
HD28
.M414
NO.Sn·
15~

A SURVEY OF

NAVY TACTIC~~ COMPUTER APPLICATIONS

AND EXECUTIVES

Report of a Study by:

Dorian ..PunJ"'!
/.: Prof. Stuart/E. Madnick

John D. DeTreville

C15K",REPORT -19

October, 1975

Center for I nformation Systems Research
Massachusetts Institute of Technology
Alfred p, Sloan School of Management

50 Memorial Drive
Cambridge, Massachusetts, 02139

617253-1000

Contract No. Noa039-7S-C-0312

FOS No. 010-D

Deliverable No. AOl

Frci iiti .. .:.s Orientation Report

Volume I

A SURVEY OF

NAVY TACTIC]\..L COMPU'!'ER l~PPLICATIONS

AND EXECUTIVES

Report of a Study by:

Dorian -Punj
/i: , Prof. Stuart;E. Madn1ck

John D. DeTreville

CISR.·i.REPORT -19

October, 1975

Principle Investigators:

Professor John J. Donovan
Professor Stuart E. Madnick

Prepared for:

Naval Electronics Laboratory Center.
271 Catalina Boulevard
San Diego, California 92152

-Spons~red by:

Naval Air.Systems Command
Washington, D.C. 20360

Naval Electronics Systems Command
Washington, D.C. 20360

..

UNCLASSIFIED
------------------------------------SECURITY CLASSIFICATION O~ T.H~ PAGE '''l'I..,. D ••• Ent.,.d)

REPORT DOCUMENTATION PAGE READ INSTRl'CTIONS
BEFORt:: CO\If'LETING .-ORM

2.. GOVT ACCESSION NO.3. RECIPIENT'S CATALOG NUMBER

FOS OlO-D
6. TITLE (and Sub"".)

Facilities Orientation Report, Volume I
A SURVEY OF NAVAL TACTICAL COMPUTER
APPLICATIONS AND EXECUTIVES

S. TYPE OF REPORT 6 PERIOO COVERED

6. PERFORMING. . REPORT NUMBER

Fe.:; 010-0.
7. AUTHOR(.) --------------~~.--c·-O~~CT~O~R~G~R~A~N~T~N-UM~O~E~~~~~--~

:t-1r. Dorian Punj N00039- 75-C-0312 Professor Stuart E. t1adnick
Mr .Tnhn n np'T'rpv; 11 p

~9-.-P~E~R~F-O-R·Mul~NuG·0~R~G~A~N-IZ~A~T~10~N~N-A~M~~~A~N~D~A~D-O-R-E-S-S-----------------+~10~.~P-RO-G~R~A-M~E-L-E-M-E-N-~-P-R-O-J~E~C-T.-T~A-S~K---I

M. I. T., Sloan School of !!anagement AREA 6 WORK UNIT NUMBERS

E40-365
Cambridge, r1A 02139

'I. CONTROLLINGOFF-I-C-E-N-A-M-E-A-N-O--AO-O-R-E-S-S--------------------~-'Z-.-R-E-P-O-R-T--D-A-T-E----------------~

Naval Air Systems Command
Washington, D.C. 20360

14. MONITORING AGENCY NAME 6 AODRESS(lI dlUerent IroDi Con'roUln, Olllce)

Naval Electronics Laboratory Center
271 Catalina Boulevard
San Diego, CA 92152

'S. DISTRIBUTION STATEMENT (olthh Repo,t)

OCT 1975
13. NUMBER OF PAGES

320
15. SECURITY CL.ASS. (01 ,hi. '.polf)

UNCLASSIFIED

1Sa. DECLASSIFICATlON/OOYlNGRADIMG
SCHEDULE N/A

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (01 'he ab.'rac' en'er.d In Block 20, II dlll.,en. Irora Report)

,~ SUPPLEMENTAR' NOTES

1t. KEY WORDS (ConUnu. on ,.ve, •• • Id. II n.e ••• .,.,. and 'den"'y by blocle numb.r)

computer executives, computer operating systems,
tactical computer systems, tactical computer applications

ZOo ABSTRACT (Cont.nu. on re".,. • • Ide 1/ n.e", and Id.ntlty by block ncnnb.,)

This document is the final report of a study of current
Navy operating system milieu. It includes information about
Naval tactical computer applications, and in particular, in­
formation on the major executives used in these applications.
Analysis and evaluations of the various operating systems are
presented together with implications that these systems have
on the design of a family ~~_2Eerating systems for future
-;:~-

DD ;~~YY- !:~~~J.cal syp_t~~~_~._ ~~.----------------------------------~
UNCLASSIFIED

I£CURITY CLASSIFICATION OF THIS PAG£ (1I'IaM D,...

,

NAVAL ELECTRONICS LABORATORY CENTER
271 CA T.\ UNA BOULEVARD

S".N U~E~O. CALIFORNIA 92152
'7 "·225-601'

AUTOVON !all-lell

'l'O the reader --

IN REPL Y RE FER TO:

A word of explanation •••• When faced with the requirement ~~
design a tactical operating system for a proposed adv~~ced
architecture machine, the Navy had two basic alternatives for
selecting designers. He could either select a group of people well­
qualified in potential application areas and give them a bac\Jround in
operating system theory, or we could select a group of pevple well­
qualified in operating system theory and orient tilem to potential
application areas. The latter choice was Made, and the MIT Sloan
School was selected, with technical leadership_provided by Dr. Stuart
Hadnick and Dr. John Donovan.

This report presents the information that MIT found as a result
of their investigation into current Navy tactical operating systems
milieu. Due to the constraints of time and money, it was· impossible
to include all tactical systems of interest7 it can only be hoped that
at least one representative system (i.e., one illustrating the
requirements and constraints) was examined in the most demanding
tactical operational areas.

In the preparation of this report, the choice was made fOT
comprehensiveness over polish: that is, the effort that might have
been spent on polishing the document, improving' the: English, or
verifying details of oral folklore was instead used to extend the
co~erage or to quantify better the lessons learned. Thus, it is
almost certain that errors of commission and omission have occured.
~e sole responsibility for this lies with the Contract MOnitor.

We hope that some other agency at a later time will want to
extend this work. As an aid to future work, we strongly encourage you
to send us any comments you may have. The comments need not b~ formal

send them handwritten, or' send a copy of our pages with marginal
nota~ions, or whatever is convenient. Information and recommendations

-about systems that place unusual requirements or constraint~ Vil An
operating system are particularly welcome.

A note to other a~encies.... If you ever use this report for
background material, 'request that a set of co~~ents be prepared and
send us a copy.

A note to contractors.... If you are ever requested to use this
'J: report for background material,· insist on preparing a set of comments

and send us a copy.

Oo~ents and other related correspondence should be sent via
U.S.I-!ail to:

Naval Electronics Laboratory Center
211 catalina Blvd
San Diego, CA 92152

Attn: Code 5200, FOS Contract Monitor.

Mail Bay also be sent via the ARPAnet to NOELQISID.

0737v92

Credit where credit is due •••• This work is sponsored by the
Naval Air Systems Con~and (ADPO-34, 11r. Bernard Zempolich, Project
Manager) in connection TN.:.th the development of an advanced
architecture tactical computer which is to be available in the fl~~~
in the 1980·s. It ~as their courageous decision to consider ~e
software implications in parallel with the developnent of the
hardware. Close co-operation has been received fro~ the Naval
Electronics Systems Cor:unand (EL1:X-330, Hr. Robert Kahane ..1nd l-ir.

·John }~chado) which is responsible for Navy software research.
Technical responsibility for the work has been at the Naval
Electronics Laboratory Center(Code 5200, Hr. Russell Eyres, Division
Head, and lir. Warren Loper, Technical .Manager) •

J. Gregory Noel
FOS Contract Monitor
NELC Code 5200

FOREWORD

This study is the first step in the design process of a

family of operating systems for future Navy tactical systems.

It was begun in August, 1974 as deliverable #AOI to NELC, San

Diego, under Contract No. N00039-75-PR3K137.

Contributions to this report 'were also made by the following

people at the Center for Information Systems Research at M.I.T.'s

Sloan School of Management: Leonard.Goodman, Brad Albom, Yuval

Gilbert, Adam Schneider, Dan DuBoff, Shing Chiu, and Mike Wilens.

We wish to express. our appreciation for the help provided

by many people associated with the AADC program in supplying

documents and information about operati.ng systems in use by the

Navy, and for cooperating with us on our "trip visits" to various

Navy installations.

11

PREFACE

'l'he Center for Information Systems Research (CISR) is a

research center that is located and managed in M.I.T.'s Sloan

SCl,jol of Management, and consists of a group of Management In­

formation Systems specialists, including faculty members, full-

time research staff, and part-time students. The Centers' general
research thrust is to devise better means for designing, generating,

and maintaining applications software, information systems and

decision support systems.
Within the context of the FOS effort, CISR proposes

to develop and test a set of techniques for designing, generating I

and maintaining a modular family of tactical operating systems

to last for twenty years or more.

phases:

Phase l:

Phase 2:

Phose 3: ---

The project has been divided into the following three

A Facilities Orientation, including a field and
literature study of existing military software
facili ties, de"velopment techniq:les, and
operational environment.

Detailed design of system concepts and techniques,
including the implementation and testing of a
prototype system.

A Computer I'rogram Design Specific3.tic!1 t.\7hit.::h is
adequate for the open competitive pr·ocurement of
the entire family of operating systems.

~e project is estimated to be completed by mid-1976.
~ form a basis for our design work, we have analyzed

the current Navy operating system milieu in detail in this report.

We have gathered information about Naval tactical computer appli­

cations, and in particular, information on major executives used

in these applications. FOS personnel have visited Naval

installations and facilities (see Appendix A) to discuss. current

1ii

as well as future computer applications with i;avy computer per­

sonnel, for which we have prepared a number of trip reports. We

have studied and analyzed a large number of documents concerned

with Navy tactical executives. Moreover, we have attended a

number of Navy-sponsoren meetings concern~d with the effect of

related AAOC efforts to the desigr,~ ~t a family of operating

systems (e.g., the design of the CS-4 programming language).

This document is the ref;Qrt of this study. It presents

the information we have gathered and is intended to portray the

current Navy operating system milieu in a meaningful way. Our
analysis and evaluations of these opera-ting systems is also pre­

sented together with any implications we feel that these systems

have on the design of a family of operating systems for future
Navy tactical systems.

The FOS group has made every attempt to ensure the accuracy

of the information contained in this report. However, this

report was prepared primar.°_ly as an orientation to Navy tacti-

cal systems for the team at M.I.T. designing a family of operating

systems (F.O.S.). This report is by no means completely compre-

hensive and accurate. ~he contractors are primarily inter-

ested in Navy operating systems, and hence the descriptions

generally discuss the operating system environ~ent in greater

depth than other seemingly relevant topics.

Most of the information in this report has been gathered

from verbal cOlrumunciations, group discussions, and a limited

number of technical reports. In fact, there are a number of

systems (e.g., SMACK/7) that we have heard of, but have not

had the opportunity to study. Hence, the F.O.S. group at M.I.T.

regrets any inadvertent inaccuracies or misinterpretations con­

tained in the reports.

Iv

GUIDE TO THE REPORT

This report is divided intv four ~arts. Part I should

be read by anyone interested in gaining an overall picture of
current Naval tactical app]j~ations, computer systems, peripheral

equipment and operating syscems. Part II will be of interest to

those concerned with a summary and analysis of particular Navy
executives. Part III discusses specific features of impor­

tance in Navy executives, and analyzes these executives in the
light of these features. Part IV presents our conclusions.

Part I consists of Chapter I and discusses the general char­

acteristics of Navy tactical applications. It presents a frame­

work within which to analyze tactical computer systems and demon­

strates the applicability of this framework in analyzing one
example, specifically, a ~T"lVY fire control system.

Part II of the report consists of Chapters 2 - 6 and dis­

cusses each of the major operating systems in detail. These
Chapters discuss the operational environment that the e_;~cutives

are used in, their general characteristics, as well as more

detailed information such as the devices they interface with and

other special features. Specifically, Chapter 2.discusses
major executives commonly used in the Navy, Chapter 3

discusses eXEcutives used in shipboard applications, and Chapter
4·discusses executives used in airborne applications. Chapter 5

summarizes the Navy's communications system, and Chapter 6 pre­
sents current and proposed applications by the Marine Corps.

Part III of the report consists of Chapters 7 - 1". and

presents a feature by feature analysis of the principal compon­
ents of tactical executives. Schedulers, memory management

schemes, message ~andling features and interrupt management are

examples of these features that are g~ouped together for com­
parison and analysis.

Part IV of the report consis.~s of Chapter 14 which sum­
marizes our findings and presents recommendations for future
operating systems.

v

TABLE OF CONTENTS

FOREWORD ••••••••••••••••••••••••••••.•••••••••••••••••• i i

PREFACE ... iii

GUIDE TO THE REPORT •••....•••..••..........••......... V

PART I -- GENERAL CHARACTERISTICS OF NAVY TACTICAL
APPLICATIONS

1. OVERVIEW OF NAVY TACTICAL COMPUTER SYSTEMS 1.1

1.0 Need for a Framework 1.1

1.1 Differences Between Tactical and Non-Tac-
tical Applications••........•.... 1.1

1.2 Framework of Functional Characteristics 1.2

1.2.1 Computation Functions ... ~ •......••••.• 1.3

1.2.1.1 Data Gathering ...•..........• 1.3

1.2.1.2 Data Reduction............... 1.4

1.2.1.3 Data Analysis ___................ 1.5

1.2.2 Human Interaction•• 1. 7

1.2.3 Multi-Computer Coordination•. 1.9

1.3 Example System 1.9

1.3.1 Computation Functions•..••••• 1.11

1. 3.2 Human Interaction .•.•..•••••..•.••••. 1.11

1.3.3 Int~r-Computer CO~.!nt"!!1ic03tion .•••••••• 1.1'

1.3.4 TARTAR Executive ... 0.................. 1.12

1.4 SUJtUnary... • • . • • • • • • • • • • • • .. • . • . • • • . . • . • • • 1.12

PART II -- MAJOR EXECUTIVES USED IN THE NAVY

2. THE STANDARD EXECUTIVES USED BY THE NAVY 2.1

2.1 ATEP •• 2.2

2.1.1 Overview of Operational Environment •• 2.2

vi

2.2

2.1.2 System Description .•.•..•.•••••.•••••••••••• 2.4

2.1.3 The Hardware Environment .••••••••••••••••••• 2.4

2.1.4

2.1.5

2.1.6

2.1.7

2.1.3.1 Peripheral Equip~ent •••••••••••••• 2.5

The operating System (executive) •••••••••••• 2.6

ATEP Performance Requirements ••••.•••••••••• 2.7

ATEP Functions .•••••••••••.••••••••••••. 2 . t;

ATEP Design Overview •.•••••••••••••••••••••• 2.9

2.1.7.1 Loading Processor .••••••••••••••••• 2.9

2.1.7.2 Interrupt Processor ••••..•.•••••••• 2.9

2.1.7.3 Scheduling Processor ..•••.•••.••••• 2.1t

2.1.7.4 Dispatching Processor •.••••.••••••• 2.10
",,!-

2~1.7.5 Common Peripheral Processor ...••••• 2.10

2.1. 7 . 6 Timing... .. 2.10

2.1.7.7 Core Utilization .•••••••••••••••••• 2.11

2.1.7.8 Peripheral Services •.•..••.••.•.•.• 2.11

2.1.8 Future De"ve1opment •••••••.•••••••••••••••••• 2.·11

2.1.9 Analysis of.ATEP •••.••••••••.••••••••••••••• 2.12

SDEX-7 2.14

2.2.1 Initialization 2.1~

2.2.2 Scheduler ••••••.•••••••••••••••••••••••••••• 2.15

2.2.2.1

2.2.2.2

2.2.2.3

2.2.2.4

2.2.2.5

Successor Scheduling ••••••••••••••• 2.16

Message Scheduling••.•••.•••••• 2.1€

Time-Dependent Scheduling •••••.•••• 2.16

Background Scheduling .•••••••••••••• 2.~6

Additional Notes on Scheduling ••••• 2.~i

2.2.3 Interrupt Management •••••••••••••••••••••••• 2.~i

2.2.4 I/O Management •••••.••••••••••••••••••••••••• 2. IE

2.2.5 Error Management •••••••••••••••••••••••••••• 2.1&

2.2.6 Other Features •••••••••••••••••••••••••••••• 2.lt

2.2.7 Analysis of SDEX/7 2.19

vii

3.

2.3 SDEX/20 •.••.•.•••.••••••••••••..••••••..•.•.•.•.•• 2.20

2.4

2.3.1

2.3.2

2.3.3

2.3.4

2.3.5

2.3.6

2.3.7

Initialization ••.•.•..••••.••.•..•••.•••.•. 2.20

SDEX/20 Scheduler ••....•.......•...•••.••.• 2.21

2.3.2.J Successor Scheduling ..••....•.••.. 2.21

2.3.2.2 Message Scheduling •....•..•••••..• 2."

2.3.2.3 Time-Dependent Scheduling ..•.•... 2. Z2

2.3.2.4 Background Scheduling••••.•. 2.22

2.3.2.5 Scheduling Policies•.••. <. 2. 22

Interrupt Management•••••••••••••• 2.22

Input/Output Management .•..•••••.••••••••• 2 •. 23

Error Management •...•....••...•••..••••.•• 2 •. 23

Other SDEX/20 Features ...•••.•••.••.••.•.• 2.:23

Analysis of SDEX/20 ...•..••..•.•••.••••••. 2.24

COMMON Program (CP) 2.26

2.4.1 Overview of Environment ••••••••••••••••••• 2.26

2.4.2 The Executive 2.26

2.4. 3 Analysis of CP .•••.••.••••••••••••••••.••• 2.27

EXECUTIVES FOR AIRBORNE APPLICATIONS ..•••.••..••••••.• 3.1

3.1 Introduction..................................... 3J1
3.2 The P3-C Update Executive Program •••••••••••••••• ;'.1

3. 2 .1 Har!!~.,are•.•.•.........••..••••.•••..•• .1 3. 2

3.2. 2 Devices ••••••••••••••••••••••••••••••• • ;1. 3. 2

3.2.3 The Executive Program •••.•••••.•••••••• /'. •• 3.3

3.2.3.1 Memory 3.3

3.2.3.2 Scheduling ••••••••••••••••••••••• 3.3

3.2.4 Other Features •••••••••••••••••••••••••••• 3.6

3.3 The PROTEUS System •••••••••••••••••••••••••••••.•• 3. 7

3.3.1. Hardware •••••••••••••••••••••••••••••••••• 3.7

viii

4.

3.3.2

3.3.3

The Proteus Executive ••••• fI ••••••••••

3.3.2.1

3.3.2.2

3.3.2.3

3.3.2.4

3.3.2.5

3.3.2.6

3.3.2.7

3.3.2.8

Memory Management •...•.•••

Scheduler (Task Management)

Initialization

Input/Output

Interrupt Processing

Error Management

Performance Monitoring ••.•••.••••

Data Management ••••••••••••••••••

PR.OTEUS CP/IO Rxecnti"~ ~na!!'si s

3.7

3.8

3.8

3.8

3.9

3.9
3.10

3.10

3.10

3.11

3.4 The E2C Airborne Early Narning System· • • • • • • • • • • .. 3 ~2

3.5

3.6

3.4.1
3.4.2

Subsystems

The L-304

..................................
.................................

The F-14 Fighter Aircraft
3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

3.5.6

The AWG-9 Computer

Languages

Data••.••

The CSDC ••••..••.••

The Air Data Computer •••.••••••••••••••••••

Other Subsystems ••..••••••••••••••••••.••••
Summary •••

EXECUTIVES FOR SHIPBOARD APPLICATIONS

4.1

4.2

4.3

Introduction

ATEP /MAX ••

4.2.1
4.2.2

4.2.3

The Executive ••••••••••••••••••••••••••••••

ATEP /MAX Functions •••••••••••••••••••••••••

ATEP/MAX Design Overview •••••••••••••••••••

.. ATEP/MMS

4.3.1 Overview of Operating Environment

4.3.~ Design Overview ••••••• ~ ••••••••••••••••••••

ix

3.14

3.14-

3.15

3.16

3.17'

3.17

3.17

3.18

3.18
3.19

4.1

4.1
4.1

4.2

4~2

4.3

4.4
4 •. 5

s.

4.4

4.3.3 The ATEP/MMS Kernel .••..•.••••••.......•... 4.b

4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

BQS-13

4.3.3.1 Capabilities of the ATEP/MMS Kernel 4.6

4.3.3.~ Structure of the ATEP/~~S Kernel .. 4.7

AEGIS Dependent Executive Program Portions
cf the ATEP /~•...•.•......•...

Basic Operation of a Computer Program using
A'rEP /MMS •••••••••••••••••••••••••••••••••••
Example Computer Loads

4.3.6.1 Components of a Unit Processor Load

4.3.6.2 Components of a Multiprocessing
Load ••••••• 0 ••••••••••••••••••••••

4.3.6.3 Components of a Shared Memory Load.

4.3.6.4 Components of a Combined Multipro-
cessing Shared r-lemory Load

Peripheral

Interfaces

Equipment

4.9

4.10

4.11

4.11

4.12

4.13

4.14

4.14

4.14 .

4.15

4.4.1 Interrupt Handling •...••••••••••••••••••••• 4 :15

4.4.2 Initialization •.....•...•••.••..•••.•..•••• 4.16

4.4.3 Task Sbheduling•••••••....•.....• 4.16

4.4.4 Input/Output Control ..•... :•....••... 4.16

4.5 The TARTAR System •••••.•• ~ . • • • • • . • • • • • • • . • • • • . • • •• 4.17

4.5.1

4.5.2

Overview

Hardware

................................... 4.17

4.17

4.5.3 Executive ••••••••••••••••••••••••.••••.•... 4.11

4.6 S\lIDIllIt\ary •••••••••••••••••••••••••••• _ ••••••••••••• 4.19

COMMUNICATIONS SYSTEMS USED IN THE NAVY 5.1

5.1 Introduction •••••••••••••••••••••••••••••••••••••• 5.1

5 • 2 NTDS. •• 5 • 2

5.2.1 The LHA System ••••••••••••••••••••••••••••• 5.3

x

6.

5.3

5.4

5.5

CUDIXS

5.3.1
5.3.2

NAVMACS

5.4.1

5.4.2

...
Executive and Other Software

NAVCOl-1PARS/CUDIXS. Interface

.
NAVMACS System A+ ~
5.4.1.1 NAV:iACS System A+ Control Diagram .
NAVMACS System B
5.4.2.1

COS/UYK-20

NAVMACS B Control Diagram

5.5.1

5.5.2

5.5.3

Introduction

Devices

Resource Management

5.5.3.1 Interrupt P~ocesting

5.5.3.2 lApmory Management

5.5.3.3 Scheduling

5.5.3.4 File Management

........
......
......

........

5.C

5.J I

5.13

5.15

5.15

5.15

5.18

5.18

5.20

5.20

5.21

5.22

5 __ 22

5.22
5.22

5.23

COMPUTER SYSTEMS FOR THE MARINE CORPS 6.1

6.1

6.2

6.3

6.4

MTACCS

MTACCS Test Bed
6.1

6.2

6.2.1

MIFASS

6.3.1

6.3.2

TESE

6.4.1

6.4.2
6.4.3

MTACCS Environment 6:2

.. 6.3

MIFASS Requirements ••••••••••••••••••••••• 6.4

MIFASS Advantages ••••••••••••••••••••••••• b.4

• •..• • • • • • • • • • • • • •• 6.4

TESE Environment

TESE Executive
ATEX Control Diagram ••••••••••••••••••••••

6.5

6.5

6.5

6.5

6.6

6.1

TWAES •••••• ."...................................... 6. 7

6.5.1

6.5.2

6.5.3

6.5.4

6.5.5

Pre-Exercise Mode

TWAES Exercise Mode

Post-E~'ercise Mode

TWAES Operating System

TWAES I Hardware Configuration

6.7

6.7

6.7

.. ~. 6.7

6.8

Other Marine System: ••••••••••••••••••••••••••••• 6.9

6.6.1

6.6.2

6.6.3

6.6.4

6.6.5

Tactical Combat Operations

MACCS-8S

MIPS

MILOGS

PLRS

System Requirements

6.9

6.9

6.9

6.9

6.9

6.9

6.1.1 IFDS 6.10
•

PART III -- FEATURE-BY-FEATURE ANALYSIS OF THE PRINCIPAL COMPONENTS
OF TACTICAL EXECUTIVES

7. INTERRUPT HANDLING

7.1

7.2
..................................... Introduction

Comparison
7.2.1

7.2.2

7.2.3

7.2.4

7.2.S

7.2.6

7.2.7

UYK-7 Interrupt Processing

7.2.1.1 Class I Interrupts

7.2.1.2 Class II Interrupts

7.2.1.3 Class III Interrupts

7 .. 2.1.4 Class IV Interrupts

7.2.1.5 Interrupt Scheduling

.................................. ATEP

ATEP/MAX
ATEP/MMS
SDEX/7 Standard Executive
AN/BQS-13
P-3C Update

7.1

7.1

7.2

7.2

7.2

7.3

7.3

7.3

7.3

7.4

7.4

7~5

7.6

7.7
7.7

7.2.8 COS/UYK-20•...•..•....•..•.•.•.......

7.2.9 SDEX/20

7.2.10 Proteus General Purpose Executive

7.9

7.10

7.11

7.3 Discussion .. ~ • • . • • • • . . • . . • . • • • . . . • . . . • .. 7. 12

8. SCHEDULERS. • . • • • • • • • • • • • • • • • . . • • . • • • • • • • . . . •• 8. 1

8.1 Introduction 8.1

8.1.1 8.1

8.1.2 Module Entry Scheduling•...•.•.•.... 8.2

8.1.3

8.1.4

Task Scheduling

Task Dispatching

8.3

8.3

8.2 Analysis .. 8.4

8.3 System-by-System Comparison ••..••.•.•••••.••.•••.. 8.6

8 • 3. 1 ATEP..... .. 8. 6

8.3.2

8.3.1.1

8.3.1.2

8.3.1.3

8.3.1.4

Introduction ••.•.••••....•..••.•.. 8.6

Prior i ty •.••...••...••.•...•••••.. 8. 6

Successor Scheduling .•...••....•.• 8.6

Message Scheduling•........ 8.6

8.3.1.5 Periodic Scheduling•••••.•

8.3.1.6 I/O Interrupt Scheduling ...•••..•.

ATEP/MAX and ATEP/~~S •.••••••••.•.••.••••••

8.3.2.1 I-iultip:c0cessing ••..•...••••.••....

8.3.2.2 Priority•••••••••••••••••••.•

8.3.2.3

8.3.2.4

8.3.2.5

Successor Scheduling •••.••••••••••

Message Scheduling .•.••.••••••••••

Error Scheduling ••.•••••••••••••••

8.7

8.7

8.7

8.7

8.7

8.7

8.8

8.8

8.3.3 P3-C UPDATE •••.•••••••••••••••••••••••••.•• 8.8

8.3. 3.1 Priority ••••••••••••••.•••••••.••• 8. 8

8.3.~.2 Multiply Scheduled Module Entries. 8.9

xiii

8.4

8.3.4 UYK-7 Standard Executive (SDEX/7) 8.9

8.3.4.1

8.3.4.2

8.3.4.3

Successor Scheduling•.•.•• 8.9

Message Scheduling•.....•... 8.9

Task Scheduling ..•..•••••...•..•• 8.9

8.3.5 COS/UY~-20 •••...•....••........•••.•••••.. 8.]~

8.3.5.1 Task Queues•.•.....••.••. 8.10

8.3.5.2 Task Suspension•...•••••••. 8.10

8.3.6 AN/BQS-13 ••..•....•.•••••.•••.••.••••••••• 8.10

8.3.7

8.3.8

8.3.6.1 Dispatching Algorithm ...•...••••. 8.10

PROTEUS 8.11

8.3.7.1 Request Scheduling•...•••.. 8.11

8.3.7.2 Event Scheduling•••.••••••• 8.11

8.3.7.3 Message Sch~duling •....•.••..•••• 8.11

8.3.7.4 Time-Critical Scheduling •..•••••. 8.11

B.3.7.s Background Scheduling ...•.••.•••• 8.12

SDEX/20 8.12

8.3.8.1 Successor Scheduling••.•••• 8.12

8.3.8.2 Message Scheduling •...•.....••••• 8.13

8.3.8.3 Ti~e-Dependent Scheduling••.• 8.13

Discussion

-9 • MEMORY MANAGEMENT •••••••• ' ••• _. _ ••••••••• , • • • • • • • .• .• • • • • •• 9 • 1

'9.-1

'9.2

9.3

'9.4

Introduction ••••••••••••••••••••••••••• ~~ ••••••••

Memory Management Feature·s .•••••••••••••••.•••••••

General Description

System Descriptions

......................... _

...............................
9.4.1
9.4.2
9.4.3

-9. ~S. 4

~ATEP

ATEP/MAX

ATEP/MMS

••••••••••••••••••• til til •••••••••••••

••••••• -I

P-3C ••••••.•••••••.•••••••••.•••••••••••••

-xiv

9.1

9.2

9.3

9.3

9.3

9.4

9.5
9.6

10.

9.5

9.4.5

9.4.6

9.4.7

9.4.8

UY~-7 St~n~~r~ Exc~~tiv2 (SDFX/7) 9.7

COS/UYK-20•••......•......... 9.7

AN/BQS-13 •••••••••••.••••••••••••••••••••• 9. 8

PROTEUS 9.8

Discussion 9. J

I/O PROCESSING AND DEVICES ~~NAGEMENT 10.1

10.1 Introduction ••.••...•••...•.••••••.•.••.•••..•••. 10.1

10.2 system Descriptions ••••.•...••••••••••••••••••••• 10.1

10.2.1 ATEP I/O Processing ..•••...•.••••••••••.. 10.1

10.2.1.1 I/O Initiation •••....••••...•••• 10.1

10.2.1.2 Control Function •..••.•.•.•••••• 10.2

10.2.1.3 I/O Controller .-••.•....•••.••••• 10.2

10.2.1.4 Data Buffer Control ..••••....••• 10.3~

10.2.1.5 Peripheral Device -Support•.. 10.3

10.2.1.6 System-Supplied Device HandleL~ • 10.3

10.2.1.7 Specialized Applications I/O

10.2.2

10.2.3

Devices•••••.•.•••.. 10.4

10.2.1.8 Error Recovery Processing ..••.•. 10.4

ATEP/MAX

ATEP/Ml-iS

10.4

10.4

10.2.4- AN/BQS-13 •.•••••••.•••••••••••••••••••••• 10.5

10.2.4.1 I/O Control Function ...••••••••• 10.5

10.2.4.2 I/O Facilities •••.•••••••••••••• 10.5

10.2.4.3 Error Recovery 10.5

10.2.5 PJ-C Update 10.6

10.2.5.1 I/O Initiation •••••••••••••••••• 10.6

10.2.5.2 Peripheral Devices •••••••••••••• 10.6

10.2.5.3 Error Recovery •••••••••••••••••• 10.6

10.2.6 SDEX/7.. •• 10. 7

10.2.6.1 I/O Initiation •••••••••••••••••• 10.7

10.2.6.2 I/O Interrupt Enabling/Disabling. 10.7

xv

10.2.7 COS/UYK-20••••.....•..•.•••••.••• 10.8

10.2.7.1 I/O Initiation •.•.......•.••..•• 10.8

10.2.7.2 Centralized I/O ...•••••••.•.•••• 10.8

10.2.7.3 Peripheral Device Handlers•. 10.8

10.2.7.4 Error Recovery •..••.•.•...•••••• 10.9

10.2.8 The Proteus General Purpose Executive ••••• 10.9

10.2.8.1

10.2.8.2

10.2.8.3

I/O Initiation

Status Returns

Error Recovery

10.9

10.9

10.10

10.2.9 SDEX/20 ••••••••••••••••••••••••••••••••••• 10.10

10.2.9.1 I/O Initiation ••••.••••••••••••• 10.10

10.2.9.2 I/O Registering .••.••••••••••••. 10.10

10.3 Discussion •••..••••••••.••••••..••••••••.•••.••••• 10."11

10.3.1

10.3.2

10.3.3

10.3.4

10.3.S

10.3.6

I/O Initiation •••.••••.• , ••••••••••••••••••

Validation

Scheduling

Channels ..••••••••••••••••••••••••••••••••

Buffer Control ••.•••••••••••••••••••••••••

Data Translation ..•..••••••••••••.••••••••

10.11

10.12 .
10.12

10.13

10.14

10.14

10.3.7 Peripheral Device Support•..••.••••••• 10.14

10.3.7.1 Applications Devices •••••••••••• 10.14

11. PROCESS SYNCHRONIZATION AND MESSAGE COMMUNICATION •••••• 11.1

11.1 Introdllction 11. 1

11.2 System-by-System Survey ••••••••••••••••••••••••••• 11.2

-11.2.1 Inter-Computer Communication •••••••••••••• 11.2

11.2.2 ATEP /AAX •••••••••••••••••••••••••••••••••• 11. 2

11.2.3

11.2.2.1

11.2.2.2

ATEP/MMS

Data Base Protection

Module Communication

..................................

11.2

11'.2

11.3

11.2.3.1 Introduction •••••••••••••••••••• 11.3

11.2.3.2

11.2.3.3

11.2.3.4

Database Locking •••••••••••••••• 11.3

Message Communication ••••••••••• 11.3

Inter-Computer Messages ••••••••• 11.3

xvi

11.2.4

11.2.5

11.2.6

11.2.7

11.2.8

11.2.9

P-3C Update 11.4

11.2.~~1 Database Locking •.•••.•••••••••• 11.4

11.2.4.2 Message Communication •.•••••.••• 11.4

UYK-7 Standard Executive

11.2.5.1 Database Protection

11.2.5.2 Message Processing

11.2.5.3 Immediate l-lessages •..•.•.•.

11.2.5.4 System Messages ..••••..••••..

11.2.5.5 Local Messages •.••••••..•••.••••

COS/UYK-20

11.2.6.1

11.2.6.2

AN/BQS-13

Proteus

Inter-task Communications

Synchronization ••••••.•••

11.2.8.1 Inter-Module Communication

11.2.8.2 Local Messages

11.4

11.4

11.5

11.5

11.5

11.6

11.6

11.6

11.6

11.6

11.7

11.7

11.7

SDEX/2~ •••••••••••••••••••••••••••••••••• 11.7

11.2.9.1 Inter-Task Communicat-ion ••••.••• 11.7

11.2.9.2 Synchronization •.••••••••••••••• 11.7

11.3 Discussion ••••••••••••••••••••••••••••••••••••• ~. 11.8

12. FILE MANAGEMENT ••••••••••••••••••••••••••••••••••••••• 12.1

12.1 Introduction 12.1

12.2 Feature Chart •••••••••• ~ •• 12.2

12.3 System Comparison ., •••••••••••••••••••••••••••••• 12.3

12 • 3 . 1 ATEP......... • • . • . . • • . • . • . . • . . • • • • • • • • • •• 12 . 3

12.3.2

12.3.3

12.3.4

12.3.1.1 Types of Data ••••••••••••••••••• 12.3

12.3.1.2 Protection •••••••••••••••••••••• 12.4

ATEP/MAX

ATEP/MMS

.................................

P-3C UPDATE
xvii

12.4

12.4

12.4

12.3.5

12.3.6

12.3.7

12.3.8

12.3.4.1 Protection

12.3.4.2 File Maintenance

UYK-7 Standard Executive

COS/UYK-20 •...•••.••.••••.•

12.3.6.1 File Mana'lE'-:-.lent

BQS-13

Proteus

12.4 Discussion

12.5

12.5

12.6

12.6

12.6

12.7

12.7

12.7

13. ERROR MA.."ilAGEMENT .••••••••••••••••••••••••.••••••••••••• 13. 1

13.1 Introduction
13.2 System-by-System Comparison

13.2.1

13.2.2

13.2.3

13.2.4

13.2.5

13.2.6

,13.2.7

13.2.8

ATEP
13.2.1.1

13.2.1.2

13.2.1.3

ATEP/l-1AX

ATEP/MMS

Introduction

Error Handling

Types of Error

·
·
·

........................ "
..............................

