable ROM' s the input device address will be determined by the first
changeable word of the ROM.

3: 2-3

Program/ Program/
Symbol Symbol
Name· Location Name Location

LOADR 3888 PROGl'l'll 1020

USERLCl 0000 UD USERLC2 1050

USERLC3 1055 USERLC4 1060

USERLC3 1055 DD

Figure 3'- 2. Sample Symbol Map Produced
by the Absolute/Relocating Loader

the listing indicates the location of program

elements after they have been relocated. Any

undefined symbols will be shown by zer·o char­

acters in the location field, to which the charac­

ters UD (i.e., undefined) will be appended.

Duplicate symbols will be shown with the address

of the first definition of that symbol, and the

characters DD (i. e., duplicate definition) will

be appended to the location field.

If the symbol table created by the Loader is

too large, a symbol overflow condition occurs,

and the attempt to load the program is aborted.

In this case, the symbol map is produced un­

conditionally to indicate the last symbol pro­

cessed prior to the overflow condition. The

symbol table overflow condition occurs because

the Loader starts the symbol table in high

memory, immediately preceding the first

location used by the Loader itself, and builds it

downwar~, toward the executable object code,

which is built upward from lower memory. If

the symbol table st0rage area reaches the pro­

gram code area before the program is com­

pletely loaded, the Loader cannot complete the

load process, which is aborted. If the program

code area reaches the symbol table storage area

during program load, a memory overflow error

condition is declared and the load is aborted in

the same way as for the symbol overflow

condition.

2. 2. 2. 2 Error Diagnostic Listing. The

Absolute/Relocating Loader produces an error

coded listing of any load errors that occurred

during the attempt to load the object program.

The error codes, their causes, and the required

program actions are presented in table 3-1,

Table 3-1. Error Codes Output by the Absolute/Relocating Loader

Error
Code Cause Programer Action

CK A checksum (i.e., record read) Effect a re -read of the input
error has occurred during the record by repositioning input tape
Loader 1s ·input record reading. to beginning, or refeeding object

deck, and restarting load process
RD A read error has occurred during from beginning.

the Card Version Loader's
attempt to read the last input
record.

so A symbol table overflow has Reduce number of symbols in the
occurred and the Loader process total program, reassemble, and
has been aborted. reload.

MO A memory overflow condition has Reduce total program size, re-
occurred (i.e., the object pro- assemble, and reload.
gram is too large for available
memory) and the Loader process
is aborted.

SQ A record sequence number is Correct sequence ordt::i of object
out of order (i.e., not in order code and restart the load process
produced by the Assembler). from the beginning.

3: 2-4

Section 3. INTERACTIVE DEBUG PROGRAM

The Interactive Debug Program for the

PTS- 100 System allows the programer to active­

ly interface with it during object program check­

out to effect the following:

• Addition or subtraction of hexadecimal

constants.

• Single or successive memory location

dumps.

•

•

Searches of memory locations for specific

full word values or masked searches on

values of less than 16- bits in length.

Alterations of single memory location

content to a specific value.

• Successive memory locationloading with

specific values.

•

•

•

•

Breakpoint setting and clearing •

Transfers of control to specific addresses

and resumption of program execution.

Transfers of control to specific addresses

with the accumulator and/or one or both

index registers set to specific values and

resumption of program execution.

Continuation of previously issued Debug

commands.

• Input command editing.

Thus the programer is provided hands-on

control of the execution of his program. This

capability allows selective examination of mem­

ory, manipulation of memory words by

accessing and altering them, selective execu­

tion of any part or all of the program, prepara­

tion of active unit tests, minor program

patching, etc.

The Interactive Debug program requires the

ASR device for input and output. If some other

device is to be used for I/O, the RDS- supplied

Interactive Debug program must be modified by

replacing its ASR driver routines with the

appropriate nonstandard driver routines.

The Debug program interrelates with the

programer and the executing object program as

to the functions it is to perform. Since it is a

slave type program it waits for input once it is

initialized. No timers are used and there are

no restrictions placed on the length of time be­

tween commands or between parameter entries

within commands. The types of functions per­

formed and program interface with the Debug

program are described in detail in the remain­

der of this section.

3. 1 Inpll:ts to the Interactive Debug Program

There are two basic inputs required to

initialize the Interactive Debug process:

•

•

The object code of both the object program

and the Interactive Debug program, which

are entered into the computer via the Abso­

lute/Relocating Loader (see Section 2) from

whatever input device is required to read

the object code (i.e., card reader, cassette

tape device, etc.).

The interactive debug input commands,

which are entered one at a time via the

ASR device keyboard.

When the Absolute/Relocating Loader com­

pletes loading the Interactive Debug program, it

activates Debug, which then performs its own

initialization and indicates that it is ready to

receive input commands by printing the word

DEBUG at the ASR device. That is, the only

programer action required to initialize Debug

3: 3-1

is to ensure that its object code is loaded. De­

pending on the equipment resources available in

a particular PTS- 100 configuration, there are a

number of ways in which the Debug program may

be loaded, as follows:

•

The outputs from Interactive Debug are in

the form of hexadecimal printouts indicating re­

sponses to the input commands, as described for

those commands that ellicit a Debug keyboard

printout, and in the form of error messages, de-On a standard PTS- 100, the most efficient

way to load the Debug program is to load

its object code immediately following the

object code of the program to be debugged,

That is, the Debug program is treated as

though it were the last segment of the pro­

gramer' s object program. In this case,

the last statement of the Debug object code

would specify the address at which Debug

is to start executing. When the Debug pro­

gram has been loaded and initialized, it

will then notify the program~r (via the De­

bug printout) that it is ready to receive in­

put commands from the ASR device.

. scribed in subsection 3. 2 at the end of this

•

•

If a customer engineer's console is avail­

able on the PTS- 100 being used, the pro­

gramer may load and start execution of his

object program, then subsequently interrupt

execution and initialize the Absolute/Re­

locating Loader to load and activate the

Debug program.

If the console is not available on the PTS-

100 being used, the programer may pro­

gram a transfer of control to the Absolute/

Relocating Loader at the point at which De­

bug is to be loaded. That is, the programer

may write a source program branch state­

ment to cause a transfer of control to the

starting address of the Absolute/Relocating

Loader, thus setting up the mechanism to

cause the Loader to read the Debug object

code at the desired point in the object pro-

gram,

In any case, once Debug has indicated that

it is ready to receive commands, the programer

may enter the desired Debug input commands

described in subsection 3, 1. 1.

3: 3-2

section,

3, 1, 1 Interactive Debug Input Commands

•

•

•

•

•

There are six kinds of input commands:

Keyboard editing commands, which provide

the programer with the facility to correct

typographical errors or edit input commands

before transmitting them to the Debug pro­

gram, as described in subsection 3, 1. l, 1.

Memory value access commands, described

in subsection 3, 1, 1, 2.

The program execution control command,

Go To, which returns control to the execu­

ting program, as described in subsection

3.1.1.3.

The address or location computation state­

ments, Addition and Subtract, described in

subsection 3, I, 1. 4,

The Proceed command, described in sub­

section 3, 1, I, 5, which causes Debug to

create a new command of the type just

previous to its occurrence.

The breakpoint control commands, Set

Breakpoint and Clear Breakpoint, described

in subsection 3.1.1, 6.

In all cases input commands are terminated,

and therefore transmitted to Debug, by a

carriage return on the ."'.SR device, or by the

entry of 72 consecutive input characters.

All Debug program input commands must be

specified in hexadecimal notation (i. e. , 16- bit

unsigned quantities).

The generalized format of all input com­

mands is shown below:

PARAMl FUNCTION CODE PARAM2, PARAM3, PARAM4

where the command field significance is as

follows:

Field 1: PARAMl is the effective address to be

used by Debug except in the special

case of the -Addition and Subtract

commands.

Field 2: FUNCTION CODE is a single character

indicating the operation Debug is to

perform.

Fields
3-5: PARAM2, PARAM3, and PARAM4 are

unique parameters requesting Debug

special actions.

In all cases, input command elements are

written without intervening spaces. The three

parameters to the right of the function code must

be separated by commas if they are all present;

or if the first or second parameter is omitted,

their omission must be indicated by an extra

comma. The formats of individual commands

are diagramed and illustrated in the specific

detailed descriptions of each command in the

remainder of this section.

3. 1, 1, 1 Keyboard Editing Comm_ands. There

are two editing commands provided: the Cancel

Record command, and the Logical Backspace

command,

3: 3-3

3. 1, 1. 1. 1 Cancel Record command(/). The

Cancel Record command is used to terminate a

partially completed input command. The com­

mand is specified by typing a slash (/) charac­

ter, which is AF in ASCII code. When the slash

character is typed, Debug expects the first char­

acter of a new command to be entered. Exam­

ples of the cancel record command are shown

below.

Example 1:

Programer input command: lOOOD5/1010D

The programer specified that the entire com­

mand to the left of the / character was to be re­

placed by the command following the cancel

record character. The printout below indicates

Debug 1s response to the command:

Debug response: 1010*0000

Example 2:

Programer input command: 12/0000D

Debug response: OOOO*OAOO

The incorrect command 12 was cancelled and re­

placed by the command to dump location 0000,

which was effective, as shown by Debug 1s re-

sponse.

3. 1, 1. 1, 2 Logical Backspace command ('----).

The Logical Backspace command is used to re­

place the preceding character with the following

character, The backspace is specified by typing

the - character, which is the DF in ASCII code.

When the backspace character is typed, the De­

bug program replaces the character just preced­

ing it with the character immediately following

it. Contiguous preceding characters may be

replaced by typing contiguous backspace charac­

ters followed by the replacement characters.

There are two restrictions on the use of this

editing command:

1. Backspacing is limited to the C1;1rrent field

being entered.

2. The backsp<!-ce command cannot be used to

override the slash (/) character (i.e., the

cancel record command).

Examples of the use of the backspace command

are presented below,

Example 1: ·

Programer input command: 1 OOODz ... 3

Changes the count field 2 to 3. Hence the Debug

program dumps three locations, starting at

location 1000, as shown below:

Debug response: 1000*D900 0826 4283

Example 2:

Programer input command: 1 OOOG ... D

Asks that the G function code be changed to D.

Debug responds by dumping the value in location

1000, as shown below:

Debug response: 1000*D900

Example 3:

Programer input command:

1111 00000

Changes the entire ADDRESS field from 11 s to

0 1s, and adds the function code D.

Debug response: OOOO*OAOO

3: 3-4

Example 4:

Programer input command:

lOO';A ... B ... c ... n ... F ... G-AFFF

Specifies multiple corrections of the function

code A, with the last correction specifying a

function code of A and the value OFFF to which

location 1000 is to be altered,· as shown in the

printout

Debug response: lOOO~•OOOB OFFF

3. 1, 1, 2 Memory Value Access Commands.

These commands direct the Debug program to

perform the following operations on the values

stored in the memory locations used by the exe­

cuting object program~

• Dump the content of one or more locations.

•

•

•

Alter the content of a location with a specific

value.

Fill one or more locations with a specific

value.

Search values in memory locations to find

a specific val_ue.

Detailed descriptions of the statements to effect

these operations are presented in the following

subsections.

3, 1. 1. 2, 1 Dump command. The Dump com­

mand is used to specify that a single memory

word value is to be dumped on the output device,

or to specify that successive word values are to

be dumped, beginning at a specific location, as

shown in the format diagram below.

FORMAT

PARAMI FC PARAMZ

ADDRESS D !:!. or l

ADDRESS D (count > 1)

If the single word Dump format is used

(i. e,, if no count or a count of 1 is specified),

Debug prints the specified address and its con­

tent in hexadecimal notation on the output device,

as illustrated in the examples below.

Example 1:

Programer input command: OlOOD

Debug response: 0100*C204

Example 2:

Programer input command: lOOODl

Debug response: 1000*0281

The programer may specify that the single-word

Dw:np command is to be repeated, as described

under t.he Proceed command discussion in sub­

section 3. 1. 1. 5. 1.

If the multiword Dliinp format is used

(i.e., if the count value is greater than 1) Debug

prints the specified hexadecimal address of the

first value, followed by a maximw:n of eight

hexadecimal values per line on the output device.

If more than eight values were specified, the

address and the content of the ninth location are

printed on the second line, followed by a maxi­

mw:n of seven additional memory word values.

If other lines are required to output the specified

number of values, the address of the first value

appears at the beginning of each line, followed

by successive values from the memory block

locations, Examples of multiword Dump com­

mands are presented below:

SIGNIFICANCE

Specifies that the content of the mernory
word located at ADDRESS is to be
printed on the output device.

Specifies that the content of a block of
memory words is to be printed on the
output device, starting with the value
stored in ADDRESS.

Example 1:

Programer input command: lOOOD5

Debug response:

lOOO*C204 AA02 0300 0806 0108

Example 2:

Programer input command: OlOOD20

Debug response:

OlOO*C204 AA02 0300 0806 0108 1010 03F3 20AO

OllO>~E300 02E3 AA02 0300 07F4 OllA 042E 03F8

0120*9300 0300 C300 02D4

The following three exeptions occur in the

Debug program's responses to multiword Dw:np

commands.

Exception I

If the starting address specified as PARAMI

in the Dump command does not end in zero,

the location of the next lowest MOD 8 word

is taken as the starting address of the mem­

ory block dump, in order to maintain column

integrity. For example, assw:ne the follow­

ing Dump command, which specifies that

four word values are to be dw:nped, begin­

ning at location 0106:

0106D4

The response of the Debug program is:

OlOO*C204 AA02 0300 0806 0108 1010 03F3

where the fourth value from the right (0806)

is from the programer- specified starting

address 0106. Hence, the first three values

3: 3-5

were printed as a. result of Debug' s adjust­

ing the starting address back to the next

lowest MOD 8 word location.

Exception 2

If all the memory values to be printed on a

line are identical, only the address and

value of the starting location are printed.

For example, assume the Dump command

lOOOD6

which specifies that the values from six

locations are to be dumped, starting at

location 1000. If all six locations contain

the same value, Debug' s response will be:

1000'~0281

Exception 3

If all memory values to be printed on sev­

eral successive lines are identical, the out­

put lines are suppressed until a line

containing an unequal value is detected by

Debug, at which point the location and value

are printed at the beginning of the line,

followed by subsequent values to complete

the line or the. dump request. For example,

FORMAT

PARAMl FC PARAM2, PARAM3, PARAM4

ADDRESS s VALUE 6.

or

VALUE, 1

ADDRESS s VALUE, COUNT

ADDRESS s VALUE, COUNT, MASK

3: 3-6

the command
1000D40

asks that the values stored in 40 consecu-

tive locations are to be dumped, starting at

location 1000. The Debug response below

1000*0281

1020~<0281 0281 1002 1002 0281 0281 0281 0281

1030*AAAAAAAA0281 0281 0281028102810281

indicates that the first 20 locations contained

the identical value 0281. Beginning at

locations 1020 and 1030 in the memory

block, unequal values were detected in the

output lines~

3. 1. 1. 2. 2 Search command. The Search

command directs the Debug program to search

the values in memory locations, compare them

to a programer- specified value, and print the

addresses and values when equal conditions

result from the comparisons. The Search

command may specify a search on a single mem­

ory location, a series-of successive locations, or

a series of successive locations whose stored

values are masked before the comparison with

the specified value. The permissible formats of

the Search command are diagrammed below:

SIGNIFICANCE

Specifies that the memory word located
at ADDRESS is to be compared to
VALUE and dumped on the output de-
vice if the values are equal.

Specifies that memory will be searched
starting at ADDRESS, and each word
will be compared to VALUE and dumped
if the comparison results are equal. The
search will terminate after the number
of words. specified by COUNT.

Specifies that memory will be searched
starting at ADDRESS, and each word
logically ANDed with MASK, the result
compared to VALUE, and equal values
and their addresses dumped. The
search will terminate after the number
of words specified by COUNT.

If the single word Search format is used

(i, e., if no count or a count of 1 is specified),

Debug compares the programer- specified VALUE

with the content of the memory address, and if

the values are equal, prints the address and the

memory value in hexadecimal notation on the

output device.

The programer may specify that the single­

word search command is to be repeated as de­

scribed under the Proceed command discussion

in subsection 3. 1. 1. 5, 2.

When the multiword Search command is

issued, Debug searches each location from the

starting ADDRESS through the specified COUNT,

compares each stored value with VALUE, and

reports each match via a hexadecimal printout

of the memory address and value on the output

device.

When the MASK parameter is specified in

the multiword Search command, Debug searches

each location from the starting address through

the specified COUNT, logically ANDs each

stored value with MASK, compares the result

with VALUE, and reports each match via a hexa­

decimal printout of the memory address and its

value on the output device,

Example 1:

Programer input command: 1 OOOSFOOO, 8

This command specifies that Debug is to search

eight locations, beginning at location 1000, for

a stored value of FOOD and report a match if it

is found.

Debug response: 1008*FOOO

The response indicates that Debug found a stored

value matching VALUE at location 1008.

Example 2:

Programer input command: lOOOSFFFF, 8

The command specifies that eight locations are

to be searched, beginning at location 1000, to

determine if the value FFFF is stored anywhere

within the memory block.

Debug response: lOOE*FFFF

indicates that the value was stored at location

lOOE.

Example 3:

Programer input command: lOOOS3, 8

Asks Debug to sea·rch eight locations, starting

with location 1000, for the value 3. A line feed

without an accompanying printout indicates that

the value 3 was not stored within the eight

locations specified for searching.

Example 4:

Programer input command:

100058000,8,8000

Asks Debug to search eight memory locations,

starting at location 1000, mask their contents,

compare the results of the AND mask with 8000

to determine if the most significant bit (MSB) is

set. Assume the following response from the

Debug program:

1008*FOOO lOOA*FFOO lOOC*FFFO lOOE*FFFF

A match is found at locations 1008, lOOA, lOOC,

and lOOE.

Example 5:

Programer input command: lOOOSl, 8, OOOF

Asks Debug to search eight memory locations,

starting at location 1000, mask their stored

values withOOOF, and report any matched values

when compared to 1. The search operation is to test

for addresses whose contents have their LSB and

notbits 12., 13, 14 set. The Debug printout

3: 3-7

1006~'0001

indicates that a match was found at location 1006,

3. l, 1. 2. 3 Alter command. The Alter com­

mand directs the Debug program to alter, or

replace, the memory word value in a specific

location with the value specified in the command,

the format of which is shown below.

FORMAT

PARAM 1 FC PARAM 2 SIGNIFICANCE

ADDRESS A VALUE Specifies that the
content of the mem-
ory location indica-
ted by ADDRESS is
to be replaced by
the VALUE in
parameter2 of the
command.

When the command is processed by the

Debug program, the specified VALUE replaces

the original content of the ADDRESSed location,

The ADDRESS, the original value stored there,

and the new value are printed in hexadecimal

notation on the output device.

The programer may specify that the Alter

command is to be repeated for the next consecu­

tive location(s), as described under the Proceed

command discussion in subsection 3. 1. 1. 5. 1,

To alter or fill blocks of memory locations with

new values, the programer should use the Fill

command described below.

3. 1. 1. 2. 4 Fill command. The Fill command

directs the Debug program to fill one or more

memory locations with a specific value, as

shown in the format diagram below:

FORMAT

PARAMl FC PARAM2, PARAM3

ADDRESS F VALUE r:, or

VALUE, 1

ADDRESS F VALUE, COUNT

If the single word Fill command format is

used (i.e., if no count or a count of 1 is speci­

fied) the Debug program fills the ADDRESSed

location with the specified VALUE.

Under Interactive Debug, the programer

may specify that the single word Fill command

is to be repeated for the next consecutive loca­

tion(s),. as described under the Proceed com­

mand discussion in subsection 3. 1. 1. 5. 1. If the

multiword Fill format is used, the Debug pro­

gram fills each location from the starting

ADDRESS through the COUNT with the specified

VALUE.

Neither format of the Fill command causes

printed output at the interactive device, If the

programer wishes to verify that the Fill opera­

tion is successful, he should dump the pertinent

memory locations before and after issuing the

Fill command,

3. 1. 1. 3 Go To Command. This command

directs the Debug program to transfer control

to a specific address in the object program,

and start object program execution at that

addr!'ls s. The permissible formats of

the Go To command are presented in

Table 3-2.

As shown in table 3- 2, the Go To command

may optionally specify that new values are to be

loaded into any one, two or all three of the

following registers: accumulator, index regis­

ter 1, and index register 2. If values are to be

loaded into the respective registers, they must

be specified in the appropriate order: AC value,

Xl value, and X2 value. If either the AC value

SIGNIFICANCE

Specifies that the ADDRESSed location
is to be filled with VALUE

Specifies that successive memory lo-
cations, specified by COUJ\TT, are to
be filled with VALUE. ADDRESS
specifies the first, or starting, lo-
cation of the memory block.

3: 3-8

Table 3~ 2, Permissible Formats for Go To Command

FORMAT

PARAMl FC PARAMZ, PARAM3, PARAM4 SIGNIFICANCE

ADDRESS G Specifies that Debug is to
transfer control to ADDRESS
in the object program and
start its execution.

ADDRESS G ACVAL,XlVAL,XZVAL Directs Debug to load speci-

ACVAL

ACVAL, XlVAL

ACVAL, ,XZVAL

, XlVAL, XZVAL

, XlVAL

, , XZVAL

or the Xl value or both values are unspecified,

their respective omission must be indicated by a

comma, That is, Debug assumes that the first

value following the G function code is to be loaded

into the accumulator, the second in index regis­

ter 1, and the third in index register 2. Two or

more values must be separated by commas,

Trailing commas are not required for unspecified

values, Examples of Go To commands are pre­

sented below.

3: 3-9

fied V ALS in the AC, Xl, and
XZ and transfer control to
and start execution of the
object program at ADDRESS.

Directs Debug to load speci-
fied VAL in AC, leave X 1
and XZ unmodified, and start
object program execution at
ADDRESS.

Directs Debug to load speci -
fied VALs in AC & Xl, leave
XZ unmodified, and start
execution at ADDRESS.

Directs Debug to load speci-
fied V ALs in AC & XZ, leave
X 1 unmodified, and start
execution at ADDRESS.

Directs Debug to load speci-
fied VALs in Xl & XZ, leave
AC unmodified, and start
execution at ADDRESS.

Directs Debug to load speci-
fied VAL in Xl, leave AC and
X2 unmodified, and start
execution at ADDRESS.

Directs Debug to load X2 with
specified VAL, leave AC &
X 1 unmodified, and start
execution at ADDRESS.

Example 1:

Programer input command: lOOOGl,, 1

Debug reponse: loads AC with the value 1,

leaves Xl unmodified (specified by the second

comma}, loads XZ with the value 1, transfers

control to location 1000 in the object program,

and starts its execution.

Example Z:

Programer input command: lOlOG, 1, z

Debug response: loads Xl with the value 1,

XZ with the value Z, leaves AC unmodified, and

starts execution of the object program at loca­

tion 1010.

Example 3:

Programer input command: lOOOG, • Z

Debug response: loads XZ with the value Z,

leaves both AC and Xl unmodified, and starts

object program execution at location 1000.

Example 4:

Programer input command: lOOOG, 3

Debug response: loads Xl with the value. 3,

leaves AC and XZ unmodified, and starts object

program exeuction at location 1000,

Example 5:

Programer input command: lOOOG6

Debug response: loads AC with the value 6,

leaves Xl and XZ unmodified, and starts pro­

gram execution at location 1000,

Example 6:

Programer input command: lOOOG

Debug response: transfers control and

starts execution of the object program with AC,

Xl, and XZ containing their original values.

3. 1. 1. 4 Address Computation Commands. To

aid in on-line testing and checkout of object pro­

grams, the capability to add or subtract two

hexadecimal constants and output the result has

been provided via the Addition and Subtract

commands. These statements assist the pro­

gramer in computing absolute locations in re­

locatable programs, or in computing the absolute

location of a data word based on a program

counter relative instruction referencing that data

word. The following pages present detailed de­

scriptions of the use of the Addition and Subtract

commands.

3. 1. 1. 4. l Addition command. The Addition

command specifies that the Interactive Debug

program is to add one hexadecimal constant to

another, as shown in the format diagram below.

The constants may be from one to four digits in

length. Leading zeros need not be written in

constants less than four digits long.

FORMAT

PARAMl FC PARAM Z SIGNIFICANCE

CONl + CONZ Directs Debug to add
the left constant to
the right constant.

NOTE

The Addition code is the plus
(+) sign, which is the shifted
semicolon on the ASR device.

When the Addition command is issued, the

Debug program. adds the first constant (CONl) to

the second constant (CONZ) and reports the re­

sults preceded by an equal (=) sign, as illustrated

below.

Example 1:

Programer input command: 1000+1

Debug response: =1001

Example Z:

Programer input command: 1000+1234

Debug response: =ZZ34

Example 3:

Programer input command: 1 +l

Debug response: =OOOZ

3: 3-10

Example 4:

Programer input command: 8000+1

Debug response: ==8001

Example 5:

Programer input command: FFFF+l

Debug response: =0000

Example 6:

Programer input command: 7FFF+l

Debug response: =8000

Example 7:

Programer input command: 100+1000

Debug response: =llOO

Example 8:

Programer input command: ABCD+F

Debug response: =ABDC

Example 9:

Programer input command: FFFF+FFFF

Debug response: =FFFE

The Proceed command (subsection

3. 1. 1. 5. 3) may be used following an Addition

command to supply different CON2 1 s to be added

to the original CONl, and thus perform other

Addition computations.

3. 1. 1. 4. 2 Subtract command, The Subtract

command specifies that the Interactive Debug

program is to subtract one hexadecimal con­

stant from another, as shown in the format

3: 3-11

diagram below. The constants may be from one

to four digits in length. Leading zeros need not

be written in constants less than four digits long.

FORMAT

PARAMl FC PARAM2 SIGNIFICANCE

CONl - CON2 Directs Debug to
subtract the right
constant from the
left constant.

When the Subtract command is issued, the

Debug program subtracts the second constant

(CON2) from the first constant (CONl) and re­

ports the results, preceded by an equal (==) sign,

as illustrated below.

Example 1:

Programer input command: 0- 1

Debug response: =FFFF

Example 2:

Programer input command: 1- 1

Debug response: =0000

Example 3:

Programer input command: 2-1

Debug response: =0001

Example 4:

Programer input command: FFFF-1

Debug response: =FFFE

Example 5:

Programer input command: FFFF- FFF

Debug response: =FOOO

Example 6:

Programer input command: 8000- 1

Debug response: =7 FFF (overflow condition)

Example 7:

Programer input command: FFFF- 7FFF

Debug response: =8000

Example 8:

Programer input command: 0- CA

Debug response: =FF36

Example 9:

Programer input command: ABCD-AAAA

Debug response: =0123

The Proceed command, described below,

may be used following a Subtract command to

supply different CON2 1s to be subtracted from

the original CONl and thus perform other Sub­

tract computations,

3. 1, 1, 5 Proceed Command. The Proceed

command specifies that the Debug program is to

refer to the input command just preceding it

(i. e. , the most recent command specifying a

command code other than P) and create a new

command of the same type with different param­

eters to the right of the function code. That is,

the previous effective address and function code

are used with the new parameters. The format

of the Proceed command depends, of course, on

the particular Debug input command it immedi­

ately follows, as shown in the following sub­

sections. The Proceed command is not effective

after a Set Breakpoint or Clear Breakpoint com­

mand.

3. 1. 1. 5, 1 Proceed command use after Alter,

Dump, and Fill commands, After execution of a

single word Alter, Dump, or Fill command, the

Debug program increments the ADDRESS speci­

fied in the command by ·2 and saves it, If the

next sequential command is a Proceed (i. e,, be­

gins with function code P}, the Debug program

performs an Alter, Dump, or Fill operation, as

specified by the new parameter(s) following the

P function code, as shown in table 3- 3 and

illustrated in the examples at the end of this

subsection,

Example 1:

Assume that the most recent Debug input

command is an Alter command: lOOOAFOFO

The Proceed command below

PFFFF

tells Debug to fill location 1002 (i. e,, the saved

Alter ADDRESS+2) with the value FFFF,

Example 2:

Assume that a second Proceed command

follows the one in Example 1, which specifies

the following: P AAAA

The command specifies that Debug is to fill the

location following 1 002+2 (i, e. , 1004) with the

value AAAA.

Example 3:

Assume that the most recent Debug input

command is the Dump command

OlOOD

after which the Proceed command

p

causes location 0102 (Dump ADDRESS+2) to be

dumped, as follows: 0102•:<AA02

3: 3-12

Table 3- 3. Effect of Proceed Command After Alter, Dump o•r Fill· Commands

PROCEED COMMAND

I PREVIOUS FORMAT

COMMAND FC PARAM I, PARAM2 SIGNIFICANCE

ALTER p VALUE I First Proceed command causes
VALUE I to be stored in ADDRESS+2,
which was saved after preceding
ALTER command execution, and a
printout of ADDRESS+2, the original
value and the new value to be printed
out.

p VALUE2 Second Proceed command causes
ADDRESS+Z to be incremented by Z,
VALDEZ to be stored in ADDRESS+4,
and a printout of ADDRESS+4 and its
original and new value.

DUMP p !:::, or 1 The first Proceed following DUMP
causes a dump of the stored value in
ADDRESS+Z, which was saved after
the Dump command execution.

p !:::, or I Second Proceed causes ADDRESS+Z
to be incremented by Z and the stored
value of ADDRESS+4 to be dumped.

p (count> I) Causes the ADDRESS+Z saved after
Dump execution to be used as the
starting address and to be sequentially
incremented to dump the number of
consecutive locations specified by count.
The starting location and stored values
in the block of locations are dumped.

FILL p VALUE lt::,or The first Proceed following FILL
VALUE!, 1 causes VALUE! to be stored in

ADDRESS+Z, which was saved after
Fill command execution,

p VALUEZt::, or Second Proceed command causes
VALDEZ, 1 ADDRESS +2 to be incremented and

VALDEZ to be stored in ADDRESS+4.

p VALUE, (count> I) Causes the ADDRESS+Z saved after FILL
execution to be used as the starting ad-
dress and to be sequentially incremented
to fill the number of consecutive locations
specified_ by count with VALUE.

NOTE

All addressing is in bytes.

Assume that the programer now wants to

dump the value in the next location, which can

be effected by the .p command

p

which causes the Debug response

0104*0300

In the same manner, the programer can dump

the next two locations by issuing the Proceed

command

P2

which causes Debug to begin the dump at the

original Dump address 0100, as shown by the

printout

OlOO*CZ04 AAOZ 0300 0806 0108

3: 3-13

Example 4:

Assuming that the most recent Debug input

command is the Dump con1mand

OlOOD

the ten locations starting at 0100 can be dumped

by issuing the Proceed command

PA

The dump is as follows:

0100*C204 AA02 0300 0806 0108 1010 03F3 20AO

OllO*E300 02E3 AA02

Example 5:

Assuming that the most recent input com­

mand is the Fill command

lOOOF9999

The following Proceed commands illustrate a

method of program patching:

1002Fl234, 2

P4321

PABCD

PFFFF, 8

fills locations 1002 and
1004 with the value 1234

fills location 1004 with
the value 4321

fills location 1006 with
the value ABCD

fills location 1008 through
1016 with FFFF

3. 1. 1, 5. 2 Proceed command use after Go To

and Search commands. When a Go To or

Search command is executed by Debug, the exe­

cution ADDRESS is saved. Ji the next sequen­

tial command is a Proceed (i. e. , begins with a

P function code) the Debug program uses the

saved address to create a new command with the

new values specified to the right of the P func­

tion code, as shown in table 3- 4.

The Proci:ied command may be used to

create a new Go To command only when both of

the following conditions ·exist:

•

•

The object program has received control

from Debug as the result of a programer­

is sued Go To command.

Control has subsequently been returned to

Debug because the obj.ect program encoun­

tered a breakpoint address.

