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PREFACE 

This Memorandum is an interim report on the develop

ment of problem-solving computer programs. Several of 

the organizational problems in constructing a problem

solving program and applying it to actual problems are 

discussed and analyzed in an effort to detect the sources 

of the information contained in the program. 

The study is of interest to programmers and engineers 

concerned with advanced concepts of machine use and 

machine organization, and will eventually lead to con

struction of very sophisticated applied programs, patterned 

on the game-playing and theorem proving type programs 

common today. 

A presentation based on this study was made at the 

Conference on Self-Organizing Systems, Chicago, Illinois, 

May 1962, sponsored by the Information Systems Branch of 

the Office of Naval Research and the Armour Research 

Foundation of the Illinois Institute of Technology. 
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SUMMARY 

This Memorandum examines several examples of organiza

tional problems dealing with the construction and application 

of problem-solving programs. Usually, problem-solving 

programs are discussed. by giving only the results and the 

main methods used to achieve these results. Yet, most of 

the difficulties in creating programs stem from organizational 

problems, not substantive ones. This Memorandum is an 

attempt to bring some of these out in the open. It proceeds 

entirely by examples drawn from the experience of the last 

several years, since no adequate theoretical or conceptual 

framework exists for discussing organizational issues. 

The first example is how to store information that is 

created dynamically and unpredictably during the operation 

of the program. The solution that has been adopted--list 

processing--is already well known, but .is reviewed to bring 

out its essential features. 

The second example is how to organize large, complex 

processes. The two princ.iples that are at the heart of 

modern programming, sequential control and hierarchical 

subroutine organization, are discussed, both as to their 

power and their limitations. The latter show up in the 

form of highly rigid. programs. 

The third example is how to have many different kinds 

of goals producing many different kinds of results, and yet 

be able to use these results in the rest of the problem. 
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The problem is made more difficult when it is also de sired. 

to create and attempt goals in arbitrary order. Early 

problem-solving programs solved the difficulty by establish

ing restrictive conventions on the types of goals allowed. 

Some attempts to remove these restrictions that have been 

tried with General Problem-Solver (GPS) are discussed. 

The fourth example is how to avoid the rigidities of 

many special routines when building up highly particular 

and inhomogeneous collections of data. This is a problem 

in which list processing is only of modest help. 

The last example concerns the general problem of how 

to remember the past. A problem-solver must selectively 

keep various amounts of information about its past history. 

Rigid strategies for dOing this lead to cumbersome programs 

and it is not clear how to provide the necessary flexibility. 

All of these problems stem from the fact that problem

solVing programs are more dynamiC and require more flexibility 

than we know how to provide. BY solving these organizational 

problems in this context we can expect to develop the 

appropriate ways to organize complex programs that require 

flexibility in many applied. areas as well. 
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I. INTRODUCTION 

There now exists a well-launched scientific enter-

prise to explore the information processes involved in 

intelligent behavior by constructing computer programs 

that perform in an intelligent way. One segment of this 

enterprise focuses on programs able to solve difficult 

problems. About a dozen programs have been built that 

can fairly be called problem-solvers. They include 

checker playing programs;(1,2) chess playing programs;(3,4,5) 

theorem proving programs in symbolic logic(6) and plane 

geometry;(7) programs for handling management science 

problems;(8) programs for analytical integration;(9) 

some attempts at more general problem solving programs;(lO) 

plus a few others. 

These programs are all rather similar in nature. 

For each,the task is difficult enough to allow us to 

assert that the programs problem-solve, rather than 

simply carry out the steps of a procedure for a solution 

invented by the programmer. They all operate on formalized 

tasks, which,although difficult, are not unstructured. 

All the programs use the same conceptual approach: they 

interpret the problem as combinatorial, involving the 

discovery of the right sequence of operations out of 

a set of possible sequences. All the programs generate 

some sort of tree of possibilities to gradually explore 

the possible sequences. The set of all sequences is much 
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too large to generate and examine in toto, so that various 

devices, called heuristics, are employed to narrow the 

range of possibilities to a set that can be handled within 

the available limits of processing effort. Within these 

bounds there is a good deal of variation among the 

programs as to the particular heuristic devices used. 

These range from learning schemes,(l) to mOdels,(7) to 

elaborate abstract representations.(8) The current state 

is well summarized by MinSky.(ll) 

For all the simplicity of the thumbnail sketch given 

above, these programs are large and complex. Each has 

required large amounts of effort to develop. Since these 

programs represent an attempt to get computers to perform 

patterns of symbolic activity that we do not understand 

well, their complexity and effort is not surprising. 

We do not know whether the difficulties stem from our 

ignorance or from the inherent complexity of the 

processing. 

It is usual, when talking or writing about these 

programs, to describe the task the program is to accomplish, 

the major methods and heuristics that are used, and the 

top executive routine. Problems in program organization-

what system conventions were adopted and how they 

affected the problem, or what role different data structures 

played--are not much discussed. (See (10) for a typical 

example.) This silence is not surprising. The performance 
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of the program comes first. Without some fairly interesting 

problem-solving behavior, of what interest are organi

zational problems? More important, we neither know what 

to discuss about organization, nor how to discuss it. 

There is no lack of appreciation of the problems. Any 

systems programmer can testify that questions of representation, 

communication conventions, and the like, are the bane of 

his existence--and the reason for it. 

For problem-solving programs, the one exception to 

this dearth of attention to organization is the development 

of list structures and list processing languages. Here 

an organizational problem pressed hard enough to call 

forth an extended response and we found a way of talking 

about it--partly, I suspect, because the solution was 

expressed as a language. The literature on list processing 

is appreciable(l2-2l) and where discussions of organizational 

problems do occur they usually center around list processing 

languages. (8, Chapter 6) A programming language is a 

way of dividing up organizational problems. Thelanguage 

encapsulates the solutions to one set of problems--for 

list languages these solutions are new data representations, 

ease of hierarchization, recursive programming, etc. It 

leaves another set untouched--how to build large programs 

in terms of the language. Constructing an Information 

Processing Language (IPL) or a List Processor (LISP) d,oes 

not automatically produce a problem-solver. 
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The purpose of this paper is to discuss some organi

~ational aspects of problem-solving programs. Of 

necessity it will proceed by a sequence of examples. 

Although several issues can be identified--such as 

centralization versus decentralization--there is no 

adequate framework in which to discuss them generally 

and. abstractly. Each example must be described in 

particular detail and in its own terms. 

Each example revolves around a specific issue. Most 

of them have been drawn from programs with which I am 

intimately familiarj namely, Logic Theorist (LT), (6) our 

chess program, (5) and especially GPS, (10) although I have 

used the experience from other programs where it has been 

known to me. No claim is made that these organizational 

problems form an exhaustive list, or are representative 

or original. However, they have commanded attention at 

one time or another. Finally, most of them are unsolved 

to some extent, either completely, or because the 

solutions that have been adopted are still unsatisfactory 

in one way or another. 
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II. STORING DYNAMIC STRUCTURES 

Let us start with a simple case that is already well 

known and relatively successfully solved. The problem 

is to find memory space for the expanding tree of sub

problems that is generated in exploring for a solution 

to the main problem. In chess, for example, one starts 

with the current position; analysis indicates certain 

moves as worth considering and the positions resulting 

from these moves are generated. Analysis is again conducted 
, 

from these new positions, yielding additional moves and 

additional positions. Thus the tree of information, shown 

at one instant in Figure 1, grows during the course of 

problem-solYing. The amount of info~ation stored for 

each subproblem is indicated by the length of the bar 

at each node; it is variable since the description at a 

position depends on the analysis. The problem, then, is 

how to allocate space in a standard computer memory for 

this growing tree. 

