An analysis of the PostScript Interpreter
on
Canon Print Engines

by Frank Merritt Braswell =

N A SR A 3

INSIDE

' POSTSCRIPT

FRANK
MERRITT
BRASWELL

$37.50

Copyright © 1989 by Systems of Merritt, Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Trademark Acknowledgments

PostScript® is a registered trademark of Adobe Systems Incorporated.

QMS® is a registered trademark of QMS, Incorporated.

QMS-PS 800 is a trademark of QMS, Incorporated.

Apple®, AppleTalk®, and LaserWriter® are registered trademarks of Apple Computer, Incorporated.
Diablo® is a registered trademark of Xerox Corporation.

IBM® and IBM PC® are registered trademarks of International Business Machines Corporation.
Lasertalk is a trademark of Emerald City Software.

Procomm is a trademark of Datastorm Technologies, Incorporated.

Times* and Helvetica* are trademarks of Linotype AG and/or its subsidiaries.

Canon® is a registered trademark of Canon Incorporated.

The brain image was obtained from a Picker VISTA® Magnetic Resonance Scanner.

The Name PostScript

The name PostScrip® is a registered trademark of Adobe Systems Incorporated. All instances of the
name PostScript in the text are references to the PostScript Language as defined by Adobe Systems In-
corporated, unless otherwise stated. The name PostScript also is used as a product trademark for Adobe
Systems’ implementation of the PostScript language interpreter.

Special Thanks

Thanks and praise to the Lord for giving me the gift of an analytical and creative mind.

This book is dedicated to my wife Cindy, who put up with my many hours of research and writing. I
love you. To my children, Rebekah, Joshua, Miriam, and Hannah, thanks for your patience.

Thanks to Melissa Higdon for the great cover art and help with the formatting.
Thanks to Kathy Hancock for help with the editing.

Thanks to my reviewers, Randy Adams, Pat Wood, Val Stentz and David Holzgang for many helpful
suggestions.

Published by:

Systems of Merritt, Inc.
2551 Old Dobbin Drive East
Mobile, Alabama 36695
(205) 660-1240

First Printing, March 1989

Table of Contents

Part I
Chapter 1

Chapter 2

Chapter 3

Part 11
Chapter 4

The Introductory Group
Introduction to Inside PostScript
Introductionttt i i 1-1
Benefits of Inside PostScriptcoiiiiiiiiiiiiia., 1-1
Common PostScript Structureccoviiiiinnennnnnnn. 1-2
Organization of Inside PostScriptcooviiiini ... 1-2
HowtoUse ThisBOOKcoivuuniniiiiiiiii i, 13
PostScript Interpreter Structure
Introductioncoveiiin ittt it e 2-1
Layers of the PostScript Interpretercovvvveevenn. 2-1
DocumentedLayer.ccvoiitiiii it 2-2
UndocumentedLayer.coiiiiineennnnennennn. 2-2
ProprietaryLayer. ...ttt 2-2
SHUCIUIE ..ottt ittt it it et eeineeennns 2-2
Analysis Techniquesovvtiiieiiiiiiin i ennnnnn. 2-2
Documentation Conventionsccoveeeeeeeeenannnnns 2-3
POStSCHPt TOOIS . ovvree ittt ittt eieeineaennns 2-4
Efficient PostScript
Introductionoviir it it e i e 3-1
Bindingcoiiiiii i i i e e e e 3-1
LookupSpeed ...covniniiiiii ittt 3-1
Name Changesooveeriiii ittt iiieeneneneenns 32
Dictionary LOOKUD . ..ovitiiii ittt iiee e 32
Immediately Evaluated Namesoviviiiiiiniennnnn, 3-3
SyntaxandUsagecooviiiiiiiiiiiiiiiiinnnnnnn. 33
Dictionary Substitutionscceiiiiiianernnainn 34

The Error Handling Group

Error Handling and errordict

415 (00 11T o) « KNSR 4-1
BlockDiagramoiiuniiiiiiiiiiiniinneneennannnn 4-1
Error Procedurescoovvineinniiiiniineeneneennnenns 4-1
Overview of Error Proceduresccciveieeeennnneennn 4-3

Inside PostScript i

The typecheckProcedurec.ccoviiieiiiiinann... 4-4

The timeoutProcedureccoiiiiiiiin i, 4-7
The handleerrorProcedurecccovveieieinnnnnnn.. 4-8
Overview ofhandleerrorcoviviiiiin e, 4-9
The handleerror Entry in systemdictccoun... 4-11
PostScript Debuggingcovviiiiiiiii ittt 4-12
The stopped Operatorovvvereeeneeeeeerenenennnnnns 4-12

PartIII The Interactive Mode Group
Chapter 5 The PostScript Interactive Mode

0T 1€ 10 To1 50) o P 5-1
Benefits of Studyingexecutivecovvieiiieiiiinaann. 5-1
Supporting Procedurescoiiiiiiiiiiiiiiiiaieaana 52
The PromptProcedureoocviiiiiiiiininnnne. 5-2
ThequitProcedureo, 52
The quit Operator in systemdictccoiiiiiiiinennn 5-3
The checkquitProcedureccoviineninnnnnen.. 5-4
The intidleproc and batchidleproc Procedures 5-5
The intidleproc Procedureccoiiiiiiinnnenne. 5-6
The batchidleproc Procedurecoiinn.t. 5-7
TheidleprocProcedureccoviiiiiiiinnennnnennnnss 5-8
Variables used by executivecccvrineiiiieerennnnnnnn 5-8
The quitflagBooleancoovtrtnneiiieeeinnnnnennn 5-8
The execdepthIntegercoviiiiiiiiiiniiinnnennn. 5-8
The executive Procedurecciviiiiieiinnnnnnnnn 59
Procedure Initializationcovvvveineneneanaannnn. 59
Executive LOOp . ..vvvniiei ittt et e 59
ProcedureCleanupcvivivennnnrennnnnannnns 5-10
POStSCript INterTUPLS ..o v ittt it i et e 5-14
TipS ON USING €XECUtIVE ... u'iunrvneneiiieneeraeennnnnnnns 5-14
Learning PostScriptcvviviiiiii it 5-14
Example of Interactive Sessionccvveveeineann.. 5-15
Programmer’sReference Card 5-16
Debugging PostScript Programscccveevennnn. 5-17
The use of Multiple executiveLevels 5-17
JustforFun oot e i i it 5-18
Chapter 6 The ==dict
Introductiono vv vt ittt et s 6-1
Using==dictciviiiiiiiiiiiiiiiieieeinnnennnnnns 6-1
PostScript Datatypesviiiiireeetiinneennaaaennan. 6-1
ExamplesofOutputcoiiiiiiiiiiiiiinnnninn.. 6-2
Object AtribULES ..o vvveeeiirnereieiirenenneeeeeennnnnns 6-2
Exploring==diCtccciiiiiier ittt 6-3
Control Variablescooviiiriiiieiinenineeeeenannnns 6-3
Control Procedurescoeeeeiinreennnneereoesennnnns 6-3