Ji the above conditions are met, the pro­

gramer may issue a Proceed command to cause

control to be returned to the ADDRESS specified

in the original Go To command just preceding

the return of control to Debug. The Proceed

command may optionally specify one or more

new values to be loaded into the accUinulator,

Xl, and/or X2. If no new values are specified,

the transfer from Debug to the object program

takes place without modification of the registers.

If a Proceed command follows a Search

command (function code S) the starting address

of the search operation will be the same as in

the original Search command, but new values

must be entered following the P code.

3. l, 1. s. 3 Proceed command use after

Addition and Subtract commands. When the

Interactive Debug program is being used, the

Proceed command may be used following the

Addition or Subtract command by merely enter­

ing the P function code followed immediately by

a new CON2 value. That is, when an Addition

or Subtract command is executed by Interactive

Debug, the CONl value to the left of the + or -

function code is saved. Hence, if the next se­

quential command is a P command, Debug

performs the specified operation using the

original CONl value and the new CON2 value

specified in the Proceed command. The format,

then, for the Proceed command following an

Addition or Subtract command is:

PCON2

3: 3-14

Table 3- 4. Effect of Proceed Command After Go To or Search Commands

PREVIOUS
PROCEED COMMAND FORMAT

COMMAND FC PARAMl, PARAM2, PARAM3 SIGNIFICANCE

GO TO p Specifies that Debug is to transfer control to
the original Go To ADDRESS and start pro-
gram execution without modifying any registers,

p ACVAL,XlVAL,X2VAL Specifies that Debug is to load new values in
the AC, Xl, and X2 and start object program
execution at the ADDRESS specified in original
Go To command.

p AC VAL Directs Debug to modify the current value in
the AC with the new value and return control to
ADDRESS specified in preceding Go To command.

p ACVAL, XlVAL Directs Debug to load specified VALues in the
AC and Xl, leave X2 unmodified, and start pro-
gram execution at original Go To ADDRESS.

p ACVAL,, X2VAL Directs Debug to modify AC and X2 with new
VALues, and return control to ADDRESS
specified in preceding Go To command.

p ,XlVAL,X2VAL Directs Debug to load Xl & X2 with new
VALues, leave AC unmodified, and return con-
trol to preceding Go To ADDRESS.

p ,XlVAL Directs Debug to load XlVAL in Xl, leave AC
and X2 unmodified, and return control to
ADDRESS specified in original Go To.

p ,,X2VAL Directs Debug to load X2 with the specified
X2VAL, leave AC and Xl unmodified, and
return control to original ADDRESS specified
in preceding Go To command.

SEARCH p VALUEt, Specifies that Debug is to search the memory

or word located at the ADDRESS originally
specified in preceding Search command,

VALUE! compare its content with VALUE, and print
the ADDRESS and value if an equal condition
is met.

p VALUE, COUNT Specifies that the memory locations specified
·by COUNT are to be searched, starting at
ADDRESS specified in preceding Search
command, compared to VALUE, and any equal
values are to be reported on the output device.

p VALUE,COUNT, MASK Specifies that Debug is to search the memory
locations specified by COUNT, starting at the
ADDRESS specified in the preceding Search
command, logically AND each stored value
with MASK, compare the results with VALUE,
and report equal values and their address via
a printout on the output device.

3: 3-15

Following are examples of Proceed command

use and the results obtained.

. Example 1:

Proceed following Addition command

Programer input command: 1000+1

Debug response: =1001

Programer input command: P2

Debug response: =1002

Programer input command: PFF

Debug response: =lOFF

Example 2:

Proceed following Subtract command

Programer input command: 0- 1

Debug response: =FFFF

Programer input command: P2

Debug response: =FFFE

Programer input command: PF

Debug response: =FFFl

3. 1. 1, 6 Breakpoint Control Commands. The

breakpoint control commands are Set Break­

point and Clear Breakpoint.

3. 1. 1. 6. 1 Set Breakpoint command. This

command is used to set from one to four break­

point addresses within the object program. The

Set Breakpoint command format is shown below.

FORMAT

PARAMl FC SIGNIFICANCE

ADDRESS B Specifies the address at which
a breakpoint is to be set in the
object program.

There are two restrictions on the use of the

Set Breakpoint command:

• No more than four breakpoints may be in

effect at a given time in the executing

program.

• Breakpoint addresses must not specify the

second word of a two word (long format)

executable instruction •

When a Set Breakpoint command is issued,

the Debug program performs all of the following:

•

•

•

Saves a 5- word block of code in the object

program, beginning at the specified

ADDRESS,

Overlays the saved object program code

area with a 5-word Breakpoint Transfer

Block (BTB) to effect a transfer of control

to Debug when the breakpoint address is

encountered in the object program.

Waits for the next programer input com­

mand.

When a breakpoint address is encountered

in the executing program, control transfers to

the Debug program which performs the following:

•

•

Prints the breakpoint address, and the

current values of the accumulator, Xl, and

X2.

Waits for the next programer input com­

mand.

In all cases, to return to the object program, the

programer must issue a Go To command.

3. 1. 1. 6. 2 Clear Breakpoint command. The

Clear Breakpoint command, formated below,

clears a breakpoint previously set by the Set

Breakpoint command,

FORMAT

PARAMl FC SIGNIFICANCE

ADDRESS c Specif~es that the breakpoint
previously set at ADDRESS
is to be cleared.

3: 3-16

When a Clear Breakpoint command is

is sued, the Debug program clears the break­

point set for the specified address, restores the

saved object program 1 s code in the area

currently occupied by the BTB associated with

the breakpoint, and waits for the next input

command. To return to the object program,

the programer must issue a Go To command.

3. 2 Debug Output Error Messages

When an error in processing or data entry

is detected by Debug a two character error

message is logged on the list device. Debug 1 s

recovery procedure is to terminate processing

the current input command, log the error code

on the ASR device, issue a line feed and carriage

return, and initiate input of another input com­

mand. No data from erroneous input commands

is saved. The user may reenter that command

correctly, or enter any other valid input com­

mand. The error codes and their signficance

are shown in table 3- 5.

Table 3- 5.

Message
Code

BF

BP

FC

HX

Pl

P2

P3

Sl

S2

WA

4B

3: 3-17/18

Interactive Debug Error Messages

Meaning

Input buffer full; more than 72
characters in input record.

Clear Breakpoint command given
for ADDRESS not currently in
breakpoint stack.

Function Code or Field Delimiter
omitted from input record.

Non- Hex number found in Hex
Data Field.

Parameter 1 omitted from a com­
mand requiring it be supplied.

Parameter 2 omitted from a com­
mand requiring it be supplied.

Parameter 3 omitted from a com­
mand requiring it be supplied.

System Error - reload or mainte­
nance required.

System Er·ror - reload or mainte­
nance required,

Least significant bit set in para­
meter 1, indicating effective
address on a non-word boundary.

Set Breakpoint command issued
after the maximum number have
been stored in the breakpoint save
stack.

Section 4. SYSTEM GENERATOR PROGRAM

The System Generator (SYSGEN) program

provides for the generation of a specially-tailored

PTS- 100 IOCS monitor to meet unique applications

processing requirements. That is, for any given

PTS- 100 installation, a specialized IOCS monitor

can be generated by describing its content to the

SYSGEN program. The system descriptions are

supplied on key word directive cards, which are

input to the SYSGEN program. There are six key

word directives: TITLE, ACIC, ASGL, ASGP,

CALL, and END. These directives are described

individually in the subsections immediately

following.

4. 1 Command Directives

The inputs to SYSGEN are command directives

containing key words and the parameters neces­

sary to describe the system to be generated.

Input on punched cards, the six directives are:

•

•

•

•

One TITLE directive, which is used to assign

a name to the system being created, and to

specify PTS-100 Assembler file assignments

and assembly options.

One optional ACIC directive, which is used

only when a channel interface contr.oller

(CIC) is attached to the object PTS- 100. The

ACIC directive specifies the number of de­

vices to be attached to the CIC, the tumble

table to be used, the base device address,

and the channel address of each group of 16

devices attached to the CIC.

One ASGL directive, which is used to assign

physical 1/0 devices to logical units whose

names appear in IOCS tables.

One or more ASGP directives, which are

used to assign hardware addresses to physi­

cal 1/0 devices, and to specify the interrupt

levels to which the devices are to be assigned.

3: 4-1

• One or more CALL* directives, which are

used to insert macro calls to effect spe­

cialized IOCS monitor routine creation by the

PTS-100 Assembler when the generated sys­

tem is assembled.

• One END directive, which terminates the

input directive processing.

Within the input card deck, the directives

must appear in the order in which they are listed

above. Except for the ASGP and CALL directives,

only one directive of a given type may appear in

the input deck. The specifications for writing the

individual directives and their parameters are

described and illustrated in the following sub­

sections.

4. 1. 1 TITLE Directive

One TITLE directive is used to establish the

information the PTS-100 Assembler requires for

its options record when a given generated system

is assembled. The directive specifies three types

of information:

•

•

•

The system name, which must be specified .

The name is eight characters in length.

The file (i.e., device) assignments for those

devices to be used by the Assembler, if other

than default device assignments are to be

used (see Section 5 of Part 2 of this handbook).

The assembly options desired •

The TITLE directive format is illustrated in

figure 3- 3.

*The CALL directive permits users to call
their own generalized IOCS monitor macro
routines, defined to satisfy applications-unique
requirements such as nonstandard device driving
and servicing routines. J:·he source code of call­
ed routines must have been stored on the System
Macro Library file to be used as input to the
Assembler.

TITLE IOCS nam

I
12345 6 7 8 9 10 11 12 13 14 15

Opl I Op2 , Op3 , Op4 , Op5 , Op6

)34 35 36 37 38 39 40 41 42 43 44}

I
)

Figure 3-3. Format of the TITLE Directive

The content of the individual fields of the

TITLE directive is presented below.

4. 1. 2 ACIC Directive

Field 1: TITLE must appear in columns 1-5,

followed by a comma in column 6

One ACIC directive is used when, and only

when, the channel interface controller (CIC) is to

be used on the PTS-100 for which a given IOCS

monitor is being generated. When used, the

Field 2: The system name must appear in

columns 7 - 14, followed by a comma

in column 15.

ACIC directive must follow the TITLE directive

in the SYSGEN input deck. It specifies the

information needed by the IOCS monitor to support

the CIC and its attached devices. The ACIC

directive is written in the format Fields 3 - 8: Assembler options (Opl through

Op6) may be specified as shown below.

ACIC,nn, T, BDA, CAD1, CAD2, CAD3, CAD4

OPTION SELECTION TITLE CARD
Content Column

Opl Cross reference listing 1 34
No cross reference listing (default) t.i

Op2 Sequence checking 1 36
No sequence checking (default) t.i

Op3 Macros included t.i 38
No macros included (default) 1

Op4 Relocatable object text (default) t.i 40
Absolute object text 1

Full listing, macros expanded (default) t.i 42
Full listing, macros not expanded 1

Op5 Error listing only 2
No listing 3

Op6 Machine language produced (default) t.i 44
No machine language produced 1

3: 4-2

where:

nn specifies the total number of devices

attached to the CIC, and must be one of the

following: 16, 32, 48, or 64.

T specifies the tumble table to be used.

BDA specifies the base device address to

be used.

CAD 1 - CAD4 specifies channel addresses,

one of which must be specified for each group

of 16 devices attached to the CIC.

A minimum of one and a maximum of four

groups of devices may be attached to the CIC.

That is, the number of groups attached and the

CADs required relates to the nn specification

as shown below:

Number of Channel Address(es) (CADs)
nn Groups Required

16 l CAD1

32 2 CAD1,CAD2

48 3 CAD1, CAD2, CAD 3

64 4 CAD 1, CAD2, CAD3, CAD 4

As shown above, unnecessary CADs in the ACIC

directive may be left blank.

If, however, more than one group of devices

is to be attached to a given channel, the channel

address must be specified once for each group

attached. For example, the directive

ACIC, 64, 1, F40, F80, F80, F80, F80

specifies that all 64 devices (i.e., four groups)

are to be attached to channel address F80.

3: 4-3

4. 1. 3 ASGL Directive

For a given system, one ASGL directive is

used to specify the assignment of physical I/O

devices to the logical units whose pointers appear

in the IOCS input/ output control table (!OCT). The

directive contains ASGL in columns 1 - 4 of the

input card, followed by the physical device nota­

tations to be used as assignments to logical units

in the !OCT. The device notations are separated

by commas, and are written in the format illus­

trated below:

ASGL,Dl, D2, D3, D4, D5, D6, D7, DB, D9, D!O, Dl I, DlZ, Dl3

where ASGL must appear in columns 1 - 4 follow­

ed by a comma in column 5, and the Ds are de­

vice notations which have the following significance

in the order in which they appear:

Dl

DZ

D3

D4

D5

D6

D7

D8

D9

DlO

Dl 1

D12

D13

device assigned for SYSF (System File)

device assigned for SYS! (System Input
Device)

device assigned for SYSL (System Logging
Device)

device assigned for SYSD (System Data
Device)

device assigned for SYSB (Binary Output)

device assigned for SYST (System Listing
Device)

device assigned for SYSO (System Output
Device)

device assigned for SYSR (System Scratch
Device)

device assigned for LOGS (Logical Unit 8)

device assigned for LOG9 (Logical Unit 9)

device assigned for LOGA (Logical Unit A)

device assigned for LOGB (Logical Unit B)

device assigned for LOGC (Logical Unit C)

NOTE

If a device is not to be as signed,
the omission of its notation must
be indicated by a series of three
zeros.

The device notations that are permissible for

various device assignments are shown in table 3-6.

Table 3-6. Device Notations for Use as SYSGEN

Notation

AMn

CAn

Gin

CMn

CPn

CRn

DK.n

DR

FPn

Directives

Associated Device

Asynchronous Modem

Cassette Unit

Channel Interface Controller

Card Reader Multiplexed

Card Punch

Card Reader

Disc Unit

Display Keyboard Receive

High Speed Paper Tape Punch

FRn High Speed Paper Tape Reader

KRn

KSn

LP

MHn

MMn

MRn

MSn

PMn

SRn

SPn

TPn

ASR Keyboard Receive

ASR Keyboard Send

Line Printer

Modem Half Duplex (synchronous)

Modem Multiplexed

Modem Receive :(PARS)

Modem Send (PARS)

Printer Multiplexed

Special Display Keyboard Receive

Serial Printer

Magnetic Tape Unit

NOTE

n is a decimal integer to specify
a particular device where multiple
devices of the same type appear in
the equipment configuration.

4. 1. 4 ASGP Directive

This directive is used to specify the identi­

fication, hardware address, interrupt level, and

macro processor special code for each physical

I/ 0 device to be used by the system being gen­

erated. The parameters specified on ASGP

directive cards are used to complete the !OCT,

started with the ASGL directive parameters, to

build other tables (e.g., the PIOT), in the IOCS

3: 4-4

monitor, and to specialize the interrupt packets,

level service routines, and the driver and service

routines for each assigned device. The ASGP

directive format is as follows:

ASGP, D 1 ID, D 1AD,D1 IL, D 1 SC, D 1 IM, SEN, •.• ,

D ID,D AD,D IL,D SC,D IM,SEN
~ n n n n

The ASGP key word must appear in card columns

1 - 4, followed by a comma in column 5, which is

followed by a string of parameters, separated by

commas. The parameter strings are composed

of sets of parameters, with six parameters in a

precise order required in any giv.en set, as follow3:

DID, DAD,DIL,DSC,DIM, SEN

where:

DID is one of the following:

the device identifier, specified as the appro­

priate notation from table 3- 6, when only one

device of this type is attached to a multi­

plex controller, or

a comma, indicating that multiple devices of

this type are attached to the same multiplex

controller, as specified by the DIM para­

meter in position 5 of the parameter list.

DAD is the device hardware address assigned to

the device identified by DID or DIM.

DIL is the external interrupt priority level (level

1 through 8, as shown in table 3- 7) to which the

device is to be assigned.

DSC is a two character code which may be used

to effect further specialization of the particular

device's interrupt handling, service, and driver

routines by the macro processor of the PTS- 100

Assembler.

Table 3-7. Interrupt Priority Levels

in the PTS- 100

Interrupt
Level Interrupt Type

10 Parity

9 Trap

8 External 8 Device

7 External 7
Interrupt
Levels

6 External 6

5 External 5

4 External 4

3 External 3

2 External 2

~

1 External 1
.J

0 Processor I Interval
Timer

DIM is one of the following:

the device identifier, specified as the appro­

priate multiplexed identifier notation from

table 3- 6, when more than one device of the

same type is attached to the same multiplex

controller, or

a comma if only one device of this type is

attached to a given multiplex controller.

SEN is a sentinel, which must be one of the follow­

ing:

an L to indicate the last device

type that is attached to the same multiplex

controller, or

a comma if DID is specified in the parameter

list or if this is not the last device of an

identical type attached to the same multi­

plex controller.

A special code is used in the generalized

#IMLSR macro routine in the #IMPIT macro

routine that creates PIOTs for each I/O device.

That is, the parameters within each set in the

ASGP directive become actual arguments in the

3: 4-5

call to the #IMLSR and other macro routines.

The special code may be any two character value

the programer wishes to use, but must be dif­

ferent in each parameter set. It must be specified

as the fourth parameter in each set of parameters

for a specific device.

The DID and DIM parameters should not both

appear in the same parameter set. That is, DID

specifies that only one device of this type is

attached to a given multiplex controller, and will

cause a unique set of device handling routines to

be created in the IOCS monitor. The DIM para­

meter specifies that more than one device of this

type is attached to a given multiplex controller,

and will cause a common set of device handling

routines for this type of device to be created in

the IOCS monitor.

Any number of ASGP directives may appear

in succession in the input deck. Each directive

begins with ASGP, followed by a set of parameters.

To illustrate the use of the ASGP directive,

assume the following two cards:

ASGP, CRl, OlA, 3, 00,,,

ASGP, CAl, 025, 1, OX,,,

The first set of parameters specifies the following:

CRl is the identifier for card reader device 1

0 lA is the hardware address to be as signed
to card reader 1

3 is the external interrupt priority level to
which card reader 1 is to be assigned

00 is the default special code

NOTE

Since the device identifier is speci­
fied in position 1 of the parameter
set, the DIM and SEN parameters in
positions 5 and 6 are omitted, as in­
dicated by commas in these positions.

The second set ofpara1neters specifies the following:

CAI is the identifier for cassette unit 1

025 is the hardware address to be assigned to
cassette unit 1

1 is the external interrupt priority level to
which cassette unit 1 is to be assigned

OX is a special code to be used by the Assem­
bler in specializing the IOCS routines

The omission of the DIM and SEN parameters is

indicated by commas in their positions in the

parameter set.

The following example illustrates the four

ASGP directive cards necessary to specify four

multiplexed serial printers:

ASGP, PMl, 018, 2, 00,,,

ASGP,, OCO, 2, 00, PMl,,

ASGP,, 010, 2, 00, PMl,;

ASGP,, 014, 2, 00, PMl, L

The parameters on the first card specify the

following:

PMl is the identifier for the first serial
printer to be multiplexed.

018 is the hardware address to be assigned
to the first serial printer.

2 is the external interrupt priority level to
which the first serial printer is to be assigned.

00 is the default special code.

Positions 5 and 6 are omitted (see Note on
previous page).

The parameters on the second card specify:

The comma in position 1 indicates that multi­
ple printers are attached to the same printer
driver and service routine as specified in
position 1 of card 1.

The next three positions are the same as on
card 1, except for changes in the parameter
values.

PMl is the identifier for the device that is
being multiplexed.

Card 3 is similar to card 2, with the parameter

values changed. Card 4 is also similar except

that position 6 contains an L to signify that this

is the last device of this type.

As many as 22 sets of parameters may be

specified for a given system generation. That is,

3: 4- 6

a maximum of 22 devices may be entered into a

system to be generated by SYSGEN.

4. 1. 5 CALL Directive

CALL directives effect the generation of

macro routine call statements to cause the PTS-

100 Assembler to create specialized macro

routines from user-defined generalized macro

routines, according to the arguments specified

in the CALL directives. The format of the CALL

directive is shown below.

CALL, t:.$t:.macronamt:.Argument1 , ..• Argumentn

The key word CALL must appear in card columns

1 - 4, followed by a comma in column 5, a space

in column 6, a $ in column 7, and a space (i. e. ,

blank character) in column 8. The macro routine

name, up to 8 characters in length, starts in

column 9 and may range through column 16. The

name is terminated by a blank character. The

name must be that of a generalized macro routine

on the System Macro Library file that is input to

the Assembler run.

Following the blank character terminating

the macro routine name is the actual argument

list (i.e. , one or more actual arguments,

separated by commas) that the Assembler is to

use to specialize a routine for the monitor being

generated. For a detailed description of macro

routine definition, see Section 4 of Part 2 of this

h<!(Ildbook.

Any number of CALL directives may appear

in the deck. Each card is written in the format

shown above.

4. 1. 6 END Directive

The END directive terminates the input

directive file processing by SYSGEN. It must,

therefore, be the last card in the input deck. The

END directive key word appears in columns 1 - 3

of the last input card. No other columns are used

on this card.

4. 2 SYSGEN Processing

SYSGEN generates the necessary call state·­

ments to effect the creation of a specially-tailored

roes monitor according to the key word directives

and their parameters as de:;cribed above. The

output of SYSGEN is a file, in PTS- 100 Assembler

format, composed of an Assembler options

record and the macro calls to the generalized

System Macro Library routines required to

specialize and order the described IOCS monitor.

Some of the macro calls generated by SYSGEN

are listed below:

$t,#IMSCP Global Area Initialization

$t,#IMIP Interrupt Packet Initialization

$ti#IMPIT PIOT Table Interfacing

$ti#IMCTL Logical Control Table

$ti#IMCTP Physical Control Blocks

END DIRECTIVE

/...
V-v
CALL D IRECTIVE(S)

./.: a.
~

ASGP
DIRECTIVE{S)

/
ASGL
DIRECTIVE

/
ACIC DIRECTIVE
{OPTIONAL)

/
TITLE DIRECTIVE

SYSTEM
GENERATOR
PROGRAM

$t,#IMLSR Level Service/Restore
Routines and Necessary
Device Drivers and Device
Service Routines

$ti#IMMSC MsC Service Routine

$t,#IMOPL OPEN L UN Routine

$t,#IMCLL CLOSE LUN Routine.

$t,#IMACT I/ 0 Action Routine

$ti#IMCLK Clock Routine

$t,#IMPAR Parity Routine

$ti#IMLOG Error Logging Routine

$t,#IMEXT EXIT Routine

$ti#IMPCB PCB Computer Routine

$ti#IMINT roes Initialization

The output file from SYSGEN must be processed

by the PTS- 100 Assembler before the specialized

IOCS monitor will be executable on the PTS-100.

The total process of generating a system is

illustrated in figure 3-4.

PTS-100
ASSEMBLER
PROGRAM

Figure 3-4. Processing Flow of Specialized System Generation

3: 4-7

To produce the Assembler formated file, the

SYSGEN program reads, interprets, and pro­

cesses the key word directives that compose its

input. The processing performed depends on the

particular key word directive that has been input,

as described in the following subsections.

4. 2. 1 TITLE Directive Processing

When the first four characters of an input

record are TITL, the SYSGEN program reads the

parameters from the record and composes an

Assembler options record containing the name of

the system to be generated and any specified

assembly options. The first six characters of

the input directive record (i.e., TIT LE,) are

discarded, and the output record begins with the

name of the system, followed by the specified

options. The record is written in Assembler

formated file.

4. 2. 2 ACIC Directive Processing

When an ACIC directive is input to SYSGEN,

the parameters are read and SYSGEN generates

a series of macro calls to effect the creation of

specialized macro routines to support the channel

interface controller and its attached devices. The

fir st macro call is

$,6.#lMCDPll nn, T

which causes a specialized macro routine to be

created from the generalized system macro

routine #IMCDP, with the actual arguments nn

(the number of devices specified in the ACIC

directive) and T (the tumble table to be used) to

be inserted in place of dummy arguments i.n the

generalized routine. An additional macro call

is generated for each device attached to the CIC.

The macro calls take the form

$,6. #IMCCB,6.PTAG, CAD, PDAD

where:

PTAG is the tag of the Physical I/O Table

(PIOT) to be used by IOCS.

CAD is the channel address.

PDAD is the physical address of a specific

device within a group of devices attached to

a channel.

All macro calls are output to the Assembler

formated file.

4. 2. 3 ASGL Directive Processing

When an ASGL directive. is input to SYSGEN,

the physical device notations are read, and a

system logical macro call is generated in the

format:

$.6. #IMCTL,6.Argument1, Argument2 , ••• Argumentn

where:

$ is the special symbol to signal the Assembler

that a macro routine is being called.

#IMCTL is the name of the generalized system

logical macro routine to be speciali~ed with the

arguments in the call.

Arguments 1 - n are the physic al device nota­

tions in the precise order in which they were

specified on the ASGL directive.

The macro call is output to the Assembler

formated file.

3: 4-8

During Assembler processing, when the

Assembler reads the macro call from the format­

ed file, it locates the generalized #rMCT L macro

routine on the System Macro Library file and

creates a specialized macro routine by replacing

the corresponding dummy arguments in the gen­

eralized routine with the actual arguments in the

SYSGEN macro call.

4. 2. 4 ASGP Directive Processing

When an ASGP directive is input to SYSGEN,

the program issues the necessary macro calls to

effect Assembler specialization of interrupt

packets for all external interrupt levels io which

devices have been assigned, creation of interrupt

level servicing routines for each external inter­

rupt level assigned, creation of a Physical Con­

trol Block for each device assigned via the ASGP

directive, and specialization of device driving and

servicing routines.

At assembly time, the Assembler creates

specialized roes monitor routines to process

interrupts from all assigned levels and accom­

modate all devices within the described equip­

ment configuration.

4. 2. 5 CALL Directive Processing

When SYSGEN reads an input CALL directive,

it outputs the dollar sign ($) and the macro routine

name specified in the CALL directive, followed by

the argument string that the Assembler is to use

in creating the specialized macro routine for the

system being generated.

4. 2. 6 END Directive Processing

When SYSGEN reads the END directive in the

input deck, it writes END as the last entry on the

Assembler formated output file and terminates

processing.

At assembly time, the END statement ter­

minates the assembly of the generated object

roes monitor.

3:4-9/10

Section 5. PTS-100 DUMP PROGRAMS

There are two dump programs provided for

use on the PTS-100:

• The Memory Dump Program, which allows

contiguous locations of main memory to be

dumped to a character printer, a magnetic

tape cassette device, or to a paper tape

punch device.

• The Peripheral Device Dump program,

which provides for dumping serial binary

data file records to a character printer

device.

These two programs and their utilization on the

PTS- 100 are described in detail in this section.

5. 1 Memory Dump Program

The Memory Dump program is a small,

easily relocatable program capable of dumping

the contents of contiguous locations of main

memory to any sequential storage device that

accepts variable length output records. The

length of dump records depends on the output

device being used.

There are two versions of the Dump program

• Version 1 dumps hard copy hexadecimal or

ASCII_records onto a character printing

device.

• Version Z dumps reloadable binary records

to a magnetic tape cassette or paper tape

punch device.

Either version of the program may receive dump

parameters as input from a keyboard device or

as arguments of a subprogram assembled within

the main program whose memory locations are to

be dumped. The Dump program follows one or

two paths, depending on the presence of an ASR key-

board, as shown in figure 3- 5. When input is

from a keyboard, the Dump program reads the

dump parameters, executes the specified dump,

and recycles to indicate its ability to accept a new

set of parameters via the printout

RDY

at the keyboard device.

READ
PARAMETERS
FROM
KEYBOARD

EXECUTE DUMP
ACCORDING TO
PARAMETERS

RETURN TO EXIT
ADDRESS SPECIFIED
BY CALLING
PROGRAM

NO

OBTAIN
PARAMETERS
FROM CALLING
SEQUENCE

Figure 3-5. Alternate Flow Paths of the
Memory Dump Program

When dump parameters are passed from a

subprogram within a main program, the Dump

program executes the specified dump and returns

control to the exit address transmitted from the

calling program.

3: 5 -1

In all cases, the Dump program is located

and activated by the Absolute/Relocating Loader.

The inputs, processing, and outputs of

Versions 1 and 2 of the Dump program are de­

scribed in subsection 5. 1. 1 and 5. 1. 2 on sub­

sequent pages of this section.

5. 1. 1 Version 1 of the Memory Dump Program

Version 1 of the Dump program dumps the

contents of cQntiguous memory locations on a

character printing device. The hard copy dump

printouts are in either hexadecimal or ASCII

representation of a maximum of 72 characters

(i.e., one ASR print line) per record. The dump

parameters may be input via a keyboard or via

the object code of a subprogram assembled within

a main (i.e., calling) program. The procedures

for specifying dump parameters and the resulting

output are described below.

5.1.1.1 Version l Keyboard Input Format.

Each set of keyboard input parameters to the

Version l Dump program must be specified as

a 15- character line with no intervening spaces

and in the precise order shown in the following

format diagram:

Character Position

l - 2 3 - 6 7 8 - 11 12 13 14 - 15

DU STAR • STOP • x crlf
A

where:

DU _appears in character positions 1 and 2 to

specify the dump.

The STARting address of the dump appears as

four hexadecimal digits in character positions

3 through 6.

A comma must appear in character position 7 to

separate the starting and stopping address of the

dump.

The STOPping address of the dump appears as.

four hexadecimal digits in character position 8

through 1 L

A comma must appear in character position 12

to separate the stopping address and the output

format designator.

The output format designator in positioh 13 must

be an X if hexadecimal output is desired, or an

A if ASCII format is to be used for the dump

output.

Character positions 14 and 15 contain carriage

return and line feed characters for the keyboard

device being used.

If an error is made in entering keyboard in­

put parameters, the slash character may be used

to negate all previously typed characters on a line,

and the c_orrect. entry may be typed immediately

following.

When a set of input parameters has been ter­

minated by a carriage return/line feed, the

Version l Dump program. performs the following:

• Store~ the dump parameters in the symbolic

memory locations #DFORM, #DSTAR, and

#DSTOP.

• Validates the dump parameters, and if they

are valid performs the following:

dumps the contents of the accumulator,

index register 1, and index register 2,

dumps the specified contiguous memory

locations in the specified hexadecimal

or ASCII notation.

3: 5-2

• Signals its ability to accept another set of

dump parameters by printing RDY on the

character printer device.

5. l. l. Z Version l Calling Sequence Parameters;

When Version 1 dump parameters are specified

via a subprogram within a main program, they

are transmitted to the Dump program in the

following calling sequence:

LXZ TAG

JMP #DUMP

TAG ADC *

TAG! HEX 0000 starting dump address

TAGZ HEX 0000 stopping dump address

TAG3 HEX 0000 negative zero if hexa-
decimal output desired,
or negative one if ASCII
output de sired

TAG4 HEX 0000 own code exit address

When the dump parameters are transmitted

to the Version l Dump program, it performs

the following:

•

•

Stores the dump parameters in the symbolic

memory locations #DFORM, #DSTAR, and

#DSTOP.

Validates the dump parameters, and if they

are valid performs the following:

dumps the contents of the accumulator

and index register 1. fudex register Z

is not dumped since it is used to handle

the calling sequence between the main

program and the Dump program

dumps the specified contiguous 'memory

locations in the specified .hexadecimal

or ASCII notation

returns control to the calling program at

the specified exit address.

NOTE

The Dump program does not
restore registers prior to
returning control to the call­
ing program.

5. l. l. 3 Version l Dump Output. Regardless of

the specified format of Version l Dump pro.gram

output, a given dump line begins with a 4-digit

hexadecimal integer, which is the byte address

(modulo 16) of the first byte or word in that line,

followed by an asterisk (*), and the formated con­

tent from .the storage locations, as follows:

• If hexadecimal format was specified, eight

data values are represented on a given line,

each represented by four hexadecimal digits,

followed by a space.