When this problem first arose,(18) the existing 

techniques of memory allocation revolved around the 

assignment of individual cells of memory for numbers and 

continuous segments of memory for vectors, matrices,and 

tables. Arbitrary symbols for addresses could be used 

in programming, the actual assignment of machine addresses 

being deferred to the time just preceding execution when 
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Fig. 1. Growing Tree structure. 
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all entities demanding space have been specified. No 

techniques were at hand for the dynamic case in which 

the entities requiring space come into existence while 

the program is being executed. 

The solution to this problem is well known: the 

organization of data in list structures. The essential 

ideas are three. The first is to eliminate the topological 

structure defined by the sequence of machine addresses 

and replace it by explicit links. When this is done, a 

list of consecutive items can be distributed anywhere 

through memory, and new items can be added or deleted 

from any part of a structure without disturbing items 

that already exist. The second idea is to put all the 

memory cells not in use on a single list with a known 

name, the available space list. This list becomes the 

source of new cells, when they are required, and the 

repository for cells no longer needed. The final idea is 

the creation of a set of processes for manipulating list 

structures--processes such as "insert," "delete," "find 

* last," "erase," and so on. 

* Several variants of list processing already exist. 
They differ in the occasions and the assignment of 
responsibility for returning cells to available space; 
in the size and variability of the units that are linked; 
and in the kinds of access to list structures that are 
provided. None of these variations affects appreciably 
the solution provided for the dynamic allocation of 
memory. 
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Several of the problem-solvers use list techniques (5-10) 

but several do not,(l,2,3) and it is interesting to 

understand the reason. The crucial difficulties arise 

only when parts of the tree must be erased to gain space 

for new parts. In general this provides an irregular 

distribution of odd-sized pieces of space with which to 

meet the additional demands for space. However, special 

strategies for processing the tree can be found that avoid 

these difficulties. The one used by the problem-solvers 

can be called the "depth first" strategy. It is indicated 

by the following recursive formula: 

Process node X 
For each immediate subnode of X (call it Y): 

Create node Y 
Process node Y 
Save summary information from Y 
Erase node Y 

Finish the analysis of node X. 

The nodes of Figure 1 are numbered according to the order 

of generation specified by this strategy. When this 

strategy is used, the only nodes that need to be in 

existence at any moment are those that extend from the 

top down a particular path towards the bottom. Assignment 

of space always proceeds from the righthand edge of the 

occupied space into open space, and erasure always occurs 

from the right, enlarging the open interval. Thus this 

strategy avoids most of the problems of dynamic assignment 

by imposing some very special restrictions on the 
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nodes are considered only once and in a 

Happily, the minimaxing procedure used in 

most game programs is compatible with these restrictions. 

More flexible exploration of the tree requires a more 

general system of storing information. 

Can we describe in abstract terms what is involved 

here? We started out with a set of techniques that re

quired certain kinds of structure to be fixed and known to 

the program. The problem-solving programs required that 

memory assignment be variable. A successful solution 

has been achieved, not just by building programs that would 

detect the variability and react accordingly, but by 

creating a new set of invariant concepts (the list processes) 

so that the variability was taken care of without an 

increase in program complexity. 
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III. ORGANIZING LARGE PROCESSES 

The processes that accomplish problem-solving are 

large and complex. How can we specify such processes? 

This seems almost a misplaced question. The computing 

art has provided us with two tools for synthesizing 

complex processes--the sequential flow of control, and 

the hierarchy of closed subroutines--and it was in terms 

of these tools that we even conceived the possibility of 

constructing problem-solvers. But these tools, however 

automatic their adoption, carry with them implications 

for what is easy and what is hard--for what capabilities 

will be included and what will be left out. 

Sequential processing is, of course, built into the 

basic structure of our machines. But it extends much 

further than this, being used at the most macroscopic 

level in the programmer's flow diagram. It encourages us 

to envision isolated processes devoted to specific functions, 

each passively waiting in line to operate when its turn 

comes. It permits us to think of the total program in 

terms of only one thing going on at a time. 

The subroutine hierarchy emphasizes even more strongly 

the notion of isolated and well-controlled processes. 

Each subroutine has its well-specified inputs and provides 

its well-specified outputs. The inputs and outputs define 

all it must do and the sum of its interactions with the 
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f 
total processes. The situation is perhaps more vivid when 

viewed from the other side: when a routine uses a sub-

routine, it need know only the input-output specifications 

of the latter. The using routine may safely ignore what

ever complexity and involved processing goes on inside 

the subroutine. There is none of the Alice-in-Wonderland 

croquet game, with porcupine balls unrolling themselves 

and wandering off, and flamingo mallets asking questions 

at inopportune times. 

I don't mean to undervalue the importance of se

quential control and closed subroutines as organizing 

principles. They constitute an organization theorist's 

dream. By isolating each separate task, they allow us 

to think through each part of our program in relative 

security, knowing that there will be few interactions 

with other tasks, and that we can depend on each part 

playing the role assigned to it. These or.ganizing 

principles have solved several other problems as well. 

They allow nearly identical subprocesses to be coded 

once and for all as single subroutines with parameters 

that can be changed; the savings in coding effort and in 

errors are worth almost more than the savings in space. 

They aid in debugging, by permitting individual parts of 

the program to be debugged separately. Perhaps most 

important, they aid in program modification, where 

centralization of processing has turned out to be crucial. 
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Many big changes in a program that one would like to make 

and can't are thwarted because some crucial process is 

distributed through the program and handled in idiosyncratic 

ways~ calling for innumerable and difficult corrections 

to make the change. 

Indeed, so powerful is the concept of the sequentially 

controlled hierarchy for organizing large processes, that 

some feel that the extremely convenient techniques for 

subroutinization provided by the list languages are their 

biggest asset.(14) But there are difficulties. They 

stem from two related effects and can be summarized in 

one word: rigidity. 

The first difficulty is that this kind of organization 

calls for uniform conventions to specify how one subroutine 

will communicate with another. These conventions take 

such forms as the calling sequence of standard programming 

usage, the communication list of IPL, and the functional 

notation (i.e., F(X,Y,Z» of algebraic languages and 

~ISP. Although these conventions may carry no such 

implication in principle (an irrelevancy), in practice 

they lead to minimizing the amount of communication 

between routine and subroutines. In consequence, the 

subprocesses are forced to work in an impoverished infor

mational environment. Processes that do large amounts 

of work on small amounts of data tend to be preferred 

by the programmer to processes that use fragments of many 
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different kinds of data. Yet the latter kind seems to 

fit better the requirements of problem-solving, in which 

relatively weak and scattered information must be used 

to guide the exploration for a solution. 

The difficulty might be alleviated by maintaining 

the isolation of routines, but allowing all the sub-

routines to make use of a common data structure. 

Metaphorically* we can think of a set of workers, all 

looking at the same blackboard: each is able to read 

everything that is on it, and to judge when he has 

something worthwhile to add to it. This conception is 

just that of Selfridge's Pandemonium:(22) a set of demons, 

each independently looking at the total situation and 

shrieking in proportion to what they see that fits their 

natures. It is a much easier mode of organization to use 

when the processes are only perceptual--that is, look at, 

but do not change, the environment--than with active 

problem-solving where the workers are as busy writing 

and erasing as they are reading. Thus many large programs, 

especially command and control programs, do have common 

pools of information which play exactly the role described 

here, but these programs are highly restrictive as to the 

interactions they allow. 