P-3C UPDATE ~ ~
13.2.4.1 Error Handling ·
UYK-7 Standard Executive ·
13.2.5.1 Error Handling ·
COS/UYK-20 Executive ,
BQS-ll II

Proteus,

13.1

13.1

13.1
•

13.1

Il.1
13.2

13.2

13.2

13.3

13.l

13.4 \

13.4

13.5

Il.5

13.6

13.2.8.1 Error Handling •••••••••••••••••• 13.6

................................... SDEX/20

13.2.9.1'

13.2.9.2

13.6

13.2.9.3

Error Manag~ment Function •••••••
Error Types and Registration ••••

13.6
13.7

User Error Processing ••••••••••• 13.7

13.3 Discussion ••••••••••••••••••••••••••••••• ~ •••••••• 13.7
xviii

PART IV -- SUMMARY

14. SUMMARY AND CONCLUSIONS 14.1

14.0 Introduction •.••••.•.•••••••••••.•••..•.•.••••.• 14.1

14.1 Current Executives .•••.•.••••...•••••...•......• 14.2

14.1.1

14.1.2

14.1.3

Faci1i·ties Ava i ' ·~le ••.••••••••••••••••• 14.3
Tailorabilit.y

Modifiability

14.3

14.4

14.2 The Need For A Standard F.O.S .•••.••.••.••..••.• 14.5

14.3 Necessary Features of an F.C.S. 14.7

14.3.1 General Design Features .•.••••••••.••••• 14.7

14.3.1.1 Modular and Structural Indepen-
dence •••••••••••••••••••••••••• 14. 7

14.3.1.2 System Generation •..••...•••.•• 14.8

14.3.1.3 Machine Independence .••.•.•••.• 14.8

14.3.1.4 Protection and Security ••.••••• 14.9

14.3.1.5 Conversion Considerations ••••.. 14.9

14.3.1.6 Support of Data Base Systems ••. 14.9

14.3.1.7 Abnormal Condition Handling and
Recovery .•••.•••••..•••.•••.••• '. 14.11

14.3.1.8 User Interfaces ••.••.•••••••••• 14.11

14.3.2. Surnrnary ••••••••••••••••••••••••••••••••• 14.11

Appendicies

Allpendix A -- Sources of Information A.I

Meetings and Presentations Attended •••••••••••••• A.I

Partial List of Documents Examined ••••••••••••••• A.3

Appendi~ B -- Description of Selected Computer Hardware •• B.l

AN/UYK-7 ••• B. 1

AN/UYK-20 •• B. 6

PROTEUS ... B. 10

xix

PART I

GENERAL CHARACTERISTICS OF

NAVY TACTICAL APPLICATIONS

CHAPTER 1

OVERVIE\tl OF NAVY TAC'l'ICAL CO!-1PUTER SYSTEMS

1.0 Need for a Framework

A framework for viewing Navy tactical systems is essential

if a meaningful analysis of tactical systems and applications is

to be made. The use of computer systems in the Navy has gro",n

in recent years, and, although the basic functional requirements

of Navy tactical systems are not too diss~milar, the prolifera­

tion of computer hardware and software in the Navy is largely a

result of the lack of such an overall .framework.

In this chapter we propose a specific framework which we

have found to be useful in the analysis ·of Navy tactical systems.

We believe that this framework offers us a methodical means of

isolating the key characteristics of the various functional capa­

bilities that the Navy's tactical systems possess. We shall then

use this framework to analyze the types of resources chat are

required in the different functi<:>nal areas in tactical applications,.

demonstrate the feasibility of this framework by analyzing a spec­

ific Navy tactical application. In subsequent chapters \ole discuss

the major tactical operating systems in existence Loday.

1:1 Differences Between Tactical and Non-Tactical Applicati~ns

Navy tactical computer applications have many characteristics

that distinguish them from commercial applications. Because tac­

tical systems must support a set of functions that differ markedly

from commercial applications (except perhaps in the area of process

1.1

control), significant distinguishing features are found in the

executives and operatin1 systems, architectures, and capa~ilities

of Navy tactic31 computers.

For example, because tactical computers are used for func­

tions such as launching missiles and guiding aircraft, response

must invariably occur in real time. Because they are often

used in airborne and wartime applications, a high degree of

reliability is required. Functions must be implemented with

some form of backup and provisions must be made for "graceful"

performance degradation. Because the computers are carried in

ships and aircraft, packaging and weight contraints become

more important. For example, disk drives on a ship must be

able to withstand the roll of a ship, and computers in an

airplane must be light weic;ht and compact.

1.2 Framework of Functional Characteristics

The Jnajor functions that Navy tactical systems perform can ,

be broken down into the major categories cc Ca) computational

functions, (b) human interaction function, and (c) multi­

computer coordination functions.

1.2

1.2.1 Computation Functions

The substantial computational or "number crunching" func­

tions that these systems perform represent the v?st analytic

and data reduction functions that tactic~l systems must be

capable of supporting. These cOI~I~.lltational functions fall

into the following three classifications: data gatnering, data

reduction, and data analysi~.

1.2.1.1 Data Gathering

Tactical systems invariably receive data from sensors

that are unique to Navy applications. Radars performing the

tracking function are not an uncommon type of sensor. Most

data from radar is usually received by periodic data sampling.

Here data is stored in tables in a prearranged fashion, and

there are constant valida~ion checks on the data for any

deviation from the norm. The data is usually fed into a

tracking routine for identifying radar responses, and tracking

target paths (heights, distances, etc).

In addition to radars, many other types of data gathering

sensors are prevalent in tactical systems. Sonar is used on

many ships wr~re the periodic input rate is in the 40 ms.

range. _ Surface scanners are used on many ships with substan­

tially faster data rates. Airborne sensors are also used for

gathering navigation information on air speed and wing anJ

stabilization controls. A substantial amount of data is also

received from other computers as messages. This is discussed

in the section entitled, nInter-Computer Communication.-

1.3

'1'0 sununarize, data collection is a function that is found

system gathers information about its operational environment

and formats it in a manner that is acceptable to the next phase

of the computation funrtion, data reduction.

This data gathering function can h~ described graphically as

follows, by visualizing the signal received by the radar as

it makes ~ 360 0 sweep.

signal

,­,

l', , , , ,

FIGURE 1

I ' I , , ... , "-~ ' .. " ,~

o 90 180 270 360

(The dotted lines are used to stress the fact that data is

gathered at a rate of say, 32 times per second).

1.2.1.2 Data Reduction

Data reduction is that process by which data from sensors

is interpreted and modified ·into a form useful for analysis.

For example, when using periodic sampling techniques, the use-

ful data may consist of the deviations or abnormalities from

expectations of incoming signals.

1.4

'rhus, in our ~:...:ample, the data reduction process would be

responsible for determining the target position from the

signal derived from the sampled data displayed in the previous

figure. The process would deduce that the target is currently

located at approximately 150°, which can be graphically reprp.­

sented as follows:

4-,
I
I

FIGURE 2

14 -- -- ._- -----target position

o 90 180 270 360

In our example, this data reduction process would determine

target position at, say, 4 times per second.

1.2.1.3 Data Analysis

'rhe process by which the system activates the necessary

response to the data is called data analyses. This can range

from. re&ponses to radar tracking information, automatic

adjustments to speed and altitude in response to tracking info:L··

mation, as well as the in-flight guidance of missiles in res­

ponse to updated data on the location of an enemy target.

~he analyses programs can be very complex. A tracking

program for the E-2C early waring system uses 6K 32 bit

words. A typical analysis program is the calculation of the

·optimal gun solution," which screens radar information and then

1.5

computes the bullet trajectory as fast as possible. Other

examples incluae the analytical functions provided by the

Air Data Computer for the F-14 fighter. It receivp.s data and

then is automatical+y responsible for wing speed control,

stabilization control, determining "true air speed," and

indicating the angle of the plane to the air-stream.

A more complex example of this analytical function is the

Identify Friend or Foe (IFF) function performed by the ~~GIS

system. The operational sequence starts with a search for a

target (missile or aircraft) at different altitudes. If a·

contact is found, the IFF function is invoked. If the contact

is determined to be a threat i the interception track is estimated

and the interceptor is fired.

For example, the data analysis process could be responsible

for receiving data from the data reduction process and deter­

~ning the future position of the target. This would occur at

a lower frequency of perhaps once per second and can be graphi­

cally described as follows:

o
I

FIGURE 3

target position at times tl-t4

t t t t·
2 3 4 ~ 5

predicted position at ts

90 180 270 360

1.6

1.2.2 Human InLeraction

In addition to the computation and analytical functions,

tactical systems must usually provide for a great deal of

-Almost all tactical systems interface with consples and

~isplays for human operators. The simplest example of this

human interaction is in updating readouts such as the altitude

or speed of a plane on a pilot's dashboard. (Figure 4)

More complex displays require a large amount of compu-

tation for graphical displays. These include the tracking of

enemy targets on a radar screen relative to the curr~nt

,~IGU~. 4.

'·Updating Readouts

-4 speed

-4 ___ altitude

o 0

position (see Figure 5) A more advanced example is the A6B

system which is a weapons delivery platform(predicted to be

in service through the rnid-l9PO'~). The digital display unit

displays air speed, longitude, latitude, and altitude. The

pilot navigates by attempting to keep a small square on the

screen in the middle of the display.

1 •. ,

FIGURE 5

~.--~----------~

Paths -----,-- , '-, __ Air space

Graphical Interaction

Some airborne systems carry even more sophisticated

displays, combining navigational information (such as yaw,

roll and pitch analyses, air speed, and altitude) with tac-

tical information (informing the pilot of his distance and

position relative to an enemy airplan.e).

An important facet of this human interaction function

that must be supported by tactical systems is the option of

human initiation of many tactical functions. This means

that although a critical tactical function has been automated,

the process can always be either initiated or stopped ~y a

human being. This is as a result of Navy philosophy, which

generally dictates that manual initiation and negation of all

missile launching orders must be possible at all times.

In the previous section we discussed the Identify Friend

or Foe process, whereby if an enemy target is identified, an

interception track is estimated, and the interceptor is fired.

During this process, no human interaction is required during the

actual interception, but it is possible at all times.

Another typical example is the Air Data Computer System

(ADC) used on the F-14 fighter. Although this is an elaborate

automated system for wing sweep control, stabilization control,

1.8

determining true air speed, and indicating the angle of the

'plane to the air stream, it must be noted that if the computer

system ever fails, the pilot always has recourse tv using his

manual controls.

1.2.3 Multi-Computer Coordinat2~~

Many tactical processes which must be coordinated run

on separate computers. Thj~ is because different computers

are often used for specialized functions. Hence there is the

need for complex communication between systems, and most tactical

systems communicate via one or more of the several sophisticated

communications links, (see the example in Figure 6).

For example, many shipborne tactical systems communicate

via NTDS, which is a command and control. system that has been

implemented on about sixty ships. NTDS is an automatic method.

of transferring all tactical data from one NTDS unit to another.

Prior toNTDS all tactic~'. information in a combat situation was

transferred via voice. In addition to acting as a two-way link

between aircraft and carrier, the NTDS computers interface with

special p~rpose computers, displays, fire control systers and

radar tracking systerr.s. Other computer based communications

systems in the Navy include CUDIXS, (a digital message handling

system), and NAVMACS, which is a family of communications systems

for message handling.

1.3 Example bystem

It would be' useful to analyze the various features of

a typical tactical application in the light of the model for

tactical applications that we have presented.

1.9

The example we choose here is the Navy's ':'ARTAR missile

system which is a fire control syste~ aboard a ship (DLGN-38)

which is responsible for finding a tarset as well as firing a

missile when a target comes within range. Computers arc used to

locate the position of a target and to control the guns.

The architecture of the TARTAR system is ShO\'ln in Figure 1.

It consists of a track radar, a search radar, a fire control

computer, a signal digital convertor, and a missile launcher

computer. The fire control computer used to be a UNIVAC 1219,

but is now a UYK-7. The tracking system is an SPG-60 radar. A

. typical system can consist of 2 radars, 3 launchers, and 3. \'leapon

direction systems. We will now analyze the functions and capabilities

of the TARTAR system within the framework of our model of tactical

systems.

Search
Radar

NTDS
omputer

(Fire control

Track
Radar

computer Fire Control
link Computer UYK-7

(Hisslc
laune-her)

aystelas coordinator)
FIGURE 6

1.10

----____ ~~consOle)

1.3.1 computation Functions

The data gathering function is performed by the SPG-60

radar, which sends data to the fire control system. A common

stumbling block in dev:!loping fire cont.:::",)l sY5tems 1s that com-

puters are sequential, synchrmlous machines, whereas data from

radars is statistical and ran 10m in nature. Sampling theory

solves this problem for the TARTAR system. A bandwidth of

31.~5 ms. (32 per second) is used to sample the data from the

radars. Sometimes the sampling rates vary according to the type

of data that is being sampled, but the sampling rates used in

the TARTAR system are always either 4, 8, 16, or 32 per second.

The SOC or signal digital convertor is used to convert

the signals from the radars into a form acceptable by a digital

system. Without the SOC 0. •• analog system would have to be used.

The data reduction functions performed by the UYK-7

uses feedback loops to· send orders to the missiles and launchers.

1.3.2 Human Interaction

Human interaction is performed by the Fire Control

Systems Coordinator sitting at the UYK-7 console. This "FCSC"

initiates all the automatic firing and controlling of the mis-

siles. This is in accordance with Navy philosophy that a com­

puter cannot make the decision whether or not to fire a missile.

-(It can, however, fire it at the optimum time once the decision

to fire has been made).

1.11

1.3 .. 3 Inter-Computer Co~nunication

Inter-cOJrlputer communication is shown by the mc1ny links

to and from the main fire control cowputcr (FCC). Within the

system the FCC cor:unun-i..cates with the missile launching computer

(MK26). The FCC communicates with other ships and the "outsic_

world" via the NTDS computer which communicates through stancard

data links.

1.3.4 TARTAR Executive

The executive that Raytheon built for the TARTAR system

essentially consists of two executivcs--a foreground executive

and a background executive. The foreground executive is an

interrupt driven real-time executive with a predetermined periodic

scheduling of tasks. The background executive basically manag~5

non time-critical tasks (such as background test, maintenance,

and performance evaluation routines), and schedules these tasks

on a rou~d robin basis.

Peripheral devices are handled in a way that is fairly

typical of most tactical Navy systems. The routines to handle

the I/O to any given device is the responsibility of the pro­

gram that qenerates the data for that device. This procedure

eliminates tjte necessi ty for storing I/O routines that may never

be utilized.

1.4 Summary

In the following chapters we will be discussing the

variety of executives used by the Navy to support a host of

tactical applications. Where possible, we introduce the des­

cription of the operational environment that this executive is

used in. In analyzing these environmen~ it will be useful to

1.12

keep the framework we have presented in mind in order to obtain

a better understanding for the functional capabilities that the

executive must support.

1.13

PART II

MAJOR EXECUTIVES

USED IN THE NAVY

CHAPTER 2

MAJOR EXECUTIVES USED IN THE NAVY

~.O Introduction

Of the vast number of executives used in the Navy, four

are important enough to be discussed in detail in this chapter,

either because they have become very popular throughout the Navy,

or because they were developed with the aim of bringing more

standardization to the Navy operating system milieu. The execu­

tives discussed here are:

a. The AEGIS Tactical Executive ~rogram'which is the stan-

dard executive for the AEGIS program. It has been the focus of

much attention because it has been quite successful in AEGIS, and

it has been modified to serve other applications.

b. SDEX/7 was developed for the UYK-7, and has been pro-

posed as a candidate for a standard executive for the UYK-7.

c. SDEX/20 was developed as a highly flexible executive

for the UYK-20 minicomputer.

d. COMMON PROGRAM (CP) is an AN/UYK-7 executive that is

very widely used in the Navy. It is very popular for use in Fire

Control and Command and Control systems.

2.1

2.1 ATEP

2.1.1 Overvie~ of Operat!?na: Enviro~ment

RCA is under contract to the Navy to develop the

AEGIS defensive missile system, which is intended to answer

the Naval need to contend with airborne threats and advances

in electronic warfare Lechniques in the 1970's and 1980's.

The key components of AEGIS are phased array multifudction

radars, defensive missiles, and mUltipurpose missile launchers,

guidance illuminator radars, and computerized command and

control.

AEGIS is integrated and controlled through three

relatively autonomous multipurpose computer-centered groups:

MFAR Segment, Weapon Direction System, and Command and Decision

(C&D) segment. Operations of these groups arc facilItated by

a complement of AN/UYK-7 computers, &~/UYA-4 display consoles,

and associated peripheral equipment.

An initial system has already been successfully tested

on a test ship, U.S.S. Norton Sound. The systems'. executive

program is called ATEP (AEGIS Tactical Executive Program) and

it controls the processing in each of the AN/UYK-7 computers.

Each AN/UYK-7 computer is dedicated at the time of system

initialization to a specific role, and contains the applica­

tion computer programs responsible for carrying out an

2.2

assianed tactical mission_ Each computer 1S linked to tactical
mission equipment specific to that rol~, ~nd is als0 linked to gen­
eral purpose equipment such as disks, tape drives and operator con­

'soles - The AN/UYK-7 computers also interface wi t.h each other where
a tactical mission requires more than one computer, or where an inter­

change of information is necessary between computers assigned to
different tasks.

The AEGIS operational sequence starts with a search for a

target (missile or aircraft> at different altitudes. If a contact
is found, an Identify Friend or Foe (IFF) function is performed.
If the contact has been determined to be a threat, the interception

track is estimated, and the interceptor,is fired. (No human inter­
action is required during the actual interception, but it is possible

at all times). Terminal guida)~~e is performed by shining an illuminator

on the target, hence reflecting energy from the target to the inter­
ceptor, which is then used to home in on the target.

The Operational Readiness Test System is a sophisticated

system that is responsible for assuring that AEGIS is always main­

tained in a state of operational readiness. The system performs the
fo1101;01] ng major functions and checJ.ts:

*Fault Detection Coverage

*Self Testing

*Reliability

*Failsafe

*Efficiency Improvement

*False Alarms

ORTS uses AN/UYK-7's and uses a large data base resident

in the radar computers. ORTS, is usually called automatically by the
executive, but it can also b~ activa~ed manually.

,

2.J

2.1.2 System Description

The AEGIS described in the previous section is a fast­

reaction weapon system possessing a high degree of system reliability

designed to counter the Al\W threats of the 1970' sand '.980' s. AEGIS

is to be integrated wi th other ship sensing and weapons systems CC,·l­

sisting of the IFF systems, Navigation Systems, Gun Fire Control

System, Electronic Warfare System, and Surface Search Radars.

AEGIS will interface wi th these ship systems through the Corrunand and

Decision Control Segment (C&D) of the AEGIS Command and Control

Group (C&CG). This interface is designed to provide digital data

compatible with the C&D requirements. The AEGIS C&CG will provide

tne integrated system complex that controls and directs AEGIS actions.

The C&CG also integrates AEGIS with other subsystems that comprise

the ship combat system. Although in op~ration the C&CG must operate

as an integrated unit, the group is divided into three distinct

functional and equipment segments: Command and Decision (C&D); Weapon

Direction System, and Multifunction Array Radar (MPAR). Each of

these segments is computer-controlled, and ATEP controls tne processing

in each of the AN/UYK-7 computers.

2.1.3 The Hardware Environment

The complex of radar, missile, and display systems that

make up the AEGIS Weapons System is controlled by AN/UYK-7 computers.
I

Each of these computer"s conLdins tactical and f<:lult a~~lysjs programs

(referred to collectively as the "operational programs") that are

centrally monitored and scheduled by -the real-time executive, ATEP.

2.4

The UYK-7 is a 32 ~it word machine with a cycle time of

approximately 1-1/2 microseconds. It is a 256K machine, that is,

expandable to 256K in 32K increments. It is a modular system and

memory can be either local or shared (although some of the memory

must always be local). The UYK-7 can also be configured with mor~

than one processor.

2.1.3.1 Peripheral Equipment

ATEP controls the following peripheral equipment:

a) An RD-28l magnetic disk, which is a standard military disk,

(similar to the single spindle IBM 2314). It has a storage capacity

of 1.7 million 32-bit words contained on 20 disk surfaces each with

100 tracks of 836 words. Nominal rotation speed is 1,500 rpm and

maximum access time is 315 milliseconds. External functions include

seek, status, and various write and read commands.

b) A mass memory multiplexer which serves as the RD-28l disk

storage interface for all AN/UYK-7 computers. It connects the RD-281

with the computer generating tL3 highest priority service request,

and provides all existing data interrupts and function word trans­

mission functions between the RD-28l disk and the computer being

serviced.

c) Modular magnetic tape sets, alphanumeric display consoles

(including CRT's), paper tape readers and punches, and a high speed

printer.

2.5

d) In addition, the following tactical e~~ipruent interfaces

indirectly with ATEP:

1. AN/UYA-4 Data Display consoles providing basic radar­
type displays with pertinent symbo'Jgy which is computer­
refreshed approYimately 16 times per second.

2. The Digital Clock which is updated every millisecond and
provides to all AEGIS AN/UYK-7 computers a one-word count
of the elapsed time in williseconds.

3. An MK 72 Signal Data Converter which provides analog-to­
digital, digital-to-digital, and digital-to-analog
capabilities for time-multiplexed interfacing for two
channels between the Weapon Direction System and MFAR
Computers and their resepctive peripherals.

4. An MFAR Signal Processor, containing an I/O Buffer­
Synchronizer and a Digital Target Simulator, which provide
the operational interface between the radar and the MFAR
computer, and store test target digital data patterns to
provide stimuli for test and fault diagnosis of the digital
portions of the Signal Processor, respectively.

5. An MFAR Display Video Formatter for providing formatted
displays of MFAR Video data, an MFARC Test and monitor
console, and a WDS/Fire Control System Test and Monitor
Console.

6. A Digial Data Converter, which a0ts in response to a
command from the C&D computer, interrogates the ship sensor
system, and returns digitized measurements of the ship's
speed and heading to C&D.

7. The GMLS-MK-26, which is a twin rail launcher capable of
using a mixed load missile magRzine.

2.1.4 The Operating System (Executive)

The AEGIS Tactical Executive Program was designed to

effectively manage the real time process, which is an inherent

characteristic of the AEGIS system. In brief, ATEP performs the

following six tasks:

1. Processing Interrupts generated by programs and equipment,
according to the priority structure of equipment faults,
program faults, I/O errors, and requests for ATEPservices.

2.6

2. Scheduling, via a priority-ordered queue of task modules
awaiting execution.

3. Storage .Allocation that can be requested and released~t
any tirrz.

4. ~~ssage Processing - by providing a capability for modules
to send and receive messages.

s. I/O Control - managing the operation and usage of the I/O
channels.

6. Dynamic loading of non-core-resident modules.

ATEP also provides linkages between application modules and

user-supplied service routines, as well as error handling facilities

and utility services. ATEP's generalized design although conceived

for a shipboard system, provides it with the capability of operating

in varying tactical environments that utilize the AN/UYK-7 computer,

including airborne, shore-based, and subsurface applications.

2.1.5 ATEP Performance Requirements

The fast reaction time, high firepower, and constant oper­

ational availability of AEGIS require a high degree of performance by

the executive, especially in the areas of core utilization and

peripheral devices. The standard AN/UYK-7 Common Program Executive

did not provide enough flexibility for the system.

It Wa& a basic requiremor.~ from the start that the ATEP's

contained in the AEGIS be essentially identical and modularly structured

to permit deletion of facilities not required when a ATEP is assigned

to a specific role. In order to satisfy this requirement of standard­

ization and commonality, and yet at the same time provide a computer

executive program of sufficient effective~ess to support the different

tactical missions to which it can be assigned, the performance and

2.7

design of the ATEP evolved as a consequence of the meshing of th~

performance requirements of the individual segments with their distinct

tactical missions. Thus, the EDl-i-l ATEP is identical to the EDM-3

and Operational Ship ATEP to the maximurr. extent ~ossible within the

scope of the task.

2.1.6 ATEP Functions

ATEP operates in each AN/UYK-7 computer of the AEGIS C&CG

to control and provide services to the application modules which re­

side in each of the three segments of that group. The ATEP provides

interfaces ~etween application modules and ATEP managed system equip­

ment, and between application modules and the operators of the system.

Additionally, ATEP loads and links modules as they are operated in

AN/UYK-7 object code from CMS-2. (ATEP is written to be initially

compiled using CMS-2) •

The following major logical functions are performed by ATEP:

a) Integrated real time process control which is re­
sponsive to thp. dynamic real-time tactical mission
needs.

b) Data Management, by managing access to common, private,
tempor~ry, and scratch pad areas by application modules
according to th~ir sp~cific needs.

c) Interface management, including initiation and ~ontrol
of I/O and providing the capability for routing intra­
and inter- computer messages within a segment.

d) Resource management.

e) Error management.

f) Application module configuration management, and ser­
vices management, (library subroutines and utility
functions).

2.8

2.1.7 ATEP Design Overview

The primary' functions of ATEP are the supervisory alloca­

tion of AN/UYK-7 resources, the scheduling and monitoring of rea1-

time computer program tasks and the routing of error associated

interru?~s to fault analysis programs. In addition, ATEP ensures

the integrity of the computer system through the optimum implementation

of Memory protection features and memory retrieval in the event of

power level faults. To achieve these ends ATEP is structured into

several small modular computer programs or "processors". In many

cases the processors can operate in a "stand-alone" environment, thus

provlding the capability to discard unwanted functions and conserve

core storage.

2.1.7.1 Loading Processor

The ATEP loading processor loads operational computer pro­

grams from magnetic tape into AN/UYK-7 memory. Loading is executed

using re10catable addressing logic, check summing, and memory bank

separation of instructions and data. Instructions are stored in

different memory banks than data, which pp.rmits use of the AN/UYK-7

~verlap feature. This decreases memory access conflicts and produces

faster instruction execution times. The loading processor also loads

non-core-resident (NCR) programs, when scheduled, from the high-speed

magnetic disk (RD-28l).

2.1.7.2 Interrupt Processor

The interrupt processor traps and analyzes all interrupts

emanating from the AN/UYK-7 central processing unit. Error interrupts

cause a transfer to an appropriate ~rror processing program either in

ATEP or in an operational program. Scheduling and service requests

from operational programs cause a transfer to the appropriate ATEP

processor for further analysis and action.

2.9

2.1.7.3 Scheduling. Processor

The scheduling processor inserts entries into the system

task scheduling queues according to priority. Tasks are categorized
as periodic, successor, and message. Succe~:--... or tasks are scheduled

according to a dynamic pr~ority, whic~ ~orrespo~ds to their absolute

position in the scheduling queue. Message tasks are scheduled in an

identical manner to successor tasks, except that each task has a

tactical message associated wi b·, its scheduling. This mix of scheduling

capabilities is the aspect of ATEP that permits AEGIS to adapt to an

ever changing tactical environment.

2.1.7.4 Dispatching Processor

The dispatching processor scans the scheduling queues in

search of the highest priority tasks, and transfers central processing

unit control to the selected candidate. Tasks are scheduled for dis-

patch according to clock-timed interrupts and/or task priority. A

"preemption" capability permits current operating tasks to be

temporarily suspended in favo~ of a pending task of higher priority.

2.1.7.5 Common Peripheral Processor

The common peripheral processor is scheduled by the ATEP

scheduling processor as a result of operational computer program

~equests for I/O services to system-shared AN/UYK-7 peripheral equip-

ments. This processor contains the AN/UYK-7 I/O controller channel

program logic required to communicate with the magnetic tapes, magnetic

disks, operator alphanumeric CRTs, teletypes, i.nd high~speed printers.

2.1.7.6 Timing

The executive program must accommodate the requirements of

AEGIS tactical programs for precise periodic and demand scheduling of

the AN/UYK-7 central processor. These requirements are based primarily

on the interface timing of the tactical programs with their associated

equipments and vary from several milliseconds to several seconds.

2.10

2.1.7.7 Core Utilization

The executive program is allocated a maximum of 9000 words

of core-resident storage in the AN/UYK-7. Th:~ ensures that sufficient
stoarge is available for the operation,·~. programs to ful till their

mission requirements.

2.1.7.8 Peripheral Services

Common peripheral devices, such as magnetic tape units, disk

memories, and display consoles, are shared by more than one system of

the AEGIS complex. Input/output programs that provide interface be­
tween these shared devices and the operational programs are an essential

design requirements of the executive program.

2.1.8 Future Development

The present ATEP de~~gn has been formulated to fulfill all
computer systems supervisory requirements for use in the AEGIS

Engineering Development Model (EDM 1). Continuing development may

~equire additionnl cipabi1ities such as memory sharing and/or multi­
processing. Studies were'made to determi~e the general design changes

required to provide these capabilities and to "slim down" ATEP. This
slim down process was accomplished by optimizing the object code,

thereby reducing the executive's core storage and timing requirements.

ATEP's generalized design, although conceived for a ship­

board system, provides it with the capability ~f operating in varying

tactical environments that utilize the AN/UYK-7 computer, including

airborne, shorebased, and subsurface applications.

ATEP has been extended to support multiprocessing (ATEP/MAX)
and also' to. support shared memory multiprogramming (ATEP/MMS). These
executives are discussea in Chapter 4.

2.1.9 Analysis of ATEP

Features of ATEP that are very useful and sh'Juld be

retained in a standard Navy executive include ATEP's memory

management and interrupt handling schemes.

ATEP supports "conunon" data areas and instruction~ along

with dynamic allocation and control of ~emory. Additionally, ATEP

manages the access to common, private, temporary, and scratch data

areas by application modules according to their specific needs,

and provides for data base protection and integrity. Flexible

memory management is desirable because of the functional organi­

ation of Navy tactical systems. Usually organized into separate

sub-tasks, a tactical system consists of many tasks, each performing

its own job, working out of a common database: Dynamic memory

control must also be present to allow changing system demand (e.g.,

more targets to watch) to be handled by their respective tasks

(i.e., if there are more targets to watch then the target monitor

task will need more buffer space). Flexible memory management

also benefits the system by increasing ~he amount of reentrant

code that can be used (Leentrant code must use different storage

for each task executing).

ATEP's interrupt managemeut is process driven--that i~,

upon reception of an interrupt, the appropriate task is sched~leo.

This is desirable for many reasons. Among ":l)ese: the interrupt

handling mechanism is much "cleaner"; the interrupt handler is

able to take advantage of other pa.rts of the system (e.g., the

scheduler will handle the priority problems): and the interrupt

handler is much more flexible. It is suggested that a Navy stan­

dard executive adopt interrupt strategies with the same features.

2.12

Although ATEP met the desired specification for an execu­

tive for the AEGIS missile system it would not serve as the stan­

dard Navy executive for several reasons. ATEP was designed to be

an integral part of the AEGIS defensive missile systprn, and hence

contains many features that are necessary for the AEGIS system

but are not generally useful. It also lacks many features that

were not necessary for the AEGIS system but are very important

in a more general system. For example, features such as Q more

flexible scheduler,~a file system, an improved inter-task message

sys~em, and an inter-task synchronization facility are not easily

installed into the ATEP executive. This difficulty in modifying

the ATEP executive exists because it lacks modularity, a feature

that is extremely useful and would have allowed the missing fea­

tures to be added. Additionally, ATEP does not support multi­

processinq (although A~IEP/MAX is a later version of ATEP that

does), or non-standard peripheral devices.

2.13

2.2 SDEX-7

The AN/UYK-7 is the standard military computer for shipboard

applications. J~ is a 32 bit word machine, with storage expandable

to 256K jp ?2K incr~~ents, with a cycle time of approximately 1-1/2

microseconds. On shipboard it usually uses one or two RD28l disk

drives with a capacity of 50 million bits per drive, with an average

access time of 184 microseconds. Typical peripheral devices include

a teletype, CRT displays and magnetic tape. There are three languages

used on the UYK-7: the higher level languages CMS-2 and FORTRAN, and

the machine language ULTRA-32.

SDEX-7 (Standard Executive) is the operating system for the

AN/UYK-7 that is intended to serve the needs of resource management in

a multiprocessor environment. The executive is designed to be fully

independent of the user modules or applications programs. The

Standard Executive (SDEX/7) has the following functions for the co;trol

of: user modules:

1) Initialization

2) . Scheduling

3) Interrupt Management

.4:) .I:nput/Output Management

5) Error Management

2 .. 2.1 Initiali2~tion

The purpose of the initialization portion of ·the SDEX/7 is

to load and set both the SDEX/7 and user modules to initial states

during a startup or restart procedure. This function determines the

memory configuration of the AN/UYK-7, initialization of SDEX/7 and

eachAN/UYK-7 central processor, loading of user modules, and ini­

tialization of the SDEX/7 interface for data transfer and commu­

;nication and central processor control •

. 2.14

~.2.2 Scheduler

The scheduling function detel~ines the allocation of the

central processor's resources. The scheduling function provides a

method l\~ which the user module tasks can request and subsequently be

allocated central processor control for processing. The Cp's re­

sources are distributed to user modules depending on the user module

prucessing requirements. When a scheduled task is completed, CP

control 1s always returned to the scheduling function which again

begins to search for the next task to be run. The scheduling

algorithm may be selected at the SDEX/7 compile time. If no algorithm

is given, the default is selected. This default allows successor

processing tasks or tasks requiring CP control in response to a user

module request to receive top priority; message processing tasks or

those tasks used to receive and process messages are given next

priority; time dependent tasks or tasks requiring periodic control #

of the CP are considered next; finally, those background tasks which

aLe run on a time available basis are given lowest priority.

To summarize, Modules are scheduled in four ways:

1) As successor tasks.

2) As message receiving tasks.

3) As time dependent tasks (cyclic.> •

4) As background ta~ks.

Users can select task priorities, or if not stated, default

ordering is:

Successor '> Message ~ Time Dependent Background

The scheduling function is multi-tier. All modules are

categorized by type (tier): different criteria can be applied to each

tier. Tier priorities and presence/absence of tiers is controllable

'at operating system compile-time. Tier priorities determine the order

in which they are searched.

When a task starts, a clock is loaded with the maximum

allowable run-time for that task. If the clock runs to zero, an in­

terrupt is generated. If the task can be suspended, its environment

is saved and restored later. If no suspension :s possible, an error

is generated.

2.2.2.1 Successor Scheduling

A running module can give the executive a list of modules

which should be scheduled as successors. The modules are place on

tile scheduling queue and dispatched on a priority basis. Successor

tasks may be suspendable.

2.2.2.2 Message Scheduling

A module may be scheduled to receive a message from another

module. Messages are processed in a first-in-first-out (FIFO) man~er:

the first message posted is the first to be sent to its receiver.

2.2.2.3 Time Dependent Scheduling

There is no priority among time-dependent tasks; they are

tested for execution on a round-robin basis. Time-dependent list is

searched for a task whose time has come due. When one is found, the

task is dispatched; and for a cyclic task (one that will be repeated

at a certain frequency) the time of the next call is placed on the

time-dependent l;st. These tasks can be suspendable.

2.2.2.4 Background Scheduling

Background tasks (low priority, non-time-critical) are time

sliced; if a task doesn't finish in its allotted time, it is re­

scheduled. Tasks are tested for dispatching in a round-robin manner.

User-supplied time parameters can determine when tasks are due to

execute, and also what is the interval between slices.

2.16

2.2.2.5 Additional Notes on Sch~uulin.s!.

Time slicing can occur for background, time-dependent, and

successor tasks.

A module can send a message to four receiving modules at one

time.

Modules can be dedicated to run on a particular cpu.

Only one level of preemption exists: the preemting module

must be of short duration. There are 64 different priority levels.

There is no assurance of periodic accuracy for cyclic tasks;

since periodic entrances are scheduled only after successor and message

tasks have received control, cyclic tasks may not run on an exact
cyclic basis.

There is a lack of performance monitoring in the system; the

system is written in assembly language.

2.2.3 Interrupt Managemen=

The interrupt management function receives and decodes all

interrupts. If an interrupt is associated with executive processing,

SDEX/7 will p-arform the required corrections, othe~,'ise co-ntrol is

transferred to a user designated module definec during the initial­

ization phase. Thes'e modules are usually handled through the error
management function.

2.17

2.2.4 I/O Management

The purpose of the Input/Output management function is to

provide a means by which user modules can initiate and control com­

puter I/O operations. Through this function, the user can register

responsibility for I/O interrupts on a channel basis, define interrupt

actions taken by the I/O function on a channel basis, selectively

enable and disable interrupts on I/O channels and initiate I/'~ chains.

2 •. 2.5 Error Management

The purpose of the error management function is to identify

all hardware and software errors upon their occurrence and take

actions as directed by the user modules. This function allows the

user modules to selectively register responsibility for processing

any and all errors. If an error occurs for which no user module has

registered responsibility, the error management function conditionally

stops the CP, and waits for the computer operator to proc~ss the error.

Upon the processing of an error, the function is able to resume pro­

cessing as directed by the user module or the computer operator.

2.2.6 Other Features

Specific features of the SDEX/7 include a maximum of four

central. processors in the configuration with at least one IOC connecte~

to all central processors. The SDEX/7 operates in the interrupt

state of the AN/UYK-7 while the users are in t.:,e task state. All user:

modules must have an interface with SDEX/7 through which they can

communicate and pass data. This interface is set up in the initial­

ization phase. In terms of protection, two task base register/

storage protect registers are used to represent base, displacement

and memory protect information for each segment. There must be a

minimum of one instruction per segment.

2.2.7 Analysis of SDEX/7

Designed as a candidate for the standard o~erating

system for the AN/UYK-7, SDEX/7 supports many features that are

desirable in a standard Navy executive. Multiprocessing with

effective synchronization faciliti~~, ",emory management that

matches the hardware (i.e.g, uses the full capabili~y of the

AN/UYK-7 segmentation hardware), and application indepen~ence

with a general user interface are facilities that should be

retained. SDEX/7's interrupt and scheduling management is very

similar to that of SDEX/20. SDEX/7 can support multiple ~~/UYK-7

configurations and is structured such that the program for single

processor configurations does not contain any instructions or

data pertaining to multiple processor configurations. This fea­

ture is very necessary in a standard Navy executive as multiple

processor configurations play an ever increasing role in tacti­

cal systems. Further, this configuration flexibility allows a •

common executive to be used for most configurations with only

additional ~unctions addec for particular applications. The

memory management facilities of SDEX/7 take full advantage of

the AN/UYK-7 segmentation hardware. For reasons of operating

system de~ign and implementation, such an addressing scheme is

very desirable (issues such as naming, protection, etc. are

involved and are discussed in other F.O.S~ reports). As in

other Navy executives, SDEX/7 is application independent and

communicates with the user modules via a general interface (it

uses an ESR scheree identical to that of SDEX/20).

Although SDEX/7 addresses the requirement for configura­

tion and application flexibility it offers very limited solutions.

Basically, it is not modular in design and allows only a limited

set of compile-time options to control final executive config­

uration. This is a severe restriction that requires the user to

support an executive that probably will have many features (and

hence the overhead of those features) that it does not need and

allows no easy method for modification of the executive. A good

ex~ple is the lack of explicit memory management features to

2.19

support stacks ~r heaps; such a facility is not easily added to

the non-modular SDEX/7. Additionally, SDEX/7 lacks effective

task synchronization facilities. Such facilities will beco~e

ever increasingly impoztant as more applications will be pro­

grammed in a ,nultitask manner. SDEX/7 does support a dyna~ic

sched!." I?L- .::nd a .nessage conununication scheme but th~s will not

provide the necessary system primitives that are required :or

proper multitask synchronization. SDEX/7 also totally lac~s a

tile system or any facsimile thereof. Hence responsibilities

for file storage are l.eft to the user.

