
NAVAL. ELECTRONICS LABORATORY CENTER
271 CATALINA BOULEVARD

SAN DIEGO, CALIFORNIA 92,152
714.22!S·60 11

AUTOVON 952.1011 IN REPLV REFER TO:

10462
Ser 5000-39

2 APR 1971

From: Commander, Naval Electronics Laboratory Center, San Diego,
California 92152

To: Commander, Naval Air Systems Command, Washington, D. C. 20360
(Mr. R. Entner, AIR-5333F4)

Subj: Advanced Avionics Digital Computer (AADC) Arithmetic and
Control Unit Design Study by Raytheon; comments on

Enc1: COIillIlents on the Raytheon Arithmetic 'and Control Unit Design
for AADC

1. Enclosure (1)" is forwarded for consideration.

A.E. BEUTEL

.Copy to:
Jy direction

NAVELEX, ELEX-OS44 wlencl
~AnC, Paul Brady, AEDC, wlencl

NRL, Dr. Bruce Hald, Cod e 5030, vI I encl
NRL, J. Kallander, Code 5034, wlencl
FCPCP, W. D. Blair, Code 63, wlencl

29 ~arch 1971

CO}~S ON TIm RAYTHEON ARITHMETIC AND CONTROL UNIT DESIGN FOR AADC

. /. ,,. At the AADC program review at NAnC on 18 February 1971, Mr. Ronald S.
Entner (AIR-5333F4) requested NELC to review and report on the Raytheon design
of the Arithmetic and Control Uni.t for AADC (Deerfield, Dapkey, Nissen, and
Tannenbaum, 1970). This review was to be performed in the light of available
literature, especially that on High-Order Language-Inspired computing machine
designs. Articles reviet.,red included those referenced in the bibliography.
Mr. Entner specifically requested that we answer two questions:

(l) What ar~ some additional instructions, within the general
architecture of the machine proposed in the Raytheon report, t.,rhich
would benefit compilation?

(2) What is NELC's evaluation of the impact of Raytheon's paren­
thetical control and general deferral mechanism on the compilation
process?

In respons e to the firs t question, an example of the kind' of hard\.Jare
needed to substantially improve compiler throughput would be a hardware scanner. ,
itA scanner, in programmer's nomenclature, is' a means for recognizing the character
boundaries of the next message to be fed to the compiler. This next message is
called a ~oken, and a token is an identifier, a reserved word, a special
character, a number, or a character string. The means programmers have used
to find the next message, or token, is a programmed routine to scan the
sequence of characters waiting to be compiled in order to identify and mark
these boundaries. The characters are passed on as a group-to the main part of
the compiler. Historically, this scanner routine is the slmvest part of com­
pilers. Hardware assistance in this area, again based on the'way the programming
language is constructed, could provide significant reductions to the programming
task" (McKeeman, 1967). However, if one consider's the trade-offs relative to
hardware and cost, it is our recommendation that there is much more need and
benefit in increasing the MDC input/output channel control capability to at
least the level found in present d'ay computers such as IBM System/360 than
there is in adding a hardware scanner in the arithmetic and control unit of a
processing element of ~~C.

Additional instructions within the general architecture of the Raytheon
machine could include a store mUltiple from the combined accumulator and
deferred operator stack (a total of 40 bits wide by 16 deep) and a complemen­
tary load multiple.

One requirement to be expected in some environments in which a market for
the multi-platform AADCexists is hardware design for 'security. Some recent
published work in this area includes Lampson (1969) and Skatrud (1969). For
security reasons, there needs to be a Supervisor Call instruction which trans­
fers control from program modules to Master Execu~ive Control modules by
interrupt rather than by branch. Distinction of program state from supervisor
state prevents program modules from exceeding their authority. Even for de­
bugged programs in an avionics environment, this would provide one means of

detecting some types of· hardware failures. Implementation of the distinction
requires machine s tate manipulation ins tructions ¥7hich are themselves
"privileged" to be. executed o~ly in Master Executive Control (HEC) or .
"supervisQr" mode which is aut.omatically entered on Supervisor Call Interrupt.
Further, block and even single word memory protection is useful, especially
in RAM}1,. which is shared, but· also even in Task Hemory (TM). For diagnostic
purposes, it is useful, when debugging a program to be able to request to be
interrupted to one 1 s own subroutine, specified in some way, I,vhenever a
specified word (or one of a list of words)·suffers surreptitious alteration
because of the bug. Such hardware facility, together with certain other such
interrupts tvould provide the same diagnos tics at full speed which currently are
available only at 1/20 (or so) speed in TRACE modes which always seem to get
implemented in software by those I,vho recognize the need. Software TRACE pack­
ages always suffer an inability to handle time-dependent bugs. This hardware
TRACE would not be so handicapped.

f" Interpretive execution of program modules can implement a language
incapable of-directly violating security, since the program only makes re­
quests I,vhich are granted (only. if appropriate) by the interpreter. Since
software interpreters are slow, hence expensive, hardware or firmware (Opler,
1967) implementation of the interpreter should be studied to evaluate cost
competitiveness. The same goes for the run-time libraries associated with
the usual compile and execute languages (such as the built-in functions of
PL/I).