* Metaphors, especially those involving human organi-
zation and human activities, provide highly appropriate 
guides for machine organization. We shall use them freely. 
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Considerations of this kind has a strong influence 

on the design of the later IPL's. IPL-II, the list 

language used to program LT,(18) had a centralized way of 

taking input information from the routine at the higher 

level and establishing it in working cells for the next 

lower level. This scheme enforces the communication 

of all immediate context information via the input sequence. 

Information often has to pass through many levels to get 

from the routine that generates it to the routine that 

ultimately uses it. Such information is still "local" 

in that it is created internally by same routine in the 

course of doing its job; it cannot easily be considered 

part of the absolute context and be given a universal name. 

Beginning with IPL-III(16) we have adopted the push

down list as a technique for avoiding this rigidity in 

communication among processes, and encouraging a more 

"blackboard" kind of operation. Each cell individually 

may be pushed-down to save the information being used by 

a higher routine, and popped-up to return it to use. 

Imagine, then, an array of cells holding information for an 

hierarchy of subroutines. Communication between routines 

occurs by means of these cells, each cell holding infor

mation of a specific kind so that the routines know where 

to find information they need and put information they 

produce. The information in all the cells is available 

to all the routines in the hierarchy. Where it is 



-15-

necessary to communicate to a subroutine some information 

in a cell that is different from the current information, 

then the cell is pushed-down, the new information put 

into it, the subroutine executed, and the cell popped-up 

after the subroutine is finished. This sequence does 

constitute a deliberate act of communication, as definite 

and expensive as the standard procedures. But it occurs 

only on those cells that need to be changed; the infor

mation in the remaining cells is automatically communicated. 

This system operates on a principle of exceptions, whereas 

current subroutine communication philosophy dictates that 

everything must be actively communicated. 

Although it is possible to show some positive benefits 

from the individualized push-down list philosophy, it has 

not changed the character of the large programs in major 

respects. They still have fundamentally the flavor of a 

hierarchy with restricted communication. Clearly, this 

device did not tackle the right difficulty. 

A second problem of rigidity associated with organi

zing large processes in a sequentially controlled hierarchy 

relates to high level organization. The subroutine and 

the rigid input-output relation derives from and fits very 

well the mathematical concept of function. At a low level 

in a program--at the level of sines and cosines, or of 

inserts and deletes--one wants highly specific tools that 

behave in an exact, prescribed fashion. At higher 
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levels, this rigidity has serious disadvantages. Consider 

an example. 

In studying how humans play chess, we were led to 

consider the position shown in Figure 2, taken from 

de Groot's work on chess.(23, page 65) We wanted to know 

what our chess program would do in such a position, 

playing for Black. The situation is complex, but there 

is an obvious undefended White Pawn at KN2. Capturing 

this Pawn is unsound, although it is not immediately 

obvious. Good human players spend most of their time 

considering the center region of the board. As you might 

expect, our chess program did not see deeply enough to 

find the fallacy, and so took the Pawn; in fact, it 

explored the center relatively little. 

'ftle question now arose: could we get the program 

to explore the center? Could we say to it, in effect, 

IIIf you didn't take the Pawn; what would you dO?" or 

"Why did you ignore the center? ... (at which point the 

program might reply by giving us its sketchy analysis of 

the position) ... But that isn't enough; analyze it 

further. II It turned out there was no way to do this. 

We considered various subterfuges, such as removing the 

Pawn from the board, or assigning it zero value; we even 

tried one or two of these. None of the tricks worked, 

because of the elaborate interrelationships among the 

parts of the program. None of them produced an analysis 
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Fig. 2. A Chess Position from De Groot. 
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that was an appropriate response to the question we were 

trying to pose. 

Should we be disturbed? Should we expect our program 

to be able to answer such a question? Our chess program-

like all the others--is a big subroutine which inputs 

chess positions and outputs moves. This task pervades 

the entire structure of the program. All information 

and organization that does not contribute to this end is 

considered excess baggage and removed if possible. Yet 

in some sense the questions we asked it above are well 

within the basic power of analysis of the program. It 

is "only" a matter of organization. It seems a peculiar 

intelligence which can only reveal its intellectual powers 

in a fixed pattern. 

One can think of ways to make this demand for flexi

bility operational. Let us stipulate that for each problem

solver there be specified an input language, such that 

the problem-solver can respond to any request stated in 

the language. We can define the breadth of a program 

by the range of things it can respond to, and its power 

by the difficulty of the problems it can solve. 

Certainly we can demand of it tha~ if it can answer 

question X successfully, it also be able to deal with all 

questions similar to X and obviously easier than X. 

The value of this formulation is in focusing on the 

missing features of the higher organization of our 
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existing problem-solvers. Instead of fixed executive 

routines, processes are needed to interpret the incoming 

requests in the problem language and to organize the available 

parts of the program into a functioning unit for the task 

at hand. In these terms, Baseball,(24) the question-

answering program developed by Green and his colleagues 

at Lincoln Laboratory, has greater breadth than any other 

problem-solver, although it does not have great power. 
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IV. USING THE RESULTS OF SUBGOALS 

Our previous two examples covered familiar ground: 

subroutine hierarchies are pervasive in all complex 

programming; and list processing is the one major contri

bution of problem-solving programs to the programming 

art. Let us now move to less familiar territory. 

Suppose a subgoal is attained--how does the problem

solver make use of the results? This seems a little like 

asking a man how he would spend a thousand dollars. Yet 

it should come as no surprise that difficulties occur in 

getting machines to do what should come naturally. For 

anything to happen in a machine, some processes must 

know* enough to make it happen. Thus, the results secured 

by attaining subgoals will be used only if routines exist 

that know how to use them. And the nature of this infor-

mation--its exact content and the ways in which it becomes 

known--conditions the kinds of results that can be secured, 

* We talk about routines "knowing." This is a para-
phrase of "In this routine it can be assumed that such and 
such is the case." Its appropriateness stems from the 
way a programmer codes--setting down successive instructions 
in terms of what he (the programmer) knows at the time. 
What the programmer knows at a particular point in a routine 
is what the routine knows. The following dialogue gives 
the flavor. (Programmer A looking over the shoulder of B, 
who is coding up a routine.) "How come you just added -
Z5 to the accumulator?" "Because I want ... " "No, I mean 
how do you know it's a number?" "All the Z's are numbers, 
that's the way I set it up." (B now puts down another 
instruction.) "How can you do that?" "Because I cleared 
the cell to zero up here at the start of the routine." 
"But the program can branch back to this point in front of 
you!" "Oh, you're right; I don't know it's cleared to zero 
at this point." 
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and through this the kind of goals that can be formulated. 

All this is well illustrated in the programs built to date. 

LT, one of the earliest problem solvers, has for its 

goal tree a tree of logic expressions. Its methods are 

of the form, "To prove expression A, it is sufficient to 

prove expression B."* Thus the expressions are the only 

information that has to be remembered in the goal tree. 

LT's methods incorporate an extremely powerful organizational 

restriction. Once a subgoal (i.e., an expression) is 

formed, it becomes independent of the circumstances of its 

creation. If a subgoal is attained (an expression proved) 

then it is uniformly true that the original problem is 

solved. There is no issue of what to do with a successful 

subgoal--the first such goal that occurs terminates the 

entire problem-solving attempt. Furthermore, their 

homogeneity of form (all goals being expressions) allows 

all the goals to be put into a single pool, called the 

subproblem list, from which the executive can fish for 

subproblems to its liking. Complete freedom exists as 

to the order of generation of the subgoals and their 

selection for further exploration. 

