
NAVAl.. AIR DEVELOPHENT CENTER
WARMINSTER, PENNSYLVANIA 18974

. TECHNICAL MEMORANDUM

2071
7 Mar 1974

Subj: Addressing Structure of the All Applications Digital Computer
Data Processing Element

Ref: (a) NAVAIRSYSCOM ltr 360F:FRR of 15 Feb 1974
(b) Naval Research Laboratory Memorandum 5403:l59:HC:la

of 16 Oct 1973

Introduction

Reference (a) requested NAVAIRDEVCEN to review and comment on
reference (b). Accordingly, this technical memorandum has been prepared
in accordance with the provisions of reference (a).

Machine Organization

The DPE of the AADC (All Applications Digital Computer) contains a
PMU (Program Management Unit). an AP (Arithmetic Processor), a Channel
and a T.M (Task Memory). The TM has 4K 36-bit words divided into sixteen
256 word pages. Program pages are stored in TM during execution. In
addition, T.M can be used to store data temporarily. The PMU performs the
control functions of the DPE. and the AP performs the arithmetic and
logical computations. The channel provides the interface with the main
data buses.

The PMU is separated from the AP by a queue (APQ) to provide for
parallel operation. The APQ holds up to sixteen 56 bit items. The PMU
fetches an instruction from TM and an operand from one of the memories
described below. and places the operation code, operand, and necessary
control and sequencing information into the APQ. The AP removes and
executes these instructions.

The BORAM (Block Organized Random Access Memory) is read-only and
stores procedures and constants for programs in blocks of 256 words
each. Program pages are transferred to 1~ on demand via the main data
bus at a rate of 150 nanoseconds per word.

The RAl~ (Random Access Main Memory), which is divided into 256-word
pages, stores data for the system. The data in a RAMM page is organized
by software into one or more data segments. A data segment is a block
of contiguous data words which does not cross a page boundary_ It is
defined by a starting address and there is no record of its length. For

Enclosure (1)

2071

example, a data segment may consist of a single precision word, five
contiguous ten-word arrays, or an entire page of data. Data in RAMM can
either be directly accessed by the DPE or transferred in pages into TM
at a 150 nanosecond per word rate.

A block diagram of an AADC SP (Simplex Processor) configuration
appears in figure 1.

Modes of Operation

The DPE can operate in either executive or problem mode. Any PMU
in a particular AADC configuration, including the DPE PMU, can be preset
to act as the executive. A Transfer to Executive command issued by a
user program or an I/O interrupt will cause the executive program in
the designated PMU to become active. Normal (problem) mode will be
reentered upon completion of the executive task. The identity of the
executive PMU can be changed operationally only by an instruction issued
by the present executive, informing another PMU that it (the second PMU)
is now the executive. Instructions dealing with data flow and control
between different AADC subsystems within a particular configuration are .. \\'
illegal if fetched from local memory in problem mode. They will, however,
be executed in executive mode. .

The AADC supports both "virtual" and absolute addressing. The desired
mode of addressing is specified by the Set Task Parameters instruction
sent to the DPE by the executive. Absolute addressing is, in general,·
no faster than virtual addressing, and should not be used under normal
conditions.

In both virtual and absolute addressing modes, the program counter
contains a virtual address. In virtual mode, data is either fetched
directly from an external RAMM or transferred in pages to TH. When a
data page is overwritten in TM, the contents of the overwritten page are
~ written back into RAMM automatically. Any altered information not
programmatically restored in RAMM will be lost. In absolute addressing
mode, data addresses are interpreted as physical addresses in TM.

Page Replacement Policy

Pages being transferred from RAMM or BORAM replace pages in TM
according to one of seven page replacement algorithms specified by
the Set Task Parameters instruction. Six of these algorithms are
automatic (Most Recently Used, Random, Random by Pairs, Reverse, First
In/First Out, First In/First Out by Pairs). The other algorithm is
"programmer specifiable." The user indicates where in TM he wants to
store pages by placing the TM page number in the TM field of the kernel
word associated with the particular RAMM or BORAM page (see sections 6-8).
The "programmer specifiable" algorithm provides the programmer with the
capability to generate his own procedure overlay, which may be more

2

2071

efficient than any of the standard algorithms for some types of structured
programs.

