Division: MTSSILE SYSTFMS
Operation : Crosby Drive
Department : Data Processing Systems
To: S. Wallach D-B54
From : S. Nissen D-B54
Subject : ROM Field Specification
Ref : 7675-14-74

Contract No.

Distribution : aa
File No.
Memo No. : 7675-97-74
Date : Feb. 12, 1974
Revised : 2/8/74

The following meno defines the ROM fields which
have been specified in detail for the PMU MINI. Each field controls a specific area of data.flow. Names of units are taken from
the PMU Master Block Diagram available by contacting M. Hereth
at Ext. 2257. This memo supersedes any previously released, including the reference.

1. P REGISTER CONTROL (3 BITS)

RPCO	$\underline{R P C l}$	$\underline{R P C} 2$	FUNCTION
0	0	0	Load AUBUS
0	0	1	*Hoad P Shifted Right
0	1	0	Load TMBUS
0	1	1	Increment P
1	0	0	Load AUBUS
1	0	1	*Load P Shifted Right
1	1	0	Load TMBUS
1	1	1	L̇oad p (idle)

*End bits are derived from unswitched ADBUS
2. IA REGISTER CONTROL (3 BITS)

RIAO	RIA1	RIA 2	FUNCTION
0	0	0	Load AUBUS
0	0	1	*Load AUBUS Shifted Right
0	1	0	Increment IA8-15
0	1	1	Increment in
1	0	0	Load AUBUS
1	0	1	*Load AUBUS Shifted Right
1	1	0	Load tmbus
1	1	1	Load IA (idie)

*End bits are specified in another memo.
3. IB REGISTER CONTROL (4 BITS)

The IB register control is divided into two levels, IB Select Control and IB Shift Control. The shifter shifts the selector output.
3.

IB REGISTER CONTROL (cont.)

		IB SELEECT	
$\underline{\mathrm{RIBO}}$	RIB1		SELEECTION
0	0		IB
0	1		TMBUS
1	0		0
1	1		A UBUS
		IB SHIFT	
RIB2	RIB3		SUIFT
0	0		UNUSED
0	1.		LEEF'
1	0		RIGIIT
1	1		NO SHIFT (TRANSFER)

For example, to idle IB, the code 0011 would be used.
4. AD BUS SELECT CONTROL (2 BITS)

The ADBUS Selector which feeds the switch is controlled by this field.

RADO RAD1
$\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}$
10
1 l

SELECTION
IB
SP
P
IA
5. DT BUS SEL,ECT CONTROL (2 BITS)

RDTO		RD
0		0
J		0
1		1

SELECTION

IB
SP
P
IA
6. AD SWITCH CONTROL (1 BIT)

RADS
0
1
7. \triangle UBUS CON'IROL (2 BITS)

RABL	$\underline{\mathrm{R} A B H}$	A UBUS0-7
0	0	DTBUS0-7
0	1	A UFO-7
1	0	DTBUS0-7
1	1	AUFO-7

SELECTION
ADBUS
ADḂUS Switched

$$
\text { AUBUS } 8-15
$$

DTBUS8-15

DTBUS8-15
AUF8-15
AUF8-15

UNCLASSIFIED

7675-97-74
Page 3

- Note: AUF is the data output of the Λu, but does not exist separately from \triangle UBUS. It is named here for descriptive purposes only.

8. SP WRITE (1 BIT)

This line, when a 1 causes a $S P$ write cycle to take place from the AUBUS. When a $0, S P$ is read.
9. TM CONTROL (2 BITS)

Four possible TM cycles are defined. One is a TM Read Cycle. A second is a TM Write Cycle. A third"is a TM Buffer Load Cycle. Finally, there is a TM Idle Cycle.

9A. TM Read Cycle (Code Ol)
The address for the read must already have been loaded into the address register on a previous clock. The read cycle, once initiated will be carried to completion. ROM flow will continue on the clock pulse following a data available signal from $T M$. At this point, the data will be in the data register. Any ROM step which subsequently attempts a TM read or write cycle will cause the clock to halt at that point, awaiting a TM not busy indication, unless TM is not busy. Buffer load cycles will be allowed to carry to completion, however, when the memory is busy once data available has been received. The address register will be loaded with new value on the clock pulse following data availablc
9B. TM Write Cycle (Code ll)
The address and data for the write must already have been placed into the address and data registers on a previous clock. The write cycle, once initiated will be carried to completion. ROM flow will continue immediately. Any ROM step which subsequently attempts a TM read or write cycle will cause the clock to halt at that point, awaiting a TM not busy indication, unless $T M$ is not busy. Buffer load cycles will be allowed to carry to completion, however, when the memory is busy once a data accepted signal has been received from TM. The data and address registers will be loaded with a new value as in 9 C on the clock pulse following data
9C. Buffer Load Cycle (Code lo) _accepted.
The data and address buffers will be loaded from external ports on the next clock pulse.