2.19a

2.3 SDEX/20

The AN/UYK-20 Standard Execut.ive (SDEX/20) is an advanced

Naval Executive that is designed to be functionally independent of

user modules. It runs on the UYK-20 minicomputer, in ~ single pro­

cessor system.

SDEX/20 is designed to be a flexible operating system,

and the interface between it and user modules is general in nature.

However, this interface may also be used by modules requir-ing special

purpose handling. A wide variety of options exist in regards to

error registration and I/O handlingi user modules may take all or

part of the responsibility in these areas, eliminating the need for

the Executive to handle special configurations or equipment. However,

little error handling or I/O processing will be done by SDEX/20i user

modules must generally do all their own processing. SDEX/20 is de­

signed to be independent of the particular UYK-20 computer configura­

tion; any features of SDEX/20 that are dependent on the actual machine

configuration are changeable at compile time. An example •. 0uld be

the particular device through which SDEX/20 is initialized into the

system.

SDEX/20 presents its standard user interface through ESR

requests. Through this interface, tasks may be scheduled, messages

sent, and error handlers defined. SDEX/20 provides the following

functions for user modules:

.1. Initialization

2. Scheduling

3. Interrupt Management

4. I/O Management

5. Error Management

2.3.1 Initialization

SDEX/20 performs initialization whenever the computer is

started or restarted. The initialization routine controls all pro­

cessor functions and must first initialize the processor, load the

initial system configuration as defined by the user, and then pass

2.20

processor control to each module for local initializatj ')n and reg­

istration of proce~3ing requirements/responsibilities. This would

include registering for handling particular interrupts, for processing

certain errors, etc. When initialization is complete, control is

turned over to the SDEX/20 scheduler.

2.3.2 tiDEX/20 Scheduler

The SDEX/20 scheduling function provides the means by

whi~h user modules are given processor time. Upon completing any

user task, control again returns to the scheduler.

The following schedul'ing types are supported by SDEX/20i

they may be selectively dropped at compile time (with the exception

of message scheduling):

a. Successor Scheduling

b. Message Scheduling

c. Time-Dependent Scheduling

d. Background Scheduling

2.3.2.1 Successor Schedulinq

A- module is conside~-ed • successor scheduled I when it is

scheduled in response to a user module request at its successor

entrance. A module may also be scheduled at this entrance through

other means, so this scheduling type is more general than it appears.

Successor tasks are scheduled before any other class of task, regard­

less of the individual tasks' prio.city. ~'lit.hin the class, sched"'..1ling

is accomplished on a priority basis.

2.3.2.2 Message Scheduling

Message processing tasks are those tasks which require

processor control to receive and process messages initiated by other

tasks, including the executive. Message tasks are selected for pro­

cessing on a first-in-first-out basis, assuming all higher priority

requests have been filled. Any message task will be scheduled before

a task of a lower class.

2.21

2.3.2.3 Time-De~~ndent Scheduling

Time dependent tasks are those which require processor

time on a cyclic basis, oiten for repeated I/O or processor "bursts."

The cycle time ~ast be greater than a certain minimum that can be

set at compj Ie -time.

The scheduler will not schedule a time-dependent task

unt~l its time to execute has passed; there is also no guarantee

that rigid times will be observed. Special facilities allow very

time-critical tasks to be run automatically without actually being

processed by the scheduler (a very time-critical task can set a

real time clock to interrupt the processor and force the task to

be run at its time-critical entrance). If a module is due to be

run, the scheduler updates its next time-to-execute and runs the

job.

2.3.2.4 Background Scheduling

Background tasks run only when processor time is not

l.eeded elsewhere. They may also specify a minimum clock time at

which to be run, in a similar nature to that of time-dependent

tasks, but strict timing is not guaranteed. All background tasks

are always candidates for suspension by a higher priority job.

2.3.2.5 Scheduling Policies

Although strict time-slicing is not performed, all back­

ground jobs are always suspendable and certain successor jobs can

declare themselves suspenodole for certdiu types of interrupts.

The executive apparently lets a running job run until a significant

event--e.g., termination or I/O forces the job into an idle state.

2.3.3 Interrupt Management

~his executive function receives and decodes external

interrupts. If a module has not registered to handle the specific

interrupt# SDEX/20 will process the interrupt. If a module has

been registered, processor control is given to the required module.

Certain interrupts, of course, may only be handled by SDEX/20.

2.22

These would include timer runout, hardware failo.lre, and sir.Lilar

serious errors.

2.3.4 Input/Output Management

The I/O managerr. ·~nt function enabl t~S tile user to do all

I/O, with or without obtaining explicit control over the I/O device.

User modules may register to process any or all interrupts on a

particular channel: this might ~2 useful when one program is con­

trolling a specific device (e.g., radar) that is not similar to

the normal computer peripheral equipment.

2.3.5 Error Management

The error management function identifies and acts upon

hardware and software errors. It allows user modules to register

reponsibility for certain errors, and either pass control to the

module or st.op the processor when no module has been designated.

Processing is resumed as indicated by the module or the computer

operator.

2.3.6 Other SDEX/20 Features

SDEX/20 is completely independent of the user modules

it services, and thus is not restricted to any particular environ­

ment. Communication with the executive is done only through ESR

requests. The user-executive interface is general in nature but

can easily be used by a job for specific and unusual purposes. This

is true because in most cases ~DExi20 will not process user-caused

interrupts or errors; therefore the user can easily use non-standard

procedures or peripheral devices.

SDEX/20 will not process unanticipated errors, and stops

the processor if they occur. This is a weak feature seen throughout

.the entire system. Much more executive support for both I/O inter­

rupts and error handling should be available, perhaps as a compi!e­

time option.

2.23

2.3.7 Analy~~s of SDEX/20

Designed to be functionally independent of user modules,

SDEX/20 is an advanced Navy Executive for the AN/UYK-20 mini­

computer. r~atures of SDEX/20 that are desirable and should be

retai. rp-~ in a st.andard Navy executive are SDEX/20' s application

iHdependence, scheduling capabilities, configuration- control,

and I/O flexibility. SDEX/20 is designed to be a flexible oper­

ating system with a general interface between it and the user

modules. This generality allows it to be used for a wide variety

of applications--more speci.fically, it is not "tuned" to one

particular tactical job. SDEX/20 scheduling facilities are fairly

general in nature and allow great flexibility in task scheduling;

further, particular scheduling priority structures can be varied

at SDEX/20 compile time. Although SDEX/20's particular method
for achieving configuration flexibility (that is, giving the user

modules the responsibility) is not desirable, configuration inde­

pendence is a valuable concept and should be retained in a

s~andard Family of Operating Systems.

I/O flexibility in SDEX/20 is achieved by all0wing the

user modules a wide variety of options in regards to error reg­

istration and I/O handling. Such flexibility is a desirable

feature; however, SDEX/20's methods for achieving this flexibility

(i.e., by giving responsibility to the user) are not advocated,

(i.e., there are no default I/O hanoler~ that can be used).

Although SDEX/20 was designed to be a general purpose

Navy executive, it has several weaknesses that preclude it from

serving as such. User and unanticipated errors must be processed (

by user module. If such errors are not handled by the user,

SDEX/20 stops the processor; certainly not a form of graceful

system degradation that is desirable in tactical executives.

Additionally, SDEX/20 has very little I/O support facilities

but instead places such responsibilities upon user modules.

2.24

Because this is a gpnc'al purpose executive, support f0C stan­

dard devic~s should be available as an option so that standard

I/O support facilities arc not reprogrammed for each new appli­

cation. Although SDEX/20 is somewhat co~figurution independent,

it does not support multi-processing; further, such configuration

independence is achie'ed by moving configuration deoendent sup­

port responsibilities from the system to the user. Other weak·

nesses include lack of memory management facilities and no

explicit support for reentrant code. Although SD~X/20 has some

compile time options (e.g., scheduling options) it is no~ com­

pletely modular and allows no flexibility in replacing particu­

lar executive functions with other more applicable versions. This

is· seen as a major weakness that makes SDEX/20 both difficult to

-tune" to particular tactical system demands and difficult to

extend to fulfill future executive requirements (e.g., paging,

multi-processing, alternative scheduling methods, etc.).

2.25

! . 4 COMHON PROGRAM (CP)

The CO~~ON PROGRAM is the AN/UYK-7 executive software for

the SSN-688 Central Computer Complex and the TRIDENT Command and

Control System. It was i'ttroduccd to the FOS group at ~J. U. S.C. ,

-Newport, Rhode Island, where it is be1ng used for developing and .

testing systems for on-board use. These are principally systems for

Fire Control which interface wit~ other systems such as Sonar and

Navigation.

2.4.1 Overview of Environment

CP runs ~n a standard AN/UYK-7 computer. Typical devices

include teletypes, CRT displays, and magnetic tape. On the SSN-688,

Fire Control shares the Central Computer Comples, CCC, (which con­

sists of two AN/UYK-7's) with the Navigation System. Sonar is a

separate system using its own AN/UYK-7. On the TRIDENT, Fire Control

and Sonar share the CCC with other subsystems.

2 .4.2 The Executive

'The size of the CP used/on SSN-688 is about 15,000 words.

The COMMON PROGRAM provides little in the way of dynamic memory

~anagement. The programs are loaded £rom disk when necessary. Al­

though the AN/UYK-7 has relocation registers, a fixed partition

$ize is usually employed because of the separate functions of most

'0"£ the programs. CP allows the user module to build messages in an

~xecutive data store and "to receive messages in another executive area.

The scheduling algorithm provides priority, periodic, and

time sliced options, but the majority of processing is performed

·using priority or periodic 5 msec "run to completion". CP allows

~4 different scheduling levels within "its first level of scheduling

;known as the "Priority Entrance".

2.26

Message handling is necessary for t~o types of messages -

1) those within a user (i.e., an application area, such as fire con­

trol) and 2) those between "users" (e.g., between sonar and fire

control). The CP message handlers are used ?rimarily between users.

Special procedures and co,ventions are often used to handle messages

within a user for efficiency.

CP supports multiprocessing and multiprogramming. It also

allows modules to be dedicated to given CPU's.

2.4.3 Analysis of CP

A survey was made of COMMON PROGRAM users at NUSC in June

1974. In general, users felt that COMMON was geared mainly towo.rds

an operational system and was inadequate. in supporting the development

aspect as it lacked many development aids. There is a lack of utility

programs (e.g., there is no way to dump core). There are no tracing

facilities to follow the flow of execution of programs. Moreover,

the CMS-2 programming language does not run under COMMON, making a

compile, load and go environment ~mpossible. The conclusions arrived

at from the NUSC survey are reproduced below:

"The Common Program in the operational environment for which

~t was designed appears to perform its executive task adequately.

The primary shortcoming is lack of, or unnecessary complexity in,

development aids such as utilities, linking and loading, and diag­

nostics.

This shortcoming results in significant expense and time

loss in user software development which can be avoided, or at least

reduced, by incorporating the development aids of the compiler

(operating) system into the executive system. For example, utilities

and a more adaptable I/O handler philosophy could be provided for the

user, if the executive interfaced with the operating system. (or com­

piling system) under which the executive users operated The present

Common Program was written and in use before the CMS-2Y existed, and

there is no way that modules of one can be utilized by the other.

In the future, separate development of I/O handlers, utility

packages, and loaders for executive systems should not be necessary.

If the operating system that includes the compiler is constructed in

a modular enough fashion, the executives for the various Navy systems

could be coristructed, at '.east in part, fro!1! pieces of the operating

system. For example, in terms of the ~resent Common Program, instead

of having a unique Co~mon Peripheral module for the handling of I/O,

the CMS-2Y CINOS module might have been utilized."

2.28

CHAPTER 3

EXeCUTIVES FOR AIRBOR~E APPLiCATIONS

3.1 Introduction

Avionics applications in the Navy perform a wide variety of

real-tim-=. iunctions, such as automatic flight control, radar signal

processing, controlling displays, navigation, firing missiles, and

comrnll1"lications control. As almost all the work is real-time, few

capabilities are provided for program generation (a serious problem

for those involved in software development efforts) .

The variety of functions performed in avionics applications

fall very well into the categories described in Chapter 1. For example,

navigation is usually performed by sampling signals from radars.

Weapons control invokes a large amount of data reduction (e.g., con­

trolling the flight of a missile). The tactical situation that an air-

craft encounters invokes a large amount of data analysis. •

This chapter discusses the P-3C Update executive program,

used on the P-3C fighter aircraft, and the PROTEUS executive for the

PROTEUS system. Also discussed are two applications which ~~re studied

at Grumman Aircraft Corporation at Bethpage, Long Island, namely the

F-14 fighter system and the E-2C early warning system.

3.2 The P-3C Update Executive Program

The P-3C Update is the executive program for a complete

tactical system to be used on board the P-3C aircraft. The main

system consists of a Cp-901 computer (similar to a Univac 490 in

instruction and character sets) as well as an enhanced CP-642B.

3.1

3.2.1

The CP-90l is a 65!~i 30 b1't mach1'ne 'tt "1 ' W1 1 no !_oat1ng point.
It has a number of control registers, 16 I/O channels, a real time

clock, and an access time of a littl€ under h microsecond. It has a
cycle time with overlap of I ' ~

m1croseG0·~, ~ith an average execution
time of approximately 5 microseconds.

3.2.2 Devices

Only the lower 32K of memory can be accessed for I/O purposes.

The major devices used on P-3C are:

1) Magnetic tapes, on line (the Hone~vell airborne type with
a regular 2400 ft. reel, but very slow transfer rate).

2) A 338,000 word drum with an average access time of 1~-1/2 1

The drum spins at 4800 rpm, and because a checkerboarding
technique is used, two (2) revolutions are needed to get
all the 1024 words per track off the drum. Write prot~ct
on the drum is on a 32K basis.

3) Sensors and Displays. There are four (4) mUlti-purpose
displays used for tactical coordination purpc3es on board
the new P-3C aircraft. All the displays are refreshed
from the computer's memory but it would be preferable to
have more capability external of the displays.

The first display is used in the pilot's station.
Basically, the pilot tries Lo follow ~ pcint on a 10"
display, which helps him know where he is going. The
second display is a horizontal situation indicator which
outputs a series of banking commands. The third is a
navigational control station with an auxiliary readout
device which provides navigational and tactical infor­
mation, and provides a means of accessing and modifying
the data base.

The fourth is a set of displays called "sensor sta­
tions"# which are 15" mUlti-purpose displays providing
radar and contact information and monitoring returns from
buoys. Each of the I/O handlers contain the character-.
is tics of the device.

3.2

3.2.3 The Exec~tive Progra~

The P-3C Update Executive program runs on the CP-901 computer

and provides a multiprogramming environment In a uniprocessor system.

The P-3C executive is desJ.gned in a ~r~ la~ fashion, and provides for

additions and modifications to tho system in a simple yet controlled

manner. The system is designed to be failsoft and will operate in a

degraded mode.

3.2.3.1 Memory

Memory is divided into pages of size 2K. The upper 4 bits

(11-14) is the page number and is translated to the 'appropriate paging

register. The effective address is then generated. (Because the half

word size is' 15 bits, the greatest access is approximately 32,768 words.)

One of the problems that was mentioned in a trip visit was that

memory is protected only on th~ 2K boundaries (only write protected).

A system that could offer protection within the page itself would be

very useful to the P-3C's.

Core management is provided only internally, for management of

transient tasks and files. Drum management is provided. Additionally,

a file management system is supplied for use with files on the drum (or

in core when the drum is not available) •

3.2.3.2 Scheduling

There are a number of user tasks, each of which has associated

with it some number of entries at which the task can be scheduled.

Tasks can be permanent or transient; transient tasks are swapped between

core and the system drum as necessary.

3.3

The scheduler is fairly sophisticated, involving five (5)

preemption levels and 16 priorities within each level. The details

are available in the previously cited reference. It must be remembered

that of the 60 "periodic tasks" (units of work as seen by the executive>,

15 of them are always active. The average execution time per task is

approximately 3-5 ms.

The scheduler accepts requests from executive interru~t proc­

essing modules and from executive service request (ESR) modul~s. ESR

requests introduce new work into system. Any necessary core allocation

and drum reads (to bring modules into core) must be done.

If a task to be scheduled is already active, or in ready-to­

run state, then:

1) queue shall contain an entry for each request of a task

2) all entries for a task must be at the same state/priority
level

-3) order is FIFO

Certain tasks (usually low priority periodic tasks) are not candidates

for scheduling if they are active or ready-to-run, i.e., they have al­

ready been scheduled but have not finished running.

There is a limited set of tasks which should run within 10 ms­

from reque~t time (data acquisition and transmi.ssion). There'is a set

of periodic tasks which run repetitively every 50 ms. There are several

sets of long running tasks (700 ms) which share memory and processor

time with each other. The majority of tasks are demand and should run

withl~ 500 ms of request. Also there are background tasks.

3.4

There are 5 preemption levels, with 16 priorities per level.

A preempted task in any level has the highest priority in that level.

Preemption levels:

Level

1 Tasks here cannot be preempted; they are dispatched in
priority order.

2 Tasks in this level can preempt any lower lev~l tasks
unless they are 10 ms tasks or they have locked the
data base.

3 These tasks can only preempt level 5 tasks (if they have
not locked the data base or are not 10 ms tasks).

4 Tasks here·can only preempt level 5 tasks (unless they
are of the two (2) special types). A preempted level 4
task is the last to run withi~ its priority level.

5 Lowest priority in the system. These tasks run only"when
no higher level tasks are ready.

The dispatcher places the highest level ready-to-run task in

control of the cpu. The dispatcher must restore the physical environ­

ment of a preempted task when it is restarted.

Other considerations:

1) Tasks which can complete within 10 ms are allowed to
run to completion.

2) A task which has issued a "lock data base" command and
has not unlocked it will be allowed to complete its'
accesses and not be a candidate for preemption until the
data base is unlocked.

3.5

3.2.4 Other Features

There are approximately 300 tasks in the system, of which

60 are periodic ~n nature. There is a common data base available to

all 300 tasYs. Dis21aying of data usually involves only a read only

access. The display maintenance program is the only one that uses

entire data base.

The executive includes an input/output control module, which

includes handlers for system-required devices. This module can be

expanded to contain handlers for other devices in the system. The

P-3C Update Executive also includes extensive system analysis aids.

Most of the programming for the P-3C is in CMS-2, although

the executive is written in direct code.

There is no dynamic linking or loading available. The memory
re~lacement algorithm attempts to keep a task in memory as long as

possible on the principle that if a task is used once, there is a high

probability that it will be used again.

The executive time stamps all data that enters the system.

The short term tasks can run for as little as 10 milliseconds. Long

term tasks can run for as long as a maximum of 400 to 500 ms.

3.6

3.3 The PRO'l'::US System

The Proteus system is an accoustic processing system

for real-time analysis of incoming sonar data. It consists

of three Ploteus Advanced Signal Processor units (ASPs)-- the

anal.~er, post-processor, and display processor--each consisting

of at least a general purpose processor (CP/IO) and optimally

additional hardware to aid in each processors respective- func­

tions. It is intended to be the Navy standard interim airborne

signal processor with planned utilization on the P-3 aircraft

on helicopters and on the "lamps" aircraft.

3.3.1 Hardware

The general purpose processor (CP/IL) is architectur-

ally the same in all configurations' of the ASP; however, it is

ext~nsively microprogranunible. There exist tailored ep/IO

instruction sets for each of the different configurations of the

ASP (analyzer, pest-processor, a display processor). The basic

instruction sets are very close to that of the IBM 360/370 computer.

3.3.2 The Proteus Executive

The Proteus ASP has two executives currently undergoing

design and implementation--IBM's originally specified executive,

and the Naval Air Development Center (NAVAIRDEVCEN) general pur­

pose executive. The later will probably be th~ executive chosen

for·fleet utilization and will be discussed here. Basically, the

objective of the executive is to·allow tasks to execute in a

periodic fashion to analyze incoming sonar data. Depending on

the particular ASP configuration (i.e., analyzer, post-processor,

display), additional hardware must be kept (e.g., the arithmetic

processors in the analyzer configuration).

3.7

3.3.2.1 Memory Management

In the initial design there is no dynamic management. Al­

though all the programs currently fit in cor~, the system is being

provided with facilities to support sWRp~ing.

3.3.2.2

PROTEUS.

3.3.2.3

Scheduler (Task Manag€~ent)

There are three (3) types of scheduling algorithms used on

a) A fixed priority scheme whereby a task gets control of
the CRU according to its priority.

b) A "least time to go" algorithm for tasks whose run time
has been very accurately predetermined. This algorithm
appears to be the best for their use as far as efficient
scheduling is concerned. If a very critical task must
be performed, i. ~_. is sim!lly given a very high priority
level.

c) Whenever the system is idle, a "background monitoring"
program will be run.

Initialization

-rhis is accomplished with an Initial Program Load (IPL) proce~s:
whereby the Ej;ecuti vc and us~r m~dules \-:iI2 be loaded 5 nto memory. Con­

trol is then transferred to the Executive initialization routine.

This routine determines where the Executive itself ends and

the RIPL table" begins. This table contains a list of entry points to

receive control of the central processor during initialization. The

executive scans each entry and sends an initialization message. This

·wakes up" each module, and when finished, the executive continues in­

ternal initialization.

3.3

3.3.2.4 Input/Output

Only the executive can initiate I/O directly; user modules

must issue an "I/O Request" ESR to th.3 Executive. I/O requests are

queued if an open channel ~s not available.

3.3.2.5 Interrupt Processing

During Executive initialization, software linkup with the

interrupt mechanism is set up to the appropriate interrupt processor.

All status information is saved for restart. During interrupt process­

ing, higher priority interrupts remain enabled.

The executive is subject to "pseudo-periodic" interrupts,

mainly from an intercomputer channel. In general quick responses

will be required from the system, with certain functions having to be

performed every 50 ms.

3.9

3.3.2.6 Error Management

Proteus's hardware automatically traps storaqa protection and

privileged instructions. The Executive also validates all user supplied

parameters, such as entry ~oint addresses, I/O requests, etc.

If an arithmetic error occurs, the Executive suspends the

task and sends a message to its p~rent module. This module may take any

corrective action required. If the task is not aborted, execution will

resume.

If the error was an addressing or privileged instruction

violation, a message is sent to the parent module and the task is

aborted. No restart is attempted.

I/O errors cause the Executive to attempt to recover and

make the· channel usable. The Executive then reports to the task, via

the I/O status word.

Main errors, such as power failure, halt the machine with

the error displayed in a fixed part of memory, or on a panel readout.

3.3.2.7 Performance Monitoring

Proteus monitors both the computer system and itself con­

tinually. This allows optimization, system debugging aid, and fine
tuning_

3.3.2.8 Data Management

Data management is different in scope for different functions,

usually consisting of tables of data in core memory. Data is always

recorded, with the system keeping track of information, (such as: how

many times the interrupt occurred; when a task was last scheduled; and

how many times it was scheduled).

3.10

3.3.3 PROTEUS CP/IO Executive Analysis

The PROTEUS CP/IO executive is a general purpose

operating system designed to handle user needs in any of the

configurations of the advanced signal p".0cessor (ASP). It

has a standard user i~terface an~ ~d basic&lly responsible for

the organization, control, and supervision of the application

programs. Such user programs are preplanned into a system a~d

finally "compiled" with th(~ executive so that a fixed system

is the result. This executive offers few new facilities, the

most outstanding being a limited synchronization capability.

Such a feature is highly desirable but as this executive has

no time-slicing ability much of the power of this feature is

lost. As user modules are preplanned and linked into the system,

the PROTEUS executive offers no memory management facilities and

does not have the capability for non-resident task execution.

Further, it contains no I/O drivers but rather acts as a channel

manager for user tasks who must have the I/O channel programs

themselves. The facilit.i.ps offered' by this executive are a sub­

set of the desired facilities in a standard Navy executive.

Modularity of design could not be determined from the referenced

literature.

3.11.

3.4 The E-2C Airborne Early Warni~ystem

There are four (4) functions performed by the E-2C system,

each of which is supported by a different computer as follows:

FUNCTION MODEL

1) Radar Tracking and Data Management . LITTON/304F

2) Navigation (Advanced Radar Processing System) LITTJN/728

3) Air Data System CONRAC/1085

4) Passive Detection ARMA/MICRO D

Different formats have to be used for each computer system as

all the four (4) computers have different word lengths. Backup systems

are available for each of these systems. It must be noted that the

function of the E-2C aircraft is of early warning and not of a fighter.

The basic system aboard the E-2C aircraft can be described best by

the following diagram:

3.12

~I----~I

(Passive)
(detection)
(system)

THE E-2C SYSTEM

THE

L-304

COMPUTER

DISPLAYS

3.13

~ ADC

(windinfo)

4

SENSORS

3.4.1

3.4.2

Subsystems

The subsystems and programs on the E-2C are as follows:

a) The lOP is a very busy routine which rer.ords data such
as radar r~sponses and height information as inputs t~
its track establishment scheme. The trac~ing pro~ram
receives data from the lOP to track the target paths
such as ranges and azimuths. The tracking program uses
6K 32 bit words.

b) The Link-4 and Link-II are air-to-air links and air-to­
ground links respectively, which are used for both
transmitting and receiving. The L-Il program consists
of 7K 16 bit words and is tied in to the aircraft carrier
The L-4 program consists of 2692 16 bit words, and ties
the system in to other aircrafts. These links basically
extend the capability of the standard Navy links so that
they can be used by the Army and Air Force. The links
are used for controlling the fighters and processing
command intercepts on flight missions.

•

c) The "CAINS" system (one of the four (4) sensors connected
to the L-304) is a navigations system, and is claimed
to be the most accurate form of navigations system that
is available.

d) The Air Data Computer analyzes wind information and is
discussed later in this report. "SCRAM" is the Signal
Conditioner Readout Alarm Monitor, and it interrogates a
1I"'scrarnbler" approximately every two seconds.

The L-304

·The Litton 304 computer is the center of the system and con­

trols all the displays and responds to the inputs from the sensors. It

is a 64K, 32 bit machine, with an additional 16K of core that can be

made available. It is connected to a detection front end via a radar

~etection £rocessor; (RDP - which employs methods known as "sweep the

sweep" and "pulse the pulse"). The L-304 also provides navigational

information, produces reports on target position, and drives the

stabilization controls.

All the p~ogr~ns in the L-304 are dedicated, and p.~ times·one

of the processors can be idle. When the programs are not running the

system usually performs machine checks. The Grumman personnel felt

that more supervisory capability was required by the operating system.

The task scheduling algorithm has 64 levels of priority, but the tasks

are never guaranteed to run to completion.

3.5 The F-l4 Fighter Aircraft

The total system architecture of the computers on board the

F-l4 aircraft is shown below:

ABS
-air inlet

system

.The
CSDC

Computer

3.15

()

CADC

sync
3,4,5

The
AWG-9

Computer

(RADAH)

Attitude
(Backup)
System

3.5.1 The AWG-9 Computer

The AWG-9 is the basic computer aboard the F-14. It is respon­

sible for communication with radars, controlling missiles, driving

displays, and accepting ir,puts from other parts of the system. It is a

24 bit machine with an add time of 1 microsecond. The basic archi­

tecture of the AWG-9 is shown below:

DRO
8K

Memory

NORO
24K

Memory

DRO = Destructive
Read Only

NORO = Non Destructive
Read Only

CONTROLS
AND

DISPLAYS

The AWG-9

3.16

PS
Power

Supply

Bulk
Store

64K

IFU
Interface

Unit

The 24K available in the NORO is divided into an executive

routine, a radar processor, a general processor, and a navigational
processor. In addition, there is a built-in test routine, as well as

an on-board checkout routine that verifies that all the avionics equip­

ment is functioning·correc~ly.

The executive routine basically performs memory management and

relocation functions. In general, programs are loaded from CAe tape
into the ORO. However, the hardware cannot affect programs resident in

the NORO.

3.5.2 Languages

The programs in the AWG-9 are vast attack programs (known by

names such as "Phoenix", "Sidewinder", etc.). The programs are written

in METAPLAN, (the language developed by Hughes Aircraft Corp.).

3.5.3 Data

The data links interface via sync lines. Data such as clock

data and sync data from radar are continually coming into the ORO of

the AWG-9. "Sync 3,4,5" are the Standard Serial Interfaces.

3.5.4 The CSDC

The £omputer ~ignal ~igital ~omputer (CSDC) processes analog
signals. It is necessary to utilize the. CSDC because the interfaces.

onto the CSDC are not all digital. The CSDC is a 20.bit machine with an

add time of 7-1/2 microseconds. The CSDC performs many of the same
functions that the CAINS System performs on the E-2C aircraft. Pro­

grams on the CSDC are all assembly coded.

3.17

3.5.5 The Air D~ta Computer

The Air Data ~omputer System (The ADC) is a two channel compute

which sends data to the CSDC. Its main function is to position the

wings of the aircraft according to its altitude and speed. It is

responsible for wing sweep control, stabilization cont~ol, determinirg

true air speed, and indicating the angle of the plane to the airstream.

(However, if the computer system ever fails, the pilot still has recourSE

to using his manual controls.)

A dual channel computer was chosen because it lent itself to

comput~ng high order polynomials serially. The ability to compute high

order polynomials was considered important because the equations for

the wing sweep of the plane were all nth order polynomials of the form

axn + bxn - 1 •••••••••••••

3.5.6 Other Subsystems

The "VOIG" is a display used by the pilot of the aircraft. The

Attitude System is a backup system that informs the pilot of the

"attitude" of the aircraft - (e.g·.', tracking information, yaw, roll and

pitch analyses, navigational information, and informing the pilot of

his distance and position relative to an enemy airplane). Data comes in

at the rate of 16 words every 120 milliseconds.

In general, the AWG-9 and the CSDC have to have a high throug~­

put Lime. The fastest program is the nTG~ which provides the "optimal

gun solution". This program' has to screen radar information, and then

compute the bullet trajectory in a very short time period.

3.18

3.6 Summary

Most ~f the airborne applications that were studied by the

FOS ~-~up consi~ted of standardized real-time functions, with a

high degree of i,terdependency between components of the system. For

example, targets must be identified, the plan~s flight must be adjusted

ac~ordingly, missiles must be launched and guided and communications

must be kept open. In an attack situation these functions often occur

almost simultaneously.

Because of the number of different functions that must be

performed it is not unusual for these sytems to use several mini­

computers running in parallel. There is usually a central computer

system (e.g., the L-304 in the E-2C System) while the others function·on

different subsets of the data.

Realiability is very important in airborne applications.

Most of the systems have some sort of redundancy built into them,

and in most cases all computerized functions can be taken over by

a human operator.

Very little standardization of equipment or operating

system was found in the avionics applications that were studied.

It seemed that much time, money, and effoct could have been saved

by u3ing zta~dard eq~ipment for the fundamentally similar functional
requirements.

3.19

CHAPTER 4

EXECUTIVES FOR SHIPBOARD APPLICATIONS

4.1 ':.ltroduction

The AN/UYK-7 is the standard military computer for

shipboard applications. Although the standard executives for

the AN/UYK-7 are ATEP and SDEX/7, many other special purpose

executives are used. Examples of these are ATEP/MAX and

ATEP/MMS which are two extensions of the basic ATEP executive.

The BQS-13 is an executive for the AN/UYK-7 which has

been designed for use with a sonar system. It was introduced to

the FOS group at NUSC, New London, CT.

These executives are discussed in the following sec­

tions. ~'he UYK-20 is a newer mini-computer that has been developed

for the Navy. The communications oriented operating system for

the UYK-20 is discussed in Chapter 5, while the standard execu­

tive for the UYK-20, SDEX-2~, was discussed in Chapter 2.

4. 2 ATEP/MAX

ATEP/MAX was originally designed to meet the requirements

of the AEGIS system and was subsequently nominated as a standard

executive because of the flexible nature of the program. 'I'he original

ATEP (discussed in Chapter 2) utilized multiple AN/UYK-7 computers

in a uniprocessing environment, and was implemented in Engineering

Development Modell (EDM-l). (In EDM-l there were three distinct

functional segments: Command and Control (C&C) , Weapon Direction

System (WDS), and the multifunction array radar [AN/SPY-I]).

4.1

Because of its flexibility, ATEP/HAX · as· being considered,

along with SDEX/7 to comprise the standard executive for use with

various configura~ions of AN!UYK-7 computer systems. The ATEP!MAX

flexibility supports not only, uniproccssing, but also the Multi­

processing. ATEP!MAX remains completely dow .• ward compatible wi th

the current ATEP concept a~'ld also mee~~ chc requirements of other

systems employing either dedicated or non-dedicated CPU 'tasking.

The AEGIS environment f0T the ATEP!MAX uses a particular

complement of AN!UYK-7 computers and related military electronic

equipment. In the more general case, however, ATEP!MAX operates in

a multi-CPU AN!UYK-7 environment. The AEGIS environment, which

ATEP supports requires only uniprocessing, and is a special case

of the more general ATEP/MAX capability.

4.2.1 The Executive

ATEP/MAX was developed at FCDSSA, San Diego, to not only

satisfy the requirements of AEGIS as a minimum, but also to:

- Efficiently exploit the higher computational power
of a multi-CPU AN/UYK-7 environment.

Provide for the sharing of frequently accessed data
among the several computational elements.

- Provide an environment wherein several CPU's have access
to all the resources (e.g., modules and data) needed to
perform any given task.

Provic~ one copy ,of an executive in AN/UYK-7 memory,
servicing the several CPU's, providing core savings
as compared to the uniprocessing case in which each
CPU requires its own copy of the executive (as in).

4.2.2 ATEP/MAX Functions

ATEP/MAX provides effective management of real-time processe$

in a single or multi-processer AN/UYK-7 environment by processing

interrupts, scheduling application modules, servicing I/O operations,

routing user-messages and providing for linking, loading, and graceful

degradation.

4.2

4.2.3 ATEP/MAX Design Overview

ATEP/MAX supporls multiprocessing with only one copy of

ATEP/MAX necessary. Uniprocessing is provided for as a special case.

ATEP/MAX is desi.gned to be a failsoft system which wil:. continue to

operate ~n a degraded mode in the case of certain system components.

ATEP/MAX is designed as a modular system, with modules

tailorable at compile-time'. ATEP/MAX recognizes a number of entry

points associated with each user module, each to be entered upon a

specific occurrence. It provides storage management for the user

modules. There are four types of segments provided: data private

to the module, common data, temporary data (which can be dynamically

requested), and scratch pad data. Some modules reside permanently in

core, while some are transient, being rolled-in upon scheduling.

Roll-out is not provided.

ATEP/MAX provides input/output management for the user

programs, and includes (subject to selections at compile-time)

standard peripheral drivers. There is also a selectable set of file

management routines.

The system includes a comprehensive set of utility programs.

There are also a large number of selectable measurement tools

available.

4.3

4.3 ATEP/MMS

The ATEP/MMS (Multiproce5sing and Memory Sharing) is a

further extension of ATEP whi~h supports each of the three major

processing concepts presEntly in use in the AN/UYK-7 computers; i.e.,

uniprocessing, multiproce~3ing, and the concept of multiple CPU's,

each with its own executive, communic~ting through shared memory.

It was designed to adequately service the planned improvements to the

AEGIS system, some of which are ~~ follows:

4.3.1 Overview of Operating Environment

In EDM-l AEGIS, the radar handling computer (formerly

MFAR control, now called AN/SPY-l c0ntrol) used two AN/UYK-7 computers

each wi th its O\-In single CPU. Messages between the CPUs had to go

via inter-computer I/O channels; this was costly in overhead. For the

future AEGIS the AN/SPY-l control CPUs will be placed in the same

computer so they have access to common memory.

Other multi-CPU computers will be provided for the other

AEGIS functions. A multi~CPU computer will communicate with other

multi-CPU computers via inter computer channels.

The planned AN/SPY-l computer will have four CPUs. The

revised ATEP will have multi-processing capabilities, whereby two or

three CPUs share the same ATEP and other programs. However, AEGIS will

probably op~r~tc a~ing a sep~rate copy of the eXAcutive with each CPU

and with dedicated application modules. Modules in the same computer

will be able to access the same data even though the modules run on

different CPUs and special features will be added to ATEP to allow for

extensive cOI1UllUnication among ATEPs on different CPUs in the same

computer.

Loading of the program was difficult in EDM-l because it

involved many operator steps and insufficient diagnostics and recovery

steps in the initialization program, particularly when a tape failure

4.4

occurred. The EDM-~ system now includes a fast reload from disk following

a failure. It is intended that the whole error processing and re-

covery area will be enhanc~d for ATEP for the next AEGIS. The error

recovery "las generally de ferred during the EDM-l ATEP des ign.

In the improved system, although debugging capabilities will

be available on-line, programmer tools etc. would not run under ATEP,

but '.ulder CMS-2Y, (CMS-2 hosted on the UYK-7). CMS-2Y is the operating

system that supports CMS-2. The system would also have several copies

of the system state, with the added capability that the saved PSW's

can communicate with each other.

4.3.2 Design Overview

The ATEP/MMS is composed of the AT~P/MMS Kernel and the AEGIS

Dependent Executive Program (ADEP). Different subsets of these co~­

ponents are selected for use in a particular AN/UYK-7 configuration

for a particular application.

The ATEP/~~S Kernel provides the central core of the executive

control funct~ons and operates in the AN/UYK-7 interrupt state. It

provides centralized services which are application independent, such

as the handling of interrupts, the scheduling of the overall systems

operation, the apportionment of I/O. The ADEP consists of application­

oriented functions such as loading, standard peripheral device handlers,

utility services, and common subroutines, and are provided within the

A 'llEr /MMS •

(~: The ADEP Computer Program Performance

Specification is not yet available.)

