

c

EDIT
Advanced 8080 Edita

Users Manua~
Describes EDIT, Release 1.0

iProcessor Technology
Corpora~ion

7100 Johnson Industrial Drive
Pleasanton, CA 94566
Telephone (415) 829-2600

Copyright (C) 1978, Processor Technology Corporation
First Edition, First Printing, June 1978

Manual Part No. 727141
All Rights Reserved.

IMPORTANT NOTICE

This manual, and the program it describes, are copyrighted by
Processor Technology Corporation. All rights are reserved. All
Processor Technology software packages are distributed through
authorized dealers solely for sale to individual retail customers.
Wholesaling of these packages is not permitted under the agree
ment between Processor Technology and its dealers. No license
to copy or duplicate is granted with distribution or subsequent
sale.

EDIT was derived from EDIT3, a product of LSM Engineering. Major
portions of this manual are subject to copyright by LSM Engineer
ing, and are used here with permission of the author.

SECTION

1

2

3

4

5

c

TABLE OF CONTENTS

INTRODUCTION •••••••

1.1
1.2
1.3

Capabilities.
Conventions ••
Definitions •••

ACCESSING THE EDIT PROGRAM ••

2.1
2.2

Loading •••••
Starting Up.

LANGUAGE ELEMENTS •••

3.1
3.2
3.3
3.4

3.5

Command
Command
Command
Command

3.4.1
3.4.2
3.4.3

Format ••
Summary ••
Str ings ••
Keying Errors.

Character Level: DELete •••••••
Command Level: MODE SELECT ••••
Command Buffer ••••••••••••••••

Special Handling.

CONSOLE INPUT/OUTPUT •••

. .

TAPE FILE INPUT/OUTPUT. • • 0 • • • • • • • • • • • • • • • D • • • • • • •

5.1

5.2

5.3

Opening And Closing Tape Files.

5.1.1

5.1.2
5.1.3
5.1. 4

Input

5.2.1
5.2.2

Opening: < <filename> $ or
> <filename> $ ••••••
Setting Block Size:
Printing: <= or
Closing: <$ or

from a Tape File •••

YANK: Y
APPEND: A

. • • 0 ••

n; •••
>= 0· ••••••

>$

Output to a Tape File ••••••••••••••••••••

5.3.1
5.3.2
5.3.3

PUT: P
PUT without a Formfeed:
PUT and Endfile: PE

i

PW

PAGE

1-1

1-1
1-1
1-2

2-1

2-1
2-2

3-1

3-1
3-2
3-5
3-6

3-7
3-7
3-7

3-7

4-1

5-1

5-1

5-1
5-2
5-2
5-3

5-3

5-4
5-4

5-4

5-5
5-5
5-6

EDIT

TABLE OF CONTENTS (Continued)

SECTION

5.4 Combined Tape Input and Output ••••••••••••••

5 • 4 • 1 END: E ••••••.•••••.•••••••••••••••••
5 • 4 • 2 PUT and YANK: nR ••••.•••••..•••••.••

5.5 Rewinding a Tape: ?
(Yes, it's the command) •••••••••••••••••••••

6 BUFFER CONTENTS ••••••••••••••••••••••••••••••••••

7 CONTROLLING THE CHARACTER POINTER ••••••••••••.•.•

7.1 Page Level: Band Z •••••••••••••••..••••••
7.2 Line Level: Land J •••••••••••••••••••••••
7.3 Character Level:

M, Sstring$, Qstring$, and Nstring$ •••••••••

8 ALTERING BUFFER CONTENTS •••••••••••.•••••••••••••

8.1 Addition/Insertion ••••••••••.•••••••••••••••

8.1.1
8.1.2

Text: Istring$ ••••••••••••••.••••••
Single Character: nI •••••••••••••••

8.2 Deletion/Substitution •.•••••..••••••••••...•

8.2.1
8.2.2
8.2.3

Line Level: K
Character Level: D •••••••••••.•••••
String Level: C•.........

9 COMMAND MACROS •••••••••••••••••••••••••••••••••••

9.1
9.2
9.3
9.4
9.5

Summary of
De..f ining:
Executing:
Deleting:
Printing:

Macro Commands •••••••••••••••••••
XM

X
XD
X?

<command string> $$

.
10 LEAVING EDIT ••••••••••••••••••••••••••••••.••.••.

10.1
HL2
10.3

Summary of EXIT Commands •••••••••••••••••••
Go to User Routine: G <hex address> $ •••
Halting: H

11 TEXT BUFFER SIZE •••••••••••••••••••••••••••••••••

ii

PAGE

5-6

5-6
5-6

5-7

6-1

7-1

7-1
7-1

7-2

8-1

8-1

8-1
8-1

~,

8-2

8-2
8-3
8-3

9-1

9-1
9-1
9-1
9-2
9-2

10-1

10-1
10-1
10-1

11-1

EDIT

c

,'/

(
'--.

(

TABLE OF CONTENTS (Continued)

SEC'I'ION PAGE

12 IMMEDIATE COMMANDS ••.••..•....•..•.••.•..•.•••.•. 12-1

12.1
12.2
12.3

13 ERROR

14 ABOU'l'

Summary of Immediate Commands ••••..•••.•.•• 12-1
Print Last Command String: Ap .••••••••••• 12-1
Re-execute Last Command String: AR •••.••• 12-1

f.lESSAGES. . . • • . • • . • . • • • . • • • . . • . • . • • 13-1

CASSETTE RECORDERS AND CASSETTE FILES .••••• 14-1

APPENDIX

1 TABLE OF ASCII CODES

2 PACK AND UNPAC

iii EDIT

(~
SECTION 1

INTRODUCTION

1.1 CAPABILITIES

EDIT is a text editor program that allows for the creation or
modification of ASCII files such as source files coded in FORTRAN,
BASIC, or Assembly Language. This program allows editing on
character, string, line and page levels; at any of these lev-
els additions, insertions, substitutions and deletions of text
may be made. Additionally, EDIT offers the option to retain a
command string as a macro and execute it repeatedly.

The EDIT program itself resides in low memory and requires ap
proximately 4K. EDIT uses the remaining portion of memory as
the text buffer area, reserving a few areas: one for use as a
command buffer, another for use as a macro buffer, and others
for cassette Input/Output.

EDIT receives its text from two sources: it reads data from
multiple-block tape files (see Appendix 2) or allows creation of
new text on-line from an operator's keyboard. An input file is
treated as a continuous string of characters, usually organized
into pages. Upon command, EDIT will read one page of text from
a tape file: that is, reading will progress until a page ter
minator (formfeed character) is encountered in the file, or until
the buffer is full. Text may be stored, at the conclusion of
editing, with or without the page terminator. (A text without
terminators will be regarded by EDIT as a single page.)

Notice that when you use EDIT, you will most likely be using
two cassette recorders, unit 1 for input, unit 2 for output.
Details on how to connect the cassette recorder to the computer,
itself, are to be found in Section 7 of your Sol manual. (If
you intend to use only one cassette recorder for both input and
output, it will be necessary for you to move the cables from
jack to jack.) Section 14 of this manual provides some useful
information about working with cassette recorders, in general.

It is possible to use this cassette version of EDIT to write
files compatible with the disk system. The name of any such
file should be PTFIL, and its block size should be 1024. (See
Section 5.1.2 on block size.) A file which has already been
written with a different name and/or block size may be edited
to incorporate these characteristics. (See Section 5 about
tape file input and output.)

1.2 CONVENTIONS

The conventions listed on the next page are used to clarify the
commands and examples within this manual:

1-1 EDIT

1. The ESCape key, entered by the operator, is echoed
to the Video Display, and is represented in the
examples by a dollar symbol ($).

2. Control characters in this manual are represented by
a "A" followed by the character depressed in conjunc
tion with the control key, e.g., Ap denotes a control
P. These representations do not correspond to the way
in which control characters actually appear on the Video
Display, where each such character, if it is echoed at
all, has a symbolic counterpart, e.g., AA appears as #.

NOTE: Some control characters (such as Ap) are commands
and are not echoed to the console.

3. Whenever a string parameter is part of a command for
mat, it is represented in lower case (e.g., Sstring$
represents a command which might actually be entered
as Sgoto, or SBLACK, followed by an ESCape.)
In the text that accompanies examples a string is set
off by quotation marks. For example, the command
CAB$CD$$ appears expanded in the explanation as: C
"AB" to "CD".

4. Lower case n represents a positive or negative decimal
integer which, when it precedes a command, is related
to that command in a certain quantitative way: for ex
ample, it can indicate the number of times an action is
to be performed. The legal values of a quantifier are
given in connection with a specific command when it is
discussed. (-65535 to 65535 is the maximum range.) A
plus sign before a quantifier is for clarification~ its
use is optional.

5. "<" and ">" are meta-symbols (except as noted) and
the enclosed string indicates the type of string
desired,rather than an actual string.