9D. TM Idle (Code 00)
Actions initiated are continued. No new action is initiated. Buffers are maintained, except a read cycle will load the data register when data becomes available.
10. SP ADDRESS COHIROL (6 BITS)

The SP Address Control is primarily controlled by RSPO. When RSPO is 1 , the SP address is set to be RSPl-5. When RSPO is 0 , one of the following selections will be made: \quad RSPO $=0$ and RSP5 is used to enable sign extraction on the D'TBUS based on \varnothing PSE.
RSP $0=0$ RSP1 RSP2 RSP3 RSP4
SP ADDRESS

1	0	0	$0-10$	TMR23-27
1	0	0	$1-12$	CPO-4
1	0	1	$0-14$	0, SPRO-3
1	0	1	$1-16$	SPARE
1	1	0	$0-18$	SIDO, SPD1-4
1	1	0	$1-1 A$	SPDO-4
1	1	1	$0-1 C$	1, SPRO-3
1	1	1	$1-1 E$	00, TMR2.9-31
0	0	$\mathbb{0}$	$\mathbb{0}-00$	SEE NOTE 2

NOTE 1: © is don't care TMR is memory data register
CP is control panel
SPR is SP register for PMU instruction field bits 8 - 11.
SPD is register indirection SP field bits 27-31.
NOTE 2: Result is 0, TMR8-11 if TMR13-15 $=000$
Result is 00, TMR13-15 if TMRI3-15 $\neq 000$.
RSP5 is ignored if TMR13-15 $\neq 000$.
-11. M BUS CONTROL (1 BIT)

RMBS
0
1

SELECTION
TMBUS
ADBUS SWITCHED
12. TM SELECTOR CONTROLS (5 BITS)

The TM Selector is defined as the TMBUS Selector and Memory Selector in tandem. Control of these is merged. The TMBUS is one input to the memory selector. It is selected to appear at the memory unless one of the other inputs to this selector is chosen. For these three selections, the TMBUS is considered as undefined for the present. A fifth bit of the selector is used only in conjunction with bits $0-2$ being 010. This bit should be 1 for all other cases. Its effect when 0 is undefined at present. When used as 0 with 010, a flip-flop named HWSL controls the function selected.

Functions are shown as the outputs found on TMSLO-15, TMSLl6-31, TMSL32-35.

13. AU CONTROLS (8 BITS)

AU Control lines are divided to control different parts of the $A U$ separately. If $R A U 3=1$ and $R A U A=0$, the logical functions are selected according to the following table. Bits 1 and 2 are ignored.

RAUO	RA U5	RAU6	RAUT	FUNCTION
0	0	0	0	0
0	0	0	1	R1. R2
0	0	1	0	$\overline{\mathrm{Rl}} \cdot \mathrm{R} 2$
0	0	1	1	RI
0	1	0	0	R1.R2
0	1	0	1	R2

13. AU CONTROLS (cont.)

RAU0 RAU5 RAU6 RAU7
FUNCTION

0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

$\overline{\mathrm{Rl}} \oplus \mathrm{R} 2$	
$\mathrm{Rl}+\mathrm{R} 2$	
R1. R2	- DT $\geq \mathrm{M}$
Rl@R2	
R2	
$\overline{\mathrm{Rl}}+\overline{\mathrm{R} 2}$	
R1	
$\mathrm{Rl}+\mathrm{R} 2$	
$\mathrm{R} 1+\mathrm{R} 2$	- DT>M
1	

R1 = register selected to DTBUS R2 = register selected to ADBUS Switched, then MBUS.
If $T M$ is selected to MBUS, substitute TM for $R 2$ to obtain correct function.
1 is 16 l's
0 is 16 0's
If RAU3 $=0$, and RAUl or $R A U 2=1$ and RAU4 $=0$, then $O P R$ register bits $2,3,6,7$ will select a logical function using the same table as above. RAUO,5,6,7 are ignored.

If RAU $3=0$ and RAUL $=R A U 2=0$ and RAU4 $=0$, an undefined operation will result.