• If ASCII format was specified, 16 contiguous

bytes of stored data are represented in 8- bit

ASCII code per line.

If all data values for a given output line are

identical, only the first value is printed, prefaced

by the word ALL, as shown below:

OOOO*ALL.:l FFFF

If succeeding lines also contain the same

value, line printing will be suppressed until some

new data value occurs in the Dump data stream.

For example, if locations 0 through 77 contain all

ones the following would appear on the printout:

OOOO*ALLLiFFFF

As mentioned above, if keyboard input is

used, the value of the accumulator, X 1, and XZ

are printed prior to the specified dump. If call­

ing sequence input is used, the value of XZ is

not printed.

3: 5-3

Formats of Version 1 Dump output are in­

dicated below.

• Register dump line, Keyboard Input Response:

AC:OOOOtiXl:ti OOOOtiX2:6 0000

• Register dump line, Calling Sequence Input

Response:

AC:OOOOtiXl :60000

• Hexadecimal format dump lint:

OOOO*llllll2222ti333364444ti5555ti66666777768888

• ASCII format dump line:

•

•

•

OOOO*ABCDEFGHIJKLMNOP

All hexadecimal or ASCII data values

identical:

OOOO*ALLll FFFF

Ready for Keyboard Input:

RDY

Parameter error encountered:

?

5. 1. 2 Version 2 of the Memory Dump Program

Version 2 of the Dump program dumps re­

loadable binary data records onto a magnetic tape

or paper tape device. The length of a given

dump record is within the maximum allowable on

the output device being used. The dump para­

meters may be specified via a keyboard or via a

calling sequence specified in object code assem­

bled within a main program. The procedures for

specifying dump parameters and the resulting

output for Version 2 are described below.

5. 1. 2. 1 Version 2 Keyboard Input Format.

Each set of keyboard input :parameters to the

Version 2 Dump program must be specified as an

18- character line with no intervening spaces and

in the precis.e order shown in the following

diagram:

Character Position

1 - 2 3 - 6 7 8 - 11 12 13 - 16 17 - 18

DU STAR '
STOP

'
EXEC crlf

where:

DU appears in character positions 1 and 2 to

specify the dump.

The STARting address of the dump appears as

four hexadecimal digits in character positions 3

through 6.

A comma (,) must appear in character position 7

to separate the starting and stopping address of

the dump.

The STOPping address of the dump appears as

four hexadecimal digits in character positions 8

through 11.

A comma (,) must appear in character position

12 to separate the stopping address and the

execution address.

The .dumped program's execution address must

appear as four hexadecimal digits in character

positions .13 through 16.

Character positions 17 and 18 contain the carriage

return and line feed characters for the keyboard

device being used.

3: 5-4

If an error is made in entering keyboard

parameters, the slash character may be used to

negate all previously typed characters on a line,

and the correct entry may be typed immediately­

following it.

When a set of input parameters has been

terminated by a carriage return/ line feed, the

Version 2 Dump program performs the following:

• Stores the dump parameters in the symbolic

memory locations #DSTAR, #DSTOP, and

#DEXEC.

•

•

Validates the dump parameters, and if they

are valid dumps binary output to magnetic or

punched paper tape.

Notifies the programer that it is ready to

receive another set of parameters by printing

RDY

on the keyboard device.

S. 1. 2. 2 Version 2 Calling Sequence Parameters.

When Version 2 dump parameters are specified

via a subprogram within a main program, they

are transmitted to the Dump program in the

following call sequence:

LX2 TAG

JMF #DUMP

TAG ADC *
HEX 0000 starting dump address

HEX 0000 stopping dump address

HEX 0000 execution address

HEX 0000 own code exit address

When the dump parameters are transmitted

from the main program to the Version 2 Dump

program, it performs the following:

• Stores the dump parameters at symbolic

locations #DSTAR, #DSTOP, and #DEXEC.

3: 5-5

•

•

Validates the dump parameters, and if they

are valid dumps binary output to magnetic or

punched paper tape.

Returns control to the calling program at the

specified exit address.

NOTE

The Dump program does not
restore registers prior to re­
turning control to the calling
program.

5. 1. 2. 3 Version 2 Dump Output. The Version

2 Dump program produces variable length dump

records within the maximum size allowable on

the device to which output is dumped. Each

dumped record is in binary format and has a

6- byte header containing the starting dump

address, the number of bytes dumped, and the

dumped program's execution address.

5. 2 The Peripheral Device Dump Program

The sole function of the Peripheral Device

Dump (PDD) program is to produce printed list­

ings of binary data files stored in one of the

following mediums:

cassette magnetic tape files

punched paper tape files

punched card files.

The printed output produced by the PDD pro­

gram is either in hexadecimal notation or ASCII

code, as specified by the programer, or in hexa­

decimal (default) notation if the programer does

not specify the type of output listing to be pro­

duced. The PDD program operates under con­

trol of and in conjunction with the IOCS monitor,

which performs all I/ 0 operations on the PTS-

100. That is, since th .. function of the PDD

program is to produce printed listings of data

files, it must call the IOCS monitor to perform

the read operations required to bring its inputs

into memory and to perform all write operations

to produce the printed listings of data files.

There are three logical file devices used by the

IOCS monitor in servicing PDD,program calls:

•

•

•

The system input device (SYS!), from which

the monitor reads a PDD control director

specifying the format of the output listing

to be produced.

The system data device (SYSD), from which

the monitor reads the binary data file to be

listed.

The system output device (SYST), to which

the monitor writes the content of the spe­

cified data file.

The actual physical addresses of these

devices must have been assigned when the IOCS

monitor was generated by the System Generator

program, described in Section 4 of this part of

the handbook. The File Input/ Output Blocks

(FIOBs) and Input/Output Control Queue tables

(IOCQs) required for each device by the IOCS

monitor must have been created within the PDD

program at system generation time. I/ 0 data

buffer areas must have also been reserved in the

PDD program when it was generated. The buffer

size selection should be the size required to

store any physical records to be read from the

SYSD device.

5. 2. 1 Inputs to the Device Dumping Process

There are three inputs to the device dump­

ing process:

• The object code of the IOCS monitor and the

Peripheral Device Dump (PDD) program,

which must be loaded in that order by the

Absolute/ Relocating Loader.

3: 5-6

•

•

A control director record specifying the

desired format of the output listing.

The binary data file to be listed.

5. 2. 1. 1 IOCS Monitor and PDD Program Object

Code. The object code of the IOCS monitor and

the Peripheral Device Dump program must have

been ass;mbled by the PTS-100 Assembler. The

actual physical device addresses of the SYS!,

SYSD, and SYST logical file devices must have

been assembled in the IOCS monitor. The

necessary FIOBs and IOCQs for monitor use with

these devices must have been assembled in the

PDD program. The monitor and PDD program

object code, illustrated as punch card Loader

input in figure 3-6, must be loaded by the Absolute/

Relocating Loader.

IOCS OBJECT
CODE DECK

Figure 3- 6. IOCS Monitor and PDD Program
Object Code Input to the Absolute/Relocating

Loader

The IOCS monitor is an absolute program and

must be loaded first. Furthermore, the execution

address of the PDD program must be specified,

since the PDD program must initialize itself and

subsequently call the monitor to read its inputs

from SYS! and SYSD. HP-1'\Ce, the PDD program

must appear at'.;he end of the input to the Loader.

5. 2. 1. 2 PDD Control Director Record. The

PDD control director record is an 80 character

record formated in the medium required by the

System Input Device (SYSI). The character

positions and usage on the control director record

are as follows:

Character
positions
30 - 80

case the particular cassette
transport to be used must be
specified.

These character positions may
optionally be used to enter a
comment to be printed on the
header line of the output listing.
There is no restriction on the
starting position of the first
character of the comment. That
is, it may begin in any position
after 2 9 and range through
position 80. The comment is
printed exactly as it was speci­
fied on the director record. The
comment field is useful for
supplying dump identification,
destination, etc.

Character
positions 1- 3

These character positions may
contain the characters ASC to
specify that the output listing is
to be in ASCII code; the char­
acters HEX specify that the list­
ing is to be in hexadecimal
notation; any other characters
produce a default listing in hexa­
decimal notation.

Character
position 4

Character
position 5

This character position is not
used and must therefore be blank.

This character position is not
used except when the data file to
be listed is to be read from a
cassette magnetic tape, in which

ASC
or
HEX

I mi

0 =cassette transport 0
1 = cassette transport 1
2 = cassette transport 2
3 =cassette transport 3

The control director record, illustrated in

punch card format in figure 3- 7, must be ready

in the System Input Device (SYSI) when the PDD

program is initialized.

COMMENT

o o o o o u iJ u D :r fl u '·~ .: P v o o o n G o !I u D 11 o ~ a o o u !1 n o u o o o o o o o o o o O o
11JJ la 19 4Q 41~z43 u ~5 46 ~i ~8 ~9 ~a)1 52 53 54 SS 56 57 SB 59 60 ,<;] 62 63 64 SS 66 ti SB 63 70 !\ 72 73 14 75 1S 77 70 ;~ ao

11111111111111111!11111iiIl111111111111111111111111111111; 11111I111I111111111111

111211212121212212212121211212211112212222222221222222222221112112111z1222121121

13 3 3 3 J 313 3 3 J 3 j 2 J J 3 3 3 3 3 3 3 :l 1J3 3 3 :1333J3 3,, j 3 3 3 3 3 3 3 3 3

4 4 4 ,1 44 4 1 4 4 4 4 4 11 4 ,; 1. '1 ; !, 4 44 4 •1 4 •i 4 44 H 4 44 4 4 ,14 4 4 4 4 4 4 4 4 44 H 4 4 4 4 44 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

55555555555555555555555~55\5555~55

6665bG6666c5666€66GG66

7771777777711777777771777 7777777i 7777777777777771777777777777777777777777I177777

888~3K88S83888888888883888888888888888888888388888888888888888838:'R8888888888888

9 9 3 S J ; 9 g 9 S 9 9 9 9 9 9 J 9 9 g 'I 9 9 9 9 9 9 9 9 9 S 9 S 9 9 g 9 9 9 9 !! 9 9 9 9 9 9 ~ 9 9 9 9 9 9
' 2 l 4 '1 c l ~ 5 Hi i 20 i:9 3C 31323J .i4 jJ 3531.!83~· ~a 41424344 45 4,:; ~14~~9 5!151525354 S5~6 5153 S9bU6l 6l5364£~6L 616S L ro Iii~ ?J ;.1757ti 17 IU ;sao

Note: Column 5 would be used only when the data
file is on a cassette tape to be read from
SYSD.

Figure 3- 7. PDD Control Director Record Format, Assuming the Card Reader as the
System Input Device (SYSI)

3: 5- 7

5. 2. l. 3 Data File. The data file to be listed

must be in binary format in a. serial storage

medium, and must be ready in the System Data

Device (SYSD) prior to initialization of the PDD

program.

The size of records in the data file must be

no greater than the size of the input buffer area

reserved in the PDD program at system genera­

tion time. The programer should consult the

documentation of his particular version of the

PDD program if in doubt about the maximum

record size that can be dumped. Typically, a

record size of 20010 words is used.

5. 2. 2 Peripheral Device Dump Processing

To initialize the Peripheral Device Dump

program the programer must perform the

following:

1. Load the object code of the IOCS monitor and

the PDD program via the loading procedure

described in Section 2 of this part of this

handbook.

2. Prepare a control director record, place it

in the System Input Device, and ensure that

the device is ready.

3. Place the data file to be dumped in the Sys­

tem Data Device and ensure that the device

is operational.

When the Absolute/Relocating Loader has

finished loading the PDD program, it activates

the program at its starting address. The PDD

3: 5-8

program initializes ·its buffers, tables, variables,

and constants, and then issues a call to the roes
monitor to read the control director record from

the SYS! device. The monitor reads the record

into the reserved storage area within the PDD

program.

The PDD prog.ram reads and interprets the

control director and performs the necessary

actions to set up for the conversion from binary

input data format to either ASCII code or hexa­

decimal output format, as specified by the con -

trol director. PDD then calls the monitor to

print the output listing header either as

or
ASCII DUMP

HEX DUMP

(comment)

(comment)

When the header has been printed, IOCS

returns control to PDD, which then calls the

monitor to read a record from the data file on

the SYSD device. IOCS reads a binary input data

record into PDD's input buffer area. PDD then

reads the record, converts it to the required

format, moves the converted record to the output

buffer, and calls roes to print the record on the

SYST listing. IOCS prints the reco:rd header

(i.e., the word RECORD, followed by the record

number), spaces to the next line, and prints the

converted data values of the record. This pro­

cess continues until the last record from the data

file has been read, converted, and printed. At

this point, the PDD program calls the IOCS

monitor to close the SYS!, SYSD, and SYST

devices, after which PDD exits from the system.

The functional processing flow between the PDD

program and the IOCS monitor is illustrated in

figure 3- 8.

POD receives contro I from Loader,
initializes its variables, tables &
buffers, & calls IOCS to read di-
rector record from SYSI

POD processes contro I director,
sets up for ASCII or HEX output
conversion, & calls IOCS to
print output listing header

..---·

...-

OT N
EO F

._____,

PDD calls IOCS to reod SYSD
data file

POD converts bina~ record to
ASCII or HEX & ca Is IOCS to
print record

POD checks for end of file

EOFJ

POD calls IOCS to close devices

POD exits from the system

.....

~

L&

i....

....

~

IOCS reads one record from SYSI
& transfers record & control to 1--..J SYSI
PDD

l?J IOCS prints header on SYST &
returns control to POD !-----'

IOCS reads a record from SYSD J
dato file & transfers it & control 14--1 SYSD cards

~ to POD
paper
tape

IOCS prints record on output lsJ @ SYST Listing & returns control
to POD

f---.:
e

.J] SYST -L

IOCS closes devices and returns J J control to POD
~ I_ SYSD

J
SYSI J '--

Figure 3- 8. Functional Flow of Peripheral Device Dump/IOCS Monitor Processing

5. 2. 3 Peripheral Device Dump Program Output
ASCII DUMP

RECORD 001

COMMENT

]

J

The output from the PDD program is a hard

copy listing of the input data file. The listing

will be in ASCll code or hexadecimal notation,

depending upon whether the programer specified

ASC in columns 1 - 3 of the control director

record. That is, the programer may specify

ASC, HEX, or leave these columns blank. If

DATA~~~~~~~~~~~~~~~~

the characters HEX or blank characters appeared

in these columns the output listing will be in

hexadecimal notation.

The output listing will contain a header line

indicating the type of dump output, followed by

the comment, if any, specified in columns 30

through 80 of the control director. Each record

is identified on the listing, and the record identi­

fication is immediately followed by the data in the

record. ASCll and hexadecimal output listing

are illustrated in figure 3- 9.

RECORD 002

DATA~~~~~~~~~~~~~~~~-

RECORD nnn

HEX DUMP

RECORD 001
DATA

RECORD 002

DATA

COMMENT

~~~~~~~~~~~~~~~~~-

~~~~~~~~~~~~~~~~~ 

Figure 3-9. ASCll and Hexadecimal PDD
Output Lis ting

3: 5-9/10

Section 6. FILE UPDATE PROGRAM

This program provides a convenient, easily

used method of filing, maintaining, and updating

source and object programs. That is, the File

Update program may be used to create a master

file containing either object or source programs,

or both object and source progran1s, and subse­

quently to maintain and update the master file.

Object programs may be maintained on a pro -

gram basis only.

The File Update program may be directed to

perform the following functions:

•

•

•

•

•
•

Insert one or more programs on the master

file.

Delete one or more programs on the master

file.

Correct programs on the master file by

changing their names and/ or deleting,

replacing, or inserting lines.

Replace one or more programs on the

master file.

Produce a master file directory.

Block primary files (320 bytes/record), if

specified in option field.

The File Update program utilizes the IOCS

monitor to perform all I/ 0 operations. There­

fore, the monitor must be loaded and operational

prior to initialization of the File Update program.

File Update program processing is specified

via four types of input directors, described in

subsection 6. 1 below.

6. 1 Input Directors

Four types of directors are input to the File

Update program:

3: 6- l

• Program directors, which specify actions to

be taken on an entire program on the master

file,

• Data line directors, which specify actions to

be taken for one or more specific lines

within a given program on the master file,

• The END director, which terminates the

inputs to the File Update program,

• The EOF director, which writes an end of

file record (lEOF) on the master file and

terminates the File Update program

immediately.

The input directors are read from the Sys­

tem Input (SYS!) device. If the File Update pro­

gram is to produce the first version of a master

file, only one type of Program director, the

Insert director, the associated object or source

program code, and an EOF director are required

as input from the System Input device, No other

input is required. If, however, the File Update

program is to update an existing master file of

programs, the current master file rnust be input

via the System Data (SYSD) device, and th~

appropriate directors must be input via the SYS!

device,

The File Update program processes the input

directors to produce the following outputs:

•

•

The original or updated version of the master

file, which is written to the Logical Unit A

{LOGA) device.

A listing of changes specified by the direc­

tors and any errors detected in the input

directors and, optionally, a file directory

on the System List (SYST) device.

• Card image format (if specified) on the

System List (SYST) device.

The four types of input directors and the

File Update processing of the directors are de­

scribed in the subsections 6.1. 1 through 6. 1. 3.

The outputs from the program are described in

subsection 6. 2.

6. l; 1 Program Directors

The program directors specify actions to be

taken for an entire program. They may be com­

p<Dsed of five fields, as shown in the following

generalized format diagram.

Field 1 Field 2 Field 3 Field 4 Field 5

$xxxP current new options comments
program program
name name

where:

INS

Field 1 contains one of the 5- character

identifiers for the four directors, each of

which begins with a $ in record position 1,

and ends with the letter P in record position

5. The specific action to be performed is

indicated by the three intervening alphabetic

characters (xxx), which must be one of the

following:

specifies that a new program is to be

INSerted on the updated master file.

DEL specifies that one or more programs

are to be DELeted from the master file.

COR specifies that a program on the master

file is to be CORrected.

REP specifies that a new program is to

REPlace a program currently on the

master file.

Field 2 contains the name, up to eight char­

acters in length, of a program on the master

file. The name begins in position 6 and may

range through position 13 of the input direc­

tor. The named program is to be processed

as. specified in Field .1.

Field 3 contains the name of a new program

to be assigned as specified by the identifiers

$INSP, $REPP, or $CORP, or the name of

the last program in a string of programs to

be deleted from the master file. The name

begins in position 14 and may range through

position 21 of the input director.

Field 4 may contain option designators to

effect specific types of output by the File

Update program, as follows:

B specifies that the program about to be

inserted is in binary format.

N or F specify, respectively, that no file direc­

tory is .to be produced (i.e., N), or that

a full file director (F) is to be produced.*

A full file directory will consist of all

header records being listed on the SYST

device for th9se programs remaining on

the master input device. For this

reason, no other processing is allowed

L

c

if the F option is specified.

specifies that the program being cor­

rected will be listed in card image

format on the SYST device. (This

option is valid only for the $CORP

command.)

specifies primary files will be blocked

(320 bytes/record).

*The N and F options are mutually exclusive. That is, only one of the options should be specified,
since the first one will be accepted and remain in effect to be acted upon by the File Update program.

3:·6-2

The options start in position 22 and mav

range through position 24. They may appear

in any order, They are terminated by the

first blank character in Field 4.

Field 5 may contain a comment to be

carried in the header record when a pro­

gram is to be inserted, corrected, or re­

placed. The comment appears in positions

30 through 80 of a given input program di-

rector.

The program directors cause a search

forward and copy function to be performed by

the File Update program. That is, the input

master file is searched and copied onto the out­

put master file until the program named in Field

2 of the program director is found, at which

point the File Update program performs the ac­

tion specified in Field I. It is for this reason

that actions on programs must be specified in

the exact order in which the programs appear

on the master file, as indicated on the file

directory, which may be obtained from the File

Update program.

The individual program directors, their

formats and content, and the processing speci­

fied by them are described in detail below,

6, 1. 1, 1 Insert Program Director ($INSP). The

INSert program director is used to add one or

more new programs to an existing master file,

or to create the master file initially, The

format of the director is shown below:

Field 1 Field 2 Field 3 Field 4 Field 5

new option(s) comment
$INSP - program

name
current new option(s) comment
program program
name name

The $INSP identifier must appear in Field 1

of the input record, If an existing master file is

being updated, the name of the program after

which the new program is to be inserted may

3: 6-3

appear in Field 2. If no name is specified in

Field 2, the new program will be inserted at the

current location at which the master file is

positloned when the $INSP director is read,

That is, the Fi le Update program will insert

the new program immediately following the last

program for which it perfor:i:ned processing as

specified by the previous program director, or

at the beginning of the file if the $INSP director

is the first director read by the File Update

program.

If the master file is being created initially,

Field 2 would not be used in the $INSP director,

That is, the File Update program would merely

write the object or source programs onto the

output master file in the sequential order in

which they and their $INSP directors were read

from the SYS! device. A name must be assigned

to the new program by entering it in Field 3. I£

this field is all blanks, an error message will

be generated and the director will be ignored.

No blank headers are allowed. If a name is

specified or assigned in this field, a header

record will be created and written preceding the

new program's code on the output master file.

The header will contain the name and the infor­

mation, if any, specified as a comment in

Field 5 of the director.

The source or object records of the program

to be inserted must immediately follow the $INSP

director i~ the input file being read by the File

Update program. I£ object records are to be

read, the B option must be specified and the

last object record per program must be a multi­

punched 2-7-8-9 record (standard object end of

file mark).

6. 1. 1. 2 Delete Program Director ($DELP).

The DELete program director is used to specify

that a single program or a string of consecutive

programs is to be deleted from the master file.

The format of the director is diagramed below.

Field 1 Field Z Field 3

$DELP I program --name

program program
name 1 name n

The $DELP identifier must appear in Field

1. If only one program is to be deleted, its

name must appear in Field z. If a string of

consecutive programs is to be deleted, the

name of the first program to be deleted must

appear in Field Z, and the name of the last pro­

gram in the string must appear in Field 3. No

other fields are used .on this director.

The single name director causes the File

Update program to delete the named program.

That is, the header record and the program

code associated with it are not written onto the

output master file. If the delete director

specifies that a string of programs is to be de­

leted (i. e. , if Field Z and Field 3 both contain

a program name), the File Update program

skips au programs and their header records,

beginning with the first program and going

through program n, when it reads the input

master file. That is, none of these programs

is copied onto the output master file. Any

header records associated with the deleted pro­

grams are also deleted.

6. 1. 1. 3 Correct Program Director ($CORP).

The CORrect program director specifies that a

program on the master input file is to be correc­

ted. The permissible formats of the director

are shown below:

Field 1 Field Z Field 3 Field 4 Field 5

$CORP progname

old option(s)
program
name

old new option(s) comment
program program
name name

3: 6-4

The $CORP identifier must appear in Field

1, and the name of the program to be corrected

must appear in Field Z. If the ·program is to be

assigned a new name, it must appear in Field 3.

Optional outputs may be specified in Field 4, and

any information to be carried in a header record

for a program assigned a new name may appear

in Field 5.

The $CORP director must be followed with

the necessary data line directors (see subsection

6. 1. Z) to effect the desired program corrections,

such as deleting or replacing lines in the origi­

nal program, or inserting new lines in the pro-

gram.

When the $CORP director specifies a new

program name in Field 3, the File Update pro­

gram creates a new header record containing the

new name and the comment, if any, in Field 5.

The header record is written onto the master

output file, and the File Update program then

processes the data line director to create and

write the .corrected program code following its

associated header record on the output master

file.

If Field 3 does not contain a new program

name, the original header record is transferred

to the output master file, followed by the correc­

ted program.

When all data line directors following the

$CORP director have been processed, (i.e.,

when File Update reads a new program director),

the correction process for this program .is

completed. Any remaining lines in the original

program are copied to the output master file.

The $CORP director may be used to obtain

a file directory printout without actually per­

forming an update .run. This is effected by using

only the $CORP director, and $END director,

and the input master iiie as inputs to the File

Update program. In this case, the $CORP direc­

tor would contain the following:

$CORPprogname

where "progname" is the name of any pro-

gram known to be stored on the input master file.

No other information (except for an F in the

option field for a full directory) is specified on

the director, which is followed immediately by

the $END director. This director causes the

File Update program to read the input master

file and produce the directory on the SYST device.

6. 1. 1. 4 Replace Program Director ($REPP),

The REPlace program director specifies that a

program on the master file is to be replaced by

the program whose source or object code imme­

diately follows the director. The permissible

formats of the director are diagramed below:

Field 1 Field 2 Field 3 Field 4 Field 5

$REPP old option(s)
program
name

old new option(s) comment
program program
name name

The $REPP identifier must appear in Field

1, and the name of the program to be replaced

must appear in Field 2. Field 3 may optionally

specify a name to be assigned to the new pro­

gram. If a name is specified in Field 3, Field 5

may optionally specify a comment to be carried

in the header record that the File Update program

will create for the new program. If Field 3 does

not contain a name, no new header record will be

created.

The source or object records of the new pro­

gram must immediately follow the $REPP

direct~r. If object records are to be read, the B

option must be specified and the last object record

must be a multi-punched 2- 7- 8- 9 record (standard

object end of file mark).

3: 6-5

ti, 1. 2 Data Line Directors

These directors specify actions to be taken

for one or more lines within a given program

named on an immediately preceding $CORP

program director. There are three data

line directors: the INSert director, the DELete

director, and the REPlace director. The

generalized format of the data line directors is

shown below:

Field 1 Field 2 Field 3

$xxxt:. line line
number number

where:

INS

Field 1 contains one of the 4- character

identifiers for the three directors, each of

which begins with a $ in record position 1

and ends with a blank character in position

5, The specific action to be performed is

indicated by the three intervening alphabetic

characters (xxx), which must be one of the

following:

specifies that one or more data lines

are to be inserted in the program.

DEL specifies that one or more data lines

are to be deleted from the program

REP specifies that a data line is to be re­

placed by one or more data lines.

Field 2 contains the logical line number

(positions 6- 9) after which new data lines

are to be inserted, or the first line to

be replaced or deleted.

Field 3 contains the logical line number

(positions 14- 17) of the last data line to

be deleted.

The logical line numbers are kept within the

File Update program. That is, the program

associates a number with each line in any given

source or object program on the input master

file. For source programs, the line number

will be maintained according to the order of

appearance of source statements. That is, the

File Update program will associate numbers

from 1 to n with each source statement read

from the file.

6. 1. 2. 1 Insert Data Line Director ($INS). The

INSert data line director specifies that the data

line(s) immediately following it are to be inserted

in the existing program following the specified

logical line number. The format of the director

is shown below:

Field 1 Field 2

$INS6 line
number

The $INS identifier must appear in Field 1,

and be fol.lowed by a blank.

Field 2 must contain the correct line num­

ber following which the data line(s) are to be in­

serted. The data lines must immediately follow

the INSert director.

6. 1. 2. 2 Delete Data Line Director ($DEL).

This director specifies that one or more existing

line.a in the subject program are to be deleted.

The format of the director is shown below:

Field 1 Field 2 Field 3

$DELLI line
.number

line line
number number
1 n

3: 6- 6

The $DEL identifier must appear in Field 1,

and be followed by a blank. Field 2 must con­

tain the logical line number of the single line to

be deleted or the first logical line number of a

series of lines that is to be deleted. If only one

line is to be deleted, Field 3 is not used. If a

series of consecutive lines is to be deleted,

Field 3 must contain the logical line number of

the last line to be deleted.

When a $DEL data line director is read by

the File Update program, the specified lines

are skipped when the program named on a

$CORP program director is written on

the output master file.

6. 1. 2. 3 Replace Data Line Director ($REP).

The format of this director is shown below:

Field 1 Field 2 Field 3

$REPll line
number

The $REP identifier must appear in Field l,

followed by a blank. Field 2 must contain the

logical line number of the single line to be re­

placed. The replacement lines must follow

the $REP director.

6. 1. 3 END Director ($END)

The END director signals the end of the in­

put data stream to the File Update program. It

is written in record positions 1-4 in Field 1

simply as

$END

When the program reaches the END director, it

copies the remaining portion of the master input

file to the master output file. It then produces a

file directory (unless it has been suppressed by

the N option on a program director record) and

terminates processing.

6. 1. 4 EOF Director ($EOF)

The EOF director causes an end of file

record (IEOF) to be written on the master output

file. This will be followed by the production of a

file directory (unless it has been suppressed by

the N option on a program director record) and

the processing terminates. This director is

intended to be used when initially putting pro­

grams on the master output file using the $INSP

director. If used, it takes the place of the $END

director, which also copies the remainder of the

master input file.

o. 2 File Update Program Outputs

There are three standard outputs from the

File Update Program:

• The updated master file on the Logic Unit A

(LOGA) device, containing all correctly

submitted corrections and programs.

•

•

A listing on the SYST device of all updates

submitted to the File Update program, with

embedded error printouts indicating any

illegal input directors and the cause of the

error conditions.

A printout on the SYST device of the file

directory, unless it was suppressed by the

N option on a program director.

The file directory contains the program

name for each program on the master file. This

information is printed in the exact order in which

the associated program appears on the updated

master file. Nonstandard outputs may be re­

quested via the option designator Lin Field 4 of

program directors as described earlier in this

section.

3: 6- 7 I 8

Section 7. DISC SUPPORT PROGRAMS

7. 1 Disc Volume Preparation Program

This program initializes a new disc for use

in the PTS-100 system. It may also be used to

erase the information on an old disc to prepare

it for reuse. A disc must be preprocessed with

the Disc Volume Preparation program whether

it is to be accessed by physical or logical input/

output.

The Disc Volume Preparation program per­

forms three functions:

•

•

•

Accepts from the card reader a set of para­

meters describing the desired format of the

disc.

Formats and checks the disc surface. The

program executes the Write Address opera­

tion on each track of the disc surface, checks

whether each track can be read without error,

and issues messages indicating any tracks

that cannot be read.

Writes out the Volume Label and makes an

initial entry in the Volume Directory.

This program assumes that the disc is to

have 320 data bytes per sector, and 20 sectors

per track. The number of tracks per cylinder

and number of cylinders per disc are variables,

which are accepted as parameters.

Disc Volume Preparation is a standalone

program; it does not use the IOCS monitor. All

input and output for the disc, the card reader,

and the serial printer are handled directly at the

physical level.

7. 1. 1 Input to the Disc Volume Preparation

Program

Input consists of a set of six free form para­

meters read by the card reader. Each parameter

value is preceded by an identifying keyword. All

six of the parameters listed in table 3-8 must be

specified; they may be punched on any number of

cards. If several parameters are punched on one

card, they must be separated by commas. The

parameter cards must be followed immediately.by

a card with /* punched in columns 1 and 2.

Table 3-8. Disc Volume Preparation Program Parameters

Parameter

Disc drive number

Volume serial m1mber

Address of start of Volume
Directory

Last cylinder in Volume
Directory

Number of tracks per
cylinder

Number of cylinders per
disc

Keyword and Value

DRIVENO=n

VOLSER=aaaaaa

VOLDIRSTRT=
nnn/nn/nn

VOLDIRLAST=
.nnn

TRACKS:::nn

CYLINDERS :::nnn

3: 7-1

Description

n is a number from 0 to 7, designat­
ing the drive address to be formated.

aaaaaa is any six characters used to
identify the disc.

The parameter value is a disc address
in the form cylinder /track/ sector.
The Volume Directory will start at this
address.

nnn is the last cvlinder number to be
assigned to the Volume Directory.

nn is the number of tracks per
cylinder on the disc to. be processed.

nnn is the total number of cylinders
on the disc to be processed.

7. 1. Z Disc Volume Preparation Program Output

The major output is a disc on .which all

tracks have had correct addresses written and

with all tracks checked to see that they can be

read and written. For each track that cannot be

read and written correctly, the following mes­

sage is printed on the serial printer~

BAD TRACK nnn/nn

where nnn/nn is cylinder /track.