A pair of registers bound the TM area which is subject to automatic
page replacement. The executive loads the LBR (Lower Bounds Register)
and UBR (Upper Bounds Regiate];-) with TM page numbers specified by the
Set Task Parameters instruction. Up to fifteen of the sixteen TM pages
may be reserved in this manner. The number of pages reserved is application
dependent, but up to four kernel pages can be resident in TM at one time,
and up to three pages are required for array data, and additional pages
may be needed for trap routines and local memory stacks.

Instruction Word Format

The DPE instruction word consists of 36 bits. In all instructions,
bits 0-7 and bits 32-35 have the same meaning. Bits 8-31 have several
formats. The "standard" instruction format is shown in figure 2. The
operation code also determines whether the operation is to be performed
on a 16 bit half word operand or a 32 bit full word operand.

The DPE instruction set is divided into AP and non-AP instructions.
Bits 0-7 designate the operation code of either class of instructions.

In AP instructions, bit 8 is the precision bit (PR), and bits 9-11
specify the PC (parenthetical code). The precision bit controls the
precision of the result of each AP operation. Zero indicates single
precision, (32 bits) one indicates double precision (64 bits). The
parenthetical code controls the order of instruction execution.

In instructions which involve the PMU only, bits 8-11 and the
operation code specify one of 16 scratchpad registers (16 bits each).
The operation code of the instruction whether the low scratchpad register
set (0-15), the high scratchpad register set (16-31), or a 32 bit register
pair (0 and 16, 1 and 17, etc) should be addressed.

Bit 12 is the indirect addressing bit (I). When the bit is set,
additional operand fetches are performed. Bits 13-15 specify the
indexing field,. If no indexing is to be performed, a value of zero
should appear in the field. Otherwise, one of the scratchpad registers
1-7 is used to index the instruction. Indexing is performed before
indirect addressing. The indirect addressing and indexing sequence
is more fully described in section 11.

Bits 16-31 are the operand address field which may address a word
of procedure or a data operand. A DPE data operand may be single precision,
double precision, a complex quantity, or an array preceded by a dimension
word. The 3 bit tag identifies the type. Operands to be processed by
the PMU (exclusive of the AP) do not use the data tag. These operands
may be either half word or full word.

3

2071

Under normal operating conditions, the DPE is in "virtual" addressing
mode and the operand address field specifies a VA ("virtual" address).
When the DPE is in absolute addressing mode and the operand is a data
element, bits 16-31 contain an AA (absolute address) of the data operand
in TM. The l6-bit virtual address is used as two 8 bit bytes. The first
byte addresses a KW (kernel word) which contains addressing, trap, residency,
and protection information on the procedure page or data segment con
taining the operand. The kernel, which plays a major role in the
addressing scheme, is discussed further in section 6-8. The second byte
specifies a displacement (D) from the beginning of the procedure page
or data segment.

Bit 32 is the addressable/literal bit (A). This bit is examined
when bit 12 is a ONE as an indicator of register indirection (see figure
6A). The bit is examined in the addressable/literal context when
bit 12 is O. When bit 12 is 0 and bit 32 is ONE, bits 16-31 of the
instruction are the address of the 32 bit operand to be fetched. When
bit 32 is zero, bits 16-31 are used as a data operand. In full word
instructions a 32 bit positive integer operand is formed by catenating
16 zero's with bits 16-31 of the instruction word. Bits 16-31 are the
least significant bits of the operand so formed. In half-word instructions,
bits 16-31 are used as a signed integer operand. Certain instructions
are designated as non-immediate. For these instructions, bit 32 has no
effect on the operand fetch cycle. Bits 16-31 are always treated as an
address. The Non Immediate instructions are:

l.
2.
3.
4.
5.
6.
7.
8.
9.

