ASSEMBLER VERSION 4.0
Page 1

PolyMorphic Assembler System
QOPERATING SYSTEM
The PolyMorphic Assembler System is a software package designed
to run on the Poly-88 computer. Included in the system is an
executive to handle memory and taps files, an Assembler, and a
Tine oriented Editor. To use the system a minimum of 8K of
memory should be available.

EXECUTIVE COMMANDS

control X Cancel input line

EXEC Execute a program

ASMB Assemble a source file to object code
LIST List current file

DELT | Oelete Tine or lines of current file
| #ERF Any four numeric digits enters editor
DISP Display memory

RSEQ Resequence current file

MNTR Go to monitor

LOAD Load source file

SAVE Dump source file

oump Oump memory to cassetta

FREE Display free memory space

To initialize the system, sxecuta it at 2000H. To restart
the system without initializing it, execute at 2003H.

The exacutive has one error message 'WHAT?' indicating an
improper command or an error on parameters following the command.
The other error that can happen is "CHECKSUM ZRROR". Tnis error
can occur when a cassette error occurs.

ASSEMBLER VERSION 4.0
Page 2

EXEC ####
This command is used to execute a program at address ####.

LIST ###4

This command is used to display the lines entered by the user
into the file. The output consists of the lines in the file

. starting at line #### and the next 13 lines. If #### is not
specified, then the next 13 lines are displayed. (It is recom-
mended that you enter a zero if you want to display the start
of the file.)

DELT ###% #4#4 i

This command is'used to delete lines entered by the user from
the file. AIT1 lines starting at thé first 1ine and continuing
up to and including the second number are deleted from the
"current” file. If the second number is not specified then
only the first is deleted.

LOADP /NAME/

LOADB /NAME/

~Load the file with specified name from cassette. LOADP reads
Polyphase tapes, LOACB reads byte format tapes. The names must

be enclosed in delimetars (/) as shown, and be 3 characters.ac’lass.
The syntax must be exactly as shaown, with one space separating the
8 or P and the file delimiting /. ‘

SAVEP /NAME/ LIN1 LIN2
SAVEB /NAME/ LIN1 LINZ ,
Save source text inclusive from line number specified as LIN1 to
and including the 1ine number specified as LINZ2 as the file name
~given, in byte or Polyphase mode. LINI and LIN2 must be given as
'four digits, with one space between the ending file name delimiter /
and the first line number, and one space between the line numbers.
Examples: ' |
>SAVEP /MUNG/ 02710 0450
~ >SAVER /CHAIN/ 0100 0300

ASSEMBLER YERSION 4.0
Page 3

DUMPP /NAME/ ADRL ADR2
DUMPB /NAME/ ADR1 ADR2
Dump contents of memory in the address range specified by
ADR1 and ARD2 to the named file in byte or Polyphase mode.
ADR1 and ADR2 must be specified as four digits and must be
separated by one space.
Examples:

>DUMPP /ASM/ 2000 2FFF

>QUMPB /ASM/ 2000 2FFF

FREE
This command prints the amount (in hexadecimal) of étorage Teft.

ASMB (E) (S) ##3# #3#4

This command is used to assemble a scurce program located in

the file area. The assembler performs the assembly, assigning
addresses to the object code starting at the first number. On
assembly the cbject code is p}aced in memory starting at Tocation
number 2. If number 2 is not specified, it is assumed to be the
same value as number 1. QOuring pass one errors detectad will be
displayed, and during pass two a complete listing is produced.

If the option "E" is specified in the command, only those lines
which contain errors are listed. If the optional “g" is specified,
then the new symboi table will be added onto the previous symbol
table. Otherwise it is startsed at the beginning of the symbol
table spaca.

NOTE: If "E€" and "S" are both specified "e" must be first or

else it will be ignored.

TEXT EDITOR

The editor is a line oriented editor which enables the user

to easily create program files in the System. £Zach line is

crafacad by 2 fixed line number wnich provides for stable line
S

referancing. Sinca line numbers can range from 0000 to 9999 (decimal)

ASSEMBLER VERSION 4.0
Page 4

there are 10,000 lines that can exist in each file. (if enough
storage exists). As the user types lines on the keyboard, they
are entered into the file area. The editor places all line numbers
in sequence and automatically over-writes an existing line in the
file if a new line with the same line number is entered by the
user.

The editor does not automatically assign line numbers. The user
must first, when entering a line of data, enter a line number which
will be interpreted as a call to the editor. Valid line numbers
mggé contain four digits; preceding zeros must be included. An
entry to the editor is terminated by the carriage return key.

No more than 64 characters may be input for one line. A1l lines

are ordered by the ascending numeric sequence of their Tline

numbers. If the user wishes to insert lines after the initial ehtry
is made, it is suggested that the original line numbers be

separated by five unit intervals.