6. A <cr> in an example indicates the insertion
of a carriage-return.

7. EDIT may be run under either the Processor Technology
SOLOS or CUTER monitor programs. "SOLOS/CUTER" is used
in this manual to refer to whichever monitor is in use.

1.3 DEFINITIONS

An input file is a continuous string of characters that EDIT reads,
page by page, from a tape file or receives on-line from the
operator's keyboard. A formfeed character marks the end of a
page; a page includes all of the characters up to, but not in
cluding, the formfeed. The formfeed is not retained within the
text buffer; it may be specified that it be written to the out
put file.

1-2 EDIT

A page may be segmented into lines. Each line is a string of
characters up to and including the carriage return. A line
feed is assumed after each carriage return, although it does not
actually appear as a character within the file.

EDIT maintains a character pointer (CP) within the text buffer.
This pointer is moved through the text by various commands; it
should be regarded as always pointing between two characters,
rather than at a particular character!

1-3 EDIT

SECTION 2

ACCESSING THE EDIT PROGRAM

2.1 LOADING

EDIT is loaded at location 0000 through approximately 1100 Hex.
To read EDIT off of its cassette tape from SOLOS/CUTER, type
either XEQ EDIT <cr> or GET EDIT <cr> EX 0 <cr>.

If you follow the advice given in Section 14 and CAtalog the tape
before using it, you will notice that two other programs are re
corded after EDI~. PACK and UNPAC are described in Appendix 2;
they enable you to 1) take a single-block file created by some
other program and convert it to multiple-block structure so that
it can be EDITed, or 2) take a multiple-block file created by
EDIT and convert it to single-block structure for use in another
program, e.g., ALS-8 or Software #1.

2.2 S~ARTING UP

EDIT is started at location 0000 Hex; whereupon, the EDIT pro
gram clears its scratch area, macro, and command buffers, then
searches contiguous random access memory (RAM) to find the last
available location that the text buffer can occupy.

EDIT then displays:

EDIT X.Y ZZZZZ

Where X.Y is the version of EDIT
ZZZZZ is the total character space (decimal) available

in the text buffer
is EDIT's prompt

If ZZZZZ is a smaller number than you would expect to find
available, given the amount of memory in your computer, EDIT
has probably encountered either read-only memory, or a bad
random-access memory location, and discontinued its search for
text buffer space.

The text buffer initially takes up all available memory space.
The contents of memory (routines, data, etc.) "are not altered
until text is entered. The last location for memory usage may
be specified at any time after initialization is complete.
(The size command is described in Section 11.)

In case of accidental exit, EDIT may be restarted by executing
address 0000H, bypassing all clearing and initialization. If
memory has not been changed externally, the text buffer will

2-1 EDIT

remain intact. (There are commands which enable you to leave
EDIT intentionally, to execute some other routine or to return
to SOLOS/CUTER. The G and H commands, which serve these func
tions, are described in Section 10 of this manual.)

2-2 EDIT

I
',--

SECTION 3

LANGUAGE ELEMENTS

3.1 COMMAND FORMAT

A single instruction to EDIT has one of the formats listed be
low. (Spaces are not part of any EDIT commands, except within
strings, and are used in this manual only for clarity.)

1. <command>
2. n <command>
3. <command> string $
4. <command> stringl $ string2 $
5. <command> <hex address> $

The command portion is a one or two character mnemonic (such as
W or X?). Commands may be upper or lower case.

A signed integer, the n parameter, may be used to quantify a com
mand, that is, to indicate how many times a command is to be
executed or how many characters are involved. EDIT interprets
a quantifier as a decimal number. Decimal values may range
from -65535 to +65535. (If the operator enters a quantifier
where it is not required, EDIT executes the command, ignores the
quantifier, and returns no error message. If a negative quanti
fier is specified, but is meaningless to the command, it is
taken to be positive; no error message is displayed.)

Some commands require at least one string. A string may be zero
or more characters in length, and is terminated by the ESCape key
(echoed as the $ symbol on the operator's Video Display). A
string may include the carriage return character.

EDIT begins execution of most commands when two consecutive
ESCapes are entered. (One of these may be a string terminator.)
The commands Ap , AR, and AT are exceptions to this rule: they
are executed immediately upon being entered by the operator.

NOTE: If you have typed in a command and it appears not to
have been accepted properly, make sure that you have actually
typed in ESCapes, rather than dollar signs, as command termina
tors.

EXAMPLES:

: 5L$$ The command to move the cursor to the beginning of
the fifth line following its present line position
must be terminated by two ESCapes.

3-1 EDIT

SLXI$$ The command to search for the string "LXI" requires
one ESCape as a string terminator, and a second as a
command terminator.

3.2 COMMAND SUMMARY

Here is an overview of the commands to be used with EDIT.
Note that each command is accompanied by 1) a very brief explana
tion of its function, and 2) a reference pointing to the section
of this manual where a more complete explanation may be found.

The abbreviation, "CP",here and elsewhere in the manual, stands
for Character Pointer, as defined in Section 1.3, above.

There are a number of search commands which are listed under
COMBINED TAPE INPUT AND OUTPUT, rather than under CP CONTROL,
because they have tape input/output functions associated with
them.

COMMAND

SPECIAL CHARACTERS (immediate execution)

DELete

MODE
SELECT

SPACE-BAR

"'P

Deletes the last character
entered.

Cancels a current command string,
or halts its execution.

Turns off tab simulation, if on;
turns it on, if off. Tabs are pre
defined at a-space intervals. There
is no provision for changing them.

Alternately holds and continues
output to the console display dur
ing TYPE command execution.

Prints the last command string.

Re-executes the last command string.

CONSOLE INPUT/OUTPUT

REFERENCE

3.4.1

3.4.2

4.

4.

12.2

12.3

v Prints entire buffer on Video Display. 4.

nV Prints n lines, beginning at the CP, 4.
on the Video Display.

'II Sends buffer to the current pseudo- 4.
port.

nT Sends n lines, beginning at the CP, 4.
to the current pseudo-port.

3-2 EDIT

/

\
'-.

(
'-..

nTN

nTW

Specifies number of nulls to be sent
after each carriage return/line feed
on subsequent T commands.
Specifies the width of an output line
(n characters) on subsequent T com
mands.

OPENING AND CLOSING FILES

< <filename> $ Opens a file for input.
> <filename> $ Opens a file for output.

n; Sets block size.

<= Prints name of current input file.
>= Prints name of current output file.

<$ Closes current input file.
>$ Closes current output file.

INPUT FROM A TAPE FILE

Y

A

Clears the previous contents of the
text buffer, without writing it,
and reads ("yanks") the next page.
Reads the next page, and appends the
input to the current contents of the
text buffer.

OUTPUT TO A 'l'APE FILE

P

nP

PW

nPW

PE

nPE

writes the entire text buffer with a
final formfeed.
Writes n lines from the CP and a
final formfeed.
Writes the entire text buffer with
out a final formfeed.
writes n lines from the CP and no
final formfeed.
Writes the entire text buffer with
a file terminator. Closes the file.
Writes n lines from the CP with a
file terminator. Closes the file.

COMBINED TAPE INPUT AND OUTPUT

4.

4.

5.1.1

5.1.2

5.1.3

5.1. 4

5.2.1

5.2.2

5.3.1

5.3.1

5.3.2

5.3.2

5.3.3

5.3.3

E Copies current buffer and remainder of 5.4.1
input file to output file; closes out-
put file.

nR Executes, n times, the sequence: P, 5.4.2
then Y. (See "INPUT ••• ","OUTPUT ••. ")

3-3 EDIT

Nstring$ Searches buffer for "string"; continues 7.3
search" page by page, each time writing
out the buffer (P) before proceeding to
the next page (Y).

Qstring$ Like Nstring$, but does not write out 7.3
the text buffer before proceeding to
the next page.

Ostringl$string2$ Changes "stringl" to "string2", search- 8.2.3
ing the whole file by doing p's and
Y's, as necessary.

Ostringl$$ Deletes "stringl", searching the file 8.2.3
by doing p's and Y's, as necessary.

? Rewinds the input tape 5.5

BUFFER INFORMATION

= Displays the total number of lines/ 6.
characters in the text buffer.

@ Displays the number of the line 6.
in which the CP resides.

W Returns the number of characters 6.
in the line at which --actually,
immediately before which-- the CP
resides.

<hex address> $ Specifies the last available mem- 11.

CP CONTROL

B

z

L

+ or - nL

nJ

+ or - nM

Sstring$

ory location for the text buffer.

Moves the CP to the beginning of
the text buffer.
Moves the CP to the end of the
text buffer.
Moves the CP to the beginning of
the current line.
Moves the CP forward (+) or back
ward (-) n lines.
Moves the CP to the beginning of
the nth line.
Moves the CP forward (+) or back
ward (-) n characters.
Moves the CP to the first charac
ter after "string".

7.1

7.1

7.2

7.2

7.2

7.3

7.3

Also see Nand Q commands in combined tape input and output,
above.