Thus LT solves the subgoal organization problem by 

avoiding it. The price paid is a substantive restriction 

* LT has one other method of the form, "To prove A 
make it identical to a theorem." Although crucial for 
success, this method is not of interest here since it 
does not elaborate the goal tree. 
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on the kinds of methods that can be used. Gelernter, in 

building the Geometry Theory program,(7) eased these 

restrictions, but in a way that retains the main organiza

tional advantages. 'Ihe methods of his program are of the 

form, "To prove theorem A it is sufficient to prove 

theorems Band C and ... and Z." The proof of a sub-

theorem is not the end of the storyj there are still 

others to go. All the subgoals (the generated theorems

to-prove) can still be put in a single pool, but the 

routines for selecting subproblems to be worked on must 

now be sensitive not only to the character of a theorem, 

but to the character of its siblings. However, the main 

simplicities still remain: all subgoals are of the same 

formj and the status of a goal expression is either 'proved' 

or 'unproved,' whereupon the executive knows uniformly how 

to draw the consequences for the supergoal. 

In real life goals are of diverse character. Their 

attainment produces a partially modified state of affairs, 

which in some manner is to enter into the larger modifi

cation that is to be the result of a higher goal. In 

real life--and in our problem-solvers if they are to be 

good--there can be no rigid frame for the kinds of modi

fications that goal attainments represent. But all the 

early problem-solving programs have conventions that re-
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strict the goals severely.* If these conventions of uni

formity are destroyed, who will know enough about the 

results of a goal to use it? Since each subgoal is set up 

and used within the context of its supergoal, one answer 

is that processes should be associated with each supergoal 

that know how to deal with the subgoal. 

The solution implied above, with its associated 

philosophy, was adopted in the first version of GPS. 

Goals could be of various types, and although there were 

only three at the start, new goal types were to be expected 

and welcomed. With each goal type was associated a set 

of methods. A method was a routine that either attained 

the goal directly, or decomposed the goal into appropriate 

subgoals and reintegrated the results of attaining the 

subgoals. For example, there was a "transform" type of 

goal for finding a way to get from one object to another. 

Associated with a transform goal was a method (the match 

method) that decomposed the goal into two subgoals. The 

first was a "reduce" type goal for eliminating a perceived 

difference between the two objects; the second was another 

transform goal for changing the object produced by the 

* For instance, game playing programs are all 
structured so that the result of a subgoal (a game 
position) is a "value" of uniform character. The values 
of all the subgoals to a goal are combined by the 
executive according to the minimax rule to yield the value 
of the goal. 
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reduce goal to the final desired object. These two 

subgoals were of different types and produced different 

results. Reduce goals produced new objects; transform 

goals produced sequences of operator~ i.e., ways to get 

between objects. These products were handled in quite 

different ways. In the example just given,the new object 

was used by the match method to construct a certain goal. 

The result of the transform subgoal was incorporated in 

the total sequence of operators that transformed the 

first to the final object. 

The recursive powers of the list language in which 

GPS was written provided a natural way to realize the 

above scheme, in which each subgoal was kept in the 

total context of its supergoal and thus could be indefinitely 

particular. Each method was a routine that executed 

the problem-solving executive routine on the subgoals 

and then obtained its results as outputs: 

Attain goal X: 
Select method (get M) 
Execute method M: 

Set up subgoal Y 
Attain goal Y 
Use product of Y to set up subgoal Z 
Attain goal Z 
etc. 

It seemed so easy. We had finally provided ourselves 

with the freedom to use arbitrary goal types and 

arbitrary goal results; we had finally developed an 

organization for a general problem-solver. Actually, 

we had only mounted the other horn of the dilemma, for 
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the recursive structure dictated the order in which 

goals would be generated and attempted. The scheme 

implied by the structure described above is just the 

"depth-first" generation strategy of Fig. 1. The depth 

of generation was still controlled, for the routines 

actually looked like: 

Execute method M: 
Set up subgoal Y 
Do we really want to try Y? 

If not, then quit method. 
If ye s , go on: 

Attain goal Y 
etc. 

Thus the goal tree could be pruned, so that unnecessary 

depth was avoided. However, there was only one chance to 

try goal Y: either it was tried when generated (thus 

growing the tree deeper) or the branch it represented 

was permanently abandoned. 

We had lost the ability, available in the earlier 

programs, to throw all the goals into a pool and select 

arbitrarily which one should be attacked next. 

In LT, for example, the usual mode of operation was 

"breadth first." All the goals LT would ever generate at 

level 1 were obtained, then all those at level 2, then all 

at 3, and so on. In the Geometry program elaborate 

evaluation schemes were used to decide which of all the 

goals generated so far should be worked on next. Thus 

from an organizational viewpoint we had linked, in a 

complementary relationship, the freedom to select subgoals 
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with the variety of the goals. Increase in one implied 

decrease in the other. 

But clearly we had not meant to give up the freedom 

of goal selection; we envisioned GPS growing its tree of 

subgoals in arbitrary fashion under the influence of 

content criteria that would select the best place to 

work. In the summer of 1959, having discovered that we 

had been seduced by the ease of writing r.ecursi ve programs 

in IPL, we considered various schemes for resolving the 

dilemma. Here was a pure question of organization--to 

find a way that would give us both desirable properties, 

without having to pay too much for either. Only one of 

the schemes we considered has survived, but the others are 

worth recounting briefly. 

SOLUTION BY REMOTE CONTROL 

First we tried to maintain the recursive subroutine 

hierarchy. To work on a subgoal in this scheme, it was 

necessary to get into context on all of the higher sub

routines. This requirement preserved the ability to 

deal with the results of arbitrary subgoals. To permit 

a goal to be tried (and retried) on various occasions 

under the control of the routines associated with higher 

goals, we violated the hierarchy temporarily to put 

control back into the hands of the higher routine. You 

are to imagine a method routine, having Just created a 
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new subgoal, calling "Boss, Ilve got a new goal; should 

I try it?" and getting the answer "Yes, but call me if 

you run into more goals." Actually the scheme was much 

more automatic than this, for it did not involve an act 

of communication between routines, but rather the location 

in routine A of the control for what happened in the 

midst of subroutine B. 

To illustrate this scheme, suppose GPS were executing 

method M on goal G and had just created a new subgoal, GI. 

Then M could execute the following instruction: 

Attempt goal GI. 

This constitutes a decentralized goal attempt, since M 

will not get control back again until the attempt is 

over. It exercises no control over how much effort is 

expended on GI, what methods are used, etc. Alternatively, 

M could execute: 

Attempt Goal GI; return control at first subgoal. 

This constitutes a centralized goal attempt. Suppose a 

method, MI, is applied to G I and generates a subgoal, G". 

When MI attempts it by means of one of the "attempt" 

instructions, control automatically returns to the point 

in M following the instruction above. Several options 

are now available to M. It could attempt G" by executing 

"Attempt goal G"." This action has no further reference 

to goal G' or its method MI. Alternatively, M could 

permit the action that it had interrupted to continue: 
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Attempt goal G'; return control at first subgoal; 
Evaluate subgoal; 
Attempt goal f'rom prior context; return control 

at first subgoali 

We have shown M as keeping control; it could have attempted 

the goal from the prior context--i.e., from MI--on a de-

centralized basis without asking for any return of 

control until the attempt of Gil was finished. The in

serted evaluation signifies that M may use arbitrary 

processes in deciding whether or not to attempt Gil. 

Suppose at this point Gil were successfully attained. 

