Prime.

MIDASPLUS ™
User’s Guide

Revision 22.0

DOC9244-2LA

MIDASPLUS
User's Guide

Second Edition

_ by
Andrew Munro

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
— Revision Level 22.0 (Rev. 22.0).

Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1988 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of
Prime Computer, Inc. DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS,
PERFORM, PRIMAN, Prime INFORMATION, Prime INFORMATION/pc, PRIME/SNA,
PRIMELINK, PRIMENET, PRIMEWAY, PRIMIX, PRISAM, PST 100, PTI25, PT45,
PI65, PTR200, PT250, PW153, PW200, PW250, RINGNET, SIMPLE, 50 Series,
750, 850, 2250, 2350, 2450, 2455, 2550, 2655, 2755, 4050, 4150, 4450,
6150, 6350, 6550, 9650, 9855, 9750, 9755, 9950, 9955, and 9955II are
trademarks of Prime Computer, Inc.

PRINTING HISTORY

First Edition (DOC92444-11A) July 1985 for Rev. 19.4
Update 1 (UPD9244-11A) January 1986 for Rev. 20.0
Update 2 (UPD9244-12A) August 1986 for Rev. 20.2
Update 3 (UPD9R44-13A) July 1987 for Rev. 21.0

Second Edition (DOC9244-2LA) October 1988 for Rev. 22.0

CREDITS

Editorial: Thelma Henner, Eric Wurzbacher
Project Support: Judy Paris

Illustration: Therese Bacharz

Document Preparation: Jeff Cohen
Production: Jean Fitzgerald

ii

HOW TO ORDER TECHNTCAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Customers International
Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.

Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 0ld Comnecticut Path
Framingham, MA 01701

iii

Contents

ABOUT THIS BOCK xi

PART I —— OVERVIEW

1 INTRODUCTION

Accessing MIDASPLUS 1-2
MIDASPLUS Terms and Concepts 1-2
MIDASPLUS File Access Methods 14
Execute-only MIDASPLUS 14
Language Groups 1-5

PART II —— FILE CONSTRUCTION

2 CREATING A MIDASPLUS FILE

Dialogs 2-1
File Read/Write Locks 2-3
Sample File 24
Variable-length Records and

Space Usage 2-5
Keyed Access Dialog (Minimum

Options) 2-6
Direct Access Dialog (Minimum

Options) 2-9
Optional CREATK Features 2-11

3 BUILDING A MIDASPIUS FILE

Input Files 3-2
Building a Variable-length

File 3-6
Adding Secondary Index Entries

Only -7
Error Reporting 3-8
The KBUILD Dialog 3-9
KBUILD Examples 3-11
Alternatives to KBUILD 3-22
KBUILD Error Messages 3-223

PART IIT —- FILE ACCESS

4 INTRODUCTION TO FILE ACCESS

Access Operations 4-1
Language Access 4-2
Direct Access 4-2
Running MIDASPLUS on PRIMIX 4-2

5 THE FORTRAN INTERFACE

The Current Record 5-1
Direct Access in FORTRAN 5-2
The Communications Array 5-2
$INSERT Mnemonics 54
MIDASPLUS Flags 54
Compile and Load Sequence 5-9
The FORTRAN/MIDASPLUS

Interface Subroutines 5-10
Opening and Closing MIDASPLUS

Files 5-12
OPENM$ 5-13
CLOSM$ 5-15
NTFYM$ 5-16
ADD1$ 5-17
Reading a MIDASPLUS File 5-26
FIND$ 5-25
NEXT$ 5-31
GDATA$ 5-35
Updating a Record 5-37
LOCK$ 5-37
UPDAT$ 541
DELET$ 544
FORTRAN Programming Example 547

6 THE COBOL INTERFACE

Language Dependencies 6-2
Summary of COBOL Statements 64
Defining an Indexed MIDASPLUS

File 64
Error Handling 6-11
File Position 6-14
Reading a File 6-17
Adding Records 6-21
Updating Records (REWRITE) 6-22
Deleting Records 6-22
Ind=2xed Programming Example 6-24
Direct Access Files in COBOL 6-28
Accessing RELATIVE Files 6-30
RELATIVE Programming Example 6-35

7 THE BASIC/VM INTERFACE

Language Dependencies

Summary of Access Statements
Locking and Unlocking Records
Opening/Closing a MIDASPLUS File
Error Handling

File Positioning

The REWIND Statement

Adding Records

Reading Records

Updating Records

Deleting Records

I |
AR

N

&

AR B B B A A
=P OO0

(VARV}

8 THE PL/I INTERFACE

Running a PL/I Program 8-2
Opening/Creating a MIDASPLUS

File 8-3
File I/0 Concepts in PL/I 8-5
Adding Records 86
Reading a MIDASPLUS File 8-9
Updating File Records 8-13
Deleting Records 8-15
Accessing CREATK-defined Files 8-17
Error Handling 8-18

9 THE VRPG INTERFACE

Language-dependent Features 9-3
Compile and Load Sequence 9-2
Describing a MIDASPLUS File in

VRPG 9-3
File Operations 9-8
Indexed File Examples 9-13
Direct Access in VRPG 9-20
Multiple Key Processing 9-20
Processing with Secondary Keys 9-25
Alternate File Processing 9-30

PART IV -— MAINTENANCE AND ADMINISTRATION

10 THE MDUMP UTILITY

MDUMP Options 10-1
The Sequential Dump

File 10-3
The MDUMP Dialog 104
Status and Descriptive Messages 10-5
Error Messages 10-8
Sample MDUMP Session 10-8

vii

11

12

13

14

15

16

DELETING A MIDASPLUS FILE

The KIDDEL Utility
KITDEL Dialog
KIDDEL Error Messages

CLEANING UP A MIDASPLUS FILE

MPLUSCLUP Options
Remote Cleanup

MONITORING A MIDASPLUS FILE

User Interface

Record Locks Display
Statistics Display
Configuration Display

Keys of Locked Records Display
Errors

ADDITIONAL CREATK FUNCTIONS

Function Summary
Examining a File
Modifying a Template

The Extended Options Path
Extended Options Dialog

PACKING A MIDASPLUS FILE

Functions and Options of MPACK
MPACK Dialog

Abnormal Termination of MPACK
MPACK Error Messages

INSTALLING AND ACMINISTERING MIDASPLUS

Installing MIDASPLUS the First Time
Upgrading MIDASPLUS

Sharing MIDASPLUS

MTIDASPLUS Components

Providing Access to MIDASPLUS
Initializing MIDASPLUS

MSGCTL

Networking MIDASPLUS

System Error Logging

viii

11-1
11-2
11-3

12-2
12-2

13-1
13-2
13-3
13-6
13-12
13-13

14-1
14-2
14-7
14-14
14-15

15-1
154
15-5
15-10

16-1
16-2
16-2
16-3
16-3
164
16-9
16-10
16-11

PART V —— OFFLINE ROUTINES
17 OFFLINE CREATE ROUTINES
KX$CRE 17-1
KX$RFC 17-6

18 OFFLINE BUILD ROUTINES

Guidelines 18-2
Restrictions 18-3
Event Sequence Flag 18-3
PRIBLD ' 18-5
SECBLD 18-7
BILDS$R 18-8
Offline Routine Example 18-9
PRIBLD, SECBID, and BILD$R Error
Messages 18-14

PART VI —— APPENDICES
A GLOSSARY A-1

B ERRCR MESSAGES

KBUILD Error Messages B-1
MDUMP Status and Descriptive
Messages B-3
MDUMP Error Messages B-5
KITIDEL Error Messages B-5
SPY Errors B-5
MPACK Error Messages B-6
KXCRE Error Messages B-7
PRIBILD, SECBLD, and BILD$R Error
Messages B-8
Runtime Error Codes B-12
COBOL Status Codes B-16
C PRIMOS ERRCR MESSAGES C-1
D USING PRIME CUSTOMER SERVICE D-1

E OONCURRENCY ISSUES

Locked Records E-1
Deleted Records E4
COBOL Sequential Access E-5
Hard-coded File Units E-6
Concurrency Rules E-%

OTHER MIDASPIUS OFFLINE ROUTINES
ERROPN
KX$TIM

THE CALL INTERFACE WITH C
Callable Interface Example

THE CALL INTERFACE WITH PASCAL
Callable Interface Example

FILE UNIT MANAGEMENT
MIDASPLUS File Unit Utilization
Potential Problems

INDEX

G2

About
This Book

This book is a user guide to MIDASPIUS™, Prime's Enhanced Multiple
Index Data Access System. The book is organized in six parts,
including eighteen chapters, nine appendixes, and an index.

Part I, containing Chapter 1, introduces MIDASPLUS, discusses MIDASPLUS
terms and concepts, provides an overview of MIDASPLUS file access
methods, and summarizes the MIDASPLUS language interfaces.

Part II explains how to create and build MIDASPLUS files using the
CREATK and KBUILD utilities. Part II contains Chapter 2, CREATING A
MIDASPLUS FILE, and Chapter 3, BUILDING A MIDASPLUS FILE.

Part III discusses how to use the MIDASPLUS language interfaces. Part
III contains Chapter 4, INTRODUCTION TO FILE ACCESS, Chapter &5, THE
FORTRAN INTERFACE, Chapter 6, THE COBOL INTERFACE, Chapter 7, THE
BASIC/VM INTERFACE, Chapter 8, THE PL/I INTERFACE, and Chapter 9, THE
VRPG INTERFACE.

Part IV explains how to perform maintenance on MIDASPLUS. Part IV
contains Chapter 10, The MDUMP UTILITY, Chapter 11, DELETING A
MIDASPIUS FILE, Chapter 12, CLEANING UP A MIDASPLUS FILE, Chapter 13,
MONITORING A MIDASPLUS FILE, Chapter 14, ADDITIONAL CREATK FUNCTIONS,
Chapter 15, PACKING A MIDASPLUS FILE, and Chapter 16, INSTALLING AND
ADMTNISTERING MIDASPLUS.

Part V explains how to create and build MIDASPLUS files using offline
routines. Part V contains Chapter 17, OFFLINE CREATE ROUTINES, and
Chapter 18, OFFLINE BUILD ROUTINES.

The nine appendixes are Appendix A, GLOSSARY, Appendix B, ERROR
MESSAGES, Appendix C, PRIMOS ERROR MESSAGES, Appendix D, USING PRIME
CUSTOMER SERVICE, Appendix E, CONCURRENCY ISSUES, Appendix F, OTHER
MTIDASPLUS OFFLINE ROUTINES, Appendix G, THE CALL INTERFACE WITH C,
Appendix H, THE CALL INTERFACE WITH PASCAL, and Appendix I, FILE UNIT
MANAGEMENT .

NEW FEATURES

This book includes details on the following features that are new at
Rev. 22.0:

e The ability to set minimum and maximum size 1limits on
Variable-Iength Record (VIR) files. (See Chapter 2.)

e A new insert file for COBOL programmers who want to refer to
error codes and key values by mnemonic names instead of absolute
values. (See Chapter 5.)

e A new SPY option that shows who is holding a locked record in a
local ASCIT file; the primary key value and the user number are
shown. (See Chapter 13.)

Also, Chapter 6 details the COBOL support for variable-length records
that was added at Rev. 20.2.

ADDITTIONAL DOCUMENTATION

The following Prime publications contain additional information useful
in conjunction with this book:

PRIMOS User's Guide, Rev. 22.0 DOC4130-5LA
BASTC/VM Programmer's Guide, Rev. 17.2 FLR3058-101A
Update pages, Rev. 18.1 COR3058-001
Update pages, Rev. 19.0 COR3058-002
Update pages, Rev. 19.4 UPD3058-33A
COBOL 74 Reference Guide, Rev. 20.0 DOC5039-2LA
Update pages, Rev. 20.2 UPDS039-21A
Update pages, Rev. 21.0 UPD5039-22A
FORTRAN Reference Guide, Rev. 17.2 FIR3057-101A
Update pages, Rev. 18.1 COR3057-001
Update pages, Rev. 19.0 COR3057-002
Update pages, Rev. 19.4 UPD3057-33A
Update pages, Rev. 21.0 UPD3057-34A

FORTRAN 77 Reference Guide, Rev. 19.4 DOC4A02941A

Update pages, Rev. 20.2 UPD402941A

Update pages, Rev. 21.0 UPD4029-42A
PL/I Reference Guide, Rev. 19.4 DOC5041-1LA

Update pages, Rev. 21 UPD5041-11A
RPG IT V-Mode Compiler Reference Guide,

Rev. 20.0 DOCS5040-2LA

Update pages, Rev. 21.0 UPD5040-22A

OTHER HELPFUL DOCUMENTS

The Guide to Prime User Documents (DOCS138-5PA) provides a brief
description of each of Prime’s technical documents.

Release Updates provide valuable information about Prime products prior
to major releases or complete revisions of a book. It is a good
practice, when inquiring about documentation, to ask about any updates
that may be available for a given product.

The PRIMOS HELP command provides information about PRIMOS-level
MIDASPLUS commands such as CREATK and KBUILD.

xiii

PRIME DOCUMENTATION CONVENTTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase.

Convention

Explanation

UPPERCASE

lowercase

Brackets
[]

Braces
{}
Ellipsis

Default
indicator

Underscore
in examples

(CR)

In command formats, words
in uppercase indicate the
names of commands, options,
statements, and keywords.
Enter them in either upper-
case or lowercase.

In command formats, words

in lowercase indicate vari-
ables for which you must
substitute a suitable value.

Brackets enclose an
optional word or phrase.

Braces enclose a vertical
list of items. Choose one
and only one of these items.

An ellipsis indicates that
the preceding item may be
entered more than once on
the command line.

In a list of options, a bul-
let indicates the default
choice, if one exists.

If you do not select an
option, the system chooses
the default option.

In examples, user input is
underscored but system
prompts and output are not.

This symbol indicates a
RETURN key. (CR) is used in
examples to show that the
user presses the Return Key
and nothing else in response

to a MIDASPLUS utility prompt.

Example
MPLUSCLUP

key-name

[OWNER-IS literal-1]

SEQUENTTAL
RANDOM
DYNAMIC

[,filename2, ...]

X, creatk

This is the output
of MY PROG.CPL

(K’

INDEX NO.? (CR)

Angle brackets In messages, characters or DO YOU WANT THE
in messages words enclosed within angle INDEX <#> KEY DUMPED?
< > brackets indicate a vari-
able for which the utility
substitutes the appropriate
value.

The term word in this manual means a 16-bit entity.

Introduction

This chapter defines MIDASPLUS and lists its file access methods and
the language groups associated with MIDASPLUS. MIDASPLUS, the Enhanced
Multiple Index Data Access System, is a collection of subroutines and
interactive utilities that construct, access, and maintain keyed data
files. Once you have established the structure of a MIDASPIUS file,
you can add data to it online through interactive programs, or through
application programs. You can also use MIDASPLUS utilities to add data
in existing sequential (non-MIDASPLUS) files to MIDASPLUS files. Use
MIDASPLUS when:

e You wish to access a large data file by one or more keys. For
exanmple, you may access a customer master file by an account
number or by a customer name.

e Several users need to access and update a file online
similtaneously.

For details on features that are new at this revision of MIDASPIUS, see
ABOUT THIS BOCK, which immediately precedes this chapter; the section
NEW FEATURES summarizes each new feature and tells you where this book
describes it fully.

The MIDASPLUS system consists of Prime-supplied interactive programs,
called utilities, and file access subroutines. The utilities are
responsible for file creation, modification, and maintenance. The
subroutines are used to add, delete, modify, and access information in
existing MIDASPLUS files. The subroutines are integrated into and are
indirectly used by BASIC/VM, COBOL, PL/I and VRPG. Users of FORTRAN,
C, Pascal, and PL/I can call these subroutines directly from programs

1-1 Second Edition

MIDASPLUS USER'S GUIDE

written in these languages. (PL/I can call the subroutines either
directly or indirectly.) See Chapter 5, THE FORTRAN INTERFACE, for
information about the subroutines.

ACCESSING MIDASPLUS

You can access MIDASPLUS files through the following Prime languages:

F7? or FIN *
COBOL 74
BASIC/VM
PL/I

VRPG

C *

Pascal *

* You can access these languages using a call interface only. See
Appendix G, THE CALL INTERFACE WITH C, for more information
about using C with a call interface and Appendix H, THE CALL
INTERFACE WITH PASCAL, for more information about using Pascal
with a call interface.

Ordinarily, a MIDASPLUS file is set wup for use with a particular
language interface. It is possible, however, to access any MIDASPLUS
file with any of these Prime high-level languages.

MIDASPLUS TERMS AND CONCEPTS

A typical data file is composed of records, which are divided into one
or more related fields. Each field in a record is a piece of data,
such as a last name or identification number, which describes or
pertains to an individual event, person, company, and so forth. Each
record in a file has the same field layout. It is important to
remember that the actual contents of each field (called the field
value) will usually differ from record to record. As a result, at
least one field in each record must have a unique value that
distinguishes it from all other file records.

Some file records contain fields that identify the record and fields
that describe the record. The fields that identify a record are called
key fields or keys. These fields are distinguished from other fields
in the record that contain descriptive data, or detail information.
Files with key fields are called keyed files.

Some MIDASPLUS dialogs ask if you wish to use secondary data.
Secondary data 1s data that is stored in a secondary index subfile.
Since you cannot access secondary data in the same way as ordinary data
from the data subfile, the use of secondary data is not recommended.

Second Edition 1-2

R

INTRODUCTION

Keys

Each MIDASPIUS file must contain a primary key and may contain
secondary keys. A primary key must have a unique value for each record
in the data file. A secondary key is not required to have a unique
value in every record. There may be as many as 17 secondary keys for
each MIDASPIUS file record. See Figure 1-1 for a diagram of a
MIDASPLUS file.

The data file, also called a data subfile, consists of records that you
can reference through the primary index subfile by specifying a primary
key value. Each entry in the data subfile is pointed to by its unique
primary key entry in the primary index subfile. If secondary keys are
used, they can also reference the entries in the data subfile.

Primary N
Index \\
N,
N,
~
N,
\\
Secondary N ~
Index 1 Ssa N
~o ~
~o \\
~
\\\\\
Secondary }._--——----——-* Data
Index 2 // File
V4
4
o 7/
(o] //
o V4
(o] //
o 4
(<) il
V4
4
Secondary ,’
Index 17 ’
Figure 1-1

Sample MIDASPLUS File

1-3 Second Edition

MIDASPIUS USER'S GUILE

The MIDASPLUS Template

Although the exact number of files and subfiles varies, a MIDASPLUS
file always consists of index subfiles (one for each key in the file)
and the data subfile, which contains the information to be accessed.
Together, these two parts are called a template. A template is
essentially an initialized (unpopulated or empty; MIDASPIUS file.

A template’'s primary function is to accurately define the structure and
properties of a MIDASPLUS data file. MIDASPLUS utilities and access
routines require a template in order to access the information in a
data file. The template includes a description of the data file's key
types and their lengths, as well as the data file record length. The
record length can be fixed or variable. Variable-length records use
only the space needed to contain the data, thereby saving you space.

The MIDASPLUS utility CREATK sets up a MIDASPLUS file template using

interactive dialog. See Chapter 2, CREATING A MIDASPLUS FILE, for a
description of CREATK.

MIDASPIUS FILE ACCESS METHODS

You can use either the keyed-index access method or the direct access
method to retrieve information from a MIDASPLUS file. You can set up a
MIDASPLUS file template for keyed-index access only, or you can set it
up to use both methods. The MIDASPLUS file structure and access is
key-oriented, which makes it easier for you to maintain, update, and
retrieve information stored in both large and small files.

Keyed-index Access

Keyed-index access involves giving MIDASPLUS a primary or secondary key
value and waiting for MIDASPLUS to return the appropriate record.
MIDASPIUS does keyed-index file searches by looking through a list of
index subfile entries for a match on the user-supplied key value. When
a match is found, the corresponding record in the data subfile is
located by following the pointer from the index subfile to the data
subfile. You can do sequential searches by performing a get
next-record operation, which tells MIDASPLUS to return the next record
entry in the data subfile. You can do partial searches by using the
prefix of the full key value.

Direct Access

Direct access is based on record numbers. Each record in the data
subfile is given a unique number. To access a particular record, you
must give MIDASPLUS a record number. Although you must keep track of
record numbers, this method can be faster than keyed-index access

Second Edition 14

INTRODUCTION

because there is less searching involved. Direct access files in COBOL
require that the primary key be the record number. In FORTRAN, you can
access direct access files either by record number, primary Xkey, Or

secondary key.

For direct access files with primary and secondary keys in addition to
record numbers, you can use the keyed-index access method to retrieve
information by key value. This means that the keyed-index access
method can be used on files of either type of template, while direct
access only works on templates set up for direct access. You may use
direct access with the COBOL, FORTRAN, and VRPG MIDASPLUS interfaces.

EXECUTE-ONLY MIDASPLUS

Prime offers a reduced price version of MIDASPLUS with reduced
functionality, which you can use to execute prepackaged MTDASPLUS
programs. With execute-only MIDASPLUS, you cannot create new files or
new application programs, but you can use CREATK to examine and
maintain existing files. With this version of MIDASPLUS, calls to the
file creation routine KX$CRE have no effect, because KX$CRE is absent,
and no MIDASPLUS libraries are supplied for building an application.

Because execute-only MIDASPLUS offers limited functionality, only part

of this book applies this version of the product. The applicable
chapters are Chapters 1, 3, 10 through 16, and 18.

LANGUAGE GROUPS

Although you may use any of Prime’'s languages to access a MIDASPLUS
file, the languages with built-in interfaces have some limitations when
you are using MIDASPLUS. This is especially true if a file is to be
accessed by programs written in more than one language. Below are the
restrictions on template creation pertaining to each language
interface. Other restrictions pertaining to file access and
maintenance are addressed separately in each of the language interface
chapters.

FORTRAN

Because FORTRAN is the principal MIDASPLUS interface, and is the basis
of all of the other language interfaces, FORTRAN users can take
advantage of the full range of MIDASPLUS features. You can create up
to 17 secondary keys (and index subfiles) per file. Although keys do
not have to be part of the data record, including them in the data
record makes it easier to monitor file integrity. To include them,
define each key as an actual field in the record. See Chapter 5, THE
FORTRAN INTERFACE, for more information about FORTRAN.

1-5 Second Edition

MIDASPLUS USER'S GUIDE

COBOL

The COBOL interface to MIDASPLUS uses the Prime CBL compiler and is
based on the standard COBOL I/0 statements for INDEXED and RELATIVE
files. A keyed-index MIDASPLUS file, called an INDEXED SBQUENTTIAL file
in COBOL, can have one primary key and up to 17 secondary keys. Direct
access MIDASPIUS files are also available for COBOL use; these files
are called REILATIVE files in COBOL.

BASIC/VM

MIDASPIUS files built for access by BASIC/VM programs can have one
primary and up to 17 secondary keys. Although keys are not required to
be part of the data record, it is recommended that you include both
primary and secondary keys in the data record for convenience.
BASIC/VM does not support the direct access feature of MIDASPLUS. See
Chapter 7, THE BASIC/VM INTERFACE, for additional information about
BASIC/VM.

PL/T

The PL/I MIDASPLUS interface supports only ASCII primary keys, with a
maximum length of 32 characters. PL/I does not support secondary keys
or direct access. It is not necessary to use CREATK to set up a
MTDASPIUS file template, as PL/I has its own tools for doing so. You
can access files created with CREATK, however, through PL/I. See
Chapter 8, THE PL/I INTERFACE, for more information about PL/I.

VRPG

The VRPG interface to MIDASPLUS supports up to 17 secondary keys for
keyed-index files, but does not support the use of secondary data. The
keys may be of type ASCII or bit string. VRPG supports access to both
keyed-index and direct access MIDASPLUS files, but can only delete
keyed-index MIDASPLUS records. See Chapter 9, THE VRPG INTERFACE, for
more information about VRPG.

Second Edition 1-6

Creating a
MIDASPLUS File

This chapter tells you how to create keyed-index access and direct
access MIDASPLUS files, explains the CREATK dialogs, provides examples
of the CREATK dialogs, and summarizes other features of CREATK that you
can use on already existing MIDASPIUS files. CREATK is an interactive
program that uses your specifications in the form of parameters to set
up a template that describes a MIDASPLUS file and allocates space for
it. These parameters include the following:

e MIDASPLUS file type (keyed-index or direct access)
e Primary key type and size

e Secondary key types and sizes - optional. Use secondary keys
when you want more than one search key for the file

e Data record size

DIALOGS

CREATK has two dialogs - the minimum options dialog and the full
options dialog. The minimum options dialog supplies default parameters
for the template. With the extended options dialog, you provide all of
the parameters to build a template. Both of these options allow you to
build a keyed-index or direct access MIDASPLUS file.