When RAUA $=1$, an arithmețic function is selected. If RAUl, 2, 3 is not 000, thën an arithmetic function is selected according to the following table.

RAU5	RA U6	RAU7
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

FUNCTION
$\overline{\mathrm{R} 2}$ PLUS 1
$\overline{\mathrm{R} 2}$ Plus R1
1 PLUS 0
Rl pLUS 0
1 PLUS 1
Rl. PLUS 1
R2 plus 1
R2 PLUS R1
$0,1, R 1$ and $R 2$ are as for logicals.
Carry functioniong is controlled by bits $1,2,3$.

RA Ul	RAU2	RAU3	CARRY IN	CARRY TO BIT 7
0	0	1	CHFF	$\wedge C$
0	1	0	0	AC
0	1	1	1	$\wedge C$
1	0	0	0	0
1	0	1	1	0
1	1	0	0	1
1	1	1	1	1

AC implies a carry ACcross from bit 8 to bit 7. CHFF is a flip flop which retains the carry out of bith 0 from the previous $A U$ function.

Bit 0 controls polarity of output. When bit 0 is 1 , the functions are as listed in the table above. When bit 0 is 0, the output is inverted. Carry occurs before inversion.

When RAU1, 2, 3, $4=0001$, an add - subtract step is indicated. An add or subtract function is selected ((R2 PJUS R1) or (R2 PLUS Rl) respectively since TM is the input) according to the sign bits of the two operands as indicated by SGSP and TMRO or TMRI6. Selection of the appropriate TMR sign bit is automatic based on opcode bit 5 and the HWSL flip-flop. Also controlling add - subtract selection is opcode bit 7 , which differentiates an add from a subtract operation code.

The polarity selection is set to be dependent on the carry out of the $A U$ when subtract is selected. A true polarity results when there is a carry out. When an add is selected, a true polarity is also selected.

Carry is set to carry accross from bit 8 to bit 7. Carry in is set to end around (carry in = carry out) when a subtract is selected. Carry in is set to 0 otherwise.
14. TM, SP SIGN SELECTORS (3 BITS)

This sign selected by the $S P$ sign selector and $T M$ sign selector is as follows:

$\underline{\text { RSS } 0}$	RSS 1	RSS 2	SP SIGN	TM SIGN
0	0	0	0	0
0	0	1	1	0
0	1	0	NOTE 1	0
0	1	1	$\overline{\text { SGSP }}$	0
1	0	0	SGSPQ'TB16	0
1	0	1	TB16	0
1	1	0	Scsp	0
1	1	1	A U00	TB16

NOTE 1: AUAD.SGSP $+\overline{A U A D} \cdot(S G S P \oplus \overline{A C \varnothing M})$

15. \triangle DDREES SELECT CONTROL (4 BITS)

The memory address register is fed through a selector to a shifting and swapping selcctor. The first stage selector is controlled directly as follows:

RTAO RTA1

0	0
0	1
1	0
1	1

Selection
ADBUS SWITCHED
AUBUS
TM OUTPUT SP

The shifter and swapper are controlled by a second two bit field as follows:

RAS0 RAS1
Function

0	0
0	1
1	0
1	1

ADSEL 0-15
PGS, ADSEL 0-7
PGS, EB, ADSEL 0-6
NOTE 1
ADSEL is selector output
PGS is virtual address page selector. This input is hardwired in the MINI to ADSEL8-15. EB is an end-bit which is hardwired to 0 in the MINI.
NOTE l: Combinational determination of function is as follows:

EXTS	NEXT		MIDS	
	0	0		RRPS
0	0	0		0
0	0	1		0
0	1	0		0
0	0	0		1

Shift Control

TИ05
ØPR5 + INDR
$\varnothing \mathrm{PR} 5+\mathrm{T} \varnothing 12$
T $\varnothing 05+T \varnothing 12$
ØPR5 + TM28
EXTS, RRPS,NEXT \& MIDS are macro control lines (see later sections) Shifting occurs if the selected shift control is 0 . Swapping occurs if the data addressing mode is virtual. (This second condition is hardwired to 1 (absolute) in the mini).
16. ITERATION COUNTER (1 BIT)

Loads of the iteration counter are accomplished through macrocontrol. Decrementing of the counter is controlled by this l bit field. A "O" will disable the decrement function. A load caused by other control will override this field.
17. MACRO CONTROL - MODIFIER FIELD (7BITS)

Many registers exist which are loaded in one ROM step out of all or are loaded based on a condition. Other control
lines are unique to one instruction. 'lhus, a field is provided which enables one of 32 control lines to be selected in a particular ROM Step. Not all are defined at this time, but those for the MINI are described.'