ASSEMBLER

When the Assembler is given control by the executive, it
proceeds to translate the Symbolic 8080 Assembly Language
(source) program into 8080 machine (object) code. Features
of the Assembler include:

Free format source input

Symbolic addressing, including forward references and fe?ative
| symbolic references |
Complex expressions may be used as arguments

Self defining constants :

Multiple constant forms

Up to 256 eight character symbols

Reserved names for 3080 registers

ASCII character code generation '

- 8 Pseudo Operations (assembler directives)

ASSEMBLER VERSION 4.0
Page 5

The Assembler translates Tines in the file into object code.

The second character following the line number is considered to

be the first source code character position. Hence, the character
immediately following the line number should normally be blank.
Line numbers are not processed by the Assembler; they are merely
reproduced on the listing.

STATEMENTS, COMMENTS, AND PSEUDO OPERATIONS

During pass 1, the Assembler allocates all storage’necessary

for the translated program and defines the values of all symbols

used, by creating a symbol table. The storage allocated for the

object code will begin at the first byte dictated bybthe first parameter
in the original Executive ASMB command.

During pass 2, all expressions, symbols, and ASCII ccnstants

are evaluated to absolute valuss and are placed in allocatad
memory in the appropriate locations. The listing, also produced
during pass 2, indicates exactly what data is in each location
of memory.

STATEMENTS

Statements may contain either symbolic 8080 machine instructions
or pseudo-ops. Tnhe structurs of such a statament is

NAME QPERATION QPERAND COMMENT
The name-field, if present, must begin in assembler character
positicn one. The symbol in the name-field can contain as
many characters as the user wants; however, only the first 8
characters are usad in the symbel table to uniquely define
a symbol. All symbols in this field must begin with an
alphabetic character and mey contain no special characters.

ASSEMBLER VERSION 4.0
Page 6

The operation-field contains either an 8080 operation mnemonic or an
Assembler pseudo-operation code. '

The operand-field contains parameters pertaining to the operation-field.
If two arguments are present, they must be separated by a comma.
Example:

0005 FLOP MOV M,B THIS IS A COMMENT

0015 ;COMMENT LINE

0025 JMP BEG
0035 CALL FLOP
0045 BEG ADI 8+6-4
0055 MOV A,B

AT1 fields are separated and distinguished from one another by
the presence of a Tab (control-I) or one or more spaces.

The comment-field is for explanatory remarks. It is reproduced on
the 1isting without processing. See example 0005. Comment 1ines
must start with a semi-colon (;).

SYMBOLIC NAMES

To assign a symbolic name to a statament, one merely places the symbol
in the name-field. To leave off the name-field the user skips two

or more spaces after the line number and begins the operation field.
If a name is attached to a statement, the assembler assigns it the
value of the current location counter. The location counter always
holds the address of the next byte to be assembled. The only exception
to this is the EQU pseudo=-operation. In this case a symbol in the
name-field is assigned a value which is contained in the gperand-field
of the EQU pseudo-operation statement. Example:

0057 POTTA - EQU 128 Tin

assigns the value of 128 to the name POTTA. This data can then be
used elsewhere in the program as: eg. ADI POTTA |

Mames are defined when they appear in the name-field. All defined

names may be used as symbolic arguments in the argument-field. See

ASSEMBLER VERSICN 4.0
Page 7

SYMBOLIC MAMES, cont.

examples on previous page.

In addition to user defined names, the assembler has reserved
several symbols, the value of which is predetermined. These names
may not be used by the user except in the operand-field. They

are (with their value in parentheses):

A the accumulator (7)
8 Register 8 (0)
C Register C (1)
D Register D (2)
E Register E (3)
H Register H (4)
L Register L (5)
M Memory (through H, L) (8)

S Stack pointer (6)
In addition to the above reserved symbols, there is the single
special character symbol (§). This symbo] changes in values as the
assembly progresses. It is always equated with the value of the
program counter after the current instruction is assembled. It may
only be used in the operand-field.
Zxamples:

JMP S Means jump to the next location after

MOV A,B instruction; i.e., the MOV instruction.

LOA S$+5 Means load the data at the fifth location
after this location. In this case the
data has the value of five.

J
o
Oy W N~ O

ASSEMBLER VERSION 4.0
Page 8

RELATIVE SYMBOLIC ADDRESSING

If the name of a particular location is known, a nearby location
may be specified using the known name and a numeric offset.

Example:
JMP BEG
JPE BEG+
cC SuUB1
CALL ADD1
BEG MOV A,B
HLT
MVI v,'B'
INR B

In this example the instruction JMP BDG'refers to the MOV A,B
instruction. The instruction JPE BEG+4 refers to the INR B
instruction. BEG+4 means the address BEG plus four bytes. This

form of‘addressing can be used to locate several bytes before or after
a named location.

CONSTANTS

The Assembler allows the user to write positive or negative
numbers directly in the statement. They will be regarded as
decimal constants and their binary equivalents will be used
appropriately. A1l unsigned numbers are considersd positive.
Decimal constants can be defined using the descriptor "D" after
the numeric value. (This is not required, as the default assign-
ment is decimal.)