2-1 Second Edition

MIDASPLUS USER'S GUIDE

Vhile the minimum options dialog only asks a few questions about the
file and its keys, the extended options dialog asks for more details,
such as segment length and index block size.

The default parameters give the best performance. Use the extended
options dialog only if you want to change the index block size. (See
Chapter 14, ADDITIONAL CREATK FUNCTIONS, for information about the
extended options dialog.)

Dialog Guidelines

As with other MIDASPLUS utilities, input to CREATK can be in either
lowercase or uppercase. If you make an input error, CREATK displays a
message telling you what the problem is. This message repeats until
you enter acceptable input. When CREATK asks a "YES/NO" type of
question, it accepts the following responses:

YES
NO
AYE
NAY
X

CREATIK also accepts the first letter of the above responses (Y, N, A,
or 0). To end CREATK's dialog, press the RETURN key after the INDEX
NO? prompt appears.

Note

User responses are underlined in this manual to distinguish
your responses from system output. Never underline your input.
The (CR) symbol shown in the examples indicates the RETURN key.
Enter CREATK to begin the CREATK dialog. See the keyed-access
and direct access dialogs and examples later in this chapter.

Key Types

Table 2-1 lists the data types for MIDASPIUS keys. The maximum number
of words per key is limited to 16 words for bit strings and 32 words
for ASCIT strings. The other data types are automatically sized
according to their internal specifications. In the MIDASPLUS dialog,
the term word refers to 16 bits.

Second Edition 22

CREATING A MIDASPLUS FILE

Table 2-1
MIDASPLUS File Key Types

Key Code Key Type length Specifications
A ASCII Words or Bytes: W nn or B nn
Max. 32 Words (64 Bytes)
B Bit String Bits or Words: B nn or W nn
Max. 16 words (256 bits)
D Double Precision Hardware-defined: 4 words
Floating Point
(REAL*4)
I Short Integer Hardware-defined: 1 word
(INT*2)
L Long Integer Hardware-defined: 2 words
(INT*4)
S Single Precision Hardware-defined: 2 words
Floating Point
(REAL*2)

FILE READ/WRITE LOCKS

CREATK automatically sets the file Read/Write lock on each MIDASPLUS
file it creates to n readers and n writers. This setting is equivalent
to the PRIMOS RWIOCK setting of 3. With a lock setting of 3, multiple
users may have the file open for reading, writing, or updating. The
Read/Write lock settings are part of MIDASPLUS concurrent process
handling.

CREATK displays the message:

SETTING FILE IOCKS TO N READERS AND N WRITERS

at the end of every session in which a new MIDASPLUS file is created.

2-3 Second Edition

MIDASPIUS USER’'S GUIDE

SAMPLE FILE

Figure 2-1 shows the layout of a sample MIDASPIUS file called RANK,
which is used for examples throughout this book. This file is designed
to provide information about a bank’'s customers and their accounts.
The file consists of the following three major fields:

customer identification number
customer name
account number

The BANK file is a keyed-index access file created with one primary key
and two secondary keys. The primary key is an ASCII key, nine
characters in length, describing a customer’s identification number.
The first secondary key is an ASCII key of 25 characters describing the
customer’s name. The second secondary key, a ten—character ASCII
string, describes the customer's account number. The non-keyed fields
include street address, city, state, and zip code.

Field 1 Field 2 Field 3 Field 4

CUSTOMER ID CUSTOMER NAME | ACCOUNT NUMBER ADDRESS

* Primary key » Secondary key 01 » Secondary key 02 *Nota
keyed field
* 9 characters — « 25 characters - * 10 characters - * 42 characters
duplicates not duplicates duplicates not
allowed allowed allowed
* ASCll key » ASCII key * ASCli key

Record length = 86 characters

Layout of a BANK File
Figure 2-1

Second Edition 24

CREATING A MIDASPLUS FILE

VARTABLE-LENGTH RECORDS AND SPACE USAGE

If you create a file with records of fixed length, but with each record
containing a different amount of data, some disk space is wasted. For
instance, if you indicate that each record will be 36 characters long,
but record X contains only 24 characters, a third of the record’s disk
space is unused. For this situation, MIDASPLUS allows you to create a
file of records that vary in length. Each one of these variable-length
records (VLRs) uses only the disk space it needs to contain the data.

To create and load a file of variable-length records, use CREATK and
load the file as follows:

1) Begin the CREATK dialog, indicating that you are creating a
keyed-indexed access file, the only type of MIDASPLUS file that
may contain variable-length records.

2) When CREATK prompts DATA SIZE IN WORDS, respond in one of the
following ways:

e Press RETURN or enter a 0. Either action prohibits
CREATK from setting a minimum or a maximum limit on the
record size.

e Enter a O followed by two values. The first value sets
the minimum record size; the second value sets the
maximum record size. The minimum must be at least 1;
the meximum can be up to 32767. Setting these size
limits accommodates applications that check size limits
when opening a file or before adding a record.

3) Load the file according to the instructions in BUILDING A
VARTABLE-LENGTH RECORD MIDASPIUS FILE in Chapter 3.

Three CREATK commands, INITTALIZE, GET, and PRINT, help you administer
variable-length record files. If you created the file without setting
size limits and the file is still empty, use the INITIALIZE command tO
set size limits. You can also use INITTIALIZE to change these limits,
before or after you load the file. If you loaded the file before
setting size limits, use the GET command, which sets the limits to the
size of the smallest and largest records in the file. To find out the
current size limits, issue the PRINT command and look for a line with
the following format:

VLR MIN SIZE: <number> VIR MAX SIZE: <number>

2-5 Second Edition

MIDASPLUS USER'S GUIDE

KEYED ACCESS DIALOG (MINIMUM OPTIONS)

This section consists of the prompts and responses for the CREATK
keyed-index access dialog with minimum options. Remember that in the
MIDASPLUS dialog, the term word refers to 16 bits (2 bytes).

Prompt
MINIMUM OPTIONS?

FILE NAME?

NEW FILE?

DIRECT ACCESS?

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE:

PRIMARY KEY SIZE = :

DATA SIZE IN WORDS = :

SECONDARY INDEX

INDEX NO.?

Second Edition

Response
Enter YES.

Enter the pathname of the file to be
created.

Enter YES to create a new template.

Enter NO to create a keyed-index
acecess file.

Enter one of the key codes listed in
Table 2-1 to define the primary key
data type (A, B, D, I, L, or S).

Enter the size of key in words, bytes,
or bits. Size must be preceded by W
and a space for words or B and a space
for bytes or bits. See Table 2-1.

For fixed-length records, enter the
maximum length in words of the data
record in the data subfile. If the
MIDASPIUS files will be used in COBOL
applications, include the total length
of all keys in the data size.

For variable-length records, either
press RETURN, or enter O, or enter O
followed by a value for the minimum
record size and a value for maximum
record size.

For FORTRAN, BASIC/VM, VRPG and COBOL
applications, enter a number from 1-17
to indicate which secondary index is
being defined. For COBOL:
applications, define the secondary
keys in order, that is, define
secondary key 1 before secondary key
2, and so forth.

26

—_—

DUPLICATE KEYS PERMITTED?

KEY TYPE:

KEY SIZE = :

SECONDARY DATA SIZE IN WORDS = :

CREATING A MIDASPLUS FILE

For use with PL/I applications, press
the RETURN key. (PL/I does not

support secondary keys.)

Enter O or press the RETURN KEY to enmd
the secondary index definition
sequence.

Enter YES or NO. YES allows the same

secondary key value to appear more
than once in the index.

Enter one of the codes listed in Table
2-1 to indicate data type of the
secondary key (A, B, D, I, L, or S).

Enter the size of key in words, bytes,
or bits. Size must be preceded by W
and a space for words or B ard a

for bytes or bits. (Asked only if A
or B type key is specified above.)

For use with FORTRAN, enter the number
of words of secondary data to be
stored with this secondary key or
press the RETURN key. The use of
secondary data is not recommended.

For other languages, enter O or press
the RETURN key.

Note

The secondary index prompts repeat, enabling you to enter
information about each secondary index. To complete the CREATK
process, press RETURN at the INDEX NO? prompt.

-7 Second Edition

MIDASPLUS USER’'S GUIDE

Keyed Access Example

X, creatk
[CREATK rev 19.4.0]

MINIMUM OPTIONS? yes

FILE NAME? bank
NEW FILE? yes
DIRECT ACCESS? no

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: a
PRIMARY KEY SIZE = : b 9
DATA SIZE IN WORDS = : 43

SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? yes

KEY TYPE: a

KEY SIZE = : b 25
SECONDARY DATA SIZE IN WORDS = : (CR)

INDEX NO.? 2
DUPLICATE KEYS PERMITTED? no

KEY TYPE: a

KEY SIZE = : b 10
SECONDARY DATA SIZE IN WORDS

I

: (GR)
INDEX NO.? (CR)

SETTING FILE IOCK TO N READERS AND N WRITERS
X,

Second Edition 2-8

CREATING A MIDASPLUS FILE

DIRECT ACCESS DIALOG (MINIMUM OPTIONS)

This section consists of the prompts and responses for using the direct
access dialog with minimum options for CREATK. Direct access, which is
available in FORTRAN, OOBOL, and VRPG, is discussed in Chapters 5, 6,

and 9.

Prompt
MINIMUM OPTIONS?

FILE NAME?

NEW FILE?

DIRECT ACCESS?

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE:

PRIMARY KEY SIZE =

DATA SIZE IN WORDS = :

NUMBER OF ENTRIES TO ALIOCATE?

2-9

Response
Enter YES.

Enter the pathname of the file to
be created.

Enter YES to create a new
template.
Enter YES to create a direct

access file. Records are stored
in the data subfile in sequential
order according to record number.

Enter B or A for files used with
COBOL.. Enter A for files used
with VRPG. Enter one of the codes
listed in Table 2-1 for FORTRAN
(A, B, D, I, S, or L).

Enter the size of the key in
words, bytes, or bits. Size must
be preceded by W and a space for
words or B and a space for bytes
and bits. See Table 2-1.

Enter the length of the data
record in the data subfile.
Direct access files must have
fixed-length records supplied in
16-bit words.

CREATK preallocates space for
direct access files. Enter the
maximum number of entries

(records) that you expect to use
in the data subfile.

Second Edition

MIDASPLUS USER'S GUIDE

SECONDARY INDEX

INDEX NO.?

DUPLICATE KEYS PERMITTED?

KEY TYPE:

KEY SIZE =

SECONDARY DATA SIZE IN WORDS =

For use with FORTRAN or VRIG,
enter a number from 1-17Y if
secondary keys are desired.

For use with COBOL, press the
RETURN KEY.

Enter YES or NO. YES allows the
same secondary key value to appear
more than once in the index.

Enter one of the codes 1listed in
Table 2-1, to indicate data type
of the secondary key (A, B, D, I,
S, or L).

Enter the size of key in words,
bytes, or bits. Size must be
preceded by W for words or B for
bytes or bits. See Table 2-1.

: Enter O or press the RETURN key to

specify no secondary data. For
use with FORTRAN, enter the number
of words to Dbe stored with this

secondary key.

The use of secondary data is not
recommended.

Note

The secondary index prompts repeat, enabling you to enter
information about each secondary index file. To complete the
CREATK process, press the RETURN key at the INDEX NO? prompt.

Second Edition 2-10

CREATING A MIDASPLUS FILE

Direct Access Example

K, creatk
[CREATK rev 19.4.0]

MINIMUM OPTIONS? yes
FILE NAME? dacust

NEW FILE? yes

DIRECT ACCESS? yes

DATA SUBFILE QUESTIONS
PRIMARY KEY TYPE: b
PRIMARY KEY SIZE = : b 48
DATA SIZE IN WORDS = : 17
NUMBER OF ENTRIES TO ALIOCATE? 15
SECONDARY INDEX

INDCEX NO.? (CR)

SETTING FILE LOCK TO N READERS AND N WRITERS
X,

OPTIONAL CREATK FEATURES

CREATK also lets you get information about an existing MIDASPIUS file,
its key types and sizes, its index subfile structure, segment length,
block size, and so forth. You can also change the length of the data
file record and get estimates on how much room is needed for a
projected number of files.

If you enter CREATK and type NO to the NEW FILE? prompt, the next
prompt will be FUNCTION?. To obtain a list of these CREATK functions,

type H (HELP) after the FUNCTION? prompt appears oOn your Screen.
These functions can only be used on existing files. For example:

CK, creatk
[CREATK rev 19.4.0]
MINIMUM OPTIONS? yes

FILE NAME? bank
NEW FILE? no

2-11 Second Edition

MTDASPLUS USER'S GUIDE

FUNCTION? help

A[DD) = ADD AN INDEX

C[OUNT] ~ COOUNT ACTUAL INDEX ENTRIES

D[ATA] ~ CHANGE DATA RECORD SIZE

E[XTEND] = CHANGE SEGMENT & SEGMENT DIRECTORY LENGTH

FLIIE] - OPEN A NEW FILE

GLET] ~ GET AND SET THE ACTUAL MIN/MAX RECORD SIZE OF THE
VARIABLE LENGTH RECORD (VIR) FILE

H[ELP) - PRINT THIS SUMMARY

I[NITIALIZE] = SET THE MIN/MAX RECORD SIZE FOR THE VARIABLE
LENGTH RECORD (VIR) FILE

M[ODIFY) - MODIFY AN EXISTING SUBFILE

P[RINT] = PRINT DESCRIPTOR INFORMATION

QLUIT] = EXIT CREATK

(C/R) = IMPLIED QUIT

S[IZE] - DETERMINE THE SIZE OF A FILE

U[SAGE] = DISPLAY CURRENT INDEX USAGE

V[ERSION] = MIDASPLUS DEFAULTS FOR THIS FILE

Explanation of CREATK Options

The CREATK options are summarized below and described in more detail in
Chapter 14, ADDITIONAL CREATK FUNCTIONS.

OPTION

ATD

DATA

FILE

Second Edition

USE

Allows you to add a secorndary index subfile and a key
to an existing MIDASPLUS template. You cannot have
more than 17 secondary index subfiles.

Counts the number of entries currently in the file.

Changes the data record length and the number of
records allocated for that file if the file is a direct
access file. DATA does not display the current record
length. (Use the PRINT option to get the current
record length.)

Lets you change the number of segments per segment
directory and words per segment subfile. With EXTEND,
you can extend the segment subfile and segment
directory lengths; this allows you to make bigger
index and data subfiles.

Lets you create a new file template without returning
to PRIMOS and reentering CREATK, or lets you work on
another old file. Returns you to PRIMOS after file
definition is complete.

2-12

INITIALIZE

MODIFY

PRINT

SIZE

USAGE

CREATING A MIDASPIUS FILE

Displays the sizes of the largest and smallest records
in a variable-length record file. Also sets or changes
record size limits in the three situations: a) if
minimum and maximum record sizes are not set, GET sets
them to the sizes of the largest and smallest records
in the file; b) if size limits are set, but the
smallest record is smaller than the minimum size, GET
changes the minimum to that record’'s size. c¢) if size
limits are set, but the largest record is larger than
the maximum size, GET changes the maximum to that
record’'s size.

Displays the list of functionms.

Iets you set the minimum and maximum record sizes for a
variable-length record file before you load it. (£
you already loaded the file, but size limits are not
set, use the GET command to set them.) Before or after
you load the file, INITIALIZE lets you decrease the
minimum or increase the maximum record sizes.

Allows you to change support of duplicate keys and
change secondary data size. You can change the index
block length if you use the extended options feature of
CREATK.

Describes each index subfile and the data subfile in
terms of segments allocated, index capacity, key type,
key size, and number of index levels for that subfile.
For each index level, describes the entry size, block
size, control words, maximum number of entries per
block, and the number of blocks in that level. PRINT
displays data subfile information, as of the last
MPACK, including the file access type (keyed or
direct), the number of indexes, the entry size, and the
key size. For a variable-length record file, PRINT
also displays the minimum and maximum record sizes, if
these size limits are set.

Exits the CREATK dialog and returns you to PRIMOS.
(Pressing the carriage return does the same thing.)

Estimates the number of segments and disk records
required for a hypothetical number of entries.
Estimates size for each index, for the data records, or
the total file.

Provides information on the total number of entries in
the file, the number of entries indexed, the number of
entries deleted, and the number of entries inserted
since the last MPACK. Also displays the version of
MIDASPIUS which last modified the file.

2-13 Second Edition

MIDASPLUS USER'S GUIDE

VERSION Displays the revision stamp of the version of MiDASPLUS
under which this file was created and the default
parameters for the file (for example, DAM file length
or segment directory length).

Note
If CREATK cannot get exclusive use of the AID, DATA, EXTEND, or

MODIFY options, the following message appears:

THIS FILE IS IN USE. AVATILABLE OPTIONS ARE:

F[ILE) ~ OPEN A NEW FILE

H[ELP) - PRINT THIS SUMMARY

P[RINT] = PRINT DESCRIPTOR INFORMATION
QLUIT] = EXIT CREATK

(C/R) - IMPLIED QUIT

S[IZE] - DETERMINE THE SIZE OF A FILE
U[SAGE] = DISPLAY CURRENT INDEX USAGE
V[ERSION] = MIDASPLUS DEFAULTS FOR THIS FILE

Second Edition 2-14

Building a
MIDASPLUS File

This chapter discusses input files and the location of keys with
KBUILD, explains how to use KBUILD to build keyed or direct access
MIDASPLUS files, and presents sample KBUILD dialog sessions.

Using the KBUILD utility is one method of adding records to a MIDASPLUS
file. (Other methods of adding records are by using application
programs, offline routines, and PRIME/POWER+.) KBUIID is the
recommended method when you wish to add a large number of records at
one time. The functions of KBUILD include:

e Adding data to a new (that is, "empty") MIDASPLUS file template.
This includes adding entries to the needed index subfiles from
sorted or unsorted input data.

e Adding new data and index entries to an existing MIDASPIUS file
that already contains data entries.

e Building keyed-index MIDASPLUS files containing either
fixed-length or variable-length records.

e Building direct access MIDASPLUS files.

e Adding entries from an external data file to a new secondary
index subfile that was defined for a previously populated
MIDASPILUS file.

e Converting a field from existing MIDASPLUS data subfile records

to a secondary key field. (These entries are added to a new or
already existing secondary index subfile.)

3-1 Second Edition

MIDASPIUS USER'S GUILE

Use KBUILD to add a large number of records to a MIDASPIUS file.
KBUIID adds the primary index entry, the data subfile entry, and the
supplied secondary index entries for each record. If you are adding
many entries to a file, keep a copy of the input file(s) in case the
MIDASPIUS file is damaged or the system crashes. An easy way to
regenerate a file is to set up a command file that first invokes CREATK
to set up the template; then invoke KBUILD to populate the file.

Note

KBUILD zeroes out secondary data and cannot handle concatenated
keys. .

INPUT FILES

¥hile KBUILD only supports input files with fixed-length records, you
can use specially formatted fixed-length input files to build MIDASPLUS
files with variable-length records. See Building a Variable-length
MIDASPIUS File later in this chapter for more information.

KBUILD can handle input files created by various methods. Table 3-1
lists KBUIID supported files and their file type codes. Before
beginning the KBUILD dialog, make sure that you know the type of file
that you are using. KBUILD needs this information to process the input
correctly.

Second Edition 32

BUILDING A MIDASPLUS FILE

Table 3-1
KBUILD-Supported Input File Types

File Type Code Description

BINARY A binary file created by PRWF$$, which is
usually called from a FORTRAN program. Such a
file has no newline characters (.NL.).

COBOL An uncompressed file of fixed-length records
containing ASCIT or. binary data and delimited
by a newline character.

FINBIN A FORTRAN WRITE statement creates this binary
file via the routine O$BDO7. FINBIN is used in
FORTRAN as binary output. The first word of
each record in this type of file indicates the
record’'s length. It contains no newline
characters. A CBL WRITE statement for
variable-length records also produces this
filetype.

RPG The file to which O$ADO8 routine writes the
data. It is an uncompressed file with
fixed-length records and newline character
delimiters. Fach record must contain the
primary key but it does not have to be the
first field in the record.

TEXT Any file that is created in, or used Dby, the
editor. A newline character ends the records.
Text files are the most common type. A CBL
WRITE statement for COMPRESSED records also
produces this filetype.

Input File Rules

Input files always have fixed-length records. Input files can contain:

e Primary key values and data values (secondary key values are
optional)

e Secondary key values only (include the primary key value with
which its record is associated)

Data is defined as the information that is to be written to the data
subfile. If you want to use KBUILD to convert existing files to
MIDASPLUS files, KBUILD requires the following from input files and
their record structure:

3-3 Second Edition

MIDASPIUS USER’'S GUIDE

e All key elements should be at the beginning of the record.

e No unnecessary data can be located before the fields that you
want KBUILD to process.

Specify the starting character position of each key field in the input
record. The first character position in the record is character
position 1. Begin key fields on byte boundaries. If the key fields
are not physically part of the data subfile entry, other key fields may
appear after the data.

Tell KBUILD the input record length. The length is the number of words
in an input record excluding anything that the file inserts (for
example, leading word count in FINBIN files). Input files are not
required to have the same record length as that of output MIDASPLUS
files.

Location of Keys

If you do not want the keys to be in the data subfile records, put the
keys after the data that you want included in the data subfile entries.
KBUILD can truncate the entries when KBUILD writes them to the data
subfile. Only the initial portion of the input record (without keys)
is written to the MIDASPLUS data subfile.

Record Compatibility

Make sure that all records of the input file have identical record
layouts. For example, if the primary key begins in character position
1 of the first record, the primary key should begin in the same
position for all of the other records in the file. When writing a
record from the input file to the output (MIDASPLUS) file, KBUILD
always begins with character position 1 of the input record. The
length of the entry written to the output file depends on whether the
MIDASPIUS file has fixed-length or variable-length records.

Multiple Input Files

KBUILD lets you process more than one input file during a single run;
therefore, you can add information from up to 99 data files to a single
MIDASPLUS file, but you must assign special names to the files. If
there is more than one input file, begin the filenames with the same

Second Edition 34

BUILDING A MIDASPLUS FILE

letters and end in a two digit number, representing the sequence in
which the files should be processed. For example:

BRANCHO1
BRANCHO2
BRANCHO3

Make sure all of the files exist in the same directory and have exactly
the same format and file type.

Note

While KBUILD can process multiple input files, it can create
only one output MIDASPLUS file at a time.

Sorted Input Files

Input files can be sorted by primary and/or secondary key in ascending
order only. If the input files are sorted by primary key, the data
records and the key entries are all added in primary key order. If the
file contains secondary index entries for a subfile that allows
duplicates, the duplicate keys are added to the index subfile in the
order in which they are read from the input file.

The data subfile entries are always stored in the order in which they
are read from the input file. If you frequently need to access the
data sequentially by a key, sort the input file by that key before
using KBUILD. This step will improve the performance of future
sequential reads.

You can only add pre-sorted index entries to a primary or secondary
index that does not contain entries. If you try to build a non-empty
secondary index from a sorted input file, KBUILD informs you of your
error. When the index appears to be empty but has keys pointing to
deleted records, you must run MPACK on the index to clean it out before
you can add sorted input entries to it. If you do not care about the
entries that are in the index, you can delete them all at once, by
running KITDEL to clean out the secondary index subfile before trying
to add sorted entries to it. (See Chapters 15 and 11, respectively for
details on MPACK and KITDEL.)

3-5 Second Edition

MIDASPIUS USER'S GUIDE

Sort Requirements: A file is considered sorted only if a primary or
secondary key field is a sort key. In addition, the following rules
apply if there are several input files:

e Sort all of the input files on the same field.

e Make sure that all of the sorted key values in the first file
are less than the sorted key values of the second file. The
same rule holds for the other files.

e If a MIDASPLUS file index to which the entries are being added
already contains entries, do not declare the input files sorted
by that key even if they are sorted. If the input file is
called "sorted", KBUILD does not process an input file for
building a MIDASPLUS index.

BUILDING A VARTABLE-LENGTH FILE

KBUILD can take fixed-length records from input files and add them as
variable-length records to MIDASPLUS files. Before you use KBUILD in
this way, you must perform the two steps below:

1) Determine the number of words in each input record. For
instance, if the file contains character data, you would do the
following:

A. For each record, count the number of characters (including
blank spaces) that the primary key, secondary keys, and
nonkeyed data occupy.