A two bit modifier field provides second level control for some of the macros. The following macros have been defined thus far.

1) ITST - Interval Timer Step. Control of the interval timer is modified during execution of an Interval Timer Control Instruction.
2) TSEN - A special register is selected to appear on the TMBUS according to the modifier field.

RMDO
$0 \quad 0$
$0 \quad 1$
1
3) PROS - The Halt flop is reset for a proceed instruction.
4) RRPS - Register Replacement Step. The INDR and MREF flops are set according to TB28 and l7. SPD is loaded. HWSL is reset if no shift is defined for the address selector.
5) MSPS - Increment SPR. This is used in load and store multiple SP instructions.
6) FSTP - Main fetch step. The OPR, INDR, MREF, PMAP registers are loaded from TMO-7, 12, 32, 33. SPR is loaded from TM8-11.

HWSL is set to l if this is a literal. Memory read, if specified, is inhibited for literals. The instruction trace trap is set if EXTI is 0 and TM34 is 1.
7) TRPS - Trap Step. The trap being honored is placed on the TMBUS. Its value is stored into the rending Trap register PTR. The flop representing the trap being honored is reset. The TRPE flop is set.
8) TRSP - TRS steps. These perform the TRS and TRSK instructions.

RMD selects one of two operations. When a 0 , the present trap register is placed on the TMBUS along with the Halt and Kernel reaisters. These registers are

UNCLASSIFIED

7675-97-74
Page 10
modified if $R M D O=1$. Tha present trap number is set to the pending trap number il: TRPE is set. When RMDl=1, the P source register is placed on the bus. It is loaded from I-source if $\mathrm{RMDO}=1$ and EXTI $=1$.
9) RSPP - These return the Stack - RMDl=0 returns the TMBUS to the P-source register. RMDI=l loads the trap and Kernel registers from the TMBUS. According to the opcode, the halt flop is reset or loaded from the TMBUS.
10) $\varnothing \mathrm{VFS}$ - An overflow equation selected by RMDO - 1 is allowed to triap.

RMD0 RMD1 Overflow Equation

0	0	$\frac{A U O O}{A U O O} \cdot A U A D$
0	1	$\overline{\overline{A D B Z}+A U O O}$
1	0	NOT USED
1	1	

11) EXTS - An external interrupt is being processed. EXTI is set. I-source is loaded from the channel.
12) MIDS - Memory Indirect Step reloads INDR and MREF from TM bits 12 and 32. HWSL is set to 1 if a literal is indicated.
13) SHFT - The ITC is loaded from TB26-31 for shifts.
14) ØBFS - One of four actions are selected according to the modifier field.
15) RMDO-1 $=00$ - The output logic sends a data word to the active source with transmission type 0.ll.
16) RviDOl=01 - 'I'he acknowledge line is raised on the input bus.
17) $\mathrm{RMDO}=1$. A command is sent. The destination is set to active source if the destination specified is FE. The transmission number is set to 100 or 101 depending on $\mathrm{RMDI}=0,1$ respectively.
18) SHWS - The HWSL flop is set.
19) TriRS - Transfer if true. One of 16 conclitions is selected according to the sequence control field RSQ0-3. The conditions.are:
20) ITC 马
21) $\overline{1115}$
22) $\overline{A D O D}$
23) $\triangle D Z F$
24) CHFF
25) EQFL
26) $\varnothing \mathrm{BSY}$
27) DATA
28) TM16
29) TMSG
30) MREF
31) EXTI
32) P PAMF
33) • IBEL ($\overline{\text { IBOO }}$
34) 0
35) $A U A D$

If the condition is true (l), the address field, RNAO-9, is used as the transfer address (note that bits RNAO-l are set to 00 in the MINI ROM). Otherwise, one of four alternate actions is taken according to RMD.

RMDO-1	Alternate Transfer
$0 \quad 0$	Present Address + 1
01	RNAO-8, $\overline{\text { RNA9 }}$
10	STCO-9 (RøM Stack Register)
11	spare

17) TFLS - Transfer if false. This acts as does TrRS, but transfers if the selected condition is false (0).
18) ILIT - An illegal instruction trap is generated.

