
crvlS-2 INFORlYIA TION REPORT 

PREPARED BY 

Systems Technology Department 

computer Sciences Corporation 
3065 Rosecrans Place Suite 201 
San Diego, California 92110 

Sept. 29, 1969 



CMS-2 Information Report 

Introduction 

_ - CMS-2 Summary 
1. What is Cl\fS-2? 
2. What is the TVIS-2 Operating System? 
3. What is the Cl\fS-2 Compiler? 
4. What is the structure of the Cl\fS-2 Compiler? 
5. \Vhat is the Librarian? 
6. What is the Loader? 
7. \Vhat is the Cl\1S-2 laI\:,ouage? 
8. Why use Cl\'1S-2? 
9. Why not use FORTRAN? 

10. Why not use JOVIAL? 
11. Can C1\1S-2 be used for data reduction? 
12. Can Cl\fS-2 be used for report generation? 
13. Can Cl\1S-2 be used for data management? 
14. Are all the bells and whistles in the language necessary? 
15. Where was CMS-2 developed? 

.16. What machine does Cl\1S-2 operate on? 
17. Is Cl\1S-:2 compatible with CS-l? 
18. Ho\v does CJ'vIS-2 handle the compatibility problem? 

t 19. What good is the present system for other machines? 
20. \Vhat is provided for the L3 04 ? 
21. \Vhat is provided for the AN /UYK -7 ? 
22. What other machines are being considered? 
23. Can the Cl\1S-2 system be put on other machines? 
24. How can the Cl'vlS-2 system be put on another machine? 
25. What is the best approach for CJ'v'IS-2 on a new machine? 
26. \Vby write the CMS-2 systelTI in the Cl\1S-2 language? 

Table.J._.Comparis()n of CMS-:-Zwitll FORTRAN &_JOVJh.L 

i 



INTRODUCTION 

This document has been prepared for the Naval Air Systems Command. The 
purpose of this document is to provide general information on the Navy's CIVIS-2 
language and compiling system developments. The information is provided in 
question and answer forn1at to answer typical questions of users and potential 
users. Detailed inforlnation is available from the Navy in the form of a user 
manual (M-5012). 



CMS-2 Summary 

1. What is CMS-2? 

CMS-2 is an acronym derived from Compiler Monitor System-2. It is also the 
name assigned to a high level language defined for the Fleet Computer 
Programming Center, Pacific (FCPCP) by CSC. 

The Compiler l\1onitor System-2 is a production system which was developed 
to replace the Compiling System-l (CS-l) at FCPCP. The Compiler Monitor 
System-2 consists of an operating system (MS-2) , a CMS-2 Compiler, a 
Librarian, and a Loader. 

The CMS-2 language is an extension of CS-l capabilities and includes some of 
the features of FORTRAN, JOVIAL, and PL-l. The CIVIS-2 language is 
specifically designed for Command and Control problems. However, the 
additional language features have made it an acceptable language for almost 
any application. 

2. What is the MS-2 Operating System? 

The operating s"ystem is called MS-2 for Monitor System-2. It is a batch 
processing system which can schedule jobs, alter job flow, and provide all 
programmer services expected of current operating systems. MS-2 provides 
the external communication for all programs running under its directiono 

This communication includes a scheduler and control card processor, an 
input/ output system, operator communication package, and a debug package 
providing dump, patch, and snap capabilities. In addition, MS-2 maintains a 
library of system programs which it can call when they are requestedo The 
most important of these programs are the CMS-2 compiler, the librarian, 
and the loader 0 Some of the other programs available are the tape utility 
routine, systen1 maintenance routine, and various obj ect time routines Q 

3. What is the CMS-2 Compiler? 

The CMS-2 Compiler is a multi-phased program which operates within the 
environment provided by the lVIS-2 Operating System. The input to the 
current CMS-2 Compiler consists of the C1\1S-2 language and the CS-l 
language. The compiler converts the language statements into executable 
machine code for a particular machine. The CMS-2 Compiler is maintained 
on the MS-2 system tape and is initiated whenever the 1\'IS-2 Operating System 
encounters a control card requesting the compiler. 