As part of the output, the Volume Label is

written on the disc at location cylinder 0, track

0, sector O. It has the following format:

Volume serial number 6 bytes

Address of start of Volume 4 bytes
Directory

Last cylinder number in Z bytes
Volume Directory

Highest track number in Z bytes
cylinder (track number
is in bits Z-4)

Highest cylinder number in disc Z bytes

Unused remainder of sector

7, 1. 3 Processing

The processing done by the Disc Volume

Preparation program can be separated function­

ally into three segments: pa.rameter input, for­

mating and checking, and volume initialization.

7. 1. 3. 1 Parameter Input. Input cards are read

until a card is found with*/ in columns I and Z.

As each card is scanned, the six keywords are

isolated and identified,

If the keyword is not recognized, the serial

printer prints out the message UNRECOGNIZED

KEYWORD, followed by the word as read from

the card.

If the parameter keyword is recognized, a .

routine is entered for converting (if necessary),

3: 7-Z

checking.; and storing the value. If the value is

outside permissible limits, the serial printer

prints out the message PARAMETER ERROR,

followed by the keyword.

7. l, 3. Z Formating and Checking the Disc

Surface. Using the parameters disc drive num­

ber, tracks per cylinder, and cylinders per pack,

the entire disc surface is formated by means of

the Write Address operation, If this is not suc­

cessfully completed, it is retried three times be­

fore a BAD TRACK message is written on the

serial printer.

Afterthe Write Address operation is performed

for each track, an attempt is made to read each

sector in the track, to see that it is all zeros. If

not, the read is retried three times before a BAD

TRACK message is written.

7.1. 3. 3 Volume Initialization. Using the para­

meters provided on the input cards, the Volume

Label is written. Also, an end-of-directory

record is written at the beginning of the Volume

Directory area.

7. Z Disc Allocator Program

The Disc Allocator assigns disc space to

files, extends the disc area allocated to files, and

deletes files. It must be used in connection with

the logical IOCS for disc. Before any file can be

written or read through the logical input/output,

it must be allocated on a disc by the Disc Allocator

program. If a disc is to be accessed by means of

phY:sical input/output only, it is not necessary to

process it with the Disc Allocator program.

Prior to running the Disc Allocator the disc

must be initialized by means of the Disc Volume

Preparation program. Disc Volume Preparation

writes the Volume Label, from which the Disc

Allocator obtains the Volume Directory limits,

the number of tracks per cylinder, and the num­

ber of cylinders per disc.

The program operates from free form keyword

type parameters read from the card reader.

7. 2. 1 Input to Disc Allocator Program

Input consists of free form parameters read

by the card reader. Each parameter value is pre­

ceded by an identifying keyword. Different com­

binations of parameters are required, depending

on the function being requested and the file organ­

ization involved.

Several files may be allocated in one program

run. A new file is indicated by the appearance of

a FILENAME parameter. All parameters follow­

ing that one, up to the END card or another FILE­

NAME parameter, are assumed to apply to the

same file.

Except for the FILENAME parameter, the

parameters may appear in any order. If several

parameters are punched on one card, the para­

meters must be separated by commas. The last

parameter card must be followed by a card with

/* punched in columns 1 and 2.

Table 3-9 lists the parameters, their key­

words, their permissible values, and rules

governing their .use.

7. 2. 2 Disc Allocator Program Output

The Disc Allocator has two outputs: one to

the disc and one to the serial printer. The output

to the disc consists of an entry in the Voll!l.me

Directory (in the format shown in subsection

7. 2. 2. 1) and of the file area itself, which is

initialized to zeros. The output to the serial

printer consists of the messages listed in sub­

section 7. 2. 2. 2.

7. 2. 2. 1 Disc Allocator Entries in Volume

Directory. Each entry in the Volume Directory

contains the following ten fields:

(1) Banner word (2 bytes):

0000 16 if unused

0001 16 if active

FEDc16 if end of directory

(2) File name (10 bytes). This is the name by

which the file is always accessed in programs

that manipulate it. It is assigned by the user,

and can contain any characters.

(3) First cylinder number in file (2 bytes).

(4) Last cylinder number in file (2 bytes).

(5) File organization (2 bytes):

K = random organization with keys

N = random organization without keys

S = sequential organization.

(6) Number of sectors per block (2 bytes); applies

to random access only.

(7) Record siz~ (2 bytes). This is the number of

bytes per record; it must be an even number.

(8) Whether record is fixed or variable in length

(2 bytes):

F =fixed

V =variable

(9) Address of start of overflow area (2 bytes);

applies to random files only; 0 signifies no

overflow area.

(10) Reserved for expansion (26 bytes).

3: 7-3

Parameter

:file name

Drive number

Function

First cylinder
in ·file

Last cylinder
in file

File
or ganiza ti on

Record type

Record size

Overflow
cylinder
address

Table 3-9. Disc Allocator Program Parameters

Keyword and Value

FILENAME = aaaaaaaaaa

DRIVENO = n

{
NEW} FUNG TION = EXT
DEL

FIRSTCYL = nnn

LASTCYL = nnn

FILEORG ={n
RECTYPE ={~}

RECSIZE = nnn

OVERFLOW = nnn

3: 7-4

Use

The file name must be the first parameter
in a group of parameters applying to a par­
ticular file. The parameter value can con­
sist of any characters, and any number of
characters up to ten.

n is a number from 0 to 7, identifying the
device number on which the disc is mounted.
If this yarameter is omitted, device number
0 is assumed.

The function parameter indicates whether a
file is being allocated (NEW), extended
(EXT), or deleted (DEL). This parameter
must always be present.

This parameter identifies the first (lowest)
cylinder number to be allocated to the file.
It must, be present whenever FUNCTION =NEW.

This parameter identifies the last (highest)
cylinder number to be allocated to the file.
For random files, it includes the overflow
area, if any. This parameter must be
present whenever FUNCTION =NEW or EXT.

This parameter indicates whether a file is
random organization with keys (K), random
organization without keys (N), or sequential
organization (S). This parameter must be
present whenever FUNCTION= NEW.

This parameter specifies whether the records
in a file are fixed (F) or variable (V) in length.
Only F may be specified for random files. If
this parameter is omitted, F is assumed.

This parameter gives the number of bytes per
record and must be an even number, It must
be present whenever FUNCTION =NEW and
RECTYPE = F.

This parameter indicates the lowest cylinder
number of the overflow area for a type K file.
The overflow area extends from this cylinder
to the last cylinder in the file (LASTCYL).
This parameter should be included only when
FUNCTION= NEW and FILEORG = K. If the
overflow parameteris omitted, it is assumed
that there is no overflow area.

7. 2. 2. 2 Disc Allocator Output to Serial Printer.

The Disc Allocator program outputs the following

messages to the serial printer:

FILENAME = aaaaaaaaaa

This message is printed whenever a new

FILENAME parameter is read. The file

name identifies the file to which the

following message applies.

UNRECOGNIZED KEYWORD keyword

PARAMETER ERROR keyword

PARAMETER OMITTED keyword

VOLUME DIRECTORY OVERFLOW

FILE NAME ALREADY USED

FILE AREA UNAVAILABLE

FILE NOT FOUND

BAD TRACK nnn/nn (cylinder /track)

7.2.3 Processing

The processing done by the Disc Allocator

program can be separated functionally into four

segments: parameter input, check of Volume

Directory against parameters, entry of parameters

into Volume Directory, and initialization of new

file area to zeros (with a read check).

The first program segment reads and checks

the parameters. Each card is scanned, and in the

process each keyword is updated and identified.

If the keyword is not recognized, or if the value is

outside its permissible limits, an error message

is printed. When all the parameters for one file

have been read, the resulting parameter table is

examined to see if all required parameters have

been specified.

printed.

If not, an error message is

The second segment checks the Volume

Directory against the parameter list to see if the

requested action can be performed. It checks to

see that a new name is unique, that specified file

limits do not conflict with any existing file, and

that there is room in the Volume Directory for a

new entry.

The third segment makes the necessary entry

in the Volume Directory. This may be a deletion,

a new entry, or an alteration to an old entry.) de­

pending on what function was requested.

The fourth segment initializes the new file

area to zeros and checks that it can be read back,

issuing an error message if it cannot be.

7. 3 Disc Dump Program

The sole function of the Disc Dump program

is to produce a printed listing of data on all or a

selected portion of any disc unit is use with the

PTS-100. The output is listed on the serial

printer in either hexadecimal or ASCII notation, as

specified by the input directives. All dump para­

meters are input from a display or teletypewriter

keyboard in response to program messages. As

indicated in Figure 3-10, the PTS-100 Disc Dump

program is a standalone program; it does not use

the roes monitor.

DISC DUMP
UTILITY
PROGRAM

DISC
DRIVE

SERIAL
PRINTER

Figure 3-10. Disc Dump Flowchart

3: 7-5

(,,)

-.J
I
O'

PTS-100 DISK DUMP

BYTE

0000 AAD4C8C9 D3AOC9D3
0040 i)403AOBI BOBOAOC4
0080 AAC5C9D4 CBC502AO
0120 C8C5A003 C5D2C9Cl
0160 AACFD2AO C5CED4C9
0200 C5C7C9CE CEC9CEC7
0240 AACID2C5 C1AOD4CF
0280 CCC5D4D9 DOC5ACAO

PTS-100 DISK DUMP

BYTE

ocoo *THIS IS A SAit.PL
0080 *EITHER IN HEXAD
0160 *OR E1~TI RE SECTD
0240 *AREA TO BE DUMP

HEX EXAMPLE

CYLINDER 0050 TRACK 0 SECTOR 0000

AOCIAOD3 Cl CDDOCC C5AOCFC6 AOD4C8C5 AOCFU504 i.JOD5D4AO CFC6AOD4 C8C5AODO
C9D3C3AO C4D5CODO AEAOAOC9 D4AOC3CI CEAOC2C5 AOCCC9D3 D4C5C4AO AOAOAOAO
C9CEAOC8 C508C1C4 C5C3C9CD Cl CCAOCF D2AOC9CE AOCID3C3 C9C9ACAO CFCEAOD4
CCAOOOD2 C9CED4C5 D2AEAOAO DOCID204 C9Cl CCAO D3C5C304 CFD203AO AOAOAOAO
D2C5AOD3 C5C3D4CF D2D3AOC3 CICEAOC2 C5AOC4D5 CDDOC5C4 AEAOAOD4 C8C5AOC2
AOCICEC4 AOC5CEC4 C9CEC7AO CIC4C4D2 C5DJD3C5 D3AOCFC6 AOD4C8C5 AOAOAOAO
AOC2C5AO C4D5CDDO C5C4AOCI D2C5AOC5 CED4C502 C5C4AOCF CEAOD4C8 C5AOD4C5
C9CEAOD4 C8C5AOC6 CFD2CDAO C309CCC9 CEC4C5D2 AFD4D2Cl C3CBAFD3 C5C3D4CF

Figure 3-11. Disc Dump Listing in HexadecimalNotation

ASCII EXMPLE

CYLINDER 0050 TRACK 0 SECTOR 0000

E OF THE OUTPUT OF THE P TS-100 D ISC DU!,\P . IT CA N BE LIS TED
ECIMAL 0 R IN ASC II, ON T HE SERIA L PRINTE R. PART !AL SECT ORS
RS CA;~ 8 E DUMPED . THE B EGI N.~ING AND El'ID I NG ADDR ESSES OF THE
ED AR::: E lfft'.RED 0 N THE TE LETYPE, IN THE F OR:,\ CYLI 1'-JDER/TRA CK/SECTO

Figure 3-12. Disc Dump Listing in ASCII Code

7. 3. 1 Disc Dump Program Assumptions

•

The PTS-100 Disc Dump program assumes:

Discs with two tracks per cylinder.

The "dump to" address is greater than or

equal to the "dump from" address. If this

is not true, the program will dump to the end

of the disc.

0 The user always responds to the IDENTIFICA­

TION request by typing any 20 characters .on

the display or teletype keyboard.

7. 3. 2 Input to the Disc Dumping Process

After loading the Disc Dump program, if the

display keyboard is going to be used to input

directives the following sequence must take place:

1. User strikes any key on the display key­

board to be used to input the directives.

2. The display reads:

CHARS PER LINE/NO OF LINES 99/99=

3. User responds by typing a two-digit deci­

mal number representing the number of

characters on one line of the display,

followed by another two-digit decimal

number representing the numbet of lines

on the display.

When the teletypewriter is used for input

the process begins with step 4.

4. The Disc Dump program issues seven

messages to the display or teletype, each

expecting a response. The sequence of

messages and permissible response

directives are as follows:

3:7-7

Program Message

DEVICE ADDRESS =

FROM CYLINDER
TRACK SECTOR
999/99/99 =

TO CYLINDER
TRACK SECTOR
999/99/99 =

HEX/ASCII=

PARTIAL SECTOR
999 OR ALL=

IDENTIFICATION =

User Types Reply

one-digit drive address
(0-7)

cylinder, track, and
sector data (in format
indicated) of dump start
location; leading zeros
required

cylinder, track, and
sector data (in format' in­
dicated) of dump end
location; leading zeros
required

HEX for hexadecimal
output, or ASC for
ASCII output

three-digit byte count
for partial sector dump;
or ALL for full record
dump

20 characters to appear
in the heading of the dump
for identification purposes;
any character is allowed

After the user has typed 20 characters

following the IDENTIFICATION message, the disc

will be dumped as directed. At the completion of

the dump, the following message will be written

on the teletype or display:

Program Message

END OF DUMP ? =

User Types Reply

Y will terminate the Disc
Dump program.
N will call up the fir st
message listed above and
reenter the dump cycle.

If the user types an invalid reply to any pro­

gram message, the message is reissued. The

display version of the disc dump can be termin­

ated at any point by depressing the CANCEL key.

7. 3. 3 Disc Dump Output

The Disc Dump program generates three

types of print lines on the listing. As shown in

Figures 3-11 and 3-12, the first print line is the

header, which appears once; this is the 20 char­

acters that the user typed in reply to the

IDENTIFICATION message. The second type of

print line has the format:

BYTE CYLINDER TRACK SECTOR

and appears for each disc sector dumped, indicat­

ing the cylinder, track, and sector numbers.

BYTE is the heading for a byte number, which

will be the left-most entry on each following de­

tail print line.

The third type of print line is the detail line,

containing the dumped data. Four or eight de­

tail lines will be printed per sector, depending

3:7-8

on whether hexadecimal or ASCII representation

was specified. Eight lines will be printed for

hexadecimal notation, and four lines for ASCII

code. Each line will begin with the byte number

of the first byte to be printed on the line, followed

by 80 printed characters. (For hexadecimal

notation the byte numbers on the eight lines will

be 0, 40, 80, 120, 160, 200, 240, and 280; for

ASCII code the byte numbers will be O, 80, 160,

and 240.) Format of the detail lines is as follows:

9999* xxxxxxxx xxxxxxxx xxxxxxxx .. i.

Padding characters (X 100 1) within a sector will be

suppressed from the printout when full sectors

are being dumped.

* Byte number of the first byte of the follow-
ing printed characters.

Section 8. CASSETTE UTILITY PROGRAM

This program provides a method of storing

on, deleting, copying, positioning, and printing

the contents of cassette magnetic tape files.

The Cassette Utility program may be directed

to perform the following functions:

•

•

•
•
•

•

Copy all or parts of one cassette magnetic
tape to another.

Forward or backspace one tape a specified
number of records.

Position a cassette tape to a specific record
located by matching a keyword.

Rewind a tape to its beginning.

Print a specified number of records from
one tape.

Read cards from the card reader and write
information to a tape.

• Print the input directives,

The input directives can be keyed on any

2260 display keyboard, but all inputs must be

keyed from the same one,

CARD
READER
(OPTIONAL>

TELETYPE
PRINTER
(OPTIONAL)

CASSETTE
UTlLITY
PROGRAM

The Cassette Utility program requires the

roes monitor for all input and output data and

device assignments. Peripheral devices that

may be called by the program include:

Logical Name

SYSD (LUN3)

SYST (LUNS)

SYSO (LUN6)

LOGS (LUNB)

LOG9 (LUN9)

Description

Card reader. Used to read in
cards as requested by a Write
directive (see subsection 8.2.6).

Serial printer. Used option­
ally to print directives and
for Edit function printing (see
subsection 8. 2. 2).

Display keyboard. Used to
enter directives.

Magnetic tape cassette for
performing the requested
operation.

Teletypewriter printer, Used
optionally to print directives
and for Edit function printing
(see subsection 8, 2. 2).

The system flow is shown in Figure 3-13.

DISPLAY
SCREEN

SERIAL
PRINTER
(OPTIONAL)

MAGNETIC
TAPE
CASSETTES

Figure 3-13. Cassette Utility Program Flowchart

3: 8-1

8. 1 Input and Output Devices

This program can have three types of inputs:

input directives keyed by the operator .on the dis­

ply keyboard, one of four cassette files, and

optionally the card reader (for the read-to-tape

function), Output will be to one of four cassette

files and optionally to the teletypewriter and/or

serial printers if printout is requested of the

directives or files.

8. 2 Operator Input

The Cassette Utility program is loaded using

the Absolute/Relocating Loader program. After

loading, the operator activates the program by

striking any key on any of the display keyboards

connected to the PTS-100 system. The message

NC/CPL/DO/LO will then appear on the display

associated with the keyboard in use,

The operator should respond on the same

keyboard by keying the following hexadecimal

information (using the symbol I as a separator):

Message

Number of characters
on screen (NC)

Characters per
line (CPL)

Device on which keyed
directives are to be
listed (DO):

no listing
serial printer
teletype

Device on which file
records are to be
printed as output of
Edit function (LO)

no listing
serial printer
teletype

Decimal

480
960

1920

40
64
80

Hexadecimal

IEO
3CO
780

28
40
50

00
05
09

00
05
09

These must be followed by the ENTER key,

signifying end of message. A typical operator

response to NC/CPL/DO/LO might be:

3C0/40/09/05 ENTER

3: 8-2

signifying a 960 character screen, 40 characters

per line, printout of keyed directives on the tele­

typewriter, and printout of the file records on the

serial printer.

The program then displays on the screen the

following listing of functions, their command

formats, and the request for input.

FUNCTION COMMAND

COPY C/F/T/NNNN

EDIT E/#/NNNN/M

FORWARD SPACE F/#/NNNN

BACKSPACE B/#/NNNN

REWIND R/#

WRITE W/#/M

SEARCH s I# /SSSS /VVVV

REqUEST?

The operator responses are described in detail

in the following subsections. He must depress

the ENTER key to indicate end of message. He

may also use.the backspace and forwardspace

keys to edit his input before entering it. Depress -

ing the CANCEL key will terminate the function

at the end of the next cassette Read operation.

8. 2. 1 Copy Function

The Copy function is used to copy one

cassette tape to another. No rewind of either

tape is performed. Therefore the tapes must be

positioned (using Forward Space, Backspace,

Rewind, or Search functions) previous to the

Copy function. The keyboard entries necessary

for this function are:

C/F/T/NNNN
where

C = Copy function

F "from" cassette drive number (0, 1, 2
or 3)

T = 11to 11 cassette drive number (0, l, 2 or 3)

NNNN = number of records.

The Copy function will stop when it has copied

NNNN records or it encounters lEOF in positions

l through 4 of a record, on the "from" tape; the

lEOF will be copied to the "to" tape.

8. 2. 2 Edit Function

The Edit function is used to print a specified

number of records from any one of four cassette

tape units on a serial printer or teletypewriter

printer. The printout may be hexadecimal or in

ASCII code. The keyboard entries necessary for

this function are:

where

E

E/#/NNNN/M

Edit function

cassette drive number (0, 1, 2, or 3)

NNNN = number of records

M mode (H = hexadecimal, A =·ASCII)

The printed output will include the tape record

number of the record being printed.

8. 2. 3 Forward Space Function

The Forward Space function is used to

position any cassette tape forward a specified

number of records. The keyboard entries

neces sarv for this function are:

F/#/NNNN

where

F Forward Space function

cassette drive number (O, 1, 2, or 3)

NNNN number of records

8. 2. 4 Backspace Function

The Backspace function is used to position

any cassette tape backward a specified number

of records. The keyboard entries necessary for

this function are:

B/#/NNNN

3: 8-3

where

B Backspace function

cassette drive number (0, 1, 2, or 3)

NNNN number of records

8. 2. 5 Rewind Function

The Rewind function is used to position any

cassette tape to its beginning. The keyboard

entries necessary for this function are:

RI#

where

R Rewind function

= cassette drive number (0, 1, 2, or 3)

8. 2. 6 Write Function

The Write function is used to read either

Hollerith or binary information from punched

cards and to write the information unblocked onto

any magnetic tape cassette unit. The keyboard

entries necessary for this function are:

W/#/M

where

W = Write function

cassette drive number (0, 1, 2, or 3)

M = mode (H = Hollerith, B = binary)

The Write operation begins with the first card

read. The end of file card for Hollerith has

lEOF punched in columns 1 through 4; lEOF is

copied onto the tape. The end of file card for

binary has a 2-7-8-9 punch in column l; this is

not written to the tape.

8. 2. 7 Search Function

The Search function is used to position a

cassette tape at a certain record. The program

reads the tape until it encounters a specified key.

The keyboard entries ne'cessary for this function

are:

$I# /SSSS /VVVV

where

S = Search function

= cassette d,rive number (0, 1, 2, or 3)

SSSS = starting position of the key in hex
(0000 is the first position in the
record)

VVVV = value of the key in ASCII (up to 15
characters long)

If lEOF is read on the tape before the key is

found, the message NOT FOUND will be dis­

played on the screen,

3: 8-4

8. 3 Error Messages

If the keyed function cannot be completed,

one of the following error messages will be dis­

played:

Error Message

READ ERROR

CASSETTE NOT
OPERATIONAL

KS NOT
OPERATIONAL

SP NOT
OPERATIONAL

CR NOT
OPERATIONAL

END OF TAPE

KEYBOARD ERROR

NOT FOUND

Meaning

Unable to read cassette
record.

Cas.sette tape not in drive,
or cassette not working.

Teletypewriter printer not
working.

Serial printer not working.

Card r~ader not working.

Have reached end of tape.

Keyboard not working.

On search, value was not
found.

Absolute/relocating loader

err or listing

input

output

symbol map

ACIC directive

ASGL directive

ASGP directive

CALL directive

Cassette utility program

Correct program director ($CORP)

Data line directors

Debug, interactive

commands

addition

alter

backspace

breakpoint

cancel record

clear breakpoint

computational

dump

editing

fill

go to

memory value access

proceed

search

set breakpoint

subtract

error messages

input

loading

Delete data line director ($DEL)

Delete program director ($DELP)

Disc allocator program

Disc dump program

Disc volume preparation program

Dump program

disc

END directive

END director ($END)

EOF director ($EOF)

INDEX TO PART 3

3: 2-4

3: 2-3

3: 2-3

3: 2-3

3: 4-2

3: 4-3

3: 4-4

3: 4-6

3: 8-1

3: 6-4

3: 6-5

3:3-10

3: 3-8

3: 3-3

3:3-16

3: 3-3

3:3-16

3: 3-10

3: 3-4

3: 3-3

3: 3-8

3: 3-8

3: 3-4

3: 3-12

3: 3-6

3:3-16

3:3-11

3: 3-17

3: 3-1

3: 3-2

3: 6-6

3: 6-3

3: 7-2

3: 7-5

3: 7-1

3: 5-1

3: 7-5

3: 4-6

3: 6-6

3: 6- 7

3: I-1

File update program

outputs

Input directors

Insert data line director ($INS)

Insert program director ($INSP)

Interactive debug program

Loader programs

abs elute /relocating

general

piggyback

Memory dump programs

calling sequence

input parameters

output

Peripheral device dump

director

inputs

output

Piggyback loader

input

output

Program directors

correct

delete

insert

replace

Replace data line director ($REP)

Replace program director ($REPP)

SYSGEN program

System generation directives

ACIC

ASGL

ASGP

CALL

command

END

TITLE

System generation processing

TITLE directive

Volume directory (disc)

3: 6-1

3: 6- 7

3: 6- 1

3: 6-6

3: 6-3

3: 3-1

3: 2-2

3: 2-2

3: 2-1

3: 5-1

3: 5-3,3: 5-5

3: 5-2, 3: 5-4

3: 5-3, 3: 5-5

3: 5-5

3: 5-7

3: 5-6

3: 5-9

3: 2-2

3: 2-2

3: 6-2

3: 6-4

3: 6-3

3: 6-3

3: 6-5

3: 6-6

3: 6-5

3: 4-1

3: 4-2

3: 4-3

3: 4-4

3: 4-6

3: 4-1

3: 4-6

3: 4-1

3: 4- 7

3: 4-1

3: 7-1

PART 4

PTS-100 MACRO LIBRARY FILES

PART 4

PTS-100 MACRO LIBRARY FILES

TABLE OF CONTENTS

SECTION 1. SYSTEM MACRO LIBRARY FILE

1. 1 System Cells Macro Routine (#IMSCP)

1. 2 Interrupt Packet Initialization Macro
Routine (#IMIP)

1. 3 Logical IO Control Table Macro
Routine (#IMCT L)

1. 4 Physical Control Block Macro
Routine (#IMCTP)

1. 5 Channel Interface Control Block Macro
Routine (#IMCCB)

1. 6 Logical Unit Assignment Macro
Routine (#IMLAS)

1. 7 Physical Input/ Output Table Macro
Routine (#IMPIT)

1. 8 Driver Common Macro Routine (#IMCOM)

1. 9 Level Service Macro Routine (#IMLSR)

1. 10 Device Driver and Service Macro Routines

1.11 Monitor Service Call (MSC) Macro
Routine (#IMMSC)

1. 12 EXIT Macro Routine (#IMEXT)

1. 13 CLOSE Macro Routine (#IMCLL)

1. 14 INITialization Macro Routine (#IMINT)

1. 15 OPEN Macro Routine (#IMOPL)

1. 16 IOACTion Macro Routine (#IMACT)

1. 17 Compute PCB Address Macro
Routine (#IMPCB)

1.18 Error Logging Macro Routine (#IMLOG)

1. 19 Clock Service Macro Routine (#IMCLK)

1. 20 Parity Error Macro Routine (#IMPAR)

SECTION 2. USER MACRO LIBRARY FILE

2. 1 IOFIOB Macro Routine

2. 2 IOIOCQ Macro Routine

2. 3 READ Macro Routine

2. 4 WRITE Macro Routine

2. 5 REWIND Macro Routine

2. 6 OPEN Macro Routine

2. 7 CLOSE Macro Routine

2. 8 INIT Macro Routine

2. 9 EXIT Macro Routine

2. 10 Watchdog Timer (WDTMSC) Macro Routine

4: iii

4: 1- 1

4: 1- I

4: I- 3

4: 1- 5

4: 1- 6

4: 1- 7

4: 1- 7

4: 1-13

4: 1- 13

4: 1- 14

4: 1-14

4: 1-19

4: 1-20

4: 1-20

4: 1-20

4: 1-20

4: 1-21

4: 1-21

4: 1-21

4: 1-22

4: 2-2

4: 2-4

4: 2-5

4: 2-7

4: 2- 8

4: 2- 8

4: 2- 9

4: 2- 10

4: 2- 11

4: 2- 11

TABLE OF CONTENTS (cont)

2. 11 Device Sensing (DVSMSC) Macro Routine

2. 12 CICMSC Macro Routine

2. 13 TT2260 Macro Routine

2. 14 TTASCI Macro Routine

2. 15 TTIPAR Macro Routine

2. 16 Baudot to ASCII Converter Macro Routine

2. 1 7 ASCII to Baudot Converter Macro Routine

2. 18 ALIOCS Macro Routine

2. 19 Disc Logical Input/Output Macro Routine

2. 20 Disc File Control Block Description
Macro Routine

2. 21 Disc Action and Status Macros

2. 21. 1 Open Disc (OPEND)

2. 21. 2 Close Disc (CLOSED)

2. 21. 3 Get (GETD)

2. 21. 4 Put (PUTD)

2. 21. 5 Read (READD)

2. 21. 6 Write (WRITED)

2.21.7 Delete (DELD)

4: 2-12

4: 2-13

4: 2-14

4:2-16

4: 2-16

4: 2-16

4: 2-20

4: 2-22

4: 2-22

4: 2-23

4: 2-25

4: 2-25

4: 2-26

4: 2-26

4: 2-27

4: 2-27

4: 2-28

4: 2-28

2. 21. 8 Wait (WAITD)

2.21.9 Test (TESTD)

4: 2-29/30

4: 2-29/30

Figure

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

INDEX TO MACRO ROUTINES

LIST OF ILLUSTRATIONS

Generalized Coding of the Interrupt Packet
Initialization Routine

Generalized Coding of the #IMCT L Routine

Generalized Coding of the #IMCDP Routine
(2 Sheets)

Generalized Coding of the #IMCTl and
#IMCT2 Routines

Generalized Coding of the #IMLAS Macro Routine

Generalized Coding of the #IMPIT Macro Routine

Generalized Coding of the #IMLSR Macro Routine

Generalized Coding of the Modem Send Device
Driver and Device Service Routine (#IMDMS)
(3 Sheets)

Generalized Coding of the EXIT Macro Routine

Generalized Coding of the IOIOCQ Macro Routine

Generalized Coding of the TT2260 Macro Routine

Generalized Coding of the TTASCI Macro Routine

Generalized Coding of the TTIPAR Macro Routine

Generalized Coding of the FCBD Macro Routine

4: iv

4: 1-2

4: 1-4

4: 1-8

4: 1-10

4: 1-11

4: 1-12

4: 1-15

4: 1-16

4:1-19

4: 2-6

4: 2-15

4: 2-17

4: 2-18

4: 2-24

PART 4. PTS-100 MACRO LIBRARY FILES

Section 1. SYSTEM MACRO LIBRARY FILE

The System Macro Library file is a collec­

tion of all the generalized, source- coded

routines used to create a user- specialized Input/

Output Control System (IOCS) monitor. That is,

the System Macro Library file contains all of the

optional and standard routines that may be in­

corporated into an IOCS monitor to be created

for any given user of a PTS- 100. Any routine

on the System Macro Library file may be called

by the System Generator (SYSGEN) program,

which generates macro call statements accord­

ing to user- specified system descriptions. The

SYSGEN macro call statements are written onto

an Assembler-formatted file, which is input,

along with the System Macro Library file, to a

PTS-100 Assembler run, and processed by the

macro processor phase to produce specialized

IOCS monitor routines.

Presented on the following pages are de­

tailed descriptions of the macro routines com­

prising the roes monitor, and the manner in

which they are specialized to create a unique

version of the monitor. The purpose of these

descriptions is to indicate to the user the intri­

cate relationship and structure of the various

parts of the monitor and the technical require­

ments that must be met if additions or altera­

tions 'are to be made to the IOCS monitor

supplied by Raytheon Data Systems.

1. 1 System Cells Macro Routine (#IMSCP)

This macro routine causes the IOCS moni­

tor's global communications (system cell) area

to be initialized in decimal locations 0- 12 7.

That is, it sets up the cross- reference area via

which routines within the monitor can be

accessed by other monitor routines. Specifically,

this routine establishes the origin of the monitor

4: 1-1

at location 0, reserves communications areas,

identifies symbols used in monitor routines

other than itself, and assigns the addresses of

all monitor service routines, some of which are

OPEN LUN, CLOSE LUN, EXIT, IN!Tialization,

and IOACT. The system cells routine is always

called by the SYSGEN program, which generates

the call

$6 #IMSCP

Since there is no actual argument list supplied in

this macro call, and no dummy arguments in the

routine, the entire #IMSCP routine is incorpo­

rated in the IOCS monitor being generated.

1. 2 Interrupt Packet Initialization Macro

Routine (#IMIP)

This macro routine is called by the SYSGEN

program to effect the creation of the interrupt

packets of the IOCS monitor. The routine con­

tains specialized coding for interrupt packets

for interrupt levels 0 and 9, and generalized

coding for the packets of the external interrupt

levels l - 8 and the parity interrupt level 10, as

shown in Figure 4- 1.

