
$10.00 

" " 

TECHNICAL REFERENCE MANUAL 
for the 

BEST OPERATING SYSTEM 

MARCH 1977 - PREL I MINARY PRINTING Qa~TJEL 
" . 

COl'YIUGHT@ by ~[l (OItP'OMTION. All rights rut'rY"d. All ,pecrflcatlona ara subject to ~ange ~Ithout notIce. 



PROPRIETARY INFORMATION 

The information- contained herein is 
proprietary to and considered a trade 
secret of QANTEL Corporation and shall 
not be reproduced in whole or in part 
without the written authorization of 
the QANTEL Corporation. 



SECTION 
1.0 

2.0 

2.1 

2.2 

2.3 

2.4 

3.0 

4.0 

4.1 

4.2 

5.0 

5.1 

TABLE OF CONTENTS 

TITLE 
INTRODUCTION TU THE NANUAL 

A GENERAL INTRODUCTION TO BEST 

The Overall Picture 
1. lfardware ................................................... .. 
2.. Saf tware ........................................................................... .. 
3. The Elements of BEST ••.••.••.•.••••••••••••.... 

How to Begin 
1. IPL and Boots trap ............... e.e ...................................... .. 

2. The Program r.,oader ••••••• ~ ••••••••••••••••••••• 
A. Error Messages ••.••••.........•....••..••.• 
B. Loader and Core Image Utilities •••••••••••• 

Under User Control ------ ---. 
1. 
2. 

3. 

4. 

Definition of a User •••••••••••••.••••••.•••••• 
The Configurator 
A. Memory ...................................................................... .. 
B. Periphe'ral Devices ••••••••••••••••••••••••• 
Partition Control 
A. Task lleaders ............................................................ .. 
B. File Control Blocks •••••••••••••••••••••••• 
c. Active File List ••••••••••••.•••••••••••••. 
D. Device Descriptor Table •••••••••••••••••••• 
Background/Foreground •••••••••••••••••••••••••• 

Interfaces to BEST 
1. *110r~ITUR ••••••••••••••••••••••••••••••••••••••• 
2. *IPL •.•.••......•...••.........••....•..••..••. 
3. *El~D ITUR .•••••••••••••••••••.•••••••••••••••••• 
4. *cor~SOLE ••••••••••••••••••••••••••••••••••••••• 

THC SCHEDULER SUBSYSTEH •••••••••••••••••••••••••••••• 

THr:: RUNTI~U: SUBSySTEM •••••••••••••••••••••••••••••••• 

QIC/BEST ••••••••••••••••••••••••••• ~ ••••••••••••••• 
1. String Variable Handling ••••••••••••••••••••••• 
REALI BEST •••••••••••••••••••••••••••••••••••••••••• 

THE FILE lIANAGEHENT SUBSYSTEH 

File~ 
1. Sequential •••••••.••••••••••••••••.••.••..••••. 
2. Keyed .......................................... . 

i 

PAGE 
1.1 

2.1-1 
2.1-1 
2.1-2 

2.2-1a 
2.2-2a 
2.2-2h 
2.2-2c 

2.3-1a 

2.3-2a 
2.3-2h 

2.3-3a 
2.3-31.1 
2.3-3c 
2.3-3d 
2.3-4a 

2.4-la 
2.4-2a 
2.4-3a 
2.4-4a 

3.1 

4.1 

4.1a 
4.1-la 
4.2a 

5.1-1a 
5.1-2a 



SECTION 

5.2 

5.3 

5.4 

TITLE 
3. 
4. 
5. 
6. 
7. 

Keyed Only •.•.••••••..•••••••••.•.•••..•..•..•• 
Con t 19uous ..................................... . 
Object •••••••..••••••••.•.•••.......•••••...... 
Standalone •.•••.•••.•.•..••••............•.•... 
BEST Directory ••••••••••••••••••••••.•••••• 

File Operations 
1. 

2. 
3. 

4. 
5. 

6. 
7. 
8. 

9. 
10. 
U. 
12. 
13. 

CREAl E ........................................ .. 
A. Calculation of Record Size ••••••••••••••••• 
.ERASE •••••••••••••••••••••••••••••••••••••••••• 
OPEN •••• e .•••••••••••••••••••••••••••••••••••••• 

A. Disc Files ••••••••••••••••••••••••••••••••• 
B. Peripheral Devices ••••••••••••••••••••••••• 
CLOSE •••••••••••••••••••••••••••••••••••••••••• 
READ ••••••••••••••••••••••••••••••••••••••••••• 
A. Disc Files •••••••••••••••.••.•••••••••••••• 
B. ~:eyed Only Files •••••••••• " ••• ' ••••••••••••• 
C. Key and Record Lengths ••••••••••••••••••••• 
D. Peripheral Devices ••••••••••••••••••••••••• 
WR.ITE •••••••••••••••••••••••••••••••••••••••••• 
READ/\-IRITE IMAGE ••••••••••••••••••••••••••••••• 
DELETE ••••••••••••••••••••••••••••••••••••••••• 
A. Key Sectors ....••........••..•.•........•.. 
B. Data Sectors ••••••••••••••••••••••••••••••• 
KEyfORD •••••••••••••••••••••••••••••••••••••••• 
EXTRACT •••••••••••••••• -•••••••••••••••••••••••• 
UPDAT E ••••••••••••••••••••••••••••••••••••••••• 
LOCK/ L"N"LOCK ••••••• .••••••••••••••••••••••••••••• 
GET/PUT ••••••••••••••••••••••••••••.•• ___ •••••••• 

Disc Layout and Handling 
1. 
2. 

Software Initialization •••••••••••••••••••••••• 
Disc Layout on a BEST Pack ••••••••••••••••••••• 

System Operations and Control 

PAGE 
5.1-3a 
5.1-4a 
5.1-5a 
5.1-6a 
5.1-7a 

5.2-la 
5.2-lb 
5.2-2a 
5.2-3a 
5.2-3a 
5.2-3b 
5.2-4a 
5.2-5a 
5.2-5a 
5.2-5b 
5.2-5c 
5.2-5c 
5.2-6a 
5.2-7a 
5.2-8a 
5.2-8a 
5.2-8a 
5.2-9a 
5.2-10a 
5.2-Ua 
5.2-12a 
5.2-13a 

5.3-1a 
543-2a 

1. Sector Allocation •••••••••••••••••••••••••••••• 5.4-1a 
2. File System Control 

3. 

4. 

5. 
6. 

A. In ttemory.................................. 5.4-2a 
B. On Disc •••••••••••••••••••••••••••••••••••• 
Physical Structure of Pointers ••••••••••••••••• 
A. Key Pointers ••••••••••••.•.••••••••••.••••• 
B. Directory Entry Pointers ••••••••••••••••••• 
Key Splits ••••• ~ •••••••••••••••••••••• ~ ••••••• 
A. Other than the Top Key Sector •••••••••••••• 
B. Top Key Sector ••••••••••••••••••••••••..•.• 
Directory Updates •••••••••••••••••••••••••••••• 
End of File Detection •••••••••••••••••••••••••• 

ii 

5.4-2c 
5.4-3a 
5.4-3a 
5.4-33 
5.4-4a 
5.4-4a 
5.4-4d 
5.4-5a 
5.4-6a 



SECTION 
6.0 

6.1 

6.2 

6.3 

7.0 

7.1 
7.2 
7.3 

8.0 

TITLE 
INPUT/OUTPUT CONTROL SUBSYSTEH 

Devices and their Software Drivers 
1. 
2. 
3. 

eRTs •••••••••••••••••••••••••••••.•••.•••••••.• 
Printing Terminals ••.••.••..•••.•.....•.••••••• 
J)ises ...••...............•..................... 
A. Physical Structure of Disc Packs ••••••••••• 
B. Reading and Hriting from Disc •••••••••••••• 

PAGE 

6.1-1a 
6.1-2a 
6.1-3a 
6.1-3a 
6.1-3b 

C. Disc Error Status •••••••••••••••••••••••••• 6.l-3e 
4. Printers ••••••••••••••••••••••••••• ~ ••••••••••• 6.l-4a 
5. ~1agnetic Tape 

A. Buffer Size Control •••••••••••••••••••••••• 6.l-Sa 
6. Communications •.•.••••.•.....••••.•••.•••••.... 6.1-6a 
7. Clocks ••••••••••••••••••••••••••••••••••••••••• 6.1-7a 
8. Card Readers •••••••••..••••.•••.•••.••••.••.... b.l-8a 

Buffers 
1- System 

Record 
Buffer 

2. 
3. 

Memory 
1. Hemory 
2. Memory 

Buffers ..•••....•......•....•••......••• 
Buffers (User) •••••••••••••••••••••••••• 
Pooling ..•.....•........................ 

Addressing ............................. . 
Board Assemblies •..•••.•..••...•••.•...• 

SPECIAL SYSTEM COUPONENTS 

6.2-1a 
6.2-2a 
6.2-3a 

6.3-1a 
6.3-2a 

BEST Errors ••••••••••..••••••...•.•.••....•••.•••.. 7.1a 
Common Structure •.••..•.......•.••....•..•••....... 7. 2a 
System Variables ••••••••••••••••••••••••••••••••••• 7.la 

GLOSSARY 

APPENDICES 

A. Description of Reserved Hetnory 
B. CFIG Operating Instructions 
C. Background in Qle 
D. Background in REAL 
E. Hnemonic Table 

iii 



1.0 INTRODUCTION TO THE MANUAL 1.1 

The purpose of the BEST Manual.is to fully document the 
features of the BEST Operating System and its interaction with 
Qantel hardware. Used in conjunction with the Qrc Technical 
Reference Manual and the REAL Assembly Language Manual, this manual 
will provide more specific information about the "internal workings" 
of statements allowed in either language and thus, a more effective 
tool in optimizing user programs. Additionally, this manual provides 
information about many of the unique Operating System features that 
make BEST a highly effective software system. 

The BEST Manual will be periodically updated as new features 
are added to the operating system. Updates should be filed in 
the appropriate section of the Manual to provide current 
documentation for software personnel. 



2.0 A GENERAL INTRODUCTION TO BEST 

2.1 The Overall Picture 2.1-1 

\-lith any Qante1 Computer, the following configuration is 
standard: 

Entry Device 

Storage Device 

Output Device 

Memory 

Central Processor 

2. Software 

Some method to enter data to be acted 
upon by the Central Processing Unit, 
usua1iy a QCRT or Printing Terminal. 

Some medium used to save data from 
operation to operation, or day to day, 
such as a disc or tape. 

Used to provide hard copy of computer 
data, usually a line printer or any 
of the auxiliary character printers. 

Temporary storage medium. That part 
of the computer where programs are loaded 
to execute, and where data manipulations 
are perf ormed. 

That part of a computer that controls 
all other parts using instructions that 
are hardwired into a ROM (Read Only 
l-1emory) • 

Qante1 provides a specialized system of software, designed to 
work with its full line of processors. This software system provides: 

l)QIC Language - An easy, english-like language used to 
develop business application systems. 
Includes associated system uti1ties used 
to enter a.nd maintain the Q1£ Source Code. 

2) Compiler The program that converts the Source Code 
into machine understandable object code for 
execution. 

3) BEST - l'be Operating System that executes the Object 
code and provides file management, input/output 
control, and multi-user operations. 



2.1 The Overall Picture 2.1-2 

2. Software (cont) 

Additionally, the REAL Language and Assembler are provided as 
the assembly language alternative to QIC. The QIC Language and 
Compiler are discussed in the QIC Technical Reference Manual. The 
REAL Language and Assembler are discussed in the REAL Assembly 
Language Manual. The following pages provide information on the 
BEST Operating System. 

3. The Elements of BEST 

The BEST Operating System is comprised of the Scheduler, Runtime, 
File Management, and Input/Output Subsystems: 

The Scheduler 

The Scheduler handles the functions of starting, switching 
and stopping the execution of programs, as well as assigning 
possession of non-sharable system resources. 
(See Section 3.0 for a detailed discussion of the Scheduler 
Subsystem) • 

The Runtime Subsystem 

The Runtime portion of the system is primarily the user 
interface with the File and Input/Output Subsystems. Runtime 
allows the user to request system actions in a simple, concise 
form such as a QIC Statement or REALLINK Macro Call. Runtime 
minimizes memory requirements of a user program and standardizes 
the calling mechanism, making the user program independent of 
changes in the operating system. Also included in Runtime is 
a collection of routines which provide a variety of special 
purpose functions supplied in the QIC Language. Maintaining 
these routines in the BEST system reduces the memory 
requirements for the user program. (See Section 4.0 for a 
detailed description of the Runtime System). 

The File Management Subsystem 

The BEST Operating System uses the disc as a mass storage device 
for programs and data. All programs and data are considered to be 
FILEs. A FILE has a name for unique identification, and contains 
RECORDs. All RECORDs within a file are of the same length (same 
number of characters or bytes), and have further identifiers such 
as KEYs or ORDINALS or POSITION in the file that make them unique. 



2.1 The Overall Picture 2.1-3 

3. The Elements of BEST (cont) 

The File Management subsystem handles all accesses to 
the disc for CREATEing and ERASEing files, OPENing and CLOSEing 
files, or READing, WRITEing, or DELETEing records within an 
existing file. The user's program deals with the file names 
and record keys and is not concerned with the physical location 
of the record on the disc. The types of files supported by the 
BEST Operating System are: 

Sequential 

Contiguous 

Object 

This type of file contains data records 
written in sequential (chronological) 
order and retrieved in the same order. 
Sequential files afford higher access speed and 
require less disc space than keyed files, 
but are restricted in use by their nature, 
i.e., a single record in the file cannot be 
located directly, each record in the file 
must be examined in sequence. (See Section 
5.1.1). 

Keyed file organization affords the 
greatest accessing flexibility in that any 
record in the file can be found with equal 
ease. Each record has a unique identifier, 
a KEY, that is used to access the data record. 
(See Section 5.1.2). 

This type of file combines the access 
speed of a sequential file and the flexibility 
of a keyed file. Data records are written 
sequentially and assigned a record number 
or "ordinal" based on the position within 
the file. There is no overhead for key 
sectors, but the records may be accessed 
directly if the ordinal is known. Unlike 
other file types, the boundaries of a 
Contiguous file are set up when CREATEd. 
(See Section 5.1.4). 

Executable programs are stored on disc as 
object files, where their file names are 
used in a RUN statement which starts their 
execution. (See Section 5.1.5). 



2.1 The Overall Picture 2.1-4 

3. The Elements of BEST (cant) 

The Input/Output Subsystem 

The Input/Output Subsystem is an interface between a user program 
and the various I/O devices, thus relieving the user program of 
the need to deal with I/O devices directly. It receives a 
standard calling sequence from a QIC/REAL program, where the 
I/O device is OPENed as a file and is either "written to" or 
"read from". Customized driver programs exist in the I/O 
Subsystem to handle the different I/O devices. These drivers 
convert the generalized interface from the QIC/REAL program 
to the unique commands and status tests for a particular 
device. 

Drivers exist for all Qantel supported devices. These drivers 
all interface to the program executive in the same manner, so 
the actual device being accessed is transparent to the executive. 
(See Section 6.0 for a detailed description of the I/O Subsystem). 



2.2 How to Begin 2.2-1a 

1. IPL and Bootstrap 

The IPL button located on the front of the Qantel Computer 
provides a very specialized function. Pressing the IPL button will: 

1) Reset all devices 
2) Generate a Read Hex Instruction from device 0 
3) Execute the instruction entered 

The machine language instruction, 002281XY, entered from 
device 0, is referred to as the "Disc Bootstrap". The elements of 
this instruction are: 

0022 Read/Branch Location. This memory address contains 
the first loader instruction, once the loader 
has been read into memory. 

81 Machine language operation code. When executed it 
breaks down into 3 instructions: 

a) Seek to sector 0 
b) Read into memory 
c) Branch to the first loader instruction 

X Refers to the platter of the disc being accessed, where: 

X=O for a fixed platter or 30MB, and 
X=1 for a removable platter 

Y Refers to the device number of the disc. 

On execution of the "disc bootstrap", the contents of sectors 
0,1, and 2 are read into memory, and execution of the program loader 
begins. 

The Qantel Model 1300 initiates a "disc bootstrap" to disc OD 
on IPL and Transmit. To bootstrap any other disc device, enter only 
the device number (OC,IC,ID) and transmit. The full disc bootstrap 
may also be used. 

Pressing the IPL button during system operation completely resets 
the system, devices, and in essence, memory. Although memory is not 
cleared, all pointers to the last operations are lost. IPL does not 



2.2 How to Begin 

1. IPL and Bootstrap (cont) 

provide an organized shutdown of the system. To protect all 
operations IPL should always be preceded by a Flag 3/Transmit. 

2.2-1b 

The command \~ord IPL executed at the monitor prompt "READY::" 
does essentially the same operations as pressing the IPL button. 
The command word does not reset all devices, only printing terminals. 
But the command word is executed from the monitor which closes 
all files and provides a safer means to IPL the system. The IPL 
command will only function when all controlling terminals are CLOSEd, 
or executing *UONITOR, and all Background partitions are free. (See 
*IPL, Section 2.4.2). . 



2.2 How to Begin 2.2-2a 

2. The Program Loader 

The Program Loader is the initial interface to the Qantel 
Software System. It provides the ability to search a program 
directory for a specified program name, .and load that program at 
a specified address in memory. Two types of programs can be loaded 
by the program loader: 

Core Image Program 

Standalone Object Program 

A System program that resides in 
a fixed location on disc, and 
must be loaded without modification 
into a fixed location in memory 
to be executed. Core Image 
Programs are not part of the BEST 
Directory. 

An assembly language program 
that is accessed through the 
BEST Directory and performs 
its own I/O Operations; 
does not run under Best. 

Core Image programs have a separate and distinct directory (in 
sectors 11-15) that contains the names and load information for all 
Core Images. Examples of Core Image programs are BEST, QIC, DKIN and 
CFIG. Standalone Object Programs are the result of the REAL 
assembler, and are maintained in the BEST directory. Examples of 
Standalone Object Programs are *BACKUP, *LDLD, and *CIUT. 

When a program name is entered at the loader prompt message, the 
Core Image Directory is searched for the specified program name. If the 
program is not found, the BEST Directory is searched. If the program 
name is found in the BEST Directory, the file type must be $30 in 
order to be loaded. If not, the message "INV T¥..t.~ will be displayed. 
If a program name of all blanks (XH) is entered at the loader prompt, 
the loader will automatically load BEST. 

The loader resets each printing terminal and parity memory device; 
then rewrites all of memory in place (up to 128K on the Hodel 1300). 
Finally, it enables parity error checking and error storage (fuse blO\Jing) 
on each memory device. This operation occurs while the operator is 
typing a filename to load. (If the loader is called by a program to 
run an overlay, this device initialization does not occur.) 

Operating instructions for all programs executable from the 
program loader prompt are available in the BEST Utility Hanual, and 
the QIC Technical Reference Hanual. 



2.2 How to Begin 

2. The Program Loader (cont) 

A. Error Messages 

Error messages provided by the program loader are: 

1) NOT FOUND 
Program name entered was not found in the Core Image or 
BEST Directory. 

2.2-2h 

Press Return or Transmit to clear the screen for a new entry. 

2) DISC ERROR xxxxx. 
While searching the Core Image or BEST directory, or while 
loading a Standalone Object Program, a disc error occurred. 
Press START/STOP to retry the sector. 

3) INV TYPE 
Program name was found in the BEST directory, but the file 
type was ~ $30. 
Press Return or Transmit to clear the screen for a new entry. 

4) LOAD ERR 
While loading a Standalone Object Program, an invalid 
record type was encountered. (Similar to BEST Error 91). 
This error usually means the object file has been destroyed. 

5) START/STOP 
A hard halt with no error message means a disc error occurred 
while loading the Core Image. Reload the Operating System. 



2.2 How to Begin 2.2-2c 

2. The Program Loader (cont) 

B. Loader and Core Image Utilities 

This program will create a program loader on any pack. It also 
provides the ability to change the loader prompt message. (See the 
BEST Utility Manual for Operating Instructions). 

This program provides the means to Change or list the Core Image 
Directory. It is normally used to build a Core Image Directory on 
a user pack, or to list the contents of the Core Image Directory. 
(See the BEST Utilities Manual for Operating Instructions). 



2.3 Under User Control 2.3-1a 

1. Definition of a User 

Under the BEST Operating System, all attributes of a particular 
hardware system are defined prior to loading the operating system. 
These attributes include the description of all terminal devices, 
partitions, and other peripheral devices. 

In the process of defining a user, several conventions must be 
considered. The BEST Operating system works in a "fixed partition" 
environment, e.g., a specific segment of memory between two absolute 
addresses is reserved for execution of a single program at one time. 
This fixed partition mayor may not be controlled by a specific 
terminal device. If a partition is not controlled by a terminal 
it is a "Background" partition; a "Foreground" partition is assigned 
to a particular terminal device. At the same time, a terminal 
device mayor may not control a partition. If a terminal device 
does not control a partition it is a "non-controlling" or "passive" 
device; a "controlling terminal" is always associated with the same 
partition. Under the BEST Oper~ting System, a USER is defined as a 
controlling terminal. 