~ Implementation of a "management by exception" philisophy should extend,
for example, to input/output and clock supervision. Polling and the attendant
processing element over-involvement can be replaced by contention programming
responding to interrupts which occur only when actions must be enqueued or may
be dequeued. To this end, input/output should be designed "based on channel
command lists which can be located in the same block as the data area, hence
separable from the program module area which need not be resident for the dura­
tion of the I/O. Furthermore, chained I/O commands and chained data reduce the
need for constant involvement by the processing element in the program module
being serviced. Execution of the channel command lists can be by the same pro­
cessing element in }lliC mode, but under program module protection key, or by any
other (say, dedicated) P.E. or preferably by hardw"are, but the effect should be
retained.

7 Raytheon· claims that, in general, their ·def erral mechanism allows programs
to be executed as written. Raytheon's general deferral mechanism is an
approach to the design of stack-oriented computing machines such as the
Burroughs BSOOO. In the case of the BSOOO, "while it I,vould be quite feasi-
ble to construct a machine to directly interpret ALGOL expressions having
suitably restricted identifiers, it ¥las decided, in view of the simplicity of
the transformation, to use the Polish form" (Barton, 1961). Andersen's machine
concept, on the other hand, would have provided for the direct executicl of
ALGOL. "Without the A and a stacks (for identifiers and operators respectively),
some. kind of pre-execution translation ¥lould be necessary" (Anderson, 1961).

2

to

II

In, c,?ntrast \vith the direct execution of ALGOL, as proposed by Anderson, or
the direct execution of Polish postfixed strings, as in the BSOOO, the
Raytheon ,machine provides direct execution of full word ;instructions with
explicit ~lparenthetical" s tack control. The compi'le;r mus t generate this

. parenthesis control by an algorithm which (1) only 'may be as trivial as the
translation from classical algebra to Polish Postfix, and (2) is not yet so
classica~ and well understood. While the BSOOO stack could be up to 1024
words~ the Raytheon stack is only 16 deep. Even if Raytheon's' claim of
--execution -of programs as written were valid, this \vould imply no, or only
lo,cal.optimization. Iver:son (1964) has sugges ted methods by which compilers
should also perform global optimization on programs written in a suitable
language. This in itself suggests a goal for CMS-3.

Even if such global optimization were not implemented, translation to
Polish string would not be a significant portion of the compiler.

The process of compilation for interpretive systems has been one of
transllting a program ~odel from a human oriented description to a control
string., exec.uted interpretively by a run-time emulation of someone' s idea of
an "ideal machine." ~~ith' AADC, the capability to micro-program the "ideal
machine" assumed for a language would exploit this approach to compilation
with a recognition and representation of the program model and generation of
the control strings for the interpretive machine associated with the source
language; be it problem-oriented, such as POSE, STRESS, and MIDAS, or procedure­
orient,ed ",such as FORTRAN (Bashkow, Sasson and Kronfeld, 1967; Helbourne and
Pugmire, 1965), PL/l (Sugimoto, 1969; Wortman, 1970), ALGOL (Randall and
Russell, 1964), EULER (Weber" 1967) and APL (Abrams, 1970, Bingham,1970).
Economical use of a microprogram control store will include microprogrammed
implementation of those functions most frequently performed in completing
Some collection of tasks. Not only generic functions which call no other
functions, but also higher level, but heavily used functions should be so
implemented. Therefore, the microprogram control should include some kind of
closed subroutine capabil~ty allowing a particular control sequence to e~ist
only once in the control store, but be invoked in execution of more than one
ins truc tion.

: To exploit truly human-oriented and problem-oriented programming, it would
even be desirable to be able to cornmand in some way "make yourself an AEW
machineH at one moment and "make yourself a missile rE:.lease ~achine" at another.
The appe11ative "stored logic computers" has been applied to a class of such
computers. Of cours-e the service of changing machine archi tee ture would be a
privileged one performable only in supervisor mode.