Notice that the generalized coding for the

interrupt packets contain dummy arguments in

the form

E
n, N' 00

This type of dummy argument specifies that the

macro routine statement in which it appears is

to be omitted from the specialized routine if the

nth actual argument inthe associated macro call

statement is equal (Ej or not equal (N) to the

value 00. The associated macro call generated

by the SYSGEN program is shown below:

'i#IMIP

*
* INTERRIJPT PACKETS
*

*
* #IT I P0

*
#IT!Pt

* #IT I P2

*
#IT IP4

*
#ITIP!i

*
#ITIP6

*
#ITIP7

*

RFSV,0
RFSV,0
AflC
INR

RFSV,lil
RESV,0
AOC
ADC
lNR

RESV,()t
RFSV,()t
AOC
AOC
INR

RFSV,PI
RfSV,()t
AflC
ADC
!NR

RFSV,PI
RfSV,()t
AflC
ADC
INR

RESV,VI
RfSV,0
AflC
AOC
INR

RFSV,C'I
RESV,0
ADC
AOC
INR

RESV,C'I
RESV,.111
ADC
ADC
INR

?
2
#IYCLK

2
2
#lXSR!
•+?

2
::>

#lXSR2
•+?

2
;>

#IXSR3
•+::>

2
2
11lXSR4
•+?

2
2
~IXSR5

•+2

2
2
#IXSR6
•+2

2
2
#!XSR7
•+2

TITffs-Rfsv,·Pi-- ::i
RESV,QI 2
ADC #lXSR8
ADC •+2
INR

•

OLD PC FOR LEVEL 0
OLD LEVEL ANO Cl:l
CLOfK SERVICE ROUTINE
INTFRRUPT RETllR'N

OUl PC FOR LEVEL
OLD LEVEL ANO CA
LEVFL 1 SERV!Cf ROUTINE
IGNORE INTERRIJPT
INTFRRllPT RETURN

OLD PC FOR LEVEL 2
llLD LEVEL Af\10 C'l
LEVFL 2 SERVICE ROUTINE
IG~IDRE INTEPRllPT
INTFRRllPT RETURN

nLn PC FOR LEVEL 3
OLD LEVEL ANfl CK
LfVFL 1 SERVICF ROUTINE
IGl\JORE l~ITERRIJPT

INTFRRIJPT RETURN

llLD PC FOR LEVEL 4
OUl LEVEL AND CK
LFVFL 4 SERVICE ROIJTINE
IGNllRE INTERRUPT
TNTFRRIJPT RETURN

OLD PC FOR LEVEL ~

OLD LEVEL AND C>I
LEVFL 5 SERVICE ROUTINE
IGNORE INTERRUPT
INTERRUPT RETURN

OLD PC FOR LEVEL 6
OLD LEVEL AND Cl3
LEVEL n SERVICE ROUTINE
IGNORE INTERRUPT
INTFRRllPT RETURN

OLD PC FOR LEVEL 7
OLD LEVEL AND CA
LEVFL 7 SERVICE ROUTINE
IGNORE INTERRUPT
INTERRUPT RETURN

OLD.Pc ·Fall TE:VE't.: a
OLD LEVEL AND CB
LEVEL A SERVICE ROUTINE
IGNORE INTERRUPT
INTERRUPT RETURN

#ITIP9 RESV,0 2
RESV,0 2

--- -·---··oLDPCFOR-fEVET9_ ..

Ao·c- ·· lifuMsc ·
.... - ~~ ~._v !."'·· ?_

•

OLD LEVEL AND CB
MONfTOR StR~iCE ~iLL
SPARE

#lTIPA RESV,111 2 OLD PC FOR LEVEL 1111
RESV,111 2 OLD LEVEL AND CB
ADC #lVPAR PARITY ERROR RETURN ------·-•oc·--.-.2-· ----· -IGNORE-INTERRUPT __ _
INR JtiJ"~R~U_!'_!__Bg_T.!:1_~~ ___ -·---- -- -- -Sl<fP----p·-·- ·- --·-- --··

END

ROUTINE

rt,E,i;rnJ
(),N,0Cil)

(2,E,i;rnJ
(2,N,0VI)

(J,!:.,01~)
(3,N,Vli?I)

(4,E,0Cill
(4,N,00)

(5,E,00)
(5,N,0111)

(6,E,00)
(6,N,0111)

C7,E,00J
(7,N,00)

(8,E,111111)
~8,N,00)

(10,E,111111)
··· ·c1111;N',00i

Figure 4-1. Generalized Coding of the Interrupt Packet Initialization Routine

4: 1-2

The actual arguments, Arg1 through Arg10,

correspond to the interrupt levels 1 through 10.

l'hat is, the first argument in the list pertains to

external interrupt level 1, the second to interrupt

level 2, etc. The 9th argument is a default argu­

ment to cause an interrupt packet to be generated

for level 9, the interrupt level at which the

monitor runs. The level 10 packet is generated

only if an argument other than 00 appears in

position 10 of the #IMIP call. The argument list

is generated by SYSGEN to indicate whether or

not one or more devices have been assigned to

the interrupt levels, as specified on the ASGP

directive. Thus, if a device is assigned to

interrupt level 1, the first argument's value is

01. In this manner, the remaining arguments

indicate both the level and assignment of devices

to the level. If no device assignment has been

specified for a given interrupt level, SYSGEN

generates an actual argument of 00 for the

corresponding position of the argument list.

When the $ 6. #IMIP macro call is processed

by the Assembler's macro phase, the arguments

are read and inserted in a table in the order of

their appearance in the list. The #IMIP macro

routine is then located in the System Macro

Library file and the specialization of the routine

is performed. The first step in processing is to

write the coding for the level 0 interrupt packet

onto the IOCS output file. The coding for packet

1" is then read. The first two statements are

written onto the output file. The third statement

contains the dummy argument (1, E, 00). To

specialize this statement, the processor com­

pares argument 1 in the argument table w"ith the

specified value 00. If the two values are equal,

the ADC statement is omitted from the special­

ized interrupt packet. That is, if the argument

value is 00, no device has been assigned to this

interrupt level, hence no service routine will

be generated for the interrupt level. Statement

4 in the packet coding contains the dummy argu­

ment (1, N, 00). When the statement is selected

4: 1-3

for processing, the actual argument 1 is com­

pared to 00, and if they are not equal the state­

ment is omitted from the interrupt packet coding

that is written onto the output file for the IOCS

monitor being created. Thus, the coding of

interrupt packets 1 through 8 specifies that either

statement 3 or 4, but not both, is to be included

in the specialized coding, depending on whether

or not a device assignment has been specified

for the corresponding interrupt level.

The interrupt packet for level 9 contains no

dummy arguments, and is therefore written onto

the output file of the monitor.

The interrupt packet for level 10 is special­

ized with the address constant statement assign­

ing the address of the parity routine if the value

of actual argument 10 in the macro call state­

ment is other than 00. The value of actual

argument 10 is assigned in the SYSGEN CALL

directive which specifies the optional Parity

Error Routine, as described in subsection 1. 20.

1. 3 LogicalIO Control Table Macro Routine

(#IMCTL)

The IO Control Table (IOCT) of the IOCS

monitor consists of two parts: the logical- to­

physical device pointers and the Physical Control

Blocks (PCBs). The logical-to-physical pointers

portion of the table is created by the Assembler

via specialization of this macro routine. The

logical-to-physical pointers portion of the IOCT

will contain 13 one-word entries containing the

logical unit name, the identifier of the physical

unit assigned to the logical unit, and the logical

unit number (LUN) of thcit particular device.

That is, for any given IOCS monitor, 13 logical

units may be assigned to actual physical devices. ·

Eight logical units may be assigned for the use of

systems programs (e.g., the Assembler, the

loaders, the debug and dump programs, etc.).

Five logical units may be assigned for use of

applications programs. The names of the

system- reserved logical units begin with the

characters #!SYS, followed by an additional

character which denotes the use of the unit by

systems programs. The names of logical units

that may be assigned for applications programs

begin with the characters #!LOG. The logical­

to- physical pointers are developed from user­

specified physical device identifiers on the ASGL

directive in the SYSGEN input deck. That is,

the ASGL directive may assign from one to 13

devices to logical units by entering the device

identifiers in the order in which they are to be

assigned to logical units in the IOC T. If no

physical device is to be assigned to a logical

unit, the user indicates the omission by three

zeros in the corresponding position on the ASGL

directive. When the SYSGEN program analyzes

the ASGL directive, a macro. call is generated in

the format:

where the Ds are device identifiers, described

?#IMCTL

in the detailed discussion of the·PCBs in the

following subsection.

When the Assembler macro processor en­

counters the $ti #IMCLT macro call, it con­

structs an argument·table, enters the D

arguments in the table in the order in which they

appear in the call statement list, locates the

#IMCLT macro routine on the System Macro

Library file, and specializes the !OCT logical­

to-physical pointers by inserting the table entries

in the corresponding dummy argument positi.ons

in the generalized #IMCTL routine, shown in

Figure 4-2.

The second portion of the !OCT, the Physical

Control Blocks, is generated from the general­

ized #IMCTP macro routine, described in the

following subsection. Notice that the specialized

#IT(n) address constant becomes 'the label of the

corresponding PCB for the assigned device.

*
* IO CONTROL TARLF - LOGICAL

*
**~
**~

*
*

pr.vi #lH'lt'll/l
#lHH'lt'I El'lU #lt'IARS
#!SCTL EQU * #ISYSF ADC #lT(1) SYSH'.M FILE
#ISYSI Anc #IT(:>) RYRTEM INPUT
#ISYSL Anc #lT(3) SYSTF.M LOG
#!SYSI) AflC #!T(4) SYSTEM DATA
#ISYSB AflC #IT(5) BINARY INPUT
#ISYST ADC #ITCl'il LISTING
#ISYSO AOC #IT(7) SYSTEM OUTPUT
#!SYSR Al)C #lTCA) SCPATCH
#lLOGB AnC #ITC9) LOGICAL UNIT 8
#ILOG9 AOC #ITC10) l OGICAL UNIT 9
#ILDGA AflC #ITC11) LOGICAL UNIT A
#ILOGR AnC #lT(12) LMICAL UNrr e ·
#ILOGC AflC #ITC13) LOGICAL UNIT C

SKIP p
FND

Figure 4-2. Generalized Co.ding of the #IMCTL Routine

l, 4 Physical Control Block Macro Routine

(#IMCTP)

The Physical Control Blocks (PCBs) f©rm

the second portion of the Input/Output Control

Table in the IOCS monitor, The PCBs are

seven-word tables that specify the necessary

information to control the physical devices

within the equipment configuration. That is, a

PCB is created for each device to be serviced

by the monitor,

The information for each PCB is specified

in sets of parameters on the ASGP directive

that is input to SYSGEN. Each set of parameters

is specified as follows:

DID, DAD, DIL, DSC, DIM, SEN

where:

DID is one of the following:

•

•

•

the device identifier if this is the only

device of this type to be attached to a

multiplex controller.

the first of a group of identical devices .

a comma if more than one device of this

type is attached to a given multiplex con­

troller, as specified by the DIM para­

meter in position 5 of the parameter set.

DAD is the device hardware address of the

assigned device.

DIL is the external interrupt level 1 through

8 to which the device is being assigned.

DSC is a two- character code to be used to

effect the unique identification of the partic-

4: 1-5

ular device's Physical Input/Output Table

(PIOT).

DIM is one of the following:

a comma if the DID parameter specifies

a device identifier

the multiplexed device identifier if DID

is a comma, indicating that two or more

devices of the same type are attached

to a given multiplex controller

SEN is a sentinel specified as one of the

following:

a comma if the DIM parameter is a

comma or if this is not the last device

of the same type to be attached to a

given multiplex controller

an L to indicate that the device identified

by the DIM parameter just preceding is

the last device of its type attached to a

given multiplex controller.

For each parameter set specified on the

ASGP directive, the SYSGEN program generates

a macro call with the parameter set as its

argument list, as shown below:

$!>.. #IMC T P ts DID, DAD, DIL, DSC, DIM, SEN

At assembly time, the macro processor

constructs an argument table for the $!>.. #IMCTP

argument list, locates the #IMCTP macro

routine on the System Macro Library file, and

inserts the arguments for each device in place

of dummy arguments in the PCB generalized

macro routine, shown below, That is, a PCB is

created for each device assigned on the ASGP

directive.

?#IMCTP
'*
•-----PHYSICAL CONTROL ~LOCKS

'*
llITCll HFX (3)

HfX (3)
(1 N)
(I Y)

HFX
AOC
AOC
RESV,PI
Ar'>C
RF'SV,Cll

1 (2)
iil0(1)
jjlJ)(5)

4
#ITP(4)
2

OEVIr.E ADDRESS
f\EVTCE DRIVEP
flEVICE DRIVER
JOCf.l CONTROL
PIOT AN>RESS
SPA RF

(1 N)
(1 Y)

(6Y)
(nN) HfX FFFF MPX SENTINEL

ENI)

Notice that if the DID parameter is specified,

the first HEX statement of the generalized rou­

tine is specialized with the DID completing the

label and the interrupt level (DIL) completing the

operand field.

If DID is not specified, the first HEX state­

ment is omitted from the routine and the

interrupt level is entered as the operand field of

the second HEX statement. In all cases, the

DAD parameter must appear and is inserted to

complete the operand field of the third HEX

statement.

The first ADC statement operand is com­

pleted with the DID value, if specified. If it is

not specified, the statement is omitted from the

specialized routine. The second ADC statement

is specialized if the first ADC statement is

omitted. That is, if the DID parameter is not

specified, the DIM parameter must be specified

and is used to complete the multiplexed Device

Driver Routine address.

The PIOT address in the last ADC statement

is specialized with the DSC parameter. If the

SEN parameter is specified, the last RESV

statement is omitted from the specialized rou­

tine and the last HEX statement is included. If

the SEN parameter is not specified, the last

RESV statement is included and the following

4: 1-6

HEX statement is omitted when the specialized

coding is written by the Assembler.

I. 5 Channel Interface Control Block Macro

Routine (#IMCCB)

The #IMCCB macro routine is called once

for each device assigned to the Channel Interface

Controller via the ACIC directive input to SYS­

GEN. Each macro call is in the format:

$6#IMCCB6TAG,CAD,PDAD

where:

TAB is the symbolic tag to be assigned to

the starting location of the CCB for each

assigned device.

CAD is the channel address of the device.

PDAD is the physical address of a specific

device within a group of devices attached to

a channel.

At assembly time, the #IMCCB routine is

called and a channel control block (CCB) is

specialized for each device by replacing the

dummy arguments with the actual arguments in

the SYSGEN macro call. The generalized coding

of the #IMCCB macro routine is as follows:

?#IMCCA

*
•-----CIC OFVICF
*
#!TC(l) HEX Cl

HEX
Al"JC
RESV,~

Al"JC
Hl="X

1 (2)
#!DCTci
4
#!T0(1)
0(3)

C H H 1 NE L A [) [)RF S S
CIC DEVICE DRIVFR
rncn CONTROL
PACKFT ADDRFS!'l
OEVlCE ADDRESS

E r-.1 D

Notice that the first actual argument is used

to specialize the label of the CCB and also to

specialize the address constant #ITD(l) for the

associated device packet. That is, a device

packet is created for each assigned device. De­

vice packets are created by specialization of the

#IMCDP macro routine for which SYSGEN gen­

erates the call

$ 6 #IMCDP6 nn, T

where:

nn is the total number of devices attached to

the CIC (i.e., 16,32,48, or 64),

T specifies the tumble table to be used.

For each device specified by nn, a 16- byte

device packet is created at assembly time. The

generalized coding of the #IMCDP routine is

shown in Figure 4- 3.

The T argument is used to specialize the

first statement in the #IMCDP routine. This

first statement is the macro call statement:

$6 #IMCT(2)

which causes interrupt tumble tables to be

created for use of the CIC. There are two

macro routines which define interrupt tumble

tables within the System Macro Library file:

the prototype CIC interrupt tumble table routine

(#IMCTl) and the production CIC interrupt

tumble table routine (#IMCT2). The prototype

routine will be called and inserted in the roes
monitor being created if the actual value of the

T argument is 1, and the production routine will

4: 1-7

be called and inserted if the actual value of T is

2. The generalized coding of the #IMCTl and

#IMCT2 routines is shown in Figure 4- 4.

1. 6 Logical Unit Assignment Macro Routine

(#IMLAS)

This macro routine contains only comments,

and provides user documentation of the logical

unit assignments within his particular version of

the IOCS monitor. The coding of the #IMLAS

macro routine is shown in Figure 4- 5. At

SYSGEN time, the tags of the Physical Control

Blocks (PCBs) of the assigned logical units are

inserted in the place of the associated dummy

arguments in the comments of the form

*#IT(n) EQU operand value (nN)

if a logical unit has been assigned.

The #IMLAS comments are printed by the

SYSGEN program. They are not, however, in­

corporated in the assembly-formatted file.

It is the responsibility of the programer to de­

termine the LUN assignments from the docu­

mentation of his particular IOCS monitor.

1. 7 Physical Input/Output Table Macro Routine

(#IMPIT)

This routine is used to create a Physical

Input/Output Table (PIOT) area for each device

assigned on the ASGP directive input to SYSGEN.

That is, the fourth parameter, DSC, in each set

of ASGP parameters is used to specialize the

beginning address (Le., the label) of the PIOT

'/#IMCDP
$ •IMCTC2J Cl)
**
**
*
* ere DEVICE PACKETS
*
~~·***
**
*
*
* MrlD 256
#I TD00I RFSV ,Pl 16 DEVICE PACKET Pl

Ex DEF #ITDOl"1
#I TD01 RfSV ,£'! 16 DEVICE PACKET

EXDFF #IT D'111
#ITD02 RESV,PI 16 r>EVICE PACKET 2

EX DEF #ITDP12
ITD03 RfSV,OI 1 6 r>EVICE PACKt:T 3

EXDfF #ITDOl3
#I TD04 RESV,P! lb DEVICE PACKFT 4

Ex DEF #ITDOl4
#lTD05 RESV,OI 16 flEVICE" PACKET 5

EXDFF # ITDP15
llITD06 RFSV ,OI 16 r>EVICE PACKET " EX DEF llITD0n
II ITD07 RfSV ,0 1 6 flEVICE PACKET 7

EXUEF llITDV17
t1ITD08 RESV,0 16 flEVICE PACKE.T 8

EX DEF ttITDVl8
#ITD09 RE"SV, 0 16 r>EVICE PACKET 9

EX DEF llITDVl9
#ITD0A RESV,oi 16 DEVICE PACKET A

EX DEF # ITDC'IA
#ITD0R RFSV,vi 16 flEVICE PACKET R

EX DEF #ITD"1B
#ITD0C RESV,(11 16 DEVICE PACKET c

EXDJ=F t1ITD'1IC
#ITDVID RESV,'1 16 DEVICE PACKET [)

EXDEF #ITDOID
#ITDlilE RF S V, (II 16 DEVICE PACKET E

EX DEF II I TDOIE
#ITDlilF RESV,'11 16 DEVICE PACKET F

txbEF --- Ii 1 TDVIF
*
#ITD10 RESV,• 16 DEV PACKET 10 [1,E,16)

EXDEF #ITDl0 Ct,E,16)
#!TD!! RESV,C'I 16 DEV PACKET 11 (!,E,16)

EXDEF #!TD!! (1,E,16)
--tiITDfr RESV~-iii-- i6 --- DEV PACKET 12 (1~E~t6J

EXDEF tt!TDl2 (t,E,16)
liitDi3 RESV,V'! 16 DEV PACKET !3 (1,E,!6)

EXDEF 11ITD13 (1,E,16)
~!tD14 . RE§V,~ 16 DEV PACKET 14 c1,E,16J

EXDEF #ITDl4 Ct,E,16)
~11-x-r-0~1-5~-R-E~S~V~,~..,·--10-------- DEV PACRH"15"- ·-··-·· cw;T6)

EXDEF #ITD!5 (1,E,16)
-#ff!fi6-RE§ll~[;J 16 DEV PACKET 16 (t,E.16)

EXDEF #ITD16 (!,E,16)
-ii1TD17-RESV,V'1--16- - DEV PACKn 17 (1,t;i6>

ExDEF #ITD17 c1,E.t6)
#ITDt8 RESV,C'I 16 DEV PA(KETtB ____ (1,E,t6)

ExDEF #ITD18 c1,E,16)
-.-rroT9-RESv~0----16- ---- 'i5Ev P-ACl<£T19 (1,E,16)

ExDEF #ITD19 (t,E,16)
-IHTDTARESV-;0--T6 ______ ---DEV _P_lCRErfA- - . ff,E,16)·--

EXDEF #ITD!A Ct,E,16)
~iil-1-r-c~1-B-.;;R,;;E,.;.,S,;:V;.:..,..,,V'l,---;;l..;6c.:...::..::..c..c__ __ .,.D,,,E'"'"V,....,.P'""A..,.C""R"'E ... f.---::1•s------:(:-:le",-.E'"',-;1;-,6,-;),---------

ExDEF #ITD!B c1,E,t6)
-1ITTU1e- PrE ~"11--To - ---- -ll~ CKE1 n::-- c G 'F,ro-,--

Ex DEF #ITD1C c1,E,16)

Figure 4- 3. Generalized Coding of the #IMCDP Routine (Sheet 1 of 2)

4: 1-8

#IT010 RESV,0 16 DEV PACKET tn c1,E,16)
EXDEF #lTO!D C1,Er16)

iITOiE W.SV;i'! 16 DEV PACKET iE (1,E.16)
EXDEF #lT01E (1,Er16l

#IT01F RF.Sv,0 16 DEV PACKET tF (1,Er16)
EXDfF #JTDlF (1,Er16)

#ITD2A RESV,0 16 OP 2A (1,E,16)(1,E,32)
EXDEF #lTD20 (1,E,16)(1,E,32)

-#IfD21 RtSV,A 16 OP 'I Ct,E,i6> c1,E,32)
EXDEF #JTD?1 Ct,E,16)(1,E,32)

#lTD22 RESV,0 16 OP 22 (t,E,16)(1,E,32)
EXDEF #lTD22 (1,f,16)(1,E,32)

#ITD23 RE5V,0 16 OP ?l (1,f,!6)(1,E,32)
ExDEF #ITD23 c1,E,161c1,E,32)

#IT02d R~SV,0 16 ·op ?d c1,E,16)(1,E,32)
EXDEF #lTD24 (1,E,!6)(1,E,32)

#ITD25 RESV,0 16 OP 25 (t,E,16)(1,E,32)
EXDEF #lTD25 (t,E,16)(1,E,32)

#JTD26 RESV,0 16 DP 26 (1,E,16)(1,E,32)
EXDEF #ITD26 (1,E,!6)(1,E,32)

~ITD27 RESV,0 16 OP 27 Ct,E,16)(t,E,32)
EXDEF #ITD27 C1,E,16)C1,E,32)

#ITD2R RESV,0 16 OP 2R (1,E,16)(1,E,32)
EXDEF #ITD28 (1,E,16)(!,E,32)

#ITD2Q RfSV,0 16 ~P 2Q (1,E,16)(1,E,32)
EXDEf #ITD29 (1,E,16)(1,E,32)

#ITD2A RESV,A 16 OP 2A (1,E,16)(1,E,32)
EXDEF #ITD2A (1,E,!6)(1,E,32)

#JTD2R RESV,0 16 OP ?A (t,E,16)(!,E,32)
EXDEF #ITD2B (1,E,16)(1,E,32)

#lTD2C RfSV,0 16 OP 2C (1,E,16)(1,E,32)
EXDEF #ITD2C Cl,E,16)(1,E,32)

#ITD2D RESV,0 16 OP ?o (t,E,16)(1,E,32)
EXDEF #IT02D (1,E,16)(1,E,32)

#!TD2E RESV,0 16 OP 2E (1,E,16)(1,E,32)
EXDEF #lTD2E (1,E,16)(1,E,32)

#lTD2F RESV,0 16 OP 2F (1,E,16)(1,E,32)
EXPEF #ITD2F (1,E,16)(1,E,32)

#ITD30 RESV,0 16 OP 30 (1,E,16)(1,E,32)(1,E,48)
EXDEF #ITD30 (1,E,16lC1,E,32)(1,E,48)

#ITD31 RESV,0 16 OP 31 (1,E,16)(1,E,32)(1,E,dR)
EXDEF #ITD31 (1,E,16)(1,E,32)(1,E,48)

#lTD32 RESV,0 16 DP 32 (1,E,16)(1,E,32)(1,E,48)
- E..)Ul_EF #lTD32 - c1.E, 16) (1,E,32) ci.E,48)

#ITD33 RESV,0 16 DP 33 (1,E,16)(1,E,32)(1,E,48)
EXDEF #!TD33 c1,E,16)(1,E,32)(1,E,48)

#ITD34 RESV,0 16 DP 34 (1,E,16)(1 1 E,32)(1,E 1 48)
EXDEF #lTD34 (1 1 E,16)(1,E,32)(1 1 E,48)

#ITD35 RESV,0 16 DP 35 (1,E,16)(1,E,32)(1,E,48)
____________ E~_Qff ____ .tl_l03~. C t..._f, 16) ct, E, 3~1-C 1, f,48J

#ITD36 RESV,0 16 DP 36 C1 1 E 1 !6)(1,E,32)C1,f,48)
E~DEF_ #ITD36 c1,E,16)(1,E,321(1 1 E,48)

#lTD37 RESV,0 16 OP 37 (1,Er16)(1,E 1 32)(1,E,48)
EXPEF .#ITD_37 (l,E,16)(1,E,32)(1,f,48)

#ITD38 RESV,0 16 OP 38 (1,f,16)(1,f,32)(1,E,48)
-----~E=X~D~E~F ___ J _ _;[TD3!i_ _____________ LL~.Li!UU.&,..Jil1-.L.L.A!U_ ______ _

#ITD39 RESV,0 16 DP 39 (1,E 1 16)(1,E,32)(1 1 E1 48)
_f:!C>EE __ #ITD39_ H 1 E;_._t6) (1,E,32) Uif;,48)

#ITD3A RESV,0 16 DP JA C1 1 E,16)(1,E,32)(1,E,48)
________ EJC_f?_EF ___ jj_l 1-:D_:,A _(1 1 E,16) Cl 1 E: 1 321U,f:_,411_)_
#ITD3B RESV,0 16 DP 3B (1,f,16)(1,E,32)(1,E,4!1)

EXDEF #ITD3B (1,E,16)(1,E,32)(1,E,48) -----
#ITD3C RESVr0 16 DP 3C c1,E,16JC1,E,32)(1,E,48)

EXDEF #ITD3C ____ ___ _ (1,E,1~_(l_,E,3'1_lJ___1 1 ~_,!!8_1_ _
-iiTD3o ___ REsV.0--15----- - DP 30 ·c1;E:,16J(1,E,32)(1,E,48)
____ --~Q_E_f ___ JHJQ_3_Q_ ____________ _J1__,__;t_J~J_1ll g,_;t2_J O ___ &r!l..81_ ___ _

#ITDJE RESV,0 16 DP 3E C1rE,16J(t,E,32JC1rEr48)
EXDEF #ITD3E c1,E,16>C1,E,32lC1(E,48l

#ITD3F RESV,0 16 DP 3F Cl,E,16)(1,E,32)(1,E,48)
___ --~~Q_Ef. ___ ~I_l_D~_E__ ____________ 1 uL_l_6j__t_11 g_, ~41__) 11LE1 ~81_ __ _

*
______ S__Kle ___ f_ ___________________________ -- ------------------- -- -- -

END

Figure 4- 3. Generalized Coding of the #IMCDP Routine (Sheet 2 of 2)

4: 1-9

?lilMCTl
**
**
*
*
*

INTERRUPT TlJMHl.F TAHLES
PROTOTYPF ere

**
~***********

*
*
•-----TIJMf>LF TARLE

tiITIT1

*
*

M01)

RFSV, Cl!

t.)(l)ff

?5n
128
ttITIT1

•-----Tl IMflLF. TARLE 2
?56 MOD

#ITIT? RFSV,VI
EX DEF

*

t::> 8
ttITIT2

SK IP P
END

tNTFRRtlPT TlJMAL.E TABLE 1

JNTFPJ.Wl-'T TllMALE TABLE 2

?itlMCT2
**
**
*
*
*

H<HRRlJPT TUMl:lLF TABLES
PROt>llCTION rte

**
*****************~**

*
*
•-----TllMALE TARLE 1

itITIT1

*
*

M(10

RESV,111
ElCDEF

64
n4
lilTIT1

•-----TllMRLf TAALF 2
MOL)

1tITIT2 RFSV,(l!
EX DEF
RESV,111
SKIP
END

64
64
li1Trt2
512
p

INTFRRllPT TUMBLE TABLE 1

INTFRRllPT'TUMBLE TABLE 2

(1,E,16)(1,E,32)

Figure 4-4. Generalized Coding of the #IMCTl and #IMCT2 Routines

4: 1-10

?#IMLAS
SKtP P

********************************~***********************************
**
*
*
*

LUN ASSIGNMENTS

~*********************
**
* •#ISYSF EQU Ill SYSTEM FILE
•#ISYSI EQU 1 SYSTEM INPUT
•liil SYSL EQU 2 SYSTEM LOG
•#ISYSD Er:IU 3 SYSTEM DATA
•#ISySR ErJll 4 FHNARy INPUT
UISYST Fl':lU. 5 LISTING
•#ISySO EQU 6 SYSTEM OUTPUT
•#ISYS~ FQU 7 SCRATCH
•#ILOG8 E l'lU 8 LOr.TCAL UNIT 8
•#ILOG9 El'lU Q LOGICAL UNIT 9
•#ILOGA Er.lU A LOGICAL UNIT A
U!LIJGH El'lU ~ LOGICAL UNIT A
•#ILOGC Er.lll c LOGlCAL UNIT c
•#IT(l) E!JU D (1 N)
*#IT(2) El'lU 'F: (2N)
*#ITC3l Erw F (JN)
•#ITC4) Erm rn (4N)
*#ITC5J EOU l 1 (5N)
•#ITC6) Erm t2 (6N)
•#IT(7) EQU 13 C7N)
•#JT(8) El'lU 14 (8N)
OITC9) EQIJ 15 (9N)
*#IT(l0) EQU 16 CtlllN)
*#ITCtU FQtl 17 C11N)
•#IT(12) EQll 18 C1~N)
*#ITC13J F:QU 19 (13N)
•#ITC14) EQU lA (14N)
OITC15J EQlJ 11:1 (15N)
•#IT(l6) f. (J l I !.C C 16N)
*#IT07) EQU 1D C17N)
•#IT(18) FQU 1E (18N)
*#IT(19l F.Crn 1F C19N)
•#IT(20) EQU 20 (2111N)
*#ITC21) mu 21 C21N)
•#ITC22) f.QI I 22 C22N)
*#ITC23) EQU 23 C23N)
•#ITC24J FtJIJ 24 C24N)
•#ITC25) EGJU 25 (25N)
*#JT(26) !':(JU 26 (26N)
*#ITC27J EQLJ 27 C27N)
*#IT(28) EQU 28 (28N)
•#ITC29) EQI! 29 (29N)
•#ITC30l EQll 2A (3fl!N)
*#ITC:H) FQU 2R (31N)
*1tlTC32) mu 2C (32N)
*
*

SKTP p

ENO

Figure 4-5. Generalized Coding of the #IMLAS Macro Routine

4:1~11

associated with each device assigned at system

generation time. When the SYSGEN program

processes the ASGP directive in its input deck,

it generates the macro call

$LI #IMPIT.6 DSC 1, DSC2, •••••• , DSCn

When the Assembler processes the macro

call, it arranges the DSCs in an argument table,

locates the #IMPIT routine on the System Macro

Library file, and replaces the dummy arguments

with the actual values in the argument table.