ADDITION/INSERTION

Istring$

nI

Inserts a string of characters
at the CPo
Inserts a decimal value of a
single character at the CPo

3-4

8.1.1

8.1.2

EDIT

-'

l

(
'-- .

DELETION/SUBSTITUTION

K

nK

+ or - nD

Cstringl$string2$
Cstring$$

Deletes the entire line, no
matter where the CP is located on
it.
Deletes from the current CP for
ward over n carriage returns.
Deletes forward (+) or backward
(-) n characters.
Changes "stringl" to "string2".
Deletes "string" (changes it
it to null).

8.2.1

8.2.1.

8.2.2

8.2.3
8.2.3

Also see 0 commands in COMBINED TAPE INPUT AND OUTPUT, above.

MACROS

XM <command string> $$ Defines a macro command
string.

nX Executes the macro n times.
XD Deletes the macro.
X? Prints the macro.

LEAVING EDIT

G <hex address> $ Goes to an external user routine.

H Close files; return to SOLOS/CUTER.

3.3 COMMAND STRINGS

9.2

9.3
9.4
9.S

10.2

HJ.3

EDIT is able to execute, not only a single command, but also a
group of commands entered as a series, before returning to
the command entry state. As each command is entered into
what becomes a command string, it is placed into the command
buffer. An ESCape between commands in a command string is op
tional, unless either 1) a command includes a string parameter,
or 2) the following command might otherwise be construed as
part of the first command (e.g., The command string X$D must be
differentiated from the single command XD).

EXAMPLES:

: YSSLST$$ This command string consists of three commands:
Y, SSL, and ST. The command string is termi
nated by two ESCapes.

3-S EDIT

SADD$LITCl:;i2$$

SFILE$ <cr>
L <cr>

This command string consists of four commands:
S "ADD", L, IT, and C "1" to "2". Note that
only the strings, in the Sand C commands, re
quire the ESCape separator, and that when a
character string is the final item in a com
mand string, only one additional ESCape is
needed.

This command string consists of four commands:
S "FILE", L and ST. A carriage return may be
used as a visual separator between commands
in a command string; such carriage returns do
not affect the way that the command string is
executed.

3.4 COMMAND KEYING ERRORS

EDIT executes a command string one command at a time. If EDIT
encounters a command that cannot be executed, it will print out
an error message and the unexecuted portion of the command
string, and it will clear the command buffer. EDIT will ignore
a quantifier if it appears without a command.

EXAMPLES:

: YABCZZ33LK$$
String not found
? ? ?
CZZ33LK$$

Six commands: Y, A, B, C "ZZ" to "33", L,
and K. EDIT types an error message
("String not found" and "? ? ?"), the un
executed portion of the command string and
the prompt symbol.

CAUTION: A carriage return within a text string or between the
characters of a two-character command is not ignored.

AVOID:

: X <cr>
D$$

EDIT executes the XD (a legal command)
as X, also a legal command, then deletes
one character.

If an error is made while keying a command, it may be corrected
in one of the following ways:

KEY

DELete

MODE
SELECT

ACTION TAKEN

Deletes last character entered. Cursor back
spaces.
Cancels a current command string or halts its
execution.

3-6 EDIT

(

3.4.1 Character Level: DELete

As commands are entered, they are stored in the command buffer.
DELete deletes the last character entered in the command buffer.
Several DELetes may be entered to delete several characters.
If the deletion empties the command buffer, EDIT issues the
prompt.

3.4.2 Command Level: MODE SELECT

Before a command string is terminated, it can be canceled by is
suing a MODE SELECT. EDIT stops, empties the command buffer,
and issues the prompt symbol. If the interrupted command is
performing 1/0, the Character Pointer is set to the beginning of
the text buffer; otherwise, it is left in its current position
(nP, nPW, or nPE), or at the end of the previous text (A).

3.4.3 Command Buffer

The command buffer is of sufficient length (124 characters) to
accommodate long command strings; if the command buffer length
is exceeded, the command input, up to that point, will be exe
cuted. The exception to this rule is that the insert command
will allow input until the text buffer is filled.

3.5 SPECIAL HANDLING

Several input characters receive special handling by EDIT, de
pending upon whether the character originates from the console
or from a tape file. Where the word "normal" appears in the
table below, it is used to indicate that a particular control
character, where it is read or inserted into the text buffer,
is regarded as though it were any other text character, i.e.,
it does not initiate any action by the program or the system.
Exceptions are noted below.

CHARACTER

~lODE SELECT or
null, or A@

LINEFEED or AJ

DEL or
RUBOUT

HEX

01

0A

7F

FROM KEYBOARD FROM TAPE FILE

Executed, not echoed, Ignored
not retained

Echoed as #, retained Normal
as AA in the command
string

Not executed Ignored

Executed, Ignored
not retained

Executed,
not retained

Normal char
acter
(no tab)

3-7 EDIT

ESCape, SHIFT-~K

carriage-return,
~M or <cr>

~L or
formfeed

~p

IB

0D

0C

10

12

Echoed as $, retained
as ESC in the command
string

Echoes as CR/LF,
retained as CR

Echoed as special
character, retained
as formfeed.

Executed and not re
tained if it is the
first character of the
command.
Otherwise normal.

Executed and not re
tained if it is the
first character of the
command.
Otherwise normal.

Ignored

Normal

Terminates
page, then is
discarded

Normal

Normal

On output to the Video Display, EDIT provides a linefeed charac
ter after each carriage return.

Null, ~A, ESCape and DELete cannot be inserted into the text;
control-T can be inserted using the I command and a quantifier.
All other characters of this set may be keyed in directly.

Note that SHIFT-3 (the # symbol) and SHIFT-4 (the $ symbol) may
also be used as regular characters.

3-8 EDIT

/~

\

(
I
~

c

SECTION 4

CONSOLE INPUT/OUTPUT

All manual (as opposed to tape file) input, including entering
commands and new text, is taken from the current SOLOS/CUTER
input pseudo-port. In this manual console input is assumed to
be from a keyboard. All input is echoed on the Video Display.

Non-tape output can be directed to two different places: either
the Video Display or the current SOLOS/CUTER output pseudo-port.
It is expected that all normal editing will be done on the Video
Display and that information and error messages will be sent there.
The output to the current pseudo-port is intended primarily to
be used to get hard copy output of a text file, where a printer
is connected to the port. In this manual, output is assumed to
go to the Video Display.

The speed of output to the Video Display is altered if a key
representing a digit is hit during printing. The digit 1 causes
output to be fastest (no delay), whereas 9 causes it to be
slowest. Output to the Video Display is suspended temporarily
when the user hits the space bar during printing; it is made to
resume when he hits the space bar or another key. Output
may be aborted with the MODE SELECT key.

COMMAND EFFECT

v Print entire buffer on Video Display.

nV Print n lines following the Character Pointer
on the Video Display. Where n exceeds the
number of lines that exist in the buffer past
the CP, print as many lines as exist.

T Send buffer to current pseudo-port.

nT Send n lines following the CP to the current
pseudo-port.

nTN Specify number of nulls (n) to be sent after
each carriage return/linefeed for the subsequent
T command.

nTW Specify output line to be n characters wide for
subsequent T commands.

AT Toggle tabbing mode (on/off)

4-1 EDIT

EXAMPLES:

: 2V$$
DOlT: STA DPEX

LDA FLAG

=10V$$

2/24
TUIT: ANA B

STA TABLE

SLDA$lT$$
PINK

SLDA$LlT$$
LDA PINK

The command 2V causes two lines, start
ing at the Character Pointer, to be
printed on the Video Display.

This command string has two commands
in it (= and l0V).
There are two lines (and twenty-four
characters) in the buffer. n exceeds
this number, even assuming that the CP
is positioned at the beginning of the
text. Therefore, only two of the ten
requested lines are printed.

After a SEARCH for "LDA," typing starts
at the current position of the CPo
To examine the entire line, issue the L
command before the nT command.

When the tabbing mode is on, all AI's (09H) sent to the current
pseudo-port via the T command cause spaces to be printed until
the next tab stop is reached. Tabs are defined at columns 1,9,
l7,25,etc. There is no provision for changing these settings.
When tabbing is off, AI's are sent normally. To see how the
tabbing looks, set the current pseudo-port to the Video Display,
and then use the T command, rather than the V command, to print.

4-2 EDIT

/ -

~.

(
'---.

SECTION 5

TAPE FILE INPUT/OUTPUT

5.1 OPENING AND CLOSING TAPE FILES

COMfvlAND EFFECT

< <filename> $ Opens the file <filename> for input from
tape unit l.

> <filename> $ Opens the file <filename> for output to
tape unit 2.

ni Sets to n the tape block size for output
files. (n is a quantifier.)

<= Prints the name of the current input file.

>= Prints the name of the current output file.

<$ Closes the current input file.

>$ Closes the current output file.