B. If the number of characters in the record is an odd number,
increase the number of characters by 1.

C. Divide the number of characters by 2 to determine the
character size in words of the record.

For example:

R First St Dedham MA 02026 = 28 chars./2 = 13 words

1

18 First St Dedham MA 02026 = (27 chars. + 1)/2 = 14 words

2) For each record, edit the input file to add the length you

determined. Place this number in the same word position in
each record, as shown in the following example.

Second Edition 36

BUILDING A MIDASPLUS FILE

The following example shows an input file that contains the record
length in positions one and two, which are highlighted.

3927650388%harper, anne chk412389112 washington st newton ma 02159
37036792406harper, anne 1n7253746518 first st dedham ma 02026

189264289mrra.y: paul me28374646123 orchard rd manchester nh 03102
B39023677386¢corrado, thomas sav127356542 maple ave arlington ma 02174
— — " o . o— - —
[} 1
Primary Key Secondary Key # 2
Record Secondary Key # 1 Non-keyed Field
Length

This input file, created for the sample banking application, consists
of a customer identification number (primary key), name, account
number, and address. This file was created using the PRIMOS screen
editor (EMACS) and is in ASCII form (TEXT).

After KBUILD determines that your output file has variable-length
records, the KBUILD dialog asks whether this number is a bit (B) string
or an ASCIT (A) string.

Note
Rather than using KBUILD, you can also build variable-length

MIDASPLUS files with PRIBLD, SECBLD, BILD$R, and the standard
interface. These routines also support direct access files.

If KBUILD or a build routine adds a variable-length record that is
outside a record size limit, MIDASPLUS automatically resets that 1limit
to the size of the record.

ATDING SECONDARY INDEX ENTRIES ONLY

Besides adding all of the primary and secondary key entries with the
data subfile entries, KBUILD can also populate a secondary index
subfile when

e You decide to make one of the fields in a MIDASPLUS data record
a secondary key. (You would do this if you need more keys.)

e You did not supply secondary key values for all of the data
entries that you originally added. As a result, there is no
one-to-one correspondence between secondary index entries and
data subfile entries.

When one of the above statements is true, either make one of the fields
in the data record a secondary key or take the secondary index entries
from an external input file. (The primary key must be present in the
input record.)

-7 Second Edition

MIDASPIUS USER’'S GUIDE

Note
You must first use CREATK to define a new index subfile before

you can use that subfile with KBUILD. KBUIID alone cannot
define a new index subfile.

ERROR REPORTING

KBUILD reports all fatal and non-fatal errors that it finds during
processing. KBUILD prints the type and number of the error, as well as
the record number that was being processed when the error occurred.
The log/error file records fatal errors just before KBUILD aborts.

All errors are displayed at your terminal. KBUILD also displays the
name of the input file that it is processing and tells you what part of
the MIDASPIUS file that it is currently in. If you want to record this
data, enter a new file name when KBUILD prompts you for a log/error
file name; otherwise, press the RETURN key.

Milestone Reporting

KBUILD reports milestone statistics at your terminal. If you want to
record this data, enter a new file name when KBUILD prompts you for a
log/error file name; otherwise, press the RETURN key. Sample
milestone reports are included with the KBUILD examples. A milestone
report consists of:

e The record number for which the milestone is generated
e The current date and time

e The CPU and disk time used since KBUILD began to process the
file

e The total disk and CPU time elapsed since the start of KBUILD's
Tun

e The amount of time elapsed since the last milestone report was
created

If the input file is unsorted, KBUILD tells you when the file begins
and ends a sort pass through each set of index entries. For large
files, set the milestone count according to how concerned you are with
resource usage.

Milestone Reports for Multiple Files: If there is more than one input
file, the name of each successive input file is displayed above the
record count column as each new input file is processed.

Second Edition 3-8

THE KBUILD DIAIOG

BUILDING A MIDASPLUS FILE

Type KBUILD to invoke the KBUILD utility. The KBUILD dialog and an
explanation are included in this section. The dialog is numbered in
this book for explanatory purposes only.

PROMPT

1. SECONDARIES ONLY?

2. USE MIDASPLUS DATA?

3. ENTER MIDASPLUS FILENAME:

4. ENTER INPUT FILENAME:

5. ENTER INPUT RECORD
LENGTH (WORDS):

RESPONSE
YES or NO

YES - Builds/adds entries to one oOr
more of the secondary index
subfiles. Subfiles need mnot be
empty. The dialog continues at step
2.

NO - Adds data entries to data
subfiles in primary key order. Also
adds entries to the primary index
subfile and any secondary index
subfiles as indicated. The dialog
continues at step 4.

YES or NO

YES - Uses existing data entries as
a source of values for a secondary
index subfile when you have existing
records in the data subfile and you
want to make fields from these
records into secondary keys. The
dialog continues at step 3.

NO - All subfile and data subfile
entries are taken from an input file
(not a MIDASPLUS file) which must
contain primary key values. The
dialog continues at step 4.

The MIDASPIUS pathname from which
MIDASPIUS should get the secondary
key entries. The dialog continues
at step 14.

The name of the input file that
KBUILD will process. If you are
using multiple files, enter the name
of the file with the lowest sequence
number.

The size in 16-bit words of the
input file record.

3-9 Second Edition

MIDASPLUS USER'S GUIDE

6.

10.

11.

12.

13.

14.

15.

INPUT FILE TYPE:

. ENTER NUMBER OF FILES:

. ENTER OUTPUT FILENAME:

. THE OUTPUT FILE SELECTED

CONTAINS VARTABLE LENGTH
DATA RECORDS. IS THE
OUTPUT RECORD LENGTH
SPECIFIED IN EACH INPUT
RECORD AN ASCIT STRING
OR A BINARY (INT*)
STRING? (ENTER A OR B):

ENTER STARTING CHARACTER

POSITION IN INPUT RECORD:

ENTER ENDING CHARACTER

POSITION IN INPUT RECORD:

ENTER STARTING WORD
NUMBER IN INPUT RECORD:

ENTER STARTING
CHARACTER POSITION,
PRIMARY KEY:

SECONDARY KEY NUMBER:

ENTER STARTING
CHARACTER POSITION:

Second Edition

The appropriate KBUILD code (BINARY,
COBOL, FINBIN, RPG, TEXT).

1 for single files.

The total number of files for

multiple input files.

The pathname of the MIDASPIUS file
to which you will add data in the
input file.

If the MIDASPLUS file has
fixed-length records, the dialog
continues at step 13. Otherwise,

the dialog continues with the next
step.

A, if the Editor, OOBOL, or VRPG
created the input file and the
output record length is in ASCII
form. The dialog continues with
step 10. B if the file is BINARY
or FINBIN. The dialog continues
with step 12.

The character position where the
output record length specification
begins.

The character position that marks
the end of the output record length
specification. Dialog continues
with step 13.

The word number in the input record
record that specifies the output
record length for Binary (INT*RQ)
representations.

The starting position of the input
record field containing a primary
key value.

The number of the secondary index
entry for which you will take an
entry from the input file record.

The character position in the input
record where the secondary key field
begins.

3-10

16.

17.

18.

19.

20.

IS THE FILE SORTED?

IS THE PRIMARY KEY
SORTED?

ENTER INDEX NUMBER

OF SECONDARY SORT KEY:

ENTER LOG/ERRCR
FILE NAME:

ENTER MILESTONE

KBUTLD EXAMPLES

BUILDING A MIDASPLUS FILE

Note

Prompts 14 and 15 are
repeated until you press the
RETURN key.

NO if the file is wunsorted. The
dialog continues with step 19.

YES if the file is sorted.

YES if the input file is sorted
by the primary key field.

NO if the input file is not sorted
by the primary key field.

If the file was sorted on a field
corresponding to a secondary key,
enter that key number. This prompt
is repeated until you press the
RETURN key.

The name of the file in-which you
will record errors and KBUILD
milestone statistics.

Make sure that this file name is
different from all existing files.

Press the RETURN key if you do not
want to record the statistics. The
statistics still appear on your
terminal.

The frequency (number of records) at
which you want the records displayed
and recorded in a log/error file.

If you enter O, milestones are
printed for the first and last
records of the input file only.

This section includes KBUILD examples showing the following features:

e Building a fixed-length record MIDASPLUS file from unsorted

input

e Building a fixed-length MIDASPLUS file from sorted input

3-11 Second Edition

MIDASPLUS USER'S GUIDE

e Building a variable-length record MIDASPLUS file from unsorted
input

e Building a fixed-length direct access MIDASPLUS file from
unsorted input

User input in the examples is underlined to distinguish it from system
prompts and messages.

Example 1: Using Unsorted Input

This example uses an unsorted input. file to build entries for the BANK
file, which has fixed-length records of 22 words. Input files are not
required to have the same record length as that of the output MIDASPLUS
files. If the input files are too long when added, they are truncated.
If the records are shorter than the specifications in the MIDASPLUS
template, the records are blank-padded to the correct length. The
input file contains the following records:

27650388%harper, anne chk412389112 washington stnewton ma02159
036792406harper, anne 1n7253746518 first st dedham ma0026
189264289murray, paul mcR8374646123 orchard rd manchester nh03102
023877386corrado, thomas 5av127356542 maple ave arlington ma02174
S— p 7 — ~ -
| |
Secondary Key # 1 Non-keyed Field

Primary Key Secondary Key # 2

Second Edition 3-12

BUILDING A MIDASPIUS FILE

The file was built with the following dialog:

K, kbuild

[KBUIID rev 19.4.0]

SECONDARTES ONLY? no

ENTER INPUT FILENAME: names
ENTER INPUT RECORD LENGTH (WORDS): 43
INPUT FILE TYPE: text

ENTER NUMBER OF INPUT FILES: 1
ENTER OUTPUT FILENAME: bank
ENTER STARTING CHARACTER POSITION,

SECONDARY KEY NUMBER: 1
ENTER STARTING CHARACTER POSITION: 10
SECONDARY KEY NUMBER: 2
ENTER STARTING CHARACTER POSITION: 35
SECONDARY KEY NUMBER: (CR)

IS FILE SORTED? no

ENTER I0G/ERROR FILE NAME: (CR)

ENTER MILESTONE COUNT: 1

BUILDING: DATA

DEFERRING: O, 1, 2

PROCESSING FROM: names

COUNT DATE TIME CPU MIN
0 01-11-85 13:52:31 0.000
1 01-11-85 13:52:31 0.002
2 01-11-85 13:52:31 0.003
3 01-11-85 13:52:31 0.004
4 (01-11-85 13:52:32 0.004

FIRST BUILD/DEFER PASS COMPLETE.
4 01-11-85 13:52:32 0.005

SORTING INDEX O

COUNT DATE TIME CPU MIN
0 01-11-85 13:52:32 0.000

SORT COMPLETE
4 (01-11-85 13:52:32 0.006

3-13

PRIMARY KEY: 1

2

DIFF
0.000
0.002
0.001
0.001
0.001

(@] C)OC)OO§
s 83338%

5

0.001

TOTAL TM DIFF
0.000 0.000
0.006 0.006

Second Edition

MIDASPIUS USER'S GUIDE

BUILDING INDEX O
COUNT DATE
01-11-85
01-11-85
01-11-85
01-11-85
01-11-85

INDEX O BUILT
4 O01-11-85

RO~ O

SORTING INDEX 1
COUNT DATE
0 01-11-85
SORT COMPLETE
4 01-11-85

BUILDING INDEX 1

COUNT DATE
0 01-11-85
1 01-11-85
2 01-11-85
3 01-11-85
4 01-11-85

INDEX 1 BUILT
4 01-11-85

SORTING INDEX 2
COUNT DATE
0 01-11-85
SORT COMPLETE
4 01-11-85

BUILDING INDEX 2

COUNT DATE
0 01-11-85
1 01-11-85
2 01-11-85
3 01-11-85
4 01-11-85

INDEX 2 BUILT
4 01-11-85

KBUILD COMPLETE.
K,

Second Edition

13:
13:
13:
13:
13:

13:

13:

13:

13:
13:
13:
13:
13:

13:

13:

13:

13:
13:
13:
13:
13:

13:

TIME

52:32
52:32
52:32
52:32
52:32

52:32

TIME
52:32

52:33

TIME

52:33
52:33
52:33
52:33
52:33

52:33

TIME
52:33

52:3%4

TIME

52:34
52:34
52:34
52:34
52:34

52:34

CPU MIN

T

3-14

DISK MIN
0.000

0.000
0.000
0.000

0.000

DISK MIN
0.000

0.000

DISK MIN
0.000
0.002
0.002
0.002
0.002

0.002

99999§

8833885

0.004

0.000
0.005

o OOOOO§
R

:

TOTAL TM
0.000

0.005

:
2

3 gages

DIFF
0.000
0.001
0.001
0.001
0.001

0.001
DIFF
0.005

DIFF
0.000
0.002
0.001
0.001
0.001

0.001
DIFF
0.005

DIFF
0.000
0.004
0.001
0.001
0.001

0.001

BUILDING A MIDASPLUS FILE

Example 2: Using Sorted Input

The following BANK.SORT file is built from sorted input records (sorted
according to the primary key). Since KBUILD is not required to sort
the file, the build is faster. The input file contains the following
records:

023677386corrado, thomas sav127356542 maple ave arlington ma02174

036792406harper, anne 1n7253746518 first st dedham ma02026

189264289murray, paul mc28374646123 orchard rd manchester nh03102

276503889harper, anne chk412389112 washington st newton ma02159

— — 4 “ s
Secondary Key # 1 : Non-keyed Field

Primary Key Secondary Key # 2

The following dialog was used to build the file:

K, kbuild
[KBUIID rev 19.4.0]

SECONDARIES ONLY? no

ENTER INPUT FILENAME: names.sort

ENTER INPUT RECORD LENGTH (WORDS): 43

INPUT FILE TYPE: text

ENTER NUMBER OF INPUT FILES: 1

ENTER OUTPUT FILENAME: bank.sort

ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 1
SECONDARY KEY NUMBER: 1

ENTER STARTING CHARACTER POSITION: 10
SECONDARY KEY NUMBER: 2

ENTER STARTING CHARACTER POSITION: 35
SECONDARY KEY NUMBER: (CR)

IS FILE SORTED? yes

IS THE PRIMARY KEY SORTED? yes

ENTER INDEX NUMBER OF SECONDARY SORT KEY: (CR)
ENTER LOG/ERROR FILE NAME: (CR)

ENTER MILESTONE COUNT: 1

BUILDING: DATA, O
DEFERRING: 1, 2

3-15 Second Edition

MIDASPIUS USER'S GUIDE

PROCESSING FROM: names.sort

COUNT DATE TIME CPU MIN
0 01-10-85 14:36:19 0.000
1 01-10-85 14:36:19 0.002
2 01-10-85 14:36:19 0.002
3 01-10-85 14:36:19 0.003
4 01-10-85 14:36:19 0.004
FIRST BUILD/DEFER PASS COMPLETE.
4 01-10-85 14:36:19 0.005
SORTING INDEX 1
COUNT DATE TIME CPU MIN
0 01-10-85 14:36:19 0.000
SORT COMPLETE '
4 01-10-85 14:36:20 0.005
BUILDING INDEX 1
COUNT DATE TIME CPU MIN
0O 01-10-85 14:36:20 0.000
1 01-10-85 14:36:20 0.002
2 01-10-85 14:36:20 0.002
3 01-10-85 14:36:20 0.003
4 01-10-85 14:36:20 0.003
INDEX 1 BUILT
4 01-10-85 14:36:20 0.004
SORTING INDEX 2
COUNT DATE TIME CPU MIN
0O 01-10-85 14:36:20 0.000
SORT OOMPLETE
4 (01-10-85 14:36:20 0.005
BUTLDING INDEX 2
COUNT DATE TIME CPU MIN
0 01-10-85 14:36:20 0.000
1 01-10-85 14:36:21 0.002
2 01-10-85 14:36:21 0.002
3 01-10-85 14:36:21 0.003
4 01-10-85 14:36:21 0.004
INDEX 2 BUILT
4 01-10-85 14:36:21 0.005
KBUILD COMPLETE.
a{’
Second Edition 3-16

DISK MIN
0.000
0.000
0.000
0.000
0.000

0.000

DISK MIN
0.000

0.000

DISK MIN
0.000
0.000
0.000
0.000
0.000

0.000

OOOO§
2888

0.004
0.005
TOTAL T™
0.000
0.005

g
coop

TEEP

0.004
0.005

TOTAL T™
0.000

g .
288888 &

O 00000

3

DIFF
0.000
0.002
0.001
0.001
0.001

0.001

DIFF
0.000

0.005

DIFF
0.000
0.002
0.001
0.001
0.001

0.001

DIFF
0.000

0.005

DIFF
0.000
0.002
0.001
0.001
0.001

0.001

BUILDING A MIDASPIUS FILE

Example 3: Building Variable-length Records

If you use variable-length records, supply KBUILD with the length of
each data rTecord to be written to the output file. The input file,
VARNAMES, contains the following records:

3927650388%harper, anne chk412389112 washington st newton ma 02159
37036792406harper, anne 1n7253746518 first st dedham ma 02026
41189264280murray, paul meR8374646123 orchard rd manchester nh 03102
39023677386corrado, thomas sav127356542 maple ave arlington ma 02174
T — o— W o i, m— -
1 1

Primary Key Secondary Key # 2
Record Secondary Key # 1 7 Non-keyed Field
Length

The input file VARNAMES was used to build the MIDASPLUS file. Although
the output records have different lengths, KBUILD needs to know the
maximm input data record length (41 words in this example). Each
record in the file contains a number that indicates the output record
length for that particular record. In this example, the output record
length begins in character position 1 and ends in character position 2.

If the number was in binary (INTEGER*2) form, you would indicate the
word number that the entry begins in. The KBUILD dialog and the user
responses for this example are:

K, kbuild
[KBUILD rev 19.4.0]

SECONDARIES ONLY? no

ENTER INPUT FILENAME: varnames

ENTER INPUT RECORD LENGTH (WORDS): 41

INPUT FILE TYPE: text T

ENTER NUMBER OF INPUT FILES: 1

ENTER OUTPUT FILENAME: varbank

THE OUTPUT FILE SELECTED OONTAINS VARTABLE LENGTH DATA RECORDS.
IS THE OUTPUT RECORD LENGTH SPECIFIED IN EACH INPUT RECORD
AN ASCII STRING OR A BINARY (INT*2) STRING? (ENTER A OR B): a
ENTER STARTING CHARACTER POSITION IN INPUT RECORD: 1

ENTER ENDING CHARACTER POSITION IN INPUT RECORD: 2

ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 3

SECONDARY KEY NUMBER: 1 B

ENTER STARTING CHARACTER POSITION: 12

SECONDARY KEY NUMBER: 2 o

ENTER STARTING CHARACTER POSITION: 37

SECONDARY KEY NUMBER: (CR)

IS FILE SORTED? no

ENTER IOG/ERROR FILE NAME: (CR)

ENTER MILESTONE COUNT: 1

3-17 Second Edition

MIDASPIUS USER'S GUIDE

BUILDING: DATA

DEFERRING: O, 1, 2

PROCESSING FROM: varnames

COUNT DATE TIME CPU MIN
0O 01-11-85 14:56:28 0.000
1 01-11-85 14:56:28 0.002
2 01-11-85 14:56:28 0.003
3 01-11-85 14:56:28 0.003
4 O01-11-85 14:56:28 0.004
FIRST BUILD/DEFER PASS COMPLETE.
4 01-11-85 14:56:29 0.005
SORTING INDEX O :
COUNT DATE TIME CPU MIN
0O 01-11-85 14:56:29 0.000
SCRT COMPLETE
4 (01-11-85 14:56:29 0.005
BUILDING INDEX O
COUNT DATE TIME CPU MIN
0O 01-11-85 14:56:29 0.000
1 O01-11-85 14:58:29 0.001
2 01-11-85 14:56:29 0.001
3 01-11-85 14:56:29 0.002
4 01-11-85 14:56:29 0.003
INDEX O BUILT
4 (01-11-85 14:56:29 0.004
SORTING INDEX 1
COUNT DATE TIME CPU MIN
0 01-11-85 14:56:29 0.000
SORT COMPLETE
4 (01-11-85 14:56:29 0.004
BUILDING INDEX 1
COUNT DATE TIME CPU MIN
0O 01-11-85 14:56:30 0.000
1 01-11-85 14:56:30 0.002
2 01-11-85 14:56:30 0.002
3 01-11-85 14:56:30 0.003
4 01-11-85 14:56:30 0.003
INDEX 1 BUILT
4 01-11-85 14:56:30 0.004
SORTING INDEX 2
OOUNT DATE TIME CPU MIN
0 01-11-85 14:56:30 0.000
SORT COMPLETE
4 (01-11-85 14:56:30 0.004
BUILDING INDEX 2
COUNT DATE TIME CPU MIN
0 01-11-85 14:56:30 0.000
Second Edition 3-18

DISK MIN
0.000

:
=

© 00000
5 28888

g
o of
S 83

g
© o0o0o0o0Op
3

3 88888

(@) O§
BF

g
© o000o0OR
g8888s

5

(@) O§
‘BF

&
T

DIFF
0.000
0.002
0.001
0.001
0.001

0.001

DIFF
0.000

0.005

DIFF
0.000
0.001
0.001
0.001
0.001

0.001
DIFF
0.000
0.004
DIFF
0.000
0.002
0.001
0.001
0.001
0.001
DIFF
0.000
0.004

DIFF
0.000

BUILDING A MIDASPLUS FILE

1 01-11-85 14:56:30 0.002 0.000 0.002 0.002

2 01-11-85 14:56:30 0.002 0.000 0.002 0.001

3 01-11-85 14:56:30 0.003 0.000 0.003 0.001

4 01-11-85 14:56:30 0.003 0.000 0.003 0.001
INDEX 2 BUILT

4 01-11-85 14:56:30 0.004 0.000 0.004 0.001

KBUILD COMPLETE.

X,

Example 4: Using Direct Access Files

This section concerns only users with direct access MIDASPLUS files.
Direct access MIDASPLUS files are called REIATIVE files in COBOL and
DIRECT files in VRPG.

Building Direct Access Files: Building direct access MIDASPLUS files
is similar to building keyed-index MIDASPLUS files. The major
differences are:

e You must supply a record number for each record. The data type
of the record number must be either a REAL*4 (floating-point)
number in the form of a bit string, or an ASCII string.

e You must place the record number at the same character position
in each input record.

e The record number must be the primary key in COBOL and VRPG
files.

e You can supply a primary key in addition to a record number in
non-COBOL files.

e A direct access file can have up to 999,999 entries.
e The relative record number cannot be greater than the number of
entries allocated during CREATK.

KBUILD Dialog Requirements: After determining that the MTIDASPLUS
output file is a direct access file, KBUILD prints the following
message:

IS THE ENTRY NUMBER SPECIFIED IN EACH INPUT RECORD
AN ASCIT STRING OR A BINARY (REAL*4) STRING? (ENTER A CR B):

If the record number is an ASCII string, KBUILD prompts for the record
number’s beginning and ending character positioms. If you specify the

3-19 Second Edition

MIDASPIUS USER'S GUILE

number as a single-precision floating-point bit string, KBUILD asks for
the word-number (not the character position) where the number begins in
the input record. KBUILD warns you if the word number is beyond the
logical end of the record that you specified earlier in the dialog.
See Chapter 6 THE COBOL INTERFACE, for information on COBOL's direct
access (RELATIVE) files. See Chapter 9, THE VRPG INTERFACE, for more
information about VRPG's direct access files.

Direct Access Example: You can build a direct access file with KBUILD
as long as you include record entry numbers for each record in the
input file. Write numbers in ASCII or binary (floating point) form.
If the primary key was defined as a record number (this always occurs
in COBOL and VRPG), make sure "that the numbers match the key type
specification.

The following input file was used to build,a direct access file. The
record number was placed at the end of the file so that the number
would not be included in the data subfile record. The direct access
entry appears in characters 87 to 92 of the input file record. The
file is written in ASCIT format.