The generalized coding of the #IMPIT routine is

shown in Figure 4- 6. Notice the dwnmy argu­

ments of the form nN at the right side of each.

sour.ce statement. If the corresponding actual

?#IMPIT

argument is not specified, the nN dummy argu­

ment causes the source statement to be omitted

from the specialized routine. That is, no PICT

area is reserved and the symbolic tag of its

beginning location is not completed.

At program execution time, execution of an

IOACT service request to the ICCS monitor

causes the appropriate programer-defined FICB

information to be moved to the associated IOCQ
~

table entry, from which the monitor subsequently

moves it into the PIOT associated with the de­

vice on which the 1/0 operation is to be per­

formed. The PICT is then used by the device

driver and service routines to perform the re­

quired action.

**
**
*
* PIOT TAALES

*
**
~*****
*
*

MOD 16 START oH 8 WORD BOUNDARY
*
#ITP(1) RfSV,Cll 16 PIDT TABLE 1 ClN).
#ITPC::!) RESV,0 16 PIOT TABLE 2 (2N)
#ITP(3) RfSV,Qt 16 PIOT TABLE 3 (3N)
#ITP(4) RF.SV,t'I 16 PIOT TABLE 4 (4N)
#ITP(!'i) RESV,lil 16 PIOT TABLE 5 (5N)
#ITP(6) RESV,lil 16 PIOT TABLE 6 C6N)
#ITPC7) RESV,Cll t6 PIOT TABLE 7 C7N>
#ITP(8) RESV,Cll 16 PIOT TABLE 8 (8N)
#ITPC9) RESV,(JI 16 PlOT TABLE 9 -- ... - ··-· ···c~fN>
#ITP(H'I) RESV, Ill 1.6 PIOT TABLE 1 !IJ Cl0N)
#ITP(tl) RESV,0 16 P!OT TABLE 11 Cf1N)
#ITPC12) RESV,'11 16 PIOT TABLE 12 C12N)
#ITPC13) RESV,0 16 PIOT TABLE 13 (13N)
#ITPC14) RESV,111 16 PIOT TABLE 14 (14N)
*1TP(15) RESV,OI 16 PinT TABLE T5 ·-·. - ··-···-···~-·-.. -.... ~ ---(l'S'N) ·-

#ITPC16l PESV,0 16 PIOT TABLE 16 (16N)
#ITPC17) RESV,0 16 PIOT TABLE 11 C i1N) ..
#ITPC18) RESV,(ll 16 PIOT TABLE 18 C18N)
#ITPC19l RESV,(ll 16 PIOT TABLE~lg· n9"N)-·
#ITPC20) RESV,0 16 PIOT TABLE 20 (20N)
#!tPC21) RESV,'11 16 Plot 'f"A B L-r~-----------··· · -----nrw1- ·-· -- ·
#ITP C22) RESV,lil 16 PIOT TABLE 22 C22N)
#ITPC23) RESV,0 16 PIOT TABLE 23 C23Nf
llHTPC24) RESV,lil 16 PIOT TABLE 24 (24N)

-··· -·.,·-··-··
SKIP p

F.NO

Figure 4-6. Generalized Coding of the #IMPIT Macro Routine

4: 1-12

1. 8 Driver Common Macro Routine (#IMCOM)

This routine is always incorporated in any

IOCS monitor that is being created. That is,

it is always called by SYSGEN via the macro call

$ti #IMCOM

The routine contains no dummy arguments,

hence no actual argument list appears in the

macro call.

The #IMCOM routine performs all device

independent processing required to set up for

any 1/0 operation and record the status of the

completed operation.

The main functions of the Device Common

Routine are:

Setting up for the return of control to the

calling routine.

Setting up the PIOT with the information in

words 2 through 9 of the IOCQ entry to be

processed.

Testing for and recording 1/0 status in the

logical status field of the IOCQ.

Disabling interrupts at the start of the IOCQ

entry processing, and enabling interrupts

when processing is complete.

Starting the required I/O operation.

l, 9 Level Service Macro Routine (#IMLSR)

A specialized version of this routine is pre­

pared for each external interrupt level 1- 8. The

routine reserves a storage area for saving

registers of the interrupted program, establishes

linkages to all driver and service routines for

the devices assigned to each given interrupt

4: 1-13

level, enables invalid interrupt message logging,

and restores the interrupted processing level.

For each interrupt level assigned on the

ASGP directive, the SYSGEN program generates

a macro call in the format shown below:

argument set 1 argument set 2

$t. /flMLSRt. Arg 1, Arg2 , Arg3 , Arg4, Arg5, Arg6, Arg7, Arg8 , •••

argument set 8

/. • • ,'Arg24' Arg2S' Arg26

where:

Arg1 is the interrupt level to be serviced by

a given level service routine

Arg2 is a logging flag if the System Log

device was assigned a LUN ID via the

ASGL directive, or 00 if no device was

assigned.

The remainder of the arguments in the

$ti #IMLSR statement call list form three argu­

ment sets, where the left argument in each set

is the first two characters of the device identi­

fier, the second argument is the third character

of the device identifier (i.e. , the decimal

integer portion of the identifier, denoting the

specific device of a given type), and the third

and last argument in the set is the DSC para­

meter specified for each device on the ASGP

directive. In this usage the DSC parameter

effects specialization of the Device Driver and

Device Service Routines for the assigned device.

Eight argument sets may appear in a given

$ti # IMLSR macro call.

The general coding of the #IMLSR routine

is shown in Figure 4- 7. Notice that the inter­

rupt level (argument 1) and the logging flag

(argument 2) are inserted in numerous places

within the routine. As ·many as eight Device

Driver Routine macro calls may be specialized

within the #IMLSR coding set. The generalized

macro call coding from the #IMLSR routine is

as follows:

li #IMO(J) (~),(4),(2),(1),(~) (3N)
!Ii #IMO(oJ (b}, (7), (2), (1), (6) C6N)
!Ii #lMD(Y) (0),(10),(2),(1),(11) (9N)
.\ # ll'lfi (12) C12),(1JJ,C2l,(1J,{14) (12!11)
$ #lM1)(15) (15),(16),(2),(1),(17) (15N) ·
:ii #lMD(lfl) C1~),(19),(2)r(l)r(2~) C 18N)
'» #1"10{21) (21),(22),(2),(1),(23) C21N)

" #11'10(0!4) (24),(20),(2),(1),(26) C24N)

Each Device Driver Routine name (#IMD(n))

is specialized by inserting the two character

alphabetic portion of the device identifier in the

place of the dummy argument that appears at

the right end of the name. The two characters

of the identifier also becomes the first actual

argument in the call. The second actual

argument contains the decimal integer portion

of the device identifier. The third actual argu­

ment contains the logging flag, and the fourth

actual argument contains the interrupt level.

The fifth actual argument contains the DSC

parameter from the ASGP directive.

Notice also that a given Driver Routine

macro call is not generated if an argument set

in the $LI #IMLSR macro .call is not specified, as

controlled by the dummy arguments of the form

(nN) at the right end of the generalized state­

ment coding.

Note also that if no logging device has been

assigned (i.e., if the second argument in the

$LI #IMLSR call is 00), the coding o;f the Invalid

Interrupt Logging Routine is to be omitted from

the specialized #IMLSR coding, as specified by

the dummy argument of the form (n, E, 00) at the

end of each statement of the generalized routine

coding.

1. 10 Device Driver and Service Macro Routines

For each device attached to a given PTS-100,

a Device Driver Routine and a Device S.ervice

Routine must appear inthe IOCS monitor to be

used on the system. For all standard devices

supplied with the PTS- 100, generalized driver

and service macro routines appear on the System

Macro Library .file. For nonstandard de­

vices, the user must assume the responsibility

of designing, implementing, and incorporating

the required driver and service routines in the

roes monitor.

Generalized device driver and device ser­

vice routines are called via macro calls within

the level Service Routine (#IMLSR) for the

interrupt level to which the associated device

is assigned, as described in subsection 1. 9.

The generalized device driver and service macro

routines are specialized with the three­

character device identifier (i. e., arguments 1

and Z in the macro call specialized within the

#IMLSR macro routine). That is, the device

identifier replaces dummy arguments 1 and Z

throughout the driver and service macro rou­

tines for the assigned device. Generalized

macro routine coding for the Modem Send Driver

and Modem Send Service routines is illustrated

in Figure 4-8. Other driver and service rou­

tines for standard PTS-100 devices are coded in

the same manner. That is, the device identifier

is inserted throughout the generalized routines

to specialize addresses, tags, etc.

1. 11 Monitor Service Call (MSC) Macro

Routine (#IMMSC)

This macro routine is incorporated in each

IOCS monitor that is being created. It performs

the necessary processing for entering interrupt

level 9 and for calling the appropriate MSC

routine (e.g., OPEN, CLOSE, INITialization,

IOACT, etc.). The SYSGEN program generates

the macro call statement:

$Ll#IMMSC

to cause the MSC routine to be incorporated in

the IOCS monitor. Since there are no argu­

ments in the call statement, the entire #IMMSC

routine is written into the roes monitor file by

the macro processor of the Assembler.

4: 1-14

?#IMLSR

···••••*******************
**
*
*
*
*

LEVl:L (t) SERVTCF R(111TINE

E~JTFRFll FROM NEW PC OF I~ITERRlJPT PACKET

**
**
*
#IXT1(1) Rl:~V,Vl M
·-----SAVF P[GJSTFRS
#IXSJ.l(t) ~XI #TXT1(1) SAVI: X1

SAVE X2
SAVE AC

$

$

$
$
$

$

SX? fllXTl(1)+2
STW IZI\<T1 (1)+4
SK IP P

t.tlMU(3) (3),(4),(;:>),(!),(5)
li!~11l(fi) (n) ,(7), (2), (1), (H)

ti!MD(Q) (9l,(10),(?),(l),(11)
li!M0(1:>) (1?),(13),(2),(1),(14)
li!M0(1~) (1~),(16),(2),(!),(17)

li!Mil(!A) (!R),(\Q),(2),(1),(20)
li!M0(?1) (?1),(?2),(2),(1),(23)
tJ!M0(?4) (24), (?5), f2), (1), (26)

**
**
*
·-------[~IVALTl.l ll1TFRRIJPT LC1G[;p1r,

*
**
**

Ll< 2
.JMP
HFX

tilX(1)Pvl
1tl7LnG

#lX(l)Plll AOC
SI< IP p

t-1 (1) fH\

•+?

(3N)

r 6t-.i >
(9N)
(1'-N)
(15N)
(1 AN)

(:>! N)
(24N)
(2,E,vlvl)
(2,E,Vl0)
c2,E,rMn
C2,E,('1'q
(2,1:,Vltll)
(2,E,L11'.1)
(2,E,li.h1)
(2,E,0'~)

(:>,E,IA"I)
(2,E,~H~)

c2,E,tllVl)
(2,E,Vlv1)

**
**
*
* •

LEVEL C 1) REST!lRF ROllT !NE

**
**
•
•-----RFSTORf::
ilJX(l)QQ LX1

LX:>
Lo~

I ~IR

RFGTSTEPS
#JXT1(t)
#JXT!CtJ+2
#IXT!(1)+4

RF:STORE X1
RFSTORE X::>
RF'.STORF: AC

SKIP P

Fr~n

Figure 4-7. Generalized Coding of the #IMLSR
Macro Routine

4: 1-15

?#!MOMS
**
***************************•··
*
*
*

MOOE~ SEND ORIVfR

* •-----CALLING SEQUENCE
* LAX2 RETURN
* JMP,N,X1 4 PCl3 ADR IN Xt
•RETURN NS!
***************************•******************************~*********
**
*
•-----DR!Vt:.R

JMP
HF.X

#lW(2lTQJ AOC
*

CONTROLS
#IWC1)(2)
8~Hl0

#ITCllC2l

•-----SFT UP RETURN
#JD(1)(') SX2 #IW(,)T1

*

CHAJ.NlNG FLAG
PCR ADnRESS

SET IJP RETURN JUMP

•-----TEST FOR
LX2,X1
LDW,X2

A NI)
CNE
ACB

LEr.AL
8

OPERi\TION

*

LOW,X_,
AND
r.AL
RCA
,JMP

4
#lW(,)C1
#IW(2)C1
#lW(?.)!111
4
#lW(2)C2
#lW(2)C3
#I w C? >:?0
#IW(2)01

•---•-SET UP INTERRUPT MASK
#lW(212!11 LOI AC,X 1 6flll

STH,X:?. 5
*
•-----CALL rlRJVER COMMON

SX1 #lW(2)P1
LAX2 #IW (?) 40

.JMP #IOCOM
#lW(2)P1 HtX ~

* •-----IS THE CHAIN FLi\G SET
#lW(2)4!11 LDW,X1 !II

AND #JW(2)C4
RCR #IW(2)30

* •-----STOP CHi\lNING
LDW,N #IW(2)T0
AND #JW(2)C5
STW,N #IW(2)T0

*
•-----EXIT
#lW(2)49 JMP,N #lWC2)Tl
•
•-----ILLFGAL OPERATION

IOCQ-OIJT ADR TO X2
FETCH COMMAND WORD

lLLFGAL
FETCH COMMAND WORD
lllX I !llffil(ll 1

Ill XI Ql9[/lli'JI

LEGAL
ILL Er.AL

FETCH INT MASK
STORE tN IOCQ

STORF PC~

GO TO DRIVER .COMMON
PCB AOnRESS

1
FETrH COMMAND WORD FROM PIOT
•X't!/10"1 1

VE.S

FETCH PCB STATUS
•X 1 FRFF'
REPLACE PCR STATUS WORD

RETURN TO CALLER

#IWC2l!llt LOI AC,X'!/131111 1 ,L SET UP STATUS CODE
STW,)(2 2 STORE IN IOCQ

JMP #IWC2)49 GO TO EXIT

*
•--- ... -CONTINUE
#IW(2)3!11 LDW,N

XOR
ANI)
ADD
STW,N
JMP

CHAINING
#IWC2)Tlll
#lW(2)C4
#IWC2)C6
#IW(2)C7
#JW(2)HI
#IW(2)49

FETr.H PCB STATUS WORD
•X•l!/100' INVERT A/B FLAG
•X 1 FRFF 1

•X•!/140111' SET SKIP FLAG
REPLACE PCB STATUS WORD
GO TO EXIT

Figure 4-8. Generalized Coding of the Modem Send Device Driver
and Device Service Routine (f#IMDMS)

(Sheet 1 of 3)

4: 1-16

*
*
•-----CnNSTANTS
#lW(2)C1 f<El(r>. l VIM
#IW(2)C:' HtV O!ECllCI

ti I w C 2 JC.~ HE ll r~9~0

#lW(2)Cll HEX 10ill(ll

#!W(2)C5 HEX EKFF
11!W(2)Cn HEX FHFF
lllW(2)C7 HEX :ii4rH•

*
•-----V HI! AHLFS
i: I W (2) T I HE 11 1·1 RETllRN AllDRFSS

* SKIP P

*
*
*

M1rnp1 "lEN1) SFRVICE ROlJTINF

•-------E~!Tff.lfn FROM LfVfL SERVICE' ROUTJNF

*
•-----RFAl"l ANn RESf:T STATllS
11lw(1)(?) LXI #Jw(?1TO

t.nw,x1 ?
ANiJ ll!W(?)CH

PliT PCR AllR TN Xt
Ff' TrH f")fV Af"lR
:l(•CIFFF 1

RTO 11IW(")T3
l_\12,XI H

*

REAn + RESET ICA
rnr:rl AflR TO x::>

·-----TFST fl)R RYTr cou~H = L-1

Lr! AC,X 1 40 1

A~i) HlW(?)T3 RYTF cnLJNT = 0?
UCH tt!W(?)~O YES

*
•-----TFST FOR DEVICE NnT REAf'\Y

Lf'll AC,X'?O'
AND 11lW(?)T3 f"lEVICE NOT RFAOY?
HCH ttlW(2)71!1 YES

* •-----Gn TO NEXT DSR
JMP ll!W(?)99 r,n Tn NEXT {)SR

*
•-----BYTF CUllNT : C11
#!W(2)5~ LOW ll!W(?)CC =X'f/13111? 1

STW,X? ? llPOATE. lf"lCl~ STATUS

* •-----IS CURRFNT nR[)ff! CHAINff'\ ?
u1w,x? 4 FFTCH CURRENT OR[)ER

*
*
*

A~ID

t:H:A
ttlW(?)C4
ll!W(?)!'?

+-----lJPDATF IOCQ-OIJT
L[)w,X? Iii

JMIJ ttlW(2)57

*
•-----UPDATE STATIJS OF NEW
#lW(2)5? LX2,X2 Iii

SX2 IJ!W(::>)T4
Lnw llIW(?)C[)

STl'l,X2 ?

:)(t \r'll/lfl! I

CURRENT ORDER IS CHAINED

ENTRY
NEW IOCQ TO X2
SAVF NEW IOCQ
:X 1 111::>111f'l 1

llPf)ATE NEW IOCQ STATllS

Figure 4- 8. Generalized Coding of the Modem Send Device Driver
and Device Service Routine (l#IMDMS)

(Sheet 2 of 3)

4: 1-17

*
•-----IS NEW ORDER CHAINED
#IW(2)54 LOW,X2 4

AND #IWC2)C4
t:!CB #IW(2)53
JMP #lW(2)56

*

FETCH NEW ORDER
•X 1 117100 1

VES
NO

•-----LOOK-AHEAD
#IW(2)53 LX2,X2

LIH:i,X2
CNE
BCB

TO NEXT IOCQ ENTRV
(/J

2 FETCH LOGICAL STATUS
#IW(2)C8 •X 1 tllQl01 1

#IWC2)56 NOT I/0 PENDING
* •-----Gn TU MODF.M SEND DRIVER

sx2,x1 8 LOOK-AHEAD ADR TO PC~
LAX:>. #IWC2)56

JMP,N,X1 4 GO TO DRIVER

*
•-----RFSTORE NF.W IOCQ-OUT
#lw(2)56 LOW #lW(2)T4

LXl #lWC2)T0
ttIWC2l57 sTw,xt R

*

PUT PCR ADR IN Xl
~ESTORE IOCQ-OUT IN PCR

•-----EXIT TO LEVF.L RF.STORE ROUTINE
#IW(2)5Q JMP #IX499 EXIT Tn LSRR

*
•-------DEVICF
#IWC2)70 LIJW
#lW(2)7? STW,X~

JMP

*
*
•-----CONSTANTS
#lw(2)C8 HEX
#lW(2)C9 HEX
#IW(2)CR HEX
#IW(2)CC HEX
#lw{2)CD Hl::X

*
*
•-----VARIARLES

NOT
#JWC2)C9
2
#IWC2)59

(llQJQll
(ll341
0FFF
tll302
Ql20QI

#lWC2lT3 HEX. 0
#lW(2)T4 HEX QI

*
•-----GO TO NEXT DSR
#lW(2)99 EQIJ *
* SKIP P

END

REAOV
•X 1 Ql341 1

UPDATE IOCQ STATllS WORD
GO TO EXIT

DEVICE NOT REAOV

RYTE COUNT = QI

ICB STATUS
NEW IOr:Q-OUT

Figure 4- 8. Generalized Coding of the Modem Send Device Driver
and Device Service Routine (#IMDMS)

(Sheet 3 of 3)

4: 1-18

1. 12 EXIT Macro Routine (#IMEXT)

The EXIT macro routine is incorporated in

each IOCS monitor that is created. It effects a

system exit. The EXIT macro routine is

specialized according to the form of macro call

that SYSGEN generates:

$ t:, #IMEXT t:, Arg

or

$ti #IMEXT 6.,,

The first form of the call statement is used if a

System Logging Device was assigned via the

ASGL directive input to SYSGEN. That is, if

the third entry of the ASGL directive was a valid

?#IMf.XT

device identifier, the identifier becomes the

argument in the $ /J. #IMEXT call. The second

form of the call statement is generated if the

third entry in the ASGL directive was 000 (i. e. ,

if no logging device was assigned).

The generalized coding of the #IMEXT

macro routine contains statements to effect

message logging if a System Logging Device was

assigned. These statements contain dummy

arguments of the form (lN). Thus, if the logging

device identifier is transmitted in the $ 6 #IMEXT

macro call, the logging statements are inserted

in the specialized routine; otherwise, they are

omitted. The generalized #IMEXT macro rou­

tine coding is shown in Figure 4- 9.

*********************~***

*
* . FXIT RnUTINE

*
·-------c A LL l N[; SErWE l\iCF

*
*

~l~C

ilFC

*
*
*
•-------Ct t.A~ LOC VI Hll> OLll PC
#l0FXT lfll AC,(11

STW #JC~CHl

ST~ aITJP9 CLFAP OLD-PC OF INT LEVEL 9

* •-------Lnc; END

#hJVlP1

*

LAX?.
J"'1P
DFC

F\.Jll

•-------Gn TO r1

*
INR

SKIP P
EN[)

OF JOP.
#I lil!ilP 1

itlZLnG
(il(ll (ii(~

*

LnG END OF JOH

STALL 4T ZERO

Figure 4- 9. Generalized Coding of the EXIT Macro Routine

4: 1-19

(1N)
(1 N)

(1N)

Cl N)
(lN)

(1 N)

1. 13 CLOSE Macro Routine (/fIMCLL)

The CLOSE macro routine is specialized

for each IOCS monitor that is created. This

routine performs the processing required to

close a specified device. It is specialized

according to the form of macro call that SYSGEN

generates:

$ 6 /flMCLLti Arg

or

$t-, /fIMCLLti,

The first form of the call statement is used if a

System Logging Device was assigned via the

ASGL directive input to SYSGEN. That is, if

the third entry of the ASGL directive was a

valid device identifier, the identifier becomes

the argument in the $6 /fIMCLL call. The

second form of the call statement is generated

if the third entry in the ASGL directive was 000

(i.e., if no logging device was assigned).

As in the /fIMEXT macro routine, state­

ments appear in the generalized /fIMCLL macro

routine to effect message logging when a Sys­

tem Logging Device has been assigned. When

the $L'i /fIMCLL call transmits a logging device

identifier as its argument, the logging state­

ments (containing dummy arguments of the type

(lN)), are inserted in the specialized routine.

If a comma is transmitted in the $li /f IMCLL call

statement, the logging statements are omitted

by the Assembler's macro processor phase.

1. 14 INITialization Macro Routine (/f!MINT.)

The INITialization routine performs the

processing required to initialize all devices in

the equipment configuration. This routine is

always incorporated in the IOCS monitor being

created. SYSGEN generates the statement:

$li /fIMINT

to cause the routine to be incorporated in the

monitor. No arguments are supplied in the call,

and no dummy arguments appear in the genera­

lized coding. That is, the entire routine is

incorporated in the IOCS monitor.

1. 15 OPEN Macro Routine (/fIMOPL)

The OPEN routine performs the processing

required to OPEN a specified device. It is

specialized for each IOCS monitor that is

created according to the form of macro call that

SYSGEN generates:

or

$.ti /fIMOPLti Arg

$.ti #IMOPLli ,

The first form of the call statement is used if a

System Logging Device was assigned via the

ASGL directive input to SYSGEN. That is, if

the third entry of the ASGL directive was a

valid device identifier, the identifier becomes

the argument in the $.ti #IMOPL call. The

second form of the call statement is generated

if the third entry in the ASGL directive was 000

(i.e., if no logging device was assigned).

The generalized coding of the #IMOPL

macro routine contains statements to effect

message logging if a System. Logging Device has

been assigned. If the logging device identifier

is transmitted in the $Ll #IMOPL call, the

logging statements (containing the dummy argu­

ments (lN)), are inserted in the specialized

routine; otherwise, they are omitted.

1, 16 IOACTion Macro Routine (#IMACT)

The IOACTion macro routine is specialized

for each IOCS monitor that is created. This

routine performs the processing required to set

up for and start input/output operations. The

SYSGEN program generates the macro call:

$ti #IMACT ti Arg

or $.ti #IMACT ti,

4: 1-20

to effect specialization of the #IMACT routine.

The first form of the macro call is used if a

System Logging Device was assigned via the

ASGL directive input to SYSGEN. That is, if

the third entry of the ASGL directive was a

valid device identifier, the identifier becomes

the argument in the $fl #IMACT macro call. The

second form of the $fl #IMACT call is used if

the third entry in the ASGL directive was 000

(i.e., if no logging device was assigned).

The generalized coding of the #IMACT

macro routine contains statements to effect

message logging if a System Logging Device

was assigned. If the logging device identifier

is transmitted inthe $~ #IMACT call, the log­

ging statements (containing the dummy argu­

ments (IN)) are inserted in the specialized

routine; otherwise, they are omitted.

1. 17 Compute PCB Address Macro Routine

(#IMPCB)

This macro routine is always incorporated

in the IOCS monitor being created. As its name

implies, its function is to compute the addresses

of the Physcial Control Blocks (PCBs) for

assigned devices. The SYSGEN program gener­

ates the macro call statement:

$fl #IMPCB

to cause the entire routine to be inserted in the

roes monitor being assembled.

1. 18 Error Logging Macro Routine (#IMLOG)

This routine produces the logging messages

on the System Logging Device when it has been

as_signed. The routine contains the LUN Con­

version Table, the Message Locate Table, and

the Canned Message Table. When a System

Logging Device ·is assigned on the ASGL direc­

tive input to SYSGEN, the macro call:

$~#IMLOG

4: l-21

is generated. At assembly time, the entire

Error Logging Routine is inserted in the IOCS

monitor being created.

The Error Logging Routine is called by the

MSC service routines when the error logging

statements have been incorporated in them. That

is, when a logging device identifier is transmitted

as the argument in the MSC service routine macro

calls generated by SYSGEN, the logging state -

ments are included in the specialized versions of

the EXIT, OPEN, CLOSE, etc., service routines.

1. 19 Clock Service Macro Routine (#IMCLK)

The Clock Service Routine performs the pro­

cessing required when the interval timer interrupt

is selected by the user, The interrupt occurs at

level O. It is specialized according to the form

of the CALL directive to SYSGEN:

CALL, $fl# IMCLK, Arg l' Arg2

or CALL, $fl# IMCLK, Arg1

The first form generates the modified version

of the clock. This version of the clock allows

linkage to user specified subroutines when a clock

expires. Arg1 must be the letters MT (modified

timer). Argz specifies the number of clocks to

be generated.

The second form is used to generate the

standard version of the clock, which decrements

the clock to zero without subroutine linkage. Arg 1
specifies the number of clocks to be generated.

When the CALL directive is processed by

SYSGEN, the CALL statement

$fl #IMCLK

is written onto the Assembler-formatted output

file. When the Assembler's macro processor

reads the macro call, it writes the Clock Ser­

vice Routine onto its output work file.

1. 20 Parity Error Macro Routine (H!MPAR)

The parity error interrupt level 10 is

optional. The user specifies the inclusion or

exclusion of the interrupt level via a CALL di­

rective in the format:

CALL, $ti #IMPAR ti Arg

or CALL,$ ti #IMPARfl ,

as the input to the SYSGEN program.

71l11MPAR

When the .SYSGEN program interprets the

CALL directive it generates one of the following

macro call statements:

$1:.#IMPAR!:.Arg

or $!:. #IMPAR!:.,

The Parity Error Routine is specialized

according to the form of the macro call that is

issued. The generalized coding of the Parity

Error Routine is shown below:

**
**
*
*
*

PARITY ERROR POUTINE

* CALL~O FROM INTERPUPR LFVEL 10
*
**
**
#IVPAR

t.!IVPfe:!0
#IVP99
11 IVC!rlt

Lf'lw
A f) f)
STw
J~P

I AX2
JMi:>
DFC
IM~

~iF X
SKIP

FNO

#JVP(ll!ll
#IVCVl1
#IVP00
#lVP99
#JVP99
#lZLOG
011113

EXIT
01r.,0
p

If the first form of the call statement is

issued, the first JMP statement is omitted from

the specialized #IMPAR routine because of the

(1 Y) dummy argument, and the LAX2 and second

JMP statements are included. If the second

(1 y)
(1 N)
{1N)

form of the call statement is issued by the

SYSGEN program, the first JMP statement is

included in the specialized Parity Error Routine,

and the LAX2 and JMP statements are omitted.

4: 1-22

Section 2. USER MACRO LIBRARY FILE

The User Macro Library is a collection of generalized, source- coded routines that may be called

within applications source programs to effect the following:

• Creation of FIOBs and IOCQ Table entries

• Monitor service calls to perform the following:

READ operations on an input device

WRITE operations on an output device

REWIND operations on 1/0 devices

OPEN devices

CLOSE devices

INITialize all devices on the system

Cause a System EXIT

Control or interrogate the Watchdog Timer

Sense device status

Test and reset lists of devices attached to the Channel Interface Controller

• Inclusion of Translate Tables for use in translating 2260 keyboard code, ASCII

keyboard code, and the !PARS keyboard code to the internal ASCII code

• Conversion of Baudot to ASCII code and ASCII to Baudot Code used with the

ASR 32 teletype device.

The routines are called via macro call statements within the user's program. The format of the

call statement is:

$ macroname argument list

where the $ appears in column 1 of the coding form, followed by a blank character. The name of the

macro routine then appears, followed by a blank character. The argument list, if required, then

appears, where two or more arguments are separated by commas. If a required argument is to be

omitted from the list, its omission is indicated by a comma in the argument's position in the list.

When a program contains macro call statements, the User Macro Library file must be input to the

Assembler for use by the macro processor in specializing the l.alled macro routines, as described in

Part 2 of this Handbook.

The remainder of this section presents detailed descriptions of the User Macro Library routines

and the manner in which they are called in source programs.

4: 2-·1

2. 1 IOFIOB Macro Routine

The 10.FIOB user macro routine effects specialization. of the source statements that construct a

File Input/Output Block (FIOB} describing the parameters of each IOACTion service to be performed

by IOCS. The generalized coding of the IOFIOB macro routine is shown below:

7IOFI08
(1) HEX ()I SPARE/FRROR CODE
(?) t HEX (3) MOl)E, FUNCTTON, LOG UNIT NO
(2);> A nc c 4) RUFFER A DORF SS
(2)3 l)EC (!)) RYTE COUNT
(2)4 ADC (fi) TRANSLATE TARLF BASE CQY)
(2)4 HEX (fi) OISK TRACK-rvLINf)ER AODRESS (9Nl
(2)5 ADC (7) SEARCH TA8l F BASE (QY)
(2)5 HEX (7) DISK SECTOR ADl)RESS f9N)

RESV,OI 4 SPARE
(2)A HEX 0!0'11(8) SPARF/LUN FXTENSION NUMRER

F.: Nf)

The macro routine contains nine dummy arguments, and therefore nine arguments must be trans­

mitted in the IOFIOB call statement. These arguments are defined below.

Argu1nent 1:

Argument 2:

Argument 3:

Argument 4:

Arguinent 5:

Argument 6:

The starting location (e.g. , symbolic tag) of the specific FlOB to be

created must appear in the first position of the call statement list.*

The first portion of a symbolic tag for the constant defining statements

in the FlOB must appear as the second argument in the macro call

statement.*

The data transfer .mode, device function code, and logical unit number

(LUN) of the device on which the lOACTion is to be performed must be

specified as argument 3.

This argument specifies the starting address of the buffer to or from

which I/ 0 data is to be transferred.

This argument specifies the number of bytes of data to be transferred to

or from the 1/0 buffer.

This argument specifies the starting location of the Translate Table if

the 1/0 action is to be performed on a device other than a disc or the

address of the disc track and cylinder if a disc device is to be used in

the I/ 0 operation.

*Arguments l and 2 supply labels for statements in the FIOB. The first argument supplies a
complete label and may be six characters or less; the first character must be alphabetic. Argument
2 specifies five or less characters of a label; the first character must be alphabetic.