NOTE: In these commands the first "<" or ">" is a literal part
of the command, not a meta-symbol.

To copy an existing file and change its name, open an output
file with the desired filename, and transfer the information
in your original file with a succession of Yanks and Puts.
If the file is intended to be compatible with the disk system,
its name should be PTFIL. (Remember that its block size should
also be 1024. The procedure for creating such a file is out
lined in Section 5.1.2, below.)

5.1.1 Opening: < <filename> $ or > <filename> $

The < command opens the specified file for input operations.
The input file must be on a cassette in tape unit 1. There
is an immediate search to make sure that the file exists.
The> command opens the specified file for output operations.
The output file will be written to tape unit 2. The cassette
should be positioned past the leader and placed in RECORD
mode. Any file previously being used for the same function
(input or output, depending what kind of file has been
opened) will be closed, if necessary. Because tape input/output
is buffered, tape movement will not necessarily occur instanta
neously when a command is entered.

5-1 EDI'r

EXAMPLES:

<'l'UNA$$ Opens the file TUNA (on unit 1) for Y, A, E,
R, N, 0, AND Q commands.

>FISH$$ Opens the file FISH (on unit 2) for P, E, R,
N, 0, AND Q commands.

A legal filename consists of up to five ASCII characters, none
of which may be a blank or a slash. (See Appendix 1 for a list
of ASCII characters.) If you open a file for input and the file
does not exist on the tape being read--if, for example, the
filename is misspelled in the command--EDIT will read through
the whole tape in search of a matching header, and never return
an error message. The MODE SELECT key can be used to abort
a read; the message "Tape read error" will be displayed,
and the prompt (:) will reappear on the screen. Enter the com
mand again, using the correct filename.

5.1.2 Setting Block Size: n;

Output files are written on the tape as a series of blocks. The
; command sets the number of bytes to be in each block. Default
and maximum is 1024. For BASIC files this parameter should be
set to 256. The larger the block size, the quicker tape access
is, by virtue of the reduced number of between-block gaps. If
size 0 or no size is specified, the block size is set to the de
fault value. The block size must be set before the output file
is opened.

If the output file is intended for use in ALS-8 or Software #1,
you will need to use the PACK program (described in Appendix 2)
to change the file structure.

If the file which you are creating is intended for use in the
disk system, its block size must be set to 1024. The following
procedure will result in the "copying" of an existing, but not
properly structured, file into a file with the desired charac
teristics:

1. ()pen the existing file for input. (See 5.1.1)

2. Set block size to 1024 bytes.

3. Open for output a file called PTFIL.

4. Use Y, followed by E, to copy the file.

5.1.3 Printing: <= or >=

The <= command prints the current input <filename>; the >=
command prints the current output <filename>. If no such
file is open, EDIT will respond with a blank line.

5-2 EDIT

EXAMPLE:

: <=$$
TUNA

>=$$
FISH

>=$$

The last < command was "<TUNA$".

The last> command was ">FISH$".

No output file is open.

5.1.4 Closing: <$ or >$

The <$ command closes the current input file. The >$ command
closes the current output file. If the corresponding file was
not open, then the command has no effect.

EXAMPLE:

<$<=$$ Closes the input file and then tries to print
its name.

Any file written in EDIT must be either closed or endfiled
before an attempt is made to read from it. The Put and End
file (PE) command will automatically close a file; the command
to close a file will automatically endfile it. Also, leaving
EDIT will result in the closing of all files open at the time
that the command is entered.

5.2 INPUT FROM A TAPE FILE

The following commands allow input from a file that is
opened:

COMMAND

y

A

Q

EFFECT

Reads the next page into the text buffer and
overwrites the previous buffer contents.

Reads the next page into the text buffer,
appending the input to the end of the current
buffer contents.

See Section 7.3

Any quantifier preceding these commands is ignored. Note that
the formfeed page terminator is not retained within the text
buffer and all input characters are masked to 7 bits.

5-3 EDIT

5. 2 • 1 YANK: Y

The YANK (Y) command always destroys the current contents of the
text buffer, and attempts to read in a page from the assigned
file. The CP is positioned before the first character of
the new page. If no page is available, EDIT issues the appro
priate error message; EDIT does not complain if the next page is
empty (formfeed only).

EXAMPLE:

YY$$ YANKS one page, then immediately YANKS another page
from the assigned file.
The first page of text YANKED was destroyed but
the next page is available for editing.

If the input fills the text buffer before a formfeed is en
countered, EDIT types the "Buffer full" error message. A small
amount of space, from 133 to 265 bytes, has been reserved in the
text buffer, so that some editing may still be done before the
text, or part of it, is'written out (See also section 5.2.2).

5.2.2 APPEND: A

The APPEND (A) command does not destroy the previous contents of
the text buffer. It appends the subsequent page to the current
contents. Unless the formfeed character is inserted, the two
pages are now concatenated. The CP is positioned before the
first character of the appended page.

EXAMPLE:

YAA$$ YANK one page, then immediately APPEND two addi
tional pages.

If the input fills the text buffer before an EOF or a formfeed
is encountered, EDIT types a message indicating that the buffer
is full; the CP is moved to the beginning of the text buffer.

Some text may be written out of the text buffer, and then deleted
from it, to clear space. Some text should be deleted in this
manner if another APPEND is desired.

EXAMPLE:

: AAAAA$$ Attempt to APPEND five additional pages.
Buffer full
? ? ?
AAA$$ EDIT types out the unexecuted portion of the

command string.

5.3 OU'rpUT TO A TAPE FILE

The following commands allow output of a given number of lines
or the entire text buffer:

5-4 EDIT

"-

(~

COMMAND

P

nP

PW

nPW

PE

nPE

EFFECT

writes the entire text buffer with a final
formfeed.

writes n lines, starting at the CP, and a
final formfeed.

writes the entire text buffer without a final
formfeed.

writes n lines, starting at the CP, without
a final forrnfeed.

writes the entire text buffer and endfiles.

writes n lines, starting at the CP, and end
files.

The first and last text characters are the limits of the above
commands. Under these commands, the CP is never moved, although
it is used to locate where writing should start when n is speci
fied.

All output characters have the high bit set equal to zero (no
parity) .

5.3.1 PUT: P

The entire contents of the text buffer are written to the as
signed file and formfeed, specifying a page, is written
as the final character. If the text buffer is empty, only the
formfeed is written. If n is specified, EDIT writes n lines,
starting at the current CP, and a final formfeed; note that
the CP is not moved. If n is 0, only a formfeed is written.

EXAMPLE:

: 20P$$ Twenty lines and a final formfeed are written.

5.3.2 PUT without A Formfeed: PW

The PW command is like the P command, except that the en-
tire buffer (PW) or the specified number of lines from the cur
rent CP (nPW) are written without the final formfeed.

EXAMPLE:

Y$$
PW$$
Y$$
P$$

Four commands (Y, PW, Y and P) that combine two
pages into one. The command string YAP$$ could
also be used.

5-5 EDIT

5.3.3 PUT and Endfile: PE

The PE command is like the P command, except that the en-
tire text buffer (PE) or the specified number of lines from the
current CP (nPE) are written and the file is endfiled.
No final formfeed is written. If n is 0, then the file is
just endfiled.

Remember that a file should be either closed, or endfiled, or
both, if it is to be used later as an input file.

5.4 COMBINED TAPE ~NPUT AND OUTPUT

COMMAND

E

nR

N

o

5.4.1 End: E

EFFECT

Copies current buffer and remainder of
input file to the output file and closes
the output file.

R does a P (Put) followed by a Y (Yank)~
n indicates how many times R is to be
performed.

See Section 7.3

See Section 8.2.3

E copies the input file page by page, preserving page structure
until the end of file. When the end of file is encountered, E
endfiles and closes the output file.

EXAMPLE:

: YCMVIMOVE$$
EOF

Reads a page, changes the first occur
rence of MVI to MOV, copies input file
to output file and endfiles the latter.

5.4.2 Put and Yank: nR

R does a Put, followed by a Yank, as many times as the quanti
fier n indicates. If the end of file is encountered during the
Yank portion of the command, the R command is terminated immedi
ately and EOF is printed. In such a case, the last page of text
has NOT been written to the output file.

EXAMPLE:

:Y5RSend$-3DE$$
EOF

Yanks a page, does a Put followed by a
Yank, etc., until EOF is encountered
during a Yank. The last page has not
been written out.

5-6 EDIT

5.5 REWINDING A TAPE

COMMAND

?

EFFECT

Powers tape unit 1 and issues a rewind
message.

It is assumed that only input files will need to be rewound, so
only unit 1 can be powered. The? command causes tape unit 1
to be powered and the message,"Rewind tape unit 1 ... " to be re
turned.Once the tape has been rewound, enter a carriage return
to remove power from the tape unit.

An input file should be opened again, after rewinding, before
the next attempt to read from it.

5-7 EDIT

(
~-

l

SECTION 6

BUFFER CONTENTS

The commands listed below provide information about the text
buffer and the position of the Character Pointer.