ii Inside PostScript

The==Procedurec.uovtririiirienunenenenennnns 6-3

The typeprintProcedurecciiiiiiiiiianannn.. 6-4
ThetprintProcedurec.ciiiiiiiiiniinnnnn.. 6-4
Thecvsprint Procedureccoiiiiiiiiiiiinnan... 6-5
Type proceduresceiiiiiie ittt 6-6
The arraytype Procedureccoiiiniiinennnnnn... 6-6
The booleantype Procedurecoitiiininnnnn.... 6-8
The dicttype Procedurecciiiiieiiinnnennnnnnn. 6-8
The filetype Procedureccooviiiiiiiinnnnnn., 6-9
The fonttype Procedure, 6-9
The integertype Procedurecooviineeinennnnnnnns 6-9
The marktype Procedureccoiiiiiiiinn. 6-10
The nametype Procedurecviiiiiiinieennann.. 6-10
Thenulltype Procedureccoiiiiiiiiiiiiinn, 6-11
The operatortype Procedureccoveeiunveennennn. 6-11
The packedarraytype Procedure 6-11
Therealtype Procedureccoiieiinninnnnennnnnn 6-14
The savetype Procedureccovviiinnnennnnnannnn 6-14
The stringtype Procedurecoiiiiiiiia.. 6-14
Chapter 7 Miscellaneous Procedures
Introductionttt i e e 7-1
The =Procedure and =printccociieiiinniennn. 7-1
=Documented0t e i e 7-2
=printDocumentedc . it 7-3
The stack and pstack Procedurescovvvviiiainn. 7-3
stackProcedureottt e 7-4
pstackprocedure i 7-5
The RunProcedurecoiiiiiiiiiiiiiiiiiinnnnnn, 7-5
The findfontProcedureccoviiiiiiiiiiiiiiinnnn. 7-6
The=string Stringcviiiiiiniiiiii i iiiiiiiinnnn, 7-7

PartIV The Printer Control Group

Chapter 8 Idle Time Font Scan Conversion

Introductioncoiierie it i it 8-1
Chapter Organizationcoevieiineiieeenrnennnnnnns 8-1
Idle Time Data Structuresvvvveiennnnineeeeeeeennennns 8-2
The ROMnames Font Name Arrayoovvvvevnnnnens 8-2
The Idle Time Data Array: idleArryccovviinnnnnnnn.. 8-3
Character Group Stringscovvrineiiiininnnnnnn. 8-6
Tvr 1. 8-6
ASCHIO2 o iiiteit e e AP 8-6
¥-1e3 1 1.3 1 8-7
T3 11 S 8-7
Control Variables and Proceduresccovuun. 8-7
The idleStrl and idleStr Variablesviunnnn. 8-7

Inside PostScript iii

10| E] 3 8-8
TheidleI Variablecoviieeninineeiiiiennneneennnnn 8-8
TheeeinfoVariableo, 8-8
The boundsCheck Procedurecovuit.. 8-8
ThebmpIProcedurecoiiiiiiiiiiiinnennnn.. 8-9
TheidlIAProcedureccuiviiiirenenrnneeennnennnnn 8-10
The stopPred Procedureccoiiiiiiiinniennn.. 8-10
The ReadldleFonts Procedureccoiiiiieennnnnn. 8-10
The UseldleTime Procedurecooveiiiiiinneeennnnnnn 8-13
Discussionof Algorithmccoiiiiiiieiinennn.. 8-14
Chapter 9 Paper Sizes and $printerdict
Introductionttt it it 9-1
Papersize Procedurescoviiiiiiiiiiiiiiiininn, 9-1
Calculationof the CTM ittt iinreennnnn 9-2
Papersize Proceduresc.oiiiiiiiiiiiiniiaiaanann 9-2
LetterSizePagecooiiiiiii ittt 9-3
Legal Size Page ...ovviiiiiie it ittt iinanananns 9-3
A4 SIZE Page . it i e i i el 9-4
DS SIZEPage ..t e e 9-4
The CalltoredWriteovuniriiiiieieinenenenanaannnns 9-5
Theletter (orQ)Procedureccvvviiiiiineninnnnnnnnns 9-6
Chapter 10 Print Engine Status
Introductionttt ittt 10-1
Chapter OVerviewvi ittt i iiie i ieieeeeaeennnns 10-1
The printerstatus Procedurecciiieiinnennnnn. 10-1
The warmedupProcedurecooviiiiiiiineenn.... 10-3
The initprinter Procedurecciiiiiiiinneennnnn. 104
The setrealdevice Procedurecovveiiiinnenenennn.. 10-6
Chapter 11 Print Engine Error Reporting and mydict
Introductionoveenr it e it it it e 11-1
Chapter OVEIVIEW . ..ottt iie it ieiineeeeenennannennns 11-1
Control Variablescooeiiiniinreniernrnnnennnennn 11-1
TheabortBooleanc.coviiiiiniiiiiinnneennn.. 11-1
ThentrysIntegerooviiiiiiiiiiiiiiiiiiiinenn. 11-1
ThereportBooleancciiiiiiiiiinnennnnnnnns 11-2
ThebitsIntegeroooiiiiiiinr ittt iiinaeeennn 11-2
The statand laststat Integersccevennnnnnnn.. 11-2
The Statintegercovveeeeennereenneneeeennnneeennnns 11-2
ThelaststatIntegerccovvveiiiiinenennnnnnnnenn. 11-2
The eindex and errstr Variablesccivivnnn. 11-3
Error Messages and Print Engine ErrorCodes 11-3
SN 0 Lo e e i et 11-3
SN 512 i e e 11-3
SNE 520 ...ttt i i e it 114
Procedure 528ot e 11-4