Hexadecimal constants may be defined using the descriptor "H"

after a numeric value. (i.e. TOH, 104, 3AH, OF4H).

NOTE: A hexadecimal constant cannot start with the digits A-F.
In this case, a leading O must be included. This enables
the Assembler to differentiate between a numeric value
and a mnemonic s&mbo1.

ASSEMBLER VERSION 4.0
Page S

CONSTANTS, cont.
ASCII constants may be defined by enclosing the ASCII character
within single quote marks, i.e., 'C'. For double word constants,

wo characters may be defined within one quote string.

EXPRESSICNS

An expression is a sequence of one or more symbols, constants or
other expressions separatad by the arithmetic operators plus or
minus. Examples:

PAM+3
[SAB-"A'+5
LOQP+32H-5

Expressions are calculated by using 18 bit arithmetic. All
arithmetic is done mecdulo 65336. Single byte data cannot contain
a value greater that 255 or less than -256. Any value outside
this range will result in an assembler error.

PSEUCO-QPERATIONS

The pseudo-operations are written as ordinary stataments, but they
direct the assembler to perform cartain functions which do not
always develop 8080 machine code. The following section describdes
the nseudo-ocs.

0RG
The ORG statement will set the program counter to the value in the
operand-field. The label-fisald optional but if present will 2e

is
aquated to the given operand-tfieid.

END
The END statement informs the assembler that the last source statement
has been read. The assembler will then start ¢cn pass 2, or tarminate

ASSEMBLER VERSICN 4.0
- Page 10

END, cont.

the assembly and pass control back to the executive. This pseudo-
op is not required as the assembler will stop when an end of file has
been reached.

ENDS

The ENDS statement functions exactlv like the END statement except
it prints the symbol table at the end of pass 2.

ON

——

The LON will turn the print Tisting fTag on. This results in a
full listing from the LON statement until a LOFF statement or the
end of assembly.

LOFF

The LOFF statement will turn the print flag off. This results in
an "error only" listing until a LON statement or the end of
assembly.

EQU

The EQU statement is used to equate a label with an expression.
Example: SAM EQU 12D equates SAM to be equal to 12

DS

——

The DS statement reserves the number of memory bytes specified
by the operation-field.

ASSEMBLER VERSION 4.0
Page 11

08

The DB statement generates a single byte constant specified by
the operation-field.

oW

The OW statement is used to define two bytes of storage. The
evaluated argument will be placad in the two bytes; high order

8 hits in the low order byte and Tow order 8 bits in the high order
byte. This conforms to the Intel format for two byte addresses.

ASSEMBLER ERRORS

The following error flags are output on the assembler listing
when the error occurs. Some of the errors are only output
during pass one.

$) Opcode crror

L Label Error

D Ouplicate Label EZrror

] Missing Label Error

Y Value crror

«—

Undefined Symbol
Syntax Error

Register Zrror

I 0 W»m

Argument Error

ASSEMBLER VERSION 4.0
PAGE 12

SYMBOL TABLE

The assembler normally allocates a symbol table of 100 (décima])
entries, each entry requiring 10 (decimal) bytes. DOecreasing
the size of the symbol table frees memory for use by the editor
for storing the source text. To increase or change the contents
of byte 2006H in the program, and restart the editor/assemb]gr
at 200H. The contents of location 2006H must be greater than

1 and less than 255. This implies a maximum number of symbols
at any time of 254.

POLYMORPHIC SYSTEMS SOFTWARE USER GROUP

PolyMorphic Systems would like to encourage the interchange
of software between POLY 88 users. In order to do this we
will distribute Cassettes of programs we feel are of interest
to other users.

Should you develop a program that you would like to see made
available to fellow users send us a cassette with a copy of
the program in Byte format together with instructions (in
Xeroxable form) on how to run the program. Programs we decide
to distribute will be included in our price list and will be
sold for 10 to 15 dollars. We accept no responsibility for the
content or applicability of any program distributed in this
manner, and offer this strictly as a service to POLY 88 users.

SOFTWARE USER FEED BACK

Program Name Version

How received?

[:] Purchased from dealer Dealer Name?
‘—_7 By mail factory direct
[:j Other

2. How much memory do you have on your system? K

3. How much do you expect to have?
In six months K 1 year K ultimately K

4. How would you rate yourself as a computer user?
[:]Just starting

G Beginner

[:]Intermediate

[:]wizard

[:]I remember the 650

5. Do you program primarily in
[:j BASIC [::]Ass'y Language
About how many Tines is one of your average programs?

6. How would you rate the time used on your machine for the following: -
' % Games % Maintenance % Building programs Other

7. How would you compare this program to others on the market?
[:j Better than most

p—
|_J As good as most

[:3 Worse than most Why?

8. What additional. programs would you like: to see?

Comments on reverse side

Return to PolyMorphic Systems, 460 Ward Drive, Santa Barbara, California 93111