COMMAND

=

@

W

EFFECT

Returns the total number of lines/characters
in the text buffer.

Returns the number of the line in which the
CP is currently positioned.

Returns the number of the character immediate
ly ahead of which the CP is positioned.

EDIT returns each value as a decimal number. If the text buffer
is empty, the = command returns a % value (no lines, no char
acters)1 the @ command returns 1 (CP is in the first line), and
the W command returns 0.
If a quantifier precedes any of these commands, it is ignored.

EXAMPLES:

: =$$
2370/16878

Y=$$
33/1109

@W$$
206
15

There are currently 2370 lines and 16878 char
acters in the text buffer.

As part of a command string of two commands:
YANK, total lines and total characters.

Where is the CP?
On line 206, character 15.

6-1 EDIT

")

SECTION 7

CONTROLLING THE CHARACTER POINTER

Several commands are available for positioning the Character
Pointer at the page, line or character level.

7.1 PAGE LEVEL: Band Z

The following commands move the Character Pointer to a speci
fied position relative to the entire page of text being edited.

COMMAND

B

Z

EFFECT

Moves the CP to the beginning of the text buf
fer (before the first text character).

Moves the CP to the end of the text buffer
(after the last text character).

Any quantifiers used with the Band Z commands are ignored: EDIT
executes the command once, and issues no error message.

EXAMPLE:

: @B2V$$
287

LDA FLAG
ORA A

The @ command finds the line position of the
CP (287); the B command moves it to the
beginning of the buffer and the 2V command
types the first two lines in the buffer.

7.2 LINE LEVEL: Land J

The following commands move the Character Pointer to a given
line.

COMMAND

L Moves the CP to the beginning of the current line.

+nL Moves the CP forward n lines (over n carriage re-
turns).

-nL Moves the CP backward n lines (over n carriage
returns) .

nJ Moves the CP to the beginning of the nth line.

7-1 EDIT

The LINE (L) commands position the CP before the first character
of a particular line. Where a quantifier is supplied, it indi
cates how many carriage returns the CP must encounter in order
to reach the appropriate line. In the absence of a quantifier,
the current line is assumed.

The L command moves the CP to the beginning of the correct line.
EDIT moves the CP back to the last carriage return and then
forward one position.

When moving backward (the minus sign is required) through the
text~ EDIT proceeds by counting n+l carriage returns back, and 1
position forward. The beginning of the buffer is equivalent
to a carriage return}. If n directs the CP beyond the limits of
the buffer, the CP is left positioned after the last character
in the buffer (+n) or before the first (-n).

EXAMPLE:

8
5

@-3L@$$ CP starts in line 8 and moves backward 3 lines to
the beginning of line 5.

The JUMP (J) command moves the CP to the beginning of the text
buffer, then forward over n-l carriage returns, finally posi
tioning the CP before the first character of the nth line. If
n is omitted, the CP is positioned at the beginning of the text
buffer. If line n does not exist, EDIT issues the "? ? ?"
error message.

EXAMPLE:

: @32J@$$
47
32

The CP located in line 47 moves to the beginning
of the buffer, then jumps to the 32nd line.

7.3 CHARACTER LEVEL: M, Sstring$, Qstring$, and Nstring$

The following commands move the Character Pointer to a given
character position, either relative to where the CP resides
when the command is given, or to a group of characters (i.e., a
character string).

7-2 EDIT

COMMAND

+nM

-nM

Sstring$

Qstring$

Nstring$

EFFECT

Moves the CP forward n characters.

Moves the CP backward n characters.

Searches the buffer for "string" and positions
the CP after the last character of "string."

Searches the file, page by page, for "string."
Positions the CP after the last character of
"string."

Like Qstring$, but copies the input file to
the output file during the search.

The MOVE (+ or - M) command moves the CP forward or backward by
character through the text buffer. If n is omitted, the CP is
moved one position. If n is specified, the CP moves forward n
characters and is positioned before the n+lth character. If n
is negative, the CP moves backward characters and is positioned
before the nth character back from the current position. If n
exceeds the limits of the text, the CP is left positioned after
the last text character (+n), for example, after the final car
riage return or before the first character (-n) in the text buf
fer.

EXAMPLE:

: IV5MIV$$
LXI D,FUN
D,FUN

Three commands: IV, 5M, and IV. The
CP moves from the beginning of the line
to the D.

The SEARCH (Sstring$) command moves the CP forward from its cur
rent position while searching for "string" in the text buffer.
If "string" is found, the CP is positioned after the last char
acter in "string". The search ends when the first occurrence
is encountered. If the text buffer is searched to its end and
"string" is not found, EDIT types the "String not found" error
message and positions the CP at the start of the text buffer.

: IVSADC$IV$$
ADC L

L

Three commands: IV, SEARCH "ADC" and IV.
After finding the string, the CP is posi
tioned after the 'C'i the next command
(IV) types from the CP to the end of the
line.

The SEARCH string may include mask character positions. Enter
~A to mark a character position that will be found to match
any other character; ~A is echoed as #.

7-3 EDIT

EXAMPLE:

: SA#B#C$LlV$$
A2BXCL 123

The command searches for the occurrence of
A, Band C, each separated by anyone char
acter, and types the line.

The Nand Q commands are similar to S, except that they search
the entire file, page by page. If an end-of-file is reached and
"string" is not in the buffer, then the "String not found" mes
sage is printed. The N command copies the input file to the
output file as it searches, and closes the output file if the
search is unsuccessful.

7-4 EDIT

SECTION 8

ALTERING BUFFER CONTENTS

8.1 ADDITION/INSERTION

The following commands allow individual characters and text to
be inserted into the text buffer:

COMMAND

Istring$

nI

EFFECT

Inserts a string of characters at the CPo

Inserts the character whose decimal ASCII
value is n at the CPo

8.1.1 Text: Istring$

The "string" may be null, one character in length, several lines,
or the entire text buffer. The CP is left positioned after the
last character of the "string".

EXAMPLE:

: I

$$

LDA
MOV
INX

UP
M,A
H

The string is comprised of
three lines which are in
serted.

A "long" insertion operation proceeds to fill the command buf
fer before entering the text into the text buffer; as each
additional line is typed (a line is defined as ending in a
carriage return), it is entered into the text buffer. At this
point cancelling (A@) will only cancel within the line being
entered and rubout will only delete characters back to the be
ginning of the last line started.

8.1.2 Single Character: nI

This command makes it possible to insert into text a character
that the keyboard does not have (such as a lower case character)
or one that receives special handling. The numeric value of a
single character is masked to 7 bits and inserted; the CP is
left positioned after the character. The n parameter, which may
range from 2 to 127, corresponds to the decimal ASCII representa
tion of the character to be inserted. Appendix A has a list of
ASCII characters. Formfeeds (0CH) may be inserted to divide the
text buffer into two or more pages.

8-1 EDIT

Exceptions: null (00H), EOF (0lH), ESCape (lBH),and DELete
(17FH) are ignored.

EXAMPLES:

161$$ Inserts the decimal value of ~P into the text
buffer at the current Character Position.

EXAMPLE OF ERROR:

l28ILlV$$

? ? ?
l281LlV$$

Attempted to enter three commands: inserting
the decimal integer 128, L and IV, but EDIT
masks the converted integer to 7 bits
which become 0, aborts command string proces
sing with an error message, since the insert
command would have tried to insert a null.

8.2 DELETION/SUBSTITUTION

Several commands are available to delete text at either the
line, character or string level. Substitution of text or a
null string (effective deletion) is available only at the
string level.

8.2.1 Line Level: K

The following command:

COMMAND EFFECT

K Deletes the entire line including the carriage
return.

+nK Deletes from the CP, forward over n carriage
returns.

The KILL (K) command counts carriage returns and regards a line
as all the characters up to and including the carriage return.
The K alone deletes the entire line, no matter where the CP is
located on it. If n is specified, EDIT deletes the remainder
of the current line, as well as all text encountered for the
next n carriage returns. The limits of the buffer are the limits
of the K command.

EXAMPLES:

4JlV$$
STA TABF

B3KlV$$
STA TABF

Jumps to the 4th line and displays it.

Moves the CP to the beginning of the buffer,
KILLS three lines; the old line 4 is now the
first line in the buffer.

8-2 EDIT

8.2.2 Character Level: D

The following command:

COMMAND EFFECT

+nD Deletes from the CP forward n characters.

-nD Deletes from the CP backward n characters.

The DELETE (D) command, like the MOVE (M) command, is easier to
understand if the CP is regarded as pointing between two charac
ters. The limits of the buffer are the limits of the command.

If n is 0 or omitted, one character is deleted.

Since a carriage return is one character, this command may also
be used to join lines by deleting the carriage return.