iv

Inside PostScript

SN 576 . it e 11-5
String 2048 .. e 11-5
Procedure 4616iiiiiiiii i i it 11-6
Error MessageReportingcooveiniiiniinnennennnn, 11-6
TheeprintProcedurecoiiiiiiiiinennnnn.. 11-7
TheeflushProcedure, 11-8
The printererror Procedurecc.oiiuiia.... 11-9
Chapter 12 The Thumbwheel Switch and PostScript Operating Modes
IntrodUCHON . .\ vttt it i e i it it e e i e 12-1
The Thumbwheel Switch i, 12-1
Chapter OVerviewovvin ittt it iiiieeeiianaanannnn 12-2
Utility Proceduresciriniiiiiieiiiiinennnannnn 12-2
exchdefProcedure it 12-2
settimeoutsProcedurettt 12-2
fontnameProcedurettt i 12-3
Switch Settings 0, 1,and3 i, 12-4
Switch Setting 2 and the Special Switch 12-6
The Special Switch ProceduresOand1 12-7
Special SwitchProcedure Ot 12-7
ProcedureQOuthinecoviierntii it i 12-8
Procedure 10utlinecoiiiiiiiiiiiiinenn. 12-10
Chapter 13 Printer Communications
Introductionttt i e e e e e 13-1
Communication Control Procedures 13-1
ChapterOutlingciii ittt it ieeennnenns 13-1
System Variables i, 13-1
Jobsource Variablettt 13-1
stdname Variablecoitiiiiiiii it 13-2
altname Variableciiiiiiiiiiii it 13-2
appletalktype Variable iiiiiiiaa.. 132
baud25 and baud9 Variablescciiviinninn... 13-3
parity25 and parity9 Variablescoiiiin... 13-3
commhashVariablecciiiieiiiiiiinnnnn... 13-3
saveswitchVariableo i iiiiieiinnnenn.. 13-4
altflagBoolean il 13-4
sccokBoolean i e 13-4
sendctrldBooleanc.coiiiiiiii it 13-4
transparentBoolean il 13-5
debugmodeInteger il 13-5
SWItchClOSE ArTayvvviinie ittt 13-5
Utility Proceduresoviteineniniiniiinnennnnnnnnn 13-6
dexchProcedurec.iiiiiiiinnennnennnnnnnnns 13-6
exchdefProcedureccoitiiiiiiiinninninennnnnn 13-7
AppleTalk Proceduresocoviemininiinnnnennnnnns 13-7

Inside PostScript v

appletalkopenProcedurecoiiiiiiiiiiin.... 13-7

appletalkclose Procedureooviviineneneenennnnn. 13-11
The watchstreamsProcedureccovveviennnnn... 13-11
The setscestreams Procedureocveiiinnnnnnnnnnn.. 13-14
The setstreamsProcedurec.cciriiiieniienneennn. 13-22

Chapter 14 Job Execution and execjob
Introductionottt i i e e 14-1
Procedures used by €xecjobc.oviiiiiiiiiiiiiiiiieae 14-1

The cleardictstack Procedurecoovviin... 14-1

The hashcommparams Procedure 14-2
Variables usedbyexecjobcoiiiiiiiiiiiiiiiinean.. 14-3

commhashIntegercooiiiiiiiininiinneennnnnn.. 14-3

saveswitchIntegerciiiiiiiiiiniiniiinnnnnnnn 14-3

quitflagBooleanc.cciiiiiiiiiiieiiiiiaennn. 14-3

jobsource Stringviie ittt e i e 14-3

jobstate Stringcoiiiiiiiiii i it i e 144

docloseBooleancciiiiiiiiiiiii it 144
The execjobProcedurecovviiiiiininnnennnnn. 14-4
execjobOutlinegcovviiiiiiinin it 14-5

Chapter 15 The start Procedure and Server Loop
Introductionvvvtin it ittt it 15-1
ChapterOutlinecoiiiiiiiiniiiiieneeeennnn. 15-1
The setnulldevice Procedurecovivneeennnnnn... 15-1
The start Procedure Discussionccciveiiieneenn... 15-2
start Procedure Outlineccviiiiiiinnnnnan.n. 15-2
Block Diagram of PostScript Interpreter 15-8
Inside and Outside the ServerLoopcceivvvennn... 15-9

The Execution Stack from Inside the Server Loop 15-9

Execution Stack Example from Inside the Server Loop 15-10

The Execution Stack from Outside the Server Loop 15-11
Server Loop DiSCuSSIONovvtrinnenerenenennnnennnns 15-11
ServerLoopTiPs . .vvvvveiiriinereenerenennennnnnnnenns 15-12

Part V. The Test Page Group
Chapter 16 The Test Page

Introductioncoiiriiiiiinniiiiiiiiieneneeennnns 16-1
startpage Organizationcccvevenenennennnnennn. 16-1
Some Comments About the TestPage 16-13
QMS-PS800TestPageccovvveenenenrnnennnannennnn 16-14

vi Inside PostScript

Appendices
Appendix I Dictionary Analysis

Introduction . .. oot ir et i e i et et e 3-1
Dictionary Block Diagramccciiiiiiiinnnnenn.. 3-1
HowtoUsetheTableccoiiiiiiiiiii it iiiinnnnnn. 3-1
BlockDiagramciiiiuiiiiiiiiiereeannneeennnnn. 3-2
Table of Dictionariesooveieerinernenneennnennnann 3-3

Appendix II Dictionary Key/Value Analysis

J 533 070 1172 4 (o) + AU 3-1
HowtoUsetheTablecciiiiiiiiiiieiiiieiennnnnnn. 3-1
Structure of PostScriptot e 3-1
Key/ValueTablecoiiiiiiiiiiiiiiiiereanennneenn. 3-3
Appendix IIT Exhaustive Cross Reference Table of PostScript Names
IntrodUCHON & . oottt ettt it i ettt et 1-1
HowtoUsetheTableccoiiiieiiiiiiiiiinnnnnenn. 1-1
CrossReference Tableccoiiiiiiiininiiiiiinnnnnnn. 1-2

Inside PostScript vii

Part I

The
Introductory
Group

Chapter 1

Introduction to Inside PostScript

Introduction it e e e e e e e e e e e e e

Benefits of Inside PostScript
Common PostScript Structure

.........................
.........................

Organization of Inside PostScript

.......................

HowtoUseThisBook i it it ittt it et

Chapter 1

Introduction

Benefits of Inside
PostScript

The Introductory Group

Introduction to Inside PostScript

Anyone who takes the time to read through all this material and actually
enjoy it (like me) is a hopelessly brain-warped PostScript junkie. With the
growth in popularity of the PostScript language however, you may take
comfort in the fact that you are not alone.

Once you became familiar with the PostScript language and began to delve
more deeply into its details, you beganto discoveroperators and dictionaries
which were undocumented. As you studied Adobe’s documentation, you
found mysterious references to additional undocumented features of the lan-
guage. Then perhaps you tried the following.

PS>serverdict {} forall pstack

You were further intrigued by the many undocumented serverdict proce-
dures and variables. The purpose of this book is to document that which is
not documented by Adobe.

While the documented language standard may be sufficient for describing
aprinted page, the undocumented language is necessary for controlling user
jobexecution and the print engine. In other words, the documented language
is device independent, while much of the undocumented language is device
dependent.