McKeeman (1967) commented on the impact of the multiplicity of arithmetic
formats requiring different registers or in the Raytheon case, different modes
of operation. The stack-oriented machine providing explicit program control of
arithmetic format required three times as much code for this part of the com­
piler as did the machine with the clean, simple and consistent format accessi-
ble only through its almost pure stack structure. . '. '

• {), ~ ~ ~~t UJ V((e. ntCle (~ (tJ((i~' ler
. t{~lo~h.~ (\t~ tll{{ .wo.",. (.Df. J.tA. ~'i
~l~ ,",,~~ ~""/ .l.ptlf f-"\. \)\ "'(fL-

, ... r '."., ., V \) \\lltJt~ ~1IP

J?- We affirm that different "types" of data must be supported: not only
real (floating point and at least the effect of integer arithmetic), complex,
vector and matrix, but also queue (both First In-First Out and Last In­
First Out), list, tree, string, graph, ring, and plex data structures. The
.concept of plex programming is a generalization of the more common "list
processing" (whose many forms are particular sub-cases) in which the atomic
units of problem modeling are elements .with any number of component proper­
ties. A principle advantage of plex programming is that the inclusion of
a free storage or available space system enables elements to be created
dynamically as needed from a pool of unused storage, so that it is not -
necessary to allocate fixed amounts of storage for various purposes before­
hand. Ross (1967). describes over fifty procedures supporting free storage
handling which could be regarded as candidates for implementation either-in
hardware or firmware.

,~ We recommend the implementation of "Typed Data"; that is, data whose type
identification is stored along with it and controls operation by the process~r
on it. Apparently, one would_sometimes need to command format conversions
(exp.licitly or implicitly) to control the format of a result to be stored.
But references could be totally controlled by the stored type. The distinction
between· executable instructions and data would be a natural outgrowth.
Identification (by a bit) of the "type byte" could provide hardware pro­
tection against attempting to execute data since any instruction would have
to begin. with an instruction type-byte. "Typed Data" is a logical fulfill":'
ment- at the hardware level of a long needed unity only recently appearing
even in software as "Uniform Referents" (Ross, 1971). .

_ l~ The virtual memory scheme proposed by NRL may impact the addressing scheme
to such an extent that variable length instructions are required~ Further­
more, hard\vare or firmware implementation of a large instruction repertoire
representing heavily used functions of a run-time library or of an interpre­
ter could run to more than 255 operations leading to a variable length
operator.

It! To use the deferral mechanism to load the address of 'A' \vi th a def erred
operation to store result from next accumulator in the stack into 'A'
seems a waste easily avoided at compile time. There is another consideration
brought about by the suggestion by the Raytheon designers that, in general,
expressions can be evaluated in the order in which they are I.vritten (from
left to right) in the High Order Language. If this means lias a general, i.e.,
universal rule with diverse particular interpretations" it is false./ If it
means "most of the time, but there are exceptions" the burden is on the com­
piler and on the run-time environment to handle the exceptions. Actually,
one must not ignore the possibility that an "accumulator stack full" condition
may arise (Carlson, 1963). When it does s it must be treated (preferably as
an interrupt) by using core storage as an extension of the stack. For example,
the present stack can be dumped to storage; flag set, and a new start from
the top of the empty stack made. When an attempt is made to retrieve from an
empty stack (another kind of interrupt), the flag indicates a required

4

restoration from core to the stack. It is possible that an external func­
tion invoked within an expression will, temporarily in the course of its.
execution,lengthen the stack by an amount not visible during compilation of
the module containing the expression but ~ot the function. This is because
the function may be a pre-compiled one invoked from a library or may not be
compiled until some later time. (hours or days). This is to be expected
especially in the building of larg~ systems which ne~essarily are modular
in concept, design 'and implementation. For this reasont,it will probably
remain necessary to evaluate in the following order: first, arguments of
functions; second, those functions; and finally the expression containing
those functions. All this should be done with a standardized and general
(universal) subroutine call and return interface, hopefully strongly
supported by machi~e design.

Husson (1970) ·discusses some advantages and disadvantages of micropro­
gramming. Even the Raytheon report mentions "programmable" instructions,
"ta be defined as required." One important advantage is that the order code
need not be. finalized until late in the design cycle. Hore importantly,
one can make a processor a slave machine to perform a given task in the most
efficient way. In addition, during a period of transition from prior com­
puter such as the Al~/UYK-7, the prior computer can be emulated. This is a
capability that is of particular concern to the Marine Corps. With a
selectable or changeable instruction repertoire, one can select the system
archi·tecture best suited to the immediate task to be performed. For these
reasons, not merely instruction execution statistics, as in the SCI report
(SCI, 1970) but rather generic function or "primitive" execution statistics
must be gathered and studied. Since "the past is prologue" run-time statis­
tics-gathering facilities will be useful in continued tailoring of the machine
design to support best those services most required from the system. The
single most important benefit derived from the above approach would be the
advantage of an extended useful life throughout the time frame 1975-1985
intended for AADC.