In this manner, to refer to a 5-User system is to define a 
system with 5 controlling terminals. This particular system may 
have 10 terminal devices (5 passive terminals), and be capable 
of running 10 separate tasks (5 foreground partitions and 5 background 
partitions) • 

In the Core Image Program, CFIG, partitions and terminals are 
defined separately. Each partition is defined by its absolute 
memory addresses and assigned a name "POO", "POl", etc. In turn, 
each terminal device is described by its terminal name, device number, 
terminal type, and the partition name to which it is assigned. 
(See Appendix B for Operating Instructions for CFIG). 



2.3 Under User Control 

2. The Configurator 

A. Memory 

The section on how the Configurator builds its tables within 
memory will be written at a later date. 

2.3-2a 



2.3 Unaer 1Jser Con.t;rol 2.3-2b 

2. The Configurator (cont) 

B. Peripheral Devices 

In the same manner as users are defined prior to using the BEST 
Operating System, so are all peripheral devices. All devices present 
on a particular hardware system are manually set to a unique hardware 
device number. Using the Core Image Program, CFIG, each peripheral 
device is assigned a "device name", and that device name is associated 
with a specific device number. The Configurator uses this information 
to build a device table available to all users. When any 
program requires a device such as a printer or magtape,. that device 
is OPENed by its device name in the program. That device name is 
then unavailable to any other user until it is CLOSEd. This applies 
to all devices except the disc. 

Peripheral devices are assigned device names during Configuration. 
The order of configuration determines the last digit of the 
device name. 

DEVICE 
Terminals 
Partitions 
Discs 
Card Readers 
Magnetic Tapes 
Clock 
Communication Line 
Printers 

DEVICE 
TXX 
PXX 
DKX 
CRX 
MIX 
CLl 
CMl 
LPX 

NAME 
(TOO,T01 ••• ) 
(POO,P01 .... ) 
(DKl ,DK2 ••• ) 
(CR1,CR2 ••• ) 
(MI1,MT2 ••• ) 
(Only one allowed) 
(Only one allowed) 
(LP1,LP2 ••• ) 

where X is a numeric digit in the range 1 through 9. (0 is 
permitted only in the case of terminals and partitions). 

For all CRT devices, two device numbers are relevant: a) The 
CRT controller device number, and b) the device number of the CRT on 
that controller. Incorrect assignment of these device numbers will 
cause the terminal to not respond to Flag3/Transmit. (See Appendix 
B for CFIG Operating Instructions). 

Peripheral devices will generate an "inoperable" condition if 
configure{} with a device number that is not present on the system. 
"Unpredictable results" will occur if: a) Devices are configured 
with a device number that is present on the system, but incorrect, and 
b) two devices are manually set to the same device number. 



2.3 Under User Control 2.3-3a 

3. Partition Control 

A. Task Headers 

Every partition has associated with it a "Task Header" which 
contains all the information necessary for proper execution of a 
job in that partition. The Task Header provides the means for a 
job to be suspended while another task is performed, and then restart 
where it left off. When a task is activated by the system, the Task 
Header is moved into working storage. Only one Task Header is in 
working storage at anyone time. When interrupted, or the next 
task is scheduled, the elements of working storage are moved back 
into the permanent Task Header until that task is scheduled again. 



2.3 Under User Control 2.3-3b 

3. Partition Control (cont) 

B. File Control Blocks 

File Control Blocks (FCBs) are associated with every 
An FCB directly corresponds to a Logical Unit Number 

Eight 
partition. 
(LUN) that 
table that 

is OPENed in a program. The FCB is a user's "pointer" 
points to the common system tables for files and devices. 



2.3 Under User Control 

3. Partition Control (cont) 

C. Active File List 

If the OPENed LUN references a file. the FeB contains the 
current position in that file and a pointer to the associated 

2.3-3c 

file in the Active File List (AFL). The AFL is a table of all files 
currently OPEN by all partitions. This table provides the means 
for multiple terminals to work on the same file at the same time. 

It is through the AFL that all access really takes place. The 
AFL contains the file directory header which is updated by any 
partition changing that file. so all paritions have access to the 
same copy of the file header. The AFL also contains an OPEN/CLOSE 
count which is incremented when a file is OPENed. and decremented 
when it is CLOSEd. This OPEN/CLOSE count is used to determine 
when the directory on disc is updated. 

The maximum number of AFL entries possible for a specific system 
is defined during Configuration. This should be the maximum number 
of unique file names that will ever be OPENed by all users at any 
one time. If the number of AFLs configured is exceeded during 
operation. Best Error 86 will be generated. indicating an "Active 
File Lis t Overf low". This is a fa tal error and can be corrected by 
decreasing the activity on the system. or by configuring more AFLs. 
However. the number of AFLs should not be determined arbitrarily. 
since that space is available for other devices and. in some 
configurations. for partitions. 



2.3 Under User Control 

3. Partition Control (cont) 

D. Device Descriptor Table 

If the LUN on OPEN references a device, the FCB contains a 
pointer to the Device Descriptor Table (DDT). This table is 
established by the configurator and contains vital information 
(e.g., device number, default record length, etc.) for accessing 
any particular device configured into the system. 

2.3-3d 

When a device is OPENed by a particular partition, the Task 
Header address of that partition is stored in the DDT for that 
device. No other partition may access that device unless its task 
header address matches that in the DDT (i. e., same partition). 
In this way, a device is "locked out" to any other partition until 
that device is CLOSEd and the DDT address cleared. 



2.3 Under User Control 2.3-4a 

4. Background/Foreground 

BACKGROUND is defined as the ability to execute a program in 
a partition that is not controlled by an input device. A 
Background partition is defined by the Configurator as a partition 
with no controlling terminal. A program is "started up" 
(ACTIVATEd) in a Background partition by another partition, either 
Background or Foreground. Once the Background partition is ACTIVATEd it 
can RUN overlays or any other program that does not attempt 
to WRITE to TERl-l$ or LUN a (unless it is OPENed intentionally for 
a file or device). 

TOO and Tal are Controlling 
Terminals to Partitions POO 
and pal. Partition P02 is 

-------, a Background Partition and 
can be ACTIVATEd by any 
program in partitions POO or 
POI. a 

Direct terminal to 
partition relationship. 

------ Ability to ACTIVATE 
Background partition. 

Two command words are associated with a Background Partition: 

ACTIVATE 

TEIUUNATE 

Starts up a program in a Background or Foreground 
partition, if that partition is Clear. 
Functions as a "Remote" RUN Statement. 

Ends a program running in a Background Partition. 
TERHINATE will function from the program 
running in the Background Partition, or 
can be initiated from another controlling terminal. 
Functions as a "Remote" Escape (Flagl/Transmit for 
QCRTs. Flagl for Printing Terminals). A Foreground 
partition can only TERMINATE itself. 

there are four "states" for any partition: 

CLEAR 

PROGRAM RUNNING 

No program ~unning. Partition is available for 
any program. 

- A program is currently running in the 
~artition. If Background, this partition 
aus~ be TERMINATEd before being ACTIVATEd; 
~f ForegrounC4 this partition is ~available. 

IWRMAL TERHINATIOH- A STOP Dr END was issued by '1:ae program 
running iDthispartiti~ If Background, 



2.3 Under User Control 2.3-4b 

4. Background/Foreground (cont) 

ERROR TERMINATION 

this partition must be TERMINATEd before 
being ACTIVATEd; if Foreground, this 
partition may be ACTIVAT 

- An unexpected (not-ha EXCP branch) 
error was encountered program 
running in this part it All error 
information from *ENDITOR can be retrieved 
by *CONSOLE. If Background, this partition 
must be TERMINATEd before being ACTIVATEd; 
if Foreground, this partition may be ACTIVATEd. 

A Background partition can only be placed in the CLEAR state 
through a TERMINATE command from itself or another partition. If 
a Background partition only TERMINATEs itself on successful end of 
job, then the partition will be CLEAR for the next Background job. In 
the case of an unexpected error, information about the error 
will be available through the utility *CONSOLE, until the partition is 
TERMINATEd. A Foreground Partition can TERMINATE itself, which causes 
*MONITOR to be loaded into the partition. . *MONITOR running in a 
Foreground Partition makes that partition busy. A Background 
partition can only be ACTIVATEd if it is CLEAR while a Foreground 
partition can be activated if it is CLEAR. at NORMAL TERMINATION, or 
ERROR TERMINATION. 

All information for any partition is available through the 
Utility, *CONSOLE. 

The System Variable. PARTITION $ , contains the name of the partition 
in which the program is running. PARTITION$ may be used to create 
unique filenames or keys for the same program running in different 
partitions. The System Variable. ITERM$, contains the value of 
the initiating terminal for the partition. Whenever an ACTIVATE 
is performed. the value of TERM$ for the partition initiating the ACTIVATE 
is placed in ITERM$ for tbe partition being ACTIVATEd. TERM$ for 
a. BackscoWld Partition will always ~e" fl. The lI'alue of TERM$ 
can- be tea ted within a prograa t-o determine whether the part ition 
in which the pregram is -executing is Background. e.g •• 

IF 'IERM$ NE ' , PRINT (0,100) 

_ s.. AppendixC for the QI-C Syat:ax Bf ACTIVATE and TERNUrIATE 
COIIIIIaoa.; .ee Appendix 0 for the REAL Syntax of ACTIVATE and T-£RMINATE 
commands. 



2.4 Interfaces to BEST 2.4-1a 

1. *MONITOR 

*MONITOR 

*MONITOR is loaded into a user partition on Flag3/Transmit 
(or Flag 1). This program is the initial interface to a 
terminal for loading programs under BEST. When *MONITOR is loaded 
in a partition, the prompt message "READY::" is displayed on the 
bottom line of the CRT, or the current line of a Printing Terminal. 

When BEST is requested at the Core Image Loader prompt, the 
Core Image Directory is read to determine the starting sector for 
the BEST Core Image. The loader issues a seek to that _sector and begins 
reading the Core Image into memory for the appropriate number of sectors. 
The System sets up a table of configured terminals and partitions 
(from CFIG) in memory, and loads *MONITOR into the first configured 
partition ("POQ"). The "READY::" prompt will appear on the terminal 
associated with partition "POO". 

Once the "READY::" prompt is issued, control is passed to i the 
scheduler, and the terminals set up in the table are scanned. waiting 
for either a Flag3/Transmit from any terminal, or a read request 
from the terminal attached to "POO". On Flag3/Transmit from any 
terminal, *MONITOR is loaded into the associated partition. 

*MONITOR closes all LUNs and OPENs TERM$ on LUN O. Any user 
supplied programs substituted for *MONITOR should follow the same 
procedure. *MONITOR uses CRT and Printing Terminal devices in 
typewriter mode (ET). Exiting from *MONITOR leaves QCRT devices 
in normal mode (EN), and Printing Terminals in typewriter mode (ET). 

From the "READY::" prompt issued by *110NITOR. several actions 
from the terminal are possible: 

1) RUN PROGRAM, (XXX), ("MESSAGE") ,where: 

PROGRAM s The program name to be executed under BEST 

xxx -

''MESSAGE'' -

(Optional) The disc label from which the program 
should be loaded. Default is the first 
COftfigut:ed disc where tne program name is found. 

) 

(Optional) A.ny message to -be passed-to the 
program and loaded into the first ~triAg 
~ vartable declared in 'the program. The 
-aes-sapmust be contained between two 



2.4 Interfaces to BEST 

1; *MONITOR (cont) 

2.4-1b 

successive occurrences of the same n!>n-blank 
character, (e.g., "). 

2) IPL COREIMAGE, (NX) , ("MESSAGE") ,where: 

COREIMAGE - The name of the Core Image or ,Standalone 
program to be loaded by the Core Image, loader, 
if no ot~r partitions are active (i.e., running 
any program besides, *MONITOR).' 

NX - (Optional) The disc device number from which 
the Core Image or Standalone program should be 
loaded. Default is the IPL devicefrbm which 
BEST was originally loaded. 

''MESSAGE" .. (Optional) Any message to be passed to the 
Core Image or Standalone program, e.g., 

IPL QIC,OD,"COIDlFlLE,CDISC,CKEY" 
IPL BEST ,OD, "*EDIT DSK' 

The message must be contained between two 
successive occurrences of the same non-blank 
character, (e.g., "). 

*MONITOR, on recognition of the keyword. IPL,. passes control 
to *IPL to perform the IPL function. 

3) CLOSE 

Executes the "END" statement. This statement cauSes the system 
to run *ENDITOR which produces the message "pROGRAM END. USE 
ESCAPE TO START". CLOSE deactivates the terminal and the 
associated partition, and closes all LUNs (0-7).. After • 
CLOSE, the terminal may be OPENed by any other partition. 

4) ACTIVATE PARTITION, PROGRAM, (XXX), ("MESSAGE") where: 

PARTITION -= The name of the pa_rtition to be ACTIVATEd, 
(e.g., "pOI", "P02", etc.) 

PROGRAM - The program to be loaded into the partition 
being ACTIVATEd. 

XXX • (OpCioaal) The label -of the disc f--romwhlch ~ 
~rog~.. sho.ld be loaded. 



2.4 Interfaces to BEST 2.4-1c 

1. *MONITOR (cont) 

"MESSAGE" - (Optional) Any message to be passed to the program 
being ACTIVATEd. 

The message must be contained between,two 
successive occurrences of the same non-blank 
character. (e.g •• "). 

The "MESSAGE" passed at the RUN. IPL or ACTIVATE comma:nd can be as 
long as the number of available characters, on the transmit line. All 
characters within the delimiters are passed. including trailing blanks. 
If the command is IPL BEST the first 11 characters of the message are 
assumed to be the program name (8 bytes) and the disc label (3 byt~s). 
The remaining characters are a message to that program. If a disc 
label is specified. the program name must be 8 characters. so 
trailing blanks must be appended to any name iessthan 8 characters. 
*MONITOR sets the first String Common variable to the empty String 
if no message is specified. 

''MESSAGE'' passing between Core Images is accomplished by writing 
the message to sector 10 of the destination disc. The disc loader is 
loaded into memory. the length of the message is moved into bytes 
$28 and $29 of memory. and the Core Image Loader is executed. The 
new program checks locations $28-29 of memory and. if it is non-ze'ro. 
sector 10 is read by the new program to retrieve the message. 



· \ 

2.4 Interfaces to BEST 2.4-2a 

2. *IPL 

*IPL is executed by *MONITOR when the command word IPL is 
recognized at the "READY:: II prompt. *IPL performs a disc bootstrap 
and load of the Core Image program specified in the IPL command. 

This program also closes all files for the user. and tests for 
any other partitions active on the system. If any partitions are running 
a program besides *MONITOR. an Error 60 is generated. *IPL will 
then process any message passed to it in the IPL command. The 
syntax of the IPL command is: 

IPL (CORElMAGE).(DEVICE).("MESSAGE"). where: 

CORElMAGE. DEVICE.· and UESSAGE are optional parameters. 
If no parameters are specified the program will only perform a 
disc bootstrap to the disc which was originally bootstrapped. (See 
*MONITOR. Section 2.4.1). 

If a Core Image name is supplied. *IPL will attempt to load that 
specified name. Error messages are as explained in the section 
on the Core Image Loader. 

If a device number is specified. *IPL will perform the disc 
bootstrap to the requested device. If the device number is incorrect 
(invalid hex digits. non-disc. unavailable). the program will 
execute a disc bootstrap to the disc currently executing BEST •. 

If all information is so far correct. and a message is included 
in the IPL command. the MESSAGE is written to sector 10 of the 
requested disc device with all delimiters omitted. 

Finally. all device numbers in the hardware system are checked. 
If any are parity memory devices. the parity interrupt mechanism 
is temporarily disabl,.ed, to be subsequently enabled by any program 
capable of handling the interrupts. Additionally. a Reset I/O is 
issued to all Printing Terminal devices. clearing pending READs. 



2.4 Interfaces to BEST 2.4-3a 

3. *ENDITOR 

*ENDITOR provides the error message description displayed 
when an error occurs in a program that is ~ handled by an 
exception branch. The Error Message format is: 

ERROR D;LUN # 'FILE', 'DISC'; INDEX; SYSTEM FUNCTION D; NEXT USER ADDRESS; 
PROGRM1 NAME; ERROR DESCRIPTION; SYSTEH FUNCTION DESCRIPTION 

where: 

ERROR /I 

LUN # 'FILE', 'DISC' 

INDEX 

SYSTEM FUNCTION 11 

NEXT USER ADDRESS 

PROGRMI NAHE 

ERROR DESCRIPTION 

- The BEST Error Code encountered 

- The last LUN referenced \Jhen 
the error occurred, and the file 
or device assigned to that LUN. 

- (Supplied if relevant.) The next 
index (Key or Ord) in the file if 
the access was sequential, or the 
specified index if the access was 
indexed. 

- A system defined number indicating 
the type of the last system function 
attempted before the error occurred. 

- The next user address from the QIC 
compiler listing (executable code) 
that would have been executed, if the 
error had not occurred. 

- The name of the program being executed 
when the error occurred. 

- The literal description (from *ERRFILE) 
of the error that occurred. 



2.4 Interfaces to BEST 2.4-3b 

3. *ENDITOR (cant) 

SYSTEM. FUNCTION 
DESCRIPTION 

- The literal description (from *ERRFILE) 
of the last system function executed 
when the error occurred. 

Uhen an error occurs that is not handled by an exception branch 
in the user program, the system calls the ERROR routine to CLOSE all 
files and build the error message. This message is then passed to 
*ENDITOR, which OPENs TERM$. For hard disc errors, the standard 
disc error message is built and displayed on TERM.$. This message provides: 

Device XX 
Sector XXXXX 
Status XX 

On non-disc errors, all information except the description is 
displayed. If the directory of any configured disc contains *ERRFILE, 
*ENDITOR reads the file and displays the description of the error 
and the System function. No description is displayed if there is 
no *ERRFILE, but the Error and System Function provided can 
be checked against a previous listing of *ERRFILE. 

*ERRFILE has a record size of 40 and a Keysize of 3. It can be 
printed using *QDUMP to obtain a current list of the BEST error codes. 
*ERRFILE may also be used to provide a file of error messages for 
application programs by displaying the first 37 bytes of the 
record obtained by an indexed READ of *ERRFILE, w~ere: 

IND='E' + SUB (STR(EXCP+100) ,15,2) 



2.4 Interfaces to BEST 2.4-4a 

4. *CONSOLE 

*CONSOLE allows any terminal to examine the current status 
of any partition or device, and to ACTIVATE or TERMINATE programs 
in any partition. 

On execution of the program from the "READY::" prompt, the following 
message is displayed: 

CONSOLE UTILITY XX.X (MM-DD-YY) 
(A,T.L,I,S): : 

The program is then ready to accept any of the following command words~ 

!. ACTIVATE PARTITION ,PROGRAM, (DISC), ("MESSAGE") , where 

PARTITION = The partition name to be ACTIVATEd, e.g., "POO" 

PROGRAM 

DISC 

- The program name to be ACTIVATEd in the partition 

= (Optional) The disc name from which the program 
should be loaded 

''MESSAGE'' - (Optional) Any message to be passed as the first 
String Common variable t,o the program in the 
partition. The message must be contained between 
two successive occurrences of the same non-blank 
character, (e.g., "). 

The ACTIVATE command starts up a program in any partition that is 
not currently busy. If the partition is in any state besides 
CLEAR, and is a ~ackground partition, it must be 
TERMINATEd before being ACTIVATEd. 

1. TERMINATE PARTITION , where: 

PARTITION - The partition name to be TERMINATEd, e.g' t "POO" 

The TERMINATE command terminates any background partition (by 
performing a "remote escape"). If the partition is Foreground, 
it can only TERUINATE itself. (Program returns to *UQtHTOR.) 



2.4 Interfaces to BEST 2.4-4b 

4. *CONSOLE (cont) 

The LOG command displays the current status of all partitions 
configured for the system. There are four possible states 
of a partition:. 

CLEAR 
Partition is available for a new program. 

PROGRAM RUNNING: "PROGRAM NAME" 
Provides the name of the program currently running in the 
partition. 

NORMAL TERMINATION: "PROGRAM NAME" 
Indicates the name of the program that was ended by 
a STOP or END statement in the program. This is a normal 
end and if the partition is background, it must be 
TERMINATEd before being activated again. 

ERROR TERMINATION: "PROGRAM NAME" EXCP-XX 
Indicates the name of the program that encountered a 
fatal or unexpected error during processing, and the 
error encountered. 

~ INFORMATION PARTITION 

The INFORMATION request displays more detailed information 
about the current activities of any partition. 

PARTITION CLEAR 
No activity. Partition available for program. 

NORMAL TERMINATION: "PROGRAM flAME" 
STOP or END encountered in the program name specified. 
A Background partition must be TEID1INATEd, then 
ACTIVATEd; a Foreground partition may be ACTIVATEd. 

ERROR TERMINATION 
All information provided by *ENDITOR is available: 

Error , XX 
Last LUN: "File", "Disc" 
Index: (if relevant) 
Last system function: XX 
Next user address: $XXXX 
Current Program: Proge-amname 
E~or: (Description) 
.system Func~i.n: iDescr1ption) 



2.4 Interfaces to BEST 

4. *CONSOLE (cont) 

and, in the case of a disc error, 

Device Ixx 
Sector #XXXXX 
Status XX 

(See Section 2.4.3, *ENDlTOR). 