. 2 



4. What is the structure of the CMS-2 Compiler? 

The CMS-2 Compiler is constructed in two phases; a syntax analysis phase and 
a code generation phase. The first phase is machine independent. However, 

"the code generation phase is tailored for a specific machine. This structv 
makes it relatively easy to produce code generators for various machines," 
Presently code generation phases are available for the CP642B and the CP(:;"l 9. 
Code generators for the 1218/1219 and the AN/UYK-7 are currently under 
development. 

5. What is the Librarian? 

The file manager referred to as the Librarian, is designed for creating, 
updating and retrieving program segments. It is designed for usage with very 
large tactical systems where modules consist of many procedures and there 
are numerous versions of a large nun1ber of modules. The Librarian allows 
construction and alteration of a new system combining elements from many 
units. It is directory oriented and allows modification down to a source 
statement level. 

An additional feature of the File Manager is a CS-1 translator. This 
translater accepts existing CS-1 code and translates all polycodes into 
monocodes or CS-l statements which are acceptable to the C~yfS-2 Compiler. 

6. What is the Loader? 

The loader is a program which accepts C P642B obj ect code produced by the 
CMS-2 Compiler and loads this code into a CP642B so that it may be executed. 
The loader can load either absolute or relocatable obj ect code. When loading 
relocatable object code, the loader performs the necessary allocation and 
linking required to combine separately compiled programs into an integrated 
system. 

7. What is the C MS-2 language? 

The CMS-2 language is a high level language which resembles the CS-1 
language in structure. However, numerous extensions have been made. The 
resultant language has most of the features of CS-1 and some of the features 
of JOVIAL, FORTRAN, and PL-1. The outstanding features provided beyond 
the CS-1 language are: (1) an expanded class of data types and structures; 
(2) bit and character string handling; (3) algebraic analysis of expressions; 
(4) structures and simplified input/output; (5) an intrinsic group of functions; 
(6) communication pool processing; and (7) source language debug statelnents. 

" 3 



8. Why use CMS-2? 

CMS-2 is a tactical data system language which extends the capability of 
CS-1. CS-1 has been very successfully used to implement the Navy Tactical 
Data Systems (NTDS) at FCPCP. Most software oriented people today 
recognize that in a given length of time, more software can be produced 
using a high level language than an assembly language. The self-documenting 
nature of a high level language also makes malntenance of large systems much 
easier than assembly level systems. 

Most of the critics of a high level language argue that the machine code 
generated is too inefficient to be usable in tactical data systems. This 
argument has been nullified. CS-l has been used to produce NTDS and other 
Navy systems. CMS-2 is as efficient as CS-l and is designed for use in a 
TDS environment. CMS-2 like CS-l has the ability to intersperse machine 
code, properly bracketed, with the high level statements. Using this 
capability, those areas of code which are critical can be written in machine 
code. 

In a production center, a single computer (currently a CP642B) with the CMS-2 
system can generate object code for several machines. Using this capability, 
the center can progran1 its utility and comlnon routines entirely in CMS-2 ~nd 
use them on any target machine for which the ClVIS-2 Compiler can generate 
code. The extended capabilites of CJ\lIS-2 make it useful in solving other 
problems of the data center, such as data reduction, business applications, etc. 

9. Why not use FORTRAN? 

FORTRAN is a scientific language oriented toward large arithmetic 
calculations. As a result the class of data is lin1ited to integers and 
floating point numbers. The primary data structure is arrays which 
facilitate Inatrix references. Real time systems generally require a fixed data 
type (which facilitates faster calculations) and a data structure which 
facilitates faster references. lVlost real time systems are not only cOlnpute 
bound but are storage bound. FORTRAN does not permit optimum packing of 
data. In addition most FORTRAN Compilers do not tend to optimize code in a 
fashion required by real time systems. 