10.

All Transfer Instructions (Excluding Skip Instructions)
All Store Instructions
Load Multiple
Execute
Return Stack to P
Return Stack to P and Proceed
Single Word I/O
Double Word I/O
Set Bit N
Reset Bit N

Bit 33 is the AP/Not AP bit (U). When the bit is zero, the
instruction is not for the AP. When the bit is one, the instruction is
for the AP. In the latter case, the operation code, the operand specified
by the address information, and other control and sequencing information
is placed on the APQ.

Bit 34 is the instruction trace bit (T). When the bit is one, the
PMU will trap to a procedure at a fixed location reserved for instruction
trace after the instruction is executed.

Bit 35 is the odd parity check bit (P).

4

Kernel

Associated with each task is a procedure
kernel page. They are usually the same page.
storage requirements for a single task exceed
pages can be reserved as a kernel area.

2071

kernel page and a data
However, when total

65K words, up to four

, .,ri
./ ': l ... / The kernel contains the addressing and control information necessary,/'

to execute the task and remains resident in 'I'M throughout the execu~//
of the task. The kernel may only be written into by the executive. ;f

There is a word in the kernel associated with each procedure page
or data segment. Since the maximum kernel size is four 256 word pages,
a task may have a maximum of 1024 procedure pages or data segments. A
procedure page can be stored anywhere in either BORAH, ~, or TIl. A
data segment, whose size ranges from one to 256 words, may be stored
anywhere in RAMM as long as it is contained in a single page. Tables may
extend across page boundaries; however, the first word of the table
should be in the first word of a page.

Kernel Word Format

7. The 36 bit kernel word has the format illustrated in figure 3.

Bits 0-7 are used when bit 10 - 1. The field specifies the 'I'M page
containing the procedure or data page associated with that kernel word.
This field is 8 bits to allow for future expansion of TM.

Bit 8 is the kernel load bit (KL). This bit, when set, allows the
load of a data kernel page through this kernel word.

Bit 9 is the kernel trace bit (T). When the bit is one, the PMU
will trap to a procedure at a fixed location reserved for kernel trace
after the current instruction has completed execution.

Bit 10 is the residency bit (R) which is used when bit 11 - 1. When
the bit is zero, the page is not resident in TM. When the bit is one,
the page is the TIM page identified by bits 0-7 of the kernel word.

Bit 11 is the page/word bit (PW). When the bit is zero, the data
is "word oriented" and the data operand is accessed directly from &AMM.
When the bit is one, the instruction or data desired is "page bound."
The entire page must be transferred by BORAH or RAMM to TM before oper
ations utilizing the data operand within the page are performed.

Bits 12-31 specify the RAMM or BORAM address of the desired data
segment or procedure page. Bits 12-19 indicate the system resource
number of the BORAH memory unit, and bits 20-31 contain the physical
page number of the desired page within the identified BORAM. Up to

5

2071

4096 pages per BORAN may be addressed. When the memory unit is a RAMM,
bits 12-31 contain the address of the first word of the desired data
segment within the RAMM. Up to 4096 words or 16 pages may be addressed
per RAMM system resource. A physically contiguous RAMM may contain up
to 65K words. In this case it would respond to 16 system resource
names, or alternatively, bits 12-15 would be the RAMM system resource
name and bits 16-31 would specify the memory location in the RAMM. A
32K word ~1 would correspondingly respond to 8 system resource names
and bits 17-31 would specify the internal address.

Bit 32 is the read protect bit (RP). When this bit is set, the
user program is not permitted to read information in the indicated
procedure page or data segment. If this bit is set in the kernel
word while a read is attempted, a trap occurs.

Bit 33 is the write protect bit (wp). When this bit is set, the
user program is not permitted to write into the indicated procedure page
or data segment. If this bit is set in the kernel word while a write or
store is attempted, a trap occurs.