What would be the reason for studying the undocumented portion of the
PostScript language? There are several reasons.

¢ Studying Adobe’s use of the language will give you ideas for improv-
ing your own PostScript programming techniques.

e Understanding how Adobe controls job execution wiil help you better
control your own PostScript program execution.

o Current PostScript literature gives very few examples of advanced error
handling techniques, file stream manipulation, or the use of immediate-
1y evaluated names, to name a few areas covered in this book.

A word of caution concemning the use of undocumented features is in order
here which goes to the heart of the reason Adobe did not document them in
the first place. To make use of the undocumented features of the language

~ is to make your PostScript program device dependent. So don’t expect

Adobe to provide support for printer drivers which make use of undocu-
mented commands.

Introduction to Inside PostScript

Common PostScript
Structure

Organization of Inside
PostScript

1-2

Chapter 1

Also be aware of the fact that the information in this book may not be 100%
accurate since I developed Inside PostScript apart from any Adobe internal
documentation. Only Adobe can speak with complete authority on the sub-
jects presented herein. Neither can I assume any responsibility for the use
of this information in PostScript programs.

Having said that, what good is a book which documents the specific inter-
nal procedures of PostScript version 38 on the QMS-PS 800?

By studying a variety of PostScript printers, I found a basic common struc-
ture runs through them all, and to understand one will open the door to un-
derstanding the PostScript printer you are working with. At QMS I have
worked with PostScript printers such as the ColorScript 100, JetScript, the
PS 810, PS 800II, PS 800+, PS 1500, PS 2200 and others. On each printer
it was my job to evaluate the Adobe alpha and beta software releases and
work with Adobe to correct bugs found. Working with such a variety of
PostScript printers led to my interest in the inner workings of the interpreter
as it controlled different print engines.

It all began with the statement:

PS>serverdict {} forall pstack

Join me as we begin our journey Inside PostScript.

Our journey into the depths of PostScript is broken into five distinct sec-
tions or groups. As you browse through the table of contents you will find
each group consists of one or more chapters. The groups are listed as fol-
lows.

¢ Introductory Group - Introduction to basic interpreter structure and con-
cepts.

¢ Error Handling Group - Error handling concepts and procedures.

¢ Interactive Mode Group - Discussion of interactive mode and the execu-
tive procedure.

¢ Printer Control Group - Print engine control and PostScript job execu-
tion.

o Test Page Group - The power-up test page is documented.

Inside PostScript

Chapter 1

How to Use This Book

The Introductory Group

Introduction to Inside PostScript

o Three appendices feature tables to help the reader with a further analysis
of PostScript.

Inside PostScript can be used in several ways.

Inside PostScript can be read as an overview of the PostScript interpreter
without a detailed study of each code example since each PostScript proce-
dure is summarized prior to the presentation of the code.

Those desiring detailed study of the code examples will find the PostScript
source code comments helpful to quickly understanding how Adobe has im-
plemented each function.

Inside PostScript can also be used as a complete reference manual to the
PostScript interpreter. The index contains references to each documented
procedure, plus the appendices show the structure of the interpreter through
various tables and lists.

1-3

Chapter 2

PostScript Interpreter Structure

Introduction it e e e 2-1
Layers of the PostScript Interpreter0 2-1
DocumentedLayer. i v it i e e e 2-2
UndocumentedLayer.t 2-2
ProprietaryLayer. i i i e e e e e 2-2
Structure e e e e e e e e 2-2
AnalysisTechniquest 2-2
DocumentationConventionsottt e e 2-3
PostScript TOOIS v v vt e e e e e 2-4

Chapter 2

Introduction

Layers of the PostScript
Interpreter

The Introductory Group

PostScript Interpreter Structure

This chapter introduces the overall structure of the PostScript interpreter,
plus the documentation conventions used in this book for its study.

As a PostScript programmer, you know that PostScript is a very powerful
page description language with over 200 operators. With this great power
and variety of operators however, comes much complexity and confusion
due to the nature of the language itself. PostScript’s ability to redefine
operators (like Forth), make it a joy to program, difficult to debug, and a
nightmare to maintain.

While the vast majority of PostScript users are only concerned with the lan-
guage through an application program, and never hand-code a single
program, there are those of us who are blessed with the task of writing
drivers and other programs which directly exercise the language.

To directly exercise the language for the description of the printed page is
one thing, but to use the PostScript language for control of the print engine
is another matter. This is a completely new concept to any PostScript
programmer outside of Adobe and covers a totally different application of
the language. Very few of the procedures used for control of the printer are
actually locked such that the programmer cannot actually view them or
deduce their function by trial or error. The difficulty in analyzing these in-
ternal programs is the volume of code involved and the complex intercon-
nectivity among procedures.

There are three layers of the PostScript interpreter: the documented layer,
undocumented layer and the proprietary layer.

Documented Layer

PostScript Language Reference Manual

Undocumented Layer
Inside PostScript and

Internal Adobe Documentation

Proprietary Layer

Internal Adobe Documentation

PostScript Interpreter Structure

Structure

Analysis Techniques

Chapter 2

Documented Layer The documented layer involves PostScript
operators and procedures whose functions are documented in Adobe pub-
lications such as the three language manuals and various printer supple-
ments. These documented operators are sufficient for device independent
page description and some specific printer control functions such as tray
switching.

Undocumented Layer The undocumented layer is the topic of this book
and involves the use of PostScript to control the print engine and user job
execution. This layer is visible to the user and is very device dependent.

Proprietary Layer The proprietary layer involves additional control
code which is purposely hidden from the users view such as locked proce-
dures and actual operator code.

The following chapters attempt to break the interpreter into logical group-
ings of procedures. In some cases, the procedures group nicely within dic-
tionaries such as $idleTimeDict, and in other cases the procedures are
grouped by function like the communication procedures.

The first of the technical chapters covers PostScript error handling. The next
three chapters cover the PostScript interactive mode and related procedures.
These chapters can logically stand separate from the printer control chap-
ters which follow.

The printer control chapters are sequenced to build upon each other and
climax with the discussion of the job control and server loop which tie all
the preceding chapters together.

Finally, the test page code is presented which is different in nature from all
the previous code.

It would have been impossible to write such a book as this without first
laying an analytical foundation that involved writing numerous PostScript
programs to systematically display the dictionaries, procedures and the
cross reference relationships of all internal names.

Inside PostScript

Chapter 2

Documentation
Conventions

The Introductory Group

PostScript Interpreter Structure

I list the results of this analysis in the appendices. Before digging into the
technical discussions, I recommend a basic familiarization with these tables
to help visualize the overall dictionary structures and relationships. This in-
formation is invaluable as you study the structure of the PostScript inter-
preter in this book.