Then the results must be used by method M', which created 

Gil and knows how to use it. Since control resides in 

M and not M', M would execute: 

Execute prior context, to use results of goal. 

Again, this is a decentralized action, since M did not 

set up the conditions under which control would revert 

to it. 

The picture given above shows how central control 

was maintained while the goal tree was growing into new 

territory. It was also possible to re-attempt a goal at 

any time. No additional mechanism was necessary until a 

goal was attained, at which point GPS executed an 

instruction such as: 

Execute original context, to use results of goal. 

This instruction determined the method that had 

created the goal and re-executed it from the point 

following where the goal had been attempted originally. 
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In summary, this remote control scheme contained 

instructions for attempting goals, either directly or 

from their prior context--i.e., from the context that 

had Just been interrupted. In addition it contained 

instructions for executing the routines that could use 

the results of goal attainment--the prior contexts or the 

original contexts. For all these types of instructions, 

there were centralized variants, which requested a 

return of control at the next subgoal, and decentralized 

variants, which let the subroutines go their way. 

The great virtue of this scheme is in avoiding any 

restriction on how the decisions were to be made about 

goals. By passing control back to the higher routines 

we allow them to use arbi~rary processes in order to de

cide what to do. Thus the control scheme does not seem 

to impose a substantive restriction. The difficulties 

are at least two. First, this organization suffers from 

the evil of large centralized organizations everywhere: 

although the top executives have the freedom to decide 

in any way they want, they don't have enough information 

about the local situation to decide wisely. They are 

hopelessly out of context. The second difficulty involves 

the piling up of administrative apparatus. As long as 

there is one controller, the system seems reasonable. 

But an indefinite cascade of controllers is possible, in 

which M requests the return of control from M', which 
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requests the return of control from Mil, which requests the 

return of control from ... and so on. Each deciSion to 

attempt a subgoal must pass through a long sequence of 

separate decisions, and the whole system begins to seem 

very cumbersome. Thus, the scheme was abandoned. 

SOLUTION BY COMMUNICATION 

An alternative to passing control back to the 

higher executive is to have the executive send messages 

down to the subordinates. This was the solution we 

tried next. This alternative still preserved the subroutine 

hierarchy, permitting arbitrary types of subgoals. The 

higher routines would formulate messages, and the lower 

routines would read them. The messages might instruct the 

lower routines to generate new goals, to retry old ones, 

to evaluate in such and such a way, to pass the message 

down to lower routines, and so on. The advantage of 

this scheme is that the acting routine can integrate 

the information in the message with the local context. 

The difficulties are again two. First, the messages 

must contain strategies, not just decisions. They must be 

in the form of partial information that can be combined 

with other information available to the local routine. 

We had no good formal language for this kind of communi-

cation. We developed a set of discrete questions, such as: 

Are there any communications? 
Do I control communications? 
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Do I attempt this subgoa1? 
Do I search for a subgoa1 to retry? 
Do I continue, using the results of the goal 

just attained? 

The executive working on a particular goal asked appropriate 

questions of the message received from the higher level, 

and obtained various answers upon which it based its 

actions. Although rather complex in its interpretation, 

this language was neither a flexible nor a rich vehicle 

to communicate strategies. The second difficulty is 

that GPS, operating in this fashion, resembles nothing so 

much as a bureaucracy bogged down in paper work--everyone 

busily writing messages that others have to read. Notice 

above that new organizational problems were created, such 

as who had the right to change the content of messages. 

So this scheme too was set aside.* 

SOLUTION BY INTERPRETATION 

Up to this point the appropriate metaphor has been 

a large human bureaucracy: each subroutine is an office; 

each has its own duties; control is decentralized among 

the offices; and communication is highly stylized and 

formal. Alternative metaphors are possible. The prob1em-

solver should be a single personality, wandering over 

the goal net much as an explorer wanders over the country-

* Both the remote control scheme and the communication 
scheme were programmed as modifications of GPS as it then 
existed. Neither was debugged, since the defects had become 
sufficiently clear, once the details of the organization 
were worked out, to lead to their abandonment. 
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side, having a single context and taking it with him 

wherever he goes. 

In this scheme the methods can no longer be routines. 

The active principle must lie in the central executive. 

Methods must be schema that the central executive can 

consult and follow, but where each important decision--

to attempt a new goal, to go on with the next step of 

method--is made by the executive. This is the solution 

we have adopted in GPS-2.* 

As shown in Fig. 3, each method is written as a 

sequence of segments. Each segment constitutes an 

action in which the executive has control and decides 

what to do--e.g., whether to execute the next segment. 

The executive is essentially an interpreter, the methods 

still being programs, but in a higher language. The GPS-2 

executive is somewhat more sophisticated than a standard 

machine interpreter, which only has the functions of 

fetching the next instruction and executing it. Here, 

the interpreter receives information about the results 

of the segment's action and is able to make various 

decisions about what actions should be undertaken next. 

Have we really attained both our objectives? 

Yes, to a degree. With the new scheme a goal may be 

* GPS-I was written in IPL-IV for JOHNNIAC. The changes 
implied in the interpretive solution were extensive enough 
to justify a complete recoding into GPS-2 in IPL-V. 
This latter organization is the one currently used. 
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Fi,. 3. Schematic flow diagram for executing methods in GPS-2. 
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selected anywhere in the goal tree and attempted; this 

can occur at any time and more than once. The methods 

still generate goals and contain the information about 

how to use them. On the one hand this means that new 

goal types and new uses of results can be introduced by 

increasing the number and variety of methods.* On the 

other hand it means that to use the results of a goal 

requires finding the segment of the method of its super

goal that is prepared to use it. 

SOLUTION BY UNDERSTANDING 

The information that the above interpreter obtains 

about the. total Situation is still impoverished. It 

still knows nothing of the nature of the methods--of what 

they really produce in the way of results and how they use 

them. It is still very like a blind man who has learned 

to push buttons to go his way, but only receives back 

a few taps to tell him where he is going. One would like 

a central process which could assimilate the knowledge of 

its environment and the techniques for manipulating it-

that could understand how to use the results of its 

efforts. In attempting to create such a ~entral organiza

tion we found--as we had with the problem of communicating 

* All the methods coded to date have been representable 
as simple non-branching sequences of segments (with repetition 
of segments possible). The interpreter of Fig. 3 is 
specialized to this case. 
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strategies--that we had no concepts and no formal language 

to discuss the variety of results and their uses. The 

program shown in Fig. 3 can be viewed as a first attempt 

to expand the amount of knowledge that a problem-solving 

interpreter should have about its environment. 
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V. ACCESSING INHOMOGENEOUS COLLECTIONS OF DATA 

List structures solved some of the problems of data 

representation for problem-solvers, but by no means all. 

For example, consider specifying a chess move. There is a 

man to be moved, designated, say, by the square he is 

currently occupying, i.e., the square from which the move 

takes place. This man moves to another square. Sometimes, 

but not always, this square has a man on it, who is then 

captured and removed from the board. Information on these 

points is enough to specify most moves, but several special 

cases exist. There are two castling moves, each of which 

requires moving both a King and a Rook. If the Pawn moves 

to the eighth rank, it is promoted and it is necessary to 

specify what piece it will become. Finally, there are 

en passant moves, in which a Pawn is moved one square 

diagonally--as in a capturing move--but the man is captured 

from a different square. 

How shall we represent the information in a chess 

move? The question is peculiarly organizational. There 

is one imperative: we must get into the representation 

enough variety to discriminate all the different kinds 

of moves.* Yet there are many ways of satisfying this 

requirement. How shall we select one? Numerous routines 

* Ashby even calls this the Law of Requisite Variety 
(25, pg. 206). 
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must use the representation: routines for making moves, 

for testing their legality, for generating them, for 

testing when two are the same, and so on. To some degree, 

each routine must be adapted to the representation. 