27650388%harper, anne chk412389112 washington stnewton 1202159000001
036792406harper, anne 1n7263746518 first st dedham ma02026000002
189264289murray, paul mcR8374646123 orchard rd manchester nh03102000003
023677386corrado, thomas sav127356542 maple ave arlington ma02174000004
N— o " W 4 ~ o/
t |
Secondary Key # 1 Non-keyed Field
Primary Key Secondary Key # 2 Record

Number

KBUILD processed this file in the sample session that follows:

0K, kbuild
[KBUTLD rev 19.4.0]

SECONDARIES ONLY? no

ENTER INPUT FILENAME: directnames

ENTER INPUT RECCRD LENGTH (WORDS): 47

INPUT FILE TYPE: text

ENTER NUMBER OF INPUT FILES: 1

ENTER OUTPUT FILENAME: directbank

THE OUTPUT FILE SELECTED 1S A DIRECT ACCESS FILE.

IS THE ENTRY NUMBER SPECIFIED IN FACH INPUT RECORD
AN ASCII STRING OR A BINARY (REAL*4) STRING? (ENTER A CR B): a
ENTER STARTING CHARACTER POSITION IN INPUT RECORD: 87
ENTER ENDING CHARACTER POSITION IN INPUT RECORD: 92
ENTER STARTING CHARACTER POSITICN, PRIMARY KEY: 1
SECONDARY KEY NUMBER: 1

Second Edition 3-20

ENTER STARTING CHARACTER POSITION: 10
SECONDARY KEY NUMBER: 2
ENTER STARTING CHARACTER POSITION: 35

SECONDARY KEY NUMBER:

IS FILE SORTED? no

ENTER IOG/ERRCR FILE NAME: (CR)

(CR)

ENTER MILESTONE COUNT: 1

BUILDING: DATA
DEFERRING: O, 1, 2

PROCESSING FROM: directnames

COUNT DATE

01-10-85
01-10-85
01-10-85
01-10-85
01-10-85

PRDOLHO

FIRST BUILD/DEFER PASS COMPLETE.

4 (Ci-10-85

SORTING INDEX O
COUNT DATE
O 01-10-85
SORT COMPLETE
4 01-10-85

BUILDING INDEX O
COUNT DATE
01-10-85
01-10-85
01-10-85
01-10-85
01-10-85

INDEX O BUILT
4 01-10-85

RO+~ O

SORTING INDEX 1
COUNT DATE
0 01-10-85
SORT COMPLETE
4 (01-10-85

BUILDING INDEX 1
COUNT DATE
01-10-85
01-10-85
01-10-85
01-10-85
01-10-85

INDEX 1 BUILT
4 01-10-85

HPADDHHO

SORTING INDEX 2
COUNT DATE

TIME CPU MIN
18:15:05 0.000
18:15:05 0.002
18:15:05 0.003
18:15:05 0.003
18:15:05 0.004
18:15:05 0.005

TIME CPU MIN
18:15:06 0.000
18:15:06 0.005

TIME CPU MIN
18:15:06 0.000
18:15:08 0.001
18:15:06 0.002
18:15:06 0.002
18:15:06 0.003
18:15:08 0.004

TIME CPU MIN
18:15:06 0.000
18:15:06 0.004

TIME CPU MIN
18:15:06 0.000
18:15:07 0.002
18:15:07 0.002
18:15:07 0.003
18:15:07 0.003
18:15:07 0.004

TIME CPU MIN

3-21

BUILDING A MIDASPLUS FILE

g8

o coooof
3 8888

—

DISK MIN
0.000

0.000

DISK MIN
0.000
0.000
0.000
0.000
0.000

0.000
DISK MIN
0.000
0.000
DISK MIN
0.000
0.000
0.000
0.000
0.000

0.000

DISK MIN

:
2

© oo0o0o00
§ S8888

(&)

TOTAL TM
0.000

0.005

:
2

SE8E8

0.004

TOTAL TM
0.000

0.004

DIFF
0.000
0.002
0.001
0.001
0.001

0.001

DIFF
0.000

0.005

DIFF
0.000
0.001
0.001
0.001
0.001

0.001
DIFF
0.000
0.004
DIFF
0.000
0.002
0.001
0.001
0.001

0.001

DIFF

Second Edition

MIDASPLUS USER'S GUIDE

O 01-10-85 18:15:07 0.000 0.000 0.000 0.000
SORT COMPLETE
4 01-10-85 18:15:07 0.004 0.000 0.004 0.004
BUILDING INDEX 2
COUNT DATE TIME CPU MIN DISK MIN TOTAL TM DIFF
0 01-10-85 18:15:07 0.000 0.000 0.000 0.000
1 01-10-85 18:15:07 0.002 0.000 0.002 0.002
2 01-10-85 18:15:07 0.002 0.000 0.003 0.001
3 01-10-85 18:15:07 0.003 0.000 0.003 0.001
4 01-10-85 18:15:07 0.003 0.000 0.004 0.001
INDEX 2 BUILT
4 01-10-85 18:15:07 0.004 0.000 0.005 0.001

KBUTLD COMPLETE.

X,

ALTERNATIVES TO KBUILD

Use an application program, rather than KBUILD, to build a MIDASPLUS
file if one or more of the following statements are true:

e You lack a preexisting sequential disk file containing data in
an easily convertible form.

e It is more work to prepare an existing data file for use with
KBUIID than to use AID1$ (FORTRAN call interface), an add
statement in another language interface, or other offline
routines.

e You already have an application program (requiring little
revision) that handles additions, updates, deletes, and other
processes.

e You regularly make changes that could be handled more easily
with an application program.

Chapters 5 through 9 cover data entry using the language interfaces.

KBUILD ERROR MESSAGES

The following are KBUILD runtime error messages. If an error is fatal,
KBUILD aborts after reporting it. Although files are sometimes damaged
in fatal errors, the files are usually still usable. A non-fatal error
is a warning only and does not harm the KBUILD process. The record
that causes the warning message, however, is not added to the file.

Second Edition 3-22

BUILDING A MIDASPLUS FILE

e UNABLE TO REACH BOTTOM INDEX LEVEL

The last level index block could not be located; file is damaged.
(Fatal)

e FILE IN USE

The file is not available for KBUILD use. KBUILD must have exclusive
access to the file. You are returned to PRIMOS. (Fatal)

e INDEX O FULL —— INPUT TERMINATED

If the maximum number of entries in primary index is exceeded, KBUILD
aborts. (Fatal, but file is still okay)

e INDEX index-no FULL -— NO MORE ENTRIES WILL BE ACDED TO IT

If the maximum number of entries in the secondary index is exceeded,
KBUILD aborts. Building of other indexes continues. (Fatal, but file
is still okay)

e INDEX O FULL ——- REMAINING RECORDS WILL BE DELETED

Data records are added to the subfile first, in the order read in from
the input file. Then the primary index entries are added, in sorted
order, to point +to them. KBUILD ran out of room in the primary index
when trying to add entries to point to those already in the data
subfile. KBUILD is forced to set the delete bit on in data subfile
entries whose primary keys will not fit in the primary index. (Fatal,
but file is still okay)

e INVALID DIRECT ACCESS ENTRY NUMBER —- RECORD NOT ADDED

The user-supplied direct access record number is an ASCIT string, but
it is not legitimate if it contains non-numeric characters. Also, the
entry number may be less than or equal to O, may not be a whole number
or may exceed the number of records allocated. (Non-fatal)

e INVALID OUTPUT DATA RECORD LENGTH —— RECORD NOT ADDED

The output record length is an invalid ASCII string (that is, it

contains non-numeric characters). Also, the size specified might
exceed the input record size. (Non-fatal)

3-23 Second Edition

MIDASPLUS USER'S GUIDE

e THIS INDEX IS NOT EMPTY. EITHER ZERO THE INDEX OR DO NOT SPECIFY
THIS KEY AS SORTED.

KBUILD cannot add sorted data entries to any index subfile that already
contains entries. Do not specify the sorted option during the KBUILD
dialog. (Non-fatal)

e CAN'T FIND PRIMARY KEY IN INDEX —— RECORD NOT ADDED

This error occurs when adding secondary index entries to an already
populated file. The primary key value that you supplied in the input
file was not found in the primary index. (Non-fatal)

e INDEX O: INVALID KEY —— RECORD NOT ADDED

This error could occur if the input file is sorted and an entry was out

of order, or if a duplicate key value appeared for an index that does
not allow duplicates. (Non-fatal)

0
e INDEX KEY SEQUENCE ERROR —— RECORD NOT AUDED
index-no:

A duplicate value was discovered for the primary key or for a secondary
key that does not allow duplicates. (Non-fatal)

Second Edition 324

Introduction to

File Access

This chapter gives an overview of the MIDASPLUS file operations that
you can perform in each programming language; summarizes the available
file access operations with each language interface; tells you where
to find more information on the language interfaces; gives an overview
of direct access.

Chapters 5 through 8 and Appendixes G and H use the BANK file, created
in the CREATK chapter, to illustrate MIDASPLUS file access. These
chapters explain information retrieval, update, and deletion, with the
different language interfaces.

ACCESS OPERATIONS

Accessing a file involveé the following operations:
e Opening a file for update and/or reading
e Adding a record
e Positioning to a file record
e Reading a record by any key (partial/full)
e Reading the next record in sequence
" @ Reading the next (sequential) record with the same key

4-1 Second Edition

MIDASPLUS USER'S GUIDE

e Locking a record with a read operation
e Updating the current record

e Deleting the current record

e Deleting a record by a key

e Closing the file

LANGUAGE ACCESS

The following chapters/appendixes of this manual discuss the following
language interfaces:

Chapter/Appendix Language

5 FORTRAN

6 COBOL

7 BASTIC/VM

8 PL/I

9 VRPG

G C

H Pascal
DIRECT ACCESS

The FORTRAN, COBOL, and VRPG interfaces support direct access MIDASPLUS
files based on record numbers. Each record in the file has a unique
floating-point record number (single-precision) that identifies that
record. To get a particular record, give MIDASPLUS the desired record
number; the record is found and returned. When using direct access,
you must keep track of the correlation between record numbers and
record values.

Direct access uses an algorithm to calculate the exact physical

location of the record in the file from the specified record number.
Direct access files do not support variable-length records.

Second Edition 4-2

INTRODUCTION TO FILE ACCESS

Direct Access File Structure

CREATK creates a direct access file template in a manner similar to the
one in which it creates a template for keyed-index access MIDASPLUS
files. The basic differences between keyed-index and direct access
MIDASPIUS files are:

e Direct access files require fixed-length records. Supply the
record length (data size) in words.

e Each record in a direct access file requires a unique record
number. Depending on the language interface used to access the
file, the record number might have to be the primary key.

e Direct access files require preallccation of storage space.
Estimate the maximum number of entries that will eventually
reside in the data subfile. CREATK will allocate enough space
to accommodate a file with the number of records that you
indicated.

Note
If keys are included in the file template, you can use both the

direct access method and the keyed-index access method to
access direct access files in FORTRAN.

RUNNING MIDASPLUS WITH PRIMIX

If a MIDASPIUS application executes a PRIMIX fork system call while
MIDASPLUS files are open, automatic cleanup is invoked for the child
process. All MIDASPLUS files opened by the parent process are
inaccessible to the child process. When automatic cleanup completes,
the child process can reinvoke MIDASPLUS by making a file—open call.
The parent process continues unaffected. (That is, all files opened
previously are still accessible to the parent process.)

4-3 Second Edition

The FORTRAN

Interface

This chapter explains how to use the FORTRAN interface to MIDASPLUS.
This interface consists of routines callable from any program written
in FORTRAN, PL/I, Pascal, C, or COBOL. Both keyed-index and direct
access MIDASPIUS files are discussed as well as the commnications
array, MIDASPIUS flags, $INSERT mnemonics, and the MIDASPLUS
subroutines.

OOBOL users have the option to use either the FORTRAN interface or the
MIDASPLUS interface available through the COBOL language. (See Chapter
6, THE COBOL INTERFACE.)

FIN and F77 (Prime-supported FORTRAN versions) handle calls to
MIDASPLUS identically. Although you can access MIDASPLUS files with
either version of FORTRAN, be careful with the differences between the
two languages. For example, FIN assumes that variables declared as
"INTEGER" are INTEGER*2 while F77 assumes that they are INTEGER*4. See
the FORTRAN 77 Reference Guide for a summary of the differences between
FIN and F77.

THE CURRENT RECORD

In order to perform the correct operation, some MIDASPLUS calls need to
know which record is the current one. For example, if a record is
being read, it is the current record. After the read operation is
complete, that current record location is stored away so that the next
operation knows which record to act upon if necessary.

5-1 Second Edition

MIDASPLUS USER'S GUIDE

If the next operation is a read-next operation, the file handler must
check the location of the current file position so that it can read the
proper record. Since the proper record is the one after the record
just read, that record becomes the new current record. If, however,
the next operation is a call to FIND$, MIDASPLUS does not care which is
the current record because MIDASPLUS is required to do an index search
to find the requested record.

The current record position information is stored in a 14-word
(28-byte) array supplied on each MIDASPLUS call. MIDASPLUS constantly
updates and checks the array. The array contains the index location,
file position, and the current record location. This array is called
the MIDASPIUS communications array.

DIRECT ACCESS IN FORTRAN

FORTRAN's direct access files do not require you to define the record
number as a primary or secondary key. Although you may define the
record number as the primary or secondary key, MIDASPLUS stores the
record number as a single-precision floating-point number. If you do
not want the record number to be a key field, define the primary key as
some other unique field in the record. You can also define up to 17
secondary indexes during template creation.

If you decide not to make the record number a key field, do not be
concerned about it during template definition. The only time you
should be concerned about the record number is when you are adding
entries to the file. Then, supply a unique record number for each
record to be added to the data subfile. MIDASPLUS stores the record
numbers in the proper place.

You can also use KBUILD to build (populate) direct access files.
Supply record numbers in the same word position in each record.

To access direct access files by record number (instead of by key), use

the same basic subroutine calls. In this case, communications array
format is slightly different than for keyed-index access.

THE COMMUNICATIONS ARRAY

After a MIDASPLUS file is opened for access, MIDASPIUS uses the
commmnications array to keep track of the current file position. The
array stores the following:

e The current record’'s address

e The current position in the index subfile

e A status code for the operation

Second Edition 5-2

THE FORTRAN INTERFACE

e The word number of the located entry in the index subfile
e The data record address
Most FORTRAN/MIDASPLUS file access subroutines use the array as an

argument. Formats and use of the array differ for keyed-index access
and direct access.

Keyed-TIndex Array Format

Only the first word of the array is important for keyed-index access
users. You may only modify the first word of the keyed-index access
array. When you supply the first word, it can be O, 1, or -1. Vhen
MIDASPIUS returns the first word, it contains the status code of the
executed operation. Words 2-14 contain index and data record
addresses, subfile numbers, and the key’'s hash value.

Word 1: Input Value: Word 1 is the only word that you may modify.
You may set the value to either 1, O, or -1. Any other value produces
an error on any call in which that array is used. If the value is set
to O or 1, MIDASPLUS will use the current array contents on the call.
If the value is set to -1 (which has precedence over the FL$USE flag),
MIDASPLUS ignores the contents of the array. Flag usage 1is discussed
later in this chapter.

Word 1: Output Value: MIDASPIUS always uses the first word in the
array to return a completion code after an operation is finished. If
set to O or 1, the array contents are valid, and no error was flagged
on the last call. If there was an error on the last call, word 1 has a
value greater than 1 corresponding to a MIDASPLUS error condition code.
Error codes are listed in Appendix B, ERRCR MESSAGES.

Direct Access Array Format

In direct access, the first five words of the array are important.
Table 5-1 shows the complete format of the array as used in direct
access. When using the direct access array, supply the proper values
for words 2, 3, and 4 of the array.

5-3 Second Edition

MIDASPLUS USER'S GUIDE

Table 5-1
Direct Access Array Format
Word No. Setting Meaning
1 Oor 1l Array contents. Supplied by
user.
2 entry size Primary key 1length in words,
(in words) plus data record length in
words, plus 2 words. Supplied
by user.
34 record number A single-precision (REAL*4)
floating-point record number.
Supplied by user.
5 Hash value (based on current key
value).

$INSERT MNEMONICS

To allow programmers to refer to error codes and key values by mnemonic
names rather than absolute wvalues,

program insert files. Each PARM.K.
the FORTRAN subroutines;

the following statements:

$INSERT SYSOOM>PARM.K.INS.FTIN (FORTRAN)
$INSERT SYSCOM>KEYS.INS.FIN (FORTRAN)
$INSERT SYSOOM>PARM.K.INS.PL1 (PL/I)
$INSERT SYSCOM>KEYS.INS.PL1 (PL/I)
#INCLULE “SYSCOM>PARM.K.INS.CC" (C)
#INCLULE "SYSCOM>KEYS.INS.CC" ©)
%INCLUDE ‘SYSCOM>PARM.K.INS.PASCAL’ (Pascal)
%INCLUDE ‘SYSCOM>KEYS.INS.PASCAL' (Pascal)
COPY "SYSCOM>PARM.K.INS.CBL" (OOBOL)

MIDASPLUS FLAGS

A flag is a means of specifying options for a particular call.
is actually a switch with a bit value of either on or off.

Second Edition

54

the SYSCOM directory contains
INS file contains parameters used in
each KEYS.INS contains key declarations.
insert these files in column 1 at the beginning of the program. Use

A flag
You can set

THE FORTRAN INTERFACE

MIDASPIUS flag parameter values to one or more of the MIDASPLUS keys.
Options are specified with a set of flag names that are defined in the
insert file SYSCOM>PARM.K.INS.FIN. The flag names correspond to single
bits of a one-word parameter called flags and are passed to MIDASPLUS
in each subroutine call.

The default setting for each flag bit is off. Depending on what you
want to do with a particular call, you set certain flags on before a
call. To set a flag on, specify the name of that flag in an assignment
statement or in place of the flags argument on the actual call. For
example:

FLAGS = FL$FST + FL$RET

This example tells MIDASPLUS to position to the first index entry for
the specified key and to return the user communication array. As a
result of the above assignment, the octal values of the flags FL$FST
and FL$RET are added. Their sum, which is a single octal value,
determines which bits are set off and which are set on in the flag
word. All of the bits are initialized in the PARM.K.INS.FIN file, and
the bit settings indicate the actions to be taken on the call.

Figure 5-1 1lists the subroutines in which the flags can be used, and

Table 5-2 lists the bits to which the flags correspond and their
meanings when set on or off.

5-85 Second Edition

MIDASPLUS USER'S GUIDE

Flag ATD1$ FIND$ NEXT$ LOCK$ UPDAT$ DELET$ GDATA$

FL$USE
FL$RET
FL$KEY
FL$BIT
FL$PLW
FL$UKY
FL$SEC
FL$UIK
FL$FST
FLSNXT
FL$PRE

X
X

X

(R)
(R1)
(Rs)

X

X

X

x(R)

X

X

X

X

Required.
Required for first record.

Required for all records after the first record.

x x(R) X
x(R)
x x

x(R1)

x(Rs)

Second Edition

Flags for Subroutines
Figure 5-1

5-6

THE FORTRAN INTERFACE

Table 5-2
MIDASPLUS Flag Names, Settings, and Meanings

Bit No. Name

Setting

Meaning

1 FL$USE

4 FL$BIT

on

off

on

off

on

off

on

off

Uses current copy of array.

Does not use current copy
of array.

Returns entire array for
use on subsequent calls.

Returns completion code
only, in array (1).

On calls to FIND$, NEXT$,
and LOCK$, returns primary
key with data record.

On calls to AID1$, tells
MIDASPLUS not to store the
primary key in the buffer,
since MIDASPLUS stores the
primary key automatically,
using the key argument.

Used only if primary key is
first field in data record.

On calls to FIND$, NEXTS,
and IOCK$, does not add the
primary key to the
beginning of the data
buffer.

In ADD1$, tells MIDASPLUS
to store a copy of the
primary key in each
internal data subfile
record.

If the key is a bit string,
the call specifies the key
size in bits; if the key is
ASCII, the call specifies
the key size in bytes.

Specifies key size in words
(default).

5-7

Second Edition

MIDASPLUS USER'S GUIDE

Table 5-2 (continued)

MIDASPIUS Flag Names, Settings and Meanings

Bit No.

Name

Setting

Meaning

10

11

FL$PLW

FL$UKY

FL$SEC

FLSUIK

FL$FST

FL$NXT

FL$PRE

on

on

off

on

off

on

of f

on

off

on

off

on

off

Positions to next index
entry greater than or equal
to current or user-supplied
entry.

Updates user-supplied key
field with wversion stored
in the file. Useful in
partial key searches.

Does mnot update user-
supplied key field.

Returns secondary data
instead of data record.

Returns data record read
from data subfile.

Unlocks data entry only.
Do not update it.

Updates data entry and
unlocks it.

Positions to first index
entry in subfile.

Positions to first entry
that matches current entry
or user-supplied key value.

Positions to next index
entry greater than current
entry or user-supplied key
value.

Positions to next index
entry that matches current
entry or user-supplied key
value.

Positions to previous index
entry.

Does not position to the
previous index entry.

Second Edition

5-8

THE FORTRAN INTERFACE

Notes

On designates that a particular flag is specified in flags.
Off (the default) designates that the flag is not specified.
Bits 12-16 of the flags parameter must be set to O, the default
setting, at all times. Do not change the flag setting. When
you combine flags, some flags have precedence over others. The
priority level is:

e FL$FST

e FL$NXT

e FL$PLW
Certain combinations of flags are not sensible. For example,
FLYNXT and FL$FST. Although meanings are given when each flag

is set off, the combination of keys that are set on is what
actually dictates the action.

COMPILE AND LOAD SEQUENCE

You must include the MIDASPLUS library MPLUSIB in the BIND load
sequence of all FORTRAN programs that use MIDASPLUS. Substitute the
name of your program for the word program in the example.

A sample BIND session using FIN:

ftn program —64v

0000 ERRORS [<.MAIN.>FIN-REV19.3]
K, bind

[BIND rev 19.4]

: load program

: 11 mpluslb

:1i

BIND COMPLETE

: file

(K, resume program

5-9 Second Edition

MIDASPLUS USER'S GUIDE

A sample BIND session using F77:

f77 program -ints

0000 ERRORS [<.MAIN.>F77-REV19.3]
CK, bind

[BIND rev 19.4]

: load program

¢ 1i mpluslb

1

BIND COMPLETE

: file

(X, resume program

Note

You must wuse the option -INTS with Fv7. F77 defaults to long
integer if -INTS is not used.

The FORTRAN/MIDASPLUS INTERFACE SUBROUTINES

A FORTRAN programmer can directly use ten FORTRAN subroutines to access
a MIDASPIUS file. The other language interfaces also use these
subroutines, though transparently to the user. Most of these
subroutines share the same calling sequence. The following is a list
of the subroutines and their functions:

Subroutine Function
OPENM$ Opens a MIDASPLUS file, associates it with a

file unit, and notifies MIDASPLUS that
processing is about to begin on the file.

CLOSM$ Closes a file and its subfiles.

NTFYM$ States that a MIDASPLUS file is opened or is
about to be closed.

ADD1$ Adds a data record and index entries.

FIND$ Finds a data entry by any key.

NEXT$ Finds the next data entry via an index.

GDATAS$ Reads data entries in the order stored.

Second Edition 5-10

THE FORTRAN INTERFACE

LOCK$ Locks a data entry for update.

UPDAT$ Updates a data entry.

DELETS$ Deletes a data entry or secondary index entry.
Record Locking

In order to update a record, lock that record for exclusive use.
Locking the record stops anyone else from trying to read or change the
record while you are changing it. While FORTRAN requires you to call
the IOCK$ subroutine before an update operation can occur, the other
MIDASPLUS language interfaces automatically perform locking. Locking
prevents other users from updating the record, but will not protect
against deleting it.

General Calling Sequence

The MIDASPLUS access subroutines (ADD1$, FIND$, LOCK$, DELET$, NEXTS,
and UPDAT$) use the following arguments as a general format for their
calling sequence:

CALL routine (funit, buffer, key, array, flags, altrtn, index,
fileno, bufsiz, keysiz)
Note

routine is a character data type, but all of the other
arguments are short integer (INT*2).

Argument Specifies

routine One of these six routines: AID1$, FINDS,
NEXT$, LOCK$, UPDAT$, or DELETS.

funit The file unit on which the MIDASPLUS file is
open.

buffer The data record buffer into which data 1is
read or from which it is written to the
file.

key The key value to be used in the call.

array The communications array that holds current

record and index position information. It
also returns status codes after each call.

5-11 Second Edition

MIDASPLUS USER’'S GUIDE

flags

altrtn

file-no

bufsiz

keysiz

Optional Arguments:

The flag options for this call.