(PROGRAM RUNNING) 

2.4-4c 

The £ollowing information is available when a partition 
is executing a program: 

~ STATUS 

Current Program 
Last File 
Last System Function 
Last Exception 
Contrul1ingTerminal 
Initiating Terminal 

"Programname" at $XXXX 
(LUN) "File", "Disc" 
XX Description 
XX Description 
"Txx" or" .. 
"Txx" or" " 

The STATUS request displays the status of all devices 
currently connected to the computer, in the form: 

DEVICE # X -- STATUS : XX 

Any initial part of the command words for *CONSOLE is an 
. acceptable entry. Any unrecognizable command word will produce a list 

of the available command words and their required parameters. A 
null entry exits the program to *MONITOR. 



3.0 THE SCHEDULER SUBSYSTEM 3.1 

The Scheduler handles the functions of starting, switching, and 
stopping the execution of programs, as well as assigning possession 
of non-sharable system resources. This involves: 

o Processing RUN requests by loading programs for execution 
in a user partition. 

o Processing system resource requests such as printers, 
buffers, etc., if the resources are available. If they 
are not, the Scheduler is responsible for suspending the 
user until the resource becomes available. 

o Recognizing completion of I/O operations requested by 
users, notifying the user of completion, and re-establishing 
their "ready" status. 

o Executing tasks on a "Round Robin" basis whenever any 
user is suspended. 

o Processing "Escape" reques ts which normally terminate a 
program immediately. 

o Processing "Errors" or exception conditions. The Scheduler 
executes user error-handling routines, if specified for non-

, fatal errors; or terminates the program with a display of 
information describing the error and the action being 
performed at the time. 

o Processing IPL requests by verifying that no other user is 
actively executing a program (besides *MONITOR), before 
calling the Core Image Loader. 



4.0 THE RUNTIME SUBSYSTEM 

The Runtime Section of the BEST Operating System enhances 
the flexibility of the Language and system operations by: 

4.1 

o Providing the user interface with the File and I/O Systems. 
This allows the user to request complicated system 
functions in a simple, concise form such as QIC statements' 
or REALLINK ~~cro Calls. Runtime fetches, passes, and 
converts all parameters between the user program and 
the system. 

o Providing functions that are extensions to user programs 
but, if compiled into a program, would make it prohibitive 
in size. Instead, the compiler generates in-line a system 
call to the specific Runtime function. 

o Performing certain routines for QIC programs that require 
parameter resolution not available at compile time. For 
example, routines such as String Assignment are done by 
Runtime to insure correct length attributes. 

o Allowing the operating system to change without requiring 
a user program to change. This makes the language 
independent of the operating system and provides upward 
compatibility. 

In general; addition, subtraction, multiplication, numeric 
compares, GOTO statements (branches), and FOR/NEXT statements are 
compiled into user code. All other operations are compiled as 
Runt ime calls. 



4.1 QIC/BEST 

, 

The section on RUNTIME for QIC/BEST will be added to at a 
later date. 

4.1a 



4.1 QIC/BEST 

1. String Variable Handling 

A STRING is a series of ASCII characters treated not as a 
numeric value, but as a literal entity. A STRING VARIABLE is used 
typically to store alphabetic data such as descriptions, file names, 
messages, or indexes to Keyed Files. Arithmetic operators (except +) 
may not be used on string variables and constants. String variables 
may be shortened (SUB function) or appended together (concatenation, +). 

STRING VARIABLES are represented in memory as they appear, with 
the addition of one byte in which the LENGTH of the string variable 
is stored. This length is the value returned by the LEN function. 
The length byte determines the number of characters and blanks that 
will appear in that string in any subsequent operation. 

Although this length byte is the ruling factor for the appearance 
of the string, there are two methods of definition for this length, 
based on how the string is filled. 

When a string is filled by an unformatted I/O operation such 
as INPUT, the length of the string is always set to the actual number 
of characters entered. When a string is filled by a formatted I/O 
operation such as READ, the length of the string is set to the 
maximum possible length. This maximum length is determined in 
the declarative section of the program and is sometimes referred to 
as the "declared length". The one exception to formatted I/O is 
in the case of an IMAGE file where every string variable is written 
to disc with a length byte that contains the actual number of non-blank 
characters in the variable. When an I~~GE file is read, all string 
variable lengths in the format will be set to this "actual length". 



4.2 REAL/BEST 

The section on RUNTIME for REAL/BEST will be included at a 
later date. 

4.2a 



5.0 THE FILE MANAGEMENT SUBSYSTEM 

5.1 File Types 

1. Sequential Files 

Records in Sequential Files are stored in an "as entered" 
order and can only be retrieved in that same order. Sequential 
Files provide a fast access, transaction-type file, but do not 
provide for any type of direct access. The sequential method 

S.1-1a 

of storing data is the basic element to all file types under BEST. 

When a Sequential File is CREATEd, it is allocated 5 sectors 
(one Allocation Unit, AU). Each sector is linked to the next assigned 
sector by the forward link. The File Directory Header contains 
the first record sector, which is the beginning of data for a 
Sequential File, as well as the next available sector and offset 
which is used for a WRITE. Each time a record is written to 
the Sequential File, the offset is incremented to the next available 
record position. When the initial five sectors are depleted, the 
File System gets the next available AU from the AU Map (not necessarily 
adjacent) and links the last sector of the original AU to the first 
sector of the new AU. This procedure continues throughout the file, 
always posting the sector number of the new AU in the forward link 
of the las t sec tor in the las t AU.· 

When a Sequential File is OPENed, the internal record pointer 
(in the FCB) is always positioned to the first record in the 
file. Each successive READ bumps the internal pointer to the next 
consecutive record. The system generates an End of File (EXCP-2) 
when the current position in the sector is greater than or equal to 
the sector displacement (offset) and there. is still room in 
the sector to WRITE a record. End of File is not generated by 
a forward link of all zeroes. Only the last sector of the last 
AU will have a zero forward link. 

Since the File Directory Header contains the next available 
sector and position for a WRITE, the system can position itself 
to that position (End of File) to begin writing. This is accomplished 
through the use of the (EaF) mnemonic in a FORMAT statement. WRITEing 
to a Sequential File with a format that contains an EOF mnemonic, 
immediately.positions to the End of File. In the same manner, the 
(BOF) mnemonic can be used to position the record pointer to the 
beginning of the file. (A Sequential File Directory Entry is shown 
on the following page). 



5.1 File Types 

1. Sequential Files (cont) 

DIRECTORY ENTRY FOR SEQUENTIAL FILES 

Byte(s) 

1 - 3 
4 

5 - 12 
13 

14 - 16 
17 - 18 
19 - 20 
21 - 29 
30 - 31 
32 - 48 

Directory Information 

First Record Sector 
(Unused) 
Sequential File Name 
File Type (Sequential File - 01, $01) 
Last Record Sector 
Record Size 
AU Count 
(Unused) 
Next Record Offset 
(Unused) 

5.1-1b 



5.1 File Types 5.1-2a 

2. Keyed Files 

Any record in a Keyed File can be accessed with equal ease 
through the use of a record identifier. This record identifier 
is some value (customer number, invoice number, etc.) assigned to 
that record at the time it was written. 

When a Keyed File is CREATEd, it is allocated 10 sectors ( 2 
AUs: One for keys; the other for data). The Data Section of 
Keyed File contains the actual records written to the file 
through a FORMAT statement. Data is maintained in this section 
in an "as entered" order, exactly as for a Sequential File. 
The Key Section, or "Key Tree", is a separate part of the 
Keyed File which contains the record identifiers provided in the 
IND- expression of a \lRITE statement. These identifiers, or keys, 
are sorted in ascending ASCII order within the Key Tree. Each 
key is associated with 6 bytes of system overhead, which indicates 
a) the sector in which the corresponding data record is located, 
and b) the relative position of that data record within the sector. 

Data records in a Keyed File are always accessed through the 
Key Tree of the file. 

In order to provide equal access of any record through the Key 
Tree, the key sectors are organized in a pyramid fashion. This pyramid 
maintains progressively higher level pointers that point to ranges of 
keys. In this way, keys and their associated pointers to data are 
sorted into unique level 0 key sectors, each level 0 containing a 
range of key values not duplicated in any other key sector. The 
File System then builds a higher level sector which contains an entry 
pointing to each of these level 0 key sectors. This pointer in the 
higher level sector is actually made up of the lowest key entry in the 
level 0 sector and the sector number where that level 0 is located. 
When this higher level sector is full, the File System creates an even 
higher level, which contains an entry pointing to each of these next lower 
levels. In this manner, any direct access to the file can check the 
highest level and determine a "path" down through the key sector levels 
to finally retrieve the data. The tree is always balanced so that 
access time for all keys in the file is the same. 

There must always be one sector that is the highest level, and 
which references all next lower levels. This sector is referred to 
as the "Top Key Sector". The procedure by which the File System 
maintains the key pyramid is referred to as a "Key Sp1it" (explained 
in Section 5.4.4). The Top Key Sector is always the first key sector 
of the Keyed File. Since disc space for Keyed Files is always allocated 
on an "as needed" basis, the key sectors are scattered throughout the 
file and do not exist in a contiguous area. Key sectors are linked 
together primarily by the key pointers. They are also linked in 



5.1 File Types S.1-2b 

2. Keyed Files (cont) 

allocation order by the "forward link" t but this link is used only to 
return sectors during an ERASE. 

The Directory Entry for Keyed Files is shown on the following 
page. 



5.1 File Types 

2. Keyed Files (cant) 

DIRECTORY ENTRY FOR KEYED FILES 

Byte(s) 

1 - 3 
4 

5 - 12 
13 

14 - 16 
17 - 18 
19 - 20 
21 - 23 

24 
25 - 26 
27 - 29 
30 - 31 
32 - 34 
35 - 37 
38 - 40 
41 - 48 

Directory Information 

Top Key Sector 
(Unused) 
Keyed File Name 
File Type (Keyed File 
Last Record Sector 
Record Size 
AU Count 
Last Key Sector 
Key Size 

04~ $04) 

Delete Chain Record Offset 
Delete Chain Record Sector 
Next Record Offset 
First Record Sector 
First Sector of First Key AU 
Deleted Chain for Key Sectors 
(Unused) 

S.1-2c 



5.1 File Types 

3. Keyed Only Files 

Keyed Only Files are CREATEd with a record length of 0 and 
are not allocated a data AU. 

S.1-3a 

The primary purpose of a Keyed Only File is as a pointer file 
to other keys in other files. Since there is no data look up in 
this type file, it is at least one disc access faster than a similar 
Keyed File. 

If it is necessary to access one file in two separate orders, 
a Keyed Only File can preclude the necessity for sorting that file 
to get the secondary access. For Example, if the primary access 
to a file is by "customer number", and a secondary access; 
is needed by "order number", the following approach can be taken: 
Set up the master file with a key of Customer Number + Order Number. 
Every time a WRITE occurs to the master file, WRITE a second index 
to a Keyed Only File with a key of Order Number + Customer Number. 
When it is necessary to find an Order Number in the primary file, 
READ the Keyed Only File with a "dummy read", specifying the Order 
Number to position the record pointer just before the Order Number. 
Use the KEY function to get the value of the next Key, Substring it 
and reverse the order, then READ the master file with the resulting key. 

To READ a Keyed Only File sequentially, first take the KEY 
function to get the value of the key, then READ with a dummy 
format to advance the record pointer to the next key. If the 
READ does not occur, the KEY function will continually return the 
same Key value. 

The Directory Entry for a Keyed Only File is the same as for 
a Keyed File. 



5.1 File TyPes S.I-4a 

4. Contiguous Files 

Contiguous Files carry no overhead for pointers, but 
can be accessed in a direct manner. These files are contained 
in a specific area of the disc, and are allocated a maximum amount 
of space when CREATEd. A Contiguous File can only be CREATEd 
using the utility *CREATE. 

Based on the amount of space required for the maximum number 
of records (specified during *CREATE), the File System searches the 
AU Bit Map for that much contiguous (immediately adjacent) space on 
the disc. If the required amount of space is not available, *CREATE 
will report an unsuccessful CREATE. If the space is available, it 
will be allocated to the file, and the extents of the file placed in 
the File Directory Header. 

When a Contiguous File is CREATEd, a "fill" character is 
requested. This may be any character, and all sectors allocated to 
the Contiguous File are written with this character. This fill 
character can be useful in determining whether the reques ted record 
number has been written before, or is a new record. Once a Contiguous 
File is CREATEd, it is considered full and all utilities will report 
the number of records as the maximum possible. 

Unlike a Keyed or Sequential File, unused space in a Contiguous 
File is carried as overhead; when the maximum number of records 
has been entered, no more space can be allocated to the file. A 
new file must be CREATEd with a larger area specified, and the old 
records copied into the new file. 

Because the BEST File System allocates space on an as needed, as 
available basis, when an attempt to CREATE a Contiguous File fails, it 
is not straightforward to determine what files can be ERASED to gain 
the needed space in the proper area. Instead, a complete, logical 
copy should be made to compact all existing files, and thus free up 
blocks of space for the Contiguous File. 

Once a Contiguous File is CREATEd, it can be accessed in a 
sequential or direct manner. That is, it can be READ/WRITTEN sequentially; 
READ/WRITTEN with an index; EXTRACTed with or without an index; and 
UPDATEd. A Contiguous File can be an IMAGE file. Sequential access 
of a Contiguous File is in the same manner as for a Sequential File; 
direct access is accomplished through the use of a numeric index, 
where the numeric index refers to the record number in the contiguous 
file. 

" 



5.1 File Types S.1-4b 

4. Contiguous Files (cont) 

The QIC Program interface for a direct access to a Contiguous 
File is: 

READ(I,10) IND-4 or, 
READ ( 1 , 10) IND-NUMBER 

where the IND- parameter must be a numeric constant or variable. 

The numeric index is exactly the record position for the record in 
the file. The actual sector address of the data record 
can be determined by the file system once the extents of the file 
are known. The first sector of the Contiguous File, at offset 0, 
contains record 1 of the flle. Since the system knows the size of the 
record, it also knows how many records will fit in one sector. 
When a numeric index is supplied, that number is divided by the 
number of records that fit in each sector. The result of this calculation 
added to the first record sector of the file determines the sector 
number where the requested record is located. The remainder (if any),' 
of this calculation determines the offset, or where the record begins 
in that sector. 

Implemented with Contiguous Files is the ORD function: 

NUMBER=ORD(I,EXCP=9000) : 

which reports the next record number of the file, based on the current 
position of the record pointer./ This value is the number of the 
record that will be obtained it.' the next access is sequential. 

When an attempt is made to YRITE or READ to a Contiguous File 
with an ordinal greater than the extents of the file will allow, an 
Error 2 is issued. If an attempt is made to WRITE or READ with 
an ordinal that is less than 1, an Error 32 is issued. Ordinals 
are always integer numbers. A fractional IND- parameter will be 
truncated to the integer value of the parameter specified. The maximum 
Ordinal size is 16 digits (the size of the accumulator). 

The (BOF) mnemonic can be used on Contiguous Files. The (EOF) 
mnemonic is ignored since all records in a Contiguous File are 
considered written at the time the file is CREATEd. 

A Contiguous File Directory Entry 1s shown on the following page. 



5.1 File Types 5.1-4c 

4. Contiguous Files (cant) 

DIRECTORY ENTRY FOR CONTIGUOUS FILES 

Byte(s) Directory Information 

1 - 3 First Record Sector 
4 (Unused) 

5 - 12 Contiguous File Name 
13 File Type (Contiguous File 02, $02) 

14 - 16 Last Record Sector 
17 - 18 Record Size 
19 - 20 AU Count 
21 - 23 (Unused) 

24 Value of Fill Character 
30 - 31 Next Record Offset 
32 - 48 (Unused) 



5.1 File Types S.l-Sa 

5. Object Files 

Object Files are loaded into memory by a Sequential Read 
through the Object data on the disc and executed under the control 
of the BEST Operating System. The Directory Header (see next 
page) contains all the information necessary for the monitor to 
load the program into memory. 

An Object File is the product of a Compile or Link, and is 
written to disc in the same manner as a Sequential File. 



5.1 File Types 

5. Object Files (cont) 

DIRECTORY ENTRY FOR OBJECT FILES 

Byte(s) 

1 - 3 
4 

5 - 12 
13 

14 - 16 
17 - 18 
19 - 20 
21 - 28 
29 - 30 
31 - 32 
33 - 34 
35 - 36 
37 - 38 
39 - 40 
41 - 48 

Directory Information 

First Record Sector 
(Unused) 
Object File Name 
File Type (Object File = 16, $10) 
Last Record Sector 
Program Code Length 
Execution Start Address 
LUN's OPENed ifQIC Program 
I/O Buffer Length 
(Unused) 
(Unused) 
Common Length 
(Unused) 
Local Length 
(Unused) 

5.1-Sb 



5.1 File Types 5.1-6a 

6. Standalone Object Files 

Standalone Object Files are object programs that can only be 
executed from the Program Loader. These programs hanile their 
own I/O and do not execute under BEST. They require the full 
capabilities of the machine, and must be executed from terminal 
"TOO". Standalone Object Programs are part of the BEST Directory 
but are loaded into memory by the Core Image Loader. The Directory 
Header (see next page) has the same elements as does a BEST Object 
File, but the file type is $30. 



5.1 File Types 

6. Standalone Object Files (cont) 

DIRECTORY ENTRY FOR STANDALONE OBJECT FILES 

Byte(s) 

1 - 3 
4 

5 - 12 
13 

14 - 16 
17 - 18 
19 - 20 
21 - 28 
29 - 30 
31 - 32 
33 - 34 
35 - 36 
37 - 38 
39 - 40 
41 - 48 

Directory Information 

First Record Sector 
(Unused) 
Standalone File Name 
File Type (Standalone File - 48, $30) 
Last Record Sector 
Program Code Length 
Execution Start Address 
LUN's OPENed if QIC Program 
I/O Buffer Length 
(Unused) 
(Unused) 
Common Length 
(Unused) 
Local Length 
(Unused) 

5.1-6b 



5.1 File Types 5.1-7a 

7. BEST Directory 

The BEST Directory is the part of any disc that contains the 
names and file header information for any file added to the pack under 
the BEST Operating System. 

The BEST Directory is maintained in much the same manner as a 
Keyed File. Sector 5 is established as the Directory Entry for the BEST 
File Directory, and contains the pointer to the top directory sector. 
At Software Initialization, sectors 6 through 9 are allocated to the 
BEST File Directory and sector 5 is set to point to sector 6. As 
files are added to the directory sectors are split in the same 
manner as for a Keyed File. When sectors 6 through 9 are depleted, the 
File System gets a new AU (in the user file area), and sets the forward 
link in sector 9 to point to this new AU. As more files are 
added, new AUs are obtained in the same manner, scattering the 
directory throughout the disc. In this manner, there is no 
pre-defined limit to the number or type of files that can be added to 
a BEST pack. 

Every directory entry is 48 bytes. Within these 48 bytes, all 
information necessary to access the file or load the program is 
available. (This is the data loaded into the system AFL when the 
file is OPENed by any user). When the file is CLOSEd, the 
information in the AFL is written back to the directory entry, making 
sure that the entry is completely up to date. 

As in key sectors of Keyed Files, the higher level directory 
entries are only pointers to the lower levels. Although the pointers 
are also 48 bytes, their information is not current for the file. 
Only the level 0 directory entry is updated by the File System. 

A Directory Entry for the BEST Directory is shown on the 
following page. 



5.1 File Types S.1-7b 

7. BEST Directory (cont) 

DIRECTORY ENTRY FOR THE BEST DIRECTORY - SECTOR 5 

Byte(s) 

1 - 3 
4 

5 - 12 
13 

14 - 16 
17 - 18 
19 - 20 
21 - 23 

24 
25 - 37 
38 - 40 
41 - 42 

43 - 48 
756 -758 
767 -768 

Directory Information 

Pointer to the top level of the BEST Directory 
(Unused) 
Dummy File Name ($FFFFFFFFFFFFFFFF) 
File Type (Directory = 04, $04) 
(Unused) 
Record Size (Directory Entry = 48 bytes, $30) 
AU Count 
Last Directory Sector 
Key Size (Directory Entry Key = File Name 08, $08) 
(Unused) 
Deleted Directory Sector Chain 
Number of Directory sectors "thrown away" 

because of disc errors during allocation 
(Unused) 
Disc Label 
Sector Displacement 



5.2 File Operations 5.2-1a 

1. CREATE 

CREATE provides the ability to add a new file name to a BEST 
Directory and allocate a minimum amount of space based on the 
file type. 

When the system executes a CREATE, it first searches through 
the configured set of discs to determine if the specified disc label is 
available. If it is not, (not there, inop), an Error 40 is issued: 
Attempted Create on an Unavailable Disc. 

If the correct label is found, the system gets the following 
number of AUs from the AU Bit Map, based on the file type specified: 

Keyed File 
Sequential File 
Object File 
Contiguous File 

- 2 Allocation Units (10 sectors) 
= 1 Allocation Unit (5 sectors) 
- 1 Allocation Unit (5 sectors) 
= (Handled by a REAL subroutine to 

the QIC Program, *CREATE). 

The system verifies the AUs by writing a copy of the AU Bit Map 
into each of the new sectors, and setting the forward links in 
each sector to point to the next sector. If an error occurs on 
this "initialization", the AU is thrown away, a new AU is obtained, 
and the system records in sector 5 that a "bad" AU was found, 
but not allocated to any file. The sector numbers obtained 
from the AU Map are placed in the directory entry being built in 
working storage. 