4.5

4.3.3 The ATEP/MMS Kernel

The ATEP/~1S Kernel is that portion of ATEP/MMS that performs

the basic services of resident ini tiali za tion, intc!:'r11pt processing,

scheduling, dispatching, I/O processing, merr.,...: .. :y rllanagement, message

processing, fault processl.ng and utilit:v interfc.;.:;e.

The ATEP/MMS Kernel provides executive functions for real­

time applications which operate .. n the AN/UYK-7 computer. It operates

in a multiprocessor system, in a memory sharing system, or in a unit

computer system. The ATEP/MMS Kernel allocates the computational

resources of the AN/UYK-7 and provides an interface between the com­

puter and the user modules. The interface between ATEP/MMS and the

user modules permits ATEP/MMS to be used in a variety of application

systems without modifications to that interface.

In any particular configuration there may be various

capabilities that are not used. It is possible for such unused

capabilities to be deleted at r.ompile time.

The ATEP/MMS Kernel is tailorable. There is a provision for

dropping at compile time those functions nct required for the particular

application. For example, in a unicomputer system all multiprocessing

and shared-memory features (and overhead) can be dropped. Table sizes

can be selected.

~]so tailorable at compile time and at load time is the

choice of the AEGIS Dependent Executive Progralh (ADEP), including the

choice of routines to control the standard computer peripherals

(magnetic tapes, disc and printers) and the choice of a program loader.

4.3.3.1 ~apabilities of the ATEP/MMS Kernel

Since the ATEP/MMS Kernel is a standard executive for the
AN/UYK-7 computer, it must provide services for many of its possible

configurations. It is capable of providing services for:

4.6

"

- Multiprocessing systems with or w~thout dedicated
tasking for up to three CPU'~ and up to two IOC's
or two CPU's ano four IOC's and all memory addressable
by such a system; full interconnectivity is assumed.

- Memorj sharing systems with up to four CPU's and
four IOC)~ with memory addressable as limit~d by
physical connectivity rules of the AN/UYK-7 computer.

- Unit processing systems with or without extended memory.

- Combined multiprocessing and memory-sharing systems.

For the multiprocessing case, the ATEP/MMS Kernel provides load leveling

and graceful degradation. Load leveling is that procedure whereby any

processor does any job available except for tasks that may be dedicated

to a particular cPU. Graceful degradation is that procedure whereby

after casualty of any CPU, lOA, IOC, or memory unit, the surviving

equipment takes over the tasks of the casualty unit and the entire

operation continues but perhaps at a slower rate.

o! 3.3.2 Structure of the ATEP/MMS Kernel'

In order to satisfy the broad range of possible configurations,

system architectures, and processing requirements, the ATEP/~~ Kernel

is constructed in modular fash;':'on. Inherent in the ATEP/MMS Kernel are
the scheduling, dispatching, interrupt processing~ and I/O control

services. The Kernel consists of the following entities:

a) Resident Initialization Function, which initializes
ATEP/MMS tables and dispatches user. modules at their
initialization entrances.

b) Interrupt Processing Function, which receives all
AN/UYK-7 computer interrupts and calls the appropriate

. Kernel or ADEP routines.

c) Scheduling Function, which enters all module scheduling
requests into a priority-sequenced queue. Modules may
be scheduled upon the receipt of a request from another
module; or periodically, a.fter a specified interval of
time; or upon the receipt of an I/O interrupt.

4.7

d) Dispatching Function, which seJects the request with
the highest p'riority from the schcdulinq queue and
dispatches this module at the specified one of seven
possible entrances; it also provides rncdule ter~ination
services.

e) Input/OutP' ... t Processing, t,·jhi~h p:-ovides intercor.~r~1Unicatio
between task-state rno~:.les and tneir associated IOC
channel programs.

f) r·1emory .Hanagement Function, which controls the assignment
of core storage ~~at can be dynamically assigned.

9) Message Processing Function, which provides for the
transmission of messages from module to rnodule(s).

h) Fault Processing Function which makes up a data packet
concerning any discovered fault and passes it on to
an appropriate error processor.

i) Utility Interface Function, which provides special
features that enhance debugging and measurements of
the system performance.

The ATEP/MMS Kernel operates in the interrupt state. It

provides the following execut~ve functions for a wide range of AN/UYK-7

configurations:

a) Unit processor' One CPU; one to four IOC units, and

up to 16 memory units.

b) Multiprocessor configuration - Systems wi th or wi·thout

dedicated tasking for up to three C~U's and up to two

IOC'sor two CPU's and four IOC's and all memory

addressable by such a ~ystem; full interconnectivity

is assumed. A single copy of theATEP/MMS Kernel is

used by all CPU's. Individual user modules may be

dedicated to a given CPU o'r shall be dispatchahle in

any available CPU.

4.8

c) Memory sharing configuration -. V.lO to four CPU' s wi th

two to four ICC's and up to 16 memory units. A separate

copy of the ATEP/t-1MS Kernel is to be shlred for each

CPU. Individual user modules are dedicated to the

individual CPU's. The ATEP/r·lt-1S Kernel provides the

capability among the ~~er modules so that a module can

communicate with another module in a standard way

whether the other ~odule runs on the same CPU or a

different CPU in the computer. The communication among

CPU's is through memory units having data access to all

CPU's and also by use of the Inter-Processor Interrupt

(IPI) •

d) Configurations with combined memory sharing and multi­

processing group of CPU'~ has memory sharing with other

CPU's. Some examples are:

- Two or three multiprocessing CPU's using a single copy
of the ATEP/M~S Kernel, memory sharing the same computer
with an additional CPU that has its own copy of the
ATEP/MMS Kernel.

- Two two-CPU multiprocessing CPU groups connected by
memory sharin':j.

In all configurations, application· modules operate in the task state,

and a standard interface between these and the ATEP/MMS Kernel is pro~

vided. In any configuration the selected ADEP routines may include

routines that operate in the interrupt state and routines that operate

in b~e task state.

4.3.4 AEGIS Dependent Executive Program Portions of the ATEP/MMS

Application-dependent portions of the ADEP~are selectable by

the user. These may include routines that perform the following

functions:

4.3.5

a) Initialization/Loading

b) Error Processing

c) Reconfigurarion

d) Control of common peripherals

e) Utility functions

f) Communication among computers via intercomputer I/O

channels.

Basic Operation of a Computer Program using ATEP/MMS

A computer program that runs under the control of ATEP/~lS

contains the following components:

- ATEP/~rns Kernel

- Selected AEGIS Dependent Executive Program routines

- User supplied program modules and data areas

- Application Dependent Executive Tables.

The primary element of ATEP/MMS Kernel is the priority scheduling

queue which shall contain·a list in prioritj sequence of those program

modules which are to be dispatched (i.e., given control of the CPU to

carry out some task). The priority scheduling queue shall change

dynamically as time progresses. As modules are dispatched in priority

sequence at one of seven module entrance points as specified in the

queue entry, their queue entries shall be removed from the queue; other

task request3 shall be entered at their priorit7 level into the priority

scheduling queue due to input/output interrupts, the passage of clock

time, or a scheduling request from some user module while. it is in con­

trol of the cpu. Thus, the ATEP/MMS Kernel provides the mechanism

whereby a dynamically changing se~uence of user modules is dispatched.

The ATEP/MMS Kernel is given control following an interrupt

signal in the CPU. The Kernel processes the particular interrupt

appropriately and then, depending upon the particular circumstances,

turns over control to one of the following:

4.10

- The task state tncdule or that portior of the Kernel that

was running when the interrupt occurred.

- A different task state module, as specified in the priority

scheduling queue.

An ADEP routine. This ro,I'.:ine may perform some special

function and then return control to the Kernel, or, in the

case of the detection uf a serious error or failure, t~e

ADEP routine may abort the system or initiate a reload.

A task state module turns over control to ATEP/l~1S Kernel via Executive

Service Requests (ESR's). The ESR call causes an interrupt to the CPU

and the Kernel then carries out the particular executive service re­

quested by the module before returning to task state. Typical ~ervices

to be carried out by the Kernel include: assigning a temporary storage

data area to the module, scheduling another module as a successor sending

a message to another module, and initiating a specified I/O command to

an IOC.

4.3.6 Example Computer Loads

The following paragraphs discuss the components of a computer

load for each of the four ~odes of operation (uniprocessing, multi­

processing, shared memory, and combined multiprocessing with shared

memory). Note, however, that there is a considerable amount of

flexibility in setting up a system in terms of which components are

included and also in specifying which ATEP/MMS Kernel features are in­

cluded.

4.3.6.1 ·Components of a Unit Processor Load

a) ATEP/MMS Kernel (instructions and data) - The Kernel

instructions and data areas will normally be placed in different memory

banks to provide for memory overlap. Alternate load algorithms apply

for systems which feature interleaved memory.

4.11

b) Other ADEr interrupt-state routines - These may include:

- Error Processing Routine - Al though the Kernel will carry

out minimal error processing, it may be desired to add a

program to: analyze the error further, and/or report the

error, and/or determine corrective action, and/or initiate

recovery.

-Intercomputer Message Processor.

-Routines to interface with Common Peripheral modules. Such

a routine is required if the user uses any Non-Core Resident

modules.

-Recovery and reload programs.

Any such interrupt-level routine or routines is combined with the Kernel

and the .Kernel data to form a combined element in core.

c) User supplied Application Dependent Executive Tables.

d) Task state modules - These may have instructions and private

data in different memory units or stored together on a

single base register.

e) Data areas - Common data areas, temporary, and dynamic storage!

areas which shall be formatted by the Kernel after loading.

f) Common Service Routines.

4.3.6.2 Components of a Multiprocessing Load

The components of a multiprocessor load are identical to those

of the Unit-processor load except as follows:

4.12

a) ATEP/MMS Kernel - A single copy of the Kernel instructi~ng

is used by all CPU's. However, the Kernel data is split into

a part that is ~ommon to all CPU's and a part that has one

copy per CPU. The common part holds constants and data items

used in common by all CPU's (e.g.; the priortty scheduling

queue). The part that is private to each CPU contains status

data and Kernel work storage associated directly with the

individual CPU.

b) Common Service Routine - There may be multiple copies or a

single (re-entrant) copy to be used by all CPU's.

4.3.6.3 Components of a Shared Memory Load

The components of a shared memory load are identical to those

of the unit-processor load except as follows:

a) ATEP/MMS Kernel - A separate copy of the Kernel and its data

is stored for each CPU. These copies need not all use the

same Kernel features and hence need not be identical ..

b) User-supplied Application Depenuent Executive Tables - A

single copy will be used by all CPU's.

c) Inter-CPU Request Table - A memory area, accessible by all

CPU's is used for passing requests from one Kernel to the

Kernel in another CPU of the same computer.

d) Conunon t-:arvice Routines - A se t. or those cOlLUnon service

routines used in each CPU is loaded for that cPU.

e) Other ATEP/MMS interrupt-state routines - Copies of these

routines are included with each copy of the Kernel when the

associated CPU may have a need to use that routine. For

example, each CPU will have an error-processing routine.

4.13

4.3.6.4 Components of a Cor.iliined l1ul tiprocessi~g Shared Memory Load

The components of this load shall be identical to that for

a shared memory load, except that those CPU's using a single copy of

the ATEP/M1-iS Kernel in multiprocessing mode, shall also share the same

Inter-CPU Request Tables for communicating w.th other copies of the

Kernel. The multiprocessiJlg copy of ~'~2 Kernel shall have a data area

that is partially duplicated for each CPU in the multiprocessing group.

4.3.7 Peripheral Equipment

The ATEP/~1S Kernel fields interrupts from the peripheral

equipment via the IOC and ~asses on requests form user modules to the

IOC channel programs. However, the Kernel does not interface otherwise

with any peripheral equipment.

4.3.8 Interfaces

. The ATEP/MMS Kernel interfaces with application modules making

up the specific application and interfaces with the Application De­

pendent Executive Tables. In shared memory operation, multiple copies

of the Kernel program interface with each other. The Kernel also

interfaces directly with the ADEP as selected for the particular

application. Elements of ADEP which interface with the Kernel may

include the following:

a) Initializer/loader, which loads the system.

b) Error Processors (task-state and interrupt-state).

c) Reconfiguration and reload routines.

d) Common Service Routines.

e) Common Peripheral Control programs (task-state and

interrupt-state) •

f) Utility programs (task-state).

9) Intercomputer message processors.

4.14

4.4 BQS-13

This Executive performs task scheduling, input/output con­

trol, interrupt oandling and initialization for the AN/UYK-7 computer.

It is de~';ned to run the DNA Sonar system. Under this system several

independent modules will run simultaneously.

4.4.1 Interrupt Handling

The BQS-13 treats interrupts as follows:

1) Fault and Hardware interrupts

These interrupts are generated by the AN/UYK-7 computer

logic when a power tolerance or hardware fault error is detected.

All inteFrupts are disabled, with the exception of power tolerance

which is always enabled. A. message is sent to the Performance

Monitoring/Fault Location-Program for further action.

2) Program error and clock interrupts

The standard interrupc processor is executed. Execution

is continued at this point.

3) Input/Output Interrupts

These intcrr~ptz arc generated by the 1'.N/UYK-7 Input/0utr:'v.t

Controller, and submitted to the running program. A Class 3 interr"pt

locks out all other Class 3 interrupts until processing is completed.

4.15

4.4.2 Initialization

This module has responsibility for initializing the system

and allows for an orderly restart should a tr;:..lsient hardware fai lure

be detected.

4.4.3 Task Scheduling

This function determines all job scheduling. It is executed

whenever a Class 3 interrupt has been processed, or a program ter­

minates. Scheduling is strictly on a priority basis. If no programs

are ready for execution, background tasks are executed. This con­

tinues until an interrupt continues and a higher priority program is

ready for execution.

4.4.4 Input/Output Control

This module handles all I/O requests. When an I/O request

is received, this function exan,':'nes .the operational status of the

required I/O channel. If it is not busy, the I/O request is executed

and the channel set busy. If the channel is busy, the request is

chained to a list for later examination.

4.5 The TARTAR System

4.5.1 Overview

The TARTAR system is a fire control system aboard a

ship which is responsible for finding a target, as well as

firing a missile when a target comes within range. The TARTAR

system is currently implemented on DLGN-38 type ships.

The system searches for aircraft using a search radar.

If ~t finds one it will track the aircraft using a tracking

radar. If a missile is to be fired, it will calculate an inter­

cept point, and it will also illuminate the target to let the

missile home in on it.

4.5.2 Hardware

The fire control system consists of a MK74 mod 5

computer. The weapon direction system is a MK13 mod 0 computer.

The gun fire control system consists of a MK86 computer with an

SPG-60 radar. A typical system is shown in Figure 6 (pg 1.10).

4.5.3 Executive

The TARTAR system uses a feedback control loop to track
an aircraft. This loop must be executed exactly once every
32nd of a seco!'!d (31.25 mse~). The frequpl".cy 32 times/sec
was chosen because 32 is a power of 2, but the periodic sche­
duling of the loop must be extremely precise due to the inter­
face re"quirements with the radar tracking hardware.

The executive is very simple. There are two kinds of
tasks, the time-critical periodic tasks associated with the
control loop, and time-non-critical background jobs. One
such background job is controlling the command consoles.

The periodic tasks are run in a fixed sequence, so the
executive has no problem figuring out what to run. Each
task has a maximum allowable run-tiIfle. The executive sets
the clock to generate an interrupt when it is time to run the
ne~t periodic task. These tasks are run in the machine's
executive state, on the UYK-7, and they run until completion.

4.17

h~en t~e task nas finished, it calls the background
schedulc~, which picks" a background job to run. The back­
ground task runs: in the task state, until the time for the
next periodic ta~k is up and the executive takes control.
The background 5cheduler is not part of the exe"cuti ve.

FIGURE: The TARTAR System

this----+
actually goes r---"-----;

through NTDS

two tracking radar
packages in the system

In the TARTAR System, the sequence of operation of time­
critical periodic tasks is explicitly defined in advance.
Thus, there is never any queuing delay since no t\-10 periodic
tasks will ever be "runnable" at the same time. This elimi­
nates a considerable amount of complexityl from the ex~cutive
while, at the same time, guaranteeing precise periodicity with
minimal executive overhead. "These benefits are gained at the
expense of considerable manual effort to determine the precise
timing sequences (and occ~sional redesign in order to guarantee
that no schedule conflicts occur).

If a time-critical task doesn't finish in its time quan­
tum, the executive notes this in a table and will generally
give the task additional time.

Each task handles its own error processing. The execu­
tive"merely provides switching back to the task in the case
of a program error.

Each task handles its own I/O -- it is not one of the
executive's functions. I/O is controlled by the IOC through
the execution of a channel program. I/O interrupts are not
generated at completion, but each task performing I/O will
poll the device each time it runs.

I/O to the radars is performed every 1/32 seconds and
consoles are refreshed every 1/16 second. Data is trans­
ferred between the FCS and each radar at a rate of about
30-40 words (36 bit words)/32nd of a second.

4.18

4.6 Summary

Special executives (ATEP/MAX and ATEP/MMS) had to be

designed to manage the substantial computer loads because the

standard executives c0uld not provide the necessar~' support.

The lack of development aids for software generation is a pro­

blem in shipboard applications, which was resolved "to some

extent by ATEP/MMS.

4.19

COMMUNICATIONS SYSTEl-1S USED IN THE NAVY

5.1 Introduction

The Navy has several advanced communications facilities

.some currently existing and some under development., which combine

to form a world wide communications network. This network is

·capable of sending ship-to-ship, ship-to-shore, and shore-to-ship
aessages. The newer Navy systems are being eeveloped to take

-£u1l advantage of current computer technology and satellite links.

A brief overview of the Navy's network is as follows:

AUTODIN is ~e world-wide switching system. A message

can be switched through AUTODIN to appropriate Navy bases.

RAVCOMPARS receives the message at the base and pre­

pares it for transmittal using either conventional systems or
CUDIXS, a new satellite system. CUDIXS is NAVCOMPARS' s satellite

link: there are several ordinary (HF, etc.) communications systems

also attached.

Aboard ship, NAVMACS receives and processes incoming

messages. It also transmits shipboard messages to other units,

iDcluding ship and ground receivers.

~ section provides an overview of the communications

hcillties used ill the Navy. Specifically we discuss:

a. ·tr.l'DS the standard Navy tactical data links •
. - b. - CUDIXS, the Common User Digital Information Exchange

System.
c. IlAVMACS, primarily meant for automatinq message

handling.

S.l

5.2 NTDS

d. COS/UYK-20, the communications o~iented executive
for thp. UYT<-20.

The Navy Tactical Data System (NT~S) is a command and

control system that has been implerr.2nted on about sixty ships.

The system is primarily used as a combat direction system in war

time, the communications links being via terminals between NTDS

units.

Prior to NTDS (before 1961) all tactical information in

a combat situation was transferred via voice. It also provides

a method of communication to non-NTDS ships (via links such as

L-14) and also to some fire control systems such as the MK-IV.

It a1so acts as a two-way link between aircraft and the NTDS ship.

A typical system consists of three (sometimes four) UNIVAC

=.42 (A's or Bls) sharing 256K of extended memory. Each UNIVAC 642B

bas a CPU, 32K of 30 bit worns and 16 rIo channels_ Each computer .

interfaces witil other systems and also with special purpose com­

puters, displays, fire contrel,.and radar tracking_ A common data

base residing in the shared memory can be accessed by all three

computers. The common part of the executive routine resides in

the shared memory and the specialized parts in the various com­

puters. The executive routine is used mainly for intertask message

passing and scheduling.

EB- this system, three processors are used to give the re~

~ed capacity. Even with a faster processor, however, several

_CPU's would be a useful configuration because of the large number

of tasks run on the computer complex.

~ system can exist in several versions having full and

. -:partial capabilities. In case of hardware failure, the system can

~ue to run in a degraded manner using only two computers.
_Doing this, however, involves reloading and relocating programs,

5.2

becac~e I/O channels are connected to specific devices. Hard­

Wdre maintenance is done on board ship.

In case of software failure, the system is restarted.

Xf this doesl."t work, a description of the problem is sent to

FCDSS~ which maintains the software. FCDSSA sends back a soft­

ware "patch," or provides on board assistance.

On the prese~t system, the interconnected compute=s do

~ot share com~on memory. The computers in the system had identical

copies of the executive routine and maintained identical ~opies of

the data base. This used memory inefficiently and introduced addi­

tional complexities in system coordination.

Recently AN/UYK-7 computers have been used in place of·

UNIVAC-642 computers in NTDS systems. To take advantage of the

increased capabilities available in the new machine, a new metho~

~lo9Y is needed for implementing executive functions. A future

·change in methodology and in the application programs is needed

in order to take full advantage of the AN/UYK-7 I s capabilities.

One of the requirements that made the use of the UYK-7

necessary was the growth of functions that NTDS was being required

to support, and the nUmher of carriers that NTDS was being imple­

·mented on. Because NTDS is a very real-time system, high I/O rates

~ual memory, more core memory and high precision fixed point

arithmetic are some of the features that NTDS needs.

The ITAWDS system on the LHA is an example of a system

that is usinq UYK-~'s to support NTDS. The executive being used

for this system is discussed under a separate section.

5.2.1 'the LHA System.

~e Integrated Tactical Amphibious Warfare Data System

(~S) is a tactical system for an amphibious assault ship, LHA.

t£ee Figure 5.1) The executive which is used is called EXOS.

5.3

FIGURE 5.1

..'
_~~r." ,. __ . ;.":-~ ...

-----/ •. , ···-i'·~ - ./' __ ---:" .. :1:' .. - • ...-----:--.:... - -;-~-.. ~--,
.-.--'-- ~.:/' . .;-- .-::;~~ --.

• . • .,.'>".

The system consi~ts of two UYK-7's. One is solelY dedi­

cated to support NT OS and. the other partially serves NTDS and

partially supports the data management functiof!. Th€ LHA execu­

tive was developed to use the full capabi '_l.ties of the UYK-7

computer for NTDS. This was neces~~~f ~~e tL the growth of

functions that NTDS has been supporting since its inception. The

increased number of ships using N'rDS also influenced the design.

NTDS is a very real time sys'~~m, and as such needs high I/O rates,

virtual memory, more core memory, and high precision arithrn':!t.ic.

The ITAWDS is an attempt to use an UYI~-7 instead of the usual

CP-642B to support these needs.

EXOS is the LHA executive. It performs the basic

system functions of system loading, initialization, termination,

scheduling, central I/O control, inter-module communications,

and.interrupt processing. It also supports certain auxilliary

functions for systems operations, such as disk allocation and

coaversion TOUtines.

Some of the problems that systems programmers have

been having with the LHA executive are as follows:

*Very slow througl1put because there is not enough
core, and thrashing often occurs.

*T.bere is no deadlock avoidance built into it.

·~ere is no centralized peripheral management.

*!here is little casualty recovery. If a file is in
the middle of a data base update during a fault, they
must return to a checkpoint. Periodic snapshots of
-core are taken at the-rate of about one per minute.

~e LHA system is in need of a fast-access mass storage

···4evice so that 35K of the executive need not be kept in core at

al.l times.

5.5 .

There ha7e been many problems with using the UYK-7

for the Tacti~al Infor~ation Processing (TIPS) part of the

system (~c.r example, there is insufficient core and the execu­

tive is unsnitable for this kind of application). Hence con­

sid~.4cion has been given to developing a Tactical information

Processing System (TIPS) from a net\vork of UYK-20' s.. The pro­

posed configuration consists of a master UYK-20 and two slave

UYK-20's with the TIPS operating system performing the tasks

of resource and process management.

~he following diagrams provide an overview of the pro­

posed TIPS system: (Note: TIPS is an example of a typical

DBMS capability required by the Navy. This is discussed further

in Chapter 6).

MACNETIC TAPt Ir!tTS

5.6

fn;\ Q4)
~'~

ee

•

•

-

w

'IWCESS
MANAGEMEN'l'

•

-CREATE JOB
-DELETE J\)B
-scm:OULE JOB
-DISPATCtl JOB
-COMMUNICATE JOB

TASK
HAUACIDmN'l

"ClU:l\'tc TASK
-lJELETt! TASK
-SCJll::OUL~ TASK
-DISPATCn TASK
-CO:-t~l~N!CJ\T)i! TASI
-SUSP~N~ TASK
-r\ESUME TAS!(

TIPS AN/uYK-20 O?f:RATING SYSTEM .-
IN'l'f!1ttIJP'l'
PROC~:lSOlt

rILE
Ml\N1\GEMEN'l'

-OPEN SSO OR DIRECT
-etas}: S~O OR Dl REC't'
-JUo:l\O SEQ OR OIm~C'r

.-WRT't:C SEQ OR Dlla:C't'
-POSITION SEO I·'ILS
~l .. I\.'!·IVE OR AUSOLU·~F.

-I~SPECT FILE ATTRI:SU'l'!S
-MODIF~ FILE ATTkI~U~!S

, ,

R£sonRCE
MANI\CEl-tENT

DEVICE
M.I'.NI\Gt:M£N'l'

-ALLOC1,'l'E DISK m~~
-nE~LLOCATE DISK M~M
-;\LLOCI\TE PERIPl!EML
-DEl\LLOCi\TE PERIPm:M.L

Dta41oc~ Avold.nc~
C~sualty Recovery

L
M!~ORY

MAnAm·:~tEN'l'

-INI'l'lAJ.t7.E BASE REtiS
-IMJ~IALIZ£ PAG~ nccs

-~~INTJ\lN cou~r oo~~ CLOCK

'-ALLOCI\TE Ph~~ nF.CISTEnS
'-DEALLOCATE PI\G~ ~CISTERS

-ALLOCA'l'E SY~':'::H, Jel, JOB
S'l'~;P, i\~~D T~.SK nLCCK DY~"nMl~ -HASDLE INPUT ru::O~,H:5TS

-HANDLE OUTPUT REQur.s'rs ·-'C:,\L:'OCATC SYS1'E!-1, JOD, JO:l
ST!:P, MlD T:\SK BI.CCi\ D'l:Z".'t:.:C

5.3 CUDIXS

CUDIXS, the Common User Digital Information Exchange
System, is an advanced communications system designed as a

store and forward syst~m using a corr~uni~ati~ns satellite to
transmit between the shore instal:ation and CUDIXS subscribers.

CUOIXS acts as AUTODIN's link to ships at sea, working through
satellite channels. AUTODIN, the Automatic Digital Information

Network, is a shore-to-shore message routine system.

The system is able to support large volume traffic:

ten ships, ship/shore/ship, 1200 messages/day, average message

1ength of 300 words. Also there is support for small volume
traffic: fifty primary subscribe ships, ship/shore, ten messages

per day per ship: ten special subscriber ships, ship/shore/ship,

100 messages per day per ship.

Digh precedence traffic response is less than three

~utes with a two minute cycle time.

~here are curren~ly four installations. Messages go

out hy precedence. Polling techniques are used. However, there
are up to four random access time slots (RATS) into which high

~ority messages can be put. It is also possible to send "flash"
messages. CUDIXS interfaces with COMPARS. COMPARS handles all

.essage-sending circuits except satellites. COMPARS also generates

;statistical reports on number of messages sent, as well as, pre­
cedence of messages, etc.

There is also an interface with AUTODIN. This is a

··sWitching system for sending digital information from point to

point. AUTODIN is a Defense Communications Agency system.

The main processor is an AN/UYK-20. Other hardware

includes a message coder, a paper tape reader/punch, a high speed

printer, teletypes, and magnetic tape. In the shore installation,
there is also disk storage.

5.8

5.3.1 Executive and Other Software

Neither SDEX-20 nor COS/20 are used. A special executive

was written tor this application. It is very similar to the execu­
tive ~~~Ml~CS uSeS (see below). Three types of tasks are scheduled:

real-ti~e, periodic, and background. Much of the I/O is done with

parallel interface. The basis of the executive was founded on

COMMON/MODX-2.

One operator interaction with the system is to change

the cycle time. The cycle time can be cut down to 20 seconds.

Another control mechanism is to have a message repeated on request.

A complete description of the system was given .to us

in the form of a CPPS for CUDIXS (shore subsystem).

~is application illustrates the designing of a new

executive for a system because the existing executives were not

~idered to be adequa.~e, and also because support and mainten­

ance for existing executives was not considered to be adequate.

~e following diagr~ms summarize the architecture and

capabilities of the CUDIXS system.

5.9

.. ~.

I ,

~ I
lit @ t . ~ -,

~~t
~I

. I

I
1

.
, "_," ... , ,".- .-.. -....... .

etG

Lee

Ole/DE
~~

pell. r '-1 Ie 404·070 \l t:.L.; S~H DI[GO

\ ,

/

~ : TAP! ~
MAGTAPE
CONTROL
UNIT .

.~

" 8 ~. ~
~, lit 2 .

Q\

~ ~
.

=:

CUDIXS
COMPUTER

MEDIUM
SPElm
PRINTER

DISK
CONTROL
UNIT

CUDIXS SKORE S~mSYSTEM INTERFACE BLOCK DIAGRAM

AUTODIN AUTODIN
NAVCO~!- -PARS ASC

5.3.2 NAVCOMPARS/CUOIXS Interface

NAVCOMPARS, the Naval Communications Processing and

Routing System, is the interface between CUOIXS and AUTOOIN,

the shore-to-shore message handler. It has the cspability to

place AUTOOIN-switched mess~ges within CUOIXS for processing,

and, conversely, to place CUOIXS incoming messages into the

AUTODIN network for further routing.

1
1

~
M
H

-8 ~
~ u

.=
i
~ . •

~ M

I
I

~

e
B u

~

/ ~ I
~

.~

IIII

, .. ,
" !

• t •.

.. '

• . .. , i .•. , '.
f .• •

- r-,' .• 0 .": 0 :

. t · • •• i "'; . .;.: . _. . .~ ...
: • t : •

... ~ .. :
• .

0" . ___ wtV1.C
__ --11'0/1500

I.

. ··-r ..

\ ~"----"" " . . I
"

..; ... -.. \ " ...
. . , \ . .

, I
I • -, .

, I .' .,,!, .. ~., , I . I 0

j • . • 0 \1 ' ~, : ..
J .

..' '.

'0:

• · · .

I'
.: I \

I \.
I \

. '" \
I ,. \ ..

wrvAC

I
• I

...,.._~ 70/:,.,0 tf--~

• 0

'.

; .
i I
i

'1
t

..
• I

'f •

. .

[;~~
I !'
\!

k1 • .. ·.1
~;:~-:;.e~1

~------~, I

I :

CQi1~i.g"rat; OD

1

5.4 NAVMACS

NAVMACS is a shipboard family of communication systems

(A, A+, B ...) designed to automate the shipboard functions of

message han~Ling -- teletype processing of sh~p to shore, ship
to s~~~ ar.d shore to ship messages. The various NAVMACS families

are generally upward compatible, dependent on specific shipboard

needs.

5.4.1 NAVMACS System A+

NAVMACS A+ is a core-resident system that is interrupt

driven. System A+ is primarily transaction oriented -- an indivi­

dual transaction is processed by a series of subprograms before

transmittal. The actual sequence of subprograms used is depen­

dent on the message type.

~e executive schedules a~l application subprograms

and c~ntrols allocation of system resources. Withi~ memory, the

system itself is fixed in place but input/output buffers and

working storage is dynamically allocated as requireq.

5.4.1.1 NAVMACS System A+ Control Diagram

I

INTER-
MODUI.E
TASt~Ir:G
VIA EX
(ESRs)

\

i-lhVHACS At­
PROGRAI-1

--.1 ~ _
SYSTD·l
EXECUT1VE
(OprRAT Ir~G
~'i~TH1)

I'-L,,---I , r---------'
OP£RATlf~G SYST[H

APPLICATION r·l0DULES '·tODULES
~------------------ --------------------

BROADCAST RECEIVE BROADCAST CIRCUIT
FORf·iAT ANALYSIS HANDLER
HESSf\GE SCREHHilG r

LHtI~ HMiDLER
~~ESSI\GE ACCOUrn I t~G IOSns KEYBOARD/PRINTER
DlSPOSITION QUEUING . HANDLER
LIHK RECEIVE .. PRINTER H/UWLER
LI UK SCHEDUL It~G - PAPER TAPE HAi-lOLER
LIW~ ANALYSIS
TRAr~SI·ll S S I ON QU EU I HG -
LINK MESSAGE PREP. .,

~

LINK TRAUS:HT I/O
f'J\N/r·1ACH I NE Cor'iPlE-
CTTY QU EU I r~G lION .
GUARD r·t!\I NTEr:ANCE 114Ps

DIRECT ROUTINE
CAllS fRon I,LL
tiODUlES (GSRs)

G£NERAL
.... -----c SERVICE

. ROUTINES

·?·1I\V ACS A+ Program Structure

PZGURE 5.9 • .. '

r,

NO
INTEm·~r
TASKIN!

!J

.
:.

FIGURE 5.10
,

.. .

. -...
•

o· •
• eo

UAUUAl BACt(UP, S¥/ITCHI:!G t
~APA.g.l\t!'J_am::I·· SYST£~/' :-' .

o * .
H A Val' A C S • A +' S Y S T E r,t 11

AUTOli~ATEO 1.1ESSAGE PROCfSSI:~G il
. AN/UYK·20 'J -------~-...

15 BAUD C01ITROl ~'r f"' _. . 75 BAUD PAPEll PRnlTER & KEYBOARD.J 0 TAPE READE£\
~'

. .• .':. ~ . • ~1=5 C3

B
III:A Ui:DlD~P==A::.:.lP Ea:=~= :1

11·624 PRIUTER1S) 12) •• 0 TAPE PU~:CH .~
lEGEUD. --.~

ASC - AUTOUATIC S \'/ITCIIIUG CEltTER
PAPER TAPE READER HDUX - HAlf DUPl[X

HAYCOMPARS - flAVAl CO:,~:,'U:UCATIOUS
PRnCESS1UG AnD nOUTli:G SYSTEr.l

. set· - SIt:GlE CH/di::El TELETYPE o. CUOIXS - COU:.'Oil USER DIG'IT~l IUFOR1.'ATIO:t - -..• ~- ..

,
J

.J ~
I
!
~ .

5.4.2. NA~~~S System B

NAVMACS System B is a real-time automatic'communications

system. It is designed to automate certain .r()nual functions that

would otherwise be required during messag~ receipt, processing,

and deli very. 'rhe sy ~:tem is designed to support t~ ,e receipt and

transmittal of messages vi~ conventional or satellite links i~ a

real-time direct interface. The system also enhances security

safeguards, provides selective message output through ad(;--;,-ess

screening, and assists in the recording and accounting ot message

handling. The system also makes provision for a fall back on a

totally manual system is a major system problem occurs (e.g.,

poWer failures, or serious malfunctions) •

. S.4.J...l NAVMACS B Control DIAGRAM

5.18

...... ---_............-.--- -- - --_;...-...-...-.-.._ .. _-- .--......... .

' .
•

,. ,

VI

• -EXTERNAl-

,~ ======================================= -INTERNAL -

MANUAL BACK UP
CAPABILITY

KIV80AROI
DISPlAY(S)

PRINTER(S)

MAO TAPE
CASSETTEISI

SWITCHING
SYSTEM

NAVMACS "B" SYSTEM
AUTOMATED MESSAGE PROCESSINQ
lANIUYK 101',

AUTO MESSAGE
ENTRY

P.T. READIPUNCHlS,

OISC

FiJ!ul\' I, NA VMAC'S flU Inl~rnal iln,1 E"I~·rtlallllll·rra~1.'

NOTE 1: BACKUP/AUGMENt
2: TORN TAPE INTERFAC~

5.5 COS/UYK-~0

s.S.1 Introduction

COS i:; con:i.gured for and implemented on an AtVUYK-20
compute~ for simple or multiprocessor configurations. The AN/UYK-20

is a 16 bit word, 32 register general purpose mini-computer, with

eirert and indirect addressing of 64K of memory and a 750 nano

second access time. TheAN/UYK-20 has channels to interface with

peripherals and an intercomputer channel to communicate with the

other processors. COS is the communications oriented operating

system for the UYK/20 which provides I/O and processor support to

program tasks operating under its control. Multiprogramming capa­

bility is provided to allow several tasks to co-reside in main

aemory and share processing facilities of the system.

- COS provides peripheral and communications I/O handling

to support the communications applications environment. A particular

JIIOdule can be selected at system generation for any requirement.

A11 I/O control resides in a centralized peripheral and communications

~/O functional area.

OOS provides real-time schedu~ing support for communications

applications tasks. This is in the form of multi-priority scheduling

algorithm.

COS allows programs to operate in a multi-computer environ-

.eDt. This includes assigning tasks to computers at load time,

:capability to pass control information and data between tasks resident

~ different computers, and the capability to do I/O from peripherals

not connected to that computer. These capabilities are provided so

that tasks need not know in which computer it resides or which periph­

erals are connected.

cos provides an interactive capability for communication
with the programs.

.5.20

5.5.2 Devices

Typical devices interfaci41g wi th the AN/UYK-20 are:

1) ~perator console

2) interactive console

3) high speed printer

4) magnetic tape

5) disk

6) card reader/punch

7) paper tape reader/punch.

S.S.3 Resource Management

S.S.3.1 Interrupt Processing

There are three interrupt clns~e~. E~~h class provides

·unique interrupt types, arranged b1 priority. Interrupt~ may not

suspend a task with a higher priority. If a lower class interrupt

occurs, it is scheduled and the control returned to the task.

On interrupts where the task can be suspended, the interrupt is given

control ..

5.5.3.2 Memory Management

Allocation of main memory is performed within memory

partitions, defined at system generation or initialization. Request

queues are maintained so that as addi tional memory becomes availabl~·,

it is automatically assigned on a task priority basis.