Depending on what representation is used, particular routines 

will be fast or slow, easy or hard to code, possible or 

impossible to change. 

This problem of representation is not unique to 

problem-solving programs; it occurs in all programming 

to some degree. It becomes especially vexing when the 

information to be encoded consists of an inhomogeneous 

collection, as in the case of the chess move above. For 

orderly homogeneous information, such as vectors of numbers 

or sets of identical symbols, natural ways of encoding 

exist and few problems arise. Thus, the areas that are 

most vexed by the problem of representation are business 

data processing, information retrieval, and problem-solving, 

rather than numerical analysis. 

Let us follow the chess move example a little further. 

A standard procedure for encoding arbitrary information is 

to create a set of "fields"--i.e., an interval of bits in 

a word (or words). Each field corresponds to some 

variable aspect of the move. The size of the field is set 

large enough to cover the range of possible conditions 

expected for the variable feature; these possibilities are 

somehow encoded into the bit patterns the field can hold. 
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This is possible for the chess move: ;issign one field for 

the ~ square, another for the !£ square, etc. A certain 

discomfort arises when space is set aside to encode the 

extra Rook moves for castling and the capture square for 

the en passant moves. These moves occur rarely, yet 

they may require the lion's share of space if one proceeds 

incautiously. In fact, if only a small part of the total 

possible information is present at anyone time, 

assigning fixed fields for all of it is obviously the 

wrong solution. Most of the space will be empty. 

This is a situation that list structures were meant 

to handle. In a list formulation, one can assign symbols 

to name the men, squares, etc. Then a possible representa-

tion would be: 

~~: 

From square 
T"OSquare 
~ecial move symbol: castle, en passant, promotion. 
From square of ROOk} for castl t2 square of Rook e 
Capture square for en passant move 
Man type promoted to for promotion 

Convention: if not a special move, list termi
nates after second list cell; if a special 
move, the remainder of the list is encoded 
according to the identifying symbol in the 
third list cell. 

This has solved the space problem to some extent. 

The routines that work with moves can use this 

representation only if they know it. That is, only if the 

routine knows that the first list cell holds the 
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From square; that the second holds the To square; that 

there are three special symbols, 81, 82, and 83, that can 

be in the third cell and that if it is 81, then the move 

is a castle, but if it is 82 then ••• etc.--only if it 

knows all these facts can it perform its task. Knowing 

these facts, a routine has the necessary information to 

retrieve the symbols from the representation, interpret 

them, and perform its task. 

Every routine must include both the processing 

necessary to generate its output and the processing 

necessary to deal with the input data representations. 

These are not separable, since the information must always 

be in ~ representation and the processes of the 

routine can only work on representations. Yet if we change 

the representation, something will change in the routine-

but not everything. The routine and the representation also 

share the total information about the move, sometimes in a 

rather intimate way. In our example, the special symbols 

serve only to select one of three distinct subroutines 

associated with the three special cases. Each of these 

subroutines carries all the information about what to do 

with the extra information in its own case. Nothing in 

the data structure says what to do with any of the infor

jmation. We could have put more information into the 

jroutine and less into the data; for example, we could have 

used a separate symbol to stand for each castle. Then the 
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Rook square information would have been unnecessary and 

the routine would have known just how to move the Rook 

(and the King too). We could even have used a separate 

arbitrary symbol for each possible move and simply assumed 

the routine could recognize each one individually. 

The effects of this intimate dependence and division 

of information between routine and representation are well 

known. Modification and extension of a program is limited 

by how particular the routines have become. On a larger 

scale, a complex program with many kinds of data becomes 

a collection of special conventions and ar~angements, each 

with its own routines and rigidities. 

At least two directions have been pursued in trying 

to deal with this particularization of routines and 

data. One is to try to retain full particularity of the 

individual situation, but to attain some uniformity through 

data descriptions--i.e., through formats. As long as one 

deals in fixed formats, there can be a uniform language 

for writing routines, which is recoded at compiling time 

in terms of the specific details of the representation 

selected by the compiler. One gets the best of both 

worlds. This is the route being taken by work in business 

data processing. If the program is essentially dynamic, 

or if the data varies in amount as well as over the values 

of given variables, then data descriptions imply operating 

interpretively--i.e., through processes that consult 
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formats to determine how to interpret particular structures. 

(To my knowledge no one yet carried this latter effort 

very far.) 

The second route has been taken in the work on problem 

solvers. From considerations quite like those we have 

been'raising, the designers of list languages were led 

to provide an additional way of storing information besides 

storing on lists. In IPL-V, for example, the scheme can 

be stated as follows:* 

Let X, ~ and Z be any three symbols in the 
language. Then it is always possible to perform 
the following three processes: 

Establish the relation Y = X(Z)--i.e., associate 
Y with Z alc X. 

Find X(Z) if it exists--i.e., the symbol 
associated with Z alc X. 

Remove X(Z)--i.e., remove the association alc X. 

These processes form a complete system for reading and 

writing information: given some symbol, say Z, any other 

symbol, say Y, can be stored with it by means of an 

arbitrary association, X. Once stored, it can be read 

again by means of the "find ll process or erased by means 

· of the "removell process. 

Given this scheme, a natural way of encoding a chess 
I 
Imove would be to assign a set of symbols to stand for the 
l. _____ _ 

* These are the description list processes of IPL-V, 
JlO, Jll,and J14. Details about their realization in (17) 
terms of list structures can be found in the IPL-V Manual. 
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various subpieces of information: Al for the ~ square, 

A2 for the To square, A3 for the secondary ~ square, 

A4 for the secondary ~ square, A5 for the new-man-type, 

and A6 for the capture square for en passante These 

would be the attributes--the symbols according to which 

association would be made. A move would be a symbol that 

had the prescribed associations. Figure 4 shows how a 

standard move and a castling move would be described in 

this representation. Only those associations are stored 

that are needed, just as in the list representation. The 

special nature of the move, if any, is detected by the 

existence of the special associations. 

I 
This association scheme provides a uniform way of 

encoding inhomogeneous collections of information. Each 

type of information is simply assigned a name and called 

for by that name. This call is relative to the basic 

symbol (the move), just as in table look-up procedures the 

index is relative. In fact, the scheme is just a table 

look-up that is unrestricted with respect to what is 

index, what is entry, and when the decision has to be 

I :;d~t:::o:::t:::l:r:h:::b:::: ::de::r:~tA~:g::: ::::::::::8 
~ and restricted; but since in a list language symbols can 
\ 

'I \ name arbitrary structures, this restriction is in fact no 

! j restriction. This uniformity is paid for by searching for 

\ each item when it is needed. Since the symbols the routine 



Opening move with 
King's Pawn from 
square K2 to 
square K4 (P-K4). 
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Castling to the King's side: King 
moves from K square to KN square; 
Rook moves from KR square to KB 
square. 

Fig. 4. Use of Associations to Encode Chess Moves. 
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knows--the names of the information it is interested in--

bear no structural relation to the way the information 

is stored (and they·cannot, since the symbols can be se

lected arbitrarily) there must be a process that discovers 

the relationship--e.g., through searching the list that 

serves as a table. 