All of the program listings presented in this book were extracted from the
PostScript interpreter itself and are given the appearance of documented
code fragments. All nested procedures are indented for readability and both
open and close braces for procedures are at the same level of indention so
the eye can quickly pick out the beginning and end of the procedure.

All the internal procedures have been bound, even though binding is not ex-
plicitly indicated in the procedure listings. Immediately evaluated names
are flagged when they appear within other procedures. The concepts of
binding and immediately evaluated names are explained in detail in the next
chapter.

Also, the listings are not necessarily equivalent to the original Adobe source
code. They may be close, but only Adobe has the source code and knows
how the interpreter is built into its runtime form.

One term used in this book which may not be familiar to some is reverse
channel. Reverse channel refers to the communication channel on which in-
formation travels from the printer to a host computer. Reverse channel in-
formation can be PostScript error or user program messages.

I chose not to highlight PostScript operators and procedures in this book
with a font change as is done is other books on PostScript. On some pages,
so many procedures are discussed that the reader would be distracted from
the discussion by font changes.

Extensive use of the PostScript executive procedure or interactive mode
was used in the research for this book and many interactive session frag-
ments are presented in the following chapters. These examples are iden-
tified by the interactive prompt "PS>" at the beginning of each command
line.

In order to fully understand many of the concepts presented in this book,
the reader may wish to explore the features of the PostScript interpreter
using the interactive mode. To help you with your study, several useful tools
are available.

2-3

PostScript Interpreter Structure

PostScript Tools

Chapter 2

Several items are worth mentioning which are extremely helpful in the study
and programming of PostScript.

First, if you don’t have a PostScript Programmer’s Instant Reference Card
you need to get one. This card lists all the PostScript operators and useful
code fragments which are helpful to beginning and experienced PostScript
programmers. Contact Micro Logic at (201) 342-6518 for details on order-
ing.

Next, if you are a Macintosh (or IBM PC) user you need to get a software
package called Lasertalk. This package is excellent for learning PostScript,
debugging programs, and exploring the language. For information contact
Emerald City Software at (415) 324-8080.

For PC users communication packages such as Procomm can be used to
communicate with PostScript printers over a serial RS 232 channel. Direct
interaction with the PostScript interpreter is possible along with program
uploading and recording of interactive sessions. Procomm is available free
on many bulletin boards.

Finally of course, you need a PostScript printer. The research for this book
was done on a QMS-PS 800 printer. PostScript printers (such as the Apple
LaserWriter) based on a Canon print engine are very similar in nature and
can be studied along with the material in this book.

Inside PostScript

Chapter 3

Efficient PostScript

Introduction e 3-1
Binding @ e e e e e e e e e e e e e 3-1
LookupSpeed i i it e e e 3-1
NameChanges @ittt 32
DictionaryLookup ittt ittt 32
Immediately EvaluatedNames 33
SyntaxandUsage vt vt it e e e e e e 3-3

Dictionary Substitutions 34

Chapter 3

Introduction

Binding

The Introductory Group

Efficient PostScript

Because of their extensive use by Adobe throughout the code, the concepts
of binding and immediately evaluated names need to be discussed in detail
before moving into discussions of the internal PostScript procedures. Ef-
ficiency of execution and compactness of code are the reasons Adobe makes
use of these concepts, and they can be of great value to any PostScript
programmer once they are understood. Binding is discussed first followed
by immediately evaluated names.

According to the PostScript Language Reference Manual, the bind operator

‘replaces executable operator names with their values within a procedure.

Only operator type objects are affected by the bind operator. The way
to tell if an operator has been bound is to use the == or pstack procedures
in interactive mode to display the items on the stack. If a procedure is dis-
played and operators within the procedure are shown with dashes
(--add--) it means they have been bound. There are several advantages
to binding which are explained below. First, lookup speed is explained, then
name changes, and finally, dictionary lookup.

Lookup Speed One of the primary benefits of binding is that execution
speed canbe increased. Every programmer wants his code to execute faster,
and here is a way to do it.

Normally, the PostScript interpreter must move through procedures plac-
ing items on the various stacks. If a name is encountered which is associated
with an operator type, the interpreter first scans the name and then looks the
name up in the dictionaries on the dictionary stack. Once found, the operator
is executed.

If the procedure is bound prior to invocation, the bind operator does all the
work of looking up the operator so that when the procedure is invoked later
and the interpreter encounters the operator, it is executed immediately. It is
especially critical that procedures used in loops be bound. If a procedure is
only executed once, binding is of little value. For example:

PS>/Helvetica findfont 25 scalefont setfont

PS>72 72 translate 1 setgray

PS>.95 -.1 0

PS>{setgray 0 O moveto (Bind Test) show -1 -1 translate}
PS> bind for % bind loop procedure on stack
PS>showpage

PS>

Efficient PostScript

Chapter 3

More technically, the bind operator substitutes the character string repre-
senting the name of the operator with a pointer to the operator function it-
self.

The following example shows how to tell the difference between a normal
procedure and a procedure which has been bound.

At first the procedure containing the add operator is placed on the stack and
displayed. The pstack operator indicates that add is simply a name (string
of characters). The bind operator is applied to the same procedure and then
the add operator is displayed as "--add--" indicating it has been bound.

Also, notice there is no effect on the result of executing the procedure before
and after the binding. The same result, "5", is displayed. The only change
is the speed of execution.

PS>{2 3 add =
{2 3 add == }
PS>dup exec

5

=} pstack % place the procedure on the stack
% display the procedure
% execute the procedure
%

display procedure result

PS>bind pstack % bind the procedure

{2 3 --add-—-==} % display the procedure
PS>exec % execute the bound procedure
5 % display the procedure result

Name Changes Changing the name of an operator used in a bound pro-
cedure after binding has no effect on the execution of the procedure. This
is because the procedure no longer uses the name to access the procedure.

Dictionary Lookup When the bind operator is applied to a procedure
the same rules for dictionary lookup of operator names is used as if during
the execution of the procedure. However, during execution of the bound
procedure, it is not necessary to have the dictionaries opened which contain
the bound operators since the lookup step has already been performed.

In the example below, the procedure containing the statusdict operator
checkpassword does not require statusdict to be open when it is executed
since the bind operation performed the lookup.

PS>statusdict begin % open statusdict

PS>{0 checkpassword ==} pstack % create procedure

{0 checkpassword == } % display procedure
PS>bind pstack % bind procedure

{0 —-checkpassword--== } % display bound procedure

Inside PostScript

Chapter 3

Immediately Evaluated
Names

The Introductory Group

Efficient PostScript

PS>end % close statusdict

PS>dup exec % execute procedure

true % display procedure result
PS>pstack % display procedure again
{0 —-checkpassword--== } % with statusdict closed
PS> % end of example

Information on this concept can only be found in Adobe PostScript Lan-
guage supplements for recent printers, yet it has been available since ver-
sion 25.0 and is an extremely important part of the PostScript interpreter.