Assigned resources remain allocated until explicitly

~leased by the user, or until program termination.

5.5.3.3 Scheduling

cos has a swapping mechanism for temporary rollout of low
priority programs to make memory available to higher priority tasks.

,swapped out:. PLOY£a.1u£ are r~schcdulcd to 4l11c;.J rc:::ump-tio!1 of the pro­

gram at the point of execution when memory becomes available.

COS has an open-ended, multi-priority scheduling and dis­

patching mechanism. Priorities are dynamic, changeable at run time
(as opposed to SDEX-20 which has static priorities). COS supports a

variable number of task queues, but initially there will be three queues

5.22

1) Event oriented tasks - tasks to be executed
because of a particular event.

2) Time oriented tasks - executj~n begins at a
particular time.

3) Priority oriented tasks - scheduled by other
tasks, number of priority levels set at
compile time.

Queues are searched by the dispatcher in the order: event,

time (if time has come due), and then priority queue. The highest

priority task within the queue selected is dispatched.

If an interrupted task is not suspendable, then it continues.

A suspended task within any queue has higher priority than any other

task in that queue.

The scheduler assigns an absolute system priority to a

task, based upon requested priJrity; it is then entered into the

appropriate queue.

5.5.3.4 File Management

The File Control Function of the COS/UYK-20 provides the

interface to access all files in the system. It is capable of handling

~er or system file reference requests.

Since the COS/UYK-20 operates under multiprocessing, all

fl1e references are passed to the computer connected to the storage

device (disk or drum) and are routed through a centralized I/O

%Outine. to determine appropriate peripheral device handlers.

S.23

CHAPTER 6

CCMPUTE~ SYSTEMS FOR THE ~~~IN~ CORPS

6.0 Introduction

Studies regarding the applicability of automation to

tactical command and control requirements sponsored by Headquarters,

U.S. Marine Corps in the mid 1960's gave rise to the MTACCS con­
cept, which envisions the development of automated, integrated

air/ground tactical command and control systems designed to ser­

vice the Marine Air-Ground Task Force. When fielded, the component
systems will provide a full spectrum of automated support to aid

the commander in the exercise of command and control. The primary

~d supporting systems of MTACCS are as follows:

6.1 MTACCS

Primary Systems

M.IFASS

MACCS-8S

HIPS

IIILOGS

JJAGl:S

Marine Integrated Fire and Air Support System. It
deals with coordination, command and control of fire
and air support. Expected to be opera.tional in the
1983-84 time frame.

~actical Combat Operations--TCO supports the func­
tions of ground and air units.

Marine Air Command and Control System for 1985 and
is the follow-on system to r~place MACCS-70. (similar
to NTDS, but for the Marines)

Marine Integrated Personnel System. An MIS type
system.

Marine Integrated Logistics System--MlLOGS supports
the combat service support element of the air­
ground task force.

Marine Air-Ground ~ntelligence System.

6.1

Note: MIFASS a~1 1~.CS-~5 are very real-time systems, while MILOGS
and MIPS are Management Information Systems (MIS) type systems
requiring data management capabilities. The specific DBMS has
not been selected.

Supporting Systems

COMM

TWAES

Communic.:ations--COMM is the comrnunic[, tions system
existing at the time of MTACCS implementation,
which is designed to serve all command and con­
trol systems.

Tactical Warfare Analysis and Evaluation System-­
TWAES aids in the conduct and analysis of field
-exercises.

~E Tactical Exercise Simulator and Evaluator--TESE
is used to simulate combat to provide realistic
training, short of field exercises.

PLRS Position Location Reporting System--PLRS is an
air and ground navigation system which provides
real-time air and ground unit locations.

6.2 MTACCS Test Bed

MTACCS (Marine Tactical Command and Control S~rc;tem)

has a -test bed" inevironment for Command and Control systems

for the Marine Corp. In the past, contractors have been asked

to deliver systems to the Marine Corp with insufficient specifi­

cations. This often results in the delivery of a system that

does not satisfy the military's needs precisely. MTACCS task

is to evaluate the Marines' system requirements beforehand,

simulate the perceived needs and then produce a set of detailed

specifications for a system, usually in the rorul or a detailed

requirements document.

6.2.1 MTACCS Environment

A1though much of the actual simulation work is done

aD an IBM 360, the applications programs and the actual evalua­

tion is run on a CDC 3500 at Camp Pendleton. The system has 4

CDC 604 tape drivers, 4 CDC 844 disks (similar to IBM 3330's),

and a card punch and line printer. It has 256K of core of which

192K is left for applications programs and 64K for the executive.

6.2

The executive is MASTER which comes with the CDC machine. A

data base management system called MARS (made by CDC) is ~lso

available.

The CDC 3500 is connected to a PDP-8 whic:. is used

as an interface to 9 Delta CRT displays and CDC "GRID" displ:.ys.

The CRT's are used to display textual information while the

GRIDs use a minicomputer for displaying graphic tactical ~ ,for­

mation in, for example, war games, simulating the battlefield,

and firing guns. A graf pen can also be used for plotting a

battlefield by drawing the outline over a map. Hard copy out­

put is available, and a CALCOMP plotter can reproduce the output

on the GRID screen.

Programming is done in COMPASS (the CDC assembly

language) and in FORTRAN.

6.3 -MIFASS

'l'he JCarine I.nteqrated Fire and Air Support SY7":em,

MiFASS, deals with the coordination and command and control of

fire and air support. It is expected to be in operational readi­

ness by 1984, and is currently under development. It is designed

to enable a ground commander to have more effective use of sup­

porting weapons.

MIFASS equipment and design exploits modern technology

in such areas as real-time tactical information and advanced

digital. communications. Equipment is designed to be small, li~ht­

weight, rugged and reliable. The system is designed to be a sig­

nificant improvement over current~y available systems in all appli­

cable areas.

Personnel using MIFASS will not be data processors;

they will be such operational personnel as infantrymen, artillery­

~, pilots, etc. Utilizing the small and lightweight input/out­

put devices currently under development, (and presumably opera­

tional by the 1980 time frame) MIFASS's information management

capabilities will be made available to the average user. MIFASS
viiI perform calculations and store, process, and give out any

lDformation requested on the ~urrent tactical situation.

&.3

The ba~ic idea of MIFASS is to prov1de each operator

with an automated graphical display he considers important to

the current tact.ical si~.uation. It allows him to recommend

decisions, and then implement these decisions. The system is

designed to he f~p,xible and can be employed in several ways.

6.3.1 MIFASS Requirements

MIFASS cannot operate in isolation and assumes that

~everal other systems currently under development are available

in one form or another. MIFASS must be supported by a reliable

and accurate digital communications network within the landing

force. It is expected that planned 1980's capabilities will

satisfy MIFASS requirements.

Also required by MIFASS is an automatic position

location system for friendly ground and air units. MIFASS will

also be able to display this information.

6.3.2 MIFASS Advantages

MIFASS has many advantages over the current manual

system. These would include:

6.4 TESE

More responsive to needs of infantry commands.

More coordination between ground fires, air missions,

and ground manuevers.

More safety through more efficient and effective

mission clearance procedures.

Paster and more flexible fire support planning and

ex.cution.

More reliable support during heavy activity.

~E, the Tactical Exercise Simulator and Evaluator,

is an on-line, interactive war game simulation. The computer

aimu1ates the entire battlefield--air forces, anti-aircraft de­

~ences, ship movements, logistics, ground forces, communications,

etc. The simulated battle can be up to 3-4 days in length and

the data base is updated every 30 seconds.

6.4

The TF~E controller knows all of the facts about the

simulation and can influence the mock battle. He can pass infor­
mation from one side to ano~her and can move aggressive units

from place to place.

6.4.1 TESE E!.·.·ironment

TESE runs on a 360/65. It was written in PL/l and was

developed in six months. It is also being developed for the

~tK-7 with graphics display capability.

The TESE command and control system is hardware

independent. Most previous command and control systems nad

been very hardware dependent, and therefore not easily exportatjle

to other systems.

6.4.2 TESE Executive

ATEX, a very highly modified version of. the ~~AES

Executive, is used as the Executive for TESE. The TWAES Execu­

tive was unsuitable in several respects--for example, it has no
distinction between task and executive states and there is no

logical file handling capability.

TESE added a logical file system while retaining the

multiprocessing and dynamic module replacement of the TWAES

Executive. The TWAES scheduler was also retained.

This is yet another example of a system where an

e2isting o.s. was not used but was modified before usage.

6.4.3 ATEX Control Diaqram

6.5

,
, '

,
t • . .

tit
• ...
• w'

. ,. . .
..

A'!EX
1232
!lA:"1):'U.

AT~X ~tZSS.\C ~
QUtt.1~O

r.:~CT:O~

. , . , .
~ . e, •

,.

A':! X
'l'!LEn"l'Z

ttA;\,,!)L!R
.~

•• 1°. •

.
,)

AttX
SA~"l)EtlS

nA~1)Lt!\

ATE=<
D~m

PROCESSOR

ATEX SUPZ&'WISORY

)tESSA!~E

pnoc:::s!ca

ATEX SUPE1W1SOR

!
.... "

ATnc
rom.tAT

rnocr. SSOI\

- -:--

ATE=<
1J~(

PROCEsson

--
" ,

ATJ:X

.. .
, .' , . ,"

• • e.

AT EX 10.':'1:."
a51 %'.0-2S1

ItA~":)Lt:tl HA:\-:>::tn

."

ATE X
'--------:,t...f !~"ITIALIZER

ATF.X
TI·.!!::S~tCE:

ATEX i:~"t:c
m:TUl~

[,llOCF.SSOn Jli~f)cr.sson

..' . t

ATt~

12·"
M:-'-:>l.!:t I ... -loA

---"':"".a.--.
A.C:X
1/0

PROCr.SS01'.

~--____________ 4-______________ ~ _____________ ~; EXECO"~ Yt~~. ____________ L-______________ ~ ______________ -4

6.5 TWAES

TWAES, the Tactical Warfare Analysis Evaluation System

is a field-based computer controlled war-game system. Two teams

compet~with umpires feeding in status infJrmation. It is designed
to provide a method fo. - effectively e·laluatil'Y operations from

data received in 'near real tiro~' ~nvironment. Exercise data is
analyzed by TWAES and as a result an exercise can be analyzed and

evaluated as the operation p"':"~gresses.

TWAES can also 'replay' segments of an exercise, even

while the exercise is in progress. History data files are gen­
e~ated automatically during a battle, and from these a complete

exercise can be reconstructed.

6.5.1 Pre-Exercise Mode

In pre-exercise mode, TWAES performs certain initial­

izations and system startup. This mode must be performed before
any exercise utilizing analysis or evaluation.

6.5.2 TWAES Exercise M0~e

In this mode TWAES functions as a 'near real time'
system. Exercise data is entered through message reports from

field umpires and observers via the Oigi tal l1essage Ent1':"y Device

(DMED). Validation is performed and the data is processed for

CRT display. At this time input data is recorded for use in
poast-exercise operations.

6.5.3 Post-Exercise Mode

In this mode exercise data is obtained from history

file(s), and reconstructed for analysis and evaluation. The
overall exercise may be observed, and flaws and faults in an
operation may be detected.

6.5.4 TWAES Operating System

~e TWAES Operating System, named TOS, is a modular
~ecutive designed exclusively for TWAES use on the UYK-7. TOS
.~·.:Jdules may be dynamically configured to meet widely varying

&.7

requirements. TOS includes certain common d:.!ta pools, common

routines, peripheral handlers, the Executive, and interrupt and

error processors.

6.5.5 TWAES I Hardware ConfiguratiOI.

. .

Joe
-fRUnOUT

PROCESSING

UNIT

'*'*'***.
UtU\lAC

AU/UYK-7

6.8

VARIAN
620/L

DISPLAY'
GW[RATO.

6.6 Other Marine Systems

Other supporting Marine Systems are as follows:

6.6.1 Tactical Combat Operat~~

The Tactical Combat Operations system (TCl) supports

the functions of both ground and air units during combat.

6.6.2 MAccs-as

The Marine Air Command and Control System for l~8S

is the follow up system for MACCS-70. It is a very real-time

CIEC system.

6.6.3 MIPS

~e Marine Integrated Personnel System (MIPS) is a

.anagement information system (MIS) requiring database manage­

went facilities. The particular DBMS has not yet been selected.

6.6.4" MILOGS

~e Marine Integrated Logistics System is another MIS
system designed to support the supplies needed for an air-ground

task force. The particular DBMS has not yet been selected.

6.6.5 PLRS

T.he Position Location Reporting System, PLRS, is

designed for use in an air and ground navigation system providing

zea1-time air and ground locations for tactical use.

Zt must be noted that many of the proposed systems that

the Marine Corps will be developing require a data base management

facility. Many of the Marines' applications that the authors have

eacountered have the following characteristics:

T.be applications require a facility for storing large
quantities of various types of data. This includes
Dumerical data as well as non-numeric data, such as
character values for storing names.

6.9

- Data must be selected and accessed according to varying
criteria. It must be easy to input and update data.

- Validation mechanisms for the data are important.
Serurity mechanisms are especially important. More­
over, the user should have implicit assurance in the
data integrity mechanisms and the security mechanisms
While he should not have to be burdened with the de­
tails of these systems, he must have confidence that
adequate mechanisms exist.

In addition, military applications impose the following

considerations:

- Several classes of users, each of which has a different
degree of sophistication.

- Complex and changing security requirements.

- Data that exhibits complex and changing interrelation-
ships.

-·Changing needs to be met by the information system.

- Need for quick and inexpensive implementation. This
is especially true in the military where it is often
difficult to specify exactly what the requirements of
the application will be. It is more advisable to bring
up prototypes on a flexible data base management system.
The application can then be evaluated and modifications
made as necessary.

An example of a data base management application that

created difficulties because of changing perceptions of users needs

was the Integrated Flagship Data System or IFDS, developed in the

late 60's. Although it is a potentially useful system, it could

not change to conform to a change in its oerceived use and hence,

the effort was scrapped. However, the application is representa­

tive of military DBMS applications and is described as follows:

6.7.1 IFDS

The objective of MPIFDS effort (started in the mid 60's)

was to design and then develop a fleet flagship data system to

serve fleet commanders during the 1970-1980 time frame. It was

-to be a command and control· system as well as an intelligence

. system.

6.10

The command and control functions include logistics,

planning, communications control and administrative tasks. The

intelligence functions include processing general area intelli­

gence, determ; .ling the loca tion and status of enemy forces, com­

municatir~ crder~ of battle and recording weapons, e~uipment and

pla~form characteristics. Information was gathered from many

sources such as from ships, sattelites, casualty reports and on

;;.lore facilities but the ship does most of the updates on the

data base.

In many ways IFDS had to support standard MIS type

functions.. For example, a typical query would be determining

the last 24 hour casualty information. There are some require­

ments that make it different from a conventional MIS. The nec­

essary response time is very quick (less than 15 seconds) espec­

ia11y in a wartime tactical situation. Moreover, "bad" or inac­

curate information can have a very negative effect.

The IFDS data base management system was written in

a language (NELIAC) similar to ALGOL 60. ~~st of the development

phase of the system (three years) was spent in designing and

developing this data base management system. A separate langu­

age was used for validating data (it was not incorporated in

the DDL). The data base system was interfaced with graphics and

alphanumeric displays. The DBMS had a good english like DML. For

example, a query for finding the names of ships with 5Q5-23 sonar

would be:

IF SHIPTYPE
And EQUIPNAME
SAVE VALUE A

= DD (Destroyer)
= SQS-23
= UNITNAME

~e system was run on a Univac 642 computer with

R0281 disk drives. The executive used was the Master Control

System or Mes.

The major functions of the Mes were scheduling and

control functions, and file and storage management. MeS was

intended to: be responsive to priorities and job structures

aefined by the user, maximize resource utilizatio~, promote

system continuity, facilitate reconfiguring and partitioning

6.11

of system resour~es, assure file integrity and zecurity, and

provide for file growth.

MCS monitored system performance by using table print­

outs. Job priorities were assigned by autumatic implementation

of priority assignments. File storage allocation was controlled

by aU~~illatic dynamic storage allocation based on input of file

use factors. MCS schedules jobs, files, peripheral equipment,

mpmory and storage, and I/O requests.

Conclusion

Currently, the military's data base management needs

are being met by bringing up limited DBMS capabilities on a

variety of machines including minicomputers such as the UYK-20.

It is recommended that a coherent strategy be undertaken in

providing military systems personnel with a general and flexible

capability .that will enhance ease of implementation and reduce

the costs of bringing up the initial versions of the system.

6.12

PART III

F.EATURE-BY-FF.~1~ ANALYSIS

OF THE PRINCIPAL COMPONENTS OF

TACTICAL EXECUTIVES

CHAPTER 7

INTERRUPT HANDT lING

7.~ Introduction

Upon occurrence of a processor interrupt, the execu­
tive automatically saves the current CPU status, and then either

performs the processing directly or reflects the interrupt to an

entry point of an appropriate module. The portion of the system

which does this is termed the interrupt processing function.

Typically, the classes of interrupts recognized depends

on the machine architecture. The following breakdown is typica~:

For hardware fa~lts and power failure, typically a trans­

fer is made directly to· some fixed routine, often the appropriate.

entry of a selected module can be scheduled.

For software faults, typically a message is constructed

and set to a system error-processing module (thus scheduling that
module). For some software faults (which are not treated as errors),

other processing is performed.

Fbr input/output interrupts, the I/O entry of the module
·-which initiated the request leading to the interrupt is scheduled.

For Executive Service Requests, which are called via a
hardware instruction that generates an ESR interrupt, the proces­
sing is performed by the Executive.

~e analysis·of interrupt handling in the executives
attempts where possible to adhere to the following outline:

~.

u.
ux.
xv.

Analysis of interrupt processing function
Discussion of interrupt types recognized
Interrupt scheduling
Special requirements

·7.1

7.2 Comparison

This section presents a system-by-system comparison

of Navy Executives' interrupt processing features. It ~ust be

Doted that since ATEP, ATEP/MAX, ATEP/MMS, and SOr:X/7 all run

on the UYK-7, it is appropriate to first discuss the interrupt

handling features of the UYK-7 computer.

7.2.1 UYK-7 Interru~t Processing

Executives that run on the UYK-7 respond to interrupts

generated by computer programs and the AN/UYK-7 computer CPU

equipment. Interrupts cause the AN/UYK-7 computer to suspend

the executing program and to transfer to an interrupt entrance

address associated with the class of interrupt. An interrupt

status code and the address of the next sequential instruction

of the suspended program and the CPU active status register are

stored in the control memory of the AN/UYK-7 computer cpu. The

interrupt status code identifies the source of the int==rupt,

and the interrupt processing function interprets the interrupt

status code to determi'ne the appropriate executive processing

fUnction to receive cont.rol. There are four (4) classes of

interrupts: (These classes of interrupts are the same for all

UYK-7 computers).

7.2.1.1 Class I Interrupts

A Class I interrupt indicates a p~er failure or an

equipment or equipment fault. All 'lower class inter~upts are

~ed out until this particular interrupt has been processed.

Xn all cases except power tolerance, control is passed to a read­

on1y hardwired program. The ROM program then passes control to

the executive. For power fail interrupt, 250 microseconds are

available in which to save the contents of control memory, then

the computer is shut down. The intercomputer timeout interrupt

Can be handled either by the executive or by an entry point into

a ~dule specified channel program. If this alternative method

is not used, an error condition is raised.

7.2

7.2.1.2 Class II Interrupts

Class II interrupts are all software related. These

program faults signify errors that are identified and passed to

error management routines for handling. This class includes

floating point errors, break point inte!"rupts which are used _11

the test mode of. operation, and clock interrupts (\\'hich are used

to limit the amount of CP time spent within a user module and for

time slicing specified user module tasks).

7.2.1.3 Class III Interrupts

Class III interrupts are all I/O related and signify

status of a requested I/O operation. Typical returns might be

successful completion, device busy, or error condition. The IOC

monitor clock interrupt indicates that a periodic task is due to

be scheduled.

7.2.1.4 Class IV Interrupts

These are Executive Service Requests (ESR), and are

generated by the execution of the "enter executive state" in­

struction. This switches the CPU operating mode from task state

to interrupt state. The executive must then activate and process

the ESR.

7.2.1.5 Interrupt Scheduling

In the AN/UYK-7 computer, interrupt scheduling is handled

by the hardware on a priority basis. Class I interrupts are handled

before Class II, II before III and so on. If the CPU is in inter­

rupt state, only Class I and Class II interrupts are handled immedi­

ately.

., .3

7.2.2 ATEP

-The ATEP int~rrupt processing function responds to

Class 1 interrupts in the standard way described above. It

-responds to Class II interrupts (program faults), by passing

:contj.Ji to the system error module which sends a message to the

operator, builds an error packet describing the condition, and

:~chedules the designated error module.

~OCmonitor interrupts (Class III) are requested by

-_the initiating task so the module can be informed of certain

~/O conditions, e.g., buffer full, buffer empty, or 1/0 complete.

~nterrupt information is provided to the ATEP interrupt processor

-which in turn schedules the requesting module at either the buffer

.7-complete entry point or the I/O channel program complete entry

:point (depending on the interrupt) with the I/O packet set to

identify the operation as input. For an equipment error inter­

rupt an attempt is made to retry the operation. The system error

module is called if a definite error has occurred. I/O interrupts

-are queued--status information is placed in a queue for processing.

~n the event of a Class IV interrupt, all legal ESRs are

~quests for some ATEP service, and the interrupt processing pro­

'gram transfers program control to ~he ATEP!MAX processor that pro­

~..iaes ·.the .desired ser-vice.

~Wben a faulty parameter is discovered, the system error

handler builds an appropriate error packet as an input to the

'error processor.

~ .• 2.3 ATEP/MAX

The interrupt processing function is identical to ATEP

'except for its special -multiprocessing requirement.

The hardware instruction that enables or disables IOC

interrupts on a particular channel only affects the interrupts

7.4

on the particular CPU that issued the instruction. In a multi­

processor configuration in which more than one CPU accepts inter­
rupts from the IOC it j.s necessary for the other CPUs to also

give the enaple/disable instruction. The CPU that receives the
ESR cOInIl"::1n<1 sig;'~ls the other CPUs via an Interproc,:ssor Inter­

ru~t. The I/O processing function in the receiving CPUs then

repeats the enable/disable instruction.

7.2.4 ATEP/~1S

The interrupt processinq function is identical to ATEP

except for the multiprocessing requirement (identical to ATEP/MAX),

and the ATEP/~~ shared memory requirement.

In a shared memory configuration, there may be limits in the

connection between CPUs and memo~y units, between IOCs and memory

units, and between CPUs and IOCs. The following requirements are

satisfied by the ATEP/MMS Kernel~

a) If a module run~ing in one CPU gives an I/O ESR that
relates to a channel in an IOC that is not connected
to the local CPU, the ATEP/MMS Kernel passes on the
request to a CPU that is connected to that IOC via the
Inter-CPU Request Tabl~ The Kernel in that CPU
carries out the ESR. A requirement on the AN/UYK-7
connectivity is that the IOC must be connected to the
memory unit that holds the private data of the re­
questing module.

b)· If a CPU picks up an IOC interrupt that requires the
scheduling of a module that runs in another CPU, the
.local ATEP/MMS Kernel passes the scheduling request to
the Kernel in the module's CPU via the Inter-CPU Re­
quest Table.

c) As in ~ultiprocessing, if more than one CPU is connected
to an IOC, any enable or disable interrupt command to
the IOC must be sent from all connecting CPUs. These
requests are passed from CPU to CPU via the Inter-CPU
Jtequest Table.

7.5

SOEX/7 Standard Executive

rThe SDEX/7 handles the standard four classes of inter­

aupts that are generated by the UYK-7.

:when a Class I interr.liJ"t occurs (hardware failure),

the error is indicated by passing the associated interrupt status

:-code ·to .theerror management· function for handling.

·Class II interrupts (software errors) are identified

:and-passed to error management routines for handling. The fol­

.ilowingClass .11 interrupts are handled as special.cases:

.el) -Floating point error - status is saved and CP control
:is returned to the point of interrupt. If the executing
·'module subsequently executes the Return Floating Point
~rror ESR, a Class II interrupt status code and the
-address of the instruction causing the error are passed
o'to the module.

~~) Breakpoint interrupts - when -this occurs, the task state
·environment and the Class II Designator Storage Nords
·are passed to the module registered for processing
rhreakpoint interrupts.

-.C) •. CP 'Monitor Clock Interrupt - this interrupt is. used to
~t the amount of CP time spent within a user module
.:and ,for 'time-slicing -speci fied user' module, tasks. ,It
~ignifies the module task currently being execured has .
-exceeded its allotted run time. If the task is sus­
~pendable successor u.c L~r"e- .:!,;::pcndent t::.sk or background
·task, the task state environment is saved, the task is
,rescheduled for another time-slice and CP control is
.·~ssed to the scheduling function. Otherwise, a module
~rrun error is indicated and passed ,to the error
.management function.

:Class II . (I/O) interrupts are handled in the standard

,~er. If the requesting module registers·not to accept the

.~rrupt, the SDEX error management function is called. If

~e'module does elect to process its interrupt, a lockout of

.a1lother Class III interrupts occurs for one millisecond.

Class IV interrupts are caused by modules executing the "Ente!
Executive State" instruction. When a Class IV interrupt is received,

the interrupt management function validates the interrupt status code
as a proper ESR request. If it is not a proper ESR request, it is

passed to the error management f\.!::-, ·~l.OIl as an illegal ESR. Other.wise,

CP control is passed to the appropriate executive service routine.

In the processing of an ESR, certain validity checks are

performed. If a validity check shows a condition where an EER cannot
be completed, a status indication (negative flag in a task accumulator>

is set and CP control is returned to the requesting task. It is the
task's responsibility to monitor this ESR status. In other instances

certain executive conditions such as scheduling list overflows prevent

the ESR from being completed. These are considered error conditions

and passed to the error management function.

When a requested ESR process has been completed, CP control

is returned to the request':'ng task at the point where the interrupt

occurred. In this case, the status indicator is cleared indicating
completion of the ESR. The ESRs requesting exits are exceptions and

result in CP control being passed to the scheduling function.

7.2.6 AN/BQS-l3

~he Computer Executive Program (CEP) for the AN/BQS-13

operates as an interrupt-driven program on the AN/UYK-7. That is,

-the only entries to the CEP are interrupts. The CEP recognizes
and handles the standard four classes of interrupts on the AN/UYK-7 •.

7.2.7 P-3C Update

~e P-3C Update runs on the CP-901 computer. The execu­

tives' interrupt processing function must handle four types of

interrupts.

7.7

Class I interrupts are hardware related failures,

including power faults and memory protection. They are handled

in the executive by error processing routines that function in
degraded mode.

Class II interrupts are software-related P!ogran
failures and are handled by error processing routines in the

executive.

Class III interrupts are I/O related interrupts and

ar~ processed by the I/O interrupt handler. The handler saves

the environment of the interrupted task, associates the inter­

rupt with the Task or Executive module which is waiting for the

7/0 event and informs it of completion, determines if any addi­

tional task or Executive Requests for this device are queued,

and interfaces with the I/O request module if a request has beep
queued.

Class IV interrupts are generated by Executive Service.

Requests from User tasks and application modules when using an

Executive call. The executive performs the operation called for.

I/O interrupts can be generated by several sources,
- including the following:

a. I/O MOnitor Interrupt~ are associated with all I/O

.data transfers except to or from those devices which
only require a few microseconds to transmit their data •

. ~e executive is not further interruptable at this
point due to a CP-90l architectural limitation which
will not allow I/O data channels and their interrupts

to be selectively enabled or disabled.

b. External Interrupts are used by various devices to

signal the status of both current and previous data

tzansfers. Unsuccessful completions interface with the

a·rror processing module of the executive.

7.8

7.2.8

c. - The Count Down Clock interrupt is generated by a
continuously decremented clock and will interrupt all
lower priority interrupts. It can be used to schedule

periodic tasks and to check possible loop conditions

in Application tasks. The Count Down Clock Interrupt
always preempts the task in control of ~he CPU and
forces the examination of the Dispatching queue. ~his
technique assures that lengthy background tasks co

not monopolize the CPU.

COS/UYK-20

The Interrupt Processing Function is responsible for
the initial receipt and subsequent processing of all hardware

interrupts. Only three (3) interrupt types are recognized:

Class I Interrupts are hardware-related faults including

power failures, and are sent to an appropriate error routine within
the executive.

Class II interrupts are-software program failures and

are sent to appropriate error routines within the executive.

Class III interrupts are Executive Service Requests

which can be generated by the user and applications tasks. It
includes all I/O related interrupts.

Each class provides unique interrupt types arranged by

priority. -When control is autQ~tically txansferred to the hardware­

assigned location associated with the class and level of interrupt,

an indicator is checked to determine if the interrupt is scheduled

~nq with the parameters defining the interrupt, and control is re­

turned to the interrupted task.

1 .. 9

If tile flag indicated that the inte~rupted task is preemptab:

the priority of that task is compared to the priority assigned to the
interrupt. Depending on which has the higher priority, one task will

be suspended (i.e., its operational environment saved and sent to the

appropriate dispatching queue) and the oth~c task will be given (or

resume) control.

7.2.9 SDEX/20

Three types of interrupts are handled by SDEX/20, with

ESR calls being treated as a special case. SDEX/20 will only pro­

. cess major hardware errors: all others, if not registered for by

a user module, are treated as errors.

Class I interrupts are of the highest possible priority

and indicate major hardware problems. Such problems would include

memory failure or loss of power tolerance.

On the occurrenc~ of a power tolerance interrupt, SDEX/20

will save the general registers and then loop testing the power

tolerance indicator. If power falls below a certain level an auto­
matic master memory clear results. If power returns, SDEX/20

transfers to the error management function. Processing then resumes.
If power returns after the master clear has taken place, SDEX/20

will a~tomatically restart the system.

Upon the occurrence of a memory resu~e interrupt, control

is transferred to the error management routine and normal processing

is continued.

Class II interrupts include real-time clock and monitor

clock interrupts. Software errors, such as "invalid op-codes" are
also Class II, and are sent to the error management function.

Monitor clock interrupts occur when a timer has run out.
These interrupts enable a job to perform the following tasks:

Monitor clock interrupts occur when a time has Rtimed out. R

7.10

- Acquire immediate control at its time-critical entrance;

this provide~ the system with a precise method of sche­
duling time-critical jobs.

Initiate a specific I/O chain; this is al30 useful for

periodic I/O.

Specify a successor task.

Class III interrupts are generally I/O related. Upon
occurrence of a Class III interrupt, both classes II and III are

temporarily locked out. If a module has registered for the parti­

cular interrupt, control is given to the module's interrupt handler.

Otherwise, control goes to the error routine; SDEX will not auto­

matically process I/O related interrupts. (ESR requests are not

considered to be interrupts on this system; on most other Naval
systems they compose Class IV interrupts). •

7.2.10 Proteus General Purpose Executive

The first stage the interrupt processor on the CPIO
effects the saving of all program status information and registers

for the interrupted task in a storage area associated with the

task. During interrupt processing interrupts of a higher priority

remain enabled. Thus user tasks may be interrupted by any inter­
rUpt source while an executive task may be interrupted only to

process interrupts requiring a higher priority executive task to
be executed.

When interrupt processing (possibly involving a pass

through the scheduling and dis9P-~ching algorithms) is complete,
the executive is required to either return control to some inter­

rupted task or initiate a new user task. In any case, exit from
~e executive is preceded by restoration of the program status and
-~gisters to the saved state associated with the task.

7.11

Three (3) types of interrupts supported are:

7.3 Discussion

Class l hardware failure

Class II - software failure
~lass III - Executive Service Reque~t

Interrupt processing is substantially the same for each of

these executives: a function is provided that recognizes the type of

interrupt and sends it to the appropriate handler. (Comments referrin~

to ATEP include ATEP/MAX and ATEP/MMS.)

Power failure, hardware failure, and software faults,

(Classes I and II) are handled in the same manner by all the executives,

... ·ith the following exceptions:

* Only ATEP, SDEX-7, and COS provide a reloading scheme
for graceful degradation and load-leveling in the case
of a hardware failure in a multiprocessor configuration.

* Only ATEP and SDEX-7 .specifically provide breakpoint
bandlinq for test mode of operation.

Fox: I/O-,"elat~d interrupts ATE?, F3-C, SDEX-7, and !QS-13

specifically designate a particular interrupt type: Class III. COS

and Proteus group them ~ith Executive Service Requests. The lack of

a distinct interrupt type is seen as a disadvantage in speed and
flexibility of scheduling. Only ATEP and SDEX-7 provide the user with

the fullest degree of flexibility in handling completion of I/O.

SDEX/20. also supplies such flexibility but at the cost of never having

the capability to let the system process interrupts automatically.
P3-C .does not allow the user to temporarily suspend I/O interrupts.

All the Executives do provide a scheduled interrupt for time-critical
tasks (monitor clock).

7.12

·Under Executive Service Reque5t9, only ATEP does

not require the user to handle an ESR which cannot be co~pleted.

ATEP builds an error packet and sends it to the Error ~a~age~ent

Function, while the othpr executives give the user the al tcrnative

of handling the error condition hi:~.~lf. It is anticipa~ed that

for the design of OS/AADC, flexibility in interru~t ~rocessi~g

will be among the most important considerations. Additionally,

it will be necessary to desig~ for very low overhead wit~in in­

terrupt processing. It may be decided feasible to place certain

functions directly in the hardware in order to achieve the speed

necessary, although. this has the potential of affecting overall

flexibil i·ty •

7.1.3

CHAPTER 8

SCHEDULERS

8.1 Introduction

One of the most important jobs of any executive is the

scheduling of tasks. An appropriate scheduling algorithm can

enhance system response, support time-critical tasks, and give

priority to important tasks. Scheduling algorithms are especially

critical in Navy systems because of their real-time nature.

8.1.1

For the purposes of this report, the following view of

schedulers is used (this may vary, at least in terminology, with

that used in the CPPS of those systems).

The machine code for a program is held in a module.

A moaule can have some number of entries which are to called for

various reasons (e.g., because a message has been sent, or because

an I/O)interrupt has come in;.

When an event occurs that makes a module entry ready

to run, that entry is scheduled, creating a task which is entered

in a queue (or queues*) of tasks that are to be run. Part of the

operation of scheduling involves th~ order in which the queue i3

kept, and the algorithmic basis for this order. For example, each

aodule entry might have associated with it the priority that its

task should have, and the queue would then be kept in priority

order. Finally, whenever it is ~~sible to run a task, the next

one is chosen from the queue (or queues) and dispatched (started

• HU1tiple queues are often used to make parts of this processinq
quicker. The internal format of the database is not usually
~rtant.

8.1

to run on a proc~ssor). In some systems, a task waiting to run

may pre-empt a task that h~s not yet finished running, if the
task running is pre-emptible (and if, in some systems, the new
task is at a higher pre-emption level). In this case, the status
of the pre-empted task is saved, and it is resumed as soon as the
~w task completes _ Sonle systems do not allow pre-el:1ption.

Summarizing, the following diagram shows the differences
between scheduling and dispatching:

Module I schedulin ~g_ Task
.ent~ ~. ____ ~

(message,
I/O
Sllccessor,
error,
initialization,
background,
request,
periodic)

schedUlin! I~ dispatching J Processor I
(priority,
time critical,
background)

8.1.2 Module Entry Schedulinjl

The message entry of a module is scheduled when a task
·sends a message to it. This is called message scheduling.

The I/O entry of a module is scheduled when an interrupt

associated with an I/O request initiated by a task running in that

.adule occurs. This is called I/O scheduling_

Every task can have associated with it some number of

successor modules. When the task terminates, the successor entries
of these modules are scheduled. This is known as successor scheduling

The error entry of a module is scheduled when an error
occurs in a task running in that module. The exact types of errors

differ from system to system. This is called error scheduling.

During system initialization and system restart, the
initializaticn entries of all modules are schedulpd. This is
called initiali7~tion scheduling.

8.2

The background entry of a module allows a background

task to be created, to run"when there are no non-background
demands on a processor. This is called background s~heduling.

In some systems, an entry of a mr~ule can be explicitly

scheduled via a supervi&or call. This i~ ter~~d request scheduling.

The above types of module entry scheduling are event

dependent. There is also a class of modu1.e"entry scheduling known

as time dependent scheduling.

Primary among these is periodic scheduling. In this case,

a module has associated with it a periodicity, which indicates how

often the periodic entry of the module should be scheduled.

"S.1.3 Task Scheduling

Task scheduling algorithms in the Navy fall into the

following categories (or into some combination of them):

8.1.4

1. Many Navy schedulers are priority driven. When
called, they search the dispatching queue (or queues)

for the task' with the highest priority. This allows
urgent processes to be executed quickly. Priorities
of tasks are usually ,fixed, but often can be changed

at run time.

2. Time critical scheduling associates with every

task a time by which it must be completed. The amount

of time that the task will take is also known.

3. Backqround schedu1ii1g in·Jolves th-e scheouling of

background tasks, which is done when no other tasks

~main to be run. These tasks are not real-time, and
are typically maintenance oriented. Background tasks

are almost always pre-emptible.

Task Dispatching

When the dispatcher is called, it checks to see whether

the next task to be run can be started. In a non-preemptive

system, this implies checking whether a processor is free. In a

8.3

preemptive system, it must check whether there is a processor which

is either free or is r~=I~ing a task of lower preemptive priority

than the task waiting to be run.

If Q ne~ task can be run, the status of the preempted

task, if any, is saved, and the new task started to run on the

machine. Preempted tasks are typicnlly rescheduled as soon as

p~~sible after the completion of the new task.

The dispatcher is always called upon task termination.