4: 2-2

Argument 7:

Argument 8:

Argument 9:

This argument specifies the address of the starting location of the Search

table if the I/O operation is to be performed on a device other than a disc,

or the address of the disc sector if a disc device is to be used in the

operation.

The LUN extension number of a specific device on a device controller

to which multiple devices may be attached.

This argument must be a 1 if the I/ 0 operation is to be performed on a

disc device, or a comma (,) if any oj;her device is to be used for the

I/ 0 operation. If a 1 is specified as the ninth actual argument in the

$IOFIOB call statement, the Translate and Search Table address constant

statements are omitted from the specialized routine and the disc track­

cylinder and sector hexadecimal constant statements are included. If a

comma is transmitted in position 9 of the call statement argument list,

the ADC statements specifying the Translate and Search Table addresses

are included in the routine and the disc address statements are omitted

from the specialized routine at assembly time.

The call statement:

$ IOFIOB FIOBl, JVC, FFFF, BUFF!, 320, 0208, 0040, .0, 1

causes the following routine to be specialized at assembly time.

FIOBl
JV Cl
JVC2
JVC3
JVC4
JVC5

JVC8

The call statement

HEX
HEX
ADC
DEC
HEX
HEX
RESV, 0
HEX

0
FFFF
BUFF!
320
0208
0040
4
0000

SPARE/ERROR CODE
MODE, FUNCTION, LOG UNIT NO
BUFFER ADDRESS
BYTE COUNT
DISK TRACK- CY LINDER ADDRESS
DISK SECTOR ADDRESS
SPARE
SPARE/ LUN EXTENSION NUMBER

$ IOFIOB FIOB2, JVC, 2401, BUFF!, 80, TRANS,SRCH,4,,

causes the following routine to be specialized.

FIOB2
JV Cl
JVC2
JVC3
JVC4
JVC5

JVC8

HEX
HEX
ADC
DEC
ADC
ADC
RESV, 0
HEX

0
2401
BUFF!
80
TRANS
SRCH
4
0004

4: 2-3

SPARE/ERROR CODE
MODE, FUNCTION, LOG UNIT NO
BUFFER ADDRESS
BYTE COUNT
TRANSLATE TABLE BASE
SEARCH TABLE BASE
SPARE
SPARE/ LUN EXTENSlUl\[NUMBER

2.. 2. IOIOCQ Macro Routine

The IOIOCQ user macro routine effects specialization of source statements required to set up

entries in the IOCQ table. The generalized coding of the routine is shown in Figure 4-10.

The IOIOCQ macro may be called to generate a single IOCQ entry or a maximum of eight IOCQ

entries. In all cases, the IOCQ name base must appear as the first argument in the list of the

$IOIOCQ call statement. Following the name base may be from one to eight modifiers to the name

base.* These modifiers uniquely identify individual entries in the IOCQ table being generated. As in

all macro call statement lists, the individual arguments in the list are separated by commas, and

omitted arguments are indicated by commas.

To effect the creation of a single IOCQ table entry, the user specifies the name base, and a

single name base modifier followed by eight commas. For example, the call statement

$ IOIOCQ IOCQ, A,,,,,,,,

specifies that only one entry is to be created in the IOCQ table. The name base is to be IOCQ, and the

modifier A is to be used to specialize the entry. The following coding will be produced as a result of

the single entry call.

IOCQA ADC
HEX
HEX
HEX
HEX
HEX
HEX
RESV, 0

IOCQA
0
0
0
0
0
0
6

LINK
LOGICAL/PHYSICAL STATUS
MODE, FUNCTION, LOG UNIT NO
BUFFER ADDRESS
BYTE COUNT
TRANSLATE TABLE/DISK ADDRESS
SEARCH.TAB LE/ DISK ADDRESS
SPARE

If several IOCQ entries are to be created, the IOIOCQ macro call statement list contains the name

base as the first argument, followed by a comma and the appropriate number of name base modifiers.

For example, the call statement

$IOIOCQ IOCQ,A,B,C,D,,,,,

specifies that four IOCQ entries are to be created. The name base is to be IOCQ, and the four entries

are to be specialized with the arguments A, B, C, and D. The following coding will be produced by

the call statement:

*Since the name base and the modifiers complete the label fields of the IOCQ table, the combined
number of characters must not exceed six characters; the first character must be alphabetic.

4: 2.-4

IOCQA

IOCQB

IOCQC

IOCQD

ADC
HEX
HEX
HEX
HEX
HEX
HEX
RESV, 0
ADC

ADC

ADC

IOCQB
0
0
0
0
0
0
6
IOCQC

IOCQD

IOCQA

LINK
LOGICAL/PHYSICAL STATUS
MODE, FUNCTION, LOG UNIT NO
BUFFER ADDRESS
BYTE COUNT
TRANSLATE TABLE/DISK ADDRESS
SEARCH TABLE/DISK
SPARE
LINK

LINK

LINK

2. 3 READ Macro Routine

The READ user macro routine effects specialization of the source statements required to perform

a read operation on an input device. The generalized coding of the READ macro routine is shown

below.

?READ

END

MSC
HEX
ADC
ADC

7
(1)
(2)

MONITOR SERVICE CALL
I/O ACTION CODE
RETURN ADDRESS
FIOB ADDRESS

Since there are two dummy arguments in the routine, the call statement to the routine must transmit

two actual arguments, as follows:

Argument 1:

Argument 2:

This argument specifies the user program address to which IOCS is to

return control on completion of the read operation.

This argument specifies the address of the FIOB* associated with the

device on which the read operation is to be performed.

*Prior to the appearance of a READ call statement, an FIOB with a READ function code must
have been established in the calling program.

4: 2-5

?l-&I-&€G--------·--··------·· ----- -----·- -
(1)(2) AOC (1)(2) LINK (JY)
(1)(2) ADC (1)(3) LINK (JN)

HEX 0 LOGICAL/PHYSICAL STATUS (2N)
HEX 0 MOOE, FUNCTION, LOG UNIT NO (2N)
HEX A BUFFER ADDRESS (2N)
"4E*- ---~--------- ------RVT£--£OUIH (~IH

HEX A TRANSLATE TABLE/DISK ADDRESS (2N)
HEX A SEARCH TABLE/DISK AOORESS C2N)
RESV,0 6 SPARE C2N)

Cl)(J) AOC (1)(2) LINK C4Y)(JN)
Cl)(J) ADC (11(4) LINK (4Nl

- - MEX A -l-Ol;lCAlfPHYS-ICAL STATUS (JN)
HEX A MODE. FUNCTION, LOG UNIT NO (JN)
HEX A BUFFFR ADDRESS (JN)
HEX A BYTE COUNT (JN)
HEX A TRANSLATE TAALE/DISK ADDRESS (3N)
HEX A SEARCH TAALF/DISK AOORESS C3N)
RES~0 ~- SPARE (3N)

C 1) (4) ADC (1) (2) LINK (5¥) (4N) ONl
(1)(4) ADC (1)(5) LINK (5N)

HEX Cl! Lor.ICAL/PHYSTCAL STATIJS (4N)
HEX 0 MODE, FUNCTION, LOG UNIT NO (4N)
HEX 0 RUFFER ADDRFSS (4N)
HfX 0 RVTE COUNT (4Nl
HEX 0 TRANSLATF TARLE/DISK AODRESS (4N)
HEX A SEARCH TARLF/DISK ADDRESS (4N)
RESV,A 6 SPARE (4N)

(1)(5) Abt (1l(2) LINK (6Y)(SNl(4N)(JN)
Cl)(5) ADC (1) (6) LINK (6Nl

HEX 0 LOGICAL/PHYSICAL STATUS (!)N)
HEX A MODE, FUNCTION, LOG UNIT NO (5N)
HEX Cl! BUFFER ADDRESS (5N)
HEX A BYTE COUNT (SN)
HEX 0 TRANSLATE TAALE/DISK ADDRESS (5N)
HEX A SEARCH TABLF/DISK ADDRESS (SN)

·- R-E-SV, 0- - 11- - -- -- · ·· · · SP-ARE (-!HO
(1)(6) ADC C1lC2) LINK (7YlC6N)(5N)(4N)C3N)
C1)(6) ADC (1)(7) LINK (7Nl

HEX A LOGICAL/PHYSICAL STATUS (6N)
HEX A MODE, FUNCTION, LOG UNTT NO t6N)
HEX 0 RUFFER ADDRESS C6N)

----~-X-----0 -RYTE: -C-0UNT---f 5N l
HEX 0 TRANSLATE TABLE/DISK ADDRESS (6N)
HEX A SEARCH TARLF/OISK ADDRESS C6N)
RESV,0 6 SPARE (6N)

(1)(7) AOC C1l(2J LINK (8Y)(7N)(6N)(5N)(4N)(3N)
(1)(7) ADC (1)(~) LINK C~Nl

------J:tfX----4----------- -- --1..0Gl.U.b-/~.liYSl-C-AI. SUUJS,.(.7.Nl----
HEX A MOOE, FUNCTION, LOG UNIT NO (7N)

"- ~.X Cl! BUFFER ADDRESS C7N)
HEX 0 BYTE COUNT C7Nl
l!IEX. - 0 t.RA.NSL.AT-E TABLE/DI-SK ADDRESS C7N)
HEX 0 SEARCH TABLE/DISK ADDRESS C7N)

•0-- ---- - RES\! ,3---+. ~-{7N) -- ---- ---· - -- --- ·· ----
(1) (8) AOC (1)(2) LINK (9Y)(8N)(7N)(6N)(5N)(4N)(3N)

•UH-8-l - A.DC ----HH9-l-- -- -I.INK (9N)
HEX A LOGICAL/PHYSICAL STATUS CBN)

•----- --#E~----9 - -- - --M-ODf-. FUNCTIG-N, -LOG--UNIT N-0--(-8-N}
HEX 0 BUFFER ADDRESS (8N)
HEX B -8-HE- G91:1NT (8N
HEX 0 TRANSLATE TABLE/DISK ADDRESS (8N)

• - -H-EX -9 - -- --- -- --SU-RC#- T-A-6t..f l-0-ISl<-A-DD-RE-SS -(8-N-}
RESV,0 6 SPARE C8N)

•Ci H 9-) - --MC- - -HH-2-l --- - - -- --l-IN-l<- -(-9N}
HEX 0 LOGICAL/PHYSICAL STATUS C9N)
HEX B M99E 1 Fl:INGTIQN, L9G l:INIT NQ (9N)
HEX 0 BUFFER ADDRESS C9N)

--K£X -ii- BYTE COUNT C9Nl
HEX 0 TRANSLATE TABLE/DISK ADDRESS C9N)
HEX 0 SEARCH TABLE/DISK ADDRESS C9N)
RESV,0 6 SPARE C9N)

Figure 4- 1 O. Generalized Coding of the IOIOCQ Macro Routine

4: 2-6

To illustrate the manner in which the READ routine is called, assume that the return address in

the program is FINISH, and the address of the FIOB to be used is .ElOBl. The call statement

$ READ FINISH,FIOBl

will cause the READ routine to be specialized as shown below:

MSC
HEX
ADC
ADC

7
FINISH
FIOBl

MONITOR SERVICE CALL
I/ 0 ACTION CODE
RETURN ADDRESS
FIOB ADDRESS

2. 4 WRITE Macro Routine

The WRITE user macro routine effects specialization of the source statements required to per­

form a write operation on an output device. The generalized coding of the WRITE macro routine is

shown below:

? WRITE
MSC
HEX
ADC
ADC

7
(1)
(2)

MONITOR SERVICE CALL
I/O ACTION CODE
RETURN ADDRESS
FIOB ADDRESS

Since there are two dummy arguments in the routine, the call statement must transmit two actual

arguments as follows:

Argument 1:

Argument 2:

This argument specifies the user program address to which the IOCS monitor

is to return control on completion of the write operation.

This argument specifies the address of the FIOB* associated with the device

on which the operation is to be performed.

To illustrate the WRITE call statement, assume that the return address in the program is

PRINT and the address of the FIOB is PRINTR. The call statement

$ WRITE PRINT, PRINTR

will cause the WRITE routine to be specialized as shown below.

MSC
HEX
ADC
ADC

7
PRINT
PRINTR

MONITOR SERVICE CALL
I/O ACTION CODE
RETURN ADDRESS
FIOB ADDRESS

* .
Prior to the appearance of a WRITE call statement, an FIOB with a WRITE function code must

have been established in the calling program.

4: 2-7

2. 5 REWIND Macro Routine

The .REWIND user macro routine effects specialization of the source statements required to per­

form a rewind operation on an I/ 0 device. The generalized coding of the REWIND macro routine is

shown below.

?REWIND

END

MSC
HEX
ADC
ADC

7
(1)
(2)

MONITOR SERVICE CALL
I/O ACTION CODE
RETURN ADDRESS
FIOB ADDRESS

Since there are two dummy arguments in the routine, the call statement must transmit two actual

arguments, as follows:

Argument 1:

Argument 2:

This argument specifies the user program address to which IOCS is to return

control on completion of the rewind operation.

This argument supplies the address of the FIOB* associated with the device

on which the operation is to be performed.

For example, assume that the program return address is RDREC and the address of the associated

FIOB is RWFIOB. The call statement

$ REWIND RDREC,RWFIOB

will cause the REWIND routine to be specialized as follows:

MSC
HEX
ADC
ADC

2. 6 OPEN Macro Routine

7
RDREC
RWFIOB

MONITOR SERVICE CALL
I/ 0 ACTION CODE
RETURN ADDRESS
FIOB ADDRESS

The OPEN user macro routine effects specialization of the source statements required to open a

specific 1/0 device. The generalized coding of the macro routine is shown below.

* Prior to the appearance of a REWIND call statement, an FIOB with a REWIND function code must
have been established in the calling program.

4: 2-8

?OPEN

(4)
END

MSC
HEX 6
ADC (1)
ADC *+2
HEX (2)
ADC (3)
RESV, 0 2

MONITOR SERVICE CALL
OPEN CODE
RETURN ADDRESS
PARAMETER LIST ADDRESS
LUN
IOCQ ADDRESS
ERROR FIELD

The OPEN macro routine has four dummy arguments; hence, four actual arguments must be trans­

mitted to the routine via the call statement list, as described below:

Argument 1:

Argument 2:

Argument 3:

Argument 4:

This argument specifies the user program address to which IOCS is to

return control when the specified device has been opened.

This argument supplies the logical unit number (LUN} of the device to be

opened.

The address of the associated entry in the IOCQ table is specified as the

third actual argument.

The label of the error code field is defined in argument 4. This argument

must consist of six characters or less, the first of which must be alphabetic.

Shown below is a call statement with the proper arguments for the OPEN routine.

$ OPEN START!, l,IOCQX,ERRORl

When the call statement is processed by the Assembler, the following specialized coding is pro­

duced for the calling source program:

ERROR!

2. 7 CLOSE Macro Routine

MSC
HEX
ADC
ADC
HEX
ADC
RESV, 0

6
STAR Tl
*+2
1
IOCQX
2

MONITOR SERVICE CALL
OPEN CODE
RETURN ADDRESS
PARAMETER LIST ADDRESS
LUN
IOCQ ADDRESS
ERROR FIELD

The CLOSE user macro routine effects specialization of the source statements required to close a

specific 1/0 device. The generalized coding of the macro routine is s.hown below.

? CLOSE

(3)
END

MSC
HEX
ADC
ADC
HEX
RESV, 0

1
(1)
*+2
(2)
2

4: 2- 9

MONITOR SERVICE CALL
CLOSE CODE
RETURN ADDRESS
PARAMETER LIST ADDRESS
LUN
ERROR FIELD

There are three dummy arguments in the CLOSE macro routine. Hence, a user macro call statement

must contain three actual arguments to be used to specialize the coding to be incorporated in the call­

ing program. The actual arguments are described below:

Argument 1:

Argument 2:

Argument 3:

The calling program return address appears as the first argument in the call

statement list.

The second argument supplies the logical unit number (LUN) of the device

to be closed.

The label of the error code field is. specified as argument 3. This argument

may consist of six characters or less, the first of which must be alphabetic.

The call statement

$ CLOSE FINl, 1, ERROR2

will cause the following specialized code to be produced by the Assembler's macro processor:

ERROR2

2. 8 INIT Macro Routine

MSC
HEX
ADC
ADC
HEX
RESV, 0

1
FINI
*+2
1
2

MONITOR SERVICE CALL
CLOSE CODE
RETURN ADDRESS
PARAMETER LIST ADDRESS
LUN
ERROR FIELD

The INIT user macro routine effects specialization of the source statements required to reset all

devices on the system. The generalized coding of the routine is shown below.

?!NIT

END

MSC
HEX
ADC

2
(1)

MONITOR SERVICE CALL
!NIT CODE
RETURN ADDRESS

The address constant statement contains a dummy argument instead of the user program address

to which IOCS is to return control after the initialization operation is completed. The macro call

statement to the !NIT routine must therefore specify the return address as its only argument. For

example, the call statement

$!NIT START

will cause the following specialized routine to be inserted in the calling program at assembly time:

MSC
HEX
ADC

2
START

MONITOR SERVICE CALL
!NIT CODE
RETURN ADDRESS

4:2-10

2. 9 EXIT Macro Routine

The EXIT user macro routine effects the specialization of source statements required to request

IOCS to log the end of job and cause a system exit. The generalized coding of the macro routine is

shown be low.

? EXIT

END

MSC
HEX 0

MONITOR SERVICE CALL
ALL DONE CODE

There are no dummy arguments in the macro routine; hence no actual arguments are transmitted

to the routine in the call statement. A sample call statement is illustrated below:

$ EXIT

The following code will appear in the calling source program.

MSC
HEX 0

MONITOR SERVICE CALL
ALL DONE CODE

2. l 0 Watchdog Timer (WDTMSC) Macro Routine

The WDTMSC user macro routine effects specialization of source statements required to control

or interrogate the watchdog timer. The generalized coding of the watchdog timer macro routine is

shown below.

?WDTMSC

(2)

MSC
DEC
ADC
ADC
DEC
HEX
HEX

3
\ 1)
(2)
000(3)
0
0

MONITOR SERVICE CALL
WATCHDOG TIMER CODE
RETURN ADDRESS
PARAMETER LIST ADDRESS
REQUEST CODE
POWER STATUS FIELD
ERROR FIELD

Since there are three dummy arguments in the macro routine, the watchdog timer call statement

must transmit three actual arguments, as follows:

Argument 1:

Argument 2:

Argument 3:

The first argument specifies the user program address to which IOCS is to

return control when the watchdog timer service has been performed.

The tag assigned to the parameter list. This argument may consist of six

characters or less, the first of which must be alphabetic.

The request code, which may be one of the following:

4: 2- 11

Requested Service

Requests that IOCS reset the watchdog timer. The watchdog
timer must be reset once every 34 seconds or automatic pro­
gram restart will occur.

Z Requests the monitor to start the watchdog timer under pro­
gram control and automatically initialize the counter to zero.

3 Requests the monitor to turn off the watchdog timer under
program control.

4

Other

NOTE

Code 3 should be issued only in
special cases, since it causes
the watchdog timer to be totally
disabled.

Requests that the monitor read the power status and return the
reading to the power status fiel.d in the specialized routine.

Any code other than one of the above is illegal and will cause
the monitor to return an illegal request code of 1 to the Error
Field defined in the last statement of the WDTMSC routine.
No watchdog timer action is ta~en when an illegal code is is sued.

When the watchdog timer routine is called, the Assembler substitutes the actual arguments in the

call statement for the dummy arguments to produce a specialized routine,

At program execution time, control passes to the IOCS monitor, and the specified timer action

is performed.

2. 11 Device Sensing (DVSMSC) Macro Routine

The DVSMSC user macro routine effects specialization of the statements required to request the

IOCS monitor to sense the status ofa specific device. The generalized coding of the device sensing

macro routine is shown below.

? DVSMSC

(Z)

END

MSC
DEC
ADC
ADC
HEX
HEX
HEX

5
(1)
(Z)
00(3)
0
0

MONITOR SERVICE CALL
DEVICE SENSING CODE
RETURN ADDRESS
PARAMETER LIST ADDRESS
LUN NUMBER
STATUS FIELD
ERROR FIELD

Since three dummy arguments appear in the macro routine, the U;ser call statement must transmit

three actual arguments, as follows:

4: Z-12

Argument 1:

Argument 2:

Argument 3:

The calling program address to which IOCS is to return control when

the device sensing service has been performed.

The address of the parameter list, which becomes the operand of the

second ADC statement and the label of the HEX statement that defines

the logical unit number (LUN) of the device to be tested. This argument

may consist of six characters or less, the first of which must be

alphabetic.

The LUN of the device whose status is to be sensed.

When the call statement is processed, the Assembler inserts the actual arguments in the place of

the three dummy arguments to produce the specialized routine.

When the routine is executed, the device's hardware status is returned to the status field, unless

an erroneous LUN (i.e., an unassigned LUN) was specified, in which case an error code of 2 is

returned to the error field. If no error occurred, the error field setting remains all zeros.

2. 12 CICMSC Macro Routine

The CICMSC user macro routine effects specialization of source statements required to test or

reset busy or off-line bits of devices attached to the Channel Interface Controller (CIC). The

generalized coding of the routine is shown below.

? CICMSC

(2)

END

MSC
DEC
ADC
ADC
HEX
DEC
HEX
HEX

4
(1)
(2)
00(3)
000(4)
0
0

MONITOR SERVICE CALL
CIC CODE
RETURN ADDRESS
PARAMETER LIST ADDRESS
LUN NUMBER
REQUEST CODE
STATUS FIELD
ERROR FIELD

Since there are four dummy arguments in the macro routine, the call to the routine must transmit

four actual arguments, as follows:

Argument 1:

Argument 2:

Argument 3:

The calling program address to which IOCS is to return control when the

CIC service has been performed.

The address of the parameter list, which becomes the operand of the second

ADC statement and the label of the HEX statement that defines the logical

unit number (LUN). This argument must be six characters or less, the

first of which must be alphabetic.

The LUN of the CIC device to be tested.

4: 2-13

Argument 4:

Code

2

3

4

Other

The request code, which may be one of the following:

Requested Service

Requests that the busy bit of the specified device be tested and
set. The current status of the busy bit is returned in bit 0 of
the status field, whe;re a 1 = busy and a Ci "' not busy. The re­
maining bits of the status field are undefined. The busy bit is
then set.

Requests a resetting of the busy bit of the specified device.

Requests that the off-line bit of the specified device be
tested and set. The current status of the off-line bit is re­
turned in bit 0 of the status field, where 1 = off-line and
0 = on- line. The remaining bits of the status field are un­
defined. The device off- line bit is then set.

Requests a resetting of the off-line bit of the specified device.

Any code other than one of the above is illegal and will be
reported via a 1 code in the error field defined in the last state­
ment of the CICMSC routine. No other action is taken by IOCS
when an illegal request code is specified in position 4 of the
call statement.

When the $CICMSC call statement is processed the Assembler inserts the actual arguments in the

place of the four dummy arguments to produce the specialized routine.

When the routine is executed the specified action is taken unless an erroneous LUN (i.e., an

unassigned LUN) was specified, in which case an error code of 2 is returned in the error field. If no

error occurred, the error field setting remains all zeros.

2. 13 TT2260 Macro Routine

This routine causes the 2260 Translate Table to be inserted in the calling program. The table

contains the conversions codes to be used by the device controller to translate 2260 keyboard code to

the ASCII code used internally in the PTS- 100. The macro routine coding, shown in Figure 4-11

contains a dummy argument in the label field of the first statement. The call statement to the routine

must therefore transmit a label to be identified as the starting location (i.e., the Translate Table base

address) in the user's program.

Assume that the symbolic tag TRNSl is to be used as the base address of this Translate Table in

the user's program. The call statement

$ TT2260 TRANS!

will cause the first statement of the routine to be specialized as follows:

TRANSl HEX 0000

The remainder of the Translate Table will be inserted in the calling program.

4: 2-14

?TT226A
SKIP P

•
•••
*
* •

SOFTWARE TRANSLATE TARLE :?260

•••
CH-- HEl(- ~910--

HEX A00C
HEX F05A
HEX !>958
HEX !>756
HEX 5554
HEX ~352
HEX !'i15"1
HEX 4F4E
HEX 404C
HEX 4134A
HEX 4948
HE)(-.t74ft
HEX 4544
HEX 4342
HEX 41"10
HEX fll"1fll0
HEX AlllOC
HEX F05A
HEX 3058
HEX 5756
HEX ;>354
HEX 5352
HEX !'i150
HEX -dfdE
HEX 4D4C
HEX 484A
HEX 4948
HEX 4746
HEX 4544
HE)(-- -- -4-3-6-r---
HE X 411l!ld
HEX 2F2E
HEX t>D2C
HEX 2600
HEX 3938

,_ --- --- --+IE-)(------~--

HEX 3534
HEX 3332
HEX 3130
HEX 3F3A
HEX ::>D3B

------~----~-----·---

HEX 282A
HEX 3726
HEX 2534

TAB
Rt:: TURN
y

II
s
Q
0
M
K
I
G
E
c
A

TAB
RETURN
" EQUALS
w
NUMBER
s
Q

0
M
K
I
G
E
€
A

SIGN

I SLANT
- HYPHEN
AMPERSANO
9

- ----1-- -
5
3
1

QUESTION MARK
- HYPHEN
-LA~S-T~--

OPEN PARl::N
7

PERCENT
HEX 3340 3
HEX 2429 DOLLAR SIGN

START
z
x
v
T
R
p

N
L
.l
H
F
0
R

START
z
l(

v
T
R
p
N
L
J
H
F
f)

fl

• PERIOO
, COMf'IA

4
2
0

*

COLON
SEMI COLON

+ PLUS
4

CLOSE PA.REN

MEX __ ug ____ - --S+~---R-U-+~--- - - -- R 1-G MT- --0,1.1{ CJ.!A-R
DELETE HEX F8F6 UP ONE CHAR

HEX '110EE
HEX EAF2
HEX F4910
HEX E2E0

---~M~E~x- BEFC
HEX FE00
Hf)(00-3-3
HEX 36~9
-HEX - -00-:HJ
HEX 3235
MEX nae
HEX 0031
Jot[-)(- - 343-1-- -
HEX 2000
~I}- - - - ---

LEFT ONE CHAR
INSERT
ENTER
bQCAb RfiMBTfi
CANCEL

6

2
s

4-
SPACE

HOME
DOWN ONE CHAR

PRINT
--GH~-- -- ------· -

TAB
3
9
B
5

---3P-AU---------------
1
7

Figure 4- 11. Generalized Coding of the TT2260 Macro Routine

4: 2-15

2. 14 TTASCI Macro Routine

This routine causes the ASCII Keyboard Translate Table to be inserted in the calling program. The

table contains the conversion codes to be used by the device controller to translate ASCII keyboard input

code to the ASCII code used internally in the PTS- 100. The macro routine coding, shown in Figure

4-12, contains a dummy argument in the label field of the first statement. The call statement to the

routine must therefore transmit a label to be identified as the starting location (i.e. , the Translate

Table base address) in the us~r's program.

The call statement

$ TTASCI ASCTRN

will cause the first statement of the routine to be specialized as follows:.

ASCTRN HEX 0000

The remainder of the table will be inserted in the calling program,

2. 15 TTIPAR Macro Routine

This macro routine causes the !PARS Keyboard Translate Table to be inserted in the calling pro­

gram. The table contains the conversion codes to be used by the device controller to translate !PARS

keyboard input code to the ASCII code used internally in the PTS-100. The macro routine coding, shown

i:n Figure 4-13, contains a dummy argument in the label field of the first statement. The call statement

to the routine must therefore transmit a label to be identified as the starting location (i.e., the Trans­

late Table base address) in the user's program. The call statement

$ TTIPAR IPRSIN

will cause the first statement of the routine to be specialized as follows:

IPRSIN HEX 0000

The remainder of the table will be inserted in the calling program.

2. 16 Baudot to ASCII Converter Macro Routine

This routine performs the processing required to convert the five- bit Baudot code input via the

ASR 32 teletype device to the seven- bit ASCII code used internally in the PTS- 100. If this macro

routine is to be called, the following calling sequence must be established via source code in the

calling program;

TAG

TAG3

LAX2
JMP,N
ADC
ADC
HEX
RESV,111
RESV,!11
ADC
EX REF
JMP

TAr;
TAGJ
INPUT
OUTPUT
xx xx
2
:>
#JVBAC
llJVBAC
TAG2

LOAD POINTER Tn PARAMETER LJST
GO TO CONVFRSION ROllTINE
INPUT ~UFFER PnINTER - RAUDOT CODE
OUTPUT BllFFER - WHERE TO PUT ASCII
NUMBFR OF AA\Jf}f')T CHARACTERS TO HE XLMTFn
NUMRFR OF ASCII CHARACTERS
ERROR WORD
POINTER TO CONVERSION ROllTINF
EXTERNAL REFFRFNC~ STATEMENT FOR #JVRAC
RETURN AFTER CnNVERstnN

4: 2-16

?TTASCI
SKIP P

•••
*
*
*

SOFTWARE TRANSLATF. TARLF. ASCII

•••
(1) HEX A0AOI

HEX 7E.3D
HEX 215A
HEX 5950
HEX 5756
HEX 55!'i4
HEX !'i3!'i2
HEX 5150
HEX 4F4E
HEX 404C
HEX 4B4A
HEX 4948
HEX 4746
HEX 4544
HEX 4342
HEX 415C
HEX Ol0A0
HEX 7028
HEX 500!0
HEX 0!1111'10
HEX 011IH'H<I
HEX 0!00!0!
HEX 0!1!1111111
HEX A0A0
HEX Alil00
HEX A01110
HEX A000
HEX 0!01110
HEX A01'10
HEX 11101110

--ttf)(- -- fli!Wtil
HEX A07B
HEX 2F2E
HEX 2D2C
HEX :rn5c
HEX 3938
HEX 3736
HEX 3534
HEX 3332
HEX 3130
HEX 3t'00
HEX 221'!0

--- -- - -~----- 3A58
HEX 282A
HEX 2627
HEX 25?4
HEX 2322
HEX 2129

----HE*-----~--

HEX 11100!0
HEX 000!0
HEX 001'10
HEX Ol09'0
HEX E2E0

---~HE~>< 9EFC
HEX FE00
HEl< '11000
HEX 0000
HEX FAEC
HEX F8F6
HE)(HEE
HEX EAF2
HEX F400
HEX 2000

END

v
w
II
s
Q

0
M
K
I
r,
F
c
A

OVERLINE
EXCLAMATJON

CLOSE F!RACE"
CLOSE RRACKET

I SLANT
- HYPHEN

SEMICOLON
9
7
5
3
1

QUESTION MARK
QUOTATION MARK

-GetGN
OPEN PAREN
AMPERSAND

PERCENT
• NUMBER SIGN

EXCLAMATION

ENTER
--\;;-&-At ~F-­

C A NC EL
ROLL DOWN
ERASE EOL
STORE-RESTORE
UP ONE CHAR

= FCJlJALS
z
x
v
T
R
p
N
L
J
H
F
I)

R

RFVERSF. SLANT

+ PLIJS

OPEN IHHCE
• PERIOD
, COMMA

A
6
4
?
0

REVERSE SLANT

AP-€N--RRACKET
* ASTERISK
' APOSTROPHE

DOLLAR SIGN
' COMMERCIAL AT
CLOSE PAREN

PRINT
-£LEAR
ROLL UP
ERASE EOS
TAB
RIGHT ONE CHAR
DELETE CHAR

LEFT ONE CHAR
INSERT CHAR
SPACE

------t1t~-B0~111t-E- --- --------­
DOWN ONE CHAR

Figure 4-12. Generalized Coding of the TTASCI Macro Routine

4: 2- 17

?TTJPAR
SK IP P -

****************************A'***************************************1 •
* •

SOFTWARE TRAN~LATE IAALE IPAR

*******************************~******************************•••····~
(t) HEX ·-~

HEX 002A
HEX F05A
HEX 5958
HEX 575_6
HEX 5554
HEX 53!'i-2
HEX 5150
HEX 4F4E
HEX 404C
HEX 4B4A
HEX 4948
HEX 4146
HE::X 4544
HEX 4342
HEX 4140

HEX 11100!0
HEX 111r.l:?A
Hf)(F05A
HEX 5958
HEX 5756

HEX 55!i4
HEX 5352
HEX '\150
HEX 4F4E
HEX 404C
HEX 41S4A
HEX 4948
HEX 4746

HEX 4544
HEX -4342

HEX 410!9
HEX 2F::>E

HEX 2D2J
HEX ;>41110

HEX 3938
HEX ~736
HEX 3534
HEX 3332
HEX 3130
HEX 2F2E
HEX 2023

- HE-M--- - · - ?430
HEX 3938
HEX 3736
HEX 3534
HEX 3332
HEX 3130

---~ - ---E-2-blJ--
HEX C2C5
HEX 01&1110
HEX 0!00!0
HEX 001110
HEX 1110E0

RETURN
y

M
K
I
G
F.
c
A

RETURN
y

w
u
s
~

K
I
G
E
c
A
SLANT
HYPHEN
DOLUR
9
7
5
3
1
Us
NAME
Rl>-UG­
FC NE
TKT
RMKS
GFAX
RLOC

-- - ----i-Nl£-R
IGN

2

SIGN

HEX DEFC ___ . ____ JiESU- ---
HEX FEO!l!I CANCEL
HEX 0000
HEX 01110111

11 .. tiEX Cl FA
HEX ECF8

··--~-· HEX FfiE2
HEX EEEA

.__ -- -- - - -HE: x --- -F-2F-.4-- -
HEX 2000

·-- - . - -- ~--- ----- 2000-- -
END

EI
FWDSP
QELETE
HOME

-- 1»4NONE
SPACE

----- -SPACE

ASTERISK
z
x
V­
T
R
p
N

L
J
H
F
D
A
COMMERCIAL AT

DSPL
z
x
v
T
R
p
N
l
J
H

F
D
A
CHNG
PERIOD
NlJMAER SIGN

8
6
4

Ill
css
ENDI

TL
RCVD
FAX
FLFU
SEG
UNSM-G
RPT

PRINT
Ct.EAR

STORE•RE!HORE
UP ONE

-- - - -E~-ER - ---­
BC KS P
INSERT

Figure 4-13. Generalized Coding of the TTIPAR Macro Routine

4: 2- 18

Note that the input buffer contains the Baudot code to be converted to ASCII code and stored in the

output buffer. All Baudot data characters are directly convertible to ASCII characters. That is, a

one-for-one conversion of data characters is performed. In addition to data characters, the input

buffer contains shift characters. The shift characters are used by the Converter routine to perform

the conversion, but are not written into the output buffer. Hence, the output buffer ne.ed not be any

larger than the input buffer, and may in fact be smaller by the number of shift characters transmitted

from the ASR 32 teletype to the input buffer. If the programer wishes, he may use the same buffers

for input and output, thus overlaying the Baudot input with converted ASCII code.