Among the conclusions of the Raytheon report, one heartily endorsed is that
recommending a complete analysis of extended CMS-2 and the full range of its
applications, and incorporation of primitives of the language as instructions of
the machine.

5

BIBLIOGRAPHY

~., Ahrams, Phillip S., "An' APL Machine", Stanford Electronics Laboratories
Report SN-SEL-70-017 , February, 1970.

2., Anderson, James P .. , "A Computer for Direct Execution of Algorithmic
Languages", Proceedings of the Eastern Joint Computer Conference,
pp. _184-l93~ 1961.

3. -Barton, Robert S. -' "Program Structures and the Organization of Computers",
Eresented at the University of Hichigan Engineering Summer Conference
on Advanced Automatic Programming, 1963.

4. Bashkow, Theodore R., Sasson, Azra, and Kronfeld, Arnold, '''System Design
_of a Fortran Machine", IEEE Transac tions en Elec tronic Computers,
Vol.- EG-16 , No.4, pp. 485-499, Augus t, 1967.

5., Bingham, H •. W., "The BD: ,MACHINE, An APL Model for Micro-Instruction
Execution in Interpreter Based Systems", Burroughs Corporation Report
TR-70-3,. December, 1970. (Propriortary)

6. Car1son, -c. B., "'The Mechanization of a Push-Down Stack", AFIPS Conference
Proceedings~ Vol. 24, pp. 243-250, Fall joint Computer Conference, 1963.

7. Deerfield" A., Dajpkey, B., Nissen, S., and Tannenbaum, B., "AADC (Advanced
Avionics Digital Computer) Arithmetic and Control Functional Block
Diagram Design Analytical Study", Raytheon Report No. BR-6154,
Decemb er, 1970 •

8. Flynn, M. M."and MacLaren, H. D., "Microprogramming Revisited", Pro­
ceedings of the ACM 22nd National Conference, p 457, 1967.

9. Husson, Samir, S"" Microprogramming, "Principles and Practices", Prentice­
Ual1~ 1970.

10. Iverson, Kenneth E., "Formalism in Programming Languages", Communications
,of the ACM" Vol. 7, No.3, pp. 80-88, February, 1964.

11. Lampson, B. t--J., UDynamic Protection Structures", AFIP~ Conference Pro­
,ceedings, Vol. 35, pp. 27-38, Fall Joint Computer Conference, 1969.

12. McKeeman, W. N .. " "Language Directed Computer Design", AFIPS Conference Pro­
ceedings, Vol. 31, pp. 413-417, Fall Joint Computer Computer Con­
ference, 1967.

13. Me1bourne,. A. J.;) and Pugmire, J. M., "A Small Computer for the Direct
Processing of Fortran Statements", The Computer Journal, Vol. 8,
pp. 24-28, April, 1965.

14-•. Op1er, Asher, "'Fourth-Generation Softtvare", Datamation, January, 1967.

BIBLIOGRAPHY (Cont'd)

15. Randall, B., and Russell, L. J., ALGOL 60 Implementation, Academic Press,
. 1964-.

16. Rosin, Robert F., "Contemporary Concepts of l1icroprogranuning and Emulation",
Computer Surveys, Vol. 1, No.4., pp. 197-212, December, 1969.

17. Ross, D: T., "AED Free Storage Package", Communications ~ the ACM, Vol. 10,
No.8, pp. 48l-492,.August, 1967.

18. Ross, D. T., "Uniform Referents: An Essential Property of a Software
Engineering ~anguage", Software Engineering, Academic Press, pp. 91-101,
19n

19. SCI, "Report on the Determination and Specification of the Preliminary In­
struction Repertoire for the Advanced Avionics Digital Computer",

. Systems Consultants, Inc., February 27,1970.

20. Skatrud, R. 0., "A Consideration of the Application of Cryptographic Tech­
niques to Data Processing", AFIPS Conference Proceedings, Vol. 35,
pp. 111-117, Fall Joint Computer Conference, 1969

21. Sugimoto, M., "PL/l Reducer and Direct Processor", Proceedings Ei the 24th
Na~ional Conference ~ the Association for Computing Machiner~T, 1969.

22. Weber, H., itA Microprogrammed Implementation of EULER on IEH System/360,
Model 30:, Communications of the ACM, Vol. 10, No.9, pp. 549-558,
September 1967. - -- --

23. Wilkes, N. V., "The Growth of Interest in Microprogramming - A Literature
Survey", Computing Surveys, Vol. 1, No.3, pp. 139-145, September, 1969.