In many systems it is also called upon scheduling of module entries,

of whenever the exective gains control, or in some subset of these­

cases. As noted above, calling the dispatcher does not always

start a new task running.

When a new task is started running, it either runs to

completion, or runs until it is pre-empted. The amount of time

that a given task takes is typically very small. On some systems~

in order to support longer tasks, time-slicing is also incorporated,

.nd treated as a form of pre-emption.

8.2 Analysis

The chart on the following page compares the sC:ledulers

of the major operating systems we have studied.

8.4

SCHEDULING FEATURES

Executive f Multi- No. of pre- No. of priorities per
processing: . emption levels i preemption level i I

I .
I .

ATEP No 4 16 I

j I
!

compile-time compile-time I

M'EP/MAX Yes
I

variable variable I

I

A'l'EP/MMS* Yes compile-time compile-time
variable variable .

~3-C No 5 16

I

SDEX/7 Yes I 4 1 I

! I . compile-time compile-time I

COS/UYK-20 Yes ! I variable variable i ,
BOS-13 No variable variable I :

I I i PROO'BUS No I not not
I specified specified
I I

SDEX/20 No I 4 up to 15

• MUltiple CPU's each with its own executive, may share common memory_

8.5

8.3 ~stem-by-Sy~tem Comparison

The following is a system-by-system comparison of Navy

Executives scheduling functions.

8.3.1 ATEP

8.3.1.1 Introduction

ATEP' s scheduler maj r ·tains one priority-ordered queue

of tasks awaiting execution. ATEP dispatches for execution the

highest priority tasks in the queue, and provides the required

: data 'linkages for the task.

·In ATEP, the default priority for a task is the priority

.associated with its module in the master module list.

Priority

ATEP maintains four (4) preemptive levels, with six­

~een (16) non-preemptive priority levels within each level. Two

or more tasks within the s~ne level are served on a FIFO basis.

A task .in one preemptive level can preempt tasks in lower preemp­

:tivelevels, but not tasks in the same preemptive level. A task,

:however, can designate all or part of its execution as non-preemptible.

;A.preempted task will be dispatched before any other task belonging

~o 'the same preemptive level.

fS.3.1.3 ;Successor Scheduling

IAn:operating task has the capability to specify up to

~four (4) successors to be scheduled for execution. It also has

.. the ·capability to specify the priority and preemptiabi,lity status

~thwhich a successor is to be scheduled.I~ the predecessor does

jDot'specify a priority, then a default for the module is used.

8.3.1.4 Message Scheduling

,An operating task can specify up to four (4) tasks to

-.receive anyone messa·ge. The priority with which the receivers

.of the message shall be scheduled is specified by the sender or

a default for the module is used.

8.6

8.3.1.5 Periodic Scheduling

ATEP schedules periodic modules when they are due, and

then according to its module's priority. A module can request

that ATEP charje its frequency for running by issuing the appro­
priatere~uest.

8.3.1.6 I/O Interr~pt Scheduling

When a I/O interrupt occurs, ATEP automatically schedules

the module associated with the interrupt, at it's modules priority.

8.3.2

ATEP/MAX has the same basic scheduling algorithm as

ATEP, execpt that it also supports mUltiprocessing. The following

writeup on ATEP/MMS also applies largely to ATEP/MAX.

8.3.2.1 Multiprocessing

ATEP/MMS can support a maximum of 3 CPU's and 2 IOC's

or 2 CPU's and 4 IOC's. In this multipr0cessing environment,

. the ATEP/MMS Kernel provides load leveling and graceful degradation.

Load leveling allows any processor any t~sk available except for

those dedicated to a particular CPu. Graceful degradation allows,

after equipment failure, for surviving equipment to take over the

tasks of any casualty unit so that the entire operation still con­

tinues at the cost of less performance.

8.3.2.2 Priority

~ere is one scheduling queue per copy. of the ATEP/~~

Kernel (each CPU has its own copy). There are four (4) priority

~vels with sixteen (16) sublevels apiece. If, during multiproces­

sing, a module is preempted in one -CPU, it can only be restored in

the same CPU.

8.3.2.3 ·Successor Scheduling

A predecessor can specify the successor's priority.

·Xf not specified, the successor module's priority is used.

8.7

8.3.2.4 Message Scheduling

One (1) to four (4) modules can be scheduled to receive

a single me~sage. The priority of the recipients can be speci­

fied along with the send request. If not rpecified, the receiving

module's priority is us~d.

8.3.2.5 Error Scheduling

The ATEP/MMS fault pr~=essor requests scheduling of a

task module associated with t11e error, or alternatively, the

ADEP central error module.

.'

8.3.3 P3-C UPDATE

8.3.3.1 Priority

The dispatcher queue is ordered by task priority. In

P3-C update, there are five (5) preemption levels, each with

sixteen (16) non-preemptive priorities. Within a priority, the

queue order is FIFO.

In addition to preemption levels and priorities within

levels, two (2) task "attributes are also considered in the sche­

duling algorithm:

&. A task which can complete all processing requi~e­

ments within 10 milliseconds can only be preempted by

Preemption Levell tasks, thus minimizing task switching

overhead.

b". A task which has issued a "Lock Data Base" request

and has not yet issued a "unlock Data" Base" request.

Thes"e tasks too, are susceptible to preemption by

Preemption Levell tasks only. This provision is in­

tended to assist data base integrity in a preemptive

environment, and to minimize wait times for the data

base.

Background tasks are also supported, at the lowest

possible priority.

8.8

8.3.3.2 Multiply Scheduled Module Entries

Certain entries can be multiply scheduled, i.e., they

can be scheduled even while they are in an active or ready-to­
run state. The followi~g rules would the~ apply:

a. The queue will contain a task for each request.

b. All tasks at an entry must at the same state/priority
level.

c. The order of tasks for a particular entry shall be
FIFO.

8.3.A UYK-7 Standard Executive (SDEX/7)

8.3.4.1 Successor Scheduling

At compile-time the user can specify whether successor.

tasks for a given module are to be time-sliced.

8.3.4.2 Message Scheduling

SDEX keeps a buffered list of messaqes awaiting pro­

cessing. A FIFO flow of messages to receiving user mod~,les is

maintained.

8.3.4.3 Task Scheduling

Periodic and time-critical scheduling are provided.

Time-dependent tasks are tested for execution strictly on a

round-robin basis and have no associated priority.

Background tasks are time-sliced using the CP monitor

clock to periodically return CP control to the dispatching function.·

Once a background task has been started, it proceeds on

a time-sliced basis until the tsk is complete. The background

task is then rescheduled.

There is no priority system. Each task is tested for

execution strictly on round-robin basis.

8.9

8.3.5 COS/UYK-20

COS uses an open:ended, multi-priority scheduling mechanism.

Priorities are dynamic and changeable at run time. COS is suitable

for a multi-computer multiprocessing environment.

8.3.5.1 Task Queues

COS supports a variable number of task queues. Event-·

oriented tasks and time-oriented tasks are kept in separate queues.

8.3.5.2 Task Suspension

The capability for task suspension is provided. If an

interrupted task is not suspendable, the interrupting task shall

be queued and the interrupted task allowed to continue execution.

8.3.6 AN/BQS-13

The 8QS-13 Sonar Executive uses a priority scheduler.

The dispatching function is entered either by the interr11pt

handler or by executive call upon completion of an applications

task.

8.3.6.1 Dispatching Algorithm

Preemption is supported. If the dispacher is called by

the interrupt handler, the priority of the previously running

program, if it can proceed, is compared with the highest priority

new task waiting to run; the highest priority ready task ·is dis­

patcheq.

If no other programs are ~eady for execution, the task

scheduler directs the computer to executive Performance Monitoring

and Fault Location (PM/FL) programs. The execution of the PM/FL

programs shall continue until an interrupt occurs and a program

·of higher priority is ready for execution.

8.10

8.3.7 PROTEUS

Proteus controls three (3) scheduling types.

8.3.7.1 Request Sched~ling

Request scheduling is done by explicit request. The
priority of the task scheduled can be explicitly give~ in the

request.

8.3. 7 .2 Event Scheduling

Event scheduling is done when a predetermined event

occurs. These events are specified at sysgen time. Generally,
the events are external ones to be detected by the executive.

8.3.7.3 Message Schedulina

A message task for a module is scheduled when the

executive or a user task sens a message to the module.

A sending task has the option of specifying the priority
of its receiving task.

A message can be s~nt to more than one message task.

8.3.7.4 Time Critical Scheduling

Time-critical task are implemented as periodic tasks

which, once scheduled, must be completed before their next sche­

duling request occurs. A time-c~itical module entry has assoc­

iated with it its required compute time.

Preempted time-critical tasks are re-scheduled on the

basis of a "least-time-to-go" algorithm.

8.11

8.3.7.5 Backg~vund Scheduling

Background tasks"aLe scheduled at a predefined periodic

rate. The desired perivd~c rate of background task is associated

with the module entry.

If the time for a background entry to be scheduled again

should arrive before the completion of a task currently running

in that entry, scheduling of the entry is skipped for the period.

Pre-empted background tasks are scheduled on the basis

ofa "shortest period" algorithm.

8.3.8 SDEX/20

SDEX/20 can schedule four types of tasks: successor,

.essage, periodic, and background. The relative priorities are:

successor message time-dependent background

A task is given CPU time whenever there are no higher

priori ty tasks waiting and before any lO\'ler priority task. It

is possible to selectively drop certain scheduling classes at

compile time, with the exception of message scheduling, which

must always be presEnt~

8.3.8.1 Successor Scheduling

Successor tasks are scheduled by one of 15 levels of

~ority. Tasks with the same priority are scheduled on a FIFO

basis. If there are no tasks waiting to be scheduled, the next

10wer class, normally the messa~e scheduling class, is searched.

~erwise the highest priority task is executed. Upon task com­

pletion, control returns to the scheduling function.

8.12

8.3.8.2 Message Scheduling

All message processing is scheduled on a FIFO basis.

When all message processing is completed, the next scheduling

level, normally time-dependent tasks, is searched. When a
message is located for processing, ~ pointer to the message packet

is sent and the module is started at its message entr.ance. Upon

completion of message processing, control is returned to the sch­

eduling function.

8.3.8.3 Time-Dependent Scheduling

When higher class tasks have been honored, SDEX will

search the list of time-dependent tasks for a job whose time-to­

initiate-execution (TE) is less than or equal to the current

timer.
task is

task is

next TE
task at

returns

There is no priority among time-dependent tasks; each

checked on a round-robin basis, and the first suitable
scheduled.

When a suitable time-dependent task is located, the·

of the task is computed and CP control is given to the
its time-dependent entrance. Upon completion, control

tc SDEX/20. A facility to stop a time-dependent task

and to delete its entry in the time-dependent tables is ~..Irovided

through. the appropriate ESR requests.

It should be noted that this scheduling facility provides

no support for very-time-critical jobs which MUST run at certain

intervals; in this sched~ling cla~s there is a possibility that

tasks may wait. indefinitely for CPU time. There is another fac­
ility which exists for very-time-critical tasks; such tasks may
set a system timer and will be immediately started whenever the

interrupt from the timer. rounout is received (the tdsk previ~llsly

executing will be pre-empted). This support is needed throughout

Navy s}stems and SDEX/20 would have been inadequate without it.

8.13

8.4 Discussion

Most of the sc~eduling methods used are appropriate for

·their respective environments since they were largely written

for these environments. The schedulers used on FOS will need

to b~ able to support all the sets of functions previously used.

Additionally, it will be necessary to carefully balance, within

rny particular version of FOS the tradeoff between flexibility

at runtime and high speec. ~he scheduler and dispat~heI form

the most crucial part of the system.

8.14

CHAPTER 9

MEMORY MANAGEMENT

9.1 Introduction

Memory management consists of:

~. Managing memory permanently allocated for modules

and their data areas, including linking and assoc­

iated functions.

2. Allocating memory for newly stored non-core-resident

modules.

3. Allocating memory as a temporary "scratchpad."

4. Allocating memory for buffer space.

5. Managing memory so that as much as possible is

available for the user at all times.

Memory management is often machine-dependent, as many

techniques (paging, segmentation) are at least partially hardware­

supported.

9.1

'9 .• 2 ,'Memory Management Features

.~
Supports

. Supports Supports Non-core Supports
Executive Dynamic Temporary Resident Dynamic

',Storage? ,Storage? Jobs? Files?

ATEP '~Yes 'Yes Yes ·No
i ~
I

ATEP/MAX Y:Yes ','Yes . Yes No
,
I

;

i ! i i

ATEP/MMS : Yes ; ·'Yes
!

: Yes I No

I i !
~

t·

i I

P-:-3C ! Y.Yes . Yes Yes : Yes
f l
! , ! ;

UYK-7 SDEX '·Yes
,

Yes \ No No I

,
• I

;

COS/UYK-20 Yes ! "Yes Yes No

:

BQS-13 No No
: ·No - No

: ,

~ ;

PROTEUS 7,No
, ','No '·No No ~

f ~ , ,

SDEX/20 ·'·No . Information AVe lIable -

',:,9.2

9.3 General Description

The degree to which Navy Executives manage memory varies

enormously. Some do not even have to manage memory -- all modules

are permanen~ly core resident. Other Navy Executives keep certain

jobs r~~manently in memory and have an area reserved for non-core­
resident jobs and temporary storage, on a first-come-.first-served

basis. Other Navy Executives run a true multiprogramming environment.

9.4 System Descriptions

The following is a system-by-system description of cur­

rent Navy Executives memor}' management facilities.

9.4.1 ATEP

ATEP uses a sophisticated system for memory management.
Many programs are considered to be core-resident and as such ar~ al­

ways available and active. Other programs are non-core resident and

are available when needed from a disk unit.

ATEP maintains a fixed pool for "temporary storage" - used
for either buffer space for currently running programs tv or to hold

a newly activated non-core-resident job. Temporary storage can be

requested by any running job in blocks of 24 - 28 words. If storage

is not available the Executive will rollout any non-running non-core-

resident jobs or unused buffer space. The Executive will not remove

a finished job until such space is needed.

9.3

The amour.t. of temporary storage available depends on system
configuration and is communic'ated to the Executive upon system gener­
ation. Memory is managed through a Temporary Storage Directory, con­
taining a list of all blocks, their identity, and size, and through
a Temporary Storage Status Table containing the status of all data
blocks w~.~ ~I an indicator of available blocks for each size.

ATEP also performs base register setup and linking to common
datubases and subroutines. If the memory pool reserved for non-core­
resident jobs and buffer space is exhausted, further requests will be
queued and acted on by priority level. Non-care-resident jobs will

be rolled out when inactive and replaced by waiting jobs. On no
occasion will core-resident jobs be removed.

9.4.2 ATEP/MAX

• ATEP/MAX uses a very similar scheme to that of ATEP. Certain
programs are core-resident, a portion of memory is reserved for tem­
~~ary storage and non-care-resident jobs, similar to ATEP. Temporary
storage can be requested in blocks of 24 to 28 words; maximum memory

available for non-core-resident programs is 8,192 words (8K).

~mory is managed through the same set of tables as ATEP,
namely a Temporary Storage Directory containing a list of all blocks,
their identifiers, and size. The Temporary Storage Status 1able con­
tains the status of all data blocks with an indicator of available

blocks for each block size.

. t.4

ATEP/MAX also performs base register, $etup and lir.kage to

common databases and subroutines. Non-care-resident jobs that have

terminated remain in core until more temporary space is needed, when

they will be copied back onto the disk. If ro~re temporary storage is

needed than available, ATE.) /MAX will que"e !"~quec.. ts and run them on a

priority basis. Non-care-resident joos will be rolled out when in­

active and replaced by waiting jobs. On no occasion will core-resident

jobs be removed.

9.4.3 ATEP/MMS

ATEP/MMS presently uses the same memory management scheme

as ATEP or ATEP/MAX. It is, however, designed in a modular fashion

and is intended to be augmented in ~ower in the future. The following

describes the Kernel of ATEP/MMS's memory management scheme, which is

identified to the previous schemes used fOr ATEP and ATEP/MAX.

ATEP/MMS again maintains a memory pool for non-care-resident

jobs and buffer/scratchpad space. Modules can acquire or release

temporary storage on demand. Modules can even catalog temporary

storage for later retrieval - a feature not available on ATEP or

A'l'EP/MAX.

Dynamic storage is maintained for non-care-resident modules

and buffer space; 256 words maximum is allowed for buffer space and

8,192 words (8K) for non-care-resident programs. A finished non-core­

zesiaent module will remain in core u~til memory is again needed -

rollout is not provided. Two tables are again used: a Temporary

Storage Directory con~aining a list of all blocks, then identifies,

and size~ and a Temporary Storage Status Table containing the status

of all datablocks with an indicator of available blocks for each size.

9.5

ATEP/MMS again performs base registe'r setup and linking to

common databases and subprograms. If the temporary storage pool is

exhausted requests will be queued and run on a priority basis. Non­

core-resident jobs will be removed when inactive to allow jobs in the

queue to run. On no occasion will coi._-resident jobs be altered.

9.4.4 P-3C

The P-3C Executive, running on the CP-90l computer, uses a

complicated scheme for memory management. All programs and data are

either core- or non-core-resident. The scheme is split into two sectiont

T.he first section is used for core-resident jobs and is al­

located at system initialization by the System Generator. Core-res­

ident jobs are permanently in memory and are always available.

The second section is used for allocation of non-core-res­
.ident jobs and for lIscratchpaC1' memory.. When ·scratchpad" or buffer

space is requested, the request is passed to the Core Allocator

aodule.. This module accepts requests from:

~) Scheduler request to allocate or load a non-core­
resident program or file.

2) Application task request to read a dynamic file.

3) Application task request to scratch/work area.

2he Core Allocator must also know the task fiie identification,
except on a request for scratch storage. There are four (4) ,types of

temporary memory: transient task (non-core-resident job), transient

task and file, file only (database), and scratch area. If core is

available the request will be satisfied inunediatelYi if not, the re­
~st is put on a '"wait for core" list by priority type (either pre-

-'-emptive or no·npree.mptive). When memory becomes available the Core

'9.6

A1locator checks the preemptive list before checking the nonpreemptive

list. Allocation within each list is done on a First In-First Out
(FIFO) basis. Then a capability exists to go to a 16 level priority

system using non-FIFO selection, but this is not currently implemented.

Memory is allocated by segments of varying sizes. The

Executive contains a map of allsegrnents stating if available or not
available; if not available, the segment is either assigned to per­

manent database or an active task or file or is defective.

9.4.5 .UYK-7 Standard Executive (SDEX-7)

SDEX's algorithm for memory management takes full advan­

tage of the UYK-7's hardware segmentation. The executive uses a

variable length table containing the base address and storage pro­

tection attributes of all user programs to manage memory. The

executive also maintains a fixed amount of memory for user I/O

buffers. No facility for non-core-resident programs is provided.

9.4.6 COS!UYK-20

The COS uses a memory management system. Memory is divided

into a partitioned basis, the partitions being allocated at system

generation. COS maintains a memory assignment table reflecting cur­

rent tasks and memory assignments.

~e task must specify the number of words requested, the
absolute base address (relative to partition start) for the segment,

and an identifier. A best fit algorithm is used when searching through
partitions. If the request cannot presently be satisfied, a lower

priority job is swapped to the disk. If no such job exists, the re­

quest is queued until memory is freed. When memory becomes available

9.7

the queue is searched for the highest priority job. The system operator

is notified when the Executive feels memory requests are becoming

excessive for capacity. An individual task may request to be swapped

out if appropriate.

9.4.7 AN/BQS-13

- The BQS Executiv~'is designed for a small, dedicated appli­

cation sonar system. It contains no real memory management. A Task

Control Block is used to contain the status of all jobs. Joh scheduling

is done on a priority basis. There is no facility for running

Eon-Core-Resident jobs.

9.4.8 PROTEUS

Proteus uses no dynamic memory management at all. All pro­

grams can concurrently fit in core, and as such, thp.re is' no need for
dynamic manaqemert. Proteus is being provided with facilities needed
to support swapping.

9.5 Discussion

The techniques of memory management are highly hardware
dependent. As has been shown on some of the more advanced

aystems above, higher order memory management techniques - seg­

mentation and paging - are suitable for Navy systems.

"'.8

Considering the features of current Navy tactical execu­
tives, the FOS should be able to:

- Manage memory dynamically, by segmentation and/or

p~ging (depending on hardwa~e available).

Make dynamic buffer space available to running programs.

- Run non-core-resident programs.

Have facilities for files to be stored in memory when
requested, greatly speeding up file access time.

9.9

·CHAPTER 10

I/O PROCB~SING AND DEVICES ~~NAGEMENT

.10.1 Introduction

The Navy Executives covered in this study typically

provide an I/O initiator/scheduler function, along with a scheme
fo~ reflecting I/O interrupts back to the requesting module.
~s leaves the job of device management either to the user level

or to standard system supplied handlers.

Typically, the I/O initiator/scheduler function is

.invoked by an ESR. It checks the requested operation for

validity. After checks for device status, the request is either

initiated or queued to be initiated later.

Upon receipt of an I/O interrupt, tne interrupt pro­
cessing function reflecffithe interrupt to the module registered

to process I/O interrupts for the device.

10.2 System Descriptions

The following is a system-by-system analysis of I/O
Processing and Device control.

10.2.1- ATEP I/O Processing

10.2.1.1 I/O Initiation

T.he calling sequence for initiation of all I/O opera­
tions is via an initiate I/O Executive Service Request (ESR) made

by a user module. ATEP passes the interrupt to the ATEP I/O
processor (XIOP).

10.1

Each'module performing I/O operations on specialized

devices may prepare and contain its own I/O channel program; for
~standard devices, ATEP provides a standard device handler. Along

~with each I/O ESR, the module must provide an I/O packet delineating
;the~parameters ofthe·operation. As a result of II) initiation,
;aCcess to the module's channel program is gained .by the I/O Con-'

troller (IOC) and the program is executed.

;Depending on the type of interrupt being monitored,

~eitherthe "buffer complete" entry point or ·the "channel_program

lcomplete" entry po.int of the module is scheduled •

.110.:2'-'1. ,2 Control Function

~~he I/OControl.Function is responsible for controlling

~segment·module I/O channel programs and their interfaces with the

~/O channels. The I/O control function initiates all I/O opera­

;tions· and responds -to requests from modules to perform I/O channel

-services and enabling/disabling of a channel. The I/O control

:function'operates in conjunction with the interrupt processing

function. The I/O control function is also responsible for pro­

cessing computer program queues of Class III interrupts to prevent
{their loss.

,l.O~2.1'-3 I/O Controller

~/UYK-7 hardware -I/O services are supplied by the I/O

:Contrdller. The IOC controls I/O data flow and associated device

~ontrol, and executes·channel associated programs. A centralized

~/O,packageis used by ATEP to con:;truct channel programs for
~standard devices. For other devices, the module performing the

!input 'or output constructs the actual channel program. In either
'case, the channel program, running in the IOC asynchronously from
,'CPU ~operation, can signal the occurrence of events significant to

~the associated module.

, '10.2

10.2.1.4 Data Buffer Control

Data buffers for I/O may be cow~on or private data

areas, or may be temporary storage areas obtained through storage

request ESR's. To provide flexibility for a channel program to

access more than one fixed buffer of data, variable buffer cont4~1

words can be related to a channel program. These buffer facili­

ties provide for double buffering, cyclic use of chained b~ffers

and concurrent I/O/and processing of essentially continuous streams

of data.

~O.2.1.5 Peripheral Device Support

Peripheral device support falls into two major categories:

general purpose devices supported completely by ATEP (disks, tapes,

and printers) and specialized applications devices (the AN/SPY-l radar,

the MK 26 guided missile launching system, and Weapons Direction),

which are in part supported by the appropriate user module and in part

by ATEP.

The user communicates with all devices through specialized

ESRs. Existing n~dules for general pur~ose devices provide channel

programs and.controls. For the specialized tactical devices, the user

module must supply channel programs in addition, ATEP fields all I/O

interrupts to assure that the responsible module receives notification

of the interrupt. Typically the user has the option of specifying

immediate return to the module or return only after the I/O operation

is complete.

~O.2.1.6 System-Supplied Device Handlers

~e system-supplied device handlers for the AN/UYK-7

system are ATEP supplied task state modules. These contain

channel programs which translate device-specialized ESR's from

user modules into the basic I/O ESR's used by the ATEP interrupt

and I/O processor.

10.3

10.2.1.7 Specia~ized Applications I/O Devices

These devices are not completely supported by ATEP but
are also directly controlled by the running user program. Examples

would be the ~N/SPY-l radar, the Command and Decision Control, and
the WeapC"n~ L'iref:tion System. Special options pecui iar to each
devic~ are available.

10.2.1.8 Error Recovery Processing

In the event an error is detected during I/O operations

either the module requesting the I/O may be scheduled at its error

entry point or the ATEP-provided system error handler module may

be scheduled. In addition, provision is made for the device handler

to display an error message on the operator's console.

10.2.2 ATEP/MAX

I/O processing and device management is the same as that

of ATEP.

10.2.3 ATEP/MMS

I/O processing and device management is the same as that

of ATEP.

10.4

10.2.4 AN/BQS-l3

10.2.4.1 I/O Control Function

The I/O Control Function handles all I/O requests from

opera~ional tasks. When such a request is received, the fun~tion
invokes the appropriate routines which examine the status of the
~quired channel, and either initiate the request if not in use or

place the request on a queue if it is in use.

A similar function handles I/O interrupts generated by

devices, channels, and controllers. This function also invokes

appropriate routines for handling initiation of IOC chains, data
transfer, monitor interrupts, etc.

10.2.4.2 I/O Facilities

Sixteen channels are available to AN/BQS-13. They con­

nect with both standard and applications-type equipment, including:

Magnetic Tape Transport

- Typewriter Console

Card Reader/Punch

- Disk
DNA Sonar System

Fire Control System
Integrated Multifunction Console

10.2.4.3 Error Recovery

Recovery processing and error handling are accomplished

via the error management function.

10.5

10.2.5 P3-C Update

10.2.5.1 I/O Initiation

Access to all P3-C Update I/O devices is controlled

by the Input/O~tput Control Module (IOCf-I). It accepts requests
for I/O initiation and also providp~ ch~ nec~~sary channel sch­

eduling and queue manipulation logic required for tho~e devices

which have multiple users and/or share I/O channels for data or
control purposes.

~he IOCM allows users to specify wait or immediate

return on their requests, interfaces with the scheduler and dis­

patcher as appropriate and only allows application hardware-test
tas·ks to communicate with a device which has a "down" status. The

XOCM maintaining control tables in conjunction with the I/O inter­

rupt processing routines identifying:

..
a. Status of all I/O devices (up, down, busy, test,etc.)

b. CUrrent user of the device

c. User error and normal return pointers
d. Maximum re sponse time

10.2.5.2 Peripheral Devices

All Y/O devices are categorized as either executive- or

application-controlled. Executive-controlled devices .are thos~

which the executive program needs to meet its own data processing
requirements tnagnetic tape, hi-speed printer, drum, etc.) A part

of the executive IOCM contains a full "handler" capability for each

device based on the requirements of executive routines and applica­

tion tasks.

10 .. 2.5.3 Error Recovery

P3-C can detect malfunctioning I/O devices, disable the

offending unit, and return an "error" indicator to the user.

10.6

10.2.6 SDEX/7

10.2.6.1 I/O Initiation

Executive su;·ervision of I/O channp.l utilization is done
by the input/output management fU:l~tion. Inputs to the function

are ESRs from user modules requesting the initiation .of I/O opera­

tions or the enabling or disahling of I/O channel interrupts.

Immediate initiation of an IOC command chain is provided

for. A user module specifies the IOC number and the location of

the IOC command chain to be initiated. CP ~ontrol is then returned

to the requesting user modules to continue processing.

All user modules responsible for interrupts on a channel

are required to register their desired response for interrupts. A

maximum of four (4) modules are allowed to respond to interrupts on

one channel, one for each interrupt type. Response options pro~ided

to the user modules are:

a. Immediate user module entry through the I/O interrup~
entrance; or

b. Queuing of the interrupt and scheduling of the user
module's successor entrance.

10.2.6.2 I/O Interrupt Enabling/Disabling

User modules registered for I/O channels are allowed to

selectively enable and disable interrupts on those channels through

the use of E~Rs. Interrupt enable or disable instructions are

passed on to all CPs except when specifically prohibited by the

user. The enable/disable interrupt instructions are executed by

the receiving CPs when entering the scheduling function.

10.7

10.2.7 COS/UYK-20

10.2.7.1 I/O Initiation

Unlike the previous systems, control of all peripheral

device I/O functions are centralized with the cos. All I/O r~quests
are issued utilizing the Executive Return (ER) instruction and
supply and I/O packet address. The I/O packet contains a function

code, the channel number, the data location and length, and any
data format information. The packet is analyzed by centralized

%/0 and then forwarded to the identified device handler.

10.2.7~2 Centralized I/O

Centralized I/O is the interface between user requested

X/O and the hardware I/O handlers. When the I/O request is receivedj
contrpl is passed to centralized I/O. For all requests, the request 0,

task has the option of receiving control following I/O initiation or

not. The request is checked for validity, associated ~~th a physica~

device, and, if necessary, data conversion performed. In a multi-
I

computer configuration, I/O calls for devices which are not connectea

to the processor making the request are transmitted to the appro­

priate processor via an inter-computer channel. If ~e device is
available, the I/O is initiated i~ediately, and control returned to

the user (if requested). If the device is busy, the request is queu~

and control returned as above.

10.2.7.3 Peripheral Device Handlers

A separate peripheral device handler is required for each

t~~ of peripheral device in the system. The device handler receiveE
I

control from centralized I/O in response to an I/O request. The pac)

address and the channel device table are also inputs to the handler.:

~e handler analyzes the function requested, incorporates user-reque~
,-options and initiates the I/O chain. When I/O termination ,has occur~

, !

the interrupt is processed by the handler, and control returned to '1

Centralized I/O with the device status.

10.8

10.2.7.4 Er~vr Recovery

All I/O device types are serviced by the peripheral

error logging function. The error logging service receives con­
trol and validates that the device type exists and the the error

is valid for the devic~ type. If an invalid reque~t is found,

the task is aborted. If the request is valid, a control inaicator

is examined to determine if the user should be scheduled to receive

control on the interrupt. An appropriate message is theta constructed

and output to the system operator.

10,2.8 The Proteus General PUrpose Executive

10.2.8.1 I/O Initiation

Input/output operations can be initiated either by the user

via an Executive Service Request (ESR) or upon occurrence of a stimulus

for a Time-Critical Task or Selected Event Task. The I/O operations

are desclibed to the executive by an "I/O Request" whi~~ is a packet

of information sufficient to ~low the executive to initiate and

monitor a specific I/O channel transfer and to schedule and cowmunicate

with the requesting task.

Whenever requested I/O requires activity on a busy channel,

the request is queued until the channel is free. The request may se­

lect immediate return after the I/O request is honored (as soon as the

dispatchihg algoL:ithru will allow) or he roilY szlcct to be suspended

until the occurrence of the I/O completion ;nterrupt. A time-out fa­

cility . allows the executive to protect the user from indefinte

suspension due to a looping or hung I/O transfer.

10.2.8.2 Status Returns

Status information is returned in the I/O Status Word spe­

cified in the I/O Request. This status is updated on each interrupt

zesulting from the I/O Request and whenever the request is queued or

un-queued. This status information includes information on irrecov­

erable error conditions.

10.9

10.2.8.3 Error Recovery

For errors which are related to an I/O operation, such as

channel fault or an equipment reject, the executive attempts to recj

fr~L! the error condition and reset the channel.or equipment to a co

dition where the device is usable. The execut~ve tnen reports to t

task which initiated the I/O operation the error condition and the

current status of the device.

10.2.9 SDEX/20

10.2.9.1 I/O Initiation

~he executive manages I/O throu9h the I/O management

£unction, through which modules may register for I/O channel r~s­

ponsibility and initiate I/O. All I/O operations are conducted

through ESRs. Actual I/O initiation is always done by the executive~

in accordance with an ESR request passed by the user module.

10.2.9.2 I/O Registering

User modules must register to receive the particular

interrupt types on a specific channel; the executive will not

automatically process I/O interrupts. Up to four modules may

register for each channel -- one for every interrupt type. TWo

options for response are available when an interrupt comes through;

~e user may specify immediate interrupt processing through the

X/O interrupt entrance or queueing of the interrupt and scheduling

of the receiver as a successor task. The first form is useful fo

real-time and time-critical rapid-response systems.

User modules registered for an I/O channel may selectively

enable or disable their associated interrupts.

~ ~O.lO

10.3 Discussion

10.3.1 I/O,Initiation

For all Navy executives, the actual'initiation of an

I/O operation is handled by an executive supplied module. In

all cases, this is done primarily in response to user requests

(ESRs) .

In addition to per~itting I/O requests via ESR, the

Proteus system allows I/O to be initiated upon occurrence of a

stimulus for a Time-Critical or selected Event Task. Thus,

Proteus allows I/O to be periodically initiated along with a

periodically scheduled module. The other systems can achieve

the same effect in a more roundabout way by scheduling a periodic

module to initiate I/O. The Proteus scheme may be seen to be

both more efficient and simpler. •

Under those executives whi~h supply handlers for general

purpose devices, the device handlers themselves utilize the cen- -

tra~ized I/O initiation function. In'ATEP the user might execute

a tape request ESR but the tape handler is itself a task state

module containing tape drive channel programs. The tape handler

operates on the tape request ESR and then executes-its own Initiate

I/O ESR to the centralized I/O initiation function. This scheme

has the advantages of keeping the executive state module as small

as possible and of permitting the modular inclusion of only those

device handlers required in a particular system configuration.

7t is planned for the design of FOS to utilize the

standard-device-handler organization, but to expand it to all I/O

devices. For non-standard devices, a new device handler will

~irst be written, and then it will be used in the standard way

by the application program.

10.11

10.3.2 Validation

Only ATEP and COS make specific mention of the valida­

tion of requests~ Presumably, however, ~ne other executives

perform some form of testing prOf;"" '!""re.

Mention of the consequences of an invalid request is

made in the Recovery Proces1~ng section.

Under ATEP, validation of I/O requests is done at system

initialization time. Each module containing channel programs
(including device handlers) executes a "Setup I/O" ESR, at which

time that module is matched against ATEP supported tables detailing

which modules are to be allowed access to which channels and what

their access capabilities will be.

COS, on the other hand, makes a validity check on each

I/O request as it comes in, because of the logical I/O structure

maintained by cos. At th~ time of the check a match is made bet­

ween the request and a physical I/O device.

10.3.3 Scheduling

All of the executives will immediately initiate an I/O

operation if the required path is free. If the path is not free,

responses vary:

In SDEX/7, the centralized module does not even check
for path busy. Channel status checking-and-device handling is

entirely under the control of the· task modules which call the
executive only for execution of the privileged "Start I/O"

instruction.

10.12

In BQS-13 if a channel is found ~o be busy the new

request is simply added to the existing channel program via
chaining. No mention is made of how interrupts are generated

signalling completion of requests buried :n the chain or of

how completed req\lest~ are removed f:4 0111 the '.:hain.

Proteus and P3-C queue requests for busy channels

within the centralized init:~tion modules and execute them

on a firstin--first out basis.

COS is similar to Proteus and P3-C in that it is the

central initiation module which handles queued requests; how­
ever, in addition to this, COS offers a logical I/O structure.
X/O requests are made to a logical device number and the request

is associated with a physical device by the executive as part of

the validation process. The requesting module has the option to

allow substitut~n(i.e., if the disk is lbusy, output may be
directed to a tape in the interest of speed). Substitution is
only possible for output devices and if the option is not used,

output requests will be queued first in-first out.

ATEP is in a sense similar to SDEX/7 in that the kernel

X/O function does not queue requests. This is a function of the

task state device handler, or of the requesting module in the

case of a specialized device. In this way a separate queue is

maintained per device. For ATEP supplied device handlers queing

is on a first in-first out basis.

10.3.4 Channels

Under all of these systems, the actual hardware I/O is

dQne by an I/O channel under the control of a channel program
running asyncronously with respect to the cpu. A channel can

indicate completion by generating an interrupt and invoking the
centralized interrupt handling module, or, in the case of the
AN/UYK-7 computer, a channel has a limited ability to communicate
directly with a user module through a capability to set and test
bits.

10.13

10.1.5 Buffer Control

There is a lack of information in this area. In P3-C
I/O buffers are permarently allocated in specific locations in

--aemory. In ATEP, the JnOdule req'!t...:::iting service allocates the _

buffers. In ATEP buffers can be chained and used cyclicly and

may be dedicated areas or may be dynamically requested by the

mdule.

10 .. 3.6 Data Translation

AT~P and COS provide code translation facilities. In

ATEP, code translation can be specified by a user requesting

alphanumeric console I/O or can be requested in a general way

through a translate ESR.

10.3.7 feripheral Device Support

Device handler modules are supplied by the Executive

for system supported devices. In ATEP, if a user module wishes
to ~e an I/O request to a general purpose device a specialized

ESR for that device is issued. The ac~ual channel programs are

contained within the dp.vice handlers for supported devices and

within the user module for specialized devices.

System-supported devices are characterized by the pre­
sence of system-supplied device handlers which act as intermediaries

between user modules and the device itself. ~he use of a common

device handler allows concentration of all the idiosyncracies of

a-device 'into one spot.

1~.3.7.1 Applications Devices

In all of the systems specialized devices that are dedi­
cated to particular modules have the device handlers incorporated
'directly into the modules. This technique allows reduction of the
overhead thut would be necessary to call a device handler that is

used by only one module.

10.14

Executive services for support of applications devices

are the basic level ESR's for initiation and termination of I/O,

and reflection of interrupts from the device.