Bit 34 is the command protect bit (Cp). In order for a page of
instructions to be executed, the command protect bit of the kernel word
must be zero. Otherwise, a trap occurs and the execution is aborted.

Bit 35 is the odd parity check bit (P).

The example illustrated in figure 4 demonstrates kernel, RAMM and
BORAM organization for a user program. The program has 1050 instruction
words, comprising five pages, and 542 data words. The data consists of
five arrays, four single precision numbers and two double precision
numbers. One particular grouping of the data into segments is displayed
in the example. Numerous other data segment configurations are possible.
The restrictions in grouping data into segments are that a data segment
may not exceed 256 words and that no data operand (e.g., array) may be
divided among two or more segments. The restriction in loading data
segments into RAMM is that a data segment must be contained within a
single RAMM page.

Addressing Registers

The registers described below are used in the translation of a
"virtual" address to a physical address.

The PC (Program Counter) is a 16 bit register which contains the
"virtual" address of the current instruction. It is divided into two
8 bit bytes.

Bits 0-7 address a KW (Kernel Word) for the procedure page containing

6

2071

the instruction. Bits 8-15 specify a displacement (D) from the beginning
of the procedure page to obtain the instruction word.

The PPR (Present Page Register) is an 8 bit register which addresses
the TM page containing the current instruction.

The KPR (Kernel Page Register) is a 2 bit register which addresses
the TM page containing the current kernel page. There are two KPRls;
one for procedure addressing and one for data addressing. Their contents
may be identical.

Instruction Fetch

The DPE is assigned a new task by means of the "Initiate New Task" """ (},~' \ J " i' '1
instruction sent to it by the executive. The instruction sets up the ;/ I _\'.

\" 1'". KPR I s and provides the BORAM address of the first kernel page. If the il \J ;~
page is not resident, the BORAH address is used to obtain it. The '..: I< 1)
instruction also indicates if the kernel page is already resident. The ,. \t!J.~!~
first word of the kernel page is associated with the first procedure \.:\' J-
page of the task. This procedure page is transferred from BORAM to TM ,>iP ;).,'1.\
if the kernel word associated with the procedure page is marked as non- ~
resident. The first word of this page is the first instruction to be
executed. Prior to execution, the PC addresses the first kernel word
(word 0) with a zero displacement and the PPR addresses the TM page
containing the first procedure page. The loading of subsequent data
kernel pages into TM may be performed any time during program execution.

The PC contains the "virtual" address of the instruction to be
executed. To obtain the TIl absolute address, the kernel word pointed
to by bits 0-7 of the PC is examined. If the procedure page containing
the instruction is not resident, the page is transferred from the BORAM
to TM, the residency bit of the corresponding kernel word is set, and
bits 4-11 of the kernel word, which contains the TM page number of the
procedure page, are moved into the PPR. The 16 bit TM address is the
concatenation of the 8 bit PPR and the 8 bit displacement field of the
PC. Formation of the TM absolute address is displayed in figure 5.

The PC is incremented by one to anticipate the next instruction.
The addressing cycle in figure 5 is not performed when the kernel word
field (bits 0-7) of the PC is unchanged, because the next instruction
is in the same procedure page as the previous instruction. When bits
0-7 of the PC change (page fault) a new page will be brought into TM
automatically via the full virtual addressing cycle. All procedure
pages to be executed are referenced in the kernel page. If the same
page is executed by two different tasks, it will be referenced in both
kernel pages. If task storage requirements, or the possibility of an
interrupt requiring immediate response require the residence of more
than one kernel page in TM, the other kernel pages can be reached by

7

2071

means of the "Transfer and Stack Kernel Nil instruction (N = 0, 1, 2, 3).
The KPR's are updated to the new kernel page number while the subroutine
is being executed, and the old contents of the KPR's will be restored
when the subroutine is completed.