The BEST Operating System then checks the directory for a duplicate 
file name. If a duplicate name is found, the AUs are returned to 
the AU Map, and an Error 12 is issued: Attempted Create on Existing 
File. 

If there is no duplicate name in the directory, the system 
inserts the entry built in working storage into the appropriate 
directory sector and rewrites the updated sector to the disc. 



5.2 File Operations S.2-1b 

1. CREATE (cont) 

A. Calculation of Record Sizes for Data Files 

The actual size of a data record is not necessarily the size 
specified in a CREATE Statement. BEST determines the number of . 
records of the specified size that will fit into a sector by dividing 
756 bytes (maximum available) by the specified size. If there is 
~ remainder, or the remainder is less than the number of 
records that fit, the actual size is the specified size. If the 
remainder is greater than the number of records that fit, BEST 
evenly distributes the remaining bytes to each record. Those 
bytes that cannot be distributed evenly are unused bytes. 

Example 1: 

Specified record size - 94 
756/94 - 8 with a remainder of 4. 

Since the 4 remaining bytes cannot be distributed to the 
8 records in each sector, they become unused bytes at the end 
of the sector. 
In this case: Specified Record Size = Actual Record Size. 

Example 2: 

Specified record size - 88 
756/88 = 8 with a remainder of 52. 

The remainder of 52 bytes can be evenly distributed over the 
8 records by adding 6 "extra" bytes to each record. 

52/8 = 6 with a remainder of 4. 
In this case: BEST will create the file with an actual record 
size of 94 (88 + 6) with 4 remaining. unused bytes. 

A WRITE to this file with 88 bytes of true data will appear 
in the file as the data with 6 appended blanks. This provides the 
ability to increase record sizes without having to reformat the file. 



5.2 File Operations 5.2-2a 

2. ERASE 

ERASE provides the ability to remove a file name from the BEST 
directory and return all space assigned to that file to the system 
for reallocation. 

On execution of the ERASE statement, the system searches the 
directory for the file name specified. If a disc label is 
provided, only that label is checked. If no label is provided, the 
system looks for the first occurrence of that file name on the 
configured set of discs. 

The system then checks to see if that file is OPEN by any other 
user (has an active AFL). If the file is OPEN, an Error 36 is 
generated: Attempted ERASE of an OPEN File. 

If the file is not OPEN, the file name is removed from the 
directory. The file' name is not flagged as ERASEd, but is 
physically removed by "shuffling up" all directory entries in the 
directory sector. In other words, every entry below the specified 
file name is moved up one entry in the directory, and the offset 
of the sector is changed to reflect one less entry. \llien the "shuffling 
up" is complete the directory sector is rewritten to disc. 

Once the directory is rewritten, the system starts with the 
first key AU specified in the Directory Header and follows the 
forward links through the file, returning each AU to the AU Bit 
Map as it is encountered. When a forward link of all zeroes is 
encountered, the ERASE is terminated. In reality. only the 
forward link in the last sector of each AU is used to obtain 
the sector number of the next AU. If an ERASE prematurely aborts 
due to a disc error or Escape, only those AUs already encountered 
will be returned to the AU Bit Map. 

Since an ERASE can be a lengthy process if the file is large, 
the system takes a Task Break after returning each AU. This allows 
other users to be activated. 



5.2 File Operations 5.2-3a 

3. OPEN 

The OPEN statement is used to gain access to a disc file or 
a peripheral device. In the case of a disc file, the OPEN statement 
moves the directory information from the disc into an AFL which 
provides the common entry for all users to access and update the 
file. In the case of a device, the device name is an entry in 
the DDT, and the device is reserved for the exclusive use of the 
program (partition) that OPENed it. 

A. Disc Files 

The syntax of the OPEN statement provides an LUN as an 
internal program reference for that file. When an OPEN 
is executed, the supplied LUN is converted to a system 
reference and checked against the corresponding FCB to 
determine if the LUN is already in use. If it is, an Error 34 
is issued: Logical Unit Number Not Available for OPEN. 

The System then checks the AFLs in memory to see if any 
other user has that file OPEN. If so, the user count 
in the AFL is incremented by one, and the directory information 
is not read from disc. The user's FCB is made to point to the 
AFL that corresponds to the file. In this manner, all users 
acting on a particular file have their own separate FCB entry 
to determine their position, each pointing to a single AFL 
to record all updates. 

If an AFL does not already exist, and a disc label is specified 
on the OPEN, that disc is searched for the specified name. If 
no label is specified, the discs are searched for the first 
occurrence of the name in disc configuration order. If the 
file is not found, an Error 11 is issued. Once the file name 
is found, the directory information is moved into the AFL. 

In either case, the record pointers in the user's FCB are set 
to the first key in the file (if Keyed), and the position of 
the first record (if Sequential or Contiguous). 

The system starts with the first Key AU and "flinks" through 
the forward links of the file to be sure the extents of the 
file match the Directory Header. The system also checks to see 
if the last sector of the last Key AU points to the first data 
sector. Any discrepancies are corrected during the OPEN 
process. 

Once the OPEN process is complete, any record of the file may 
be accessed. The FCB will remain active in memory until that 
user CLOSEs the file. The AFL will remain available in memory 
until the last user to have the file OPEN, CLOSEs the file. 



5.2 File Operations S.2-3b 

3. OPEN (cont) 

B. Peripheral Devices 

When a device is OPENed, the system again converts the LUN 
to the corresponding FeB reference to see if the LUN is already 
in use. The entry for the device name being OPENed is 
located in DDT. If the Task Header address of the DDT is 0, 
the device is available for OPEN. If the Task Header address 
of the DDT is the same as that for the user attempting 
the OPEN, the device can be OPENed again by that user. If 
the Task Header address does not match the address of the user 
attempting the OPEN, an Error 31 will be issued Device 
Unavailable. 

Once the FeB is updated with the address of the DDT, the system 
calls the appropriate driver for that device to perform any 
functions necessary on OPEN. For example, the printer driver 
would check to see if a VFU was needed on the Model 5041 
printer, and load it if necessary. 

Operations supplied by the drivers on OPEN are explained in 
Section 6.1, Devices and their Software Drivers. 



5.2 File Operations 5.2-4a 

4. CLOSE 

CLOSE 1s used in two contexts under the BEST Operating System: 

o The QIC keyword CLOSE in reference to an LUN, and 

o CLOSE all files (Abort), due to a Flag 3/Transmit, or system 
error. 

The QIC keyword, CLOSE, calls a system routine that checks to 
see if the LUN actually references an OPEN file. If it does 
not, no error is reported and the system continues. If the open 
LUN refers to a device, the appropriate driver is called to 
perform the CLOSE routine. If the LUN references an OPEN file, 
the system clears any Extract flag for that user, decrements the 
user count in the AFL entry for that file, and, if no one else 
has the file open (User Count == 0), and the file has changed, 
updates the directory on the disc. 

On Flag 3/Transmit the system RUNs the utility *UONITOR, which 
performs a CLOSE on all possible LUNs (0-7). In the case of an 
error, the system sets an "Abort Flag" and performs all of the 
CLOSEs itself. This makes sure that all directory entries are 
properly updated on fatal errors. 



5.2 File Operations 5.2-5a 

5. READ 

The READ statement causes an input of a record from a disc file 
or peripheral device, into variables within the user program. 

A. Disc Files 

There are two types of READs in the BEST Operating System, 
Sequential and Indexed (Keyed). A Sequential READ can be performed 
on any file type. An Indexed READ can only be performed on a 
Keyed or Contiguous File. 

1) Sequential READ 

Sequential access to a file is based on the fact that the user's 
FCB for the file contains the next record position. If tne 
file is Sequential, the next record position consists of a 
sector number and offset for the next record. Execution 
of a READ causes a SEEK to that sector, and the entire sector 
is moved into the System Buffer. The offset indicates the 
beginning position of the record in the System Buffer. Control 
is then passed to the Runtime Format Handler to move the 
record from the System Buffer to the User Buffer. When the 
READ is accomplished, the next record position in the FCB is 
updated with the sector number and offset of the next record. 

For a Keyed File, the record pointer consists of the value of 
the next sequential key in the file, and the sector and offset 
of that key's position in the Key Tree. Any type of 
READ to a Keyed File (indexed or sequential) causes the system 
to get the next key value in the key tree, and the offset and 
sector where that key is located. If the next access to the 
file is sequential, the sector and offset of the next record 
position are used to immediately get the key sector; 
check that the key is still in the file; and if so, read the 
data associated with that key. 

If the next key value has been deleted prior to the next 
Sequential Read, the file system forces a search of the key 
tree to get the next key value. Once the READ is accomplished, 
the next key value, sector and offset are updated with the 
next values from the file in the FeB. 

A Sequential READ of a Contiguous File is handled in much the 
same manner as a Sequential File, except there is a next 
index value that is obtained by incrementing the current 
index value by one. The ORD function will move this value 
from the FeB to the user program. 



5.-2 File Operations 5.2-5b 

5. READ (cont) 

2) Indexed (Keyed) READ 

"Jhen a READ which specifies an IN!)= parameter is executed, the 
system forces a search of the Key Tree. To find a specific 
key value, the Top Key Sector is read into memory, and examined. 
If the Top Key Sector is not a level 0, the system checks 
for the key closest in value to the specified index, but 
not greater than the index. The pointer for this key value is 
used, and the next lowest level sector is read. The search 
through the key sector starts at the beginning of the sector 
(highest value) and ends at the sector offset. If the sector is 
a level 0 and no entry is found that matches the specified 
value, an error 32 is returned. If a match is found, the key 
pointer provides the sector and offset of the corresponding 
data record. Whether the key is found or not found, the next 
key value and position in the FCB are updated with the next 
value in the key tree. 

An Indexed RE~) to a Contiguous File forces the system to 
calculate the sector and offset of the record, based on the 
index supplied. Any type of access to a Contiguous File 
always updates the next index value in the FCB by adding one 
to the current index value. 

A Sequential READ of a Keyed File is faster than a KEY 
function and Indexed READ. For large files, a key search may 
have to examine four levels of key sectors before retrieving the 
data. With a Sequential READ, the access is immediately to the 
appropriate level 0, based on the last access. Unless a file is 
being deleted from by another user, most accesses are relatively 
fast. 

The KEY function moves the next key value from the FeB into 
a variable in the user program. If the KEY Function followed by 
an indexed READ is used to pass an entire file, and that file is 
being deleted from by another user, it is possible to get an Error 
32 on the READ. "lhen an entire file is to be read, it is more 
advantageous to use a Sequential READ. If the actual key value is 
needed, the KEY function followed by a Sequential READ should be used 
since the KEY function does not advance the record pointer. 

B. Keyed Only Files 

Keyed Only Files have a 0 record length and are used as 
pointer files to other keys. Performing a READ on a Keyed Only 
File is only to advance the record pointer. There is no data AU 
for a Keyed Only File, and if the structure of the key can contain 



5.2 File Operations 

s. READ (cont) 

the value of the key in a secondary file, that value can be 
retrieved by one access to the Keyed Only File (e.g., KEY 
Function, Sequential READ to advance the pointer). 

C. Key and Record Lengths 

s.2-sc 

When the value supplied in the IND- parameter is shorter than 
the actual Key size for the file. the key value supplied to the 
File System will be padded with blanks. If the key value is longer, 
it will be truncated. 

Since a short key will be padded with blanks, and since the 
File System always gets the next key value on an indexed access, 
supplying a short key for a READ 1s a method of positioning to 
a starting value in a file. This procedure is called a "dummy read". 
If a file is organized by Customer Number + Invoice Number, a READ 
with a short key of only the Customer Number will return an Error 32, 
but the record pointer will be positioned to the first key with that 
customer number. A sequential READ following the dummy read will 
return the record that matches the first invoice for that customer. 

The FORMAT specified for a READ does not necessarily have to 
have all of the variables for that record. If only certain 
variables are needed, the FORMAT may contain only those variables 
necessary with a position parameter. If the total length of the 
variables specified in a FORMAT statement is longer than the 
actual record size, part of the next physical record will be read, 
on all but the last record. Using a larger format than necessary 
does not alter the begin~ing position for the next READ. 

D. Peripheral Devices 

A READ from a peripheral device is handled by that device's 
particular software driver once the device has been OPENed. See 
Section 6.1 for a description of the software drivers for all 
BEST supported peripheral devices. 



5.2 File Operations 

6. WRITE 

The Section on WRITE will be added at a later date. 

5.2-6a 



5.2 File Operations 5.2-7a 

7. READ/WRITE IMAGE 

READ/WRITE IMAGE is designed primarily to reduce the amount 
of disc storage space required for records which contain a large 
number of numeric variables. 

The standard format for numeric variables requires one byte for 
the sign and one byte for the decimal for any precision variable. 
By contrast, numeric data under READ/WRITE I~~GE is packed. The 
formula to calculate the required space for a packed numeric field is 

(LENGTH/2) + 1 

where length is the total number of digits declared in the precision 
(e.g., the length of a field with precision 8.2 is 8). In the 
case where the calculation has a fractional result, rounding is 
always downward. 

String fields under READ/WRITE IMAGE are exactly the declared 
length of the field, plus one length byte. This length byte 
carries the "actual" or current length of the string variable. 
Thus, READ IMAGE is able to recover the true length of the string 
variable. This feature differs from the normal READ, which forces 
the declared length for string variables. 

To calculate the effective record size for an IMAGE file, calculate 
all numeric fields as explained above, and add the declared 
length plus one for all string variables. 

READ/WRITE IMAGE is available for all data file types. 

Example: 

LENGTH 8.2 & LOCAL A,B 
LENGTH 5.0 & LOCAL C,D 
LENGTH 10 & LOCAL A$,B$ 

100 FORMAT A$;A;B;C;D;B$ 

!Image Length = (8/2) + 1 • 5 
!Image Length - (5/2) + 1 - 3 
!Image Length - 10 + 1 - 11 
!Record Length Image • 

! 11+5+5+3+3+11-38 
!Record Length Normal -

! 10 + 10 + 10 + 7 + 7 + 10 - 54 



5.2 File Operations 

8. DELETE 

The DELETE statement is used to remove an existing record 
from a Keyed File. This statement applies only to Keyed Files. 

5.2-8a 

The DELETE statement requires that an index or key be supplied. 
On execution, the key is found in the key tree and physically 
removed. The corresponding data record is "flagged" as DELETEd. 

DELETEd space within a file can be reused by that file only. 
The File System will always attempt to use available deleted space 
before allocating new space. This is accomplished by maintaining 
a Delete Chain in the File Directory Header. There is a Delete 
Chain entry for key sectors and an entry for data sectors. These 
entries contain the last DELETEd record or key sector addresses. 

A. Key Sectors 

\-1hen the las t key in a sector is DELETEd, the File System 
places the sector number of that sector in the Delete Key Chain 
entry in the File Header. When a new Key Sector is needed, this 
sector will be used. The key sector is flagged as DELETEd by placing 
three hex "FElis in bytes 757 - 759 of the key sector. If another 
key sector has its last entry DELETEd the header is updated to 
point to this new DELETEd key sector, and the backward link (bytes 
761 - 763) is set to point to the first DELETEd key sector. 
This type of chain continues throughout the key sectors 'ITith the 
header always pointing to the most recently DELETEd key sector. 

B. Data Sectors 

\.Jhen a key is DELETEd, it is physically removed from the 
Key Tree and the corresponding data record is flagged by placing 
one hex "FE" in its sixth byte. The first five bytes are then 
set to point to the record DELETEd just prior to this record. 
As in key sectors, the file directory header is always set to 
point to the most recently DELETEd record. 

Before attempting to re-use DELETEd space, the File System 
always checks to see if the DELETE flag is present. If there is no 
DELETE flag, the system assumes that something is wrong and zeroes 
out the Delete Chain Entry in the File Header. Because space is 
re-used on a last in, first out basis, this effectively clears 
the Delete Chain. The utilities *DELREC and *DELKEY can be used 
to restore the Delete Chain for records and keys, respectively, for 



5.2 File Operations 

s. DELETE (cant) 

any Keyed File. 

The record pointer is advanced to the next record on DELETE. 

5.2-Sb 



S.2 File Operations 5.2-9a 

9. KEY/ORD 

The KEY/ORD function is used to determine the next (in logical 
order) available index value in a specified Keyed or Contiguous File. 

Typically, every access .to a Keyed or Contiguous File obtains 
the record specified, and in addition. gets the Key or Ordinal value 
of the next record to be accessed if that access is sequential. 
The KEY/ORD function merely moves the value obtained from the system 
work area into the user partition. 

In the case of the KEY function, the system does not check that 
the Key supplied during the KEY function is still the next Key. If 
another user were active, that Key could have been DELETEd so 
an attempt to read with an index supplied by the KEY Function could 
produce an Error 32, Key Not Found. The only error produced by 
the KEY function would be End of File. 

The ORD function returns the record number of the last access. 
plus one. Since a Contiguous File cannot be DELETEd from, the ORD 
function will always return the next record number. 

The KEY or ORD function does not advance or change the record 
pointer. 



5.2 File Operations 5.2-l0a 

10. EXTRACT 

The EXTRACT statement provides a means to prevent multiple users 
from accessing the same record at the same time. EXTRACT insures 
that the record obtained is the most current copy of the data record, 
and thus protects volatile files such as Inventory Files. 

EXTRACT may be used on all data file types: Keyed, Sequential and 
Contiguous. The syntax of the EXTRACT statement is the same as that 
for a READ. 

Whenever a record is EXTRACTed, an EXTRACT count is incremented 
in the file .AFL. For all operations such as READ, WRITE and DELETE, 
the File System checks the AFL to see if the EXTRACT count is not 
zero, before proceeding with the operation. If the EXTRACT count is 
not zero, the system must check the EXTRACT pool to determine if 
the record being accessed is already EXTRACTed by some other user. 

The size of the EXTRACT pool is determined at Configuration Time. 
If an inadequate number of EXTRACT entries is configured, attempts to 
EXTRACT when the pool is full will generate a BEST Error 33 until 
space is made available by releasing an entry. 

A record is released from the EXTRACT when the user that EXTRACTed 
the record accesses the file again through a READ, WRITE, DELETE, 
UPDATE or CLOSE. KEY or ORD functions do not release the EXTRACTed 
record. 

EXTRACT does not advance the record pointer to the next key or 
record. This feature allows many programming techniques to be employed 
where a user program may want to re-read a record based on some 
condition in the record. Additionally, when an EXTRACT is pending, a 
WRl:TE may be executed without supplying an index. Since the record 
pointer is already positioned to the record, the speed of the WRITE 
is improved by eliminating a search through the Key Tree. By specifying 
an index on a WRITE after the EXTRACT, the speed improvement is lost. 
NOTE: An attempt to write without an index when no EXTRACT is pending 
will generate an Error 04. 

Since EXTRACT causes the system to do some additional work to 
determine if a given record is EXTRACTed, indiscriminate use of this 
statement can slow down processing. This slowdown would be a function 
of the number of records EXTRACTed at anyone time and the number 
of files involved. 



5.2 File Operations 5.2-11a 

11. UPDATE 

The UPDATE operation provides the ability to READ, change SODe 
specified value, and rewrite a record without declaring the entire 
file format. 

Internally, the File System first EXTRACTs the record called 
for and then calls the Runtime routine for unindexed \ffiITE branching 
around the routine that would normally clear the record buffer. The 
field or fields being UPDATEd are moved into the buffer using the 
positions specified in the file format. The record is then rewritten 
to disc. The record pointer is only advanced after the \ffiITE. 
UPDATE may be used with or without an index specified. 

In order to use this feature to UPDATE a field based on some 
condition in the record, a separate READ or EXTP~CT must occur in 
order to test the condition. For an unindexed UPDATE, the test read 
should be done on a separate LUN, since REM) advances the record 
pointer. A test EXTRACT can be used on the same LUN since EXTRACT 
does not advance the pointer. 

For Example: 

If a field, X$, is equal to 'N', set the variable A to 10.00 

10 FOll1AT X$, @ (10) 
20 FaRHAT A @(30) 

OPEN (1) 'FILE' 
OPEN (2) 'FILE' 

100 READ (1,10) EXCP=9000 
IF X$='N' A=lO.OO & GO 200 
READ (2,20) 
GO 100 

200 UPDATE (2,20) 
GO 100 

! FORHAT TEST FIELD 
! FORl'1AT UPDATE FIELD 
! LUN FOR READ 
!LUN FOR UPDATE 

! BRANCH OUT IF TRue 
! KEEP 2ND LUN IN STEP 

! UPDAT L VARIABLE A 

If a String field is being UPDATED, the length of that field is 
governed by the current (actual) length, and flOt by the 
declared length. If the current length is less than the 
declared length, the string field should be padded to the declared 
length to UPDATE the entire field. If the field is not padded, the 
actual characters are moved into the buffer and the remainder of the 
field is not changed. 



5.2 File Operations 

11. UPDATE (cont) 

For Examp le: 

Given: Record 1 = 1111122222222222222222222333 
'--r-''-" -. ---,...J 

X$ A$ 

If the following program is executed, 

LENGTH 20 
LOCAL A$ 

Y$ 

5.2-11b 

.~ .... 