10.15

CHAPTER 11

PROCESS SYNCHh.ONIZATION AND MESSAGE COM.'1UNI:~ATIO~:

11.1 Introduction

In many Navy applications, it is necessary to prevent

simultaneous modification of shared data-bases by parallel tasks

(also termed processes). These and similar problems are prevented

by the use of process synchronization tools. Processes often need

to pass information between themselves. Although this may often

be done through shared segments, it is often simpler and more effi­

cient to use a (synchronized) form of messaqe communication, par­

ticularly if the messages are directly associated with the occur­

rence of events.

The process svnch:t'.:"oniznt; on Ann me!=:c:;:tCTP r.nmmll1'1i~~t:i_()n~

facilities are necessarv to SUODort mll1tin1:"t)~Y:"~mmi'1'7 ~'1~/(\Y:" ml11t.i­

processin~ environment!=;. Thp.~~ f~r.il;ti.e!=: ~rn\1i.rle the
means for different tasks to coordinate their activities. This

is desirable for many reasons, among them: protection of shared

databases; data sharing between different tasks; aud timing syn­

chronization between different tasks to accomplish a larger

activity. As this report demonstrates in earlier sections, cur­

rent Naval tactical systems rely heavily on a multiple task

approach (some further complicate the matter by utilizing multiple

task approach (some further complicate the matter by utilizing

mutliple. processors); thus, facilities for task synchronization

and message communications between these mutliple tasks are not

only desirable, but required.

11.2 System-by-Svstem Survey

The following is a system-by-system comparison of the

Navy Executives synchronization and m~ssage handling functions.

11.2.1 ATEP Inter-Computer CommunicAtion .. '

Communication between computers in the same system is

via inter-computer channels. The number of inter-cornpl'''ar chan­

nels linking computers is specified in advance by AEGIS segments.

11.2.2 ATEP/1~

A~/MAX supports multiprocessing and must ensure data

base protection over several computational elements.

11.2.2.1 Data Base Protection

Before a task is allowed access to a common table, the

appropriate lock is tested. If set, it is not allowed ac=ess.

Otherwise, i-t sets the lock by issuing a Set Lock and Non-preemptive

State ESR. This ESR also makes the task non-preemptive, thus mini­

Blizinq the conflict with other CPU's by allowing the lock~.ng module

to compl~te its critical code as quickly as possible. As a' precau­

tion. all locks associated with a task will be automatically released

when that task exits. A task may have a maximum of three (3) cur­

rently set locks.

ll.2.2.2 Module Communication

COmmunication between tasks is achieved through task­

to-task message transmission controlled by ATEP/MAX. Uessaqes are

in a standard format, and ATEP/MAX controls the routing, transmittll

and reception of messages.

MOdules communicating with each other may be within one

eomputer~ or they may reside in different computers of the same
segment.

11 .. 2

When a task needs to send ~ McsS~q2, it first requests

temporary storage before building its message and scndinq it. Messages

are of variable length, the maximum being 256 words.

Mes~ages sent to other computers are queued for the inter­

comput~· ~hannel ~rogram.

11.2.3 ATEP/MMS

11.2.3.1 Introduction

ATEP/MMS supports a multiprocessing multi-CPU environment.

Each CPU contains the ATEP/MMS Kernal. The CPUs communicate with

each other through shared memory.

11.2.3.2 Database Locking

To ensure that no race conditions occur in the access~g

of Executive Common Data by the multiple CPU's, ATEP/MMS uses a
test-and-set lock technique, similar to the one described for ATEP/MAX.

11.2.3.3 Message Communication

When ATEP/MMS operates in a non-memory sharing mode,

message communication between modules is supported in almost exactly

the same way as that in ATEP/MP.X. The only difference is in inter­
computer message processing.

11.2.3.4 Inte~-Computer Messages

There are two (2) ways to send a computer-to-computer

message. One is that used in ATEP/MAX, in which system tables in­

dicate whether or not a message t~ a particular module is to be
. passed on to another computer. The sending task· must do its own

lookup. In the second method, the ESR packet itself indicates to

which computer the message goes.

~l.3

11.2.4 P-lC Upd~te

11.2.4.1 Database Locking

~e ~-3C supports approximately 300 tasks, all of which have

access a ~ommon data base. To ensure that no task accesses this

common data base when another task is updating data, the P-3C Update

supports ESR's which the "writing" task can use, the "Lock

D3ta Base" ESR and the "Unlock Data Base" ESR. When a task has the dat

base locked, no other task can access it. Also, to ensure system

efficiency, a task which has issued a "Lock Data Base" ESR is normally

a110wed to complete its accesses to the data base and not be a can­

didate for preemption until it has issued a "Unlock Data Base" ESR.

11.2.4.2 Message Communication .

Explicit message communication between tasks is not supported/

by P-3C Update.

Files, however, -are used to allow tasks to share and pass

data. Since the data is shared or passed only among tasks of the same

.ubprogram, it is ~ore efficient to use files than the tactical common

data base.

11.2.5 UYK-7 Standard Executive

11.2-.5.1 Database Protection

In the UYK-7, simultaneous access by multiple Cp's to any

scheduling lists and other critical code is prohibited. This is imple­

aented using the test-and-set technique described in ATEP/MAX.

11.4

11.~.5.2 Message Processing

A fixed amount of memory is availabl~ for use by user modules
" The total amount o~ memory reserved for this as message pack~ng areas.

"1 t" eter The system messages packing purpose is a SDEX/7 comp~ e- ~me par.~~l •
area is divided into segments consisting of a number of .fixed lenqth

packets. The number of segrner! t~ degment size and packet lencths for

each segment are SDEX/7 compile-time parameters.

11. 2.5.3 Immediate Messages

Any module may initiate an immediate message to the user mod­

ule designated as the Common System Module.

The Common System Module will be immediately executed, pre­

empting the requesting module. Upon completion, the module initiating

the immediate message shall be restored and run.

11.2.5.4 System Messages

During program loading and initialization, an area of memory

is set aside as a system message packing area. Through SDEX/7 compile­

time parameters, the user may determine the length of the area, the

number and size of segments within the area and the size of

system packets within each segment.

Storage in the system message packing area may be obtained via

an ESR~ Once .. the packet is assigned, . the user module
may use it to pack a message. The sending ESR is then used
to initiate the message to up to four (4) receiving user modules.

11.S

Local Messages

User modules may utilize local data storage areas for the

purpose of sending messages. These local mep~ages have the same format

and are handled in the sa~ manner as~y:,tem messages with the following

'exceptions :

1) aessage packing ,,~eas are provided by use!; modules and
not obtained via ESRs.

2) user modules are responsible for ensuring that the
packet is not reused before the last receiving module
has processed the message.

11.2.6 COS/UYK-20

11.2.6.1 Inter-task Communications

An inter-task communications capability is provided by the

scheduling/priority control functions which validates the parameters

and determines the type of scheduling requested. It then stores the

parameters to be forwarded in executive memory, and creates a pointer

to the parameters.

11.2.6.2 ~ynchronization

A1though supporting a multiprocessing and multi-computer

environment, COS has no synchronization facilities or database locks.

11.2.7 AN/BOS-13

ftere is no mention. of synchronization or message .handling
in the documentation referenced~

11.2.8 Prot~us

11.2.8.1 Inter-Module Communication

Inter-module c~mmunication is provided. A ressage task
can receive either a system or a local message.

A system message is information in a fixed .. format pI aced

in the Task Communication Work (TCW) of a message task by the execu­

tive. There is no way for a sending task to determine if a receiving
~essage task has received a system message.

11.2.8.2 Local Messages

A 10calmessage is information in a user' defined format

which is intended for task-to-task communication. The address of
the local message is placed in the TCW of a messaqe task by the
executive. The task which sends the local message is able to deter­

mine if the message has been received.

11.2.9 SDEX/20

11.2.9.1 Inter-Task Communication

SDEX/20 user modules may send two types of messages -­

local messages and system messages. Local messages can be sent only

to one receiver, while as many modules as desired can receive a system

message. .In either case, the receiving module (s) are entered in
SDEX/20's list of modules awaiting message scheduling, and control is

returned to the initiating job.

11.2.9.2 . Synchronization

There is no mention of synchronization or database locking
mechanisms in the documentation referenced.

11.7

11.3 Discussion

All documentation referenced covered only a few aspects

of synchronization.

Most Navy systems solve synchronization problems by

having tasks declared non-prepmptive. The advantage to this is

that critical code, locking ~ database, is executed immediately.

Conversely, system response may suffer.

As is evidenced by the system discussions above, most

of the existing Naval ~xecutives support some type of message

communication scheme. Further, many ~upport features to protect
shared databases from simultaneous modification by parallel tasks.
Both of these facilities are very necessary in any configuration

with multiple tasks. The 5ntegrity of common databases must be
protected against simultaneous modification or else the necessary·

requirements for system consistency will be lost (the system would

DO longer be deterministic). Additionally, there must be a means

for parallel tasks to communicate data between each other allowing

the multiple task approach to be utilized for complex tactical

JJystems. Without such facilities, such coordination WQulg J;>e
difficult indeed.

A major fault of the discussed executives is their lack

of true synchronization primitives. Generally, the method for
synchronizing tasks consists of sending a message to the message
entrance of the desired task. The message entrance code then must

accomplish the synchronization necessary. Of course, the sending

task could issue a request to schedule another task put this

10rces task execution from the beginning again. Task synchroni-

11.8

zation primitiv~s such as "BLOCK", "WAKE", are not directly

implemented and must be ~xplicitly programmed. Not only docs

this fault cause increased programming overhead, but increased

system overhead probably results as scheduling calls must be

used to "fak~" such primitives. Evidently, the original task

idea -j~umed that a task would complete one job without preemp­

tion by a task of equivalent priority. (This idea is mainly

supported by the fact that few executives have a time-slicing

function). Thus it was not necessary to plan for synchroni­

zation of parallel tasks as this situation should not arise.

However, newer programming techniques such as process driven

I/O (i.e., having processes awoken upon reception of the appro­

priate interrupt) and parallel computation (not just totally

different tasks sharing a processor) make these type of syn­

chronization facilities necessary. Any standard Navy executive

should supply such facilities as system primitives.

A step further than just supplying message communi­

cation and process synchronization facilities is their com­

bination. Primitives such as "BLOCK" and "WAIT FOR MESSAGE"

are far easier to program than, having separate message task

entrances. All the capabilities of the current message com­

munications schemes (e.g.; datasharing, database pro~ection)

can easily b~ incorporated into such primitives. Concepts

such as "events"and "semaphores~ are not new and offer a better

approach to this problem. Such mechanisms should be investi­

gated in an effort to supply facilities to synchronize.parallel

tasks in a more efficient and flexible manner.

It is recommended that FOS be capable of incorporating

far more sophisticated forms of ~rocess synchronization than are

currently used, as these will be necessary for applications in

the future.

11.9

It is also recommended that the message communication

features provided by FOS be both more transparent to the user, so
that the hardware configuration of the machine is unimportant at

that level, and more general, to hanf:c the problems of large data­

base systems.

11.10

CHAPTER 12

FILE MANAGEt-1ENT

12.1 Introduction

This chapter discusses the file management schemes used

by the Navy's Executive systems.

Of the Executives analyzed, three (3) do not contain any

file management system at all. Three (3) Executives do not have
file management per se but do have relatively sophisticated memory

management features which resemble, in part, those of file manage­
ment. The remaining Executives contain standard file management

systems with provisions for file manipulation, protection and stor­

age on secondary storage devices.

12.1

12.2 Feature Chart

File Management
System

1\TEP Yes

1\'tEP/MAX Yes

l\TEP/MMS Yes

P-3C Yes
..

lTYK-7 (SDEX) -7 No

COS/UYK-20 Yes

BQS-l) No

PROTEUS No

Cor, Resident
Files

Yes

Yes

Yes

Yes

No

No

No

No

Files Used For
System Use

Yes

Yes

Yes

No

No

Yes

No

No

N
•

N ...

12.3 System Comparison

The following is a system-by-system comparison of !ile
management features for the various Executives.

12.3.1 ATEP

ATEP does not have a file management system. I'jstead,
it uses segments located in main memory as data bases for modules

who wish to use such areas for information keeping, message trans­
mission and scratch pad work. Modules have access to four (4)

-types of database organizations:

12.3.1.1 !fpes of Data

Private data is organized such that each module may ha~e

a single private data set (specified at the module's compile time)
for unrestricted use. Protection against access by oth~~ modules

is provided.

Common data allows users to define multi-user data sets.

During execution, application modules can request access to any

prespecified common data area. Common data provides the principal

means for data interchange among program modules.

Temporary data are data storage areas dynamically acquired

by requesting modules. Most temporary dat:a areas are required for

inter-module m~ssages and working storage. The Temporary Storage

Processor allocates space from a storage pool, and re-allocates
that space (for messages) when designated receivers have processed

the message or (for working storage) upon module completion. If

a module wishes a data area to remain for longer, it can request

that the area be cataloged. This area may then be retrieved by

other modules. Releasing a cataloged area is done by a module
request.

12.3

Scratch pad data is a common, prespecified area fixed

within memory which is used as a workspace by all modules. The

data content of a module's scratch pad area is never preserved

after -termination of -the module.

12.3~1.2 Protection

'For protection, ATEP will permit each module to speci fy

accessing limitations ~n the _ata.

12.3.2 :ATEP/MAX

ATEP/MAX has a £ile management system identical to that

Df ATEP.

_ATEP/MMS

,~TEP/~m has a file management system identical to that

of ATEP.

3;2.3.4 'P-3C UPDATE

"The -P-3C file management module supervises and controls the

wee -,Of ~system _,~ilesbyexecuti ve routines .and application tasks and .i~

:responsible for the accounting of all files', whether in main memory o~
on the drum.

Tiles.aregenerally utilized -for:

:a)management of data

~) to share and pass data among tasks of the same sub­
rprogram (so that data 'need not reside in the tactical
::common data base) .•

~2.4

l2.3.4.l Protection

Ear~ file can have four (4) protection attributes:

a) read protect - file cannot be read from

b) write protect - file cannot be written into

c) delete protect - file cannot be deleted

d) attribute protect - permanent system database

Attribute protected files cannot have their attributes
changed without rerunning the system generation process, where

attributes are initially defined. Non-attribute protected files
can have their attributes changed at any time.

12.3.4.2 File Maintenance

There are maintenance routines available that provide

the facility for file protection and manipulation. These include:

1. Create file - allows creation of non-physically
existing scratch files (i.e., exist by name only).

2. Delete file - allows deletion during system opera­
tion of physically existing files that are not
delete protected.

3. Change file attribute - change the attributes of
any file not attrib~te protected.

4. Lock file - allows exclusive use of a file. A
locked file can be accessed only by the task that
locked it. It can only be unlocked by the task
that locked it.

s. Unlock file - allows a task to unlock or give up
exclusive use of a file previously locked.

6. Open file - indicates an intention to read/write
from a file. This call alsJ informs the file

"management module where to store the file (e.g.,
in main memory for heavy usage). Files may be
opened at any time. This call has no effect on
file protection attributes.

12.5

12.3.5

12.3.6

7. Close file - indicates that the task is finished
reading/writing from the file it had previously
opened. Files may be closed at any time. This
routine has no effect on usage of that file by
other routines.

-8. Read fil:.: - allows reading of an open file that
is not read protected or locked by another task.

9. Write file - allows writing into an open file
that is not write protected or locked by another
task.

UYK-7 Standard Executive

~is Executive contains no file management system.

COS/UYK-20

The File Control Function of the COS/UYK-20 provides

the interface to access all files in the system. It is capable

of handling user or system file requests.

Since the COS/UYK-20 operates under a loosely linked

form of multiprocessin9~ all file references are passed to the
computer connected to the storage device (disk or drum) and are

routed through a centralized I/O routine to determine the appro­

priate peripheral device handlers.

12.3.6.1 File Management

-Dlere are four (.4) functional areas of file management:

Pile Definition provides the user with the capability
of ~efining the characteristics of a file, all parameters being
placed in the File Control Block.

Pile Assignment creates the link between the user pro­

gram and file control information. It requests the assignment

o£ facilities not currently assigned to the program.

12.6

File Release terminates use of a ,file and releases any
facilities that were assigned to the file.

File Manipulation provides the '" Jer wi th the means to

access files through a 3et of file ~~~ =ecord manipulation func­
tions. Before these functions are executed, they are compared

to the file definition data in the File Control Block to see if

the function is valid for thu~ file. Functions provided are:

1. Open File
2. Close File
3. Read File
4. Write File
5. Read (with lock)
6. Position

File Deletion causes the specified file to be deleted

from the file catalogue and its area made available for allocation.

12.3.7 BOS-13

There is no file management system for this Executive.

12.3.8 Proteus

There is no file management system for this Executive.

12.4 Discussion

There are two (2) basica·lly different types of file
management systems.

The ATEP, ATEP/MAX, and ATEP/MMS's file management
system manages data bases in main memory allowing modules areas
for scratch work, temporary storage and messages. No provisions

are made for permanent files residing in secondary storage,e.g.,
baving a program take a collection of data from memory and file
it for later analysis.

12.7

In cOIll.?aring the COS/UYK-20 and the P-3C UPDATE, the

P-3C pro"ides more features considered essential in a file system
(esp. protection) than the COS/UYK-20. This is at first surprising,

because the COS/UYK-20 is a multiprogramming, multiprocessing

communications oriented system which requires much file manipUla­

tion n.acl access.

~e other Executives do not have explicit file manage­

:alellt systems.

FOS will be designed so as to provide any necessary level

of file system support. This will range from no file system,
through sophisticated main memory management, through a full file

system including secondary memory use, up to a Multics-like file

system for those applications which need it.

12.8

CHAPTER 13

ERROR f.tANAGEMENT

~3.1 Introduction

All of the executives must have facilities for de~~cting
errors, and for recovering on error, because in a critical

Navy operation, error recovery must be attempted at all costs.

13.2 System-by-System Comparison

The following is a system-by-system discussion of the

error management functions of the Navy Executives.

13.2.1. ATEP

13.2.1.1 Introduction

The ATEP Executive handles errors on two (2) possible
levels. At initialization, a definition table specifies a central

error module to schedule when an error condition arises. If a
central error module is not desi9nated, then when an error occurs,

the error entry point associated with that module is scheduled.

13.2.1.2 Error Handling

~ere are a few basic actions that can be taken upon the

occurrence of an error. For errors occurring during an interrupt
stdte operation and during user error processing, the user is

notified of the error and computer operation is halted. The more

common and important action is encountered when an error occurs
during the normal operation of a program. In this case an error
packet is built that describes the environment at the time of the
error and is passed to the appropriate module (chosen as described

above). For device errors which are not solved when retried, an
appropriate module is again chosen and scheduling requested.

13.1

13.2.1 .. 3

pcr...ger

:rYpes of Error

~ere are four (4) classes of errors possible. Class I is

failure. Under this condition, control memory is stored and

computer r:··~.cat..ion halted. Class II errors occur as a result of pro­

qram operation. Class III errors are those associated with I/O

operations and Class IV are program related (i.e., illegal instructions,

etc. J •

13.2.2 ATEP/MAX

ATEP/MAX's error handling function is identical to that of

~EP.

13.2.3 ATEP/MMS

ATEP/MMS's error handling function is identical to that of

A~...P.

13.2

13.2.4 P-3C Update

13.2.4.1 Error Handling

~aen a program or memory protect error occurs, it is possible

that the cause of the fault was eitner hardware and/or software. When

an abnormal interrupt occurs, in the P-3C executive special actions are

tak~n to isolate the cause. Initially, the task that has caused the

error is re-allocated and rescheduled in a different section of memory.

If it again fails, the executive ~arks the task unavailable

in the Task Directory. If, however, the task does complete

successfully the second time, then the portion of memory in which it was

first executed is labeled defective until a memory check is performed.

If the memory check fails, that portion of core is labeled unusable.

If, however, the stack passes the memory check, then it is

once again made avai.lable with the limitation that if another error

c:curs in that area, it will immediately be labeled unusable. If there

is suspect of an error in the executive software, then TACCO is notified.

After the loss of five (5) sections of memory, a new minimized

~nfiguration is implemented.

13.3

13.2.5 UYK-7 Standard Executive

Yhe error management function identifies ha~dware and software

errors upon their occurrence and takes action loS directed by user

a.odules.

13.2 .. 5.1. Error Handling

~e executive allows user modules to selectively register

responsibility for processing any or all error conditions. The user

module can then receive immediate CP control at the entrance of its own

error module# should the error occur. The errors encountered may be of

two (2) types. There are interrupts signalled by the AN/UYK-7

hardware, and those isolated by the StandArd Executive functions (i.e.,

caused by invalid data or improper sequencing of operations). The user

aodules may register responsibility for individual errors or groups of

errors such as hardware, software, IOC and executive software errors.

Xf there is no user module for a specific error, the CP stops,

indicating the type of error encountered on the maintenance panel, and
waits for the computer ope'rator to decide Or! the action to be next take'n

by the executive. The options are described below.

If there is a module, then error information shal1 be

communicated to the registered module through an fterror packet ft bui~t

• by the error management function and passed to the module. When the user

aodule has completed its processing of the error, CP control will be

,returned to to the executive.

~e executive has two (2) major options upon the processing

~f any error (either by module or operator) :

II ~gnore the error and continue processing from the point
of the error.

2) Return CP control to the scheduling £unction.

13.4

13.2.6 COS/UYK-20 Executive

There is no apparent error management scheme for this system.

It is most likely accounte~ for in the other sec~ions of the executive

as the need for an error/interrupt ha;1'11er arose.

13.2.7 BQS-13

There is no specifically defined error management scheme for

this executive. The closest approximation to an error management

technique is the interrupt processor. The interrupt processor handles

each of four (4) classes of interrupts. These classes are as follows:

1) Fault and Hardware interrupts;

2) Program error and clock interrupts;

3) i/O interruptsj

4) Executive calls.

When an interrupt occurs for types 1) and 3) listed above,

the interrupt handler interprets the condition and passes control to a

program called the Performance Monitoring/Fault Location Program.

There appears to be no user recovery options available under
this system.

13.5

13.2~8.1 Error Handling

~here are four (4) types of~~neral error types recognized by
the executive:

I) arithmetic

') logic

3) I/O

.) .ainframe (i.e., hardwar.c).

Only on the occurrence of an arithmetic error (e.g., overflow, divide
check) will the executive return control to the user program and allow
it to process the problem. On an I/O error, the executive attempts to
recover but if impossible, it k,arely returns a code to the user. On a
~ainframe error, (e~g., power, parity) the executive immediately halts
the machine. On a logic error, (addressing, protection violations) a
~ssage is sent to the module's ~ssage task and the task which caused
the error ~s aborted. One final feature is that any of these errors may

-be ~~ked off either on a task basis or on system basis.

13.2.9 SDEX/20

13~2.9.1 Error Management Function

SDEX/20's error management function handles all error con­
ditions detected by other portions of the executive. Through this
function a user module may register responsibility for processing its
own or system error conditions: should an error occur, the registered
.od~le receives immediate processor control at its message entrance.
If-no module processes the error (none is registered) processing is
.topped. SDEX/2~ will not retry or otherwise manage errors: all pro­
cessing is halted. Errors sent to the error management function include

13.6

those indicat~d by the UYK-20 interrupts (including hardware

errors) and those due to incorrect processing or an improper

ESR request.

13.2.9.2 Error Types an? Registration

~he following error types are recognized:

- Class I hardware errors

Class II software errors

Class III IOC software errors

Executive software errors

User modules may register for specific errors or whole

classes of errors. A power tolerance error will always be pro­

cessed immediately by the error management function.

13.2.9.3 User Error Processing

When an errOr occurs, an error packet is built and CP

control is 1iven to the registered user module at its message

entrance. Upon return to the error management function, ~he user

can specify to SDEX/20 that it should:

Ignore the error and return

Return CP control to the scheduling function

Return CP control to the initiation fUllction

Xf a module has not registered for the error, processing

stops and status information is displayed on the maintenance panel.

12.3 Discussion

Brror management in FOS will primarily need to be flexible.
At the same time, very high reliability will also be needed.

13.7

PART IV

SUMMARY

CHAPTER 14

SUMMARY AND CONCLUSIONS

14.0 Introduction

~is survey was prepared with the objective of pro­

viding researchers involved in designing a standard operating ,
system for the Navy with an appreciation of the Naval software

environment. An attempt has been made to present an overview of

the Navy operational environment to study the effectiveness of

present day Navy executives, and to determine tl.e environment that

a future standard operating system will be required to support.

~o attain these ends we have (a) provided a framework
for analyzing and studying the' Navy operational environment,
(b) analyzed the major exec"ltives used in the Navy together with
their operational environments, and (c) made a critical feature­

~-feature analysis of these executives. A discussion of the
strengths and weaknesses of these executives has also been made,

wherever possible. (A companion volume to this Facilities
Orientation report has also been prepared, consisting of twelve

.. IJ'rJ.i)'.Reports, each describing the details of a specific visit to
"-Na~ai· 'installation or facility, and discusses the information

9~ned, listing observations, problems, recommendations, etc).

~ee major points emerge from the results of this study.

lJIhese are:

Ca) ·~e reasons why the executives currently in usc by the
Bavy would be inadequate to serve as a standard for future"

tactical applications.

tb) ~e pressing need for a standard family of operating

systems in the Na\~.

14.1

ec) Recommended features that should be incorporated into

this family of operating systems as a result of this
study.

Points Ca) and (b) are further discussed in the remainder
of this chapter. Point ec) discussion can be found through the

chapters dealing with a feature-by-feature analysis and therefore
bas not been repeated here.

14.1 Current Executives

The diversity of the Navy software environment has led
to the devlopment of a variety of Navy executives. Some of these
operating systems were designed with specific applications in
Ddnd while others were designed for application independence. In
any case, the results of this multi-dimensioned effort show no
single operating system that is flexible enough to fulfill the
variety of requiremen~s of a standard Navy executive. Further,
DOne of the existing executives that ~ere explored in this report
offered ease in extension--that is, modification of ~he existing
executives to extend existing facilities. The various existinq
executives are not suitable as a flexible base for future Navy

executives for one or more of the following reasons:

(1) Failure of the executive to support all the facilities
necessary for Naval applications (e.g., peculiar forms
of scheduling).

(2) Failure of the executive to be tailorable to a specific

application so that particular facilities and only those
facilities are supported in the application's version of
the system (i.e., no more overhead than necessary).

(3) Failure of the executive to be easily modified 80 that
changes required to convert it into a more flexible (in
the sense of an application dependent confiquration) execu­
~ve can easily be implemented.

14.2

14.1.1 Facilities Available

Although several of the existing Navy executives support

a sizeable set of facilities, no single executive d~scussed in

·this report supports all the facilities that would be required in

the full spectrum of Navy tactical executives. (Examples of missing

features can be seen in earlier sections of this report). Generally,

the executives designed for a specific application lack features

required by user applications in other applications (e.q., A~P does

not. have a file management system that would be required for an

H.I.S. application). Executives meant to be application independent

support a very basic set of facilities; instead, they rely on the

application programs to supply anything of a special nature (including

%/0 drivers). Furthermore, the basic set of facilities themse~ves are

limited; memory management, I/O device management, and/or multi­

processor management are often supported in a limited ·fashion (often

Dot supported at all).

14.1.2 Tailorability

Most of the existing Navy executives offer limited control

over their final facilities at systems generation time. Generally,

such options involve scheduling selection, table-sizes, and hardware

configuration support. This approach does not offer enough flexi­

bility .to tai:or existing executives to. the variety of environfileuts

in which a standard Navy executive would operate. The reasons for

this are summarized as follows:

(1) Even with options, there is still an extremely restricted

set of features (i.e., a scheduler that is required but

DOt available as an option).

(2) Originators of the various syst~~9 may have missed future

requirements for a Navy executiv~, consequently, no options

were provided.

14.3

(3) Current Navy executives maintain much of their flexibility
byforcing application dependent responsibility onto the
user. This approach suggests leaving all the programming
to the user for maximal flexibil':. c.y. This may unnecessarily
increase the \.'ork load on tr:a l..1ser .:nd-, furthernlore, encour­
age a proliferation of unnecessarily incompatible extensions
~he system should provide flexibility in a manner that offer~
maximal user suppor~ in all executive configurations.

(4) Finally, none of the Navy executives explored in this study
offered true configuration control--that is, although option.
were provided, there were frills on top of an extensive and
non-flexible executive kernal. Except for scheduling, no
options were provided to allow real user control of parti-

ocular system functions.

Such control over which system functions, and what particu­
lar versions of those syst~, functions are to be in a particular
application-tailored executive is not available. This is a serious
flaw, which alone makes these executiv~s unsuited for serving as a
basis for a family of c.ompatible operating systems.

14.1.3 Modifiability

Rone of the material referenced in this study suggested
an existing Navy executive that was struct~-red so that modification
could reasonably be accomplished. Thus, applications that required
additional different executive features would require major software
investment to use an existing executive (the very reason that there
are so mDny executives in existence). Because of this essential
BOdification flexibility, the executive to be used as a Navy stane
dard must be modularly structured so that changes .can be effected.
Further, such modules should be interdependent in a structured
.. nner so that module changes can be accomplished with a limited
effect on ot!ler system modules. No executive in this study offered
a structured modularity to enhance executive tailorability. This
lack of structured modularity restricts existing systems to these

14.4

applications for which the options have been pre-planned, and
makes extension of sue!. executives to other applications extremely
difficult at b~st.

14.2 The Need For A Standard F.O.S.

A reduction of the large amount of software proliferation
1s the main reason why a standard operating system is needed inilie
Navy. Currently, the requirements of almost every new application
mandates the design and implementation of a new executive, because
either no existing military executive can provide the necessary
facilities or it is too cumbersome to modify an existing executive.

~e primary ar9ument for standardization is the tremendous
costs associated with software proliferation. This cost stems not
only from the amount of time and money expended in the design and

- implementation of independent operating systems for each computer
system and mission, but from the costs associated with the mainten­
ance, updating and lack of transferability of such produced software.

The problem of recurring software costs is especially
severe for Navy systems. Because many systems are intended to be
~ed for many years, the costs of keeping programmers trained for
maintaining and changing programs for a wide variety of systems is
~nsiderable. Moreover, as applications and requirements change
over the years, retraining programmers andrewritUg programs becomes
a major cost. Moreover, as Navy applications become increasingly
complex, the complexity of the operating systems increases consider­
ably and unless the executive is sufficiently flexible, it will
often have to be rewritten.

ldeally, the Navy would want a single standard operating
_._81stem.that can be used in any hardware configuration and application.

~e past software experiences in the Navy, as well as the computer

industry in general, indicate,however~ that a single operating system
cannot meet the anticipated future needs for both functionality and
performance. Navy executives must support a very wide variety of

14.5

applications, ranging from shipboard logistics and MIS type systems
to very real-time systems; such as, missile guidance, which require
a very quick response time and a large amount of computational

power.

The Navy tactical environment thus necessitates the dev­
elopment of a compatible family of operating systems, which comprise
a compatible family in the sense that they would have the ability to
invoke a feature in the same manner in all family members in which
the feature is present. Additionally, particular feature absense
does not result in a change of behavior for other features. This
must be accomplished in a manner such that a small version of the
operating system does not pay the penalty of generality required

,only of a larger,more elaborate version. Further, the larger version
will ~ot pay the penalty of the specificity required in a smalrer
version.

,Such a family of operating systems will also provide sup­
port for the flexibility of equipment configuration that is nec­
essary for tactical systems. Specialized I/O handlers for the wide
variety of military peripherals would be interchangeable from system
to system, and there would be standardized interfaces between depen­
dent systems. For example, if a small system is used as the front en~

.of a larger system, it would use a smaller member of the family. but
would provide all necessary support for information transfer and
inter-computer communication systems.

Many Navy installations experience difficulties in the
development of a system under an executive that was designed for
operational use. The operationa! executive usually lacks many dev­
elopment aids and utility programs (such as tracing facilities).
Using a family of operating systems would enable development work
to proceed under one subset that provides all the features ·neces-

'sary for development and the operational system would run under
another compatible subset.

14.6

14.3 Necessary Features of an F.O.S.

From this study of Navy executivp.s we can identify the
main features of the \"ide range of cl)ara~teT.5.stics that must be
supported by such a family of opE!ration systems. The primary
function of any operating system is to control and coordinate all
equipment resources such as ~rocessors, main sto~~ge, secondary
storage, I/O devices, and files; to resolve confkjcts, attempt to
optimize performance, and simplify the effective use of the system;
and to interface between the physical computer hardware and appli­
c~t1ons programs, user programs, and associated software.

If a family of operating systems is to be designed, a

facility is needed to select the subset required for a particular
environment. (For example, the lowest level of support for a speci­
fic functionality can be non-existent). The operating system's
system generation facili~~ must be capable of generating compatible
configurations ranging from ~xtremely small to the extremely large
(e.g., multiprocessor and minicomputer). The main functional cap-
abilities that the operating system should provide general design
features that should be incorporated into the family, and specific

functional features that should be provided to support the Navv

environment. Some of these qeneral desian features are discussed
below.

14.3.1 General Design Features

14.3.1.1)Iodular and Structural Independence

A bi"CJh rleqree.of modular and structural independence is
needed so that chanqes and modifications to elements of the system

are not necessarily propogated to other, unrelated elements of the
system. Clean functional separation of components will, for example,

"permit functionally equivalent modules optimized on different para­
meters to be interchanged.

~18 clean functional independence will eliminate the
problem of rewriting entire executives for the sake of small func­
tional changes (for example ·the TWAES executive which was not modular

a nd had to be rewritten to add a logical file handling capability

14.7'

for theTESE system).

14.3.1.2 System Generation

System Generat10n of a specific vper~ting system is of
importance in having such a family of operating systems readily
accepted in all the Navy installations, because problems in the
past have made Navy programme" s skeptical of modifying software
that comes from other installations (the'not~invented-here'syn­
cJrome) •

Moreover, one of the main reasons that the Navy has a
proliferation of incompatible systems is that military operating
systems have been developed by programmers knowledgeable in
the tactical problem, but lacking expertise in operating systems.
~e use of a good system generation facility for such a family of
operating systems would permit the programmer knowledgeable· in the
tactical problem to generate a specific operating system from a
high level description of the mission, platform, hardware, real­
timer response requirement~, and other criteria as necessary.
Such a facility should also contain tools for the evaluation of
such factors as size estimation, free running time determination,
~esting -and validation.

14.3.1.3 Machine Independence

The family of operating systems must be as independent
.a possible of the machine upon' which they are implemented. Machine
independence is important because of the uncertainty of the hardware
that will be used for future tactical applications, and because it
is important to be able to implement the FOS on much more advanced

, hardware in the future. To attain a high degree of machine inde­
pendence, the design should use only a few, well-isolated and cleanly
invoked machine-specific features, and the non-machine-specific por- .
tiona sho~ld be defined in a high-level machine independent language.

14.8

14.3.1.4 Protection and Security

Protection and security aspects are very important in

military systems to prevent data from being destroyed or accessed
by unauthorized users, including dynamic revocation of access
rights and access filtering. The system ~asign must be able to
completely protect pro Jrams and data fron, ac":~ss by programs which
have no need to use them. Note that this criterion does not demand
a fixed protection policy throughout all members of the operating
system; it only requires tha~ the family have a mechanism by which
any reasonable policy can be implemented. A proven way of providing
for maximum security is through the design of hierarchically modular
capabilities-based operating systems, and th~ FOS design team should
make use of "these advanced concepts.

14.3.1.5 Conversion Considerations

Conversion considerations are important in the design of
a future standard family of operating systems to minimize both
transition costs and any other undesirable impact to Navy opera­

tions and activities. This means that a facility must be provided

to run under environments similar to those provided by eXisting Navy
executi yes , e. g., COMLw10N and CMS- 2Q. In summary, the emphasis
throughout the design of FOS should be on a non-traumatic transi-

tion from the current operating environment. It is clear that at

some point during the design phase a decision'will have to be made

whether to make subsets of the family co~atible with current execu­

tives, or whether it is more convenient to provide facilities for

emulating current systems ,(such as the facilities that a virtual

machine environment provides).

14.3.1.6 Support of Data Base Systems

There is an increased need for data base facilities in
the Navy, not only because of the greater use of MIS type applica­
tions (such as logistics and supply systems), but because of the

large amounts of data that must be managed while performing tacti­
cal functions. To support these requirements, FOS must not only

14.9

have a well-defined file system (a facility that many Navy execu­

tives totally lack) but it must also be able to support two tYF~S

_of.data base management systems, as follows:

r(a) ,A flexible, easy·to use, DBMS that provides 'for quick and

.inexpensive implementation will be needed. Since it is often

:difficult to specify in advance exactly what the requirements

~of:the system will be, it is more advisable to bring up prot~­

ttypes on a flexible DBMS, and then test the prototypes.against

,the ··user's :needs ·as :many .times as 'necessary. 'Theprotct jpe

~t·have ·the ability to incorporate all the provisions for

;.security, validation and changing interrelationships of data

i8s!necessary. 'Present day technology suggestithat a relational

,1iata i base system has all :the.necessary requirements for building

tthese .flexible information systems.

:(b)' -,:'here is a tradeoff between flexibility and efficiency of

-data base systems. The system that is used for building a

:prototype is often inefficient once the structure of the.system

has . been ttfrozen • .II 'Another DBMSwil~. be ,needed to . "freeze" the

fprototypes built using the system described in (a) above.

,:-this . DBMS will not only process and. answer user queries, but

.~alsoprovide :information when needed in a given tactical application •

.)~e tactical application programs request information using cleanly

~voked queries, leaving the data accessible by other applications

. : programs or users.