10. Why not use JOVIAL? 

JOVIAL is a command and control language. It was used as one of the 
standards in developing the CIvIS-2 language. JOVIAL, like CS-l, has existed 
for a number of years and as defined (J3) does not reflect all of the 
capabilities required for advanced tactical data systems. As a consequence, 
the following capabilities were added to upgrade to the requirements~ 

4 



• . Inter-system name linking was made a part of the language 
rather than following arbitrarily established conventions. 
This is required for large programs to be easily constructed 
from small packages. 

• The more sophisticated method of CS-I for pooling data was 
retained, thus giving the programm.er greater control. 

• CMS-2 provides an array of items rather than just an array 
of data elements. 

• CMS-2 permits the indirect referrencing of data structures, 
thus permitting a reference to any place in core and 
eliminating multitudinous data definitions. 

• Relocatable compiles with established linkage is a part of 
the system, but the capability to absolutely define data 
locations was retained to give the programmer more control. 

• Table lengths can be established at load time, thus permitting 
program sizes to be altered when capabilities must be 
modified.. This permits true dynamic modular replacen:lent. 

o Complex equivalencing of elements may be used thus saving 
core. 

• A complete input/output capability was defined rather 
than relying on conventions, thus expanding compatability 
of center support programs. 

• PI/I type bit or character string packing/unpacking 
capabilities were added. 

e The user may specify intermediate scaling in arithmetic 
operations, thus reducing code. 

• Source level debug statements are a part of the language 
which makes debugging more straight forward. 

The design of the compiler permits ready adaptation for generation of code for 
any machine. 

5 



11. Can CMS-2 be used for data reduction? 

Data reduction requires extensive data declarations, input/output capability, 
bit and character handling, and arithmetic processing. ClVIS-2 has all of the 
necessary features. It provides the following data types: ARRAYS, TABLES, 
SUBTABLES, VARIABLES, FIELDS, PRESET DATA, etc. It has input/output 
capability that contains programmer controlled error analysis. The BIT and 
CHAR modifier permit access to any string of bits or characters. CMS-2 
provides the normal set of arithmetic operations plus exponentiation and 
programmer specified scaling. It allows fixed point, floating point, boolean, 
and integer data definitions and these data elements can be intermixed in one 
expression. 

12. Can CMS-2 be used for report generation? 

Report generation requires input/output formatting, character code 
conversions, data moving, and fast input/output processingo CMS-2 provides 
file oriented input/output statements. Associated with each input/output 
statement is a format statement which controls the packing or unpacking of 
each output or input record. CMS-2 allows data moving capabilities which 
range from table to table, item to item, field to field, variable to variable, 
etc. Also, various c0111binations of moves can be performed, such as 
subtable to table, item to field, etc. The input/output statements link to the 
central I/O processor in the MS-2 operating system. Since this central I/O 
processor controls all I/O, it can schedule all I/O channels and devices and 
optimize their usage. 

13. Can CMS-2 be used for data management? 

Data management systems require extensive data definition, data extraction, 
and data moving capabilities. A pointer scheme is a requirement. CMS-2 
provides a wide range of data definitions and provides extensive overlapping 
capabilities. 

This magnifies the data extraction and updating capabilities since fields can be 
defined over fields, tables over several tables or fields, etc. This overlapping 
of definitions permits one statement to set or extract several data elements, 
but still retain the single data definition for those cases where that is the only 
affected element. Pointer schemes are facilitated by the functional modifiers 
CORAD, DISCAD, and DRUMAD. This permits elements to be threaded on 
all classes of storage devices. 

14. Are all the bells and whistles in the language necessary? 

CMS-2 does not contain bells and whistles in the usual sense. Each item and 
capability in the language was analyzed as to general usefulness o Only those 
which had applications for tactical data systems or supporting software were 

6 



implemented. By including numerous features, CMS-2 is a highly useful 
language for operational tactical systems but also provides for debugging, 
reduction of operational data and preparation of related reports. 