10 FORl-tAT A$ ,@(S) 
OPEN (1) 'FILE' 

100 LET A$=' 444' 
UPDATE (l,10) 

!Set current length to 3 
!UPDATE every record 
!with new value of A$ 

GOTO 100 

the resulting record would be: 

Record 1 = 1111144422222222222222222333 
~ \ -v---------~ 

X$ A$ Y$ 

If statement 100 is replaced with: 

100 LET A$=' 444 !set current length to 20 

the result would be: 

Record 1 = 11111444 333 
~' ... ---.... 'V.------' ........... 

X$ A$ A$ Y$ 

-



5.2 File Operations 5.2-12a 

12 . LOCK/UNLOCK 

The Section on LOCK/UNLOCK to be written at a later date. 



5.2 File Operations 5.2-13a 

13. GET/PUT 

The Section on GET/PUT to be written at a later date. 



5.3 Disc Layout and Handling 5.3-1a 

1. Software Initialization 

Software Initialization (accomplished by the Core Image program, 
UKIN). provides three specific functions for proper execution of all 
file system operations: 

... =: 

1) Clears all BEST files from the BEST Directory by 
resetting the pointer to the top directory sector. 
The pointer is set to point to sector 6 (the first 
available sector for the directory) and sector 6 is 
rewritten with a copy of the AU Bit Map. 

2) Resets the AU Bit Hap in sectors 3 and 4. The AU Bit 
Hap determines the effective capacity of any disc pack 
Based on the answer to "Disc Type", DKIN sets certain bi ts 
"on" for available ($FF), and "off" for unavailable ($00). 

3 + 3 

6 + 6 

3011B 

The first 100 bytes of sector 3 are set to $FF, and 
all remaining bytes in sectors 3 and 4 are set 
to $00. Effective capacity is 4000 sectors. 

The first 200 bytes of sector 3 are set to $FF, and 
all remaining bytes in sectors 3 and 4 are set 
to $00. Effective capacity is 8000 sectors. 

The first 756 bytes of sector 3 and 244 bytes of 
sector 4 are set to $FF, and all remaining bytes 
in sector 4 are set to $00. Effective capacity 
is 40,000 sectors. 

DKIN makes no check as to what kirtd of drive is being used 
,.,hen the pack is software initialized. 

3) Reserves special sectors for system use. There are two types 
of initialized packs 

System Pack 

Data. Pack 

Defined as a pack which has reserved the 
first 1000 sectors of the disc to store 
the Operating System, Compiler. and other 
Core Image utilities. Effectively, the 
first 25 bytes of sector 3 are set to 
$00, and cannot be allocated to BEST Files. 

Defined as a pack which will reserve the 
first 40 sectors for "selected" Cor~ Images. 
Effectively, the first byte of sector J 
i~ set to $00, and eannot be allocated to 
BEST Files. 



5.3 Disc Layout and Handling 5.3-1b 

1. Software Initialization (cont) 

Once a pack is initialized, the Best Operating System makes no 
check for the type of drive being used. The AU 11ap is used to 
automatically allocate sectors to any file (in increments of 5 
sectors). If the pack has been initialized incorrectly, the system 
will try to allocate sectors beyond the physical range of the disc 
drive, and the hard\~are will generate an "Invalid Seek". 
Conversely, if the pack is initialized with less space available 
than the actual range of the disc, that space will be wasted. 



5.3 Disc Layout and Handling 5.3-2a 

2. Disc Layout on a BEST Pack 

The BEST Operating System defines its reserved space on a disc 
as follows: 

SECTOR SECTOR 
HUHBER SYSTE11 PACK NUMBER DATA PACK 
------ ----------------------- ------ -------------------------

0- 2 Disc Program Loader 0- 2 Disc Program Loader 
3- 4 AU Bit Map 3- 4 AU Bit Map 

5 BEST Directory File 5 BEST Directory File 
header (pointer to top header (pointer to top 
level of BEST Directory) level of BEST Directory) 

6- 9 BEST Directory Area 6- 9 BEST Directory Area 
10 ~~ssage Passing Area 10 Message Passing Area 

11- 14 Coreimage Directory 11- 14 Core image Directory 
15-999 System Coreimages 15- 39 Selected Core images 
1000+ User Files 40+ User Files 

DISC PROGRAH LOADER Provides the ability to access 
Core Image and Standalone programs. 

BEST DIRECTORY FILE 
HEADER 

BEST DIRECTORY AREA 

UESSAGE PASSING ARE~ 

CORE HlAGE DIRECTORY 

CORE. .llwa:£ 

Controls sector allocation for all files 
on that pack. 

Is the Directory entry for the BEST 
DirectorYt and provides the pointer 
to the top level of the BEST Directory. 

Reserved for the beginning of the 
BEST Directory. When this space is used, 
additional AUs in the user file area are 
allocated. 

Used by Core Images to pass messages 
to each other. 

Contains directory information for 
Core Image programs on that pack. 
(Separate from the BEST Directory). 

Contains programs that are loaded 
into memory from the disc loader prompt. 



5.3 Disc Layout and Handling 5.3-2b 

2. Disc Layout on a BEST Pack (cont) 

Contains programs that are added 
to th~ pack under control of the BEST 
Operating System. 



5.4 System Operations and Control S.4-1a 

1. Sector Allocation 

The BEST File System allocates space on an "as needed" basis to 
all file types, except Contiguous Files. Each BEST disc maintains 
two sectors as a map (the Allocation Bit H.ap) to the sectors 
used and available for that disc pack. In this manner files 
do not carry overhead space for unused sectors, and can expand whenever 
volume dema nds 

All space is allocated by the File System in increments of 
five sectors, called an Allocation Unit (AU). At software initialization 
(DKIN), the AU Bit Map is set up for the part icular type of disc 
drive being used. (See Software Initialization, Section 5.3.1). 
In essence, the program "turns on" the bytes that represent the 
sectors available for that disc, and the remainder of the bytes are 
"turned off", to prevent attempts to access beyond the range of the 
disc. In this case, each byte in sectors 3 and 4 represents 8 
allocation units, or 40 sectors. 

On CREATE, Keyed Files are allocated 2 AUs, one for keys and 
one for data· Sequential Files are allocated 1 AU, and Object 
Files are allocated 1 AU. When this space is depleted, BEST reads 
in sector 3, determines the first AU available by finding 
the first byte that is not $00, and converts that byte to the 
corresponding sector numbers of the available AU. Sector 3 (or 4) 
is then updated to show that the AU is no longer available and the 
sector is rewritten. On allocation of the new AU the system initializes 
the AU by wri t ing a copy of the AU Bit l-lap into each sector of the 
new AU, and setting the forward links in each sector to point to 
the next sector ("preflinking"). The last data sector of the last data 
AU will have a forward link of all zeroes. 

If a disc error occurs when the AU is being initialized,the 
operator is not notified, but the AU is "thrown away" and a new 
AU is obtained from the AU Hap. The system updates bytes 41 
and 42 in sector 5 to indicate that an AU was allocated but 
not used. The number of sectors "thrown ml1ay" in this manner 
is available through the utili ty, *SCOUNT. 

Every File Directory entry contains the number of AUs 
allocated to that file. This number will increase in size, but never 
decrease. If records are DELETEd in a file, the Delete Chain pointers 
are updated so that the space can be reused by that file, but 
no space is returned to the AU Hap. Once an AU is allocated to 
a particular file, it remains allocated to that file until the file 
is ERASEd. ERASE and DKIN are the only operations (programs) that 
return AUs to the AU Hap. When a file is ERASEd, the system links 
through all of the sectors in the file, by forward links, and turns 



5.4 System Operations and Control 

1. Sector Allocation (cant) 

on the corresponding bit in the AU Bit Hap to indicate the space 
is available. If an ERASE prematurely aborts. or if the forward 

5.4-1b 

links are not correct. all space may not be returned to the AU Hap. If 
space is lost in this manner, it can be regained by a logical 
copy of all files to another pack. (See the BEST Utilities Manual 
for Operating Instructions for copy programs.) 



5.4 System Operations and Control 

2. File System Control 

A. In Memory 

5.4-2a 

A File System in a multi-user environment requires file control 
at two levels: 

1) At the user level to distinguish the user's own position 
in any file. and 

2) At the system level where any action by any user is 
recorded for all users attempting to access that file. 

Under BEST, this control is accomplished by an FCB (File Control 
Block) that records the files each user has OPEN and its own position 
in that file; and an AFL (Active File List) which is a list of all 
files OPEN by all users. An AFL contains all pertinent information 
for accessing that file. 

Each file OPENed by a user is recorded in an FCB. There are 8 
FCBs for each user, corresponding to LUNs 0 through 7. For 
every unique file name OPENed, one AFL entry is created in 
the Active File Lis t. The AFL entry contains the File Directory 
information as read from the disc on OPEN. All users accessing that 
file use the same AFL entry. As the file is added to or deleted from, 
the current information is maintained in the AFL entry to be 
rewritten to the disc on CLOSE, Flag3/Transmit, or on an error, 
when no other users have the file OPEN. 

The FeB entry maintains the user's current position in the file, 
his next key value, and the address of the AFL being accessed. 

On OPEN, the LUN specified in the OPEN statement is converted 
to an FCB reference. If that FCB is currently in use an Error 
34 is generated. If the FCB is free, BEST checks the AFL list 
to see if that file is currently OPEN. If there is already 
an AFL entry for the file. BEST places the address of that AFL into the 
FCB and increments the user count in the AFL by one. If no AFL 
exists. BEST reads the directory, creates an AFL entry, and places 
the address in the FCB. 

The OPEN process records in the FCB that the user's position 
is at the beginning of the file. and the next key is the first key 
in the file. Subsequent accesses to the file adjust the FeB to always 
point to the next position in the file, based on the las t access. 

The User Count in the AFL keeps track of how many users have 
a file OPEN. A CLOSE always decrements the User count; but until 
the count reaches 0, no updates are made to the directory. Additionally. 
no updates are made to the directory if no changes have been made 



5.4 System Operations and Control 5.4-2b 

2. File System Control (cont) 

to the file since it was OPENed. 

When the User Count reaches 0, the CLOSE operation updates the 
directory and clears the AFL from memory. 



5.4 System Operations and Control 5.4-2c 

2. File System Control (cont) 

B. On Disc 

The BEST File System provides the ability to store and retrieve 
two types of data from disc: 

1) Record data for input/output/calculation, and 
2) Object program data for execution. 

All data is stored on disc in the same manner. but methods of accessing 
vary between file types. Each sector of 768 bytes ($300). has the 
last 12 bytes reserved for system control information. leaving 756 
bytes available for data: 

BYTES HEX DESCRIPTION 
--------- --------- ------------------

1-756 $ 00-$2F3 Record Data 
757-759 $2F4-$2F6 Disc Label 

-760 -$2F7 Key Sector Level 
761-763 $2F8-$2FA Backward Link 
764-766 $2FB-$2FD Forward Link 
767-768 $2FE-$2FF Sector Offset 

The System Control bytes are used in the following manner: 

DISC LABEL 

KEY SECTOR LEVEL 

The three bytes reserved for the disc label 
should always be $000000, unless 

a) The sector is atop key sector of a file. 
If it is. the three bytes will contain 
some disc label, but not necessarily the 
current label of the pack. 

b) The sector is the top directory sector 
of the pack. If it is, again the three 
bytes will contain some disc label. 

c) The key sector is a deleted key sector. 
When all keys are deleted from a sector. the 
sector is added to the Delete Key Chain and 
the three bytes are filled with $FEFEFE. 

This byte always contains the level of the 
key sector. If the sector is not a key 
sector it will contain $00. If the sector 
is the top key sector of a file and the 
key sector level contains $00. the keys 
contained in that sector are the only keys 



5.4 System Operations and Control 5.4-2d 

2. File System Control (cont) 

BACKWARD LINK 

FORHARD LINK 

SECTOR OFFSET 

to the file. 

The backward link contains the pointer to 
the next deleted key sector, if that sector 
is indeed a valid deleted key sector, i.e., 
the disc label contains $FEFEFE. Otherwise, 
it contains the number of the sector itself 
or the number of the sector that was split 
to create this sector. These three bytes 
are only important if the sector is a deleted 
key sector. 

The three bytes reserved for the forward link 
always contain a pointer to the next logical 
sector, or to the next AU allocated 
to that file. All sectors allocated 
by BEST are pre-f linked when allocated. 
The last key sector of the last Key AU 
always contains a forward link to the first 
data sector. If the File System determines 
that this link is not valid it will 
force the link to be correct, based on 
information found in the directory. 
Forward links are primarily used for ERASE. 
During ERASE, the File System flinks through 
all of the forward links in the file, returning 
AUs as they are encountered. Should 
an ERASE be aborted, all sectors may 
not be returned to the AU Ma~. 

The las t sector of" the las t data AU has 
a forward link of all zeroes ($000000). When 
that sector is filled, the system gets a 
new AU, and sets the forward link to 
point to the first sector in this new AU. 

The two bytes reserved for the sector offset 
contain the starting position where the next 
key or record will be written in that sector. 
All data appearing before that offset is 
valid for that file. All data after that 
offset is not current for that file. The 
maximum value for a sector offset is $02F4. 



5.4 System Operations and Control S.4-3a 

3. Physical Structure of Pointers 

A. Key Pointers 

The key pointers within a Key Tree are made up of the key, a 
sector number, and a sector offset. A key pointer appears as: 

xx XX 

Sector 
Offset 

yy yy yy 

Sector 
Number 

zz KKKKKKKK ••• KK 

Unused The Key (1-32 characters) 

This structure is the same throughout the levels of the Key Tree. 
The Sector Offset is only relevant in the level a key sectors, 
where it indicates the relative starting position of the data 
within the sector. The Sector Number always points to the 
next lower level key sector, whose first valid key is the same as 
the value of the key pointer. If the key sector is a level 0, the 
sector number is the sector where the data is located. 

The offset and key are carried as hexadecimal numbers. The sector 
number is represented as a decimal number within the 3 bytes to reduce 
the overhead. (It would take 5 bytes to represent the sector number 
hexadec1ma 11y) • 

A key of "12.34" that points to a data record in the beginning 
of sector 2001 would have a level a key pointer of: 

00 00 

Sector 
Offset 

00 20 01 

Sector 
Number 

00 31 32 33 34 

Unused The Key '1234' 

indicating the rl::!cord for key "1234" is found at offset a of sector 
2001. 

B. Directory Entry Pointers 

A directory entry pointer is much the same as a key pointer. 
Every directory entry is exactly 48 bytes long and carries all 
information, in the level 0, vital to accessing the file. In levels 
other than level 0, only the first 3 bytes and the file name are 
relevant as pointers to lower levels. The directory information for 
each file type is specialized. See Section 5.1 for a complete 
description of the directory entry for each file type. 



5.4 System Operations and Control 5.4-4a 

4. Key Splits 

Adding keys to a file and maintaining access to those keys are 
accomplished through the Key Split operation. As explained in 
Section 5.1.2, Keyed Files, the File Directory Header maintains 
a pointer to the "top level" key sector. This is the trunk of 
the tree that points to all other keys, or to lower level key 
sectors that in turn point to keys. Adding new records to a file 
must always preserve the pointer to the top level, or access to 
the file is lost. 

As keys are written to a new file, they are added to the first 
allocated key sector of the file. When that sector is full, the File 
System gets the next two available key sectors, divides the original 
(full) sector in half, and builds a pointer sector to point to the two 
"new" key sectors created. This pointer sector is the top level 
key sector, and the operation is called Key Split. There are 
essentially two types of Key Split operations in the File System: 
One for splitting most key sectors; and the second for the special 
case of splitting the top key sector. 

A. Splitting Key Sectors other than the Top Key Sector 

Given a file with a level 1 pointing to a full level 0, inserting 
a new key in the full level 0 will cause that sector to split. The File 

. System obtains two new sectors in the same AU, or if none are available, 
gets a new AU. The full level 0 is split in half and the two new 
sectors are written to disc. At this point the full level 0 is still 
intact, pointed to by the original entry in the level 1. This entry 
in the level 1 is also the lowest key value of one of the new sectors 
just created (since it was the lowest in the original full sector). 

The level 1 sector is read into memory and the pointer to the 
the original full sector is changed to point to the new, half full 
sector. A second entry is created for the other level O. using the 
lowest valid key value in that sector. 

A Delete pointer is put into the system stack pointing to 
the original full sector and, if the addition to the level 1 
sector does not cause it to split, the level 1 is written back out 
to disc, and the original full level 0 is Deleted (added to the 
Delete Key Chain for re-use.) 

If the addition to the level 1 causes that sector to 
to split, the modified level 1 is not written to disc, but 
is in turn split into two level l's and a new level 2 is created (see 
Splitting Top Key Sector), or an existing level 2 is read in and 



5.4 System Operations and Control S.4-4b 

4. Key Splits (cont) 

modified to point to the two new levell's just created. 

When finally; the last split is made, the highest level 
affected is rewritten to disc, which contains all of the new key 
sectors, and the sectors in the Delete stack are added to the 
Delete Chain. In this manner, the system actually monitors two 
separate trees, the old tree before the split, and the new tree 
reflecting the insert. Should anything happen during the split 
operation, the old tree remains intact, missing only the key that 
caused the original split. 

Examp le A-I: 

To split a full level 9: 

Sector 1201 is divided 
into 2 new key sectors. 
Sector 1200 points to 
1201. Sectors 1202 and 
1203 are written to disc. 

Sector 1200 is read in 
and adjusted to point to 
1202 and 1203. If no new 
splits are required, 
sector 1200 is written 
to disc. 

Sector 1201 is added to 
Key Sector Delete Chain. 

1201 

1200 

1201 

1200 

1202 1203 

1202 1203 

1202 1203 



5.4 System Operations and Control 

4. Key Splits (cont) 

Examp le A- 2: 

Sector 1203 is divided 
into 2 new key sectors. 
Sector 1202 points to 
1203 and sectors 1204 
and 1205 are written to 
disc. Sector 1203 is 
added to system stack for 
Delete. 

Adding new entry to 1202 
for split above causes 1202, 
level I, to split. 1202 is 
divided in half and two new 
sectors, 1206 and 1207 are 
written to disc. Sector 1202 
is added to system stack for 
Delete. 

Sector 1200 is read in, 
the pointer pointing to 1202 
is changed to point to one 
of the new levell's, and an 
entry is made for the 
additional level 1. Sector 
1200, which reflects all of 
the sp li tsmade , is 
rewritten to disc and the 
sectors in the system 
stack are Deleted. (See 
"Splitting Top Key Sector" 
if addition to the level 2 
-causes it to split). 

5.4-4c 

1203 1204 1205 

1206 1207 

1203 

1200 

1202 

1203 1204 1205 

1204 1205 



5.4 System Operations and Control 5.4-4d 

4. Key Splits (cont) 

B. Splitting the Top Key Sector 

The top key sector of a file is maintained as the first key 
sector of the file, and never moves as the file expands. (For files 
built prior to version 13 and 14, the top key sector is not 
necessarily the first key sector). 

The BEST File System splits the top key sector in a different 
manner than other key sectors. Since the top key sector must always 
stay in the same place, it cannot be added to the Delete Chain as 
can other sectors. Therefore, when the top key sector must be split, 
the File System gets two available key sectors, divides the top 
key sector in half, and writes out the two new sectors to the disc. In 
memory, a new top key sector is built, pointing to these two new 
sectors; the level is increased one level higher than before; and the 
new top sector is written to disc in the same place as the old full 
sector. In this manner, should any problem occur while the new sector 
is being built in memory the original top key sector still exists, 
and the integrity of the file is maintained • 

. -



5.4 System Operations and Control 

4. Key Splits (cont) 

Examp Ie B-1: 

Sector 1200 is the top 
sector and needs to 
split. Sector 1200 is 
read into memory, two 
available key sectors 
are obtained, sector 
1200 is divided in half, 
and the two new sectors 
are written to disc. 

A new level 3 sector, 
containing pointers to 
the two, new level 2 
sectors, is built in 
memory. 

The new sector 1200 is 
written to disc, in the 
same place as before, 
pointing to the two 
new level 2 sectors. 

... 

5.4 .. 4e 

1200 1500 1501 
Level 2 

On Disc In Hemory 

fI LJ 
1200 1200 

Level 2 Level 3 

~ @ ~ 
12{)0 1500 1501 

Level 3 Level 2 Level 2 



5.4 System Operations and Control 5.4-5a 

5. Directory Updates 

When a file is OPENed, the File Directory Header is read into 
the AFL in memory. This AFL entry is used by all users acting on 
the file and all changes to the file are recorded in the AFL in memory. 

If the structure of a file is altered, the updated information 
from memory will be rewritten to the Directory File Header. This 
update occurs when the last user to have the file OPEN does one of 
three things: 

1) CLOSEs the file in a QIC Program 

2) Processes an error through *ENDITOR 

3) Initiates a Flag3/Transmit or Flagl (Escape). 

The key structure for files should insure that all keys and 
levels of keys will be accessible if the directory is not updated. 
This feature, combined with the fact that OPEN attempts to link 
entirely through a file and correct a directory entry if it is 
wrong, provides a reasonable amount of protection for a file. 
At the same time, if a directory entry is not updated, neither are 
the Delete Chain entries. This means that re-use of deleted space 
will not be possible until the Delete Chains are restored. 