The statement label in the program to which
control passes if amn error occurs. Set to O
if no alternate return exists.

The access method to be used (keyed-index or
direct access) and the index subfile number
to use if not direct access.

Ignored by MIDASPLUS, but kept for
compatibility with older wversions.

The length of the data to be transferred
to/from file (except in calls to DELETS).
Set to O, if full data entry is being
transferred. Always supplied in words.

The length of the key to be used in partial
key access (used with FIND$ and NEXT$ only).

You may supply a O instead of another value

the following arguments:

Argument
altrtn

file-no

bufsiz

keysiz

Default

No alternate return for handling errors on this
call.

Obsolete, maintained for compatibility.

Defaults to data subfile entry length (stored in
file).

Defaults to key length specified in file. Can
be set to O if full key is being used.

Note

GDATA$, a data access subroutine used for sequential retrieval
of entries in the data subfile, does not use the general
calling sequence just described.

OPENING AND CLOSING MIDASPLUS FILES

for

MIDASPLUS requires that you open or close a file through MIDASPLUS or
otherwise notify MIDASPLUS of every MIDASPLUS file that you open or
close. You may use either of the following methods to open a file:

Second Edition

5-12

THE FORTRAN INTERFACE

e Use the OPENM$/CLOSM$ subroutines.

e Make calls to NIFYM$ to modify existing programs that use SRCHS
or SRSFX$ to open and close a file. When SRCH$$ or SRSFX$ opens
a MIDASPLUS file, meke the call to NIFYM$ after opening the
file. When SRCH$$ or SRSFX$ closes a MIDASPLUS file, issue
NTFYM$ before the closing the file.

OPENM$

OPENM$ is the MIDASPLUS routine that opens a MIDASPLUS file (segment
directory). Through OPENM$, MIDASPLUS opens a file, validates it as a
MIDASPIUS file, and stores the information in its file table.
MIDASPIUS requires a call to OPENM$ (or NIFYM$ as an alternative but
unequal choice) before a file can be acoessed using the online
MIDASPLUS routines. If you try to access a file that MIDASPLUS is
unaware of, an error code of 23 will appear saying that the file is not

opened.

Always use the same access mode when opening a file more than once from
the same program. To manage file units more efficiently, open a
MIDASPLUS file only once in the same application.

OPENM$ Keys

OPENM$ replaces direct calls to either of the following PRIMOS file
system routines:

e SRCH$$ (takes a filename argument)

e SRSFX$ (takes a pathname argument)
These routines open a file and associate the file with a PRIMOS file
unit. OPENM$ requires the use of certain PRIMOS keys (listed below)

that specify whether to open a file for reading, writing, or a
combination of both:

Key Action

K$GETU Opens a file on an available PRIMOS file unit.
K$READ Opens a file for reading only.

K$WRIT Opens a file for writing only.

K$RDWR Opens a file for reading and writing.

5-13 Second Edition

MIDASPLUS USER'S GUIDE

Note

The keys listed above are used in calling OPENM$ as shown
below. You must specify one of the choices K$READ, K$WRIT, or
k$RDWR. K$GETU is strongly recommended.

OPENM$ Calling Sequence

The calling sequence of OPENM$ is

CALL OPENM$ (key, pathname, namlen, funit, status)

The arguments, which are all INTEGER*2, are

key

pathname
namlen

funit

status

Second Edition

Input parameter. Valid OPENM$ access key:
either K$READ or K$WRIT or K$RDWR used together
with K$GETU.

Pathname of MIDASPLUS file to be opened.

Length of the pathname in characters, supplied
by the user. F77 programs will not run if the
namlen parameter is supplied as a constant.

The file unit on which the file was opened,
returned by OPENM$ when K$GETU is specified.

OPENM$ status code returned by MIDASPIUS at the
completion of the call. Possible values are
0] No error.
< 10001 FRIMOS file system error.
10001 Invalid key supplied.
10002 Too many MIDASPILUS files are
open. The default is 256 file

units and the maximum is 512.

10003 Specified file is not a MIDASPLUS
segment directory.

10004 Internal error. Ask the System
Administrator for assistance.

10005 Internal error encountered while
trying to open a remote file.

5-14

THE FORTRAN INTERFACE

CLOSM$

The CLOSM$ routine closes a MIDASPLUS file (segment directory) that was
opened on a specified file unit. CLOSM$ also closes any of the
subfiles that MIDASPLUS opened during file access. CLOSM$ can also be
called as a function, returning these values in the status code return
argument :

0 No error.

1 Error occurred. Check status oode> .

-1 File was not opened and status code is O.

CLOSM$ Calling Sequence

The calling sequence of CLOSM$ is:

CALL CLOSM$ (funit, status)

The arguments, which are both all INTEGER*2, are:

funit Input parameter. File unit on which the
MIDASPIUS file is opened.
status Output parameter. CLOSM$ status codes.
0 No error.

< 10001 PRIMOS file system error.

10001 MIDASPIUS is unaware that the file
is opened. Internal error. Ask
the System Administrator for
assistance.

5-15 Second Edition

MIDASPIUS USER’'S GUIDE

NTFYM$

Use NTFYM$ if you are using SRCH$$ to open files rather than OPENMS.
The NIFYM$ routine informs MIDASPIUS that you either opened a MIDASPLUS
file (segment file) or are about to close a file using SRCH$$ or
SRSFX$. Place NTFYM$ into an existing program immediately after a call
to SRCH$$ is made to open the file and immediately before SRCH$$ is
called again to close the file.

Before a MIDASPIUS file is closed, a call to NTFYM$ tells MIDASPIUS to
close any of the file’'s segment subfiles that were left open.
MIDASPLUS requires a call to OPENM$ or NTFYM$ before you can access a
file with the online MIDASPIUS routines. Without this call, the online
routines return an error code of 23 (File not Found).

NIFYM$ Calling Sequence

The calling sequence is:

CALL NTFYM$ (key, funit, status)

The arguments (all INTEGER*2) used in this call are:

key Specifies whether the file has been opened or is
about to be closed (user supplied).

[
]

file is open

AV
Il

file is about to be closed
funit File unit on which MIDASPIUS file is opened
(user-supplied).

status NTFYM$ status codes

0 No error.

< 10001 PRIMOS file system error.

10001 Invalid key supplied.

10002 Too many MIDASPIUS files are

opened. The default is 256 and the
maximum is 512.

Second Edition 5-16

THE FORTRAN INTERFACE

10003 Specified file is not a MIDASPLUS
segment directory.

10004 Internal error. Ask the System
Administrator for assistance.

10005 Internal error encountered while
trying to open a remote file.

ADD1$

Use the AID1$ routine to add primary index entries and data subfile
entries to keyed-index and direct access MIDASPLUS files. You can add
secondary index entries (and optional secondary data) to files with
secondary indexes. If you want your secondary keys to be in the data
record, make sure that the secondary keys exist in the buffer when the
primary key and record are added to the file.

If ADD1$ adds a variable-length record that is outside a record size
limit, MIDASPIUS automatically resets that 1limit to the size of the
record.
Note
Because MIDASPIUS is a word-aligned product, the key or record

buffer passed to MIDASPIUS must be word-aligned. In this
manual, the term word means 16 bits.

5-17 Second Edition

MIDASPIUS USER'S GUIDE

Keyed-index Adds

You can only add records to a MIDASPLUS file when the records have a
primary key value. Likewise, you can only add a secondary key value if
the record which it will reference already exists in the data subfile
and if a primary index entry references it. Add records and keys
associated with them in the following order:

1. To add a data entry and its primary value, make a call to ADD1$
with the flag FL$RET set on.

2. To add a secondary index entry for this record, make a separate
call to AID1$ with the flag FL$USE set on.

In order to add secondary index entries for an existing data subfile at
a later time, you can do either one of the following:

e Supply the primary key value in the argument buffer and set
index and key to the desired secondary index number and value,
respectively, on a call to AID1S$.

e Use the primary key (with a FIND$ or NEXT$ call using FL$RET) to
locate the record. This call returns the array so that the call
to AID1$ can use it. Set the index and key to the index number
and value, respectively, on the call to AID1S$.

ADD1$ Calling Sequence

The calling sequence format is:

CALL ADD1$ (funit, buffer, key, array, flags, altrtn, index,
file-no, bufsiz, keysiz)

Table 5-3 explains the arguments that have meanings unique to ADD1S$.

Second Edition 5-18

THE FORTRAN INTERFACE

Index Values: The index argument indicates whether the add operation
is being performed on a direct access file or a keyed-index access
file. It also tells whether a primary or secondary index entry will be
processed on this call. The values for the index argument are:

Value for Index Meaning
0 Primary index
1 - 17 Secondary index
-1 Direct access

When index is 0, use the buffer to supply the data entry information
which will be added to the data subfile. If you are storing keys in
the secondary indexes, make sure that index is a number from 1 to 17.
For secondary keys, specify the corresponding primary key as the first
item in the buffer and specify the secondary value in the full key
argument.

Table 5-3
ATD1$ Arguments

Argument Meaning
funit File unit on which the MIDASPLUS file is open.
buffer Buffer containing the data subfile record on a

data entry add operation. If keys are being
stored in the data record, include all key
values in buffer as well. On a secondary index
add without FLSUSE set, buffer contains the
primary key value followed by optional secondary
data.

key Value of the key that must contain full primary
key value on a data record add. Contains full
secondary key value on a secondary index add.

array Communications array that returns a completion
or error code.

flags The switch with a bit wvalue that can be set
either on or off. (See Table 5-4 for flags that
can be used with ADD1$.)

5-19 Second Edition

MIDASPIUS USER’'S GUIDE

Table 5-3 (continued)
ADD1$ Arguments

Argument

Meaning

altrtn

file-no

bufsiz

keysiz

Statement number of alternate return to be used
in case an error occurs on the subroutine calls.
Supply O if you cannot use an alternate return.

Access method and index subfile to use. The
values for the index argument are listed in the
Index Value section above.

Set to O (obsolete).

Length of data to be added to subfile from
buffer. If bufsiz = 0 and index = O, MIDASPLUS
adds data from Dbuffer to data subfile.
MIDASPLUS takes only the number of words it
needs to match the record size defined for the

MIDASPLUS file during CREATK.

If index > O and secondary data is supported for
that index, adds secondary data from buffer to
indicated index subfile. If bufsiz is less than
data record size or is less than key size plus
secondary data, only that part of buffer will be
used.

The rest of the data subfile or secondary data
entry is zero-filled. In general, specify O for
fixed-length records. For files with
variable-length records, specify length of data
to be written to file.

Set to 0 (ignored).

Second Edition

5-20

THE FORTRAN INTERFACE

Table 54
Flags for ADD1$

Flag Function

FL$USE: Uses contents of the array from previous call -

used on calls to add secondary index entries.
Set off when adding primary index entries or
secondary index entries if using the primary key
to locate data records.

FL$RET: When set on, returns array contents from this
call (set only on calls to add data records).

FLSKEY: When set on, tells MIDASPIUS that the primary
key is included at the beginning of the buffer.
Since the primary key is already stored with the
data, this flag alerts MIDASPLUS that the data
portion of the record is offset from the start
of the buffer by the length of the primary key.
For storage purposes, MIDASPLUS will ignore the
primary key portion of the buffer.

Redundant Primary Keys

Since MIDASPIUS always stores a copy of the primary key along with the
data record, redundant primary keys would result if the file were
created with the primary key as part of the data record. However,
users may wish to consider the primary key as part of the data record.
To solve this problem, MIDASPLUS provides a flag, FL$KEY. FL$KEY tells
MIDASPIUS to place the primary key in the front of the record buffer
argument for retrieval operations and to ignore the primary key in the
beginning of the buffer on update and insert operations. Logically,
the user will see the key as part of the data record. Physically,
MIDASPLUS will store only one copy of the key.

Adding Data Records

When adding primary index and data entries, place the full primary key
value associated with the record in key. Place the information added
to the data subfile in the buffer. Set bufsiz to O for keyed-index
MIDASPIUS files with fixed-length records. Set bufsiz to the length of
the data entry in words for variable-length records. If you are adding
secondary indexes to this file, return the array (set the FL$RET flag

on in flags) for use in later calls to ATID1$.

5-21 Second Edition

MIDASPLUS USER'S GUILE

Note

¥hen adding entries to a MIDASPLUS file with ADD1$, supply the
full key value in the key argument. Partial key values are
illegal. Since the argument keysiz is ignored, set it equal to

0.

Adding Secondary Index Entries

To add secondary index values, supply MIDASPIUS with the following
information:

Secondary index number (in index).
Secondary key value (in key).
Primary key value —— place it in the first part of buffer or set

FL$USE to use a valid copy of array. The array is valid only if
the previous call (in which the desired key value was used
and/or returned) returns it.

Secondary data (optional — supplied in buffer following primary

key value).

Duplicate secondary key entries are supported only for those index
subfiles that were created with duplicate status during CREATK. If you
try to add duplicate entries to a secondary index that does not support
them, an error is returned and the add operation fails.

For example, if you want to add all secondary index entries for a
particular data subfile entry, perform the following eigth steps
immediately after you have added the primary key and the data entry:

1.

Set FL$RET in flags on the AID1$ call when adding the primary
index and data entry.

If you have one or more secondary index entries to add after
the above call, set FL$USE in flags.

Set index to the appropriate index subfile number (1 - 17).

If the array is not valid, put the primary key value of this
record in the first part of the buffer.

If adding any secondary data for this index entry, put the
secondary data in buffer immediately following the primary key
value.

Set key to the full secondary value that you want stored in the
index subfile.

Call ATD1$ to add this secondary index entry.

Secord Edition 5-22

THE FORTRAN INTERFACE

8. Repeat steps 2 - 7 for each secondary index entry that you want
added for this record.

Direct Access Adds

For direct access files, set the index value to -1 in all calls to
ATD1$ that add data entries. To add secondary index entries, set index
to the secondary index subfile. The record number may be defined as
the primary key. Since MIDASPLUS stores the numbers, it is not
necessary to define the record number as a key during the template
creation.

Provide the following in each call to AID1$:

e A primary key value (in key)

e A floating-point entry number (in words 3 and 4 of the array)

e The data entry size (in word 2 of array)
The data entry size is equal to the key length (rounded up in words)
plus the data length (in words) plus 2. Make sure you supply the
correct data entry size every time. For example, given a primary key

size of 3 words and a data entry size of 10 words, the data size
argument would be 15.

The Array: See Table 5-1 for the array format for direct access calls.
The contents of the array’s first four words in direct access calls to
ATD1$ are:

e Vord 1: Condition code (O or 1)

e VWord 2: Data entry size (key size + data length + 2)

e Words 34: Entry number (record number) in REAL*4 format
If an entry already exists with the supplied record number, MIDASPLUS
places the new record number into an overflow area. Duplicates are not
allowed for any primary key. Therefore, MIDASPLUS will not place the

new record into an overflow area if the primary key is defined as the
record number.

5-23 Second Edition

MIDASPIUS USER’'S GUIDE

Return Code Values

Common return codes in word 1 after a call to AID1$ are:

Code Meaning

0 Successful completion of the call.

1 Successful completion of the call. There are
duplicates for this index (okay).

7 No entry exists with supplied primary index
value. '

12 You attempted to add duplicates to a primary
index or to a secondary index that does not
allow them.

other codes See Appendix B, ERROR MESSAGES, for a 1list of
MIDASPLUS error codes.

READING A MIDASPLUS FILE

Use FIND$ or NEXT$ to perform keyed reads of primary and secondary
keys. For direct access files, you can use FIND$ to read by record
number. Use GDATA$ to retrieve records directly from the data subfile
in the order in which they appear.

Note
Unlike some of the other language interfaces, none of the

FORTRAN interface’s data retrieval routines locks a record upon
positioning to it. To lock a record, use LOCKS$.

Second Edition 5-24

THE FORTRAN INTERFACE

FIND$

Using either a primary or a secondary key, FIND$ locates and reads a
MIDASPLUS data entry. Searches can also be done on partial primary or
secondary key values. If a partial key search is used, you can request
FIND$ to return the full key value as stored in the index subfile being
searched. If a secondary index contains secondary data, you can
request FIND$ to return the secondary data instead of the data record.

FIND$ Calling Sequence

The calling sequence for FIND$ is:

CALL FIND$ (funit, buffer, key, array, flags, altrn, index,
file-no, bufsiz, keysiz)

Table 5-5 shows the arguments that have special meaning. Table 56
lists the flag values valid for use with FIND$.

Specifying Which Index to Use

The index argument tells which access mode is being used on this call
to FIND$. It also states which index will be used in a keyed-index
file. The settings are:

Index Values Access Mode
0 Use primary index as search key.
1-17 Use indicated secondary index as

basis of search.
-1 Direct access: locate entries by
record number.

Read the FIND$ and Direct Access section in this chapter for
information on reading direct access files.

5-25 Second Edition

MIDASPLUS USER'S GUIDE

Table 5-5
FIND$ Arguments

Argument

Meaning

funit

buffer

array

flags

altrtn

file-no

bufsiz

keysiz

File unit on which the MIDASPLUS file is open.

Buffer in which data entry, primary key values,
or secondary data are returned as a result of
call to FIND$.

Full or partial primary or secondary key value
supplied by the user. In direct access, if
index=-1, do not supply a value for key unless
FL$UKY is set in flags.

The communications array that returns a
completion or error code in word 1 after each
call. In direct access, you are required to
supply the entry size and record number in words
24 of this array.

The switch with a bit value that can be set on
or off. (See Table 5-6 for flags that can be
used with FINDS.)

Statement number of alternate return to be used
in case an error occurs on the subroutine calls.
Supply O if you cannot use an alternate return.

Access method and index subfile to wuse. The
values for the index argument are 1listed in
Specifying Which Index to Use above.

Obsolete, set to O.

Length of buffer. Set to O if complete data
entry and primary key (if FL$KEY is set on) are
to be returned. Otherwise, specify the number
of words you want returned from data subfile
entry.

Size of key. Set to O if full key, otherwise
set to number of bits, bytes, or words in key.
The keysize is assumed to be in words unless
FL$BIT is on, in which case keysize is bits or

bytes depending on the key type.

Second Edition

THE FORTRAN INTERFACE

Table 5-6
Flags for FIND$

Flag Meaning

FL$BIT Specifies that the length of key in keysiz is in
bits if the key is defined as a bit string, or
in bytes if the key is an ASCII string. When
set off, length of key is specified in keysiz in
words.

FL$FST Tells FIND$ to position to first entry in
specified index subfile. If set off, FIND$
positions to first index entry that matches the
user-supplied key, unless another flag setting
overrules this.

FL$KEY Tells FIND$ to return the full wvalue of the
pr:l_ma.ry key for this record in buffer, beginning
in buffer(l). The returned data record will
then immediately follow the primary key in
buffer.

FL$NXT Positions to the next index entry that is
greater than the current value.

When set off, FL$NXT positions to the index
entry that matches the current or user-supplied
entry. A flag setting with a higher precedence
(FL$FST) may overrule this.

FL$PLW Positions to meet the index entry that is
greater than or equal to the current or
user-supplied value.

FL$RET Tells MIDASPIUS to return entire array after
this call to FIND$. If set off, only the first
word of array, the completion code, is returned.

FL$SEC Returns secondary data from the secondary index
being searched instead of returning the data
record. Secondary data is returned in buffer.
Not applicable in direct access or primary index
access, that is, if index is O or -1.

FLYUKY Returns in key the full primary or secondary
index value that oorresponds to the
user-supplied key value used in this call.

- FL$USE In keyed-index access, tells MIDASPLUS to use
contents of array as returned by previous call.
In direct access, the setting is ignored.

5-27 Second Edition

MIDASPLUS USER'S GUIDE

Specifying Key Values

If index is O, supply a primary key in the key argument. If you wuse
FL$USE, however, the key is not needed. If a secondary index is
indicated, specify a value from the index in key. This allows FIND$ to
use it in the retrieval. If the full key value is specified in key,
you can set the keysize argument to O.

Partial Key Values: You may use full or partial keys in both primary
and secondary key searches. Partial key values must be the left-most
characters of the key (i.e., take the values from the beginning of the
key value). For example, if the key value is Massachusetts, possible
partial values include M, Ma, Mass, Massach, and so forth. During a
partial key search, FIND$ returns the first data entry that has a key
value beginning with the indicated partial value.

To indicate a partial key value, supply, in keysiz, the exact length of
the value you have specified in key. If the key is a bit string or an
ASCIT string, specify the key's length in bits or bytes as appropriate,
and set the FL$BIT flag on. If FL$BIT is set off, the key size is
assumed to be in words. How the file was created determines what the
value of FL$BIT should mean. If its binary form is used, Dbits are
assumed with FL$BIT. If ASCII is used, bytes are assumed.

If the keys are not being stored in the record and you want the full

key value returned, set FL$KEY on in the flags when doing partial key
searches.

Retrieval Options

FIND$ permits you to retrieve the following items from a MIDASPLUS
file:

e A data subfile (full or partial). Set bufsiz to O to return all
information. To return a partial entry, specify in bufsiz the
number of words that you want returned.

e The primary key value associated with the record that is sought.
Set FL$KEY on. Use this method when keys are not stored in the
data record, or when entries were added with FL$KEY set on
during calls to ADD1§. Primary key value along with the data
record is returned in buffer. Set Dbufsiz t0 include both
primary key and data record.

Second Edition 5-28

THE FORTRAN INTERFACE

e The secondary data stored with the secondary kcy value on which
the search is conducted. Secondary data is returned in buffer
in place of a data record. Set bufsiz to O to return all
secondary data, or to the number or words that you want
returned. Use FL$SEC in the call. (Index: must be a value
between 1 and - 17.)

e A full primary or secondary key value when searching on partial
keys. Set FL$UKY on. The full key value is returned in key.

All information that FIND$ returns is placed in buffer (except when you
specify FL$UKY to return key value in key). Set bufsiz to accommodate
all of the data during each call.

Using FL$KEY: It is only necessary to set FL$KEY on (to return full
primary key value) when FL$KEY was set on during calls to ADD1$ or when
you are not storing keys in the data record.

Using FLS$UKY: The FL$UKY flag is useful when you are doing record
access via partial key. FL$UKY returns the complete value of the key
that was used for the search. If you store keys in the record, you can
check to make sure that the index entries correspond to the key values
in the data record. These keys also help identify which record you are
looking at when you are doing retrievals on duplicate keys.

FIND$ and the Array

During access to keyed-index access MIDASPLUS files, you do not have to
worry about the settings for the array argument in calls to FINDS.
Word 1 always gives you a completion code after a call to FIND§. If
the value of array(l) is O, the call was successful. A value of 1
indicates that there are duplicates.

When the FL$RET flag is set in the call to FIND$, the entire array is

returned to you. You can subsequently use the array in calls to other
routines such as ATD1$, NEXT$, DELET$, and LOCKS.

5-29 Second Edition

MIDASPIUS USER'S GUIDE

FIND$ and Direct Access

You can access direct access files by any key or entry number. To
access a direct access file by primary or secondary key, use the
keyed-index access method. Treat the direct access file just like a
keyed-index access file. To access a direct access file by entry
number (record number), index must have a value of -1, and both key and
keysiz should be set to 0. In some direct access files, the entry
number and the primary key must be the same, as in COBOL RELATIVE
files.

Accessing a direct access file by entry number involves a search
algorithm that calculates the physical location of the record in the
file (given the entry number and the data subfile record size). To use
the entry number method, supply the floating-point data entry number in
array words 3 and 4 and the full data subfile entry in bufsiz, in
words. -

Argument Settings: Set the index argument to -1 for accessing by entry
number. I1f you use the primary key to search, the key must contain the
full primary key value used in the search, and keysiz must always be O
(indicating a full key value). For the direct access method, set the
array argument to the entry number used on the call. Since MIDASPLUS
always uses the array on this type of call, do not set FLSUSE for this
type of call. See Table 5-1 for the direct access array format.

Second Edition 5-30

NEXT$

THE FORTRAN INTERFACE

NEXT$ allows you to perform a variety of operations on a keyed-index
access MIDASPLUS file. Use NEXT$ to retrieve the following:

File records sequentially according to primary or secondary key
order

All file records with a primary or secondary key value greater
than a given key value

All records with the same partial key value

All records with duplicate index emtries for a specified
secondary key value

All records whose key values come before a certain key value in
a particular index subfile

A particular record using a full or partial primary or secondary
key value (keyed retrieval)

See Table 5-8 for the special flag settings required to perform these
retrievals.