15. Where was CMS-2 developed? 

The CMS-2 system and the CMS-2 language were developed for the Fleet 
Computer Programming Center in San Diego." The initial phase of this effort 
was a study to determine how the Navy could bring its software up to the 
It state of the art" and still not absolete its existing systems. The results of 
the study were the decisions to extend the CS-l capability; build a new compiler 
which would accept both CS-l and CMS-2 statements and generate relocatable 
object code. It recommended building a new operating system, library system, 
and loader; and provide a translator to convert the existing CS-l libraries into 
CMS-2 libraries. The translator also converts CS-l polycodes into CMS-2. 
acceptable statements. 

16. \Vhat machine does CMS-2 operate on? 

The CMS-2 system is currently operating ona CP642B at FCPCP. Along 
with the CP642B there are 10 CDC 607 tape drives, 2 RD 243 tape drives, a 
teletype, and an 8090 off-line I/o systen1. 

The minilnuln configurations on which the current CMS-2 system will operate 
is 8 magnetic tape drives, 1 CP642B, and 1 teletype .2.E. 6 magnetic tapes, 
1 'card reader, 1 line printer, 1 CP642B, and a teletype. There is normally 
some cost involved when the CMS-2 system is put on another C P642B system 
since the peripheral equipment may not be identical. 

17. Is CMS-2 compatible with CS-l? 

CMS-2 is an overset in capability to CS-l. However, current CS-l source 
decks should be run through the library translator. The translator corrects 
numerous CS-1 formatting errors and processes character inconsistencies. 
The major items in CS-l· which are not compatible with CMS-2 are the 
polycodes, the allocation statements, and the library retrieval staten1ents. 
These are'as are flagged either by the translator or the compiler. However, 
CS-l has been used for over 10 years and programmers have found numerous 
ways to take advantage of different versions of the compiler. Some of the 
usages bend or oppose the documented rules for using the CS-l system. 
Since CMS-2 handles most CS-l statements in the manner that they are 
documented, some conflicts occur and are flagged. 

Any major CS-l system should expect a conversion effort when compiling 
under the CMS-2 system. However, this is no more extensive than would be 
expected when going from one FORTRAN IV to another. 

7 



18. How does CM8-2 handle the compatibility problem? 

The CM8-2 system handles the compatibility problem in two ways. First it 
provides a translator which accepts current C8-1 library tapes and source 
statements and produces from this input a CM8-2 library. The translator 
inspects each staten1ent. If the statement is acceptable to the CM8-2 Compiler 
it is left alone; otherwise, it is either converted to an acceptable C8-1 
statement or flagged as one which must be converted by hand. 

Second, the C1\1:8-2 Compiler will accept either CS-1 or CM8-2 source 
statements and will also accept unbracketed machine code for the CP642B o 

To convert an existing C8-1 program to CM8-2, the program is first run 
through the translator. The required hand corrections are then made using 
the CMS-2 library editing features, and the resultant program is input to the 
CM8-2 Compiler. 

19. \Vhat good is the present systelTI for other machines? 

The current CMS-2 system will only execute on the CP642B. However, the 
CM8-2 language is machine independent and the CMS-2 Compiler is constructed 
such that only the code generation phase needs to be modified to produce code 
for another machine. Currently, there is a code generation phase for both the 
CP642B and the CP879. This 111eans Lh.at a C11:S-2 program can be c0111piled 
and executed on either a CP642B or a CP879, depending on which code 
generator phase .is specified. 8ince the C]\,18-2 system does not operate on the 
CP879, the code generated for that machine is in a forn1at cOlTIpatible with the 
existing software of the CP879. 

In addition to the CP642B and CP879, there are code generators being 
developed for the 1218/1219, 1830, and the AN/UYK-7. When these are 
completed, the current system will be able to generate object code for any of 
these n1achines. 