Operand Fetch (See figure 6, 6A)

Bits 12-15 of the instruction word are used to modify the operand
address. If the index field (bits 13-15) is zero, no indexing is per
formed. An index field of one through seven determines the desired
register in the low scratchpad register set. The 16 bit contents of
the specified index register is added to bits 16-31 of the instruction
word, losing a carry to bit 15. Indirect addressing is performed after
indexing. The process of indirect addressing entails replacing bits
12-32 of the original instruction word with a new set of bits. Bit
12 of the original instruction, when a one, specifies that indirect
addressing is to be performed. When bit 12 is a 0, no indirect addressing
is performed.

When bit 12 is a one, bit 32 specifies one of two indirect modes:
Memory or Register Indirect Addressing. In memory indirect addressing
(bit 32 is a ONE), Bits 16-31 of the instruction are used to address
local TM (normally a virtual address). Bits 12-32 of the referenced word
replace bits 12-32 of the original instruction and the fetch cycle is
reentered. In register indirect addressing (bit 32 set to 0) the contents
of the instruction word are rearranged as follows:

Bits 28-31 replace bits 12-15. (New address modification field).
Bit 17 replaces bit 32. (New indirect tag)
In addition, bit 16, if a one, indicates a replacement operation.
Bits 23-27 are saved for use with indexing which follows.

After this rearrangement, the contents of the scratchpad register (SP)
specified by bits 23-27 replace bits 16-31 of the original instruction.
The process of indexing is again performed and indirect addressing may
be repeated. If the replacement operation was specified by the previous
indirection (bit 16 a ONE), bits 16-31 of the modified instruction word,
(after indexing) are written back into the register specified by bits
23-27 of the preceeding register indirect cycle, which were saved as
explained above. The indexing and indirect addressing cycles are con
tinued until bit 12 is ZERO. ,~t this point the operand fetch cycle is
entered. After all indexing and indirect addressing is performed, the
addressable/literal bit (bit 32) of the modified instruction word is
examined to determine if the operand field (bits 16-31) should be treated
as a 16 bit literal operand or as the address of an operand.

When the addressable bit is set or indirect addressing is specified,
an operand must be fetched from TM or RAMM. When the operand field is
interpreted as a physical address (bits 16-31), the kernel is not used.

8

2071

When the operand field contains a "virtual" address (bits 16-31), it
must be translated to a physical address. Bits 16-23 of the instruction
word address a word in that kernel whose location in TM is pointed to
by the KPR.

When the kernel word is marked as "page oriented" (bit 11 == 1), it
may be associated with a BORAM procedure page, RAMM procedure page, or
a RAMM data segment (see figure 7). When the memory unit is a BORAM,
bits 20-31 of the kernel word reference a page in BORAM. If the kernel
word associated with the page is non-resident, the page is transferred
to TM. A TM address of an operand is obtained in the same way as the
TM address of an instruction is obtained. When the system resource
field identifies a RAMM, bits 20-31 of the kernel word reference a word
in RAMM. If the page containing the referenced word is not in TM, the
entire physical page is read from RAMM beginning with the addressed
word and continuing consecutively until 256 words have been accessed.
If the address does not point to the first word of the RAMM page, a
wrapping around process occurs whereby the first physical word of the
RAMM page is stored in TM after the last physical word of the same page.
No page boundaries are crossed. Bits 0-7 of the kernel word are set
to the TM page number. These 8 bits are concatenated to bits 24-31
of the instruction word to form the 16 bit TM address.

When the kernel word is marked as ''word oriented" (bit 11 == 0), it
must be associated with a RAMM data segment (see figure 8). Bits 24-31
of the instruction word are added to bits 24-31 of the kernel word, with
no carries beyond bit 24, to obtain a new displacement. The carry is
inhibited to keep the address in the same RAMM page. Bits 12-23 of
the kernel word are concatenated to the new 8 bit displacement to locate
the operand in the specified RAMM.