0 . $\quad \varnothing \varnothing \mathrm{P}$ - This is a macro which is reserved for no operations.
19) SSPS - The parity mask flop is loaded.
18. Sequence Control (4 bjts) - Next address (10 bits)

This field acts with macros TTRS and TFLS above as described.
When neither of these macros is selected, a special sequence condition
is defined. The equations for these specials will not be detailed,
but they have been assigned to specific codes.
0) • UNCONDITIONAL TRANSFER TO RNA

1) UNUSED
2) RRDMEM (RMEM) - This is one of a number of fetchcycle
sequencings not delineated here. The name references a function used in the APL simulations.
3) ROPCD (RPCD) - Trnasfer to one of many locations based on the operation code.
4) DMFT - Transfer to 0, DAMF, RNA2-9. This selects a location in the MINI ROM or channel ROM depending on the data addressing mode.
5) PMFT - Transfer to 0, PAMF, RNA2-9. This selects a location in the MINI ROM or channel ROM depending on the configuration.
6) RC \quad MP - (C \varnothing MP) - A transfer to one of two locations is performed according to a complex condition. RMD is used to further define this, as is the opcode.
7) RTRAN (TRFR) -This is similar to RCOMP, but uses opcode control only. It is used for conditional transfers.
8) RREGIN (RGIN)
9) RINIM (RNIM)
10) RCOMP4 (RCMP) - Transfers to 00, RNA2-7, ADZF, EQFL
11) / R REGAD
12) : R RDOP
13) RMIND
14) RC3MU - Used for multiply to perform a conditional three way branch when RMDO $-=0$ and for shifts when RMDO $=1$.
15) NEXT - This causes, i"n addition to a conditional multiway transfer, the setting and/or resetting of some control flip-flops. The output of the NEXT circuitry is Tristated to allow the MINI ROM to execute NEXT which selects virtual fetchcycle when $P A M F=1$ in the channel configuration.
The ROM thus far defined is 70 bits. The PMU MINI may set
RAU1 to 0 and RNAO-1 to 00 to reduce this to 67 bits. also,
Additional macros, fields, etc will be defined as time goes by.
sequencings not delineated here. The name references a function used in the APL simulations.
16) ROPCD (RPCD) - Trnasfer to one of many locations based on the operation code.
17) DMFT - Transfer to 0, DAMF, RNA2-9. This selects a location in the MINI ROM or channel ROM depending on the data addressing mode.
18) PMFT - Transfer to 0, PAMF, RNA2-9. This selects a location in the MINI ROM or channel ROM depending on the configuration.
19) RCØMP -(CøMP) - A transfer to one of two Iocations is performed according to a complex condition. RMD is used to further define this, as is the opcode.
20) RTRAN (TRFR) -This is similar to RCOMP, but uses opcode control only. It is used for conditional transfers.
21) ' RREGIN (RGIN)
22) RINIM (RNIM)
23) RCOMP4 (RCMP) - Transfers to 00, RNA2-7, ADZF, EQFL
24) : R REGAD
25) iRRDOP
26) RMIND
27) RC3MU - Used for multiply to perform a conditional three way branch when RMDO-=0 and for shifts when RMDO=1.
28) NEXT - This causes, in addition to a conditional multiway transfer, the setting and/or resetting of some control flip-flops. The output of the NEXI circuitry is Tristated to allow the MINI ROM to execute NEXT which selects virtual fetchcycle when PAMF=l in the channel configuration.
The ROM thus far defined is 70 bits. The PMU MINI may set
RAU1 to 0 and RNAO-1 to 00 to reduce this to 67 bits. also,
Additional macros, fields, etc will be defined as time goes by.

UNCLASSIFIED

7675-97-74
page 13 ,

ROM Format
Presently identified fields can be pictured as follows:

$45 \quad 47$	$48 \quad 52$	$53 \quad 54$	55	$65 \quad 68$	69
$\begin{aligned} & \text { TM, SP } \\ & \text { SIGNS } \end{aligned}$	MACRO CONTROL	MACRO. MOD.	NEXT ADDRESS	SEQUENCE CONTROL	RS
3	5	2	10	4	I

SN:mam de. -
E. Aaronson

D-B54
M. Hereth

D-B54
J. Hanlon

D-B54
S. Nissen

D-B54 (3 copies)
S. Wallach

D-B54 (2 copies)
Dept. File D-B54

UNCLASSIFIED

7675-97-74
Page 13

ROM Format

Presently identified fields can be pictured as follows:

SN:mam

dc.-
E. Aaronson

D-B54
M. Hereth

D-B54
J. Hanlon

D-B54
S. Nissen

D-B54 (3 copies)
S. Wallach

D-B54 (2 copies)
Dept. File
D-B54