EXAMPLES:

: IVS $lDLIV$$
JMP @l
JMP 1

B2V$$
XCHG
RET

SG$lDLIV$$
XCHG RET

Five commands: lV, SEARCH for a space, ID,
L and IV. The command string types the
current line, finds the space, deletes the
following character, moves the CP to the
start of the line and displays the entire
line.

The command string displays the original two
lines.

Four commands: SEARCH for "G", ID, Land
IV. After a search for the "G", the next
character, a carriage return, is deleted,
so that the two lines previously separated
by the carriage return are concatenated.

8.2.3 String Level: C or 0

The search for and substitution of one string for another is
commanded by:

8-3 EDIT

COMMAND

Cstringl$string2

Cstringl$$

Ostringl$string2$

Ostringl$$

EFFECT

Changes "stringl" to
"string2".

Deletes "stringl" (changes it to
null) •

Changes "stringl" to "string2,"
searching the entire file while
doing pIS (Puts) and Y's (Yanks)

Deletes "stringl," searching the
entire file, if necessary.

The CHANGE (Cstringl$string2$) command moves the CP forward
from its current position while searching for the first oc
currence of "stringl". When located, the string is deleted
and replaced with "string2"; the CP is positioned after the
last character of "string2". If the end of the text buffer
is reached before "stringl" is found, EDIT types the "String
not found" error message, and moves the CP to the start of the
text buffer.

Note that if "string2" is null (Cstring$$), "stringl"
is deleted. This form of the CHANGE command will automatically
be the last command in a command string since the two ESCapes
force execution of the command string.

Any quantifier preceding C is ignored.

EXAMPLES:

CFILE$TEST$LIV$$
LDA TEST

ABC69$DE$$

String not found

? ? ?
C69$DE$$

Three commands: CHANGE "FILE" to
"TEST", L and IV. After replacing
"FILE" with "TEST", EDIT types the line.

The first two commands (A and B) are
executed: the search for "69" was
unsuccessful.

The search string ("stringl") may contain mask character po
sitions. AA (echoed as #) should occupy the mask character
position or positions in the search string.

8-4

,

I
\
~/

EXAMPLE:

: CA##B$BA$$ The command searches for the first occurrence
of A and B separated by any two characters and
changes those four to BA.

The substitute string ("string2") must not contain any mask
characters, or a command error will result.

The 0 command is similar to the C command, except that if
"stringl" is not found in the buffer, a P (Put) followed by a
Y (Yank) is done and the search is continued. If the search is
unsuccessful, then the message is printed and the output file is
closed.

8-5 EDIT

SECTION 9

MACROS

9.1 SUMMARY OF MACRO COMl-lANDS

EDIT offers the capability of retaining a command string and ex
ecuting the string repeatedly by issuing a single command. The
command string is stored in the macro buffer. The following
commands are associated with macro handling (note that spaces
are not part of the command definition, and are used here only
for clarity):

COMMAND EFFECT

XM <command string> $$ Defines a macro command string

nX Executes the macro n times.

XD Deletes the macro.

X? Prints out the current macro.

9.2 DEFINING: XM <command string> $$

~-- Any previous macro is destroyed by the definition of a new
macro. Any quantifier is ignored when this command is executed.
A macro definition becomes the last command in a command string
since it is terminated by two ESCapes. The macro command string
length is limited to 122 characters.

(
"-...

EXAMPLES:

XMYS$l $-3D$$

<TEST$XMY=$$

Defines the macro as a command string contain
ing three commands: Y, S "$1 " and -3D.

The command string opens the disk
file TEST for input and then defines a
macro containing two commands: YANK and text
buffer information (how many lines/characters)

9.3 EXECUTING: X

The commands X, 0X and IX are equivalent: the command string
currently retained in the macro buffer is executed once. If n
is greater than 1, the macro is executed n times.

9-1 EDIT

Any positioning of the CP corresponds to the specific commands
that are contained in the macro. Any error situation caused by
an individual command in the macro causes EDIT to halt execu
tion, type the appropriate error message, and return control to
the operator. If a macro is undefined or contains the X com
mand (recursive execution of the macro), EDIT types "Macro
error." A macro must not contain other macro commands.

EXAMPLE:

XMYAP$$
10X$$ Where the macro buffer contains the command

string, YAP, executing the command successfully
ten times produces 10 pages from the 20 that
are read in.

As with any command, MODE SELECT or A@ may be used to halt
execution.

9.4 DELETING: XD

The macro might best be deleted in cases where a powerful macro
would destroy the contents of the text buffer, if the X command
were issued inadvertently.

EXAMPLE:

: XD$$ Deletes the macro.

9.5 PRINTING: X?

Printing the current macro can save reentering a complicated
command string, or can be used to determine exactly what effect
the last X command had.

EXAMPLE:

: X?$$
lSLlSV$$ The last command that defined a macro was:

XMlSLlSV$$

9-2 EDIT

SECTION 10

LEAVING EDIT

10.1 SUMMARY OF EXIT COMMANDS

The user may leave EDIT, using the G or the H command, to exe
cute another routine anywhere in memory, or to return to SOLOS/
CUTER. This procedure is comparable to the use of a CALL in
struction. After either the G or the H command, executing ad
dress 0000 Hex will result in a safe re-entry to EDIT, with the
buffer intact, unless it has been changed externally.

10.2

COMMAND

G <hex address> $

H

EFFECT

Generates a return address and goes to
the routine at the given location.

Close EDIT files and return to
SOLOS/CUTER.

GO TO USER ROUTINE: G <hex address> $

Leading zeros in the hex address ·are not required. If G is not
the last command in the command string, subsequent commands are

~_ held until a proper return to EDIT is made. The return loca -
tion is placed on the EDIT stack~ therefore, if the stack is
not modified, a RET instruction in the external routine is all
that is required to return to command string processing.

10.3 HALTING: H

This is the normal method of leaving EDIT. Any files opened
by EDIT will be closed. If H is issued accidentally, the re
start address (0000H) may be executed to recover the text buf
fer. Because the input file is closed, and the output file is
endfiled and closed by this command, the previous state of the
output file, and the position of the input file, can not be
recovered by an execution of the restart address.

10-1 EDIT

SECTION 11

SETTING THE TEXT BUFFER LIMIT

The text buffer uses the highest portion of memory related to
EDIT. At system start up, EDIT takes as much contiguous RAM
memory as it can find for the text buffer. This area is tested,
but left unchanged. If the operator wishes , at any time, to
specify the last location to be available for text, the size
command may be issued. Issuing the size command, to limit the
text buffer area prior to putting in text, will prevent the pos
sible destruction of memory contents above the specified last
available memory location.

COMMAND EFFECT

<hex address> $ Specifies the last available memory
location for the text buffer.

The hex address must be larger than the present last location
used for text and less than where it found the end of contiguous
memory, or EDIT issues the "? ? ?" error message.

After the size command is issued, EDIT will respond with total
buffer character space (decimal) available.

EXAMPLE:

: :lFFF$$
3446

Limit the text buffer not to expand past memory
location lFFF hex. EDIT indicates that there is
now space for 3446 characters in the text buffer.

11-1 EDIT

SECTION 12

IMMEDIATE COMMANDS

12.1 SUMMARY OF IMMEDIATE COMMANDS

There are three single-character commands which are executed
immediately upon being entered. They do not affect the
command buffer.

COMMAND EFFECT

"'p Reprint the last command string entered.

Re-execute the last command string entered.

Toggle the tabbing switch. See Section 4.

12.2 PRINT LAST COMMAND STRING: "'p

If "'p is entered as the first character after execution of a
cbmmand string, that command string is printed. The "'p is not
echoed and not retained. If "'p is entered other than as the first
character, it is echoed and treated normally. This command is
useful as a means of seeing what was just executed, and also as
a prelude to the "'R command.

12.3 RE-EXECUTE LAST COMMAND STRING: "'R

If "'R is entered as the first character after execution of a
command string, that command string is re-executed. The "'R is
not echoed and not retained. If "'R is entered other than as the
first character, it is echoed and treated normally. This feature
allows the contents of the command buffer to be treated like a
second macro.

NOTE: A "'p or "'R may be entered successfully after a "'p or "'R.
"'P and "'R will not work after an error has occurred, because
the command buffer is cleared when there has been an error.

12-1 EDIT

. I

• I

SECTION 13

ERROR MESSAGES

When an error is encountered, EDIT types an error message and
the unexecuted remainder of the command string, beginning with
the command in error.

ERROR MESSAGE

Unknown command

? ? ?
<remainder of command string>

String not found

? ? ?
<remainder of command string>

Buffer full

? ? ?
<remainder of command string>

Macro error

? ? ?
<remainder of command string>

EOF

No input file open
No output file open

EXPLANATION

EDIT did not recognize the char
acter just entered as a valid
command.

EDIT encountered a command that
it was not able to execute.
Check the command.

The string, as specified by the
operator, was not found. Check
the command string itself.

The capacity of the text buffer
was exceeded--a result of in
putting to the limit of the text
buffer before a form feed was
encountered. The text in the
text buffer may be edited and
output.