C. JOECKEL

9

4
AADC
DEVICE .-- I >

L DC M
NTDS
DEV Ie E - I ~

J 0 C M }
SERIAL RAMM
DATA LINK -

1

OCM PMU
~r

CHANNEL 1 CHANNEL I ,
1

T I

CHANNEL CHANNEL

' SORAM PMU ;TMI
AP OPE

SIMPLEX PROCESSOR.

FIG. I

OP CODE

o

AP
--JA'--- t 1

PRI PC
r INDEX K.W. ADDRESS I DISPLACEMENT

A U T P
SP FIELD

7 8 II 12 13 15 16

L-y---J
PMU

LOCAL MEMORY ADDRESS

2324

INSTRUCTION WORD FORMAT.

FI G. 2

31 32 33 3-' 35

Yx Mx PAGE

o

SORAM OR RAMM ADDRESS __ ---------------A,,---------------__ f ,

K P SY STEM PAGE (SORAM) R W C
P T R W p p P L RESOURCE WORD OR PAGE (RAMM)

7 e 9 10 II 12 It 20' 31 3233 34 36

KERNEL WORD FORMAT

FIG.3

Fig. 4 User

Procedu-re

Program Example

Data
Segment

Data
Items

G1E:;28r

or l:2.ta

NUDber of
Instruction
\-lords r!umber* ,. '\>;urC3

0,
1

,2
J-
4,

tvord 0

o

1

2

3 I
4

'--

256
25-6
256
255

26

Kernel Page

system.
resource

12 1920

J \
0,

~ f
01

I

o·

0 1
I

0 1
.l

page or
word

31

5\
/ :
~

3

1

7i

35

I
t

I I i
I

5\ I 2! 1536, I

61 I 2 ! 15471 I
7 1 I 2 : 768! i
81 I 2: l02J I
91 i 2 : 12261 1

Idt.-; ----t_-2-1..i _:..--_12_3---,zlr...-.. _____ l

5
6
7
8
9

10

data segment
da tel: s ego. en t

array ACIO)
array B(64)
array e(2S5)
array X(IOO),
single prec.
double prec.
double prec.

YCIOO)
I,J,K,L
H
N

11-[;*

6S-:d -

256-:'*
202-:'''*

6

2

page BORAN-Csystem resource 0)

o

1 procedure page 3

2

.
3 procedure page 2

4 procedure page 1

5 procedure page 0

6

7l procedure~~g_e_4 ____ --~1

page RANM - (sys te.ll resource 2) ,yord
o

o
1 125~
~2~t-------------------+512

--~--------------------~768 . 3t data seg;:J.ent 7
__ ~l--------~----------+1024

9- f. f ---' data
10 >f= 1280

Si-
de ':a s eZTCle nt 5 - ;'-, ============:::r!, 1 "'3 ~ ~ r--- -) 0
dilta s<-==g;nent 6 ---:;>~----------

~ J , !. 1192

7L L 12043

,'; The p.rO(_:-~Il-::~ page and data segr:l'~r;tt nUC1bers are the addresses of the kerr.el
words 2.ssJ,~i2.ted 'ylith the page or segment.

~::~:: IKW ADDRESSI

I
I
I
I
I
L_

r
I
I
I
I

o I T 8 ----- -'

10 7 1

L..--v--

D 1
115

--.... 9 KIRNIL
KP PAGI

o I RIIISTIR

PRISINT
PP - PAGI

0 T RIGISTER

7 "
pp ~M D I

,

I AA J
TASK MIIiORY L _______________ _ I

_.....I TM ABSOLUTI
ADDRISS

DATA PATH" ~

POINTIR PAT"- --0<

ADDRESSING CYCLE TO OBTAIN TM

ABSOLUTE ADDRESS.

FIG.5

,0P ~~~~_I:~:~~fc~lx_~L
o '1 " II.I.'L 3 i5 i" L __

'.lse it S 1.-31 of
lf1stnlctiOfl as II.
bIt sl'gf1ed II-,tesef"
data opc l\d

No

No

eru1i'ji bit. - IlnslClMi
inll'Oer da.ta. OjlE"'d.;o~
b'its 1(.-31 of oper .. nd
_ add-ress ~ielc!