Syntax and Usage The syntax for immediately evaluated names is
//name, and when the interpreter encounters this token, it immediately looks
up the name and substitutes the value in its place. As with the bind operator,
the normal rules for dictionary lookup apply at the time that //name is
evaluated.

Unlike the bind operator, immediately evaluated names can be keys as-
sociated with arrays, dictionaries or other objects. Greater care must be ex-
ercised when using immediately evaluated names (as opposed to bind)
because of its substitution nature. The important thing to remember is that
substitution does not mean execution. The effect of this is the difference
between placing a procedure on the stack verses executing a procedure on
the stack. The following examples illustrate how an immediately evaluated
name is different than the name itself.

This first example shows an incorrect usage of an immediately evaluated
name.

PS>/= load pstack % first show the procedure
{{--dup----type—--/stringtype —--ne-—{{(
stringtypeflowflow
)--cvs—=}--if-——-print--}--exec——(

)——-print--}

Define a procedure with an incorrect usage of //=.

PS>/x % define the x procedure
PS>{ (test 1) = (test 2) //=} def
PS>x % execute the x procedure
test 1 % result of x procedure
PS> % = proc and "test 2" are left on stack
PS>pstack % because second = is never executed
{{-—dup----type--/stringtype --ne——{(
stringtypeflowflow

3-3

Efficient PostScript

3-4

Chapter 3

)——cvs-—}--if----print--}--exec——(

)—-—print--}

(test 2)

PS>/x load == % show contents of x procedure

{(test 1)= (test 2) {{——dup—--—-type—--/stringtype --ne—-{{
stringtypeflowflow

y-—cvs—-}--if--—-print--}--exec——(

)——print--}}

The next example shows how to use the exec operator to properly execute
the immediately evaluated name.

PS>/x % proper use

PS>{(test 1 = (test 2) //= exec} def

PS>x % execute x procedure

test 1 % the proper results are displayed
test 2

PS>/x load pstack % show contents of x procedure
{(test 1)= (test 2){{-—-dup-—---type--/stringtype —--ne-—{{(

stringtypeflowflow
)—-cvs--}--if--—-print--}--exec——(
)--print--}exec }

PS> % end of example

These examples show how the immediately evaluated name "//=" is actual-
ly substituted into the /x procedure, and why the exec operator must be ap-
plied to immediately evaluated names which refer to procedures.

Dictionary Substitutions Another feature extensively used by Adobe
is the substitution of dictionaries into procedures.

PS> % create procedure
PS>{//statusdict begin 0 checkpassword end ==
PS>pstack % view procedure
{-dictionary- begin 0 checkpassword end == }
PS>exec % execute procedure

true % view results

PS> % end example

The effect of immediately evaluating dictionary names is similar to what
bind does for operator names.

The one negative side effect of this is that the procedures are almost impos-
sible to follow without the source code because the word -dictionary- is sub-
stituted for the actual name when displayed with pstack or ==.

Inside PostScript

Part 11

The
Error
Handling
Group

Chapter 4

Error Handling and errordict

Introduction i i i i it e e e e e e e 4-1
BlockDiagram0t e e e e 4-1
ErrorProcedures i i i i i i i et e e e e e e e e e e e 4-1
Overview of ErrorProcedures v v v v v it i i i i e e e oo e 4-3
The typecheckProcedure 4-4
ThetimeoutProcedure ittt 4-7
The handleerrorProcedure it 4-8
Overviewofhandleerror i i it 4-9
The handleerror Entry in systemdict 4-11
PostScriptDebugging i e 4-12

ThestoppedOperatorttt 4-12

Chapter 4 Error Handling and errordict

Introduction Error handling (assuming the user has not altered it) is a two step process
in PostScript. First, a procedure is invoked which takes a snapshot of the
three PostScript stacks; second the handleerror procedure reports the error
to the user over the reverse channel.

Block Diagram The default method of handling errors is diagramed below.
Incoming PostScript PostScript Interpreter Pixel Data Frame Buffer
Program
If Error Occurs
To User Error Procedure handleerror Procedure

(Record Stack Information) (Report Error to User)

%% Error: typecheck; Offending Command: foo %%

%%[Flushing: rest of job (to end-of-file) will be ignored %%

In this chapter the error procedures and handleerror are discussed along with
how they affect the PostScript programmers debugging efforts.

Error Procedures The errordict dictionary contains all the procedures which are invoked when
PostScript encounters an error. Following is a complete list of all PostScript
errors and procedures as found in errordict.

Errorname / Procedure

1. /VMerror
{/VMerror //.error exec} def
2. /dictfull
{/dictfull //.error exec} def
3. /dictstackoverflow
{/dictstackoverflow //.error exec} def
4. /dictstackunderflow
{/dictstackunderflow //.error exec} def
5. /execstackoverflow
{/execstackoverflow //.error exec} def
6. /invalidaccess
{/invalidaccess //.error exec} def
7. /invalidexit
{/invalidexit //.error exec} def

The Error Handling Group 4-1

Error Handling and errordict

Chapter 4

8. /invalidfileaccess

{/invalidfileaccess //.error exec} def
9. /invalidfont

{/invalidfont //.error exec} def
10. /invalidrestore

{/invalidrestore //.error exec} def
11. /iocerror

{/ioerror //.error exec} def
12. /limitcheck

{/limitcheck //.error exec} def
13. /nocurrentpoint

{/nocurrentpoint //.error exec} def
14. /rangecheck

{/rangecheck //.error exec} def
15. /stackoverflow

{/stackoverflow //.error exec} def
16. /stackunderflow

{/stackunderflow //.error exec} def
17. /syntaxerror

{/syntaxerror //.error exec} def
18. /timeout

{/timeout /timeout //.error exec} def
19. /typecheck

{/typecheck //.error exec} def
20. /undefined

{/undefined //.error exec} def
21. /undefinedfilename

{/undefinedfilename //.error exec} def
22. /undefinedresult

{/undefinedresult //.error exec} def
23. /unmatchedmark

{/unmatchedmark //.error exec} def
24. /unregistered

{/unregistered //.error exec} def

The interesting thing about the different error procedures is that they are all
identical except for the name of the error. This name is placed on the stack
at the beginning of the procedure. The one exception is the timeout error
procedure where an additional object (the name /timeout) is pushed on the
stack. In this one case, timeout is both the offending command and the name
of the error procedure.

Each procedure is called internally from the interpreter, thus no calls are
made to the error procedures from any of the PostScript control procedures
except for two special cases. Before the call is made, the offending com-
mand is left on the stack for the error procedure.