20. VVl1at is provided for the L304? 

Currently there is only a code generation phase for the L304 (CP879).. This 
code gener ator produces obj ect code in the format accepted by an existing 
loader produced by Litton.. The ClV1S-2 object tilne routines are now being 
modified to interface with the current L-304 operating system. When these 
are completed, the code generated for the L-304 will have the full CMS-2 
capability. 

21. What is provided for the AN/UYK~7? 

Currently there is nothing provided for the AN/UYK-7. However, CSC is 
developing an AN/UYK-7 code generator.. This generator is scheduled to be 

8 



completed in November 1969. 

22. What other machines are being considered? 

Code generators are currently being implemented for the 1218/1219, 1830, and 
the AN/UYK-7. Code generators have been considered for the 1230, 
AN/UYK-8 and the IBTvI 4PI. 

23. Can the CMS-2 systelTI be put on other Inachines? 

Yes, the CMS-2 system can be put on any machine, but it would require a 
significant amount of reprogramming. The current CTvlS-2 software is 
written in CS-1, which is a lTIachine dependent language. To place CMS-2 on 
another machine all of the Q20 machine dependent code would have to be 
replaced. All or part of the CS-1 high level statements would have to be 
replaced, depending upon the implementation approach taken. However, it 
should be noted that most of the current CI\1:S-2 design is applicable to any 
system. In addition, a good amount of the current code can be translated and 
reprogramming from scratch is not necessary. 

24. How can the CI\1:S-2 system be put on another machine? 

To put CIVIS-2 on another n1achin8, a compiler or assembler DJHst be 
selected that will generate object code for the new nlachine. Once a selection 
has been made,. the current CMS-2 software should be converted to the input 
format of the selected con1piler or assembler. Once it is converted, the new 

. CMS-2 system would then be compiled (or assernbled) and debugged. 

25. What is the best appr02.ch for CMS-2 on a new machine? 

Since 85% of the current software is written on CS-1 and the current CJVlS-2 
Compiler accepts m.ost CS-1 statements, the simplest approach is to produce 
a CMS-2 code generator for the target machine and recompile the current 
system with the CMS-2 COlTIpiler. Once a code generator is produced for the 
target machine, the current CMS-2 software would be run through a translator. 
The translator would flag all statements \vhich were not acceptable by the 
con1piler. These statements, along with the Q20 H}achine code (about 10%) 
would be replaced by reprogra.l ling and the resultant system would be 
compiled and debugged using the target machine code generator. 

26. Why have the Cl\1S-2 system in the CMS-2 language? 

If the CIVIS-2 system were written in the CMS-2 language, the system could be 
implemented on any machine which had a C1\1S-2 code generator with a 
minimum of effort. This would be possible since the system could be 
compiled without change using any CMS-2 code generator. The debugging 
activity would be Simplified since there would be a minimum of changes. 

9 



The only changes required would be to the MS-2 Operating System to handle 
different peripherals and the particular interrupt structure of the target 
machine. 

Furthermore, if the CMS-2 system were written in CJ'vrS-2, the compilers on 
different 111achines would process the Cl\1S-2 language in an identical manner. 
This would assure cOlnpatibility between progr:an1s compiled on any machine. 

10 



Table 1. Comparison of ClvlS-2 with FORTRAN & JOVIAL 
~ 

~ 

Feature Cl\1:S-2 JOVIAL FORTRAN 

Inpu t/ Ou tpu t 

Can describe input/output devices Yes Yes No 

Allows Extensive formatting of data Yes No Yes 

Allows tape control functions Yes Yes Yes 

Range of automatic output conversions Yes Yes Yes 

Stream and record processing Yes Yes No 

Miscellaneous 

Arithmetic expressions in subscripts Yes Yes Yes 

Addition of subroutines, procedures Yes Yes Yes 

Linkage translnission of name or value data Yes Yes No 

Mixed arithmetic expressions Yes Yes Yes 

Manipulation of bits of data Yes Yes No 

Manipulation of characters of data Yes Yes No 

Initialization of data Yes Yes Yes 

Packing of part-word data values Yes Yes No 

Specified or automatic sealing Yes .No No 

Capability to do limited array manipulations 
with single reference Yes No No 

Built in collection of subroutines for common 
mathematical function Limited Yes Yes 

Provide intermixing of machine code Yes Limited No 

Provision for jump tables Yes Yes No 

Allows user index register assignment Yes No No 

Full character set Yes Yes Yes 

-. 