This message is also typed when
the APPEND Command is issued in
spite of an already full text
buffer.

At the time the X command was
issued, the macro buffer was
empty, or the macro buffer con
tained the X command. Define a
macro that does not include an X
command.

A YANK or APPEND command has
found the end of file.

A P, Y or A command was issued
and there was no corresponding
tape file open.

13-1 EDIT

Error in read from tape Either there is some problem
with the input tape (e.g., a
framing error, an over-run
error) or MODE SELECT was hit
during a read.

NOTE: If a macro command is the first command in the <remainder
of command string> message, the error message is expanded
to show the macro command quantifier (n), the unexecuted
remainder of the macro command string (in brackets),
and the remainder of the command string. The quantifier
given for the macro is the decimal number of macro
execution attempts left at the point where the condition
occurred to end macro command string execution.

EXAMPLE:

n[<remainder of macro command string>$$]<remainder of
command string>$$

13-2 EDIT

SECTION 14

ABOUT CASSETTE RECORDERS AND CASSETTE FILES

Successful and reliable results with cassette recorders and
cassette files requires a good deal of care. You need to use
consistent and careful methods, and' you need to know what to
expect, when you try to read a manufacturer's tape, or your own.
The following methods are recommended:

1) Use only a recorder recommended for digital usage. For use
with the Processor Technology Sol or CUTS, the Panasonic
RQ-413AS or Realistic CTR-21 is recommended.

2) Keep the recorder at least a foot away from equipment cont
aining power transformers or other equipment which might gener
ate magnetic fields, picked up by the recorder as hum.

3) Keep the tape heads cleaned and demagnetized in accordance
with the manufacturer's instructions.

4) Use high quality brand-name tape, preferably low noise, high
output tape. Poor tape can give poor results, and rapidly wear
down a recorder's tape heads.

5) Bulk erase tapes before reusing. It can be hard to find the
file you want in a jumble of old file pieces. Bulk erasing also
decreases the noise level of the tape.

6) Keep cassettes in their protective plastic covers, in a
cool place, when not in use. Cassettes are vulnerable to dirt,
high temperature, liquids, and physical abuse.

7) Experimentally determine the most reliable settings for
volume and tone controls, and use these settings only.

8) On some cassette recorders, the microphone can be live while
recording through the AUX input. Deactivate the mike in accord
ance with the manufacturer's instructions. In some cases this
can be done by inserting a dummy plug into the microphone jack.

9) If you record more than one file on a side, SAVE an empty
file, named "END" for example, after the last file of interest.
Once you read its name, you will know not to search beyond
it for files you are seeking. One way to avoid having to search
for files is to record only one file per cassette, at the
beginning of the tape, if you can afford the extra cassettes.

14-1 EDIT

10) Do not record on the first or last minute of tape on a
side. The tape at the ends gets the most physical abuse.
Do not be impatient when trying to read the first file on a
tape. You, or the manufacturer of a pre-recorded program, may
have recorded a lot of empty tape at the beginning.

11) Record a file more than once, before it leaves memory. This
redundancy can protect you from bad tape, equipment malfunction,
and accidental erasure.

12) Most cassette recorders have a feature that allows you to
protect a cassette from accidental erasure. On the edge of the
cassette opposite the exposed tape are two small cavities cover
ed by plastic tabs, one at each end of the cassette. If one of
the tabs is broken out, then one side of the cassette is "write
protected." An interlock in the recorder will not allow you to
press the record button. A piece of tape over the cavity will
remove this protection.

13) Use the tape counter to keep track of the position of files
on the cassette. Always rewind the cassette and set the counter
to zero when first putting a cassette into the recorder. Time
the first 30 seconds and note the reading of the counter. Al
ways begin recording after this count on all cassettes. Record
the beginning and ending count of each file for later reference.
Before recording a new file after other files, advance a few
counts beyond the end of the last file to insure that it will
not be written over •

. 14) The SOLOS/CUTER command CATalog can be used to generate a
list of all files on a cassette. In SOLOS/CUTER, type CAT (CR>,
rewind to the beginning of the tape, and press PLAY on the
recorder. As the header of each file is read, information will
be displayed on the screen. If you have recorded the empty file
called END, as suggested, you will know when to search no furth
er. If you write down the the catalog information along with
the tape counter readings and a brief description of the file,
you will be able to locate any file quickly.

IS) Before beginning work after any modification to the system,
test by SAVEing and GETting a short test program. This could
prevent the loss of much work.

In addition to using the above procedures methodically, you need
to know the various ways in which programs may be recorded on
tapes you have purchased:

I} If you cannot read a file consistently, and suspect the tape
itself, do not despair. The same file may have been recorded
elsewhere on the tape. Processor Technology often records a
second version, later on the same side of the tape. When you
first get a tape, CATalog it with SOLOS or CUTER so you will
know exactly what it contains. write down the tape counter
readings at the same time.

14-2 EDIT

2) An empty file named END is sometimes placed at the end of the
recorded portion of a tape. When SOLOS CATalogs a file, the
file header information is displayed as soon as the beginning
part of the file passes the tape head, but nothing is displayed
when the end of the program passes by. If another filename such
as END is displayed, you know you have just passed the end of
the previous file.

3) Some of the programs supplied by Processor Technology contain
a checksum test within their code, in addition to the checksum
test which SOLOS performs. When a program containing this test
is first executed after loading, the checksum test reads all of
the program in memory, and calculates a checksum number which is
compared with a correct value. If the numbers match, the
program in memory is correct. Nothing is displayed when the
numbers match, but if they do not match, the message CHECKSUM
TEST FAILED, or a similar message, is displayed. The message
may be followed by two numbers, representing the correct and
incorrect checksum numbers.

Even though the checksum test was failed, it may be possible to
enter the program anyway by typing the carriage return
key. The bad data may not even be apparent, if it is in a
portion of the program you do not use. It is best, however, to
try to find and correct the problem causing the error so the
checksum test is passed. The error can be caused by the
cassette inteface circuitry, bad memory locations, bad tape,
a faulty recording, improper alignment or settings on the
cassette recorder, or other equipment problems.

14-3 EDIT

APPENDIX 1
TABLE OF ASCII CODES (Zero Parity)

I
\~-- Paper tape Upper Octal Octal Decimal Hex Character

123.4567P
I 0000 000 0 00 ctrl @ NUL

I· 0004 001 1 01 ctrl A SOH Start of Heading
I • 0010 002 2 02 ctrl B STX Start of Text
I •• 0014 003 3 03 ctrl C ETX End of Text
I · . 0020 004 4 04 ctrl D EOT End of Xmit

I· · . 0024 005 5 05 ctrl E ENQ Enquiry
I ••• 0030 006 6 06 ctrl F ACK Acknowledge
I •••. 0034 007 7 07 ctrl G BEL Audible Signal
I · . 0040 010 8 08 ctrl H BS Back Space

I· · . 0044 Oll 9 09 ctrl I HT Horizontal Tab
I • · . 0050 012 10 OA ctrl J LF Line Feed
I 00 • ell 0054 013 II OB ctrl K VT Vertical Tab
I ••• 0060 014 12 OC ctrl L FF Form Feed

I· •. 0 0064 015 13 OD ctrl M CR Carriage Return
I 0 •.• 0070 016 14 OE ctrl N SO Shift Out
I .0 •. 0 0074 017 15 OF ctrlO SI Shift In
I • 0100 020 16 10 ctrl P DLE Data Line Escape
I· • 0104 021 17 II ctrl Q DCl XOn
I • • OllO 022 18 12 ctrl R DC2 Aux On
1 00 0 Oll4 023 19 13 ctrl S DC3 X Off
I o. • 0120 024 20 14 ctrl T DC4 Aux Off
1 0 · . 0 0124 025 21 15 ctrl U NAK Negative Acknowledge
I 00. • 0130 026 22 16 ctrl V SYN Synchronous File
I •••. • 0134 027 23 17 ctrl W ETB End of Xmit Block
I ••• 0140 030 24 18 ctrl X CAN Cancel

I· ••• 0144 031 25 19 ctrl Y EM End of Medium
I 0 ••• 0150 032 26 lA ctrl Z SUB Substitute
I •• •• 0 0154 033 27 IB ctrl [ESC Escape
I •••• 0160 034 28 lC ctrl \ FS File Separator

\,-- I • 0 .•• 0164 035 29 lD ctrl] GS Group Separator
I ••••• 0170 036 30 IE ctrl " RS Record Separator
I 0 ••.•• 0174 037 31 IF ctrl US Unit Separator
I • 0200 040 32 20 Space
I· • 0204 041 33 21 !
I 0 • 0210 042 34 22 " I o. 0 0214 043 35 23 #
I o. 0 0220 044 36 24 $
I· · . • 0224 045 37 25 %

I ••• • 0230 046 38 26 &

I •••. 0 0234 047 39 27
I · . • 0240 050 40 28
I· · . • 0244 051 41 29
I • · . • 0250 052 42 2A * I •• · . • 0254 053 43 2B +
I ••• 0 0260 054 44 2C
I· ••• • 0264 055 45 2D
I •••• 0 0270 056 46 2E
I •••.• • 0274 057 47 2F /
I •• 0300 060 48 30 0
I· •• 0304 061 49 31 1

I • •• 0310 062 50 32 2

I·· •• 0314 063 51 33 3

I · . •• 0320 064 52 34 4

I· · . •• 0324 065 53 35 5

I ••• •• 0330 066 54 36 6
I •••. •• 0334 067 55 37 7

I •••• 0340 070 56 38 8

I· •••• 0344 071 57 39 9

I • •••• 0350 072 58 3A

(I •• •••• 0354 073 59 3B
'- - I ••••• 0360 074 60 3C <

I· ••••• 0364 075 61 3D
I •••••• 0370 076 62 3E >
I •••.••• 0374 077 63 3F ?