In two special instances, error procedures are invoked from resident con-
trol procedures. The names of the timeout and undefinedfilename error pro-

Inside PostScript

Chapter 4

Overview of Error
Procedures

The Error Handling Group

Error Handling and errordict

cedures are referenced in execjob and executive respectively where they are
explicitly trapped by the stopped operator.

Another interesting observation is that the ".error" procedure in systemdict
is a subset of every error procedure as an immediately evaluated name. This
is flagged in the documentation of the error procedure.

The default PostScript error procedures make entries in the $error diction-
ary. These entries include the name of the offending command, error name,
and snapshots of the execution, dictionary, and operand stacks. The error
procedures do not print and send no data to the reverse channel. Printing is
done by the procedure called handleerror.

In the $error dictionary, six arrays (ostackarray and ostack for the operand
stack; estackarray and estack for the execution stack; dstackarray and dstack
for the dictionary stack) are used to handle the snapshots of the stacks. The
arrays ostackarray, estackarray, and dstackarray are allocated once when
the first error occurs. Subsequent errors reuse these same arrays.

The arrays ostack, estack, and dstack are subsets of ostackarray, estackar-
ray and dstackarray respectively. These smaller subsets contain the actual
snapshots. A study of the error procedure below illustrates the difference
between the two types of arrays.

The typecheck procedure is documented as an example of each of the error
procedures named above. The only difference between the error procedures
is the name of the procedure, and the error name placed on the stack at the
beginning of the procedure. To change to the syntaxerror procedure for ex-
ample, simply substitute the name syntaxerror for typecheck.

The error procedures start by initializing the errorname, command and
newerror variables in the $error dictionary. Next, a check is made to see if
the error was a VMerror, in which case none of the allocating or process-
ing of the arrays is done (since we are out of VM). If there is adequate VM
available, a check is made to see if ostackarray is null. If it is null, then this
is the first error since power-up and space is then allocated for estackarray,
ostackarray and dstackarray.

The next step is to store the stacks in ostackarray, dstackarray, and estack-
array. Then the stack which was emptied into ostackarray is restored to its
original state so that the stack is undisturbed upon exiting the procedure.

Error Handling and errordict

The typecheck

Procedure

Chapter 4

Finally, handleerror is executed if the initializing flag is true. This covers
the case of an error during the printing of the test page.

The typecheck procedure is documented in detail below.

%

% calling format

% "offending command" typecheck

% found in: errordict

/typecheck

{
/typecheck

//Serror
exch
/errorname
exch

put

//$error
exch
/command
exch

put

//Serror
/newerror
true

put

//$error
/errorname
get

/VMerror
ne

o0 R 0 R O 0 P A IO o0 J° d° o d° o0 o

A0 o0 OO O O o N O O O° O° O IR O° O° o0 A N o o o o

place the error name on the stack
this error name is the only
difference between the error
procedures

.error procedure begins here
.error is placed on the stack
here in preparation for exec
Serror

get the error name (from above)
and put it in Serror

Serror

get the offending command off

the stack and put it in S$error

Serror
newerror is set to true
and put into $error

Serror
get the error name back
from Serror

is the error a VMerror?

if we are out of VM then we
shouldn’t be allocating arrays

Inside PostScript

Chapter 4

The Error Handling Group

//S$error
/ostackarray
get

null
€q

//Serror

/estackarray

250
array
put

//$error

/ostackarray

500
array
put

//$error

/dstackarray

20
array
put

} if

count
//$error
/ostackarray
get

exch
0
exch

0 N R N K N N K P P R N I N KR NN K I RN RN KR R R NN N NI N O K NN N N NN NN R N

Error Handling and errordict

as is done in the
following if code

if not a VMerror
Serror

get the ostackarray
from Serror

is ostackarray a null array

if ostackarray is null then arrays
for the operand stack, execution
stack and dictionary stack need to
be allocated

if arrays not allocated do this
$error

allocate a 250 element array for
estackarray and put it
in $error

Serror

allocate a 500 element array for
ostackarray and put it
in S$error

Serror

allocate a 20 element array for
dstackarray and put it

in $error

if ostackarray eq null

this next major section of
code takes the snapshot of the
three stacks

first, take snapshot of the
operand stack

count the objects on stack
$Serror

retrieve ostackarray

from Serror

start index for getinterval

Error Handling and errordict

getinterval

astore

//Serror
exch
/ostack
exch
put

//S$error
/dstack

//Serror
/dstackarray
get
dictstack

put

//S$error
/estack

//Serror
/estackarray
get
execstack

dup

length

2

sub

0

exch
getinterval

0 O R IO O R O R P N A N 0 O N M O P I N N P P K O IO d0 OO N K N N K I I I N N I N A N A O A 0 o

Chapter 4

put a subarray from ostackarray
on top of the stack

the subarray starts at index 0 of
ostackarray and is count objects
long

now store the entire stack into
the array we just put on the stack

Serror

take the array on the top of
the stack and call it ostack
put ostack in Serror

at this point there is nothing
on the stack

second, take a snapshot of the
dictionary stack

Serror
prepare to store dstack

Serror

fetch dstackarray

from S$error

store the dictstack in dstackarray
(a subarray containing only the
dicts on the dictionary stack is
returned)

store this array in dstack

third, take a snapshot of the
execution stack

Serror
prepare to store estack

Serror

fetch estackarray

from S$error

dump the execution stack
into estackarray

get the length of

the array

sub 2 from the length

get everything from the array

Inside PostScript

Chapter 4

The timeout Procedure

The Error Handling Group

put

//$error
/ostack
get
aload
pop

} if

//$error
/initializing
get
{

handleerror
} if
interrupt

exec
} def

O O o o I I I I d° I I P N N N I N N KR KR N N K I N N N N K N N N I N

Error Handling and errordict

but the last two items
store this array in estack
at this point, the stack is empty

next, the stack is restored

to its original state by unloading
ostack

Serror

fetch ostack from S$Serror

unload the array onto the stack
dump the array left on the top
of the stack

if errorname ne VMerror

take care of possible errors
during the printing of the
test page

Serror

fetch initializing flag
if initializing = true
run handleerror

if initializing = true
interrupt = stop

.error procedure ends here

execute .error
typecheck ends here

The only difference between timeout and other error procedures is that the
name timeout is placed on the stack twice at the beginning of the procedure.
This is because timeout is both the offending command and error name.