I 

(Continued) 

11 



bi Ta e 1. Comparison of CI\1S-2 with FORTRAN & JOVIAL (Continued) 
> , 

Feature CMS-2 JOVIAL FORTRAN 

Data Types 

Integer, floating point, literals, 
Boolean Yes· Yes Yes 

Status variables Yes Yes No 

Complex numbers No No Yes 

Double precision floating point No No Yes 

Complete part word data elements Yes Yes Yes 

Multi-word data elements Yes Yes No 

Character strings Yes Yes No 

Internal Process Operators 

Basic logical operators Yes Yes Yes 

Relational operators Yes Yes Yes 

Standard mathematical inter pr eta tion Yes Yes Yes 

Automatic .table searching Yes No No 

Boolean algebra . Yes Yes Yes 

Looping Operations 

Allows looping within preset range Yes Yes No 

Allows nested loops Yes Yes Yes 

Allows incrementing by present value Yes Yes Yes 

Allows alternate transfer points Yes Yes Yes 

Decis ion J\1:aking 

IF statements Yes Yes Yes 

Compound IF statements Yes Yes No 

Alternative statements No Yes No 
(Continued) 

12 



Table 1. Comparison of Cl\lS-2 with FORTRAN & JOVIAL (C0ntinued) 

Feature CMS-2 JOVIAL FORTRAN 

Data Structures 

Control source of implied data description Yes Yes No 
-

Arrays with simple elements Yes Yes Yes 

Arrays with con1pound elements Yes No No 

Variable length tables Yes Limited No 

. Variable size arrays at run time No No Yes 

Horiz ontal or vertical tables Yes Yes No 

Provides for local and global structures Yes Yes No 

Allocation . 
Dynamic storage allocation on 
procedure entrance No No No 

Data element equivalizing Yes Yes Yes 

Express relative origin of data values Yes Yes Yes 

Can define structures over structures 
dynamically Yes No No 

Define absolute allocation Yes ' Yes No 

Allows declaratives defined where inserted Yes Yes Yes 

System Features 

Source language debug capability Yes No No 

Selective listings Yes No No 

Obj ect library provision Yes Yes Yes 

Flexible library handling in language Yes No No 

END 

. 13 



Table lJ-1. COMPARISON OF CMS-2 WITH FORTRAN, JOVIAL, 
APL & PL-l ' 1 

I I 
\ 

Feature ' CMS-2 JOVIAL. FORTRAN APL PL-I 

Input/Output 
; 

I, 
Can describe input/output devices? Yes Yes No No No' 

Allows Extensive formatting of data? Yb 
. 

No Yes No Yes 
Allows tape control functions? Yes iYes No No Yes 

Range of automatic output conversions? Yes Yes ' 'Yes No Yes 

Stream' an~d record processing? Yes Yes No ' No Yes 

Miscella neous 

Arithmetic expr~ssi")ns in subscripts? I Yes Yes Yes Yes Yes 

Addition of subroutines, proce~ures? Yes !Yes Yes Yes Yes 

Linkage transmission of name or value data? Yes Yes No No Yes 

Mixed arithmetic expressions? Yes Yes Yes Yes Yes 
\ 

Manipulation of bi~s of data? Yt!s Yes No No Yes 

Manipulation of characters of data? Yes Yes No Yes Yes, 

Initialization of data? 
I 

Yes 'Yes Yes Yes Yes 

Packing of par~-word data values? Yes Yes No No Yes 

Specified or automatic sealing? 
\ 

Yes No No ? Yes 

Capability to do limited-array manipulations 
with single reference? ' " ' 

I Yes No No Yes No 

Built in collection of subroutines f()r Limited Yes Yes No Yes 
common mathematical function? 