:J:deally these DBMS's would comprise a compatible .. family" of

.~ta . management systems, all· supported by FOS. Thus, it would be

,a.relatively easy matter to "freeze" a prototype once it has been

,'developed, with a high degree of application independence.

i~4.10

14.3.1.7 Abnorm~l Condition Handling and Recovery

Abnormal condition handling and recovery is of u~~ost
importance in tactical systems, both because Navy systems are
very prone to accidents in a tactical environment, and because
they are performing cr~tical functions (e.g., fligh.: navigation)
that require backup systems. Military systems have typical1t
solved this problem by dual-redundancy (i.e., using another complete,
backup system), but FOS should provide more advanced faci:~ties for
recovery, including automatic retry where possible, graceful degra­
dation (fail soft), reconfiguration around a failed module (whether
hardware or software), and graceful restoration and smooth inte­
gration of restored modules. In addition, the system should be
responsible for capturing information describing the environment
(equipment, procedures, and data) of an abnormal condition. Self-
test and diagnostic support for the hardware and software is also
necessary, which includes protection of the software operating
system so that a system error will not cause an operational failure.

14.3.1.8 User Interfaces

User interfac~s must be provided in as high-le~el a
manner as possible. This includes debugging facilities the inter­
face between the operating system and the programmer, and the inter­
face with the operator.

14.3.2 Sununary

~e standard famdly of operating systems must be designed

and implemented in an easy-to-use, well-structured, hierarchical,

DOdular fashion, taking advantage of the current state-of-the-art

in system structuring. It must allow easy modification of and

addition to or of any portions of the system. Procedure~ must

exist for the flexible, application-oriented tailoring of individual

versions of the system for particular ~ses.

2be system must be capable of incorporating state-of-

the art tools to be used in all areas of the system (eege, security,

database management, etc). It must be possible for individual

versions to be as compatible with each other as neces~ary for

easy program po~cability (both. between different applications,

~between developmental and operational system versions).

Compatibility with current Navy systems must also be provided

to some exter_~.

~14.12

APPESDIX

APPENDIX A -- Sources of Information

Meetings and Presentations Attend~d: Persons Contacted

1.

2.

3.

4.

5.

6.

7.

8.

Naval Underwater Systems r·-woratory
Newport, R. I.

Trident Fire Control and Sonar System

Mr. George Bain
Mr. Phil Sedgwick
Mr. Tom Conrad

Naval Underwater Systems Center
New London, Connecticut

Sonar Systems; BQS-13 Executive

Mr. Jim Shores
Mr. Bob Gordon

Grumman Aircraft Corporation
Bethpage, New York

'\

E-2C program; F-14 Fighter Sy~~em; A6B; TFCC

Mr. Martin Lewis

Naval Air Development Center
Warminster, Pennsylvania

P-3C System; Proteus

Mr. Hank Stuebing

FCDSSA
Dam Neck, Virginia

Software Support and Development Facilities

Cdr. Jack Cooper

RCA
Moorestown, New Jersey

AEGIS; ATEP; ATEP /MMS

Mr. Warren Mulle

Naval Air Development Center
Warminster, Pennsylvania

AADC Review Meeting

Naval Weapons Systems Center
Dahlgren, Virginia

MKB6 Gunfire Control System; Fleet Ballistic
Jlissile Systems

Mr. Dave Brown

A.l

19 August 1974

19 August 1974

27 August 1974

28 August 1974

29 August 1974

5 September 1974 .

4 December 1974

11 December 1974

9.

10.

11.

l2.

13.

Raytheon Company
Wayland, ~..assachusetts

TARTAR System

Mr. Dave Higgenbotham

N.E.L.e.
San Diego, Califor.nia

CUDIXS; TESE; TWAES; NAVMACS; NALCOMIS

Mr. Warren Loper

Camp Pendleton
california

MTACCS

Col. Chase

FCDSSA
San Diego, California

NTDS; SHARE/7; LHA; IFDS

Cdr. Sharp

Raytheon Company
Wayland, Massachusetts

Further details on TARTAR System

fir. Dave Higgenbotham

12 December 1974

15 May 1975

19 May 1975

20 May 1975

7 July 1975

(In addition, numerous meetings were held with Intermetrics and persons
involved with the design of the CS-4 Language).

r

&.2

p~tia1 List of Documents Examined

1. Interim Report, Master Executive Control for the Advanced
Avionic Digital ~omputer, Volume I: Summary, Honeywell
Document Z9506-3u18, for Naval Air Development.Center, br
K.J. Thurber, E.D. Jensen, L.L. Kinney, P.C. Patton, L.C.
Anderson, L.A. Jack, and P.A. Houle, June 18, 1972.

2. ~inal Report, Operating Systern/AADC Preliminary Fun:cional
Specification, Honeywell Document Z9506-30l8, for Naval---­
Air Development Center, by K.J. Thurber, L.L. Kinney, P.A.
Houle, P.C. Patton, L.A. Jack, E.D. Jensen,' and L.C. Anderson.
October 18, 1972.

3." Interim Report, Master Executive Control for the Advanced
Avionic Digital Computer, Volume II: Technical Document,
Honeywell Document Z9506-30l8, for Naval Air Development
Center, June 18, 1972.

4. Interim Report, Master Executive Control for the Advanced.
Avionic Digital Computer, Volume III, Honeywell Document
Z9S06-3918, for Naval Air Development Center, June 18, 1972.

,5. Draft Report Language Benchmark Tests, Intermetrics, Inc.,
by J.T. Pepe and J.R. Nestor, August;' 1973~ for N~~.L.C.

6. A CS-4 Primer, Volume I: Basic Features, Intermetrics, Inc.,
for N.E.L.C., by R. Fourer, January, 1974.

7. Final Report on the CMS-2 Compiler System Part 2
~lementing the CMS-2 Compiler on the A~~-~vionics
D1gital Computer, Systems Consultants, Inc., Naval Air
Development Center, Washington, D.C., October 13, 1970.

8. Advanced Development Model Specification,AADC Proqra~
Manaqeme~t unit (PMU) Minimum Confiauration. Raytheon Co ..
MiSSl]~e!~ystems Division, for Naval Air Development Center,
June, 1974.

9. Final Report for AADC Arithmetic and Control Logic Design
Study, Part I, Raytheon Company, for Naval A1r Development
center, November 1972.

10. Final Report for AADC Arithmetic and Control Logic Design
Study, Part I~, Raytheon Company, for Naval Air Development
Center, November, 1972.

11. Final Report for AADC Arithmetic and Control Logic Design
Study, Part III, Preliminary Programmers Reference Manual,
Raytheon Company, Missile Systems Division, for Naval Air
Development Center, December 1972.

&.3

12. All Apolication Diaital Comouter: Course ~otes, United
States ~aval Postgraduate School, by G.H. Syms, March, 1973.

13. AADC DPE Programmer Reference Manu~l, Raytheon Corr.pany.

14. F:u4:ure Navc:tl Aircra ft Subsystem/AAl?~ Inter}cJ.cc_p_efir.i tion
E'or Ooerational and OBC Requiremcn_~s (U), Final Report
Volume I, Grurrunan Aerospace Corpora tion, for ~laval Air
Develo9ment Center, April, 1972.

15. ATEP/t1AX Prograr:uner' s Reference Hanual, Tactical Data Systems,
Fleet Combat Direction Systenls Support 1\ctivity, San Diego,
CA, February, 1974.

16. Document Type: Draft Technical Report, Project: Analysis
of Major Computer Operating Systems, August, 31, 1970.

11. CS-4 Language Reference r-tanual and Operating System Interface ~ .
Naval Electronics Laboratory Center, for Naval Air Systems
Command, December, 1973.

18. Analvsis of the CMS-2 Programming Lanauage, for Naval Air
Development Center, December, 1971.

19. ~equirements for Digital Computer Proqram Documentation,
Naval Ordnance Systems COhunand, Department of the t~avy,
November, 1971.

20.- Automatic Data Processinq Proqram Reporting System (ADPPRS),
Department of the Navy, SECNAVINST, February, 1973.

21. Proceedings Volume I, DOD Joint ADP Conference of Central
Data Systems Design and Proqramrning Activities, for u.s.
Army Computer Systems Command, October, 1972.

22. Management Information Systems, Ar~y Catalo~ of Automated
Data Systems, Department of the Army Pamphlet No. 18-1-1-1,
Decciaber, 1971.

23. USN/USMC Future Data Systems Requirement~ And Thei~ Impact
On the All Appli~ation Digital Computer (AADC), Computer
Sciences Corporation, San Diego, California.

24. AADC Software Test Plan, Revision 1, Final Report, Systems
Software Group, Sperry Univac, January, 1974.

25. ~ACCS Exploratory Development Studies Task .. F. Report Critique
of Intermetrics AADC Language in Response to NOOO39-70-C-3552,
Amendment A00044, Item 0006, Hughes Aircraft Company, June,
1974.

26. ATEP/MAX Executive Computer Program Performance Specification,
Fleet Combat Direction Systems Support Activity, June, 1974.

27. Trip Reports Nos. 1-6, Facilities Orientation, M.l.T. Sloan
School, OS/&\OC Group, June;1975.

28. Trip Reports Nos. 7-12, Facilities Orientation, M.l.T. Sloan
C;r::lool, OS/MOC Group, Au~ust, -1975-:-------

29. Interim Standard Airborne Diqital Computer, second draft,
June 16, 1975, No. AS-4352 (AV) .

30. Evaluatio:1 of the MDe Progran of the .Y.,.nited ~ta.-!-es Navy,
by Research and Consulting, Incorporated, Feburary, 1975.

31. Computer Proqram Design Specification for the ATEX Executive
Program, by Computer Sciences Corporation, San Diego, CA.

32. Computer Program Performance Specif~~ation ___ f~r AEq~~ Tactical
Executive Program/Multiprocessing an~~ory~ha:;:ing (ATEP/HHS)
Kernel. By AEGIS Program Office, RCA, October, 18_ 1974.

33. MAX/CP. Comparative Analvsis Summary.

34. The PROTEUS General Purpose Executive Prog~arn, by Naval
Air Development Center, Warminster, PA.

35. AN/BQS-13 DNA Sonar System Program Specification, by IBM
Electronics Systems Center, Decerllber 18, 1970, Revision 1.

36. Navy and Marine Corps Tactical Digital~uipment Cata1o~,
by Tactical Digital Systems Office, Feburary 15, 1973.

37. I~p~t/Output Interfaces, Standard Digital Data, Navy Systems,
Mill.tar}· Standard, August 30, 1973.

38. TWAES System I Software Summary, July 15, 1975.

39. MTACCS Test Bed System Descript.ion, by Hughes Aircraft Co.,
June 15, 1973.

40. Computer Program Performance Specification for Aegis Tactical
Executive Program, by RCA, March 24, 1971.

41. Computer Program Performance Specification for Standard
AN/UYI\-7 Executive, in accordance with TADTASK 2-73, Final
Draft, January 18, 1974 •.

42. System Software Desiqn Requirements P-3C Uodate Functional
System, by Naval Air Development Center, January 25, 1974.

43. Preliminary Computer Program Performance Specification for
!-Conrnunications Oriented Operating System

A.5

APPENDIX B -- CURRENT N'I\VY HARDWARE

Presented here are brief summaries of three of the more popular

computers used in Navy tactical systems; the AN/UYK-7, the AN/UYK-20,

and the PROTEUS CP/JO. ~articularly, the following aspects -are

discussed:

a. CI v overview

b.

c.

instruction set

addressing

d. protection

e. interrupts

f. timing mechanisms

9. memory

h. I/O mechanism

9. reference literature

'1

The following discussions are brief sUIIUl\aries of the hardware;

for more complete detail consult the listed references.

AN/UYK-7

-The AN/UYK-7 computer is a ruggedized multiple-processor system

designed and manufactured by the Univac Division of Sperry Rand Corpora­

tion for military applications. The functional and physical modularity

.of the system affords a variety of processing and input/output capabilities

for immediate and future applications.

Central Processor Unit

~e central processor module contains all the control, arithmetic,

and timing circuitry required for instruction execution. Central pro­

cessors operate in two different modes1'the interrupt state executes the

executive type functions, and the task state processes the worker programs.

A separate set of seven index, eight base, and eight arithmetic accumula­

tor registers is available to the processor in each state.

B.1

IT,,struction Set

'lhe AN/uyK-7 is a 32-bit computer that offers 130 basic 'Nhole and

halfword instructionsti1at operate with 32-bit parallel, one's-comple­

r.ent, binary arithmetic. It contains both fixed and floating point

hardware and can operate on 8-, 16-, 32- t .Jr 64-bi t operands. To

complement its interrupt statemode, the AN/UYK-7 supports a set of

privileged instructions which includ~ input or output transfer initia­

tion, read and control of the monitor clock, and control of the various

processing activities in both the task and interrupt states.

Bit No.

fORMAT I

FORMAT]I

fORMAT m

31 . --.- --.

FIGURE Bl

AN/UYK-7 Instruction Formats

-""'" 231222120"9-1716 15-13 ~ I-. , .. 0" -or . . --. . . . -, .
f a k b I s ,

0 '2 b i s

f ~ '3 I k b i s

12 0 . -. -T ,
't

y

Elements of the Word are Interpreted as Follows:

Bit N0·131---26125-23I22-2Of 19-171161

eu No.

fORMATlll: A

FORMATJSZ:e

15
.

f-

f

10 9-7

0

0

t ,
6-4 3--1 0

'4 b I

m

field basic definition

•

6- bit function code
3- bit subfunction code
2 - bit subfunction code

3- bit subfunction code
3- bit accumulator register desionator

operand interpretation desionotor
6- bit shift count designator
3- bit index register designator

indirect addressing designator
3- bit bese designator

Instruction execution times vary from 1.0 microseconds to greater

than 17.0 microseconds. The average instruction execution time is

approximately 2.0 microseconds.

B.2

A novel feature of the UYK-7 processor is its ability to repeat

an instruction. By utilization vf the REPEAT instruction, a class

of UYK-7 instructions can be repeated a specified number of times. At

every repetition, the count in a specified index register is reduced

until zero is reached; for exam~le, multiple load~ and stores can be

accomplished in short form.

Addressing

The central processor can address up to 262, 144 memory locations

(with int~rnal address modification) via any specified base register.

An index register may be used to modify the displacement address of

an instruction, by a value up to 65, 536. Additionally, the AN/UYK-7

has the capability for both direct or indirect addressing and variable

character length addressing.·

Protection Hardware

Closely related to the addressing capabilities of the AN/UYK-7 is

its form of protection. A processor, operating in task state, can be

prevented from performing read and/or write operations in defined areas

of any memory module. Three groups of Control Memory Registers govern

memory lockout functions.. For any block in memory (up to 65K words) a

base register (one of eight) holds the beginning address, an associated

storage protection register defines the lockout protection (read, write

execute, or indirect address) and block size (number of words), and a"

segment identification register contains the relative address of the

segment identifies (that address in main memory from which the lockout

information is transferred). Since all memory references utilize these

base registers (and thus their corresponding storage protection registers),

proper initialization of worker base registers via the privileged instruc­

tions to access them) allows the executive to control worker task memory

extent.

B.3

FIGURE B2

STORAGE
PROTECTION BASE
REGISTERS REGISTERS MEr-K>RY

II ::;'r IQ 500 100

~l 11 50
::('

800

(

note: SEGMENT IDENTIFICATION REGISTERS
NOT SHOWN IN THIS FIGURE

AN/UYK-7 HARDWARE PROTECTION EXAMPLE

j
'r

Interrupts

(
The interrupt machanism of the AN/UYK-7 is fairly conventional.

Interrupts are divided into four classes, these are the: fault and

hardware interrupts, program faults and error interrupts, input and

output program faults, and program-initiated entrance to the inter­

rupt state. When honoring an interrupt the processor stores the cur­

rent state of the machine and picks up appropriate new state info~a­

tion corresponding to the class of the interrupt. The new state

information contains the starting location of the interrupt processing

routine along with new status information such as lockout requirements

for future interrupts. Interrupts that are currently locked out by

the processor are held pending until such lockout is removed. Upon

B.4

10

60

8<l
. 85

completion of interrupt process~.ng, the interrupt routine restores

the state that existed ~t the moment of interrupt.

~iming Mechanisms

A l6-bit control memory register can be activated to de::rease

its count at the rate of 1024 counts per second. Additionally an

external clock with a separate oscillator module can be incorporated

into the system.

Memory

Main memory is composed of modules of randum access core storage

with a read restore cycle of 1.5 microseconds. Each central processor

or input/output controller can address up to 262K words (i.e., 16

modules of 16K each). Each processor also contains a 512 word NORO

memory containing various firmware routines(e.g., interrupt analysis,

ini tial load).

Input/OUtput

The UYK-7 input-output controller contains the necessary control

and timing circuitry to conduct orderly input and output transfers of

data. externa 1 commands a.nd external interrupts between accessible

memory modules and the external devices on 4, 8, 12, or 16 full-duplex

channels. IOC functions are governed by a chain of commands (set up

by the central processor) initiated by one or more controlling central

processors. Input/output programs define buffer areas, channel numbers,

and any functions related to word or byte size, imposed monitors, and

transfer types. A processor has the capability to support up to four

X/O controllers; a particular controller can be controlled by 1, 2,

~r 3 central processors.

B.5

RP.ferences

The preceding information extracted from the At~/UYK-7 TECHNICAL

DESCRIPTION, Sperry Univac.

· AN/UYK-20

The AN/UYK-20 computer is a rugyedized mini-computer designed and

manufactured by the Univac Division of Sperry Rand Corporation for

military applications. The computer consists of a central processor

capable of executing instructions from a progr~ stored in memory

and an input/output controller that handles all I/O data transfers bet­

ween the UYK-20 computer and peripheral devices.

Central Processor Unit

The central processor is a l6-bit word microprogrammed digital

data processor capable of executing instructions from a program stored

in memory. It contains one set of 16, l6-bit, general-purpose registers

that the instruction set is. tailored to manipulate. A second set of 16

qeneral-purpose registers is available as a plug-in option1 a particular

bit in the processor status register controls which of the two register -

sets is currently active. The UYK-20 does not have multiple states nor

does it have any form of privileged instructions.

Instruction Set

The UYK-20 is a l6-bit machine that has a repitoire of approxi­

mately 150 instructions which use both-16-bit and 32-bit instructions

and performs operations using 8, 16, or 32-bit operands. Additional

variations on the UYK-20 processor instruction set is obtained by the

designation of instructions for operations between the processor regis­

ters, and operations between memory and the processor registers.

B.6

The UYK-20 performs integer/fixed-point arithmetic operations; an

optional microprogrammed math package is available that supplies floating

point operations and a variety of trigonometric and hyperbolic functions.

Other instructions perform logical operations or I/O control functions.

Instruction execution times average 2.0 microseconds. Of course,

different instruction lengths or increased operand lengths increase this

time. Floating point operations greatly increase this; thus, altho'lgh

this processor has high speed register to register instructions, tne

. instruction mix determined by the application will be a major factor in

final SPE'~q.

It should be noted that although it is possible to have an AN/UYK-20

supplied with two sets of general registers, and there exists an Executive

Request instruction (one that generates an interrupt), there does not

exist an executive state. All instructions are executable at any time
by any process.

at

...

..... 'YPE

•
• tYPE ,

.........
•

•

•
t

FIGURE B3

AN/UYK-20 INSTRUCTION FORMATS
IS ,. 13 12 11 10 t ". 1 8 ". 4 3 2 1 0

f ••

I 0 0 •

d

'. m

11 0 I • m

y

I 1 I • lit

,
CODE SPECIFYING THE ppERATION

GfNEMJ,. REG&STF.5\ Of\ SU9FUfClJOff DfSlOfll\lOR

GENERAL nEGISTER OR SUB FUNCTION DESIGNATOR (RR. RI. RIC. RX) M

4081T LITERAL COflSTANT CRl~ .

DEVIATION VALUE (TWO'S CO!'tlPlEMENT)

IUBFUNCTION CODE

ADDRESS OR ARI)'HMETIC CONSTANT

B.7

Addressing

The central processor can address up to 65,53.6 wvrd locations

(with internal address modification) via an address ·translation scheme

based on processor page registers. The main memory is divided into

f4 pages each of which are lK long. A relative ad~ress is formed from

the current instruction by taking the speciricd displacement and adding

the contents of an optionally specified index register. The six high

order bits of the relative address spp,::ify one of the 64 page address

registers which contains pa~e numbers. These page numbers are used to

select one of the 64 pages of main memory for absolute memory location.

The lower ordered ten bits of the relative address specify the offset

into the specified page. Any operation that stores a word in main

memory also sets a bit in the specified page register.

The AN/UYK-20 has the capability for direct or cascaded indirect

addressing. Further, such indirect indexing can be further indexed

depending on the setting in a stat'C3 word of the processor.

Protection Hardware

The AN/UYK-20 has no capability for hardware protection per sei

however, by manipulation of the page registers and user cooperation a

limited form of protection can be derived. Basically this involves

restricting the user address space so that page registers point only

to user areas. However, because the user has the ability to manipulate

these page registers, a determined task can do ~~ythinq it desires. In

summary, the AN/UYK-20 supplies "enough" protection for a friendly

environment.

Interrupts

Interrupts are generated by events within the processor (e.g.,

underflow) or the I/O controller. The system interrupts are classified

in three priority levels; interrupts within a level are assigned a

priority rank within that level. As each interrupt is honored, the

current state of the processor is saved and new state is retrieved

B.8

from locations dependent upon the class of the interrupt. Th~ new state

information contains new masking information to deter1l1ine what int~rrupts

are now to be locked out. Interrupts that are locked out are ~eld pending

until the lockout is removed. l1pon interrupt routine completion, the

status of the machinp at the moment of interrupt is reloaded and the

u.terrupted t?~~ ccntinu~s.

A unique feature of the AN/UYK-20 is the method it uses for dis­

patching the processor for interrupt processing. Although there are

only three clasess of interrupts, each specific interrupt has a unique

value within its class that is used to index into a table of dispatching

address for that class. In this manner, interrupt decoding is hardware

supported reSUlting in lower overhead for interrupt processing.

Timing Mechanisms

The AN/UYK-20 contains a real-time clock and monitor register. The

real-time clock is a 32-bit register which is used as a count-up timing

register. A one kHz real-time clock oscillator controls the counting

speed of the register; an external jack is provided to allow an external

clock oscillator. The monitor clock is a l6-bit register which is used

as a countdown timer. The clock is loaded with a positive value and

counts down at the frequency of the real-time clock. When the count

reaches zero, an interrupt. is gen~rated.

Memory

Main memory consists of·memory array boards each which contain

8,192 sixteen-bit words of magnetic core storage with a 750-nanosecond

read-wri te cycle time. The maximum amount of memory is 65K (eight,

8,192-word boards). A block of 192 NDRD memory words is provided in

the central processor; the programs contained in this memory are fixed

at the time of manufacture.

B.9

ID:put/OUtput

The AN/UYK-20 contains an Input/Output Control section which

performs I/O control operations and data transfers asynchrono~sly

with central processor operations. The Input/Output Controller con­

~,ins a control memory which ho ~.ds controlling da.t a and instruction

pointers for each channel as it performs its operations of control ,

and data transfer between peripheral device and the computer memory.

The Input/Output Controller utilizes ;", special set of instructions

which are fetched from the computer memory. The central processor

sets up an "I/O program" which consists of these instructions and

initiates channel action on this program. The AN/UYK-20 supports

4, 8, 12. or 16 channels via this I/O Controller.

References

~ preceding information was extracted from THE USER'S HANDBOOK

FOR AN/UYK-20(V) COMPUTER SUPPORT SOFTWARE, Part 5 Hardware Description,

univac, Sperry Rand Corporation.

:PROTEUS

'~e PROTEUS computer system is an advanced signal processor

$Ystem designed and built by the International Business Machine Corp.

~t is a modular system which consists of a general purpose (CP/IO)

processor that serves to control arithmetic processors, a storage

transfer controller, an input signal conditioner, and digital I/O

~annels. The following hardware review is mainly concerned with the

;general 'processor module (CP/IO) of the PROTEUS system.

"Central Processing Unit

The CP/IO module is an extensively micro-programmable general

purpose processor th3.t is responsible for controlling the rest of

the PROTEUS system. It is architecturally very similar to the

I~M 360/370 series. It is a byte oriented machine with words con­

sisting of four 8-bit bytes. Sixteen (16) general registers are

provided; these registers can be addressed as 16 full-word registers

or 32 halfword registers. Further, the ep/IO provides a register

r.tack that allows 16 sets of these 16 general reg~sters. Such sets

are switched automatically by the processcL upon the execution of

particular instructions. Also, the ep/IO supports both a problem

state and a privileged state.

Instruction Set

The" instruction set of the ep/IO is very similar to that of the

IBM 360/370 series. Additional halfword instructions are provided

to allow mainpu1ation of the halfword registers of the computer.

Further, due to the extensive microprogramrnability of the CP/IO, dif­

ferent versions of the ep/IO (i.e., different applications) have

additional instructions to facilita.ce better "application" efficiency.

Also, instructions are furnished to allow the ep/IO to control the

other parts of the PROTEUS system.

I OpCod. I V'

~2

Rill InatrYCticn Form"

I 3&1 POliticn. 1

1011 H3 1·!·I·I, 1·1 i 1'++++.f3
I

R - register

B - base register

IA - indirect bit

X - Index register

B.11

D - displacement

I

As in the 360/370 IBM computers, there is a set of privileged

instructions that can be executed only when the machi.r,e is in the

privileged state. Such instructions include protection modification,

I/O initiation, and other control flIDctions.

Addressing

A1thougb tile CP/IO can generate ~ 32-bit address, it is limited

to 128K words. The address mechanism is t.he same as for the IBM

360/370 series; that is, a displacement in an instruction is modified

by the contents of a specified base register (optional) and a specifie

index (optional) register which results in an absolute address. Although

Eicroprogrammed, the epfIO hardware automatically provides this address·

modification scheme to the microprogram.

~e CP/IO has the ability for indirect addressing. Such addresses

can be modified only before the ine:rection.

Protection Hardware

~e CP/IO protection mechanism is block oriented. Main memory is

divided into pages of 2K each. Each page has associated with it pro­

tection bits that determine whether the page can be used by the currently

running process. The modification of these protection bits can be accom­

plished by a privileged instruction; thus, it is po~sible for the CP/IO

to offer protection in other than friendly environments.

Interrupts

~ CP/IO interrupt structure is identical (except for the addition

'of new classes of interrupts) to the IBM 360/370 series interrupt structure.

Interrupts are grouped in several classes. Upon interruption, the pro­

cessor stores the current state of the machine and retrieves a new state

for the machine; both the current state storage and new state retrievel

come from locations dependent upon the class 6f the immediate interrupt.

B.12

Within the state specification, it is possible to lockout interrupts

of various classes (some within particular classes); l.nterrupts locked

out will be held pending. The new state retrieved will specify the

address of the routine to run. Upon completion, the interru~t routine

restores the machine to the state at the moment of interruption.

Timing Mechanisms

The CP/IO contains a real-time clock that is a countdown timer.

Upon reaching 0 it signals an interrupt.

Memory

Main memory consists of up to 64K 32-bit words that consist of

8K memory modules. There are also additional memories connected to

the CP/IO: a control store memory which serves to hold the micro­

programs for the CP/IO. A bulk memory accessible via a STORAGE

TRANSFER CONTROLLER holds program data and other information not

immediately necessary in the CPjIO. Other memories related to the

use of the ARITHMETIC PROCESSORS and their functions are available

to the CP/IO via special instructions.

Input/OUtput

The CP/IO has several mechanisms for inputting and outputting

data. There is a set of 8 sink-source pairs of digital channels

that are handled similarly to the I/O channels of the IBM 360/370;

that is, the CP/IO initiates the particular I/O channel to execute

a ·channel" program that the CP/IO has previously set up in memory.

There is a STORAGE TRANSFER CONTROLLER that enables the CP/IO to

move data throughout the PROTEUS system. The INPUT SIGNAL CONDITIONER

is the CP/IO's way of inputting and outputting real-time acoustic data

into the bulk storage modules.

S.13

References

The proceding information was extracted from the IBM PROTEUS

PRINCIPALS OF OPERATION, IBM, Federal Systems Division, Manassas,

Virginia.

I N D E X

-A-
AEGIS, 2.1-2.7, 4.1, 4.5

Airborne Applications, 3.1
Summary, 3. 19

Air Data Computer, 3.18

ATEP, 2.1
Analysis, 2.11-2.12
AWG-9 Computer, 3.16
AUTODIN, 5.1
Error management, 13.1
File management, 12.3
Functions, 2.7
Hardware, 2.3
I/O processing, 10.1
Interrupt handling, 7.4
Memory management, 9.3
Overview, 2.1
Performance, 2.6
Process synchronization, 11.2
Processing, 2.9
Scheduling, 8.6

ATEP/MAX, 4.1-4.3
Design overview, 4.3

I Error management, 13. 2
Executive, 4.2

-File management, 12.4
Functions, 4.2
I/O processing, 10.4
Interrupt handling, 7.4
Memory management, 9.4
Scheduling, 8.7

ATEP/MMS, 4.4-4.14
ADEP, 4.6, 4.9
Capabilities, 4.6
Error management, 13.2
Example loads, 4.11-4.14
File management, 12.4

". I/O processing, 10.4
Interrupt handling, 7.5
Kernel, 4.6
Memory management, 9. 5
OVerview, 4.4
Process synchronization, 11.3
Scheduling, 8.7

·-B-
BQS-13, 4.17-4.18

Error management, 13.5
Initialization, 4.l7
I/O contro~, 4.18, 10.5
"_'lterrupt handling, 4.17, 7. 7
Memory management, 9.8
Process synchronization, 11.6
Scheduling, 4.17, 8.10

-C-

COMMON Program, 2.26
Analysis, 2.27
Overview, 2.26

Communicat·ions Systems, 5.1

CUDIXS, 1.9, 5.9
Diagrams, 5.11, 5.12, 5.13
Executive, 5.10

COS/UYK-20, 5.22
Devices, 5.23

Data

Data

Data

Data

File management, 5.25, 12.6
I/O management, 10.8
Interrupt processing, 5.24, 7.9
Memory management, 5.24, 9.7
Process synchronization, 11.6
Scheduling, 5.24, 8.10

-D-

Analysis, 1.5

Gatheri~g Function, 1.3

Reduction, 1.4

Sampling, 1.3

-E-

E-2C Airborne Early Warning
System, 3.12
Diagram, 3.12
Subsystems, 3.13

Error Management
,Analysis, 13. 7
Co~arisons, 13.1-13.7
~ntroduction, 13.1

'-F-

F-14 Fighter Aircraft, 3.15
Diagram, 3.15

File Management
Analysis, 12.7, 12.8
'Chart, 12.2
Comparisons, 12.3-12.7
introduction, 12.1

Framework, 1.1
,Computation, 1.3
Buman interaction, 1.7
Multi-computer coordina-

tion, 1.9

-.1:-

'IFF. 1.6, .1.8

.Interaction
Human, 1.7
Graphical, 1.8

.Interrupt Handling
Analysis, 7.12-7.13
Comparisons, 7.2-7.12
Introduction, 7.1
UYK-7, 7.2

'i/O Pr~cessing
Analysis, 10.11-10.15
Comparisons, 10.1-10.10
.Introduction, 10.1

-L-

IrJ04 Computer, 3.13

LHA System, 5.3
Diagram, 5.24
Executive, 5.5
Problems, 5. 5
TIPS, 5.6

'-M-

'Mar ine Corps, 6. 1
Conclusion, 6.12
Environment, 6.2
IFDS, 6.10-6.12
MIFASS, 6.3
MTACCS, 6.1
Other systems, 6.9
TESE, 6.4
"Test bed, 6.2
TWAES, 6.7

Memory Management
Analysis, 9.8, 9.9
Chart, 9.2
Comparisons, 9.3-9.8
Introduction, 9.1

Multicomputer Coordination, 1.9

-N-

NAVMACS, 1.9, 5.1., 5.16
Diagrams, 5.18, 5.19
System 13, 5.20, 5.21

NAVCOMPARS, 5.1, 5.14, 5.15

,NTDS, 1.9 ,S. 2

P-3C

-p-

Devices, 3.2
Error management, 13.3
Hardware, 3.2
I/O management, 10.6
Interrupt handling, 7.7-7.9
Memory management, 3.3, 9.6
Other features, 3.6
·Process synchronization, 11.4
Scheduler, 3. 3, 8.8
Update, 3.1

PROTEUS System, 3.7
Analysis, 3.11
Data management, 3.10
Error management, 3.10, 13.6
Executive, 3.7
Hardware, 3.7

Initializatio~, 3.9
I/O management, 3.9, 10.9
Interrupt managemeflt, 3.9,

7.11
Memory management, 3.8, 9.8
Process synchronization, 11.7
Scheduler, 3.8, 8.11

Process Synchronization
Analysis, 11.8
Comparisons, 11.2-11.3
.Introduction, 11. 1

-R-

Radars~ 1.3, 1.10

-S-

Schedulers
Analysis, 8.14
Comparisons, 8.4-8.13
Introduction, 8.1
MOdule entry scheduling,

B.2
~ask Dispatching, 8.3

SDEX/7, 2.14
Analysis, 2.19
Data protection, 11.4
Error management, 2.15, 13.4
Initialization, 2.14
I/O management, 2.18, 10.7
Inter~upt management, 2.17,

7.6
Memory management, 9.7
.Message processing, 11.5
Other featares, 2.18
Scheduler, 2.15, 8.9

SDEX/20, 2.20
Analysis, 2.24
Error management, 2.23, 13.6
Initialization, 2.20
I/O management, 2.23, 10.10
Interrupt management, 2.22,

7.10
other features, 2.23
Scheduler, 2.21, 8.12

Shipboard Applications, 4.1
Introduction, 4.1
SUDIIlary, 4.19

Summary
Design considerations, 14.7-

14.11
Introdcction, 14.1
Necessary features, 14.7
Need for a standard, 14.5

-T-

TARTAR System, 1.10-1.12, 4.19
Diagram, 1.10, 1.17
Executive, 1.12, 4.17
Hardware, 4. 17

TIPS, 5.6
Diagram, 5.7
Operating system, 5.8

TESE, 6.4, 6.5
ATEX, 6.6

TWAES, 6.7, 6.8

	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	1_000
	1_01-01
	1_01-02
	1_01-03
	1_01-04
	1_01-05
	1_01-06
	1_01-07
	1_01-08
	1_01-09
	1_01-10
	1_01-11
	1_01-12
	1_01-13
	1_01-14
	2_000
	2_02-01
	2_02-02
	2_02-03
	2_02-04
	2_02-05
	2_02-06
	2_02-07
	2_02-08
	2_02-09
	2_02-10
	2_02-11
	2_02-12
	2_02-13
	2_02-14
	2_02-15
	2_02-16
	2_02-17
	2_02-18
	2_02-19
	2_02-19a
	2_02-20
	2_02-21
	2_02-22
	2_02-23
	2_02-24
	2_02-25
	2_02-26
	2_02-27
	2_02-28
	2_03-01
	2_03-02
	2_03-03
	2_03-04
	2_03-05
	2_03-06
	2_03-07
	2_03-08
	2_03-09
	2_03-10
	2_03-11
	2_03-12
	2_03-13
	2_03-14
	2_03-15
	2_03-16
	2_03-17
	2_03-18
	2_03-19
	2_03-20
	2_04-01
	2_04-02
	2_04-03
	2_04-04
	2_04-05
	2_04-06
	2_04-07
	2_04-08
	2_04-09
	2_04-10
	2_04-11
	2_04-12
	2_04-13
	2_04-14
	2_04-15
	2_04-16
	2_04-17
	2_04-18
	2_04-19
	2_04-20
	2_05-01
	2_05-02
	2_05-03
	2_05-04
	2_05-05
	2_05-06
	2_05-07
	2_05-08
	2_05-09
	2_05-10
	2_05-11
	2_05-12
	2_05-13
	2_05-14
	2_05-15
	2_05-16
	2_05-17
	2_05-18
	2_05-19
	2_05-20
	2_05-21
	2_05-22
	2_05-23
	2_05-24
	2_06-01
	2_06-02
	2_06-03
	2_06-04
	2_06-05
	2_06-06
	2_06-07
	2_06-08
	2_06-09
	2_06-10
	2_06-11
	2_06-12
	3_000
	3_07-01
	3_07-02
	3_07-03
	3_07-04
	3_07-05
	3_07-06
	3_07-07
	3_07-08
	3_07-09
	3_07-10
	3_07-11
	3_07-12
	3_07-13
	3_07-14
	3_08-01
	3_08-02
	3_08-03
	3_08-04
	3_08-05
	3_08-06
	3_08-07
	3_08-08
	3_08-09
	3_08-10
	3_08-11
	3_08-12
	3_08-13
	3_08-14
	3_09-01
	3_09-02
	3_09-03
	3_09-04
	3_09-05
	3_09-06
	3_09-07
	3_09-08
	3_09-09
	3_09-10
	3_10-01
	3_10-02
	3_10-03
	3_10-04
	3_10-05
	3_10-06
	3_10-07
	3_10-08
	3_10-09
	3_10-10
	3_10-11
	3_10-12
	3_10-13
	3_10-14
	3_10-15
	3_10-16
	3_11-01
	3_11-02
	3_11-03
	3_11-04
	3_11-05
	3_11-06
	3_11-07
	3_11-08
	3_11-09
	3_11-10
	3_12-01
	3_12-02
	3_12-03
	3_12-04
	3_12-05
	3_12-06
	3_12-07
	3_12-08
	3_13-01
	3_13-02
	3_13-03
	3_13-04
	3_13-05
	3_13-06
	3_13-07
	3_13-08
	4_000
	4_14-01
	4_14-02
	4_14-03
	4_14-04
	4_14-05
	4_14-06
	4_14-07
	4_14-08
	4_14-09
	4_14-10
	4_14-11
	4_14-12
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	I-01
	I-02
	I-03