FIG. f,
OPERAND F"ETCH

CYCl.E

,.
r-____ ~N~o~ C~3Lr_~~------~

IS 0

__ .,c
lAse IJlts I~~ll as
absolu.te -ret~re
to w.llworo i"
loca\ memor

__ I. __
use biLs 1'-31 as!
vlrt.u.a.\ re~eren'e.
to ~ul\worcl in

--~ -
replac.e bits 12-32-
'In if1stru.ci:iot'\ wi
bits 11.~32.. ~
tetched word

ad <.onlents o~l

)c'R. re5'$~r to
addrcs.s ~Ie\d

store address i~IQ
(t:i't.s IHD into pre
s~'I.fie<l re3,~ter no.
~ re se't rep. ~ \a..s

! I
I I

FIG 6 A

REGISTER INDIRECT ADDRESSING

c=. ____________ ~~~A-:-~~R~r~I------~--~~~N~EW~AM~F~~ REG. No.IEfmo IUIWl p I
o ./1 12 13 IS It;, /1 Z3 2728 J.Cf 31~3J~35

BEGIN

REPLACE
AMP li'JEL£

(BITS 12 -15}
lliTH

NEW AMF FIELl)
(BITS 28-31)

REPLACE
ADDRESSABLE BIT

WITH NEW
ADDRESSABLE BIT

(BIT 17)

L _______ ------_ _----------___ ~
---v"

ADDRESS FIELD

LEGEND

AMF - ADDRESS MODIFICATION FIELD

R - REPLACEMENT SPECIFICATION BIT

M - ADDRESSABLE MODE BIT

REG. NO. "!' REGISTER NUMBER (0-31.)

XR - INDEXING REGISTER NUMBER (0-7)

I - INDIRECTION SPECIFICATION BIT

XR' - NEW INDEX REGISTER NUMBER

U - UNIT (AP/NON-AP) BIT

T --l'RACE BIT

P -·PARITY BIT

SET R FLAG
AND SAVE
REG.TSTER NO.
(BITS 23-i7)

REPLACE
ADDRESS FIELD
f-IITH CONTENTS
OF REGISTER
SPECIFIED BY

B.TTS 23-27

END

INSTRUCTION
WORD AFTER
INDEXING IS
PERFORMED

0

.....-----------

KERNEL
WORD

I
I
I
L.o

0

1M PAGE

l
,

NTER PATH - ---t> POI
OAT A PATH &>

J r}' I
10 II 12

K W ADDRESS D

II. 1 II t4 IIU
___ ..J

SJ

l ~
1 1M PAM ~roI

I
D

,
AA I

16- IJT 1M AISOLUTa ADDIlDS.

D= displacement of operand from beginning of TM
page. (In the case of RAMM data, it is also
the displacement from the beginning of the
data segment, since the data segment was
transferred from RAMM to the beginning of
the TM page).

Figure 7

Virtual addressing of page oriented operands
(Bit 11=1) which are resident (Bit 10=1)

A

II

INSTRUCTION
WORD AFTER
INDEXING IS D
PERFORMED. O~--------------------~--~~--~----~----~----

115 141 I 31 32

I
r--------------I

KERNEL
WORD

o

I> DATA PATH

- - --I> POINTER PATH

RAMM SYSTEM AAMM ABSOLUTE ADORESS
RESOURCE

D :: DISPLACEMENT OF OF£RAND FROM BEGINNING OF DATA SEGMENT.

0' :: DISPLACE MENT OF OPERAND fROM BEGINNINA OE _RAMM PAGE.

0" :: 0 + 0 1 WI Ttf NO CARRY.

P :: R AMY PAGE.

FIG.8 VIRTUAL ADDRESSING OF OPERANDS,WHEN THE KERNEL
WORD MARKS THE DATA SEGMENT AS WORD-ORIENTED,

(BIT 11-0)