Provide intermixing of machine code ? Yes Limited No No Na 
Provision for jump tables? Yes ' Yes 'No No N0 3 

Allows user-index register assignment? yies No No' No No4 

Full-character set? Yes ' Yes Yes Yes Yes 

Data Types 

Integer, floating point, literals, Boolean? 
I 

Yes3 Yes Yes . Yes Yes 
Status variables? Yf-s Yes No No No 
Complex numbers? No No Yes No Yes 
Double-precision floating point? No No Yes ? Yes 
Complete part-word data elements? Y~s Yes Yes ? Yes 

, . 
Multiword data clements? 

I Yes, Yes No Yes Yes , 
Character strings? Yes Yes No No Yes 

Internal Pr?cess Operators 

Basic logical operators? Yes Yes Yes Ye's Yes 

Relational operators? Yes Yes Yes Yes Yes 

Standard mathematical interpretation? Yes Yes Yes Yes Yes 

Automatic table searching? Yes No No Yes No -Boolean algcbr,a? Yes Yes . Yes Yes Yes 



'{(lvlc' H~-I. (continued) 

Feature CMS-2 : JOVIAL FORTRAN APL PL-I 

Loopillg Operations 
i 

Allows loofJillg within preset range? Yes Yes No No ,Yes 

Allows nested loops? Yes Yes Yes Yes Yes 

Allows incrementing by present values? Yes Yes Yes Yes Yes 

Allows alternate transfer points? Yes ; Yes Yes Yes Yes 

Decision Making " f 

IF Statcme'nts? Yes Yes Yes No Yes 

Compound IF statements? Yes Yes No No Yes 

Alternative statements? No I Yes No No Yes 

Data Structure I 

Control source of implied data description? Yes i Yes No No N0 6 

Arrays with simple clements? Yes Yes Yes Yes Yes 

Arrays with compound elements? Yes No No No Yes 

Variable-length tables? Yes Limited No Yes Yes 
Vari~ble-size arrays at; run time? No No Yes Yes Yes 
Horizontal or vertical tables? Yes Yes No No Yes3 

Provides for local and global structures? Yes Yes No Yes Yes 

Allocation 

Dynamic-storage allocation on procedure No No No No Yes 
entrance? 

Data-clement equivalizing? Yes Yes Yes Yes Yes 
Express relative origin of data values? Yes Yes Yes Yes Yes 
Can define structures over structures Yes No No NQ Yes 

dynamically? 

Define absolute allocatiol).? . Yes Yes No No No7 
I 

Allows declaratives defined where 
Yes inserted? Yes Yes Yes ,Yes 

System Features 

Source language debug capability? Yes No No No YesT 

Selective listings? Yes No No No Yes 
" 

Object library provision? Yes Yes Yes Yes Yes 

Flesible' library handling in language ? Yes No No ? 'Yes 

Notes: 

1 Provided by operating system. \ 

1 Allowed by. the PLfl language, but not, yet implemented. 

3 Easily constructible in the language. 

4 Not pertinent to a high-level language. I 

S Feature undefined. 
, 

6 "Include" facility has some of this ·feature. 

7 Available in some implementations. 



10 October 1969 

Table 1. Comparison of CMS-2 with FORTRAN, JOVIAL, APL & PL-I 

Feature I CMB-2 ~OVIAL'FORTRAN APL PL-I 

Input/Output 

Can describe input/output devices 

Allows Extensive formatting of data I 

Allows tape control functions 

Range of automatic output converslons 

Stream and record processing 
-" 

Miscellaneous 

Yes 

Yes 

Yes 

Yes 

Arithmetic expressions in subscripts Yes .' 