The Directory Entry for a file will not be updated if any of 
the following c~nditions occur: 

o The Operating System "bangs" due to hardware or software 
forcing an IPL and reload of BEST. 

o The IPLbut.ton 1s pressed before all fil~ are CLOSEd. 

o A pack that contains OPEN files is removed f~om the 
system. If this pack 1s replaced with another pack 
with the sa~ label and the same files that are OPEN, 
the system will update the second pack, perhaps incorre~tly. 

to insure continuing integrity of all files, IPL should always 
be preceded by an ESCAPE on all terminals. Turning a terminal -"OFF'" 
does not close files. 



5.4 System Operations and Control 

6. End of File Detection 

5.4-6a 

End of File for a Keyed File is determined when there is no next 
key in the file. Each time a key is accessed in a Keyed File, the 
File System automatically gets the next key and saves it in the system 
key buffer. When there is no next key in the file, this key buffer 
is filled with $FF. If the next operation performed is a Sequential 
READ or a KEY function, an Error 2 will be generated. If the next 
operation is a direct access (Indexed READ), the system again gets 
the next logical key af ter the specif ied index, and p laces that 
value in the key buffer. 

End of File for a Sequential File is determined when reading a 
record in the data sector and the current position in the sector 
is greater than the offset of the sector, and there is still room 
in the sector for another record. When a sector is initially read 
into the system buffer, the current position is O. This current 
position is always checked against the sector offset (displacement); 
when the current position is smaller, there are more records in the 
sector. The record is read into the record buffer starting from 
the current position for the length of the record. The current 
position is then increased to the start of the next record (based on 
the File Header record length). ~fuen the current position is greater 
than the sector offset, the Fi~e System adds one record size to 
the current position and if the result is less than $02F4 (the 
maximum offset possible), End of File is issued. If it is greater 
than $02F4, the flink is used to get the next data sector and the 
current position is reset to O. 



6.0 INPUT/OUTPUT CONTROL SUBSYSTEM 

6.1 Devices and Their Software Drivers 

1. eRTs 

The section on eRTs will be written at a later date. 

6.1-1a 



6.1 Devices and Their Software Drivers 

2. Printing Terminals 

6.1-2a 

The section on Printing Terminals will be written at a later 
date. 



6.1 Devices and Their Software Drivers 

3. Discs 

Several types of disc drives are supported by the BEST 
Operating System: 

Split Platter Disc Two distinct platters, fixed and 
removable. The fixed disc is 
stationary; the removable disc is 
a portable cartridge that can be 
removed entirely from the disc 
drive unit. 

6.1-3a 

Removable Only Disc , With more capacity than the Split Platter 
disc, the Removable Only disc consists 

Fixed Platter Disc 

of one cartridge unit that is completely 
removable from the disc drive unit. 

Effectively one cartridge unit which 
cannot be removed from the disc drive 
unit. 

The Configura tor for the BEST Operating System considers 
each platter of a split platter disc drive as a separate entity. Once 
a disc pack 1s software initialized, BEST takes no notice of what type 
of drive is on the system. Al'l drives are handled by the same software 
disc driver, in the same manner. This provides software compatability 
through the entire Qantel product line. 

A. Physical Structure of Disc Packs 

Every Qantel disc pack has at least two SURFACEs (top/bottom). 
Each surface is accessed by a Read/Write Head. The SURFACE at 
a platter is divided into TRACKs, where a TRACK is a strip equidistant 
from the center spindle. Within this TRACK are 10 contiguous SECTORs. 
A CYLINDER is the same TRACK on all surfaces of the disc pack. (See 
Diagram 6.1.3-A). 

The BEST Operating System requires 768 byte sectors. On a 
TRACK, each sector is preceded by a PREAMBLE and followed by a 
CRC check character. The PREAMBLE and the CRC are not included 
in the 768 bytes of data. The fR~mLE. data. and GRC characters 
are contained between Sector Notches on the pack. The Sector 
Notdl is the mechanism by which the drive determines the beginning 
of any sector on that TRACK. 

..-.. -



6.1 Devices and Their Software Drivers 6.1-3b 

3. Discs (cont) 

PREAMBLE 768 BYTES OF DATA CRC 

"---___ ---'10 DI 
*Sector Notch *Sector Notch 

B. Readi~d \lriting froo Disc 

When a certain sector on the disc is needed for either a READ 
or a \JRITE, the operation is always preceded by a SEEK instruction. 
The sector provided by the Operating System becomes the Seek Parameter 
and, when the SEEK is performed, the head is positioned to the correct 
CY~INDER on all SURFACEs and the appropriate head is selected. When 
a Sector Notch is detected, the Read Gate is opened and any PREAHBLE is 
read. The PREAHBLE is made up of 31 bytes of $00 and a Track Check 
Character. The controller waits for 16 consecutive "a" bits to clock 
by and then looks for the first "I" bit which precedes the Track Check 
Character. If that PREAHBLE does not have 16 consecutive "0" bits, 
the controller waits for the next PREAHBLE and checks it. This 
process repeats until all PREANBLEs have been checked. If they 
all fail, a Harked Sector Status is posted. Once a PREAMBLE with the 
16 consecutive "a" bits is found, the Track Check Character is 
compared with the Seek Parameter, modulo 16. If it compares 
correctly, a successful SEEK is reported; if not, an Invalid Seek 
is returned. 

Two Sector Notches very close together provide an INDEX PULSE to 
the controller. This INDEX PULSE resets the internal sector counter 
to 0, so that any sector in the track can be chosen by counting 
the number of Sector Notches since the last INDEX PULSE. 

To perform a READ, the Read Gate is opened. when the sector 
counter indicates the desired sector is under the Read Head. Again. 
the PREAMBLE is checked for the 16 consecutive "a" bits a~d reports a 
Marked Sector if they are not found. If they are found, it waits for 
the first "1" bit, compares the Track Check Character against 
the Seek Parameter and, if the compare fails, reports an Invalid 
Seek. If the Track Check Character is correct, the data is transferred 
to the disc controller buffer, and a CRC character is calculated from 
the data being transferred. This CRe is compared against the eRe 
at the end of the sector and, if it is not the same, a Read Error 
Status is reported. If the ~RC matches, the READ 1s good. The controller 
tries three times before reperting a r.la~ked Sector or Read£rror Status. 



6.1 Devices and Their Software Drivers 6.1-3c 

3. Discs (cont) 

When the SEEK is performed for a WRITE, the controller waits 
for the processor to finish filling the disc buffer, and then performs 
the track check as outlined above. Once the track is verified, the 
controller waits for the correct sector to come around and writes 
the PREAMBLE, Data, and a CRC character calculated while the data 
is being written. After the sector is written, the controller waits 
one revolution and rereads the sector. If an error status is returned, 
the controller rewrites the sector and again attempts to 
read it back. If an error status appears again, the controller 
attempts to mark the sector by writing 1's in the PREAMBLE and posting 
Marked Sector Status. If it cannot mark the sector, the original 
error status is reported. 



-~~~~SI 

ROTATION ~ 
".... --

3 4 

14 . 13 

DISK SECTOR INTERLACE 

CARTRIDGE DISK & IOU-24A/C 

8 

9 

1:1 
1-1 

~ 

~ 
INDEX MARK 0\ 

...... 
(,.l 
I » 

0\ . 
...... 

1:1 

~ 
1-'" 
n 
(II 
III 

§ 
0. 

~ go 
1-'" 
0; 

CI.I 
0 
H"I 
rt 
:::r:: 
l» 
0; 
(II 

t:1 
0; 
1-'" 
< 
~ 
0; 
IJI 

C1\ 

...... 
I 
(,.l 

0. 



6.1 Devices and Their Software Drivers 6.1-3e 

3. Discs (cont) 

c. Disc Error Status --,----_._---

The BEST Operating System is capable of reporting four distinct 
disc errors: 

Status ~24) - Read Error 

A Read Error occurs because the eRC character calculated on 
the data after the READ, does !!Qt match the CRC character at the 
end of the sector, which was calcuated when the data was written. 
This is the most common of the four disc errors. It can be 
caused by a dirty disc pack, dirty heads, or be indicative of more 
serious hard\~are problems. If the Read Error is caused by a dirty 
environment, cleaning the heads and packs should solve the problem. 
In the event the Read Error is a true calculation error, Read Error 
status can only be cleared by rewriting the sector. The utility 
DFULL32 can be used to ~EAD and w~ITE the sector. A Read Error 
after a \.JRITE to disc indicates that the controller could not 
mark the sector it was attempting to \-JRITE (see Status 54 (44) -
Harked Sector). 

Status 54 (44) - riarked Secto~ 

A Harked Sector Status can occur on a READ or a I'/RITE. On a 
READ it indicates that 16 consecutive bits of 0 were not found 
in the PRCAHBLE. A Harked Sector Status on a IJRITE is posted when 
the controller, after two unsuccessful attempts to HRITE data to the 
disc and ReAD it back, marks the sector by writing l's in the PREAMBLE. 
(If the controller is unable to mark the sector, Read Error (34) is 
posted). In general, a Harked Sector is uncommon while running 
under BEST, and usually indicates a more serious hardware problem. 

An Invalid Seek occurs \Jhen the Track Check Character in the 
PREAHBLE does not match the Seek Parameter or when the Seek Parameter 
is beyond tbe physical range of the disc. An Invalid Seek is the 
only disc error status that can, in some cases, be generated by 
bad pointers on the disc or improper software initialization. \lhen 
an Invalid Seek occurs, all software causes should be checked 
(*KEYCHEK to check pointers, etc.) before attributing the failure to 
hardware. 



6.1 Devices and Their Software Drivers 

3. Discs (cont) 

Status 60 - Non-numeric Sector Number 

A Status 60 is the only disc error that is not generated 
by a hardware status from the disc. This status comes from 
checking the SEEK parameter before sending it to the disc and 
generating a disc error if the parameter is not numeric. Status 
60 is generally caused by a bad pointer in a file. 

6.1-3f 



6.1 Devices and Their Software Drivers 

4. Printers 

The section on Printers will be added at a later date. 

6.1-4a 



6.1 Devices and Their Software Drivers 6.1-5a 

5. Magnetic Tape 

A. Buffer Size Control 

QIC programs set up a maximum buffer size for all Input/Output 
operations through the use of a FILE statement at the beginning of each 
program. Although many FILE statements may appear in the program, 
the largest record size declared will be the buffer size. If no FILE 
statement is specified, the system sets a default buffer size of 136. 

For magnetic tape, the default record size is 768 bytes. If 
a smaller record size is desired, the mnemonic (REC=N) can be used in 
the tape FOlUtAT statement to force the actual record size. 

For examp Ie: 

10 FORMAT (REC=50);A$;B$;C$ 

The (REC=50) mnemonic will force the record size to be exactly 
50 bytes. If there are more than 50 characters, the extra 
characters will be truncated. 

All other devices (except the disc) strip trailing blanks and 
force the record size to the-actual count of all non-blank characters. 
The (REC=N) mnemonic is only relevant to the magtape, although it can 
be used with no error on oth .. ~r devices (it will be ignored). 

NOTE: Further information will be added to the Hagnetic Tape 
Section at a later date. 



6.1 Devices and Their Software Drivers 

6. Communications Controllers 

A. Asynchronous Communication Driver 

The Asynchronous Communication Driver permits communication 
between the BEST user and a wide variety of asynchronous terminals 
and computers. Once OPENed and given the appropriate control block. 
the driver will continuously monitor the line for any incoming data. 
The condition of the line can be monitored by use of the QIC STS 
function. Data can be transmitted over the line by issuing \-IRITE or 
PRINT statements. Once the STS function indicates that data has 
been received, a READ or INPUT statement will give the user access 
to the data 

This driver works in conjunction with the Asynchronous 
Communication Controller (IOU-15A/B) with a crystal speed 
appropriate for the user's requirements. The communication 
driver is included in the BEST Operating System, and can be accessed 
if a communication line is configured (Device Type - CM). 

As with other peripheral devices. the communication line must 
be OPENed using the statement, 

OPEN (X) 'cm' EXCP=YYYY 

where X is an available LUN, and YYYY is the user-provided 
exception address. Immediately following the OPEN statement, 
the user must write a seventeen character hexadecimal string to the 
communication driver. This string is the control block for the line 
and has the follo\ling configuration: 

xxx FORMAT I@OOAAJ:>BCCDDEEFFGGHllIIJJKKLLMJiNNOOPP@" 

where the alphabetic character pairs have the following meanings: 

AA The AA control character is bit encoded where the bits 
have the following meanings when they are "I": 

2(7) Don't wait for DATA SET READY 
2(6) Don't wait for CLEAR TO SEND 
2(5) Data has EVEN PARITY 
2(4) Data bas ODD PARITY 
2(3) Hardware system is 4 WIRE (Keep Request to 

Send True) 
2(2) Set data rate 8 times base data rate 
2(1) Set data rate 1/8 times base data rate 
2(0) Data is 5 bit code (Baudot Code) 

BB The 88 control character is bH encoded where the bits 
have the following :neanings when they are "I": 



6.1 Devices and Their Software Drivers 6.1-6b 

6. Communications Controllers (cont) 

2(7) Look for EOT and ETX as Data End 
2(6) Look for ENQ. ACK. NAK. or EOT as Control End 
2(5) - Data has Longitudinal Redundancy Check Character 
2(4) Double Buffer Receive 
2( 3) Set Full Duplex (Receive while Transmitting) 
2(2) Don't time out until after receiving first 

data character 
2(1) Data End consists of multiple characters 
2(0) Data Follows Poll 

CC The CC control ch~racter is bit encoded where the bits 
have the following meanings when they are "1": 

2(7) Buffer End signaled by ETB character 
2(6) Data is 7 bit code (Correspondence Code) 
2(5) - 2(0) Undefined 

The control characters DD and EE are counts for the number of 
300 millisecond time intervals to elapse before the driver will 
issue Time Out Status. (These counts are hexadecimal). 

DD Specifies the time interval that the driver will wait. 
PRIOR to receiving data. before Time Out Status is given. 

EE Specifies the time interval that the driver will wait, 
BETWEEN characters while receiving data, before time 
out status is given. 

FF Specifies the number of characters expected in a poll if 
poll is set. In most cases this should be $00. 

GG This is the SOH character or, $00. 

HH This is the STX character or, $00. 

II This is the ETX character or. $00. 

JJ This is a count of the number of characters expected 
after the ETX character or, $00. 



6.1 Devices and Their Software Drivers 6.1-6c 

6. Communications Controllers (cont) 

KK This is the ETB character or, $00. 

LL This is the ENQ character or, $00. 

ill! This is the EOT character or, $00. 

NN This is the ACK character or. $00. 

00 This is the NAK character or, $00. 

PP This is a count of the number of characters expected 
after a control end or, $00. 

The communication driver responds to the STS function \J!th a 
five character Status String. The characters of the string have the 
following meanings: 

Byte 1: The first character is the constant "6" which informs 
the user that the device being accessed is the 
Asynchronous Communication Driver. 

Byte 2: The second character informs the user of the condition 
of the communication line. 

o = Communication line is not ready 
1 Communication line is ready. 

Byte J: The third character informs the user of the condition 
of the receive buffer: 

o a Receive in progress 
1 - Buffer available 
2 = Data End Detected (ETX or EDT Received) 
J = Control End Detected (ENQ, ACK, NAK or EOT received) 
4 Time Out before receiving any data 

Byte 4: The fourth character informs the user of the error 
status for this buffer. 

o • Uo errors on receive 



6.1 Devices and Their Software Drivers 

6. Communications Controllers (cont) 

1 - Data or LRC error on receive 
2 - Buffer Overflow (Data Lost) 
3 - Time out between character receptions during 

receive 

6.1-6d 

~yte 5: The fifth character informs the user of the condition 
of the reverse channel. 

o - Reverse channel is off. 
1 - Reverse channel is on 

The four mnemonic controls available for the communications 
driver are defined as follows: 

CBF The (CBF) mnemonic in a FORMAT statement, tells the 
communication driver that the next WRITE will be 
a new driver control block, as defined above. 

DIL The (DIL) mnemonic in a FORMAT statement, tells the 
communication driver that the next WRITE will consist 
of a number to be dialed by the automatic calling unit. 
The line condition must be 0 before a dial may be 
issued. If the line condition is 1, an exception code 
30 (INOP) will be returned. After the dial, the 
line condition should be checked. If the line condition 
is still 0 after the dial, it means the dial failed and 
should be retried. 

SRC The (SRC) mnemonic in a FORMAT statement, tells the 
communication line to SET REVERSE CHANNEL ON. 

RRC The (RRC) mnemonic in a FORMAT statement, tells the 
communication line to SET REVERSE CHANNEL OFF. 

A READ is performed in the same manner as for other peripheral 
devices, e.g , 

READ (X,Y) or INPUT (X,Y) or INPUT (X) Y$ 

.where X is an available LUN and Y is the appropriate FORMAT 
statement number, or Y$ 1s a defined string variable. 
READ statement has two purposes. First, it is used to 
receive buffer for the user if there is one available; 

The 
get the 
seco~d 



6.1 Devices and Their Software Drivers 6.1-6e 

6. Communications Controllers (cont) 

it is used to clear·· the receive status to O. If there is no data 
waiting, the driver will return a string of length 0, and clear both 
receive status bytes to O. 

The Asynchronous Communication Driver will supply records of 
up to 220 characters and automatically split longer records into 
two buffers. The QIC Programmer is responsible for allocating his 
receive record sizes according to the characterist :_cs of the device 
he is communicating with. 

The WRITE statement has three purposes depending on what 
preceded it: 

o If the \lRITE is preceded by an OPEN or CBF mnemonic, it 
is supplying the seventeen character control block. 

o If the WRITE is preceded by the DIL mnemonic, it is supplying 
a number to be dialed by the automatic dialing unit. 

o If the \lRITE is preceded by neither of these, it is 
supplying the data to be transmitted. Any WRITE errors 
result in error 30. 

A CLOSE statement releases the Asynchronous Communication Driver 
and disconnects the line. 

The next three pages provide an example of a Communiations 
Program. 



6.1 Devices and Their Software Drivers 6.1-6f 

6.1 Communications Controllers (cont) 

SAMPLE QIC PROGRAM FOR RECEIVING DATA FROM AN OPSCAN-17 OPTICAL CHARACTER READER USING 
OPSCAN LINE DISCIPLINE 1275 AND WRITING THE RAW DATA TO A SEQUENTIAL DISC FILE 

#IHlI '£ 
• JIJIN-I!lIlM. 

'"' #tUfI~II';-
/,J)fG 



SeN17S! ON II. PAGE I 

1000 .,. 
2000 "" 
3000 .,. 
LIOOO .,. 
5000_ ••• 
0000 .,. 
7000 .,. 

I 
1 __ .. _fJLE .. STATEME.N.T __ . , 

DECLARATIVE SECTION 

8000 ___ •• 1 _________ LLNGTH_ 1 _____ . ___ . ___ .. ___ _ 
qooo .,. LOCAL AN~wrRs,RECFLG$ 
0000 .,. LENGTH ~ . 