One may question whether such uniformity deals effectively 

with the organizational problems of inhomogeneous data and 

the multiplicity and particularity of encodings that 

arise in large systems. There is some empirical evidence 

that it does. This association scheme was introduced into 

IPL as an augmentation to lists: it was thought that besides 
, 

the list structure, there might be some additional 

"descriptive" information. Hence, in the large programs 

that have been coded in IPL both representational schemes 

have been freely available--in free competition, so to 

speak. There has been a continual increase in the use 

of the association process to encode everything but homo

geneous structures: the programming is Simpler, encoding 

decisions are avoided, etc. The extreme example is the 

current version of GPS, whose data is represented almost 

entirely by associative structures. To give an illustration 

of the effect of this decision, goals and logic expressions, 

the two main kinds of structures in GPS, are now handled 

uniformly. The same match processes are used to match 

two goals and to match two logic expressions. 
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How far this associative memory structure goes towards 

handling the problems raised in this example is unclear. 

Data must always be represented, and knowledge must exist 

about this representation in the processes, thus making 

them to some degree representation-dependent and not 

easily modified. Even with the associative processes, 

the routines still seem quite particular. There is a long 

way to go to achieve full generality. 
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VI. PRESERVING PAST HISTORY 

GPS has goals; they are rather elaborate data 

structures of the associational variety discussed in the 

last example, containing a wealth of heterogeneous infor

mation. Each goal represents a single state of desire; 

GPS is under the control of a singl~ goal at any instant, 

working on it, preparing to quit and go back to a higher 

goal, or about to create a new subgoal and go deeper. 

Why should GPS have goals? They are expensive to 

produce and use up quantities of space. They are 

probably the single biggest reason why GPS appears to be 

a plodder--all its time seems to be spent in building 

goals. When GPS goes into the context of a goal, it uses 

a set of working cells (about a hundred). It pulls infor

mation off the goal and puts it into these cells for more 

immediate reference. As new information is generated it is 

put into these temporary cells as well as being stored 

away on the goal structure. Why maintain a goal structure? 

Why not use just the immediate storage--i.e., only the 

currently needed information? 

The most general answer, perhaps, is the need to 

remember the past. But there are several quite different 

reasons why it must be remembered. Perhaps the most 

cogent, given the discussion so far, is keeping infor

mation about the supergoals still in progress. This is 
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the same as the reason why there must be a push-down list 

for recursive routines: as each subpart is completed the 

higher routine must be reactivated at the right point. 

But as we saw earlier, if this was all there was to it, 

we could use the recursive capabilities of list languages 

much as in any subroutine hierarchy, without creating separate 

goal structures. 

A second reason for retaining goals is to remember 

the terrain so as not to go over it again. Under very 

special strategies or with special tasks the generation 

of subtasks will never repeat itself. In general, however, 

checking is required to avoid repeating. Sometimes this is 

only a heuristic matter--a question of whether the search 

will go faster or slower. More often it is a crucial 

matter of avoiding a cycle. 

The third reason for remembering, and the focus of 

this example, is to return to a point reached in the past 

in order to try something different from that point. 

From this viewpoint, a goal is a place marker, noting 

the possibility that from its location something of 

significance can be done. Turning the matter around, 

if the problem-solver has arrived at a choice-point--where 

one thing must be tried and others put aside--then pre

serving the opportunity to later make the other choices 

if the first one fails implies the recollection of this 
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situation. If implies that a goal must be created at 

this point.* This seems a simple matter. But as stated 

earlier, setting up goals and filing information away on 

them is a major housekeeping activity for GPS. Conse-

quently, we have tried several dodges to get around the 

implications of the proposition. 

One of these is the concept of immediate operators. 

Suppose, as happens frequently in applying operators, 

we compare the expression A with P.Q, where P and Q are 

constants and A is a variable. There is a difference--

the expressions are manifestly not the same--but a dif-

ference we know precisely how to eliminate: substitute 

P.Q for A. According to GPS liturgy, when a difference 

is found a subgoal is created to reduce the difference. 

This subgoal results in the selection of an operator (in 

our case the substitution operator) and a goal is set up to 

apply this operator. If it is successful (as we know it 

will be), then the result of applying the operator (P.Q) 

is used as the result of the reduce difference goal. This 

leads to setting up a new subgoal to see if the modified 

expression (P.Q) is the same as the criterion expression 

(P.Q) (as we know it will be). Finally we are permitted 

to say that the two are the same. 

* Nothing is implied about whether the goals must be 
homogeneous--i.e., all contain the same information or 
have a common format. This issue is related to some of 
the other examples. 
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It seems a lot of unnecessary work to go through all 

this. Instead, whenever GPS finds a difference it asks if 

there is any "immediate" operator that applies to it. If 

it finds one--as it does for substituting an expression 

for a variable--then it applies this operator forthwith 

and proceeds. Three subgoals and a large amount of 

processing have been avoided. 

But there are difficulties. On one occasion GPS 

matched A ~ -R against R ~ Q. It promptly substituted 

R for A, thus getting R ~ -R against R ~ Q, with which it 

could do nothing. Of course, it should have first detected 

the difference in position, so that it could have changed 

R ~ Q to -Q ~ -R. By charging ahead and making the 

substitution, it foreclosed its chance of taking that 

action--even of taking it after it had detected the 

mistake in the substitution. (If GPS had delayed, it 

would have seen the right difference.) 

To illustrate the same issue in a different guise, 

consider the problem of applying operators that have more 

than one input. These arise in logic, for example, in 

the transitive law: from A ~ Band B ~ C produce A ~ C. 

Each of the two inputs is an independent expression. 

Normally in GPS only one expression is at hand to b~ 

input at the moment when the law is to be applied. 

Typically there is a goal such as: apply (A~B, EPC ~ A~C) 

to P ~ Q. It is necessary to find a second input 
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expression and to decide in which order to assign them 

to the two input forms. The goal tree developed by GPS 

in doing this is shown in Fig. 5. The top goal is to 

apply the two-input operator to a single expression. 

This leads to a difference, since a set of objects is 

being compared with a single object, and a subgoal is 

created to reduce this difference. This leads, by a 

short cut similar to the immediate operators, to direct 

application of a selection routine, which selects the 

member of the set that is most similar to P ~ Q. In the 

example either member will do, and the first is chosen. 

This leads to applying the initial operator again, but 

only fitting the first input form to P ~ Q. This is easily 

done with two substitutions. However, the result is not a 

new object, but a new specialized operator, of the form 

Q ~ c ~ P ~ C. This operator is not valid in general, but 

only within context where P ~ Q is a true expression. 

At this point, GPS needs to find the second input to the 

operator. It has available a set of admissible expressions, 

so it creates the goal of applying the operator to the set. 

This again leads to a difference, which leads to the 

selection of the expression most similar to Q ~ C. 

Notice that the prior incorporation of P ~ Q gives enough 

additional information to select Q ~ R rather than R ~ S. 

Finally the special operator is applied to Q ~ R and a final 

result, P ~ R is obtained. 
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1. Apply (A ~ B, B ~ C ~ A ~ C) to P ~ Q 

2. Reduce Set-versus-object difference between 
(A ~ B, B ~ C) and P ~ Q 

Select: A ~ B 

3. Apply (A ~ B, B ~ C ~ A ~ C) to P ~ Q 

Produce specialized operator: 
P ~ Q, Q ~ C ~ P ~ C 

4. Apply (p ~ Q, Q ~ C ~ P ~ C) to (R ~ S, -Q.P, Q ~ R) 

5. Reduce Object-versus-set difference 
between Q ~ C and (R ~ S, -Q.P, Q ~ R) 

Select: Q ~ R 

6. Apply (p ~ Q, Q ~ C ~ P ~ C) to Q ~ R 

Produce final object: P ~ R 

Fig. 5. Application of Two Input Operator by GPS. 
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Again, it seems a lot of work. But each of these 

goals represents an opportunity for error. In earlier 

attempts to use multiple input operators in GPS we 

short circuited goals 2 and 5, making the selections 

directly. When the direct selections were wrong the chance 

of coming back and making different selections had been 

foreclosed. With respect to the other goals, if -P v R 

had been given instead of P ~ R, or -Q v R instead of 

Q ~ R, additional subgoals would have been required under 

goals 3 and 6 to change the connective. 