Note

Because you cannot use NEXT$ on direct access files, index will
never have a value of -1 in a call to NEXT$. Specify FLSRET in
calls to NEXT$ or a MIDASPLUS error will occur.

NEXT$ Calling Sequence

The calling sequence for NEXT$ is:

CALL NEXT$ (funit, buffer, key, array, flags, altrn, index,

fileno, bufsiz, keysiz)

See Table 5-7 for the meanings of NEXT$ arguments and Table 5-8 for the
flag arguments settings for NEXTS$.

5-31 Second Edition

MIDASPIUS USER'S GUIDE

Table 5-%
NEXT$ Arguments

Argument

Meaning

funit

buffer

key

array

flags

altrtn

file-no

bufsiz

keysiz

File unit on which the MIDASPIUS file is open.

Buffer into which retrieved data record or
secondary data value is read. If FL$KEY is set,
buffer will include key value plus data record.
If FL$SEC is set, secondary data is returned
instead of data record. See Table 5-8.

Value of the key used in the search. Either
full or partial, as specified in keysiz.

Communications array that returns a completion
or error code.

Switch that can be set on or off. (See Table
5-8 for flags that can be used with NEXTS$.)

Statement number of the alternate return to be
used in case an error occurs on the subroutine
calls. Supply O if you cannot use an alternate
return.

Index subfile to use. Direct access is illegal
(index cannot be -1).

0]

primary index
1-17 = secondary index

Obsolete, set to O.

Iength of data to be returned. If set to O,
full data subfile entry is returned. If FL$KEY
is set on, the full key value is returned with
the data. If FL$SEC is set on, secondary data
is returned instead of the data subfile entry.
Make the wvalue of bufsiz large enough to
accommodate everything that must be returned in
buffer.

Length of user-supplied key on this call. If
set to O, full key value is used. If greater
than O, partial key is specified in either Dbits
or bytes (if FL$BIT is set on) or in words
(FL$BIT set off).

Second Edition

5-32

THE FORTRAN INTERFACE

Table 5-8
Flags for NEXT$

Flag Function
FL$BIT Specifies that the keysiz is specified in bits

or bytes. When set off, keysiz is in words.

FL$FST Tells NEXT$ to return the record referenced by
first entry in the specified index.

FL$KEY Tells NEXT$ to return the full wvalue of the
primary key for this record in buffer, beginning
in buffer(l). The returned data record will
then immediately follow the primary key in

buffer.

FLENXT Positions to next index entry greater than key.

FL$PLW Positions to next index entry greater than or
equal to key.

FL$RET Tells MIDASPLUS to return the contents of the

array after this call. This flag is required on
calls to NEXT$. If it is set off, an error code
of 30 will appear.

FL$SEC When set on, FL$SEC returns secondary data in
buffer instead of data record. Use FL$SEC only
when index is greater than or equal to 1.

FL$UKY Returns in key the full primary or secondary
index wvalue that corresponds to the
user-supplied key value used in this call.

FL$USE Tells MIDASPLUS to use the contents of array.
(Array must be present from a previous call to
FIND$ or NEXTS.)

FL$PRE Finds the previous index emtry when the array is
used for positioning.

Buffer Size Specifications

Data retrieved on a call to NEXT$ is returned in buffer. The bufsiz
argument determines the amount to be returned. To return the entire
data subfile entry, set bufsiz to 0. Also set bufsiz to O when
retrieving seoonda.ry data (when index is set to a value greater than O
and FL$SEC is set). Otherwise, set this argument to the number of
words that you want returned from the index or data subfile. Make sure

5-33 Second Edition

MIDASPLUS USER'S GUIDE

bufsiz specifies a large enough buffer to include the full primary key
and the data record when FL$KEY is used.

Array Settings

Word 1 returns a completion code after the call. The settings for
array(l) are:

Code Meaning
0 Successful retrieval.
1 Successful retrieval, but duplicate may exist

for this key value.
other codes Error in retrieval. See Appendix B, ERROR

MESSAGES, for a list of the MIDASPLUS error
codes.

Sequential Record Retrieval

To retrieve records sequentially from some point in a primary or
secondary index, use FIND$ to locate the initial key value. Once the
starting point is found, make repeated calls to NEXT$ to return the
data subfile records based on the order of entries in the primary or
secondary index. In combination, FIND$ and NEXT$ calls enable a
"greater than or equal to" search. First, you find a particular value;

then you find all of the values that are greater than or equal to it.

To start this type of retrieval, set the FIND$ call flag to FL$RET so
that you can use the returned array in the NEXT$ loop. Set the FL$RET
and FL$USE flags in the NEXT$ call. The array that the FIND$ call
returns is used for the first NEXT$ call. The NEXT$ call returns
another array, which acts as input for the following NEXT$, and sO
forth.

To retrieve file records sequentially, begin with the first index entry
in a given subfile and make a call to NEXT$ with FL$FST set on in
flags. When set on, the FL$FST flag tells NEXT$ to return the record
pointed to by the first index entry in the specified index subfile.
The index to be used in the retrieval is specified in the index
argument of the call. The FL$RET flag should also be set on in this
call. After the initial call is made, the FL$FST flag is set off and
the FL$PLW and FL$USE flags are set on in the next call. This tells
NEXT$ to get the next entry in the index regardless of whether it
matches the one just retrieved or not.

Second Edition 5-34

THE FORTRAN INTERFACE

Retrieving Duplicates

NEXT$ can retrieve duplicate secondary key values or key values that
begin with identical prefixes. Take key values from the first part of
the full key value. For example, if the full key is Brookline,
acceptable prefixes include Brook, Bro, Br, and so forth.

To perform a duplicate key search, use a FIND$ (with FL$RET set), or
use NEXT$ without FL$USE, to retrieve the first entry with the desired
full or partial key value. The rest of the values that match this one
can be found by calling NEXT$ with FL$USE set on. (FL$NXT and FL$PLW
are set off.) Set the FL$RET flag on for all calls to NEXT$ when doing
this type of retrieval.

GDATAS$

GDATA$ is used for sequential access only and retrieves records
directly from the data subfile in the order that they appear in the
data subfile. Unless the records were added in order by primary key or
an MPACK was performed on the file by DATA, this order does not
necessarily correspond to any key order.

Set the FL$FST flag on in the first call. Set the FL$NXT flag on in
the following calls.

WARNING

Successive calls to GDATA$ with FL$NXT cannot be mixed with
calls to other MIDASPIUS file access routines. Only use GDATA$
on one file at a time.

GDATA$ Calling Sequence

The unique calling sequence for GDATAS$ is:

CALL GDATA$ (funit, flags, buffer, bufsiz, status)

See Table 5-9 for the file arguments and their meanings.

5-35 Second Edition

MTDASPLUS USER'S GUIDE

Table 5-9
GDATA$ Arguments

Argument Meaning

funit PRIMOS file unit on which a MIDASPIUS file is
open.

flags The record to be retrieved. For the first call,

set it to FL$FST to retrieve the first record in
the data subfile. For subsequent calls, set it
to FL$NXT to retrieve the next sequential

record.
buffer Buffer in which data is returned.
bufsiz Size of buffer in characters.
status Error codes include:

0 No error

>0 System error code

-1 Bad flag value supplied
-3 Invalid record position

-4 TFatal internal error

After returning from a successful GDATA$ call buffer contains the
retrieved data record.

Second Edition 5-36

THE FORTRAN INTERFACE

UPDATING A RECCRD

IOCK$ and UPDAT$ are used together to perform a record update. LOCK$
secures a record for update and prevents other users from locking or
updating the record. Other users may still delete a locked record. To
update a record, lock the record with IOCK$ and then update it with
UPDATS .

LOCK$

LOCK$ works on both keyed-index and direct access MIDASPLUS files. It
is similar to FIND$ except that IOCK$ also locks the record it
retrieves. ILOCK$ returns the located data record in buffer. ILOCK$
cannot lock an already locked record, and returns an error if you try
to do so. When IOCK$ is successful, the record remains locked until
you call UPDAT$ to update or unlock the record. UPDAT$ is the only way
to unlock the record. Always call UPDAT$ after a successful call to
LOCKS .

IOCK$ Calling Sequence

The LOCK$ calling sequence is:

CALL IOCK$ (funit, buffer, key, array, flags, altrtn, index
file-no, bufsiz, keysiz)

See Table 5-10 for an explanation of the arguments and Table 5-11 for a
list of the LOCK$ flags.

5-37 Second Edition

MIDASPLUS USER'S GUIDE

Table 5-10
IOCK$ Arguments

Argument

Meaning

funit

buffer

array

flags

altrtn

file-no

bufsiz

keysiz

File unit on which the MIDASPIUS file is open.

Buffer into which the data record to be locked
is read.

Full primary or secondary key value that
identifies the record to be locked. This
argument is not necessary if the record was
already retrieved by a call to FIND$ or NEXTS.

Communications array that returns a completion
or error code after each call. For direct
access, array must include the user-supplied
record number and size to identify the record to
be locked. See LOCK$ and Direct Access below.

Switch that can be set either on or off. (See
Table 5-11 for flags that can be used with
LOCK$.)

Statement number of alternate return to be used
in case an error occurs on the subroutine calls.
Supply O if you cannot use an alternate return.

Access method and index subfile to use:

0] = primary index
1-17 = secondary index
-1 = direct access

(Obsolete, set to 0.)

Length of the data to be read from the file.
Set it to O to return the whole record. If
FL$KEY is set on, make sure that bufsiz is large
enough to include the primary key along with the
record buffer.

(LOCK$ ignores this. Full key is assumed if
supplied.)

Second Edition

5-38

THE FORTRAN INTERFACE

Table 5-11
Flags for LOCK$

Flag Function

FL$KEY When set on, includes full primary key value in
buffer along with the data record. Use this
flag only if keys are not stored in the record.

FL$RET Required in each call to LOCK$. This flag
allows UPDAT$ to use the array that this call
returns. If not set, an error 30 occurs.

FL$USE Set on if the previous call to FIND$ or NEXT$
already found the record that was to be locked.
The previous call’'s returned array is used on
this call to ILOCK$. You do not have to supply a
value for key.

Specifying a Key

In order to lock a record, you must retrieve it and make it current.
To retrieve the record to be updated, supply a full key value in key on
a call to LOCK$. Otherwise, make sure a valid array has been supplied
by a previous call and that FL$USE is set. You can use the primary or
secondary key to position and lock the record.

Partial key retrieval is possible only if you use FIND$ or NEXT$ first
with FL$UKY and FL$RET set on in flags. You can then call LOCK$ with
FL$USE set on. No key is required in this call to LOCK$ because the
previous FIND$ or NEXT$ call has already located the data record.

The Array in LOCK$

When you have already found the entry to be updated on a previous call
to FIND$ or NEXT$ (with FLSRET set on), set FL$USE on in flags on the
call to ILOCK$. The first word of the array (the completion code) may
contain one of the following values.

5-39 Second Edition

MIDASPIUS USER'S GUIDE

value Meaning

0] Successful retrieval.

1 Successful retrieval. There might be duplicates
of this key value (secondaries only).

7 Entry not found.

10 Entry found, but already locked.

other error See Appendix B, ERROR MESSAGES for a
code list of MIDASPLUS error codes.

Note

On all calls to LOCK$, set FL$RET on so that the next call to
UPDAT$ can use the array that the LOCK$ operation returns.

IOCK$ and Direct Access: The use of LOCK$ with direct access resembles
the use of LOCK$ with keyed-index access. Unlike keyed-index access,
set the index to -1 with direct access. If a prior call to FIND$ does
not return an array, include the data entry number and size in the
array. Set up the array as follows:

Word Number Setting
1 If set to 1, the array contents are used. If

set to -1, the array contents are not used.

2 Supply entry size (in words). This includes the
key length (in words) plus secondary data length
(in words) plus 2 words.

34 Supply the record entry number. This is a
single-precision (REAL*4) floating-point record
number.

5-14 Set to O (obsolete).

To retrieve records before locking them, call FIND$ with FL$RET set on.
Then call IOCK$ with FL$USE set on. It is not necessary to reset the

array.

Second Edition 540

THE FORTRAN INTERFACE

UPDAT$

Always call 1OCK$ before calling UPDAT$. After the IOCK$ call, check
the returned completion code in array(l) to make sure that the record
was successfully locked before calling UPDAT$. Record updates are
allowed on both keyed-index and direct access MIDASPIUS files. An
update is a true rewrite of the record as returned in buffer. After
the UPDAT$ call, the record is unlocked. To unlock the record without
updating it, call UPDAT$ with FLSUIK set on.

UPDAT$ Calling Sequence

The calling sequence for UPDAT$ is:

CALL UPDAT$ (funit, buffer, key, array, flags, altrtn, index,
file-no, bufsiz, keysiz)

Since key values are not supplied in updates, both the key and keysize
arguments should be set to O in a call to UPDATS. Index must match
index specified on the prior call to LOCK$. The updated record is
supplied in buffer. Table 5-12 describes the UPDAT$ arguments and
Table 5-13 describes the UPDAT$ flags.

Unlock only: If you want to unlock a record without updating it, set
FLSUIK on in flags. It is not necessary to change the buffer; the
record will not be rewritten.

UPDAT$ and the Array: Always set the FL$USE flag on when calling
UPDAT$. The array is supplied by FL$USE being set on anrd the array
should not be tampered with following a call to IOCK$. The completion
code indicates whether the update was successful. The update was
successful if array(l) is returned as 0. If the completion code was
returned as 11, the entry was not locked and the operation failed.
Other errors also occur, such as a concurrency error if another user
deletes the record between IOCK$ and UPDAT$ calls. See Appendix B,
ERROR MESSAGES, for a list of MIDASPLUS error codes.

Note

Neither primary nor secondary keys including secondary data
values can be changed in a call to UPDAT$. VWhen keys are
stored in the data record, changes to secondary key fields
(during a call to UPDAT$) will not affect the secondary index
subfile entries that point to the updated record. To change a
secondary index entry and/or secondary data, delete the entry
from the index subfile, and then re-add it in the desired

5-41 Secord Edition

MIDASPLUS USER'S GUIDE

manner. If the keys are stored in the data record, you should
then update the data record accordingly.

Table 5-12
UPDAT$ Arguments

Argument

Meaning

funit

buffer

array

flags

altrtn

file—no

bufsiz

keysiz

File unit on which the MIDASPLUS file is open.

Buffer that contains the record as it is to be
rewritten. If FL$KEY was set in the previous
call to IOCK$, include the primary key in
buffer.

(Ignored, set to 0.)

Communications array that the previous call to
IOCK$ supplies. The array should, if
successful, already be set to 0 or 1.

Switch that can be set either on of off. (See
Table 5-12 for flag options on update calls.)

Statement number of alternate return to be used
in case an error occurs on the subroutine calls.
Supply O if you cannot use an alternate return.

Index that you are referencing. Set to O if the
primary index was used in the LOCK$ call. Set
to 1-17 if secondary index was used in LOCK$
call. Set to -1 if direct access. Make sure
that the index setting for UPDAT$ matches its
setting in the previous LOCK$ call.

(Obsolete, set to 0.)

(Ignored for this call.) It can be left the
same as it was for LOCKS$.

(Ignored, set to 0.)

Second Edition

542

THE FORTRAN INTERFACE

Table 5-13
UPDAT$ Flags
Flag Function
FL$KEY Indicates that a full primary key is present in

the buffer. Use only when keys are not stored
in the data records.

FL$UIK Tells UPDAT$ to unlock the record only. All
other flags are ignored and the data is not
updated. -

FL$USE Required. Set this flag on. The returned array

from the prior LOCK$ call is used on the UPDAT$
call. If not set on, error 30 occurs.

WARNING

You cannot increase the size of variable-length records in a
call to UPDAT$. UPDAT$ only updates the length of the data
that was originally declared in AID1§. Problems occur if the
bufsiz is less than but not equal to the declared size in
ADD1$; MIDASPIUS updates only that portion of the record and
leaves the remainder of the record unchanged. For example:

If the data record is 12345678 (8 characters long) and you
call UPDAT$ with the buffer set to NNNNNN (6 characters)
and the bufsiz set to 3 words, MIDASPLUS only writes out
three words and leaves the fourth word unchanged. The
resulting data record is NNNNNN7V8.

Problems also occur if the bufsiz equals zero and the buffer is
longer than the declared size; MIDASPLUS truncates the buffer
to the declared size and does not produce an error message.

For example:

If the data record is 12345678 (8 characters long) and you
call UPDAT$ with the buffer set to NNNNNNNNOO (10
characters) and the bufsiz set to O words, MIDASPLUS only
writes out 4 words. The last 00 is lost; the resulting
data record is NNNNNNNN.

543 Second Edition

MIDASPIUS USER'S GUIDE

DELET$

DELET$ removes either a data subfile entry (and its associated primary
key) or a secondary index entry. When a primary index entry and record
entry are deleted, the associated secondary index entries (if there are
any) are not deleted. If you delete a primary key, the data record is
marked for deletion and can no longer be retrieved. The secondary keys
are not deleted, but since they point to a "deleted" record, they are
meaningless. They will be deleted the first time that they are
accessed or when MPACK is used with the file. When a secondary key is
deleted, there is no effect on the data record and consequently no
effect on other keys. For more information about handling deleted
records, see Appendix E, CONCURRENCY ISSUES.

DELET$ deletes a record whether it is locked or unlocked. Since DELET$
both positions to and removes a record or an index subfile entry, it is
not necessary to call another subroutine to first find the record or
key.

DELET$ Calling Sequence

The DELET$ calling sequence is the same sequence that is shared with
most of the other interface routines. MIDASPLUS ignores some of the
arguments and they can be set to O in the call. Table 5-14 lists the
arguments for DELETS.

Call DELET$ (funit, buffer, key, array, flags, altrn, index,
file-no, bufsiz, keysiz)

Locating the Record to Delete

Either a primary or secondary key value can be used to locate the
record intended for deletion. Give DELET$ the full primary or
secondary key value in key and set index appropriately. You may also
use a FIND$, NEXT$, or LOCK$ operation before a delete operation to
find the record to be deleted. In this case, set the FL$RET flag in
this prior call so that DELET$ can use the returned array. Then set
FLYUSE in flags in the call to DELET$. When FL$USE is set on in the
call, the key and keysiz arguments are ignored.

Deleting Duplicates

When deleting duplicate key entries, you must use NEXT$ to locate the
record that you want deleted. Check the record to make sure that you
have the right one. Neither DELET$ nor FIND$ will work unless the
record or index that you plan to delete is the oldest duplicate (that
is, the first duplicate to physically appear in the index) in a

Second Edition 5-44

THE FORTRAN INTERFACE

subfile. Both DELET$ and FIND$ are unacceptable for deleting
duplicates because they automatically position to the oldest duplicate
value for that key in the file.

Table 5-14
DELET$ Arguments

Argument Meaning

funit File unit on which the MIDASPIUS file is open.
buffer Ignored.

key Full primary or secondary key used to identify

the entry to be deleted. Do not supply a value
for key if you are using the array from the
previous call (assumes FL$USE is set).

array Communications array that supply array(l) as O
or 1 in keyed-index access. Include data size
in word 2 and entry number in words 3 ard 4 for
direct access. See DELET$ and Direct Access
below.

flags FLSUSE is the only applicable flag in this call.
Set FL$USE if a previous call to FIND$ or NEXT$
was made to locate the entry to be deleted. All
other flag options are ignored.

altrtn Statement number of alternate return to be used
in case an error occurs on the subroutine calls.
Supply O if you cannot use an alternate return.

index Index that you are referencing. Indicates
whether a data record (and primary index entry)
or a secondary index entry should be deleted.

0 Deletes primary index entry and
the data record that it
references.

1 -17 Deletes secondary index entry from
a specified index.

-1 Deletes the primary index entry
and the data record from a direct
access file.

5-45 Second Edition

MIDASPLUS USER'S GUIDE

Table 5-14 (continued)
DELET$ Arguments

Argument Meaning

file-no (Obsolete, set to 0.)
bufsiz (Ignored, set to 0.)
keysiz (Ignored, set to 0.)

Deleting Secondary Index Entries

You can remove a secondary index entry without touching the data record
that it references and without deleting the primary index entry
associated with it. To locate the entry to be deleted, call DELETS$
with FLYUSE set off. Set index and key to the index number and full
key value to be used in the call.

As an alternative, the secondary index to be deleted can be located
with a call to FIND$ or NEXT$ with FL$RET set in flags and with index
set to the appropriate secondary index subfile number. A call to
either FIND$ or NEXT$ is then followed by a call to DELET$ with FL$USE
set on and with the value for index unchanged. Set key to O since it
is ignored when FL$USE is set.

Removing a Record and All Keys

In order to avoid useless entries that do not point to anything, delete
the secondary index entries before the actual data record is deleted.
First, delete all of the secondary index entries that reference a
record, then delete the data record and its primary index key. Storing
all of the keys in the data record makes this process much easier.

DELET$ and Direct Access

To delete a record from a direct access file, supply a full primary key
in key or a floating-point data entry number and data entry size in

array.

To delete a secondary index entry from a direct access file, use the
same method as for an indexed file. The index number should be the
index that is referenced and not -1.

Second Edition 5-46

THE FORTRAN INTERFACE

FORTRAN PROGRAMMING EXAMPLE

C THIS PROGRAM ATDS, DELETES, AND PRINTS NAMES FROM A BANK CUSTOMER
C FIIE.
C
C
C THE FORTRAN INTERFACE RBQUIRES THAT THE SYSCOM>PARM.K. INS.FIN
C FILE (CONTAINS PARAMETFRS USED IN FORTRAN SUBRROUTINES) AND THE
C THE SYSCOM>KEYS.INS.FTN (CONTAINS KEY DECLARATIONS) FILES BE
C INSERTED AT THE BEGINNING OF EACH PROGRAM THAT USES MIDASPLUS.
C
C
$INSERT SYSCOM>PARM.K.INS.FIN
$INSERT SYSCOM>KEYS.INS.FIN
C Declarations

INTEGER*2 TERMINAL

INTEGER*2 ARRAY (14)

INTEGER*2 INDEX, FUNIT, STATUS, FLAGS, NAMELEN

INTEGER*2 BUFSIZ, KEYSIZ, CODE, MODE

CHARACTER*9 PKEY

CHARACTER*1 ANSWER /* P(PRINT), A(ADD), D(DELETE),

CHARACTER*10 SKEY2 /* Q(QUIT)

CHARACTER*25 SKEY1

CHARACTER*86 BUFFER

CHARACTER*25 KEY

CHARACTER*16 STREET

CHARACTER*2 STATE

CHARACTER*15 CITY

CHARACTER*9Q ZIP

CHARACTER*4 PATHNAME

BEQUIVALENCE (BUFFER(1:1),PKEY),
1(BUFFER(10:10), SKEY1), (BUFFER(35:35),SKEY2),
1(BUFFER(45:45), STREET), (BUFFER(61:61),CITY),
1(BUFFER(76:76),STATE), (BUFFER(78:78),ZIP)

CHARACTER*1 ANSERZ /* Y(es) or N(o)
LOGICAL*2 SWITCH(2)
INTEGER*2 FILE OPEN
MODE = K$RDWR + K$GETU

C THE BANK FILE WAS CREATED DURING CREATK
PATHNAME = 'BANK’

NAMELEN = 4

TERMINAL = 1

SWITCH(1) = .FALSE. /*SKEY1l SWITCH

SWITCH(2) = .FAISE. /*SKEY2

FILE OPEN = O /* FILE OPEN SWITCH

C OPEN THE BANK FILE
CALI, OPENM$ (MODE, PATHNAME, NAMELEN, FUNIT, STATUS)
C
IF (STATUS.EQ.O) THEN
FILE OPEN = 1
ELSE

547 Secornd Edition

MIDASPLUS USER'S GUIDE

PRINT *, '**ERROR OPENING BANK *ILE: ‘', STATUS
GO TO 8000
END IF
C
C QUERY USER FOR ACTION (PRINT, ADD, DFIETE, OR QUIT).
C

900 WRITE (TERMINAL, 9002) 'ENTER ACTION - P(rint), A(dd), ',
1’ D(elete) OR Q(uit):’
READ (TERMINAL, 9001) ANSWER
IF (ANSWER.EQ. 'P’ .OR. ANSWER.EQ.’'A’ .OR. ANSWER.EQ.'D’) THEN
GO TO 950
EISE IF (ANSWER.EQ.'Q’) THEN
GO TO 8000 :

EISE

C
C THE MESSAGE "INVALID OPTION...PLFASE TRY AGAIN" APPEARS IF A
C USER ENTERS A RESPONSE OTHER THAN P, A, D, OR Q.
FRINT *, 'INVALID OPTION...PLEASE TRY AGAIN'
GO TO 900
END IF
950 CONTINUE

ADD A RECORD

QaQa

IF (ANSWER.EQ.'A’) THEN
GO TO 1000

ELSE
GO TO 2000

END TF

THE USER SELECTED THE ACD OPTION SECTION; THE PROGRAM GETS
DATA AND ADDS IT INTO THE FIIE.