6,1- 6g 

1000-... LOCAL -SUIUSL _____________________ _ 
2000 .,. LENGTH 140 
30qO .,. LOCAL RfCBUFS 
II 000 -1 •• -1--_____ . __________________________ . ____ _ 
5000 .,. 1 FORMAT SECT tON 
bOOO .,. 1 
7000_ ..... _l.O"O"-----'-f .... ORMALREt..E.L.GS1~E~!:H'f_"'s'--______ . _______________ _ 
MOOO ••• I 
qooo ... 1 COMMUNICATtO~S CONTROL 6~OCK 

!O a 00 _ .... ---1 
!lOOO .,. 200 FORMAT "'OO'~ ICONTRoL BLOCK HEADER CHARACTER 
!200~ .,. '20'~ lEVEN PARITY DATA AND NO~MAL DATA RATE <t200 BAUD WITH 4.Q2MHZ CRYSTAL) 
~3000_ • .L.A- .9J) .• ~-.1.E.Ol_O!LE_lX_SJ~E(:;1t..Y_~P.AlA_~~&ANILPOUBL.E_I~JJEf'LILREC.E1_'l ..... E __________ _ 
?4000 .,. 'oa.~ INO RELEVANT CONDITIONS TN THIS BYTE FnR OPSCAN OISCtPLINf #27~ 
?~OOO 000 'b4'~ 130 SECOND INTERVAL BEfORE No FIRST CHARACTCR TIME OUT 15 ISSUED 
? b 0" 0 _ ..• JI ... '0 A '~J3_ .. SEC 0 ND __ I NH:RYAL_ A U£~lt S T ARLOf_OAI L!lL F:!lR.L1JJ1LOU L.B£.lJo!ff1.L.CrlABAt.It.Ba_ 
~70qo ., •• oo.~ INOT R[lEVANT TO OPSLAN DISCrPLINE #27~ 
28000 .,. 'OO'~ INOT RELEVANT TO oP3CAN DISCIPLINE #27S 
2q 0 00-•• JI' 0011 ... __ 1 NO I .. R( LE.Y..AN I _10_0 P S"-MLDJ..5..C..t£L..l.N .... E~# 2~7 ..... 5'--______________ --'-_ 
3uOoO .,. ,q3'~ l"xOFf" CrlARACTER FOR ETX 
310~O .,. flOO'~ INOT RELEVANT TO OPSCAN DISCIPLINE '27~ 
32000 ..... _OOO'~_INOLRELE VA_NlJO __ OPSCAN __ Dl SC IPL1Nf' .. _#21~5 _____ . 
33000 ., •• oo,~ INOT RELEVANT TO oPSCAN DlSCIPLINE 'Z7~ 
34000 .,. OQ3 •• I"XOFF" CHARACTER FOR lOT 
35000- •• --..' 00 .~--1NO ~ELE VA.N.T....JO_j).e.SL.A~Lj) ts.C.JPU.ML_#2-,-,75~ _______________ _ 
3bOQO ., •• 00'. INOT RELEVANT TO OPSCAN DISCIPLINE *Z7S 
370~0 .,. '00'" INOT RelEVANT aT OPSCAN DISCIPLINE '275 
311 0 00--. ..... -10---
3q ooo .,. 1 "XON" CHARACTER TO START EACH TRANSMISSION 
40000 .,. , 
-4 1 000_ ..... _l.D..O._-L.F .... O ..... R MA..l.-.!fJ._~ 
1.12000 ." , 
1.13000 .,. 1 RECETVE surFER FORMAT STATEMENT 
1.I11000 __ .... 1 __________ .... ___ _ 
1.15000 .,. 400 FORMAT RfC6UfS 
I.IbOOO .,. 500 FORMAT rEl)'"OPSCAN-17 SAMPLE COM~UNICAtIUNS PROGRAM USlNG DISCIPLINE • 
..1.17000 .. u_----tl21.:;o.5.:... .. ____________________ . ______________ _ 

48000 ... 1 
qqOOG .,. , CODE SECTfON 
50000 ••• _i _______ .. .- __ . _______ ._. ____ .... _. __ .. _____ . ____ .. _ ...... _____ ..... _ 
SlO~O •• 1 , THIS SECTION OPENS THE CO~MUNJCATIONS A~D DISK FILES 
52000 .,. I IT ALSO INITtALtZES THE COMMUNJtATIO~~ LINE wITH lHE 
S:SQOO _ •• _.1 _CONIROL __ BLQC.K......!_NIL1iAlISJ.o.R...JHL.C.O!UUJNlc.AUllN..LlNL 
5QOOO .,. I TO COME READY. 
550.0 ••• 1 

_50000 .... _...lOoollO--__ --- ... --.. - .. --.---------
57000 ••• PRINT (O,~OO, 
58000 .,. OPEN (1) RRECDATAR 

--_ ... _---



PSCN17S' ON Ii, PAGE 2 

sqooo 000 OPEN (2) ·eMS" 
bOOOO "0- --. ___ .JcjRITE (2,200)-------- -~ ___ ~~ _______ ~. ___ . ___ .. ___ _ 
bl000 00' 11110S 
b20~O "0 
b30~O -•• -.-
1>4000 "0 1 
05000 ". 1 
0001)0 .,. 1 
b7000 .,. 1 
b8000 ", 1 
bqOOO .••• 1 __ _ 
7000~ 0" 20001 

STATUSS • STSCZ) 
IF SUBCSTATUSS,Z,lL£..IL_"J1" COlO UOO 

THIS SECTION IS THC COMMUNICATJONS L~OP 
IT toIRIHS AN ~l\ON" C~AR"l:T[R TO TrlE opSC.AN_ .. TQ. _________ ._. ___ . __ ~. ___ . ____ _ 
START IT TRANS~llTING TO THE COMPUTER 
THE CODE" THEN WAITS fOR A RECEIVE aurFlR 

71000 .00 WRITE (2,300) I SEND "XON M 
72000 ••• -- -~. _RECFLG.S ... ;:._ ".0 . .'! ____ 1. CLLAR_REcORO ERROILILAL 
73000 .,. 30001 
74000 0" STATUS! : STsr2) 1 GET CUMMuNICATION LINl STATUS 
750 vo.-••• --- __ IF._SUBtSlUUSJ,l,_lLI:G......!'J!.'!.....GD.IQ..JlI.QJLLWULIOR_B.UP.:+-F ..... E ... R ________ _ 