So far only one side of the coin has been presented: 

rich goal nets are needed to preserve the opportunity for 

choice. Without this the problem-solver will be rigid, 

unable to try things and profit from its failure. But 

there are difficulties. A price is being paid in cumbersome 

structures. And numerous anecdotes warn of the dangers 

in a glut of information. LT provides a nice example. (6) 

It first found a proof of a certain theorem given all the 

prior theorems in the chapter. However, when it was 

given only the axioms plus one other theorem and presented 

with the same problem, it found a longer proof in about 

a third of the time. The additional theorems required 

more processing than they were worth. 

Perhaps a second example will reinforce the point. 

Recently we programmed GPS to try the well known puzzle 
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of the Missionaries and the Cannibals.* We started from 

the program for logic, on which we had been working. In 

the latter program all the intermediate products are kept, 

both for checking and to provide inputs to the two-input 

operations. GPS solved the problem. Then, we noted that 

our human subjects, working with a physical model in front 

of them, seemed only to recall the initial position and 

the current one. We simulated this situation, giving GPS 

an external representation and having it adopt a strategy 

that didn't remember any of the intermediate positions. 

GPS solved the problem this way much faster--all the extra 

intermediate goals and expressions had given it only useless 

things to worry about. It was better off forgetting them 

completely. 

To draw the moral, a fixed regime of goal building is 

to be avoided as are all other rigidities. Only those 

goals should be built that seem absolutely necessary; the 

rest provide nothing but noise and extra processing. To 

do this requires developing strategies for what of the past 

should be remembered. But a prior requirement is the capa

bility to stipulate arbitrarily whether or not a goal 

should exist, and when a goal should be destroyed. It 

* Three missionaries and three cannibals are on one 
side of a river. They wish to cross to the other side 
but have only a single boat that holds two people. The 
problem is to get everyone across without letting the 
cannibals ever outnumber the missionaries on either river 
bank. 
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must be possible to forge ahead, heedless of the memory 

problems, until it becomes clear that some difficulties 

exist, then to back down to the previous goal (now 

serving as an anchor point) and to proceed again more 

cautiously, creating suitable intermediate goals. 

This capability is a matter of organization. It is 

a question of discovering the role played by various 

fixed conventions in the current GPS--of trying to shift 

more information from the goal routines into the goal 

structure so that less need be assumed in the routine as 

fixed and immutable. This problem is hardly insurmountable; 

even to put the question is to half solve it. GPS will 

eventually have much greater freedom with its goal building. 

How far the solution will go towards the general problem 

indicated here is harder to predict. 
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VII. CONCLUSION 

We have now seen a handful of examples of organizational 

problems connected with building problem-solving programs. 

The issues represented seem diverse, the solutions 

particular. Some seem to be simply the projection into 

the domain of problem-solvers of issues that plague all 

programming. Others seem special to building intelligent 

machines. Can anything be said about them generally? 

First, let me repeat that the primary purpose of 

this paper is to set out some examples of organizational 

problems, describing each in its own terms. Although there 

exists no adequate framework for describing them, hopefully 

enough of a picture has been given to permit their 

recognition in other complex programs if they exist there. 

Such problems are seldom recorded In print, presumably 

because we neither know how to talk about them nor how to 

assess their significance. The faith of the botanizer is 

that specimens precede claSSification, which in turn pre

cedes theory. 

Second and more tentatively, we can discern some 

pattern in these examples. As we observed earlier, a 

program can operate only in terms of what it knows. This 

knowledge can come from only two sources. It can come 

from assumption--from the programmer's stipulation that 

such and such will be the case. Alternatively, it can 
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of the data structures or by testing. Now the latter 

source--executing processes--takes time and space; it is 

expensive. The former source costs nothing: assumed 

information does not have to be stored or generated. 

Therefore the temptation in creating efficient programs 

is always to minimize the amount of generated information, 

and hence to maximize the amount of stipulated information. 

It is the latter that underlies most of the rigidities. 

Something has been assumed fixed in order to get on 

with the programming, and the concealed limitation finally 

shows itself. In LT the convention that "the solution of 

a subgoal must solve the. main goal" is an example. 

When the rigidity becomes too gross to neglect, there 

are two paths towards resolution. One is to relax the 

constancy of the convention and allow a fixed number of 

cases. The program is expanded to contain separate sub

parts for each case and testing programs are added to 

transfer control to the correct part. The normal fracturing 

I, of a program into many parts depending on the type of 

r data is the result of this sort of solution. The virtue 

of this technique is that it can always be done at least 

to some extent. No new synthesis is required, only the 

willingness to write a more complex program with more 

parts. And this is its chief vice: it makes programs 
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ever more particular, ever more fractured, ever more resistant 

to further correction and modification, ever more obscure 

and complex. 

The other path to solution is again to remove the 

rigidity--to let be variable what once was fixed--but to 

discover a new set .?f invariant concepts to deal with 
• ---.~- '~'-'-.-."~ .. ,- .~-~--.~--.~- -_'''_'' __ L ____ "_.",.~ • 

this variability, so that the complexity of the program 

does not increase. The list processes--insert, delete, 

f 1, etc. --represent an excellent example of this. The use of 

the associative processes to handle inhomogeneous data 

collections is another. The attempts at a set of processes 

for remote control, at communicating strategies, and at a 

description of understanding how to use results, are 

abortive or incomplete attempts. 

Progress is a see-saw between these two types of 

solutions. The uniform goals in GPS are partly an attempt 

to avoid separate structures for all the particular kinds 

of information that need to exist. strong uniformities 

were accepted in the goal scheme to make it operational. 

Some of the limitations of the current scheme are now quite 

clear, and are forcing a solution with more variability 

again. Along the way common routines for handling all the 

goals have been achieved, an intermediate success not 

likely to be lost. 

(
' It seems also that as we~~minish the amount of 

assumed information, and avoid having separate parts of 
--------- • * ••• -~ ••• - • 

r 
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the total program know separate things~ we are moving toward 
~.-.~ ........ ~,---~, ....... ---->",,~"'~~'~'--~--~.~ . ....,..,~ .. 

more interpretive schemes. It is one way to get dynamic 

variability __ without increasing complexity too much. 

One good example is the current GPS~ as indicated in 

Fig. 3. Additional examples could be given from the 

other parts of GPS, where the matching process is now 

accomplished by a higher level interpreter~ as is the 

similarity testing that makes the selections shown in 

Fig. 5. 

All this seems quite reasonable. Roughly, we are trying 

to shift the information from the prqgramm,eJ"' s head, which 
/~~.----'~-.-... ~'-'.~-"""-.-.'~ .. - '"-".-, .. - . ""'-'"~"" .~-~",.,. ," . -

is where programming efficiency for simple algorithms says 

it should be, to the dynamic data structure. Surely this 

is right. For if ever a fully capable intelligent program 

is realized, it will be recognized by noting that it can 

get along without any programmer at all. Then all its 

info~ation will be in the program structure and none in 

the programmer's head. 
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