%

% calling format
% timeout
% found in: errordict

/timeout
{

/timeout

o o P o0 o o

place the offending command name
on the stack

Error Handling and errordict

The handleerror
Procedure

/timeout

//$error
exch
/errorname
exch

put

//S$error
exch
/command
exch

put

N 0 O O O N N O O 0 o O o O o O N o o o

o°

Chapter 4

place the error name on the stack

timeout is both the offending
command and the error name

.error procedure begins here
.error is placed on the stack
here in preparation for exec
$error

put the error name (from above)
in $error

$Serror

get the offending command off
the stack and put it in Serror

remainder of the code is the same as
in the error procedure above

exec
} def

%
%
%

timeout ends here

As described in chapter 3 of the PostScript Language Reference Manual,
handleerror is invoked automatically by an internal PostScript control
program through the use of the stopped operator. The internal procedure is
the execjob procedure which is discussed in the chapter on job execution.

The stopped operator tends to be a bit mysterious at first, so I will refer you
to the discussions of the executive and execjob procedures for some ex-
amples of how Adobe uses stopped to trap error conditions. Understanding
stopped is the key to implementing your own error control procedures.

The handleerror procedure handles the reporting of the error messages back
to the user over the reverse channel. If you’ve ever wondered where those
informative and user friendly error messages like:

$%[Error: typecheck; Offending Command: show]%%

come from, read on as we tackle the details of handleerror.

Inside PostScript

Chapter 4

Overview of
handleerror

The Error Handling Group

Error Handling and errordict

When handleerror is first entered, the newerror boolean is used to decide if
any error processing is done. This is to protect the interpreter from entering
an unending or long error chain. Only the first error is reported to the user.

If the error is processed, the first thing done is to set newerror to false so
that additional calls to handleerror do not generate more error messages.

The remainder of the handleerror procedure is responsible for building the
error message piece by piece in the form:

%% [Error: typecheck; Offending Command: show]%%

where the error name and offending command are placed in their ap-
propriate places.

Let’s take a detailed look at handleerror.

%
% calling format
% handleerror
% found in: errordict
% referenced in all error
% procedures in errordict,
% executive, execjob, .error and
% handleerror (in systemdict)
/handleerror %
{ %
//Serror % Serror
begin %
%
newerror % fetch newerror boolean
{ % if newerror true
/newerror %
false % set newerror false
def %
% string length = 11

(%% Error:)

%
print % print the first part of
% the error message
%
errorname % put errorname on stack
{ % place proc on stack for exec
% this proc prints the name of the
% error
dup \%
type °% get errorname type
/stringtype %
ne %
{ % errorname type ne stringtype?

4-9

Error Handling and errordict

Chapter 4

string length = 128

(converted error name will end up in this string)

~

convert errorname to string

if errorname type ne stringtype
print the name of the error
execute above proc

string length = 20

print the next part of the error
string

place proc on stack for exec
this proc prints the offending
command

get command type

command type ne stringtype?
string length = 128

(converted command name will end up in this string)

%
%
cvs %
} if %
print %
} %
exec %
%
%

(; OffendingCommand:
%
print %
%
%
/command %
load %
{ %
%
%
dup %
type %
/stringtype %
ne %
{ %
%
%
cvs %
} if %
print %
%
} %
exec %
%
%
%
%

(1%%)

%
{ %
%
%
%
{ %
%
%
%
%
%
dup %

convert command to string

if command type ne stringtype
print the name of the offending
command

execute the above proc

place the last few characters
of the message on the stack
string length = 4

place proc on stack for exec
this proc prints the message
tail with a carriage return

place another proc on

stack for exec

this proc prints the
message tail

(don’'t ask me why they do it
this way)

Inside PostScript

Chapter 4

The handleerror Entry
in systemdict

The Error Handling Group

type
/stringtype
ne

{

%
%
%
%

%

Error Handling and errordict

get the type of the tail

tail type ne stringtype
string length = 128

(message tail will go in this string)

cvs
} if
print
}

exec
(\n)
print

}
exec
flush

}oif

end

} def

%

%
%
%
%
%
3
%

00 00 o o0 o o0 o0 o0 o o o

convert tail to string
if tail type ne stringtype
print the message tail

execute the above proc

place a carriage return on stack
string length = 1

print the carriage return
execute the above proc

flush the output buffer so that
entire message is be printed NOW
if newerror true

close Serror

handleerror ends here

The above handleerror procedure in errordict is actually called indirectly
from a procedure called handleerror in systemdict which is listed below.
This is done because systemdict is always present on the dictionary stack,
and handleerror must always be accessible for error handling.

%

% calling format
% handleerror
% found in: systemdict

/handleerror

{
//Serror
/handleerror
get

exec

} def

o0 o o0 o0 I I N K N N o o

referenced in executive
and execjob
errordict

fetch handleerror from
errordict

execute handleerror

handleerror ends here

Error Handling and errordict

PostScript Debugging

The stopped Operator

Chapter 4

Even though the three stacks have been recorded in $error by the error pro-
cedure, handleerror in its default form does not report any of this informa-
tion to the user.

For more sophisticated debugging of PostScript programs, the user must
alter the default error handling process to give a more detailed report of the
error condition. Typically, handleerror is redefined to accomplish this.

Adobe has been distributing a PostScript program called ehandler.ps which
redefines handleerror to print a page with the offending command and
operand stack information displayed. The ehandler.ps program does not list
the contents of the dictionary or execution stack however.

More elaborate error handling procedures display the contents of all three
stacks, jump into interactive mode, or use an alternate I/O channel for error
reporting. There are many possibilities.

Additional error trapping techniques may be implemented by the use of the
stopped operator as demonstrated in the following pseudocode example.

user code % user program code

{ procedure being debugged
} % place procedure on top of stack
stopped % execute procedure and return boolean
% boolean = false if no error
% boolean = true if error encountered
{ error handling procedure
% execute error handling procedure if
}if % stopped operator returned true

additional user code ... % remainder of user code

The stopped operator executes the procedure on the top of the stack and
returns a boolean which indicates if an error was found. If the boolean is
true, then an error handling procedure can be executed.

The "error handling procedure” can be handleerror, or the programmer may
wish to handle errors in this section of code completely differently. Post-
Script offers the programmer total flexibility in error handling.

As Inside PostScript covers the execjob and executive procedures, we find
that Adobe uses the above technique to trap user program errors. In these
cases, the "procedure being debugged" is the user program itself.

Inside PostScript

Part 111

The
Interactive
Mode
Group

Chapter 5

The PostScript Interactive Mode

Introduction o . ittt e e e e e e e e 5-1
Benefits of Studyingexecutive 0 e 5-1
Supporting Procedures Lo 52
ThePromptProcedure, 5-2
ThequitProcedure i, 5-2
The quit Operator in systemdict 53
ThecheckquitProcedureccuuneo.. 5-4
The intidleproc and batchidleproc Procedures 5-5
TheintidleprocProcedure