7bOOO ,0' 1 
77000 ••• 1 THIS SECTION HANDLES THF. RECEIVED DATA 
711 000 _ ., ___ L ____ IF NO. OA lA_ WAS KE"CI: I VlP.THf PROGR411 .. 1.1f<ANCIiU .10 tHEC'L.rQB.~IER.cllHAUOl'L-
7Q060 .,. I ELSE IT READS THE R[CEtvED DATA AND C~ECKS fOR DATA END 
ROOO~ .,. 1 IF NOT DATA END IT BRANCHF~ TO SET THE ERROR FLAG AND WR1TE THE OATA 
81000_. __ ._L ___ ._TO __ DlSt< . _______ ~_. ____ . ________ . ___ . ____ . ___ _ 
A2000 0'0 1 ELSE IF OATA ERROR IS TRUE IT SETS THE ERROR FLAG AND WRITES TO DISK 
RlOOO ,0' 1 ELSE IT WRITES THE DATA TO THE DISK 

~~~:~-:~~-L----TF-sl,.B-C-S-TAT"U-S-!~ 3-;-i-,-r-Q-"""""-- GOTO bOO\) 1 fF~-O-DA-T-A -R-E'-CE::-Ic-V~E----:::-CBRANCH TO-[-N-O-
AbOOO ." READ (2,400) 1 ElSC READ THE DATA 
870 00 _U_A_ ______ 1 F' .5 U B ( S tAlUS $ , l,J..L t;t __ "-2_'~.G 0 IO __ ~ O .. C,-O _ t.l f .-J!.OI_P..AlA_ E" N 1)~t-4 ~N_.f H Q 0 fL __ _ 
SHODO "0 IF SUBCS1ATUS!,4,1) CQ "0" GO TO ~ooo 11F UATA OK THEN nON'T sET EHROR 
SQooll 000 40001 

. q009t1 •• L ____ .. ___ R(r.F.I.J!_L!_~1.."_tSE.LJIA!.A_EJ~IlOILE.I.. .. MLaN 
(HOOO .,. 50001 
Q200Q 0" WRITE Cl,IOO) lWRITE DATA TO DISK FILE 
q3000 __ uL _____ -''G'-''OI..tLZ..O.1l0''-__ .J.!~EC~t'lLNE..xLFf:~!i12 
Q4000 .,0 I 
q50o~ ". 1 THIS SECTION CHECKS FOR E~D Of COMMUNICATION 
QoooO_..L.I!LJ _____ IF OPERA' OR HIDleAH S.THE THERE A~r.,..QR[ __ D~T"'_A ________ _ 
Q7000 .,. I SHEETS TO Bl READ THE PROGRAM RETURNS TO Th[ 
QbOQO 0" 1 COMMUNICATION LOOP 
CI Q Q 0 0 __ a_a.. _1. E1._SL.U..J:J._O.skLl..!'l_~..u_LJ:.-S_} ND __ ID..MlHA.IE._.",-S _~ _______ _ 
~OOOOO .,. I 
~tl000 ". bOOOl 
'02000 .,. ______ PRINLCO L_ "ANYMOR_Lt>~HSHEnLlo_.aE.B~AQ'LO·LNL .. • __ . __ .. __ _ 
10300~ .0. INPUT CO) ANSWERS . 
10~OOO .0, IF ANSWERS EQ "Y" GO TO 2000 
105000_.,0 _~~._. ____ .l F ANSJjE R.S _N.L~N" GIJ1_O...b0Qo... 
10bOO~ 0" CLOSe Cl) I CLOSE DJSK rJLE 
107000 .0_ CLOSE e2) 1 CLOSE ~OMMUNICATtON LINE 
11l 8 000_ o o. STOP _______ . 
10QOOO .,. END 

----.-----.---- .,.- - .. _------

... i.'. " .. , f 1.", - , ,. ~ •• 



6.1 Devices and Their Software Drivers 6.1-7a 

7. Clocks 

Any of the Qantel Systems may optionally contain a System Clock. 
Once started, it will maintain the system variable, TIME$ within 
one second. The clock may also be OPENed and read by an INPUT 
or READ instruction if one second time resolution is inadequate. 

As with any other peripheral device, the clock is accessed 
by using the statement: 

OPEN (X) "CL1" EXCP-YYYY 

where X is an available LUN, and YYYY is the user-provided 
exception address if the clock is unavailable. The clock must 
be OPENed before any of the clock functions are performed. Once 
OPENed, the clock may be read from or written to in the standard 
format. 

The clock is initially started up by writing to the clock 
in the following format: 

LENGTH 8 
LOCAL TIMER$ 
10 FORMAT TIMER$ 

OPEN (1) 'CL1' EXCP=9999 
(Assign TIMER$ the starting time value) 
WRITE (1,10) 
CLOSE (1) 

where TlMER$ is an 8 byte unedited string value that has the 
appearance of HHMHSSOO (H=hour, M=minute. S-second) Once the 
clock is started, it may be read for the correct time or the value 
of TIME$ may be used. To obtain the correct time through either a 
READ or INPUT statement the format is 

READ (1,10) or INPUT (1,10) or, INPUl (1) TIMER$ 

where the lengths and formats are the same as listed in the above 
example. Again, the variable TlMER$ must be an 8 character, unedited 
string variable. 

The system clock will respond to the STS function with a two 
character string. The first character, a '5', informs the user 
that the device accessed is a clock. The second byte will be 
a ' 0' if the clock has not been started. or a ' l' if the clock 
has been started and TI~:$ is being maintained within 1 second. 

The system variable TIME$ is an eleven character edited string 



-~-'-.-;..o..;. ...... ~ ---- ---- -.--------------

6.1 Devices and Their Software Drivers 6.1-7h 

7. Clocks (cont) 

of the form HH:MH:SS:OO. This variable is available to any user 
at any time. once the clock is started. The clock maintains 24 hour 
time. i.e •• 1 :00 PU is 1300 hours. If an AM/PM convention is 
desired. it must be converted by the user program. 

As with other peripheral devices, the statement CLOSE (1) 
releases the clock and makes it available to any other user. 



6.1 Devices and Their Software Drivers 

s. Card Readers 

The Card Reader Section will be written at a later date. 

6.1-Sa 



6.2 Buffers 6.2-1a 

1. System Buffers 

The section on System Buffers will be written at a later date. 



6.2 Buffers 

2. Record Buffers (User) 

The User Record Buffer is the area reserved within a user 
partition for I/O Operations. This buffer declares the maximum 
number of characters accessed during one operation, such as 

6.2-2a 

a READ or a WRITE. The buffer size is established through a 
FILE statement in the user program e.g, 

FILE 'CUSTMAST' ,252 

Any number of FILE statements may appear in the program, but the 
user buffer area is established by the largest FILE statement. 
A default buffer size of 134 bytes is used if no FILE statement 
appears, or if the FILE statement is smaller than the default size. 

On an attempt to READ a record, the data specified in the FORMAT 
statement is moved into the user record buffer from the system buffer. 
If the number of bytes specified in the FORMAT statement is greater 
than the defined user record buffer, the system will generate an 
Error 44: I/O Buffer Overflow. 

On an attempt to WRITE a record, the system uses the record 
size from the file directory entry to determine how much data to 
pull from the user record buffer. If this buffer is smaller than 
the actual record size of the file, what"ever is in memory 
directly behind it will be picked up and written at the end of 
the data record. To eliminate "garbage characters" at the end 
of a record, the user record buffer should always be declared 
the full size of the largest record being written. 

CRT formats do not use the user record buffer. Instead, the CRT 
driver uses the system record buffer (768 bytes) for its I/O to avoid 
requiring large buffer areas in the user program for CRT I/O. 
Other drivers, such as the one for the Printing Terminal, use the 
user record buffer. In cases where a format is written to work 
on a CRT and on a Printing Terminal, the Printing Terminal would 
get an Error 44 attempting to write the same format as a CRT, unless 
the size of the user buffer was increased to accommodate the format. 



6.2 Buffers 6.2-3a 

3. Buffer Pooling 

The section on Buffer Pooling will be written at a later date. 



6.3 Memory 6.3-1a 

1. Memory Addressing 

The QANTEL Hardware System can only "look at" a total of 32K at 
any given time. By definition, the first 16K of memory must always be 
active, and the second 16K is swapped in and out from the remaining 
memory based on the operation being performed. The method used for 
addressing memory depends on the type of processor in the system. 

Standard Processor (Q7) 

The maximum amount of memory available with these processors 
is 64K. This 64K is assigned BANK names in increments of 16K. 

Increment Addressing Bank Name 
1st 16K $000Q-$3FFF Bank A 
2nd 16K $4000-$7FFF Bank C 
3rd 16K $4000-$7FFF Bank D 
4th 16K $4000-$7FFF Bank E 

Banks A and C contain the BEST Operating System and, in some 
configurations, 6K of user space. Banks D and E are available 
for user partitions. To access the user partitions in Banks D and 
E, the hardware responds to a SET BANK Instruction This instruction 
"activates" a particular 16K segment of memory, whose addresses 
are absolute. For this reason user partitions cannot overlap 
these 16K banks. Any user partition must "wholly" reside in a 
bank of memory that is activated by a SET BANK instruction. 
The Standard Processor can use MEM 3B (4K Modules) or I1EM 5B (8K 
:!odu1es) memory boards. (See Figure 6.3.1) 

High Speed Processor (Q7.5) 

These processors use four 17-bit base registers to access 
up to 128K of main memory. As with other processors, only 32K is 
accessible with a single instruction. 

Each location in memory is specified by a base register number 
(0,2,4 or 6) and an offset (between $0000 and $lFFF). The effective 
memory address is computed by ad,ding the contents of the base 
register to the offset. Each base register, in effect, contains 
the first address of an 8K block of memory. 



6.3 Memory 

1. Memory Addressing (cont) 

Hhen IPL is pressed, the 1300 sets up the base registers to 
access the first 32K of memory: 

BASE REGISTER 
o 
2 
4 
6 

CONTENTS AT IPL 
$0000 
$2000 
$4000 
$6000 

6.3-1h 

The high speed processor can simulate the banking of the standard 
processor When a SET BANK instruction is executed, the Q7.5 loads 
the base registers to access the predefined 16K bank of memory. Base 
Registers allo~l all memory to be considered "Contiguous" because 
any portion of memory can be described by the beginning register 
position and the offset. The high speed processor requires MEM 5B 
memory boards. (See Figure 6.3.1) 



6.3-1c 

Figure 6.3.1 MEMORY LAYOUT 

HEM 3 Systems 800.900.950.1200 

Slot 1 Slot 2 Slot 3 Slot 4 

3000 [w~o I 
3FFF 2FFF 

7000 

~ ~~ 7000 16000 I -
6FFF iHI 7FFF 6FFF HI 7FFF 6FFF 

0000 [1000 I 
OFFF IFFF 

.7FFF 

~ -
~ 

4000 

~~ ~~ -
4FFF 5FFF 4FFF 5FFF 4FFF· 5FFF 

BANK A BANK C BANK D BANK E 

UEM 5 - Systems 800,900,1200 

Slot 1 Slot 2 Slot j Slot 4 

40~0 160~0 [ 
5FFF 7FFF 

Banks A and ~~~ g~~ C may be in ~7 5FFF 7FFF R7 5FFF 7FFF 
slot 1 or 2, 

RR 
~E:J 

but not in 
both. [][J [J[J 

BANKS A & C BANK D BANK E 

HEM 5 Systems 950*.960.1300 

Slot 1 Slot 2 Slot 3 Slot 4 

~to~oWo~o I ~ 5FFF 7FFF 

7. 5{ CO~o 1I'0~0 I 
~ DFFF FFFF 

'.5 t4001 
~ 5;F g 7FF .. 

,~:~o~ 
..Ji'F ct~:~ 

~g IFFF 3FFF ~~ 9FFF BFFF ~ llFF ~ lFF ~ 9FF ~ BFF 

BANKS A & C BANKS D & E 3rd 32K 4th 32K 

*5witch should be in Q7 position. 



6.3 Memory 

2. Memory Board Assemblies 

HEM 5AP 

A MEH5B consists of 8K of 8-bit bytes (8192 bytes). Each 
MEH 5AP assembly can contain one to four MEM5B boards, allowing up 
to 32K per slot. The hexadecimal address range of a HEM 5AP board 
is $0000 to $7FFF. The following diagram shows the arrangement of 
a MEH 5AP board 

$4000 $6000 

$5FFF $7FFF 

$0000 $2000 

$1FFF $3FFF 

6.3-2a 

The HEM 5AP board has one switch with a "7" (down) and "7.5" (up) 
position. This switch is set to the "7" position for a standard 
processor, and to the "7.5" position for the high speed processor. 
It is imperative that this switch is in the proper position for 
the particular processor being used. 

\-lhen data is wri t ten to pari ty memory. a pari ty bi t is 
calculated and stored as the ninth bit with each byte. Whenever a 
byte is accessed, its parity bit is again computed and compared with 
the original parity bit. If they are unequal, the memory is capable 
of interrupting the main processor. 

BEST reports all parity errors encountered with the following 
message displayed on device 0: 

Hf.H.FAIL X/YY 

where X is the device number of the MEH 5AP, and YY is the Status. 
BEST will halt (Start/Stop light) on an error, and pressing Start/Stop 
will produce no results. \-lhen the halt occurs, the light on 
the HEH 5AP board corresponding to the 8K block where the error 
occurred will be on. If the system is IPLd, the light will stay 
on, but the memory failure interrupt will not occur until another 
parity error occurs, either in the same (or some different) location. 



6.3 Memory 

2. Memory Board Assemblies (cont) 

In the case of a memory failure, the data in at least this 
location may be incorrect. Do Not Continue Processing. Leave 

6.3-2b 

the failure message on the screen and call a Field Service Engineer. 
In those systems where diagnostics are provided, write down the 
error information, IPL and run the Memory Test. 

MEM 3AP 

Some configurations may contain memory in 4K Modules (HEM 3Bs). 
Up to four MEM 3Bs can fit on a board assembly, allowing 16K of memory 
per 1/0 slot. This memory does not support the parity error features, 
and cannot be used on high speed processors. The following diagram 
shows the arrangement of a HEM 3AP board: 

$3000 $2000 

$3FFF $2FFF 

$0000 $1000 

$OFFF $lFFF 

The HEM 3AP board has one switch with a "LO" (down) and a "HI" 
(up) pOSition to distinguish low (first 16K) from high (next 16K) 
memory. This switch is set to the "La" position if the board is 
the first memory board in the processor. It is set to the "HI" 
position on any other MEM3AP board. 



7.0 SPECIAL SYSTEM COMPONENTS 7.1a 

7.1 BEST Error Codes 

ERROR 
02 
03 
04 
05 
11 
12 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
44 
46 
47 
48 
50 
51 
53 
54 
60 
61 
62 
63 
64 
65 
66 

DESCRIPTION 
End of File 
Disc full, no allocation unit available 
Attempted WRITE to a Keyed File without a legal Index 
Attempted CREATE without a Disc Label 
Attempted OPEN on a file not found 
Attempted CREATE of a file that already exists 
Card Reader READ error 
Card Reader ••• Hopper Empty/Stacker Full/Hold 
End of File, Card Reader or Magnetic Tape 
Tape READ or WRITE error 
Printer dropped VFU on WRITE ••• System reloaded Standard VFU 
Disc Read Error on Load (Communications Line) 
Device Inoperative 
Device Unavailable 
Key Not Found 
Record not available (EXTRACTed) 
Logical Unit Number Unavailable for OPEN (already in use) 
Attemped READ or WRITE on a file not OPENed 
At temped ERASE on a file that is OPEN 
Disc Unavailable for GET or PUT 
Device Unable to perform function 
Disc Unavailable for LOCK or UNLOCK 
Disc Unavailable for CREATE 
Edit Hask length incorrect 
I/O Buffer Overflow 
Non-numeric input in a numeric field 
Parameter too large 
Keysize greater than 32 for CREATE 
Array subscript out of range 
Divide overflow 
Keyed Access to a non-Keyed file 
Cannot DELETE from a non-Keyed file 
Cannot IPL while other users are active 
Program not found 
Program too large for partition 
Cannot RUN a non-object file 
Invalid partition name 
Partition busy 
Partition not BACKGROUND 



7.1 BEST Error Codes (cont) 

System Errors ••• Cannot be handled by an EXCP branch 

ERROR 
80 
82 
83 

DESCRIPTION 
t-!aximum I/O Buffer size exceeded 
Top Key Sector not in DELETE stack 
Disc Errur 

Reports SECTOR #, DISC DEVICE, ERROR STATUS 
STATUS (34) = Read Error 
STATUS (54) = Marked Sector 
STATUS (74) = Invalid Seek 
STATUS (60) = Invalid sector number 

Key sector search impossible 
Invalid parameters for REAL program 

7.1b 

84 
85 
86 Active File List Overflow (Number of files OPENed exceeds 

90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

maximum AFLs Configured) 
System Return Stack Overflolii/Underflow 
Invalid Load Item in Object File 
GOSUB Stack Underflow 
GOSUB Stack Overflow 
Directory Entry unavailable for CLOSE 
rJext Key Unavailable for DELETE 
New Key found during Insert 
New first Key found during Insert 
EXTRACTed record not found in table 
Re-allocation of sectors below sector 10 



7.2 COMMON Structure 7.2a 

The ability to pass data from one program to another within the 
same partition is accomplished through the use of a COHMON declarative 
statement in a Qrc program. cmmON variables establish a "reserved" 
data area at the start of the partition, equal to the combined 
length of all common variables in that program. The number and length 
of the declared common variables establish where the remainder of 
the program will be loaded in the partition. Thus, a second program 
to run in a partition that must access a first program's data, must 
have the same cmmON declared to avoid loading over and des troying 
data. 

COHltON is stored in memory in declared order. Variables may 
be added in subsequent overlays without disturbing data already 
passed from a previous program, as long as the original variables 
still occur. Numeric COHMON variables are stored in memory in their 
formatted precision. String COH110N variables are stored in m~mory 
in their declared length, with one extra byte reserved for the length. 

CLEAR CLEAR COtlHON, and CLEAR LOCAL set all variables to $00. 



7.3 System Variables 7.3a 

System Variables are data areas not declared in any program, but 
available to any partition on a common basis. These variables are 
available at any time, and are stored in the first 16K of memory. Any 
user may load or change the contents of the system variables, thus 
providin& one method of passing messages between partitions. The 
System Variables available are: 

TERri$ 

TIME $ 

DAY $ 

MESSAGE$ 

PARTITION $ 

ITERM$ 

Whenever a user is activated by the system, TERM$ 
is updated with the device name of that terminal, 
i. e., "TOO", "T01", etc. TEJUol$ will always be 
blank if the active partition is Background. 
TERM$ is only updated with a valid device name 
if that device is a controlling terminal. 
TERM$ provides a method to protect terminals 
from running a particular set of application 
programs. 

TIME$ is an 11 character, edited string field, 
in the form UH:HM:SS:OO which is maintained 
within one second by a system clock. If no 
clock is present TIME$ may be used as a message 
passing area. 

DAY$ is an 8 byte, unedited string field that 
can be used for a common date or any other 
message. 

MESSAGE$ is a 32 byte, unedited string field 
that may be used as a message passing area or 
common data area. 

PARTITION$ is similar in function to TERM$ 
and may be used in the same manner. When 
any partition is ACTIVATEd, PARTITION$ is updated 
with the assigned partition name, e.g., "POD". 

ITEJUol$ is a 3 byte variable that carries the 
"initiating terminal" device name. ITERM$ will 
be the same as TERM$ for any Foreground Partition. 
ITERM$ will contain a device name of the 
terminal that ACTIVATEd a Background Parition 
(TERM$ \iill be blank). 

Any of the system variables are available to a user program 
directly, or through a string assignment statement, i.e., 
DATE$-DAY$. TIr~$. DAY$, and MESSAGE$ may be set through a string 
assignment. Once the variables are set they are maintained until 
IPL or poverdowll. 



7.3 System Variables (cont) 7.3b 

System variables provide an easy method to have a limited amount 
of data common to all users. However. they cannot be "locked" 
to prevent other users getting the same copy of the data \"hen a 
task gives up control. If this effect is desirable, the access and 
assignment of the variable must be done in a tight Qrc routine which 
does not perform any I/O or task breaks. 



8.0 GLOSSARY 

The Glossary Section will be included at a later date. 



AREA 

o - 15 

16 - 17 

18 

19 - 20 

21 - 22 

23 

24 - 25 

26 - 31 

APPENDIX A - DESCRIPTION OF RESERVED MEMORY 

USE 

Accumulator positions. Used for the results of 
multiple add instructions, etc. When single address 
instructions are used, the implied second operand is 
the accumulator and its contents. 

Stores the current program address while the CPU 
is servicing an interrupt. 

Stores the contents of the condition switches 
carry, minus, and non-zero, and status of 
interrupt availability_ 

Contains the address which will replace the 
current program address whe.n an ipterrupt is 
recognized. 

One count more than the final address at the 
conclusion of an I/O operation. 

Stores the I/O status byte when status-in or 
Read Status 2 is executed. 

Stores the character match address for Search 
Equal, Scan Left, Scan Right, etc. 

Micro-program utility bytes. 



APPENDIX B - OPERATING INSTRUCTIONS - CFIG B-1 

The Core image program CFIG, (Configurator), creates the 
system tables for the BEST Operating System, and for ALMOST (the single 
user operating system used by the Compiler and some REAL utilities). 
Based on the requirements specified, CFIG will: 

1) Create tables to describe the devices present on the system, 
the user partitions, and the number of system buffers. 

2) Allow selective updating of specific device types without 
requiring re-entry of all configuration information. 

3) Automatically assign user partition areas, given the length 
of the partition in "K", decimal, or hexadecimal notation. 

4) Allow printing of the configuration information to any 
terminal or line printer. 

NOTE: lIyll or null is accepted by CFIG as ''yes II ; any other character 
is "no". 

PROCESSING 

IPL and Bootstrap from the disc to be configured. 

PROGRAM ID: CFIG 
CONFIGURATOR XX.X MM/DD/YY 
E-END, C-CONFIGURE. P-PRINT CONFIGURATION 
ENTER CHOICE: 

Enter "E" to return to the loader prompt; "C" to configure; or 
IIplI to print the current configuration. 

If "E" is selected, control returns to the loader. 

If "C" is selected: 

RETAIN ALL DEVICES? (YIN) 
Enter "Y" or null to retain existing device information; 
enter "Nil to clear the existing device information. 



APPENDIX B - OPERATING INSTRUCTIONS ~ CFIG 

T-TERMINAL. CR-CARD READER. DK-DISC. Mr-MAG TAPE. LP-LINE PRINTER. 
P-PARTITIONS. CL-CLOCK. CM-COM LINE. X-SYSTEM TABLES, E-END, *-ABORT 

Flag 1,2, or 3 will truncate this message. 
DEVICE TYPE: 

Enter "p" or "T" or "CR" or "DK" or "MI" or "LP" or "CL" 
or "CM" or "X" or "E" or "*". 
NOTE: If "*" is chosen, CFIG will abort before writing 

to the disc and will return to the "E-END, C-CONFIGURE, 
P-PRINT CONFIGURATION" message. 

If "T" is chosen, all previously configured terminals are 
cleared. 

TYY:NX 
Enter the Terminal Number where X is the controller number, 
N is the device number of the terminal, and TYY is the 
assigned terminal name, (i.e., TOO, TOl, etc.). 

DEVICE TYPE 0-15 LINE, 2-27 LINE, 3-TYPEWRITER): 
Enter "1" for a IS-line QCRT, "2" for a 27-line QCRT, and 
"3" for a typewriter. 

PARTITION NAME: 
Enter any partition name (POO, POI, etc.) which will be 
specified in the "p" option of the configurator. 

A null entry for partition name means that the device is 
not a controlling terminal, i.e., it is to be opened 
passively by another terminal. 
NOTE: It is permissaple to enter the device number, type and 

partition name on one line if they are separated by 
commas. For examp Ie: 
TOO: 00,2,POO 27-line QCRT assigned to 

partition "POO" 
TOl: 02,3 Passive typewriter 

If "p" is chosen, all previously configured partitions are cleared. 



APPENDIX B - OPERATING INSTRUCTIONS - CFIG B-3 

PXX: 
Enter the partition length, which can be expressed in three 
ways: K, decimal or hexadecimal. For example: 
POl: 4K (=4*1024 or 4096 bytes) 
P02: 4000 (=4000 decimal bytes) 
P03: $1000 (=1000 hexadecimal bytes) 

The minimum partition size is 2K (=$800,=2048); and the 
the maximum partition size is 16K (=$4000,=16384). 

NOTE: Under Version 13.X, for each partition configured, 
768 bytes ($300) is added by the Configurator 
and reserved for system user (Task Header). 
Therefore, if 4K is requested, 4864 ($1300) bytes 
is configured with 4096 ($1000) for the user and 
and 768 ($300) for the system. 

If a partition is configured that is not assigned to a 
controlling terminal, then that partition is a background 
partition. 

If "CR" is chosen, then all previously configured Card Readers 
are cleared. 

CRX: 
Enter the hexadecimal device number of the card reader 
(e. g , E or OE). 
A null entry terminates the configuring of card readers. 

Discs (DK) , line printers (LP), clocks (CL), and communication 
lines (CM) are configured-in the same manner as card readers (CR). 
Clocks and Comm lines are limited to a maximum of one device 
each. Upper and lower platters of the 3+3 and 6+6 discs are 
configured as separate discs, (e.g., OD and 10). The 
configuration order for discs determines the order in which 
the platters will be accessed under BEST. 

If "MT" is chosen, all previously configured magnetic tape drives 
are cleared. 

MTX: 
Enter the hexadecimal device number of the magnetic tape 
drive (e.g., 8 or 08). 
A null entry terminates the configuring of magnetic tape 
drives. 



APPENDIX B - OPERATING INSTRUCTIONS - CFIG B-4 

FAST OR SLOW(F,S)? 
Enter "F" if the tape is a "Read after Write" drive; 
Enter "s" if the tape is a "Non Read after Write" drive. 
NOTE: It is permissable to enter both the device number 

and the device type on the same line if they are 
separated by a comma. For example: 
MTl: 8,F 
MT2: 9,S 
MT3: (null) 

It is not necessary to configure a magnetic tape drive to 
use the system utilities such as *BACKUP or TAPE. 
The tape drive must be configured if QIC programs access 
the drive, e.g., OPEN (1) 'MTl'. 

If "X" is chosen, the system type, memory size and buffer 
information are requested. The number of buffers, AFL's and 
extract entries, plus the number of other peripheral devices 
configured determines the amount of partition space left 
in the first 32K. This space will be assigned a partition 
if the system being configured in an 800 or 900 system. 

SYSTEM TYPE (800,900,950,1200): 
Enter the System Model Number. 
On Version 13.X this question does not appear since the 
hardware must be a System 960 or 1300. 

TOTAL MEMORY SIZE ,XK): 
Enter tbe amount of memory available on the machine. 
800,900 - 32K is assumed. 
950,960,1200 - Minimum of 32K, maximum of 64K 
1300 "- Minimum of 32K, maximum or 128K 

NUMBER OF BUFFERS: 

II 

Enter the number of buffers to be configured into the system. 
Under version 13.X, more space is available for 
buffers. Other Versions allow 3 buffers maximum for 
5 users. The suggested number of buffers is: 

Qf UI:i~I:1:i Ii. Qf B!.lff~I:!2 - lJ.X il Qf B!.lff~I:1ii - Otb.~t: 
1 2 2 
2 2,3 2,3 
3 2 3,4 2,3,4 
4 2,3,4,5 2,3,4 
5 2,3,4,5 2,3 

>=6 2,3,4,5 



APPENDIX 8 - OPERATING INSTRUCTIONS - CFIG 8-5 

NOTE: Versions CFIG earlier than 13.X or 14.X allow 
configuration of 1 buffer. File system operations 
under 13.X and 14.X require a minimum of 2 buffers. 

# OF AFL'S: (Version 13.X and higher, only) 
Enter the maximum number of files that will be opened by 
all users at anyone time. (Each user may have a 
maximum of 8 -files open at one time). 

NUMBER OF EXTRACT ENTRIES: (Version 13.X and higher, only) 
Enter the maximum number of records that will be EXTRACTed 
by all users at anyone time. 

MEMORY DEVICE I's: (Version 13.X and higher, only) 
Enter the device number(s) of the MEM 5A board(s). 
For examp le: 

MEMORY DEVICE I: 5 
MEMORY DEVICE I: 6 
MEMORY DEVICE #: (null) 

If "E" is chosen, all configuration information has been entered. 
LOAD MODULE MESSAGE: 

Enter the IPL message to be displayed when BEST, DKIN or CFIG 
is loaded (maximum of 17 characters). A null entry 
means the module message is not changed from the previous 
configuration. 

END OF TABLES = $XXXX 
This is the address of the last location used for system 
table space. 

(There is a pause while the coreimages are configured and 
written to disc). 

If "p" is selected: 
LISTING DEVICE: 

Enter XY, where X is "T" for a terminal and I'L" for a 
line printer; and Y is the hexadecimal device number for 
the controller (e.g. TO for terminal 0, LF for line 
printer $OF, etc.) 



APPENDIX B - OPERATING INSTRUCTIONS - CFIG 

CONFIGURATION ERROR MESSAGES 

NOTE: When an error occurs on a configuration, the last valid 
configuration will remain intact. 

B-6 

If any disc errors occur (other than inop), press STlsp to 
retry the 110 Operation; if errors persist the disc pack or 
drive may be faulty. 

TABLES DO NOT FIT BEFORE $XXXX 
The tables that the Configura tor builds for BEST must fit between 
approximately $3000 and $5000. (The exact values depend on the release 
level and the system type.) The usual cause for exceeding this limit 
is configuring too. many partitions or buffers. 

XXXK EXCEEDED BY PARTITIONS 
The partition layout designated does not fit in the memory space 
specified under the "X" option. The Confiaurator does not check 
how much memory is physically present on the machine. On the 800/900 
systems, this message means that in the available 32K, not enough 
space for the requested partition was left after the system 
buffers and tables were configured. 

TOO LARGE FOR DISC AREA 
This message is displayed if the CORElMAGE being written does not 
fit in the disc area assigned to it (sectors 401 to the start 
of the BEST patch area). 

***DISC IS UNCONFIGURED*** 
This message is displayed if the user attempts to configure an 
unconfigured disc (e.g. brand new), and answers "Y" to "RETAIN ALL 
DEVICES (YIN)?" 

UNAVAILABLE DEVICE TYPE 
Driver associated with the device is not present in the system being 
configured. 

AT LEAST ONE TERMINAL MUST BE ENTERED 
This message is displayed if no terminals are configured for the system. 

AT LEAST ONE PARTITION MUST BE ENTERED 
This message is displayed if no partitions are configured for the system. 



APPENDIX B - OPERATING INSTRUCTIONS - CFIG 

BUFFER OVERFLOW ($XXXX) 
The nuaber of buffers configured for the system does not fit in 
the allowable buffer area (below $4000). Try configuring one 
less buffer for the system. 

ALMOST TABLE OVERFLOW AT $XXXX - ALMOST CONFIGURATION ABORTED 

B-7 

This message is displayed if, while configuring ALMOST. the tables 
become too large. Probable cause: Too many devices configured. The 
BEST configuration has 'already been written to disc; however, AMOST 
is not configured. If this message is displayed. the system must 
be reconfigured with fewer devices. 

PRINT CONFIGURATION ERROR MESSAGES 

DEVICE XX UNAVAILABLE 
The listing device is invalid (status $FF). 

***DISC IS UNCONFIGURED*** 
This message is displayed if an attempt is made to print the 
configuration of an unconfigured disc. 

ENTER 'TO' FOR TERMINAL O. 'LF' FOR LINE PTR F, ETC 
This message is displayed if an invalid response is entered to 
the "LISTING DEVICE" question. If the listing is to be printed on 
a QCRT or typewriter. enter "T" followed by the hexadecimal device 
number of the controller; enter "L" and the device number for display 
on the printer. (Use "T" for printing terminals.) 

If any line printer error occurs, one of the following messages 
is printed: 

PTR OX INOP (SS) 
PTR OX VFU ERROR (SS) 

where X is the device number and SS is the status. Reload the 
VFU for a VFU error. "INOP" can be caused by an invalid device 
number (SS="FF). out of paper. printer off-line, etc. 



APPENDIX C - BACKGROUND IN QIC C-l 

ACTIVATE PARTITION,PROGRAM,DISC='XXX',EXCP=NNNN where, 

PARTITION = Any configured partition name, represented as a 
string variable or constant, e.g., 
"POD", "pal", etc. 

PROGRAM Any program name to be executed in the partition 
specified. If the partition is Background 
the program cannot attempt to WRITE 
to TERM$ or reference LUN 0, unless LUN a 
was previously OPENed for a file or device. 

DISC-'XXX' - (Optional) The label of the disc from which 
the program should be loaded. Default is the 
first occurrence of the program name on the 
configured set of disc(s). 

EXCP-NNNN = The exception branch to be taken if an error 
occurs during the ACTIVATE. 

Possible errors: 

64 - Invalid Partition Name 
65 = Partition Already Busy 
61 = Program Not Found 
62 = Program Too Large 
63 = Program Not Object File 
83 = Disc Error During Load 
91 = Invalid Item In Object File 

Errors that are normally fatal can be 
handled by an EXCP branch on the ACTIVATE 
statement only. 

All errors will take the specified exception handling branch within 
the initiating program and the partition being ACTIVATEd will be 
set to the CLEAR state. 

The first 256 bytes of the initiating partition are transferred 
to the partition being ACTIVATEd (before the program is loaded). 
This allows message passing via CO}rnDN from one partition to 
another, if the program being ACTIVATEd has the appropriate 
amount of COMtfON declared. 

- __ ._ ...... __ .• _~.~.~ .. __ ........ __ • _ .. _ ...... C., ........ _ ..... _ ......... _ ... c. , ....... _ .... __ .. __ ._ ... _ ........... _ ... __ •.• 



APPENDIX C - BACKGROUND IN Qrc C-2 

TERMINATE PARTITION, EXCP=NNNN where, 

PARTITION Any configured Background partition name, or 
PARTITION $ 

EXCP=NNNN = The exception branch to be taken if an error 
occurs. Possible errors are: 

64 = Invalid Partition Name 
66 = Partition Not Background 



APPENDIX D - BACKGROUND IN REAL 

The file. #ATMACRO, has been created to perform BACKGROUND 
related operations in REAL. This provides definitions of new macros 
and system variables. This file can be used by including the 
following statement in the READ source program: 

USE IIATMACRO 

The following operations will then be available: 

XACTIVATE PARTITION;PROGRAM;DISC 
ACTIVATE a program in another partition. 

XTERMINATE PARTITION 
TERMINATE a program in another background pa~tition. 

PARTITION 
Is the right hand address of a 3-byte partition name, e.g., 

""P03" 
PART where PART DA 3 
@PRTA where PRTA DAC -"PI711 

XACTIVATE and XTERMINATE both perform like other "X" system 
calls in that the zero condition switch is set on exit from the routine 
in case of error. 

The general performance of these operations is similar to their 
QIC counterparts, ACTIVATE and TERMINATE. 

The following System Variables are available to REAL programs: 

Variable Name Use Length 

ZPART$ 
ZITERM$ 
ZPARTLEN 
ZRECSIZ 
ZKEYSIZ 
ZFILTYP 

Current Partition Name 
Initiating Terminal Name 
Partition Length 
Record Size 
Key Size 
File Type 

$01 .. Sequential 
$02 • Contiguous 
$04 - Keyed 
$10 - Object 
$30 - Stand-Alone 

where TYPE is defined as, 
Q-QIC string format, left-hand address 
B-Binary, right hand address 
@-Value is already an indirect address 

4 
4' 
2 
2 
1 
1 

Type 

Q 
Q 
B,@ 
B,@ 
B,@ 
B,@ 

When Valid 

Always 
Always 
Always 
After File Access 
After File Access 
After File Access 



APPENDIX E - MNEMONIC TABLE 

IlESCR II'TT lIN 

5 
;~ f f 

oJ ~ ~ .J J 

~~ ! 
II' 

l-\~ ~~ £ E ~~ ~ 1:\ I- 0 ~~ 
1~ , ~ 

'" t oJ <f. ~ 01 .. -£ 8 . - ~ (f <J D ~ 
CI • ~"J <.I 

~~ ~ :) 
~2 ru 

lS ~5 "" c< e- (lil. ~ Vl ~!rX VALlIE 

EM ~cho Mode ET lYQewrit~c-r~H~o-d~e------~~~-toC+~-----t---t--~r----t--~r-~t---------------f 

FF Form Feed x x x 
G - N Gap = N L i !':..:e='s"-:--:-----+::+:::-t=f--lf-l-----+--+---t----+--_t-1-t-::-::------------i 
K~ Kana Field Follows OF 
LI Line Insert 

LD Line Delete 

I,L~F--_i~L~i~n:..:e~~F~e;e;d~----------ir~-t_t_i__l~~_t~X X 
LS Line SUQpress 
g_ Print Follows 

x x 
X 

040B + 
27*'00'-15 L 
52*'00'-27 L 
040A + 
27*'00'-15 L 
52*'00'-27 L 

040E 
0409 
040F 

I~ 'print Hidden Hessaae - -I---+-- -+-f-l~"-'<------I 
PS Print Screen 
P-N PaQe - N Lines 

07 
010100040B 

RB Ring Bull b---+-~~~~~~~-----I RD Roll D~o~wo'n=-~S~c~r-e-e-n-----t~~~r-'~t-t-----r---t---4r--- + 
27*'00'-15 L 
52*'00'-27 L 
DB RJ R i g h t Jus t if i e d F 1 d X X ----If---t---+----~--t-+-t'''-''--------------1 

Set Red Ribbon ix~--~R 
au Roll up Screen X X 

RW Rewind Tape 
SB Start Background 

I,S~F~ __ ~S~t~rt Foreground 
SK-N Skip to Channel N 

010100040A + 
27*'00'-15 L 
52*'00'-17 L 

08 
OA 

--
O"OC 

IS=-L=-::--"N~f'S"k,-=' i,lLJI 1. i n e s 

5SB SUDryressed h~c~k~S>:r~n~d~~~~~~r_t_--~----~--t---__ r_--+-+~~~----------~ 

i~ ~~!n!:~tR:~~~-~;~k------~~~t-;r~-t----+---t---;-----t---t~~~~-----------i OC 
rs Tripie Space x -UL Unload X 



Q~.N!EL 
Business Computer Systems 

) 525 8re.kw.ter Avenue ("15) 78)-)"10 