Addition of subroutines, procedures Yes 

Linkage transmission of name or value data Yes 

Mixed arithmetic expressions Yes 

Manipulation of bits of data Yes 

Manipulation ,of characters of data Yes 

Initialization of data Yes 

Packing of part-word data values Yes 

Specified or automatic sealing ,Yes 

Capability to'do limited array manipulations 
with single reference Yes 

Yes' No 

No Yes 

Yes- Yes 

Yes' Yes 

", Yes No 

Yes Yes 

Yes Yes 

Yes No 

Yes Yes 

Yes No 

Yes No 

Yes Yes 

Yes No 

No No 

No No 

Built in collection of subroutines for 
common mathematical function Limited Yes Yes 

Provide intermixing of machine code Yes Limited No 

Provision for jump tables Yes Yes No 

Allows user index register assignment Yes No No 

Full Character set Yes Yes Yes 

No No 

No Yes 

No Yes 

No, Yes 

No 'Yes 

Yes Yes 

Yes Yes 

No Yes 

Yes Yes 

No Yes 

Yes Yes" 

Yes Yes 

No Yes 

? ? 

Yes' No 

No Yes' 

No No 

No No 

No No 

Yes Yes 

(9on~~nued) 



Table 1. ~omparison of CMS:-2 with FORTRAN t JOVIAL, APL, & PL-I (Continued) 

Feature CMS-~ JOVIAL FORTRAN APL· PL-I 

Data Types 

Integer, floating point, literals, 
Boolean Yes Yes Yes· Yes Yes 

Status variables Yes Yes No No No 

Complex numpers No No Yes No No 

Double precision floating point No No Yes ? ? 

Complete part word data elements Yes Yes Yes ? ? 

Multi-word data elements Yes Ye's No Yes Yes 

Character strings Yes Yes No' No Yes 

Internal Process Operators 

Basic logical operators " Yes Yes Yes Yes Yes 

Relational operators Yes Yes Yes Yes Yes 

Standard mathematical interpretation Yes Yes Yes Yes 'Yes 

Automatic table searching Yes No No Yes No 

Boolean algebra Yes Yes Yes Yes Yes 

Looping Operations 

Allows looping within preset range Yes Yes No No Yes 

Allows nested loops Yes Yes Ye~ Yes Yes 

Allows increm.enting by present values Yes Yes' Yes' Yes Yes 

Allows alternate transfer points Yes Yes Yes Yes Yes 

Decision Making 

IF statements Yes Yes Y'es No Yes 

Compound IF statements \ Yes Yes No No Yes 

Alternative statements olio Yes No· No yes· 

(Continued) 



Table 1. Comparison of CMS-~ with FORTRAN, JOVIAL, APL, & PL-I (Continued) 

Feature· CMS-2 JbVIAL FORTRAN APL PL-I 

Data Structures 

Control source .of implied data description Yes Yes No No No 

Arrays with simple elements Yes Yes Yes Yes Yes 

Arrays with compound elements Yes No No No Yes 

Variable length tables Yes Limited No Yes No 

Variable size arrays at run time No No Yes No 

Horizontal or vertical tables Yes Yes No No No 
\ 

Provides for local and global structures Yes . Yes No Yes Yes 

Allocation 

Dynamic storage allocation on 
procedure entrance No No No No No 

Data element equivalizing, Yes Yes Yes Yes Yes 

Express relative origin of 'data values Yes Yes Yes Ye8 Yes 

Can define structures over structures 
dynamically Yes No No No Yes 

Define absolute allocation Yes Yes No No No 

Allows declaratives defined where insertea. Yes Yes Yes Yes Yes 

System Features 

Source language debug capability Yes No No No No 

Selective listings Yes No No No' No 

Object library provision Yes Yes Yes Yes Ye8 . 

Flexible library handling in language Yes No No ? ? 

END· 