Normal termination of the Baudot to ASCII Converter Routine may be specified in one of the follow­

ing ways:

1. Specifying the exact number of input bytes to be processed in the operand field of the HEX

statement (i.e., in the third word of the parameter list which starts with TAG in the calling

sequence code).

2. Storing a flag of X' FF' in the last byte of the input (Baudot) buffer.

3. If a separate buffer is used for output, storing a flag of X'FF' in the last byte of the

ASCII buffer.

If the Baudot byte count is specified in the HEX statement, the routine will return control to the

calling program when the specified number of inpU: characters has been translated. If a flag of X' FF'

is used in either of the input or -output buffers, the routine will discontinue processing when the flag is

encountered, unless the byte count is satisfied before the flag is found. That is, if the flag termination

is to be used, the HEX statement should specify the hexadecimal value FFFF so that the byte count

will never be satisfied before the buffer flag is encountered.

The actual character value of Baudot code appears in the right- most five bit positions of the input

byte. The upper, or left- most, three bits indicate whether the code was input from the teletype key­

board (i.e., the first three bits are zeros) or from the high speed paper tape (i.e., the first three

bits are ones). The conversion routine zeros these three bits and performs the conversion on the

valid five bits of the input Baudot bytes.

The Baudot to ASCII converter routine contains the translate table of ASCII codes to be used in

performing the conversion.

To call the converter routine, the programer writes the call statement

$ #JMBAC

in his source program. Since no dummy arguments are used in the macro routine coding, no actual

arguments are required in the call statement. The entire converter routine w~ll be incorporated in the

calling program at assembly time.

4: 2- 19

At execution time, the calling sequence will be performed and control transferred to the assembled

converter coding. When the conversion is completed, control will return to the seventh word in the

calling program' s parameter list.

2. 17 ASCII to Baudot Converter Macro Routine

This user macro routine performs the processing required to convert the seven-bit internal ASCII

code to the five- bit Baudot code for output to the ASR 32 teletype device. Ii this macro routine is to be

called by a user program, the calling sequence must be established in the calling program as shown

below.

TAGl

TAG3

TAG2

LAX2
JMP,N
ADC
ADC
HEX
RESV, 0
RESV,O
ADC
EX REF
JMP

EQU

TAG!
TAG3
INPUT
OUTPUT
(BYTE COUNT)
2
2
#JQABC
#JQABC
TAG2

*

LOAD POINTER TO PARAMETER LIST
GO TO CONVERSION ROUTINE
INPUT BUFFER POINTER (ASCII CODE)
OUTPUT BUFFER POINTER (CONVERTED BAUDOT CODE)
NUMBER OF ASCII BYTES TO TRANSLATE
NUMBER OF BAUDOT BYTES TRANSLATED
ERROR WORD
POINTER TO STARTING LOCATION IN CONVERTER
EXTERNAL REFERENCE STATEMENT FOR #JQABC
RETURN ADDRESS IN CALLING PROGRAM

Note that the input buffer contains the ASCII code to be converted to Baudot code and s.tored in the

output buffer.

Normal termination of the ASCII to Baudot converter routine occurs when one of the following

conditions is encountered:

1. The specified number of input bytes has been processed.

2. A flag of X'FF' is encountered in the input buffer.

Abnormal termination of the conve.rter routine may occur because of one of the following

conditions:

1. The input and output buffers are equal in size.

2. The end of the output buffer was reached before all input code was processed.

These error condition terminations may be prevented by ensuring that the output buffer is large enough

to accommodate all of the characters generated by the routine. The total number of characters

generated by the routine includes all of the converted Baudot data characters, plus a shift character

each time the code conversion switches from alpha data to numeric data, or from numeric data to alpha

data. That is, the converter routine outputs a shift character to cause the tcl::type to switch from

upper case to lower case and vice versa when the keyboard position of the current output character

differs from the previous output character's position on the keyboard. The total number of output

characters will always include at least one shift character, and could possibly include as many shift

characters as data characters, thus doubling the output buffer size requirement.

4: 2-20

In setting up the output buffer area, the programer should reserve a storage space twice the size

of the input buffer, or estimate the number of shift characters that will be generated and set up an

output buffer equal to the estimated number of shift characters plus the number of characters reserved

for the input buffer. If storage space is critical, the programer may conserve space by overlapping

the input and output buffer in one of the following ways:

1. Set up a buffer area equal to the e.stimated maximum number of shift characters plus the

number of input characters, and then perform the following:

Set the output buffer pointer at the upper location of the buffer area.

Set the input buffer pointer below the output pointer at the point equal to the estimated

number of shift chal:'acters.

Set a termination flag of X' FF' in the last byte of the shared buffer and set the byte count

in the HEX statement of the parameter list to X'FFFF'.

2. Set up a buffer area twice the size of the input buffer requirement, then perform the following:

Set the output buffer pointer at the upper location of the buffer area.

Set the input buffer pointer at the middle of the buffer area.

Set a termination flag of X' FF' in the last byte of the shared buffer and set the byte

count in the HEX statement of the parameter list to X'FFFF'.

When either of the above actions has been taken in the source program, at execution time the

converter routine retrieves the first input code from the starting input pointer location, converts it,

and places the output code at the starting output pointer location. As the conversion proceeds, the

buffer pointers move down each time code is converted. Eventually, the output data and shift char­

acters write into locations previously occupied by input ASCII code. When the X' FF' flag is en -

countered, the conversion process terminates and control is transferred to the calling program at the

seventh word in the parameter list.

The ASCII to Baudot converter routine contains the translate table of Baudot codes used in per­

forming the conversion.

To call the converter routine, the programer writes the call statement in one of the following

formats:

or

$ #JMABC , , , ,

4: 2-21

The actual arguments in the first call statement specify that error checking statements in the

generalized macro routine are to be eliminated. That is, dummy arguments of the forms (1 Y). (ZY),

(3Y), and (4Y), appear in the error checking statements. These arguments specify that the Assembler

is to omit the statements in which they appear if actual arguments appear in positions 1, Z, 3·, and 4

of the call statement list. The actual arguments may be any characters except commas. The actual

arguments must be separated by commas.

The second form of the call statement omits the actual argument list via a series of four commas.

This call statement causes the error checking statements to be included in the specialized routine that

the Assembler inserts in- line in the calling program.

The only advantage in using the first form of the call statement is to eliminate approximately 30

bytes of storage for the error checking statements and to save the time required to process them.

Since the storage space and execution time requirements are relatively inconsequential, the programer

is advised to use the second form of the call statement to include the error checking unless storage

space is critical. The error checking statements test for the following conditions:

1. Input and output buffers are equal in size, in which case an error termination will occur,

indicated by an error code of 1 returned in the error word of the calling program's parameter

list.

Z. There is no equivalent Baudot code for an ASCII code to be converted, indicated by an

error code of Z returned in the error word of the calling program's parameter list.

3. The end of the output buffer was reached before all of the input was converted, in which case

an error termination will occur, indicated by an error code of 4 returned in the parameter

list error word.

If the error checking statements are excluded, no error indicators will be returned to the calling

program. The converter routine will still terminate, however, when the output buffer is too small

(i.e., when error conditions 1 and 3 above occur).

In all cases, the ASCII to Baudot converter routine returns control to the calling program at the

seventh word of the parameter list.

z. 18 ALIOCS Macro Routine

The ALIOCS macro routine is a listing of all the input/output coding used by the PTS-100 cassette

native assembler. The lengthy listing is not included in this handbook since it is used only for assembly.

z. 19 Disc Logical Input/Output Macro Routine

The Disc Logical Input/Output (LIOCSD) macro routine contains the coding necessary to carry out

the actions requested by the disc action and status macros, which are branches to certain routines in

the Disc Logical Input/Output macro. This is the main processing macro for the disc.

4: Z-ZZ

The Disc Logical Input/Output macro picks up the File Control Block pointer specified by an

action or status macro, and uses the fields in that File Control Block both as sources of information

about the file and as working storage for the processing of the file.

2. 20 Disc File Control Block Description Macro Routine

The Disc File Control Block Description (FCBD) macro establishes a file control block, a work

area 100 bytes long, in which the logical input/ output maintains all information about the file and the

current state of its processing. The generalized coding of the File Control Block Description macro

routine is shown in Figure 4-14.

Since there are 10 dummy arguments in the routine, the call statement to the routine, must

transmit 10 actual arguments, as follows:

Argument 1:

Argument 2:

Argument 3:

Argument 4:

Argument 5:

Argument 6:

Argument 7:

Argument 8:

Argument 9:

Argument 10:

The label of the File Control Block; this label is referred to in all the

action and status macros to identify the specific file to be accessed.

A number from 0 to 7, identifying the disc drive on which the file resides.

Type of buffering. S = single buffer. D = <loubl.e buffer (may be specified

only for sequential files).

First buffer address.

Second buffer address. (This should be specified as 0 for single

buffering.)

Address of file name, a 10-byte field containing the name that was

assigned to the file in the Volume Directory by the Disc Allocator

program.

Address of error word, a one-word field which will be set to an error

identifying number if an error occurs in processing tl;is file.

Relative position of key in record, for direct access. For type K

random files this gives the byte location, relative to byte 0 of the record,

of the start of Jhe key field.

The number of bytes in the key field.

The length of the buffer, in sectors. This is the number of 320-byte

sectors that can be read or written at one time, based on the length of

the buffer(s) provided.

Each action or status macro contains a pointer to the File Control Block of the file on which

t is to operate.

4:2-23

:t'Ft: ~~ '
•FU.•.
(i l

cr:i1,r,;, ''·
ti f: \
HF j.

f...!.l{".

rl~ ~

~+~· ,(
H~ y .. ~ •
•H· " l·E C
1 f- " I
i:. I II~

H~
.,

rH'·'
Ai q·

A•· .. · .,.

ti~ '
>if- i.
J.\1•(,

("'!'" i

"1j.. I

!"1~· .,

;-, ~- ·'
L1 1·1r
1.•F,.

()f'. c
1.lf (

~, r . . (
~i F '
11~ '.

H~ .<

HI"'. .. \
1;~ '
'1 t "
•1t' •
1·H; A

Hf ..
!-t F)(
h~f.

•1f- x
'11' '
H~ . •
Ht:.Y

rl f:: x.
111" x
Ht:,'-.
HF x
Hf;.<

r<F ~

ti~.(

1-4f.X

t:.. '·'-'~

tiLDCr..
•,1

{!

~ 4 >.
Iii
,;1

Vi
;·1

/t
(~)
I (j) I

('l)
,'f

[.1

(4)

U>)
:·:1

\,l

(I))

!,."!

C•

'l
(/)
(('I)

(")
(1 ·')
Vl

,1

.•1

,~ ,,
~II

'/.
., .. ;
~'I

11
i.'J

:...t ,,
~,

,1

I:,

.1

~'
,1

/I

'.1

fl

vJ
('.

FJnH i:.R~O;; el(1Pf)

F ll "Ir r 1 u ~1 , 1 11 r; T c A l. 1 1111 1 T
FIO!-l 1<1JFFf::4 :..nfHIESS
F- T n H .. y T E I'. rid 'n
flfln TPr\CI" •HD l.Yl. 0 Al)IWF.SS
FJn~ 8ECTn~ AOp~tSR

FT.•H'. 1.tlM t-Xl ~:t;SIIJN
SJt1GLf'. (JR f'li1Ut1Lf. HliFFE:.RS
P~n<:ES MllFFr f.< AOPl-<ESS
PR~<:ESS HUF-FER JnTAL d~rt:s
P41lCF.:S:> ii1IFFE:.ri C1Ji.1i~~.Nl tl'fTES
P1<·nn:ss t1itH'ti-l POtNTE><
I /1l KUFFE~ ~11DRESS

11n ~UFFtµ TOTAL dYTES
I I tl 'H.!FF f.... ·" l AT I.IS
F 1 LE r•Ar~E AililKFSS
l.FVEL \ SJ~~. ~XIT

1.FVEL ;J fl•li•iJ. F.X IT
fNf'-~ ILt Jii!llCAHlR
F MP fl R I ·,i I) I r, 11 T (1 t-1
t"Rr~iJR ·~l)iJi) <1IJ1lRtSS
;..> r: L .1 T I v E p ll 8 1 TI n t·I fl F l'i r I'
i<FY LFl\i(;Trl
Ntll~kF.R rJF 8F:CTIWS IN f:<IJFFF~

.FJU:: fJKGA~JT7.ATifl:~
Fl~ ST CY I.I 'J 'it. '-I l '.·J Fl U
L 1 ST CYLIN~~M TN FILE
"illMr.~1'. R OF t\ '(TFS PER Rt:.C1.1Pf\
FJX~O n~ v~~lAHLf LENGTH
SECf0PS P~~ ~LUCi<

ST ART •JF 1•vr:RFL•J .. AMEA
H l GHF.S,. TR A CK. NtJMHEl-I

f•PFNED STATUS nF FILE
EF<Rll~ Ell'. IT
t.Nll-FILE f lCTT
WllMK A4EA AUDRESS
TYPE OF- ACfU:iS
Al)IWESS OF KEY I•~ PROG'IAM
PFLATIVE Al>iJt<tSS

TfST INOICATOR ADDRESS
CiH!f>Lf.:TI0 1~ 1-L.AC.
•JORK ARf.!\ PfllNTt::R
K(-.<:•JMD MllVF CLJIJN"f:
E~'ll-AC fJQ!J Al)ORESS
W11P.l\tM; STl•KAGE
WORKTM(; ST,OtHGE
DEL.tTIO>J F l_A(,

EXc·s~~Rn~fIN~ EXIi

· Figure 4-14. Generalized Coding of the FCBD Macro Routine.

4: Z-24

2. 21 Disc Action and Status Macros

The first parameter of every disc action macro is the label of the File Control Block that identifies

the file to be accessed. This must be the same as the first parameter of the file control block descrip­

tion macro for that file.

The action macros are Open, Close, Get, Put, Read, Write, and Delete. Open and Close apply to

all file types. Get and Put apply only to sequential files. Read, Write, and Delete apply only to random

files.

Test and Wait are status macros and do not result in any file accessing. One of the two must be

used after each of the action macros to assure that one action has been completed before the next one

is requested. The Test or Wait macro need not follow the action macro immediately but must be

issued before another action call.

2. 21. 1 Open Disc (OPEND)

The Open macro must be issued before any accessing can be done on a file. It searches for the

file in the Volume Directory (established by the Disc Allocator utility program), and places in the

File Control Block various pieces of information describing the file. It also opens the logical unit

through the IOCS monitor. The generalized coding of the routine is shown below.

?OPEND

LAX2
JMP
ADC
TEXT
ADC
END

*+6
#LDOO, L
(1)
I (2)1
(3)

Since three dummy arguments appear in the macro routine, the user call statement must transmit

three actual arguments, as follows:

Argument 1:

Argument 2:

Argument 3:

The label of-the File Control Block.

This argument designates the type of open. I :: open for input.

0 :: open for output.

The label of the error exit is specified as argument 3. This is the

location to branch to if the file cannot be opened. The exact reason

for the failure is indicated by the error word pointed to in the File

Control Block.

4: 2-25

Z. Zl. Z Close Disc (CLOSED)

The Close macro is issued when all file accessing has been completed. For output sequential files

it causes the last record to be written on the disc, followed by an end of file indicator. If there are

no other files open, it also closes the logical unit. The generalized coding of the routine is shown below.

?CLOSED

LAXZ
JMP
ADC
ADC.
END

*+6
#LDCO,L
(1)
(Z)

There are two dummy arguments in the Close Disc macro routine:

Argument 1:

Argument Z:

Z.Zl.3 Get (GETD)

The label of the file control block.

Error exit. This is the location to branch to if an error occurs such

that the Close process cannot be completed.

The Get disc macro, applicable only to sequential files, causes the next logical record to be moved

from the buffer to the specified work area. Buffer switching and disc reads are executed when necessary.

The generalized coding of the routine is shown below.

?GETD

LAXZ
JMP
ADC
ADC
ADC
ADC
END

*+6
#LDGO, L
(1)
(Z)
(3)
(4)

There are four dummy arguments in the Get disc macro routine:

Argument 1: The label of the File Control Block.

Argument Z: The address of the work area into which the next record is to be moved.

Argument 3: End of file exit specifying location to branch to if end of file is found,

Argument 4: The label of the error exit.

4: Z-26

2. 21. 4 Put (PUTD)

The Put disc macro, applicable only to sequential files, causes the logical record in the designated

work area to be moved to an output buffer. Buffer switching and disc writes are executed when

necessary. The generalized coding of the routine is shown below:

?PUTD

LAX2
JMP
ADC
ADC
ADC
END

*+6
#LDPO, L
(1)
(2)
(3)

There are three dummy arguments in the Put disc macro routine:

Argument 1: The label of the File Control Block.

Argument 2: The address of the work area from which the record is to be taken.

Argument 3: The label of the error exit.

2. 21. 5 Read (READD)

The Read disc macro, applicable only to random files, inputs one record from the disc into a

specific work area. The generalized coding of the routine is shown below:

?READD

LAX2
JMP
ADC
ADC
ADC
ADC
TEXT
ADC
END

*+6
#LDRO, L
(1)
(2)
(3)
(4)
I (5)'
(6)

There are six dummy arguments in the Read disc macro routine:

Argument 1: The label of the File Control Block.

Argument 2: The address of the work area into which the recbrd is to be moved,

Argument 3:. End-of-file exit.

Argument 4: Uncorrectable error exit.

Argument 5: Type of access. D =direct access. S; = sequential access.

4: 2-27

Argument 6:

2. 21. 6 Write (WRITED)

Address of direct access parameter list. (This argument is zero i£ there

is no list.) If there is a list, it confains two fields, as follows:

a. Address of key field. This is the address of the left end of the

field with which the key in the accessed record is to be compared.

The value is zero if there is no key.

b. Relative address. For K type files this is a relative track

address; for N type, files it is a relative record address.

The Write disc macro, applicable only to random files, outputs one record to the disc from a

specific work area. The generalized coding of the routine is shown below:

?WRITED

LAX2
JMP
ADC
ADC
ADC
ADC
END

*+6
#LDWO, L
(1)
(2)
(3)
(4)

There are four dummy arguments in the, Write disc macro routine:

Argument 1:

Argument 2:

Argument 3:

Argument 4:

2. 21. 7 Delete (DELD)

The label of the File Control Block.

The address of the work area from which the record is to be moved.

Uncorrectable error exit.

Address of direct access parameter list, which contains only the

relative address. For K type files this is interpreted as a relative

track address; for N type files it is a relative record address.

The Delete disc macro, applicable only to random files with keys, lncates a specific record in

the file and marks it deleted by changing its banner word from hexadecimal 0001 to hexadecimal 0000.

The generalized coding of the routine is shown below:

?DELD

LAX2
JMP
ADC
ADC
ADC
END

4: 2-28

*+6
#LDDO, L
(1)
(2}
(3)

There are three dummy arguments in the Delete disc macro routine:

Argument l:

Argun1ent 2:

Argument 3:

2. 21. 8 Wait (WAITD)

The label of the File Control Block.

Uncorrectable error exit.

Address of direct access parameter list. The list contains two fields,

as follows:

a, Address of key field. This is the address of the left end of the

field with which the key in the accessed record is to be compared.

b, Relative track address.

The Wait disc macro checks whether the last requested action on the indicated file has been

completed. The Wait macro is applicable to the actions Open, Close, Get, Put, Read, Write, and

Delete. The generalized coding of the Wait disc macro routine is shown below.

?WAITD

LAX2
JMP
ADC
END

*+6
#LDWAO, L
(1)

The single dummy argument is the label of the File Control Block,

2. 21. 9 Test (TESTD)

The Test disc macro provides an alternate means of checking the completion of an action macro,

without causing a program stall if the action is found to be incomplete, This status macro is applicable

. to the actions Open, Close, Get, Put, Read, Write, and Delete. The generalized coding of the Test

disc macro routine is shown below:

?TESTD

LAX2
JMP
ADC
ADC
END

*+6
#LDTO,L
(1)
(2)

There are two dummy arguments in the Test disc macro routine:

Argument 1:

Argument 2:

The label of the File Control Block.

The address of the indicator word. This word is set to 1 if the last

action was completed; it is set to 0 if the action was not completed.

4: 2-29/30

INDEX TO MACRO ROUTINES

ALIOCS macro routine

ASCII keyboard translate table
(TTASCI)

Channel interface control
(#IMCCB)

Channel interface controller
monitor service call (CICMSC)

Clock service (#IMCLK)

CLOSE

macro call

subroutine

Compute PCB address (#IMPCB)

Device sensing (DVSMSC)

Disc action and status macro routines

CLOSED

DELD

GETD

OP END

PUTD

READD

TES TD

WAITD

WRIT ED

Disc file control block
description (FCBD)

Disc logical input/output (LIOCSD)

Driver common (#IMCOM)

Error logging (#IMLOG)

EXIT

macro call

subroutine

INITialization

macro call

subroutine

Interrupt packet initialization
(#IMIP)

IOACTion (#IMACT)

IO FI OB

4: 2-22

4: 2-16

4: 1-6

4: 2-13

4: 1-21

4: 2-9

4: 1-20

4: 1-21

4: 2-12

4: 2-25

4: 2-26

4: 2-28

4: 2-26

4: 2-25

4: 2-27

4: 2-27

4: 2-29

4: 2-29

4: 2-28

4: 2-23

4: 2-22

4: 1-13

4: 1-21

4: 2-11

4: 1-19

4: 2-10

4: 1-20

4: 1-1

4: 1-20

4: 2-2

4: I-1

IOIOCQ

Level service (#!Ml.SR)

Logical IO control table
(#IMC TL)

Logical unit assignment
(#IMLAS)

Modem send device driver and
device service (#IMDMS)

Monitor service call (#IMMSC)

OPEN

macro call

subroutine

4: 2-4

4: 1-13

4: 1-3

4: 1-7

4: 1-16

4': 1 -14

4: 2-8

4: 1-20

Parity error (#IMPAR) 4: 1 - 22

Physical control block (#IMCTP) 4: 1-5

Physical input/ output table
(#IMPIT) 4: 1-7,4:1-12

READ

REWIND

System cells ($IMSCP)

Translate table macro routines

ASCII keyboard to ASCII internal
code (TTASCI)

ASCII 7 bit internal code
to Baudot

Baudot to ASCII internal code

!PARS keyboard to ASCII internal
code (TTIPAR)

2260 keyboard to ASCII internal
code (TT2260)

Watchdog Timer (WDTMSC)

WRITE

4: 2-5

4: 2-8

4: 1-1

4: 2-16

4: 2-20

4: 2-16

4: 2-16

4: 2-14

4: 2-11

4: 2-7

APPENDIX A

PTS-100 CHARACTER SET

APPENDIX A

PTS-100 CHARACTER SET

ASCII HEX

Symbol Hollerith Extended Code 1 o ASCII3 8 Bit 7 Bit

@ 0-2- 8 so 300 co 40
A l Z- 1 13Z 301 Cl 41
B lZ-Z 130 30Z CZ 4Z
c l Z- 3 134 303 C3 43
D lZ-4 1Z9 304 C4 44
E lZ-S 133 30S cs 4S
F l Z- 6 131 306 C6 46
G l Z- 7 13S 307 C7 47
H lZ- 8 144 310 C8 48
I lZ-9 136 311 C9 49
J 11- 1 68 31Z CA 4A
K 11-Z 66 313 CB 4B
L 11- 3 70 314 cc 4C
M 11-4 6S 31S CD 4D
N 11- s 69 316 CE 4E
0 11- 6 67 317 CF 4F
p 11-7 71 3ZO DO so
Q 11- 8 80 3Zl Dl Sl
R 11- 9 72 3Z3 DZ sz
s 0-Z 34 3Z3 D3 S3
T 0- 3 38 3Z4 D4 S4
u 0-4 33 3ZS DS SS
v 0- s 37 3Z6 D6 S6
w 0- 6 3S 3Z7 D7 S7
x 0-7 39 330 D8 S8
y 0- 8 48 331 D9 S9
z 0- 9 40 33Z DA SA
[l Z- S- 8 149 333 DB SB

" 0- 6- 8 Sl 334 DC SC
J 11-S-8 8S 33S DD SD

7-8 Z3 336 DE SE
Z- 8 18 337 DF SF

blank No Punch 00 Z40 AO zo
11- Z- 8 8Z Z41 Al Zl

II 0- S- 8 S3 Z4Z AZ zz
0-7- 8 SS Z43 A3 Z3
$ 11- 3- 8 86 Z44 A4 Z4
% 11-7-8 87 Z4S A5 ZS
& lZ-7-8 lSl Z46 A6 Z6

4-8 17 Z47 A7 Z7
0-4- 8 49 zso AB ZS
l Z- 4- 8 14S ZSl A9 Z9

* 11- 4- 8 81 zsz AA ZA
+ lZ 1Z8 ZS3 AB ZB

0- 3- 8 S4 ZS4 AC zc
11 64 zss AD ZD
l Z- 3- 8 lSO ZS6 AE ZE

I 0- 1 36 ZS7 AF ZF
0 0 3Z Z60 BO 30
1 1 4 Z61 Bl 31
z z z Z6Z BZ 3Z
3 3 6 Z63 B3 33
4 4 1 Z64 B4 34
s s s Z65 RS 3S
6 6 3 Z66 B6 36
7 7 7 Z67 B7 37
8 8 16 Z70 BS 38
9 9 8 Z7 l B9 39

A-1

ASCII HEX

S:l[mbol Hollerith Extended Code 1 Q ASCllB B Bit 7 Bit

5-B 21 272 BA 3A
11- 6- B B3 273 BB 3B

< 12- 6- B 147 274 BC 3C
= 3-B 22 275 BD 3D
> 6-B 19 276 BE 3E
? 12- 2- B 146 277 BF 3F

NUL l Z- 9- 1 140 200 BO 00
SOH 12- 9-2 138 201 Bl 01
STX 12- 9- 3 142 202 S2 02
ETX 12- 9-4 137 203 83 03
EOT 12- 9- 5 141 204 S4 04
ENQ 12- 9- 6 139 205 B5 05
ACK 12-9-7 . 143 206 S6 06
BEL 11- 9- 1 76 207 S7 07
BS 11- 9- 2 74 210 BS OS
HT 11- 9- 3 7B 211 89 09
.LF 11- 9-4 73 212 BA OA
VT 11-9- 5 77 213 BB· OB
FF 11- 9- 6 75 214 BC oc
CR 11- 9- 7 79 215 8D OD
so 0- 9-1 44 216 BE OE
SI 0-9-2 42 217 SF OF
DLE 0- 9-3 46 220 90 10
DCl 0-9-4 41 221 91 11
DC2 0- 9-5 45 222 92 12
DC3 0-9-6 43 223 93 13
DC4 0- 9-7 47 224 94 14
NAK 12- 0- s 176 225 95 15
SYN 12-1.~S 14S 226 96 16
ETB 11- 0- s 112 227 97 17
CAN 11-1-S B4 230 9S 18
EM 0-1- 8 52 237 99 19
SUB 12- S- 9 152 232 9A lA
ESC 11-B- 9 BS 233 9B lB
FS 0-S- 9 56 234 9C lC
GS S-9 24 235 9D lD
RS 9-1 12 236 9E lE
us 9-2 10 237 9F IF
DEL 1- 8 20 377 FF 7F

A-Z

fold

fold

USER COMMENTS

DOES THIS PUBLICATION SATISFY YOUR NEEDS? Please use this form to advise RDS

of any errors or omissions or to recommend additions or deletions. (All replies become the

property of Raytheon Data Systems Company.)

Publication Title and No.-------------------------

Date of Issue (from title page) ______________________ _

Please list comments below by page number. (Enclose additional sheets if desired.)

NO POSTAGE REQUIRED IF MAILED IN USA.
Fold in thirds and staple or tape closed.

fold

fold

USER COMMENT FORM

Does this publication satisfy your need for information?

Is it clear?

Can you suggest improvements?

RDS will appreciate your frank comments on this entire publication or any part of it. All
replies will be carefully reviewed and all suggestions considered before the next edition is
published.

Please write your comments on the reverse side of this form. Thank you.

fold inside

----- - - - -- - - - -··- ------ -

BUSINESS REPLY MAIL
ARST CLASS PERMIT NO. 25529 NORWOOD, MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RAYTHEON COMPANY
RAYTHEON DATA SYSTEMS
Marketing Department/Technical Writing Services
1415 Boston-Providence Turnpike

Norwood, Massachusetts 02062

111111 NO POSTA(
NECESSAA

IF MAILEC
INTHE

UNITED STA1

- -- - _._ ____ ..,.__, - - ·- - - ..- ---- ---.... -- - - -- .
fold outside

User's Name (optional)

Title

FORM NO. 96-0206
~AYTHEON)

Intelligent Terminals D Distributed Processing Systems
Word Processing Systems D Minicomputers D Telecommunications Systems

1415 BOSTON-PROVIDENCE TURNPIKE NORWOOD, MASSACHUSETTS 02062