APPENDIX 1 A1-1 EDIT

APPENDIX 1
T ABLE OF ASCII CODES (Cont'd) (Zero Parity)

Paper tape Upper Octal Octal Decimal Hex Character
123.4567P

• I 0400 100 64 40 @

• • I 0404 101 65 41 A

• " I 0410 102 66 42 B

•• • I 0414 103 67 43 C

• • • I 0420 104 68 44 D

• • • • I 0424 105 69 45 E

•• • • I 0430 106 70 46 F

•••• • I 0434 107 71 47 G

· . • I 0440 110 72 48 H

• • • • I 0444 111 73 49 I

• · . • 0450 112 74 4A J

•• • • • 0454 113 75 4B K

••• • 0460 114 76 4C L

• ••• • 0464 115 77 4D M

•••• • 0470 116 78 4E N
••••• • 0474 117 79 4F 0

• • 0500 120 80 50 P

• • • 0504 121 81 51 Q
• • • 0510 122 82 52 R

•• • • 0514 123 83 53 S

• • • • 0520 124 84 54 T

• • • • • 0524 125 85 55 U

••• • • 0530 126 86 56 V

•••• • • 0534 127 87 57 W

••• • 0540 130 88 58 X

• ••• • 0544 131 89 59 y

• ••• • 0550 132 90 5A Z
•• ••• • 0554 133 91 5B [shift K

•••• • 0560 134 92 5C \ shift L
• •••• • 0564 135 93 5D] shift M
••••• • 0570 136 94 5E shift N

•••••• • 0574 137 95 5F shift 0
•• 0600 140 96 60

• •• 0604 141 97 61 a
• •• 0610 142 98 62 b

•• •• 0614 143 99 63 c · . •• 0620 144 100 64 d

• • • •• 0624 145 101 65 e
••• •• 0630 146 102 66 f

•••• •• 0634 147 103 67 g
· . •• 0640 150 104 68 h

• · . •• 0644 151 105 69 i
• • • •• 0650 152 106 6A j

•• · . •• 0654 153 107 6B k

••• •• 0660 154 108 6C 1

• ••• •• 0664 155 109 6D m

•••• •• 0670 156 110 6E n
••••• •• 0674 157 III 6F 0

••• 0700 160 112 70 P
• ••• 0704 161 113 71 q

• ••• 0710 162 114 72 r

•• ••• 0714 163 115 73 s
• • ••• 0720 164 116 74 t

• • • ••• 0724 165 117 75 u

••• • •• 0730 166 118 76 v

•••• ••• 0734 167 119 77 w
••••• 0740 170 120 78 x

• ••••• 0744 171 121 79 Y
• ••••• 0750 172 122 7A z

•• ••••• 0754 173 123 7B
•••••• 0760 174 124 7C

• •••••• 0764 175 125 7D Alt Mode
••••••• 0770 176 126 7E Prefix

•••••••• 0774 177 127 7F DEL Rubout

APPENDIX 1 A1-2 EDIT

APPENDIX 2

PACK AND UNPAC

In Section 5.2.7 of the SOLOS/CUTER User's Manual, there is a
discussion of the two types of files generated and utilized by
SOLOS/CUTER. It is important to remember that any given item of
software may be able to handle only one of these file structures, and
that a program that handles multiple-block files may require that the
blocks be of a particular size or in a particular range of sizes. The
PACK and UNPAC programs recorded on the same cassette as the software
you have purchased convert files of either type into the opposite
type; PACK converts a multiple-block file to single-block format, and
UNPAC converts a single-block file to multiple-block format.

The following chart is a summary of the file requirements of cassette
software. S8 stands for single-block, and MB stands for
multiple-block. If MB is followed by a slash and a number, that
number indicates the block size required or generated by the program.

ITEM INPUT FILE OUTPUT FILE

ALS-8* SB SB
ASSM MB/ less than No text output

or equal to file
1024

Ext. BASIC MB/ 256 MB/ 256
EDIT MB/ 256 to 1024 MB/ 256 to 1024
SOFT\'~ARE # 1 SB SB

* uses SOLOS/CUTER SAVE and GET commands
**

If you want to use the output file from one of these programs as the
input file for another, and if the file does not have the structure
required by the second program, you will need to use PACK or UNPAC to
create a file of the correct structure. (Actually, the original file
will not be altered; each of these programs reads a file from tape
unit 1 and RECORDS A DIFFERENTLY FORMATTED VERSION of the same file on
tape unit 2.)

PACK and UNPAC can be used to convert a multiple-block file having one
block size into a multiple-block file with another block size. First
PACK the file, and then UNPAC it, specifying the block size that you
want. (If you have the EDIT program, you will probably find it more
convenient to use the n;command than to execute PACK, then UNPAC, for
this purpose.)

APPENDIX 2 A2-l EDIT

PACK and UNPAC have only one error message:

Read error - Bad tape file.

This message is displayed during the reading of a file from unit 1; it
usually indicates that the file was recorded incorrectly, or that a
MODE SELect or CTRL-@ was entered from the keyboard while the tape was
being read.

PACK

PACK reads a multiple-block text file from tape unit 1 and writes it
out as a single-block file on tape unit 2. When you execute PACK,
either by typing XEQ PACK<CR> or the sequence GET PACK<CR> followed by
EX 0<CR>, the screen will display:

Multi- to single- block converter

Enter name of multi-block file:

Type the name of the multiple-block file that you want to PACK. PACK
will also give this name to the single-block file that it creates. A
file name should contain one to five characters, no blanks or slashes;
when you have typed the whole name, hit the carriage return key. If
you make a typing error BEFORE YOU HIT THE RETURN KEY, use DELete to
erase the last character typed. If you hit the return and then
discover a typing error in the file name, you can use the ESCape key
to restart the series of questions.

Should output file be in ALS-8 format? (Y/N):

If the file is intended for use in the ALS-8 system, answer Y;
otherwise, answer N. In ALS-8 format each line of a file begins with
a count of the number of bytes in that line. Note that the input file
for PACK will never be in ALS-8 format, because ALS-8 format is not
used for multiple-block files.

Set up tapes. (Hit return when ready)

Insert the tape containing the multiple-block file in tape unit 1, and
put the recorder in PLAY mode. Insert the tape that will contain the
single-block file in tape unit 2, and put that recorder in RECORD
mode. When you hit the return key, the program will begin reading
from tape unit 1 and writing to tape unit 2.

At any time before you hit this final carriage return, you can restart
the question-answer section of PACK by hitting the ESCape key. Once
you have given the carriage return, however, the only way to interrupt
the activity of the program is to use MODE SELECT or CTRL-@ to abort
it and return to SOLOS/CUTER. If you abort the program and want to
execute it again, you will have to reload it from cassette.

APPENDIX 2 A2-2 EDIT

UN PAC

UNPAC reads a single-block text file from tape unit 1 and writes it
\~_ out as a multiple-block file on tape unit 2. When you execute UNPAC

by typing either XEQ UNPAC<CR> or the sequence GET UNPAC<CR> followed
by EX 0, the screen will display:

,
~.

Single- to multi- block converter

Enter name of single-block file:

Enter the name of the file that you want to UNPAC. The same name will
be given to the multiple-block output file. The file name
specifications are the same as those for PACK, and the DELete and
ESCape keys serve the same purpose as in PACK (see above).

Is input file in ALS-8 format? (YIN):

If the input file is in ALS-8 format, answer Y; otherwise, answer N.
The output file will not be in ALS-8 format. (The ALS-8 byte counts
will be stripped from the input file before it is written out to the
output file.)

Enter desired block size for output file:

Enter the block size (in number of bytes per block) as a decimal
number, and then type a carriage return.

Set up tapes. (Hit return when ready)

See the explanation under PACK, above. The ESCape and MODE keys
function as they do with PACK; like PACK, UNPAC must be reloaded from
cassette in order to be executed after MODE SELECT or Control-@ has
been used.

APPENDIX 2 A2-3 EDIT