Qaaaa

1000 WRITE (TERMINAL, 9001) 'ENTER 9 DIGIT CUSTOMER ID: '
READ (TERMINAL, 9001) PKEY

1010 WRITE (TERMINAL, 9001) 'ADDING CUSTOMER NAME?'
READ (TERMINAL, 9001) ANSER2

IF (ANSER2.EQ.'Y’') THEN
SWITCH(1) = .TRUE.
GO TO 1100
EISE IF (ANSER2.EQ.'N’') THEN
GO TO 1200 /* RECORD WILL HAVE CUST-ID# ONLY
ELSE
C USER IS PROMPTED REPEATEDLY UNTIL THE RESPONSE IS Y OR N
WRITE (TERMINAL, 9001) ‘ANSWER Y or N’
GO TO 1010
END IF
C USER ENTERS CUSTOMER NAME (UP TO 25 CHARACTERS)
1100 WRITE (TERMINAL ,9001) 'ENTER CUSTOMER NAME: '
READ (TERMINAL, 9001) SKEY1

Second Edition 548

THE FORTRAN INTERFACE

C USER HAS THE OPTION OF ADDING A UNIQUE, 10 DIGIT, ALPHA
C NUMERIC ACCOUNT NUMBER.
1120 WRITE (TERMINAL, 9001) 'ADDING ACCOUNT # ?'
READ (TERMINAL, 9001) ANSER2
IF (ANSER2.EQ.'Y’') THEN
SWITCH(2) = .TRUE.
GO TO 1150
EISE IF (ANSER2.EQ.'N’) THEN
GO TO 1160
ELSE
WRITE (TERMINAL, 9001) 'ANSWER Y or N’
GO TO 1120
END IF
1150 WRITE (TERMINAL, 9001) ‘ENTER 10 DIGIT ACCOUNT NUMBER: '
READ (TERMINAL, 9001) SKEY2
C USER ENTERS CUSTOMER AIIDRESS
1160 WRITE (TERMINAL, 9001) 'ENTER STREET ALDRESS: '
READ (TERMINAL, 9001) STREET
WRITE (TERMINAL, 9001) ‘ENTER CUSTOMER CITY: '
READ (TERMINAL, 9001) CITY
WRITE (TERMINAL, 9001) 'FNTER CUSTOMER STATE: '
READ (TERMINAIL, 9001) STATE
WRITE (TERMINAL, 9001) 'ENTER ZIP CODE: '
READ (TERMINAL, 9001) ZIP
1200 CONTINUE
INDEX = O
KEYSIZE = 9
FIAGS = FL$RET
C THE NEW RECORD IS AIDED TO THE FILE
CALI ADD1$ (FUNIT, BUFFER, PKEY, ARRAY, FLAGS, $5000,
1INDEX, O, O, KEYSIZE)

IF (.NOT. SWITCH(1)) GO TO 1210

INDEX = 1

KEYSIZE = 25

FLAGS = FL$USE + FL$RET

CALIL ADD1$ (FUNIT, BUFFER, SKEY1l, ARRAY, FLAGS, $5000,
1INDEX, O, O, KEYSIZE)

SWITCH (1) = .FALSE.

1210 IF (.NOT. SWITCH(2)) GO TO 1220
INDEX = 2
KEYSIZ = 10
CALI ArD1$ (FUNIT, BUFFER, SKEY2, ARRAY, FLAGS, $5000,
1INDEX, O O, KEYSIZE)
SWITCH (2) = .FALSE.
C
1220 GO TO 9200
C ERROR MESSAGE FOR ADD: PRINTS MESSAGE, INDEX #, STATUS CODE,

2000 CONTINUE /* PRINT RECORD

C'THE USER IS GIVEN THE OPTION OF LOCATING THE CUSTOMER BY THE
C ACCOUNT NUMBER. IF THE USER ANSWERS YES, THE USER IS PROMPTED

5-49 Second Edition

MIDASPLUS USER'S GUIDE

C FOR THE CUSTOMER’'S ACCOUNT NUMBER. IF THE USER ANSWERS NO,
C THE USER IS PROMPTED FOR THE CUSTOMER'S IDENTTFICATION NUMBER.

2010 WRITE (TERMINAL, 9001) 'LOCATE BY ACCOUNT NO.? '
READ (TERMINAL, 9001) ANSER2
IF (ANSER2.EQ. 'N’) THEN
GO TO 2050
EILSE IF (ANSER2.EQ.'Y’) THEN
GO TO 2040
END IF
PRINT *, 'PLEASE ANSWER Yes or No '
GO TO 2010

C THE USER ENTERS THE CUSTOMER'S 10 DIGIT ACCOUNT NUMBER.

2040 WRITE (TERMINAL, 9001) ‘ENTER 10-DIGIT ACCOUNT NO: '
READ (TERMINAL, 9001) SKEY2
WRITE (TERMINAL, 9001) ‘READ SKEY2'
INDEX = 2
FIAGS = FL$RET
CALL FIND$ (FUNIT, BUFFER,SKEY2, ARRAY, FLAGS, $5050,
1INDEX, O, O, 0O)
GO TO 2100

C THE USER IS GIVEN THE OPTION OF LOCATING THE CUSTOMER BY THE

C CUSTOMER'S IDENTIFICATION NUMBER. IF THE RESPONSE IS YES,

C THE USER IS PROMPTED FOR THE CUSTOMER'S IDENTIFICATION NUMBER.

C IF THE RESPONSE IS NO, THE MESSAGE "NO KEY SUPPLIED FOR PRINTING"
C APPEARS AND THE USER IS RETURNED TO LINE 900 - QUERY FOR ACTION.

2050 WRITE (TERMINAL, 9001) ‘LOCATE BY CUSTOMER ID? '
READ (TERMINAL, 9001) ANSER2
IF (ANSER2.EQ. 'N’) THEN
GO TO 2080
EISE IF (ANSER2.EQ.'Y’) THEN
GO TO 2070
ELSE
PRINT *, 'PLEASE ANSWER Yes or No’
GO TO 2050
END IF
2080 PRINT *, 'NO KEY SUPPLIED FOR PRINTING'
GO TO 900

2070 WRITE (TERMINAL, 9001) ‘ENTER CUSTOMER ID'
READ (TERMINAL, 9001) PKEY
WRITE (TERMINAL, 9001) '‘READ PKEY'

INDEX = O
c
FLAGS = FL$RET
CALL FIND$ (FUNIT, BUFFER,PKEY, ARRAY, FLAGS, $5050,
1INDEX, O, 0, 0)
C

C THE CUSTOMER NAME, ID, ADDRESS, AND ACCOUNT NUMBER ARE
C PRINTED.

Second Edition 5-50

THE FORTRAN INTERFACE

2100 PRINT *, 'ACCOUNT# = ', SKEY2
WRITE (TERMINAL, 9002) 'CUSTOMER NAME: ', SKEY1
WRITE (TERMINAL, 9002) ‘CUSTOMER ID#: ', PKEY
WRITE (TERMINAL, 9002) 'CUSTOMER AITRESS: ', STREET
WRITE (TERMINAL, 9002) '’ ', CITY
WRITE (TERMINAL, 9004) ' ' STATE, ZIP

o IF PRINT REQUESTED, THEN DONE, GO BACK FOR NEXT REQUEST
2110 CONTINUE
IF (ANSWER.EQ.'P’') THEN
GO TO 900
END IF

THE USER IS ASKED WHETHER THE DISPLAYED RECORD SHOULD BE DELETED.
IF THE RESPONSE IS YES, THE RECORD IS DELETED. IF THE RESPONSE
IS NO, USER IS RETURNED TO LINE 900 - QUERY FOR ACTION.

aaaaaa

DELETE SECTION
2500 WRITE (TERMINAL, 9001) ‘CKAY TO DELETE THIS RECORD?’
READ (TERMINAL, 9001) ANSER2
IF (ANSER2.HQ.'Y') THEN
GO TO 3000
EISE IF (ANSER2.EQ.'N’) THEN
GO TO 9200
END IF
PRINT *, 'PLEASE ANSWER Yes or No’
GO TO 2500

3000 ARRAY (1) = O

INDEX = 2

CAII, DELET$ (FUNIT, BUFFER, SKEY2, ARRAY, FLAGS,
1$5100, INDEX, O, O, 0O)

INDEX = 1

CALL DELET$ (FUNIT, BUFFER, SKEY1, ARRAY, FLAGS,
1$5100, INDEX, O, 0, 0)

INDEX = O

CALIL DELET$ (FUNIT, BUFFER, PKEY, ARRAY, FLAGS,
1$5100, INDEX, O, O, O)

GO TO 900

5000 WRITE (TERMINAL, 9001) 'ERROR ON AID, KEY = '
PRINT *, PKEY
GO TO 900

5050 WRITE (TERMINAL, 9001) ‘ERROR ON FIND, KEY = '
PRINT *, PKEY
GO TO 900

5100 WRITE (TERMINAL, 9001) ‘ERROR ON DELETE'
PRINT *, PKEY
GO TO 900
8000 IF (FILE OPEN .EQ. 1) THEN
C USER REQUESTED EXIT.

5-51 Secord Edition

MIDASPIUS USER'S GUIDE

PRINT *, 'NOW CLOSING FILE'

CALL CLOSM$ (FUNIT, STATUS)

IF (STATUS.NE.Q) THEN

PRINT *, ‘**ERROR CLOSING BANK FILE: ‘', STATUS

ELSE
FILE OPEN = O
END IF
ELSE
PRINT *, 'FILE NOT OPEN’
END TIF
C
8010 PRINT *, ‘PROGRAM COMPLETED. '
CALL EXIT
C END OF EXECUTABLE CODE.
C

C FORMAT STATEMENTS
9001 FORMAT (A)
9002 FORMAT ((A),(A))
9003 FORMAT ((A),(A),(A))
0004 FORMAT ((A),(A),(A),(A)
CONTINUE
END

OK, F?7 CUST -INTS

[(F7? Rev. 19.4]

0000 ERRORS [<.MAIN.> F?7 Rev. 19.4]
OK, BIND

[BIND rev 19.4.1]

: LOAD CUST

: LT MPLUSLB

: T

BIND COMPLETE

: FILE

OK, RESUME CUST

ENTER ACTION - P(rint), A(dd), D(elete) OR Q(uit):
A

ENTER 9 DIGIT CUSTOMER ID:
28276503889

ACDING CUSTOMER NAME?

Y

ENTER CUSTOMER NAME:
HARPER, ANNE

ACDING ACCOUNT # @

Y

ENTER 10 DIGIT ACCOUNT NUMBER:
CHK4123891

ENTER STREET ADCRESS:

12 WASHINGTON ST

ENTER CUSTOMER CITY:
NEWTON

ENTER CUSTOMER STATE:

MA

ENTER ZIP COLE:

02159

Second Edition 5-52

THE FORTRAN INTERFACE

ENTER ACTION - P(rint), A(dd), D(elete) OR Q(uit):

A

ENTER © DIGIT CUSTOMER ID:
32023677386

ATDING CUSTOMER NAME?

Y

ENTER CUSTOMER NAME:
CORRADO, THOMAS

ATCDING ACCOUNT # 2

Y

ENTER 10 DIGIT ACCOUNT NUMBER:
SAV1273565

ENTER STREET ADCRESS:

42 MAPIE AVE

ENTER CUSTOMER CITY:
ARLINGTON

ENTER CUSTOMER STATE:

MA

ENTER 2IP CODE:

02174

ENTER ACTION - P(rint), A(dd), D(elete) OR Q(uit):

P
TOCATE BY ACCOUNT NO.?
Y
ENTER 10-DIGIT ACCOUNT NO:
CHK4123891
READ SKEY2
ACCOUNT# = CHK4123891
CUSTOMER NAME: HARPER, ANNE

CUSTOMER ID#: 282765038

CUSTOMER AITRESS: 12 WASHINGTON ST
NEWTON
MAO2159

ENTER ACTION — P(rint), A(dd), D(elete) OR Q(uit):

P

TOCATE BY ACCOUNT NO.?

N

TOCATE BY CUSTOMER ID?

Y

ENTER CUSTOMER ID

32023677386

READ PKEY

ACCOUNT# = SAV1273565
CUSTOMER NAME: CORRADO, THOMAS

CUSTOMER ID#: 320236773
CUSTOMER AITRESS: 42 MAPLE AVE
ARLINGTON
MAO2174
ENTER ACTION — P(rint), A(dd), D(elete) OR Q(uit):
D
TOCATE BY ACCOUNT NO.?
Y
ENTER 10-DIGIT ACCOUNT NO:
SAV1273565

5-53

Second Edition

MIDASPLUS USER'S GUIDE

READ SKEY2
ACCOUNT# = SAV1273565

CUSTOMER NAME: CORRADO, THOMAS

CUSTOMER ID#: 320236773

CUSTOMER ADDRESS: 42 MAPLE AVE
ARLINGTON
MAO2174

OKAY TO DELETE THIS RECORD?
Y
ENTER ACTION - P(rint), A(dd),

NOW CLOSING FILE

PROGRAM COMPLETED.
X,

Second Edition

D(elete) CR Q(uit):

5-54

The COBOL Interface

This chapter discusses the COBOL interface to MIDASPLUS. The COBOL
interface to MIDASPLUS uses the Prime CBL compiler and is based on the
standard COBOL I/O statements for INDEXED and RELATIVE files.
Keyed-index access MIDASPLUS files are called INDEXED files in COBOL
and direct access MIDASPIUS files are known as RELATIVE files. You can
access MIDASPIUS files through the COBOL interface just as if they were
any other standard COBOL INDEXED or RELATIVE file.

You must create a template with CREATK for both INDEXED and RELATIVE
files. While OOBOL can access an existing file, it cannot create a
MIDASPLUS file from the program level. Using CREATK, a template has
been created for the sample MIDASPLUS file referred to in this chapter.

This chapter explains how to access both INDEXED files and RELATIVE
files from a OOBOL program. It explains the syntax of COBOL statements
used to read, write, and update records in a MIDASPLUS file. The
chapter also describes how to define the file's characteristics in the
different parts of a OOBOL program. See the Prime manual that
documents COBOL for detailed information on COBOL's syntax and
concepts.

6-1 Second Edition

MIDASPLUS USER'S GUIDE

LANGUAGE DEPENDENCIES

Certain rules exist about keys and record sizes in MIDASPLUS files
accessed by COBOL applications.

The rules about keys are:

Up to 17 secondary keys are supported per INDEXED file.

The primary key and any secondary keys m st be included in the
data record.

Vhile the primary key can be anywhere in the data record,
secondary keys cannot be embedded in the primary key. (If you
change any of the secondary key wvalues, you will affect the
primary key field which cannot be changed.)

Secondary key index subfiles may not contain any secondary data.
The maximum ASCII key size is 64 characters.

The maximum bit string key size is 32 characters.

The rules about record size are:

If a MIDASPIUS file has fixed-length records, the record size
indicated in the COBOL program must match the data size defined
for the file during CREAIK.

Variable-length records are supported for INDEXED files;
however, COBOL may require you to set minimum and maximum record
sizes for the file, sizes that match those in the program. For
details on setting record size limits, see the section
VARIABLE-LENGTH RECORDS AND SPACE USAGE, in Chapter 2.

Note

Restrictions for REIATIVE files are covered in the section
DIRECT ACCESS FILES IN COBOL in this chapter.

Second Edition 6-2

THE COBOL INTERFACE

Compiling and Loading a COBOL Program

The following is a compile and load sequence that shows all of the
libraries that must be loaded to run a program:

CK, cbl program

[CBL rev 19.4]

K, bind

[BIND rev 19.4]

: load program

: 1i cbllib

1

BIND COMPLETE

: file

CK, resume program

Substitute the appropriate program name for the program parameter shown
in the above sequence.

6-3 Second Edition

MIDASPLUS USER'S GUIDE

SUMMARY OF COBOL STATEMENTS

Table 6-1 summarizes the COBOL statements needed to process MIDASPLUS
files.

Table 6-1
Summary of COBOL Statements

Statement Function

OPEN Opens the MIDASPLUS file and establishes the
access mode. Execute this statement before
any other statement that references the file.

CLOSE Closes the MIDASPIUS file and causes the file
unit on which the file is opened to be
released.

USE AFTER Defines a procedure that will be executed if
an INVALID KEY clause or an AT END clause is
not specified.

START Moves the file pointer to a specific record
in the file and establishes the file position
in a MIDASPIUS file opened for or DYNAMIC

access.
WRITE Adds records to a file.
REWRITE Replaces the current record with a new text

string and destroys the original. REWRITE
does not establish or change file position.

DELETE Removes the data record and its primary index
entry.
READ Retrieves records from a file.

This chapter explains these statements in detail.

DEFINING AN INDEXED MIDASPLUS FILE

The rules for defining an INDEXED file in the File Control Section and
in the Data Division of a program are discussed below.

Second Edition 64

THE COBOL INTERFACE

The primary key in an INDEXED file is called the RECORD KEY. The
secondary keys are called ALTERNATE RECORD KEYS. Prime's OOBOL
supports the use of up to 17 secondary keys in INDEXED files.

FILE-CONTROL Requirements

The FILE-CONTROL paragraph contains
e The internal names of the files to be accessed
e The names of the devices on which they are to be opened (PFMS)
e The access mode specifications
e The names of the primary key (RECORD KEY) (one for each file)

e The names of any secondary keys (ALTERNATE RECORD KEY) present
in each file

e A file status, which if present, is used to monitor the success
or failure of each operation

The basic format of the SELECT statement for an INDEXED file is:

SELECT filename
ASSIGN TO PFMS

ORGANIZATTION IS INDEXED

SEQUENTIAL
ACCESS MODE IS 4 RANDOM
DYNAMIC
RECORD KEY IS key-name-1
[ALTERNATE RECORD KEY IS key-name-2 [WITH DUPLICATES]...]
[FILE STATUS IS status-code].
For a complete discussion of File-Control paragraph rules, refer to the

COBOL 74 Reference Guide. The following is a summary of the important
rules.

6-5 Second Edition

MTIDASPLUS USER'S GUIDE

The SELECT Clause: SELECT defines the name of the MIDASPIUS file and
tells the compiler to assign it some available file unit. Always
assign the file to PFMS (disk).

The ORGANIZATION Clause: ORGANIZATION tells the compiler that the file
to be opened is a keyed-index MIDASPLUS file.

The ACCESS MODE Clause: This clause is optional; the default mode is
SEQUENTTIAL. If SEQUENTIAL is specified, or if the clause is omitted,
you must perform all reads and writes sequentially. No random
operations are allowed. Add records in primary key order and retrieve
them in key order in SEQUENTIAL access mode.

If you choose the RANDOM access mode, write and retrieve the records in
a random fashion, based on a supplied key value. Sequential reads and
writes are not permitted.

The DYNAMIC access mode lets you read and write sequentially or
randomly. You can switch back and forth between the two.

The RECORD KEY Clause: RECORD KEY defines the key-name associated with
the primary key for the MIDASPLUS file. Define the parameter
key-name-1 in the Record Description entry associated with this file's
FD entry. The parameter key-name-1 can be anywhere in this
description.

The following rules apply to RECORD KEY definition:
e Do not specify a primary key with an OCCURS clause.

e The length of the primary key cannot exceed 64 characters if it
is an ASCII key or 32 characters if it is a bit string.

e The primary key must be the same length and type as that defined
during template creation.

e The primary key cannot have a P character in its PICTURE clause.

e The primary key cannot be defined as numeric with a separate
sign.

e Do not embed any secondary keys within the primary key. (The
primary key value cannot be changed.)

e The primary key cannot be defined in the WORKING-STORAGE
section.

If you are not sure of the key length or type when defining the keys in

the File-Control paragraph, use the PRINT option of CREAIK to get a
summary of each index description.

Second Edition 6-6

THE COBOL INTERFACE

The ALTERNATE RECORD KEY Clause: ALTERNATE RECORD KEY designates a
field within each record as a secondary key. As stated earlier, you
nay specify a MIDASPLUS file'’'s secondary keys during template creation.
In COBOL always define the keys in the order that they were created
during CREATK, (that is, index 1, index 2 ...). The ALTERNATE RECORD
clause tells COBOL about the order and length of each field that you
designated as a key for this MIDASPIUS file. Use a separate ALTERNATE
RECORD KEY clause for each secondary key you defined in the template.
Use the WITH DUPLICATES modifier, a documentation feature, only for
those keys that were given duplicate status during CREATK. You cannot
change the duplicate status of an index at the program level. (Only
CREATK can change this status.)

Secondary keys are bound by the same size and type restrictions as the
primary key and cannot have P characters in their PICTURE clauses. Do
not define secondary keys in the program’s WORKING-STORAGE section.
Remember that secondary keys apply to INDEXED files only.

The FILE STATUS Clause: Names a two-byte unsigned field declared in
WORKING-STORAGE, called status—code. COBOL's I/O uses this field to
indicate the execution status of each program statement that references
the file. Each time an I/O statement is executed, a 2-byte status code
is placed into this field indicating whether or not the operation was
successful. Each status code describes a different condition or
problem, as shown in Appendix B, ERROR MESSAGES.

DATA DIVISION Requirements

The FILE SECTION of the DATA DIVISION describes the record structure of
each file mentioned in the FILE-CONTROL paragraph. The WORKING-STORAGE
section may describe data items which are not part of files but which
are used to handle data written to and read from these files during
program execution.

The FILE SECTION of the DATA DIVISION consists of the following:
e One or more file description entries called FDs.

e One file-id wvalue, which defines the actual name of the
MIDASPIUS file.

e An FD may have one or more record descriptions. If an FD has

more than one record description, the key must be in the same
relative position in each record.

67 Second Edition

MIDASPIUS USER'S GUIDE

The general format of a File Description entry in CBL is:

FD filename EXTERNAL

RECCORD IS
LABEL
RECORDS ARE

[RECORD CONTAINS integer-2 [TO integer-3] CHARACTERS]
VALUE OF FILE-ID IS file-id-value

RECORD IS
[DATA data—name-1 [data—name-2]...]
RECORDS ARE

[OWNER-IS literal-1]
record description-entry...
Note the following for the File Section clauses:

e The name that the program uses to refer to this MIDASPIUS file
must follow the FD clause. The LABEL RECORD IS STANDARD clause
is not required for disk files with the CBL compiler, but is
required for the COBOL compiler.

e If you use the optional RECORD CONTAINS clause, make sure that
the number of specified characters matches the data record size
specified during template creation. The maximum record size is
32767 characters.

e If you use the DATA RECORD clause, it must name the record
description(s) that follow the FD entry. If more than one
record description is defined per file, give a separate
description of each one. Begin each new record description with
an 01 level number. Multiple record descriptions imply that a
file has more than one record description, but all share the
same buffer area. Specify the key fields in the same relative
position within each record description.

e The VALUE OF FILE-ID clause is used to tie an internal filename
to the actual name of the MIDASPIUS file as it appears on disk.
If this clause is omitted, the internal filename is the default.

The record description defines all of the items that make up a record
and their relationship to one another. The complete syntax of a Record
Description entry is described in the DATA DIVISION chapter of the
COBOL 74 Reference Guide.

Second Edition 6-8

THE COBOL INTERFACE

The OPEN Statement

The OPEN statement opens the MIDASPLUS file and establishes the access
mode. Execute it before any other statement that references the file.
You can open more than one file with this statement, but each file name
specified in an OPEN statement must appear in a SELECT and ASSIGN
statement and must be described with an FD entry in the DATA DIVISION.
The format is:

INPUT
OPEN {I-O filename-1 [,filename-2, ...]
OUTPUT .

The filename is the internal name as specified in the SELECT clause.
You may apply the INPUT, OUTPUT, I-O, or open modes to this file.

If MIDASPIUS cannot locate the named file based on the actual file
name, the program will abort at runtime.

You can use this statement to open more than one file as shown in this
example:

OPEN INPUT CARD-FILE
OUTPUT PRINT-FILE, DIRECTORY-FILE.

Modes: The open mode determines the operations you can perform on
a file, as follows:
e In INPUT mode, only READ statements can access a file.
e In OUTPUT mode, only WRITE statements can write to a file.
e In I-O mode, a file can be both read and written to and records
can be updated and deleted. Records are automatically locked

when read in I-O mode, whereas they are not locked in INPUT
mode. (See Record Locking later in this chapter.)

6-9 Second Edition

MTIDASPLUS USER'S GUIDE

Table 6-2 shows what statements can be used in each access mode.

Table 6-2
Statements Permitted in Each Access Path

Open Mode

File Access
Mode Statement L INPUT OUTPUT I-O

= —

SEQUENTIAL READ °

WRITE L
REWRITE
START o
DELETE
RANDOM READ []
WRITE {
REWRITE
START
DELETE
DYNAMIC READ []
WRITE e
REWRITE
START ®
DELETE

*Records are locked.
**Indexed files only.

Second Edition 6-10

THE COBOL INTERFACE

The CIOSE Statement

The CIOSE statement is the reverse of the OPEN statement. It causes
the file unit on which the file is opened to be released. The form is:

CLOSE filename-1 [, filename-2, ...]

filename is the name of the file specified in the SELECT and FD
clauses. You can open and close a file more than once in the same
program. Attempts to open a file which has not been closed, however,
will result in a runtime abort.

ERROR HANDLING

One of the following three clauses of handling runtime errors must be
specified for each I/O verb.

e The AT END clause
e The INVALID KEY clause
e The USE AFTER ERRCR statement

A brief explanation of how these error handlers work follows. Refer to
the COBOL 74 Reference Guide for complete details on error handlers.

The AT END Clause

The AT END clause, used only in a sequential READ statement (access
mode is DYNAMIC or SBQUENTIAL), prevents program failure when an
end-of-file condition is met during the read. The format is:

READ filename AT END imperative-statement

An illustration of the imperative-statement might be the use of a
PERFORM statement that transfers control to another procedure that
performs some further useful action or just closes the file.

6-11 Second Edition

MIDASPLUS USER'S GUIDE

The INVALID KEY Clause

The INVALID KEY clause identifies and traps MIDASPIUS errors. Use it
in START, READ, WRITE, READ, REWRITE, and DELETE statements to protect
your program from key errors. Without an INVALID KEY clause or a USE
AFTFR statement, the program aborts when an I/0 operation 1is
unsuccessful.

Three exceptions to the above usages of INVALID KEY are:

e SEQUENTIAL ACCESS READ statements (use AT END statement and/or
USE AFTER statement)

e SEQUENTTIAL or DYNAMIC ACCESS READ NEXT statements (use AT END
statement and/or USE AFTER statement)

e SBQUENTTAL ACCESS DELETE statements (use optional USE AFTER
statement)

The format of the INVALID KEY clause is:
INVALID [KEY] imperative-statement

The word KEY is optional. When this clause is executed, examine the
status code variable specified in the FILE STATUS clause of the FILE
CONTROL section to determine the cause of the error. See Appendix B,
ERROR MESSAGES, for a list of codes.

For example, this READ statement is protected by an INVALID KEY clause:
READ MFILE KEY IS PKEY INVALID KEY PERFORM READ-ERRCR.

If a key error in MIDASPLUS's MFILE file occurs during this read, the
READ-ERROR procedure is performed. This procedure might test
status-code for the various errors, and perform an appropriate
operation to recover from that error.

Second Edition 6-12

THE COBOL INTERFACE

The USE AFTER Statement

Place the USE AFTER statement under the DECLARATIVES section of the
program, immediately following a section header (and a period and a
space). This statement defines a procedure that is executed in one of
three cases: if an INVALID KEY clause is omitted; if an AT END clause
is omitted; or if an AT END clause is supplied, but a non-end-of-file
error occurs. '

The format of USE AFTER is:

USE AFTER [STANDARD] | EXCEPTION filename
ERROR PROCEDURE ON] INPUT
OUTPUT
I-0

Use the INPUT, OUTPUT, I-O, and filename parameters to indicate when
that particular procedure should be executed. VWhen filename is
specified, this procedure only handles errors occurring while
processing that file. USE AFTER is never executed. It identifies the
conditions under which the procedure it introduces should be executed.
The terms EXCEPTION and ERROR have the same meaning.

PROCEDURE DIVISION.
DECLARATIVES.

Section—name SECTION. USE AFTER etc.
paragraph-name. [sentence]

After the execution of the USE procedure, program control is returned
to the statement that follows the invoking statement. The following is
an example of a USE procedure:

PROCEDURE DIVISION.
DECLARATIVES.
ERROR-HANDLING SECTION. USE AFTER ERROR PROCEDURE ON I-O.
READ-ERR.
DISPIAY 'STATUS CODE IS:’' ERROR-STATUS.

ete.
END DECLARATIVES.

You can have a separate USE AFTER procedure for each file acocessed in
the program, or you can have one procedure for INPUT errors, another
one for OUTPUT errors, and another one for I-O errors.

6-13 Second Edition

MIDASPIUS USER'S GUILE

FILE POSITION

File position refers to the file pointer’s present position in the
file. The record to which it is currently pointing is the current
record. The COBOL statements that change the current record location
are OPEN, START, READ and DELETE. DELETE leaves the current record
position undefined after a record is deleted. After a DELETE, you can
do a sequential or keyed READ to reestablish the current position.

File Positioning

File positioning is done relative to a primary or secondary index
subfile. You see file positioning in terms of which record is returned
at any given point. The file position is based on the key that you
supply in a given START or READ statement. If you specify that a START
should be done using the primary key (the RECORD KEY), file position
will be established via the primary index subfile. If the file is then
processed sequentially, data subfile records will be returned in
primary key order. MIDASPLUS uses the order of entries in the primary
index subfile as a basis for finding and returning data subfile
records.

Likewise, if a secondary key value is used in a START or a keyed read,
the secondary index subfile becomes the basis for file processing. A
subsequent sequential read returns the next data subfile record
referenced by the next sequential entry in the secondary index subfile
references. MIDASPIUS always adds entries to the index subfiles in
sorted order. MIDASPLUS inserts things where you would logically
expect them to be inserted.

Record Locking

Record locking applies to files opened for I-O only. The READ
statement always locks the record to which it positions. This action,
which happens only in files opened for I-O, protects users from
conflicting updates and makes sure that you will update or delete the
current record. Generally, locking protects the record from harm by
any other user as long as the record remains locked. (The START and
Locked Records section of this chapter describes an exception to this
issue.) The record remains locked until another I/O operation is
performed. Only the current record can be locked, and READ is the only
COBOL statement that can lock a record. There are no specific lock and
unlock statements in COBOL.

Accessing a Locked Record: If your program tries to access a record
that someone else has already locked, a MIDASPIUS error occurs. A file
status code of 90 is returned. To avoid abnormal program termination,
make sure that your program handles all of the file status conditions
listed in Appendix B, ERROR MESSAGES.

Second Edition 6-14

THE COBOL INTERFACE

The START Statement

The START statement moves the file pointer to a specific record in the
file. This establishes the file position in a MIDASPLUS file opened
for SBQUENTIAL or DYNAMIC access. Do not use START in a file opened
for RANDOM access.

To position a MIDASPLUS file to a particular record, START uses a
specific key value or a conditional expression based on a key value.
Follow these steps to position the file:

1. Use a MOVE statement to assign an initial value to the key you
want to use in the START operation.

2. Use a START statement to specify whether the file should be
positioned to one of the following:

e The first record containing that key value

e The first record with a key value greater than the value
assigned to that key

e The first record with a key value greater than or equal
to the specified key value

The general format of START is:
GREATER THAN
START filename [KEY IS { NOT LESS THAN ; key-name]
EQUAL TO

[INVALID KEY imperative-statement].

Note
The symbols >, NOT <, or = may also be used.
key-name is the name of a file key and contains the value that the MOVE
operation previously assigned. The START statement uses the assigned
value in key-name for comparison. Include the INVALID KEY clause
unless the DECLARATIVES have provided a USE AFTER procedure.
Some important points to note about START are:

e START only positions the file pointer; it does not return the
record (as in a READ).

e Only use START with files opened for SEQUENTIAL or DYNAMIC
access.

6-15 Second Edition

MIDASPIUS USER'S GUIDE

e If you are using the BQUAL TO option and the key value specified
in the previous MOVE does not exist, the program terminates
abnormally unless an error-handling mechanism is included in the
program. A file status code of 23 is returned.

e You can use both primary and secondary key values to position
the file. Assign a value to either the RECORD KEY (primary key)
or to an ALTERNATE RECORD KEY (a secondary key) before the START
statement. If you use a secondary key, include the KEY IS
key-name clause in the START statement.

e The GREATER THAN option positions to the first file record whose
key value is greater than that assigned to key-name.

e The NOT LESS THAN option positions to the first record with a
key-name value that is equal to or greater than the value
assigned to the indicated key.

e If key-name is a primary key or a secondary key that does not
allow duplicates, the BQUAL TO option positions to the record in
wvhich the key field value is the same as the value assigned to
key-name.

e If key-name is a secondary key that allows duplicates, the EQUAL
TO option positions to the first record with the indicated key
value.

e START does not lock the record to which it positions.

e If arecord is not found in the file that satisfies the
comparison specified in the START statement, an INVALID KEY
condition exists and the position of the current record pointer
is undefined.

START and Locked Records: If you attempt a START operation on a record
that another user has already locked, MIDASPLUS returns a status code
of O (successful START). However, if you attempt to READ that record,
you receive a status code of 90, indicating that the record is locked.
START and READ do not unlock the record for the other user.

Second Edition 6-16

THE COBOL INTERFACE

- Examples: Generally, to process a file sequentially via some index,
first set the file pointer to the beginning of that index this way:

MOVE LOW-VALUES TO key-name.

START filename KEY IS NOT LESS THAN key-name
INVALID KEY GO TO KEY-ERR.

or

MOVE SPACES TO key-name
START filename KEY IS NOT LESS THAN key-name
INVALID KEY GO TO KEY-ERR.

To set file position with a particular key value, move that value to
the proper key field, as in:

MOVE ‘617’ TO AREA-CODE.
START PHONE-FILE KEY IS NOT LESS THAN AREA-CCODE INVALID KEY GO TO
ERRCRS.

Positioning on Partial Keys: You can use partial keys to position the
file in SHQUENTIAL or DYNAMIC modes only, using the MOVE and START
statements. The GREATER THAN and NOT LESS THAN options enable the use
of partial key values in positioning the file pointer as long as you
fully initialize the key value before the START statement is executed.
This applies to both primary and secondary keys. For example, using
the BANK file, if you wanted to find all of the records whose CUST-NAME
fields begin with the letter F and above, you might initialize the file
position as shown in this program excerpt:

PROCEDURE DIVISION.
FIRST-PROC.
OPEN INPUT BANK
MOVE 'F' TO CUST-NAME.
START BANK KEY IS NOT LESS THAN CUST-NAME
INVALID KEY GO TO KEY-ERR.

READING A FILE

File reads can be either sequential or keyed.

Sequential reads mean reading one record after the other in primary key
or secordary key order depending on the index to which the file is
- positioned. In this type of read, you do not supply a key value except
to +tell MIDASPIUS where in the index file to start reading

sequentially.

6-17 Second Edition

MTIDASPIUS USER'S GUIDE

Keyed reads are also called random reads because it is possible to
specify a mnew key value for searching and jumping anywhere from the
current file position.

Access Modes

The three types of access modes possible in COBOL -- DYNAMIC, RANDOM
and SEQUENTIAL -- were mentioned earlier. Each access mode permits
only certain operations to be performed on a file. Keyed reads are the
only type of read possible in RANDOM access mode, while sequential
reads are the only type permitted in SEQUENTIAL access mode. DYNAMIC
access mode allows you to switch from one type of read to another,
allowing you to do a keyed read to get to a certain spot in an index
and then do sequential reads from there to retrieve the records which
logically follow it.

Note

You must have the file open for INPUT or I-O in order to read
it.

Sequential Reads

Sequential reads position the file to the next logical record after the
current record, making it current. This record is then read and
returned to you. This implies the need for a current record as a
reference point. A MOVE and START or a previous READ operation
establishes the current record. Sequential reads are legal in
SEQUENTTAL and DYNAMIC access modes, but not in RANDOM mode.

In SEQUENTTAL Access Mode: You use the primary or secondary key to
read the file sequentially. You cannot read records randomly.

The format of a sequential READ statement in SEQUENTIAL access mode is:

READ filename [INTO read-var)
[AT END imperative-statement].

The optional INTO clause following the READ clause, moves the record
into the read-var. If omitted, the record value is returned in the
buffer associated with the file in the FD. Include the AT END clause
in each READ statement, unless an applicable USE AFTER procedure is
specified for this file under the DECLARATIVES. The NEXT RECORD clause
is implied for each READ statement although not shown in this format.
Every READ operation in SEQUENTIAL access mode automatically performs a
position to the next record in the file before the READ is performed.

Second Edition 6-18

THE COBOL INTERFACE

Records are not locked when read if the file is opened for INPUT only.
They are locked, however, if the file is opened for I-0. The current
record remains locked until another I/O operation is performed,
yielding a new current record.

Tn DYNAMIC Access Mode: To read sequentially, use the NEXT clause to
Tead a file sequentially by primary or secondary key. A START or a
keyed read can establish the key on which the READ is done. Once the
file position is established (relative to a primary or secondary
index), you can read the file sequentially, by index entry order, with
this form of the READ statement:

READ filename NEXT RECORD [INTO read-var)
[AT END imperative-statement].

The AT END clause is used to trap end-of-file conditions. Specify this
clause if there is not an applicable USE AFTER procedure under the
DECLARATIVES.

Keyed Reads

To perform keyed (random) reads, specify the key value on which a
search should be conducted. Keyed reads are legal in RANDOM and
DYNAMTC access modes and work the same way in each mode. Move the key
value into the proper key field, then use this form of the READ to
position to and retrieve the desired record:

READ file-name RECORD [INTO data-name-1]
[KEY IS data-name-2]

[INVALID KEY Imperative-statement]

A keyed read eliminates the need for a START operation. If the record
for which a key value has been supplied cannot be found, the INVALID
KEY clause is activated. A file status code of 23 is returned. STARTS
are illegal in RANDOM access mode, which allows only keyed reads. In
RANDOM access mode, any READ done without the KEY IS clause
automatically returns the current record (that is, the record to which
the file pointer points at the time the READ operation is encountered) .

6-19 Second Edition

MIDASPIUS USER'S GUIDE

Partial Key Access

Partial key access is possible only if you use the MOVE and START
statements (not available in RANDOM access). You canuot use partial
values in READ operations. The MOVE and START operations, however,
provide a good method of searching for values less than or greater than
a particuiar value. The value may represent a full or partial key
value. Partial key value means a prefix of a full key value. For
example, if a value is BOSTON, legal prefixes include B, BO, BOS, amd
so forth.

Changing Search Indexes

The KEY IS clause allows you to switch from one index subfile to
another without using a START. Put the key value that you want to
search for into the proper key-name variable; then use that key-name
in the KEY IS clause. This establishes key-name as the new key of
reference and automatically puts you into the corresponding index
subfile. If the record for which a key value has been supplied cannot
be found, the INVALID KEY clause is activated. A file status code of
23 is returned.

Reading Duplicates

For secondary keys that allow duplicates, you can retrieve all of the
records with the same secondary key value in DYNAMIC access mode only.
Follow these steps:

1. MOVE the desired secondary key value into the appropriate
secondary key, for example:

MOVE ‘sec-val’ TO sec-key-name

2. Position the file with a START to the first record with this
key value:

START filename KEY IS NOT LESS THAN sec-key-name
INVALID KEY imperative-statement.

3. In a loop, use a READ NEXT statement with the AT END option to
trap the end-of-file condition (status code 10). This
condition exists when there are no more entries in the file.

4. Compare the value just read with the value sought. Verify that
it is a valid duplicate.

Second Edition 6-20

THE COBOL INTERFACE

ADDING RECORDS

You can add records to a MIDASPIUS file when it is opened for OUTPUT or
1I-O. The WRITE statement takes information that you supplied and adds
it to the MIDASPLUS file.

Regardless of the order in which the records are presented, MIDASPLUS
inserts all primary key entries into the primary index subfile in
ascending key sequence (low values first). However, it always adds the
data records to the bottom of the data subfile.

Like primary key entries, MIDASPLUS adds secondary key entries to
secondary index subfiles in sorted order. When MIDASPIUS first tries
to add a duplicate entry (for a secondary index that allows
duplicates), it sets a flag in the original entry. The flag indicates
that there is more than one occurrence of this particular entry value
in the index subfile. It adds duplicates sequentially thereafter,
following the last matching key.

Using the WRITE Statement

Supply a unique key value for the primary key of each record added to
an INDEXED SEQUENTIAL file. Put a new value in the RECORD KEY (primary
key) field before each WRITE statement is executed. To add secondary
keys to their respective indexes, put the appropriate values in the
secondary key fields before the execution of the WRITE statement. The
WRITE statement format is:

WRITE record-name [FROM from-areal
[INVALID KEY imperative-statement].
When using this statement:

e Make sure from-area and record-name do not reference the same
memory location.

e The record from the from-area is moved to the record-name area
prior to the WRITE and is truncated or blank filled.

e Supply a unique value for the primary key before the execution
of each WRITE.

e Use the INVALID KEY clause to trap duplicate primary oOr
secondary key errors. This is required unless you specify a USE
AFTER procedure for this file in the DECLARATIVES.

Although you get better performance with sorted input, you can give
unsorted input to the program as well.

6-21 Second Edition

MIDASPLUS USER'S GUIDE

UPDATING RECORDS (REWRITE)

The REWRITE statement replaces the current record with a new text
string and destroys the original. REWRITE does not establish or change
file position. You can change any field with the exception of the
primary key field. Since a record must be locked in order to be
updated, you can only update the current record. In SEQUENTIAL access
mode, READ the record to indicate which one will be rewritten. 1In
RANDOM mode, position to the record with a keyed read. Either of these
methods is acceptable in DYNAMIC mode. If the record to be updated is
not read before a REWRITE, a status code of 91 (unlocked record) is
returned. In addition, in all access modes, the file must be open for
I-0.

The REWRITE Format

The REWRITE statement format is the same for all access modes. If
there is no USE AFTER procedure specified for this file under the
DECLARATIVES, include the INVALID KEY clause in all REWRITE statements.

REWRITE record-name [FROM from-area)
[INVALID KEY imperative-statement].

If the FROM option is used, make sure the RECORD KEY value is the same
as the key used in the previous READ. This option allows you to write
the new record from another file or data area. The data in this
from-area is moved to the record-name buffer before it is written to
the file. Without the FROM option, you directly modify the buffer
(record-name) that contains the just-read data and then write it back
to the file.

For variable-length records, record-name must be the same size as the
record being replaced.

DELETTNG RECORDS

COBOL's DELETE statement removes the primary index and marks the data
record for deletion. The space that secondary index entries and data
entries occupy is not reclaimed until the MPACK utility is run on this
file. The file must be opened for I-O in order to delete entries from
it.

Secornd Edition 6-22

THE COBOL INTERFACE

The DELETE Format

The DELETE format is:

DELETE filename RECORD
[INVALID KEY imperative-stmt].

filename is the name assigned to the MIDASPLUS file in the SELECT
olause and FD clause. When the file is opened for RANDOM or DYNAMIC
acoess and there is no USE AFTER procedure specified for this file,
include the INVALID KEY clause in the DELETE statement. Do not include
the INVALID KEY clause in DELETE statements used on files opened for

SEQUENTTAL access.

A few

reminders are:

In SEQUENTIAL access mode, the record must first be read in
order to be deleted. This is necessary because a DELETE
operation in SEQUENTIAL access mode does not perform a position
operation; the READ does the positioning.

In SEQUENTIAL access mode, do not change the value in the RECORD
KEY (primary key) between the READ and DELETE statements.
DELETE can only operate on the current record. DELETE uses the
primary key value, used in the READ, to check that it dis the
same key (or value) as the current record’s primary key value.

If the record for which a key value has been supplied cannot be
found in the DYNAMIC and RANDOM access modes, the INVALID KEY
clause is activated. A file status code of 23 is returned.

A DELETE operation leaves the current record pointer undefined.
A READ NEXT or a keyed read operation immediately after a DELETE
will be successful, unless you deleted the last record in the
file.

You cannot perform two deletes in a row without an intervening
READ in SEQUENTIAL access mode. If you supply a new primary key
value, you can perform two deletes in a row in RANDOM or DYNAMIC
modes.

6-23 Second Edition

MIDASPLUS USER’'S GUIDE

INDEXED PROGRAMMING EXAMPLE

The following indexed program adds names to the BANK file that was
created in Chapter 2.

IDENTTFICATION DIVISION.

PROGRAM-ID. NEW.

INSTALLATTON. PRIME COMPUTER, INC.

DATE-WRITTEN. 02/06/85.

DATE-COMPILED.

REMARKS. THIS PROGRAM IS USED TO ADD NEW NAMES TO A BANK
CUSTOMER FILE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME-750.
OBJECT-COMPUTER. PRIME-750.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT BANK-FILE ASSIGN TO PFMS

ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS CUSTOMER-ID .
ALTERNATE RECORD KEY IS CUST-NAME WITH DUPLICATES
ALTERNATE RECORD KEY IS ACCT-NUM
FILE STATUS IS FILE-STAT.

DATA DIVISION.
FILE SECTION.
FD BANK-FILE
VALUE OF FILE-ID IS 'BANK’.
01 RANK-REC.
05 CUSTOMER-ID PIC X(9).
05 CUST-NAME PIC X(25).
05 ACCT-NUM PIC X(10).
05 CUST-AIDRESS.
10 STREET PIC X(18).
10 CITY PIC X(15).
10 STATE PIC XX.
10 ZIP PIC X(9).

WORKTNG—STORAGE SECTION.

01 COMMAND PIC X VALUE SPACES.
88 ATD-COMMAND VALUES ‘A’, ‘a’.
88 PRINT-COMMAND VAILUES ‘P’, 'p’.
88 QUIT-ENTERED VALUES 'Q', 'q’.

01 WORK-REC.
05 WS-CUSTOMER-ID PIC X(9).
05 WS-CUST-NAME PIC X(25).
05 WS-ACCT-NUM PIC X(10).

Second Edition 6-24

THE OOBOL INTERFACE

05 WS-CUST-ADDRESS.
10 WS-STREET PIC X(16).
10 WS-CITY PIC X(15).
10 WS-STATE PIC XX.
10 WS-ZIP PIC X(9).

01 FILE-STAT PIC 99.
01 SEARCH-TYPE PIC X.

PROCEDURE DIVISION.
MATNLINE-CONTROL.
OPEN I-O BANK-FILE.
PERFORM GET-COMMAND THRU GC-EXTT
UNTIL QUIT-ENTERED. -
CLOSE BANK-FILE.
STOP RUN.

GET-COMMAND.
MOVE SPACES TO COMMAND.
DISPLAY ‘' '.
DISPIAY ‘Enter Command (A-add P-print @-quit): '
WITH NO ADVANCING.
ACCEPT COMMAND.
IF QUIT-ENTERED
GO TO GC-EXIT
ELSE IF ADD-COMMAND
PERFORM ADD-ROUTINE THRU AR-EXTT
ELSE IF PRINT-COMMAND
PERFORM PRINT-ROUTINE THRU PR-EXTT
ELSE
DISPIAY ‘** ERRCR = Invalid Command, try again’.
GC-EXIT.
EXIT.

ADD-ROUTINE.
MOVE SPACES TO CUSTOMER-ID.
DISPLAY ‘Enter CUSTOMER-ID (9 digits): '
WITH NO ADVANCING.
ACCEPT CUSTOMER-ID.
* check to make sure key is not in file
READ BANK-FILE
INVALID KEY
NEXT SENTENCE.
IF FILE-STAT = 0O
DISPLAY ‘** ERROR: CUSTOMER-ID already in file: ',
CUSTOMER-ID
GO TO AR-EXIT.
* ok, key is not in file, get information and write record
PERFORM GET-NEW-REC.
WRITE BANK-REC
INVALID KEY
DISPIAY '‘WRITE-ERROR: ' FILE-STAT.
IF FILE-STAT = 00
LISPIAY CUSTOMER-ID ' has been added’.

6-25 Second Edition

MIDASPLUS USER’'S GUIDE

AR-EXTT.
EXTIT.
